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Abstract: In this article, we propose a longitudinal multivariate model for binary and ordinal outcomes
to describe the dynamic relationship among firm defaults and credit ratings from various raters. The
latent probability of default is modelled as a dynamic process which contains additive firm-specific
effects, a latent systematic factor representing the business cycle and idiosyncratic observed and
unobserved factors. The joint set-up also facilitates the estimation of a bias for each rater which captures
changes in the rating standards of the rating agencies. Bayesian estimation techniques are employed
to estimate the parameters of interest. Several models are compared based on their out-of-sample
prediction ability and we find that the proposed model outperforms simpler specifications. The joint
framework is illustrated on a sample of publicly traded US corporates which are rated by at least one
of the credit rating agencies S&P, Moody’s and Fitch during the period 1995–2014.
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1 Introduction

The last decades have witnessed an increased interest from practitioners in
the financial industry, researchers and regulators alike in developing tools for
appropriately measuring and modelling credit risk as well as developing and
amending regulations which limit and monitor such risks. In this context, credit
risk assessment typically relies on statistical models based on a historical database
of defaults together with debtor-specific and market variables or on credit ratings
which are forward-looking opinions of a debtor’s creditworthiness and are assigned
by external credit rating agencies (CRAs). This approach is also reflected in
the regulations introduced in the Basel Accords I and II (Basel Committee on
Banking Supervision, 2004, 2011). For example, under Pillar I of Basel II financial
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intermediaries can develop their own default prediction models, which, in case the
history of defaults is limited and portfolio coverage is satisfactory, can be enhanced
or replaced by models using external rating information. However, clear guidelines
on how to integrate all available information sources into a proper modelling
framework are scarce. More recently, the need of such an integrated approach has
been stressed by both academia (e.g., Hilscher and Wilson, 2017; Hirk et al., 2020)
and regulators with the IFRS 9 accounting standard issued by the International
Accounting Standards Board (IASB, 2014) requiring banks to build provisions
based on forward-looking expected loss models by considering ‘all reasonable and
supportable information, including forward-looking measures’.

In this article, we extend the work of Hirk et al. (2020) and propose a framework
for modelling defaults and credit ratings from Standard and Poor’s (S&P), Moody’s
and Fitch in a multivariate ordinal model, where the latent credit quality is modelled
as a dynamic process. The dynamic modelling of credit risk allows for dependencies in
the cross-section and over time to be accounted for by typically making a distinction
between systematic and idiosyncratic risk, where the systematic risk relates to the
relationship between credit risk and a business factor and is of prime importance
in portfolio credit risk modelling (see Vasicek, 2002; Koopman and Lucas, 2005;
McNeil and Wendin, 2007; Betz et al., 2018). We therefore build a longitudinal
model of binary default events and ratings on an ordinal scale where a common
latent variable which is a measure of credit quality is underlying the observations.
In particular, we model the conditional distribution of these responses given a set of
financial covariates known to be relevant for credit risk modelling by assuming
that the latent variable corresponding to the credit quality, referred to in this
article as a ‘probability of default (PD) score’, depends on unobserved firm-specific
effects, and on a systematic as well as an idiosyncratic factor which both have
an auto-regressive structure of order one. This approach allows us to disentangle
differences in firms’ credit quality due to idiosyncratic causes from the effects due
to business conditions. In modelling the credit ratings we also consider several
characteristics of the ratings market. First, CRAs claim to provide a forward-looking
long-term measure of credit quality by employing a so-called ‘through-the-cycle’
(TTC) approach to ensure that their ratings are stable over the business cycle (as
opposed to a ‘point-in-time’ (PIT) approach, which measures credit quality at a
given point in time). Second, we do not disregard the criticism of the three big CRAs
for their inability to assess risk accurately (e.g., Becker and Milbourn, 2011; Bolton
et al., 2012; Bar-Isaac and Shapiro, 2013; Kashyap and Kovrijnykh, 2016) and, from
the modelling perspective, we assume the ratings to be noisy observations of the
underlying PD score by assuming a rater ‘bias’ for each of the CRAs which depends
on covariates and has a time-varying component common to all the CRAs which
captures yearly shifts in the rating standards of the rating agencies. Here, we resort
to Bayesian estimation techniques implemented in the open-source software Stan
(Stan Development Team, 2018) to estimate the parameters of interest and illustrate
the dynamic framework on a subset of the COMPUSTAT-CRSP universe of publicly
traded US firms which are rated by at least one of the big three CRAs over the
period 1995–2014.
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Over the last decade, joint modelling frameworks for credit risk measures have
become more popular but it is still common practice in both industry and academia
to model defaults and credit ratings separately. Statistical binary response (typically
logit) models are often employed for predicting defaults (among the most prominent
articles in the finance literature, for example Shumway, 2001; Campbell et al., 2008;
Tian et al., 2015), while static ordinal or linear regression is used in modelling the
credit ratings (e.g., Alp, 2013; Baghai et al., 2014). Ordered regression models with a
dynamic specification have also been employed for modelling rating transitions (e.g.,
Malik and Thomas, 2012; Creal et al., 2014). Several articles have jointly investigated
different credit risk measures, including credit ratings from possibly various raters for
the purpose of credit risk measurement. For example, Hornik et al. (2010) propose a
static parametric framework based on the existence of contemporaneous PD estimates
for the same obligor provided by different rating sources for estimating consensus
ratings as well as validate the different rating sources by analyzing the mean/variance
structure of the rating errors. Grün et al. (2013) extend the analysis to a dynamic
model and analyze a panel of ratings from the three big CRAs by first transforming
ratings to PD estimates by using observed default rates. Creal et al. (2014) build a
multivariate dynamic factor model for signal extraction and forecasting of macro,
credit, and loss given default risk conditions in the US. Hilscher and Wilson (2017)
provide an analysis of both ratings and defaults (even though not in a joint statistical
model) where they investigate whether the measures have different information
content. They conclude that, while the credit ratings are poor measures of raw
default probabilities, they are strongly related to systematic risk. Hirk et al. (2018)
build a joint ordinal model for the ratings from the big three CRAs while Hirk et al.
(2020) propose a static framework for jointly modelling defaults and ratings using
the class of multivariate ordinal regression models and show improved results in
terms of default prediction conditional on the observed ratings.

The article is organized as follows: The joint modelling framework is introduced in
Section 2 and details regarding the estimation and prior specifications are presented
in Section 3. Section 4 introduces the data set used in the analysis and presents the
results while Section 5 concludes the article.

2 Modelling framework

2.1 General set-up

Suppose that for each firm i ∈ {1, . . . , I} in period t ∈ Ti, with Ti being the set of
all available time points for firm i, we observe the corresponding (P × 1) vector of
covariates xi(t) measuring firm liquidity, profitability, indebtedness, a binary default
indicator ydef

i (t) which takes the value one if the firm defaulted between time t
and t + 1, and a vector of available credit ratings yrat

i (t) = [yrat
ij (t)]j∈Ji(t) which are

observed at the end of period t for a non-empty subset Ji(t) of all available raters
{S&P, Moody’s, Fitch}.
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The one-year probability of default of firm i at time t denoted by PDi(t) is modelled
as a random variable which follows a logistic regression model [Logistic regression
is widely employed in the credit risk literature (e.g., Campbell et al., 2008; Tian
et al., 2015).] and we assume that, conditional on PDi(t), the default indicator ydef

i (t)
follows a Bernoulli distribution:

ydef
i (t) ∼ Bernoulli(PDi(t)),

PDi(t) = P(ydef
i (t) = 1|Si(t)) = 1/(1 + exp(−Si(t))),

where Si(t) is a real-valued score indicating the credit quality of firm i at time t with
a high (low) value implying a low (high) credit quality. We refer to this quantity as
the ‘one-year PD score’.

For the credit ratings, we employ an ordinal regression model using the cumulative
link approach by treating the ratings observed for the jth rater yrat

ij (t) which can take
one of Cj classes as a coarser version of an underlying latent variable ỹrat

ij (t), which
can be interpreted as a real-valued rating score. A regression model is then assumed
on the latent scale:

yrat
ij (t) = r ⇐⇒ θj,r−1 < ỹrat

ij (t) ≤ θj,r, ỹrat
ij (t) = Si(t) + ηij(t)︸ ︷︷ ︸

µij(t)

+εij(t), (2.1)

where θj = (θj,0, θj,1, . . . , θj,Cj)
� is a set of rater-specific threshold parameters satisfying

the order restriction θj,0 = −∞ < θj,1 < · · · < θj,Cj = ∞ which are used to slot the
underlying variable into intervals corresponding to the non-default ordinal rating
classes r ∈ {1, . . . , Cj} (where 1 denotes the class with best creditworthiness); ηij(t) is

a rater-specific bias term; εij(t)
iid
∼ L(0, 1) is a mean-zero noise term which follows a

standard (to ensure identifiability) logistic distribution.
By allowing rater-specific thresholds we are able to capture the heterogeneity

in the rating scale and methodology of the different CRAs. [The raters employ
different coding for the rating classes: S&P and Fitch employ a rating scale with
eight main non-default rating categories AAA, AA, A, BBB, BB, B, CCC, CC while
Moody’s scale is Aaa, Aa, A, Baa, Ba, B, Caa, Ca. Moreover, the CRAs claim to use
different credit risk measures in their assessments: Moody’s relies on loss given default
while S&P and Fitch measure the relative likelihood of default.] Furthermore, in this
application one may think of the term µij(t) in Equation (2.1) as the ‘expected rating
score’ assigned by rater j to firm i in year t, which the raters then transform to an
ordinal scale using a suitable mapping. In the specification of expected rating score,
we assume that the raters observe and/or produce noisy versions of the ‘one-year PD
score’ Si(t) and that the CRAs’ biases ηij(t) can be modelled additively on the scale of
the underlying latent variables. The noisiness in the ratings can be motivated on the
one hand by some sort of information asymmetry between firm owners and raters
and on the other hand by the fact that the ratings are forward-looking measures
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of creditworthiness for horizons longer than one year which are assigned by the
CRAs based on different metrics (see, e.g., Grün et al., 2013). On the other hand, the
assumption of additivity on the rating score scale is in line with previous specifications
of rating models (e.g., Alp, 2013; Baghai et al., 2014) but also by Merton-type models
under partial information, where the error in the observation of the log firm value is
additive on the scale of the log normal firm value process (first introduced in Duffie
and Lando, 2001).

2.2 Model specification

2.2.1 Dynamic specification of the latent PD score Si(t)
The basic framework underlying dynamic models of credit risk also adopted by
regulators (see, e.g., the methodology underlying the CreditMetricsTM framework)
is that credit risk depends on a systematic and an idiosyncratic component and a
Gaussian single factor model is typically employed in the modelling process (Vasicek,
2002). Moreover, it is reasonable to assume that the PD scores are correlated over the
time dimension owing to macroeconomic events such as recessions whose influence
is not fully captured by the covariates or over the cross-section from direct effects
of one corporate failure on other distressed corporations. We propose the following
dynamic specification of the latent one-year PD score:

Si(t) = β0 + β�xi(t) + ui(t), (2.2)
ui(t) = ai − ωb(t) + εi(t), (2.3)

ai
iid
∼ N(0, τ2

i ), b(t) = φbb(t − 1) + υb(t), υb(t)
iid
∼ N(0, 1),

εi(t) = ρεi(t − 1) + ξi(t), ξi(t)
iid
∼ N(0, ψ2),

where β0 is an intercept term, β is a (P × 1) vector of regression coefficients and ui(t)
is a random effect which consists of a firm-specific effect ai, a latent market factor b(t)
and idiosyncratic changes εi(t), and the loading ω measures the dependence of Si(t)
on the latent market factor (a similar specification has been proposed in Grün et al.,
2013). The effects ai are firm-specific deviations from the overall intercept which can
capture unobserved heterogeneity such as management ability, and are assumed to
be normally distributed with a firm-specific variance. An auto-regressive structure
of order one is assumed for the latent market factor b(t) whereas the above sign
convention implies that positive b(t)’s correspond to favourable market conditions.
The modelling of the systematic factor as a latent quantity is rather standard in
the literature, owing to the fact that the theory on which observed variables would
be adequate as a proxy for systematic credit risk is rather scarce (see remarks in,
e.g., Koopman and Lucas, 2005). By restricting ω to be constant for all firms and
years we implicitly assume that b(t) is indeed a common market factor impacting
all firms equally, while the remaining unexplained variation can be captured by the
idiosyncratic effect εi(t). [We also investigated whether the model improves when
allowing the factor loading to depend on the industry in which firm i operates
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but find no compelling improvement in the performance.] The variance of υb(t) is
fixed to one to ensure identifiability and we restrict |φb| < 1 to ensure stationarity.
Finally, the idiosyncratic disturbances εi(t) are independent over the firms but are
serially correlated through an AR(1) process with |ρ| < 1 for ensuring stationarity.
Due to the rather short history for most firms in the sample (see also Figure A.1
in the Supplementary Material) the data might not deliver enough information on
identifying a firm-specific persistence or standard-deviation parameters, this is why
we assume a constant ρ and ψ for all firms.

2.2.2 Dynamic specification of the rater bias ηij(t)
The rater bias specification proposed in this article is given by:

ηij(t) = γ�

j xi(t) + λjδ(t), δ(t) = φδδ(t − 1) + υδ(t), υδ(t)
iid
∼ N(0, 1),

where γj is a rater-specific (P × 1) vector of regression coefficients, δ(t) is a
time-varying ‘rater factor’ which is modelled dynamically using an AR(1) process
with |φδ| < 1 and λj is a rater-specific factor loading. The rater-specific bias ηij(t)
depends linearly on the covariates xi(t), which were also employed in the specification
of the latent PD score Si(t) in Equation (2.2). This assumption is reasonable as these
risk factors also affect the credit ratings, but to a different extent than they affect
defaults. However, one could include the lagged ratings as a proxy for the ‘stickiness’
of credit ratings or the number of years that the firm has been rated by a CRA
(having the firm as a client for a longer time period can potentially reduce information
asymmetry) as potential covariates. We investigated whether these variables improve
the model performance and find that, considering these additional covariates does
not improve the results markedly. The specification above does not account for
any dependence among the three raters, which might seem rather restrictive as
lead-lag relationships among the raters have been found empirically (e.g., Güttler
and Wahrenburg, 2007; Berwart et al., 2019). However, the rating adjustments are
reported to follow within months of the lead rating change, so this effect can be
expected to be negligible on an yearly basis.

The rater factor δ(t) is independent of observed covariates and of Si(t), and should
thus pick up any time variation specific to the CRAs’ behaviour and industry practices
beyond that implied by the variation of the PD scores caused by the market factor.
The reason for including δ(t) in the model lies mainly in previous results showing
shifts in the rating standards over the sample period analyzed in this article (e.g.,
Alp, 2013). Moreover, given the low number of defaults in the sample, omitting the
rater factor from the model specification might make the estimation of the business
factor cumbersome given the strong (weak) signal in the data coming from the ratings
(defaults). For the sake of parsimony, we do not employ one factor for each rating
agency, as we expect the behaviour of the three CRAs to be similar given the oligopoly
structure of the ratings’ market and the high degree of agreement among the raters.
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3 Bayesian inference

Several methods can be considered for the estimation of the proposed model,
which contains effects at different levels of hierarchy. The non-nested firm and time
effects, however, restrict the techniques which can be employed, as the estimation
of ordinal models with non-nested effects is cumbersome due to the necessity to
compute high-dimensional integrals. The maximum likelihood approach using the
EM algorithm can be employed (e.g., Cagnone et al., 2009, employ the EM algorithm
in estimating a multivariate ordinal model with item and time-specific random
effects). McCulloch (1994) proposed the inclusion of a Metropolis Hastings step in
the E-step of the EM algorithm so that the required expectation can be approximated
by the average of Monte Carlo samples from the target distribution (approach used
by, e.g., Xie et al., 2013, in a two-level model). Bellio and Varin (2005) tackle the
dimensionality issue by maximizing the product of the pairwise marginal likelihoods
and estimate the parameters of a two-level generalized linear mixed model (GLMM)
with crossed random effects. The Bayesian framework is an attractive alternative for
multi-level models with (crossed) effects at different levels of hierarchy. Through the
specification of a prior distribution, Bayesian estimates of the effects can be obtained
even in cases where there are few data points per group Moreover, the growing
number of available open software tools for performing Bayesian inference make the
implementation and estimation of such models more accessible.

3.1 Posterior

The posterior, which is proportional to the product of the likelihood of the four
responses and the prior densities on all unobservables (i.e., parameters and latent
quantities), is the object of interest in the analysis and inference relies on samples
drawn from this posterior distribution. Samples from the posterior are drawn by
using the package rstan (Stan Development Team, 2019) for R (R Core Team, 2020),
which is an interface to the open-source software Stan. Stan is a probabilistic C++
library which provides full Bayesian inference through Markov chain Monte Carlo
(MCMC) methods to obtain posterior simulations. In order to investigate how well
the parameters of the proposed model can be estimated empirically, we conducted a
simulation study which is presented in Section A.3 of the Supplementary Material.

Conditional on the latent PD scores Si(t), the responses are independent over
all i ∈ {1, . . . , I} and t ∈ Ti and the joint likelihood is the product of the individual
likelihoods of the responses.

p(Y, D|X, ζ) =
I∏

i=1

∏
t∈Ti


p(ydef

i (t)|xi(t), ζ)
∏
j∈Ji

p(Yij(t)|xi(t), ζ)



 .

The term of the likelihood corresponding to the default indicator is given by
the Bernoulli probability mass function p(ydef

i (t)|Si(t)) = PDi(t)ydef
i (t)(1 − PDi(t))1−ydef

i (t),
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while the likelihood of the ordinal responses is given by the probability of
observing category rij(t): p(yrat

ij (t)|xi(t), ζ) =
∏Cj

r=1 P(yrat
ij (t) = r|xi(t), ζ)1{r=rij(t)}, where

1{.} denotes the indicator function and for the sake of notational simplicity ζ
denotes unobservables. In the cumulative link logit model, the probability can
be rewritten as P(yrat

ij (t) = r|·) = P(yrat
ij (t) ≤ r|·) − P(yrat

ij (t) ≤ r − 1|·) with P(yrat
ij (t) ≤

r|xi(t), ζ) = logit−1(θj,r − Si(t) − ηij(t)).
Priors are set on all model parameters. We find the results to be insensitive to the

prior specified on the coefficients in the multivariate ordinal regression, which is to
be expected given that the covariates were pre-selected based on their relevance in
the existing literature. For the coefficients β and γj of the standardized covariates,
we proceed with the Student-t prior. For the threshold parameters, we employ a
Dirichlet prior on the probability of the ordinal outcome falling in each of the Cj

categories πj ∼ Dirichlet(αj) and obtain the thresholds by the transformation θj,r =
logit−1 (∑r

i=1 πj,i
)
. For the firm-specific intercepts ai a realistic assumption in our

dataset is to expect the ai’s to have different variances ai ∼ N(0, τ2
i ) as we expect

firms to have different variability in their creditworthiness. We separate the prior
on the regression coefficients from the prior on the random firm-specific intercepts
ai, especially due to information imbalance (the number of observations available
for identifying ai is given by the number of years each firm spends in the sample,
which for the analyzed sample ranges from 1 to 20, as can be seen in Figure A.1
in the Supplementary Material). Individual shrinkage of the firm effects is achieved
by imposing a shrinkage prior which has a hierarchical representation. We consider
here a non-Gaussian shrinkage prior on ai with τi ∼ N(0, q2), where we treat q2 as
a hyper-parameter of the shrinkage prior above with an inverse Gamma distribution
q2

∼ G−1(c0, C0) (for more details see, e.g., Frühwirth-Schnatter and Wagner, 2011).
The prior on the persistence parameters φb, φδ and ρ is chosen as a scaled beta
distribution x+1

2 ∼ Beta(ax, bx), where the hyper-parameters are chosen to reflect prior
information. For all other parameters, we use the improper prior p(x) = 1/x.

3.2 Model evaluation and out-of-time prediction

In order to evaluate the performance of the model in terms of out-of-sample
prediction, we use two approaches. First, we employ approximate leave-one-out
(LOO) cross-validation methods (as proposed in Vehtari et al., 2017). Second, we
perform a K-fold cross-validation exercise adapted to the panel data structure. The
difference between the two approaches is that the K-fold cross-validation requires
refitting the model K times whereas approximate LOO methods require only one
evaluation of the model. K-fold cross-validation has, however, the advantage that
it allows to check the ability of the model to perform well out-of-time, in which
case LOO methods are not suitable for assessing the performance on unseen time
points (see, e.g., discussion in Vehtari and Ojanen, 2012). The details regarding the
computation of the Bayesian LOO estimate of expected log pointwise predictive
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density employed here can be found in Vehtari et al. (2017). In the following, we
proceed with the exposition of the out-of-time prediction exercise.

Assume we fit model M on the period up to a time t which implies we observe
the ratings and the covariates up to time t and we also observe whether the company
defaulted in the year following the rating observations. We denote the responses and
the covariates observed up to time t by Zo

[1:t] = {(ydef
i (τ), yrat

ij (τ)); τ = 1, . . . t, i ∈ It, j ∈ J}
and X [1:t] = {xi(τ); τ = 1, . . . t, i ∈ It}, respectively, where It denotes the set of observed
firms up to time t. We evaluate the predictive performance of M by making use of the
posterior predictive density, which for a future data point containing the default and
rating observations z∗ = (ydef

∗
, yrat�

∗
)� and a future set of covariates x∗ is given by:

p(z∗|x∗,Zo
[1:t], X [1:t], M) =

∫
p(z∗|x∗, ζ, Zo

[1:t], X [1:t], M)p(ζ|Zo
[1:t], X [1:t], M)dζ. (3.1)

In addition to the joint posterior predictive densities, for the application case it is
also relevant to assess whether adding the information about the ratings at the end
of each year conditionally improves the prediction of the default component (see,
e.g., Hirk et al., 2020). Hence, for a future default observation ydef

∗
we compute the

conditional default probability implied by the model, that is, the one-year probability
of default conditional on the corresponding ratings yrat

∗
taking values r1, . . . rJ:

P(ydef
∗

= 1|yrat
∗,1 = r1, . . . , yrat

∗,J = rJ, x∗, Zo
[1:t], X [1:t], M) =

P(ydef
∗

= 1, yrat
∗,1 = r1, . . . , yrat

∗,J = rJ|x∗, Zo
[1:t], X [1:t], M)

P(yrat
∗,1 = r1, . . . , yrat

∗,J = rJ|x∗, Zo
[1:t], X [1:t], M)

,

where both the denominator and the numerator can be rewritten as integrals similar
to the one in Equation (3.1).

The predictive performance of M can then be measured by evaluating the
above quantities at specific observations. For this purpose, we employ Bayesian
cross-validation adapted to account for the time dimension of the data at hand.
More specifically, we employ a one-step-ahead out-of-time exercise on an expanding
window basis where, for increasing t, we repeatedly partition the data into a training
set (Ztrain

[1:t] , X train
[1:t] ) and a one-step-ahead test set (Ztest

t+1, X test
t+1). After fitting the model

M to the training set, given the resulting posterior distribution p(ζ|Ztrain
[1:t] , X train

[1:t] , M)
we evaluate the fit by evaluating for each firm the predictive densities or conditional
probabilities at the test data.

Given that the integrals such as the one in (3.1) cannot be solved analytically,
they may, however, be approximated through Monte Carlo integration. Assuming
the posterior distribution p(ζ|Ztrain

[1:t] , X train
[1:t] , M) can be summarized by S simulation

draws ζs, we calculate the following (one-step-ahead) predictive measures:
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• log p(ztest
i,t+1|x

test
i,t+1, Ztrain

[1:t] , X train
[1:t] , M), the joint log predictive density of firm i in

the test sample at t + 1, which is approximated by the Monte Carlo estimate
LPDi,t+1(M) ≈ log 1

S

∑S
s=1 p(ztest

i,t+1|ζ
s, xtest

i,t+1, M); then, for each test sample, we
summarize the results by computing the average joint log predictive density
LPDt+1(M) over all firms in the test sample.

• the posterior mean conditional default probability for firm i in t + 1:

PDcond
i,t+1 (M) =

1
S

∑S
s=1 P(ydef,test

i,t+1 = 1|xtest
i,t+1, ζ

s, M)p(yrat,test
i,t+1 |ζs, xtest

i,t+1, M)
1
S

∑S
s=1 p(yrat,test

i,t+1 |ζs, xtest
i,t+1, M)

.

From these conditional probabilities, we compute for each test sample a measure
of calibration, namely the (square root of) Brier score (Brier, 1950), which is
mean the squared error between the conditional PDs and the observed binary
default indicator. Finally, for evaluating the discriminatory power we compute
the area under the precision-recall curve (Davis and Goadrich, 2006) [Using the
precision-recall curve is more desirable than employing the receiver operating
curve given the imbalance in the default indicator.].

4 Empirical application

In this section, we introduce the dataset used in the analysis and proceed with a
discussion of the results obtained from the proposed dynamic framework as well a
with comparison to benchmark models in terms of the predictive performance.

Throughout the analysis, the hyper-parameters for the dynamic specification are
kept constant. We set c0 = C0 = 0.5 for the distribution of q2, which implies a median
of one for the variance τ2

i of the random effects and allows for heavy tails to
accommodate for extreme observations; the parameters for the Student-t priors for
the regression coefficients are fixed to four degrees of freedom, mean zero and unit
variance; for the intercept β0 we employ the same prior with a variance of two;
for the threshold parameters, the ‘concentration’ hyper-parameter of the Dirichlet
distribution is chosen in a data-dependent fashion by setting αj,r as the number of
ratings in class r assigned by rater j. For the persistence parameters, we choose
aφb = 20 and bφb = 2.5 which translates into a prior mean of roughly 0.8 and a prior
standard deviation of 0.12, motivated by previous results which find the market
factor to be persistent. We choose the same hyper-parameters for the prior on φδ.
For the persistence of the idiosyncratic effects we set aρ = 20 and bρ = 5 which has a
larger variation, that is, is vaguer and has a mean around 0.60. For all models, five
chains of length 2 000 were randomly initialized and run in parallel. The first 1000
MCMC iterations of each chain were discarded as burn-in. Trace plots and density
plots show satisfactory convergence of all chains in each model.
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4.1 Data

The empirical analysis is performed on a dataset containing credit ratings from S&P,
Moody’s and Fitch, default data and firm-level information for a sample of publicly
traded and rated US corporates, excluding financial and utilities companies over
the period 1995–2014. Long-term issuer credit ratings of S&P were downloaded by
the S&P Capital IQ’s COMPUSTAT North America Ratings file. The ratings from
Moody’s and Fitch were purchased by the research institution directly from the CRAs.
Data on corporate defaults and bankruptcies were obtained from the UCLA-LoPucki
Bankruptcy Research Database and the Mergent issuer default file. Firm-level data
was downloaded from the merged COMPUSTAT/CRSP database.

We perform the analysis on a calendar year basis and match the latest available
firm-level information with all available end-of-year ratings. The default indicator is
set to one whenever we observe a bankruptcy filing under Chapter 7 (liquidation)
or Chapter 11 (reorganization) of the US bankruptcy code or if a default rating
[Default ratings assigned by a CRA include in distressed exchanges or missed interest
payments addition to bankruptcy filings.] is assigned by at least one CRA in the
year following the rating observations. In all other instances, the default indicator
is set to zero, including cases where the firm disappears from the dataset for some
reason other than bankruptcy such as acquisition, delisting or if no longer rated. The
firm-level information is used to construct covariates which have been identified as
significant predictors of credit quality in the literature. In our analysis, we rely on
the work of Tian et al. (2015), who employ model selection techniques to identify
factors relevant for bankruptcy prediction: current liabilities/total assets (LCT/TA),
total debt/total assets (F/TA), net income over market value of total assets (NI/MTA),
annualized standard deviation of stock returns over a three month period (SIGMA),
the logarithm of the end-of-year stock price, whereas the stock price is capped at
USD 15 (PRICE) and gross excess log return over value-weighted S&P 500 return
(EXRET). All variables are winsorized at 99% and 1% if negative values are allowed.

After eliminating the missing data in the covariates (which appears mainly due to
different coverage of the data sources), the merged dataset contains 2528 firms and
19952 yearly observations for all firms (so-called firm-year observations), whereas
the panel is highly unbalanced in the time dimension, with firms staying on average
7.89 years in the sample (see Figure A.1 in the Supplementary Material). The sample
contains 375 defaults (1.88% sample default rate). Figure 1 shows the cyclical
behaviour of the default rates from 1996 to 2014, with default rates increasing
during and immediately after recessions.

There is a high rating agreement in the sample with Spearman’s correlation higher
than 90% for all pairs of raters. Not all ratings are observed for all firm-years,
with 97.52% of the firm-years being rated by S&P, 58.67% by Moody’s and
17.17% by Fitch. For all CRAs the number of ratings falling into the best and
worst classes is small so for the analysis we use the following aggregated rating
classes: AAA/A, BBB, BB, B, CCC/C and Aaa/A, Baa, Ba, B, Caa/Ca, respectively.
The rating distribution for S&P and Moody’s ratings is relatively stable over the
sample period, while Fitch assigns more favourable ratings especially at the beginning
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Figure 1 The figure illustrates the dynamics of the default rates from 1996 to 2014. The grey shaded areas
represent recession periods as indicated by the NBER based Recession Indicators for the US and
correspond to the burst of the dot-com bubble and the sub-prime mortgage crisis

of the period (Figure A.2 in the Supplementary Material shows the yearly distribution
of the aggregated rating grades). Finally, the aggregated ratings change rarely: the
S&P rating changes on average 0.712 times per firm, 60.4% of which are upgrades;
the Moody’s rating changes on average 0.747 times, 43.4% of which are upgrades;
the Fitch rating changes on average 0.106 times, 62.1% of which are upgrades.

In the sample, we also observe that defaulted firms exhibit on average higher
liabilities ratios (LCT/TA, F/TA, TL/MTA), higher stock price volatility, lower stock
prices as well as negative income ratios and negative excess returns. The summary
statistics of the covariates for both the entire and the defaulted sample are presented
in Table A.1 in the Supplementary Material.

4.2 Results of the proposed model

Table 1 shows the posterior mean and posterior standard deviation for the regression
coefficients β and γj corresponding to the standardized covariates (the posterior
distribution of these coefficients is illustrated in Figure A.3 of the Supplementary
Material). We observe that the coefficients β of the latent PD score all have the
expected signs. Firms with higher current liabilities, debt or total liabilities ratios
have a higher likelihood to default. Similarly, a higher volatility of the stock
price is associated with higher PD scores. On the other hand, higher profitability
ratios, higher stock prices and higher excess returns lead to lower PD scores
and improved creditworthiness. When looking at the rater biases, we observe no
marked differences among the three raters. The quantity β + γj corresponds to the
rater-specific coefficients and, while caution should be employed when comparing
the magnitude of these coefficients among raters (as absolute scale of the underlying
variables in ordinal models is unidentifiable and assumed to be equal to one, see,
e.g., Kern and Stein, 2015), insight can be gained from looking at the signs of
these coefficients. It is worth noting that the resulting rater-specific coefficients for
the covariates change sign for the covariates LCT/TA and EXRET. This has been
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Table 1 Posterior mean and posterior standard deviation of the regression coefficients β and of the
coefficients γS&P, γMoody’s and γFitch of the rater bias

β γS&P γMoody’s γFitch

Mean SD Mean SD Mean SD Mean SD

LCT/TA 0.362 0.087 −0.884 0.078 −0.873 0.082 −1.074 0.108
F/TA 0.826 0.105 0.518 0.091 0.467 0.097 0.621 0.139
NI/MTA −0.067 0.076 −0.133 0.078 −0.136 0.086 −0.230 0.131
TL/MTA 2.087 0.172 −1.653 0.156 −1.188 0.162 −0.976 0.197
PRICE −0.250 0.096 −0.692 0.087 −0.548 0.093 −0.474 0.145
SIGMA 0.171 0.108 1.153 0.110 1.109 0.117 0.664 0.167
EXRET −1.050 0.079 1.294 0.082 1.408 0.087 1.356 0.119

previously observed empirically (e.g., Alp, 2013; Hirk et al., 2018) and is likely
due to the ratings being forward-looking measures of creditworthiness over periods
extending beyond one year. In this setting, the resulting negative coefficient of LCT/TA
can be explained by the fact that short-term liabilities, that is, liabilities due within
one year, which are problematic for firms close to default, in the longer run are less
risky than long-term liabilities. Similarly, the positive coefficient of EXRET indicates
that firms with higher excess returns, while more likely to avoid an imminent default,
are considered typically to be riskier.

The posterior mean and the 80% symmetric credible intervals for the market factor
b(t) are shown in the left-most panel of Figure 2. We observe the drops in the estimated
posterior means of the market factor during the burst of the dot-com bubble and the
financial crisis 2007–2009. We also investigate the time-varying intercept in the rater
bias which captures changes in the CRAs’ behaviour. Figure 2 illustrates the posterior
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Figure 2 This figure shows the posterior mean and the 80% symmetric credible intervals for the latent
systematic factor b(t) and the scaled rater factor λjδ(t) at the end of each year over the period 1995 to 2013
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means and the 80% credible intervals of the λjδ(t) term for each CRA, (note that
in the analysis we fix λS&P = 1 to reduce the parameter space and to ensure a better
convergence of the model). We observe a rather counter-cyclical behaviour, where
the drops (spikes) represent a relaxation (tightening) of the rating standards. The
factor loading λFitch is larger than the one for the other two CRAs, probably owing
to Fitch being the youngest of the CRAs in the US market and to the least ratings
being observed for Fitch in the sample. The tightening and relaxation of the rating
standards in a counter-cyclical fashion could potentially be explained by the TTC
approach employed by the raters, who adapt their standards to counterbalance the
business cycle in order to keep the rating distribution constant. This hints towards the
fact that the rating standards become stricter after economic downturns, behaviour
not completely explained by the TTC approach (in line with e.g., Alp, 2013; Bar-Isaac
and Shapiro, 2013).

The posterior summaries of the other parameters are presented in Table A.2 of
the Supplementary Material.

4.3 Comparison with benchmark models

For comparison purposes, we formulate several alternative model specifications
which differ from the proposed modelling framework in the specification of the
random effect ui(t) and in the specification of the average rater bias ηij(t). We consider
two static benchmark models which only contain one level of hierarchy in the random
effects specification after accounting for the covariates, that is, the idiosyncratic term
is normally distributed term ui(t) ∼ N(0, ψ2). In model (S1) we assume no rater
bias ηij(t) = 0 for all raters while in model (S2) we allow for covariate dependent
rater bias ηij(t) = γ�

j xi(t) for all raters. The other benchmark models considered
share the dynamic specification of ui(t) introduced in Equation (2.3) but differ in
the specification of the rater bias. Model (D1) assumes ηij(t) = 0, while model (D2)
assumes that the rater bias is a linear combination of the covariates ηij(t) = γ�

j xi(t).
The proposed model is denoted by (PM). For a motivation on the choice for the
rater bias specification in model (PM), we direct the reader to Section A.4 of the
Supplementary Material for an exploratory residual analysis.

We consider for model comparison purposes the widely used Bayesian
leave-one-out estimate of the expected log pointwise predictive (ELPD LOO). Table 2
contains the difference in ELPD LOO relative to the best estimated model, that is,
the model with highest ELPD LOO, together with an estimate for the standard error
of the differences. We observe a value of zero for the proposed model and notice
that the differences for all other models are more than two standard deviations away
from zero, confirming the superior performance of Model (PM).

In order to compare the proposed joint model with the above models in terms
of out-of-time performance, we set up a cross-validation exercise as described in
Section 3.2 and start by training the model on the period 1995–2006 and then
sequentially add one sample year of data to the training set. This results in seven
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Table 2 This table presents for five models considered the difference in ELPD LOO relative to the best
performing model, the corresponding standard error, and the measures of the out-of-time exercise:
one-step-ahead joint log predictive density, the square root of the Brier score and the area under the
precision-recall curve averaged over 2007–2013 (whole) and 2007–2009 (crisis) test period. The best values
are marked in bold

Measure Period (PM)a,d (S1)c,e (S2)b,e (D1)c,d (D2)b,d

ELPD LOO (diff) 0.000 −12955.267 −12617.137 −579.408 −249.818
SE (diff) 0.000 106.838 101.362 52.115 28.989
LPDt+1 whole –1.188 −1.765 −1.750 −1.214 −1.200

crisis −1.212 −1.790 −1.765 −1.240 −1.223
sqrtBriert+1 whole 0.097 0.118 0.115 0.121 0.116

crisis 0.131 0.159 0.148 0.161 0.151
AUPRCt+1 whole 0.367 0.284 0.365 0.342 0.389

crisis 0.279 0.308 0.351 0.262 0.307

Notes: aηij (t) = λjδ(t) + γ�

j xi (t),
bηij (t) = γ�

j xi (t),
cηij (t) = 0,
dui (t) as in Eq. 2.3,
eui (t) ∼ N(0, ψ2).

training and test samples. Table 2 presents the one-step-ahead joint and marginal LPD
averaged over all test samples (i.e., over the period 2007–2013) and over test samples
covering the financial crisis 2007–2009, respectively. Similarly, we report the average
one-step-ahead square root of the Brier score and area under the precision-recall curve
based on the conditional probabilities of default. We observe that the proposed model
(PM) performs best out-of-time in terms of the joint log predictive density scores, and
more generally, the models with a dynamic specification in the PD score are better
in terms of predictive performance than the static models (S1) and (S2). Model (PM)
also performs best in terms of calibration, as it achieves the lowest Brier score on
average over all samples and over the crisis period. In terms of discriminatory power,
the static model (S2) performs best for the crisis years, while dynamic model (D2)
performs best for the whole test period. This suggests that including a time-varying
rater factor in the rater bias specification does not necessarily improve the ability of
the model to discriminate between defaults and non-defaults.

5 Concluding remarks

In this article we present a joint analysis of defaults and credit ratings for a sample of
US publicly traded corporates by considering a multidimensional longitudinal model
of multivariate ordinal data. We integrate both default and forward-looking credit
rating data in a joint statistical model and employ a dynamic specification in the latent
creditworthiness equation and in the rater bias. Bayesian methods implemented in
the R package rstan are used for estimation. To examine the empirical performance
of the posterior estimates under the proposed joint model, we conducted a simulation
study which is presented in Section A.3 of the Supplementary Material. Conditional
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on well-established covariates in the bankruptcy prediction literature, we allow the
latent PD score to depend on a dynamic unobservable market factor common to all
firms, as well as on idiosyncratic effects with a dynamic specification. Moreover, the
ratings from the big three CRAs are assumed to be noisy observations of the latent
PD score, where a rater bias which depends on covariates and has a time-varying
component is specified for each CRA. When comparing the predictive performance
of the proposed framework to benchmark models we find that the proposed model
has superior overall predictive performance.

Future research avenues include the incorporation of a wide range of covariates
in the model and tackling the issue of variable selection to allow a data-driven
identification of relevant factors for both the latent PD score and the rater biases
as well as the exploration of more flexible mixed-effect specifications for the latent
PD score, for example, more general parameterizations for the factor loading ω
capturing the dependence between the latent PD score and the latent market factor
as well as for the persistence ρ and standard deviation ψ of the idiosyncratic effects
by allowing, for example, industry-specific parameters. Finally, the potential of the
proposed joint model in serving as a framework for estimating and validating TTC
versus PIT PDs and for measuring the degree to which rating systems are employing
the TTC approach (topics of renewed interest mainly in the context of IFRS 9), could
be further investigated.
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