
Techniques for Automated
Generation of Testbed
Infrastructures for SOA

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Dipl.-Ing. Łukasz Juszczyk
Registration Number 9925140

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

(Prof. Dr. Schahram Dustdar) (Prof. Dr. Frank Leymann,
University of Stuttgart)

Wien, 27.09.2011
(Dipl.-Ing. Łukasz Juszczyk)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Dipl.-Ing. Łukasz Juszczyk
Piaristengasse 29/2/6, 1080, Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Zusammenfassung

Service-orientierte Architektur (SOA) ist ein Paradigma der Softwarearchitekturen, welches die
Realisierung von verteilten Systemen aus modularen Diensten (Services) beschreibt. Dieses
Paradigma hat in den letzten Jahren sowohl in der akademischen Forschung als auch in der
Softwareentwichlungsindustrie stark an Bedeutung gewonnen, was man an der hohen Anzahl
an wissenschaftlichen Arbeiten zu SOA und an SOA-basierten Softwareprodukten beobachten
kann. Jedoch wurde sowohl in der Forschung als auch in der Entwicklung ein Thema vernach-
lässigt: das Testen von SOAs. Obwohl durchaus zahlreiche Konzepte und Lösungen zum Testen
einzelner Services entwickelt wurden, gibt es kaum Arbeiten die das Testen von komplexen
SOA-Systemen behandeln. In Besonderen gibt es einen Mangel an Konzepten zum Testen
von Systemen, welche später in einem Umfeld von externen Services betrieben werden, dieses
Umfeld aber zur Entwicklungszeit nicht verfügbar ist. Um solche Systeme trotzdem testen zu
können bedarf es eines "Testbeds", also eines zu Testzwecken generierten jedoch realistischen
Abbildes vom Umfeld.

In dieser Dissertation behandeln wir das Automatische Generieren von Testbed-Infrastruktu-
ren für SOA. Das Ziel unserer Arbeit war es, Lösungen zu erforschen die SOA-Entwickler
beim Generieren von Testbeds unterstützen. Die präsentierten Resultate beinhalten: erweit-
erbares Modellieren von SOA-Umgebungen, eine Skriptsprache zum Spezifizieren der Mod-
elle, Mechanismen zum Generieren von Testbed-Instanzen aus den Modellen sowie Ansätze
zum Automatisieren des gesamten Prozesses. Wir präsentieren die entwickelten Konzepte und
Techniken im Detail, und erklären wie diese eingesetzt und erweitert werden können um SOA-
Testbeds zu generieren. Wir haben die Konzepte in einem Prototypen namens GENESIS im-
plementiert und diesen für das Testen und Evaluieren diverser SOA-basierten Systeme einge-
setzt. Darüber hinaus haben wir GENESIS als Open-Source-Software veröffentlicht, als Be-
weis für die Korrektheit und Sinnhaftigkeit unserer Lösungen sowie als Beitrag an die SOA-
Forschungsgemeinschaft.

iii

Abstract

Service-oriented architecture (SOA), as a paradigm for flexible distributed computing based on
modular services, has become a major topic in computer science and in software industry. As
a result, numerous SOA-based concepts have been published by the research community and
many software solutions are nowadays provided by the industry. However, both, the research
community and the industry, have neglected the need for sophisticated support for testing of
SOA’s. While most of the effort has been put into supporting the testing of single Web services,
only very few works actually aim at testing of complex SOA-based systems. In particular, there
is a lack of solutions for testing of systems that will be deployed in service-based environments
and that need proper testbeds at development time.

In this thesis we focus on solving this issue and present our results on automated generation
of testbed infrastructures for SOA. The purpose of our work is to provide means for developers
to generate customized testbeds that emulate missing SOA environments in order to have an
infrastructure for testing the developed system at runtime. We have developed techniques for
modeling SOA environments in an extensible manner, a scripting language for specifying the
models, mechanisms for generating running testbeds from these models, and techniques for
automating the whole process to a certain degree. We have implemented a prototype framework,
called GENESIS, and applied it for testing and evaluation of SOA-based systems. We present
the developed concepts and techniques in detail, explain how they have evolved, how they can
be extended for implementing custom testbed features, and, eventually, how the framework is
applied in practice. In addition, we provide all developed software prototypes as open-source
for proving the correctness of the developed techniques, plus, as a contribution to the research
community.

v

Acknowledgements

First of all, I would like to thank my advisor Prof. Schahram Dustdar for the opportunity to carry
out my PhD studies at the Distributed Systems Group (DSG). I am very grateful for the liberty
to choose a research field and to develop my own ideas within such a great environment as the
DSG. Especially, I am much obliged for the invaluable support Prof. Dustdar gave me during
the hard days of my studies and for the mentoring during all phases of my research.

Additionally, I would also like to thank Prof. Frank Leymann for being my second advisor
and examiner, and for his valuable comments and suggestions that helped me to improve this
thesis.

I would also like to thank my colleagues at the DSG, with whom I had a lot of fruitful discus-
sions and who gave feedback on my ideas and this way contributed to this thesis. In particular I
would like to acknowledge Christoph Dorn, Karl M. Göschka, Roman Khazankin, Philipp Leit-
ner, Atif Manzoor, Anton Michlmayr, Harald Psaier, Daniel Schall, Florian Skopik, and Martin
Treiber for their input. It was a great pleasure to work with you!

Moreover, I want to thank our secretaries Christine Kamper, Margret Steinbuch, and Re-
nate Weiss for unburdening us of all the management tasks and for keeping the DSG running
smoothly.

Most importantly, my sincere thanks are given to my parents Urszula and Krzysztof who
have always supported me, to my beloved partner Veronika for her love and understanding, and
to my daughter Magdalena for making me the proudest father in the world. This thesis is dedi-
cated to you!

This work was supported by the European Union projects WORKPAD (grant no. 034749)
and S-CUBE (grant no. 215483).

Łukasz Juszczyk
September, 2011
Vienna, Austria

vii

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Challenges & Achievements . 3

1.2.1 Key Contributions . 4
1.2.2 Research out of this Thesis’ Scope . 4
1.2.3 Evaluation of our Contribution . 5

1.3 Structure of the Thesis . 5
1.4 Publications . 6
1.5 Published Prototypes . 7

2 Testing of Service-oriented Architectures - State of the Art 9
2.1 Principles of Service-oriented Archtitecture 9
2.2 Engineering SOA Systems - Gains and Problems 10

2.2.1 Choosing a Communication Standard 10
2.2.2 Engineering SOAP-based Systems . 12

2.3 Testing SOA Systems - Current Status and Research Progress 17
2.3.1 Testing of Web Services and Web Service Compositions 18
2.3.2 Related Research: Testing of Complex SOA Systems 19

2.4 Problem Statement . 21

3 GENESIS - Specification, Generation, and Steering of Web Service Testbeds 23
3.1 Motivation . 23

3.1.1 Requirements . 24
3.2 Concept and Architecture of GENESIS . 25
3.3 Generating Complex Web Services . 27

3.3.1 Generating Web Services . 27
3.3.2 Establishing Complex Dependencies through Plugins 32

i

ii Contents

3.4 Practical Application . 34
3.4.1 Testbed Configuration . 34
3.4.2 Generation and Steering of Web Services 36
3.4.3 Illustrating Scenario . 38

4 GENESIS2 - Dynamic Testbeds for SOA 41
4.1 Motivation . 41

4.1.1 Evolution of GENESIS . 42
4.2 The GENESIS2 Testbed Generator . 43

4.2.1 Basic Concepts and Architecture . 43
4.2.2 Exploitation of Groovy Features . 46
4.2.3 Extensible Generation of Testbed Instances 49
4.2.4 Multicast Testbed Control . 52

4.3 Practical Application . 52
4.4 Discussion of Shortcomings and Solutions . 56

5 Generating Fault Injection Testbeds for SOA 59
5.1 Motivation . 60
5.2 Programmable Multi-level Fault Injection . 61

5.2.1 Message Faults . 62
5.2.2 Service Execution Faults . 65
5.2.3 Low-level Network Faults . 67

5.3 Practical Application . 68

6 Towards Automation of Testbed Generation 71
6.1 Motivation . 71
6.2 Automated Generation of SOA Sandboxes . 72

6.2.1 AOP-based Interception of Web service Invocations 73
6.2.2 On-the-fly Generation of Service Replicas 75

6.3 Evaluation . 79
6.3.1 Discussion . 81

7 Large-scale Testbeds in the Cloud 83
7.1 Motivation . 83

7.1.1 Scenario: Large-scale SOA Testbed Infrastructures 84
7.2 Applying Cafe . 85
7.3 The CAGE Framework . 86

7.3.1 CAGE Methodology and Roles . 86
7.3.2 Modeling Testbeds . 87
7.3.3 Testbed Setup . 89
7.3.4 Testbed Provisioning . 90

7.4 Practical Application . 91

8 Programming Evolvable Web Services 93

Contents iii

8.1 Motivation . 93
8.1.1 Application Scenarios . 94
8.1.2 Adaptation in Service-oriented Systems 95

8.2 Programming Model . 97
8.2.1 Script-based Web Service Programming 98
8.2.2 Extending Services with Behavior Modules 101

8.3 Discussion . 102
8.3.1 Strengths . 102
8.3.2 Limitations . 103

9 Summary, Conclusions, and Outlook 105
9.1 Outlook and Possible Future Work . 106

Bibliography 109

A Code Examples 121
A.1 JavaCC Grammar Definition for GENESIS Plugin Alignment 121
A.2 Apache Velocity Template Files for GENESIS 126
A.3 Sample Configuration of GENESIS . 129

List of Figures

2.1 Publish, Find, & Bind . 13
2.2 SOA Research roadmap pyramid . 13

3.1 Architecture of GENESIS . 25
3.2 Model used to describe Web services in GENESIS 26
3.3 Communication between GENESIS front-end, back-end, and existing SOA infras-

tructures . 27
3.4 Web service generation process . 28

4.1 Sample G2 model schema . 44
4.2 G2 architecture: infrastructure, plugins, and generated elements 45
4.3 Interactions within G2 layers . 46

5.1 Extended G2 testbed model schema for fault injection 61

6.1 Interception of Web service calls and generation of replicas 73

7.1 Overall CAGE approach and architecture. 86
7.2 Component assembly example . 87
7.3 Cafe application meta model . 88
7.4 Cafe variability meta model . 89
7.5 CAGE modeler . 90

8.1 Overview of adaptive SOA . 96
8.2 Programming abstraction for Web services derived from WSDL. 97
8.3 Web service migration . 100

v

List of Tables

5.1 Ingoing SOAP processing phases in Apache CXF. 63
5.2 Outgoing SOAP processing phases in Apache CXF. 63

8.1 Modifications on model types and behavior modules. 98

vii

CHAPTER 1
Introduction

The paradigm of service-oriented computing (SOC) and service-oriented architecture (SOA)
has appeared for the first time in the year 1996 [144,145] and has gained high momentum since
then. Being based on established principles of software engineering, such as modularization
and distributed computing, SOA has evolved into a major topic in computer science [135] and
has been increasingly applied for realizing flexible distributed systems. In general, the impact of
SOA has advanced into a multitude of research domains, such as autonomic computing, business
process management, and cloud computing, which provides evidence about its acceptable in
both, research and industry. However, typical for a novel technology, SOA is still suffering from
problems which have not been solved yet to a satisfactory level and which do hamper its wider
acceptance. As outlined in literature [87–89], one of the major problem is testing, in particular
the lack of support for testing of complex SOA systems. The research work in the scope of this
dissertation has been focused on investigating this problem and bringing forward a solution for
it.

1.1 Motivation

Comparing the state of the art of research on SOA in general and the research on testing in/for
SOA, an interesting divergence becomes evident. SOA itself has had an impressive evolution
in the last years. At its beginning, Web service-based SOA had been mistaken as yet another
implementation for distributed objects and remote procedure call (RPC) and, therefore, had been
abused for direct and tightly-coupled communication [162]. After clearing up these misconcep-
tions and pointing out its benefits derived from decoupling, SOA has been accepted as an ar-
chitectural style for realizing flexible document-oriented distributed computing. Today’s SOAs
comprise much more than just services, clients and brokers (as depicted in the outdated Web
service triangle [104,124]) but comprise also message mediators, service buses, monitors, man-
agement and governance systems, workflow engines, and many other component types [135].

1

2 1.1 Motivation

As a consequence, SOA is becoming increasingly powerful but also increasingly complex. This
implies higher error-proneness [75] and, logically, requires thorough testing. But looking at
available solutions for SOA testing (research prototypes as well as commercial products), one
might get the feeling that SOA is still reduced to its find-bind-invoke interactions because most
approaches deal only with testing of individual Web services, and only few solutions deal to
some extent with complex SOAs [79, 80, 84, 85, 137]. All in all, it is possible to test whether
a single Web service behaves correctly regarding its functional and non-functional properties,
but testing systems operating on a whole environment of services is currently not supported at a
satisfactory level.

Let us take the case of an autonomic workflow engine, such as the one presented in [161], for
example. The engine must monitor available services, analyze their status, and decide whether
to adapt running workflow instances. To verify the engine’s correct execution it is necessary to
perform runtime tests in a real(-istic) service environment, in short, a service testbed. The testbed
must comprise running instances of all participants (in this simple case only Web services),
emulate realistic behavior (e.g., quality of service, dependencies among services, faults), and
serve as an infrastructure on which the developed workflow engine can be tested. But how
can engineers be provided with such testbeds? Unfortunately, so far they had to create them
manually, as no proper support had been available.

The second motivating scenario is tightly bound to one of SOA’s most prominent advan-
tages: faster software development due to reuse of services. Building systems as compositions
of modular services does not only accelerate the development process, but the ability to exchange
services with equivalent ones at runtime offers a new degree of adaptivity. As a consequence, it
is possible to outsource tasks to external partners/companies, by using their services and incor-
porating their functionality into a system or workflow. However, in spite of the gained flexibility,
outsourcing bears a significant risk as it implies dependencies on remote services which can be-
come unavailable at any time. Some providers offer service level agreements (SLA) that specify
minimal performance metrics and, penalties, if these are not provided. SLAs do help to make
a SOA system more predictable, as service providers have a strong incentive to guarantee a
promised quality in order to avoid penalties. But still the dependency on external Web services
remains a risk as SLAs are sometimes missed and an failing service can have critical effects on
the system that depends on it, unless it is able to handle these properly. And here anew appears
the problem of testing: how can engineers develop and evaluate techniques for handling faults
of remote components, if they don’t have full access to these. Obviously, external partners do
not allow volatile invocations of their services, as this would put additional load on these and
degrade their performance. Furthermore, external services do often cost money and, therefore,
each test run would cost money. Again this problem could be solved by applying testbeds which
emulate the external partner services, simulate faulty behavior, and facilitate a thorough eval-
uation of the system’s fault handling routines. In a nutshell, SOA’s ability to integrate easily
external services comes, unfortunately, at the cost of complicating the testing process.

Scenarios like these point up the need for testbed infrastructures. Despite that, the SOA
research community has not put sufficient effort into solving this problem. Even though some
groups have investigated the generation of testbeds for SOA, their work was usually focused on
a particular problem and did not provide generic support for creating testbeds of customizable

Chapter 1: Introduction 3

structure and behavior. We regard this as a serious drawback which hampers the testing process
and, consequently, slows down the whole software development process. This issue has been
the main motivation for doing research on supporting the generation of testbeds in order to
accelerate and improve the process of software engineering for SOA.

1.2 Research Challenges & Achievements

The research questions and challenges handled in the scope of this dissertation are twofold. They
comprise research challenges, in terms of developing concepts and methodologies, as well as
engineering challenges for developing a prototype implementation as a proof of concept.

The research challenges are as follows:

• To analyze the state of the art of testing solutions for SOA systems, in order to dis-
cover shortcomings and the main burdens of software engineers.

– What support do available open-source and industrial/commercial solutions provide?

– How far is academic research advanced and which concepts and prototype imple-
mentations have been developed? What is still missing?

• To investigate the progress of testbed generation for SOA.

– Which solutions have been developed by industry and academia?

– How advanced are these and what are the limitations?

– How well do these solutions cover the actual problems of SOA engineers?

– Which problems have not been addressed yet?

• To come up with techniques and methodologies for modelling testbeds.

– How can engineers be supported in specifying structure and behavior of testbeds?

– What is the right compromise between simple usage and rich functionality?

– How to achieve good extensibility and customizability?

• To develop techniques for generating running testbed instances.

– How can testbed models be tranformed into real testbed infrastructures?

– How can testbeds expose customizable functional- and non-functional properties?

• To automate the establishment of testbed infrastructures.

– How much of the testbed specification process can be automated?

– How can we reduce necessary input from engineers and accelerate the specification?

4 1.2 Research Challenges & Achievements

The engineering challenges comprise:

• Implement the developed concepts in a prototype framework.

• Apply the framework in various testing scenarios, in order to assess its benefits and
discover limitations.

1.2.1 Key Contributions

In this dissertation we have made progress in the field of testbed generation for SOA. We have
developed novel techniques for solving the previously listed challenges and implemented a soft-
ware prototype to prove the applicability of our concepts.

The most significant contributions and achievements are:

• A simple yet powerful technique for specifying testbeds, that is based on a scripting
language and seems to be intuitive for engineers.

• An open model for SOA testbeds, providing extendability.

• Techniques for generating running testbeds instances from the models and for con-
trolling them remotely at runtime.

• A new level of customizability and programmability of the testbeds, derived from the
scripting approach.

• Techniques for performing on-the-fly adaptations to the testbed, in order to adjust test
runs at runtime.

Moreover, we have published the software prototype as open-source, as a contribution to the
research community.

1.2.2 Research out of this Thesis’ Scope

As outlined in the previous section, this thesis covers only research on generation of testbed
infrastructures for SOA. It does clearly not cover any research on supporting the execution of
test runs nor does it deal with the evaluation of test results. Due to the intricacy and complexity
of testbed generation we decided to focus on this topic in order to push the research on it.
This means that instead of covering the whole breadth of testing in SOA software development,
we preferred to advance as deep as possible on testbed generation with the aim of being able
to present convincing solutions to the inherent challenges. Without doubt, test execution and
test result evaluation are complex problems as well and deserve to be investigated intensively,
however, this has not been done in the scope of this thesis.

Chapter 1: Introduction 5

1.2.3 Evaluation of our Contribution

The presentation of novel concepts always requires an evaluation in order to prove their ap-
plicability, usefulness, and correctness. Depending on the type of concepts, different types of
evaluation make sense to be applied. For this thesis, however, the evaluation was not trivial.

We have not performed a comparative evaluation, by matching our approach to other avail-
able ones, in order to prove our improvements and the superiority of our concepts. This is mainly
due to the novelty of our work and the lack of direct competitors.

Also we have not done a precise performance evaluation, as this thesis’ contribution is not
about performance issues nor does it prove the quality of our approach in any case. It would
merely assess the quality of our prototype implementation, which is, however, not of primary
importance being a proof of concept.

Without doubt, a real-world evaluation, where our concepts and prototypes are applied in
real SOA development projects would make most sense and give valuable insights into how
much the development process got improved by our contribution. Unfortunately, this was not
possible as a) we did not have access to a significant number of SOA projects and b) it would
have been not easy to convince the developers to apply our prototype implementation.

Instead, we evaluated our concepts in a selective manner, choosing what we regarded as
reasonable and realizable. For instance, we included a performance evaluation for a technique
which deals with generating testbeds at runtime and where the delays do have an effect on the
execution of the tested systems. In contrast to that, we avoided to evaluate the performance of
testbed generation which happens before the test runs and, therefore, does only have an effect
on the patience of the testers but not on the test results.

Moreover, we applied our approach at our research group in several projects for an internal
assessment and as a proof of usability of the prototype implementation. The projects published
in [105,112,123,138,139,143,146–148] all used G2-based testbeds, which we regard as a strong
indicator for the applicability of our results.

1.3 Structure of the Thesis

This structure of this dissertation is strongly oriented on the papers published during this thesis’
research work (listed in next section). Basically, the structure is split into four main parts:

1. An introductory part providing a review of the state of the art on testing of SOAs. In
Chapter 2 we explain the problem that has been solved in this thesis. We analyze the
state of the art of SOA software development, the progress on testing solutions for SOA,
outline unsolved problems, and specify the problem statement for this thesis. Furthermore,
we review related work and compare it our research, in order to outline the contribution
done in the scope of this thesis.

2. The main part presenting this thesis’ major contribution, the GENESIS testbed generator,
is structured into four Chapters (3 - 6) which relate to the four essential publications about
GENESIS and which represent the evolution of our concepts.

6 1.4 Publications

• In Chapter 3 we present our first approach on testbed generation, the GENESIS
framework.

• Chapter 4 comprises the next step in the evolution of the initial concepts, resulting
in the successor framework GENESIS 2.

• In Chapter 5 we demonstrate the extendability of GENESIS 2 and present our tech-
niques for generating fault injection testbeds for SOA.

• In Chapter 6 we evolve testbed generation towards more automation and describe an
approach for intercepting Web service invocations in a running SOA system and for
generating testbeds on-the-fly for these.

3. In addition to the chapters explaining the concepts of GENESIS, we do also present two
works in which GENESIS was applied as a testbed, plus, as a runtime environment for
adaptive Web services. These comprise the following parts.

• In Chapter 7 we describe an approach for generating large-scale SOA testbeds in a
cloud infrastructure.

• In Chapter 8 we explain how the programming model of GENESIS can be used for
engineering evolvable Web services.

4. Finally, in Chapter 9 we close this thesis with an outlook and an overview of possible
future research and conclude with a summary of the contributions of our research work.

1.4 Publications

The results of our research work have been published in five conference papers and four work-
shop papers that provide the content for this thesis.

1. Juszczyk L., Truong H.-L., Dustdar S.

GENESIS - A Framework for Automatic Generation and Steering of Testbeds of Complex
Web Services.

13th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’08), 31. March - 4. April 2008, Belfast, Northern Ireland.

2. Treiber M., Juszczyk L., Schall D., Dustdar S.

Programming Evolveable Web Services.

2nd International Workshop on Principles of Engineering Service-Oriented Systems (PE-
SOS). 32nd ACM/IEEE International Conference on Software Engineering (ICSE’10), 2.
- 8. May 2010, Cape Town, South Africa.

Chapter 1: Introduction 7

3. Juszczyk L., Dustdar S.

Script-based Generation of Dynamic Testbeds for SOA.

8th IEEE International Conference on Web Services (ICWS’10), 5. - 10. July 2010,
Miami, USA.

4. Juszczyk L., Dustdar S.

Testbeds for Emulating Dependability Issues of Mobile Web Services.

1st International Workshop on Engineering Mobile Service Oriented Systems (EMSOS).
6th IEEE World Congress on Services (SERVICES’10), 5. - 10. July 2010, Miami, USA.

5. Psaier H., Juszczyk L., Skopik F., Schall D., Dustdar S.

Runtime Behavior Monitoring and Self-Adaptation in Service-Oriented Systems.

4th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO’10),
27. September - 01. October 2010, Budapest, Hungary.

6. Psaier H., Skopik F., Schall D., Juszczyk L., Treiber M., Dustdar S.

A Programming Model for Self-Adaptive Open Enterprise Systems.

5th Workshop on Middleware for Service Oriented Computing (MW4SOC). 11th ACM/I-
FIP/USENIX Middleware Conference, 29. November - 3. December 2010, Bangalore,
India.

7. Juszczyk L., Dustdar S.

Programmable Fault Injection Testbeds for Complex SOA.

8th International Conference on Service-Oriented Computing (ICSOC’10), 07. - 10. De-
cember 2010, San Francisco, USA.

8. Juszczyk L., Schall D., Mietzner R., Dustdar S., Leymann F.

CAGE: Customizable Large-scale SOA Testbeds in the Cloud.

6th International Workshop on Engineering Service-Oriented Applications (WESOA). 8th
International Conference on Service-Oriented Computing (ICSOC’10), 07. - 10. Decem-
ber 2010, San Francisco, USA.

9. Juszczyk L., Dustdar S.

Automating the Generation of Web Service Testbeds using AOP

9th European Conference on Web Services (ECOWS’11), 12. - 16. September 2011,
Lugano, Switzerland.

1.5 Published Prototypes

In addition to our scientific publications, we contributed to the research community by publish-
ing our software prototypes as open-source, available at:

http://www.infosys.tuwien.ac.at/prototype/Genesis/

http://www.infosys.tuwien.ac.at/prototype/Genesis/

CHAPTER 2
Testing of Service-oriented

Architectures - State of the Art

2.1 Principles of Service-oriented Archtitecture

The principles of service-oriented computing (SOC), and the related architectural style called
service-oriented architecture (SOA), as derived from several formerly existing concepts, such
as component-based systems, distributed computing, and modularization. Even though, some
researchers see SOA as a revolution [93], basically due to its impact, we rather refer to it as
an evolution of established concepts, technologies, and methodologies. In a simplified man-
ner, SOA propagates the usage of fine grained services that expose specific functionality and
the composition of these into a service-oriented system. Compared to monolithic approaches,
SOA systems are more flexible as services can be replaced or new ones can be added into a run-
ning system and, this way, provide a good grounding for adaptive systems which change their
behavior, configuration, composition at runtime.

Thomas Erl defines in his book "Service-oriented Architecture: Concepts, Technology, and
Design" [96], as well as on his Web sites about SOA engineering [45], the following key princi-
ples of service-orientation:

• Standardized Service Contract: The contract must specify the service’s functionality and
the interface, via which it can be accessed, in an expressive manner. It must define ex-
changed data types, usage policies, and any other information that is important for under-
standing the service’s purpose and for invoking it.

• Service Loose coupling: Reduces the level of dependency between a service consumer,
the service’s implementation, and its contract.

9

10 2.2 Engineering SOA Systems - Gains and Problems

• Service Abstraction: Related to loose coupling, service abstraction propagates to hide as
many details of the service as possible and to publish (within the contract) only what is
essential for understanding its functionality.

• Service Reusability: This is one of the key principles and one of the most prominent
features of service-orientation. Services encapsulate logic that can be easily reused by
other components in order to establish (more) complex functionality.

• Service Autonomy: Services must have maximum control over the environment and re-
sources they depend on. By reducing dependencies, services can maintain a higher relia-
bility and predictability.

• Service Statelessness: In order to increase a service’s scalability and reliability it is recom-
mended to keep it stateless, as the management of a state implies additional complexity.
Stateless services can be replicated easily, for instance for the sake of load balancing,
which is an asset for scalability.

• Service Discoverability: To guarantee reusability it is essential that a service is discover-
able. This requires to publish the service, e.g., at a well-known registry, with sufficient
metadata so it can be easily identified and its purpose can be understood by potential
consumers.

• Service Composability: The composition of complex functionality out of a set of is a
major feature of SOA. Services are expected to participate in such compositions, which is
a feature that is closely related to the previously presented principles.

These are the commonly accepted major principles of SOA, even though some authors/groups
enhanced this set with additional ones [165], such as Service Optimization, Service Relevance,
Service Encapsulation, or Service Location Transparency. All in all, SOA adapts a wide number
of well-known and accepted principles of distributed computing and the principles can be safely
summarized into ”building flexible systems composed of modular components referred to as
services”. In the next section we take a closer look at how these systems are being built and
engineered, and which shortcomings pose burdens to SOA software engineers.

2.2 Engineering SOA Systems - Gains and Problems

2.2.1 Choosing a Communication Standard

As outlined, SOA is rather a set of principles and concepts than a concrete technology. It is
not even a single standard. Depending on the requirements, a SOA system can be implemented
using diverse technologies or communication standards as long as the essential concepts are
followed. However, not all technologies and standards are equally suited to this purpose and,
therefore, some have gained particular importance and popularity among the SOA community,
while others have not got that much of acceptance. SOA systems can be built, for instance,

Chapter 2: Testing of Service-oriented Architectures - State of the Art 11

by using the Common Object Request Broker Architecture (CORBA) (e.g., [12]), Java Remote
Method Invocation (RMI) (e.g., [13]), and various other standards, even proprietary ones.

However, two communication standards have gained paramount acceptance for realizing
SOA system: SOAP and Representational State Transfer (REST). Though as explained in [136],
SOAP and REST differ significantly and both have their strengths and weaknesses.

• SOAP (formerly an acronym for Simple Object Access Protocol) [47] is basically a stan-
dard that specifies the structure of XML-based [19] messages that are exchanged among
distributed components. SOAP messages contain an envelope that comprises an arbitrary
number of header elements and a single body element (see Listing 2.1). The header is
a major advantage of SOAP-based communication, as it allows to implement arbitrary
extensions (e.g., for signing message content, routing/addressing of messages, additional
meta data, etc.), as it is done in the numerous WS-* specifications [166].� �
< s o a p : E n v e l o p e x m l n s : s o a p =" h t t p : / /www. w3 . org / 2 0 0 1 / 1 2 / soap−e n v e l o p e ">

< s o a p : H e a d e r >
< n s 1 : h e a d e r 1 x m l n s : n s 1 =" h t t p : / / sampleheaderNS ">

< !−− . . . −−>
< / n s 1 : h e a d e r 1 >

< n s 2 : h e a d e r 2 x m l n s : n s 1 =" h t t p : / / secondheaderNS ">
< !−− . . . −−>

< / n s 2 : h e a d e r 2 >

< !−− . . . −−>
< / s o a p : H e a d e r >

<soap:Body >
<msg:Response xmlns:msg=" h t t p : / / s ampleServ iceNS ">

< !−− . . . −−>
< / msg:Response >

< / soap:Body >

< / s o a p : E n v e l o p e >� �
Listing 2.1: SOAP Message Structure

SOAP Web services are described using the Web Service Description Language (WSDL)
[56] which defines the service’s interface, exchanges message types specified in XML
Schema Definition (XSD) [64], meta-data for more detailed specification of the service’s
functionality, its endpoint address, as well as binding information which defines the used
transport method.

SOAP is transport agnostic, which means that it does not put any restrictions on how the
messages are being transferred among SOA components. Possible transport mechanisms
are HTTP(S), SMTP, message queuing protocols (e.g., Java Message Service [35]), or
other middleware implementations which support message exchange.

• REST-ful services follow a different approach than SOAP-based ones. While SOAP is cen-
tered around the exchange of messaged/documents, REST-ful services mainly represent

12 2.2 Engineering SOA Systems - Gains and Problems

resources which are accessible via the the HTTP protocol [28]. These resources can be
static ones, e.g., simple files, as well as dynamically computed ones, similar to SOAP-like
responses. Being tightly bound to HTTP, resources can be manipulated via the operations
PUT, GET, POST, and DELETE and can be represented in a variety of formats, e.g., XML,
PDF, or even graphics.

Compared to SOAP, REST seems more restricted as it does not support any transport
mechanism apart from HTTP and does not provide anything comparable to WS-*. How-
ever, this makes REST simpler and results in a higher acceptance in the Web community,
where simplicity is of paramount importance. This trend becomes especially evident as
today most of the Web API’s are based on REST.

Unfortunately, REST-ful services do not have any description language comparable to
WSDL, which hampers an automated discovery and invocation of the services. There
exists the Web Application Description Language (WADL) [52] that is supposed to fulfill
this purpose but its usability and sense is highly controversial in the community [107].

Both service standards, SOAP and REST, have their advantages and disadvantages and, there
is no simple answer for which one should be preferred. Depending on the requirements of
the developed system, several design decisions must be made, which will have to be taken into
account when a service standard is chosen. Pautasso et al. present in [136] a detailed comparison
of both standards, guide through their concepts, pros & cons, and help to make the right decision
when engineering a SOA system. Though, one can observe that SOAP services have gained
higher importance for enterprise computing, as they are extensible and provide better support
for building complex systems, while REST-based convinced the Web community with their
simplicity.

Nevertheless, in this thesis we have not covered both standards, but have concentrated our
research only on SOAP-based SOA. We regard it as a more interesting research topic, as engi-
neering SOAP-based systems is on the one hand supported by a multitude of frameworks, tools,
and methodologies, but on the other hand several issues, that burden software engineers, have
still not been solved.

2.2.2 Engineering SOAP-based Systems

Following the SOA principles, which demand to design systems as a flexible collection of mod-
ular and exchangeable services, almost no restrictions are posed on the possible topology and
complexity of an SOA system. In fact, SOA provides does benefit engineering of complex and
large-scale distributed systems [104]. In its most simple and primitive form, an SOA comprises
a set of services, a set of clients, and at least one broker. This is well known as the publish-
find-bind SOA triangle (depicted in Figure 2.1). Available Web services are published at the
broker(s), clients use the broker(s) to find services, and, eventually bind to these in order to
invoke them.

Though, this scenario is not up to date any more as SOA comprises today a wide variety of
components which provide sophisticated functionality and allow to establish complex systems.

Chapter 2: Testing of Service-oriented Architectures - State of the Art 13

Service
Contract

Service
Registry

Service
Provider

Service
Requestor Bind

RegisterFind

Figure 2.1: Publish, Find, & Bind - also known as the SOA triangle (from Michlmayr et al. [124])

Figure 2.2: Research roadmap showing diverse SOA components (from Papazoglou et al. [134])

Figure 2.2 shows how Papazoglou et al. observe the current progress of SOA and where they
expect future work to be focused at. At the bottom of the pyramid they place basic services
which constitute the building blocks of an SOA system. Basically, this covers the publish-find-
bind triangle. On top of the basis, composite services are put together out of the basic services,
enhanced with techniques for coordination, transaction processing, etc. On the very top of the
pyramid, management services are governing the SOA, performing load balancing, state man-
agement, change management, monitoring, etc. This all demonstrates that the primitive triangle,

14 2.2 Engineering SOA Systems - Gains and Problems

consisting of services, clients and brokers, has been enhanced with higher-level components
such as:

• Workflow engines which establish composite services by executing business processes in
the background and, in turn, reuse other services. In this domain the Business Process
Execution Language (BPEL) [17] is dominating due to its focus on Web services and has
been established as a de-facto standard in industry. There exist many BPEL engines, open-
source ones such as Apache ODE [9] as well as commercial ones like IBM Websphere
Process Service [30] and Oracle BPEL Process Manager [43]. Apart from BPEL, there
are other competing standards such as YAWL [160] or very light-weight approaches like
BeanFlow [11].

In addition to the common workflow engines, which execute preconfigured business pro-
cesses precisely according to their specification, there exist engines, e.g., [161], which
monitor their environment and optimize the execution of the workflow instances at run-
time.

• Choreography engines are similar to workflow engines, but describe message flows not
from a centralized perspective, but rather define valid flow patterns which have to be fol-
lowed by the participating components. Up to date, the WS-Choreography Description
Language (WS-CDL) [54] has received the status of a W3C recommendation but, unfor-
tunately, no implementations are available so far.

• Enterprise Service Buses (ESB) provide a transport mechanism for passing messages (e.g.,
SOAP) among the distributed components of an SOA. Compared to direct invocations,
e.g., via HTTP, where clients discover Web services and send their request messages di-
rectly, ESB’s provide a bus infrastructure at which Web services are registered and client
messages are dispatched/routed automatically among these. Furthermore, ESB’s can im-
prove the dependability of an SOA by providing mechanisms for reliable message trans-
port. Engineers can choose among a large variety of ESB implementations, e.g., Apache
Service Mix [10] or the JBoss ESB [37].

• Monitoring and Governance Systems keep track of the situation inside an SOA and the sta-
tus of its components, and execute corresponding actions on detected misbehaviors. The
Web Services Distributed Management standard (WSDM) [57] specifies the correspond-
ing protocols and implementations, such as Apache Muse [8], exist as well. Moreover,
runtime environments, such as VRESCO [51], support engineers in using monitoring re-
sults for implementing adaptive service-based systems.

• Transaction Frameworks bring transaction management, as known from database sys-
tems, to Web services. Supported by the WS-Transaction [62] standard, that consists of
WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity, however, imple-
mentations exist only in large commercial solutions like IBM Websphere [29].

• The Web Services Resource Framework (WSRF) provides a clean way to introduce state-
fulness to Web services which are supposed to be stateless by default. Web services can

Chapter 2: Testing of Service-oriented Architectures - State of the Art 15

access a state from, so called, resource services and client pass resource identifiers with
each invocation. It is implemented, for instance, in Apache Muse, IBM Websphere, or the
Globus Toolkit for grid computing [22].

• Publish/Subscribe Frameworks for event-driven programming allow components to reg-
ister to event notifications by specifying topics of interest. Notifications are sent out via
SOAP messages to the requesters callback service interface. As it is tightly coupled with
the WSRF, the same frameworks provide an implementation for WS-Notification [61]
standard.

• Moreover, an SOA can incorporate legacy systems, which are accessible via a Web ser-
vices interface that wraps the original software, and even human workers who expose
their expertise via Web services by following standards such as BPEL4People [63] or
WS-HumanTask [59].

To sum up the state of the art, SOA systems are not limited to services, clients, and registries
only but can comprise a variety of components, can grow to large-scale, and can implement
arbitrary complexity. Engineers can use diverse tools and software solutions, commercial and
open-source ones, in order to accelerate the development of SOA systems. However, there are
several issues which (unnecessarily) complicate the development process and which slow down
the acceptance of SOA.

One major issue is the promised interoperability of SOAP-based Web services, which is,
unfortunately, not fulfilled. SOAP is an open standard, is based on other open standards (XML,
XSD, etc.), and most often is realized by using an open transport mechanism as well (JMS,
HTTP, etc.). Consequently, SOAP is propagated to be the interoperable glue between compo-
nents in heterogeneous environments. The problem is, however, that on top of open standards
one can still implement non-interoperable behavior and this happened with SOAP: SOAP mes-
sages can be formatted in different binding styles and uses. Possible styles are Remote Procedure
Call (RPC) and Document (DOC), and these can be combined with a literal oder encoded use.
Which means that four possible combinations are possible: RPC/enc, RPC/lit, DOC/enc, and
DOC/lit. Though, while theoretically all four are usable, only DOC/lit is considered as recom-
mendable [142] and the rest has been declared as deprecated as it is not compatible with the Web
Services Interoperabilty (WS-I) [60] initiative. In order to push this initiative and not encourage
SOA developers to use the deprecated styles, many modern Web service frameworks, such as
Apache CXF [4] dropped the support for non-WS-I-compatible styles and these services cannot
be accessed with these frameworks any more. The problem is that still many public available
Web services use the old deprecated styles and, therefore, have become incompatible! For ex-
ample, in the QWS dataset [68, 69], that is a collection of WSDL documents of public Web
services (collected in 2007), we noticed that 31% of the WSDL’s were not WS-I compatible.
The conclusion is that SOAP is not as interoperable as promised and developers must be aware
of this trap.

The second well-known issue is the interaction style. Web services can be invoked via
RPC, which makes them yet another distributed object technology [86, 162], or via exchang-
ing messages/documents. Again, both styles are possible, though that does not mean that both

16 2.2 Engineering SOA Systems - Gains and Problems

are equally recommendable and suited for implementing distributed communication. RPC is
simply an extension of traditional proceduce/method calls in order to access remote objects. Re-
quests, which means information about which procedure is called on which object with which
arguments, as well as responses, are wrapped into SOAP messages and are transferred between
client and Web service. The main problem is that this communication style is synchronous,
where clients wait in a blocking manner until the service has responded and keep the connection
alive while the call is being processed. This does not only make the call vulnerable to com-
munication faults, as a broken connection causes the call to be aborted, but it also reduces the
whole system’s scalability due to the delays caused. For this reason, we agree with [124] that
RPC-based interactions should be avoided. In contrast to this, message-oriented SOC relies on
asynchronously exchanged documents which are sent and routed among the components of an
SOA. Decoupling of components by keeping the communication asynchronous does benefit the
whole systems agility and scalability as it allows flexible dispatching of requests (keeping mes-
sages in queues, performing load balancing, etc.) and does not require the client to block its
execution until the response arrives but to be notified via a callback once it is available. Conse-
quently, RPC-based SOA is more an abuse of the principles of service-orientation than a proper
interaction style. SOA can only provide its promised features of agility if the coupling among
components is a low as possible, and this is only possible with message-oriented communication.

Another important, yet sometimes problematic, feature of SOA is late binding, also referred
to as dynamic binding. Instead of having Web service endpoints hard-coded into the client’s
logic, these are being chosen dynamically at the time of the invocation. The effect is that sys-
tems can be much more adaptive, in terms of accepting and incorporating newly available ser-
vices at runtime and switching over transparently to more capable services, e.g., if the old ones
perform worse of became unavailable. Frameworks like VRESCO [51] aim at optimizing this
feature, monitor available services, and recommend pro-actively to clients to switch over to al-
ternatives. While late binding does in general decrease the level of coupling among components,
it introduces new challenges at runtime. Dynamic links complicate the whole system’s execu-
tion, making it more less predictable and error-prone. If service links are established at runtime
and the set of available services is not constant (new ones appear, old ones become unavailable
or are subject to failures) this poses a risk, especially if the services are essential for the sys-
tems functionality. Furthermore, clients or any other components, such as ESB’s, which must
dispatch a request must provide some logic which decides where to dispatch and how to handle
(unexpected) failures. This additional complexity is the drawback of late/dynamic binding.

In general, complexity is one of the most criticized issues for SOAP-based Web services.
SOAP’s ability to be extensible caused the development of numerous standards, specifications,
and implementations that enhance SOC with various aspects, e.g., message encryption or reliable
message transfer. These are usually named "Web Services {SpecName}" or "WS-{SpecName}"
and are, therefore, referred to as WS-*. A recent listing of those standards can be found at
Wikipedia [166] and other Web sites about SOA [106, 150]. However, WS-* is not regarded
by everyone as an asset of SOAP, but some see it rather as an disincentive as it introduces
a high level of complexity, both for the engineering process as well as for the runtime of an
SOA system. WS-* is essential for enterprise computing, where security and reliability are of
paramount importance and the additional complexity is acceptable. Here, one does not have an

Chapter 2: Testing of Service-oriented Architectures - State of the Art 17

alternative option to using SOAP. Though, in the web community SOAP has been more and more
replaced by REST-ful services, in order to keep the service interactions simple. For instance,
Google has shut down the SOAP version of their API and since then only supports REST in
order to promote its application [23]. Also the Ruby of Rails framework has dropped the official
SOAP support on purpose for the same reason [110] (unofficial libraries are still available). This
emphasizes the trend to apply REST on the Web, while SOAP remains the de-facto standard in
enterprise computing.

To sum up the state-of-the art of engineering SOAP-based systems, it is safe to say that, in
spite of its drawbacks related to complexity, SOAP has gained high popularity in industry and
has made impressive progress in academic research. SOAP support is provided for almost all
programming languages and platforms, and engineers can benefit from a large number of avail-
able Web service frameworks and software solutions. Numerous open-source projects deliver
essential SOA components, such as workflow engines and service buses, and large companies,
e.g., IBM and Oracle, offer sophisticated software suites for developing SOA systems. All in all,
SOA engineers can benefit from a large variety of software solutions in order to accelerate the
development process. However, industry and academia have failed to support SOA engineers
during one essential step: the testing process!

2.3 Testing SOA Systems - Current Status and Research Progress

As outlined in the last section, SOAP-based SOA introduces new gains and benefits for engi-
neers of distributed systems, however, poses new challenges too. The dynamic nature of SOA
systems is definitely a valuable gain, given that the system works as expected and is actually also
able to handle the dynamics. And this requires thorough testing of the whole system in real, or
at least realistic, scenarios. The more complex a system gets, the more it becomes error-prone
and, consequently, the more important becomes the testing in order to evaluate its correct func-
tionality. Unfortunately, not enough attention has been given to supporting the testing process of
SOA systems. Engineers are facing the problem that setting up proper tests is time-consuming
and slows down the whole development process. In the worst case the effect is that testing is
neglected, bugs and malfunctions are less likely to be discovered, and the whole system becomes
unstable.

Up to date, testing solutions for SOA do exist but they do not cover all variations of necessary
testing. The research community has done a lot of work on testing Web services and produced
useful solutions. But Web services are only the basic building blocks of SOA systems and, for
sure, not the only fault sources. In complex SOA systems, comprising large-scale environments
of diverse interacting components, faults can happen basically everywhere: at the Web services,
in the client’s or dispatcher’s logic, workflow engines, in the registries, the monitors, the middle-
ware, at application servers, and any other SOA component. Furthermore, faults can happen at
different levels of the network stack: at the low-level packet flow, at the service communication
(e.g., message corruption), at the interaction models, etc. Recent surveys on testing for SOA [87]
demonstrate that strong effort has been made in investigating testing solutions for single Web
services and in investigating the testing of service compositions, e.g., BPEL processes. But

18 2.3 Testing SOA Systems - Current Status and Research Progress

they also make evident the lack of further testing techniques aiming at complex systems which
comprise large-scale environments of diverse SOA components and/or must interact with exter-
nal partner services. Let us consider again the two motivating scenarios from Section 1.1: a) a
self-optimizing workflow engine which monitors its environment and adapts workflow instances
according to the observed situation and b) a system outsourcing tasks to external partners and,
therefore, being dependent on their availability and quality of service. Both systems operate in
an environment of services which is out of their control, though, essential for their functional-
ity. In order to handle the risk of being dependent on external components, these systems must
provide mechanisms to handle sudden unavailabilities, various faults, and any other kind of un-
expected situations. And, obviously, these mechanisms must be well tested before deployment
in order to guarantee their correctness. However, during the development process the engineer
does usually not have such environments of external services which he/she could use as testbeds
for evaluating his/her software. Either because he/she has no access to them or is not allowed to
use them, as the provider of the external services forbids trial invocations in his policies. Nev-
ertheless, the developed system must be tested, in spite of all the involved difficulties. But how?
In our opinion, the only reasonable solution is to have testbed infrastructures which represent
(or emulate) the final deployment environment and serve for testing purposes. But up to date,
this topic has been neglected too much by the research community.

In the next sections, we give an overview of selected testing solutions, outline unsolved
issues and define the problem statement which has been handled within this thesis.

2.3.1 Testing of Web Services and Web Service Compositions

The nature of Web services can be summarized as follows. They are 1) encapsulated units of
functionality accessible via their interfaces, 2) invoked from remote 3), described in WSDL docu-
ments, 4) discovered at registries, and, eventually, 5) reused by other components within an SOA
to establish composite functionality. Regarding Web services according to these characteristics,
one can categorize the different aspects under which they can be tested. The 1st characteristic
allows to consider them as normal software modules (or as classes or libraries) and, therefore,
testing techniques can be inherited from traditional software testing research, e.g., regression
testing [111], performance and robustness testing [74, 120, 141], and white/grey/black box test-
ing [71, 152]. The 2nd characteristic is related to communication issues, whether messages are
transported reliably, in terms of delivery assurances, content authenticity, etc. Here, testing
solutions can be adopted from distributed systems research, e.g., by injecting faults [140] and
corrupting messages [167]. The 3rd and the 4th characteristics can be combined and relate to
how correct and precise Web services are described and how they can be discovered dynami-
cally at a registry, based on their descriptions. We believe that this is a rather novel issue and
there is not much of available research to be reused from other disciplines. Instead new research
directions have evolved, such as semantic Web services [76,121] which promise automated dis-
covery. Finally, the 5th characteristic relates to the consumption of Web services and how they
can be combined into composite systems. In the SOA research community this point is mostly
dominated by investigations of workflow models and executions, as done in [73, 101, 103, 118].

Chapter 2: Testing of Service-oriented Architectures - State of the Art 19

Bozkurt et al. follow in their detailed survey on Web service testing [87] a different and
more fine-grained categorization of testing techniques. These include test case generation [115,
119], partition testing [81], contract-based testing [90, 100], unit testing [149], model-based
testing and formal verification [169], fault-based testing [116,159,167], interoperability testing
[82, 168], integration testing [137], collaborative testing [157], testing quality of service [141],
and, regression testing of Web services [111]. They have found in sum 102 publications on
Web service testing and identified a strongly growing number of publications each year, which
illustrates the growing importance of research on testing solution in the SOA community.

Similar to Bozkurt’s work, Canfora and Di Penda divide in their survey [89] testing tech-
niques into different perspectives and and testing levels. The perspectives comprise the ser-
vice developer, the provider, the integrator, a 3rd-party certifier, and the end-user. As levels
they count unit testing, integration testing, regression testing, dependability testing, and non-
functional testing. They outline that many of the benefits of SOA pose particular challenges to
testing services and service-centric systems, and that the research community should focus more
on these challenges.

In this thesis, however, we do not review particular testing techniques for Web services. This
is because, as stated in the beginning of Section 2.3, these aim at testing only the basic building
blocks of SOA systems and this is out of scope of our research. Our work is concentrated on
testing complex SOA systems which interact with other services and operate in (large-scale)
SOA environments.

2.3.2 Related Research: Testing of Complex SOA Systems

Testing of complex SOA systems (CSS) is significantly more intricate and challenging than the
testing of single or composite Web services. In our definition a CSS fulfills connective and con-
trolling functionality within an SOA environment. It offers its services to other components,
consumes other components’ functionality (services), controls components and/or the interac-
tions between them, or performs any other kind of complex participation and governing inside
an SOA. Especially, CSS’ that must interact with external components in an open manner, e.g.,
by incorporating dynamically discovered Web services, are difficult to test, as the external com-
ponents are usually not available during the development process. But, nevertheless, the CSS’
must be tested somehow. This problem becomes even more severe if the CSS’ are supposed
to operate in large-scale environments. Taking Amazon Mechanical Turk (mturk) [2] as an ex-
ample, which is a broker for human-provided services and must handle tens of thousands of
concurrent requests and forward them to registered participating services, makes the problem of
testing CSS’ evident. The developers of mturk, or similar systems, cannot test the its runtime
qualities at the development time, as the participating services and clients are not available yet
but will appear once the system is up and running and open to public usage. As argued before,
such problems can be solved by applying testbeds which emulate the deployment environment
and, this way, facilitate testing. Some groups have recognized the need for testbeds but, unfor-
tunately, there has not been as much of invested effort into research on testbeds as into testing
of single and composite Web services. We believe this is mostly caused by the intricacy of the
problem. In the strict sense, only two groups have investigated SOA testbeds intensively and

20 2.3 Testing SOA Systems - Current Status and Research Progress

have published their results. These are the groups of Istituto di Scienza e Tecnologie della In-
formazione "Alessandro Faedo" in Pisa, Italy, who developed PUPPET [44] and and the Faculty
of Informatics of the Universita della Svizzera Italiana in Lugano, Switzerland, who developed
SOABench [46].

PUPPET1 is a framework for generating Web service-based testbeds. It is mainly focused on
performance issues and emulates quality of service (QoS) properties of Web services, in order
to evaluate the fulfillment of service level agreements (SLAs) of composite services. PUPPET
takes WSDL descriptions and WS-Agreement documents [53] as input in order to replicate the
described services (by analyzing the WSDL) and to emulate QoS of these in order to verify the
SLAs (taken from WS-Agreement). The applied techniques are presented in [79, 80] and the
emulation is done by generating Java stubs of the services and extending the operation routines
with code for hampering the execution (e.g., by injecting delays or throwing faults). In [77] they
extend their approach towards emulating functional behavior using automata models, referred
to as functional specification. This specification basically defines a state machine, where state
transitions are triggered by service invocations and, depending on which state the service is in,
can cause different effects, e.g., to fail if a particular operation has not been called before. In [78]
they combine their appraoch with the ns-2 network simulator [42] in order to simulate mobility
of nodes, which also has an effect on the QoS in terms of availability, etc.

SOABench [84, 85] provides sophisticated support for benchmarking of Web service mid-
dlewares (in particular BPEL engines [17]) in order to determine scalability, throughput, and
other performance properties. It supports modeling of experiments, generation of service-based
testbeds, runtime control on test executions, plus mechanisms for test result evaluation. Regard-
ing its features, SOABench is strictly focused on performance evaluation and generates testbeds
of services that emulate QoS properties. Furthermore, it creates BPEL process models for the
test runs, plus it generates test clients which put workload on the BPEL engines by triggering the
execution of the processes. With its focus on BPEL, it does not support generic customization
of the testbed in the sense of opening it to non-BPEL systems or to augmenting the testbed’s
services with dependency structures or complex functional behavior.

These two works, PUPPET and SOABench, provide semi-automatic generation of testbeds
for SOA and are, to our knowledge, the only published works on that topic, that are based on
implemented prototypes. Each of these has its specific purpose (verification of SLAs in service
compositions and performance evaluation of BPEL engines) and is strictly focused on solving
that problem. However, this also means that they cannot be regarded as "generic purpose testbed
generators" that can be applied to a multitude of testing purposes.

soapUI [49] is a commercial testing solution for Web services, offering creation and execu-
tion of automated functional, regression, compliance, and load tests. It supports the generation
of mock-up Web services which can be extended with functional and non-functional behavior,
e.g., by returning custom responses, in order to test client functionality. soapUI’s main restric-
tion is its strict focus on point-to-point communication. Ergo, it is useful for testing a client’s or
service’s quality, but it is not applicable for CSS’ which operate in large-scale environments and
participate in complex interactions.

1Pick up Performance Evaluation Testbed

Chapter 2: Testing of Service-oriented Architectures - State of the Art 21

Further related work has been done on techniques for controlling tests of distributed systems.
Weevil [163], for example, supports experiments of "distributed systems on distributed testbeds"
by generating workload. It automates the deployment and execution of experiments and allows
to model the experiment’s behavior via programs written in common programming languages
linked to its workload generation library. Similar to Weevil, the DDSOS framework [155] deals
with testing SOAs and provides model-and-run support for distributed simulation, multi-agent
simulation, and an automated scenario code generator creating executable tests. However, so-
lutions like these aim at supporting tests (of SOAs) executed on existing testbeds but do not
generate these testbeds themselves. Therefore, we see them rather as complementary tools to
testbed generators.

2.4 Problem Statement

Looking at the published efforts on testing of SOAs and on the survey papers covering this topic,
it becomes evident that certain kinds of testing have been addressed with great effort, but there
still exists a lack of solutions which would support engineers in setting up tests for complex
SOA systems. Consequently, the problem can be summarized into the following two sentences:

How can we facilitate the generation of customizable testbed infrastructures that em-
ulate SOA’s in a realistic manner?

How can we make this process as simple and intuitive as possible, in order to maxi-
mize the usability for engineers?

The next sections comprise our answers to these questions, present the outcomes of our research
work, and the give an overview of our proof of concept implementation.

CHAPTER 3
GENESIS - Specification, Generation,
and Steering of Web Service Testbeds

Published in:

GENESIS - A Framework for Automatic Generation and Steering of Testbeds of Complex Web
Services.

Juszczyk L., Truong H.-L., Dustdar S. (2008).

13th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’08),
31. March - 4. April 2008, Belfast, Northern Ireland.

Outline. In this chapter we present the very first iteration of GENESIS. After we had real-
ized the urgent need for an extensible testbed generator for SOA, we developed the concepts of
GENESIS and implemented a first prototype. Compared to available works on testbed gener-
ation, GENESIS contributed by offering more flexibility for implementing functional behavior
as well as non-functional properties of the testbed’s Web services. It deploy the testbed auto-
matically at a distributed back-end infrastructure and makes it possible to control the testbed’s
Web services at runtime from a centralized front-end. A major feature of the GENESIS frame-
work was the ability to enhance the generated Web services with plugins, providing a basis for
extendability and, hence, for maximizing its applicability for testing of complex SOA-based
systems.

3.1 Motivation

Complex computer systems have always involved large numbers of (distributed) components
that interact with each others [94, 151]. While in the past these were hosted in predominantly

23

24 3.1 Motivation

homogeneous environments, such as inside closed organizations or military systems, today’s
complex systems have evolved into being used in heterogeneous environments which incorpo-
rate, for instance, legacy systems or components based on different platforms and/or runtime
environments. As a consequence, interoperability has become an important issue, which fa-
vored the acceptance of SOAP-based Web services as a de-jure communication standard. This
trend has also influenced the design and development process of complex systems by making it
attractive to engineers to follow the principles of service-oriented architecture (SOA). As out-
lined in Chapter 2, SOA brings various benefits, such as flexibility, modularity, composability,
and reusability, just to name the most well-known ones. Though, as a side-effect, these features
pose challenges to the engineers as they cause additional complexity and error-proneness. This
problem must to be addressed early in the development phase. As a consequence, much effort
has been put into the development of methods and tools for automated testing and detection of
error-prone components in SOAs, e.g. in [74, 120, 141, 156, 158, 170]. However, those solutions
mainly aimed at analyzing only individual Web services by performing various client-oriented
checks and did not cover the testing of systems which are consuming other Web services them-
selves and, therefore, require testbed infrastructures in order to be evaluated at runtime. There
has been only limited support for the deployment of whole testbeds, consisting of real Web
services, which we regarded as a major problem.

This chapter explains the concepts of the first GENESIS1 testbed generator framework.
GENESIS combines an approach for automatic generation and deployment of Web services
at the back-end with a API at the front-end. Engineers can specify functional and non-functional
properties of Web services which are deployed on-the-fly on remote hosting environments. Com-
plex behavior of the testbed can be achieved with various plugins which extend the functionality
of the individual Web services and can be steered remotely from the front-end. Therefore, GEN-
ESIS allows engineers to set up testbed infrastructures for complex service-oriented systems.

3.1.1 Requirements

Testing software for faults and failures is an essential part of the software development process,
which should be performed continuously during all stages of the entire process. This includes
unit tests [95] for checking the quality of the individual modules, integration tests [108] when
these modules are being connected, functional tests [102] verifying whether the functionality
meets the specified requirements, and finally, tests of the whole system in later stages of the
process. A mapping of these levels to SOA development shows that unit tests mostly involve
only individual services [120,141], while the other methods aim at testing whole service infras-
tructures and applications operating on them [74, 156, 158]. However, although SOA has been
an important topic in research and industry during the last years, we noticed a lack of tools sup-
porting engineers to set up such infrastructures of services for testing purposes. We argue that
such a tool should meet the following requirements:

• Customizability: Specification of Web services with customizable functional and non-
functional properties.

1Generating Service-based Testbed Infrastructures

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 25

Controller
Web

Service

Web
Service 1

Plug-Ins

Web Service
Generator

Web
Service 2

Plug-Ins

Web
Service n

Plug-Ins

Control API

Web Service Description API

Manipulate W
S

Manipulate
Plug-Ins

GENESIS
Front-End

GENESIS
Back-End

Analysis
Component

Steering
Component

Existing
Infrastructures

Web Service
Registry

Workflow
Engine

Legacy
System as

Web Service

Plug-In Container

Plug-In Configuration
Controller

Web
Service

Web Service
Generator

Web
Service 1

Plug-Ins

Web
Service 2

Plug-Ins

Web
Service n

Plug-Ins

Plug-In Container

Web Service
Generator

Plug-In
Configuration

Plug-In Container

Web Service
Container

Web
Service 1
Plug-Ins

Web
Service 2
Plug-Ins

Web
Service n
Plug-Ins

Controller
Web

Service

Figure 3.1: Architecture of GENESIS

• Extendability: Pluggable extensions of Web service functionality.

• Distributed hosting: Generation and deployment of Web services on a distributed back-
end.

• Support for functional complexity: Control structures and complex interdependencies be-
tween services.

• Integration: Integration with existing SOA infrastructures.

• Convenience: Provision of the generator’s functionality via a convenient API.

Hence, the tool should be adaptable to the needs of the test cases, instead of expecting the test
cases to be adapted to the limitations of the tool itself. To our best knowledge, there was an
absence of solutions which fulfill this. GENESIS was designed to fill this gap.

3.2 Concept and Architecture of GENESIS

The architecture of GENESIS (see Figure 3.1) comprises a centralized front-end, for controlling
the testbed, and a distributed back-end hosting the generated Web services. Via the front-end
it is possible to specify the components and characteristics of the testbed, while the back-end’s
task is to generate the testbed infrastructure based on this information. For this reason, both
parts share a common description model for Web services, based on which they exchange data.
Figure 3.2 depicts a simplified class diagram of this data model, which consists of the following
structures:

• Host: A back-end host contains a set of Web services and is identified by a unique URL
pointing to the GENESIS instance running on it.

26 3.2 Concept and Architecture of GENESIS

Host
-URL : string

Service
-name : string
-deployed : bool
-style : string
-URL : string

Operation
-name : string
-inputVariableTypes : [string]
-outputVariableType : string

Parameter
-name : string
-value : object
-type : string

1 *

1 *

1 *

Plug-In

1

*
1

*

Figure 3.2: Model used to describe Web services in GENESIS

• Service: A Web service has a name, a unique URL, and a set of operations. It can
be either deployed or undeployed and can communicate in an RPC-based or message-
oriented manner. Furthermore, the service can reference plugins which are being invoked
at deployment and undeployment.

• Operation: An operation has a name, a set of input types, a single output type, and a
fault type. Operations can be extended by plugins too.

• Plug-In: Plugins extend the Web services’ functionality and declare a set of parameters
via which their behavior can be steered.

• Parameter: A parameter must be declared by a plugin in order to be accessible. It has
a name, a data type, and a value.

Based upon this model, GENESIS provides a Java API for instantiating and manipulating Web
service descriptions and for transferring them to the back-end for deployment.

At the front-end the API can be either directly accessed inside Java-based applications which
control the testbed or, alternatively, can be accessed via our Steering Component which
is built upon the Jython script interpreter [38]. In Section 3.4 we show sample scripts which
demonstrate how testbeds can be created and steered.

At the back-end side, the functionality is split into several modules. Incoming requests,
comprising Web service descriptions, are received by the Controller Web Service and
forwarded to the Web Service Generator which initiates the transformation procedure
in order to generate deployable service instances. These instances are being deployed at the
JAX-WS-based [32] Web Service Container. This step is described in more detail in
Section 3.3.1. Plugins, which augment the generated Web services with functionality, are reg-
istered at the Plugin Container and are being controlled via parameters that are stored in
the local Plugin Configuration Database.

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 27

SOAP &
text-based TCP

SOAP & text-based TCP

SOAP

SOAP

GENESIS
Front-end

GENESIS
Back-end

SOAP

SOAP

SOAP
SOAP

Existing
Infrastructures

SOAP & text-based TCP

Figure 3.3: Communication between GENESIS front-end, back-end, and existing SOA infras-
tructures

In between the front-end and the back-end (see Figure 3.3), the communication is based on
SOAP plus on a simple text-based protocol. The back-end’s SOAP service provides access to all
functionality, however, SOAP implies significant communication overhead (in terms of HTTP
headers, SOAP envelope, and XML encoding). This may become a problem if the testbed
becomes large-scale and change request are executed frequently. In order to provide better
throughput, we provide the additional text-based protocol for manipulating plugin parameters in
light-weight manner without unnecessary overhead.

3.3 Generating Complex Web Services

The techniques for generation of deployable Web services out of their descriptions is derived
from model-driven development (MDD) and generative programming. The Web Service
Generator creates by default empty skeleton code which implements the described Web ser-
vice, yet, does not provide any functionality. This dummy service can be extended with plugins,
for instance, to provide proper computational functionality, to establish interdependencies inside
the testbed (e.g., nested invocations among services), to simulate quality of service (QoS), or to
introduce any kind of required behavior.

3.3.1 Generating Web Services

The Web Service Generator parses the service description to analyze the service’s in-
terface, operation signatures, binding style, and referenced plugins. Out of this information it
generates a runnable Web service instance and deploys it. This procedure involves multiple steps
handled by the back-end’s module, which are depicted in the sequence diagram in Figure 3.4:

28 3.3 Generating Complex Web Services

Plug-In ContainerController WS XSD processorWS Generator JAX-WS Stub Generator

XSD Data Types

Return Java Source

Generate WS Source Code

Java Compiler

WS Source Code

Return Compiled Java Bytecode

Compiled Web Service Bytecode

Return WS Stubs

SOAP Endpoint

Deploy Web service

Initialize Plug-Ins

Plug-In Instances

Register Plug-Ins

WS Description

Return Web Service

1)

2)

3)

4)

5)

6)

7)

Figure 3.4: Web service generation process

1. The Web service description is received by the Web Service Generator module
and is checked for referenced plugins (explained in more detail in Section 3.3.2). Ref-
erenced yet missing plugins are transferred from the front-end and registered locally in
order to establish the required runtime environment.

2. The description is checked whether the service uses solely primitive data types (e.g.,
string, integer) for the request- and response-values or whether complex data types, de-
scribed in XML Schema Definitions (XSD) [64], are referenced. Complex types are
passed to xjc, which is the XML to Java compiler provided by JAX-WS, for generat-
ing corresponding Java classes out of the XSD definitions.

3. Using Apache Velocity [14], the Web Service Generatormodule generates a JAX-
WS-compliant source code of the Web service. The Velocity template files are listed in
Appendix A.2.

4. The source code is passed to javac, the Java compiler.

5. The compiled Web service is passed to wsgen, which is provided by JAX-WS too, to
generate the necessary stubs for deployment.

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 29

6. The class loader reads in the compiled Web service, instantiates it and initializes all plug-
ins.

7. Finally, the Web service is deployed at the HTTP-based SOAP endpoint.

The following listings show the model of a sample Web service, the source code of the generated
Web service, and the WSDL document of the deployed instance. In Listing 3.1 a simple service
is modeled in Jython. In Lines 5-8 two plugins are instantiated and registered for usage, and any
empty model of the Web service is created. It contains only a single service operation, named
getISBN, that is created in Lines 10-15. For simplicity we have only used simple data types
(strings). In Line 15 the operation’s functionality (referred to as behavior in the script) is set to
use two methods of the QOSPlugin and invoke them in sequence. The alignment of plugins is
specified in a simple language that support sequential and parallel calls, and try-catch structures
for error handling. In Lines 17-21 two special operations are defined: hooks, which are not
exposed as service operations but are executed automatically with the service deployment and
undeployment. These can be extended with plugins as well, e.g., in order to register the service
at some broker, as done in this sample. Finally, the operations are attached to the service, a
back-end host is referenced (Line 27), and the service is sent to this host for deployment.� �

1 from a t . ac . t uwi en . v i t a l a b . g e n e s i s . model import ∗
2 from a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . p l u g i n import ∗
3 from j a v a . u t i l import ∗
4
5 QOSPlugin ()
6 R e g i s t r y P l u g i n ()
7
8 newServ ice = S e r v i c e ("BookService")
9

10 o p e r a t i o n = O p e r a t i o n ("getISBN")
11 i n p u t s =LinkedHashMap ()
12 i n p u t s . p u t ("bookName" ,"string")
13 o p e r a t i o n . s e t I n p u t T y p e s (i n p u t s)
14 o p e r a t i o n . s e t O u t p u t T y p e ("string")
15 o p e r a t i o n . s e t B e h a v i o r (" (QOSPlugin.simulateDelay -> QOSPlugin.simulateFailure) ")
16
17 dep= O p e r a t i o n ("deploy")
18 dep . s e t B e h a v i o r ("RegistryPlugin.register")
19
20 undep= O p e r a t i o n ("undeploy")
21 undep . s e t B e h a v i o r ("RegistryPlugin.deregister")
22
23 newServ ice . a d d O p e r a t i o n (o p e r a t i o n)
24 newServ ice . a d d O p e r a t i o n (dep)
25 newServ ice . a d d O p e r a t i o n (undep)
26
27 r emoteHos t =Host ("http://localhost:7000/WebServices/GeneratorService")
28 r emoteHos t . a d d S e r v i c e (newServ ice)
29 newServ ice . d ep l oy ()� �

Listing 3.1: Jython Model of sample Web service

In Steps 2 and 3 of the generation process, the Web Service Generator translates the
modeled Web service into JAX-WS-compliant Java code. The next listing demonstrates the

30 3.3 Generating Complex Web Services

outcome of translating the BookService. Basically, it generates the class BookService, at-
taches annotations for JAX-WS (e.g., which binding style is used (Lines 11-15) and which op-
erations/methods are meant to be exposed with the service (@WebMethod for getISBN())),
and implements the service’s operations. Plugins, that are referenced within the operations, are
called via AWebServicePlugin.callPlugin("{Pluginname}.{Functionname}",
context) and can exchange data via the context variable.� �

1 package r e p o s i t o r y . wsp1947109707 ;
2
3 import j a v a . l a n g . ∗ ;
4 import j a v a x . jws . ∗ ;
5 import j a v a x . jws . soap . ∗ ;
6 import j a v a . u t i l . ∗ ;
7 import a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . ∗ ;
8 import a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . p l u g i n . ∗ ;
9 import a t . ac . t uwi en . v i t a l a b . g e n e s i s . model . ∗ ;

10
11 @WebService (name = "BookService" ,
12 t a r g e t N a m e s p a c e = "http://vitalab.tuwien.ac.at/generatedService/BookService"

)
13 @SOAPBinding (s t y l e = SOAPBinding . S t y l e .DOCUMENT,
14 use = SOAPBinding . Use . LITERAL ,
15 p a r a m e t e r S t y l e = SOAPBinding . P a r a m e t e r S t y l e .WRAPPED)
16 p u b l i c c l a s s BookServ ice ex tends AWebService {
17
18 p u b l i c BookServ ice () {
19
20 }
21
22
23 @WebMethod
24 p u b l i c j a v a . l a n g . S t r i n g getISBN (@WebParam (name="bookName") S t r i n g bookName) throws

E x c e p t i o n
25 {
26 LinkedHashMap < S t r i n g , Objec t > a rgumen t s =new LinkedHashMap < S t r i n g , Objec t > () ;
27 a rgumen t s . p u t ("bookName" , bookName) ;
28
29 f i n a l P l u g i n C o n t e x t c o n t e x t =new P l u g i n C o n t e x t (t h i s ,"getISBN" , a rgumen t s) ;
30
31 t r y {
32 c a l l P l u g i n s _ g e t I S B N (c o n t e x t) ;
33 } ca tch (E x c e p t i o n e) {
34 throw new E x c e p t i o n ("Operation ’getISBN’ of service ’BookService’ threw exception

: "+e . ge tMessage ()) ;
35 }
36
37 i f (c o n t e x t . g e t R e t u r n V a l u e () != n u l l) {
38 re turn (j a v a . l a n g . S t r i n g) MessageType . d e s e r i a l i z e (c o n t e x t . g e t R e t u r n V a l u e () , j a v a .

l a n g . S t r i n g . c l a s s) ;
39 }
40 re turn new S t r i n g ("s") ;
41 }
42
43 p r i v a t e vo id c a l l P l u g i n s _ g e t I S B N (f i n a l P l u g i n C o n t e x t c o n t e x t) throws E x c e p t i o n
44 {
45 AWebServicePlugin . c a l l P l u g i n ("QOSPlugin.simulateDelay" , c o n t e x t) ;
46 AWebServicePlugin . c a l l P l u g i n ("QOSPlugin.simulateFailure" , c o n t e x t) ;
47 }
48
49

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 31

50 p r o t e c t e d void onDeploy () throws E x c e p t i o n
51 {
52 LinkedHashMap < S t r i n g , Objec t > a rgumen t s =new LinkedHashMap < S t r i n g , Objec t > () ;
53
54 f i n a l P l u g i n C o n t e x t c o n t e x t =new P l u g i n C o n t e x t (t h i s ,"deploy" , a rgumen t s) ;
55
56 t r y {
57 c a l l P l u g i n s _ o n D e p l o y (c o n t e x t) ;
58 } catch (E x c e p t i o n e) {
59 throw new E x c e p t i o n ("Operation ’onDeploy’ of service ’BookService’ threw

exception: "+e . ge tMessage ()) ;
60 }
61 }
62
63 p r i v a t e vo id c a l l P l u g i n s _ o n D e p l o y (f i n a l P l u g i n C o n t e x t c o n t e x t) throws E x c e p t i o n
64 {
65 AWebServicePlugin . c a l l P l u g i n ("RegistryPlugin.unregister" , c o n t e x t) ;
66 }
67
68
69 p r o t e c t e d void onUndeploy () throws E x c e p t i o n
70 {
71 LinkedHashMap < S t r i n g , Objec t > a rgumen t s =new LinkedHashMap < S t r i n g , Objec t > () ;
72
73 f i n a l P l u g i n C o n t e x t c o n t e x t =new P l u g i n C o n t e x t (t h i s ,"undeploy" , a rgumen t s) ;
74
75 t r y {
76 c a l l P l u g i n s _ o n U n d e p l o y (c o n t e x t) ;
77 } catch (E x c e p t i o n e) {
78 throw new E x c e p t i o n ("Operation ’onUndeploy’ of service ’BookService’ threw

exception: "+e . ge tMessage ()) ;
79 }
80
81 }
82
83 p r i v a t e vo id c a l l P l u g i n s _ o n U n d e p l o y (f i n a l P l u g i n C o n t e x t c o n t e x t) throws E x c e p t i o n
84 {
85 AWebServicePlugin . c a l l P l u g i n ("RegistryPlugin.deregister" , c o n t e x t) ;
86 }
87
88 }� �

Listing 3.2: Source of generated Web service

As final steps of the generation process, the Java code is compiled, service stubs are generated,
and it is being deployed at the JAX-WS runtime, resulting in a Web service with the following
WSDL description.� �
< d e f i n i t i o n s t a r g e t N a m e s p a c e ="http://vitalab.tuwien.ac.at/generatedService/BookService"

name="BookServiceService">
< t y p e s >

< xsd : schema >
< x s d : i m p o r t namespace="http://vitalab.tuwien.ac.at/generatedService/BookService"

schemaLoca t ion ="http://localhost:7000/WebServices/BookService?xsd=1" / >
< / xsd : schema >

< / t y p e s >
<message name="getISBN">

< p a r t name="parameters" e l e m e n t ="tns:getISBN" / >
< / message>
<message name="getISBNResponse">

32 3.3 Generating Complex Web Services

< p a r t name="parameters" e l e m e n t ="tns:getISBNResponse" / >
< / message>
<message name="Exception">

< p a r t name="fault" e l e m e n t ="tns:Exception" / >
< / message>
< p o r t T y p e name="BookService">

< o p e r a t i o n name="getISBN">
< i n p u t message="tns:getISBN" / >
< o u t p u t message="tns:getISBNResponse" / >
< f a u l t message="tns:Exception" name="Exception" / >

< / o p e r a t i o n >
< / p o r t T y p e >
< b i n d i n g name="BookServicePortBinding" t y p e ="tns:BookService">

< s o a p : b i n d i n g t r a n s p o r t ="http://schemas.xmlsoap.org/soap/http" s t y l e ="document" / >
< o p e r a t i o n name="getISBN">

< s o a p : o p e r a t i o n s o a p A c t i o n ="" / >
< i n p u t >

< s o a p : b o d y use ="literal" / >
< / i n p u t >
< o u t p u t >

< s o a p : b o d y use ="literal" / >
< / o u t p u t >
< f a u l t name="Exception">

< s o a p : f a u l t name="Exception" use ="literal" / >
< / f a u l t >

< / o p e r a t i o n >
< / b i n d i n g >
< s e r v i c e name="BookServiceService">

< p o r t name="BookServicePort" b i n d i n g ="tns:BookServicePortBinding">
< s o a p : a d d r e s s l o c a t i o n ="http://localhost:7000/WebServices/BookService" / >

< / p o r t >
< / s e r v i c e >

< / d e f i n i t i o n s >� �
Listing 3.3: WSDL document of generated Web service

Basically, the generation process transforms the service’s model into a running instance by im-
plementing the interface details (e.g., operation signatures) but it does not program the service’s
functional properties. These are outsourced to the plugin mechanism of GENESIS.

3.3.2 Establishing Complex Dependencies through Plugins

SOA’s building blocks are services which are supposed to be maximally autonomous, have as
little dependencies as possible, and simple in usage. However, taking a look at today’s state of
the art of SOA, it becomes clear that SOA can be arbitrarily complex, especially when service
composition comes into play. Taking languages for service choreography and orchestration, such
as WS-CDL [54] or BPEL [17], as examples, we can identify various sources of complexity,
e.g., dependencies between services, control constructs, and fault handlers. It is safe to say
that the overall complexity of a SOA-based system increases with the number and intricacy of
interdependencies between the services. In order to emulate this in GENESIS, complexity inside
the testbed can be realized by applying plugins to the individual Web services.

At the implementation level, these plugins must extend an abstract class which defines
mandatory constructor and destructor methods, provides serialization functionality for transfer-
ring plugin code to remote hosts, and registers itself automatically at the corresponding Plugin

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 33

Container. Each plugin gets access to the input and output variables of the invoked opera-
tions, to the SOAP headers, and to all other Java artifacts which are visible inside the Web
service’s scope. Furthermore, the plugin is free to define a set of parameters through which it
can be controlled remotely from the front-end. Taking as example a plugin for registering the
Web service at some registry, such as UDDI [50], possible parameters would specify the host
name of the registry server, authentication data, and additional meta-data about the service.

If one wants to apply a plugin for extending a service’s operation, he/she must reference it via
its name and the called method. For instance, by specifying "QOSPlugin.simulateDelay"
as a behavior, the called operation will execute the corresponding plugin at invocation time. If
multiple plugins must be combined, we support sequential alignment ("(Plugin1.method
-> Plugin2.method)"), in parallel ("[Plugin1.method || Plugin2.method]"),
and try/catch blocks for error handling ("{Plugin1.method # Plugin2.method}")
where Plugin2 is only called on faults thrown by Plugin1. Furthermore, plugins can accept
arguments (e.g., from the service request), return values, and, consequently, exchange data
among each others. The following listing shows a more sophisticated plugin alignment using
the InvocationPlugin that calls remote services. At first, two remote services (identified
by their name) are called in parallel (Lines 3-7), followed sequentially by an further call which
takes their responses as input (Line 9). If, and only if, any of these calls throw an exception, e.g.,
due to I/O faults, the fault is forwarded to the reporting service.� �

1 {
2 (
3 [
4 I n v o c a t i o n P l u g i n ."d1=getAndCheckService1.getAndCheck(arg.name)"
5 | |
6 I n v o c a t i o n P l u g i n ."d2=getAndCheckService2.getAndCheck(arg.name)"
7]
8 −>
9 I n v o c a t i o n P l u g i n ."return=retrievalService.processData(d1,d2)"

10)
11 #
12 I n v o c a t i o n P l u g i n ."reportService.reportError()"
13 }� �

Listing 3.4: Sample plugin alignment statement

The alignment language’s JavaCC-based [33] grammar definition is attached in Appendix A.1.

With the first prototype of GENESIS, which got published as open-source [20], we provide five
sample implementations of plugins:

• QOSPlugin: Simulates performance- and dependability-specific QoS properties, such
as processing time, scalability, throughput, availability, and error rate. Performance at-
tributes are simulated by delaying responses, while dependability is simulated by throw-
ing faults and altering the service’s availability (deploying and undeploying). The plugin
can be controlled by setting the corresponding parameter for each QoS property, e.g., a
percentage value for availability.

• InvocationPlugin: Performs nested invocations of other Web services in the
testbed.

34 3.4 Practical Application

• BPELPlugin: Integrates the bexee [16] BPEL engine into GENESIS and executes com-
posed processes inside Web service operations. As a parameter it accepts BPEL process
definitions which can contain precise as well as abstract partner links. Precise partner
links allow to integrate external Web services, for instance from already existing SOA
infrastructures. Abstract definitions just specify the portType and operation name and
are being resolved during runtime to concrete services, based on the current status of the
testbed. For this, the BPELPlugin places hooks inside GENESIS to be aware of all de-
ployed Web services in the testbed. As a result, it is possible to express complex service
interdependencies in simplified BPEL code.

• LogPlugin: Logs the invocations of Web services and the interactions within them.
The format and destination of the logs is specified via parameters.

• RegistryPlugin: Registers and deregisters the Web service at a registry. Currently,
we only support UDDI but we plan to extend it for VReSCO [123] and other standards.
In contrast to the other plugins, the RegistryPlugin must be invoked at the deploy-
ment and undeployment of the Web service, instead of being used inside the Web service
operations. The host and the authentication data of the remote registry must be specified
via parameters. The meta-data about the service is mainly retrieved from the description
of the Web service itself.

3.4 Practical Application

GENESIS provides a Java API which covers all functionality for specifying, generating, and
steering of testbeds. The API can be embedded into any application, for instance a GUI, or
into the Bean Scripting Framework [31] which seamlessly integrates scripting languages into
Java. As a starting point for engineers we provide a Steering Component based on the
Jython script interpreter [38]. Jython establishes a convenient combination of the simplicity of
Python scripts and the flexibility of the API and, furthermore, allows to control a simulation
interactively as well as in an automated manner. In the following, we show some sample scripts
which demonstrate how GENESIS can be applied in practice.

3.4.1 Testbed Configuration

The testbed can be built from scratch by defining all properties manually or, preferably, by using
the configuration facility of the API. The configuration itself contains templates and declarations
which can be reused later. Listing 3.5 shows a sample configuration file.

First, all plugins are imported (Lines 2-5) and, if necessary, the default values of their param-
eters are overridden (Line 7). Furthermore, plugins can be joined to behavior groups (Lines 9-15)
which can be referenced later to combine individual functionalities of plugins.

Second, complex data types, used inside request and response messages, can be defined in
inline XML Schema definitions (Lines 17-21) or can be imported from external files.

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 35

Finally, Web services are specified, which are either declared as abstract templates (Lines 24-
42) or as deployable instances inside host declarations (Lines 47-55). By using abstract services,
the developer defines common properties which can be derived and extended for the sake of
reuse. This reduces the efforts for deployment of large environments consisting of similar ser-
vices. Service operations are declared (Lines 25-35, 51-54) containing a list of request data
types, a single response data type, and a list of invoked plugins and their local parameters. If
the plugin declaration is omitted, the default behavior is assumed, which was defined in Line 10.
Moreover, plugins can be invoked during deployment and undeployment of a service (Lines 36-
41).� �

1 < c o n f i g u r a t i o n >
2 < p l u g i n s >
3 a t . ac . t uwi en . v i t a l a b . qos . QOSPlugin
4 a t . ac . t uwi en . v i t a l a b . qos . R e g i s t r y P l u g i n @ / p a t h / r e g . j a r
5 < / p l u g i n s >
6
7 < d e f a u l t p a r a m e t e r s q o s _ a v a i l a b i l i t y ="0.95" . . . / >
8
9 < b e h a v i o r >

10 <QOS d e f a u l t ="true"> < !−− S i m u l a t e s e l e c t e d QoS −−>
11 (QOSPlugin . s i m u l a t e D e l a y −> QOSPlugin . s i m u l a t e F a i l u r e)
12 < /QOS>
13 <EmptyBehavior > < !−− Do n o t h i n g a t a l l −−>
14 < / EmptyBehavior >
15 < / b e h a v i o r >
16
17 <schema x m l n s : x s ="http://www.w3.org/2001/XMLSchema">
18 < xs :complexType name="book">
19 . . .
20 < / xs :complexType >
21 < / schema>
22
23 < s e r v i c e t e m p l a t e s >
24 < s e r v i c e name="GenericService">
25 < o p e r a t i o n name="echo" >
26 < !−− o v e r r i d e d e f a u l t p a r a m e t e r s −−>
27 < p a r a m e t e r s q o s _ p r o c e s s i n g t i m e ="1000" / >
28 < i n p u t r e q u e s t ="string" / >
29 < o u t p u t r e t u r n ="string" / >
30 < !−− o v e r r i d e d e f a u l t b e h a v i o r −−>
31 < b e h a v i o r >
32 EmptyBehavior
33 < / b e h a v i o r >
34 < / o u t p u t >
35 < / o p e r a t i o n >
36 < d ep lo y >
37 R e g i s t r y P l u g i n . r e g i s t e r
38 < / d ep lo y >
39 < undep loy >
40 R e g i s t r y P l u g i n . d e r e g i s t e r
41 < / undep loy >
42 < / s e r v i c e >
43 < / s e r v i c e t e m p l a t e s >
44
45 < e n v i r o n m e n t >
46 < h o s t a d d r e s s ="http://somehost:8080/some/path" >
47 < s e r v i c e name="BookService"
48 t e m p l a t e ="GenericService"

36 3.4 Practical Application

49 de p l oy ="true">
50 < !−− e x t e n d t e m p l a t e s e r v i c e −−>
51 < o p e r a t i o n name="getISBN" >
52 < i n p u t a r t i c l e ="xs:book" / >
53 < o u t p u t r e t u r n ="string" / >
54 < / o p e r a t i o n >
55 < / s e r v i c e >
56 < / h o s t >
57 < / e n v i r o n m e n t >
58 < / c o n f i g u r a t i o n >� �

Listing 3.5: Testbed configuration

A more complex configuration example can be found in Appendix A.3.

3.4.2 Generation and Steering of Web Services

The following Jython code snippets demonstrate the convenience of GENESIS in deploying Web
services and steering their behavior. In the first sample, the service newService is deployed
on a remote host, with one plain operation named helloWorld invoking the QOSPlugin. A
correct deployment can be verified by checking the generated WSDL description of the service
at the URL http://somehost:8080/some/path/newService?WSDL.� �
from a t . ac . t uwi en . v i t a l a b . g e n e s i s . model import ∗

r emoteHos t =Host ("http://somehost:8080/some/path")
newServ ice = S e r v i c e ("newService")
h e l l o O p e r a t i o n = O p e r a t i o n ("helloWorld")

i n p u t s =LinkedHashMap () # o r d e r e d i n p u t t y p e s
i n p u t s . p u t ("arg" ,"string") # i n p u t name & t y p e
h e l l o O p e r a t i o n . s e t I n p u t T y p e s (i n p u t s)
h e l l o O p e r a t i o n . s e t O u t p u t T y p e ("string")

o p e r a t i o n . s e t B e h a v i o r ("QOSPlugin.simulateQOS") # s e t p l u g i n r e f e r e n c e s

newServ ice . a d d O p e r a t i o n (h e l l o O p e r a t i o n)
remoteHos t . a d d S e r v i c e (newServ ice)

newServ ice . d ep l oy () # g e n e r a t e a t back−end� �
In cases where the back-end has been populated with Web services before, the front-end ap-
plication can retrieve the handles to these services from the remote hosts and start working on
them.� �
r emoteHos t . l o a d S e r v i c e s ()

r emoteHos t . l i s t S e r v i c e N a m e s () # p r i n t names
> [someServ ice , newServ ice]

newServ ice = l o c a l h o s t . g e t S e r v i c e ("newService")� �
Control on plugins is achieved by modifying parameters via getter/setter methods, whereas the
setter methods forward the changes to the corresponding plugins at the back-end. When simple

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 37

setting of parameter values is not sufficient to implement a desired behavior, the developer can
use API methods for sophisticated manipulation. The following code snippet shows how a plugin
parameter can be changed continuously according to a sine function.� �
param= h e l l o O p e r a t i o n . g e t P a r a m e t e r (QOSPlugin . PROCESSINGTIME)

param . g e t V a l u e () # p r i n t v a l u e
> 2000
param . s e t V a l u e (2 5 0 0) # s i m p l e s e t t e r

i = 0
def s i n e () : # d e f i n e s i n e f u n c .
. . . g l o b a l i
. . . i = i +1
. . . re turn 1000+ Math . round (Math . s i n (Math . t o R a d i a n s (i)) ∗500)

param . s e t V a l u e (s i n e , 3 6 0 , 1 0 0 0) # change acc . t o s i n e� �
The GENESIS API provides various other methods for sophisticated control of plugins, e.g.,
observe/notification mechanisms for parameters in order to trigger chains of updates. The fol-
lowing listing simply listens to parameter changes of an operation and forwards the new value
to another operation.� �
param1=op1 . g e t P a r a m e t e r (QOSPlugin . PROCESSINGTIME)
param2=op2 . g e t P a r a m e t e r (QOSPlugin . PROCESSINGTIME)

def fwd () :
. . . param2 . s e t V a l u e (param1 . g e t V a l u e ())

param1 . obse rveParam (0 , fwd)

param1 . s e t V a l u e (3 0 0 0)
param2 . g e t V a l u e ()
> 3000� �
For the sake of simplicity, we have shown rather primitive applications in the previous samples,
where only the QOSPlugin was used inside a standalone service which was not composed of
other services. The following example creates a more complex service using a template, which
executes a BPEL process in the background and, in addition, simulates delays.� �
t e s t b e d = T e s t b e d ("/path/to/testbed.config")
t e m p l a t e = t e s t b e d . g e t S e r v i c e T e m p l a t e ("GenericService")

c o m p l e x S e r v i c e = newServ ice ("ComplexService" , t e m p l a t e)
o p e r a t i o n =new O p e r a t i o n ("run")

i n p u t s = . . . # l i s t o f i n p u t t y p e s
o p e r a t i o n . s e t I n p u t T y p e s (i n p u t s)
o p e r a t i o n . s e t O u t p u t T y p e ("xs:Statistics") # xsd t y p e

beh="[BPELPlugin.run || QOSPlugin.simulateDelay]"
o p e r a t i o n . s e t B e h a v i o r (beh)

bpe lParam = o p e r a t i o n . g e t P a r a m e t e r (BPELPlugin . BPEL)
bpe lParam . s e t V a l u e ("/path/to/some.bpel")

c o m p l e x S e r v i c e . a d d O p e r a t i o n (run)

38 3.4 Practical Application

r emoteHos t . a d d S e r v i c e (c o m p l e x S e r v i c e)

c o m p l e x S e r v i c e . de p l oy ()� �
A complex testbed can be set up easily by combining multiple of such services. Interdependen-
cies between them can be handled by abstract BPEL processes which resolve abstract partner-
Links pointing to other services at runtime. Furthermore, a realistic behavior of the testbed can
be simulated by alternating the QoS properties of the individual services, which in return effects
the QoS of the composed ones.

3.4.3 Illustrating Scenario

In [123] Michlmayr et al. present the VReSCO project which addresses some of the current
challenges and issues of service-oriented computing. In particular, they claim that the well-
known provider-broker-requester triangle of SOA seems to be broken [124] and today’s SOA
applications rely on exact endpoint addresses instead of finding services dynamically at the
broker which is also referred to as the registry. According to them, this happens mainly due
to the shortcomings of the currently available Web service registry standards, UDDI [50] and
ebXML [18], which are too complicated and too heavy-weight.

The idea of VReSCO aims at solving this problem by providing a registry infrastructure
which supports SOA engineers with dynamic binding and invocation of services. In that ap-
proach, services are published dynamically at runtime to other participants within the network
and are described by meta-data of functional and non-functional attributes, e.g., monitored QoS
attributes [141]. Based on this meta-data, it is possible to search and query for services and to
bind and invoke them dynamically. Moreover, clients can subscribe to notifications about new
services appearing in the network and as well about changing attributes or interfaces of already
registered services. In addition, the registry is coupled to an orchestration engine for providing
semi-automatic service composition.

Since VReSCO has been designed to disburden SOA engineers from handling various dif-
ficulties of dynamically changing service environments, it is necessary to test the system at
runtime on a dynamic testbed consisting of real services. In GENESIS, such a testbed can be
created easily by applying:

• The QOSPlugin for simulating changing non-functional attributes (performance and de-
pendability) which will be monitored periodically by VReSCO.

• The BPELPlugin for creating complex services whose non-functional attributes depend
directly on the referenced services.

• A plugin for registering deployed Web services automatically at the VReSCO infrastruc-
ture. This is a potential extension for the RegistryPlugin.

• A control mechanism at the front-end, which manipulates the QoS attributes of the ser-
vices inside the testbed to simulate temporal unavailability and performance variations.

Chapter 3: GENESIS - Specification, Generation, and Steering of Web Service Testbeds 39

By deploying VReSCO on such a testbed, engineers could perform various checks to identify
potential problems of the system at runtime and can verify whether VReSCO reacts correctly to
the dynamics of the environment. In particular, various test cases can be enacted which identify
performance bottlenecks of the system, determine the overall stability and scalability, and also
help to point out constraints which can only be identified at runtime tests.

The VReSCO example illustrates clearly the typical area of application for GENESIS, where
a realistic environment of Web services is needed as a testbed for runtime simulations. A report
on testing VReSCO on a GENESIS testbed is presented in [123].

CHAPTER 4
GENESIS2 - Dynamic Testbeds for

SOA

Published in:

Script-based Generation of Dynamic Testbeds for SOA.

Juszczyk L., Dustdar S. (2010).

8th IEEE International Conference on Web Services (ICWS’10), 5. - 10. July 2010, Miami,
USA.

Outline. In this chapter we present the evolution of GENESIS, now referred to as GENESIS
2 (or in short, G2). Although we have made significant progress in testbed generation with the
first framework, we noticed later on several restrictions which hampered a convenient application
of it. For instance, it was limited to generating testbeds consisting only of Web services, plus
it did not offer fine grained control on the functional properties of these services. As some of
these restrictions had their roots deeply in the concepts of GENESIS, we decided to redesign it
with the lessons learned and to work on a new testbed generator from scratch. The outcome, G2,
differs significantly from its predecessor. It has been designed for being generic, supports the
generation of various SOA components, has a more flexible plugin system, and provides many
novel features for generating customizable testbeds for SOA.

4.1 Motivation

As outlined in the state of the art analysis in Chapter 2, today’s SOA does not only comprise
services, clients, and brokers which interact according to the publish-find-bind paradigm but has
been extended with a multitude of components which communicate via exchanging SOAP mes-
sages and benefit from SOA’s flexibility. Moreover, novel features which are today associated

41

42 4.1 Motivation

with SOA [135] are adaptivity [91], self-optimization and self-healing (self-* in general) [99],
and autonomic behavior [164]. The result of this evolution is that, on the one hand, SOA is
being increasingly used for building distributed systems, but, on the other hand, is becoming
more and more complex itself. As complexity implies error-proneness as well as the need to
understand how and where such complexity emerges, SOA-based systems must be tested inten-
sively during the whole development process and, therefore, require realistic testbeds. These
testbeds must comprise emulated Web services, clients, registries, bus systems, mediators, and
other SOA components, to simulate real world scenarios. However, due to missing tool support,
the set up of such testbeds has been a major burden for SOA engineers. Even the first version
of GENESIS solved only a subset of the problems. For testing complex systems which operate
in service-based environments, the engineer is still facing the problem of setting up realistic test
scenarios which cover the system’s whole functionality. There do exist solutions for testbed gen-
eration but these are restricted to specific domains, e.g., for checking Service Level Agreements
by emulating Quality of Service [77]. However, if engineers need generic support for creating
customized testbeds covering various aspects of SOA, no solutions exist to our knowledge which
would relieve them from this time-consuming task.

In this chapter we present the next iteration of our work on a solution for this issue. We
explain the GENESIS2 framework (in short, G2) which allows to set up SOA testbeds and to
manipulate their structure and behavior on-the-fly. It comprises a front-end from where testbeds
are specified and a distributed back-end on which the generated testbed is hosted. At the front-
end, engineers write Groovy scripts to model the entities of the testbed and to program their
behavior, while the back-end interprets the model and generates real instances out of it. To
ensure extensibility, G2 uses composable plugins which augment the testbed’s functionality,
making it possible to emulate diverse topologies, functional and non-functional properties, and
behavior.

4.1.1 Evolution of GENESIS

To our knowledge, GENESIS (will be now called G1) was the first available “multi purpose”
testbed generator for SOA. However, G1 suffers from various restrictions which limit the frame-
work’s functionality and usability. First of all, the behavior of Web services is specified by
aligning plugin invocations in simple structures (sequential, parallel, try/catch) without having
fine-grained control. This makes it hard to implement, for instance, fault injection on a message
level [167]. Also, deployed testbeds can only be updated by altering one single Web service
at a time, which makes the management of large-scale testbeds not efficient. Moreover, G1 is
focused on Web services and does not offer the generation of other SOA components, such as
clients or registries.

In spite of G1’s novel features, we regarded the listed shortcomings as an obstacle for further
research and preferred to work on a new prototype. By learning from our experiences, we
determined new requirements for SOA testbed generators:

• customizable control on structure, composition, and behavior of testbeds,

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 43

• ability to generate not only Web services, but also other SOA components,

• ability to create and control large-scale testbeds in an efficient manner,

• and, furthermore, a more convenient and intuitive way for modeling and programming the
testbed.

The appearance of the listed requirements made it necessary to redesign GENESIS and to rethink
its concepts. These efforts resulted in our new framework, GENESIS2.

4.2 The GENESIS2 Testbed Generator

To avoid ambiguities, we will be using the following terminology: model schema for the syn-
tax and semantics of a testbed specification, model types for the single elements of a schema,
model for the actual testbed specification, and testbed (instance) for the whole generated testbed
environment consisting of individual testbed elements, e.g., services, registries, or message dis-
patchers.

4.2.1 Basic Concepts and Architecture

As done in the first GENESIS, G2 too comprises a centralized front-end and a distributed back-
end. Engineers write scripts in which they model and program their testbeds at the front-end, and
at the back-end G2 transforms the models into real testbed instances. The front-end provides a
virtual view on the testbed, allows engineers to manipulate it at runtime, and propagates changes
to the back-end in order to adapt the running testbed. The framework itself offers

• generic features for modeling and manipulating testbeds,

• extension points for plugins,

• inter-plugin communication among distributed instances, and

• a runtime environment shared across the testbed.

All in all, it provides the basic management and communication infrastructure which abstracts
over the distributed nature of a testbed.

The G2 framework follows a modular approach and provides the functional grounding for
composable plugins that implement generator functionality. This feature is based on having
an extensible model schema (e.g., as in Figure 4.1), that specifies what can be generated in
the testbed and which customizations are possible. The schema can be regarded as a common
denominator which defines the framework’s functionality and is shared among the front-end and
all back-end hosts. To put it in other words, the engineer knows that if the schema at the front-
end allows to model certain components, then the back-end instances will be able to generate
the corresponding instances. Basically, plugins enhance the model schema by integrating custom

44 4.2 The GENESIS2 Testbed Generator

Host

1 *

WebService WsOperation DataType

1 * 1 2..*

CallInterceptor

1

*

QOSWsInvoker1*

Client

1

*

1

*

«uses»

«uses»

Figure 4.1: Sample G2 model schema

model types and interpret these to generate deployable testbed elements at the back-end. Taking
the provided WebServiceGenerator plugin for example, it enhances the model schema
with the types WebService, WsOperation, and DataType, integrates them into the model
structure on top of the default root element Host, and, eventually, supports the generation of
Web services at the back-end. Furthermore, the provided model types define customization
points (e.g., for service binding and operation behavior) which provide the grounding for plugin
composition. For instance, the CallInterceptor plugin, which intercepts SOAP messages,
attaches itself to the WebService type and allows to program the intercepting behavior which
will be then automatically deployed with the services.

In G2’s usage methodology, the engineer creates models according to the provided schema at
the front-end, specifying what shall be generated where, with which customizations, and the
framework takes care of synchronizing the model with the corresponding back-end hosts on
which the testbed elements are generated and deployed. The front-end, moreover, maintains a
permanent view on the testbed, allowing to manipulate it on-the-fly by updating its model.

For a better understanding of the internal procedures inside G2, we take a closer look at
its architecture. Figure 4.2 depicts the layered components, comprising the base framework,
installed plugins, and, on top of it, the generated testbed:

• At the very bottom, the basic runtime consists of Java 6, Groovy, and some 3rd-party
libraries.

• At the framework layer, G2 provides itself via an API and a shared runtime environment
is established at which plugins and generated testbed elements can discover each other
and interact. Moreover, an active repository distributes detected plugins among all hosts.

• Based on that grounding, installed plugins register themselves at the shared runtime and
integrate their functionality into the framework.

• The top layer depicts the results of the engineer’s activities. At the front-end he/she is
operating the created testbed model. The model comprises virtual objects which act as a

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 45

S
cr

ip
tin

g
In

te
rf

ac
e

Groovy Java

G2 Plugin Repo G2 API

CXF

G2 Runtime Env.

WS
Generator

WS
References

Call
Interceptor

Registry

Ref@
WS2

Ref@
WS1

WS2

Logger Cl1

Cl2

WS1
Reg

Groovy Java

G2 Plugin Repo G2 API

CXF

G2 Runtime Env.

WS
Generator

WS
References

Call
Interceptor

Client
Generator

Registry

Ref@
WS2

Ref@
WS1

Logger Cl1

Cl2

WS1
Reg

...

Ref@
WS2

Ref@
WS1

Groovy Java

Plugin Repo G2 API

CXF

G2 Front-End G2 Back-End

WS
Generator

WS
References

Call
Interceptor

Client
Generator

Registry

WS
Generator

WS
References

Call
Interceptor

Client
Generator

Registry

Groovy Java CXF

Logger Cl1

Cl2

...

Cl1

Cl2

WS1Model
specifies
Testbed

G
2

Pl
ug

in
s

G
en

er
at

ed
 T

es
tb

ed

Reg

...

Testbed
Model

Generated
Testbed

DtOp1
WS1

DtOp2
Op3

WS2

Op1Log

WS2
Log Op2

Op3

Plugin Repo G2 API Shared Runtime Environment

Figure 4.2: G2 architecture: infrastructure, plugins, and generated elements

view on the real testbed and as proxies for manipulation commands. While, at the back-
end the actual testbed is generated according to the specified model.

However, Figure 4.2 provides a rather static image of G2, which does not represent the system’s
inherent dynamics. Each layer establishes its own communication structures (see Figure 4.3)
which serve different purposes:

• On the bottom layer, the G2 framework connects the front-end to the back-end hosts and
automatically distributes plugins for having a homogeneous infrastructure.

• For the plugins, G2 allows to implement custom communication behavior. For exam-
ple, plugins can exchange data via undirected/broadcasted gossiping or, as done in the
SimpleRegistry plugin, by directing requests (e.g., service lookups) to a dedicated
instance.

• The testbed control is strictly centralized around the front-end. Each model object has
its pendants in the back-end and acts as a proxy for accessing and updating them. E.g.,
if a Web service model is extended with a new operation, the deployed instance in the
back-end will be extended by this operation and redeployed automatically.

• Finally, in the running testbed, G2 does not restrict the type and topology of interactions
but outsources this to the plugins and their application. For instance, Web services can
interact via nested invocations and, in addition, can integrate registries, workflow engines,
or even already existing legacy systems into the testbed.

46 4.2 The GENESIS2 Testbed Generator

G2 Framework

G2 Plugins

Testbed
Control

Generated
Testbed

Instances

Tested
SOA / Workflow

Figure 4.3: Interactions within G2 layers

The framework’s shared runtime environment deserves further explanation due to its importance.
In G2, the SOA engineer writes Groovy scripts for modeling and programming of testbeds. The
capabilities of the system, however, are defined by the applied plugins which provide custom
extensions. The runtime environment constitutes a binding between these by acting as a dis-
tributed registry. Every object inside the testbed (e.g., plugin, model type, generated testbed
instance, function/macro, class, variable) is registered at the environment via aliases, in order to
make it discoverable and G2 provides a homogeneous runtime infrastructure on each host. This
offers high flexibility, as it ensures that locally declared scripts, which reference aliases, are also
executable on remote hosts.

In the following sections we give a more detailed insight into selected features of G2 in order
to convey its potential.

4.2.2 Exploitation of Groovy Features

G2 derives a great deal of its flexibility and extensibility from Groovy [24]. Groovy is a dynamic
programming language for the Java Virtual Machine, providing modern features such as dynamic
typing, closures, and support for meta programming. Also, it has a compact syntax and can be
used as an easy-to-read scripting language.

G2 uses Groovy’s dynamic Expando type as a base class for model types. This allows to ex-
pand the model (ergo the generated testbed) on-the-fly and to observe changes, which facilitates
automatic front-end/back-end synchronization. Moreover, by intercepting model manipulation

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 47

requests, plugin developers can customize the handling of these (e.g., to log everything) or can
even restrict the model’s expandability.

Internally, model objects are realized as flexible hash maps and entire testbed models are
constructed by aggregating these, e.g., by attaching a WsOperation instance to the corre-
sponding list inside a WebService’s map. However, aggregating model objects by hand is
rather cumbersome and inefficient, especially for complex testbeds. As a solution, we use
Groovy’s Builder support which helps to create nested data structures in an intuitive manner.
The following sample demonstrates the convenience by comparing the modeling of Web ser-
vices with and without builders:� �
/ / hash map−based c r e a t i o n o f web s e r v i c e model
def s1 = w e b s e r v i c e . c r e a t e ("TestService")
s1 . b i n d i n g = "doc,lit"
s1 . t a g s += "test"
def op = w s o p e r a t i o n . c r e a t e ("SayHello")
op . paramTypes += [name : S t r i n g]
op . r e s u l t T y p e = S t r i n g
op . b e h a v i o r = { / / <− c l o s u r e

re turn "hello $name"
}
s1 . o p e r a t i o n s += op

/ / usage o f model b u i l d e r f o r g e n e r a t i n g t h e same WS model
def s2 = w e b s e r v i c e . b u i l d {

T e s t S e r v i c e () {

b i n d i n g = "doc,lit"
t a g s = ["test"]

SayHe l lo (name : S t r i n g , r e s p o n s e : S t r i n g) {
re turn "hello $name"

}
}

} [0]� �
Listing 4.1: Modeling Web services with and without Closures

The resulting model and its internal nested map structure look as shown in the following snippet.
The Web service model comprises the model of the operation in the corresponding variable
and the operation covers its data types. Keeping models in such map structures benefits the
serialization of testbed models which can be mapped easily into XML.� �
t y p e : WebService
i d : ad8f20ae−ea4e −4909−8c4b−d1c10668167e
name : T e s t S e r v i c e
b i n d i n g U s e : LITERAL
b i n d i n g S t y l e : DOCUMENT
b e h a v i o r : r e t u r n " h e l l o $name "
o p e r a t i o n s : < L i s t >

(

48 4.2 The GENESIS2 Testbed Generator

t y p e : WsOperat ion
i d : f00d74f9 −3bb0−4969−8161−a139b2a7cb26
name : SayHel lo
paramTypes : <Map>

{
name :

t y p e =DataType
i d =86056 f9e−0c25−46f1−ac5d−3b9e542e89dd
name= S t r i n g
javaClassName = j a v a . l a n g . S t r i n g

r e t u r n T y p e :
t y p e =DataType
i d =86056 f9e−0c25−46f1−ac5d−3b9e542e89dd
name= S t r i n g
javaClassName = j a v a . l a n g . S t r i n g

}
)� �
Listing 4.2: Internal structure of a Web service model

By default, model types allow to encapsulate executable code (e.g., operation behavior in previ-
ous sample) in order to program the testbed and to implement fine-grained customizations. For
this purpose, G2 is using Groovy closures [25] which are executed on top of the shared runtime
environment (introduced in previous section). The environment provides access to all registered
entities inside the testbed (plugins, deployed instances, shared data, etc.) and offers introspec-
tion via model reflection. For example, the next snippet defines a simple operation behavior that
determines the number of available Web service models and invokes the Logger plugin. Dur-
ing execution, Groovy would resolve the aliases webservice and log, and provide access to
the referenced instances.� �
op . b e h a v i o r = {

def num = w e b s e r v i c e . g e t A l l () . s i z e ()
l o g . w r i t e ("Currently $num service models exist.")

}� �
As the structures of testbed models can get quite complex, we use GPath expressions [26] to
offer simplified access via compact queries. In the following example, the query checks whether
there exist local services which are tagged with "test" and which contain an operation named
"SayHello". Such queries are applied to select and manipulate specific parts of the model
with one single command.� �
l o c a l h o s t .

w e b s e r v i c e . g r ep { s−> "test" in s . t a g s } .
o p e r a t i o n . any{o−> o . name == "SayHello"}� �

In all, G2 benefits from its Groovy binding in a twofold manner. The dynamic features provide
the functional grounding for generating extensible testbeds, while the language’s brevity helps
to model them by using a clear and compact syntax.

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 49

4.2.3 Extensible Generation of Testbed Instances

Because of its generic nature, which provides a high level of extensibility, the G2 framework
outsources the generation of testbed elements to the plugins. This means each plugin that intro-
duces a model type into the schema is also handling the generation of deployable instances out
of it. G2 does also not predefine a strict methodology for how the instances must be generated,
but rather provides supporting features. This might raise the false impression that we are just
providing the base framework and leave the tricky part to the plugin developers. The truth is that
we kept the framework generic on purpose, in order to have a basic grounding for future research
on testbed generation, which might also include non-SOA domains. At the time of publishing
G2, we had developed a set of plugins covering basic SOA:

• WebServiceGenerator creating SOAP Web services

• WebServiceInvoker calling remote SOAP services, both generated and preexisting
ones (e.g., 3rd-party .NET-based)

• CallInterceptor processing SOAP calls on a message level (e.g., for fault injection
or logging)

• DataPropagator providing automated replication of variables/macros/functions among
back-end hosts in order to establish a homogeneous shared runtime environment

• QOSEmulator emulating Quality of Service properties

• SimpleRegistry for global service lookups

• ClientGenerator seeding testbeds with standalone clients (e.g., for bootstrapping
testbed activities)

Meanwhile this set of plugins got extended with new ones, e.g., the fault injection plugins pre-
sented in Chapter 5. Of these plugins, however, the WebServiceGenerator plays a major
role and, therefore, serves as a good example for demonstrating the testbed generation process.
We have reused selected parts of the generation code from G1 but we were able to simplify it
significantly by using Groovy features. Basically, the process comprises the following steps:

1. Recursive analysis of the WebService model to determine used customization plugins
and message types.

2. Translation of message types (DataTypemodels) to Java classes that represent the XSD-
based data structures (using xjc, the Java XML Binding Compiler).

3. Automatic generation of Java/Groovy source code implementing the modeled Web ser-
vice.

4. Compilation of sources using Groovy’s built-in compiler.

50 4.2 The GENESIS2 Testbed Generator

5. Forwarding the generation of customizations to corresponding plugins. E.g., to Call-
Interceptor which extends the Web service’s instance with additional code for pro-
cessing SOAP messages.

6. Deployment of completed Web service instance at local Apache CXF [4] endpoint.

7. Subscription to model changes for automatic adaptation of deployed Web service instance.

The following Java/Groovy code demonstrates the generated source code for the Web service
modeled in Listing 4.1 on Page 47. Similar as done in G1, the model is mapped into a JAX-
WS-annotated class. However, one of the big differences is the handling of functional behavior
which got hard-coded in G1. In G2, the Web service is accessing its model at invocation (e.g.,
in Line 41) in order to retrieve the Closure object containing the behavior specification, bind
some variables to its runtime environment (Lines 44-48), and executes it (Line 49). This flexible
retrieval of behavior code allows to perform hot updates on running Web services, just by replac-
ing Closure variables, and, this way, updating their functionality without the need of redeploying
them. Of course, if one wants to update a service’s signature (e.g., change an operation’s name)
this would require to regenerate and redeploy the service anew.� �

1 import j a v a x . jws . ∗ ;
2 import j a v a x . xml . ws . Holde r ;
3 import j a v a x . jws . soap . ∗ ;
4 import j a v a x . xml . ws . soap . A d d r e s s i n g ;
5 import j a v a x . a n n o t a t i o n . Resource ;

7 @WebService (name = "TestService" , t a r g e t N a m e s p a c e = "http://www.vitalab.
tuwien.ac.at/Genesis2/generated/TestService")

8 @SOAPBinding (s t y l e = SOAPBinding . S t y l e .DOCUMENT, use = SOAPBinding . Use .
LITERAL , p a r a m e t e r S t y l e = SOAPBinding . P a r a m e t e r S t y l e .WRAPPED)

9 i n t e r f a c e I T e s t S e r v i c e {

11 @WebMethod
12 @WebResult (name="response")
13 p u b l i c vo id SayHel lo (@WebParam (name="name") S t r i n g name , @WebParam (name="

result") S t r i n g r e s u l t) throws E x c e p t i o n ;
14 }

16 @WebService (name = "TestService" , portName = "TestServicePort" ,
t a r g e t N a m e s p a c e = "http://www.vitalab.tuwien.ac.at/Genesis2/generated/
TestService" , e n d p o i n t I n t e r f a c e = "ITestService")

17 c l a s s T e s t S e r v i c e implements I T e s t S e r v i c e {

19 @Resource
20 WebServ iceCon tex t wsc0 ;
21 WebService ws0=AModelElement . getMap (WebService) . g e t ("ad8f20ae-ea4e-4909-8

c4b-d1c10668167e") ;

23 p u b l i c T e s t S e r v i c e () throws E x c e p t i o n {
24 C l o s u r e d e p l 0 =ws0 . getOnDeploy () ;
25 i f (d e p l 0) {
26 ws0 . g e t P l u g i n () . p r e p a r e H o o k C l o s u r e (wsc0 , ws0 , d e p l 0) . c a l l () ;

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 51

27 }
28 }

30 p u b l i c vo id onUndeploy () {
31 C l o s u r e undep l0 =ws0 . getOnUndeploy () ;
32 i f (undep l0) {
33 ws0 . g e t P l u g i n () . p r e p a r e H o o k C l o s u r e (wsc0 , ws0 , undep l0) . c a l l () ;
34 }
35 }

37 @WebMethod
38 @WebResult (name="response")
39 p u b l i c S t r i n g SayHel lo (@WebParam (name="name") j a v a . l a n g . S t r i n g name) throws

E x c e p t i o n {
40 def r e s u l t 0 ;
41 WsOperat ion op0=ws0 . g e t O p e r a t i o n ("SayHello") ;
42 groovy . l a n g . C l o s u r e be0=op0 . g e t B e h a v i o r () ;
43 i f (be0) {
44 be0=ws0 . g e t P l u g i n () . p r e p a r e O p e r a t i o n C l o s u r e (wsc0 , ws0 , op0) ;
45 C l o s u r e D e l e g a t e D i s p a t c h e r . s e t V a r i a b l e (be0 ,"name" , name) ;
46 C l o s u r e D e l e g a t e D i s p a t c h e r . s e t V a r i a b l e (be0 ,"result" , r e s u l t) ;
47 C l o s u r e D e l e g a t e D i s p a t c h e r . r e g i s t e r C o n s t a n t (be0 ,"args" , [name , r e s u l t]) ;
48 C l o s u r e D e l e g a t e D i s p a t c h e r . r e g i s t e r C o n s t a n t (be0 ,"argNames" , ["name" ,"

result"]) ;
49 r e s u l t 0 =be0 . c a l l () ;
50 }
51 re turn r e s u l t 0 ;
52 }
53 }� �

Listing 4.3: Generated Java/Groovy code of a Web service

In general, the whole generation procedure depends completely on the plugin’s functional pur-
pose and is not restricted by the framework. For instance, in contrast to the WebService-
Generator that actually generates source code, the CallInterceptor translates the mod-
eled functionality into Apache CXF Features [6] and binds them to service and client instances,
the ClientGenerator simply implements programmable threads, and the QOSEmulator
does not generate any deployable elements but works in the background by slowing down and
hampering the interactions within the testbed.

Evidently, in G2, plugins are more than just simple extensions but provide essential features
for testbed generation. They define the model schema, implement testbed capabilities, and han-
dle the actual generation of testbed instances. Consequently, they can become quite complex.
To support the implementation of new plugins, G2 provides a base class that carries out funda-
mental tasks for installation, deployment, and communication among remote instances, so that
developers can focus on the plugin’s primary features.

52 4.3 Practical Application

4.2.4 Multicast Testbed Control

A drawback of G1 was that testbed manipulations had to be done in a point-to-point manner,
updating one Web service at a time. This was an issue for controlling large-scale testbeds, such
as the one used in the VRESCO project [123] consisting of up to 10000 services. To overcome
this issue, G2 supports multicast-based manipulations. This feature is inspired by multicast
network communication, where a single transmitted packet can reach an arbitrary large number
of destination hosts with the help of replicating routers.

To provide similar efficiency, G2 uses filter closures which specify the destination of a
change request and reduces the number of request messages. In detail, G2 applies the filter
at the local testbed model to get the resulting set of designated elements and checks at which
back-end hosts these are deployed. Then it wraps the change request, including the filter, and
sends it to the involved hosts. Eventually, the hosts unwrap it, run the filter locally, and perform
the changes on each matched testbed element. This way, G2 reduces the number of request mes-
sages to the number of involved back-end hosts, which significantly improves efficiency. The
following snippet shows a sample multicast manipulation. It addresses Web services matching
a namespace and performs a set of modifications on them, e.g., appending a new operation and
setting model properties.� �
def newOp= w s o p e r a t i o n . c r e a t e ("newOperation")
newOp . b e h a v i o r ={ / / do some th ing . . . }

/ / mcast−l i k e u p d a t e o f Web s e r v i c e s
w e b s e r v i c e (op : newOp) { s−> / / f i l t e r c l o s u r e

s . namespace =~ / i n f o s y s . t u wi en . ac . a t /
} { s−> / / command c l o s u r e

s . o p e r a t i o n s +=op
s . s o m e P r o p e r t y = "someValue"

}� �
Listing 4.4: Sample command for multicast-like update

4.3 Practical Application

We demonstrate the application of G2 in a scenario for generating QoS testbeds in order to
give a better understanding of the presented concepts and also to give an impression about the
intuitiveness of G2’s script-based control. Our scenario covers the creation of a rather simple
testbed for testing the QoS monitor [141] used in the VRESCO project. The monitor performs
periodical checks for determining a Web service’s execution time, latency, throughput, avail-
abiltiy, robustness, and other QoS properties. Most of the monitoring is done in a non-intrusive
manner, while for some checks local sensors need to be deployed at the service. For verifying
the monitor’s correct functionality, runtime tests must be performed on a testbed of generated
Web services simulating QoS properties. Furthermore, the QoS properties must be controllable
during test execution and the Web services must support the application of local sensors. For the
sake of simplicity we omitted some testbed features, such as registration of generated services

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 53

at a broker, and replaced the usage of the QoSEmulator. Instead, we just simulate processing
time and failure rate via simple delaying and throwing exceptions at the Web operations. How-
ever, for demonstration purposes, we have included some additional features, such as nested
invocations, dynamic replacement of functionality, and generation of active clients. For setting
up the testbed, we are using the plugins WebServiceGenerator, WebServiceInvoker,
CallInterceptor, ClientGenerator, SimpleRegistry, and DataPropagator,
which establish the model schema depicted in Figure 4.1. We divided the scenario into three
parts: in the first step we generate the service-based testbed, then we generate clients invoking
the testbed’s services, and, finally, show how the running testbed can be altered at runtime.

Listing 4.5 covers the specification of the services. First, a set of 10 back-end hosts (which
must be already running at the specified location) is referenced and the service’s message types
are imported from an XSD file. In Line 11, the DataPropagator plugin is invoked, via its
alias prop, to bind a global function/closure to the shared runtime environment. The function
simply chooses a random element out of a list and will be used to deploy components at ran-
dom back-end hosts. The testbed itself comprises 100 simple worker services and, in addition,
20 delegators that dispatch invocations to the workers. In Lines 19 to 35, the worker services
are built. For each we declare variables for controlling the simulation of QoS (delay and
failureRate) , and add a tag for distinction ("worker"). For the worker’s Web service op-
eration Process we specify its I/O message types and customize its behavior with simple code
for simulating delay and failure rate, controlled via the service’s variables. Later, the composite
delegator services are created in a similar manner (Lines 38-65), but contain nested service invo-
cations and a user-defined customization encapsulated in the processError() function. Fur-
thermore, a header argument is specified (neededResults: hdr(int)), which means that
it is declared as part of the SOAP header instead of the body. In Line 52 the SimpleRegistry
is queried to get a list of references to worker services. Of these random ones are picked and
invoked (Line 55) in sequence, until the required number of correct responses has been reached.
On faults, the customizable error handling routine named processError() is called. Even-
tually, the delegator service returns a list of responses. At the end of the script, the testbed is
generated by deploying the modeled Web services on random hosts.� �

1 / / r e f e r e n c e 10 back−end h o s t s
2 1 . up to (1 0) { n−>
3 h o s t . c r e a t e ("192.168.1.$n" , 8 0 8 0)
4 }
5 h o s t l i s t = []

7 / / l o a d message t y p e d e f i n i t i o n s from XSD f i l e
8 prop . inType = d a t a t y p e . c r e a t e ("/path/to/sample.xsd" ,"test")
9 prop . outType = inType / / same i n p u t and o u t p u t t y p e

11 prop . r a n d o m L i s t I t e m ={ l s t −>
12 l s t = l s t . f l a t t e n () / / workaround f o r n e s t e d l i s t s
13 pos=new Random () . n e x t I n t (l s t . s i z e ())
14 re turn l s t [pos]
15 }

17 def s e r v i c e L i s t = w e b s e r v i c e . b u i l d {

54 4.3 Practical Application

19 1 . up to (2 0) { i−> / / c r e a t e S e r v i c e 1 . . S e r v i c e 1 0 0
20 "Service$i" () {

22 d e l a y =0
23 f a i l u r e R a t e =0 .0
24 t a g s =["worker"]

26 / / Web s e r v i c e o p e r a t i o n " P r o c e s s "
27 P r o c e s s (i n p u t : inType , r e s p o n s e : outType) {

29 Thread . s l e e p (d e l a y)
30 i f (new Random () . n e x t F l o a t () < f a i l u r e R a t e) {
31 throw new E x c e p t i o n ("sorry!")
32 }
33 re turn outType . n e w I n s t a n c e ()
34 }
35 }
36 }

38 1 . up to (5) { i−> / / c r e a t e 20 d e l e g a t o r s e r v i c e s
39 "CompositeService$i" () {

41 t a g s =["delegator" ,"composite"]

43 p r o c e s s E r r o r ={} / / i n i t i a l l y empty f u n c t i o n

45 / / Web s e r v i c e o p e r a t i o n " D e l e g a t e "
46 D e l e g a t e (i n p u t : inType , n e e d e d R e s u l t s : hdr (i n t) , r e s p o n s e : a r r a y O f (

outType)) {

48 def g o t R e s u l t s =0
49 def r e s u l t = []

51 whi le (g o t R e s u l t s < n e e d e d R e s u l t s) {
52 def r e f s = r e g i s t r y . g e t {"worker" in i t . t a g s }
53 def r e f = r a n d o m L i s t I t e m (r e f s)
54 t r y {
55 def r e s p = r e f . P r o c e s s (i n p u t) . r e s p o n s e
56 r e s u l t += outType . n e w I n s t a n c e () . a s s i g n (r e s p)
57 g o t R e s u l t s ++
58 } catch (e) {
59 p r o c e s s E r r o r (e)
60 }
61 }
62 re turn r e s u l t
63 }
64 }
65 }
66 }

68 s e r v i c e L i s t . each { s−> / / de p lo y a t random h o s t s
69 s . dep loyAt (r a n d o m L i s t I t e m (h o s t l i s t))

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 55

70 }� �
Listing 4.5: ’Generation of Web services for task delegation example’

Though, in this state the testbed contains only passive services awaiting invocations. In order
to make it “alive”, by generating activity, Listing 4.6 specifies and deploys clients which invoke
random delegator services in 5 second intervals.� �

1 def i n i t C l i e n t = c l i e n t . c r e a t e ()

3 i n i t C l i e n t . run = t rue / / b o o l e a n f l a g ’ run ’

5 i n i t C l i e n t . code ={ / / c l i e n t code as c l o s u r e
6 whi le (run) {
7 Thread . s l e e p (5 0 0 0) / / e v e r y 5 s e c o n d s
8 def r e f s = r e g i s t r y . g e t {"delegator" in i t . t a g s }
9 def r = r a n d o m L i s t I t e m (r e f s) / / p i c k random

10 def a r g = inType . n e w I n s t a n c e ()
11 p r i n t l n r . D e l e g a t e (arg , 3) / / i n i t i a t e d e l e g a t i o n
12 }
13 }

15 i n i t C l i e n t . dep loyAt (h o s t l i s t) / / run eve rywhere� �
Listing 4.6: ’Generation of clients invoking delegator Web services’

Finally, Listing 4.7 demonstrates how running testbeds can be altered at runtime. At first, a call
interceptor is created, which can be, for instance, used to place the QoS sensors. In our example
we simply print out the message content to stdout. We make use of G2’s multicast updates
and enhance all delegator services by appending the interceptor to the service model. In the same
request we replace the (formerly empty) processError() routine and instruct the services to
report errors to a 3rd-party Web service. At the back-end, the WebServiceGenerator plug-
ins will detect the change request and automatically adapt the addressed services. Furthermore,
by making use of G2’s immediate synchronization of models with running testbed instances, the
simulation of QoS is altered on the fly by changing the corresponding parameter variables of
worker services in a random manner. In the end, the clients are shut down by changing their
run flag.� �

1 def p i = c a l l i n t e r c e p t o r . c r e a t e ()
2 p i . hooks =[in :"RECEIVE" , o u t :"SEND"] / / where t o b ind
3 p i . code ={ c tx −>
4 p r i n t l n "MESSAGE = ${ctx.soapMsg}" / / j u s t p r i n t t h e msg o b j e c t
5 }

7 w e b s e r v i c e (i : p i) { s−>
8 "delegator" in s . t a g s
9 } { s−>

10 s . i n t e r c e p t o r s += i / / a t t a c h t o a u t h o r s e r v i c e s
11 s . p r o c e s s E r r o r = { e−>
12 def u r l ="http://somehost.com/reportError?WSDL"
13 def r epor tWs = w s r e f e r e n c e . c r e a t e (u r l)

56 4.4 Discussion of Shortcomings and Solutions

14 r epor tWs . Rep o r t (my . w e b s e r v i c e . name , e . message)
15 }
16 }

18 i n t c y c l e s =100

20 whi le (−−c y c l e s >0) {
21 Thread . s l e e p (3 0 0 0) / / e v e r y 3 s e c o n d s

23 def worke r s = w e b s e r v i c e . g e t {"worker" in i t . t a g s }
24 def w= r a n d o m L i s t I t e m (worke r s)
25 w. d e l a y =new Random () . n e x t I n t (5∗1000) / / 0 − 5 s e c
26 w. f a i l u r e R a t e =new Random () . n e x t F l o a t () / / 0 . 0 − 1 . 0
27 }

29 i n i t C l i e n t . run = f a l s e / / s h u t down a l l c l i e n t s� �
Listing 4.7: ’On-the-fly manipulation/extension of running testbed’

In this scenario we have tried to cover as many key features of G2 as possible, to demonstrate
the simplicity of our scripting interface. We have used builders to create nested model structures
(WebService→WsOperation→DataType), designed Web services and clients with pa-
rameterizable behavior, customized behavior with closures, applied plugins (e.g., call intercep-
tors and service invokers), performed a multicast manipulation request, and steered the running
testbed via parameters. The generated testbed consists of interconnected Web services and ac-
tive clients calling them. To facilitate proper testing of the QoS monitor [141], it would require
to simulate not only processing time and fault rate, but also scalability, throughput, and other
properties which we have skipped in this chapter but will be explained in detail in the next one.
In any case, we believe that the presented scenario helps to understand how G2 is used and gives
a good impression about its capabilities.

4.4 Discussion of Shortcomings and Solutions

Certain concepts of G2 might be considered with skepticism by readers and, therefore, require
to be discussed. First of all, the usage of closures, which encapsulate user-defined code, for
customizations of behavior is definitely risky. As we do not check the closures for malicious
code, it is, for instance, possible to assign
textttSystem.exit(0)} to some testbed instance at the back-end, to invoke it, and hereby to shut
down the remote G2 instance. This security hole restricts G2 to be used only by trusted engi-
neers. For the current prototype we accepted this restriction on purpose and kept closure-based
customizations for the vast flexibility their offer.

Some may also consider the G2 framework as too generic, since it does not generate the
testbed instances but delegates this to the plugins, and may wonder whether it deserves to be
called a “testbed generator framework” at all. In our opinion this is mainly a question of where
to define the boundary between a framework and its extensions. We implemented a number of

Chapter 4: GENESIS2 - Dynamic Testbeds for SOA 57

plugins which generate basic SOA artifacts, such as services, clients, and registries and, there-
fore, provide all the functionality one expects of a testbed generator.

Moreover, in the introduction of this chapter we said that SOA comprises more than just
Web services, but also clients, service buses, mediators, workflow engines, etc. But looking at
the list of plugins which we developed (see Section 4.2.3), it becomes evident that they do not
cover all these components. This is partially true, as this chapter presents the current state of
our work at the time of publishing G2. Meanwhile, several extensions and other component
generator plugins have been developed that are presented in the following chapters.

Last but not least, the question might be raised why we prefer a script-based approach. The
reason is that we derive a lot of flexibility from the Groovy language and see high potential in
the ability to program the testbed’s behavior compared to, for instance, composing everything in
GUIs, which provides user convenience at the cost of flexibility.

CHAPTER 5
Generating Fault Injection Testbeds

for SOA

Published in:

Programmable Fault Injection Testbeds for Complex SOA.

Juszczyk L., Dustdar S. (2010).

8th International Conference on Service-Oriented Computing (ICSOC’10), 07. - 10. December
2010, San Francisco, USA.

and in

Testbeds for Emulating Dependability Issues of Mobile Web Services.

Juszczyk L., Dustdar S. (2010)

1st International Workshop on Engineering Mobile Service Oriented Systems (EMSOS). 6th
IEEE World Congress on Services (SERVICES’10), 5. - 10. July 2010, Miami, USA.

Outline. The more complex a service-oriented system gets, the more error-prone it becomes.
Faults can happen at every SOA component, at various levels, and have severe effects on the
whole SOA system. As in any distributed system, fault handling mechanisms can mitigate the
effects of faults and guarantee a certain level of availability. And these mechanisms must be
tested too. In this chapter we introduce techniques for generating testbeds which expose faulty
behavior, also referred to as fault injection testbeds. By applying these, engineers can evaluate
the fault handling routines of their systems in various scenarios in order to develop more robust
SOAs.

59

60 5.1 Motivation

5.1 Motivation

Modern SOA systems comprise stand-alone and composite Web services, clients, brokers and
registries, workflow engines, monitors, governance systems, message dispatchers, service buses,
and other components. In general, we can divide SOA components into three groups: a) stand-
alone components which are independent, b) complex services/components which have depen-
dencies and, therefore, are affected by others, and c) clients which are simply consuming the
offered services. Considering the dependencies within a complex SOA, it becomes evident that
each component is a potential fault source and has an impact on the whole system, however, the
complex ones are affected in a twofold manner as they have also to deal with remote faults of the
components they depend on. As outlined correctly in [140] and [116], faults do also happen on
multiple levels, to be precise, on each layer of the communication stack. This includes low-level
faults on the network layer (e.g., packet loss/delay), faults on the transport layer (e.g., middle-
ware failures), on the interaction layer (quality of service), as well as directly at the exchanged
messages which can get corrupted. Depending on the structure and configuration of the SOA,
each of these faults can cause a chain of effects (also referred to as error propagation), ranging
from simple execution delays to total denial of service. As a consequence, sophisticated fault
handling mechanisms are required in order to mitigate the effects of faults, to prevent failures,
and to guarantee a certain level of robustness. This problem has already been addressed in sev-
eral works [92, 98, 129] and is out of the scope of our research. Instead, we are facing it from
a different perspective: how can engineers evaluate fault handling mechanisms of a SOA? How
can they verify that their systems will behave as expected once deployed in their destination
environment? These challenges can only be met if engineers perform intense tests during the
development phase, execute scenarios in erroneous SOA environments, and check their system’s
behavior on faults. However, the main problem remains how to set up such scenarios, in par-
ticular, the question how engineers can be provided with proper testbeds which emulate SOA
infrastructures in a realistic way. Again, we argue that engineers must be given a possibility to
configure testbeds according to their requirements. Depending on the developed system, this
includes the ability to customize the topology and composition of the testbed, to specify the
behavior of all involved components, and to program individual fault injection models for each
of these. Research on fault injection for SOA has been already done by several groups, yet
that these works mostly aim testing only individual Web services, for instance, by perturbing
their communication channels [131]. The problem of testing complex components which are
operating on a whole SOA environment still remained unsolved. This has been our motivation
for doing research on a solution which allows to generate large-scale fault-injection testbeds,
provides high customizability, and offers an intuitive usage for engineers.

In the current chapter we apply G2 and extend it with plugins in order to generate multi-level
fault injection testbeds. We empower engineers to generate emulated SOA environments and to
program fault injection behavior on diverse levels: at the network layer, at the service execution
level, and at the message layer.

Chapter 5: Generating Fault Injection Testbeds for SOA 61

Host

1 *

WebService WsOperation DataType

1 * 1 2..*

MsgPerturber

1

*

WsInvoker1*

Client

1

*

«uses»

«uses»

1 *

QoS

1

1 1

1

NetworkFaults

CallInterceptor

Figure 5.1: Extended G2 testbed model schema for fault injection

5.2 Programmable Multi-level Fault Injection

Taking into consideration the complexity of a typical SOA, which comprises diverse components
being deployed on heterogeneous platforms and interacting with each others, it becomes evident
that each host, each component, each communication channel, and each exchanged message is
a potential source of faults, erroneous behavior, and service failures [72]. Basically, faults can
occur at every level/layer of the communication stack and, therefore, if testbeds are supposed to
emulate realistic scenarios they must be also able to emulate a wide range of fault types. Based
on the G2 framework we have developed an approach for generating SOA testbeds and injecting
programmable faults into these. Due to G2’s generic nature and its extensibility it is possible to
emulate a wide variety of faults by writing plugins which augment the testbed’s components and
impair their execution. In our work we have concentrated on the following:

1. Faults at the message layer, in terms of message data corruption.

2. Faults at the service execution, affecting Quality of Service (QoS).

3. Faults at the network layer, hampering the packet flow between hosts.

Each type of fault is affecting a different part of the overall SOA and, therefore, we have split
their emulation into three independent plugins. Each plugin extends the model schema and
offers possibilities to customize and program the fault injection behavior. Figure 5.1 depicts the
provided model types and their position within the schema.

62 5.2 Programmable Multi-level Fault Injection

• Since network faults affect the whole communication between hosts, their model does
directly extend the Host type.

• Service execution faults can be caused by the whole service (e.g., low availability) or only
by individual operations (e.g., erroneous implementation), therefore their model is bound
to both.

• Finally, for message faults we have extended the CallInterceptor which provides
access to the request and response messages for perturbation purposes.

In the following sections we are explaining the individual fault injection mechanisms in more
detail.

5.2.1 Message Faults

SOAP Web services are using WSDL documents [56] to describe their interfaces. Consequently,
the service can define the expected syntax of the request messages and the client is aware of the
response message’s syntax. However, malicious components can produce corrupted messages
which either

• contain meaningless content (= message errors on a semantical level, e.g., an address
String in a field where a name is expected),

• which violate the message’s XML schema definition [64] (= high-level syntax errors, e.g.,
surplus XML attributes in a tag),

• or which even do not represent a correct XML document at all (= low-level syntax errors,
e.g., no closing tags present).

Depending on the degree of corruption, fault handling mechanisms can be applied to allow the
integration of faulty components into a SOA [131]. To test such mechanisms we have developed
a plugin which allows to intercept exchanged SOAP messages and to perturb them on each of
the mentioned levels. Engineers can program the perturbation via the MsgPerturber model
and the plugin attaches the faulty behavior to Web services and clients, by using Apache CXF’s
interceptors [7]. The interceptors provide means to intervene at all phases within the chain of
modules that process SOAP messages. Taking the processing of incoming request messages for
example, it starts with reading in the byte stream and building an XML tree structure from this.
Next, the pure XML is transformed into objects which represent SOAP messages, including
headers and body elements. Then, the SOAP elements are unmarshalled into Java objects rep-
resenting the message types. As last step, the SOAP call is passed to the corresponding method
of the class/object implementing the Web service. Obviously, for outgoing messages this chain
is being processed in a reserve manner.

For injecting faults, it is necessary to place a module into the chain, which corrupts the mes-
sage. Even though all corruption could be done in the very first phase of an incoming chain,

Chapter 5: Generating Fault Injection Testbeds for SOA 63

Phase Functions
RECEIVE Transport level processing
(PRE/USER/POST)_STREAM Stream level processing/transformations
READ This is where header reading typically occurs
(PRE/USER/POST)_PROTOCOL Protocol processing, such as JAX-WS SOAP handlers
UNMARSHAL Unmarshalling of the request
(PRE/USER/POST)_LOGICAL Processing of the umarshalled request
PRE_INVOKE Pre invocation actions
INVOKE Invocation of the service
POST_INVOKE Invocation of the outgoing chain if there is one

Table 5.1: Ingoing SOAP processing phases in Apache CXF.

Phase Functions
SETUP Any set up for the following phases
(PRE/USER/POST)_LOGICAL Processing of objects about to marshalled
PREPARE_SEND Opening of the connection
PRE_STREAM
PRE_PROTOCOL Misc protocol actions
WRITE Writing of the protocol message, e.g., the SOAP Envelope
MARSHAL Marshalling of the objects
(USER/POST)_PROTOCOL Processing of the protocol message
(USER/POST)_STREAM Processing of the byte level message
SEND Final sending of message and closing of transport stream

Table 5.2: Outgoing SOAP processing phases in Apache CXF.

or the last of an outgoing one, where the message is available as a byte stream or string, it
makes more sense to place the corrupting code deeper in the chain. Tables 5.1 and 5.2 (taken
from [7]) display the individual phases which are supported by CXF and where SOAP process-
ing modules can be placed. For semantic-level corruption we place the code into the phases
"PRE_LOGICAL" and "MARSHAL" as it gives us access to the Java objects representing the
messages data, which can be altered. For syntax errors we apply the corruption at the phases
"RECEIVE" and "PRE_STREAM" and either perturb the byte stream directly (for low-level
syntax) or at the parsed XML tree (for high-level syntax errors).

We have built the perturbation mechanism upon the visitor pattern [132]. Perturbation code,
wrapped in visitor objects, is propagated recursively along the XML tree and/or the unmarshalled
Java objects and has full read/write access for performing arbitrary manipulations.

For pure semantic perturbation the engineer can overwrite the message’s values, but cannot
violate the XML structure. The plugin unmarshalls the SOAP body arguments, as well as the
headers, into Java objects and applies the visitor code on them. The first sample code shows
an interceptor that is programmed to assign random values to all integer fields named Price.

64 5.2 Programmable Multi-level Fault Injection

Moreover, it deletes all postcodes for matching addresses.� �
def v a l u e P e r t = m s g p e r t u r b e r . c r e a t e ("args") / / p e r t . d a t a v a l u e s

v a l u e P e r t . code = { i t −>
i f (i t . name=="Price" && i t . t y p e == i n t) { / / g e t by name and t y p e

i t . v a l u e ∗=new Random () . n e x t I n t ()
} e l s e i f (i t . name=="Address" && i t . v a l u e . c o u n t r y =="Austria") { / / by v a l

i t . v a l u e . p o s t c o d e = n u l l
}

}� �
For high-level syntax manipulation (next code snippet), the engineer can alternate both, the
content and the structure of the XML document. In this case the visitor is applied on the DOM
tree of the message. In the sample code, the visitor is looking for nodes which have children
named country and appends a new child which violates the message’s XSD definition.� �
def x m l P e r t = m s g p e r t u r b e r . c r e a t e ("dom") / / p e r t . XML s t r u c t u r e

x m l P e r t . code = { node −>
i f (node . c h i l d r e n . any { c−> c . name=="Country" }) {

Node newChild = node . appendNode ("NotInXSD")
newChild . a t t r i b u t e s . someAtt="123"

}
}� �
The result of the last sample is still a well-formated XML document. For low-level corruption,
the message must be altered directly at the byte level, as demonstrated in the last snippet which
corrupts XML closing tags.� �
def b y t e P e r t = m s g p e r t u r b e r . c r e a t e ("bytes") / / p e r t . msg b y t e s

b y t e P e r t . code = { s t r −>
s t r . r e p l a c e F i r s t ("</" ,"<") / / remove c l o s i n g t a g from XML doc

}� �
Finally, the interceptors must be attached to a Web service model in order to be deployed at the
generated service instance and start injecting faults into its request and response messages.� �
s e r v i c e . i n t e r c e p t o r s +=[b y t e P e r t , xmlPer t , v a l u e P e r t] / / a t t a c h t o s e r v i c e� �
To illustrate the effect of message corruption consider the SOAP message examples in List-
ings 5.5 and 5.6. The first one shows the correct message before the corruption, the second
one shows the altered result. The effects reside in Line 5, where the price has been changed, in
Lines 8-13 where the post code has been removed and a new element (NotInXSD) has been
attached. Moreover, in Line 4 the closing tag has been changed replaced with an opening one,
which renders the XML document invalid.

Chapter 5: Generating Fault Injection Testbeds for SOA 65

� �
1 < s o a p : E n v e l o p e x m l n s : s o a p ="http://www.w3.org/2001/12/soap-envelope">
2 <soap:Body x m l n s : n s ="http://bookorder.com/ws">
3 < n s : O r d e r >
4 < n s : P r o d u c t >Book ABC< / n s : P r o d u c t >
5 < n s : P r i c e >30< / n s : P r i c e >
6 < n s : C u s t o m e r >
7 <ns:Name>Lukasz J u s z c z y k < / ns:Name>
8 < n s : A d d r e s s >
9 < n s : S t r e e t >XYZ−S t r a s s e 315< / n s : S t r e e t >

10 < n s : P o s t c o d e >1234< / n s : P o s t c o d e >
11 < n s : C i t y >Vienna < / n s : C i t y >
12 < n s : C o u n t r y > A u s t r i a < / n s : C o u n t r y >
13 < / n s : A d d r e s s >
14 < / n s : C u s t o m e r >
15 < / n s : O r d e r >
16 < / soap:Body >
17 < / s o a p : E n v e l o p e >� �

Listing 5.5: Original SOAP Message� �
1 < s o a p : E n v e l o p e x m l n s : s o a p ="http://www.w3.org/2001/12/soap-envelope">
2 <soap:Body x m l n s : n s ="http://bookorder.com/ws">
3 < n s : O r d e r >
4 < n s : P r o d u c t >Book ABC< n s : P r o d u c t >
5 < n s : P r i c e >180< / n s : P r i c e >
6 < n s : C u s t o m e r >
7 <ns:Name>Lukasz J u s z c z y k < / ns:Name>
8 < n s : A d d r e s s >
9 < n s : S t r e e t >XYZ−S t r a s s e 315< / n s : S t r e e t >

10 < n s : C i t y >Vienna < / n s : C i t y >
11 < n s : C o u n t r y > A u s t r i a < / n s : C o u n t r y >
12 <ns:NotInXSD someAtt="123" / >
13 < / n s : A d d r e s s >
14 < / n s : C u s t o m e r >
15 < / n s : O r d e r >
16 < / soap:Body >
17 < / s o a p : E n v e l o p e >� �

Listing 5.6: Corrupted SOAP Message

5.2.2 Service Execution Faults

Service execution faults usually result in degraded Quality of Service (QoS) [122]. Examples
are slower processing times which delay the SOA’s execution, scalability problems regarding
the number of incoming requests, availability failures which render parts of the SOA inaccessi-
ble, etc. Especially in the context of Web services, QoS covers a wide spectrum of properties,
including also security, discoverability, and also costs. However, in our work we only deal with
those concerning service execution, as defined in [141], comprising processing time, scalability,
throughput, error rate of Web service operations and the availability of the whole service. For

66 5.2 Programmable Multi-level Fault Injection

emulating these, we developed the QoSEmulator plugin, which has access to the generated
Web service instances at the back-end and intercepts their invocations in order to simulate QoS.
The QoSEmulator emulates service execution faults as follows:

• Availability is emulated by deploying and undeploying of Web services, in given intervals,
according to a probability value. For instance, an availability of 0.9 means that in a regular
interval (e.g., once a minute) the service will be deployed with a probability of 90% and
will be unavailable with 10% probability.

• Processing time, throughput, and scalability only slow down the processing of a service
request and do not cause any faults in the strict sense. Usually, these three qualities cohere
with each others, in terms of that each one has an effect on the others. For instance, a
weak scalability or throughput affects the general processing time, and vice versa. We
have chosen a rather simple model for specifying the effects of these qualities, which,
however, can be replaced with a more complex one easily. We specify processing time
as the minimum time the service needs to process an invocation. Parallel invocations are
all processed at the defined processing time, unless their number exceeds the throughput
parameter. In that case, the processing time will be increased according to the scalability
penalty, e.g., a penalty of 2.0 means that the processing time will grow quadratically.
Internally, delays are simulated by applying an interceptor which, however, does not alter
the SOAP message but just delays the processing.

• Error rate is quite simple and specifies the probability that the service’s response message
will be replaced with a SOAP fault, done in an interceptor placed in the outgoing chain.

To model a service’s QoS, engineers can either assign fixed values to the individual properties
(e.g., processing time = 10 seconds) or define more sophisticated fault models via Groovy clo-
sures, resulting in programmable QoS. The main advantage of closures consists in the ability to
incorporate diverse factors into the fault models. For example, engineers can set the availabil-
ity rate depending on the number of incoming requests or define the processing time according
to a statistical distribution function, supported via the Java Distribution Functions library (dis-
tlib) [34].

The following listings contain a sample specification of two QoS models, one for defining
the availability of a Web service and one for controlling the execution of its operations. The
availability is defined according to the daytime in order to simulate a less overloaded service
during the night.� �
def svcQos = qos . c r e a t e ()

svcQos . a v a i l a b i l i t y = {
i f (new Date () . g e t H o u r s () < 8) { / / from 0 t o 7 AM

re turn 99 /100 / / s e t h igh a v a i l a b i l i t y o f 99%
} e l s e {

re turn 90 /100 / / o t h e r w i s e , s e t lower a v a i l a b i l i t y r a t e
}

}� �

Chapter 5: Generating Fault Injection Testbeds for SOA 67

For the service operation, the processing time is derived from a beta distribution (alias dist)
while throughput and error rate are assigned with constant values. The effect of assign-
ing a closure to the processing time is, that at every invocation of the service/operation, the
QoSEmulator plugin checks the parameter by executing the closure and delays the execution
according to the return value.� �
def opQos = qos . c r e a t e ()

opQos . p r o c e s s i n g T i m e = {
d i s t . b e t a . random (5 0 0 0 , 1 , n u l l) / / b e t a d i s t r i b u t i o n

}
opQos . t h r o u g h p u t = 10 /60 / / r e s t r i c t t o 10 i n v o c a t i o n s p e r minu te
opQos . e r r o r R a t e = 15 /100 / / 15% of i n v o c a t i o n s w i l l f a i l w i th e x c e p t i o n s� �
At the end, the models are bound to the service and its operations.� �
s e r v i c e . qos=svcQos / / a t t a c h QoS model t o s e r v i c e d e f i n i t i o n

s e r v i c e . o p e r a t i o n s . g r ep { o−>
o . r e t u r n T y p e != n u l l / / and t o a l l 2−way o p e r a t i o n s (= r e t u r n i n g some th ing)

} . each {
o . qos=opQoS

}� �
5.2.3 Low-level Network Faults

Network faults, such as loss and corruption of IP packets, play a minor role in SOA fault han-
dling, mainly because they are already handled well by the TCP/IP protocol which underlays
most of the service-oriented communication. But they can cause delays and timeouts, and this
way slow down the whole data flow. Apart from that, there exist Web service protocols which
are built upon UDP, such as SOAP over UDP [48] and Web Service Dynamic Discovery [58],
which are, therefore, more vulnerable to network faults. Creating testbeds which emulate low-
level faults requires a much deeper intrusion into the operating system, compared to the other
plugins. It is necessary to intercept the packet flow, to perform dropping, duplication, reorder-
ing, slowing down, etc. This can hardly be done on top of the Java Virtual Machine which hosts
the G2 framework. To by-pass this issue, we have developed our NetworkFaultEmulator
plugin based on the Linux tool Traffic Control (tc) [39] (with netem module [41]) which allows
to steer packet manipulation at the kernel level. Unfortunately, this deprives G2 of its platform
independence but, on the other hand, allows to reuse tc’s rich set of features. Similar to the pre-
viously presented plugins, engineers create fault models but now they attach them directly to the
back-end hosts. There the fault models are locally translated into tc commands for manipulating
the host’s packet flow.

The presented next listings comprise a sample for illustrating the mapping from the model to
the resulting tc commands. The model is created by assigning self-explanatory parameters and
is finally being attached to the hosts. At the back-end, the plugin first sets up a virtual network
interface which hosts all generated instances, such as Web services, registries, etc. This step is

68 5.3 Practical Application

necessary for limiting the effect of the fault emulation only on the testbed instances, instead of
slowing down the whole physical system.� �
def nf = n e t w o r k f a u l t s . c r e a t e ()

n f . l o s s . v a l u e = 2 /100 / / 2% p a c k e t l o s s
n f . d u p l i c a t e . v a l u e = 1 /100 / / 1% p a c k e t d u p l i c a t i o n
n f . d e l a y . v a l u e = 100 / / 100ms
nf . d e l a y . v a r i a t i o n = 20 / / 20ms of v a r i a t i o n
n f . d e l a y . d i s t r i b u t i o n = "normal" / / normal d i s t r i b u t i o n

n f . dep loyAt (beHost1 , beHost2) / / a t t a c h t o BE h o s t s� �
The modelled faults are translated into tc commands that are applied on the back-end host. The
first block of commands sets up the necessary handler chains of tc for incoming and outgoing
traffic and binds them to port 8182, which is the port at which the back-end instances are hosted.
The second block contains the actual packet corruption commands which are derived from the
model.� �
t c q d i s c add dev l o h a n d l e 1 : r o o t h t b
t c c l a s s add dev l o p a r e n t 1 : c l a s s i d 1 : 1 h t b r a t e 1000Mbps
t c q d i s c add dev l o p a r e n t 1 : 1 h a n d l e 1 0 : netem
t c f i l t e r add dev l o p r o t o c o l i p p r i o 1 u32 match i p s p o r t 8182 0 x f f f f f l o w i d

1 : 1
t c q d i s c add dev l o i n g r e s s
t c f i l t e r add dev l o p a r e n t f f f f : p r o t o c o l i p u32 match i p d p o r t 8182 0 x f f f f

f l o w i d 1 : 1 a c t i o n m i r r e d e g r e s s r e d i r e c t dev i f b 0
t c q d i s c add dev i f b 0 r o o t netem

t c q d i s c change dev l o p a r e n t 1 : 1 h a n d l e 1 0 : netem d u p l i c a t e 1.0% l o s s 2.0%
d e l a y 100ms 20ms d i s t r i b u t i o n normal

t c q d i s c change dev i f b 0 r o o t netem d u p l i c a t e 1.0% l o s s 2.0% d e l a y 100ms 20ms
d i s t r i b u t i o n normal� �

And, eventually, when the fault injection must be stopped, the tc queues are deleted.� �
t c q d i s c d e l dev l o h a n d l e 1 : r o o t h t b
t c q d i s c d e l dev l o i n g r e s s
t c q d i s c d e l dev i f b 0 r o o t netem� �
Unfortunately, due to the static parameterization of tc, it is not possible to provide similar pro-
grammability of fault models via closures, as it is the case for the service execution faults.
Though, tc and netem provide a powerful facility to analyze the effects of low-level network
faults on SOA communication.

5.3 Practical Application

The question how G2 should be used to generate fault injection testbeds depends strongly on the
type of the tested SOA, its composition, purpose, as well as its internal fault handling mecha-

Chapter 5: Generating Fault Injection Testbeds for SOA 69

nisms. In the end, engineers have to generate testbeds which emulate the SOA’s final deploy-
ment environment as realistically as possible. While Groovy scripts are G2’s primary interface
for modeling testbeds, we also offer mechanisms for importing external specifications of SOAs
and their components into G2 models (e.g., from BPEL process definitions [17] and WSDL doc-
uments, as presented in the next chapter). Independent on how the testbed got specified, whether
from scratch or via imports, the engineer is always operating on a set of models describing SOA
components which have their pendant generated instances located in the back-end.

Of course, the evaluation of a software system also comprises the monitoring of the test
cases as well as the analysis of collected data. These data are, for instance, log files, performance
statistics, captured messages, and other resources, depending on the tested SOA and the fault-
handling mechanisms to be verified. These data must be also gathered from both, the tested SOA,
to analyze internal procedures and reactions on faults, as well as from the testbed itself, to know
which faults have been injected at which time. By correlating both, it is possible to narrow down
errors in the SOA and to detect causes of misbehavior. G2 provides means for gathering relevant
information about the execution inside the testbed, such as an eventing mechanism that allows
to track and log all changes within the testbed configuration or call interceptors for logging of
interactions. However, regarding the gathering of log data from the tested SOA system, we have
not developed any tool support so far. Also, for the analysis of test results and the narrowing
down of errors/bugs inside the SOA we have not come up yet with any novel contribution. We
regarded this problem as out of scope of our current research - and as possible future work - and
we concentrated on how to generate the testbeds.

In Section 4.2.4 we have shown how G2 facilitates convenient generation of large-scale
testbeds as well as manipulation of these in an efficient multicast-like manner. We are exploiting
the multicast feature for adapting larger testbed on-the-fly, e.g., for injecting faults. Listing 5.13
demonstrates its usage for updating hosts and Web services. The command expects the type of
the instances which shall be altered (in the sample: webservice and host) and two closure
code blocks. The first closure specifies the filter which determines the designated instances,
while the second one contains the manipulation commands. In the presented sample, fault mod-
els are attached to all Web services matching their namespace and annotation tags. Moreover,
all hosts within a defined subnet are being enhanced with network fault emulation. As a result,
multicast updates help to manage large-scale testbeds in a clear and compact manner.� �
w e b s e r v i c e { ws−> / / f i l t e r

"faulty" in ws . t a g s && ws . namespace =~ /www. i n f o s y s . t u wi en . ac . a t /
} { ws−> / / command

ws . qos = qosModel
ws . i n t e r c e p t o r s += [xmlPer tModel]

}

h o s t { h−> / / f i l t e r
h . l o c a t i o n =~ / 1 9 2 . 1 6 8 . 1 . /

} { h−> / / command
n e t F a u l t M o d e l . a t t a c h T o (h)

}� �
Listing 5.13: ’Injecting faults to hosts and Web services’

CHAPTER 6
Towards Automation of Testbed

Generation

Published in:

Automating the Generation of Web Service Testbeds using AOP

Juszczyk L., Dustdar S. (2011).

9th European Conference on Web Services (ECOWS’11), 14. - 16. September 2011, Lugano,
Switzerland.

Outline. In the last chapters we have shown how the concepts of GENESIS have evolved
and how the framework can be extended, e.g., in order to generate fault injection testbeds. In
these works, however, the whole specification of the testbeds, including composition, structure,
and functional behavior, had to be provided by the engineer/testers via the scripting language(s).
The current chapter presents our approach towards more automation of the specification process.
We apply techniques of aspect-oriented programming (AOP) in order to inspect Java-based SOA
systems at runtime, to detect invocations of remote Web services, and to generated replica ser-
vices for these automatically. Engineers are only required to specify customizations to the repli-
cas. As a result, we can automate parts of the the testbed generation and accelerate the whole
process.

6.1 Motivation

SOA’s principles are grounded on modularization of functionality into services and on providing
these to clients for on-demand usage. Of course, the idea of software modularization was not
invented with SOA but has been applied since decades. But what SOA propagates is not only to

71

72 6.2 Automated Generation of SOA Sandboxes

compose systems out of a set of modules, referred to as services, but also to integrate external
services (e.g., from other companies/organizations) into a system. This is supported by the open
character of Web service-based SOA, that uses open standards for communication (SOAP [47]),
interface descriptions (WSDL [56]), and for the numerous WS-* extensions which are pub-
lic [166]. The benefits are obvious: faster software development due to reuse and the ability
to choose dynamically among available services depending on their quality, just to list to most
prominent ones. External services can be integrated easily by analyzing their WSDL descrip-
tions, making sure that client and service agree on communication details, such as available
operations and exchanged message types.

Though, in spite of the benefits derived from flexible reuse, engineers of outsourcing systems
are facing several problems. Integration of functionality provided by external services turns an
SOA vulnerable, as the services may become unavailable or may suffer from degraded quality
of service. Hence, it is a potential risk for the dependability of an outsourcing SOA system.
To address this issue, such systems should undergo rigorous tests, in order to make sure that
they are able to handle faults properly and that there will be no bad surprises once they are
deployed. Unfortunately, the whole testing procedure becomes problematic as invocations of
external services often cost money or because their providers have policies which restrict trial
invocations.

In our previous chapters we argued that this dilemma can be mitigated by using testbeds that
emulate external SOA infrastructures. Engineers had to write specification scripts that describe
the environment to be emulated, including the topology as well as functional behavior of it. In
the current chapter we simplify this process. We evolve our approach towards an automated
generation of testbeds and reduce the input of SOA engineers significantly. We apply AspectJ
[15], an AOP extension for the Java VM, for inspecting Java-based SOA systems at runtime
in order to detect invocations of external Web services. On detection, our system analyzes the
remote services, generates replicas of these, and deploys them within a testbed. Eventually,
the invocation is redirected to the replica transparently, leaving the original service untouched.
The result of this procedure is that external SOA infrastructures can be emulated on-the-fly and
their replicas act as a testbed for the engineer. Compared to our previous work, the current
paper brings forward the concept of testbed generation towards more automation, requiring less
specification input from the engineer. It improves the practical applicability and accelerates the
testing process.

6.2 Automated Generation of SOA Sandboxes

In a nutshell, our approach is based on monitoring running Java-based SOA systems, detecting
calls of external Web services, and redirecting the calls to automatically generated replicas.
Figure 6.1 depicts our approach which consists of the following steps:

1. Detection of Web service calls in the SOA system, by intercepting WSDL retrieval code
in the Java runtime.

2. Analysis of the WSDL document and generation of a replica model at the front-end.

Chapter 6: Towards Automation of Testbed Generation 73

WS Interceptor

JVM / AspectJ

External
Services

G2 FE

Tested
SOA System

Service A

Service B

Testbed of Replicas

Replica of A

G2 BE

Model of A

JVM

Outside World

Internal Infratructure

Figure 6.1: Interception of Web service calls and generation of replicas

3. Rule-based customizations of the replica model.

4. Deployment of the replica instance, from the model, at the testbed infrastructure (back-
end).

5. Forwarding of the replica WSDL document, instead of the original WSDL, to the calling
SOA system.

6. Actual Web service invocation, redirected to the replica.

In the next sections we explain the concepts behind each step and give an overview about the
extendability and programmability of the testbeds.

6.2.1 AOP-based Interception of Web service Invocations

Aspect-oriented programming (AOP) is a paradigm which aims at increasing software modular-
ity by allowing the separation of cross-cutting concerns. In particular, AOP allows developers to
alter the behavior of a system (in terms of enhancing but also replacing functionality) at runtime
by specifying pointcuts and join points (intercepted points/functions in a program) and execut-
ing advices (new/additional behavior) on them. For example, a developer can define aspects for
enhancing a program with logging functionality or replace certain parts of it in order to observe
the effects. Up to date, AOP has gained high popularity among software engineers and numerous
programming languages provide support for it. However in this work we have concentrated on

74 6.2 Automated Generation of SOA Sandboxes

Java and on its AOP extension called AspectJ [15], due to Java’s importance for Web (service)
engineering.

In our approach we apply AOP for intercepting Web service invocations, create replica ser-
vices in a testbed, and redirect the invocations to these, as depicted in Figure 6.1. To be precise,
we do not wait until the invocation is being executed and the SOAP request message is ready to
be sent but we intercept this procedure earlier, namely at the retrieval of WSDL documents, as
this is the first step of a typical invocation procedure [124]: WSDLs are retrieved from a registry
and then passed to a client generator which creates the corresponding invocation stubs. Here we
intervene in the program flow and create the replica at the very first invocation of the service.
Before the client generator processes the WSDL we analyze it in order to create a replica of the
service in a dedicated testbed infrastructure (replica creation is explained in the next section).
The next step is to replace transparently the original WSDL with the one of the replica, in or-
der to make the client generator create stubs which point to the new endpoint and, eventually,
to direct all invocations to it. This way, the original service is only contacted for retrieving its
description but all communication is actually done with its replica in the testbed.

The interception of WSDL retrieval is realized via aspects which detect calls of the retrieval
routines in the SOA system and by altering their execution. Depending on which Web service
framework the system is using (e.g., Apache Axis 2 [3], Apache CXF [4], or GlassFish [21]) dif-
ferent aspects must be applied in order to match the corresponding API functions. The following
code snippet shows a simple aspect which covers the popular WSDL4J [55] library/framework,
used by various workflow engines. At first a pointcut is defined which catches calls of the
method WSDLReader.readWSDL(String). If this pointcut is matched at runtime, the fol-
lowing advice will be executed. It passes the URI to the Sandbox utility class that initiates the
replication of the service in the background and returns the URI to the replica’s WSDL. Finally,
the intercepted method is called, however, the URI of the original WSDL is replaced with the
one of the replica.� �
p u b l i c a s p e c t I n t e r c e p t o r A s p e c t {

/ / p o i n t c u t d e f i n i n g i n t e r c e p t e d f u n c t i o n s
p u b l i c p o i n t c u t r e t (S t r i n g u r i , WSDLReader r) :

c a l l (∗ WSDLReader . readWSDL (S t r i n g)) &&
a r g s (u r i) &&
t a r g e t (r) ;

/ / a d v i c e b e i n g e x e c u t e d when p o i n t c u t f i r e s
D e f i n i t i o n a round (S t r i n g u r i , WSDLReader r) :

r e t (u r i , r) {

S t r i n g repURI=Sandbox . c r e a t e R e p l i c a (u r i) ;
re turn p r o c e e d (r epUr i , r) ;

}
}� �

Listing 6.1: ’Declaration of WSDL interceptor aspect’

Chapter 6: Towards Automation of Testbed Generation 75

We take the next Java code snippet, which reads a WSDL and creates a client stub, as an example
for demonstrating the effects of such an aspect. The code basically comprises three steps: the
retrieval of the service’s URI, e.g., from a registry/broker, the retrieval of the WSDL located at
the URI, and the generation of a client stub from this WSDL.� �
S t r i n g u r i = . . . / / g e t from somewhere
WSDLReader wr=new WSDLReader () ;
D e f i n i t i o n wsdl=wr . readWSDL (u r i) ; / / <−− w i l l be i n t e r c e p t e d by a s p e c t
C l i e n t c l i e n t = g e n e r a t e F r o m (wsdl) ;� �
On applying the InterceptorAscpect, AspectJ detects the calling of the readWSDL()
method and changes the code to the following.� �
S t r i n g u r i . . . / / g e t from somewhere
WSDLReader wr=new WSDLReader () ;
/ / < changes c au se d by a s p e c t >
S t r i n g repURI=Sandbox . c r e a t e R e p l i c a (u r i) ;
D e f i n i t i o n wsdl=wr . readWSDL (repURI) ;
/ / </ changes c au se d by a s p e c t >
C l i e n t c l i e n t = g e n e r a t e F r o m (wsdl) ;� �
Having such aspects defined, a Java-based SOA system can be monitored at runtime by executing
it on top of AspectJ which takes care of weaving the aspects into the running code (referred to as
load-time weaving) and which delegates the generation of replicas to the Sandbox generator.

6.2.2 On-the-fly Generation of Service Replicas

After a WSDL retrieval has been intercepted, the process of replicating the described Web ser-
vice is initiated, which comprises the following three main steps:

1. the WSDL of the remote Web service is analyzed and a basic model of a replica service is
created,

2. the model is subject to user-defined customizations, and

3. the final model is transferred to a back-end host and a Web service instance is generated
in the testbed.

Steps 1 and 3 are fully automated and no user interactions are required in these. The only semi-
automated part resides in step 2 where engineers can define own rule-based customizations for
the generated services. Though, at runtime the customizations are applied automatically, which
results in an automated overall execution of the replication process.

76 6.2 Automated Generation of SOA Sandboxes

6.2.2.1 Creation of a Replica Model

For creating the model of a replica service, our tool retrieves the original service’s WSDL doc-
ument in order to analyze the interface and to clone it in the model. Even though the analysis
of WSDL documents could be done in a "raw" manner by processing the document directly, for
instance by using the WSDL4J library [55], we apply instead the wsimport utility of JAX-
WS [32] for convenience. wsimport takes WSDL’s as input and generates corresponding Java
stubs, imports referenced XML schemas automatically, checks for WS-I [60] compatibility, and
performs various other necessary steps which would otherwise have to be done manually. Our
tool takes the generated stubs and compiles them which provides us a binary representation of
the service’s interface. This is then analyzed via object reflection techniques plus by checking
the corresponding Java annotations (@WebService, @WebMethod, @WebParam, etc.).
Taking for example, the WSDL document in Listing 3.3 on Page 31, the generated stub source
would look as follows.� �
package a t . ac . t uwi en . v i t a l a b . g e n e r a t e d s e r v i c e . b o o k s e r v i c e ;

import j a v a x . jws . ∗ ;
import j a v a x . xml . ws . ∗ ;
/ / i m p o r t . . .

@WebService (name = "BookService" , t a r g e t N a m e s p a c e = "http://vitalab.tuwien.ac
.at/generatedService/BookService")

@XmlSeeAlso ({
O b j e c t F a c t o r y . c l a s s

})

p u b l i c i n t e r f a c e BookServ ice {

@WebMethod
@WebResult (t a r g e t N a m e s p a c e = "")
@RequestWrapper (localName = "getISBN" ,

t a r g e t N a m e s p a c e = "http://vitalab.tuwien.ac.at/generatedService/
BookService" ,

c lassName = "at.ac.tuwien.vitalab.generatedservice.bookservice.GetISBN")
@ResponseWrapper (localName = "getISBNResponse" ,

t a r g e t N a m e s p a c e = "http://vitalab.tuwien.ac.at/generatedService/
BookService" ,

c lassName = "at.ac.tuwien.vitalab.generatedservice.bookservice.
GetISBNResponse")

p u b l i c S t r i n g getISBN (@WebParam (name = "bookName" , t a r g e t N a m e s p a c e = "")
S t r i n g bookName) throws E x c e p t i o n _ E x c e p t i o n ;

}� �
Listing 6.4: JAX-WS Web service interface generated from WSDL

By analyzing the interface and the attached annotations, we can easily determine the service’s
operation signatures, message types, binding information, and all the other required data for
modelling a replica, and we translate this data into the model representation. The next step is to
perform user-defined customizations to the model.

Chapter 6: Towards Automation of Testbed Generation 77

6.2.2.2 Customization, Extensibility, and Programmability

The result of the first step is a model of a replica service which clones the original service’s
interface, however, does not provide any (proper) functionality. On an invocation it delivers
response messages which are syntactically correct, according to the XML schema definition
(XSD) [64] in the WSDL document, but simply fills these messages with randomized data,
which makes them semantically meaningless. Therefore, at this stage the replica can be regarded
as a pure dummy or mock-up service. For some test cases mock-ups are perfectly sufficient, for
instance if the engineer wants to determine how many parallel service invocations his/her tested
SOA system can handle, regardless of the response message content. But if the test cases become
more sophisticated and message content does matter, or if the services must expose certain
functional or non-functional behavior, then the replica models must be customized in order to
meet these requirements and to expose the desired behavior. This is a part of the replication
process that we cannot automate, as requirements vary with every tested SOA system and the
purpose of the particular test case. Furthermore, it is impossible to replicate a remote service’s
functionality automatically and to provide 100% realism, as explained later in Section 6.3.1. But
what we can do is to support engineers in performing the necessary customizations in order to
replicate the behavior as good as possible and/or required for the tests! For this purpose we
make use of G2’s extensibility via plugins and, again, apply Groovy scripts for specifying rules
for how generated replica services are customized.

The following Listing demonstrates two sample rules for customizing replica services with
fault injection (as shown in previous chapter) plus for assigning functional behavior to the ser-
vice’s operations. The rules are wrapped in a Groovy closure which takes the service model
as parameter (svc). The first rule matches services by their namespace (Line 4) and augments
them with a QoS model that simulates changing availability. In Lines 7-17 the QoS model is
instantiated, bound to the service, and the availability behavior is programmed. The second rule
matches services by their declared name plus by whether they contain a certain operation. In
case of a match, the operation’s behavior is programmed to return prepared responses from a
repository containing recorded data for replaying.� �

1 s e r v i c e C u s t o m i z e r = { svc −>

3 / / c u s t o m i z e s e r v i c e which has " i n f o s y s " i n i t s NS
4 i f (svc . namespace =~ / i n f o s y s . ac . a t /) {

6 / / i n s t a n t i a t e QOS model and a t t a c h t o s e r v i c e
7 def svcQos = qos . c r e a t e ()
8 svc . qos = scvQoS

10 / / program a v a i l a b i l i t y b e h a v i o r model
11 svcQos . a v a i l a b i l i t y = {
12 i f (new Date () . g e t H o u r s () < 8) { / / t i l l 8 AM
13 re turn 99 /100 / / s e t h igh a v a i l a b i l i t y o f 99%
14 } e l s e {
15 re turn 90 /100 / / o t h e r w i s e , s e t lower r a t e
16 }
17 }

78 6.2 Automated Generation of SOA Sandboxes

18 }

20 / / c u s t o m i z e s e r v i c e wi th a p a r t i c u l a r o p e r a t i o n
21 i f (svc . name == "CustomerSVC" && "GetCustomerData" in svc . o p e r a t i o n s . name)

{

23 / / program b e h a v i o r o f o p e r a t i o n v i a c l o s u r e
24 svc . g e t O p e r a t i o n ("GetCustomerData") . b e h a v i o r = {
25 def r e s p o n s e = r rRepo . g e t (r e q u e s t)
26 re turn r e s p o n s e
27 }
28 }

30 }� �
Listing 6.5: ’Customization Rule for Replica Services’

All in all, engineers are given a possibility to perform arbitrary customizations to the generated
replica models and to use the full potential of G2, in terms of extensibility and programmability.

6.2.2.3 Generating Web service Instances in the Back-end

After the replica model has been generated in step 1 and customized in step 2, the next step is to
transfer it to the back-end for generating a running Web service instance in the testbed. There-
fore, a destination host must be chosen. Similar to specifying customization rules for services,
engineers can define rules telling where to deploy the replica services. The following snippet
shows a simple configuration which references 10 hosts in the back-end (from 192.168.1.1:8080
to 192.168.1.10:8080) and for each given replica service it choses a random one.� �
h o s t L i s t = []

1 . up to (1 0) { n−> / / c r e a t e l i s t o f 10 h o s t r e f s
h o s t L i s t += h o s t . c r e a t e ("192.168.1.$n" , 8 0 8 0)

}

h o s t C h o s e r = { svc −> / / s im p ly p i c k a random h o s t
def pos = new Random () . n e x t I n t (h o s t L i s t . s i z e ())
re turn h o s t L i s t [pos]

}� �
Listing 6.6: ’Host Picker Rules’

The process of generating Web service instances out of the models comprises the serialization
of the model, transferring it to the G2 instance at the choses back-end host, and, finally, the
translation of the model into a running and deployable Web service. This procedure has been
explained in Chapter 4.

All in all, the result of the whole replication process is a running Web service that clones the
original service’s interface, behaves according to the engineer’s customizations, and can be used
for testing purposes as a replacement of the original service.

Chapter 6: Towards Automation of Testbed Generation 79

6.3 Evaluation

To prove the quality of our approach, it would be necessary to evaluate its practical usefulness
as well as its intrusiveness into the tested SOA system. However, the evaluation of usefulness
would require the application of our approach in a significant number of SOA development
projects in order to determine the usability, convenience, as well as how much time was saved
in the development/testing process. Due to a lack of access to a sufficient number of ongoing
development projects, we were not able to perform this kind of evaluation. Instead we concen-
trated on evaluating the level of intrusiveness. As our approach does alter the execution of the
SOA system, it is important to find out how much the altered runtime differs from the original
one, in terms of performance degradation. The goal is to keep the intrusiveness and the changes
at runtime as small as possible.

In our evaluation we have applied our approach on intercepting dynamic binding and invoca-
tion of Web services. We agree with [113] that dynamic binding combined with message-based
interactions is the proper way to implement SOA communication. SOA systems should be able
to adapt to their environment and redirect invocations to "better suited" Web services at runtime,
instead of being tightly bound to particular services. This requires that the invocation stubs, that
handle the communication with the remote services, are not hard-coded, but are being gener-
ated dynamically out of the services’ WSDL descriptions. In our evaluation we have used three
different Web service frameworks/libraries which are capable of dynamic binding:

1. Apache CXF [5] is a rich framework, supporting SOAP [47], ReST [97], WS-* exten-
stions, etc. Implements the JAX-WS API [32] for Web service development.

2. The Groovy SOAP Module [27] provides SOAP support for the Groovy language [24].
Strongly focused on simplicity and usage convenience, less on feature support.

3. DAIOS [113] aims at supporting truly dynamic interactions between clients and services.
Provides composition of request messages automatically via similarity metrics between
request data and WSDL contract, improving loose coupling this way.

For testing these client generators, we took the QWS dataset [69] that is basically a collection
of WSDL documents of public SOAP Web services. In total it contains 2505 WSDLs, how-
ever, we were not able to use all of these for our purposes. First of all, 31% of the documents
are not WS-I-compatible as they use RPC/encoded bindings or other WSDL styles which have
been regarded as deprecated [60]. Furthermore, 15% of the remaining WSDLs were corrupted,
for instance by referencing not existing XSD definitions or by having an invalid document struc-
ture. Moreover, we also removed 12% of valid WSDLs as they were referencing remote artifacts
which had to be downloaded with sometimes significant latency which delayed and, therefore,
distorted the whole processing time of the client generators. The remaining WSDLs were con-
sidered as suitable for executing our evaluation.

To determine the performance intrusiveness, we calculated how fast a client generator actu-
ally generates the corresponding stub code and how much this procedure is delayed if we apply

80 6.3 Evaluation

300

400

500

600

700

800

900
DAIOS

Groovy WS

CXF

0

100

200

300

400

500

600

700

800

900

0
.0
s

0
.5
s

1
.0
s

1
.5
s

2
.0
s

2
.5
s

3
.0
s

3
.5
s

DAIOS

Groovy WS

CXF

(a) Processing time distribution of tested client gen-
erators

100

150

200

250

300

Replica Generation

0

50

100

150

200

250

300

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9
s

1
0
s

Replica Generation

(b) Processing time distribution of Web service replica
generator

10

12

14

16

18

20

Replica Generator

WSDL Analyzer

CXF Client Generator

0

2

4

6

8

10

12

14

16

18

20

Replica Generator

WSDL Analyzer

CXF Client Generator

(c) Accumulated processing time of intercepted client
generator

the testbed generator aspects. We did not measure the time for eventually invoking the services
on purpose, for two reasons: 1) the main load is caused during the analysis of the WSDL and
the generation of the stubs, and only minimal load is caused during the actual invocation, and 2)
the invocation is mainly delayed by the processing time of the remote Web service (referred to
as QoS) and does not depend on the client generator at all.

Figure 6.2a visualizes the distribution of processing times for the three testes client genera-
tors, while Figure 6.2b shows the processing time of the replica generator for comparison. The
performance of the client generators differs significantly, due to their level of (pre-)processing
of Web service calls. For instance, DAIOS does not generate and compile code into Java classes
but simply analyzes the content of the WSDL document. This makes DAIOS, by far, the fastest
client generator. Groovy SOAP and Apache CXF, however, take the WSDL document as input
for generating stub classes and for translating message types into Java classes. Even though this
provides several benefits, it comes at the cost of performance. For the set of WSDL document
of the QWS dataset we measured an average processing time of 12 msec for DAIOS, 871 msec

Chapter 6: Towards Automation of Testbed Generation 81

for Groovy SOAP, and 1622 msec for CXF1. For the replica generator we measured an average
processing time of 4617 msec which is significantly slower than the client generators. As a
consequence, if our testbed generator approach is applied on a SOA system that uses dynamic
binding, the following delays will occur for the generation of clients: DAIOS-based calls would
be slowed down by a factor of 384 - which is, however, exceptional as DAIOS performs only
restricted processing of the WSDL -, for Groovy SOAP the slow down factor would by 6.3,
and for CXF it would be 3.8. Of course, this delay happens only once, namely when the client
stub gets generated during the first invocation of the service. Each subsequent call will not be
delayed, as the replica needs to be created only once.

For a better visualization of the delay caused by replication, we measured the performance of
the individual steps of a Web service call interception: a) of the client generator, b) of the WSDL
analyzer, and c) of the actual replica generator. Figure 6.2c displays the results. Again we per-
formed the tests on the QWS dataset, sorted the WSDLs according to their size/complexity, and
this time we used only Apache CXF as the base client generator. The bottom graph displays the
performance of CXF, which is quite constant except for the very complex WSDL’s. The middle
graph shows the accumulated performance of the WSDL analyzer, in addition to CXF’ process-
ing time. On the top, the graph displays the sum of all three modules, which constitutes the
actual processing time for intercepting a Web service call plus for generating the corresponding
replica service. The results show that approximately 30% of the time is consumed for analyzing
the remote WSDL and creating the model, 44% is spent on generating a running replica Web
service out of it, while the generation of the local client stubs takes only 26% of the time.

These tests demonstrate that intercepting Web service calls for the purpose of generating
replicas and redirecting the calls to them does significantly slow down the client generation
process. What does that mean for the level of performance intrusiveness and how does that affect
the whole system’s runtime and, consequently, the testing process? First of all, this evaluation
represents the current implementation status and without doubt further optimizations would be
possible. But still, the performance degradation would be noticeable, even if only at the client
generation and not at the invocations of a Web service. Though, how much this slowdown really
affects the testing of an SOA system depends on many factors: on the applied Web service
framework, on the number of Web services being invoked and on their complexity, on whether
the invocations are blocking or asynchronous, etc. In a nutshell, many factors play a role when
determining how much this all affects the systems performance and whether this matters for the
tests at all. There are many scenarios where it makes sense to replicate external Web services
on-the-fly, while for some it is not reasonable.

6.3.1 Discussion

In our previous chapters we assumed that testbeds are being generated before the test runs,
mostly by specifying all details via G2’s scripting language and deploying the testbed on a back-
end. In the current one we propagate the generation testbeds on-thy-fly, which is in general the

1The measurements were performed on an Intel i5 M520 CPU with 2.4GHz. However, we mainly compare the
relative performance difference between the WS frameworks and the replica generator, which renders the system’s
hardware secondary.

82 6.3 Evaluation

exact opposite. In our opinion on-the-fly generation makes sense if the testbed composition is
not known a-priori or a generation of the complete testbed infrastructure is not reasonable, e.g.,
because it could get too large-scale even though only a few services of it would be actually
invoked. For such scenarios on-the-fly generation is more efficient and, therefore, preferable.

Regarding the degree of realism of the testbeds it is safe to say that replication of functional
behavior, without having access to the remote Web service’s code, is not possible. Let’s consider
the example of a complex and stateful remote service which performs sophisticated calculations,
uses a data base system as data source, interacts with some legacy components, etc. There
is no way of replicating its functional behavior in 100% if one has only access to the Web
service’s interface description. There are means to record and playback Web service interactions,
e.g., [49, 83], but still the replication of functionality is only limited to the recorded data. That
is something we have to live with. But what is a SOA software engineer supposed to do, if
he/she is developing a system that must interact with such a complex service, but he/she is not
allowed to use this service for testing purposes? Basically, his/her hands are bound and the
best solution is to use a replica of the service in a testbed. And for this replica, it is up to the
developer to implement a "realistic" behavior according to the requirements of the test run. Often
it is sufficient to emulate just QoS properties (e.g., by taking over the collected QoS data from
the QWS dataset), or to implement a rudimentary clone of the services functionality, etc. It all
depends on how much is known about the original service and how much of it must be replicated.
We cannot solve this problem in a fully automated manner, but we can support developers by
replicating the service’s interface and by providing means for assigning functional behavior to
them. It is the task of the testing engineer to assign sufficiently realistic behavior to the replicas.
We have no possibility to unburden him/her from that.

CHAPTER 7
Large-scale Testbeds in the Cloud

Published in:

CAGE: Customizable Large-scale SOA Testbeds in the Cloud.

Juszczyk L., Schall D., Mietzner R., Dustdar S., Leymann F. (2010).

6th International Workshop on Engineering Service-Oriented Applications (WESOA). 8th In-
ternational Conference on Service-Oriented Computing (ICSOC’10), 07. - 10. December 2010,
San Francisco, USA.

Outline. If implemented properly, SOA systems can be very scalable and interact with
an arbitrary numbers of clients, services, and other external components. A problem which
appears if one must develop such a system, is how to test it in realistic scenarios with (tens
or hundreds of) thousands of participating components. Especially, if the designated runtime
environment is not available at development time and must be, again, emulated. First of all,
how can engineers establish such large-scale testbeds in a convenient manner, but the second
problem is where to host such testbeds? This short chapter deals with this problem and presents
the CAGE framework, which is a combination of Cafe framework, a system for provisioning of
distributed systems in Cloud infrastructures, and GENESIS 2.

7.1 Motivation

Service-oriented computing (SOC) provides a high level of flexibility and scalability which ben-
efits the realization of large-scale and complex distributed systems [135]. By applying asyn-
chronous communication these systems can potentially scale to large dimensions. Moreover,
due to the ability of dynamic binding, SOA systems can integrate new components/services and
grow (and shrink) dynamically at runtime. However, engineers that develop complex systems
that operate in dynamic SOA environments are facing the problem of how to test their software.

83

84 7.1 Motivation

They must ensure that their components are able to scale with a growing number of participating
services, that quality of service requirements are met, that the software is stable and dependable,
etc. Characteristics like these can only be verified by testing the developed component at runtime
and in a multitude of real(istic) scenarios. This, however, implies that the component must be
deployed in these different designated environments for getting meaningful test results. Unfor-
tunately, testers often do not have access to the designated environments during the development
phase, e.g., either because some parts are not available yet or because it integrates commercial
external services, which would make testing costly. Furthermore it is often impossible to per-
form multiple tests (for example, regression tests and load tests) at the same time because the
test infrastructure does not offer enough resources.

In this chapter we present a step towards solving these issues. We introduce CAGE, a frame-
work and methodology for emulating SOA environments (for utilization as testbeds) and for
deploying these automatically in the cloud. Our approach combines G2 with Cafe [128], a
framework for provisioning distributed systems across a cloud platform. CAGE allows testers
to specify testbed families consisting of diverse SOA components and variability, to customize
their behavior and non-functional properties, and to automatically generate running testbed in-
stances based on the customization. Furthermore, by using the cloud as a platform, CAGE
provides a convenient and cost-efficient way to set up multiple arbitrarily large testbed instances
simultaneously on-demand. In a nutshell, the most distinct contributions are:

1. Separation of testbed development and testing via testbed families

2. A self-service testbed portal for testbed customization

3. An infrastructure to provision and run complex, flexible testbeds on-demand

7.1.1 Scenario: Large-scale SOA Testbed Infrastructures

SOA’s well-known features of dynamic binding and adaptivity make it possible to build systems
which are not restricted to an environment of fixed size and topology, but are able to deal with
dynamic and large-scale ones. Let us take Amazon Mechanical Turk (MTurk) [2], a crowdsourc-
ing platform, for example. MTurk registers Web services of human workers and provides these
to clients which incorporate the offered functionality into their applications/workflows. MTurk
must be able to handle load peaks, scale with the number of registered services and consuming
clients, and despite all possible difficulties provide stable and dependable services. However,
loose coupling, dynamic binding, or other typical SOA features do not solve the scalability is-
sue per se. The system’s internal mechanisms must be still able to cope with a high number of
partner components (e.g., services, clients, workflow engines) and incoming requests. During
the development of such systems the question appears of how to test these mechanisms and how
to verify their correct execution in critical scenarios. These scenarios can comprise thousands of
components which have diverse functional as well as non-functional properties, and, therefore,
put high load on the system. Setting up such scenarios for testing purposes is an intricate task.

In a nutshell, testers are confronted with the problem of a) how to create testbeds which
emulate realistically the final deployment environment and b) where to host large-scale testbeds

Chapter 7: Large-scale Testbeds in the Cloud 85

in a cost-efficient manner. We have elaborated on the first issue in the previous chapters and
we have explained how testbed instances are generated in a distributed back-end. Of course,
for large-scale testbeds an adequate back-end hardware infrastructure is required in order to be
able to host all generated SOA components, which can get very costly. In the last years cloud
computing emerged as an interesting solution to this problem, as it enables users to rent hardware
on-demand, also referred to as Infrastructure as a Service (IaaS). Instead of buying expensive
hardware for hosting testbeds, which is most likely running idle in periods when no test runs are
performed, engineers can rent remote hardware for an arbitrary time and quit the service when
it is no longer required. In our CAGE approach we make intense use of IaaS. We apply the
Cafe framework which supports automatic allocation of hosts/servers in the cloud and, this way,
provides a flexible hosting infrastructure for SOA testbeds. The most significant contribution
of our approach is that we enable testers to generate functional SOA testbeds on-demand on a
dynamically allocated back-end infrastructure.

7.2 Applying Cafe

CAGE derives it functionality from combining two base frameworks: Cafe and GENESIS2.
Cafe provides support for an automated provision of component-based applications into the
cloud, while G2 makes use of the infrastructure provided by Cafe and generates customizable
and dynamic SOA testbeds.

Cafe1 [128] is a framework for definition, customization and automatic provisioning of com-
plex composite applications in the cloud. Cafe is centered around the basic concept of an appli-
cation template which consists of an application model and a variability model. The application
model describes the basic components of the application, e.g., what subsystems it consists of,
whereas the variability model describes variability of the application, e.g., configuration details.
Application templates are offered to customers by a provider in an application portal. The cus-
tomers are guided through the customization of the template by a customization flow that is
generated from the variability model of the application. Once the template is transformed into
an customer-specific application solution, this solution is then automatically provisioned by the
provisioning infrastructure. Cafe makes use of the interfaces of different cloud providers, such
as Amazon EC2 [1], to setup components.

A Cafe application model contains a set of components that realize the functionality of the
application. Components can be arbitrary elements of an application such as middleware com-
ponents that are supplied by a provider, or components where the code is shipped with the
application (internal components), such as services, Web applications, or business processes.
Provider-supplied components must have a special component type that indicates a class of
components such as JBOSS [36] application server components. Internal components are of
a certain implementation type, e.g., JEE application or BPEL process. Component types define
if components of a certain implementation type can be deployed on them. Components can have
deployment relations among them, indicating that one component must be deployed on another

1Composite Application Framework

86 7.3 The CAGE Framework

Generated
Testbed

Monitoring

Service Runtime

Testbed Runtime

Setup

Provisioning

Customization

Portal

Modeling

Variability Modeling

Component
Assembly

Service
Development

feedback

Figure 7.1: Overall CAGE approach and architecture.

component. Application template developers use internal and provider supplied components and
their deployment relations to describe their application.

7.3 The CAGE Framework

7.3.1 CAGE Methodology and Roles

The CAGE methodology specifies how the framework can be used to generate large-scale cus-
tomizable SOA testbeds and how to deploy them on-demand in cloud-based infrastructures. The
methodology comprises three steps (modelling, setup, & execution) that are performed by two
different roles (testbed engineer & tester) during the establishment of CAGE testbeds. Figure 7.1
depicts a high-level overview of the three steps and the CAGE tools supporting them.

1. Modeling. At first, in the modeling step, the testbed engineer creates a specification/model
of the testbed. Building upon the G2 framework, this specification can comprise diverse
types of SOA components that can be augmented with functional as well as non-functional
properties, plus also third-party services integrated into the testbed. To be able to auto-
matically deploy the whole testbed infrastructure, these components and their deployment
relations are modeled in the component assembly modeling tool in which the testbed en-
gineer defines the variability for the testbed, for example, different qualities of services
and functional aspects that can be tested based on the modeled testbed.

2. Setup. Based on the created model, the testbed engineer uploads the corresponding arti-
facts to a portal. Testers have then the ability to request instances of the uploaded model
via a control interface (part of the portal). A testbed model can be customized accord-
ing to different aspects and requirements. For example, customization could be based on
different perturbation and fault handling strategies, as shown in Chapter 5. Customiza-
tion is accomplished by binding points of variability, i.e., by selecting one of multiple
alternatives or by entering values for a point of variability.

Chapter 7: Large-scale Testbeds in the Cloud 87

Genesis Framework 1
Component Type:

Genesis Framework
provider supplied

Test
Service 1

Test
Service M

Genesis Framework 2
Component Type:

Genesis Framework
provider supplied

Test
Service M+1

Test
Service N

Application Server
Component Type:

JBOSS
provider supplied

Real
Service 1

Real
Service O

BPEL Engine
Component Type:

Apache ODE
provider supplied

BPEL
Process 1

BPEL
Process P

Figure 7.2: Component assembly example

3. Provisioning. The final step is to provision the testbed including the test services (emu-
lated behavior), real services and middleware components. This is done automatically by
the CAGE framework once all variability has been bound by the tester.

The monitoring layer of the generated testbed captures various activities within the testbed
environment such as service invocations and lookup requests (registry access). Low level
logs are aggregated into metrics to analyze statistical variation of service behavior. The
tester has the ability to analyze these metrics (using visualization tools) and to adjust
models of variability accordingly. This cycle is depicted through the feedback arrow in
Figure 7.1.

7.3.2 Modeling Testbeds

Figure 7.2 shows a component assembly example to illustrate various CAGE concepts. Compo-
nent assembly in CAGE closely follows the Cafe approach [128] where modeling of composite
application templates is centered around components (see application meta model in Figure 7.3).
CAGE introduces a new component type to Cafe, namely the Genesis Framework compo-
nent type. It represents a middleware on which certain other components can be deployed,
namely those that have an implementation type of Genesis Test Service. This notion is
similar to other component types in Cafe such as the component types JBoss [36] and Apache
ODE process engine [9] shown in Figure 7.2 which allow to deploy components of implemen-
tation type Java enterprise edition (JEE) application and BPEL process on them, respectively.

As a result, the testbed engineer can compose a testbed by combining middleware compo-
nents including the G2 framework, application servers, web servers and process engines. Also,
components can be composed such as test services, real services, web applications, or business
processes that run on the aforementioned middleware components. This enables engineers to
systematically define complex testbed scenarios with the support of the CAGE approach.

In Cafe, application templates are annotated with a variability model that is specified using
the Cafe variability meta-model (see Figure 7.4). Such a variability model contains a set of
variability points that specify possible configuration alternatives (see Figure 7.5). Different
types of alternatives exist that can be arbitrarily combined in one variability point:

• Explicit alternatives allow to specify a concrete value that can be selected, i.e. a fixed
value for a delay.

88 7.3 The CAGE Framework

Application Model

+targetNamespace: URI

Component

+name: NCName
+pattern: Multi Tenancy Pattern
+type: Component Type

contains

1..*

0..*

Implementation

+implT: Implementation Type

implementedBy (impl)

10..*

File

realized by files (files)

0..*

0..*

deployedOn (D)

1

0..*

Building Block

is block of (blockOf)

1..* 0..*

Figure 7.3: Cafe application meta model (from R. Mietzner [125]).

• Expression alternatives allow to specify an expression (in XPath) that is evaluated and
calculates the value that is entered at the variability point, for example, based on the
values entered at another variability point.

• Free alternatives allow to prompt a user for an input, for example, to specify a specific
failure rate.

Each variability point contains one or more locators that point into documents of the template
that the variability point affects. Variability points can have complex dependencies that indicate
that one or more variability points depend on one or more other variability points. These depen-
dencies allow to specify temporal dependencies, i.e., a variability point can only be bound after
all variability points that it depends on, are bound. Enabling conditions can be defined for each
variability point that specify under which condition which alternatives of this variability point
can be chosen. In a CAGE testbed a variability point can, for example point, into the WSDL
document of a BPEL process to customize the endpoint of a test-service that should be invoked
by that process. Thus a variability point can indicate provisioning time variability that must
be filled during provisioning by the provisioning environment. Variability points can also ex-
press functional and non-functional variability. For example, a locator of a variability point can
point into a Groovy script implementing a test service to configure its behavior or the average
response-time this service should simulate.

Chapter 7: Large-scale Testbeds in the Cloud 89

Variability Model

+targetNamespace: URI

Variability Point

+name: NCName
+bindingTime: Phase

contains

1..*

1..*

Locator

is locator of (locators)

0..*

1

Enabling Condition

+cond: Condition

enabling condition (ec)

0..*

1

Alternative

+name: NCName
+default: boolean

alternatives of (alternatives)
1..*

1..*

Expression Alternative

+expression: Expression

Empty Alternative

Explicit Alternative

+explicitValue: BuildingBlock

enabled Alternatives (enAlts)
0..*

0..*

Building Block Locator

+buildingBlocks: BuildingBlocks
+action: Action

Locator Alternative

Free Alternative

+allowedVal: BuildingBlocks

refines (ref)

0..*
0..*

Variability Point Refinementrefines (VPRefine)

1..*1

 refines (AltR) 0..*

1

refines (ecR)
1..*

1

dependent on (Dp)
0..*

0..*

Figure 7.4: Cafe variability meta model (from R. Mietzner [125]).

7.3.3 Testbed Setup

Once a testbed, including its variability, has been modeled by the testbed engineer, it can be
offered to testers for retrieval via the test portal. The tester is guided through the setup process
via a customization flow which is a workflow generated from the variability model of a testbed,
as introduced in [126]. The customization flow prompts the tester for all necessary decisions.
In addition to the configuration of the testbed the tester specifies for how long the testbed is to
be used. The duration is an important property as it allows to free the used resources for testing
after a pre-defined amount of time. Once a tester has customized the testbed for the particular
test to be performed (for example, the testbed is configured for load-testing instead of regression

90 7.3 The CAGE Framework

Figure 7.5: CAGE modeler: testbed components on the left, variability model on the right

testing), the provisioning infrastructure sets up the necessary components and configures them
as described in the next section.

7.3.4 Testbed Provisioning

After a testbed has been customized, it is being generated, deployed, and provided to the tester.
This procedure comprises these steps:

• Component provision & deployment: Components available in the infrastructure are boot-
strapped via their corresponding provisioning services [127]. For example G2 back-end
instances, workflow engines, and other base components are started, in order to deploy
test services, real services and test clients on top.

• Component configuration: Components are configured by the provisioning infrastructure
in order to establish links among then and to create a composite testbed. For example, a
BPEL process that orchestrates a set of test-services must be configured with the endpoints
of these test services as specified in the variability model for the respective testbed.

Testbed provisioning is done via a provisioning flow that is generated by the CAGE framework
from the model of the testbed. The provisioning flow respects the component dependencies
introduced by the deployment relations (i.e. which component must be deployed on which other
component) and the variability dependencies (i.e. which component must be configured with
properties of which other component).

The following code snippet shows parts of a G2 testbed template script which contains place-
holders (BACKENDHOSTS, QOS_DEF_RESPONSETIME, and QOS_DEF_AVAILABILITY)

Chapter 7: Large-scale Testbeds in the Cloud 91

to be customized by Cafe at deployment time. Moreover, it returns a list of URLs of the de-
ployed service endpoints, to be passed to other components. This provides a convenient method
for the parameterized deployment of cloud-based testbeds.� �
/ / p l a c e h o l d e r f o r r e f e r e n c e s t o c l o u d back−end h o s t
def h o s t L i s t = {{BACKENDHOSTS}}

def r and =new j a v a . u t i l . Random ()
def randomHost = { −>

h o s t L i s t [r and . n e x t I n t (h o s t L i s t . s i z e ())]
}
u r l L i s t = []

s e r v i c e L i s t . each { s−>
s . qos . r e s p o n s e t i m e ={{QOS_DEF_RESPONSETIME}}
s . qos . a v a i l a b i l i t y ={{QOS_DEF_AVAILABILITY}}

h=randomHost ()
u r l L i s t += s . dep loyAt (h) / / dep loyment a t random hos t , c o l l e c t URLs

}

re turn u r l L i s t� �
7.4 Practical Application

CAGE has been created from a merge of two already existing frameworks, Cafe and G2, in
order to combine their features and to facilitate a convenient set up of testbeds which not only
comprise generated components but also already existing systems, e.g., application servers and
process engines. Via variability points we established links between these components, in order
to create coherent testbeds, and were able to model and deploy these in a user-friendly manner,
where Cafe was handling most of the configuration details during the set up, e.g., allocation of
cloud instances or resolving of inter-component links.

However, CAGE has been so far only used as a proof of concept implementation and has
not (yet) been applied in any real projects, which would have been necessary to evaluate its
usefulness for engineers/testers. Therefore, the purpose of this chapter was to give a high-level
overview of the concepts and of how engineers/testers can potentially benefit from applying our
framework.

CHAPTER 8
Programming Evolvable Web Services

Published in:

Programming Evolvable Web Services.

Treiber M., Juszczyk L., Schall D., Dustdar S. (2010).

2nd International Workshop on Principles of Engineering Service-Oriented Systems (PESOS).
32nd ACM/IEEE International Conference on Software Engineering (ICSE’10), 2. - 8. May
2010, Cape Town, South Africa.

Outline. In this chapter we do not focus anymore on pure testbed generation but we ap-
ply the GENESIS programming model for engineering evolvable and adaptable Web services.
Combining the intuitiveness of the scripting language with the ability to perform hot updates
makes it possible to develop services which can be adapted at runtime in a convenient manner.
We present a user-centric approach supporting automatic mechanisms for adaptation and fore-
most a programming model to reduce the burden of reconfiguration, update, and customization
of service-based applications.

As this work was done before we developed G2, it is still built upon the concepts and the
implementation of the first GENESIS framework.

8.1 Motivation

Recent research on SOA increasingly addressed the need to design systems in order to make
them adaptable on changing requirements and environmental constraints [134]. The requirement
of engineering systems towards being more robust, flexible, and ultimately self-adapting holds
numerous challenges for developers. One way to address these challenges is to build loosely-
coupled systems out of modular and dynamically replaceable services. The system can adapt,

93

94 8.1 Motivation

for instance, by switching over to "better suited" services on-the-fly, if the situation requires this.
However, not only the composite systems, invoking other services, need to be adaptive but also
the services themselves in order to evolve, to improve their quality, and to be prepared for the se-
lection among equivalent competitors [154]. In general, services can evolve in various manners:
by improving their non-functional properties (e.g., performance) or their functional behavior
(e.g., delivering better quality responses), by relocating to new hosting environments, by adapt-
ing their own interfaces, by improving their description, etc. The big challenge is, though, how
to perform these changes upon running services without hampering their availability and usabil-
ity. In this chapter we present a simple programming model and methodology for engineering
evolvable Web services and for adapting them at runtime.

In this work we focused particularly on the developers perspective as significant evolutions
of services during the life cycle [70,133], like code refactoring or the implementation of new al-
gorithms do not happen automatically, but rather require the developer in the loop who conducts
these changes [154]. Developers require an answer to the question of how to implement services
and their changes. Consequently, developers need the support from the service infrastructure to
be able to modify services in an efficient manner. Furthermore, an adequate programming ab-
straction is required that allows developers to change the implementation of services according
to changing requirements.

Current approaches offer limited support for developers regarding the modification of ser-
vices. They treat Web services either as components or resources [97], focus on interface de-
scriptions [52, 56] or describe services with semantic techniques [114]. The support for direct
modifications of Web services in the deployment environment is limited, approaches like chain
of adapters [109] intercept and transform messages but do not support the developer in modify-
ing deployed Web services.

In this chapter, we apply the GENESIS programming model as a basis for implementing
evolvable Web services.

8.1.1 Application Scenarios

The presented application scenarios are motivated by the need to create service-based appli-
cations which may be subject to changing requirements. In the first scenario we discuss an
example where distributed organizations form virtual organizations (VO) to collaborate on joint
tasks/projects. The second case highlights the need to provide customized services based on the
service consumers preferences.

• VO formation and collaboration: The global scale and distribution of companies have
changed the economy and dynamics of businesses. In recent years, companies and indi-
viduals have started to form virtual organizations (VO) to harvest business opportunities
which single partners cannot realize on their own due to missing expertise or resources.
VOs are established by creating connections between individual partners. Web services
and SOA are the ideal technical framework to automate the formation process as well
as interactions within VOs. Since VOs form and dissolve for the timespan of a specific

Chapter 8: Programming Evolvable Web Services 95

collaboration, it is desirable to create tailored services supporting the needed interactions
between partners in an easy manner. Thus, developers are required to create a set of ser-
vices enabling collaborations. Moreover, tailored services prevent unauthorized access to
services or operations that should remain invisible to the collaboration partner.

• Provisioning of custom services: Web services have undergone fundamental changes.
Users demand for personalization and context-awareness when using services. Services
may be adapted based on the users’ context information by offering extended features.
Also, personalization plays an increasing role as the number of available services in-
creases. A simple example is a Web portal where personalized views are created based
on user preferences. Web service providers, for example hosting services in cloud envi-
ronments, may want to create services offering a set of features (operations) targeting a
specific consumer and/or community. These custom services can be created by selecting
and aggregating available operations from a repository.

Both scenarios demand for flexibility and adaptivity of services. A system satisfying the needs of
the presented application cases is not designed, developed, and deployed in a top-down manner,
but rather changes and evolves over time. While research in the semantic Web services com-
munity focuses on automatic adaptation of services (e.g., mediation of messages, goal driven
compositions, etc.), our approach focuses on the developer’s perspective. The fundamental
question we attempt to address in this work is: how can developers efficiently adapt systems
while maintaining the system’s availability?

8.1.2 Adaptation in Service-oriented Systems

In the following, we discuss various possibilities for adapting SOA’s. We distinguish between (i)
manual adaptation performed by developers and (ii) automatic (self-)adaptation. The latter has
recently received considerable attention from the research community while the former is not
sufficiently supported by existing WS toolkits and frameworks. Figure 8.1 provides an overview
of adaptation in SOA.

The development process can be viewed from various starting points. The Provider may start
to implement services based on market demands and innovations of competitors. We make no
assumption about the role of the provider with regards to development aspects of services. From
the Web services point of view, functional capabilities of services can be described through well-
defined interfaces, whereas non-functional characteristics, for example service metering, costs,
and QoS attributes [133], can be modeled using policy frameworks.

Providers typically offer a set of services to a number of Consumers. As mentioned in our
motivating application scenarios, consumers may have different preferences and requirements,
thereby demanding for customizations of services. The provider is responsible for hosting ser-
vices in an appropriate Infrastructure to satisfy consumer demands in terms of functional capa-
bilities and QoS.

Autonomic adaptation (see self-referential arrow) may need to be performed to satisfy QoS
guarantees, service availability, to name a few and has received considerable attention (e.g.,

96 8.1 Motivation

Provider Developer

Infrastructure

Service

select

implement
program and

adapt

use

consult

manipulate

monitornotify

adapt

(autonomic)

Backend

(Runtime)

Frontend

G
e
n
e
s
is

W
S
 F
ra
m
e
w
o
rk

Consumer ... Consumer 1 to n

Figure 8.1: Overview of adaptive SOA

see [130]). For example, such self-adaptation actions may be triggered by notifying services
about infrastructure events.

Here we address adaptations performed by the Developer. The developer is in charge of
programming services and implementing adaptations (dotted arrow pointing from Developer to
Service in Figure 8.1). A set of tools are needed for this purpose, which are depicted as Frontend
and Backend, both provided by GENESIS. The developer performs the logical action ‘program
and adapt’ using the frontend comprising tools, APIs, user shell, etc. The backend is deployed in
the infrastructure — potentially multiple backend instances to achieve scalability. Also, the in-
frastructure is monitored by the backend to receive information about deployed resources or load
conditions which can be propagated back to the frontend to assist the developer when adapting
services. Automatic adaptations could potentially be triggered by the backend, although this is
not within the scope of this work.

In this chapter, we highlight the following novel key contributions:

1. A developer-centric approach for programming and adapting Web services via a scripting
language.

2. A simple and intuitive programming model assisting developers in adaptation actions such
as service migration, replication, or even refactoring of multiple distributed services at the
same time.

3. Extensibility and flexibility in managing services through behavior modules, realized as
GENESIS plugins.

Chapter 8: Programming Evolvable Web Services 97

H 1

O 1

S 1

T 1

O n

Host
Layer

T nT 2 . . . T 1 T nT 2 . . .

. . .

Service
Layer

Operation
Layer

Message
Type Layer

H 2

S 2

. . .

H 1 ... Host O 1 ... OperationS 1 ... Service T 1 ... Message Type

Figure 8.2: Programming abstraction for Web services derived from WSDL.

8.2 Programming Model

The proposed programming model differs from the usual methodology for Web service develop-
ment. In order to make Web services adaptable, in the sense of altering the service’s interface and
behavior at runtime, we regard it as useful to encapsulate its implementation into serializeable
and composable building blocks. Today, the most common way of developing Web services
is to create data/code objects representing the services, with class methods implementing the
service’s operations. The main drawback of this approach is the tight binding of operations
to services (which means, methods to objects) making it impossible to perform adaptations on
a structural level without recompiling and redeploying the whole service. This poses a hard
limitation for flexibility and adaptivity.

Our approach, derived from the GENESIS programming model, splits the Web service
model, according to the structure in WSDL documents, into 4 main layers of element types,
namely Host, Service, Operation, and MessageType.

The Host type references a remote host and provides access to its deployed services, in
order to de-/re-/install these. The Service type represents the general specification of a Web
service, with all its global dependencies and properties. Operations encapsulate the behavior
of the service and MessageTypes define the schemas of the exchanged messages, which also
includes headers.

Our methodology comprises the usage of an API at the front-end in order to control a set of
back-end hosts. The main features of the API deal with creating and manipulating Web service
models and for deploying them on the back-end hosts. At the back-end, a runtime environ-
ment handles the transformation of models into service instances and supports the basic CRUD
(Create, Read, Update, & Delete) operations for manipulating them. Furthermore, our

98 8.2 Programming Model

approach supports the usage of pluggable behavior modules which augment the Web services
with arbitrary functionality, e.g., access to data bases or registration at UDDI brokers. Table 8.1
summarizes the main effects of CRUD on the model.

Model Modification
Host Create: Bootstrapping of remote host (requires Cloud-like host manipula-

tions, e.g., performed by Cafe [128])
Read: Retrieve model of deployed Web services (e.g., for migration)
Update:
• Update of host-global behavior modules
• Setting host-global properties
Delete: Host shutdown

Service Create: Service deployment for creation / replication / migration
Read: Read service configuration and metadata
Update:
• of service behavior modules
• of service properties (e.g. URL)
Delete: Service undeployment

Operation Create: Addition of operation
Update:
• of operation code
• of operation properties (e.g. binding)
Delete: Removal of operation

MessageType Create: Addition of headers and/or message types
Update:
• of request/response types and headers
• of header processing code
Delete: Removal of headers and/or message types

Behavior
Module

Create: Deployment of modules for extending service functionality
Update:
• Replacement of modules
• Steering of pluggable functions via parameter manipulation
Delete: Undeployment of modules

Table 8.1: Modifications on model types and behavior modules.

8.2.1 Script-based Web Service Programming

As explained in Chapter 3, GENESIS provides an API for modeling services, which can be also
integrated into scripting environments such as the Bean Scripting Framework (BSF) [31]. In this
work, we are using sample snippets written in Jython [38], a BSF implementation of the Python
language, to demonstrate the usage of our programming model. The following sample shows
the creation and deployment of a simple Web service.

Chapter 8: Programming Evolvable Web Services 99

� �
c r e a t e h o s t r e f e r e n c e
h = Host ("http://example.net:8080/services")

c r e a t e s e r v i c e model
s = S e r v i c e ("SampleService")

c r e a t e dummy method i n J y t h o n
def s i g n (p a r) :

s i g n a t u r e S t r = "Not implemented yet"
re turn s i g n a t u r e S t r

b ind method t o s e r v i c e o p e r a t i o n
o = O p e r a t i o n ("SignData")
o . s e t B e h a v i o r (s i g n)

c r e a t e XSD−based message t y p e s
t = MessageType ("types.xsd" , "dataTypeName")

a t t a c h message t y p e s t o o p e r a t i o n
o . add Inpu tType ("param" , t)
o . s e t O u t p u t T y p e ("string") % t y p e f o r s i g n () r e s p o n s e

a t t a c h o p e r a t i o n t o s e r v i c e
s . a d d O p e r a t i o n (o)

a t t a c h s e r v i c e t o h o s t and dep lo y
s . dep loyAt (h)� �

Listing 8.1: Sample definition of Web service

By executing the script code, the Web service is deployed at http://example.net:8080/
services/SampleService. The functionality of the service is defined by binding a native
Jython method (sign()) to a Web service operation, in order to encapsulate the operation’s
behavior for remote execution.

Deployed Web services can be adapted by importing their model from a host, performing
changes to it, and redeploying it again. The next snippet demonstrates this feature and shows
how to extend services with behavior modules.� �
i m p o r t s e r v i c e model from remote h o s t
h = Host ("http://example.net:8080/services")
s = h . g e t S e r v i c e ("SampleService") # g e t by name
o = s . g e t O p e r a t i o n ("SignData")

c r e a t e new h e a d e r message t y p e
c t = MessageType ("types.xsd" , "credentials")
c t . s e t H e a d e r (t r u e)

o . add Inpu tType ("creds" , c t)

u s e s " a u t h " and " gpg " p l u g i n s
def newSign (par , c r e d s) :

100 8.2 Programming Model

H 1

O 1

S 1

T 1

O 1

Host
Layer

T nT 2 . . . T 1 T nT 2 . . .

Service
Layer

Operation
Layer

Message
Type Layer

H 2

S 1

Service
Migration

H 1 ... Host O 1 ... OperationS 1 ... Service T 1 ... Message Type

Figure 8.3: Migration of service S1 from host H1 to host H2

a u t h . check (c r e d s) # e x c e p t i o n on f a i l u r e
s i g n a t u r e S t r = gpg . s i g n (p a r)
re turn s i g n a t u r e S t r

r e p l a c e o p e r a t i o n b e h a v i o r
o . s e t B e h a v i o r (newSign)

i n s t a l l p l u g i n s a t h o s t u s i n g g l o b a l a l i a s e d " a u t h " and " gpg "
h . u s e P l u g i n ("auth.jar")
s . u s e P l u g i n ("gpg.jar")

r e d e p l o y m e n t a t remote h o s t
s . u p d a t e ()� �

Listing 8.2: Usage of behavior modules (plugins)

Apart from simple adaptations, which change a service’s interface and/or behavior, changes can
be also performed at a higher level, by combining API methods into composite ones, for instance
to migrate or replicate services to other hosts (see Figure 8.3).� �
def r e p l i c a t e S e r v i c e (serviceName , fromHost , t o H o s t)

i m p o r t model from s o u r c e h o s t
s = fromHost . g e t S e r v i c e (se rv iceName)
i f s i s None :

r a i s e E x c e p t i o n ("Unknown service")
d ep lo y a t new one
s . dep loyAt (t o H o s t)
re turn s

Chapter 8: Programming Evolvable Web Services 101

def m i g r a t e S e r v i c e (serviceName , fromHost , t o H o s t)
s = r e p l i c a t e S e r v i c e (serviceName , fromHost , t o H o s t)
remove a f t e r s u c c e s s f u l dep loyment
s . undeployFrom (fromHost)

def m i g r a t e H o s t (fromHost , t o H o s t)
i t e r a t e t h r o u g h d e p l o y e d p l u g i n s and s e r v i c e s
f o r p in f romHost . g e t P l u g i n M o d u l e s () :

t o H o s t . u s e P l u g i n (p)
f o r s in f romHost . g e t S e r v i c e s () :

m i g r a t e S e r v i c e (s . getName () , fromHost , t o H o s t)� �
Listing 8.3: Combined commands for replicating and migrating services

During deployment at back-end hosts, models of Web services are translated into running in-
stances of these. For this purpose our system serializes service models, including the code
blocks of the operations and all referenced pluggable modules, and transfers them to the des-
ignated hosts. The translation process itself comprises the analysis of the Web service model
and the generation of Java code which implements the intented behavior. This procedure got
explained in detail in Chapter 3.

8.2.2 Extending Services with Behavior Modules

For our programming model particular priority has been put on simplicity, allowing developers
to set up Web services quickly and to perform adaptations in a convenient manner.

However, this came at the cost of sacrificing the ability to create complex Web services due
to the encaplusation of Web service operations to single code blocks, e.g., to Jython methods
like in the previous samples. To overcome this limitation to a certain degree, we are using plug-
gable behavior modules which can provide arbitrary functionality and which can be accessed by
the operations. Our framework supports developers by providing an abstract Java class for the
modules, which takes care of binding them to the runtime environment via alias names. Mod-
ules can bei either registered at the host level, for globally visibility, or at the service level, for
restricted visibility to particular services. We have developed a set of behavior modules which
are frequently needed in the SOA domain, e.g., a service invoker for calling remote services
and a simple workflow engine for executing nested BPEL processes. Basically, we adopted the
repository of already available plugins provided by GENESIS, which are listed in Section 3.3.2.

Being based on the programming model of the first version of GENESIS (as G2 had not
been available yet at that time), the presented approach suffers from several restrictions regard-
ing fine-granular programmability of service behavior. In GENESIS plugins were orchestrated
via aligning calls according to a simple grammar, while G2 has been designed to specify service
behavior in Groovy closures that referenced plugins and executed them on top of the shared
runtime environment. However, in this work we improved the plugin concept of GENESIS and
adapted an approach which was more flexible, yet, not as advanced as the one of G2. We use
Jython procedures to implement behavior and to align plugin invocations, which is superior to
the restricted possibilities of GENESIS (sequential, parallel alignment and try/catch blocks).

102 8.3 Discussion

Engineers are able to program their own behavior routines by reusing functionality encapsulated
in behavior modules (plugins), e.g., as done in Listing 8.2 (newSign()). Yet, it it missing
several features which were introduced later with G2, such as code blocks as model parame-
ters (for exchanging sub-routines of operations) or a shared runtime environment, used for data
exchange among pluings and/or services. Therefore, we regard the approach presented in this
chapter as an intermediary step between GENESIS and G2, where we had already experienced
the limitations of GENESIS and wanted to overcome them as best as possible by only improving
the framework and without rewriting it from scratch.

8.3 Discussion

The adaptation of services requires careful considerations. In the following we discuss the
strengths and the limitations of our proposed programming model and its current implemen-
tation.

8.3.1 Strengths

The flexibility of our model has several positive implications for the service developer who
benefits from the following features:

• Simplicity and intuitivity: Web services can be created in a simple and intuitive manner.
For example, the developer is able to modify services on the host layer (e.g., replication,
migration) with the same programming primitives like on the service layer when changing
the operations of a service.

• Modularity: As a unit of reuse, behavior modules allow developers to encapsulate ar-
bitrary functionality and reuse these modules with different services in the GENESIS
runtime environment.

• Run time service adaptation: The modification of services at run time is supported by
the GENESIS based prototype infrastructure. The GENESIS environment manages the
(re-)deployment of services and the modifications in a transparent way for the developer.
Our prototype implementation supports developers by hiding the complexity of service
modifications and keeps the available services in sync with the abstract programming
model.

• Consistency between Model and Service: The gap between the abstract model that de-
scribes a service and its implementation is very narrow. When manipulating the service
model, the developer directly changes the implementation of the service and vice versa.
Thus, we lay the foundation for automated service modifications which can be caused
other than by the developer.

Chapter 8: Programming Evolvable Web Services 103

8.3.2 Limitations

Using a flexible programming model, we encounter a set of challenges that are of importance
and are not fully addressed in our current version of the programming model. Limitations at this
stage include:

• Support for Stateful Services: An issue that has strong impact on service adaptations is
state [117]. Services which have internal state that influences the execution result of a
service must be treated in a manner that does not corrupt the state of the service during
the adaptation process. A straightforward approach is to allow service modifications only
in ground states when no invocation is active and the internal state of a service can be
persisted and then later recovered to restart the service. This obviously limits applicable
modifications, because (i) adaptations only can take place during a certain time interval
and (ii) modifications that change the service semantics (e.g., the removal of an operation)
are not applicable if the service is not in a ground state. In the present implementation, we
do not support the complex manipulations of stateful services which require knowledge
of meta information like active transactions.

• Dependency Model: Dependencies of services manifest themselves in different dimen-
sions [153]. We can roughly distinguish between internal and external service depen-
dencies. Examples of internal dependencies are the use of behavior modules, external
dependencies can be observed as links to databases or libraries. These dependencies need
to be taken into account, before a service is adapted. An approach to model dependencies
is the use of manifest files that simply lists required resources of Web services that must
be available for a service to function properly. In our programming model, we encounter
these types of dependencies on all four layers. For example, the migration of an operation
from one service to another might require the availability of a certain behavior module at
the target service. So far, we do not provide active support to manage dependencies on the
infrastructure level.

• Security and User Model: Security concerns are not addressed with our current proto-
type implementation. Basically, each user that has access to the GENESIS framework can
modify each service at any given moment. Related to the security model are considera-
tions about the user model. We do not support a dedicated user model in the prototype
version.

• Eventing Model - Event Propagation: The causes that trigger adaptations can originate
from different sources. For example, the observation that a service is operating near its
pre-defined maximum throughput of 50 requests per second, might trigger a duplication
of the service to another host to handle the load in order to fulfill the requirements of
customers. Manually triggered adaptions, include for example internal code changes due
to optimization of algorithms are triggered by the developer. The needed infrastructure is
not yet implemented subject to possible future work.

CHAPTER 9
Summary, Conclusions, and Outlook

In this thesis we have presented the results of our research on techniques for generating testbed
infrastructures for SOA. We have analyzed the state of the art of SOA software engineering, out-
lined a lack of support for testing complex service-oriented systems, investigated techniques and
approaches for solving this issue, and, consequently, we propose our results in this dissertation.

Our work has been concentrated on testing complex systems which operate in (potentially
large-scale) environments of SOA components, such as services, clients and workflow engines.
As often such environments are not available during the process of developing the complex sys-
tem, this puts a burden on the engineers/testers. The question appears of how to perform tests if
the designated destination environment is not available? In this thesis we argue that this prob-
lem can be solved by emulating the missing environments in order to have so called testbeds for
the developed system. Though, this important task has not been given enough attention by the
research community, as only a small number of articles have been published on this topic. Fur-
thermore, these were all focused on solving very specific problems, which means on performing
specific kinds of tests. Support for generating generic SOA testbeds was not available at all and
engineers/testers had to set up their required testbeds manually, which was a time-consuming
task. We regarded this situation as unacceptable and concentrated our research on developing
novel techniques for generating testbeds of arbitrary composition, structure, topology, and be-
havior, ergo which are customizable to the requirements of the tested system.

We achieved our goal in several steps which were presented in this thesis’ chapters. At first,
we came up with the GENESIS framework which was focused on generating testbeds consisting
of customizable Web services. We evolved our concepts towards more flexibility, extendability,
and towards supporting the generation of arbitrary SOA components, not only Web services.
The result was GENESIS2, in short, G2. Then, we developed techniques for augmenting G2
with fault injection in order to achieve more realism within the testbeds. Later, we automated
parts of the testbed generation process by monitoring SOA systems and creating testbed for these
automatically. And, finally, we combined G2 with the Cafe framework for deploying large-scale
testbeds in cloud-based infrastructures.

105

106 9.1 Outlook and Possible Future Work

In a nutshell, the conceptual contribution of this thesis comprises

• a flexible scripting language for specifying and programming of testbeds,

• techniques for generating deployable testbed instances from the specifications,

• a testbed model providing high extendability and customizability via plugins,

• and an approach to automate the process with AOP.

Furthermore, we contributed to the research community by implementing the developed concepts
in a prototype and by releasing it as open-source.

9.1 Outlook and Possible Future Work

GENESIS and G2 were the first available generic purpose testbed generators that can be ex-
tended and customized to the requirements of the tested system and the needs of the engineer-
s/testers/users. Based on this extendability they provide a solid grounding for research on test-
ing of SOA systems. In our group, we applied our framework for emulating faults and QoS
in testbeds [123], for emulating human-provided services [143, 146], for evaluating self-healing
techniques in SOA [138], for evaluating monitoring mechanisms in business processes [112],
etc. Of course these projects do not cover all aspects of SOA testing. We identified the follow-
ing challenges to be solved yet and potential evolutions of our work, which will be, hopefully,
handled in future projects:

• We envision a better integration of the software engineering process, the testing process,
and the testbed generation. We argue that it is necessary to provide means to derive testbed
specifications automatically from software models, without the need to specify all details
manually. Furthermore, the set up and execution of test runs, as well as the evaluation of
the test results, should be more supported and automated. At our group we have started to
work on these issues in the project Audit 4 SOA.

• One of the main shortcomings of the current state of our work is the limited support for
emulating (or replicating) the functional behavior of external Web services. We expect
engineers/testers to know about the service and to replicate its functionality via the pro-
grammability of our script-based approach. We think that this process could be improved
by having not only a public description of the services interface (wrapped in WSDL doc-
uments) but also a functional one, which would make it possible to generate functional
replicas in an automated manner. Of course, this is not a trivial task and requires thorough
investigations.

• In the scope of socially-enhanced SOA, where human workers are part of SOA-based
systems, the emulation of human-provided services (HPS) becomes very important. In our
previous works we emulated selected properties of HPS, such changing availability and

Chapter 9: Summary, Conclusions, and Outlook 107

throughput of tasks. However, human workers expose a significantly different behavior
compared to software services. This is not only limited to QoS and performance issues,
but also affects the quality of the responses, task delegation behavior, etc. We regard it as
necessary to invest more effort into emulating realistic HPS in order to be able to test their
application in an SOA.

• There exist several WS-* specifications, such as WS-Transaction and WS-Notification,
which handle and control complex interactions among services. To test the execution
engines implementing these specifications, it would be necessary to generate testbeds of
Web services which are able to participate in such interactions and to enhance them with
corresponding behavior models in order to execute realistic scenarios.

• Last but not least, we see the need for emulating of ReST-based testbeds, due to the grow-
ing importance of ReSTful services for the Web community, e.g., within service mashups
(= simple Web-based workflows). As ReST is based on different concepts compared to
SOAP services and also is applied in a different manner, this would require to come up
with novel concepts for emulating ReSTful service environments.

This was only a list of selected (possible) future works/projects that we regard as most important.
In general we see a big potential for successor projects to our work, due to the extensible nature
of the framework, the open-source availability of the prototype implementation, plus due to the
urgent need of sophisticated testing solutions. We hope that GENESIS will have a strong impact
on the future development of research on SOA testing.

Bibliography

[1] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[2] Amazon Mechanical Turk. http://www.mturk.com/.

[3] Apache Axis 2. http://axis.apache.org/axis2/.

[4] Apache CXF. http://cxf.apache.org/.

[5] Apache CXF Dynamic Clients. http://cxf.apache.org/docs/
dynamic-clients.html.

[6] Apache CXF Features. http://cxf.apache.org/docs/features.html.

[7] Apache CXF Interceptors. http://cxf.apache.org/docs/interceptors.
html.

[8] Apache Muse. http://ws.apache.org/muse/.

[9] Apache Orchestration Director Engine (ODE). http://ode.apache.org/.

[10] Apache ServiceMix. http://servicemix.apache.org/home.html.

[11] Apache ServiceMix BeanFlow. http://servicemix.apache.org/beanflow.
html.

[12] Apache Tuscany CORBA Binding. http://tuscany.apache.org/
sca-java-bindingcorba.html.

[13] Apache Tuscany RMI Binding. http://tuscany.apache.org/
sca-java-bindingrmi.html.

[14] Apache Velocity. http://velocity.apache.org.

[15] AspectJ. http://www.eclipse.org/aspectj/.

[16] bexee BPEL Execution Engine. http://bexee.sourceforge.net/.

[17] Business Process Execution Language for Web services (WS-BPEL). http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

109

http://aws.amazon.com/ec2/
http://www.mturk.com/
http://axis.apache.org/axis2/
http://cxf.apache.org/
http://cxf.apache.org/docs/dynamic-clients.html
http://cxf.apache.org/docs/dynamic-clients.html
http://cxf.apache.org/docs/features.html
http://cxf.apache.org/docs/interceptors.html
http://cxf.apache.org/docs/interceptors.html
http://ws.apache.org/muse/
http://ode.apache.org/
http://servicemix.apache.org/home.html
http://servicemix.apache.org/beanflow.html
http://servicemix.apache.org/beanflow.html
http://tuscany.apache.org/sca-java-bindingcorba.html
http://tuscany.apache.org/sca-java-bindingcorba.html
http://tuscany.apache.org/sca-java-bindingrmi.html
http://tuscany.apache.org/sca-java-bindingrmi.html
http://velocity.apache.org
http://www.eclipse.org/aspectj/
http://bexee.sourceforge.net/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

110 Bibliography

[18] Electronic Business using XML (ebXML). http://www.ebxml.org/.

[19] Extensible Markup Language (XML). http://www.w3.org/XML/.

[20] GENESIS Prototype. http://www.infosys.tuwien.ac.at/prototype/
Genesis/.

[21] GlassFish. http://http://glassfish.java.net/.

[22] Globus Toolkit. http://www.globus.org/toolkit/.

[23] Google SOAP API. http://code.google.com/intl/de-DE/apis/
soapsearch/.

[24] Groovy. http://groovy.codehaus.org/.

[25] Groovy Closure. http://groovy.codehaus.org/Closures.

[26] Groovy GPath Expressions. http://groovy.codehaus.org/GPath.

[27] Groovy SOAP Web Services. http://groovy.codehaus.org/Groovy%
2BSOAP.

[28] Hypertext Transfer Protocol (HTTP). http://www.w3.org/Protocols/.

[29] IBM Websphere. http://www-01.ibm.com/software/websphere/.

[30] IBM Websphere Process Server. http://www-01.ibm.com/software/
integration/wps/.

[31] Jakarta Bean Scripting Framework (BSF). http://jakarta.apache.org/bsf/.

[32] Java API for XML Web Services (JAX-WS). https://jax-ws.dev.java.net/.

[33] Java Compiler Compiler (JavaCC). https://javacc.dev.java.net/.

[34] Java Distribution Functions library. http://statdistlib.sourceforge.net.

[35] Java Message Service (JMS). http://www.oracle.com/technetwork/java/
jms/.

[36] JBoss. http://www.jboss.org.

[37] JBoss Enterprise Service Bus. http://www.jboss.org/jbossesb/.

[38] Jython. http://www.jython.org.

[39] Linux Advanced Routing & Traffic Control (tc). http://lartc.org.

[40] Microsoft Distributed Component Object Model (DCOM). http://www.
microsoft.com/com/default.mspx.

http://www.ebxml.org/
http://www.w3.org/XML/
http://www.infosys.tuwien.ac.at/prototype/Genesis/
http://www.infosys.tuwien.ac.at/prototype/Genesis/
http://http://glassfish.java.net/
http://www.globus.org/toolkit/
http://code.google.com/intl/de-DE/apis/soapsearch/
http://code.google.com/intl/de-DE/apis/soapsearch/
http://groovy.codehaus.org/
http://groovy.codehaus.org/Closures
http://groovy.codehaus.org/GPath
http://groovy.codehaus.org/Groovy%2BSOAP
http://groovy.codehaus.org/Groovy%2BSOAP
http://www.w3.org/Protocols/
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/integration/wps/
http://www-01.ibm.com/software/integration/wps/
http://jakarta.apache.org/bsf/
https://jax-ws.dev.java.net/
https://javacc.dev.java.net/
http://statdistlib.sourceforge.net
http://www.oracle.com/technetwork/java/jms/
http://www.oracle.com/technetwork/java/jms/
http://www.jboss.org
http://www.jboss.org/jbossesb/
http://www.jython.org
http://lartc.org
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx

Bibliography 111

[41] netem - Network Emulator. http://www.linuxfoundation.org/en/Net:
Netem.

[42] ns-2 Network Simulator. http://isi.edu/nsnam/ns/.

[43] Oracle BPEL Process Manager. http://www.oracle.com/technetwork/
middleware/bpel/overview/.

[44] PUPPET Prototype. http://labsewiki.isti.cnr.it/labse/tools/
puppet/public/main.

[45] SOA Principles. http://www.soaprinciples.org.

[46] SOABench Prototype. http://code.google.com/p/soabench/.

[47] SOAP. http://www.w3.org/TR/soap/.

[48] SOAP Over UDP. http://docs.oasis-open.org/ws-dd/soapoverudp/
1.1/os/wsdd-soapoverudp-1.1-spec-os.html.

[49] soapUI Web Service Testware. http://www.soapui.org/.

[50] Universal Description Discovery and Integration (UDDI). http://www.
oasis-open.org/committees/uddi-spec/doc/tcspecs.htm.

[51] Vienna Runtime Enviroment for Service-oriented Computing (VRESCO). http://
www.infosys.tuwien.ac.at/prototypes/VRESCo/.

[52] Web Application Description Language (WADL). https://wadl.dev.java.net/
wadl20090202.pdf.

[53] Web Service Agreement. http://www.ogf.org/documents/GFD.107.pdf.

[54] Web Services Choreography Description Language (WS-CDL). http://www.w3.
org/TR/2004/WD-ws-cdl-10-20041217/.

[55] Web Services Description Language for Java (WSDL4J). http://sourceforge.
net/projects/wsdl4j/.

[56] Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl.

[57] Web Services Distributed Management (WSDM). http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wsdm#overview.

[58] Web Services Dynamic Discovery. http://docs.oasis-open.org/ws-dd/
discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf.

[59] Web Services Human Task. http://download.boulder.ibm.com/ibmdl/
pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf.

http://www.linuxfoundation.org/en/Net:Netem
http://www.linuxfoundation.org/en/Net:Netem
http://isi.edu/nsnam/ns/
http://www.oracle.com/technetwork/middleware/bpel/overview/
http://www.oracle.com/technetwork/middleware/bpel/overview/
http://labsewiki.isti.cnr.it/labse/tools/puppet/public/main
http://labsewiki.isti.cnr.it/labse/tools/puppet/public/main
http://www.soaprinciples.org
http://code.google.com/p/soabench/
http://www.w3.org/TR/soap/
http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
http://www.soapui.org/
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.infosys.tuwien.ac.at/prototypes/VRESCo/
http://www.infosys.tuwien.ac.at/prototypes/VRESCo/
https://wadl.dev.java.net/wadl20090202.pdf
https://wadl.dev.java.net/wadl20090202.pdf
http://www.ogf.org/documents/GFD.107.pdf
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
http://sourceforge.net/projects/wsdl4j/
http://sourceforge.net/projects/wsdl4j/
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm#overview
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm#overview
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

112 Bibliography

[60] Web Services Interoperability (WS-I). http://www.ws-i.org/.

[61] Web Services Notification. http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wsn.

[62] Web Services Transaction. http://www.ibm.com/developerworks/
library/specification/ws-tx/.

[63] WS-BPEL Extension for People (BPEL4People). http://download.
boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/
BPEL4People_v1.pdf.

[64] XML Schema Definition (XSD). http://www.w3.org/TR/xmlschema-0/.

[65] 34th Euromicro Conference on Software Engineering and Advanced Applications, SEAA
2008, September 3-5, 2008, Parma, Italy (2008), IEEE.

[66] Proceedings of the 17th International Conference on World Wide Web, WWW 2008, Bei-
jing, China, April 21-25, 2008 (2008), ACM.

[67] Proceedings of the 2011 ACM Symposium on Applied Computing (SAC), TaiChung, Tai-
wan, March 21 - 24, 2011 (2011), ACM.

[68] AL-MASRI, E., AND MAHMOUD, Q. H. Discovering the best web service. In WWW
(2007), ACM, pp. 1257–1258.

[69] AL-MASRI, E., AND MAHMOUD, Q. H. Qos-based discovery and ranking of web ser-
vices. In ICCCN (2007), IEEE, pp. 529–534.

[70] ANDRIKOPOULOS, V., BENBERNOU, S., AND PAPAZOGLOU, M. Managing the evolu-
tion of service specifications. Advanced Information Systems Engineering (2008), 359–
374.

[71] AVERSTEGGE, M. Contract based, non-invasive, black-box testing of web services. In
ICSOC (2010), vol. 6470 of Lecture Notes in Computer Science, pp. 695–698.

[72] AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. E. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec.
Comput. 1, 1 (2004), 11–33.

[73] BARESI, L., BIANCULLI, D., GUINEA, S., AND SPOLETINI, P. Keep it small, keep it
real: Efficient run-time verification of web service compositions. In FMOODS/FORTE
(2009), vol. 5522 of Lecture Notes in Computer Science, Springer, pp. 26–40.

[74] BARROS, M. D., SHIAU, J., SHANG, C., GIDEWALL, K., SHI, H., AND FORSMANN,
J. Web services wind tunnel: On performance testing large-scale stateful web services.
In DSN (2007), IEEE Computer Society, pp. 612–617.

http://www.ws-i.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://www.w3.org/TR/xmlschema-0/

Bibliography 113

[75] BASILI, V. R., AND PERRICONE, B. T. Software errors and complexity: An empirical
investigation. Commun. ACM 27, 1 (1984), 42–52.

[76] BENATALLAH, B., HACID, M.-S., LÉGER, A., REY, C., AND TOUMANI, F. On au-
tomating web services discovery. VLDB J. 14, 1 (2005), 84–96.

[77] BERTOLINO, A., ANGELIS, G. D., FRANTZEN, L., AND POLINI, A. Model-based
generation of testbeds for web services. In TestCom/FATES (2008), vol. 5047 of Lecture
Notes in Computer Science, Springer, pp. 266–282.

[78] BERTOLINO, A., ANGELIS, G. D., LONETTI, F., AND SABETTA, A. Let the pup-
pets move! automated testbed generation for service-oriented mobile applications. In
EUROMICRO-SEAA [65], pp. 321–328.

[79] BERTOLINO, A., ANGELIS, G. D., AND POLINI, A. Automatic generation of test-beds
for pre-deployment qos evaluation of web services. In WOSP (2007), ACM, pp. 137–140.

[80] BERTOLINO, A., ANGELIS, G. D., AND POLINI, A. A qos test-bed generator for web
services. In ICWE (2007), vol. 4607 of Lecture Notes in Computer Science, Springer,
pp. 17–31.

[81] BERTOLINO, A., GAO, J., MARCHETTI, E., AND POLINI, A. Automatic test data
generation for xml schema-based partition testing. In AST (2007), IEEE, pp. 10–16.

[82] BERTOLINO, A., AND POLINI, A. The audition framework for testing web services
interoperability. In EUROMICRO-SEAA (2005), IEEE Computer Society, pp. 134–142.

[83] BHARGAVAN, K., FOURNET, C., GORDON, A. D., AND PUCELLA, R. Tulafale: A
security tool for web services. In FMCO (2003), vol. 3188 of Lecture Notes in Computer
Science, Springer, pp. 197–222.

[84] BIANCULLI, D., BINDER, W., AND DRAGO, M. L. Automated performance assessment
for service-oriented middleware: a case study on bpel engines. In WWW (2010), ACM,
pp. 141–150.

[85] BIANCULLI, D., BINDER, W., AND DRAGO, M. L. Soabench: performance evaluation
of service-oriented middleware made easy. In ICSE (2) (2010), ACM, pp. 301–302.

[86] BIRMAN, K. P. Like it or not, web services are distributed objects. Commun. ACM 47,
12 (2004), 60–62.

[87] BOZKURT, M., HARMAN, M., AND HASSOUN, Y. Testing web services: A survey.
Tech. Rep. TR-10-01, Department of Computer Science, King’s College London, January
2010.

[88] CANFORA, G., AND PENTA, M. D. Testing services and service-centric systems: chal-
lenges and opportunities. IT Professional 8, 2 (2006), 10–17.

114 Bibliography

[89] CANFORA, G., AND PENTA, M. D. Service-oriented architectures testing: A survey. In
ISSSE (2008), vol. 5413 of Lecture Notes in Computer Science, Springer, pp. 78–105.

[90] DAI, G., BAI, X., WANG, Y., AND DAI, F. Contract-based testing for web services. In
COMPSAC (1) (2007), IEEE Computer Society, pp. 517–526.

[91] DENARO, G., PEZZÈ, M., TOSI, D., AND SCHILLING, D. Towards self-adaptive
service-oriented architectures. In TAV-WEB (2006), ACM, pp. 10–16.

[92] DIALANI, V., MILES, S., MOREAU, L., ROURE, D. D., AND LUCK, M. Transparent
fault tolerance for web services based architectures. In Euro-Par (2002), vol. 2400 of
Lecture Notes in Computer Science, Springer, pp. 889–898.

[93] DOMINGUE, J., FENSEL, D., AND GONZÁLEZ-CABERO, R. Soa4all, enabling the soa
revolution on a world wide scale. In ICSC (2008), IEEE Computer Society, pp. 530–537.

[94] EL-REWINI, H., AND HALANG, W. The engineering of complex distributed computer
systems. IEEE Concurrency 05, 4 (1997), 30–31.

[95] ELLIMS, M., BRIDGES, J., AND INCE, D. C. Unit testing in practice. In ISSRE (2004),
IEEE Computer Society, pp. 3–13.

[96] ERL, T. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[97] FIELDING, R. T. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, Irvine, California, 2000.

[98] GOESCHKA, K. M., FROIHOFER, L., AND DUSTDAR, S. What SOA can do for soft-
ware dependability. In DSN 2008: Supplementary Volume of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (2008), IEEE Computer
Society, pp. D4–D9.

[99] HALIMA, R. B., DRIRA, K., AND JMAIEL, M. A qos-oriented reconfigurable middle-
ware for self-healing web services. In ICWS (2008), IEEE Computer Society, pp. 104–
111.

[100] HECKEL, R., AND LOHMANN, M. Towards contract-based testing of web services.
Electr. Notes Theor. Comput. Sci. 116 (2005), 145–156.

[101] HOLANDA, H. J. A., BARROSO, G. C., AND DE BARROS SERRA, A. Spews: A frame-
work for the performance analysis of web services orchestrated with bpel4ws. In ICIW
(2009), IEEE Computer Society, pp. 363–369.

[102] HOWDEN, W. E. Functional program testing. IEEE Trans. Software Eng. 6, 2 (1980),
162–169.

Bibliography 115

[103] HUANG, H., TSAI, W.-T., PAUL, R. A., AND CHEN, Y. Automated model checking and
testing for composite web services. In ISORC (2005), IEEE Computer Society, pp. 300–
307.

[104] HUHNS, M. N., AND SINGH, M. P. Service-oriented computing: Key concepts and
principles. IEEE Internet Computing 9, 1 (2005), 75–81.

[105] HUMMER, W., RAZ, O., SHEHORY, O., LEITNER, P., AND DUSTDAR, S. Test coverage
of data-centric dynamic compositions in service-based systems. In ICST (2011), IEEE
Computer Society, pp. 40–49.

[106] IBM. WS-* Standards. http://www.ibm.com/developerworks/
webservices/standards/.

[107] JOE GREGORIO. Do we need WADL? http://bitworking.org/news/193/
Do-we-need-WADL.

[108] JORGENSEN, P. C., AND ERICKSON, C. Object-oriented integration testing. Commun.
ACM 37, 9 (1994), 30–38.

[109] KAMINSKI, P., LITOIU, M., AND MÜLLER, H. A. A design technique for evolving web
services. In CASCON (2006), IBM, pp. 303–317.

[110] KERNER, S. M. Lots of REST For Ruby on Rails 2.0. http://www.
internetnews.com/dev-news/article.php/3715981.

[111] KHAN, T. A., AND HECKEL, R. On model-based regression testing of web-services
using dependency analysis of visual contracts. In FASE (2011), vol. 6603 of Lecture
Notes in Computer Science, Springer, pp. 341–355.

[112] KHAZANKIN, R., AND DUSTDAR, S. Providence: A framework for private data propa-
gation control in service-oriented systems. In ServiceWave (2010), vol. 6481 of Lecture
Notes in Computer Science, Springer, pp. 76–87.

[113] LEITNER, P., ROSENBERG, F., AND DUSTDAR, S. Daios: Efficient dynamic web service
invocation. IEEE Internet Computing 13, 3 (2009), 72–80.

[114] LI, K., VERMA, K., MULYE, R., RABBANI, R., MILLER, J. A., AND SHETH, A. P.
Designing semantic web processes: The wsdl-s approach. In Semantic Web Services,
Processes and Applications (2006), vol. 3 of Semantic Web And Beyond Computing for
Human Experience, Springer, pp. 161–193.

[115] LI, Z. J., ZHU, J., ZHANG, L.-J., AND MITSUMORI, N. M. Towards a practical and
effective method for web services test case generation. In AST (2009), IEEE, pp. 106–
114.

[116] LOOKER, N., MUNRO, M., AND XU, J. Simulating errors in web services. International
Journal of Simulation Systems 5, 5 (2004), 29–37.

http://www.ibm.com/developerworks/webservices/standards/
http://www.ibm.com/developerworks/webservices/standards/
http://bitworking.org/news/193/Do-we-need-WADL
http://bitworking.org/news/193/Do-we-need-WADL
http://www.internetnews.com/dev-news/article.php/3715981
http://www.internetnews.com/dev-news/article.php/3715981

116 Bibliography

[117] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN, R., DOUCEUR, J. R., AND

HOWELL, J. The smart way to migrate replicated stateful services. In EuroSys (2006),
ACM, pp. 103–115.

[118] LÜBKE, D. Unit testing bpel compositions. In Test and Analysis of Web Services.
Springer, 2007, pp. 149–171.

[119] MA, C., DU, C., ZHANG, T., HU, F., AND CAI, X. Wsdl-based automated test data
generation for web service. In CSSE (2) (2008), IEEE Computer Society, pp. 731–737.

[120] MARTIN, E., BASU, S., AND XIE, T. Websob: A tool for robustness testing of web
services. In ICSE Companion (2007), IEEE Computer Society, pp. 65–66.

[121] MCILRAITH, S. A., SON, T. C., AND ZENG, H. Semantic web services. IEEE Intelligent
Systems 16, 2 (2001), 46–53.

[122] MENASCÉ, D. A. Qos issues in web services. IEEE Internet Computing 6, 6 (2002),
72–75.

[123] MICHLMAYR, A., ROSENBERG, F., LEITNER, P., AND DUSTDAR, S. End-to-end sup-
port for qos-aware service selection, binding, and mediation in vresco. IEEE T. Services
Computing 3, 3 (2010), 193–205.

[124] MICHLMAYR, A., ROSENBERG, F., PLATZER, C., TREIBER, M., AND DUSTDAR, S.
Towards recovering the broken soa triangle: a software engineering perspective. In IW-
SOSWE (2007), ACM, pp. 22–28.

[125] MIETZNER, R. A Method and Implementation to Define and Provision Variable Com-
posite Applications, and its Usage in Cloud Computing. PhD dissertation, University of
Stuttgart, 2010.

[126] MIETZNER, R., AND LEYMANN, F. Generation of bpel customization processes for
saas applications from variability descriptors. In IEEE SCC (2) (2008), IEEE Computer
Society, pp. 359–366.

[127] MIETZNER, R., AND LEYMANN, F. Towards provisioning the cloud: On the usage of
multi-granularity flows and services to realize a unified provisioning infrastructure for
saas applications. In SERVICES I (2008), IEEE Computer Society, pp. 3–10.

[128] MIETZNER, R., UNGER, T., AND LEYMANN, F. Cafe: A generic configurable customiz-
able composite cloud application framework. In OTM Conferences (1) (2009), vol. 5870
of Lecture Notes in Computer Science, Springer, pp. 357–364.

[129] MODAFFERI, S., MUSSI, E., AND PERNICI, B. Sh-bpel: a self-healing plug-in for ws-
bpel engines. In MW4SOC (2006), vol. 184 of ACM International Conference Proceeding
Series, ACM, pp. 48–53.

Bibliography 117

[130] MOSER, O., ROSENBERG, F., AND DUSTDAR, S. Non-intrusive monitoring and service
adaptation for ws-bpel. In WWW [66], pp. 815–824.

[131] OFFUTT, J., AND XU, W. Generating test cases for web services using data perturbation.
ACM SIGSOFT Software Engineering Notes 29, 5 (2004), 1–10.

[132] PALSBERG, J., AND JAY, C. B. The essence of the visitor pattern. In COMPSAC (1998),
IEEE Computer Society, pp. 9–15.

[133] PAPAZOGLOU, M. P. The challenges of service evolution. In CAiSE (2008), vol. 5074 of
Lecture Notes in Computer Science, Springer, pp. 1–15.

[134] PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S., AND LEYMANN, F. Service-
oriented computing: State of the art and research challenges. Computer 40, 11 (nov.
2007), 38 –45.

[135] PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S., AND LEYMANN, F. Service-
oriented computing: a research roadmap. Int. J. Cooperative Inf. Syst. 17, 2 (2008),
223–255.

[136] PAUTASSO, C., ZIMMERMANN, O., AND LEYMANN, F. Restful web services vs. "big"’
web services: making the right architectural decision. In WWW [66], pp. 805–814.

[137] PEYTON, L., STEPIEN, B., AND SEGUIN, P. Integration testing of composite applica-
tions. In HICSS (2008), IEEE Computer Society, p. 96.

[138] PSAIER, H., JUSZCZYK, L., SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Runtime
behavior monitoring and self-adaptation in service-oriented systems. In SASO (2010),
IEEE Computer Society, pp. 164–173.

[139] PSAIER, H., SKOPIK, F., SCHALL, D., JUSZCZYK, L., TREIBER, M., AND DUSTDAR,
S. A programming model for self-adaptive open enterprise systems. In MW4SOC (2010),
ACM, pp. 27–32.

[140] REINECKE, P., AND WOLTER, K. Towards a multi-level fault-injection test-bed for
service-oriented architectures: Requirements for parameterisation. In SRDS Workshop on
Sharing Field Data and Experiment Measurements on Resilience of Distributed Comput-
ing Systems (Naples, Italy, 2008), AMBER.

[141] ROSENBERG, F., PLATZER, C., AND DUSTDAR, S. Bootstrapping performance and de-
pendability attributes of web services. In ICWS (2006), IEEE Computer Society, pp. 205–
212.

[142] RUSSEL BUTEK. Which style of WSDL should I use? http://www.ibm.com/
developerworks/webservices/library/ws-whichwsdl/.

[143] SCHALL, D., SKOPIK, F., PSAIER, H., AND DUSTDAR, S. Bridging socially-enhanced
virtual communities. In SAC [67], pp. 792–799.

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

118 Bibliography

[144] SCHULTE, R. Research Note SPA-401-069 "Service Oriented’ Architectures, Part 2".
http://www.gartner.com/DisplayDocument?id=302869.

[145] SCHULTE, W. R., AND NATIS, Y. V. Research Note SPA-401-068 "Service Oriented’
Architectures, Part 1". http://www.gartner.com/DisplayDocument?id=
302868.

[146] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Managing social overlay networks in
semantic open enterprise systems. In WIMS (2011), ACM, p. 50.

[147] SKOPIK, F., SCHALL, D., PSAIER, H., AND DUSTDAR, S. Social formation and interac-
tions in evolving service-oriented communities. In Proceedings of the 2010 Eighth IEEE
European Conference on Web Services (2010), ECOWS ’10, IEEE Computer Society,
pp. 27–34.

[148] SKOPIK, F., SCHALL, D., PSAIER, H., AND DUSTDAR, S. Adaptive provisioning of
human expertise in service-oriented systems. In SAC [67], pp. 1568–1575.

[149] SNEED, H. M., AND HUANG, S. Wsdltest - a tool for testing web services. In WSE
(2006), IEEE Computer Society, pp. 14–21.

[150] SOA SYSTEMS INC. WS-* Specifications. http://www.whatissoa.com/
soaspecs/ws.php.

[151] STOYENKO, A. D. Engineering complex computer systems: A challenge for computer
types everywhere - part 1: Let’s agree on what these systems are. IEEE Computer 28, 9
(1995), 85–86.

[152] TILLMANN, N., AND DE HALLEUX, J. White-box testing of behavioral web service
contracts with pex. In TAV-WEB (2008), ACM, pp. 47–48.

[153] TREIBER, M., TRUONG, H. L., AND DUSTDAR, S. On analyzing evolutionary changes
of web services. In ICSOC Workshops (2008), vol. 5472 of Lecture Notes in Computer
Science, Springer, pp. 284–297.

[154] TREIBER, M., TRUONG, H. L., AND DUSTDAR, S. Semf - service evolution manage-
ment framework. [65], pp. 329–336.

[155] TSAI, W.-T., CAO, Z., WEI, X., PAUL, R. A., HUANG, Q., AND SUN, X. Modeling
and simulation in service-oriented software development. Simulation 83, 1 (2007), 7–32.

[156] TSAI, W.-T., CHEN, Y., CAO, Z., BAI, X., HUANG, H., AND PAUL, R. A. Testing web
services using progressive group testing. In AWCC (2004), vol. 3309 of Lecture Notes in
Computer Science, Springer, pp. 314–322.

[157] TSAI, W.-T., CHEN, Y., PAUL, R. A., LIAO, N., AND HUANG, H. Cooperative and
group testing in verification of dynamic composite web services. In COMPSAC Work-
shops (2004), IEEE Computer Society, pp. 170–173.

http://www.gartner.com/DisplayDocument?id=302869
http://www.gartner.com/DisplayDocument?id=302868
http://www.gartner.com/DisplayDocument?id=302868
http://www.whatissoa.com/soaspecs/ws.php
http://www.whatissoa.com/soaspecs/ws.php

Bibliography 119

[158] TSAI, W.-T., PAUL, R. A., SONG, W., AND CAO, Z. Coyote: An xml-based framework
for web services testing. In HASE (2002), IEEE Computer Society, pp. 173–176.

[159] TSAI, W.-T., WEI, X., CHEN, Y., PAUL, R. A., AND XIAO, B. Swiss cheese test case
generation for web services testing. IEICE Transactions 88-D, 12 (2005), 2691–2698.

[160] VAN DER AALST, W. M. P., AND TER HOFSTEDE, A. H. M. Yawl: yet another workflow
language. Inf. Syst. 30, 4 (2005), 245–275.

[161] VERMA, K., AND SHETH, A. P. Autonomic web processes. In ICSOC (2005), vol. 3826
of Lecture Notes in Computer Science, Springer, pp. 1–11.

[162] VOGELS, W. Web services are not distributed objects. IEEE Internet Computing 7, 6
(2003), 59–66.

[163] WANG, Y., RUTHERFORD, M. J., CARZANIGA, A., AND WOLF, A. L. Automating
experimentation on distributed testbeds. In ASE (2005), ACM, pp. 164–173.

[164] WHITE, S. R., HANSON, J. E., WHALLEY, I., CHESS, D. M., AND KEPHART, J. O.
An architectural approach to autonomic computing. In ICAC (2004), IEEE Computer
Society, pp. 2–9.

[165] WIKIPEDIA. Service-oriented Architecture. http://en.wikipedia.org/wiki/
Service-oriented_architecture.

[166] WIKIPEDIA. WS-* Specifications. http://en.wikipedia.org/wiki/List_
of_web_service_specifications.

[167] XU, W., OFFUTT, J., AND LUO, J. Testing web services by xml perturbation. In ISSRE
(2005), IEEE Computer Society, pp. 257–266.

[168] YU, Y., HUANG, N., AND YE, M. Web services interoperability testing based on ontol-
ogy. In CIT (2005), IEEE Computer Society, pp. 1075–1079.

[169] ZHENG, Y., ZHOU, J., AND KRAUSE, P. A model checking based test case generation
framework forweb services. In ITNG (2007), IEEE Computer Society, pp. 715–722.

[170] ZHOU, X., TSAI, W.-T., WEI, X., CHEN, Y., AND XIAO, B. Pi4soa: A policy in-
frastructure for verification and control of service collaboration. In ICEBE (2006), IEEE
Computer Society, pp. 307–314.

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/List_of_web_service_specifications
http://en.wikipedia.org/wiki/List_of_web_service_specifications

APPENDIX A
Code Examples

A.1 JavaCC Grammar Definition for GENESIS Plugin Alignment� �
o p t i o n s {

STATIC= f a l s e ;
}

PARSER_BEGIN(P l u g i n O r c h e s t r a t i o n)

package a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . p l u g i n . a s t ;

import a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . p l u g i n . ∗ ;
import a t . ac . t uwi en . v i t a l a b . g e n e s i s . model . c o n f i g . ∗ ;
import j a v a . u t i l . ∗ ;
import j a v a . i o . ∗ ;

p u b l i c c l a s s P l u g i n O r c h e s t r a t i o n {

p r i v a t e A T e s t b e d C o n f i g u r a t i o n c o n f i g = n u l l ;

p u b l i c s t a t i c vo id main (S t r i n g a r g s []) throws P a r s e E x c e p t i o n {
P l u g i n O r c h e s t r a t i o n p a r s e r = new P l u g i n O r c h e s t r a t i o n (System . in) ;
System . o u t . p r i n t l n (p a r s e r . S t a t e m e n t ()) ;

}

p u b l i c s t a t i c APlug inTreeE lemen t p a r s e (S t r i n g e x p r e s s i o n ,
A T e s t b e d C o n f i g u r a t i o n c o n f i g) throws P a r s e E x c e p t i o n {

e x p r e s s i o n = d e r e f e r e n c e (e x p r e s s i o n , c o n f i g) ;

P l u g i n O r c h e s t r a t i o n po=new P l u g i n O r c h e s t r a t i o n (new S t r i n g R e a d e r (
e x p r e s s i o n)) ;

po . c o n f i g = c o n f i g ;

121

122 Bibliography

re turn po . S t a t e m e n t () ;
}

p u b l i c s t a t i c S t r i n g d e r e f e r e n c e (S t r i n g e x p r e s s i o n , A T e s t b e d C o n f i g u r a t i o n
c o n f i g) throws P a r s e E x c e p t i o n {

P l u g i n O r c h e s t r a t i o n po=new P l u g i n O r c h e s t r a t i o n (new S t r i n g R e a d e r (
e x p r e s s i o n)) ;

po . c o n f i g = c o n f i g ;

re turn po . D e r e f e r e n c e S t a t e m e n t () ;
}

}

PARSER_END(P l u g i n O r c h e s t r a t i o n)

SKIP :
{
" "

| "\t"
| "\n"
| "\r"
| "\f"
}

/ / TOKEN d e f i n i t i o n t a k e n from JavaCC example f i l e s
TOKEN :
{

< BEHAVIOR: <IDENTIFIER> ("." (<IDENTIFIER> | <STRING_LITERAL>)) ? >
|

< IDENTIFIER : <LETTER> (<PART_LETTER>)∗ >
|

< STRING_LITERAL :
"\""
((~ ["\"" ,"\\" ,"\n" ,"\r"])

| ("\\"
(["n" ,"t" ,"b" ,"r" ,"f" ,"\\" ,"’" ,"\""]
| ["0"−"7"] (["0"−"7"]) ?
| ["0"−"3"] ["0"−"7"] ["0"−"7"]
)

)
) ∗
"\""

>
|

< #LETTER :
[/ / a l l c h a r s f o r which C h a r a c t e r . i s I d e n t i f i e r S t a r t i s t r u e

"A"−"Z" ,
"a"−"z"

]
>

|

Bibliography 123

< #PART_LETTER :
[/ / a l l c h a r s f o r which C h a r a c t e r . i s I d e n t i f i e r P a r t i s t r u e

"0"−"9" ,
"A"−"Z" ,
"a"−"z"

]
>

}

APlug inTreeE lemen t S t a t e m e n t () :
{ APlug inTreeE lemen t e ;
}

{
[e= E x p r e s s i o n () { re turn e ;

}
]
<EOF> { re turn new EmptyElement () ;

}
}

APlug inTreeE lemen t E x p r e s s i o n () :
{ APlug inTreeE lemen t r e s u l t ;

Token p ;
APlug inTreeE lemen t e , f ;
V ec to r l i s t =new V ec to r () ;

}
{

(
"{" e= E x p r e s s i o n () "#" f = E x p r e s s i o n () "}" { r e s u l t =new

TryCatchElement (e , f) ;
}

|
"[" e= E x p r e s s i o n () { l i s t . add (e) ;

}
(

LOOKAHEAD(2)
"||" f = E x p r e s s i o n () { l i s t . add (f) ;

}
) ∗
"]" { r e s u l t =new P a r a l l e l E l e m e n t (l i s t) ;

}
|

"(" e= E x p r e s s i o n () { l i s t . add (e) ;
}

(
LOOKAHEAD(2)
"->" f = E x p r e s s i o n () { l i s t . add (f) ;

}
) ∗

124 Bibliography

")" { r e s u l t =new SequenceElement (l i s t) ;
}

|
p=<BEHAVIOR> { r e s u l t =new P l u g i n C a l l E l e m e n t (p . t o S t r i n g ()

) ;
}

) { re turn r e s u l t ;
}

}

S t r i n g D e r e f e r e n c e S t a t e m e n t () :
{ S t r i n g s ;
}

{
[s= D e r e f e r e n c e E x p r e s s i o n () { re turn s ;

}
]
<EOF> { re turn "" ;

}
}

S t r i n g D e r e f e r e n c e E x p r e s s i o n () :
{ S t r i n g r e s u l t ;

Token p ;
S t r i n g e , f ;

}
{

(
"{" e= D e r e f e r e n c e E x p r e s s i o n () "#" f = D e r e f e r e n c e E x p r e s s i o n () "}" {

r e s u l t ="{"+e+"#"+ f +"}" ;
}

|
"[" e= D e r e f e r e n c e E x p r e s s i o n () { r e s u l t ="["+e ;

}
(

LOOKAHEAD(2)
"||" f = D e r e f e r e n c e E x p r e s s i o n () { r e s u l t +="||"+ f ;

}
) ∗
"]" { r e s u l t +="]" ;

}
|

"(" e= D e r e f e r e n c e E x p r e s s i o n () { r e s u l t ="("+e ;
}

(
LOOKAHEAD(2)
"->" f = D e r e f e r e n c e E x p r e s s i o n () { r e s u l t +="->"+ f ;

}
) ∗

Bibliography 125

")" { r e s u l t +=")" ;
}

|
p=<BEHAVIOR> { r e s u l t = AWebServicePlugin . r e s o l v e R e f e r e n c e

(p . t o S t r i n g () , c o n f i g) ;
}

) { re turn r e s u l t ;
}

}� �

126 Bibliography

A.2 Apache Velocity Template Files for GENESIS

Template for generating Web service code:� �
s e t ($serv iceName = $ s e r v i c e . getName ())
s e t ($ s e r v i ce Na me sp ac e = $ s e r v i c e . getNamespace ())

/∗ a u t o m a t i c a l l y g e n e r a t e d Web s e r v i c e ∗ /

package $packagename ;

import j a v a . l a n g . ∗ ;
import j a v a x . jws . ∗ ;
import j a v a x . jws . soap . ∗ ;
import j a v a . u t i l . ∗ ;
import a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . ∗ ;
import a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . p l u g i n . ∗ ;
import a t . ac . t uwi en . v i t a l a b . g e n e s i s . model . ∗ ;

@WebService (name = "$serviceName" ,
t a r g e t N a m e s p a c e = "$serviceNamespace")

i f ($ s e r v i c e . i s R P C S t y l e ())
@SOAPBinding (s t y l e = SOAPBinding . S t y l e . RPC ,
e l s e
@SOAPBinding (s t y l e = SOAPBinding . S t y l e .DOCUMENT,
end
i f ($ s e r v i c e . i s L i t e r a l U s e ())
use = SOAPBinding . Use . LITERAL ,
e l s e
use = SOAPBinding . Use .ENCODED,
end
i f ($ s e r v i c e . i s B a r e P a r a m e t e r S t y l e ())
p a r a m e t e r S t y l e = SOAPBinding . P a r a m e t e r S t y l e .BARE)
e l s e
p a r a m e t e r S t y l e = SOAPBinding . P a r a m e t e r S t y l e .WRAPPED)
end
p u b l i c c l a s s $serv iceName ex tends AWebService {

p u b l i c $serv iceName () {
}

f o r e a c h ($ o p e r a t i o n in $ s e r v i c e . g e t O p e r a t i o n s ())
p a r s e ($ o p e r a t i o n T e m p l a t e)

end
}� �

Bibliography 127

Template for generating Web service operation code:� �
s e t ($ i n p u t = $ o p e r a t i o n . g e t I n p u t T y p e s ())
s e t ($ n o O f I n p u t s = $ i n p u t . s i z e ())
s e t ($outputTypeName = $ o p e r a t i o n . ge tOu tpu tType () . ge t JavaClas sName ())
s e t ($ b e h a v i o r T r e e = $ o p e r a t i o n . g e t B e h a v i o r S y n t a x T r e e ())

i f (! $ o p e r a t i o n . isHook ())
s e t ($opera t ionName = $ o p e r a t i o n . getName ())
@WebMethod
p u b l i c $outputTypeName $opera t ionName (
f o r e a c h ($ i n p u t T y p e in $ i n p u t)

s e t ($inputName = $ i n p u t T y p e . getName ())
s e t ($inputTypeName = $ i n p u t T y p e . ge t JavaClas sName ())
@WebParam (name="$inputName") $inputTypeName $inputName # i f ($ n o O f I n p u t s !=

$ v e l o c i t y C o u n t) , # end
end
) throws E x c e p t i o n
e l s e
s e t ($opera t ionName = $ o p e r a t i o n . getHookName ())
p r o t e c t e d void $opera t ionName () throws E x c e p t i o n
end
{

LinkedHashMap < S t r i n g , Objec t > a rgumen t s =new LinkedHashMap < S t r i n g , Objec t > () ;

f o r e a c h ($ i n p u t T y p e in $ i n p u t)
s e t ($inputName = $ i n p u t T y p e . getName ())

a rgumen t s . p u t ("$inputName" , $inputName) ;
end

f i n a l P l u g i n C o n t e x t c o n t e x t =new P l u g i n C o n t e x t (t h i s ,"$operation.getName()" ,
a rgumen t s) ;

t r y {
c a l l P l u g i n s _ $ o p e r a t i o n N a m e (c o n t e x t) ;

} ca tch (E x c e p t i o n e) {
throw new E x c e p t i o n ("Operation ’$operationName’ of service ’

$serviceName’ threw exception: "+e . ge tMessage ()) ;
}

i f ("void" != $outputTypeName)
i f (c o n t e x t . g e t R e t u r n V a l u e () != n u l l) {

re turn ($outputTypeName) MessageType . d e s e r i a l i z e (c o n t e x t . g e t R e t u r n V a l u e
() , ${ outputTypeName } . c l a s s) ;

}
i f ($ o p e r a t i o n . ge tOu tpu tType () . i s S i m p l e T y p e ())

re turn $ o p e r a t i o n . ge tOu tpu tType () . g e t D e f a u l t J a v a E x p r e s s i o n () ;
e l s e

re turn ($outputTypeName) MessageType . createDummyObject (${ outputTypeName } .
c l a s s) ;

end
end
}

128 Bibliography

p r i v a t e vo id c a l l P l u g i n s _ $ o p e r a t i o n N a m e (f i n a l P l u g i n C o n t e x t c o n t e x t) throws
E x c e p t i o n

{
$ b e h a v i o r T r e e
}� �

Bibliography 129

A.3 Sample Configuration of GENESIS� �
< c o n f i g u r a t i o n >

< !−− n e c e s s a r y p l u g i n s t o s i m u l a t e QOS p r o c e s s i n g t ime and s e r v i c e
i n v o c a t i o n s −−>

< p l u g i n s >
a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . p l u g i n . QOSPlugin
a t . ac . t uwi en . v i t a l a b . g e n e s i s . s e r v e r . p l u g i n . I n v o c a t i o n P l u g i n

< / p l u g i n s >

< !−− by d e f a u l t d e l a y s e r v i c e o p e r a t i o n s by 2 s e c o n d s−−>
< d e f a u l t p a r a m e t e r s

q o s _ p r o c e s s i n g t i m e ="2000"
/ >

< !−− by d e f a u l t we j u s t s i m u l a t e t h e d e l a y −−>
< b e h a v i o r >

<QOS d e f a u l t ="true">
QOSPlugin . s i m u l a t e D e l a y

< /QOS>
< / b e h a v i o r >

<schema x m l n s : x s ="http://www.w3.org/2001/XMLSchema" e l e m e n t F o r m D e f a u l t ="
qualified">

< !−− t y p e s can be i m p o r t e d o f d e f i n e d i n l i n e −−>
< !−− < i m p o r t name="SomeData" f i l e ="path/data.xsd" / > −−>
< xs :complexType name="somestructure">

< x s : s e q u e n c e >
< x s : e l e m e n t name="a" t y p e ="xs:string" f i x e d ="red" / >
< x s : e l e m e n t name="b" t y p e ="xs:integer" / >
< x s : e l e m e n t name="c" t y p e ="xs:boolean" / >
< x s : e l e m e n t name="d">

< xs :complexType >
< x s : c h o i c e >

< x s : e l e m e n t name="x" t y p e ="xs:double" / >
< x s : e l e m e n t name="y" t y p e ="xs:string" / >

< / x s : c h o i c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : s e q u e n c e >

< / xs :complexType >
< / schema>

< s e r v i c e t e m p l a t e s >
< s e r v i c e name="getAndCheckServiceTemplate">

< d ep lo y >
< b e h a v i o r >

< !−− empty −−>
< / b e h a v i o r >

< / d ep lo y >
< undep loy >

< b e h a v i o r >

130 Bibliography

< !−− empty −−>
< / b e h a v i o r >

< / undep loy >
< o p e r a t i o n name="getAndCheck" >

< i n p u t >
<name t y p e ="string" / >

< / i n p u t >
< o u t p u t t y p e ="somestructure" / >
< b e h a v i o r >

(
I n v o c a t i o n P l u g i n ."return=dbService.getData(arg.name)"

−>
I n v o c a t i o n P l u g i n ."checkService.checkData(return)"

)
< / b e h a v i o r >

< / o p e r a t i o n >
< / s e r v i c e >

< / s e r v i c e t e m p l a t e s >

< e n v i r o n m e n t >
< h o s t a d d r e s s ="http://localhost:8080/WebServices/GeneratorService" >

< s e r v i c e name="dbService">
< o p e r a t i o n name="getData" >

< !−− d a t a r e t r i e v a l t a k e s 5 s e c o n d s −−>
< p a r a m e t e r name="qos_processingtime">5000< / p a r a m e t e r >
< i n p u t >

<name t y p e ="string" / >
< / i n p u t >
< o u t p u t t y p e ="somestructure" / >

< / o p e r a t i o n >
< / s e r v i c e >
< s e r v i c e name="checkService">

< o p e r a t i o n name="checkData" >
< !−− c h e c k i n g t a k e s 0 . 5 s e c o n d s −−>
< p a r a m e t e r name="qos_processingtime">500< / p a r a m e t e r >
< i n p u t >

< d a t a t y p e ="somestructure" / >
< / i n p u t >
< o u t p u t t y p e ="void" / >

< / o p e r a t i o n >
< / s e r v i c e >

< / h o s t >

< h o s t a d d r e s s ="http://localhost:8070/WebServices/GeneratorService" >
< s e r v i c e name="getAndCheckService1" t e m p l a t e ="

getAndCheckServiceTemplate">
< / s e r v i c e >
< s e r v i c e name="getAndCheckService2" t e m p l a t e ="

getAndCheckServiceTemplate">
< / s e r v i c e >

< / h o s t >

< h o s t a d d r e s s ="http://localhost:8060/WebServices/GeneratorService" >

Bibliography 131

< s e r v i c e name="retrievalService">
< o p e r a t i o n name="retrieveAndProcess" >

< i n p u t >
<name t y p e ="string" / >

< / i n p u t >
< o u t p u t t y p e ="boolean" / >
< b e h a v i o r >

{
(

[
I n v o c a t i o n P l u g i n ."d1=getAndCheckService1.getAndCheck(arg.

name)"
| |

I n v o c a t i o n P l u g i n ."d2=getAndCheckService2.getAndCheck(arg.
name)"

]
−>

I n v o c a t i o n P l u g i n ."return=retrievalService.processData(d1,d2)"
)

#
I n v o c a t i o n P l u g i n ."retrievalService.reportError(arg.name)"

}
< / b e h a v i o r >

< / o p e r a t i o n >
< o p e r a t i o n name="processData" >

< p a r a m e t e r name="qos_processingtime">1000< / p a r a m e t e r >
< i n p u t >

< d a t a 1 t y p e ="somestructure" / >
< d a t a 2 t y p e ="somestructure" / >

< / i n p u t >
< o u t p u t t y p e ="boolean" / >

< / o p e r a t i o n >
< o p e r a t i o n name="reportError" >

< p a r a m e t e r name="qos_processingtime">0< / p a r a m e t e r >
< i n p u t >

<name t y p e ="string" / >
< / i n p u t >
< o u t p u t t y p e ="void" / >

< / o p e r a t i o n >
< / s e r v i c e >

< / h o s t >

< / e n v i r o n m e n t >
< / c o n f i g u r a t i o n >� �

Curriculum Vitae 133

Łukasz Juszczyk
Born: March 21, 1981 in Wrocław, Poland

e-Mail: mail@lukasz.at

Web: http://www.lukasz.at

Education
2006 - 2011 Doctoral Studies

Vienna University of Technology

2004 - 2006 Master Studies "Software-Engineering & Internet-Computing"
Vienna University of Technology

1999 - 2004 Bachelor Studies "Software- & Information-Engineering"
Vienna University of Technology

Published Books

1. Dustdar, S.; Schall, D.; Skopik, F.; Juszczyk, L.; Psaier, H. (2011).

Socially Enhanced Services Computing - Modern Models and Algorithms for Distributed
Systems

Springer, ISBN 978-3-7091-0812-3

Published Papers

1. Juszczyk L., Dustdar S. (2011).

Automating the Generation of Web Service Testbeds using AOP

9th IEEE European Conference on Web Services (ECOWS’11)

2. Juszczyk L., Dustdar S. (2010).

Programmable Fault Injection Testbeds for Complex SOA

8th International Conference on Service Oriented Computing (ICSOC’10)

3. Juszczyk L., Schall D., Mietzner R., Dustdar S., Leymann F. (2010).

CAGE: Customizable Large-scale SOA Testbeds in the Cloud

6th International Workshop on Engineering Service-Oriented Applications (WESOA). 8th
International Conference on Service-Oriented Computing (ICSOC’10).

134 Curriculum Vitae

4. Psaier H., Skopik F., Schall D., Juszczyk L., Treiber M., Dustdar S. (2010).

A Programming Model for Self-Adaptive Open Enterprise Systems

5th Workshop on Middleware for Service Oriented Computing (MW4SOC). 11th ACM/I-
FIP/USENIX Middleware Conference

5. Psaier H., Juszczyk L., Skopik F., Schall D., Dustdar S. (2010).

Runtime Behavior Monitoring and Self-Adaptation in Service-Oriented Systems

4th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO’10)

6. Juszczyk L., Dustdar S. (2010).

Script-based Generation of Dynamic Testbeds for SOA

8th IEEE International Conference on Web Services (ICWS’10)

7. Juszczyk L., Dustdar S. (2010).

Testbeds for Emulating Dependability Issues of Mobile Web Services

1st International Workshop on Engineering Mobile Service Oriented Systems (EMSOS).
6th IEEE World Congress on Services (SERVICES’10)

8. Treiber M., Juszczyk L., Schall D., Dustdar S. (2010).

Programming Evolveable Web Services

2nd International Workshop on Principles of Engineering Service-Oriented Systems (PE-
SOS). 32nd ACM/IEEE International Conference on Software Engineering (ICSE’10)

9. Juszczyk L., Psaier H., Manzoor A., Dustdar S. (2009).

Adaptive Query Routing on Distributed Context - The COSINE Framework

International Workshop on the Role of Services, Ontologies, and Context in Mobile En-
vironments (ROSOC-M). 10th International Conference on Mobile Data Management
(MDM’09)

10. Catarci T., de Leoni M., Marrella A., Mecella M., Vetere G., Salvatore B., Dustdar S.,
Juszczyk L., Manzoor A., Truong H.-L. (2008).

Pervasive and Peer-to-Peer Software Environments for Supporting Disaster Responses

IEEE Internet Computing, January 2008.

11. Juszczyk L., Dustdar S. (2008).

A Middleware for Service-oriented Communication in Mobile Disaster Response Environ-
ments

6th International Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC).
9th ACM/IFIP/USENIX Middleware Conference

Curriculum Vitae 135

12. Truong H.-L., Juszczyk L., Bashir S., Manzoor A., Dustdar S. (2008).

Vimoware - a Toolkit for Mobile Web Services and Collaborative Computing

Special session on Software Architecture for Pervasive Systems, the 34th EUROMICRO
Conference on Software Engineering and Advanced Applications

13. Juszczyk L., Truong H.-L., Dustdar S. (2008).

GENESIS - A Framework for Automatic Generation and Steering of Testbeds of Complex
Web Services

13th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’08)

14. Dustdar S., Juszczyk L. (2007).

Dynamic Replication and Synchronization of Web Services for High Availability in Mobile
Ad-hoc Networks

Service Oriented Computing and Applications, Springer, Vol 1(1), 2007

15. Truong H.-L., Juszczyk L., Manzoor A., Dustdar S. (2007).

ESCAPE - An Adaptive Framework for Managing and Providing Context Information in
Emergency Situations

2nd European Conference on Smart Sensing and Context (EuroSSC’07)

16. Juszczyk L., Michlmayr A., Platzer C., Rosenberg F., Urbanec A., Dustdar S. (2007).

Large Scale Web Service Discovery and Composition using High Performance In-Memory
Indexing

IEEE Joint Conference on E-Commerce Technology and Enterprise Computing, E-Commerce
and E-Services (CEC & EEE’07)

17. Catarci T., de Leoni M., De Rosa F., Mecella M., Poggi A., Dustdar S., Juszczyk L.,
Truong H.-L., Vetere G. (2007).

The WORKPAD P2P Service-Oriented Infrastructure for Emergency Management

3rd International Workshop on Collaborative Serviceoriented P2P Information Systems
(COPS). WETICE 2007 - 16th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises

18. Juszczyk L., Lazowski J., Dustdar S. (2006).

Web Service Discovery, Replication, and Synchronization in Ad-Hoc Networks

IEEE Workshop on Dependability in large-scale service-oriented systems (DILSOS).
ARES 2006 - 1st International Conference on Availability, Reliability and Security

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Challenges & Achievements
	Key Contributions
	Research out of this Thesis' Scope
	Evaluation of our Contribution

	Structure of the Thesis
	Publications
	Published Prototypes

	Testing of Service-oriented Architectures - State of the Art
	Principles of Service-oriented Archtitecture
	Engineering SOA Systems - Gains and Problems
	Choosing a Communication Standard
	Engineering SOAP-based Systems

	Testing SOA Systems - Current Status and Research Progress
	Testing of Web Services and Web Service Compositions
	Related Research: Testing of Complex SOA Systems

	Problem Statement

	GENESIS - Specification, Generation, and Steering of Web Service Testbeds
	Motivation
	Requirements

	Concept and Architecture of GENESIS
	Generating Complex Web Services
	Generating Web Services
	Establishing Complex Dependencies through Plugins

	Practical Application
	Testbed Configuration
	Generation and Steering of Web Services
	Illustrating Scenario

	GENESIS2 - Dynamic Testbeds for SOA
	Motivation
	Evolution of GENESIS

	The GENESIS2 Testbed Generator
	Basic Concepts and Architecture
	Exploitation of Groovy Features
	Extensible Generation of Testbed Instances
	Multicast Testbed Control

	Practical Application
	Discussion of Shortcomings and Solutions

	Generating Fault Injection Testbeds for SOA
	Motivation
	Programmable Multi-level Fault Injection
	Message Faults
	Service Execution Faults
	Low-level Network Faults

	Practical Application

	Towards Automation of Testbed Generation
	Motivation
	Automated Generation of SOA Sandboxes
	AOP-based Interception of Web service Invocations
	On-the-fly Generation of Service Replicas

	Evaluation
	Discussion

	Large-scale Testbeds in the Cloud
	Motivation
	Scenario: Large-scale SOA Testbed Infrastructures

	Applying Cafe
	The CAGE Framework
	CAGE Methodology and Roles
	Modeling Testbeds
	Testbed Setup
	Testbed Provisioning

	Practical Application

	Programming Evolvable Web Services
	Motivation
	Application Scenarios
	Adaptation in Service-oriented Systems

	Programming Model
	Script-based Web Service Programming
	Extending Services with Behavior Modules

	Discussion
	Strengths
	Limitations

	Summary, Conclusions, and Outlook
	Outlook and Possible Future Work

	Bibliography
	Code Examples
	JavaCC Grammar Definition for GENESIS Plugin Alignment
	Apache Velocity Template Files for GENESIS
	Sample Configuration of GENESIS

