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Abstract
Heat transport in crystalline semiconductors occurs by quantized lattice vi-
brations called phonons. The Boltzmann Transport Equation (BTE) models
both equilibrium and non-equilibrium heat conduction when wave e�ects are
negligible. Non-equilibrium heat conduction occurs either at low tempera-
tures or small length scales. The BTE does not treat the individual positions
and momenta of each particle in the medium, but rather deals with the prob-
ability density function of an ensemble of particles. Free �ight and scattering
are represented as operators in the BTE. The Monte-Carlo (MC) method is
widely used for the solution of the BTE.

A computationally e�cient MC algorithm for heat transport in semicon-
ductors has been developed in this work. The method accounts for longitu-
dinal and transversal polarizations of acoustic phonon propagation and non-
linear dispersion relations. Deterministic boundary scattering and stochastic
normal and Umklapp phonon scattering are treated. The algorithm yields
temperature and energy distributions, and the thermal conductivity of the
simulated structure. The following studies are carried out:

The time-of-�ight (TOF) of phonons in thin Si-�lms and nanowires is cal-
culated in dependence of geometric properties of the device such as lengths,
aspect ratios and surface roughness while neglecting phonon-phonon scat-
tering. An increase of the TOF with partially di�usive boundary scattering
is observed, indicating that di�usive surface scattering plays a much more
important role for dimensions below 100 nm.

The thermal conductivity of bulk Si including phonon-phonon scattering
is calculated and benchmarked against measurement results. At low temper-
atures size e�ects are observed because the phonon mean free path (MFP)
becomes larger than the length of the device. Using a temperature-dependent
MFP scaling factor good agreement with measurement data is achieved in a
temperature range between 15K and 400K.

Nanomeshes in form of nanoporous Si membranes are investigated. The
thermal conductivity at room temperature is calculated for two arrangements
of the holes: rectangular and hexagonal. For structures with 50% porosity
the thermal conductivity is found to be signi�cantly lower than in bulk (as
low as 9W/mK) which is in good agreement with recent experimental data.
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Kurzfassung
In kristallinen Halbleitern erfolgt der Wärmetransport durch quantisierte
Gitterschwingungen, genannt Phononen. Die Boltzmann-Transport-Gleich-
ung (BTE) beschreibt die Wärmeleitung sowohl im thermodynamischen
Gleichgewicht, als auch im Nicht-Gleichgewicht, wenn die Welleneigenschaften
der Phononen vernachlässigbar sind. Wärmeleitung im Nicht-Gleichgewicht
erfolgt bei niedrigen Temperaturen und in Strukturen mit kleinen Längen-
skalen. Anstatt der Positionen und Impulse der Teilchen, wird in der BTE die
Wahrscheinlichkeitsdichtefunktion von einem Ensemble beschrieben. Freier
Flug und Streuung werden in der BTE durch Operatoren repräsentiert. Monte-
Carlo (MC) ist eine häu�g verwendete Methode zur Lösung der BTE.

In dieser Arbeit wurde ein MC-Simulator zur Berechnung des Wärme-
transports in Halbleitern entwickelt. Die Methode beschreibt akustische
Phononen longitudinaler und transversaler Polarisation und deren nicht-
lineare Dispersionsrelationen. Deterministische Streuung an den Grenz�ächen
und stochastische Phonon-Phonon-Streuung sind implementiert. In den Sim-
ulationen werden Temperatur-, Energieverteilung und die thermische Leit-
fähigkeit der untersuchten Strukturen berechnet. Die folgenden Studien wur-
den durchgeführt.

In Abhängigkeit von geometrischen Eigenschaften der Struktur, wie Län-
gen, Seitenverhältnissen und Ober�ächenrauhigkeit wird die Flugzeit (TOF)
in dünnen Si-Filmen und Nanowires unter Vernachlässigung von Phononen-
Streuung berechnet. Die TOF steigt mit di�user Streuung an den Grenz-
�ächen, die eine wichtige Rolle bei Längen kleiner als 100 nm spielt.

Die thermische Leitfähigkeit eines Si-Einkristalls wird unter Berücksich-
tigung von Phononen-Streuung simuliert. Bei niedrigen Temperaturen wer-
den Gröÿene�ekte beobachtet, da die mittlere freie Weglänge (MFP) der
Phononen gröÿer als die Länge der simulierten Struktur ist. Mit einem tem-
peraturabhängigen MFP-Skalierungsfaktor wird gute Übereinstimm-
ung zu Messdaten im Bereich von 15K bis 400K erzielt.

Nanomeshes in Form nanoporöser Si-Membrane werden untersucht. Die
thermische Leitfähigkeit bei Raumtemperatur wird für rechteckige und hexa-
gonale Anordnungen der Löcher berechnet. Übereinstimmend mit experi-
mentellen Daten sinkt in Strukturen mit 50 % Porosität die thermische Leit-
fähigkeit (≈ 9W/mK) deutlich gegenüber dem Einkristall.
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Chapter 1

Introduction

Thermoelectric devices are solid state devices capable of converting heat
directly into electrical energy, making them ideal candidates for renewable
energy conversion. Thermoelectric devices are also used for refrigeration and
temperature measurement purposes.

Global energy consumption is expected to rise in the future. This and
environmental concerns about the use of fossil fuels require the reduction of
the fossil fuels' share of the energy supply and the expansion of renewable
energy sources. Thermoelectric energy falls into that category. Waste heat
is generated in many �elds, i.e. in industrial processes and in the exhausts
of cars. Using thermoelectric devices part of the waste heat can be turned
to electricity. The e�ciency of thermoelectric converters is determined by
the �gure of merit ZT = S2 σ

κ
T , where S is the Seebeck coe�cient, σ is the

electrical conductivity and κ is the thermal conductivity. The practicality of
thermoelectric generators is limited by the low �gure of merit, ZT ∼ 1. The
most commonly used thermoelectric material is bismuth telluride (Bi2Te3),
which has the disadvantages of high manufacturing costs, low availability
and toxicity. Nano-structured thermoelectric devices have recently gained
much attention as they demonstrate the availability of achieving conversion
e�ciencies much higher than those observed in bulk materials [10].

Nano-structured materials are of high interest due to their potential of
suppressing the thermal conductivity, which increases ZT . Si in comparison
to Bi2Te3 is abundant. Due to its high lattice thermal conductivity (κ =

142W/(mK)) bulk Si has not been considered for thermoelectric applications
to date. In Si nanowires, however, an almost 100-fold suppression in thermal
conductivity was recently achieved resulting in an enhancement of ZT from
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0.01 for bulk to 0.4−0.6 [15, 16]. However, the strong performance variation
with diameter and surface roughness and stability issues make large scale
implementations of nanowires a challenge.

In another approach, thin nanoporous membranes made of single-crys-
talline Si are investigated [14]. These have the advantages of easy manufac-
turing and good mechanical strength. Si nanomeshes exhibit reproducibly
low thermal conductivity, while maintaining su�cient electrical conductivity.
The ZT value of nanomeshed Si with a hexagonal pattern of holes and 35%
porosity was measured to be 0.4 at room temperature [14].

The modelling of nano-structured thermoelectric devices requires the treat-
ment of non-equilibrium heat transport. In this non-equilibrium regime it is
necessary to solve the Boltzmann transport equation (BTE) for phonons. In
this work the Monte-Carlo method is used. The Monte-Carlo method is a
standard tool for solving the BTE for electrons [6], phonons [4, 5], and other
particles. Due to their lack of charge, phonons are una�ected by �elds, and
therefore travel in straight lines until they either scatter (stochastic process)
or reach a device boundary (deterministic process). The computation of the
phonon trajectories is done using a raytracing algorithm combined with a
random process for the scattering events.

In this thesis the developed simulation method is described and results are
benchmarked against the thermal conductivity of bulk Si over a large range
of temperatures. Finally, the method is applied to compute the thermal
conductivity of nanomeshes.
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Chapter 2

Theory

2.1 Crystal vibrations - phonons

A crystal is a three-dimensional periodic array of identical building blocks
(primitive cells), forming a translationally invariant lattice. In a simple
model, the crystal lattice can be visualized as an array of point-masses rep-
resenting individual atoms or molecules and springs representing bonding
forces. The forces between each pair of atoms may be characterized by a
potential energy function V (r) that depends on the distance of separation of
the atoms. The bonding forces are necessary to keep the masses at their equi-
librium position. Due to the bonding forces between atoms, the displacement
of one or more atoms from their equilibrium positions will give rise to a set
of vibration waves propagating through the lattice. The energy of a lattice
vibration is quantized and each quantum is called a phonon. A phonon is a
travelling wave with angular frequency ω, wave vector k and group velocity
vg. The energy of a phonon is given by ~ω, where ~ is the reduced Planck's
constant.

In a crystal with (at least) two atoms per primitive cell, the dispersion
relation ω(k) exhibits two branches, known as the optical and the acoustic
branches. As shown in Fig. 2.1, for optical modes the two atoms in the unit
cell have opposite phases, while for acoustic modes they are in phase. For
acoustic phonons the dispersion relation is almost linear at low values of k,
whereas for optical phonons ω(0) 6= 0. In three dimensions, oscillations are
not restricted to the direction of propagation (longitudinal), but also occur
in the perpendicular plane (transversal). Due to the periodicity of a crystal
the range of physically relevant values for the wave vector k is given by the
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�rst Brillouin zone, which is the primitive unit cell in the reciprocal lattice.
The �rst Brillouin zone is speci�ed by −π

a
≤ k ≤ π

a
, where a is the lattice

parameter. In Fig. 2.2 we plot a quadratic �t of the dispersion relation of
Si along the [100] direction, the one employed in our model as Ref.[5]. The
full dispersion relation is shown in Fig. 2.3. Here, the dispersion has been
calculated using the modi�ed valence force �eld (MVFF) method [18] and
the results are in excellent agreement with experimental data [19]. Because
of their slow group velocity, optical phonons do not contribute signi�cantly
to thermal transport [4]. Therefore, their in�uence is neglected onwards.
We account for the longitudinal acoustic (LA) and the two-fold degenerate
transversal acoustic (TA) branch in Si, which is the material of interest in
this work.

longitudinal

transversal
ac
ou
st
ic

op
ti
ca
l

Figure 2.1: Particle displacement of transverse optical and acoustical
phonons at the same wavelength [8].

In thermal equilibrium, the temperature T of a medium is well de�ned
and the probability of �nding a phonon with angular frequency ω = 2πν is
given by the Bose-Einstein distribution [1]:

〈n〉 =
1

exp( ~ω
kBT

)− 1
, (2.1)

where kB is the Boltzmann constant and 〈n〉 is the occupation number.
Assuming the restoring force is proportional to the displacement, the

energy of a phonon is given by the eigenvalues of the harmonic oscillators for
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Figure 2.2: Quadratic �t [2] for the dispersion relation of longitudinal acoustic
(LA), transversal acoustic (TA), longitudinal optical (LO) and transversal
optical (TO) phonons along the [100] direction in Si for 0 ≤ k ≤ 2π
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Figure 2.3: Dispersion relation calculated in Ref. [18] using the modi�ed
valence force �eld (MVFF) method. 0 denotes the Γ point which is the
Brillouin zone center. Starting from 0 towards X shows the [100] direction.
Starting from the next 0 towards U/K and then toX is the dispersion relation
for the [110] direction. And �nally from the right-hand 0 to L indicates the
[111] direction.

the mode ω,

En =

(
n+

1

2

)
~ω. (2.2)

Therefore, the total thermal energy is given by

E =
∑
p

∑
k

(
〈n〉+

1

2

)
~ω. (2.3)

In Eq. 2.3 the sum is performed over all relevant phonon polarizations
p (longitudinal acoustic and transverse acoustic), and wave vectors, k. The
wave vector space over which the summation is performed is the �rst Brillouin
zone (BZ).
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Assuming that for large crystals the wave vector space is very dense, the
summation can be replaced by an integration,

E =
V

(2π)3

∑
p

∫
BZ

(
〈n〉+

1

2

)
~ωdk. (2.4)

Supposing that the number of vibrational states in the frequency range
ω to ω + dω is given by the density of states D(ω)dω, then the energy can
be calculated as:

E = V
∑
p

∞∫
0

(
〈n〉+

1

2

)
~ωD(ω)dω. (2.5)

Assuming isotropy, the density of states D(ω) is expressed as:

D(ω) =
k2

2π2

dk

dω
, (2.6)

where k = k(ω, p) is the dispersion relation.
The group velocity vg of a phonon is given by the slope of the dispersion

relation,

vg =
dω

dk
. (2.7)

In Fig. 2.4 we plot the group velocity vg of the acoustic branches in Si.
The constant 1/2 term of Eq. 2.2 is called zero-point energy, does not

contribute to energy transfer and is therefore neglected. Using the de�nition
of the group velocity and accounting for the degeneracy of the dispersion
branches gp, the total vibrational energy is calculated as [4]:

E = V
∑
p

∞∫
0

(
~ω

exp( ~ω
kBT

)− 1

)
gp

k2

2π2vg
dω (2.8)

Phonon scattering As phonons travel through the material they can scat-
ter through several mechanisms. These mechanisms include scattering due
to anharmonic terms of the potential, scattering due to lattice imperfections,
phonon-electron and boundary scattering. Anharmonic interactions of the
third order involve three-phonons, e.g. two phonons are annihilated to cre-
ate one phonon or vice versa. There are two kinds of anharmonic-phonon
processes: normal processes (N) which preserve momentum, and Umklapp
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processes (U) which satisfy momentum conservation by means of a reciprocal
lattice vector G as:

k1 + k2 ⇔ k3 normal (2.9)

k1 + k2 ⇔ k3 + G Umklapp. (2.10)

For both normal and Umklapp processes the energy is conserved,

ω1 + ω2 = ω3 annihilate phonon (2.11)

ω1 = ω2 + ω3 create phonon. (2.12)

Figure 2.5: (a) Normal and (b) Umklapp phonon collisions in a two-
dimensional square lattice. The grey square represents the �rst Brillouin
zone in k-space. G = 2π/a where a is the lattice constant of the crystal. In
the Umklapp process the direction of the x-component of the phonon �ux is
reversed.

As shown in Fig. 2.5, the Umklapp process directly poses resistance to en-
ergy transport, as the direction of the heat �ux is reversed. The normal pro-
cess only indirectly a�ects the transport process by modifying the frequency
distribution of phonons, but not thermal conductivity directly. At high tem-
peratures T > θDebye all phonon modes are excited, because kBT > ~ωmax

and Umklapp scattering becomes the dominant process.
Each scattering mechanism can be characterized by relaxation time τ

or a relaxation rate 1/τ . All scattering processes contribute to a combined
relaxation time τC using Matthiessen's rule

1

τC
=

1

τU
+

1

τN
+

(
1

τimp

+
1

τph−e
+

1

τB

)
. (2.13)
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In this work phonon-phonon and phonon-boundary-scattering processes are
included.

2.2 Thermoelectricity

Thermoelectric phenomena are known more speci�cally as the Seebeck ef-
fect (converting a temperature di�erence to current), Peltier e�ect (convert-
ing current to a temperature di�erence) and Thomson e�ect (describing the
heating or cooling of a current-carrying conductor with a temperature gra-
dient). While all conducting materials have a nonzero thermoelectric e�ect,
in most the e�ect is too small. Commonly used thermoelectric materials are
bismuth telluride (Bi2Te3) or lead telluride (PbTe). The application of these
materials is limited due to the material's limited availability, toxicity and
high cost.

2.2.1 Seebeck e�ect

Figure 2.6: Circuit for measuring the Seebeck e�ect. A and B are two dis-
similar conductors. For example, A and B can be two di�erent metals or
semiconductors with unequal doping. The junctions are kept at di�erent
temperatures T1 and T2.

We consider a circuit formed from two dissimilar conductors A and B
which are connected electrically via two junctions. If the junctions are kept
at di�erent temperatures T1 and T2 a voltage

V =

∫ T2

T1

(SB(T )− SA(T )) dT. (2.14)

can be measured, where SA and SB are material-dependent Seebeck coe�-
cients. Typical values for the Seebeck coe�cients in metals are
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10−5V/Kto10−6V/K and in semiconductors 10−3V/K [11]. The Seebeck
coe�cient is a function of temperature and doping.

The Seebeck e�ect's underlying physical phenomenon is charge-carrier
di�usion. Due to the temperature di�erence, the number of excited charge-
carriers is larger at the high-temperature end. Therefore, hot carriers di�use
from the hot end to the cold end and vice versa. If the device were left to
reach thermodynamic equilibrium, this would result in heat being distributed
evenly throughout the device. A constant di�usion �ux is reached, when the
temperature di�erence at the device ends is kept constant. If the rate of
di�usion of hot and cold carriers in opposite directions is equal, there is
no net change in charge. Scattering with phonons or impurities limits the
di�usion �ux. If the hot and cold carriers di�use at di�erent rates, they build
up charge at one end of the material, and thus a di�erence in the electrostatic
potential.

2.2.2 Thermoelectric �gure of merit

Thermoelectric e�ciency is quanti�ed by the dimensionless �gure of merit
ZT given by:

ZT = S2σ

κ
T (2.15)

where S is the Seebeck coe�cient or thermopower, σ is the electrical con-
ductivity, κ is the thermal conductivity and T is the temperature [10]. The
term S2σ is referred to as the power factor.

Typically materials with ZT & 1 are considered as promising for thermo-
electric applications. Bi2Te3 has the �gure of merit 1 at room temperature.
Because S, σ and κ are adversely interrelated, there is no straight forward
way to optimize ZT .

2.2.3 Engineering of the thermal conductivity

To optimize the �gure of merit, there are several design principles. One of
them is the concept of a �phonon-glass-electron-crystal� [10], a material that
conducts heat poorly as in a glass, but conducts charge as a in crystal. The
total thermal conductivity is given by

κ = κe + κl (2.16)
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where κe and κl are the electronic and lattice contributions to κ. In Si and
most common semiconductors κl � κe. Therefore, it is only necessary to
minimize κl, which can be achieved in di�erent ways:

Reduced dimensions: If in the bulk material the mean free path λp of
phonons is larger than that of charge carriers λe, then it is useful to
introduce a reduced dimension l with λp < l < λe. Thus phonons
experience severe boundary scattering, while charge transport remains
almost unaltered. This approach has been successfully demonstrated
with Si nanowires.

Nano-crystalline approaches: Nano-crystalline approaches work in a simi-
lar fashion. If the material's grain size is smaller than the mean free
path of phonons λp, then phonons are strongly scattered on the grain
boundaries.

Superlattices: Signi�cant enhancements of ZT were reported in Bi2Te3/
Bi2Se3 superlattices and PbTe/PbTeSe quantum dot superlattices. The
superlattice leads to partially di�use interface scattering and modi�ca-
tion of the phonon modes and thus a potentially reduced group velocity.
The fabrication of superlattices involves thin �lm growth methods and
is therefore too expensive for large scale applications.

Phonon re�ectivity: By using layers of mismatched materials, the thermal
conductivity perpendicular to interfaces can be reduced. Phonons ex-
perience di�use interface scattering which increases phonon re�ectivity.
Mismatch between bulk dispersion relations of the adjacent materials
localizes phonons.

2.2.4 Thermoelectric devices

Semiconducting thermoelectric devices usually consist of pairs of p- and n-
type elements as shown in Fig. 2.7. When a heat source is provided, the
thermoelectric device functions as a power generator based on the Seebeck
e�ect. The heat source drives electrons in the n-type element toward the
cooler region, creating a current through the circuit. Holes in the p-type
element then �ow in the direction of the current. The same devices can act
as coolers through the Peltier e�ect.
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Figure 2.7: Schematic setup of thermoelectric generators (top) and refriger-
ators (bottom).

2.3 Boltzmann transport equation

The Boltzmann transport equation (BTE) is used to describe the transport
of phonons in a crystal lattice when wave e�ects are negligible. Generally,
the BTE is used to model the statistical distribution of particles, which are
either in thermal equilibrium or non-equilibrium. In case of phonons, non-
equilibrium heat conduction occurs either when the length scales of the device
are small or at low temperatures. The equation does not treat the individual
positions and momenta of each particle in the medium, but rather considers
the probability density function f(t, r,k) of an ensemble of particles. The dis-
tribution function is a function of the independent variables time t, position
r, and momentum k. Using the distribution function f(t, r,k), the number
of particles at time t in the volume d3r around r within a d3k volume around
k is given by:

dN = f(t, r,k) d3r d3k. (2.17)

Phonons are una�ected by external �elds, so the BTE assumes the following
form [9]

∂f

∂t
+ vg · ∇f =

[
∂f

∂t

]
scatt

. (2.18)

The left-hand side of Eq. 2.18 represents ballistic movement and causes de-
viations from equilibrium, while the scattering term on the right-hand side
restores equilibrium due to collisions of phonons with phonons or boundaries.
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The collision term is given by[
∂f

∂t

]
scatt

=
∑
k′

[Φ(k,k′)f(k′)− Φ(k′,k)f(k)], (2.19)

with Φ(k,k′) being the scattering rate from state k′ to k. Scattering of
phonons due to the anharmonic terms of the potential (three-phonon pro-
cesses) are di�cult to treat, because the scattering rates are usually non-
linear functions of k. This renders the deterministic solution of the BTE
extremely di�cult. However we know that three-phonon processes tend to
restore thermal equilibrium. Therefore, we use the relaxation time approx-
imation for the three-phonon scattering processes in which the distribution
function f(t, r,k) relaxes to an equilibrium function f 0(r,k) at the rate 1/τ :[

∂f

∂t

]
scatt

= −f − f
0

τ
. (2.20)

This implies that in a non-equilibrium system, the inelastic scattering term
restores equilibrium following an exponential decay f − f0 ∝ exp(−t/τ).
With this approximation the BTE becomes linear.

2.4 Monte Carlo method

The Monte Carlo (MC) technique has been widely used to solve transport
equations for electrons [6] and phonons [4], [5]. In an arbitrary geometry the
BTE is di�cult to solve in a deterministic approach, because the number of
independent variables is very large. The large number of variables puts high
requirements on memory and CPU capacities. The main advantage of the
MC method is that these requirements are removed. Also it is possible to
consider complex geometries.

In a Monte Carlo technique, the initial position r and momentum k of a
particle are randomly drawn. The samples repeatedly �y and scatter after
the time τscatter. Phonons move unrestrained as there is no external �eld. The
statistics are collected at various points in time and space, and processed to
extract the mean value of macroscopic variables such as the temperature �eld
T (r), velocity 〈v〉, energy 〈E〉, or thermal conductivity κ.
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2.4.1 Simulation domain and boundary conditions

It is necessary to de�ne the geometry of the device, which is done using the
GTS-Framework [17]. Among other things, the GTS-Framework contains
tools for computer aided design (CAD) structure generation, meshing, circuit
and device simulation and visualization of results.

Within the GTS-Framework parameters such as the device geometry and
material(s) are de�ned and a simulation grid is created using a mesher. The
mesher dissects the volume into small tetrahedra. If the tetrahedra do not
conform to quality criteria, additional points are added to the mesh. The
mesh may be of ortho-product or tetrahedral type. Before the simulation
starts, an ortho-product mesh is decomposed to a tetrahedron mesh. Using
tetrahedra instead of arbitrary polyhedra simpli�es building the topology
of the device. A tetrahedron has four faces, so the number of neighbours
is always four. Additionally, using tetrahedra as basic cell type allows the
simulation of geometric devices of arbitrary shape and complexity.

The device consists of a simulation domain and at least two thermal
contacts, i.e. a heat source and a heat sink (see Fig. 2.8). Throughout the
simulation the temperature of the thermal contacts is assumed to be constant:
Tsource and Tsink, respectively. Phonons that reach the outward boundaries
of the thermal contacts are thermalized. Consequently, the contacts act as
black bodies.

Figure 2.8: Schematic drawing of the simulation domain, the contacts and
the boundary conditions in 2D.

The simulation starts by reading in the device geometry: A loop over
all device segments and all grid elements is used to build spatial cells. For
each cell the following geometrical information is stored: (i) coordinates of
the points, which span the cell and its volume, and (ii) the normal vectors of
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the cells' faces and identi�ers of the neighbouring cells in order to treat the
transit of a phonon from one cell to another (see Fig. 2.11).

Figure 2.9: Schematic drawing of cells and their topology in 2D.

2.4.2 Simulation scheme

In principle there are two kinds of particle MC schemes: single-particle or
multi-particle [4], [5]. In the �rst case the statistics are accumulated by
repetition of the simulation sequence with a single particle, whereas for multi-
particle simulations the statistics are accumulated by using a large number
of particles at the same time. The main disadvantage of the multi-particle
scheme is that it requires a lot of memory, which is why we use the single-
particle approach. The simulations follow this scheme (see Fig.2.10):

• A phonon is initialized at a random position in the device.

• The phonon alternates between free �ight and scattering events.

• In case of three-phonon scattering the energy of the phonon is reset,
which violates energy conservation. Therefore, the energy of the cell is
modi�ed by ∆Ephonon. The temperature of the cell is recalculated by
inversion of Eq. 2.23

• If the phonon reaches an outward boundary of the thermal contacts it
is absorbed and the simulation continues with a newly created phonon.
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• This sequence is repeated until the cell temperature di�erence between
iterations is below the error tolerance of ε or the maximum number of
iterations is reached.

• After reaching steady-state the thermal conductivity is calculated by
determining the heat �ux Φ. The heat �ux is computed by injecting
phonons from the source and the sink. Φ is then given by the net energy
over the average time-of-�ight (TOF) through the device.

Figure 2.10: Simulation scheme for one phonon.

2.4.3 Initialization

Cell

The temperature of the thermal contacts is initialized to Tsource and Tsink.
Throughout the simulation the contact temperatures are assumed to be con-
stant. The initial cell temperature within the actual simulation domain is
also set to Tsink. The number of phonons per unit volume which is given by

N =
∑
p

∑
i

1

exp( ~ωi

kBT
)− 1

D(ωi, p)∆ωi, (2.21)

can be a very large, e.g. N(T = 300K) ∼ 6× 1028/m3. Therefore, the mean
cell energy is many orders of magnitude larger than a single phonon's energy
and 1030 iterations are needed to reach steady-state. To reduce the number
of simulated phonons to N∗, we introduce a scaling factor W [4],

W =
N∗

N
. (2.22)
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Each stochastic sample used during the simulation actually represents an
ensemble of W phonons.

The initial energy of a cell is calculated using Eq. 2.8 where the integral
over frequency is replaced by a discrete sum [4],

E =
V

W

∑
p

∑
i

(
~ωi

exp( ~ωi

kBT
)− 1

)
gp

k2

2π2vg,i
∆ωi. (2.23)

Phonon

Cell. As there is only one phonon simulated at time, we need to select a
cell in which the phonon is to be initialized. The number of phonons per cell
increases with temperature, therefore our cell-selection scheme has to favour
hot cells. We calculate the partial probability for cell i

pi =

i∑
k=1

TkVk

Ncells∑
k=1

TkVk

, (2.24)

where Ti is the thermodynamic temperature and Vi is the volume of cell i.
Ncells is the total number of cells. Then a random number R between zero
and unity is drawn. If pi−1 < R < pi, then the phonon belongs to the i-th
cell.

Position. The position vector r of any point within a tetrahedron (= cell)
is calculated using

r = ra + bR1 + cR2 + dR3 (2.25)

where ra is the position vector the tetrahedron's vertex A and b, c, d are
the edge-vectors to all other vertices. R1, R2 and R3 are random numbers
such that

∑
iRi < 1.

Frequency. We use the following �t for the bulk dispersion relation under
the isotropic Brillouin zone approximation [2]

ω(k) = vsk + ck2, (2.26)

where k is the norm of the wave vector k = |k|. For each of the di�erent
phonon branches, we use the following parameters:
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branch vs [m/s] c [m2/s]

LA 9.01× 103 −2× 10−7

TA 5.23× 103 −2.26× 10−7

Table 2.1: Fit parameters Si by Ref. [2]

These �ts are a good approximation for the phonon dispersions (see
Fig. 2.2) and are easily inverted to retrieve k.

We calculate the maximum frequency ωLA
max using Eq. 2.26 and kmax = 2π

a

with lattice parameter a = 0.543 071 nm. The frequency space between zero
and ωLA

max is discretized into Nω spectral intervals of width ∆ω = ωLA
max

Nω
.

The number of phonons in the i-th spectral interval is given by

Ni = 〈n(ωi,LA)〉gLAD(ωi,LA)∆ωi + 〈n(ωi,TA)〉gTAD(ωi,TA)∆ωi (2.27)

where the equilibrium distribution is evaluated at the central frequency of
the spectral interval i. In order to determine the frequency of a phonon, the
normalized cumulative number density function is calculated [4]

Fi =

i∑
k=1

Nk

Nω∑
k=1

Nk

. (2.28)

Using Eq. 2.27 Nk is computed for the temperature of the cell in which
the phonon is to be initialized. A random number R is then drawn. If
Fi−1 < R < Fi, then the phonon belongs to the i-th spectral interval. After
drawing the spectral interval, the phonon frequency is then given by

ω = ωi + 2(R− 1)
∆ω

2
. (2.29)

Here we approximate ω(k) with a piecewise linear function.

Polarization. Any phonon has to be assigned to either a LA branch or a
TA branch. The probability of a phonon being LA polarized is expressed as

Pi(LA) =
Ni(LA)

Ni(LA) +Ni(TA)
, (2.30)
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where i is the spectral interval in which the phonon belongs to. Next, a
random number between zero and unity is drawn. If the random number is
less than Pi(LA) the phonon belongs to the LA branch. Otherwise it belongs
to a TA branch.

Wave Vector. Once the phonon frequency has been sampled, the norm of
the wave vector k can be determined directly by inversion of the dispersion
relationship. The direction of the wave vector is given by

k̂ =

 sin θ cosψ

sin θ sinψ

cos θ

 , (2.31)

where ψ = 2πR2, cos θ = 2R1 − 1, and R1 and R2 are random numbers
between zero and unity. The wave vector is then given by

k = kk̂. (2.32)

Group Velocity. The group velocity is de�ned as the slope of the disper-
sion relation. Using the quadratic �t for the dispersion relation (Eq. 2.26)
the group velocity then is

vg = vs + 2ck (2.33)

and is co-directional with the wave vector k.

Figure 2.11: Data structure of cells and phonons.
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2.4.4 Free �ight

The events occurring within a time step ∆t are split into two sequential
phases, free �ight and scattering. In the single-particle simulation we employ
the time step is not required, but useful for numeric stability. However it
increases the computation time. During the free �ight phase, phonons move
linearly in time because there is no accelerating �eld. The position of a
phonon is given by the �rst-order time integration:

r(t+ ∆t) = r(t) + vg∆t. (2.34)

Following the free �ight phase, if the phonon moves to a new cell, the
phonon energy increases the cell energy by ∆Ecell = ~ω and the local tem-
perature of the cell. We compute the temperature T̃ of the cell by a numerical
inversion (Newton-Raphson method) of Eq. 2.23.

During the free �ight a phonon might change cell. The time till the
phonon crosses the faces of the cell is given by

ti =
di − (n̂i · r)

(vg · n̂i)
(2.35)

with n̂i being the normal vector of face i, and di is the position vector of a
point on this face. The face which is crossed next is the one with the smallest
ti, τcell = min (ti).

If τcell < ∆t (see Fig. 2.12) the position of the phonon is calculated using

r(t+ ∆t) = r(t) + vgτcell. (2.36)

Afterwards, either boundary scattering occurs, or the phonon moves to an-
other cell. Moving to another cell is a form of self-scattering, which is not
scattering due to a physical process but due to the cellular nature of the
simulation volume.

2.4.5 Scattering

In this section we describe boundary and three-phonon scattering processes.

Boundary scattering. Boundary scattering does not change the phonon
frequency, but solely its direction, and is signi�cant at low temperatures
where the phonon mean free path is large. Boundary scattering can be
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Figure 2.12: If the timestep ∆t is smaller than the time till the phonon crosses
the next face of the cell τcell the phonon remains in this cell. Otherwise, self-
scattering or boundary scattering occurs.

treated phenomenologically by introducing a relaxation rate 1
τB
∝ 1

D
where

D is the dimension of the system. In our simulations boundary scattering is
an actual interaction of a phonon with the geometric boundary of the device.
A phonon can be specularly re�ected using the relation

vr = vi − 2(vi · n̂)n̂ (2.37)

where vi is the incident, vr is the re�ected phonon velocity, and n̂ is the
normal vector on the boundary face.

Only perfectly smooth surfaces re�ect phonons specularly. In order to
implement surface roughness we introduce a specularity parameter p,

p =

{
0 completely di�use
1 specular

(2.38)

For every surface scattering event a random number R is drawn. If R > p

the phonon is scattered di�usely, which involves resetting its direction vector
as:

v̂r = t̂1 sin θ cosψ + t̂2 sin θ sinψ − n̂| cos θ|. (2.39)

Here θ and ψ are random angles which are calculated as described in Sec. 2.4.3,
t̂1 and t̂2 are the tangents, and n̂ is the normal vector on the face. For in-
termediate values of the specularity parameter, e.g. p = 0.1 the phonons are
scattered di�usely in 90% of the boundary scattering events. For comparison
between specular and di�usive scattering see Fig. 2.13

The probability whether a phonon scatters specularly also depends on
the phonon's wave vector. The specularity probability is given by [3]

p(k) = exp(−4k2n2
r ), (2.40)
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Figure 2.13: Phonon re�ection at the boundary.

with nr being the RMS value of the boundary roughness. It is possible to
simulate devices with either a constant specularity parameter p, or a given
roughness nr.

Three-phonon scattering. During any three-phonon process, energy and
momentum conservation must both be satis�ed simultaneously. In princi-
ple, in a multi-particle simulation, it is possible to incorporate three-phonon
scattering by treating each phonon as a potential candidate for scattering
and allowing it to interact with every other phonon in its vicinity. Energy
and momentum conservation would then decide, if an interaction between
phonons is possible. In this work only one phonon is simulated at a time.
Even for multi-particle simulations such computations would be too expen-
sive for practical problems. The problem is addressed using perturbation
theory. The equilibrium distribution is perturbed and all third-order inter-
actions are considered at a given temperature, allowing the system to come
back to equilibrium. The �nal outcome of such analysis are expressions for
phonon lifetimes as functions of frequency ω and temperature T for both
polarization branches [7]:

τ−1LA = BLA
NUω

2T 3 (2.41)

τ−1TA,N = BTA
N ωT 4 (2.42)

τ−1TA,U =

0 ω < ω1/2

BTA
U ω2 sinh

(
~ω
kBT

)
ω ≥ ω1/2

(2.43)

(2.44)

ω1/2 is the frequency corresponding to k = kmax/2. This frequency limit ω1/2

is a choice which represents the fact that low-frequency phonons seldom occur
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in processes in which the sum of the wave vectors is larger than the reciprocal
lattice vector G, which is the condition for U processes (see Fig. 2.5). We
are only able to trace one phonon at a time. If the traced phonon has a
large wave vector (i.e. k > kmax/2) then is is likely to undergo an Umklapp
process with a thermal phonon (i.e. k < kmax/2). The time-scale, τNU , is an
e�ective time-scale which accounts for both normal (N) and Umklapp (U)
processes using the Matthiessen rule

τ−1NU = τ−1N + τ−1U . (2.45)

Normal scattering does not contribute to thermal resistance. Here the energy
of the phonon is modi�ed which can a�ect wave-vector dependent surface
scattering of Eq. 2.40.

constant value
BLA

NU 2× 10−24

BTA
N 9.3× 10−13

BTA
U 5.5× 10−18

ω1/2 4.7× 1013

Table 2.2: Parameters for τNU in Si [7]

The three-phonon scattering processes are implemented in the following
manner. First, a phonon's e�ective lifetime τNU is calculated using Eq. 2.44
and the local temperature of the cell T̃ . The scattering probability is given
by

PNU = 1− exp(−∆t/τNU). (2.46)

Next, a random number is drawn and compared with PNU. If the random
number is less than PNU, the phonon is scattered. Scattering is implemented
by resampling the phonon's frequency, wave vector, and group velocity. The
resetting of the frequency is done in a similar fashion as in the initialization
scheme. However, we need to make sure that energy is conserved and phonons
are created at the same rate as they are destroyed (Kirchho� law). Therefore,
we use a slightly modi�ed distribution function [5],

Fi,scatt =

i∑
j=1

Nj(T̃ )PNU(ωj)

Nω∑
j=1

Nj(T̃ )PNU(ωj)

. (2.47)
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Taking into account the scattering probability in the distribution function
Fscatt ensures that a phonon is resampled with not too weak energy as it can
be seen in Fig. 2.14. Here we compare the distribution function with (Fscatt)
and without scattering probability modi�cation (F as de�ned in Eq. 2.28) as
a function of the frequency for temperatures 300K and 500K. For T ≤ 300K
and ω < 3× 1013 s−1, Fscatt is lower than F . Therefore, by using the scat-
tering probability modi�cation phonons are resampled with larger energies
than without this modi�cation. For 500K, Fscatt and F are almost equal,
which re�ects the fact that for large temperatures the scattering probability
PNU ∼ 1 for all frequency intervals.

Since we are only able to trace one phonon at a time, momentum conser-
vation can not be rigorously treated. To correct this, we use the following
procedure to take into account the fact that Umklapp processes contribute to
the thermal resistance, whereas the normal processes do not. When phonons
scatter through U processes, their directions after scattering are randomly
chosen as is done in the initialization procedure. For N processes, phonons
do not change their propagation direction but only their frequency [7], [5].

The relaxation time approximation [7] states that there is a frequency
limit ω1/2 for TA-phonons. Umklapp processes only occur above this fre-
quency. On the other hand, normal processes are only considered for ω < ω1/2

and the propagation direction must be resampled. For the longitudinal
branch there is no frequency limit and according to Ref. [7], only N processes
exist. Therefore, momentum has to be conserved for each scattering event
involving a LA phonon. Ref. [5] states that this leads to thermal conduc-
tivity values higher than the measured ones for temperatures between 100K
and 250K. More realistic results were obtained by resetting the direction of
LA-phonons for half the collisions, which is also done in this work.

Resetting the state of the phonon essentially thermalizes the phonon and
helps restore equilibrium, which is the most important function of three-
phonon scattering processes in the simulation. When the frequency of a
phonon is changed, energy conservation is violated. To correct this, the
energy of the cell is modi�ed,

Ecell → Ecell + ~∆ω. (2.48)

The new temperature of the cell is calculated by inversion of Eq. 2.23 using
the Newton-Raphson method.
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Figure 2.14: Normalized number density function for Si at T = 300K (top)
and T = 500K (bottom), with and without PNU correction.
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2.4.6 Thermal conductivity

The phonon free �ight and scattering processes are iterated until steady-state
is reached. The number of iterations depends on the size of the device and the
time step ∆t. The simulation outputs at this step are the position-dependent
temperature T (r) and cell energy E(r).

Afterwards the thermal conductivity is calculated using the heat �ux Φ

through the medium for a given thermal gradient ∇T by applying Fourier's
law. For a simple cuboid device with length Lz = L, cross sectional area A
and temperature di�erence ∆T between Lz = 0 and Lz = L, the thermal
conductivity is given by

κ =
1

A

L

∆T
Φ. (2.49)

To calculate the phonon heat �ux, we sequentially inject a prescribed
number Np of phonons �rst from Lz = 0 into the device. We sum the
phonons' incident energy to

Ein
0 =

Np∑
i=0

~ωi. (2.50)

As the phonons travel through the device, they engage in three-phonon scat-
tering which might alter their frequency and direction of movement. The en-
ergy of all back-scattered phonons (leaving the device at Lz = 0) is summed
up to Eout

0 . Additionally, we calculate the average time that it takes for a
phonon to travel the distance through the device 〈TOF〉. The TOF of a
phonon is given by sum of all free �ight and scattering times.

Then we repeat the procedure, but now we initialize the phonons from the
cold side at Lz = L and calculate Ein

L and Eout
L . Because of the temperature

di�erence between both device ends, the energy of the phonons injected at
Lz = L is modi�ed by a factor of s = N(T (L))

N(T (0))
. The phonon �ux is then given

by

Φ = Ntot
(Ein

0 − Eout
0 )− s(Ein

L − Eout
L )

Np〈TOF 〉
, (2.51)

where Ntot is the total number of phonons inside the device and Np is the
number of prescribed phonons. Ntot is calculated using Eq. 2.21 for all cells.
Fig. 2.15 visualizes the simulation scheme for calculating the �ux. This
scheme can also be applied to calculate the �ux between cells.
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Figure 2.15: Simulation scheme for calculating the heat �ux Φ of a cuboid
shaped device. The temperature di�erence between the ends of the device is
indicated by the color gradient with red symbolizing hot. Ein

i and Eout
i are

sums of energies of phonons that are injected and extracted, respectively.
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Chapter 3

Results

3.1 Time-of-�ight (TOF) simulations

In this section we investigate the TOF of phonons depending on geometric
aspects of the device such as lengths or surface roughness and neglect phonon-
scattering. We are restricting the calculations to this limit, because we want
to be able to distinguish properties that arise from the system's geometry
from the e�ects that arise due to phonon scattering.

The three-phonon scattering will be included in the next section to calcu-
late the thermal conductivity. The thermal conductivity is a more complex
quantity, however it is roughly inversely proportional to the TOF.

3.1.1 Constant specularity, square cross sectional area

Here, we investigate the TOF for cuboid-shaped Si devices with a square-
shaped cross sectional area. In Fig. 3.1 we plot the TOF as a function
of the frequency ω for LA and TA phonons separately for a device with
dimensions 30 × 30 × 1000 nm. We calculate the TOF for several values of
the specularity parameter p = {0.1, 0.25, 0.5, 0.75, 1.0} with p = 1 being
fully specular and p = 0 being di�use boundary scattering. We �nd that the
TOF increases with the frequency which is due to to the decrease in group
velocity (see Fig. 2.4). Especially TA phonons display this distinct tendency
(see Fig. 3.1b), because the decrease in group velocity is larger for the TA
branch than for the LA branch. Upon increasing the specularity parameter
the TOF decreases throughout the spectrum. This is expected, since in the
di�usive limit phonons are re�ected into arbitrary directions from the device
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surface. In case of di�usive scattering it is possible that the direction of
propagation of a phonon is reversed with respect to the heat �ow. Therefore,
phonons can scatter back and forth inside the device, and hence the TOF is
longest in the di�usive limit. At larger specularity parameter, the number of
di�usely re�ected phonons is reduced, leading to a decrease in the TOF.

To study systematically the e�ects of di�erent cross sectional areas A,
in Fig. 3.2 we plot the ratio TOF/A over the frequency ω with specularity
parameter p = 0.5 and constant length Lz = 1 µm. The most important e�ect
occurs between A = 30 × 30 nm2 and A = 100 × 100 nm2. For 30 × 30 nm2

the TOF is distinctively larger for the whole frequency range, than it is for
100 × 100 nm2. On further increase of the cross sectional area the TOF
stays almost constant. With increasing values of the cross sectional area,
phonons gradually scatter less at the surface. Therefore, di�usive surface
scattering plays a much more decisive role for small cross sectional areas. Is
seems, however, that the strongest e�ect of boundary scattering happens for
dimensions below 100 nm as also observed in experiments with nanowires of
similar cross sections [16].
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Figure 3.1: TOF(ω) for a 30 × 30 × 1000 nm device for LA (a) and TA (b)
phonons at p = {0.1, 0.25, 0.5, 0.75, 1.0}. Upon decrease of the specularity
parameter p the TOF increases.
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Figure 3.2: TOF(ω)/A, where A is the cross sectional area for LA (a) and TA
(b) phonons and p = 0.5. For A = 30 × 30 nm2 the TOF/A is distinctively
larger throughout the spectrum, whereas for A = 100× 100 nm2 the TOF/A
is lower and almost constant on further increasing A.
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3.1.2 Constant specularity, non-square cross sectional

area

We observed a decrease in TOF with cross section area A for devices with
square cross sections. It is interesting, however, to calculate the TOF for
more general, i.e. non-square-shaped, devices with large aspect ratios. In
this way we can understand which surface parts cause TOF increase, and
relate our results to thermal conductivities of thin layers.

We consider a device with dimensions Lz = 1 µm (length) and Ly =

30 nm (height). The width Lx of the device is gradually increased from
30 nm to 1 µm. In Fig. 3.3, we show the evolution of the TOF with Lx for
various values of the specularity parameter for the maximum frequency of
the respective branch ωmax. We choose this frequency, because our previous
results suggest that the di�erence between the TOF for various values of
the specularity parameter is most pronounced here. We �nd a decrease of
the TOF with Lx up to 500 nm, whereas the TOF is almost constant upon
further increase of the width. For large values of width Lx, the number of
boundary scattering events is reduced and the TOF becomes independent
of Lx (bulk-like). Similarly to the square-shaped cross sectional devices, the
specularity parameter has more impact on the TOF of devices with small
A. It seems, therefore, that for feature sizes above 500 nm, the e�ect of the
boundary is negligible.

3.1.3 Constant vs non-constant specularity

In Fig. 3.4 we compare the TOF in devices with boundaries of constant
specularity parameter p, to the TOF of devices with boundaries that have
k-dependent specular scattering probability as in Eq. 2.40. The dimensions
of the device are 30×30×1000 nm. The RMS value of the surface roughness
n = 0.3 nm corresponds best to real Si surfaces and matches approximately
the p = 0.1 results, except for small frequencies. Analyzing Eq. 2.40 we
see that the specularity probability approaches unity with the wave vector
and the frequency going to zero. Here, the wave length λ of the phonons is
large in comparison with the surface roughness, which leads to more specular
scattering and a decrease in the TOF. In contrast to that, we observe no such
reduction in the TOF(ω) curve for n = 3 nm. Here, the large value of the
surface roughness results in di�usive scattering throughout the spectrum.
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Figure 3.3: TOF for ωmax over device width Lx for LA (top) and TA phonons
(bottom) with p = {0.1, 0.25, 0.5, 0.75, 1.0}, Lz = 1 µm and Ly = 30 nm.
The gray rectangles indicate the cross sections. For Lx < 500 nm the TOF
decreases upon increase of the device width, while the TOF becomes inde-
pendent of Lx for Lx ≤ 500 nm. The specularity parameter has much more
impact on devices of small width and, therefore, small cross sectional areas.
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Figure 3.4: TOF(ω) for a 30 × 30 × 1000 nm device for LA (top) and TA
(bottom) phonons with constant specularity parameter p = {0.1, 0.5, 1} or
specularity probability with surface roughness n = {0.3, 3} nm. Due to the k-
dependence of the TOF for n = 0.3 nm, the results for low ω are in accordance
with p = 0.5, whereas for large ω, the curve matches p = 0.1 better. Contrary
to that, the curve for n = 3 nm approximately �ts p = 0.1 for all frequencies.
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3.2 Including three-phonon scattering

In the following, we present the results obtained including three-phonon scat-
tering. To assess the simulation method we calculate temperature distribu-
tions of the device for di�erent temperature gradients and analyze phonon
trajectories. Then we perform thermal conductivity simulations for pure bulk
Si and compare the results to experimental data. Finally, we calculate the
thermal conductivity of nanoporous Si membranes at room temperature.

3.2.1 Temperature distribution and phonon trajectories

To test the code and ensure it reproduces the correct steady-state tempera-
ture distribution within the material we simulate a Si device with dimensions
500×500×1000 nm. The time step ∆t is 5 ps, the temperature di�erence ∆T

between hot and cold end of the device is set to 20K, the scaling factor W is
4×104, and the number of spectral intervals Nω is 1000. For Tsource = 310K,
Tsink = 290K and a specularity parameter p = 1 the temperature distribu-
tion is a linear gradient, which is indicated by the color gradient in Fig. 3.5.
We also show the trajectories of some examples of phonons using thick black
lines. Three-phonon scatter points are denoted by red dots.

Since reaching the steady-state distribution is a di�cult and computation-
ally expensive task we prescribe a thermal gradient for Tsource = 60K and
Tsink = 40K and compare the trajectories to the results at larger tempera-
tures. By comparing Fig. 3.5a with Fig. 3.5b it is obvious that the number of
three-phonon scattering events increases with the temperature. All depicted
phonons are initialized at the source contact (right), but only a fraction of
the number of initialized phonons actually reach the sink contact (left) due
to Umklapp scattering. Particularly for large temperatures T ∼ 300K we
observe this distinctive e�ect. By comparing high and low temperature tra-
jectories we also observe that surface scattering is more dominant in the low
temperature regime.
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Figure 3.5: Simulated (top) and prescribed (bottom) temperature distribu-
tion for a 500 × 500 × 1000 nm Si device. The contact temperatures are
Tsource = 310K (60K) and Tsink = 290K (40K). The local temperature
is color coded. We indicate phonon trajectories with thick black lines and
three-phonon scatter points with red dots. With temperature the number
of three-phonon scattering events rises, which increases the fraction of back-
scattered phonons.
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3.2.2 Bulk Si thermal conductivity

To test the code quantitatively we calculate the thermal conductivity κ us-
ing the same parameters as previously mentioned. Instead of computing the
steady-state temperature distribution, a thermal gradient is prescribed for
computational e�ciency. Our previous results suggest that the calculated
thermal distribution is a linear gradient, which is why we prescribe this dis-
tribution. Simulations are carried out between 15K and 300K for a device
of size 500 × 500 × 1000 nm. The results are compared to measured values
of Ref. [7] (see Fig. 3.6). The temperature di�erence between source and
sink ∆T is 20K to determine average thermal conductivities. For T ≥ 150K
the simulation results are in agreement with measurements. However, the
simulated value is below the measured one. On the other hand, in contrast
to the distinct low-temperature peak that is observed in measurements, the
peak in the simulated data is much lower and appears at higher tempera-
tures (∼ 120K instead of 20K). The reasons behind this, and the steps to
calibrate the simulator further, are described below.

The peak re�ects the following physical e�ects: For very low temperatures
(from T = 0K to T = 15K) the thermal conductivity rises with tempera-
ture, because the number of phonons and their energies increase with T . In
this regime three-phonon scattering is small. Between 15K and 150K the
thermal conductivity declines sharply due to three-phonon processes. For
temperatures larger than 150K phonon scattering is strong, but the number
of phonons is su�ciently large, such that the decline is smaller.

The deviation of measured and simulation results at low temperatures
can be explained as follows: The mean free path (MFP) λ of phonons grows
inversely proportional with the temperature as low k phonons dominate the
transport. For low temperatures the mean free path λ becomes larger than
the device length, which is 1 µm. To calculate the correct bulk thermal
conductivity the dimensions of the device have to be much larger than λ, for
phonons to scatter several times within the channel. For example at 15K
this would require the simulation of a device with a length of several mm
[12]. However, this is unfeasible. According to Ref. [13] the bulk thermal
conductivity can be calculated the following manner

κbulk = κL
L+ λ

L
. (3.1)

Here κL is the thermal conductivity for device with length L. E�ectively the
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calculated thermal conductivity is scaled with the channel length, accounting
for the ballisticity of the low k phonons in short simulation domains.

As shown in Fig. 3.7 much better agreement with measurement data is
reached in the low-temperature regime using the bulk thermal conductivity
κbulk. Here we also plot the results with varied ∆T such that ∆T = 0.05Tavg.
Tavg is the average temperature of the device given by (Tsource + Tsink)/2.
This is done to ensure that the temperature di�erence is small compared to
the average temperature. For ∆T = 0.05Tavg, the low-temperature peak is
captured the best. The reason is that in this work the relaxation time ap-
proximation is employed to simplify the Boltzmann transport equation. This
approximation only holds for small deviations from the thermal equilibrium,
which is why the most accurate results are achieved for small ∆T .

We �nally note that achieving good match to experimental data of the
thermal conductivity of bulk materials is in general non-trivial. Most studies
only consider temperatures above 100K (see the results of of Ref. [5] in
Fig. 3.7).
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3.2.3 Si nanomeshes

In this section, we investigate the thermal properties of thin Si membranes
with a high density of nanoscopic holes. For these Si nanomeshes, devices
with porosity φ = 50% and φ = 50% are simulated. The porosity is de�ned
by the ratio:

φ =
Vh
Vtot

, (3.2)

where Vh is the volume of the holes and Vtot is the total or bulk volume of
the material. The hole radius is r = 25 nm and the device dimensions are
500× 100× 1000 nm (see Fig. 3.8).

We apply a thermal gradient as indicated by the color gradient and cal-
culate trajectories of phonons at room temperature with ∆T = 20K. In
Fig. 3.9, phonon trajectories are compared for a 500 × 100 × 1000 nm de-
vice with 50% porosity for specularity parameter p = 1.0 and p = 0.1. The
number of backscattered phonons decreases with increasing specularity pa-
rameter p. For low specularity parameter (p = 0.1) most phonons do not
pass the second row of holes.

At room temperature, the thermal conductivity is calculated for di�er-
ent values of the specularity parameter p = {0.1, 0.5, 1.0} (see Fig. 3.10).
We �nd a decrease of thermal conductivity with increasing porosity φ and
decreasing specularity parameter p.
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Figure 3.8: 500 × 100 × 1000 nm device with 50% porosity (left) and 35%

porosity (right). The prescribed temperature distribution is indicated by the
color gradient. Thin black lines represent the simulation grid.

Figure 3.9: Phonon trajectories (green lines) in a 500×100×1000 nm device
with 50% porosity for specularity parameter p = 1.0 (left) and p = 0.1

(right). The arrows indicate the direction of the �ow.
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Figure 3.10: Thermal conductivity of the Si nanomesh over porosity φ for
specularity parameter p = {0.1, 0.5, 1.0} or surface roughness nr = 0.3 nm.
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In experiments a di�erent arrangement of the holes was used. Therefore,
we analyze devices using a hexagonal arrangement of the holes (see Fig. 3.11),
which is expected to lower the thermal conductivity. Trajectories of phonons
depending on the specularity parameter are shown in Fig. 3.12.

The thermal conductivity at room temperature is calculated and the two
hole arrangements are compared to measurement data in Fig. 3.13. Since
in the hexagonal set-up the holes are not aligned, phonons can not travel
in straight lines and scatter more. In case of (partially) di�usive boundary
scattering this reduces the thermal conductivity further compared to the
previous results of the rectangular structure. The simulation results are of
similar amplitude but higher than the measurement results of Ref. [14].

The reason for this discrepancy might be the existence of coherent e�ects
in the experimental structures that lead to a further reduction of the thermal
conductivity.

Figure 3.11: 500 × 100 × 1000 nm device with 50% porosity (left) and 35%

porosity (right) using a hexagonal arrangement of the holes. The prescribed
temperature distribution is indicated by the color gradient. Thin black lines
represent the simulation grid.
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Figure 3.12: Phonon trajectories (green lines) in a 500×100×1000 nm device
with 50% porosity using a hexagonal alignment of the holes for specularity
parameter p = 1.0 (left) and p = 0.1 (right). The arrows indicate the direc-
tion of the �ow.
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data from Ref. [14].
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Chapter 4

Conclusion

In this work, a general procedure to solve the Boltzmann transport equation
for phonons has been described and implemented. The Monte-Carlo method
is used to solve the BTE for arbitrary complex 3D geometries.

Simulations have been carried out to calculate the time-of-�ight (TOF)
of phonons in dependence of geometric aspects of the device such as lengths
or surface roughness considering boundary scattering limited transport. We
found that di�usive surface scattering increases the TOF and plays an im-
portant role for small cross sectional areas and dimensions below 100 nm.

The procedure has been successfully validated against experimental data
for bulk Si for a temperature range of 15K to 400K using phonon-phonon
scattering and a mean free path-dependent scaling factor to account for size
e�ects.

Finally, the simulator has been applied to nanomeshes in form of nano-
porous Si membranes. The thermal conductivity at room temperature has
been calculated for two arrangements of holes: rectangular and hexagonal.
A decrease of the thermal conductivity has been observed with increasing
porosity and di�usive scattering for both structures.
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