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We introduce a framework to compute upper
bounds for temporal correlations achievable in
open quantum system dynamics, obtained by
repeated measurements on the system. As
these correlations arise by virtue of the en-
vironment acting as a memory resource, such
bounds are witnesses for the minimal dimen-
sion of an effective environment compatible
with the observed statistics. These witnesses
are derived from a hierarchy of semidefinite
programs with guaranteed asymptotic conver-
gence. We compute non-trivial bounds for var-
ious sequences involving a qubit system and a
qubit environment, and compare the results
to the best known quantum strategies produc-
ing the same outcome sequences. Our results
provide a numerically tractable method to de-
termine bounds on multi-time probability dis-
tributions in open quantum system dynamics
and allow for the witnessing of effective en-
vironment dimensions through probing of the
system alone.

1 Introduction
Physical systems are never truly isolated, and in-
evitably interact with their surrounding environ-
ment [7, 55]. As a consequence, information within
the system leaks away into its surroundings, leading
to entanglement between the system and the envi-
ronment. In many instances, this leaked information
may be partially recovered at a later time, leading to
non-Markovian dynamics, i.e., non-negligible memory
effects and complex correlations in time [8, 48, 56].

Like their spatial counterpart, temporal correla-
tions in quantum mechanics fundamentally differ from
those that can be observed in the classical case. Such
differences between classical and quantum tempo-
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ral correlations have been noted since the works of
Leggett and Garg [26, 40, 41, 68]. In the presence
of memory, a clear distinction between an underly-
ing process – carrying temporal correlations – and the
measurement process – probing said correlations – can
be obtained by employing correlation kernels [1, 42] or
higher order quantum maps [54] for their description.

Broadly speaking, the dimension of a physical sys-
tem, i.e., the number of perfectly distinguishable
states, imposes fundamental constraints over the tem-
poral correlations it is able to produce [12]. In this
sense, the physical dimension acts as a memory re-
source, restricting the amount of information stored
about the past that is capable of affecting the fu-
ture. This memory constraint leads to different be-
haviors (i.e., different achievable temporal correla-
tions) in classical, quantum, or more general phys-
ical theories [12, 27, 35, 46, 61, 67]. In particular
quantum memories are known to allow for a larger
set of correlations than classical ones of the same
size [12, 13, 67]. However, this advantage only holds
for restricted memory size, i.e., if the memory size is
unrestricted, all correlations compatible with a time-
ordered causal structure may be achieved with either
classical or quantum memories [27, 35]. Therefore,
understanding the nature of dimensional constraints
on observable correlations sheds light on fundamental
differences between our descriptions of physical sys-
tems, as well as their connection with causality.

These limitations imposed by the dimensionality
of physical systems have been exploited for the con-
struction of “dimension witnesses”, inequalities which,
when violated, certify the minimum dimension of the
system compatible with made observations [9, 11, 29,
31, 58, 60, 61]. In a similar spirit, our approach allows
for the computation of upper bounds on the temporal
correlations achievable in an open system dynamics
with an environment of bounded dimension, so that
any violations of these bounds certify the minimum
dimension of the effective environment. Employing
techniques from entanglement detection [25, 49], these
bounds are obtained by exploiting the inherent sym-
metries of the problem. In particular, we relax the
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Figure 1: Diagram of the sequential measurement protocol,
involving a partially characterized probe system and a non-
characterized environment, here separated by the dashed line.
The sequence of measurement outcomes a = a1 . . . aL is ob-
tained by repeated preparations of a probe state ρ0

S, fixed and
the same at every time step, which is left to interact with the
environment, then followed by measurements (semicircles).
The environment acts as a memory resource, capable of es-
tablishing long-term correlations between measurements.

a priori non-linear problem of computing maximum
joint probabilities in sequential measurements to a
numerically tractable hierarchy of semidefinite pro-
grams (SDPs) [5]. Both the computational acces-
sibility of the final formulation of the problem, as
well as the non-triviality of the resulting bounds, are
then demonstrated for paradigmatic examples, show-
ing that, indeed, joint probability distributions ob-
tained from probing an open system alone provide
viable means to deduce dimensional properties of the
a priori experimentally inaccessible environment it is
coupled to.

The paper is organized as follows. In Sec. 2, we
introduce the temporal sequence protocol, the notion
of temporal correlations, and their mathematical de-
scription. Sec. 3 discusses the application of temporal
correlations to the task of characterizing open systems
and their environment. Sec. 4 describes the semidefi-
nite program we constructed to bound temporal cor-
relations, with Sec. 5 presenting the numerical results
we obtained in their optimization. In Sec. 6 we com-
ment on the various challenges involved in realizing
these numerical optimizations, and how we have over-
come them. In Sec. 7 we comment on several addi-
tional technical details involving our work, with Sec. 8
covering our conclusions and future outlook.

2 The measurement protocol
We assume throughout that an experimenter is able
to prepare the system in a known state and perform
measurements in a certain basis. Its dynamics, on
the other hand, are not under experimental control,
and are governed by its inevitable interaction with the
environment. Typically, this environment is a much
larger system, generally inaccessible, and featuring
complex dynamics. Together, system and environ-
ment undergo closed, i.e., unitary evolution. Their
interaction leads to an imprinting of information on

the probe system, which can be used to learn some-
thing about the environment by means of the probe
alone. In fact, this is a common way of making in-
direct measurement on (typically large many-body)
systems that are not fully controlled [6, 14]. For ex-
ample, a small probe can be used for estimating an
unknown parameter of a larger (many-body) environ-
ment [22], in particular temperature [3, 21, 47, 57].

We now introduce the details of our scenario and
the notation used. By HS and HE we denote the
finite-dimensional Hilbert spaces of system and envi-
ronment, with dS = dim HS and dE = dim HE, and
their joint space as HES = HE⊗HS, with dES = dEdS.
The experiment involves L identical measurements on
the probe system, at discrete time steps, each outcome
aℓ ∈ A collected into a sequence a = a1 . . . aL. For
simplicity, we consider A = {0, 1} in the following; the
generalization to arbitrary outcomes is straightfor-
ward. Measurements on the system are described by
a Positive Operator-Valued Measure (POVM) (Ea

S)a,
i.e., Ea

S ≥ 0 and
∑

a∈A E
a
S = 1S .

The system is initially in the state ρ0
S, interacts with

the environment via the global unitary U(·) = U ·U†,
then it is measured and reprepared in the state ρ0

S.
This procedure is repeated a total of L times; see
Fig. 1. The unitary operation is assumed to be
the same at each iteration (corresponding to, for ex-
ample the situation of a time-independent system-
environment Hamiltonian and temporally equidistant
measurements); see Sec. 7.1 for more details.

In the following, we consider a measure-and-prepare
operation of the form

Ma(ρES) = trS[ρES · (1E ⊗ Ea
S)] ⊗ ρ0

S, (1)

with the generalization to arbitrary operations being
straightforward. The probability of a sequence of out-
comes can then be written as

p(a|dE) = p(a1, . . . , aL|dE)
= tr

[
MaL

◦ U ◦ · · · ◦ Ma1◦ U(ρ0
E⊗ρ0

S)
]
,

(2)

where p(a|dE) denotes that it is obtained with an en-
vironment of dimension dE. Our task is to estab-
lish upper bounds on such probabilities given a finite
amount/dimension of “memory” dE. The assumption
of identical measurements is essential for capturing
this notion of memory, as arbitrary time-dependent
operations would impose no non-trivial restriction on
the probabilities.

For simplicity, we consider the maximization of the
probability of a given sequence a, namely, to find ωa

dE

such that p(a|dE) ≤ ωa
dE

, for all possible correlations
generated by an environment of dimension dE. The
generalization to arbitrary linear functions of the dis-
tributions (p(a|dE))a is straightforward.

We formulate the problem via the Choi-
Jamiołkowski (CJ) isomorphism [19, 37], which
involves taking multiple copies of the original Hilbert
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Figure 2: The protocol with each time step having its own set
of input and output Hilbert spaces, denoted by the vertical
dotted lines. Note that the input and output spaces of the
U and Ma are interleaved: U has inputs Iℓ and outputs Oℓ,
but for Maℓ , inputs are Oℓ and outputs Iℓ+1.

space HES to describe its time evolution; see Fig. 2.
The ℓ-th unitary acts as U : Iℓ 7→ Oℓ, while the ℓ-th
measurement, placed between unitaries, acts instead
as Ma : Oℓ 7→ Iℓ+1. All spaces are isomorphic, i.e.,
O ∼= I ∼= HES. For convenience, the ℓ-th unitary’s
input and output spaces are jointly referred to as
Aℓ = Iℓ ⊗ Oℓ. It is important to emphasize that the
local input and output spaces of the U and Ma are
interleaved, in the sense that the outputs of one are
the inputs of the other (Fig. 2). For clarity, we shall
use the cursive I and O to generically refer to each
map’s local input and output spaces: for unitaries,
I = Iℓ and O = Oℓ, and for measurements, I = Oℓ

and O = Iℓ+1.
Given a linear map Λ : I 7→ O between input and

output Hilbert spaces I and O, with dI = dim I
and dO = dim O, its Choi-Jamiołkowski representa-
tion [19, 37] is given by the matrix

C(Λ) :=
dI∑

i,j=1
|i⟩⟨j| ⊗ Λ(|i⟩⟨j|) = idI ⊗ Λ(|Ω⟩⟨Ω|), (3)

where |Ω⟩ =
∑dI−1

i=0 |ii⟩ is a non-normalized maxi-
mally entangled state. The matrix C(Λ) is typically
referred to as a Choi matrix for the map Λ and, if
normalized, also as its Choi state. Note that C(Λ) is
of size dIdO × dIdO. Since in our case input and out-
put spaces are isomorphic, we have dI = dO = dES.
We note that the decomposition of sequential maps
in Eq. (2) is equivalent to the standard formulation of
temporal scenarios in the quantum comb [17], process
matrix [18, 52], and process tensor [54] formalism.

3 Witnesses for open system dynamics
Given a probe system S, the first question we may
ask is whether or not it is open, i.e., if it is interacting
with an environment at all, or equivalently, whether
dE > 1. To answer this question, we compute ωa

1 :=
maxρ0

S,(Ea
S

)a
p(a|dE = 1), giving the inequality

p(a|dE = 1) ≤ ωa
1 . (4)

As an example, the maximum for the sequence a =
00101 is ωa

1 = (3/5)3(2/5)2 = 0.03456, which we ex-
plain how to obtain shortly. If we perform an experi-
ment and observe p(a = 00101) = 0.5, then we must
conclude the system is open. In other words, the in-
equality Eq. (4) acts as a witness for open systems.
However, if no violation is observed, the experiment
is inconclusive.

To compute this maximum, we first note that, for
our choice of Ma, since both ρ0

S and Ea
S are the same

at each measurement, all outcomes are independent
and identically distributed. Writing qa = tr

[
ρ0
SE

a
S

]
as the probability of outcome a, with

∑
a qa = 1, and

using na as the number of occurrences of a symbol a
in a, we have

p(a|dE = 1) =
L∏

ℓ=1
qaℓ

=
∏
a∈A

qna
a ,

∑
a∈A

na = L.

(5)
The global maximum ωa

1 can be found analytically
with standard techniques for optimizing {qa}a (see
App. C), and is given by

p(a|dE = 1) ≤ ωa
1 =

∏
a∈A

(na

L

)na

, (6)

with the convention qna
a = 1 for qa = na = 0. The

maximum is independent of dS and is obtained with
Ea

S = na

L 1S and any ρ0
S.

Similar principles apply when developing witnesses
for the case of dE > 1, although the calculation of the
maximum becomes nontrivial, as the probability no
longer factorizes as in Eq. (5). Concretely, we want
to obtain the tightest bounds of the form

p(a|dE) ≤ ωa
dE
, (7)

which hold for all possible realizations of the sequence
a in an experiment. If a violation of Eq. (7) is ob-
served, we can certify that the dimension is greater
than dE.

In the simple case of dE = 1, we were able to opti-
mize over ρ0

S and (Ea
S)a. In the general case, however,

optimizing over all possible protocols (i.e. all possi-
ble ρ0

S, (Ea
S)a and U) is difficult. Nevertheless, some

general considerations can be made about how the
bounds depend on these parameters; see Sec. 7.3. In
the following, we assume fixed and well characterized
preparations and measurements, in agreement with
our initial assumptions on the probe system. The op-
timization we need to perform is, thus,

ωa
dE

:= max
U

p(a|dE) (8)

where assumptions about the initial state of the envi-
ronment can be removed by convexity and symmetry
arguments; see Sec. 7.2. In the following section, we
explain how to compute the non-trivial maxima ωa

dE

via convex optimization methods.
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4 A hierarchy of semidefinite programs
bounding temporal correlations

The maxima in Eq. (7) require that the probe state ρ0
S

and measurements (Ea
S)a are characterized and fixed

throughout the experiment, as discussed in the pre-
vious section. To obtain upper bounds for the max-
imum ωa

dE
, we formulate the problem as a hierarchy

of semidefinite programs (SDPs) [5]. This class of
optimization problems are ubiquitous in quantum in-
formation theory, offering strict convergence of solu-
tions for many classes of problems, as well as hav-
ing efficient algorithms widely available for solving
them [5, 70]. For a recent compendium on SDPs in
quantum information science, see [59, 64]. In the fol-
lowing, we explain the general steps taken in formu-
lating our problem as an SDP, which can be solved
numerically and, importantly, efficiently. A more de-
tailed step-by-step formulation is included in App. A.

Under the CJ representation, the repeated applica-
tions of the unitary and measurements can each be
written as single operators existing in a larger space,
encompassing multiple time steps, with their input
and output spaces interleaved. This is illustrated in
Fig. 2. Via Eq. (3), we define

CU := 1
dES

C(U),

Ma := C(Ma), and M̂a := trO[Ma] .
(9)

With this, we can write the L repeated applications
of U as C⊗L

U , and the measure-and-prepare operations
as a single operator

X := (dES)L(ρ0
E ⊗ρ0

S)⊗Ma1 ⊗Ma2 ⊗· · ·⊗M̂aL
, (10)

where M̂a is simply the final measurement without a
re-preparation, obtained by partially tracing Ma over
its output space. As the goal is to obtain a maxi-
mum, the initial environment state ρ0

E can be chosen
to be pure by convexity arguments, fixed to be |0⟩⟨0|E
by unitary invariance, and considered as part of the
experimental setup X without loss of generality; see
Sec. 7.2. We can then express the probability of a as

p(a|dE) = tr
[
XTC⊗L

U

]
. (11)

Note that by Eq. (3) and Eq. (9) CU is positive, rank-
1, and normalized, which makes C⊗L

U a pure sym-
metric separable quantum state. In addition, each
CU satisfies trO[CU ] = 1I/dES, which arises from the
trace-preserving property of each individual unitary.
With all of these observations, we reformulate Eq. (8)

as the equivalent optimization problem:

Given: dE, dS, ρ
0
E, ρ

0
S, {Ma}a, a,

with X := (dES)L(ρ0
E ⊗ ρ0

S) ⊗Ma1 ⊗ · · ·
· · · ⊗MaL−1 ⊗ M̂aL

,

Find: ωa
dE

:= max
CU

tr
[
XTC⊗L

U

]
Subject to: CU ≥ 0, rankCU = 1,

trO[CU ] = 1I/dES.

(12)

As CU enters in the objective function as a tensor
power, and we further require it to be rank-1, the
problem is both non-linear and non-convex with re-
spect to CU , and thus the above problem cannot be
directly solved as an SDP. To reach an SDP relax-
ation of Eq. (12), we first transform it into a chain of
equivalent problems.

The problem can be made convex by replacing C⊗L
U

with a separable state on the symmetric subspace

Φ̃AL
1

:=
∑

i

pi |ϕi⟩⟨ϕi|⊗L
, (13)

with pi ≥ 0,
∑

i pi = 1. By convexity, the maximum
will be achieved for a rank-1 Φ̃AL

1
, therefore this re-

laxation leaves the optimal value unchanged. Thus,
we replace C⊗L

U in Eq. (12) with Φ̃AL
1

satisfying

Φ̃AL
1

∈ SEPL, P+
L Φ̃AL

1
= Φ̃AL

1
, (14)

and the partial trace constraint of Eq. (12), where
SEPL is the set of fully separable L-partite states, and
P+

L is the projector onto the symmetric subspace of L
systems (see the definition in Eq. (36) in App. B.1).
In fact, the constraints in Eq. (14) are exact, as it can
be shown that all separable states in the symmetric
subspace are of the form in Eq. (13); see App. A.1.1
for a proof.

So far, we transformed the original problem into an
equivalent one, but due to the condition Φ̃AL

1
∈ SEPL

it is not yet an SDP. This requirement can be obtained
by relaxing the original problem via the quantum de
Finetti theorem [15] (see also [20]), which tells us that
Φ̃AL

1
can be approximated as the reduced state of

a larger symmetric (and potentially entangled) state
ΦAN

1
, such that Φ̃AL

1
≈ trAN

L+1
[ΦAN

1
], where trAN

L+1
is

the trace over systems L+ 1, . . . , N .
While this relaxation a priori only provides an up-

per bound for the original problem, it establishes a
hierarchy of approximate solutions, which are known
to converge exactly to the separable set as N in-
creases [25]. The de Finetti theorem, and analogous
results for permutationally invariant (or exchange-
able), rather than symmetric, operators have found
broad applications in quantum information theory,
from entanglement detection [24, 25, 49] to more gen-
eral optimization problems, such as evaluating con-
vex roofs of entanglement measures [66], constrained
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bilinear optimization [4], dimension-bounded quan-
tum games [38], as well as rank-constrained optimiza-
tion [73]. All the above mentioned results exploit the
basic idea of using either the symmetric subspace or
permutation invariance to relax nonlinear constraints.
In particular, Ref. [4] analyzed the optimization over
pairs of quantum channels, basing their construc-
tion on permutation invariant operators, and showing
the partial trace constraint necessary to translate the
usual procedure (e.g., in the entanglement detection
approach) from states to channels. Moreover, [73] in-
troduced the idea of a rank-constrained optimization
based on the symmetric subspace, which is central to
impose the rank constraint in Eq. (12). Our construc-
tion is inspired by these works and could be derived
starting from some of these results. However, it is
more straightforward to provide a direct construction
in terms of the de Finetti theorem; see App. A.2.

Ultimately, we arrive at an SDP relaxation of the
original problem:

Given: dE, dS, ρ
0
E, ρ

0
S, {Ma}a, a, N,

with X := (dES)L(ρ0
E ⊗ ρ0

S) ⊗Ma1 ⊗ · · ·
· · · ⊗MaL−1 ⊗ M̂aL

,

and M̂aL
:= trO[MaL

]

Find: ω̃a,N
dE

:= max
ΦAN

1

tr
[
(XT ⊗ 1AN

L+1
)ΦAN

1

]
Subject to: ΦAN

1
≥ 0,

P+
N ΦAN

1
= ΦAN

1
, tr

[
ΦAN

1

]
= 1,

trO1

[
ΦAN

1

]
= 1I1

dES
⊗ trA1

[
ΦAN

1

]
.

(15)

Here, N ≥ L is the size of the symmetric state ΦAN
1

used in the approximation of the separable L-partite
state ΦAL

1
. The last constraint in Eq. (15) is re-

quired to ensure that ΦAN
1

represents a sequence of
trace-preserving maps, and it can be enforced on a
single step due to the symmetry constraint on ΦAN

1
;

see App. A.1.2. Optionally, one can also add further
linear constraints to the SDP to improve its approx-
imation to the separable set, e.g., entanglement wit-
nesses [33, 65] or the positive partial transpose (PPT)
criterion [53] ΦTα

AN
1

≥ 0,∀α, where ΦTα

AN
1

is the partial
transpose with respect to a bipartition α. These con-
ditions are not necessary for convergence, but they
may provide better results [49] at an extra computa-
tional cost.

Once approximate solutions ω̃a,N
dE

are obtained from
Eq. (15), they can be used to establish a convergent
hierarchy of upper bounds on the temporal correla-
tions for each sequence, i.e.,

ωa
dE

≤ · · · ≤ ω̃a,N+1
dE

≤ ω̃a,N
dE

≤ · · · ≤ ω̃a,L
dE

,

with lim
N→∞

ω̃a,N
dE

= ωa
dE
.

(16)

Consequently, the above formulates a sequence of
SDPs capable of approximating the maxima ωa

dE
to

arbitrary precision. Numerical results obtained from
any of these SDPs (i.e., for any N ≥ L) can be used
to construct dimensional witnesses, which, when vi-
olated, certify the minimum dimension of the effec-
tive environment interacting with the system. A soft-
ware implementation of the SDP in Eq. (15), how-
ever, is not straightforward even for small values of
{dS, dE, L,N}, as the memory requirements quickly
render the problem computationally intractable. Ob-
taining the numerical results presented in the next
section, thus, required a significant amount of opti-
mization; see Sec. 6 for details. A schematic outline
of all steps undertaken to formulate the SDP and ob-
tain the numerical results is presented in Fig. 3.

The asymptotic convergence of the hierarchy of
bounds in Eq. (16) for the SDP in Eq. (15), without
PPT constraints, is given by [16]

|ωa
dE

− ω̃a,N
dE

| ≤ L(L+ (dES)2 + 1)
N + dES

. (17)

If PPT constraints are included, we only have par-
tial analytical results for the asymptotic error. Nu-
merical evidence and previous results involving PPT
constraints [49] lead us to conjecture an asymptotic
scaling of the form

|ωa
dE

− ω̃a,N
dE

| ≤ f(L, dES)O
(

1
N2

)
, (18)

where f(L, dES) is a function of L and dE. We leave
the analysis of these asymptotic error bounds to a
future investigation.

5 Numerical results
In this section, we discuss the numerical results
we obtained for ω̃a,N

dE
. The SDPs were run with

CVXPY [2, 23] using the solver SCS [50, 51], on a
compute server with an Intel Xeon Gold 5218 24-core
processor at 2.294 GHz, and with 128 GB of RAM.
For dE = 1, optimization time was in the order of sec-
onds, whereas dE = 2 scenarios required from 4 up to
14 hours to complete.

For the explicit computation, we chose the following
measurement protocol: A = {0, 1}, ρ0

E = |0⟩⟨0|E , dS =
2, ρ0

S = |0⟩⟨0|S and Ea
S = |a⟩⟨a|S , so that

Ma(ρES) = tr [ρES · 1E ⊗ |a⟩⟨a|S ] ⊗ |0⟩⟨0|S . (19)

For this particular choice, the bounds ωa
dE

are the
same as for the isolated system case studied in [67],
where explicit time evolutions were found through
gradient descent techniques.

The analytical maxima for dE = 1 described in
Sec. 3 served as a useful test for the soundness of our
approach. We ran the SDP for all binary sequences
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Figure 3: Schematic of all steps undertaken for computing an upper bound for ωa
dE by formulating and solving the SDP

problem. Detailed descriptions of each step are covered in Apps. A and B. The tractable/intractable labels, on the right, refer
to the case dE = 2.

L N a Without PPT With PPT ωa
1

2 2 00 0.999996 0.999999 1
2 3 00 1.000000 1.000000 1
2 2 01 0.500000 0.250002 1/4
2 3 01 0.250007 0.250001 1/4
3 3 000 1.000010 1.000000 1
3 4 000 1.000000 0.999991 1
3 3 001 0.250005 0.148149 4/27
3 4 001 0.148148 0.148148 4/27
3 3 010 0.250005 0.148149 4/27
3 4 010 0.148148 0.148148 4/27
3 3 011 0.250005 0.148149 4/27
3 4 011 0.148148 0.148148 4/27

Table 1: Results of the SDP for dE = 1, compared with
the analytical maxima ωa

1 . Note that 4/27 = 0.148. It can
be seen that either PPT constraints or an extension of one
extra system (i.e. N = L + 1) was sufficient to achieve
the analytical maximum in this case. Similar results were
obtained for L = 4, omitted here for conciseness.

(up to 0 ↔ 1 relabeling symmetry), for L = 2, 3, 4,
N = L,L + 1. Every case was tested with and with-
out the additional PPT constraints for comparison.
Results for L = 2, 3 are shown in Table 1, in which
it can be observed that, for dE = 1, either the PPT
constraints or a symmetric extension of a single extra
system appear to be sufficient for achieving the exact
analytical maximum.

We have also solved the SDP for the case dS = dE =
2, for various sequences without a trivial maximum
probability (i.e., ωa

dE
< 1), but only without the addi-

tional PPT constraint, as the requirements needed for
its addition would have exceeded the available mem-
ory. Additionally, since the involved SDPs are only
numerically tractable for N ≈ L, and no convergence
was observed for the values we managed to compute,
we can only claim to have obtained upper bounds for
the maximum ωa

dE
, as in Eq. (16).

As our choice of probe state and measurements
(Eq. (19)) for dS = dE = 2 reproduces the quan-

L N a Upper bound (SDP) Achievable value (GD)
3 3 001 0.683477 0.437341
3 4 001 0.521219 0.437341
4 4 0010 0.512220 0.437142
4 4 0011 0.487058 0.362047
4 4 0100 0.494499 0.333147
4 4 0110 0.488837 0.361968
4 4 0001 0.492088 0.300545

Table 2: Comparison between SDP upper bounds and best
achievable values known for the maximum ωa

dE , for dE = 2.
Best known values were obtained through gradient descent
(GD) [67] and act as lower bounds on the maximum, but are
not suitable as witnesses. All results are in agreement, and
for a = 001, we observe convergence of the bounds as N
increases.

tum scenarios previously investigated in [67], as we
show in Sec. 7.3, we can compare our upper bounds
against the largest known achievable values, obtained
through explicit time-evolutions found via gradient
descent techniques. This allows us to estimate the
range of values containing the maxima ωa

2 . These
comparisons are shown in Table 2, where, for instance,
we see 0.437341 ≤ ω001

2 ≤ 0.521219. As a concrete
example of a violation of this bound, for dS = 2 and
dE = 3, we may construct a unitary in HES as follows:

U = |1⟩⟨0|E ⊗|0⟩⟨0|S + |2⟩⟨1|E ⊗|0⟩⟨0|S + |2⟩⟨0|E ⊗|1⟩⟨1|S
+ |1⟩⟨1|E ⊗|1⟩⟨1|S + |0⟩⟨2|E ⊗|0⟩⟨1|S + |0⟩⟨2|E ⊗|1⟩⟨0|S .

(20)

For the ρ0
E, ρ0

S and Ea
S we have chosen, the above uni-

tary gives p(001|dE = 3) = 1 > ω001
2 , implying that

the bound found for dE = 2 is not only non-trivial,
but actually witnesses environment dimension since
it can indeed be violated by means of a larger envi-
ronment (dE = 3 in this case). In fact, this example
certifies that ω001

3 = 1; see also Sec. 7.3.
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6 Implementation

This section outlines the concrete steps we have taken
to relax the original problem to a hierarchy of SDPs
and to make these SDPs numerically tractable; see
App. B for more details. As noted previously, a
straightforward implementation is not computation-
ally tractable, even for short sequences, due to the
large number of variables and constraints involved.

We have addressed these additional numerical chal-
lenges by exploiting several properties of the problem.
Firstly, the symmetric constraint imposed on ΦAN

1
can

be satisfied automatically by expressing ΦAN
1

in terms
of a basis for the symmetric subspace in the numeri-
cal implementation of the SDP. While this provides a
significant reduction in the total number of involved
variables and constraints, it is by itself insufficient to
make the problem tractable.

However, thanks to our specific choice of initial
states and measurements, the sparsity of the objective
function could be exploited to further reduce the num-
ber of variables and constraints, by eliminating all of
those that do not affect the objective, either directly
or indirectly. This relaxation generally results in a
sparse outer approximation of the original problem,
i.e., to a value Ωa,N

dE
≥ ω̃a,N

dE
. In our particular case,

as we show in App. B.2, this elimination procedure is
exact, thus yielding an optimal value Ωa,N

dE
= ω̃a,N

dE
.

6.1 Choice of parameters

Before a concrete implementation, one must first
choose the initial environment state ρ0

E, as well as
fixing the probe state and measurements. As the ob-
jective function is convex on ρ0

E, and the optimiza-
tion is over all unitaries, we may – without loss of
generality – fix a pure initial state ρ0

E = |0⟩⟨0|E and
eliminate any assumptions on the environment state;
see Sec. 7.2. On the other hand, as assumptions on
dS, ρ0

S and (Ea
S)a are experiment-dependent, one must

search for “proper” probe states and measurements on
a case-by-case basis, but optimal choices, leading to a
larger bound, can also be addressed in general terms;
see Sec. 7.3. For the choice of sequence, in particular,
if it is too simple relative to dE, the maximum attain-
able probability may be trivial (i.e., equal to one),
such that no optimization is required, and no wit-
ness can be constructed. Therefore, it is important to
choose sequences which have a non-trivial maximum
for a given dE. For closed systems, this problem has
been solved via the notion of “deterministic complex-
ity” [67], which defines the minimum requirements for
a sequence to be able to occur deterministically. In
the open system case, the conditions for determinism
involve not only the available memory, as was the case
in the isolated system, but also the dimension of the
system. We elaborate on these conditions in Sec. 7.3.

6.2 Symmetric representation
Effectively solving any of the SDPs in the hierarchy re-
quires a significant amount of optimization, as a naive
implementation quickly becomes computationally in-
tractable. As a rough example, without any simplifi-
cations, ΦAN

1
is a square matrix of size (d2

ES)N , which
in the simplest non-trivial scenario, dE = dS = 2 and
N = L = 3, already results in a 4096 × 4096 matrix,
with over 16 million complex scalar variables. The
partial trace constraint alone involves over 1 million
linear equations between these variables, making the
SDP numerically intractable in this naïve formula-
tion.

In practice, several simplifications can be made; see
App. B for full details. ΦAN

1
and X ⊗ 1AN

L+1
may be

written directly in terms of an operator basis for the
symmetric subspace, thus automatically satisfying the
symmetry constraint, which significantly reduces the
number of variables. Defining an isometry between
the symmetric subspace of AN

1 , denoted by SN (with
dimension dim SN ), and a canonical basis for SN ,

V =
∑
t

|t⟩SN
⟨sym(t)|AN

1
, (21)

we may cast all involved objects directly as
dim SN × dim SN matrices:

ΦAN
1

=
∑
t,t′

ϕt,t′ |sym(t)⟩⟨sym(t′)|AN
1
,

ϕ = V ΦAN
1
V †, and

x = V (XT ⊗ 1AN
L+1

)V †,

(22)

where t denotes a “type” for the canonical repre-
sentation of symmetric states |sym(t)⟩AN

1
; see [34].

Under this representation, the objective function be-
comes tr [xϕ], and the constraints may be formulated
in terms of ϕt,t′ directly, without resorting to the the
full space AN

1 . Note that V V † = 1SN
but V †V ̸= 1AN

1

(rather, V †V is a projector onto SN ). As the dimen-
sion of SN is [34]

dim SN =
(
N + d2

ES − 1
N

)
, (23)

for dES = 4 and N = 3 the matrix ϕ is of size
816 × 816, with around 600 thousand variables: a re-
duction to 4% of the original 16 million. With further
work, the partial trace constraints can also be effi-
ciently written directly in this representation, leading
to (dES ·

( (N−1)+d2
ES−1

N−1

)
)2 equality constraints, result-

ing in approximately 300 thousand constraints in the
dES = 4 and N = 3 scenario: a reduction to 28%
of the original. This symmetric representation is ex-
plained in more detail in App. B.1.

6.3 Sparse implementation
While these are significant improvements, they still
prove to be insufficient, as the dense representation
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N Symmetric Sparse Reduction to

3 Variables 665 856 3 566 0.54%
Constraints 295 937 2 809 0.95%

4 Variables 15 023 376 35 688 0.24%
Constraints 10 653 697 40 441 0.38%

Table 3: Comparison between the number of variables and
linear constraints in the symmetric problem vs. its sparse
implementation, for the sequence a = 001. Our algorithm
achieves a vast reduction in the number of variables and con-
straints, while still allowing exact solutions for our problem.
Note that these numbers precede any further optimization,
which could remove any remaining redundant constraints or
variables.

of the symmetric problem involves too many variables
and constraints to be solvable. As a concrete example,
for the simplest case of a = 001, dE = 2 and L = N =
3, the SDP solver SCS attempts to allocate a dense
array of over 3 TB in size.

To address this, we have developed an algorithm
that exploits any sparsity of the objective function,
and – whenever possible – constructs a sparse relax-
ation of the original problem. This is achieved by iter-
atively selecting which variables of ϕ and which of its
constraints are strictly necessary to solve the prob-
lem, due to their direct or indirect influence in the
objective function. While generally a relaxation, due
to the explicit structure of our problem this sparse
implementation is exact, yielding ω̃a,N

dE
. A detailed

explanation of our algorithm is available in App. B.2.
For the state and measurements considered, our

technique was capable of reducing the number of vari-
ables and constraints immensely, to less than 1% of
the symmetric case (see Table 3). This allowed us
to successfully compute upper bounds for various se-
quences up to N = 4 and dE = 2 (Table 2).

As can be observed in Table 3, the sparse prob-
lems can clearly be simplified further, by eliminating
redundant variables and constraints. We opted for
leaving such task to the numerical pre-solver, as this
only took a few minutes of computing time. Solv-
ing the SDP for N = 3 was possible within minutes,
but for N = 4, from 4 up to 14 hours were needed,
depending on the sequence.

7 Discussion
7.1 Repeated unitaries
In the following, we discuss in which cases the condi-
tion of repeated unitaries is physically justified. To
see this, imagine that the evolution of the system
is governed by a time-independent Hamiltonian HSE.
The corresponding unitaries will be of the form U(t) =
e−iHt. This assumption of time-independence is al-
ways possible, as the environment may include any
source of time dependence. Ideally, then, we would

have the same unitary if we perform the measure-
and-prepare operations equally spaced in time, say,
by an interval ∆t. One should take into account,
however, some uncertainty in the time measurement.
Let us then assume that our choice of time for per-
forming a measurement is distributed according to a
distribution q(t), centered around ∆t. This means
that instead of transforming our system according
to the unitary U(∆t), we transform it, on average,
according to the mapping Λ :=

∫
U(t)q(t)dt, seem-

ingly breaking our assumption of repeated unitaries.
Since Λ is a valid completely positive trace preserving
(CPTP) map, it can be dilated by means of a larger
environment into a unitary U ′, namely Λ(ρSE) =
trE1

[
U ′(ρSE ⊗ |0⟩⟨0|E1

)
]
. To complete the argument

that this situation can still be described by repeated
unitaries, it is enough to show that the same can be
done for multiple copies of it, namely, that the re-
peated operation ΛL can be dilated to some unitary
ŨL. To do so, it is enough to provide at each time-step
i a new environment Ei prepared in the correct initial
state |0⟩⟨0|Ei

. Let us compute explicitly the case for
two time steps, the general case is straightforward.
We define WE1E2 the swap operator between systems
E1 and E2, and we set Ũ := WE1E2 ◦ U ′

SEE1
. Let us

calculate, for simplicity

trE1E2

[
U ′

SEE1
◦WE1E2 ◦ U ′

SEE1
(ρSE⊗|0⟩⟨0|E1

⊗|0⟩⟨0|E2
)
]

= trE1E2

[
U ′

SEE1
◦WE1E2(σSEE1

⊗|0⟩⟨0|E2
)
]

= trE1

[
U ′

SEE1
(trE2

[
σSEE2

]
⊗|0⟩⟨0|E1

)
]

= trE1

[
U ′

SEE1
(Λ(ρSE) ⊗ |0⟩⟨0|E1

)
]

= Λ2(ρSE),
(24)

where σSEE1 := U ′
SEE1

(ρSE ⊗ |0⟩⟨0|E1
). The effect of

the final WE1E2 operation is to swap the space E1
and E2 that are irrelevant after the operations on SE
have been performed. Evidently, this argument can
straightforwardly be extended to more time steps. In
summary, this means that the condition of “the same
unitary” is satisfied as long as the time choice is always
drawn from the same distribution. In other words,
it is sufficient to always “probabilistically repeat” the
same operation.

Finally, we remark that even if this procedure may
use a very large environment, we are only interested
in showing that we can always assume there is a uni-
tary dynamics, with the notion of an effective envi-
ronment, then, taking care of estimating the environ-
ment consistent with the observed statistics. More-
over, we also remark that time-independent opera-
tions are necessary, as unrestricted time-dependent
operations can achieve arbitrarily long temporal cor-
relations even with bounded memory size [46].

7.2 Effective environment and initial state
The environment of a quantum system, intended
as all the physical systems surrounding and pos-
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sibly interacting with it, is typically a very high-
dimensional system, if not directly assumed to be
infinite-dimensional. From this perspective, we want
to make sense of the notion of effective environment.
Consider a global transformation of the system and
environment. As a first approximation, we can say
that the global unitary is of the form USE⊗UE′ , where
USE is an entangling unitary between the system and
the effective environment and UE′ is acting on the rest
of the environment. At the same time, an evolution of
the form USE⊗UE′ is just an approximation of the full
evolution of the environment, as we expect its state
to thermalize after some time interval. Nevertheless,
from a physical perspective this approximation is still
valid if the time required for a single run of the ex-
periment, i.e., the measurement of the temporal se-
quence, is much shorter than the time needed for the
effective environment to thermalize. This is to be ex-
pected, as the environment is composed of many par-
ticles that may interact with each other with different
strengths. Underlying this expectation is the assump-
tion – known as Markovian embedding [10, 71, 72] and
frequently employed in the description and modeling
of open quantum system dynamics [43–45, 63] – that
the environment can always be split into two parts: a
far environment, leading to irretrievable, memoryless
information loss, and an effective environment, that
can transport memory. Due to the irretrievable in-
formation loss, the dynamics of the system and the
effective environment is then described by a general
(non-unitary) CPTP map, a situation which, as dis-
cussed in the previous section, can again be dilated to
repeated unitaries.

Reversing this perspective, namely, looking at the
problem of characterizing the effective environment
from temporal correlation experiments, we may say
that this characterization is inherently dependent on
the typical time-scales of a single experimental run.
This difference in time scales and the eventual ther-
malization of the environment, however, are essential
for repeating the experiment for collecting statistics,
as it is required that the initial state of the environ-
ment is always (probabilistically) described by the
same state ρ0

E in each experimental run. As previ-
ously mentioned, this is typically a thermal state, but
it does not need to be characterized in our approach.
In fact, since the SDP maximizes the temporal cor-
relations, which are linear in the initial state of the
environment, we know that the maximum is always
achieved with a pure state. Up to local unitaries, we
can thus always assume it to be ρ0

E = |0⟩⟨0|E . The
bound calculated for this state is, then, valid for any
possible initial state of the environment.

Finally, somewhat independent of the explicit ex-
perimental situation, we may see our setup as a ques-
tion of simulation resources: What is the smallest di-
mension an environment coupling to a known system
must have in order to reproduce observed statistics

Figure 4: The open system and environment scenario can be
equivalently interpreted as the dilation of the scenario involv-
ing sequential measurements Ia on an isolated environment
system.

in a unitary way? Seen in this way, the results we
present attribute a “simulation hardness” (in the sense
of required environment dimension) to each sequence,
that is agnostic with respect to concrete time scales
or experimental limitations, but rather inherent to the
respective sequence.

7.3 Conditions for deterministic realizations
The maximum probability for a given sequence in-
creases as more memory is available, i.e.,

0 ≤ ωa
1 ≤ ωa

2 ≤ · · · ≤ ωa
dE

≤ 1, (25)

as larger environments can always simulate the dy-
namics of smaller ones. Therefore, if the sequence a
is sufficiently simple, its maximum may be trivial for
a given dE, i.e., ωa

dE
= 1.

The maxima ωa
dE

depend on the sequence, as not
all sequences are equally “difficult” to produce with a
given amount of memory dE. For example, it is easy
to see that the sequence ‘000’ can always be produced
with unit probability, while the sequence ‘001’ cannot
be produced with unit probability if the environment
is not of sufficient size [67]. This observation suggests
a relevant notion of “complexity” of sequences, which
offers a more fundamental relationship between a and
dE. Since our goal is to establish non-trivial maxima
on the probabilities of sequences, the natural question
to ask is how large should dE be such that a can occur
deterministically?

Understanding the conditions where this occurs al-
lows us to pick only scenarios featuring non-trivial
maxima. It is useful to recall the following

Definition. (Deterministic Complexity [67]) Let a
be a sequence of measurement outcomes, produced
by repeated identical measurements on an isolated d-
dimensional system. The deterministic complexity of
the sequence a, or DC(a), is the minimum d such that
p(a|d) = 1 can occur.

DC(a) is a property of the sequences a and it is in-
dependent of the model (quantum or classical). First,
we establish a correspondence between the single sys-
tem and open system scenarios. Let dS = |A|, so that
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we may choose Ea
S = |a⟩⟨a|S and ρ0

S = |0⟩⟨0|S . Then,
the changes in the environment state due to the uni-
tary and measurements can be written succinctly in
terms of the completely positive maps

Ia(ρE) = trS

[
U(ρE⊗|0⟩⟨0|S)U† ·1E ⊗ |a⟩⟨a|S

]
. (26)

Therefore, under the action of (Ia)a∈A, we may inter-
pret the environment as a single isolated “memory”
system in which the maps Ia act sequentially, as in
[67]. The converse mapping, from the sequential mea-
surements on an isolated memory system to the open
system scenario, is the dilation map with the probe
system acting as the ancilla and the environment as
the memory. This construction is well known, but it
is worth expanding it in detail in order to understand
what are the conditions on the ancilla (i.e., the probe
system) needed to implement it.

Let n(a) denote the number of unique symbols ap-
pearing in a, with n(a) ≤ |A|, and let us assume
dS ≥ n(a). Now, consider an instrument given by the
maps Ĩa of the form Ĩa(ρE) = KaρEK

†
a, for (Ka)a∈A

Kraus operators, i.e.,
∑

a∈A K
†
aKa = 1E . The corre-

sponding unitary arises from the dEdS × dE isometry
matrix

Q =
∑
a∈A

Ka ⊗ |a⟩S , (27)

which can always be completed into a unitary ma-
trix U . Thus Ĩa can be written in the form of
Eq. (26). As we have chosen dS = |A|, ρ0

S = |0⟩⟨0|S
and Ea

S = |a⟩⟨a|S in our implementation of the SDP
(Sec. 6), there is a direct correspondence between the
two scenarios; see Fig. 4. Therefore, the upper bounds
obtained by the SDP in Eq. (15) can be compared
with the known achievable values from [67], as shown
in Table 2 and discussed in Sec. 5.

This construction applies to deterministic models
as they have deterministic transitions between states,
i.e., each is described by a single Kraus operator per
outcome. We thus have

Proposition 1. If both dE ≥ DC(a) and dS ≥ n(a),
then there is a choice of probe state and measurements
such that ωa

dE
= 1.

Note that the condition dS ≥ n(a) is strictly re-
quired for deterministic production of a. In fact, if
p(a|dE) = 1, every symbol must occur deterministi-
cally. Then, at each step the system must be in a state
ρa
S such that tr [ρa

SE
a
S ] = 1. Thus, the measurements

Ea
S must be able to perfectly discriminate between the

states {ρa
S}a, which is possible only if dS ≥ n(a). We

have established:

Proposition 2. If dS < n(a), then ωa
dE
< 1 for any

choice of probe state or measurements, and any envi-
ronment dimension dE.

In conclusion, these results tells us that nontrivial
bounds appear for dE < DC(a), that we can compare

these bound with the single-system scenario for dS ≥
n(a), and that |A| = 2 and L = 3 is the smallest
scenario displaying non-trivial memory effects.

7.4 Choice of sequence
As briefly noted in Section 7.3, in order to construct
a witness for dE > d, it is vital to choose a se-
quence a with sufficient deterministic complexity. If
the sequence chosen is too short or too simple (i.e.,
if DC(a) ≤ d), then the bound ωa

d is trivial and the
dimension dE cannot be tested with such sequence.

However, due to the difficulty in computing these
bounds, and the fact longer sequences generally be-
come less probable—and therefore less likely to violate
the witness inequality—generally one should choose
sequences to be as short as possible while having de-
terministic complexity of the same size as the mini-
mum environment dimension one wishes to witness.

As a concrete example, if we wish to witness dE >
3, we should choose a sequence a with deterministic
complexity DC(a) = 4, e.g., a = 0001, which is the
shortest sequence satisfying this requirement. Then,
a violation of the bound ω0001

3 informs us that, in fact,
dE ≥ 4.

8 Conclusions and outlook
We presented a method to lower bound the dimen-
sion of the environment interacting with a probe sys-
tem, based only on the statistics of measurements per-
formed on the (partially characterized) system, and
without any assumption on the environment or the
dynamics. This is achieved via a hierarchy of semidefi-
nite programs that upper bound temporal correlations
achievable in various experimental scenarios, under
the assumption of finite memory. Such bounds can
be applied to the detection of the effective environ-
ment size in the dynamics of open systems, as well
as a certification of the minimum size of an environ-
ment’s dimension compatible with observations.

To keep the discussion simpler, we applied the opti-
mization for a single sequence. It is straightforward to
adapt the objective function to arbitrary linear func-
tions of the full probability distribution (p(a|dE))a, as
those appearing in the temporal inequalities derived
in, e.g., [12, 35, 46, 61]. This may, in principle, lead to
better witnesses. We leave the numerical explorations
of this problem to a future investigation.

We assumed a joint unitary evolution between sys-
tem and environment, which leads to a CJ representa-
tion of these maps given in terms of symmetric states.
As explained in Sec. 7.1, this assumption can usu-
ally be justified on physical grounds. Nevertheless, a
natural question to ask is how do our results change
if we consider arbitrary CPTP maps? In that case,
the SDP should be modified by replacing the sym-
metry constraint with permutation invariance, i.e.,
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VσΦAN
1
V †

σ = ΦAN
1

for all permutations σ ∈ SN ; see
Eq. (35). We expect that bounds for CPTP maps may
be larger than those for unitary channels of the same
dimension, especially for objective functions involv-
ing more than a single sequence, but numerical op-
timization is significantly more costly in this case, as
the permutation invariant operator basis is of size [69,
Ch. 7]

(
N+(dES)4−1

N

)
, in contrast to

(
N+(dES)2−1

N

)2 in
the symmetric case. While it is also possible to write
such CPTP maps in terms a dilation of the environ-
ment, this approach would likely result in more extra-
neous variables in the SDP, i.e., the terms in the sub-
space orthogonal to the dilation ancilla’s initial state,
possibly rendering the optimization intractable.

Additionally, the SDP in Eq. (15) and its related
implementation techniques are, in fact, quite general,
and can be applied to a wide range of scenarios beyond
what we have considered here. As the operator X
from Eq. (10) is fixed, any choice of intermediate op-
erations between each unitary could be chosen. E.g.,
the initial system and environment states could be
correlated, and the intermediate maps Ma could each
be replaced by arbitrary joint operations, even time-
dependent ones. Such approaches could then, for ex-
ample, be used to bound observables for specific types
of processes, e.g., quantum processes with only clas-
sical memory [30], by assuming additional entangle-
ment breaking channels on the environment. There-
fore, provided the problem is numerically tractable,
our techniques are independent of what explicit mea-
surements are chosen.

While the high dimensionality of the current formu-
lation of the SDP quickly renders general numerical

implementations intractable, our approach still offers
new avenues for the subject of bounding temporal cor-
relations, and their relationship to open-system dy-
namics. Ultimately, the techniques developed herein
should be taken as a proof-of-concept for future de-
velopments and improvements. It remains to be seen
whether more efficient numerical techniques, or even
alternative outer approximations, are better suited for
addressing such problems. Further investigation of
these avenues is subject to future work.

Nevertheless, the success of our approach highlights
the wealth of information contained in temporal cor-
relations and the potential of new techniques for char-
acterizing large complex systems by means of a small
probe alone, by exploiting non-trivial properties of the
temporal correlations achieved by systems of bounded
size.
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A Constructing the SDP relaxation
This appendix explains in detail the various steps to analytically formulate the maximization problem
ωa

dE
:= maxU p(a|dE) as a semidefinite program, with the next appendix (App. B) focusing on its software

implementation. Figure 5 provides a schematic outline of our approach.

Figure 5: Schematic of all steps undertaken for computing an upper bound for ωa
dE by formulating and solving the SDP

problem. The tractable/intractable labels, on the right, refer to the case dE = 2.
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Let ℓ = 1, . . . , L enumerate the time steps, and let Iℓ and Oℓ be the input and output spaces of the ℓ-th
unitary evolution U , respectively. For convenience, we write Aℓ := Iℓ ⊗ Oℓ for the joint space at step ℓ, and
Ab

a := Aa ⊗ Aa+1 ⊗ · · · ⊗ Ab−1 ⊗ Ab for the sequential spaces from a to b. We assume that all spaces are
isomorphic, i.e., Iℓ

∼= Oℓ
∼= HES for all ℓ, but we preserve labels for clarity. We can thus write the respective

maps in the Choi-Jamiołkowski representation (see Eq. (3)) as:

CU := 1
dES

C(U), Ma := C(Ma), M̂a := trO[Ma] , (28)

where C(Λ) is the Choi matrix of the map Λ and CU is normalized such that it corresponds to a quantum state,
which is useful during implementation of the symmetric representation of the problem (App. B.1). As before,
we highlight that the local input (I) and output (O) spaces of these maps are interleaved: For the ℓ-th U ,
I = Iℓ and O = Oℓ, but for Maℓ

we have I = Oℓ and O = Iℓ+1. Since the final output state is discarded (i.e.,
we only are only concerned with the probability of outcome sequences), the final O is traced out, yielding M̂a

in the equation above. This structure of the spaces is illustrated in Fig. 6.

Figure 6: Diagram of the specific protocol discussed in this work, with each time step written in terms of distinct input and
output Hilbert spaces, denoted by the dotted lines. Note that the input and output spaces of the U and Ma are interleaved:
U has inputs Iℓ and outputs Iℓ, but for Maℓ , inputs are Oℓ and outputs Iℓ+1.

We may now specify the probability of the sequence a as

p(a|dE) = tr
[
XT

(
L⊗

ℓ=1
CIℓOℓ

U

)]
= tr

[
XT(CU )⊗L

]
(29)

X := (dES)L · (ρ0
E ⊗ ρ0

S)I1 ⊗MO1I2
a1

⊗ · · · ⊗MOL−1IL
aL−1

⊗ M̂OL
aL
. (30)

Where the correcting normalization factor (dES)L was incorporated into X (to make up for the normalization
of CU ), and XT denotes the transpose with respect to the basis chosen for the isomorphism. In order to obtain
an upper-bound for p(a|dE), our goal is to optimize Eq. (29) over all possible unitaries, in terms of CU . As per
the above definitions, it follows that CU must satisfy the constraints:

• CU ≥ 0 and rankCU = 1, as it represents a unitary channel,

• trO[CU ] = 1I/dES, as it is a trace preserving map

We may thus define our optimization problem as

Optimization Problem 1. The initial formulation of the problem.

Given: ρ0
E, ρ

0
S, {Ma}a, a

Find: max
CU

tr
[
XT(CU )⊗L

]
Subject to: CU ≥ 0, rankCU = 1, trO[CU ] = 1I/dES.

(31)

This may be immediately relaxed to a convex form, without affecting the maximum of the objective function,
as

Optimization Problem 2. The convex relaxation of the original problem.

Given: ρ0
E, ρ

0
S, {Ma}a, a

Find: max
{|ϕi⟩}i

tr
[
XTΦ̃AL

1

]
, Φ̃AL

1
=
∑

i

pi |ϕi⟩⟨ϕi|⊗L
, pi ≥ 0,

∑
i

pi = 1

Subject to: trO[|ϕi⟩⟨ϕi|] = 1I/dES, |ϕi⟩ ∈ HES ⊗ HES.

(32)
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However, this optimization problem is non-linear, not only due to the tensor product in |ϕi⟩⟨ϕi|⊗L, but also
on the rank-1 nature of |ϕi⟩⟨ϕi|. Let us now define our target set T as

Φ̃AL
1

∈ T :=
{∑

i

pi |ϕi⟩⟨ϕi|⊗L

∣∣∣∣∣ |ϕi⟩ ∈ HES ⊗ HES, pi ≥ 0,
∑

i

pi = 1, trO[|ϕi⟩⟨ϕi|] = 1I/dES

}
. (33)

Elements of this set will not generally be rank-1, but the optimal solutions of Problems 1 and 2 belong to
this set. Our goal now is to approach T by means of further relaxations, which is achieved by exploiting the
symmetry of Φ̃AL

1
.

A.1 The unitary channel constraints
The symmetric structure of Φ̃AL

1
requires all subspaces to be in the same local state. We can relax this by

considering instead the separable set on L parties,

ΦAL
1

∈ SEPL := conv
{

L⊗
ℓ=1

Qℓ

∣∣∣∣∣ Qℓ ∈ B(HES ⊗ HES), Qℓ ≥ 0, tr [Qℓ] = 1
}
, (34)

such that all local spaces become independent. Here, conv denotes the convex hull of the set, and B the set of
bounded operators. We must now find ways to restore rank-1 and permutation invariance constraints for the
optima over this set. For now, we highlight that T ⊂ SEPL, but simply switching from Φ̃AL

1
∈ T to ΦAL

1
∈ SEPL

does change our problem, so that we must impose further constraints to the set SEPL to restore the original
problem in T . The first step is restoring symmetry and optimality of rank-1 to ΦAL

1
. After this, we may restore

the partial trace constraint.
Let σ ∈ Sn be a permutation from the set of all permutations on n symbols Sn. We define

Vσ :=
d∑

i1,··· ,in=1
|iσ−1(1), · · · , iσ−1(n)⟩⟨i1, · · · , in|, (35)

P+
n := 1

n!
∑

σ∈Sn

Vσ (36)

as, respectively, the permutation operator and projector onto the symmetric subspace. The symmetric subspace
on n copies of H is defined as Symn(H) := { |ψ⟩ ∈ H⊗n | P+

n |ψ⟩ = |ψ⟩ }, and the space of symmetric operators
is given by the set Symn(B(H)) := {A ∈ B(H⊗n) | P+

n A = A}; see [34]. Note that, as ρ is Hermitian, the
symmetry condition can be equivalently written either as P+

n ρ = ρ or P+
n ρP

+
n = ρ. In fact, if P+

n ρ = ρ, then
ρ† = (P+

n ρ)† = ρ†P+ = ρP+ = ρ ⇒ P+
n ρP

+
n = ρ. Conversely, ρ = P+

n ρP
+
n = (P+

n )2ρP+
n = P+

n ρ. More details
about the symmetric subspace can be found in App. B.1.

A.1.1 Ensuring symmetry and rank-1 at the optimum

By utilizing ΦAL
1

as our variable as in Eq. (34), we have lost both symmetry and rank-1 guarantees at the
optimum. However, both can be restored by ensuring ΦAL

1
is in the symmetric subset of SEPL; see, e.g., [39].

For completeness, we provide in the following an elementary proof that

Symn(B(H)) ∩ SEPn =
{∑

i

pi |ϕi⟩⟨ϕi|⊗n

∣∣∣∣∣ |ϕi⟩ ∈ HES ⊗ HES, ⟨ϕi|ϕi⟩ = 1, pi ≥ 0,
∑

i

pi = 1
}
, (37)

which implies T ⊂ SymL(B(H)) ∩ SEPL. In fact, consider ρ ∈ Symn(B(H)) ∩ SEPn. Since it is separable, we
can write it as as a convex mixture of pure product states, i.e.,

ρ =
∑

i

pi |Φi⟩⟨Φi| , (38)

with |Φi⟩ a n-party pure product state, i.e., |Φi⟩ =
⊗n

j=1 |ϕi,j⟩, with the {|ϕi,j⟩}j not necessarily equal for a
given i. However, ρ ∈ Symn(B(H)) implies ran(ρ) ⊆ Symn(H), and if we prove that ran(|Φi⟩⟨Φi|) ⊆ Symn(H)
for all i, then we find that {|ϕi,j⟩}j must be identical for each i, otherwise |Φi⟩ fails to be symmetric, namely,
|Φi⟩⟨Φi| = |ϕi⟩⟨ϕi|⊗n and, thus, ρ =

∑
i pi |ϕi⟩⟨ϕi|⊗n. It remains to prove that ran(|Φi⟩⟨Φi|) ⊆ Symn(H). To

show this, we note that by Eq. (38) and positivity of ρ and |Φi⟩⟨Φi|, we have Ker(ρ) = ∩i Ker(|Φi⟩⟨Φi|). By
Hermiticity, it follows that ran(ρ) = (Ker(ρ))⊥ = span(∪i ran(|Φi⟩⟨Φi|)), which concludes the proof.

Importantly, Eq. (37), restores the symmetry and rank-1 properties for optimum solutions of Prob. 2 when ΦAL
1

is restricted to Symn(B(H)) ∩SEPn. In light of this, in the following we use SymSEPn := Symn(B(H)) ∩SEPn.
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A.1.2 The trace-preserving constraint

We now restore the trace-preserving constraint trO[|ϕi⟩⟨ϕi|] = 1I/dES for states expressed as in Eq. (37). This
is established by proving that it is sufficient to satisfy this condition for a single party in the convex mixture.

Proposition 3. For any ΦAL
1

∈ SymSEPL:

trO1

[
ΦAL

1

]
= 1I1

dES
⊗ trA1

[
ΦAL

1

]
⇐⇒ trOℓ

[
|ϕi⟩⟨ϕi|Aℓ

]
= 1Iℓ

dES
⊗ |ϕi⟩⟨ϕi|⊗L−1 ∀ℓ. (39)

Proof. We provide a generalization of the arguments in [73, App. A]. From Eq. (37), if P+
LΦAL

1
= ΦAL

1
, we know

it admits a decomposition of the form

ΦAL
1

=
∑

i

pi |ϕi⟩⟨ϕi|⊗L
, pi ≥ 0,

∑
i

pi = 1. (40)

We introduce the one-party auxiliary map E(·) = trO[·] − tr [·]1I/dES implementing our partial trace constraint
in T , such that (EA1 ⊗ idA2 ⊗ idAL

3
)(ΦAL

1
) = 0 for any ΦAL

1
∈ SymSEPL ∩ T , and, due to symmetry, the same

is true if the map had been applied to the second party instead. Defining Ẽ(·) = [E(·)]†, we may then write
(EA1 ⊗ ẼA2 ⊗ idAL

3
)(ΦAL

1
) = 0. As E acts on Hermitian operators and is Hermiticity-preserving, we have E = Ẽ

and the explicit distinction is only made for added clarity in the following proof. Applying the map to the
convex mixture in Eq. (40), we obtain∑

i

piEA1(|ϕi⟩⟨ϕi|A1
) ⊗ ẼA1(|ϕi⟩⟨ϕi|A2

) ⊗ |ϕi⟩⟨ϕi|⊗L−2 =
∑

i

piEi ⊗ E†
i ⊗ |ϕi⟩⟨ϕi|⊗L−2 = 0, (41)

where Ei = E(|ϕi⟩⟨ϕi|). We need this to be true for all Ei if we want to ensure ΦAL
1

obeys our partial trace
constraint globally in the convex mixture. To prove this is the case, let G ∈ Cd2

ES×d2
ES , so that

tr
[

(G⊗G† ⊗ 1AL
3

)
(∑

i

piEi ⊗ E†
i ⊗ |ϕi⟩⟨ϕi|⊗L−2

)]
=
∑

i

pi|tr [GEi]|2 tr
[
|ϕi⟩⟨ϕi|⊗L−2

]
= 0, (42)

which must hold for any G. Since pi ≥ 0, |tr [GEi]| ≥ 0, and tr
[
|ϕi⟩⟨ϕi|⊗L−2

]
= 1, this can only be true for all

G if all Ei = 0. Furthermore, by the symmetry of each term in the mixture, it is then sufficient to ensure the
constraint is satisfied in a single party. From Eq. (37), the converse statement follows trivially.

Thus, any state ΦAL
1

∈ SymSEPL satisfying trO1

[
ΦAL

1

]
= (1I1/dES) ⊗ trA1

[
ΦAL

1

]
is part of the target set T

and vice versa.

A.1.3 The final rank-constrained problem over SEP

Given all of the previous results, we have now established a relation between the sets T and SEPL,

T =
{

ΦAL
1

∈ SEPL

∣∣∣ P+
LΦAL

1
= ΦAL

1
, trO1

[
ΦAL

1

]
= (1I1/dES) ⊗ trA1

[
ΦAL

1

] }
, (43)

which allows us to remove the non-linear dependence on the tensor product (CU )⊗L, by replacing the search
space with SymSEPL, while obeying the linear constraints on the partial trace of one party. We thus obtain:

Optimization Problem 3. Rank-1 and symmetric optimum (exact)

Given: ρ0
E, ρ

0
S, {Ma}a, a

Find: max
ΦAL

1
∈ SEPL

tr
[
XTΦAL

1

]
Subject to: ΦAL

1
≥ 0, tr

[
ΦAL

1

]
= 1, P+

LΦAL
1

= ΦAL
1
,

trO1

[
ΦAL

1

]
= 1I1

dES
⊗ trA1

[
ΦAL

1

]
(44)

However, ΦAL
1

∈ SEPL is still not a linear constraint and highly non-trivial to be enforced, as a full char-
acterization of the separable set is NP-HARD [32]. Therefore, while a priori appearing more manageable, the
above problem is still not in a form that can be tackled numerically. Fortunately, the symmetric constraint can
also be exploited to obtain approximations of the symmetric separable states.
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A.2 The SEP constraint
A.2.1 Approximation of SEP via the quantum de Finetti theorem

Ensuring ΦAL
1

∈ SEPL cannot be done exactly, so as it stands the problem is still numerically intractable.
However, it is possible to define arbitrarily-precise outer approximations of the separable set through symmetric
extensions and the quantum de Finetti theorem [15, 20]. Concretely, we can approximate, in principle to any
desirable precision, a ΦAL

1
∈ SEPL by a marginal over a larger symmetric (and not necessarily separable) state

ΦAN
1

, provided N is sufficiently large. For any finite N , this leads to an outer approximation of T , which
establishes a convergent hierarchy of outer approximations, such that for any N ≥ L, we have

ωa
dE

≤ · · · ≤ ω̃a,N+1
dE

≤ ω̃a,N
dE

≤ · · · ≤ ω̃a,L
dE

,

with lim
N→∞

ω̃a,N
dE

= ωa
dE
.

(45)

More precisely, using the quantum de Finetti theorem we can establish asymptotic error bounds on this approx-
imation [16, Cor.1]. In terms of the trace norm, this asymptotic error bound is given by∥∥∥ΦAL

1
− trAN

L+1

[
ΦAN

1

]∥∥∥
1

≤ 2L(L+ (dES)2 + 1)
N + (dES)2 . (46)

As the symmetry requirement applies to both ΦAL
1

and ΦAN
1

, this application of the quantum de Finetti theorem
for approximating ΦAL

1
∈ SEPL is straightforward in the SDP in Eq. (15), only requiring the use of a larger

state ΦAN
1

as the optimization variable, and a suitable adjustment of the objective function using (XT ⊗1AN
L+1

).

A.2.2 Additional separability constraints

To improve the approximation, at an extra computational cost, we may also include additional separability
constraints. In our case, we consider the constraints of positive partial transpose (PPT) on ΦAN

1
:

ΦTα

AN
1

≥ 0, ∀ non-equivalent bipartitions α. (47)

Here, “non-equivalent bipartitions” refers to the fact that it is unnecessary to include all bipartitions, as the
state ΦAN

1
is symmetric, and thus permutation invariant. Therefore, the bipartitions needed are αk, where,

e.g., we transpose only the first k subspaces, for 1 ≤ k ≤ ⌊N/2⌋, with symmetry taking care of the remaining
constraints.

The existence of entangled states which have positive partial transpose [36] means these constraints reduce
the feasible convex set to that of PPT states, not the separable states. While entangled PPT states are not
suitable solutions to the original problem, they are still adequate approximations and provide upper bounds
for the actual optimal values. Inclusion of PPT constraints will perform at least as well as optimizing without
them (i.e., the solution can only be improved), but convergence is significantly improved in certain cases [49] to
O(1/N2) as opposed to O(1/N) in the absence of these constraints. As shown in Table 1, for the dE = 1 case
PPT constraints were sufficient to provide the exact analytical bounds.

A.2.3 SDP for SEP relaxation

By all of the above results, we arrive at the following SDP relaxation of the original problem:

Optimization Problem 4. Final outer approximation (SDP).

Given: dE, dS, ρ
0
E, ρ

0
S, {Ma}a, a

Find: ω̃a,N
dE

:= max
ΦAN

1

tr
[
(XT ⊗ 1AN

L+1
)ΦAN

1

]
Subject to: ΦAN

1
≥ 0, tr

[
ΦAN

1

]
= 1, P+

N ΦAN
1

= ΦAN
1
,

trO1

[
ΦAN

1

]
= 1I1

dES
⊗ trA1

[
ΦAN

1

]
ΦTα

AN
1

≥ 0,∀α ∈ A,

(48)

with A denoting the set of non-equivalent bipartitions (App. A.2.2). The solutions of this SDP provide
upper-bounds for the maxima ωa

dE
.
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B Implementation
While in principle numerically accessible, the SDP in Prob. 4 still contains too many variables to allow for
the computation of upper bounds of ω̃a,N

dE
, even for low-dimensional cases. This problem can be tackled by

exploiting the fact that all appearing objects can be expressed within the symmetric subspace, as well as the
(potential) sparsity of the problem.

In our case, a further simplification is possible by first noticing that both X and P+
N are real-valued. If

we additionally consider a real-valued basis for the partial trace, we conclude that, for any feasible ΦAN
1

, its
entry-wise complex conjugate Φ∗

AN
1

is also feasible, while providing the same value for the objective function.
Therefore, we may perform the optimization using a real-valued ΦAN

1
. Next, we explain how to exploit the

symmetry property.

B.1 Symmetric representation
The symmetry constraint can be satisfied automatically by expressing ΦAN

1
directly in terms of a basis for the

symmetric subspace. This allows for a great reduction in the number of variables and linear constraints in the
SDP, which is required for its efficient numerical optimization. In the following, we describe how to construct
this basis for the symmetric subspace, largely based on [34], and how to adapt the remaining constraints to act
directly in this symmetric representation, based on a generalization of results provided in [62] for the qubit case.

We begin by defining a canonical basis for the symmetric subspace. With the convention N = {1, 2, 3, . . .}
and N0 := N ∪ {0}, for d, n ∈ N, let

Tn
d :=

{
(t1, t2, . . . , td)

∣∣∣∣∣ ti ∈ N0,

d∑
i=1

ti = n

}
(49)

be the set of weak integer compositions for n into exactly d parts, possibly of zero size, which we refer to as types.
These types form a canonical labeling for the basis of the symmetric subspace. Now, defining [d] := {1, 2, . . . , d},
let u ∈ [d]n, i.e., u = (u1, . . . , un) with uℓ ∈ [d], and T (u) = t be the type of the vector u, where ti counts the
number of instances where uℓ = i holds. As a concrete example, if d = 6 and n = 8, we might have:

u = (1, 4, 1, 2, 3, 2, 2, 6) −→ T (u) = (2, 3, 1, 1, 0, 1). (50)

| In words, types count how many times a number 1, . . . , d occurs in u, and therefore are invariant under
permutations, i.e., T (u) = T (Pσu) for any permutation operator Pσ acting on entries of u. Given a Hilbert
space H with d = dim H, we may now define a basis for Symn(H) in terms of the types t ∈ Tn

d by constructing
the non-normalized and normalized orthogonal basis vectors for the symmetric subspace [34], respectively, as

|Sym(t)⟩ :=
∑

u;T (u)=t

|u1, u2, · · · , un⟩ , |sym(t)⟩ := (t)−1/2 |Sym(t)⟩ , (51)

where (t) = (
∑

i
ti)!

t1!·t2!···td! denotes the multinomial coefficient for the normalization, and, for convenience in notation,
we adopt the canonical basis {|u⟩}d

u=1 for each individual ui. Equation (51) clearly defines a symmetric state,
since each u occurs only once in the sum. Thus, for any permutation operator Vσ, we have Vσ |sym(t)⟩ =
|sym(t)⟩, and similarly for the non-normalized |Sym(t)⟩.

From Eq. (37), we know any symmetric separable state can be written as
∑

i pi |ϕi⟩⟨ϕi|⊗n. Therefore, by
expressing |ϕi⟩⊗n in terms of the symmetric basis in Eq. (51), we may write any symmetric operator by indexing
the degrees of freedom of ΦAN

1
by the types t, t′. In our current problem, with a local dimension d = (dEdS)2 =

d2
ES, the symmetric space has total dimension [34]

DS = dim SymN (H) =
((

d2
ES
N

))
=
(
N + d2

ES − 1
N

)
, (52)

with ((d
n)) the multiset notation, i.e., the number of ways of picking n elements out of d, with repetitions allowed,

which corresponds to the cardinality of Tn
d . This is a significant reduction from the original dim AN

1 = (dES)2N .
For simplicity in notation, we consider the dependence of DS on dES and N implicit in the following. To

concretely exploit this reduction of the number of variables, i.e., in order to write ΦAN
1

in terms of a smaller
matrix, we re-express the problem as follows. Let SN := CDS⊗DS , and ϕ ∈ SN . We specify elements ϕt,t′ , with
t, t′ ∈ TN

d2
ES

, by a canonical orthonormal basis {|t⟩SN
}t. We define an isometry between the two representations
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of the symmetric subspace, i.e., the normalized symmetric vectors in the full space AN
1 and the canonical basis

for SN , as follows:
VN =

∑
t

|t⟩SN
⟨sym(t)|AN

1
. (53)

Note that this isometry acts as a projector in AN
1 , i.e., VNVN

† = 1SN
but VN

†VN ̸= 1AN
1

. Therefore, if
P+

N ΦAN
1

= ΦAN
1

, we may write it concisely as:

ΦAN
1

= VN
†ϕVN =

∑
t,t′

ϕt,t′ |sym(t)⟩⟨sym(t′)|AN
1
,

ϕ = VN ΦAN
1
VN

†, and x = VN (XT ⊗ 1AN
L+1

)VN
†.

(54)

so that the objective function, which acts entirely within the symmetric subspace, can be written as

tr
[
(XT ⊗ 1AN

L+1
)ΦAN

1

]
= tr

[
(XT ⊗ 1AN

L+1
)VN

†ϕVN

]
= tr

[
VN (XT ⊗ 1AN

L+1
)VN

†ϕ
]

= tr [xϕ] . (55)

Positivity of ΦAN
1

can be guaranteed by requiring ϕ ≥ 0 directly, as ϕ and ΦAN
1

have the same non-zero
eigenvalues. With the chosen normalization of CU , we may also write tr [ϕ] = 1. In practice, it is sufficient
to numerically compute x directly by means of Eq. (54), as computing the projection of XT ⊗ 1AN

L+1
onto the

symmetric subspace analytically can be cumbersome, and this computation only needs to be performed once
before the numerical optimization.

To rewrite the partial trace constraints of the SDP directly in this symmetric basis, we must find a way to
express partial traces in terms of the symmetric representation. In the following, we generalize some results
known for qubits [62] to arbitrary local dimension. But first, recall that the constraint we wish to rewrite is
given by

trO1

[
ΦAN

1

]
= 1I1

dES
⊗ trA1

[
ΦAN

1

]
. (56)

Treating types as ordinary vectors, we may define addition between types with the same d, such that if r ∈ Tn
d

and s ∈ Tm
d , then r + s = t ∈ Tn+m

d . This corresponds to the fact that Sn+m ⊂ Sn ⊗ Sm [62]. Generalizing
upon this idea, we may split an n-partite symmetric state into m parts of sizes ki, with

∑m
i=1 ki = n, through

the decomposition
|Sym(t)⟩AN

1
=

∑
r1+···+rm=t

|Sym(r1)⟩B1
· · · |Sym(rm)⟩Bm

, (57)

where the sum is over all tuples (r1, . . . , rm) ∈ (Tk1
d ×· · ·×Tkm

d ) satisfying r1 + · · ·+rm = t. Here, Bℓ := Abℓ+kℓ

bℓ+1 ,
with bℓ =

∑ℓ−1
i=1 ki, corresponding to the subspace of the ℓ-th part of the decomposition. Importantly, this

decomposition is performed in the full space with non-normalized vectors. For completion, the normalized
version of the decomposition in Eq. (57) is given by

|sym(t)⟩AN
1

=
∑

r1+···+rm=t

(
(t)

(r1) · · · (rm)

)−1/2
|sym(r1)⟩B1

· · · |sym(rm)⟩Bm
. (58)

However, working under such normalization is cumbersome and inefficient due to the several coefficients involved.
Instead, we have chosen to normalize directly in terms of the original types t, t′, which makes normalization
straightforward. To adapt the partial trace constraint, we first write the state ΦAN

1
as in Eq. (22), and using

Eq. (57) split the basis into two parts of sizes (1, N − 1), obtaining

ΦAN
1

=
∑
t,t′

∑
r+s=t

∑
r′+s′=t′

ϕ̂t,t′ |Sym(r)⟩⟨Sym(r′)|A1
⊗ |Sym(s)⟩⟨Sym(s′)|AN

2
, (59)

where the proper normalization is now taken care of by defining ϕ̂t,t′ := ϕt,t′ ((t)(t′))−1/2. Since r and r′ are
types for a single party, we have that |Sym(r)⟩A1

are simply vectors in the canonical basis {|u⟩}d
u=1. Thus,

we will adopt the notation |u(r)⟩A1
= |Sym(r)⟩A1

in what follows. The tensor product form allows for the
simplified application of the partial traces in Eq. (56). By linearity of the partial trace, we can treat each term
of Eq. (59) separately, so that the terms on the left (YL) and right (YR) hand sides of Eq. (56) can be written
as

YL := trO1

[
|u(r)⟩⟨u(r′)|A1

⊗ |Sym(s)⟩⟨Sym(s′)|AN
2

]
= trO1

[
|u(r)⟩⟨u(r′)|A1

]
⊗ |Sym(s)⟩⟨Sym(s′)|AN

2

(60)
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YR := 1I1

dES
⊗ trA1

[
|u(r)⟩⟨u(r′)|A1

⊗ |Sym(s)⟩⟨Sym(s′)|AN
2

]
= tr

[
|u(r)⟩⟨u(r′)|A1

]
· 1I1

dES
⊗ |Sym(s)⟩⟨Sym(s′)|AN

2
.

(61)

A few simplifications are now evident. First, we observe that tr
[
|u(r)⟩⟨u(r′)|A1

]
= δr,r′ , where δr,r′ is the

Kronecker delta. Secondly, we may split the states |u(r)⟩A1
into the local input and output spaces

|u(r)⟩A1
= |i(r)⟩I1

|o(r)⟩O1
, (62)

so that we obtain

trO1

[
|u(r)⟩⟨u(r′)|A1

]
= trO1

[
|i(r)⟩⟨i(r′)|I1

⊗ |o(r)⟩⟨o(r′)|O1

]
= |i(r)⟩⟨i(r′)|I1

· tr
[
|o(r)⟩⟨o(r′)|O1

]
= |i(r)⟩⟨i(r′)|I1

· δo(r),o(r′).

(63)

Using the above results, and correcting for the missing normalizations, we can apply the isometry 1I1 ⊗VN−1,
so that Eqs. (60) and (61) become:

YL → ((s)(s′))1/2 · δo(r),o(r′) · |i(r)⟩⟨i(r′)|I1
⊗ |s⟩⟨s′|SN−1

YR → ((s)(s′))1/2 · δr,r′

dES
·

dES∑
i=1

|i⟩⟨i|I1
⊗ |s⟩⟨s′|SN−1

.
(64)

Here, we have written 1I1 =
∑dES

i=1 |i⟩⟨i|I1
as to make the I1⊗SN−1 decomposition explicit in both expressions. By

inserting Eq. (64) back into the sum of Eq. (59), we can appreciate the fact that Eq. (64) neatly separates each
term of the sum as square matrices of size dES×

((
d2
ES

N−1

))
, written in terms of |i⟩⟨i′|I1

⊗|s⟩⟨s′|SN−1
. The constraint

of Eq. (56) then tells us we must sum over all t, t′ on both sides, where we can then apply the equality constraint
element-wise by simply matching the resulting (i, s, i′, s′) entries. As the extra normalization ((s)(s′))1/2 of
Eq. (64) is always equal between these elements, it cancels out in their element-wise equality constraint. Thus,
it is sufficient to use the normalization of ϕ̂t,t′ .

During implementation in software, the summations in Eq. (59) can be efficiently performed by taking into
account the fact that valid decompositions of the form t = r + s are very restricted in number, and can
be efficiently enumerated, grouped, filtered and counted. By assigning a tuple (i, o, s) to each t, the tracing
over inputs and output spaces, and applications of the Kronecker deltas, can thus be efficiently computed.
Therefore, the linear constraints between variables ϕt,t′ can be constructed by bucketing terms ϕt,t′ by matching
|i⟩⟨i′|I1

⊗ |s⟩⟨s′|SN−1
, and normalization is simplified by attaching it to ϕt,t′ at the very end, i.e., using ϕ̂t,t′ .

A similar strategy as above may be employed to define partial transpositions through the symmetric rep-
resentation, as was done in [62] for the qubit case, in order to implement the PPT condition. However, for
dE = 2 in our case, this approach would render the matrices and the number of constraints too large for a viable
computation, once again, and therefore we did not pursue a generalization of this idea. The optimizations we
have performed for dE = 1 involving PPT constraints, as shown in Table 1, used ΦAN

1
directly following Eq. (22),

which was still tractable in this case.
While the above steps lead to a significantly smaller representation of the problem, it is not generally

a sufficient reduction in variables and constraints for the SDP to be numerically tractable. For concrete-
ness, in the smallest non-trivial case of dE = dS = 2, this gives for N = 2, . . . , 5 a symmetric space
of size DS = 136, 816, 3 876, 15 504, . . . , such that the SDP would be written in terms of (DS)2 =
18 496, 665 856, 15 023 376, 240 374 016, . . . variables. These examples illustrate how quickly our problem
can become numerically intractable, even with symmetry taken into account.

B.2 Sparse implementation of the SDP
In the following, we describe in detail the algorithm we have developed to obtain a sparse version of the SDP.
This is an essential step in rendering the problem numerically tractable. The algorithm works by heuristically
exploiting any existing sparsity of the original problem, in particular its objective function, in order to auto-
matically construct a sparse outer approximation. In our particular case, the sparse SDP resulting from our
algorithm was not only far simpler, it was in fact an exact sparse representation of the original problem. Below,
we also discuss the general conditions required for this to be the case for our algorithm. We highlight that it
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is potentially applicable to many other SDPs, providing at least an outer approximation, although there are no
guarantees that a sparse simplification of the original problem will be obtained.

To see how a problem’s sparsity can be exploited, consider a standard form SDP over Cn×n:

Given: F, (C(k))k, (bk)k

Find: max
X

⟨F,X⟩

Subject to: ⟨C(k), X⟩ = bk, k = 1, ...,m
X ≥ 0.

(65)

where ⟨A,B⟩ = tr
[
A†B

]
. We assume F is Hermitian so that Fij ̸= 0 implies Fji ̸= 0. Our goal is to exploit

any sparsity of F , which defines the objective function, to simplify this problem by obtaining a suitable sparse
version. This is achieved by finding a subset of variables Xij which is self-sufficient to solve the problem, and
this is done by keeping track of the indices (i, j) which can influence the objective function, directly or indirectly.

We begin by defining the initial base sparsity of the problem as

θ0
base := { (i, j) | Fij ̸= 0 } ∪ {(i, i)}n

i=1, (66)

i.e., the pairs of indices with non-zero entries in F , together with the indices in the diagonal. We include
the diagonal indices by default in order to ensure X ≥ 0 can be satisfied properly in the sparse version of the
problem, as will be explained later. As ⟨F,X⟩ =

∑
i,j F

∗
ijXij , the set θ0

base corresponds to the entries of X which
appear explicitly in the objective function, i.e., the optimization variables Xij affecting its value, together with
the diagonal entries. However, these are not the only variables relevant to the problem, as they also appear in
linear constraints involving other variables not present in the objective, which may affect the objective function
indirectly. Our next goal is to collect all of these indirect constraints to the objective function’s variables.
Defining the subset of constraints C(k) which relate to θ0

base as

K0 :=
⋃

(i,j)∈θ0
base

{
k
∣∣∣ C(k)

ij ̸= 0
}
, (67)

we can define the initial extended sparsity

θ0
ext :=

⋃
k∈K0

{
(i, j)

∣∣∣ C(k)
ij ̸= 0

}
. (68)

In words, this set includes the indices for any variables present in a linear constraint also involving the variables
directly affecting the objective function. The extended sparsity θ0

ext specifies an initial guess for the minimum
subset of variables {Xij | (i, j) ∈ θ0

ext} which should be considered in the SDP. The positivity constraint X ≥ 0
could then be specified, in principle, in terms of a block-diagonal matrix which contains the variables specified
by θ0

ext within its blocks. Positivity of this block-diagonal matrix, and in turn of X, could then be achieved by
enforcing positivity for each block separately.

As positivity constraints require significant computational resources, ideally these blocks should be made as
small as possible. In order to obtain the minimal block-diagonal form, we first use θ0

ext to construct an adjacency
matrix A0

[A0]ij :=
{

1, if (i, j) ∈ θ0
ext

0, else
, (69)

with which we construct an undirected graph G(A0) with n vertices, where each edge corresponds to a pair of
indices (i, j). We can use this graph to obtain a permutation which leads to the minimal block-diagonal form,
as each block corresponds to a disjoint subset of indices which are interrelated. This in turn, corresponds to the
notion of connected components of a graph, i.e., its disjoint subgraphs, as shown in Fig. 7. Let {gr}R

r=1 be the
R connected components of G(A0), so that G(A0) =

⋃R
r=1 gr, and let νr be the set of indices of the vertices in

gr. We may use the νr to construct a permutation π = (ν1 ν2 · · · νR), together with its associated permutation
matrix P , such that PA0PT is block-diagonal, with one block per connected component. E.g., from Fig. 7, we
could use the permutation π = [(5273)(4)(16)], where the ordering of the νr, or within each νr, are irrelevant.
This permutation leads to the block-diagonal adjacency matrix shown in figure Fig. 8, on the left.

Therefore, if we take θ0
ext to be the sparsity pattern for X, we can construct the sparse matrix

X̃ := PT

(
R⊕

r=1
B̃r

)
P, B̃r ≥ 0 ∀ r, (70)
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Figure 7: An adjacency matrix A and its corresponding graph G(A), with three connected components. Non-zero entries
are depicted with the colors (and markers) of the component they belong to. Self-edges, corresponding to (i, i) entries, are
omitted.

with sparse blocks of variables given by B̃r. However, imposing positivity for each block is not always possible
in this case, as the blocks themselves may have a sparse structure incompatible with positivity constraints.
Concretely, there might be no X̃ ≥ 0 matrix with sparsity structure given by X̃ij = 0 ∀ (i, j) /∈ θ0

ext.

Figure 8: (Left) Under the permutation π = [(5273)(4)(16)], the matrix A of Fig. 7 becomes block-diagonal, with blocks
possibly containing “gaps” indicating that not all pairs of vertices share an edge for that component. (Right) The blocks can
be completed by adding the missing entries (i.e., edges).

To address this in general, we instead assume all the blocks are dense. We can then define the initial completed
sparsity

θ0
comp :=

R⋃
r=1

{ (i, j) ∈ νr × νr } , (71)

by including all missing indices (i, j) within each block. In graph theoretical terms, we turn each connected
component into a complete graph, i.e., every pair of vertices shares an edge, and use the non-zero entries of the
resulting adjacency matrix to define θ0

comp; see Fig. 8, right panel. Denoting by Br the dense block matrices,
we can define the first sparse approximation of X as

X̃0 := PT

(
R⊕

r=1
Br

)
P, Br ≥ 0 ∀ r, (72)

such that X̃0 ≥ 0 can be safely imposed through block-positivity, with no risk of rendering the SDP unfeasible.
The next step is to analyze how this sparse structure affects the other constraints in the SDP. These procedures

expanded our initial base sparsity θ0
base by including a larger set of indices (and therefore, variables) of the

original dense X, resulting in θ0
comp. However, these additional variables may themselves appear in other linear

constraints, involving even further variables we have not yet taken into account. These inter-dependencies
between variables lead to a cascade of new constraints and variables that must be considered, i.e., the additional
indices included in θ0

comp specify variables which appear in constraints which were previously ignored, as they did
not involve variables specified by θ0

base. Therefore, we repeat the above procedures until a stable and completely
self-contained set of indices naturally emerges, i.e., we define a new base sparsity θ1

base := θ0
comp, and repeat the

process n + 1 times until θn+1
base = θn

base, at which point we call this stable set the effective sparsity θ∗ for the
problem. In our particular applications, the algorithm converges within 2 to 4 iterations.

Note that, by construction, any variable Xij for (i, j) ∈ θ∗ appears in the objective function directly, or if not,
affects the variables in the objective either directly (through linear constraints) or indirectly (through positivity
constraints and, in turn, through further constraints, and so on, recursively). The goal of the above algorithm is
to automatically discover a set of variables and constraints which is self-sufficient, given any objective function
and linear constraints for an SDP.
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While the algorithm generally provides an outer approximation, it can also lead to an exact sparse version
of the original problem if the unused linear constraints are homogeneous, which is the case for the problem we
consider. To understand why, we define the set of unused constraints as

K∗
⊥ :=

{
k
∣∣∣ C(k)

ij = 0, ∀ (i, j) ∈ θ∗
}
. (73)

If the unused constraints are all homogeneous, i.e., bk = 0 for all k ∈ K∗
⊥, then the original dense problem can

be solved entirely within θ∗, without affecting the objective function, as any sparse solution can be made into
a feasible solution to the dense problem. This can be understood as follows. Let X∗ be a solution to the sparse
problem, and X∗

⊥ a matrix in the complementary space θ∗
⊥, containing all indices not appearing in θ∗. Any

constraints discarded by the algorithm (i.e., the indices in K∗
⊥) will act entirely on θ∗

⊥. Then, as the objective
function contains only variables within θ∗, we may write a dense solution X = X∗ +X∗

⊥, such that

tr
[
F †X

]
= tr

[
F †X∗]+ tr

[
F †X∗

⊥
]

= tr
[
F †X∗] , (74)

with X∗, X∗
⊥ ≥ 0, and such that all constraints ⟨C(k), X⟩ = bk uncouple onto orthogonal spaces. Now, if the

linear constraints involving X∗
⊥ are all homogeneous (bk = 0 for all k ∈ K∗

⊥), we may set X∗
⊥ = 0 directly, while

simultaneously satisfying all constraints in the dense problem, and without affecting the objective function.
Therefore, any sparse solution X∗ is also a valid solution to the dense problem, with the same value for the
objective: the sparse problem is exact. Note that the diagonal indices needed to be included in θ0

base in order
to ensure X ≥ 0 is satisfied because of X∗ ≥ 0, as otherwise positivity of X could always be satisfied for any
X∗ by choosing arbitrarily large diagonal entries in X∗

⊥.

Despite the success of this algorithm in giving a sparse solution to our particular problem, in general, there is
no guarantee that θ∗ will be sparse. It may be the case that the algorithm eventually includes all entries of X, in
which case an alternative approach must be used, e.g., stopping the algorithm before a stable sparsity pattern
is reached (generally resulting in an outer approximation), using a more refined completion procedure (e.g.,
block-wise chordal completions [28, 74]), or exploiting additional structures of the original problem. Moreover,
the sparsity of the original problem, and thus the efficacy of the above algorithm, relies heavily on the choice of
basis in which the problem is represented. Fortunately, for our choice of parameters, the objective function and
the resulting θ∗ were sufficiently sparse for the SDP to be numerically tractable. Furthermore, as the partial
trace constraints trO1

[
VN

†ϕVN

]
= 1I1

dES
⊗ trA1

[
VN

†ϕVN

]
are all homogeneous, this approach lead to an exact

sparse representation of Eq. (15).
Finally, we note that other techniques exist to formulate sparse SDPs [28, 74], typically relying on the problem

having an inherent “aggregate sparsity” (the joint sparse structure of F and all C(k) taken together), or being
analytically amenable to a sparser representation by an appropriate change of variables. In our problem, no
such structure is a priori apparent: only the objective is inherently sparse, with the linear constraints jointly
involving all variables in a non-trivial manner. In such cases, our algorithm is then a suitable technique to
obtain an “effective” sparsity focused on the objective function’s inherent sparse structure, with the advantage
of being more agnostic to the problem’s overall structure.

C Maximum probability for closed systems
Here, we provide a proof for the analytical bounds for the dE = 1 case mentioned in Sec. 3. To this end, recall
that, in the sequential measurement protocol, the probability of a sequence of outcomes can be written as

p(a|dE) = p(a1, . . . , aL|dE) = tr
[
MaL

◦ U ◦ · · · ◦ Ma1◦ U(ρ0
E⊗ρ0

S)
]
, (75)

with the measure-and-prepare map Ma(ρES) = trS[ρES · (1E ⊗ Ea
S)] ⊗ ρ0

S. If dE = 1, the unitary corresponds
only to a local rotation on the system, and can be embedded in the state ρ0

S and measurements Ea
S . Thus, the

maximum depends only on the state and measurements. To compute it, we first note that since both ρ0
S and

(Ea
S)a are the same at each step and Ma is a measure and prepare operation, all outcomes are independent and

identically distributed. Writing qa = tr
[
ρ0
SE

a
S

]
as the probability of outcome a, with

∑
a qa = 1, and using na

as the number of occurrences of a symbol a in a, we can write the probability as:

p(a|dE = 1) =
L∏

ℓ=1
qaℓ

=
∏
a∈A

qna
a , with na ∈ N,

∑
a∈A

na = L, qa > 0, and
∑
a∈A

qa = 1. (76)
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For simplicity, we assume that a contains every symbol of A at least once, such that na, qa > 0. Otherwise,
we could simply assume a smaller A where this is the case. The maximum probability ωa

1 can be found with
standard techniques, such as Lagrange multipliers. Using the Lagrangian

L =
∏
a∈A

qna
a − α

(∑
a∈A

qa − 1
)
, (77)

we calculate the partial derivatives for each qa, and equate them to zero:

∂L
∂qa

=
(
na

qa

)
p− α = 0, ∀a. (78)

Since qa > 0 for all a, p > 0, we may rewrite this as:

na

qa
= α

p
= γ → qa = na

γ
, ∀a. (79)

Summing over a and applying the constraints
∑

a qa = 1 and
∑

a na = L, we obtain:∑
a

qa = 1
γ

∑
a

na → γ = L. (80)

Thus, the maximum value is
ωa

1 =
∏
a∈A

(na

L

)na

, for qa = na

L
, ∀a (81)

Note that this solution is unique if qa > 0 and p > 0. The only alternative solutions would require that qa = 0
for some a, and thus p = 0 < ωa

1 . Therefore, this is indeed the global maximum.
We emphasize that this direct calculation of ωa

1 crucially depends on the specific form of the instrument
we employ. If the respective outcomes do not correspond to a Ma of measure-and-prepare form, the joint
probabilities p(a|dE) do not factorize like in Eq. (75), and an alternative approach must be used.
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