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Abstract

Based on the ideas of a game theoretical model presented in the paper “The Timing and
Deterrence of Terrorist Attacks due to Exogenous Dynamics” by Kjell Hausken and Jun
Zhuang (forthcoming in the Journal of the Operational Research Society), in this thesis a
nonlinear optimal control model will be formulated, which is linked to an ongoing conflict
in Colombia. In this framework, the decision maker has to decide whether to invest a
(normalised) budget into the security level of an asset he tries to defend against an attacker
or directly into the asset in form of repairs or upgrades. In theoptimal control formulation
presented in this thesis, the second player of the game theoretical model will be replaced
by an exogenous factor in form of a “reaction function”. This nonlinear optimal control
model then will be solved by applying Pontryagin’s Maximum Principle.

The main goal of this thesis is to analyze how different kinds of attackers affect the
model’s results and optimal solutions. In a first step, strictly monotone and strictly
convex (concave) reaction functions will be applied. For a given set of parameters values,
which describes a well-organized attacker, the problem will be solved and a sensitivity
analysis will be carried out. In an extension, more complex, convex-concave (concave-
convex) reaction functions will be used to analyze how they affect the model’s outcome.
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Chapter 1
Introduction

1.1 The Colombian Pipeline War

Located in the North of South America, the Republic of Colombia with its approximately
forty million people living in this second-most populous country after Brazil is facing a
civil war since the mid-sixties and therefore for almost fifty years. Since this work does
not comment on the political or historical situation of Colombia or the causes for the war,
it should only be mentioned that the main parties of this armed conflict are:

• the government or rather the police and military forces of Colombia,

• the AUC (Autodefensas Unidas de Colombia or United Autodefenses of Colombia):
a union of paramilitary rightist groups fighting the leftist rebels in Colombia and
civilians they see close to the rebels,

• the FARC (Fuerzas Armadas Revolucionarias de Colombia or Revolutionary Armed
Forces of Colombia): a leftist guerilla movement, which also caused many civilian
casualties, fighting against the colombian government, and

• the ELN (Ejército de Liberación Nacional or National Liberation Army): another
leftist guerilla movement fighting the colombian government but also being in con-
flict with the FARC who even declared war to the ELN in December 2006 lasting
until December 2009.

The latter three groups are classified as terrorist organizations by the European Union
(see [3]).

As mentioned above, this work will not comment on the possible causes of the civil war.
However, it is undoubtedly clear that the civilian population of Colombia has suffered
severe damages in the course of this conflict as the following example will show.
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In 1983, the U.S.-based corporation Occidental Petroleum discovered an onshore oil field in
the Northeast of Colombia named Caño Limón, which turned out to be the second largest
in Colombia. After the discovery, an oil pipeline, the Caño Limón–Coveñas pipeline,
with a length of 780 kilometres was built reaching from the Arauca Departement to the
Carribean port of Coveñas in the Northwest. Construction took three years and in 1986,
the pipeline was opened and production started.

For Colombia, oil soon became the most valuable export product ahead of coffee and coal.
The country even became one of the largest foreign suppliers of oil to the United States,
whose interest in the pipeline was huge since they tried to diversify their sources of oil.
Of course, also the leftist rebels were aware of the enormous importance of the pipeline to
the state. Hence they took advantage of the fact that a 780 kilometre long pipeline was
on the one hand very easy to spot and on the other hand, because of its length, almost
impossible to defend. They started attacking the pipeline.

The bombings of the pipeline not only caused severe economical damage because of non-
performance but also affected nearby residents in many ways: not only did the spilled
oil contaminate their drinking water, it also caused damage to the farming land, not to
speak of the fear of falling victim to the rebel groups.

In 2001, when the pipeline was closed for over 200 days of the year due to 170 attacks
(see Table 1.1), the army decided to increase security efforts and added three batallions
to the two already stationed along the pipeline. As one can see in Table 1.1, the attacks
on the Caño Limón Pipeline decreased dramatically in the following year. After the U.S.
government had decided in 2003 to provide over 90 million dollar, which were for the most
part invested in military assistance to protect their oil interests in Colombia, the number
of attacks fell to a tenth of 2001 in 2004. It was finally possible to reduce the harm of
the Colombian people living near the pipeline and the number of attacks on the pipeline,
which sum up to 950 bombings since the 1980’s.

2001 2002 2003 2004
Caño Limón – Coveñas 170 41 34 17

All Pipelines 263 74 179 103

Table 1.1: Attacks on Oil Pipelines 2001-2004 (source: [4])
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1.2 Game Theory in Defender-Attacker Models

In recent years much research has been conducted on the field of attacker-defender models,
and many papers have been published. Since this thesis presents an optimal control model,
two examples of a game-theoretic approach will be of special interest in this section. They
will help to get some insights on defender-attacker models and to understand some of the
basic ideas, which will then be transformed to formulate a corresponding optimal control
model.

1.2.1 “The Timing and Deterrence of Terrorist Attacks due to

Exogenous Dynamics”

The paper, written by Kjell Hausken and Jun Zhuang (see [5]), deals with a counter-
terrorism two-stage game that is repeated over T periods. In this model, two players
participate in a game where one player, the defender, moves first and the second player,
the attacker, moves second, given the information on the defender’s strategy. Given some
kind of asset, a collection of assets or even an entire infrastructure, the defender’s goal is
to maximize his/her utility, which depends on the valuation of the asset and the applied
defensive measures.

The defender and attacker both choose their effort in protecting and attacking the asset,
dt and At (both ≥ 0), facing unit costs for the chosen effort, bt and Bt respectivly. The
defender’s valuation of the asset equals vt, the attacker’s Vt accordingly. In addition, ct
describes an “inherent defense level“, which is interpreted by the authors as a “carried-over
defense from history“. Furthermore, depending on the defender’s effort of protecting the
asset, dt, and the attacker’s effort to damage it, At, the probability of a successful attack
and damage to the asset consequently is described by P (dt, At) = At

At+dt+ct
. This so-called

“contest success function“ is based on the work of S. Skaperdas (see [7]) with the extension
that the variable ct makes sure that previous decisions of the defender do have an effect
on current decisions.

Given the variables, both players of the game try to maximize their expected utility:

ut(dt, At) = [1− Pt(dt, At)]vt − btdt for the defender,

Ut(dt, At) = Pt(dt, At)Vt −BtAt for the attacker.
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As one can see, the utility functions both consist of two terms, one in form of a benefit,
the other in form of costs. Solving this two-stage game basically led to four different
Subgame Perfect Nash Equilibria depending on the ratios of the defender’s and attacker’s
valuations of the asset, the unit costs for defending and attacking, and of course the effort
of the defender. In the first case, the attacker does not attack at all despite zero effort of
the defender. This behavior is optimal for the attacker, because in this case his valuation
of the asset is small compared to the attack costs and the historical defense level.

However, with increasing attacker’s valuation of the asset, Vt, the defender, in the second
case, gets forced to raise his effort above zero to deter the attacker leading to the third
case, where both players choose efforts greater than zero leading to a defense/attack-
equilibrium. Finally, in the fourth case, the attacker’s valuation of the asset gets too high
and the defender removes his defense.

1.2.2 “Defending against multiple different attackers”

In this work by Kjell Hausken and Vicki M. Bier (see [6]), the authors basically extend
the model described in the previous section. Here, one defender of an asset faces n het-
erogenous attackers. To quote an example for two heterogenous attackers, they mention a
defender’s computer security efforts. In this case, the defender may defend his infrastruc-
ture against highly educated, professional hackers and so-called “script-kiddies“, mostly
adolescents without any basic knowledge of computer security, who only use pre-assembled
instruction to hack external computer systems and networks.

Furthermore, the authors expand their research to three different game-theoretical sce-
narios. They analyze a game, in which all participants move simultaneously, a two-stage
game, in which the defender moves first, and a two-stage game in which the attacker
moves first.

In this model, every attacker is assigned with his/her own valuation of the asset and
his/her own unit attack costs. The probability functions Gi (contest success functions)
of attacker i to destroy the asset are interpreted as fractions of the asset the participants
of the game compete for. Despite this different interpretation, these functions (Gi for
attacker i and g for the defender) have the same ratio form as in the above sketched
model. According to the ideas of [5], the players again try to maximize their utility
function consisting of a benefit and a cost term.

Apart from results similar to those of the model described in the previous section, with
unit costs for defending and attacking and the valuation of the assets affecting the model’s
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equilibrium levels, there are also other interesting results, which are based on the number
of players. For example, it is possible that one of the attackers is extremely strong, and
therefore will reclaim a big part of the asset, so that the other attackers withdraw from
the contest. On the other hand, the defender is likely to withdraw from the contest if she
faces many strong attackers or if the attacker moves first.

1.3 The Idea

As one can conclude given these two examples, defender-attacker models in game theory
are very interesting to analyze due to the dynamic structure of the models. However,
optimal solutions of this game-theoretic approach always imply that participants of the
game behave in a rational way, trying to maximize their utilities. However, in recent
years the world had to face attackers who acted based upon political reasons. The ways
in which attackers retaliated could no longer be described as rational. It seems likely to
mention the war in Afghanistan and the attackers methods of suicide bombings as an
example of such an irrational way of conflict.

In this thesis, the goal will be to formulate an optimal control model roughly based on
the ideas of the above game-theoretical models. In contrast to [5] and [6], the attackers
will influence the model as exogenous forces in form of reaction functions responding to
the decision maker’s level of security. It will then be analyzed how a decision maker’s
optimal control policy changes, as she faces different kinds of attackers.



Chapter 2
The Model

In this chapter the optimal control model will be introduced in a general formulation. It
will be formulated as a two-state model with one control. Besides providing interpretations
for the functions used in this model, the connections to the game-theoretical models
introduced in Chapter 1 will also be mentioned.

2.1 State and Control Variables

Just like in the models described in the introduction, consider an asset a decision maker
(state, corporation, group,...) wishes to defend against some kind of attacker. Such an
asset could be a building, an important area (in context of raw materials one may think
of oil fields or gold mines), or a whole infrastructure. Similar to [5], the defender values
this asset with the state variable y. This state of the optimal control model can be seen as
the accumulated value of money the defender assigns to the asset. Since in this model the
value will be of monetary nature, it isn’t unlikely to assume that an attacker is aware of the
value an asset has for the defender (compare the oil field example from the introduction).

Every time period (say a year for example), the defender faces a potential assault by
an attacker, which causes the asset to take damage reducing its value. In terms of the
“Pipeline War“-example from the introduction, this reduction in the value of the asset
equals the production downtimes if the pipeline cannot transport oil. To keep this model
simple, a probability function will be omitted and it will be assumed that every attack
is successful. Nevertheless, similar to the contest success function, which was used in the
work of [5], [6], [7] and which was influenced by the “inherent defense level”, a function
will be used in our optimal control model, which will be based on the dynamic analogue of
the historic defense level. However, introducing a probability function describing whether
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an attack is successful or not could be the objective of further work.

Following the examples froma above, the defender tries to prevent the asset from taking
damage. For this purpose she is able to raise the security level x of the asset. This second
state variable of the optimal control model could be interpreted as equipment of the army,
the quantitiy of security forces, or the possibility of infrastructure to obtain information
of following attacks. The security level x takes values in [0, 1) with 0 meaning that the
asset is completely unsecured and 1 reflecting perfect security and therefore the ability
to avoid damage completely. This case of perfect security of course seems very unlikely,
since no one can ever guarantee to secure some asset perfectly. That is why the model
later on will be formulated in a way which implies that this boundary case will not occur.
In this model, x takes the role of the “inherent defense level“ ct of the model in [5]. It
is the dynamic analogue to the discrete expression ct influencing the situation for the
defender in a positive way. To increase the security level, the decision maker is able to
invest a share u ∈ [u, 1] of a given budget that will be normalised to 1. x will then be
increased by a concave function f depending on the current level of x and u. It can be
seen as the effectiveness of investing into the security level and describes the increase of
security given a certain level of investement and current security. In this context, u can be
seen as some kind of minimum security effort. To avoid numerical problems in computing
solution paths later on, the case u ∈ [0, 1] will be realized by setting u not to 0 but to
a positive level close to zero, u = 0.0001. Of course, the security level x will not stay
at the same level for all times. It can also be reduced by a depreciation rate δ ∈ [0, 1].
The interpretation of this rate could be loss of equipment due to abrasion or the loss of
military forces due to the limited time soldiers are assigned to certain spots of conflict,
but it can also be seen as indirect depreciation because of advancements in the attacker’s
capabilities.

The remainder of the budget which is not invested in x, 1 − u, will be directly invested
into the asset leading to an increase of its value y. This investement can be interpreted
as repairs, better equipment, or better infrastructure. In relation to the pipeline example
one may think of measures to increase the transport capacity of the pipeline, which would
directly result in a higher value for the defender since she can make more money delivering
more oil. Similar to the security level x, the value of the asset y can be increased by a
linear or nonlinear function g depending on the share of the budget invested in y, 1− u.
In addition, the value of the asset will be reduced because of the periodic attacks of the
opponent denoted by a function µ (see the next section for details).

As one can see in this dynamic formulation of a defender-attacker model, the defender
faces the decision wether to invest into security or the value of the asset, leaving him/her
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with a trade-off between security and wealth.

2.2 Interpretation of the Remaining Functions

In this section, I will provide a brief overview of the five functions that will be used in
the optimal control model.

As mentioned in the previous section, the value of the asset y will be reduced by successful
attacks of the opposing force. This reduction is taken into account by a damage function
µ, which depends on the so-called attack-intensity function v, which itself depends on the
states x and y. The attack-intensity function v(x, y) will be introduced later in Section
2.3, because it will play a crucial role in modeling the attacker’s behavior. For now it
should only be mentioned that v represents how many people or which equipement the
attacker uses for his/her attacks and therefore how much damage she can possibly cause.

One more note is in order. Of course, x, y and u depend on time t, so x = x(t), y = y(t),
and u = u(t). However, for the ease of exposition, the time argument will mostly be
omitted.

According to the models in the preface, the objective function consists of two terms, one
being a benefit function and one influencing the objective value in a negative way. The
beneficial term will be called the wealth function W depending on the value of the asset
y. It can be seen as the benefit of a high-valued asset. Say, for example, that investing
into the value of the pipeline and therefore raising the transport capacity results in overall
positive effects for the whole country because of increased tax income due to increased
oil sales. Hence, this wealth function combines all positive effects caused by investement
in the asset. In contrast to the benefit function, the harm function D combines overall
negative effects caused by a damage and the simultaneous reduction of the value of the
asset. This harm relates to the spilled oil and the damage for nature and people. It
depends on the damage function µ.

Summing up, it is now possible to formulate the objective function and the two state
dynamics and to set up a general formulation of the optimal control model. As explained
in the previous section, the state variable x can be increased by a concave function f(u, x)
and is decreased by the depreciation rate δ, leading to:

ẋ = f(u, x)− δx.

The state variable y profits from direct investements 1−u, in form of a function g(1−u),



CHAPTER 2. THE MODEL 12

but also suffers from damage caused by the attacker, µ, which depends on the attack
intensity v(x, y):

ẏ = g(1− u)− µ(v(x, y)).

Finally, the objective function consists of positive overall effects W (y) minus the negative
overall effects D(µ):

W (y)−D(µ(v(x, y))).

All these assumptions yield the general formulation of the optimal control model:

max
u(t)

∫ ∞
0

e−rt(W (y(t))−D(µ(v(x(t), y(t)))))dt

s.t.

ẋ(t) = f(u(t), x(t))− δx(t)

ẏ(t) = g(1− u(t))− µ(v(x(t), y(t)))

x(0) = x0 ∈ [0, 1)

y(0) = y0 > 0

u(t) ∈ [u, 1] ∀t.

This formulation will be augmented by the use of specifications for the functions in the
next section.

2.3 Functional Specification and Properties

This section deals with a detailed description of the functions that will be used in the
expressions of the previous section.

Starting with the wealth function W (y), one may expect a raise of wealth if the value of
the asset increases due to direct investements. A positive first derivative W ′ with respect
to y takes this assumption into account. To keep the model as simple as possible, a linear
function meeting this requirement is used: W (y) = by with b > 0. This formulation
implies that every unit y of the value of the asset generates b monetary units of wealth.
Similarly, the investement function for the asset, g(1− u), relies on this basic form, too:
g(1 − u) = d(1 − u), d > 0. Therefore, assuming the decision maker invests all of her
budget into the asset (i.e. u = 0), she can add at most d units of value to the asset
(via repairs or improvements) per unit of time. As already mentioned, to avoid numerical
problems the case u = 0 later on will be substituted by u = 0.00001, hence decreasing the
maximal raise of value only a little bit.
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With the effectiveness function f(u, x) things become a little more complicated. Investing
a share u of the normalized budget should have positive effects on the security level,
implying ∂f

∂u
> 0. However, it would not be very realistic to assume that, if the security

level is already very high (e.g. close to 1), additional units of money invested do have the
same effect on the security level. As a result, the assumption of diminishing returns of
the investment seems obvious, suggesting the dependence on u to be of the form uα with
0 < α < 1. In addition, assume that if the security level is already high, it is harder, or
to say more expensive, to raise the security level even further. This fact will be captured
by a negative first derivative of f with respect to x. A simple function, which meets all
these assumptions, is f(u, x) = cuα(1− x).

The harm function D(µ) is modeled as D(µ) = kµσ with k > 0. This functional form
implies a positive first derivative leading to an increase in harm, if the damage done to
the asset increases. Depending on the choice of σ, D will be a convex or concave function,
but since we want the first derivative to be positive, at least the condition σ > 0 must
be satisfied. Similar to the parameter b of the wealth function, k describes the monetary
units of harm done for every unit of value, which is lost due to attacks.

The attack intensity v(x, y) should be of multiplicative form v(x, y) = h(x)p(y), with
limy→0+ p(y) = 0, because it is assumed that the attack intensity converges to zero if p(y)
converges to zero, implying a high interest of the attacker to damage valuable assets. As
one can see, the attack intensity is assumed to depend on the current security level x
and the value of the asset y. Since one may expect that attacks become more intense the
more valuable the asset is to the defender, p(y) = yβ with β ≥ 1 seems to be a fitting
choice for the second factor. The first factor, h(x), will be called the reaction function
of the attacker, which takes values in [0, 1]. It will play a crucial role in modeling the
attacker’s behavior (see Section 2.6, Figure 2.1 on Page 22, and Figure 5.1 on Page 60),
and its particular form will depend on the chosen type of attacker. As it was mentioned
in Section 1.3, “The Idea“, the attacker should not only be modeled as a rational type who
is deterred by a high security level, but there should also be an irrational type of attacker,
who may be attracted by a high security level for his/her purpose. This distinction
between rational and irrational behavior leads to different types of attackers who can be
classified according to one of the following categories:

1. "deterred" type:
This type of attacker has a high and increasing initial level of intensity of attacks
if the security level is low. At a certain level of x, the attacker gets deterred and
decreases his/her attacks. (The reader may remember the Pipeline-War example,
where the attacks drastically decreased after a raise of the troops assigned to the
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pipeline.)

2. "aggressive" type:
This type of attacker has a low initial level of intensity of attacks. However, the
higher the security level becomes, the more the attacker thinks it is worth attacking
the asset. This type of attacker can be seen as a political aggressor seeking to strike
with fear in the population: attacking a highly secured asset will successfully make
people feel insecure.

3. "provoking" type:
This type of attacker has a high but decreasing initial level of attack intensity.
When x reaches a certain level, the sign of the first derivate of the reaction function
changes and the attacker increases her/his attacks. This can be interpreted as the
attacker realizing that the asset at this certain level of x becomes so important
to the defender that she reassesses the situation and starts increasing her attack
intensity.

Finally, the damage function µ is assumed to increase if attacks of the opponent become
more intense. Thus, µ′(v) should be greater than zero. Again, relying on a simple form
seems adequate: µ(v(x, y)) = avγ = ah(x)γp(y)γ with γ, a > 0. Checking the derivative
of µ with respect to y, µy = aγvγ−1vy, one can see that all the assumptions made so far
are taken into account. From vy = βyβ−1h(x) ≥ 0 (since h(x) will be chosen in a way
that h(x) ≥ 0 ∀x ∈ [0, 1)) it follows that µy ≥ 0. Consequently, an increase in the asset’s
value leads to an increase in the attack intensity (vy ≥ 0!), which then leads to a higher
damage done to the asset. So µ can be interpreted as follows: given a certain level of value
of the asset, an attacker aims to destroy p(y)γ units of this value (if this expression is
greater than y itself, it can be seen as the goal to fully destroy the asset). However, based
on the type of attacker, this goal of damage will be reduced by the reaction function
h(x)γ ∈ [0, 1] and therefore can also be seen as some kind of probability. Finally, the
damage h(x)γp(y)γ will be multiplied with the capability factor a, which depends on the
skills of the attacker.

All the properties assumed in this section lead to the general model:
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max
u

∫ ∞
0

e−rt(by − k(a(h(x)yβ)γ)σ)dt (2.1)

s.t. (2.2)

ẋ = cuα(1− x)− δx (2.3)

ẏ = d(1− u)− a(h(x)yβ)γ (2.4)

x(0) = x0 ∈ [0, 1) (2.5)

y(0) = y0 > 0 (2.6)

0 < u ≤ u ≤ 1 (2.7)

a, b, c, d, k, r > 0 (2.8)

0 < δ < 1 (2.9)

α > 0 (2.10)

β ≥ 1 (2.11)

γ > 0 (2.12)

σ > 0 (2.13)

NOTE: Restrictions to the exponents just meet the assumptions of Section 2.3. The exact
values will be chosen according to the requirements of the second derivatives.

2.4 Applying Pontryagin’s Maximum Principle

The optimal control problem will be solved by applying Pontryagin’s Maximum Principle
(see, e.g., [1]). To formulate the necessary optimality conditions we first state the Hamil-
tonian H in current-value notation with λ1, λ2 denoting the adjoint or costate variables :

H(x, y, u, λ0, λ1, λ2) = λ0
(
by − k(a(h(x)yβ)γ)σ

)
+ λ1(cu

α(1− x)− δx) . . .

. . .+ λ2(d(1− u)− a(h(x)yβ)γ).

Although generally λ0 cannot be set to 1 (see [2] for a counterexample), this thesis will
only analyze the normal case (i.e. λ0 = 1). Next, because of the control constraints it is
necessary to state the Lagrangian

L(x, y, u, λ1, λ2, µ1, µ2) = H(x, y, u, λ1, λ2) + µ1(u− u) + µ2(1− u).
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The necessary conditions derived from Pontryagin’s Maximum Principle become (see [1]):

Lu = αλ1(1− x)cuα−1 − dλ2 + µ1 − µ2 = 0 (2.14)

λ̇1 = rλ1 − Lx (2.15)

= λ1(r + cuα + δ) +
h′(x)

h(x)
γ
[
kσ
(
a(h(x)yβ)γ

)σ
+ λ2a(h(x)y

β)γ
]

(2.16)

λ̇2 = rλ2 − Ly (2.17)

= rλ2 − b+
βγ
[
kσ(a(h(x)yβ)γ)σ + aλ2(h(x)y

β)γ
]

y
(2.18)

µ1 ≥ 0, µ1(u− u) = 0 (2.19)

µ2 ≥ 0, µ2(1− u) = 0 (2.20)

with the first-order condition (2.14), adjoint equations (2.16) and (2.18), and the comple-
mentary slackness condition (2.19) and (2.20). The derivation and analysis of the canon-
ical system now has to be divided into the case of an interior solution (i.e. u ∈ (u, 1)) and
the case of a boundary solution.

2.4.1 Interior Case u ∈ (u, 1)

In the case of an interior solution, the complementary slackness conditions (2.19) and
(2.20) imply µ1 = µ2 = 0. Thus, the Lagrangian reduces to the Hamiltonian. As a
first step it will be useful to derive further necessary conditions for optimal solutions
of the model. The necessary Legendre-Clebsh condition for maximizing optimal control
problems will meet this task:

Huu = α(α− 1)λ1(1− x)cuα−2 ≤ 0

⇔ α(α− 1)λ1(1− x)c
1

u2−α
≤ 0. (2.21)

This condition holds with strict inequality (implying a unique control value) for

• 0 ≤ x < 1, c > 0, α > 1 and λ1 < 0 as well as

• 0 ≤ x < 1, c > 0, 0 < α < 1 and λ1 > 0.

These conditions for an optimal solution, especially the second, will become more impor-
tant in the subsequent analysis. Note that this is the place where numerical problems
occur if u = 0 would be admissible yielding a singularity in (2.21).
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In addition, the Arrow sufficiency condition for infinite time horizon problems (see [1])
requires the maximized Hamiltonian H∗(x, y, λ1, λ2) = maxu H(x, y, u, λ1, λ2) to be con-
cave in the state variables x and y for all t, λ1, and λ2. Since the Hamiltonian is a
multidimensional function in x, y, u, λ1, and λ2, the second derivative of H∗ corresponds
to the Hessian of H∗, which is given by

D2H∗x,y =

(
∂2H
∂x2

∂2H
∂x∂y

∂2H
∂y∂x

∂2H
∂y2

)
.

Concavity of H∗ with respect to the state variables in the multidimensional follows from
the negative semi-definiteness of D2H∗x,y, which is given if the quadratic form

(x, y)D2H∗(x, y)T

is lesser or equal to 0 for all (x, y) 6= 0. Solving this inequality yields (the star of the
maximized Hamiltonian will be omitted)

(x, y)

(
∂2H
∂x2

∂2H
∂x∂y

∂2H
∂y∂x

∂2H
∂y2

)
(x, y)T ≤ 0(

x
∂2H

∂x2
+ y

∂2H

∂y∂x
, x

∂2H

∂x∂y
+ y

∂2H

∂y2

)
(x, y)T ≤ 0

x2
∂2H

∂x2
+ xy

∂2H

∂y∂x
+ xy

∂2H

∂x∂y
+ y2

∂2H

∂y2
≤ 0

and because of ∂2H
∂y∂x

= ∂2H
∂x∂y

it follows

x2
∂2H

∂x2
+ y2

∂2H

∂y2
+ 2xy

∂2H

∂y∂x
≤ 0. (2.22)

This sufficient condition (2.22) has to be satisfied along the optimal paths, but due to the
complexity of the functional forms it is not possible to derive conditions on parameters
at this point.

Given µ1 = µ2 = 0, solving equation (2.14) yields an expression for the optimal control
depending on the state variable x and the costates λ1 and λ2:

ũ =

(
dλ2

αλ1c(1− x)

) 1
α−1

. (2.23)
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Combining equations (2.16) and (2.18) and the system dynamics (2.3) and (2.4) yields,
after substituting ũ for u, the canonical system of the optimal control problem. For the
sake of simplicity define

K(x, y) : =
[
kσ(a(h(x)yβ)γ)σ + λ2a(h(x)y

β)γ
]
. (2.24)

The canonical system then becomes

ẋ = cũα(1− x)− δx (2.25)

ẏ = d(1− ũ)− a(h(x)yβ)γ (2.26)

λ̇1 = λ1(r + cũα + δ) +
h′(x)

h(x)
γK(x, y) (2.27)

λ̇2 = rλ2 − b+
βγ

y
K(x, y). (2.28)

2.4.2 Boundary Case u = u or u = 1

In the case of a boundary solution u = u, the complementary slackness condition (2.20)
yields µ2 = 0. Hence, the first order condition becomes

Lu = αλ1(1− x)cuα−1 − dλ2 + µ1 = 0 (2.29)

yielding an analytical expression for the Lagrange multiplier

µ1 = dλ2 − αλ1(1− x)cuα−1. (2.30)

The state dynamics (2.3) and (2.4) and adjoint equations (2.16) and (2.18), which give
the canonical system, then read as follows:

ẋ = cuα(1− x)− δx (2.31)

ẏ = d(1− u)− a(h(x)yβ)γ (2.32)

λ̇1 = λ1(r + cuα + δ) +
h′(x)

h(x)
γK(x, y) (2.33)

λ̇2 = rλ2 − b+
βγ

y
K(x, y) (2.34)

On the other hand, the boundary case u = 1 implies, because of the complementary
slackness condition (2.19), µ1 = 0. The canonical system therefore reads as (the first
order condition in this case is not relevant since the solution at the upper boundary is not
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admissible, see Section 2.5)

ẋ = c(1− x)− δx (2.35)

ẏ = −a(h(x)yβ)γ (2.36)

λ̇1 = λ1(r + c+ δ) +
h′(x)

h(x)
γK(x, y) (2.37)

λ̇2 = rλ2 − b+
βγ

y
K(x, y) (2.38)

2.5 Steady States of the General Model

A first step in the analysis of a nonlinear optimal control model is to find points x̂, ŷ, λ̂1, λ̂2
of the canonical systems

• (2.25)-(2.28) for the interior case,

• (2.31)-(2.34) for the boundary case u = u, and

• (2.35)-(2.38) for the boundary case u = 1,

which stay at their level for all times, meaning the derivative with respect to t equals
zero. Such points are called steady states or stationary points. Therefore, the first task
will be to solve the system of the four equations

ẋ = 0

ẏ = 0

λ̇1 = 0

λ̇2 = 0

simultaneously. Since the equations in the interior case are pretty complex, one cannot
expect to obtain analytical solutions for x, y , λ1, and λ2. However, the system of
four equations can be reduced to a system of two equations both depending on the state
variables x and y. By plotting isoclines ẏ(x, y) = 0 and λ̇1(x, y) = 0 it will then be
possible to detect steady states by identifying the intersection points of these two curves.
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2.5.1 Interior Case u ∈ (u, 1)

By setting λ̇2 in equation (2.28) equal to 0 and solving for λ2, it is possible to obtain an
analytical expression for λ2 depending on the two state variables:

λ2 = λ2(x, y) =
by − βγσk(a(h(x)yβ)γ)σ

ry + βγa(h(x)yβ)γ
. (2.39)

Next, ẋ in equation (2.25) is set to 0 and solved for λ1:

ẋ = 0⇒ c

[(
dλ2

αλ1c(1− x)

) 1
α−1

]α
(1− x) = δx (2.40)

(
dλ2

αλ1c(1− x)

) 1
α−1

=

(
δx

c(1− x)

) 1
α

(2.41)

λ
1

1−α
1 =

(
dλ2

αc(1− x)

) 1
1−α
(

δx

c(1− x)

) 1
α

. (2.42)

Note that the number of solutions for λ1 obtained by this equation depends on the expo-
nent on the left hand side of the equation, 1

1−α . Nevertheless, the above equation can be
solved resulting in solutions λ1,i = λ1,i(x, y), which, in addition to (2.39), can be used to
reduce the four-dimensional canonical system to two dimensions. After substituting the
parameters for the base case, this two-dimensional system will be analyzed further.

2.5.2 Boundary Case u = u or u = 1

In the case u = u, steady states of the canonical system have to meet the equations

ẋ = cuα(1− x)− δx = 0 (2.43)

ẏ = d(1− u)− a(h(x)yβ)γ = 0 (2.44)

λ̇1 = λ1(r + cuα + δ) +
h′(x)

h(x)
γK(x, y) = 0 (2.45)

λ̇2 = rλ2 − b+
βγ

y
K(x, y) = 0. (2.46)

Equation (2.43) yields

xu = 1− δ

cuα + δ
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implying

d(1− u)− a(h(xu)yβ)γ = 0

λ1(r + cuα + δ) +
h′(xu)

h(xu)
γK(x, y) = 0

rλ2 − b+
βγ

y
K(x, y) = 0.

Solving these equations results in an equilibrium solution at the boundary of the control
region in analytical form

xu = 1− δ

cuα + δ

y =

(
1

h(xu)

(
d(1− u)

a

) 1
γ

) 1
β

λ1 = −
h′(xu)

h(xu)

1

r + cuα + δ
γK(x, y)

λ2 =
by − βγσk(a(h(xu)yβ)γ)σ

ry + βγa(h(xu)yβ)γ

with

K(x, y) =
[
kσ(a(h(xu)y

β)γ)σ + λ2a(h(xu)y
β)γ
]
.

However, in the boundary case u = 1, equation (2.36) of the corresponding canonical
system would imply

ẏ = −a(h(x)yβ)γ = 0.

Since parameter a will be chosen greater than zero and h(x) will be constructed in a way
so that h(x) > 0 for 0 ≤ x < 1, this equation would only be satisfied for y = 0. This
solution however, is not admissible since it describes an asset of no worth or a destroyed
asset, so to speak.

2.6 Reaction Functions of the Attacker

This section will briefly deal with the different types of attackers and how different func-
tional forms h(x) for the attacker’s reaction functions will be derived. The reaction
function h(x) describes how an attacker reacts to a certain level of security built over
time by the defender. As already mentioned, a difference will be made between a rational
attacker, who retreats given a high security level x, and an irrational attacker, whose
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motive is a political one trying to spread fear. This kind of attacker takes advantage of a
high security level, since people will get more scared if the attacker succeeds in destroying
a well secured asset.
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(a) aggressive type, convex: haconv
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(b) aggressive type, concave: haconc
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(c) provoking type: hp
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(d) deterred type: hd

Figure 2.1: The reaction functions of the different types of attacker

The illustrations in Figure 2.1 show the qualitative characteristics of the functions h(x).
Referring to the deterred and provoking types, for the sake of simplicity of a base case
analysis, at first simple (e.g. strictly concave/convex) functions will be used. In an
extension, convex-concave or concave-convex functions are considered, respectively, to
analyze how an inflexion point may influence the solution of the optimal control problem
(see Chapter 5 starting on Page 60).

The monotonically increasing functions h(x)aconv and h(x)aconc of the aggressive, irrational
attacker are constructed given the assumptions of a standard-attack level of 0.3 at a
security level of x = 0 and 1 at x = 1. The functions are based on the convex/concave
standards of a quadratic function and the logarithm, modified to meet the assumptions.

Using additional conditions given by theoretical assumptions, it is possible to solve a
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system of equations derived from a general quadratic function f(x) = ax2 + bx + c and
obtain functions for the rational attacker, the so-called deterred type. In addition to a
standard attack level of 0.5 at x = 0 it is assumed that the deterred type decreases his/her
attacks, if the security level raises above x = 0.4, leading to an attack level of 0, if the
asset is optimally secured (i.e. x = 1). The peak of his/her attacks will be chosen to be
at a level of 0.9 for x = 0.4, leading to the condition h′d(0.4) = 0.9.

Similarly, the irrational provoking type is constructed, who retreats if the security level is
increased at low levels but then starts increasing her/his attacks thinking that it is worth
attacking an asset so important to the defender or trying to spread fear. This attacker
also will be assumed to have a standard attack level of 0.5. Similar to the deterred type,
she is assumed to have her change of mind at x = 0.4 with an attack level of 0.1 leading
to the condition h′p(0.4) = 0.1. Since this aggressive attacker is not assumed to retreat
after this crossing, her attack level at x = 1 will be set to 1.

Applying these conditions to calculate functions h(x) leads to:

h(x)aconv = 0.7x2 + 0.3

h(x)aconc = ln(x+ 1) + 0.3

h(x)d = −2.5x2 + 2x+ 0.5

h(x)p = 2.5x2 − 2x+ 0.5

implying (v(x, y) = h(x)yβ)

v(x, y)aconv = (0.7x2 + 0.3)yβ

v(x, y)aconc = (ln(x+ 1) + 0.3)yβ

v(x, y)d = (−2.5x2 + 2x+ 0.5)yβ

v(x, y)p = (2.5x2 − 2x+ 0.5)yβ.



Chapter 3
Base Case Analysis

3.1 Base Case Parameters

Before starting the numerical analysis, the exact values of all parameters have to be chosen.
Since this work is heavily based on modeling the attacker’s behavior, the parameters will
be chosen in this context freely without relying on any empirical data. Basically, there are
two kinds of parameter sets: the first parameter set consists of the exponents α, β, γ, σ,
describing qualitative influences on reaction and outcome functions of the model. The
second parameter set a, b, c, d, k, δ, r consists of scaling parameters.

First, the exponents will be chosen based on the behavior of the attacker we want to
model and the influence on the functions linked to this particular behavior. Additionally,
parameter α will be set to 0.5, which means that the decision maker faces a concave
money-input function. This seems to be a quite realistic assumption, since one may
expect that the effect of an additional unit of money spent on the security level is lower
than the effect of the current unit.

Parameters β and γ will both be set to 1 for the base case, since this level on the one
hand reduces the complexity and therefore the computing time of the model, and on the
other hand meets the intention of nonnegative first derivatives of functions v(x, y) and
µ(v(x, y)). Finally, σ will be set to 0.5 for the same reason as α: the decrease in the
objective funtion should be concave. To interpret this circumstance, one may think of a
building generating a high level of wealth for society, a hospital. If an attacker destroys
most of a hospital, every unit more that will be lost does not affect the decrease of wealth
that much, because the hospital was hardly able to operate at normal levels already after
the first attack.

For the base case, the discount rate r will be set to a common level of 0.05. The deprecia-

24
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tion rate of the securitiy level x, δ, will initially be set to a fairly low level of 0.2. Referring
to Section 2.1, the interpretation of the depreciation rate now means that every time unit
(a year in this thesis) a fifth of the equipment that somehow generates a certain level
of security has to be exchanged, which furthermore means that every 1

δ
= 5 years, the

whole equipement gets changed. In terms of technical advancements these days, 5 years
seem to be a fairly realistic rate if one just thinks of recent events of governments and
companies being hacked. Especially in the so-called "Cyber-War" it seems indispensable
to renew security software on computer systems or the level of knowledge of the system
administrators quite often.

Parameter c will be set to 1 in the base case, because in the beginning the focus lies on
the behavior of the attacker and the corresponding optimal control of the decision maker
to cover the basic dynamics of this model, without considering something like increase or
decrease in currency. Parameter d will be set to 1, meaning that the decision maker can
restore one monetary unit of value of the asset if she invests her whole budget into the
asset.

After these assumptions, parameters a, b, and k still have to be chosen. The capability
factor of the attacker, a, will be set to a fairly high level of 2 implying that the defender
faces assaults by a well-organized, capable attacker. For the base case analysis, choosing
the levels of b and k will be based on balancing the expressions they show up in, namely
the objective function. Parameter b will be set to 2, which implies that every unit of value
of the asset generates two units of wealth. Parameter k will be set to 1.5, leaving the
decision maker with an asset that causes 1.5 monetary units of decrease in the objective
function for every unit of value being destroyed.

For a better overview, all parameter values for the case base are summarized in Table 3.1.

Parameter a b c d k r α β γ δ σ u

Value 2 2 1 1 1.5 0.05 0.5 1 1 0.2 0.5 0.00001

Table 3.1: Parameters for the Base Case

Given these parameter values, the functions become

f(u, x) =
√
u(1− x)

g(1− u) = 1− u

W (y) = 2y

D(µ) = 1.5
√
µ

µ(v) = 2v
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leading to the following base case formulation of our optimal control problem:

max
u

∫ ∞
0

e−0.05t(2y − 1.5
√

2h(x)ydt (3.1)

s.t. (3.2)

ẋ =
√
u(1− x)− 0.2x (3.3)

ẏ = 1− u− 2h(x)y (3.4)

x(0) = x0 ∈ [0, 1) (3.5)

y(0) = y0 > 0 (3.6)

u ∈ [0.00001, 1]. (3.7)

3.2 The Canonical Systems for the Base Case

Following Section 2.4 on Page 15, the base case model will now be solved for an inte-
rior solution by applying Pontryagin’s Maximum Principle, starting with formulating the
current-value Hamiltonian for the normal case λ0 = 1:

H(x, y, u, λ1, λ2) = 2y − 1.5
√
2h(x)y + λ1(

√
u(1− x)− 0.2x) + λ2(1− u− 2h(x)y).

(Recall that the Lagrangian equals the Hamiltonian in the interior case.) The necessary
optimality conditions derived from the Maximum Principle are

Hu =
λ1(1− x)

2
√
u
− λ2 = 0 (3.8)

λ̇1 = λ1(
√
u+ 0.25) +

h′(x)

h(x)

[
0.75

√
2yh(x) + λ22yh(x)

]
(3.9)

λ̇2 = 0.05λ2 − 2 +
0.75

√
2yh(x)

y
+ 2λ2h(x). (3.10)

Solving (3.8) with respect to u leads to the candidate solution for the optimal control

u∗ =

(
λ1(1− x)

2λ2

)2

. (3.11)

The Legendre-Clebsh condition becomes

Huu =
λ1(x− 1)

4u
3
2

< 0. (3.12)
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Since −1 ≤ (x− 1) < 0 (the case of perfect security x = 1 will not be taken into account)
and u

3
2 > 0∀u ∈ (u, 1], it follows that Huu < 0⇔ λ1 > 0.

Using the parameters in Table 3.1 in the general canonical system (2.25)-(2.28) on Page
18 yields the canonical system for the base case after defining

K(x, y) := 0.75
√
2yh(x) + λ22yh(x).

ẋ =

√
λ21(1− x)2

4λ22
(1− x)− 0.2x (3.13)

ẏ = 1− λ21(1− x)2

4λ2
− 2yh(x) (3.14)

λ̇1 = λ1

(
0.25 +

λ1(1− x)
2λ2

)
+
h′(x)

h(x)
K(x, y) (3.15)

λ̇2 = λ2(0.05 + 2h(x)) + 0.75

√
2yh(x)

y
− 2. (3.16)

3.3 Steady States

As mentioned in Section 2.5 on Page 19, one has to solve the system ẋ = 0, ẏ = 0, λ̇1 = 0,
and λ̇2 = 0 simultaneously to determine the equilibrium points (EPi = (x̂i, ŷi, λ̂i1, λ̂

i
2)).

Following the calculations of Section 2.5 for the interior case yields

λ2(x, y) =
2y − 0.75

√
2yh(x)

y(0.05 + 2h(x))
(3.17)

λ11,2(x, y) = ±
0.4λ2x

(1− x)2
. (3.18)

Finally, with these expressions the two-dimensional system becomes:

ẏ = 1− λ1,i(x, y)
2(1− x)2

4λ2(x, y)
− 2yh(x) (3.19)

λ̇1 = λ1,i(x, y)

(
0.25 +

λ1,i(x, y)(1− x)
2λ2(x, y)

)
+
h′(x)

h(x)
K(x, y). (3.20)

Graphically, the detection of the steady states of the canonical system now comes down
to plotting the zero isoclines of ẏ and λ̇1. The intersection points of these isoclines depict
the candidate steady states of the optimal control problem. The blue curve represents
ẏ = 0, and the purple and red curves correspond to λ̇1 = 0, with the two different colors
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referring to the two solutions of (3.18). Note that the intersection point at x = 0, i.e. the
steady state in Figure 3.1, is not admissible, since the control value in this equilibrium
equals u = 0.
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Figure 3.1: The zero-isoclines of the aconv -model
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In addition, according to the calculations in Section 2.5, the equilibrium point at the
boundary of the control region reads as

xu = 1− 0.2

0.00001
1
2 + 0.2

= 0.0015565

y =
1

h(xu)

(
1− 0.00001

2

)
λ1 = −

h′(xu)

h(xu)

1

0.253162278
K(x, y)

λ2 =
2y − 0.75

√
(2h(xu)y)

0.05y + 2h(xu)y

with

K(x, y) =
(
0.75

√
2h(xu)y + λ22h(xu)

)
,

and the Lagrange multiplier

µ1 = λ2 − 0.5(1− 0.0015565)0.00001−0.5λ1.

To verify the results in terms of the number of equilibria and to obtain exact equilibrium
values, one has to solve the canonical system numerically too, which, in this thesis, is
done by using the OcMat Toolbox1 for Matlab.

As one can see in Table 3.2, all equilibrium points detected in the graphical illustrations
in Figures 3.1-3.4 of the system can be found. However, because of the concavity of the
control or, to be exact, the parameter α and the possibility of multiple solutions when
extracting roots, one has to recheck the solutions obtained to verify that the necessary
optimality conditions Hu = 0 and Huu < 0 for the interior case, and Hu < 0 for the
boundary case are satisfied. The calculated steady states, which are depicted in bold
in Table 3.2, are therefore the only admissible ones satisfying Pontryagin’s Maximum
Principle.

1see http://orcos.tuwien.ac.at/research/ocmat_software
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EP1 EP2 EP3 EP4 EP5 EP6

h(x)aconv x̂ 0.80779 0.79987 0.015565 0.71708
ŷ 0.19394 0.24137 1.6657 0.56296
λ̂1 -0.53235 -0.68735 -0.89841 -2.2277
λ̂2 -0.06087 0.086043 2.383 0.62167
û 0.7065 0.6390 0.00001 0.2570
Hu 0 -0.1721 -142.2224 -1.2433
Huu 0.043081 0.067328 1.209670

h(x)aconc x̂ 0.68516 0.78296 0.015565 0.79337
ŷ 0.49313 0.27294 1.585 0.23203
λ̂1 -1.0296 -0.35835 -36.8965 -0.28781
λ̂2 0.37239 0.053898 2.2424 -0.03872
û 0.1894 0.5206 0.00001 0.5897
Hu -0.74477 -0.107797 -5745.2816 0
Huu 0.98291 0.05176986 0.032829

h(x)p x̂ 0.81849 0.39692 0.82165 0.75681 0.40322 0.015565
ŷ 0.17346 4.9122 0.13872 0.73233 4.9074 1.065
λ̂1 -1.1683 3.2274 -0.91915 -6.9189 -3.348 33.3196
λ̂2 0.11756 7.3932 -0.08896 1.3518 7.3928 1.3103
û 0.8134 0.0173 0.8489 0.3874 0.0183 0.00001
Hu -0.23512 0 0 -2.7035 -14.785502 5185
Huu 0.07226 -213.341 0.052394 1.74482 202.4164

h(x)d x̂ 0.39085 0.8237 0.82557 0.75485 0.41056 0.015565
ŷ 0.54653 0.14059 0.11623 0.53037 0.54494 0.94245
λ̂1 -0.14558 1.1117 0.92624 3.647 0.16283 -26.2451
λ̂2 0.34552 0.10488 -0.08534 0.72588 0.3445 1.0838
û 0.0165 0.8731 0.8960 0.3793 0.0194 0.00001
Hu -0.69103 0 0.17068 0 0 -4086.2019
Huu 10.4905 -0.06006 -0.04762 -0.95698 -8.87634

Table 3.2: Steady States for the Base Case Computed with the OcMat Toolbox
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3.4 Stability of the Steady States

The next step is to determine the stability of the steady states, i.e. analyzing how small
influences in the initial values may affect the corresponding equilibrium levels. Determi-
nation of the stability of a steady state is based on linearising the system in an equilibrium
and using results from calculus (see [2]). In the end, the eigenvalues of the Jacobian

J =


∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂λ1

∂ẋ
∂λ2

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂λ1

∂ẏ
∂λ2

∂λ̇1
∂x

∂λ̇1
∂y

∂λ̇1
∂λ1

∂λ̇1
∂λ2

∂λ̇2
∂x

∂λ̇2
∂y

∂λ̇2
∂λ1

∂λ̇2
∂λ2


of the canonical system, evaluated at the equilibrium point x̂i, ŷi, λ̂i1, and λ̂i2 play a
crucial role. The eigenvalues are the roots of the characteristic polynomial, which is given
by χ(ω) = det(ω1n− Ĵ) with the unit matrix 1n of dimension n = 4 and Ĵ the Jacobian
evaluated at the equilibrium point. Given the specific form of the canonical system, the
Jacobian in this model slightly reduces to

∂ẋ
∂x

0 ∂ẋ
∂λ1

∂ẋ
∂λ2

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂λ1

∂ẏ
∂λ2

∂λ̇1
∂x

∂λ̇1
∂y

∂λ̇1
∂λ1

∂λ̇1
∂λ2

∂λ̇2
∂x

∂λ̇2
∂y

0 ∂λ̇2
∂λ2

 .

The eigenvalues for our model were computed with the OcMat Toolbox of Matlab and can
be found in the Appendix (see Table B.1 on Page 78). Since there are no zero or purely
imaginary eigenvalues of Ĵ , the stationary points are all hyperbolic. This is important,
since the Hartman-Grobman Theorem (see [1]) therefore can be stated, which implies
that the system is equivalent to its linear approximation in a small neighborhood of an
equilibrium.



Chapter 4
Sensitivity Analysis and Optimal Paths

The topic in this section is the question how slight changes in the model parameters affect
equilibrium values of the security level x and the value of the asset y. To accomplish this
task using Matlab, every iteration (i.e. every step increasing the parameter value a bit)
a Newton search was applied to the canonical system with new parameter values, where
the initial solution was provided by the solution of the previous step. The structure will
be as follows: the analysis will be divided into the sensitivity of the admissible steady
states exhibting a two-dimensional stable manifold (the ones, which will be interesting
when calculating the optimal paths), and the boundary equilibria, which can be found on
Page 48 (Figure 4.16). Additionally, the sensitivity of the non-admissible steady states
will also be depicted.

4.1 Attackers with Different Capabilities

Recalling the damage function µ(v(x, y)) = av(x, y)γ = ah(x)γp(y)γ, one can see that
the damage an attacker can inflict on an asset basically equals a standard level p(y)γ

multiplied with some positive number h(x)γ and the capability factor of the attacker.
The explanation for the term p(y)γ was the increased attack efforts of the attacker due
to the attack intensity function v(x, y) if the asset has a high value. The expression
ap(y)γ can be seen as potential damage, which will be reduced by the defender’s level of
security x, because h(x) was chosen to take values between 0 and 1. An attacker with the
capabilities (say because of more equipement or well trained people) to launch heavier
attacks can now be expressed as an attacker with a higher capability factor a.

For the models with strictly monotone reaction functions, Figures 4.1(a) and 4.1(b) depict
the sensitivity of the equilibrium levels in the interior of the control region to changes in

33
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parameter a. As one can see, in every model there exists a blue-sky bifurcation, a point
where the number of steady states suddenly changes. Depending on the point of view, this
means that two steady states converge towards each other until they vanish or that two
steady states suddenly appear at a certain parameter value. Based on this phenomenon
is the name of this bifurcation: steady states appear out of the blue sky.
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(a) Sensitivity diagram of the non-admissble steady states with respect to a for the
aconv -model
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(b) Sensitivity diagram of the non-admissble steady states with respect to a for the
aconc-model

Figure 4.1: Sensitivity diagram of the non-admissible steady states for the aconv and
aconc-models with respect to a

It is obvious that the bifurcation basically seperates the model dynamics into two areas.
In the simple aggressive models with strictly monotone reaction functions (Figures 4.1(a)
and 4.1(b)), the models both exhibit high and low steady states left to the bifurcation
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value of 2.34 and 2.23. In addition, one can see the trade-off effect on which the model
is based: with a high steady state value of the security level x there comes a lower level
of y and vice versa. This circumstance is based on the model formulation, because the
decision maker can possibly invest in x or y. As the attacker’s capabilities rise, i.e. the
parameter crosses the blue-sky threshold, the number of steady states reduces to one,
converging to a low level of x with a low level of y at the same time. The trade-off effect
vanishes, because in this case the attacker causes so much damage to the asset, that the
defender fully concentrates on repairs (i.e. investing everything into the asset), which lets
the security level decrease due to depreciation. However, it is important to mention that
these considerations are only of hypothetic value, because the interior steady states never
become admissible as the value of the first costate is negative over the whole parameter
area and only converges towards zero but never crosses it. So the boundary equilibrium
has to be analyzed (see Figure 4.16 on Page 48). As it turns out, in both, the aconv -
and aconc-model, the Lagrange multiplier of the boundary equilibrium converges to, but
stays above zero, which means that this remains the only admissible solution.
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Figure 4.2: Sensitivity diagram of the admissible steady states with two-dimensional
stable manifold of the deterred and provoking models with respect to a

In Figure 4.2, the changes of stationary levels of the provoking and deterred models can
be observed. At the bifurcation value of 2.63, the admissible steady state of the deterred
model vanishes, while at parameter value a = 26.398 in the provoking model the only
admissible steady state becomes non-admissible, because the costate λ1 changes its sign.
To answer the question, which other steady states in these cases possibly satisfy the
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necessary optimality conditions of positivity of the first costate, Figure 4.3 illustrates the
developement of the other stationary points.
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(a) Sensitivity diagram with respect to a for the provoking-model including non-
admissible steady states (purple is the admissible steady state)
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Figure 4.3: Sensitivity diagram for the provoking and deterred models with respect to a
including non-admissible steady states
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As one can see, in the provoking model at the critical value of about 26.4 the second, lower
steady state (corresponding to the green curve) changes its costate sign, too, which leaves
it being the only one with a positive value of λ1 and therefore the only possible admissible
steady state. In the deterred model, one can see that after the bifurcation value of 2.63,
where the admissible solutions vanish, the high, purple and green steady states are the
only admissible until a reaches the value of 2.93, where only the purple steady states
satisfy the necessary conditions. However, these purple steady states vanish at another
bifurcation point occuring at a = 7.92. Therefore, the only candidate which may be an
admissible steady state is the one at the boundary of the control region. Checking Figure
4.16(a) on Page 48, one can verify that this boundary equilibrium indeed remains the only
admissible one after a = 7.92, since the corrsponding Lagrange multiplier is positive.

Comparing the four models, one can see that the overall developement of the steady
state levels of x and y follow the same movement: left to the blue sky bifurcations, the
stationary levels of security and value of the assets heavily depend on the relation of x
and y. This is the area where a decision maker has the choice to invest in security, too,
because the attacker’s damage is, due to the low capability factor, not so high. However,
right to the bifurcation points, security levels in general converge to low levels, because the
defender faces attacks so heavy that she fully has to invest into the asset (or to say repair
the asset) and has no money left for security expenditures. The ongoing depreciation of
x then yields the reduction.

4.2 Assets Important to Society

In terms of the state as a decision maker, in this model one may think of assets, which
have even more influence on the people of a country. Recalling the example of an oil
pipeline from the introduction, it is undoubtedly clear that tax incomes from oil sales can
generate wealth in different ways. Nevertheless, examples of assets can be found, which
generate even more wealth for society. As a simple example, one can think of hospitals.
In their function as health care facilities, people in some region would suffer much more
and directly because of the damage of a hospital than the loss of income due to oil sales.
Looking at the wealth function W (y) = by, it is possible to describe this circumstance
with a raise of the parameter b. In the context of a hospital, b can be seen as a the units
of wealth every unit of y generates, whereas an increasing level of y can be interpreted as
new machines in the hospital or even new departements.

Figure 4.4 again shows that none of the interior non-admissible solutions of the aconv -
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and aconc-models become admissible, since the first costates stay negative for all values
of b considered here.
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Figure 4.4: Sensitivity diagram of non-admissible steady states for the aconv - and aconc-
models with respect to b

Figure 4.5 illustrates further sensitivity analyses of the steady states with respect to b.
The purple equilibrium in the provoking-model barely changes as parameter b increases.
Again, the trade-off structure of this model can be observed in Figure 4.5(a). Checking
Figure 4.6, one is finally able to see that this purple, interior steady state remains the
only admissible for parameter changes in b, since the costates of all the others points stay
below zero. However, at b = 0.1513 and x = 0.4 the intersection point of the green and
purple line shows that admissibility changes.
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Figure 4.5: Sensitivity diagram of the provoking- and deterred -models with respect to b
including non-admissible steady states
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Figure 4.6: Sensitivity of the first costate of the provoking-model with respect to b (purple
is the admissible steady state)
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Figure 4.7: Sensitivity of the first costate of the deterred -model with respect to b (blue is
the admissible steady state exhibiting a two-dimensional stable manifold)

In the deterred -model (Figure 4.5(b)), now there exists a second bifurcation threshold,
where the admissible blue steady state vanishes. For parameter values greater than 1.52,
this steady state remains admissible, but for values between 0.4975 and 1.52 Figure 4.7
shows that the red and green (or purple) steady states remain admissible. Again, the
intersection of the green and purple lines at x = 0.4 is observable.

This intersection point of the low steady states, which always occurs at x = 0.4 is very
interesting. This level of security was chosen to be the point where the reaction functions
in the provoking- and deterred -models took their minimum or maximum, respectivly.

4.3 Sensitive Assets

Thinking of nuclear or hydroelectric power plants, it is obvious that valuable assets, which
are of big use for people may on the other hand turn into devastating places once they
are damaged. The fallout of a damaged nuclear power plant or the masses of water if the
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dam of a hydroelectric power plant gets damaged can make whole regions uninhabitable
for years or even decades. This potential to cause severe harm given the damage can be
covered by the parameter k of the harm function D(µ(.)) = kµσ.
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Figure 4.8: Sensitivity diagram of non-admissible steady states for the aconv - and aconc-
models with respect to k

First, Figure 4.8 again shows that in the aconv - and aconc-models, the steady states at
the boundary of the control region can be the only admissible ones when varying k, since
none of the interior ones exhibit costate values above zero.

In the provoking-model, (Figure 4.9(a)), again there is one bifurcation threshold. In the
deterred -model (Figure 4.9(b)) there are two blue-sky bifurcations at 1.97 and 6.16. In
Figure 4.9(b), the intersection point at x = 0.4 can be found, too, and since the costate
of the purple steady state remains negative after the second bifurcation, the boundary
equilibrium remains the only admissible one.
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(a) Sensitivity diagram of the provoking-model with respect to k including non-admissible steady states
(black is the admissible steady state)
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Figure 4.9: Sensitivity diagram of the provoking- and deterred -models with respect to k
including non-admissible steady states
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Figure 4.10: Sensitivity of the first costate of the provoking-model with respect to k (black
is the admissible steady state)
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Figure 4.11: Sensitivity of the first costate of the deterred -model with respect to k (black
is the admissible steady state exhibiting a two-dimensional stable manifold)

It is interesting to see that an increase in parameter k not automatically comes with a
decrease in y (as it could be observed when increasing parameter a). To interpret how
and why state variables react to k, one may look at the evolution of the green steady
state in Figure 4.9(b) on Page 42. As k increases, the security level x gets reduced
but simultaneously the value of the asset rises. In this case the decision maker reduces
his/her investment in the security of the asset, which is based on the fact that she tries
to compensate the possible harm by investing into the asset, and therefore increases the
possible wealth. However, in contrast to increasements in parameter a, the attacker suffers
from his/her restricted capabilities and cannot inflict more damage to the asset. That is
why the investment can be preserved in contrast to the case of changes in a, where the
dynamics of y stay at negative levels due to the high value of a.
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4.4 Maintenance-Intensive Security Measures

In the introduction, the raise of the security level happened through an increase in the
number of soldiers assigned to protect the pipeline. Military force, in both ways human
and mechanical, is a security measure that can be seen as relatively sustainable: soldiers
can be assigned to certain duties for several years and also technical equipement can be
applied a long time. However, reading today’s newspapers it is more and more common
to come across the words “Cyber War“. Due to the technical advancements and the
important role of computers, these-days conflicts dislocate to a non-physical area. Of
course, computer systems or big networks are very complicated to protect against attackers
one cannot even see. That is why on the one hand, people need to be trained well and
educated constantly, and on the other hand, equipment (hardware but especially software)
needs to be updated often. This fast-paced development on the IT sector causes a high
depreciation of security if it is based on computer systems, which leads to an increased
value of δ. Looking at Figure 4.12 and using the same argument for the models with
strictly monotone increasing reaction function one can argue that no interior equilibrium
solution turns out to be admissible.
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Figure 4.12: Sensitivity diagram of non-admissible steady states for the aconv - and aconc-
models with respect to δ
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(b) Sensitivity diagram with respect to δ for the deterred -model including non-admissible steady states
(red is the admissible steady state exhibiting a two-dimensional stable manifold)

Figure 4.13: Sensitivity diagram of the provoking- and deterred -models with respect to δ
including non-admissible solutions



CHAPTER 4. SENSITIVITY ANALYSIS AND OPTIMAL PATHS 46

As it could be expected, maintenance-intensive security measures generally lead to re-
duced steady state values of x. However, it is interesting to see that the development
of the steady state levels does not always have to look the same. For example, in Fig-
ure 4.13(b) one can see that maintenance-intensive security measures generally lead to
reduced equilibrium levels of x, but checking the sensitivity of y it is noticeable that the
equal qualitative development of x does not result in an equal qualitative behavior of y:
the black, blue, and red equilibrium paths of x decrease, but the correlating lines in the
(δ,y)-plane do not exhibit the same behavior. Here, the black and blue path increase
and the red decreases. Checking Figure 4.14, it is obvious that this fact is based on the
different equilibrium levels of the control u. In the red case, the equilibrium control lev-
els grow with increasing δ, whereas in the black and blue cases control values decrease,
which implies that in the red case the loss of security due to the high depreciation rate
is compensated with higher expenditures on x, whereas in the black and blue cases the
expenditures on x decrease and therefore extra money can be put into the asset, directly
leading to the increasing levels of y.

In Figure 4.13(b) the red line, corresponding to the steady state exhibiting a two-dimensional
stable manifold, vanishes at the bifurcation value of 0.463. In this case the two high steady
states remain the only admissible ones (see figure 4.15).
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Figure 4.14: Sensitivity of the control to δ in the deterred -model (red is the admissible
solution exhibiting a two-dimensional stable manifold)
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4.5 Sensitivity of the Boundary Equilibrium

In addition to the sensitivity analysis of the steady states in the interior of the control
region, for the sake of completeness also the boundary equilibria are analyzed in Figure
4.16. The main result of this analysis is the answer to the question if one of the boundary
steady states become admissible or non-admissible as parameters change. As one can see,
in every model the Lagrange multiplier does not change its sign, which implies that the
stationary point at the boundary of the control region stays admissible in the aconv -,
aconc-, and deterred -models, but non-admissible in the provoking-model.
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Figure 4.16: The sensitivity of the boundary equilibrium
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4.6 Long-Run Optimal Solutions

In this section, the calculated equilibria will be checked looking for candidates for long-run
optimal solutions. In a next step, trajectories converging towards the selected candidates
will be computed using the BVP approach (see [1]).

In Section 2.4 on Page 15, based on the Legendre-Clebsh condition, the constraint λ1 > 0

for the base case parameter α = 0.5 was identified to be necessary for the concavity of
the Hamiltonian in the interior of the control region. In case of a boundary equilibrium,
however, the Legendre-Clebsh condition cannot be used. In this case, the value of the
Hamiltonian H should decrease given a slight increase in the control u. Mathematically
spoken, this means that

∃ε > 0 : Hu < 0, ∀u : u− u < ε.

Because Lu = Hu+µ1−µ2 has to be equal to zero for an admissible steady state, the condi-
tion above implies that µ1 has to be greater than zero, which satisfies the complementary
slackness condition.

Using the first condition, one can see that for the two simple models, aconv and aconc
with monotonically increasing reaction functions h(x), none of the calculated equilibrium
points in the interior of the control region are candidates for long-run optimal solutions.
However, both models also exhibit steady states (EP3) at the boundary of the control
region with Hu < 0, making these two equilibrium points candidates for long-run optimal
solutions. In the provoking-model, equilibrium EP2 = (0.39692, 4.9122, 3.2274, 7.3932) is
the only equilibrium in the interior of the control region which satisfies the positivity of
λ1. Since this equilibrium also exhibits a two-dimensional stable manifold (see Table B.1),
it is a candidate for a long-run optimal solution. In this model, the boundary equilibrium
is not taken into account since Hu > 0, which implies that the Lagrange multiplier µ1 < 0.
In the deterred -model, it turns out that there exist three possible candidates for long run
solutions in the interior of the control region (EP2, EP4, EP5), but checking Table B.1, one
can immediately see that only EP4 is a candidate for a long-run optimal solution, since
this is the only equilibrium exhibiting a two-dimensional stable manifold. In contrast to
the provoking-model, in this model the boundary equilibrium comes into consideration to
be an additional candidate since Hu < 0.
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Figure 4.17: The phase portrait of the aconv -model
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Figure 4.18: The phase portrait of the aconc-model
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(a) The time path for inital value (0.9/0.1) of the aconv -model
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(b) The time path for inital value (0.9/0.1) of the aconc-model
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(c) The time path for inital value (0.9/2.5) of the aconv -model
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(d) The time path for inital value (0.9/2.5) of the aconc-model

Figure 4.19: The time paths of the aconv - and aconc-models for initial values (0.9/0.1)
and (0.9/2.5)



CHAPTER 4. SENSITIVITY ANALYSIS AND OPTIMAL PATHS 52

As one can see, both of the phase portraits (Figures 4.17 and 4.18 on Page 50) for the
simple models with aggressive attackers look pretty much the same. As it could be
expected, given the model formulation, the optimal policy in these models is to fully
invest directly into the asset (which can be seen because of the green color of the paths,
implying a control value at the lower boundary of the control region). The control value
at the boundary of the control region over the whole solution path implies that security
efforts are reduced to a minimum and the whole budget is invested into the asset. The
exemplary time paths of the solutions on Page 51 show that this policy causes security to
decrease over time due to depreciation. If one remembers how the security level influences
the model dynamics, this result will be no suprise. Recalling the dynamics for the value
of the asset y,

ẏ = d(1− u)− a(h(x)yβ)γ,

one can see that an increasing security level given this kind of aggressive attacker influences
the model only in a negative way, since the value of the asset will be reduced the higher
security measures x get (h(x) > 0 ,∀x > 0). This leaves the decision maker with no other
choice than investing everything possible into the asset, or to say repair the damages
done by the attacker, leading to an ever decreasing security level resulting in a decreasing
reaction function, which ultimately leads to a poorly secured but fairly valuable asset.
However, Figures 4.17 and 4.18 show that the evolution of the solution strongly depends
on how valuable the asset is given a certain level of security. Starting at the same security
level of 0.9 but different values of the asset of 0.1 and 2.5, in the first case the value gets
built up monotonously, while in the second case the value gets reduced non-monotonously.
Figure 4.19 illustrates this behavior. Of course, this kind of attacker does not seem quite
realistic. However, it is possible to obtain some interesting results of the model and
analyze whether the outcome is what one would expect.

From a mathematical point of view, it is easy to see that it makes almost no difference
if the reaction function is a convex or concave one and, because of how x influences
these models, the optimal control value will stay at the lower boundary despite parameter
changes. The only difference, as the time paths on Page 51 show, is the slightly different
behaviour at around t = 10 with x ≈ 0.1. In the aconv -model, the value of the asset gets
built up faster since the reaction function has smaller values. To illustrate the trade-off
between wealth and security in these models, in Figure 4.20 the assumption was made
that a decision maker has to invest at least 40% of his budget into the security level,
now leaving him/her with a well-secured asset that does not have the same high value as
before.
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Figure 4.20: The aconv -model with minimum expenditures on security of 40 %
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Figure 4.21: The phase portrait of the provoking-model
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In the more complex provoking-model (Figure 4.21), which describes an aggressive at-
tacker who increases his/her attacks at a certain level of security since he seeks to spread
fear, the first thing one can notice is the long-run equilibrium at x ≈ 0.4, which coincides
with the minimum of the reaction function h(x) of the attacker. In this model, in the long
run, it is optimal to choose a policy which leaves the decision maker with an averagely
secured asset. One can see that there exist two boundary curves, where either one of the
control constraint becomes active. This basically divides the state space into three areas,
where two fundamentally different policies have to be taken into account:

• Initial values in the red area imply a worthy asset which is poorly secured. As an
example, in Figure 4.22(a) on Page 56 the time path for the solution with inital
value (0,4.6) is depicted. In this case, the reaction function hp(x) is 0.5 implying a
high value of the damage function µ(v(x, y)), which results in a negative value of
ẏ. Therefore, in the beginning it is optimal to fully invest into security (as can be
seen at the time path of the control or the red part of the corresponding path in
the phase portrait in Figure 4.21). This will cause the reaction function to decrease
and ẏ will increase over time. However, for some time ẏ stays negative implying
that the value of the asset will decrease, which can be seen along the red part of the
solution path or the time path of y(t) in Figure 4.22(a). At the boundary curve,
the decision maker starts investing a huge share into the asset (implying that the
control value decreases drastically in Figure 4.22(a)). Since the security level now is
high enough so that the reaction function comes close to its minimum, the damage
decreases leading to an increase in ẏ, which implies that value now can be built up
until the path reaches the steady state.

• Initial values in the green area are basically divided into the ones with high security
and low value (for example (0.9,0.1)), and high security and high value (0.9,5.6).
From the different shape of the paths, one can see that the same policy may lead
to different dynamics over time, which in detail can be seen in Figures 4.22(b) and
4.22(c) on Page 56. Starting at (0.9,0.1) implies that the decision maker faces an
attacker with a high reaction function. This implies that the attacker does a lot
of damage yielding the necessitiy to fully invest into the asset to compensate for
these heavy attacks. Because of depreciation, this yields a decreasing security level.
As security decreases, the attacker’s reaction function gets smaller which yields
increasing ẏ. Hence, the value of the asset can be built up as can be seen on the
time path of y in Figure 4.22(b). On the other hand, following the path starting
at (0.9,5.6), i.e. starting with a highly secured, valuable asset, the decision maker
faces attacks which are too heavy to maintain or even build up the value of the
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asset leading to a drastic decrease of y. After a short time in the time path of y, the
strikes of the attacker become less powerful, because x was reduced to a level, which
the attacker cannot use for politically motivated attacks anymore and therefore the
value of the asset can be built up again. It is interesting to see that in this case the
asset gets restored nearly to the initial value but with a security level low enough
so the attacker does not get attracted to use a high security level for his purpose.
This case reflects some kind of “fooling” strategy, where the defender restores the
asset nearly to the old value but now keeps a lower security level so the attacker’s
attention is not drawn to the asset.
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(a) The time path for the provoking-model for inital value (0/4.6)
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(b) The time path for the provoking-model for inital value (0.9/0.1)
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(c) The time path for the provoking-model for inital value (0.9/5.6)

Figure 4.22: The time paths for the provoking-model for different initial values
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Before analysing the deterred -model, one has to “prove” at least numerically that one of
the two admissible steady states exhibiting a two-dimensional stable manifold is the only
candidate for a long-run optimal solution. Following [1], this is done by trying to continue
the optimal solution along the line, which connects the two steady states exhibiting a two-
dimensional stable manifold. In Figure 4.23, the black and red points are the stationary
points exhibiting a two-dimensional stable manifold. Calculating the path starting at
the red point leading to the boundary equilibrium yields the green path. The solution
starting at the black equilibrium converging towards the red one cannot be calculated,
which is a first indication that the black equilibrium at the boundary of the control region
is the only long-run solution. To test if this suspicion proves right, the path starting at
the green, admissible steady state, which exhibits a two-dimensional stable manifold into
the red and black ones is computed, too. As one can see in Figure 4.24, the Hamiltonian
along the purple path is smaller than the Hamiltonian along the path from the green to
the black steady state, which ultimately supports the assumption that the black steady
state is part of the long-run solution.
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Figure 4.23: Looking for the only long-run optimal solution in the deterred -model

In the phase portrait of the deterred -model (Figure 4.25), one can see that results are
quite unexpected. In this case, the reaction function hd(x) was 0.5 for x = 0, 0.9 for
x = 0.4, and 0 for x = 1. So, one might expect that paths which start at a high security
level lead to a steady state exhibiting a high security level, since in this case hd(x) would
stay small over the whole path. Instead, the phase portrait shows that all paths lead to
the steady state with low security with a boundary curve where the optimal control value
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Figure 4.24: Hamiltonians along the paths in the deterred -model

even gets reduced to its minimum. To interpret this circumstance, one may look at the
path starting at (0.9,2.6) and the corresponding plots of the time path in Figure 4.26 on
Page 59. The initial value lies in the blue region where no control constraint is active
yielding a control value in the interior of the control region. But as one can see, as the
path converges to the steady state, both the security level x and the value of the asset
y decrease initially. That is because on the one hand, security investments on this path
are too small to even compensate for depreciation and on the other hand, investments in
the asset are way to low to compensate for the damage caused by the attacker, i.e. ẏ is
less than zero. The negative effect of decreasing security leads to increased attacks due to
the shape of the reaction function hd(x). As the control constraint becomes active after
just two units of time, the whole budget is invested into the asset but the overall level
of y still decreases until the decreasing security level finally yields a build-up of y at t
approximately 8. This is mainly based on the choice of parameter d. As it was already
mentioned, especially the decrease of y, although almost the whole budget is invested into
it, comes from the negativity of the dynamics ẏ. This can either be based on a bad restore
capability, d (i.e. the decision maker cannot build up value fast enough) or a high attack
capability, a, of the attacker.
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Figure 4.25: The phase portrait of the deterred -model

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x

0 10 20 30
0

0.5

1

1.5

2

2.5

t

y

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

u

Figure 4.26: The time path of the deterred -model starting at the initial value (0.9/2.6)



Chapter 5
Convex-Concave Reaction Functions

5.1 Deriving the Functions

In this chapter, so-called convex-concave or concave-convex reaction functions h(x) will
be introduced, instead of strictly convex (concave) functions to analyze if inflexion points
have any impact on the optimal control or the optimal solution paths.

Since one of the most simple functions with an inflexion point is a polynomial of degree
3, h(x) = ax3 + bx2 + cx + d, this will be the initial functional form. By stating four
different conditions on h(x), some related to the model itself, some of technical nature to
obtain “good“ functions, it is possible to derive the following functions for the deterred
and provoking type, respectively. As one can see, the levels at x = 0 and x = 1 are the
same as in the provoking- and deterred -models. The minimum and maximum, however,
are slightly different from the other two functions, which will be taken into account when
analyzing the phase portraits. Since in this chapter the shape of the functions is the
esential part and not the values themselves, comparability is not hugely affected.
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(a) deterred type: hdext
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(b) provoking type: hpext

Figure 5.1: Different types of attacker for the extension
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Stating the assumptions hdext(0) = 0.5, hdext(1) = 0, hdext(0.6) = 0.9, and h′′dext(
124
495

) = 0,
one can solve a system of four equations to calculate the functional form of h(x)dext:

h(x)dext = −
55

16
x3 +

31

12
x2 +

17

48
x+

1

2
.

Mirroring this function at z(x) = 0.5 yields h(x)pext:

h(x)pext =
55

16
x3 − 31

12
x2 − 17

48
x+

1

2
,

resulting in the following reaction functions:

v(x, y)pext =

(
55

16
x3 − 31

12
x2 − 17

48
x+

1

2

)
yβ

v(x, y)dext =

(
−55
16

x3 +
31

12
x2 +

17

48
x+

1

2
.

)
yβ

5.2 Steady States

Following Section 2.4 to formulate Pontryagin’s Maximum Principle and Section 2.5 to
calculate steady states, one is able to obtain the following equilibrium points (Table 5.1)
of the canonical system. Again, the admissible stationary points are displayed bold.
Comparing Table 5.1 with the steady states from the base case models (Table 3.2 on Page
31), one can see that the steady state in the extended provoking-model exhibit the same
qualitative properties as in the base model. The only admissible steady state is located
at the minimum value of x of the applied reaction function. Although in the extended
model the stationary value of x is a bit higher, the steady state value of y is almost the
same. This shows in a mathematical way what could be expected beforehand: the higher
the threshold, where an attacker gets provoked to increase his/her attacks, the better for
the decision maker.

In the extended deterred -model, much like in the case of the provoking-model, the usage of
a concave-convex function does not have an impact on the number or location of stationay
points. Again, there are two high and two low steady states, each time with one being
admissible. Additionaly, there is an admissible steady state at x ≈ 0.77, which is located
between these four (in relation to x). Finally, the admissible boundary equilibrium also
occurs in this case. However, it can be seen that the higher value of the maximum of the
reaction function in this extended case (0.56 compared to 0.4 in the base model) influences
the values of x of the two low steady states (EP2 and EP5 in Table 5.1) significantly.
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For example, this higher maximum changes the stationary security level of the two high
equilibrium points only about 0.15, while in the case of the two low equilibria the increase
in the maximum point relates almost 1:1 to the increase of the low steady states. Due
to the trade-off structure of the model, however, this higher security level yields a lower
value of the asset.

EP1 EP2 EP3 EP4 EP5 EP6

h(x)pext x̂ 0.76844 0.8266 0.55402 0.82764 0.5713 0.015565
ŷ 1.0669 0.11857 4.9172 0.10064 4.8651 1.0124
λ̂1 -14.7124 -1.2402 8.5698 -1.0506 -9.5542 6.7851
λ̂2 2.5665 0.11278 7.6916 -0.094283 7.6839 1.2134
û 0.4405 0.9090 0.0617 0.9223 0.0710 0.00001
Hu -5.13296 -0.22555 0 0 -15.36787 1054.9
Huu 2.91306 0.06203 -62.3030 0.05111 54.0852

h(x)dext x̂ 0.80441 0.53949 0.81713 0.76922 0.5952 0.015565
ŷ 0.24234 0.5232 0.15756 0.37724 0.50686 0.98789
λ̂1 1.4584 -0.3324 0.99879 1.9653 0.45944 -6.4682
λ̂2 0.17339 0.32666 -0.10218 0.34019 0.31622 1.1681
û 0.6766 0.0549 0.7987 0.4444 0.0865 0.00001
Hu 0 -0.65332 0.20437 0 0 -1007.958
Huu -0.128132 2.975270 -0.063968 -0.38276 -1.828274

Table 5.1: Steady states for the extension

In addition, Appendix B on Pages 78 and 79 provides the eigenvalues of the steady states
of the extended models.

5.3 Sensitivity and Optimal Paths

5.3.1 Changes in the Sensitivity

In the case of a change of parameter a, one can see that, compared to the provoking
base-model, the extended -model exhibits the same characteristics (see Figure 5.2). The
significant difference lies in the smaller value of the bifurcation point. However, in the
extended deterred -model one can see that in the analyzed parameter area there are two
additional blue sky bifurcations. This is interesting, because the two thresholds of about
1.4152 and 2.065 set limits to a very small area, in which the admissible steady state at
(x = 0.76922, y = 0.37422), which in this model will also be a candidate for a long-run
optimal solution exists. In addition, the new threshold at around 4.23 generates an area
in which three steady states exist in the interior of the control region.
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(b) Sensitivity diagram with respect to a for the extended deterred -model including non-admissible steady
states (green is the admisible steady state exhibiting a two-dimensional stable manifold)

Figure 5.2: Sensitivity diagram of the extended provoking- and deterred -models with
respect to a including non-admissible solutions
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(a) Sensitivity diagram with respect to b for the extended provoking-model including non-admissible steady
states (black is the admissible steady state)

0 0.94 1.93 2.81 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.85

b

x

0 0.94 1.93 2.81 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b

y

1.4

(b) Sensitivity diagram with respect to b for the extended deterred -model including non-admissible steady
states (green is the admisible steady state exhibiting a two-dimensional stable manifold)

Figure 5.3: Sensitivity diagram of the extended provoking- and deterred -models with
respect to b including non-admissible solutions
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(b) Sensitivity diagram with respect to k for the extended deterred -model including non-admissible steady
states (blue is the admisible steady state exhibiting a two-dimensional stable manifold)

Figure 5.4: Sensitivity diagram of the extended provoking- and deterred -models with
respect to k including non-admissible solutions
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In the case of the changes of parameter b (Figure 5.3) and k (Figure 5.4), i.e. the asset
generates more wealth or more harm if damaged, the situation follows the one in the case
of changes in a. The extended provoking-model exhibits a slightly different blue sky bifur-
cation level, but overall the changes in steady state levels follow the same dynamics. In
the extended deterred -model, however, an additional fold bifurcation yields the admissible
equilibrium at x = 0.76922 only to exist in a small parameter interval.

In the case of parameter changes of δ, there is an interesting observation to be made.
If one compares Figure 4.13(b) on Page 45 and Figure 5.5(b), one can notice that at
the bifurcation level in the two cases different steady states are generated or to say they
vanish if one starts the analysis at the base case value of δ = 0.2. In the deterred -model
the middle and one of the low steady states disappear at the bifurcation value of about
0.463. However in the extended -model it is the middle and one of the two high steady
states, which vanish at the bifurcation point.
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(a) Sensitivity diagram with respect to δ for the extended provoking-model including non-admissible steady
states (red is the admissible steady state)
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Figure 5.5: Sensitivity diagram of the extended provoking- and deterred -models with
respect to δ including non-admissible solutions
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As it was shown, the extension to a concave-convex function in addition to the change of
the location of the minimum of h(x) in the extended provoking-model barely affects the
steady state values or the sensitivity of the model. However, it could be noticed that the
extension to a convex-concave function h(x) in the case of the deterred -model does not
only have an effect on steady state values but also changes the sensitivity of the model
completely, whether it is the number of blue-sky bifurcations or the diversity of stationary
points, which are generated at these thresholds.

5.3.2 Changes in the Optimal Paths

Again, with the necessary condition λ1 > 0 and the first-order condition Hu = 0, EP3 of
the pext-model can be identified to be a candidate for a long-run optimal solution. In the
extended deterred -model, steady states EP1, EP4, and EP5 in addition to the boundary
equilibrium must be taken into account. Checking Table B.2, looking for stationary points
exhibiting a two-dimensional stable manifold, reveals that EP4 and EP6 of the extended
deterred -model are fitting candidates. Comparing these candidates to the ones from the
base model shows that the different shape of the reaction function in a first step does
not affect the choice of steady states, which have to be considered as part of a long run
solution.

Following Grass et al. (see [1]), again a BVP approach is used to calculate the solution
paths in the extended -models, which is implemented in the OcMat Toolbox. Similar to
the results of the sensitivity analysis, one can see that the solution paths of the extended
provoking-model in Figure 5.6 exhibit the same overall behavior. Due to the different
location of the minimum of the reaction function h(x), the steady state has a different
level, which shifts the area where no control constraint is active to the right, causing the
area to grow, in which the control value lies at the upper boundary and the area to shrink,
in which the control value lies at the lower boundary.

In the extended deterred -model (Figure 5.7), the same method as in the base model can
be used to numerically “prove” that the steady state at the boundary of the control region
is the only candidate for a long-run solution. As it can be seen, also in this case the
different location of the maximum of hdext(x) results in the boundary curve being located
more to the right, yielding a smaller area, in which no control constraint is active. It is
further noticable, that the inflexion point at about 0.25 seems to have an impact on how
the paths converge to the steady state. In the deterred -model (Figure 4.25 on Page 59),
the paths in this area (x ∈ (0.1, 0.3)) converge in a convex way to the equilibrium point,
whereas in the extended -model the paths follow a convex-concave shape. Comparing the
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Figure 5.6: The phase portrait of the extended provoking-model

time paths for the initial value (0.9,2.6) in Figures 5.8(b) for the extended and Figure 4.26
on Page 59 for the base model, one can see that this difference in how the paths converge
towards the steady state has a minimal impact on how the time path of y looks like. In
addition, the smaller area of inactive control constraints is reflected in the short time the
control in Figure 5.8(b) stays above its minimum level.

As it was shown in this chapter, the introduction of a concave-convex reaction function in
the extended provoking-model barely has any effect concerning steady states or optimal
paths. In this model, the difference in the location of the minimum of the reaction function
played a bigger role yielding a change in the steady state values and therefore a change
in control values along the optimal path.

However, on the other, hand the deterred -model was affected in different ways by the
usage of a convex-concave reaction function and a different location of its maximum. The
steady state levels, especially of the low stationary points, were affected more in relation
to the provoking-model, the sensitivity in some cases changed completely and the solution
paths converged slightly differently towards the equilibrium.
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Chapter 6
Summary

6.1 Conclusion

The goal of this thesis was to formulate a nonlinear optimal control problem, which was
based on the ideas of a game theoretical defender-attacker model by Kjell Hausken and
Jun Zhuang. In this dynamic model, the defender became the decision maker trying
to optimally invest a normalized budget into the security level of an asset she tries to
defend, or directly into the asset. The second player, the attacker, was introduced as an
exogenous force, namely a “reaction function”, which depended on the security level of the
asset. Together with a function describing the potential damage an attacker can inflict
on an asset, it was possible to derive different kinds of attackers.

In a base case analysis parameter values were chosen to model a very capable, well or-
ganised attacker and it was assumed that the decision maker had limited ressources to
restore damage to the asset. This was based on the attempt to point out the trade-off
relation between the security level of the asset and the wealth it can generate.

Solving this base case model with Pontryagin’s Maximum Principle led to different kinds
of stationary points depending on how the attackers reaction function was modeled. Sur-
prisingly, it turned out that in the case of a so-called “deterred” attacker the long run
optimal solutions converged to a steady state at the boundary of the control region and
not to a steady state in the interior of the control region. Additionally, a sensitivity anal-
ysis showed that this “deterred”-model was influenced by changes in parameter values in
more ways than other models. Not only did steady state levels react more sensitive, it
was also possible to observe multiple bifurcation threshold.

To analyse if the change from strictly convex (concave) to concave-convex or convex-
concave functions has any impact on the model, two of the reaction functions of the
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base case were extended this way. In addition, the points where these extended reaction
functions took their minimum (or maximum) were changed. It turned out that effect of
changing these extremal points of the reaction functions had a bigger effect on the models
outcome than the introduction of inflexion points. Especially the “deterred ”-model again
turned out to be very sensitive to changes in parameter values, with admissible steady
states existing only in very small parameter areas.

As it turned out, the attacker in the base case was modeled in a way, which often left the
decision maker with the only choice to retreat and concentrate on repairing his/her asset.
This was based on the negative dynamics of the value of the asset. This fact together with
the observation that the “deterred ”-model exhibited the most dynamic behavior leads to
the assumption that it may be interesting to analyse this model in a framework, where
the defender has more ressources to repair his/her asset and/or the attacker is not as
strong as in the base case in this model. These two assumptions may most likely lead to
multiple optimal solutions.

6.2 Extensions

Ending this thesis as it started, the connection to the game theoretical models should be
carved out by suggesting some extensions which are based on the work of Hausken, Bier,
and Zhuang ([5] and [6]).

6.2.1 Multiple Attackers

In relation to the paper “Defending against multiple different attackers” by Hausken and
Bier (see [6]), the first extension of the optimal control problem formulated in this thesis
could be the one of stating different attackers. Based on the basic idea of the model
presented in this thesis to model the attacker’s behavior by a reaction function, it is
easy to implement the intention of Hausken and Bier ([6]) who consider a defender facing
heterogenous attackers. As an example of heterogenous attackers, which was already
used in the introduction of this thesis, the authors mention professional hackers and so-
called “script-kiddies” on the field of computer security. These two types of attackers
may be modelled by two different reaction functions h1(x), h2(x) which exhibit different
properties. For example, it is possible to state a reaction function of the deterred -type for
the “script-kiddies”, which has the threshold where they decrease their attacks already at
a very low value of security level x. Aditionally, it is possible to replace the assumption
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h(1) = 0 with h(c) = 0 with c < 0, which implies that the kiddies stop their attacks at all
already at a lower level of security. In addition, the parameters in the damage function
µi for the i-th attacker can be used to model the variability of different attackers even
more. Since the damage caused to the asset in the dynamics of y now has to be added,
the dynamics of y in the case of i different attackers becomes:

ẏ = g(1− u)−
n∑
i=1

µi(vi(x, y)).

The harm-function D(µ(v(x, y))) in this case then becomes a function depending on the
overall damage,

∑n
i=1 µi.

6.2.2 Additional Assets

Despite a significant increase in the complexity of solving such a model, adding dynamics
for the security level and value of a second asset and corresponding control variables
u2 and u3 to the model, expands the formulation to multiple assets. In this case, the
decision maker tries to distribute the budget between two different assets by choosing
control values for investements on the security level of asset 1 and asset 2, u1, u2, and the
share u3 of the budget which is invested in asset 1 implying that the rest of the budget,
1 − u1 − u2 − u3, will be invested in asset 2. Additionally, benefit and cost terms of the
second asset have to be added to the objective function. This formulation, depending
on the different kinds of attackers, allows a decision maker to respond to the question of
finding an optimal defensive plan for multiple assets.



Chapter A
Base Case Models

A.1 The Base Model with v = v(x, y)aconv

max
u

∫ ∞
0

e−0.05t
(
2y − 1.5

√
2y(0.7x2 + 0.3)

)
dt

ẋ =
√
u(1− x)− 0.2x

ẏ = 1− u− 2y(0.7x2 + 0.3)

x(0) = x0 ∈ [0, 1)

y(0) = y0 > 0

u ∈ [u, 1]

A.2 The Base Model with v = v(x, y)aconc

max
u

∫ ∞
0

e−0.05t
(
2y − 1.5

√
2y(ln(x+ 1) + 0.3)

)
dt

ẋ =
√
u(1− x)− 0.2x

ẏ = 1− u− 2y(ln(x+ 1) + 0.3)

x(0) = x0 ∈ [0, 1)

y(0) = y0 > 0

u ∈ [u, 1]
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A.3 The Base Model with v = v(x, y)d

max
u

∫ ∞
0

e−0.05t
(
2y − 1.5

√
2y(−2.5x2 + 2x+ 0.5)

)
dt

ẋ =
√
u(1− x)− 0.2x

ẏ = 1− u− 2y(−2.5x2 + 2x+ 0.5)

x(0) = x0 ∈ [0, 1)

y(0) = y0 > 0

u ∈ [u, 1]

A.4 The Base Model with v = v(x, y)p

max
u

∫ ∞
0

e−0.05t
(
2y − 1.5

√
2y(2.5x2 − 3x+ 1)

)
dt

ẋ =
√
u(1− x)− 0.2x

ẏ = 1− u− 2y(2.5x2 − 3x+ 1)

x(0) = x0 ∈ [0, 1)

y(0) = y0 > 0

u ∈ [u, 1]
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A.5 The Base Model with v = v(x, y)pext

max
u

∫ ∞
0

e−0.05t

(
2y − 1.5

√
2y(

55

16
x3 − 31

12
x2 − 17

48
x+

1

2
)

)
dt

ẋ =
√
u(1− x)− 0.2x

ẏ = 1− u− 2y(
55

16
x3 − 31

12
x2 − 17

48
x+

1

2
)

x(0) = x0 ∈ [0, 1)

y(0) = y0 > 0

u ∈ [u, 1]

A.6 The Base Model with v = v(x, y)dext

max
u

∫ ∞
0

e−0.05t

(
2y − 1.5

√
2y(
−55
16

x3 +
31

12
x2 +

17

48
x+

5

10
)

)
dt

ẋ =
√
u(1− x)− 0.2x

ẏ = 1− u− 2y(
−55
16

x3 +
31

12
x2 +

17

48
x+

5

10
)

x(0) = x0 ∈ [0, 1)

y(0) = y0 > 0

u ∈ [u, 1]



Chapter B
Eigenvalues

EP1 EP2 EP3 EP4 EP5 EP6

h(x)aconv -11.6749 0.1231 + 7.3186i 0.2532 1.1574 + 0.6799i
11.7249 0.1231 - 7.3186i 0.6503 1.1574 - 0.6799i
-1.1083 -1.0764 -0.6003 -0.9137
1.1583 0.9301 -0.2032 -1.3012

saddle X X X X
dimsm 2 1 2 2
h(x)aconc 1.2299 + 0.6993i 0.0994 + 7.9125i 0.2532 -12.0440

1.2299 - 0.6993i 0.0994 - 7.9125i 0.6809 12.0940
-1.3977 -0.9660 -0.6309 -1.0273
-0.9621 0.8672 -0.2032 1.0773

saddle X X X X
dimsm 2 1 2 2
h(x)p 0.0979 + 8.4474i -3.1488 -12.6780 1.0863 + 0.4822i 0.0250 + 3.0670i

0.0979 - 8.4474i 3.1988 12.7280 1.0863 - 0.4822i 0.0250 - 3.0670i
-1.1696 -0.2000 -1.1732 -1.0363 + 0.2680i -0.1999
1.0738 0.2500 1.2232 -1.0363 - 0.2680i 0.25

saddle X X X X X
dimsm 1 2 2 2 1
h(x)d -1.8077 + 0.1381i 0.0250 + 9.7407i 13.7783 -1.4630 0.0250 + 1.6856i 0.2532

-1.8077 - 0.1381i 0.0250 - 9.7407i -13.7954 -1.0489 0.0250-1.6856i 1.1110
1.8577 + 0.1969i -1.0945 -1.1095 1.0989 -1.7836 -1.0610
1.8577 - 0.1969i 1.1445 1.2265 1.5130 1.8336 -0.2032

saddle X X X X X X
dimsm 2 1 2 2 1 2

Table B.1: Eigenvalues for the Base Models
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EP1 EP2 EP3 EP4 EP5 EP6

h(x)pext 0.9964 0.0487 +11.2785i -2.6621 -15.0030 0.0244 + 2.4514i
0.8662 0.0487 -11.2785i 2.7121 15.0530 0.0244 - 2.4514i

-0.8813 + 0.4210i 1.1808 -0.1905 -1.1806 -0.1892
-0.8813 - 0.4210i -1.1783 0.2405 1.2306 0.2405

saddle X X X X X
dimsm 2 1 2 2 1
h(x)dext 0.0250+4.3379i -1.6711+0.2278i 10.3502 -0.9883+0.7843i 1.7503 0.2532

0.0250-4.3379i -1.6711-0.2278i -10.4661 -0.9883-0.7843i 0.0250+1.2839i 1.0623
-0.7959 1.7211+0.3785i -1.0084 1.0383+0.7843i 0.0250-1.2839i -1.0123
0.8459 1.7211-0.3785i 1.2244 1.0383-0.7843i -1.7003 -0.2032

saddle X X X X X X
dimsm 1 2 2 2 1 2

Table B.2: Eigenvalues for the Extended Models
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