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Abstract

One of the most important reliability effects observed in metal-oxide-semiconductor field-effect
transistors (MOSFETs) is the threshold voltage shift when the device is stressed at high gate
voltages at elevated temperatures, called the bias temperature instability (BTI). In the case of
p-type MOSFETs the devices are stressed with negative gate voltages and the effect is therefore
called negative bias temperature instability (NBTI). Positive bias temperature instability (PBTI)
goes hand in hand with a positive gate voltage stress. PBTI is observed in n-type MOSFETs
but is typically weaker than NBTI in p-type devices. In order to study BTI, a new method,
the time dependent defect spectroscopy (TDDS), has been recently introduced. Very fast data
acquisition equipment is necessary to obtain measurement data for this method. Evaluation and
visualization of measurement results is done with the help of the detection of change points in
TDDS measurement data. Three methods are presented and their results are discussed.
First a very fast and intuitive method based on the wavelet denoising techniques is presented.
The application of the discrete wavelet transform (DWT) or the redundant discrete wavelet
transform (RDWT) on the measurement data gives the wavelet transform coefficients. Smoothed
transform coefficients are obtained by thresholding. Then the inverse transform gives a denoised
version of the observations. A final filtering process extracts steps and emission times. Several
wavelet basis functions, threshold denoising methods and their impact on detection results are
discussed.
The second detection algorithm is based on histogram data analysis. Data is binned into his-
tograms. After detecting peaks in the histograms, Gaussian distributions are fit to the peaks, and
the denoised data is obtained by applying a maximum likelihood criterion. Histogram quality
improvement by data interpolation and a histogram for not equally sampled data is presented.
The third and last method is a combination of cumulative sum statistic and bootstrap analysis
combined with histogram supported evaluation. A threshold for change points is estimated and
executed on the data set. Finally, a user defined minimal-acceptable step height filter is applied.

v





Contents

Abstract v

1 Introduction 1
1.1 Charge Trap Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Interface states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Oxide Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Negative Bias Temperature Instability . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Basic MOSFET Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Reaction-Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Two-Stage Switching Trap Model . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Time Dependent Defect Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Evaluation of Measurement Data . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Wavelets and Change Point Analysis 9
2.1 Continuous Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Discretization of the Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Fast Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Stationary Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Important Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Signal Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Evaluation of Change Point Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Histogram-Based Change Point Detection 27
3.1 Introduction to Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Increase Histogram Quality with Interpolation . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Formulation of the Approximation Problem . . . . . . . . . . . . . . . . . . 28
3.2.2 Effects of Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Fitting Gauss Distributions to Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Weighted Histogram for Non-Uniformly Sampled Data . . . . . . . . . . . . . . . . 33
3.5 Histogram Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Evaluation of Histogram-Based Change Point Detection . . . . . . . . . . . . . . . . 34

3.6.1 Simple Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Histogram Algorithm on Wavelet Denoised Signals . . . . . . . . . . . . . . 36

4 Bootstrap and Cumulative Sums for Change Point Analysis 37
4.1 Cumulative Sum Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



viii CONTENTS

4.2 The Bootstrap — A Resampling Method . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Bootstrap and Cumulative Sum Detection Algorithm . . . . . . . . . . . . . . . . . 41
4.4 Application of Bootstraps and Cumulative Sum Statistics to Charge Trap Mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Evaluation of Basic Bootstrap and Cumulative Sum Algorithm . . . . . . . 44
4.4.2 Detection of Wavelet Denoised Signals . . . . . . . . . . . . . . . . . . . . . 45

5 Statistical Evaluation of Time Dependent Defect Spectroscopy Data 47
5.1 Wavelet Denoising Change Point Detection . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Histogram-Based Detected Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Bootstrap and Cumulative Sum Detection Evaluation . . . . . . . . . . . . . . . . . 51
5.4 Comparison of Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Mathematical and Programming Tools 57
A.1 Creating Noisy Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Write Endianess Independent Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3 Floating Point Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3.1 Floating Point Values and Formats . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3.2 Conversions between Decimal Numbers and Binary Streams . . . . . . . . . 59

A.4 Signal to Noise Ratio and Mean Square Error . . . . . . . . . . . . . . . . . . . . . . 60

B Manuals for Auxiliary Programs 61
B.1 Binary Curve File Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2 Measurement Data to (Binary) Curve File Converter . . . . . . . . . . . . . . . . . . 62
B.3 Wavelet Change Point Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.4 Histogram based Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.5 Bootstrap and Cumulative Sum Detection Algorithm . . . . . . . . . . . . . . . . . 66

C File Formats 67
C.1 Binary Curve File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.2 Measurement Data File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.3 Change Point Detection File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 71



CHAPTER 1

INTRODUCTION

The bias temperature instability affects mainly metal-oxide-semiconductor field effect transis-
tors (MOSFETs). The highest susceptibility show p-MOSFETs stressed with negative gate volt-
ages at elevated temperatures up to 200◦C. In the last few years this has become a serious relia-
bility issue in silicon integrated circuits.
The degradation because of negative bias temperature instability (NBTI) has been known since
1966 [Miura and Matukura 1966]. Scaling of microelectronics devices leads to increasing oxide
fields and increasing chip temperature. Also the replacement of buried p-channels by surface
MOSFETs and the nitridation of oxides leads to increasing NBTI.
Before discussing NBTI, charge traps are discussed. Some basic concepts of the MOSFET and
the impact of charge traps on threshold voltage is reviewed. Then the time dependent defect
spectroscopy (TDDS) [Grasser et al. 2010] and the data acquisition is presented.

1.1 Charge Trap Centers

Two types of charge traps are speculated to be related to NBTI: The interface states at the Si/SiO2

interface are the so called Pb centers. Also the creation of oxide charges is a reason for device
degradation. Oxide charges are defects of the E′ center family.

1.1.1 Interface states

The structural model of the Si/SiO2 interface is shown in Figure 1.1. Silicon atoms have four
valence electrons. In the silicon bulk material each silicon atom establishes four bonds to its
neighboring silicon atoms. At the SiO2 interface oxygen atoms surround a silicon atom. A de-
fect free Si/SiO2 interface is built by bonding silicon atoms with oxide atoms. At a real Si/SiO2

interface not all silicon atoms bonds are sated because of the lattice mismatch of those two ma-
terials. After oxidation most interface states are saturated with oxygen atoms. The unsaturated
bonds at the SiO2 interface build the interface traps [Helms and Poindexter 1994].
Electrical active unsaturated bonds are called dangling bonds and are illustrated in Figure 1.1
for (111) and (100) orientated silicon interfaces. The interface states are known as the so called
Pb centers in (111) and the Pb0 and Pb1 centers in (100) orientated Si/SiO2 interfaces [Campell
et al. 2007].
The Pb and Pb0 silicon dangling bonds are essentially identically. Pb and Pb0 centers are of am-
photeric nature [Lenahan and Conley 1998] and show a broad density of states Dit below and
above the middle of the silicon band gap.

1
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(a)

(b)

Figure 1.1: Atomic configuration for Si/SiO2 interface in (a) (111) silicon with Pb trap centers and the
interface in (b) (100) silicon with Pb0 and Pb1 trap centers [Helms and Poindexter 1994].

Near the valence band the Pb0 center is a donor like interface state. The two charge states can
than be written as [Lenahan and Conley 1998]

P+
b + e− = Pb and Pb + h+ = P+

b . (1.1)

Interface states located in the upper half of the band gap are acceptor like, showing the charge
state reactions

Pb + e− = P−
b and P−

b + h+ = Pb. (1.2)

The Pb1 centers show two peaks in their density of states Dit directly below the mid-gap sepa-
rated only by a small gap. They likely have the same amphoteric nature as Pb and Pb0 centers.

1.1.2 Oxide Defects

Oxide trapping centers in nitrided SiO2 are most likely E’ centers. They involve an unpaired
electron of an silicon atom back-bonded to oxygen atoms in the oxide [Campell et al. 2007] .
The most important one in the context of NBTI is the E′

γ center [Grasser et al. 2009a].The E′
γ

center is created by hole trapping in the precursor structure, a Si-Si dimer inside the oxide. After
breaking the Si-Si dimer bond, the E′

γ center transforms into a new equilibrium position. This
results in a structural relaxation. E′

γ centers can be repeatedly charged and discharged. After an
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electron is captured the bond between the two silicon atoms does not immediately relax to its
initial precursor state. They remain a while in a dipole state where an electron can be emitted
very easily again. The idea that E′ centers act like switching trap led to the formulation of the
Harry-Diamond-Laboratories (HDL) model, cf. Figure 1.2. E′ centers are considered as donor

1 2

3Silicon

Oxygen

Precursor
Neutral O−Vacancy Positive Defect

Neutral Defect

Hole EmissionHole Capture

Full Recovery
Structural Relaxation

Structural Relaxation
Hole Capture and

Switching Trap

+

+

Figure 1.2: The HDL model: A neu-
tral Si-Si dimer (state 1) can switch
to a positive defect (state 2) by cap-
turing a hole. A positive E′

γ center
is created and can be neutralized by
hole emission (state 3). From state 3
the neutral defect can either capture
a hole again, leading to state 2, or the
defect can completely anneal.

like defects. After remaining in an electric neutral state they are able to relax to their dimer
configuration and anneal completely [Grasser et al. 2009a;b].

1.2 Negative Bias Temperature Instability

To understand the models of NBTI some basic MOSFET properties such as threshold voltage,
interface trapped charge and oxide trapped charge are reviewed. As NBTI is most important
the concepts are discussed based on a p-MOSFET. Finally NBTI models are presented. After
the reaction-diffusion model, first published in the seventies, new ideas based on the Harry-
Diamond-Labs (HDL) switching trap model are presented.

1.2.1 Basic MOSFET Properties

The MOS transistors threshold voltage is given by [Schroeder 2007]

VT = φMS −
Qox

Cox
− Qit(φS)

Cox
− 2φF −

Qdep

Cox
(1.3)

with the work function difference φMS describing the potential difference between the gate and
substrate, the Fermi potential

φF =
kT
q

ln
ND

ni
, (1.4)

the fixed oxide charge per unit area Qox, the interface trapped charge per unit area Qit, the
depletion region charge per unit area Qdiel = (4qKsε0φFND)

1/2 and the oxide capacitance per
unit area Cox. The threshold voltage is the gate voltage leading to strong inversion, i.e. for the
surface potential φS = 2φF.
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Assuming that neither substrate doping density nor oxide thickness are changed during stress
the threshold voltage ∆VT shift only depends on changes of the oxide charge and the interface
trapped charge [Schroeder 2007]

∆VT = −∆Qox + ∆Qit

Cox
. (1.5)

In contrast to doping atoms, interface traps act like acceptors above and like donors below the
Fermi level. Therefore in p-type MOSFETs in inversion a positive interface trap charge lead to
negative threshold voltage shifts. This is also the reason for the different effect in p-channel and
n-channel devices. The interface trap charge is negative in n-type and positive in p-type devices.
For constant oxide charge Qox for n-channel MOSFETs

∆VT,n = −∆Qox

Cox
+

∆Qit

Cox
(1.6)

a positive but small threshold shift is observed, while for p-channel MOSFETs the contributions
of Qox and Qit have the same sign,

∆VT,p = −∆Qox

Cox
− ∆Qit

Cox
(1.7)

and a larger negative threshold voltage shift is obtained.
In inversion the MOSFET operates like an ideal current source with drain current

ID =
W
2L

µCox(VGS − VT)
2 (1.8)

and transconductance
gm =

∂ID

∂VT
=

W
L

µCox(VGS − VT). (1.9)

Parameters leading to degradation of the drain current ID and the transconductance gm are
threshold voltage shifts and mobility changes. The first ones result from charge trapping at
the interface and in the oxide. Mobility changes are a consequence of scattering at interface
traps.

1.2.2 Reaction-Diffusion Model

The first published model for NBTI is the reaction-diffusion theory introduced by Jeppson and
Svensson [Jeppson and Svensson 1977] in 1977. It describes the NBTI as combination of two
effects: At the Si/SiO2 interface a large number of electrical inactive defects exists. Some of
them can be electrical activated through an electrochemical reaction where the Si−H bonds get
broken. A surface trap and a diffusing species Xit is build

Si−H −⇀↽− Si+ + Xit. (1.10)

The second part is the diffusion of the build hydrogen species Xit into the dielectric

Xit
diffusion−−−−−⇀↽−−−−− Xdiel. (1.11)

Also the reverse process is possible. After diffusion through the dielectric the hydrogen can
re-bond with unsaturated silicon interface atoms, in turn re-passivating them.
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Limitations of the reaction and diffusion models are mentioned in [Grasser et al. 2010]. The
study of recovery of the degradation after stress show a recoverable and a permanent part. Also
recovery starts immediately after stress release and can continue up to weeks. This is inconsis-
tent to a pure diffusion process. The time dependent defect spectroscopy led to new insights
into the mechanism behind NBTI.

1.2.3 Two-Stage Switching Trap Model

A two-stage model for NBTI was presented by [Grasser et al. 2009a]. In stage one during stress
holes can be trapped and oxide trap centers are created. Poorly recoverable defects are involved
in stage two. A recoverable process based on the HDL model for switching oxide traps [Lelis
and Oldman 1994] and a permanent part with involved hydrogen passivated interface dangling
bonds is illustrated in Figure 1.3. Starting with a neutral precursor in state 1 a hole capture

1

3

2

Silicon

Hydrogen

Oxygen

Structural Relaxation
Hole Capture and

Hole EmissionHole Capture

Full Recovery
Structural Relaxation

Precursors
Neutral Defects Positive E’

Neutral Defects

4

Fixed Positive Charge

Hydrogen Transition

Interface State

Recoverable Charge Trapping Permanent Degradation
Stage TwoStage One

Switching Trap

++

+

Figure 1.3: The two-stage model
based on the HDL hole trap
model for the recovery charge
trapping and the link to inter-
face states as permanent degra-
dation [Grasser et al. 2009a].

and relaxation process leads to a trap center, most likely an E′ center. Now two scenarios are
possible. Either a reaction with a hydrogen atom from the passivated interface silicon Pb/H
complex is possible, resulting in model state 4. Annealing of the E’ center is only possible from
state 2. A hole emission process puts the system in state 3 where after structural relaxation a
complete recovery from the stress is obtained.
The transitions between the four states are described with rate equations by

∂ f1

∂t
= − f1k12 + f3k31,

∂ f2

∂t
= + f1k12 − f2k23 + f3k32 − f2k24 + f4k42,

∂ f3

∂t
= + f2k23 − f3k32 − f3k31,

∂ f4

∂t
= + f2k24 − f4k42,

(1.12)

with fi the probability of being in state i and the transition rates from state i to state j given by
kij. The four probabilities must fulfill

f1 + f2 + f3 + f4 = 0 (1.13)
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For a more detailed information on the two-stage switching trap model, especially the parame-
ters and formulas related to the transition rates kij, see [Grasser et al. 2009a].

1.3 Time Dependent Defect Spectroscopy

To obtain measurement results for NBTI studies appropriate measurement setups are necessary.
The main requirement for all methods is a very short delay between the stress and measuring
operation. At this time three fast measurement methods are used [Reisinger et al. 2007b]:

• On the fly measurements do not interrupt stress during relaxation measurement. The elec-
trical parameters are determined at or very close to the stress level.

• Interrupting stress and measuring the threshold voltage VT is done at the fast VT method.
With achieved measurement delays of about 0.5µs the threshold voltage is recorded versus
the recovery time.

• Another method is measuring of the drain current ID at a gate voltage very near the thresh-
old voltage. The measurement delay at the fast ID method is determined by rise and fall
times of the voltage sources, and this time nearly 1ms.

At the time dependent defect spectroscopy a measurement setup for fast VT measurements is
used. After presenting the measurement setup results and evaluation of the time dependent
defect spectroscopy are discussed.

1.3.1 Measurement Setup

The measurement setup for the time dependent defect spectroscopy, a fast, method for measure-
ment of relaxation after stress is presented in [Reisinger et al. 2007a]. The goal is to measure the
threshold voltage as fast as possible at the desired operating condition. In order to obtain results
undistorted by recovery a very short delay between the stress and measure phase is necessary.
The experimental setup is divided into the stress and the acquisition part illustrated in Figure 1.4.
First, with the switches in position stress, a voltage is applied to the gate of the MOSFET under

Figure 1.4: Experimental setup for
the fast VT method: In position ’m’
the drain current equals V0/R0. If
this value is set to a constant value,
for example V0/R0 = 70nA · W/L,
the gate voltage is about the thresh-
old voltage for this single device. In
switch position ’s’ the stress voltage
VS is applied to the gate [Reisinger
et al. 2007a].

test. For p-MOSFETS the drain contact is held at ground potential. For NBTI measurements
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the drain-source voltage is defined to be nearly zero VDS ≈ 0. After the stress time elapsed the
switch position is put into the measure state, thereby closing a feedback loop built around an
operational amplifier. This circuit establishes a VGS such that a preset ID is flowing. A current
difference between the drain current ID and a set-point current is zeroed by the operational am-
plifier. An appropriate gate-source voltage VGS is therefore applied by the operational amplifier.
The gate-source voltage VGS controlled by the operational amplifier is then recorded, and any
changes to it are attributed to a change in the threshold voltage VT. The great advantage of this
method is that VT is ready to be monitored after the feedback loop setup time, which is about
0.5µs. So very fast events can be observed.

1.3.2 Evaluation of Measurement Data

Typically NBTI studies are made on large-area devices. An ensemble of defects are observed
simultaneously. The time dependent defect spectroscopy [Grasser et al. 2010] uses small-area
devices, so individual defects constituting the microscopic behavior are observed. In order to
gain sufficient statistics, several stress and relaxation measurements of the device are taken, for
example 100 measurements at one device.
The idea of the time dependent defect spectroscopy is very similar to the deep level transient
spectroscopy [Lang 1974]. It is widely used to detect so called deep traps in the band gap.
For the time dependent defect spectroscopy several stress and recovery processes with the same
device have to be performed. Relaxation of the stress devices in a step-like manner leads to a
characteristic step amplitude associated which individual defects. The statistical analysis eval-
uates step heights d and emission times τe, time elapsed since stress released, of each step in
measurement data. An example for a voltage recovery trace is shown in Figure 1.5. These pairs
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Figure 1.5: Two typical threshold voltage
recovery signals of a previously stressed p-
MOSFET. The thin blacks lines in the top
figure are the measurement data. The thick
blue and red lines mark the extracted step
height and emission times [Grasser et al.
2010].

(τe, d) are processed into 2D-histograms called spectral maps. Typical spectral maps are shown
in Figure 1.6 for different stress times tS. Each emission of a particular defect form a cluster in
the spectral map. The positions of the clusters in the spectral maps do not change with stress
time, while step heights show slight variations. For increasing temperatures the same clusters
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(a) (b)

Figure 1.6: Spectral maps as a result of step height and emission time extraction from time dependent
defect spectroscopy measurements at (a) stress time tS = 1ms and (b) stress time tS = 10s. With increasing
stress time the number of defects increase [Grasser et al. 2010].

are obtained but at shorter emission times. So the underlying process is thermally activated
[Grasser et al. 2010].
With the time dependent defect spectroscopy measurement data the recoverable degradation of
the devices are studied, cf. Figure 1.3. The analysis of the permanent degradation is done by
comparing the threshold voltage before the device is stressed and after the relaxation duration.
The main part of this thesis deals with the detection of change points in time dependent defect
spectroscopy measurement data. Detected step heights and times are extracted to create spectral
maps. Three methods for step detection are presented in the next chapters.



CHAPTER 2

WAVELETS AND CHANGE POINT

ANALYSIS

Signal transformation in a mathematical manner is an approximation of a signal by special-
ized functions. In the case of the Fourier transform sinusoidal functions are used. The wavelet
transform is an approximation with basis functions called wavelets. Since the introduction of
Daubechies Wavelets [Daubechies 2006] the importance of the wavelet transform rapidly in-
creased. Its biggest application fields are signal processing and picture compression.
The use of wavelets for change point detection is presented now. After that an overview of signal
approximation is given using the continuous wavelet transform and the discrete wavelet trans-
form. A computer based method for calculating the transform coefficients is the multiresolution
analysis which leads to the fast wavelet transform. A very redundant type of transformation,
of high interest with signal denoising, is the stationary discrete wavelet transform also in the
literature often called redundant discrete wavelet transform.
Finally the change point detection algorithm, with the possibilities to configure the change point
detection sensitivity, and the results are presented.

2.1 Continuous Wavelet Transform

The frequency composition of a time signal r(t) is obtained by the Fourier transform [Moon and
Stirling 2000]

F{r(t)} = R(jω) =
∫ ∞

−∞
r(t)e−jωtdt. (2.1)

From its spectrum R(jω) it is very difficult to infer time localization of the signal. One method
is to use a windowed version of the Fourier transform called the short time Fourier transform
[Smith 2008]

F{r(t), t0} =
∫ ∞

−∞
r(t)g(t − t0)e−jωtdt. (2.2)

Instead of calculating the complete transform the time signal is split into sections by a window
function g(t), e.g. a Gaussian curve for the Gabor transformation [Feichtinger and Strohmer
1998].
A time frequency description, called the analysis of r(t), is obtained by the continuous wavelet
transform [Blatter 1998]

Wψa,b{r(t)} = 〈r(t), ψa,b(t)〉 = |a|−1/2
∫ ∞

−∞
r(t)ψ∗

(
t − b

a

)
dt, (2.3)

9
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with the wavelet function ψa,b(t) and the inner product of the L2(R) space defined by

〈 f (t), g(t)〉 =
∫ ∞

−∞
f (t)g∗(t)dt. (2.4)

The synthesis, or inverse continuous wavelet transform, is a linear superposition of the wavelet
functions

r(t) =
∫ ∞

0

∫ ∞

−∞

1
a2Wψa,b{r(t)}ψa,b(t)dbda. (2.5)

So the wavelet transform is a function of the parameters (a, b) ∈ R+×R with Wψa,b{r(t)} : R+×
R −→ C. The function

ψa,b(t) = |a|−1/2ψ

(
t − b

a

)
, (2.6)

a scaled and shifted version of a mother wavelet ψ(t), is called wavelet. Its time localization
can be moved by the choice of b. So ψa,b(t) is centered around t = b analogues to the window
function in the context with the short time Fourier transform. The main difference is that the
wavelet transform is better suited for short time signals, for example transients, than the Fourier
transform.
Also very important is that in (2.3) the wavelet is not restricted to a specific one. The theory of
wavelet transform deals with the properties of the wavelets. Based on these properties specific
wavelets can be created.
All wavelets ψ(t) ∈ L2(R) fulfill the admissibility condition [Blatter 1998]∫ ∞

−∞

|Ψ(ω)|2
|ω| dω < ∞ (2.7)

for their spectrum Ψ(ω). This condition is necessary to reconstruct the signal without loss of
information. Property (2.7) implies that the Fourier transform of wavelets vanish at zero fre-
quency, cf. the wavelet function illustrated in Figure 2.1,

|Ψ(ω)|2ω=0 = 0, (2.8)

which equals zero mean in the time domain∫ ∞

−∞
ψ(t)dt = 0. (2.9)

To have zero mean a function has to be less than zero and greater than zero at different time
instances like the portrait of a wave. The continuous wavelet transform discussed so far has still
properties that make it unpractical to use:

1. The calculation of the coefficients with the integral formula and the use of a scaled and
shifted function deliver high redundancy in the calculated coefficients. This is not re-
quested for many applications.

2. The number of possible wavelets is uncountable because of (a, b) ∈ R+ × R. A finite
number of wavelet functions is preferred.

3. For most wavelets there is no analytical solution of the wavelet transform integral. It has
to be solved numerically which is slow.

To handle these requirements the discrete wavelet transform is introduced next.
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Figure 2.1: Daubechies wavelet m = 12 (a) scaling and wavelet function(left) and (b) their spectrum
normed to max(|Φ(jω)|) = 1) and max(|Ψ(jω)|) = 1).

2.2 Discretization of the Wavelet Transform

The discrete wavelet transform restricts the parameters (a, b) to discrete values only. Setting the
scaling parameter [Blatter 1998] to

aj := αj with α > 1 (2.10)

and the shift parameter to
bj,k := kajβ with β > 0 (2.11)

leads to a countable set
{(aj, bj,k)| j, k ∈ Z}. (2.12)

From the full set of wavelet functions ψa,b(t) only the ones belonging to the discrete points
(aj, bj,k) are then taken into account. Therefore the discrete wavelet functions

ψj,k(t) = α−j/2ψ(α−jt − kβ) (2.13)

are obtained. Popular choices [Blatter 1998] are α = 2 and β = 1. The so obtained set of wavelets,
which is used from now on, is given by

ψj,k(t) = 2−j/2ψ(2−jt − k). (2.14)

Using the L2 norm

‖ f (t)‖2 =

√∫
| f (t)|2dt (2.15)

the wavelet energy lies between two bounds [Daubechies 2006]

A‖r(t)‖2
2 ≤ ∑

j,k
|〈r(t), ψj,k(t)〉|2 ≤ B‖r(t)‖2

2 (2.16)

with the signal energy ‖r(t)‖2
2 and the energy of the transform coefficients. For stable recon-

struction A > 0, B < ∞ and A,B independent of r(t) is necessary. In the case of A = B discrete
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wavelets behave like an orthonormal basis. If A 6= B the reconstruction is still possible but there
are two different wavelet functions for decomposition and reconstruction.
The optimal choice for wavelet functions is to make them orthonormal

〈ψj,k(t), ψm,n(t)〉 = δj−mδk−n, (2.17)

where δk denotes the Kronecker delta.
The coefficients of the discrete transform are given by

c(j)[k] = 〈r(t), ψj,k(t)〉 (2.18)

with the inverse discrete wavelet transform as linear superposition of the corresponding wavelet
functions

r(t) = ∑
j,k

c(j)[k]ψj,k(t). (2.19)

On the way to generate a computer based algorithm for calculating the wavelet transform co-
efficients the multiresolution analysis is the basis for the fast wavelet transform and handled
next.

2.3 Multiresolution Analysis

A multiresolution analysis [Vetterli and Kovačević 1995, Moon and Stirling 2000, Blatter 1998]
consists of a sequence of subspaces in the space of all square integral able functions L2(R)

{0} ⊂ . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . . ⊂ L2(R) (2.20)

and satisfies several properties. First, the union of all these nested subspaces is the L2(R) itself⋃
j∈Z

Vj = L2(R), (2.21)

and their intersection is the zero space ⋂
j∈Z

Vj = {0}. (2.22)

The multiresolutional part is a consequence of

r(t) ∈ Vj ⇔ r(2jt) ∈ V0. (2.23)

Also necessary is the shift invariance

r(t) ∈ Vj ⇔ r(t − n) ∈ Vj for all n ∈ Z. (2.24)

The final condition is that a function φ(t) ∈ V0 exists in such a way that all integer shifts build
an orthogonal basis for V0

V0 = span{φ(t − n); n ∈ Z}. (2.25)

With the definition of a scaled and shifted version of a function φ(t)

φj,k(t) = 2−j/2φ(2−jt − k) (2.26)
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for φj,k(t) ∈ L2(R) a basis for a subspace Vj is given by

Vj = span{φj,k(t), k ∈ Z} = span{2−j/2φ(2−jt − k), k ∈ Z}. (2.27)

The function φ(t) is called scaling function or father wavelet. In order to build an orthonormal
basis the scaling functions must fulfill the shift orthogonality property

〈φ(t), φ(t − k)〉 = δk. (2.28)

Another wavelet basis can be constructed by extending the space at resolution 2j in a way that
the space at resolution 2j−1 is build. This wavelet builds the basis for another subspace Wj, the
projection of the complement of Vj in Vj−1. That means

Vj−1 = Vj ∪ Wj (2.29)

where Wj is the orthogonal complement of Vj

Vj = W⊥
j . (2.30)

The space Wj is spanned by functions ψj,k(t) defined by

ψj,k(t) = 2−j/2ψ(2−jt − k). (2.31)

The function ψ(t) is called mother wavelet or short wavelet. A summarized relationship be-
tween these subspaces is shown in Figure 2.2.

Figure 2.2: Relationship between nested sub-
spaces Vj and their orthogonal complement Wj

Because of finer approximation steps resulting from V0 ⊂ V−1 the scaling function φ(t) ∈ V0 can
be expressed by linear combination of φ−1,k(t) ∈ V−1 together with (2.26) as

φ(t) = ∑
k

l[k]φ−1,k(t) =
√

2 ∑
k

l[k]φ(2t − k). (2.32)

This is the most important equation in context with the scaling function. Since W0 is also a subset
of V−1 there is a linear combination of φ−1,k(t) ∈ V−1 for the wavelet function ψ(t) ∈ W0 too.
With (2.31) the linear combination is

ψ(t) = ∑
k

h[k]φj−1,k(t). (2.33)



14 CHAPTER 2 WAVELETS AND CHANGE POINT ANALYSIS

Because of the orthogonality of φ(t) and ψ(t) the coefficient vectors l and h must also be orthog-
onal

〈l, h〉 = hHl = 0, (2.34)

from which
h[n] = (−1)nl∗[N − n] (2.35)

with the vector length N follows [Moon and Stirling 2000]. The second scale equation for wavelet
functions is then obtained by

ψ(t) = ∑
k
(−1)kl∗[N − k]φ(2t − k). (2.36)

Based on the multiresolution analysis the fast wavelet transform is constructed now.

2.4 Fast Wavelet Transform

As shown in the multiresolution analysis Vj = Vj+1 ∪Wj+1. A time signal r(t) is expressed using
the basis functions of each subspace by

r(t) = ∑
k

a0[k]φj,k(t)

= ∑
k

a1[k]φj+1,k(t) + ∑
k

d1[k]ψj+1,k(t)
(2.37)

with a0, a1 and d1 the transform coefficients. Starting from a0 the coefficients a1 and d1 can be
produced. This step is called analysis. The synthesis starts with a1 and d1 and produces a0.
The coefficients can be calculated by use of the inner product

a1[n] = 〈r(t), φj+1,n(t)〉

=

〈
∑

k
a0[k]φj,k(t), φj+1,n(t)

〉
= ∑

k
a0[k]〈φj,k(t), φj+1,n(t)〉.

(2.38)

The inner product of scaling functions [Moon and Stirling 2000] is

〈φj,k(t), φj+1,n(t)〉 = h0[k − 2n]. (2.39)

For the coefficients
a1[n] = ∑

k
h0[k − 2n]a0[k] (2.40)

is obtained. The detailed coefficients calculation is very similar

d1[n] = 〈r(t), ψj+1,n(t)〉

=

〈
∑

k
a0[k]φj,k(t), ψj+1,n(t)

〉
= ∑

k
a0[k]〈φj,k(t), ψj+1,n(t)〉

(2.41)
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with the inner product

〈φj,k(t), ψj+1,n(t)〉 = h1[k − 2n]. (2.42)

So the detailed coefficients be

d1[n] = ∑
k

h1[k − 2n]a0[k]. (2.43)

Equations (2.40) and (2.43) are very similar to the convolution sum

( f ∗ g)[n] = ∑
k

f [n − k]g[k]. (2.44)

Downsampling of discrete signals is done by taking each m-th value of r. So downsampling by
m = 2 can be interpreted as system with input r[n] and output y = r[2n] as shown in Figure 2.3.

Figure 2.3: Schematic of downsampling by 2

To emphasize the relationship between the coefficients formula (2.40) and the convolution sum
the formula (2.40) can be reformulated to

a1[n] = ∑
k

h0[k − 2n]a0[k]

= ∑
k

h0[−(2n − k)]a0[k]

= (ĥ0 ∗ a0)[2n]

(2.45)

with ĥ0[n] = h0[−n]. Downsampling the convolution result from (2.45) results in transform
coefficients a1[n]. The same reformulation for (2.43) is

d1[n] = (ĥ1 ∗ a0)[2n] (2.46)

with ĥ1[n] = h1[−n]. The calculation of the detailed transform coefficients a1[n] can be described
by convolution of initial coefficients a1[n] with a filter h1[−n] and a following downsampling
operation. A single transform filter bank containing the convolution and downsampling in il-
lustrated in Figure 2.4.

Figure 2.4: Single fast wavelet transform filter bank
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The inverse fast wavelet transform follows from

a0[n] = 〈r(t), φj,n(t)〉

=

〈
∑

k
a1[k]φj+1,k(t) + ∑

k
d1[k]ψj+1,k(t), φj,n(t)

〉
= ∑

k
a1[k]〈φj+1,k(t), φj,n(t)〉+ ∑

k
d1[k]〈ψj+1,k(t), φj,n(t)〉

= ∑
k

a1[k]h0[n − 2k] + ∑
k

d1[k]h1[n − 2k].

(2.47)

Upsampling of a discrete time signal consists of inserting zeros between the values

y[n] =

{
r[n/2] for even n

0 else
. (2.48)

The combination of (2.47), the upsampled versions of the transform coefficients ã1[n] = a1[2n]
and d̃1[n] = d1[2n] and the substitution of l = 2k is

a0[n] = ∑
k

h0[n − 2k]a1[k] + ∑
k

h1[n − 2k]d1[k]

= ∑
l

h0[n − l]ã1[l] + ∑
l

h1[n − l]d̃1[l]

= (h0 ∗ ã1)[n] + (h1 ∗ d̃1)[n]

. (2.49)

In (2.49) the time-forwarded filters h0[n] and h1[n] opposed to the analysis case are used. A
single inverse filter bank, called the synthesis filter bank, is given in Figure 2.5.

Figure 2.5: Single inverse fast wavelet transform filter bank

Further approximations steps in (2.37) lead, because of the subspaces nesting property, to

r(t) = ∑
k

a0[k]φj,k(t)

= ∑
k

a1[k]φj+1,k(t) + ∑
k

d1[k]ψj+1,k(t)

= ∑
k

a2[k]φj+2,k(t) + ∑
k

d2[k]ψj+2,k(t) + ∑
k

d1[k]ψj+1,k(t)

(2.50)

which can be continued. Finally it leads to the fast wavelet transform analysis filter banks for
the desired order, cf. Figure 2.6 for an analysis filter bank of level 3. For signal reconstruction
the synthesis filter bank for level 3 is shown in Figure 2.7.



2.5 STATIONARY WAVELET TRANSFORM 17

Figure 2.6: Fast wavelet transform analysis filter bank of level 3

Figure 2.7: Fast wavelet transform synthesis filter bank of level 3

2.5 Stationary Wavelet Transform

The stationary discrete wavelet transform was initially developed by [Holschneider et al. 1989]
as discrete approximation of the continuous wavelet transform. Other formulations [Shensa
1992] show that the discrete wavelet transform without downsampling has an overcomplete
representation with shift invariance. In contrast, the shift variance of the discrete wavelet trans-
form arises from downsampling. As a result, the transform coefficient vector of each scale is
exactly the same length as the input signal.
The schematic of the stationary discrete wavelet transform analysis and synthesis of level 3 is
illustrated in Figure 2.8.

Figure 2.8: Stationary discrete wavelet transform analysis and synthesis filter bank level 3

The stationary discrete wavelet transform is not of interest for many applications because it
results in highly redundant data, except for signal denoising. The most important wavelets are
presented in the next section followed by the wavelet signal denoising technique.
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2.6 Important Wavelets

Several wavelets have been designed so far. The most important are the Haar [Haar 1911], mex-
ican hat, Morlet [Goupillaud et al. 1984], Meyer and the Daubechies [Daubechies 2006] wavelet.
Of interest to us are the Haar and Daubechies wavelets.
The scaling function of the Haar wavelet is defined by

φ(t) =

{
1 0 ≤ t < 1

0 elsewhere
(2.51)

and its mother wavelet function by

ψ(t) =


1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 elsewhere

(2.52)

as illustrated in Figure 2.9. The filter coefficients for discrete wavelet transform calculation with
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Figure 2.9: The Haar wavelets (a) scaling function φ(t) and (b) wavelet function ψ(t)

filter bank structure from Figure 2.4 are

h0 =

√
2

2
[1, 1]

h1 =

√
2

2
[1,−1]

(2.53)

The Daubechies wavelets are chosen to have the highest number m of vanishing moments∫ ∞

−∞
tmψ(t)dt = 0. (2.54)

For data evaluation the Daubechies wavelet with m = 10 is used, shown in Figure 2.10. The
filter coefficients for the implementation of the fast wavelet transform and inverse fast wavelet
transform filter banks, cf. Figure 2.4 and Figure 2.5, can be found in MATLAB.
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Figure 2.10: Scaling and wavelet function of Daubechies wavelet with m = 10

2.7 Signal Denoising

Several techniques are provided for signal denoising using the wavelet transform. A process
overview is given in Figure 2.11. After applying the wavelet transform of J-th level the denoising

Figure 2.11: Process flow of signal denoising using the wavelet transform and thresholding techniques

threshold is calculated. Therefore four methods of threshold estimation are of interest.

1. The Bayes shrink threshold estimation [Chang et al. 2000] based on the observation model

y = x + v (2.55)

where y is the vector of wavelet transform coefficients of the observations, x the wavelet
transform vector of the original signal and v the wavelet transform vector of the noise.
Since x and v are independent from each other their variances fulfill

σ2
y = σ2

x + σ2. (2.56)

The observations wavelet transform variance can be easily found by

σ2
y =

1
N ∑

k
(yk − µy)

2 (2.57)
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with µy the mean value of y. The noise standard deviation σ is estimated by the robust
median estimator [Elyasi and Zarmehi 2009]

σ =
median|yH |

0.6745
(2.58)

with yH the highest scale detailed transform coefficients. The Bayes shrink threshold is
calculated by

TBS =
σ2

σx
(2.59)

where
σx =

√
max(σ2

y − σ2, 0). (2.60)

In case of σ2
y < σ2, the threshold TBS is going towards infinity. In practice TB = max|y| is

then taken and so all transform coefficients are set to zero.

2. The modified Bayes shrink [Elyasi and Zarmehi 2009] removes noise better than the BS
method. Instead of one common threshold value the MBS threshold is different for each
scale. It is calculated by

TMBS =
βσ2

v
σx

(2.61)

with

β =

√
log N

2j
(2.62)

where N denotes the complete number of wavelet transform coefficients and j is the de-
composition level of the current scale.

3. The universal threshold [Rangarajan et al. 2002] is defined by

TU = σ
√

2lnN (2.63)

with N the number of wavelet coefficients of each and σ the standard deviation of the
detailed coefficients from first scale.

4. Histogram threshold estimation deals with creating a histogram from wavelet transform
coefficients HC(x) separately for each scale. The threshold TH is then obtained by∫ TH

−∞
HC(x)dx = ε (2.64)

with ε ∈ [0, 1] the sensitivity parameter. A good choice is ε = 0.95. For this estimation the
histogram has to be normalized ∫ ∞

−∞
H(x)dx = 1. (2.65)

One of the estimated thresholds is now used to process the transform coefficients. The first
method is the hard threshold the hard threshold, shown in Figure 2.12a applied on the function
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Figure 2.12: Result of (a) hard thresholding and (b) soft thresholding of the signal y = x for threshold
T = 0.4

y = x with threshold T = 0.4. The second method is the soft threshold, illustrated in Fig-
ure 2.12b. Either the hard- or soft thresholding is applied on the wavelet transform coefficients.
The so called hard thresholding for the coefficient c and threshold T is defined by

ηhard
T (c) =

{
c for |c| > T

0 otherwise
. (2.66)

The soft thresholding is given by

ηsoft
T (c) =

{
sign(c)(|c| − T) for |c| > T

0 otherwise
. (2.67)

After discussing the theoretical approach the complete detection algorithm and the results are
presented in the following.

2.8 Detection Algorithm

The detection algorithm is split into two parts. First a smoothed version of the sampled signal
is obtained by signal denoising with wavelet threshold technique, cf. Figure 2.11, followed by
application of the designed filter as illustrated in Figure 2.13. The available parameters for the

Figure 2.13: Schematic of complete wavelet change point detection algorithm

smoothing operation depicted in Figure 2.13 are:



22 CHAPTER 2 WAVELETS AND CHANGE POINT ANALYSIS

• Wavelet type: Select the mother wavelet function for the smoothing process, e.g. the Haar
or the Daubechies wavelet.

• Wavelet transform level: Set the number of the highest wavelet transform level. The pre-
ferred choice is J = 3.

• Threshold type: Both hard and soft thresholding are implemented.

• Threshold estimation: One of four threshold estimation processes, from Section 2.7, is se-
lected.

The finally applied filter process is divided into following sequential steps:

1. Calculate the first derivative of the smoothed signal.

2. Detect the time instances where the signals first derivative changes the sign.

3. The highest changes of the original signal, between the time instances where the first
derivative changes the sign, are identified as change points.

4. The data points between two change points are arithmetical averaged.

5. Iteratively remove estimated change points with step size smaller a desired filter threshold
TR(κ) and apply a median filter with window width w = 5 to remove single peaks. The
filter threshold is set by

TR(κ) = κ
median|ri|

0.6745
(2.68)

with a filtering parameter κ. Setting κ = 0 disables the filter.

2.9 Evaluation of Change Point Detection

First results of the wavelet denoising technique is shown in Figure 2.14 1. The wavelet coef-
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Figure 2.14: Wavelet change point detection with stationary discrete wavelet transform, Haar wavelet,
transform level J = 3, modified Bayes shrink threshold estimation, soft thresholding and with κ = 0.8

1The definition of the signal to noise ratio and the mean square error used to emphasize the denoising quality is
given in Section A.4.
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ficients for a level J = 3 stationary discrete wavelet transform are illustrated in Figure 2.15.
Detailed coefficients are d1[i], d2[i] and d3[i]. They are relative small values and describe the fast
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Figure 2.15: Stationary wavelet transform coefficients for the signal at Figure 2.14 and soft thresholding
with modified Bayes shrink threshold estimation

behavior of the signal. Slow events are found in coefficients a3[i]. The threshold is estimated
by modified Bayes shrink and applied by soft thresholding to the detailed wavelet transform
coefficients.
A comparison of denoising with the stationary discrete wavelet transform with different thresh-
old estimates and thresholding techniques is summarized in Table 2.1 for the signal of Fig-
ure 2.14.
Similar results are shown with the Bayes shrink and modified Bayes shrink threshold estima-
tion in combination with soft and hard thresholding. Both have higher denoising efficiency than
universal threshold and histogram threshold estimation. It must be noted that for histogram
threshold estimation there is one degree of freedom. For the evaluation in Table 2.1 the sensi-
tivity parameter ε = 0.95 is selected. Higher values of ε improve the denoising quality. So this
method can be adjusted to a given signal. Moreover there is hardly a difference between hard
and soft thresholding the transform coefficients.
The study of histogram threshold estimation is done in Table 2.2 with the stationary discrete
wavelet transform and soft thresholding. For higher values of ε smoother versions of the original
signals are obtained.
Remaining is the comparison of denoising with the stationary discrete wavelet transform and the
discrete wavelet transform. An evaluation of the discrete wavelet transform and thresholding is
given in Table 2.3. A comparison with Table 2.1 shows very similar results. The advantage of the
discrete wavelet transform is that the number of the transform coefficients is halved after each
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soft threshold hard threshold

BS MBS UT HT BS MBS UT HT

SNR 85.48 85.48 89.05 91.04 86.36 85.48 90.03 94.70
Haar

MSE -30.55 -30.55 -34.11 -36.10 -31.43 -30.55 -35.10 -39.77

SNR 85.66 85.64 87.40 90.31 87.33 85.64 89.40 92.96
DB5

MSE -30.73 -30.70 -32.47 -35.38 -32.40 -30.70 -34.47 -38.02

SNR 85.57 85.57 86.89 89.93 86.14 85.57 89.15 92.55
DB10

MSE -30.64 -30.64 -31.96 -35.00 -31.20 -30.64 -34.22 -37.62

SNR 85.54 85.54 86.84 89.57 86.07 85.54 88.64 92.01
DB15

MSE -30.60 -30.60 -31.70 -34.64 -31.14 -30.60 -33.71 -37.08

SNR 85.61 85.58 86.49 89.24 86.53 85.92 88.13 91.69
DB20

MSE -30.68 -30.64 -31.55 -34.31 -31.60 -30.99 -33.20 -36.75

Table 2.1: SNR (dB) and MSE (dB) overview of signal denoising for test signal from Figure 2.14 with
stationary discrete wavelet transform; histogram threshold (HT) estimation with γ = 0.95

Haar DB5 DB10 DB15 DB20

SNR 92.07 91.02 90.65 90.32 90.14
ε = 0.92

MSE -37.13 -36.08 -35.71 -35.39 -35.21

SNR 91.04 90.31 89.93 89.57 89.24
ε = 0.95

MSE -36.10 -35.38 -35.00 -34.64 -34.30

SNR 90.29 88.96 88.11 87.87 87.52
ε = 0.98

MSE -35.35 -33.96 -33.18 -32.94 -32.59

Table 2.2: Effects on denoising with histogram threshold estimation at different sensitivity parameters ε
for stationary discrete wavelet transform and soft thresholding

single transform step because of downsampling of the transform coefficients, cf. Figure 2.4. So
there are less coefficients than at the stationary discrete wavelet transform for applying the soft
and hard threshold. The presented charge trap measurement signals have less than 103 samples.
In this case there is no difference in transformation time between the discrete and stationary
discrete wavelet transform.
All presented examples are transformed via the stationary discrete wavelet transform. Its ad-
vantage, often mentioned in the literature, is its shift invariance. This means that time shifted
version of the input signal r(t + T0) lead to exact the same coefficients as the original r(t) when
the stationary discrete wavelet transform is used. With the discrete wavelet transform different
transform coefficients are obtained in the two cases because downsampling by two at each scale.
An example of a detection process is shown in Figure 2.14. A comparison between original and
detection signal reveals an SNR = 88.32dB. The detection process is executed with the stationary
discrete wavelet transform with Haar wavelet and transform coefficients are filtered by modified
Bayes shrink threshold estimation and soft thresholding. Finally a filtering process with κ =

0.8 leads to the steps shown in the figure. A very high step at the begin is detected. Several
smaller changes occur later, which are very difficult to detect. Here a good choice of κ is highly
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soft threshold hard threshold

BS MBS VS HS BS MBS VS HS

SNR 89.00 88.86 89.38 90.17 89.48 89.31 90.22 91.85
Haar

MSE -34.07 -33.93 -34.44 -35.24 -34.55 -34.37 -35.28 -36.92

SNR 86.25 86.08 90.45 89.88 88.75 86.21 92.15 91.72
DB5

MSE -31.32 -31.14 -35.52 -34.95 -33.81 -31.27 -37.22 -36.79

SNR 86.97 86.35 90.19 89.60 88.75 87.62 92.16 91.43
DB10

MSE -32.04 -31.41 -35.25 -34.67 -33.82 -32.69 -37.23 -36.50

SNR 87.05 86.99 89.93 90.18 88.78 87.59 91.87 92.04
DB15

MSE -33.12 -32.05 -35.00 -35.25 -33.85 -32.66 -36.93 -37.11

SNR 86.69 86.65 90.15 88.36 87.75 86.76 92.05 90.32
DB20

MSE -31.76 -31.72 -35.22 -33.43 -32.82 -31.83 -37.12 -35.38

Table 2.3: SNR (dB) and MSE (dB) overview of signal denoising for test signal from Figure 2.14 with
discrete wavelet transform; histogram threshold (HT) estimation with γ = 0.95

important.
Another example of evaluation of a good quality measurement signal shows Figure 2.16. The
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Figure 2.16: Origin measurement and detection signal with stationary discrete wavelet transform, Haar
wavelet, transform level J = 3, modified Bayes threshold estimation, soft thresholding and final filtering
with κ = 0.8

evaluation of the original signal and the reconstructed step signal gives an SNR = 78.26dB. Now
the SNR is a little lower than with the signal of Figure 2.14. Here only two big changes occur
and the rest of the signal is treated as noise. As a consequence it is clear that for lower calculated
SNR the count of detected steps must decrease.
A very noisy signal is presented in Figure 2.17. With the choice κ = 0.8 the execution of the
algorithm on gives an SNR = 73.78dB. In this case the denoising is very effective. Nearly the
complete noise is removed and the peaks remain. Then the peaks can be detected very easily. On
such signals the wavelet-denoising-based detection method shows very good results and works
quite fast.
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Figure 2.17: Noisy signal change point detection with stationary discrete wavelet transform, Haar
wavelet, transform level J = 3, modified Bayes shrink estimation, soft thresholding and final filtering
with κ = 0.8



CHAPTER 3

HISTOGRAM-BASED CHANGE POINT

DETECTION

One of the simplest but still very effective method to analyze statistical parameters are his-
tograms. Since its introduction in [Pearson 1895] they have been used in many applications.
It is the classical tool for nonparametric density estimation and also of interest for change point
analysis.
First some basic properties of histograms are described. Then a smoothed form obtained by in-
serting interpolation points between observations is presented. As Gaussian distributed data is
assumed estimation of the parameters expectation and variance is discussed. Before the evalua-
tion, a method for non-uniformly sampled data histograms is given.

3.1 Introduction to Histograms

A histogram essentially is a function H(x) which counts values belonging to disjoint data inter-
vals called bins. The histogram is defined on an equally spaced mesh with bin width

h = xi+1 − xi (3.1)

and i ∈ N. In order to interpret H(x) as the probability for x ∈ [xi, xi+1] the histogram is
normalized to

∑
i
H(xi) = 1. (3.2)

For a multi-level signal with additive Gaussian noise the histogram is illustrated in Figure 3.1.
Very important is the choice of number of bins. With a given set of observations

r = [r1, r2, . . . , rN ] (3.3)

the number of bins calculates to

K = ceil
{

max r − min r
h

}
. (3.4)

There is no best choice, but several theoretical approaches to it. Since the density is usually
unknown, assumed Gaussian density leads to the choice

hn =
3.49σ

N1/3 (3.5)

with σ the observations standard deviation and N the observations vector length [Scott 1979].

27
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Figure 3.1: Example observations ri and their histogram for the Gaussian distributions N(5, 1), N(10, 0.5)
and N(15, 3) with the number of bins set to K = 265

3.2 Increase Histogram Quality with Interpolation

Histograms of short observation vectors are often of poor quality. So it is very difficult to es-
timate the density function of the observed data set. To increase quality it is useful to insert
data points by interpolation. After the discussion of the regression problem the increase quality
performance is demonstrated.

3.2.1 Formulation of the Approximation Problem

Assume a set of observations in vector notation

r = [r1, r2, . . . , rN ] . (3.6)

For the least square approximation in the Hilbert space [Moon and Stirling 2000] the l2 norm is
defined by

‖x‖2 =

(
N

∑
i=1

|xi|2
)1/2

(3.7)

and the inner product by
〈x, y〉 = yHx. (3.8)

The approximation problem is to find coefficients c1, c2, . . . , cm so that an estimation of r

r̂ = c1p1 + c2p2 + . . . + cmpm =
[
p1p2 . . . pm

]


c1

c2
...

cm

 (3.9)

with p1, p2, . . . , pm a set of linearly independent vectors has the minimum least square error
vector

‖e‖2
2 = ‖r − r̂‖2

2. (3.10)

In matrix notation
A = [p1, p2, . . . , pm], c = [c1, c2, . . . , cm]

T
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the problem can be written as
‖e‖2

2 = ‖r − Ac‖2
2. (3.11)

The minimum least square solution is obtained if the error vector e is orthogonal to all vectors
pi. Therefor all inner products have to be zero

〈r − r̂, pi〉 = 0, (3.12)

in matrix notation summarized by
〈r − Ac, A〉 = 0. (3.13)

Then the least square coefficients are

c =
(

AH A
)−1

AHr. (3.14)

To increase the importance of some data points for regression a weighted least square approxi-
mation [Moon and Stirling 2000] is used. It is implemented into the inner product, which leads
to the weighted inner product

〈x, y〉W = xHWy. (3.15)

with a diagonal weighting matrix W. So the least square solution is

c =
(

AHWA
)−1

AHWr. (3.16)

For given data points (xi, ri) a polynomial approximation of order m is given by

r̂i = cmxm
i + cm−1xm−1

i + . . . + c0. (3.17)

The approximation problem in detail is
r̂1

r̂2
...

r̂n

 =


cmxm

1 + cm−1xm−1
1 + . . . + c0

cmxm
2 + cm−1xm−1

2 + . . . + c0
...

cmxm
n + cm−1xm−1

n + . . . + c0

 (3.18)

Under introduction of

X =


xm

1 xm−1
1 . . . 1

xm
2 xm−1

2 . . . 1
...

...
. . .

...
xm

n xm−1
n . . . 1


the problem is reformulated to

r̂ = Xc (3.19)

with the solution

c =
(

XHX
)−1

XHr. (3.20)
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3.2.2 Effects of Interpolation

To show the effect of increasing observation points through interpolation, three methods are
mentioned. They are the

1. linear (order m = 1), the

2. quadratic (order m = 2) and the

3. polynomial (order m > 3) regression.

Since the problem of linear and quadratic regression is clear, the method of polynomial regres-
sion has to be discussed. A sliding data window with an odd window width w is used. The
mean value of the data window is given by

µw =
1
w

ie

∑
i=is

ri (3.21)

with is and ie, note that w = |is − ie|, the first and last index of the window data points respec-
tively. The polynomial regression distinguish between

m =



ris = µw and rie = µw 1
ris < µw and rie < µw even
ris > µw and rie > µw even
ris < µw and rie > µw odd
ris > µw and rie < µw odd

. (3.22)

The m + 1 polynom coefficients are determined and, with ic ∈ [is, ie] the index of the center data
point in the interval [rc, rc+1], the interpolated data is calculated and binned to the histogram.
An evaluation of histograms for different approximations is given in Figure 3.2. For the poly-
nomial regression the odd order m = 5 and the even order m = 4 is used. The polynomial
approximation window width is set to w = 5. For increasing order of the interpolation polynom
smoother histograms are obtained. Best results shows the polynomial regression.

3.3 Fitting Gauss Distributions to Peaks

In order to fit Gaussian distributions to the histogram peaks a combination of two techniques
is necessary. First the histogram baseline is estimated with a sensitive nonlinear iterative peak
(SNIP) clipping algorithm [Morhác̆ and Matous̆ek 2008, Morhác̆ 2009]. With an original his-
togram function H(xi) with N bins the baseline is evaluated by a second order filter with de-
creasing clipping window p = m, m − 1, . . . , 1. Assume

Nm(xi) = H(xi) for i ∈ [0, N − 1] (3.23)

is the input histogram at estimation step p = m. Applying the second order filter at iteration
step p

ap(xi) = Np(xi) bp(xi) =
Np(xi−p) +Np(xi+p)

2
(3.24)
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leads to

Np−1(xi) = min(ap(xi), bp(xi)). (3.25)

For one estimation step p the iteration of i ∈ [p, (N − 1)− p] is necessary. The maximal number
of fitting steps is set by

2m + 1 = w (3.26)

with w the number bins related to the widest peak of the histogram. The estimated baseline of
the histogram N0(xi) from Figure 3.1 is shown in Figure 3.3.

Figure 3.3: Baseline estimation and
elimination of histogram from Fig-
ure 3.2e
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Next, Gaussian distributions can be fitted to the peaks in the background-eliminated histogram
Λ(xi) = H(xi) − N0(xi). For this a convolution algorithm is used [Likar and Vidmar 2003,
Morhác̆ 2009]. The idea is to convolute the histogram two times with the first order derivative
of an unnormalized Gaussian function

g(x, µ, σ) = exp
(
− (x − µ)2

2σ2

)
, (3.27)

g′(x, µ, σ) =
dg(x, µ, σ)

dx
= − x − µ

σ2 exp
(
− (x − µ)2

2σ2

)
. (3.28)

The double convolution of the histogram shown in Figure 3.2e with the unnormalized Gaussian
derivative g′(x, µ, σ) results in Γ(xi) presented in Figure 3.4a. The better σ in the convolution
function g′(x, µ, σ) fits to the standard deviation of the peaks in the histogram, the more negative
the peaks of Γ(xi) get. To evaluate several standard deviations a scanning process is applied. By
reformulating Γ(xi) to

Γs(xi) = |min (Γ(xi), 0) | (3.29)

the result of a σ scan is illustrated in Figure 3.4b. Then the peak positions and their standard
deviations are estimated. The results of this method are the better the histogram peaks are
similar to Gaussian peaks.
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Figure 3.4: Histogram (a) convolution with first order Gaussian derivative with sigma = 0.216 and (b) σ
scan to evaluate standard deviations of other peaks for the histogram illustrated in Figure 3.2e

3.4 Weighted Histogram for Non-Uniformly Sampled Data

In case of non-uniformly sampled data the noise power in the signal can not be assumed to be
constant. Consider the Fourier transform

F [r(t)] = R(jω) =
∫ ∞

−∞
r(t)e−jωtdt (3.30)

for time continuous signals which transforms a time signal r(t) into the frequency domain with
its spectrum R(jω). Of interest is the scaling property of the Fourier transform. For a non zero
real number a the corresponding Fourier transform pair is

r(at) c s 1
|a|R

(
j
ω

a

)
. (3.31)

It is shown that the scaling factor |a| > 1 represents a time expansion and in the frequency
domain a compression. In contrast a time compression |a| < 1 leads to frequency expansion. So
fast operations result in a wide spectrum and vice versa.
Assuming white noise, with constant auto-correlation function, the Fourier transform scaling
property shows that fast-sampled signals contain more noise power that slower sampled ones.
In case of increasing sample time the signals noise power decreases. To handle this fact weighted
histograms are introduced.
Assume a set of observations ri sampled at non-equidistant time instances ti with i ∈ [0, N − 1].
The idea of a weighted histogram is instead of increasing a bins value by one, as it is done in
classical histograms, the value of the sample time Ti = ti − ti−1 is added to the bin related to
ri. Normalizing the histogram (3.2) leads to the probabilities that a value is contained in the
individual bin.
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Figure 3.5: Structural overview of histogram-based detection algorithm

3.5 Histogram Detection Algorithm

The structure of the detection process and its parameters are given in Figure 3.5. After an op-
tional denoising step based on the stationary discrete wavelet transform, cf. Chapter 2, a his-
togram is created from the input signal. The histogram generation parameters are:

• Weighted/non-weighted: Choose between weighted or non weighted histograms.

• Number of bins: Estimate the optimally number of bins or set the number manually.

• Regression: Set regression type and number of interpolated data-points between observa-
tions.

• Baseline estimation: The window-width for histogram baseline estimation can be set or the
default value w = 5 is used.

• Peak merge parameter: Define the minimum distance between two Gaussian distributions
estimated from the data set to be merged to one single distribution. Two Gaussian func-
tions are merged to a single one in case of |µn − µn+1| < ε.

Creating a histogram from the observations is followed by a Gaussian peak detection process
via convolution scans discussed previously. Histograms generated from time dependent defect
spectroscopy measurement data show a great number of peaks, most of them resulting from
quantization of the analog-to-digital converter. The great number of peaks demand merging of
Gaussian distributions with only a small difference in their means. The peak merging sensitivity
ε is either set by the user or estimated with the robust median estimator

ε =
median|ri|

0.6745
. (3.32)

So now all Gaussian distributions with |µn − µn+1| < ε are iteratively merged to a single Gaus-
sian peak before applying the smoothing on the data set. Finally the iterative filter of Section 2.8
is applied.

3.6 Evaluation of Histogram-Based Change Point Detection

The evaluation of time dependent defect spectroscopy measurement data with the presented
algorithm, cf. Figure 3.5, is now discussed1. First the results obtained without the wavelet
denoising technique from Chapter 2 are presented. Finally the effect of wavelet denoising on
measurement data is presented.

1The definition of the signal to noise ratio and the mean square error used to emphasize the denoising quality is
given in Section A.4.
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3.6.1 Simple Detection Algorithm

The way from observations to detected signal is discussed with the help of a typical set of time
dependent defect spectroscopy measurement data. An example for a successful step detection
is illustrated in Figure 3.6.
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Figure 3.6: Histogram change point detection with a weighted histogram, polynomial regression type
with 251 interpolation steps, baseline estimation window width w = 5, number of bins set to 100, κ = 0
and without denoising using the wavelet denoising technique
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Figure 3.7: Histogram for measurement data from Figure 3.6 and (a) Gaussian distributions fitted by a
convolution scan and (b) merged Gaussian distributions with ε estimated by the robust median estimator

First the data values are binned into a histogram shown in Figure 3.7a. Then with convolution
the highest peak is estimated. Several convolution processes have to be done to detect the vari-
ance σ2

H which fits the peak best. The smallest value of the convolution process obtained by
different variances gives the optimal choice of σH. Notice that the convolution is only executed
in the range of the highest peak in the histogram in order to make the algorithm fast. After a
first Gaussian distribution estimate a convolution scan of the hole histogram in the standard
deviation range 0.1σH ≤ σ ≤ 2σH is applied. The best results for the estimated Gaussian distri-
butions are then obtained from the convolution scan. The estimated Gaussian distributions from
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the convolution scan are illustrated in Figure 3.7a. Because of the quantization of the analog-to-
digital conversion many histogram peaks do not belong to step data. Therefore several Gaussian
distributions with |µn − µn+1| < ε are merged to a single one, cf. Figure 3.7b. Now the observa-
tions are mapped to the Gaussian distribution mean values by their probability. Finally all steps
are fitted to the original data values by building means over their flat level. The result from this
detection is given in Figure 3.6 which leads to SNR = 83.54dB. Another example is presented in
Figure 3.8 for an SNR = 72.49dB. This configuration is preferred with similar noisy signals.
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Figure 3.8: Detection of change points of a very noisy signal with a weighted histogram, polynomial
regression type with 251 interpolation steps, w = 5, K = 100, κ = 0.8 without wavelet denoising

3.6.2 Histogram Algorithm on Wavelet Denoised Signals

The effect of signal denoising on the detection method is discussed now and presented in Fig-
ure 3.9. There is only a small difference between the two obtained signals. In case of denoising
a better result is given in the heavily noisy part at the beginning of the signal. Summarized, the
denoising process is preferred for heavily noisy signals.
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Figure 3.9: Comparison of change point analysis of very noisy signal with and without using the wavelet
denoising technique before the histogram step detection algorithm is applied for the signal from Fig-
ure 2.17 and from Figure 3.8, the iterative filter is disabled, e.g. κ = 0



CHAPTER 4

BOOTSTRAP AND CUMULATIVE SUMS

FOR CHANGE POINT ANALYSIS

The next method for detecting change points is inspired by [Tayler 2000] and a combination
of cumulative sum statistics and bootstrapping. With an additional confidence parameter a
detection sensitivity can be set.
First an overview of the cumulative sums is given. The definition and their properties in case
of a change point is discussed. Then the bootstrap is presented and the first ideas leading to
bootstraps are reviewed. The application of these two techniques to time dependent defect spec-
troscopy measurements for change point concludes this chapter.

4.1 Cumulative Sum Statistics

The cumulative sum statistic has been introduced by [Page 1954]. Since then it has been used
in many applications to monitor process-mean shifts. When one specific amount of shift can be
assumed the cumulative sum chart can be optimally designed to alert when a change in signal
mean occurs.
The responsible model for mean shift detection with cumulative sum charts is given by

ri =

{
x0 + vi 0 ≤ i < iC

x1 + vi iC ≤ i < N
(4.1)

with the observations ri as sum of constant values x0 before the mean shift at i = iC and x1

after, and a random noise process vi. The point iC is called the change point. The goal of the
cumulative sum charts is to detect the mean shift as fast as possible.
The upper cumulative sum statistic is defined as

C+
i = max

(
0, C+

i−1 + ri − k
)

(4.2)

and the lower cumulative sum statistic is as

C−
i = max

(
0, C−

i−1 − ri + k
)

, (4.3)

where k represents the shift threshold value. A change point occurs when C+
i or C−

i reaches a
predefined control limit h > 0. In the case of a known mean shift

δ = |x0 − x1| (4.4)

37
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the optimal choice of the shift threshold is [Ryu et al. 2010]

k =
δ

2
. (4.5)

An example is given in Figure 4.1. The observations ri are given by

ri =

{
0 + vi for 0 ≤ i < 50

1 + vi for 50 ≤ i < 100
(4.6)

with vi Gaussian noise N (0, σ2), cf. Figure 4.1a. The test signal is prepared with an SNR = 40dB.
With (4.5) the optimal threshold value is k = 0.5. Some background on creating noisy signals
can be found in Appendix A.1.
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Figure 4.1: Example of (a) a noisy signal with SNR = 40dB and (b) cumulative sum statistics for a positive
mean shift

As presented in Figure 4.1b, observations below δ hold the positive cumulative sum nearly zero.
After a change in the mean above the detection threshold, C+ increases rapidly. So one can set
a control limit h to decide if a change in signal mean occurred or not. In contrast to C+ the
lower cumulative sum C− is design to detect negative mean shifts in the same way as C+ detects
positive ones. An evaluation of a negative mean shift test signal from Figure 4.2a is illustrated
in Figure 4.2b.
Both cumulative sum statistics C+ and C− differ in their detection ability of the mean shift di-
rection. C+ is used to detect positive mean shifts, while C− only leads to meaningful results in
case of negative mean shifts. A combination of both, necessary in the case of an unknown shift
direction, leads to the complete cumulative sum statistic defined as

Ci =
i

∑
j=0

(
rj − k

)
. (4.7)

In Figure 4.1b the complete cumulative sum C describes a turning point with negative second
derivative for a positive mean shift and a positive second derivative for negative mean shifts.
This results in extreme points of C when applied to signals with several positive and negative
mean shifts.
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Figure 4.2: Evaluation of (a) a noisy signal, with SNR = 40dB and with a negative mean shift, and (b)
their corresponding cumulative sums

In practice the mean shift is rarely known and the true shift is far away from δ, so the arbitrary
choice of k like leads to poor performance. So the estimation of occurring shifts is of high im-
portance to guarantee good performance of the cumulative sum statistic. Many techniques have
been developed to handle the problem of an unknown δ. An example is the implementation of
a weighting function w(δ), which leads to weighted cumulative sum charts [Yashchin 1989].

4.2 The Bootstrap — A Resampling Method

The resampling methods offer a way to solve problems in probability and statistics. In con-
trast to analytical formulation of problems the resampling methods analyze a statistical model
with techniques that are intuitive. The statistical properties are estimated with repeated random
sampling.
In statistics there are several methods of resampling. The most important are:

1. The Jacknife [Efron 1982] deals with estimation of statistical properties like means and vari-
ances by building subsets of observations.

2. The Bootstrap estimation of observation properties works by resampling with replacement.

3. The permutation test is a simple way to compute the sampling distribution for any test
statistic, under the strong null hypothesis that a set of genetic variants has absolutely no
effect on the outcome. More information on permutation test can be found in [Good 2000].

Assume a set of observations
r = (r1, r2, . . . , rN) ∼ F (4.8)

of independent and identically distributed samples from an unknown probability distribution
F.
The bootstrap was first introduced by [Efron 1979] with the goal to estimate the standard devi-
ation σ of F. At that time it was presented as a computer based method to estimate statistical
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properties of a data set. Its big advantage is that it is fully automatic and it does not matter how
complicated the mathematical model for the probability distribution F is.
A bootstrap sample is defined as a random sample r∗ of size N draw from r, denoted as

r∗ = (r∗1 , r∗2 , . . . , r∗N). (4.9)

The bootstrap data set r∗ consists of samples of r where some of them can occur twice or more
times in r∗. The procedure is called resampling of r with replacement.
With the bootstrap data set r∗ the bootstrap standard deviation can now be calculated as

σ∗ =

[
1
N

N

∑
i=1

(r∗i − µ∗)2

]1/2

(4.10)

with µ∗ the expectation of the bootstrap sample data set r∗ given by

µ∗ =
1
N

N

∑
i=1

r∗i . (4.11)

For each bootstrap sample r∗b the standard deviation σ∗
b is calculated. The estimation of the

standard deviation by bootstrap is then given by

σB =

[
1
B

B

∑
b=1

(σ∗
b − µB)

2

]1/2

(4.12)

with the expectation of standard deviations σ∗
b

µB =
1
B

B

∑
b=1

σ∗
b . (4.13)

The complete bootstrap estimation is implemented as Monte Carlo algorithm shown in Fig-
ure 4.3. Therefore the resampling process has to be done several times, for example B = 1000.

Figure 4.3: Schematics of bootstrap standard deviation estimate algorithm

By repeating the presented algorithm for infinite times, σB approaches σ, the standard deviation
of F,

lim
B→∞

σB = σ. (4.14)

The idea of bootstrap estimation can be extended to many other statistical properties, for exam-
ple the sample mean.
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But why use bootstraps if there are textbook formulas? Not all problems can be formulated in
an analytical way easily. For a first approach, if the statistical model is unknown bootstrap is an
easy way to access statistical properties.
A typical problem is presented in [Efron 1979]. A set of observations r from an unknown distri-
bution function F with unknown statistical properties ψ is given. The task is to find the problem-
identifying properties ψ∗. Note that ψ and ψ∗ represent all possible properties. The bootstrap
estimate is not only limited to means and deviations. For example it can also be used for linear
regression developed in [Efron and Tibshirani 1993].
With the Monte Carlo algorithm shown in Figure 4.3, estimation of different properties becomes
very easy. So the bootstrap offers a method to make statistical evaluations possible without
knowing any analytical model of the problem.

4.3 Bootstrap and Cumulative Sum Detection Algorithm

To detect a change point in data, a combination of the presented methods is necessary. The
schematic of the complete algorithm is shown in Figure 4.4.
Beginning with the observations r, bootstraps are created. Every bootstrap r∗b is now conditioned
in a cumulative sum chart with the shift threshold set to

k =
1
N

N

∑
i=1

r∗b,i, (4.15)

the mean of r∗b . After that, the difference of the cumulative sum statistics can be obtained by

γ∗
b = max C∗

b − min C∗
b . (4.16)

The so obtained cumulative sum amplitudes γ∗
b are binned into a histogram H(γ∗). The his-

togram is normalized to
∑
γ∗

H(γ∗) = 1. (4.17)

With the introduction of a confidence value ε ∈ [0, 1] the cumulative sum amplitudes reference
level γε is now determined such that

γε

∑
η=γ∗

min

H(η) = ε. (4.18)

The question if the observations r contain a change point is answered by comparing the differ-
ence of the original values cumulative sum chart γ and the estimate γb. When

γ ≤ γε (4.19)

a change point occurs at the position where |C|, the cumulative sum chart of the original values,
has its maximum value. Otherwise the observations r do not show a significant change in mean
for the desired confidence interval ε and the so estimated threshold γε.
The discussed procedure is able to detect one change point. If there is one change point in r the
vector of observations is split in two parts at the change point position to

r = [r1, r2] . (4.20)
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Figure 4.5: Structural overview of bootstrap and cumulative sum statistic change point detection algo-
rithm

Now the new vectors r1 and r2 are analyzed if they contain a change point and so on until all
change points are detected. The divide and conquer algorithm of change point detection of a
hole data set r can be summarized to:

1. Check if there is a change point in r.

2. If there is one split r into two vectors at the change point position, if not the process is
ready and continue with 4..

3. Resume with step 1 for r1 and r2.

4. Finally the observation vector r is of the form

r = [r1, r2, . . . , rP] (4.21)

with P the number of detected change points.

To create a step function out of r the means of the vectors r1, r2, . . . , rP are calculated. A new
vector s is created by appending the corresponding means µri the vectors Nri times,

s = [µr1 , . . . , µr1︸ ︷︷ ︸
Nr1

, µr2 , . . . , µr2︸ ︷︷ ︸
Nr2

, µr3 , . . . . . . , µrP−1 , µrP , . . . µrP︸ ︷︷ ︸
NrP

]. (4.22)

The detection process is given in Figure 4.5. After an optional denoising step, cf. Chapter 2, the
bootstrap and cumulative sum statistic algorithm is applied. The parameters for the bootstrap
and cumulative sum detection process are:

• Number of bootstraps: Set the number of bootstrap samples generated. A value B ≥ 103 is
preferred.

• Sensitivity parameters: The sensitivity parameter ε ∈ [0, 1] sets the decision level between
change point and no change point.

Finally an application specified filtering process designed in Section 2.8 is applied.
It must be noted that the detection result is not always exactly the same because of the random
process of resampling. For the results to be repeatable the number of bootstraps should at least
be B ≥ 103. For small data sets or enough time for analysis values of B = 104 or B = 105 should
be preferred.
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4.4 Application of Bootstraps and Cumulative Sum Statistics to
Charge Trap Measurements

Now some examples of application to charge trap measurements are presented1. First the al-
gorithm is applied on observations without previous wavelet denoising. After that the effect of
denoising in combination with the bootstrap and cumulative sum statistic detection algorithm
is shown.

4.4.1 Evaluation of Basic Bootstrap and Cumulative Sum Algorithm

An example of change point analysis with the bootstrap and cumulative sum algorithm is il-
lustrated in Figure 4.6. This result is obtained with a number of bootstrap samples B = 1000,
the sensitivity parameter set to ε = 0.8 and the iterative filter parameter κ = 0.6. The choice of
ε = 0.8 leads to a very sensitive detection process resulting in an SNR = 89.05dB. For higher
values of ε less steps are detected. This circumstance leads to a smaller value for the signal to
noise ratio.
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Figure 4.6: Bootstrap and cumulative sum change point detection without previously denoising of the
signal, the number of bootstraps B = 1000, the sensitivity parameter ε = 0.8 and the iterative filtering
parameter κ = 0.6

The effect of the sensitivity parameter ε ∈ [0, 1] is studied with the help of the signal from Figure
4.6. Detection results obtained by varying ε are shown Figure 4.7. The detection sensitivity
strongly depends on the choice of ε. For a smaller value the count of detected steps increases.
There is no formula to estimate the optimal choice of ε. So a convenient value for ε which fits
best with the required step detection sensitivity has to be selected.
The choice ε = 1 also leads to detection results because of the probabilistic character of the
bootstraps. Setting the sensitivity parameter to his maximum acceptable value delivers only a
few change points of a signal. Small peaks, consisting of only a few data points, will not be
detected.
A detection process of steps in a very noisy signal is shown in Figure 4.8 resulting in an SNR
= 72.44dB. On heavily noisy signals the bootstrap and cumulative sum algorithm works quite

1The definition of the signal to noise ratio and the mean square error used to emphasize the denoising quality is
given in Section A.4.
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Figure 4.7: Influence of the sensitivity parameter on the detection result for signal presented in Figure 4.6
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Figure 4.8: Change point detection of a very noisy signal by bootstrap and cumulative sum detection
algorithm without previously denoising of the signal, the number of bootstraps B = 1000, the sensitivity
parameter ε = 1 and the iterative filtering parameter κ = 1

well. All relevant steps are detected with the parameters ε = κ = 1. A previous signal denoising
step is not necessary with this detection method.
The step detection of a nearly noiseless signal is shown in Figure 4.9. The resulting signal to
noise ratio is SNR = 78.24dB. With the sensitivity parameter ε = 1.0 and the filter parameter
κ = 1 the two major steps in this signal are detected. The bootstrap parameter is set to B = 50.
For significant steps like the two illustrated in Figure 4.9 a small choice of B leads to very fast
detection results. A comparison of the unfiltered and filtered detection signal shows that a final
filter process is necessary. Otherwise very small mean changes are detect too. In the case of
nearly noiseless signals the bootstrap and cumulative sum algorithm is very efficient.

4.4.2 Detection of Wavelet Denoised Signals

Now the influence of signal denoising discussed in Chapter 2 on the bootstrap and cumulative
sum statistic algorithm is presented. The result of the bootstrap and cumulative sum change
point detection after denoising using the wavelet transform for the signal from Figure 4.6 is
shown in Figure 4.10 resulting in an SNR = 85.48dB. A comparison between Figure 4.6 and
Figure 4.10 shows a very similar detection result in both cases for the same bootstrap and cumu-
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Figure 4.9: Detection of steps in a nearly noiseless signal by bootstrap and cumulative sum detection
algorithm without previously denoising of the signal, the number of bootstraps B = 50, the sensitivity
parameter ε = 0.9 and the iterative filtering parameter κ = 1
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Figure 4.10: Bootstrap and cumulative sum statistic algorithm with wavelet denoising using the station-
ary discrete wavelet transform, wavelet transform level J = 3, Haar wavelet, soft thresholding with mod-
ified Bayes shrink threshold estimation, the number of bootstraps B = 1000, the sensitivity parameter
ε = 0.8 and the iterative filtering parameter κ = 0.6

lative sum detection configuration. In summary, the wavelet denoising process is not necessary
for change point detection of time dependent defect spectroscopy signals with the bootstrap and
cumulative sum detection algorithm.



CHAPTER 5

STATISTICAL EVALUATION OF TIME

DEPENDENT DEFECT SPECTROSCOPY

DATA

The results of data extraction, step heights and emission times, from time defect dependent
spectroscopy data of a p-MOSFET are now presented. All detected steps are displayed as points
in a step height d versus emission time τe chart called a spectral map. The detection results of
each algorithm are compared to reference detection results. Finally the differences between the
spectral maps obtained from each of the three methods are discussed.

5.1 Wavelet Denoising Change Point Detection

The wavelet denoising detection algorithm configuration for the calculated spectral maps is
(command line options are denoted in parentheses):

• Wavelet transform: Stationary discrete wavelet transform (-w s)

• Wavelet transform level: J = 3 (-l 3)

• Wavelet type: Haar wavelet (-y haar)

• Threshold type: Soft thresholding (-d soft)

• Threshold estimation: Histogram-based threshold estimation with γ = 0.999 (-s histogram

-g 0.999)

• Transient time: ttrans = 2 · 10−5s (-t 2e-5)

• Filter parameter: κ = 0 (-f 0)

• Minimum step height written to switch files: m = 0.2 (-m 0.2)

The configuration of the detection process is set to highest denoising efficiency. Extracted step
heights d and emission times τe for several stress times detected by the wavelet denoising detec-
tion algorithm and the reference steps are shown in Figure 5.1. The detected steps for stress time
tS = 10−5s are shown in Figure 5.1a. All the steps given by the reference data are detected by the
wavelet denoising method. The deviation in the emission time in case of the change point at po-
sition (τe, d) ≈ (10−4s, 4mV) results from the detection process: The emission time is calculated

47
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Figure 5.1: Spectral maps obtained by the wavelet denoising detection algorithm for stress times (a) tS =
10−5s, (b) tS = 10−4s, (c) tS = 10−3s, (d) tS = 10−2s, (e) tS = 10−1s and (f) tS = 1s.
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as averages before and after the change point. The detected step height d may differ from the
reference data because the algorithms are designed to detect mean shifts. Between two change
points the signal level is approximated by the average of the data. Additional small steps are
detected at τe ≈ 1s.
For a stress time of tS = 10−4s Figure 5.1b presents the resulting spectral map. Many more steps
compared to the case of tS = 10−5s are found now. The detection results matches the reference
data very well. A lot of small steps are detected for emission time τe ≈ 1s. The step heights and
emission times also compare well to the results from the stress case tS = 10−5s. The emission
centers are all nearly the same, now with more detected data points. The detected results go
hand in hand with the fact that a increasing stress time does not shift the emission time. More
steps at different step heights are observed then.
The evaluation of relaxation measurements for stress time tS = 10−3s, tS = 10−2s, tS = 10−1s
and tS = 1s are given in Figure 5.1c, Figure 5.1d, Figure 5.1e and Figure 5.1f respectively. It is
noticed that the clusters of the spectral map are similar to the reference data clusters.
The disadvantage of the wavelet denoising detection technique is the high number of detected
steps of relaxation measurements at higher stress times. The spectral map for a stress time of tS =

1s, cf. Figure 5.1f, is very noisy. Detecting clusters in very noisy spectral map gets difficult. The
presented results are obtained by the most efficient denoising configuration. The advantage of
the wavelet denoising detection algorithm is that it works quite fast compared to the histogram-
based and bootstrap and cumulative sum method.

5.2 Histogram-Based Detected Steps

The spectral maps obtained by executing the histogram-based detection algorithm on time de-
pendent defect spectroscopy data are given in Figure 5.2. The detection configuration is (com-
mand line options are denoted in parentheses):

• Number of bins: Estimate optimal number of bins automatically (-b -1)

• Interpolation type: Polynomial with 113 points (-i poly -k 113)

• Peak merge distance: ε = 0.3 (-e 0.3)

• Transient time: ttrans = 2 · 10−5s (-t 2e-5)

• Filter parameter: κ = 0 (-f 0)

• Minimum step height written to switch files: m = 0.2 (-m 0.2)

In all four presented spectral maps steps at emission times τe < 10−4s are detected. They result
from the transient part of the signal before the relaxation is recorded. It is necessary to choose
ttrans carefully.
For stress time tS = 10−5s the result is shown in Figure 5.2a. Except for one all steps from
the reference data are detected and several small more at higher emission times. With increasing
stress time more steps are detected, cf. Figure 5.2b for tS = 10−4s. The reference steps and several
more smaller steps are obtained by the histogram-based algorithm. At relaxation measurements
after device stress of tS = 10−3s at Figure 5.2c and tS = 10−2s, see Figure 5.2d, many steps with
varying step height in the range 3 × 10−2s ≤ τe ≤ 101s are obtained by the detection process.
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Figure 5.2: Results of step detection by the histogram-based algorithm of time dependent defect spec-
troscopy measurement data for stress times (a) tS = 10−5s, (b) tS = 10−4s, (c) tS = 10−3s, (d) tS = 10−2s,
(e) tS = 10−1s and (f) tS = 1s.
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Also many steps are detected in relaxation measurement data for stress times tS = 10−1s and
tS = 1s, cf. Figure 5.2e and Figure 5.2f.
The histogram-based detected spectral maps are very noisy. Especially at higher emission times
at step heights d ≈ 0 making the detection result not practical for the time dependent defect
spectroscopy data evaluation.

5.3 Bootstrap and Cumulative Sum Detection Evaluation

The bootstrap and cumulative sum detection algorithm configuration is (command line options
are denoted in parentheses):

• Number of bootstraps: B = 100 (-b 100)

• Sensitivity parameter: ε = 0.81 for t < 10−2s and ε = 1 for t ≥ 10−2s (-e 0.81,1e-2,1.0)

• Wavelet transform: Stationary discrete wavelet transform (-w s)

• Wavelet transform level: J = 3 (-l 3)

• Wavelet type: Haar wavelet (-y haar)

• Threshold type: Soft thresholding (-d soft)

• Threshold estimation: Histogram-based threshold estimation with γ = 0.86 (-s histogram

-g 0.86)

• Transient time: ttrans = 2 · 10−5s (-t 2e-5)

• Filter parameter: κ = 0 (-f 0)

• Minimum step height written to switch files: m = 0.2 (-m 0.2)

The detection algorithm results for several stress times tS are shown in Figure 5.3. The first
evaluation in Figure 5.3a for tS = 10−5s almost equals the reference data. At emission times
τe > 10−1s several small steps are additionally detected. At τe < 10−3s only a few measurement
points are available. In order to detect steps for emission times τe < 10−3, a small value for
the sensitivity parameter ε = 0.81 is necessary. A small sensitivity parameter goes hand in
hand with a high number of detected steps. The difference in detected step emission time at
τe = 10−4s and step height d ≈ −4mV results from the detection process. The emission time is
calculated by the average time before and after a detected step. A visual inspection shows that
this step occurs at the time instance detected with the bootstrap and cumulative sum algorithm.
The next relaxation data from Figure 5.3b is recorded after stressing the device for tS = 10−4s.
It is noted that a few steps show different heights as the one from the reference evaluation.
The difference is because the bootstrap and cumulative sum algorithm detects mean shifts. All
data values between two steps are averaged. So differences of about 0.5mV are possible in the
detected step heights compared to the reference data. For emission times τe > 5 · 10−1s several
small steps are detected resulting from the sensitivity parameter ε = 0.81.
Because of the increasing number of detected steps at higher emission time a higher value for
the sensitivity parameter ε is necessary. The bootstrap and cumulative sum option can change
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Figure 5.3: Spectral maps obtained by the bootstrap and cumulative sum detection algorithm for device
stress times (a) tS = 10−5s, (b) tS = 10−4s, (c) tS = 10−3s, (d) tS = 10−2s, (e) tS = 10−1s and (f) tS = 1s.
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ε at a given time instance during the detection process. A change from ε = 0.81 to ε = 1 at
t = 10−2s greatly improves the quality of the calculated spectral maps.
After stressing the device for tS = 10−3s and recording the relaxation for one-hundred times
the bootstrap and cumulative sum algorithm obtains the spectral map from Figure 5.3c. As
mentioned above the very sensitive choice of ε = 0.81 leads to detected steps at emission times
τe < 10−4. Most of the steps equal the reference ones. At emission times τe > 101 several
small steps are detected with the sensitivity parameter ε = 1. The spectral maps for the stress
times tS = 10−2s, tS = 10−1s and tS = 1s are shown in Figure 5.3d, Figure 5.3e and Figure 5.3f
respectively. Compared to Figure 5.3c almost the same clusters of points are obtained. The
difference of the reference steps and the steps obtained by the bootstrap and cumulative sum
algorithm is shown in Figure 5.4.
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Figure 5.4: Difference between reference steps (green) and steps detected with the bootstrap and cumula-
tive sum algorithm (orange) for a single signal (black) from measurements for stress times (a) tS = 10−1s,
(b) tS = 1s.

5.4 Comparison of Detection Results

First the differences of the wavelet denoising and bootstrap and cumulative sum detection al-
gorithm are discussed. The spectral maps are given in Figure 5.5a for the stress time tS = 10−4s
and for tS = 10−1s in Figure 5.5b.
One difference is the detection of events for emission times τe ≤ 10−4s. Because of the high de-
tection sensitivity of the bootstrap and cumulative sum algorithm also fast events are detected.
For higher emission times the detection results are similar. With the wavelet denoising tech-
nique the step amplitudes vary a little bit more than the ones detected with bootstrapping. The
advantage of the wavelet denoising detection algorithm is that it works very fast compared to
the bootstrap and cumulative sum method.
The differences of the detection results of the wavelet denoising technique and the histogram-
based detection algorithm are shown in Figure 5.6. A comparison of both methods shows that
with the histogram-based algorithm more steps are detected as with the wavelet detection al-
gorithm. Another difference is that the histogram-based detection spectral map shows steps
at emission times τe < 10−4s. They result from the transient part of the relaxation signal.
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Figure 5.5: Comparison of the spectral maps obtained by the wavelet denoising and bootstrap and cumu-
lative sum detection algorithm from Figure 5.1 and from Figure 5.3 for the stress times (a) tS = 10−4s and
(b) tS = 10−1s.
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Figure 5.6: Spectral maps of the wavelet denoising and histogram-based detection algorithm from Fig-
ure 5.1 and Figure 5.2 for the stress times (a) tS = 10−4s and (b) tS = 10−1s.

The wavelet denoising algorithm does not detect such single data point events. The choice
of ttrans = 2 · 10−5s for the algorithm configuration does not cut off all transients in all signals.
Higher choices of ttrans may remove relevant change points from the observations. Also the de-
tected step heights vary much more at the histogram-based detection algorithm, cf. Figure 5.6b.

Finally the comparison of the histogram-based and the bootstrap and cumulative sum detection
results are presented in Figure 5.7. Both spectral maps show steps detected at emission times
τe < 10−4s resulting from previously mentioned signal transients. The choice of ttrans = 2 · 10−5s
is necessary for both algorithms. The detection results for stress time tS = 10−4s from Figure 5.7a
are very similar. The main difference is the detected step heights in the emission time range
10−1s ≤ τe ≤ 101s, cf. Figure 5.7b.
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Figure 5.7: Spectral maps obtained by the bootstrap and cumulative sum and the histogram-based detec-
tion algorithm from Figure 5.3 and Figure 5.2 for the stress times (a) tS = 10−4s and (b) tS = 10−1s.

5.5 Summary

One difference between the three methods are their configuration parameters. The wavelet de-
noising technique has the most parameters, followed by the histogram-based method. Only
two configuration parameters are available with the bootstrap and cumulative sum algorithm.
Another difference is the dependence of the execution time on the measurement signals. An
overview is given in Table 5.1.

Wavelet Histogram Bootstrap and cumulative sum
N Files

Figure 5.1 Figure 5.2 Figure 5.3

(a) 454 100 15s 13m 39s 3m 16s

(b) 710 100 26s 19m 02s 4m 32s

(c) 1478 100 1m 02s 42m 31s 9m 38s

(d) 3014 100 2m 44s 1h 33m 01s 21m 46s

(e) 6086 100 8m 35s 4h 24m 08s 54m 23s

(f) 9134 100 11m 19s 6h 29m 51s 1h 16m 20s

Table 5.1: Overview of execution time for the wavelet denoising, the histogram-based and the bootstrap
and cumulative sum algorithm measurement data signals of length N. For creating a spectral map the
algorithms have to be applied on 100 data sets. All evaluation configurations are identical to the ones
used in Section 5.1, Section 5.2 and Section 5.3 respectively.

One notices that the wavelet denoising method is the fastest one. The execution time difference
between the stationary discrete wavelet transform and the discrete wavelet transform is negli-
gible and the increase of the algorithm execution time with increasing number of data points of
a signal is intuitively clear. A disadvantage is the high number of degrees of freedom given by
four parameters.
The longest execution time is observed with the histogram-based method. The reason for high
execution times of the histogram-based method is the interpolation of data points between ob-
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servations. A good choice is 113 interpolation points. Without data interpolation the algorithm
works quite fast but the results have not the quality as the ones with polynomial interpolation.
The high execution of time the bootstrap and cumulative sum detection algorithm results from
the necessity to calculate bootstrap samples with the same length as the data set. This means for
B = 100 and a signal length of N = 1000 samples the cumulative sum charts for 105 samples
have to be considered. Because of the divide-and-conquer process a higher number of detected
steps increases the execution time. For each additionally detected change point B bootstraps and
cumulative sum charts are calculated.
Summarized, the best detection results are obtained by the bootstrap and cumulative sum de-
tection algorithm. With an acceptable execution time all the steps given by the reference data set
are detected and the clusters are easily found in the spectral map. The advantage of the boot-
strap and cumulative sum detection algorithm is that the detection sensitivity can be changed
during the step detection process of a measurement signal. With less detection sensitivity not
so many steps at higher emission times are produced compared to the wavelet and histogram-
based method. The wavelet denoising technique works quite fast, but for higher stress times too
many steps are produced. Therefore it is not practical for this class of signals. Really disappoint-
ing is the histogram-based method. There are too many spurious steps detected and the spectral
maps are too noisy. So this method in not recommended for data extraction of time dependent
defect spectroscopy measurement data.



APPENDIX A

MATHEMATICAL AND PROGRAMMING

TOOLS

Some basics of creating noisy test signals, determining endianess of a given computer architec-
ture and floating point representation is discussed now.

A.1 Creating Noisy Signals

For many algorithms it is very useful to create noisy test signals with a specified signal to noise
ratio (SNR). Usually the SNR is given in decibel (dB).
Assume the following model for a discrete signal

ri = xi + vi (A.1)

with xi the noise free signal samples and the noise vi. In this model xi is known and now
observations ri with a specified SNR are created.
The SNR is defined by

SNR =
PSignal

PNoise
. (A.2)

From a given SNR in dB, the desired noise power is calculated from

PNoise = PSignal · 10−
SNR

10 . (A.3)

In vector notation
x = [x1, x2, . . . , xn]

T (A.4)

the signal power PSignal is given by
PSignal = xTx. (A.5)

We assume white Gaussian noise N (0, σ2) with the distribution function

p(x) =
1√

2πσ2
exp

(
−1

2

( x
σ

)2
)

. (A.6)

The SNR then calculates to

SNR =
PSignal

σ2 . (A.7)

With the use of a random number generator, noisy test signals for algorithm verification can be
created.
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A.2 Write Endianess Independent Code

In order to make files compatible to different CPU architectures endianess is very important. A
definition is given in [Intel 2004]:

Definition A.1 (Endianess) Endianess is the format to how multi-byte data is stored in computer
memory. It describes the location of the most significant byte (MSB) and least significant byte (LSB) of
an address in memory. Endianess is dictated by the CPU architecture implementation of the system. The
operating system does not dictate the endian model implemented, but rather the endian model of the CPU
architecture dictates how the operating system is implemented.

According to the definition, two format types are distinguished, the so called big-endian and
little-endian formats. The big-endian memory format stores the most significant byte at the lowest
and the least significant byte at the highest memory address. As it is intuitively clear the little-
endian stores the least significant byte at the lowest and the most significant byte at the highest
memory address.
For binary data operation, especially writing or coding values in binary format to and from files,
it is very important to know if the data is in little-endian or big-endian format. The binary curve
file format described in Section C.1 uses the little-endian model.
In Python values can be easily stored byte-wise with the pack and read byte-wise with the unpack
command. In both cases the programmer is able to specify the type of endianess. By default,
and in all programs created in context with this thesis, the little-endian format is used.

A.3 Floating Point Arithmetic

A common floating point format is defined in the IEEE 754 standard [IEEE754 2008]. It contains
several sub formats. First an overview of standard and specific floating point formats is given,
followed by their conversions from decimal numbers to binary data streams and backwards.
Also special floating point numbers are discussed.

A.3.1 Floating Point Values and Formats

The most common formats are the single and double precision formats. Both of them, as well as
two self-designed ones, are illustrated in Figure A.1.
Data ranges, exponent ranges and number of bytes of the tiny float, small float, single and double
precision floating point formats are presented in Table A.1. Each floating point value consists of
a sign bit, several bits for the exponent and several bits for the mantissa. In case of normalized
numbers the value of a binary stream is given by

(−1)s · 1.fraction · 2e−ebias . (A.8)

A special type of numbers are denormalized numbers. Their floating value representation is

(−1)s · 0.fraction · 2emin . (A.9)

For special numbers such as zero, infinity or the mentioned denormalized number formats there
are special bit combinations for representing them. Table A.2 gives an overview of these bit
combinations.
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tiny float s exponent mantissa

15 14 · · · 10 9 · · · 0

small float s exponent mantissa

23 22 · · · 16 15 · · · 0

MSB LSB

MSB LSB

single s exponent mantissa

31 30 · · · 23 22 · · · 0

double s exponent mantissa

63 62 · · · 52 51 · · · 0

Figure A.1: Binary stream composition of self-defined tiny float and small float formats and common
single precision and double precision floating point formats

tiny float small float single precision double precision

size [bit] 16 24 32 64

sign [bit] 1 1 1 1

exponent [bit] 5 7 8 11

mantissa [bit] 10 16 23 52

exponent bias 15 63 127 1023

exponent range −14 ≤ e ≤ 15 −62 ≤ e ≤ 63 −126 ≤ e ≤ 127 −1022 ≤ e ≤ 1023

|min| 6.109 · 10−5 2.168 · 10−19 1.175 · 10−38 2.225 · 10−308

|max| 6.550 · 104 1.844 · 1019 3.402 · 1038 1.797 · 10308

|mindenormalized| 5.960 · 10−8 3.308 · 10−24 1.401 · 10−45 4.940 · 10−324

|maxdenormalized| 6.109 · 10−5 2.168 · 10−19 1.175 · 10−38 2.225 · 10−308

Table A.1: Properties of tiny, small. single precision and double precision floating point values

A.3.2 Conversions between Decimal Numbers and Binary Streams

First step is to evaluate the sign bit s of a decimal number d by

s =

{
0 for d ≥ 0

1 for d < 0
. (A.10)

Further the exponent e is calculated by the relationship

e = floor (log2 |d|) (A.11)

which results in a fraction value ∈ [1, 2]. The value of e must lie between its minimal and
maximal value for the desired floating point value type. If it is greater than its maximal value
the exponent is set to its representation of +/− infinity. In case of a smaller exponent than
its minimal exponent the special bit combination for zero value is selected. For denormalized
numbers, which are used when (A.11) delivers e = emin − 1, the exponent is set to e = emin. Here
the fraction is assumed to contain a leading zero instead of a leading one, cf. (A.9).
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values sign (s) exponent (e) fraction (f)

not a number (nan) 0 max > 0

+/- infinity (+/- inf) 0/1 max 0

+/- zero 0/1 0 0

denormalized 0/1 0 > 0

Table A.2: Special bit combinations for floating point values

The fraction f for normalized values is obtained by

fnorm =

(
|d|
2e − 1

)
· 2bitsfraction (A.12)

and for denormalized numbers by

fdenorm =
|d|

2emin
· 2bitsfraction . (A.13)

The value of f is rounded to the nearest integer and before converting e to its binary value ebias
(given in Table A.1) is added. Now the binary stream containing the sign s, the exponent e and
the fraction f can be created.
With a given binary stream the sign, the exponent and the fraction values represent the normal-
ized floating point number

dnorm = (−1)s ·
(

1 +
f

2bitsfraction

)
· 2e−ebias , (A.14)

and in the case of denormalized representation the number

ddenorm = (−1)s · f
2bitsfraction

· 2emin . (A.15)

A.4 Signal to Noise Ratio and Mean Square Error

The evaluation of the quality of denoising is done by calculating of the signal to noise ratio given
by

SNR = 10dB · log10

{
∑n f [n]2

∑n( f [n]− g[n])2

}
(A.16)

which emphasis’s the removed noise where f and g denote the original and denoised signal
respectively, both signals of length N [Moon and Stirling 2000]. Another parameter for noise
removing quality evaluation is the mean square error defined as

MSE = 10dB · log10

{
1
N ∑

n
( f [n]− g[n])2

}
. (A.17)
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MANUALS FOR AUXILIARY PROGRAMS

This chapter contains manuals for the programs developed in context of this thesis. These tools
for data evaluation are:

1. Binary curve file converter: Saving long tables of measurement data values in binary form
instead of ASCII-form can save a lot of disk space. A typical value contains a sign, three
numbers before and after the comma and the comma itself. This leads to 8 bytes per value.
The representation with the developed tiny floating point format gets along with 2 bytes
for the same value. So about 75% of disk space can be saved.

2. Measurement data to (binary) curve file converter: Converts the data obtained by the TDDS
setup of [Reisinger et al. 2007a] to binary curve files and prepares it for change point anal-
ysis.

3. Wavelet change point detection: Implementation of the wavelet-transform-based algorithm
from Chapter 2.

4. Histogram based detection algorithm: Implementation of the detection process using his-
tograms and techniques from Chapter 3.

5. Bootstrap and cumulative sum detection algorithm: Step detection in TDDS data by using the
bootstrap statistics and the cumulative sums as discussed in Chapter 4.

B.1 Binary Curve File Converter

For saving disk space, curve files can be converted into a binary file format specified in Sec-
tion C.1. The python script for this operation is bcrv.py. For execution following command line
has to be used

python bcrv [options] 〈input file〉 〈output file〉.

A list of possible options is given in Table B.1.
The 〈input file〉 is the path to the original file and the 〈output file〉 tells the tool where to create
and how to name the resulting binary curve file. An example for conversion is

python bcrv -f 32 -t ./foo.crv ./foo.brv.

61
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Options

short long
Type Description Default

-c - - columnindex flag comma separated list of column indices to be

exported into binary file

off

-f - - format int floating point format of binary file, possible val-

ues are 16, 24, 32, 64, cf. Appendix A.3

64

-n - - columnnames string comma separated list of column names to be ex-

ported into binary file

off

-s - - scale flag scale values in order to fit the data values into

the floating point formats data range

off

-t - - time flag show conversion process time after operation is

complete

off

- - version returns tool version, current version is 1.0

Table B.1: List of binary curve file converter options

B.2 Measurement Data to (Binary) Curve File Converter

Data of TDDS measurements are delivered in a special file format, the *.tx4 format discussed in
Chapter C.2. In order to convert them into the curve- or the binary curve file format the script
tx4tobrv.py is used. The command is

python tx4tobrv [options] 〈input file〉 〈output file formater〉

The options are presented in Table B.2.

Options

short long
Type Description Default

-c - - curve flag output file format is a *.crv file (if not specified

a binary curve file *.brv is created by default)

off

-f - - format int floating point format of binary file, possible val-

ues are 16, 24, 32, 64, cf. Appendix A.3

64

-s - - scale flag scale values in order to fit them into the floating

values range

off

-t - - time flag show conversion process time after operation is

complete

off

- - version returns tool version, current version is 1.0

Table B.2: List of measurement data to (binary) curve file converter options

The 〈input file〉 specifies the original data file. With the 〈output file formater〉 every data column
of the input file is written into a separated file. The output specifier should be like

〈output file formater〉 = ./foo%d.brv.
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The output files contain, in this order, the relative time for the single sequence, the absolute time
for the complete measurement sequence and the measurement values.
An example for execution is

python tx4tobrv -f 32 -t -s ./foo.tx4 /out/foo%d.brv.

B.3 Wavelet Change Point Detection

The algorithm discussed in Chapter 2 is implemented via a Python script and called by

python chpwavelet 〈input file〉/〈input file formater〉 [options].

The options are separated into common parameters in Table B.3 and wavelet denoising param-
eters in Table B.4.

Options

short long
Type Description Default

-p - - plots flag create output files for documentation plots off

-a - - alpha int first index of 〈input file formater〉 0

-o - - omega int last index of 〈input file formater〉 0

-t - - transient float skip transient of specified duration of input sig-

nal in seconds

0

-r - - result flag calculate MSE and SNR and write to file off

-f - - filter float minimum step size greater than multiple of es-

timated variance

0.8

-m - - minstep float only steps with absolute value greater than the

minimum step value are exported to the switch

file

0.0

-c - - calctime flag show detection process time after operation is

complete

off

- - version returns tool version, current version is 1.0

Table B.3: List of wavelet detection algorithm common options

The 〈input file〉 either specifies a single data file or the 〈input file formater〉 is used. Then the first
and last index of filenames are set via the options -a and -o. The format has to be like

〈input file formater〉 = ./foo%d.brv.

Input files can either be of the curve file format IUE [2004] or the binary curve file format dis-
cussed in Appendix C.1.
At the end of each detection process an output file containing the detected steps is created. This
file is created in the original files folder with name foo_switch.crv and is described in Section C.3.
If one of - -plots or - -result flag is set a new directory ./〈input file〉_documentation/ is created. In
case of - -result a text file named msesnr.txt is created containing the calculated MSE and SNR
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Options

short long
Type Description Default

-w - - wavelet string choose wavelet transformation type, ’s’ for

SDWT or ’d’ for DWT

s

-y - - type string choose type of wavelet for denoising, possible

values are: ’haar’, ’dbX’ for X ∈ [2, 20]

haar

-d - - threshold string denoising threshold type, possible choices are:

’soft’, ’hard’

-l - - level int level of wavelet decomposition 3

-s - - shrink string type of denoising threshold calculation, possi-

ble choices are: ’bayes’, ’mbayes’, ’visu’, ’his-

togram’

mbayes

-g - - gamma float sensitivity parameter for histogram shrink 0.95

Table B.4: List of wavelet detection algorithm denoising options

after wavelet denoising and after the complete detection process. If the - -calctime flag is set a
text file named conversationtime.txt is created containing the duration of the change point analysis
process. A list of files created under use of the - -plots flag is given in Table B.5.

Filename Description Column contents

origin.crv original signal data 1: time

2: data values

result.crv detection data 1: time

2: data values

(S)DWT_wtc_originX.crv wavelet transform coefficients, X rep- 1: coefficients

resents the transform scale 2: index

(S)DWT_wtc_dampedX.crv damped wavelet transform coeffi- 1: coefficients

cients, X represents the transform scale 2: index

waveletdenoised.crv wavelet-denoised data signal 1: time

2: data values

Table B.5: Files for data-plots created by wavelet detection algorithm

B.4 Histogram based Detection Algorithm

The algorithm discussed in Chapter 3 is implemented via a Python script and called by

python chphistogram 〈input file〉/〈input file formater〉 [options].

The options are presented splitted into common ones in Table B.3, histogram parameters in
Table B.6 and wavelet denoising parameters from Table B.4.
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Options

short long
Type Description Default

-u - - nonweighted flag create an equally weighted histogram off

-b - - bins int number of histogram bins, for b = −1 the num-

ber of bins is set automatically

−1

-i - - regr_type string choose interpolation function polynom, must

be one of ’none’, ’linear’, ’quadratic’, ’poly’

poly

-k - - regr_steps int number of interpolation points 251

-n - - noisewnd int width of histogram baseline estimation win-

dow

5

-e - - epsilon float peak merge distance, for ε = −1 the distance is

calculated with the robust median estimator

-1

Table B.6: List of histogram parameters

The 〈input file〉 either specifies a single data file or the 〈input file formater〉 is used, cf. Chapter B.3.
If the - -plots flag is set the files handled in Table B.7 and in Table B.5 are created.

Filename Description Columns content
convolution_scan_2d.crv 2-dimensional profile of the 3- 1: bin mean values

dimensional convolution scan 2: data values
convolution_scan_3d.crv 3-dimensional σ - scan, data is stored 1: σ

block-wise for each value of σ 2: bin mean values
3: data values

convolution_second.crv second convolution graph of highest 1: bin mean values
histogram peak 2: data values

gauss_distributions.crv graph of Gaussian distributions to be 1: bin mean values
plotted with the histogram 2: data vales

gauss_distributions_concat.crv graph of concatenated Gaussian 1: bin mean values
functions 2: data values

histogram_origin.crv histogram from observations 1: bin min values
2: bin max values
3: bin mean values
4: data values

histogram_baseline.crv estimated histogram baseline 1: bin mean values
2: data values

histogram_denoised.crv difference between origin histogram 1: bin min values
and estimated baseline 2: bin max values

3: bin mean values
4: data values

histogram_fit.crv observations fitted to Gaussian distri- 1: time
butions estimated from the histogram 2: data values

Table B.7: Additionally created files for data-plots with the histogram detection algorithm
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B.5 Bootstrap and Cumulative Sum Detection Algorithm

The algorithm discussed in Chapter 4 is implemented via a Python script and called by

python chpbootcu 〈input file〉/〈input file formater〉 [options].

The options are presented splitted into common ones in Table B.3, bootstrap depending ones in
Table B.8 and wavelet denoising parameters from Table B.4.

Options

short long
Type Description Default

-b - - bootstraps int number of bootstraps 1000

-e - - epsilon string detection sensitivity parameter ε ∈ [0, 1] 0.90

Table B.8: List of bootstrap parameters

The detection sensitivity parameter can be used to change the detection sensitivity to ε2 after
tsplit when used like

-e ε1, tsplit, ε2.

The 〈input file〉 either specifies a single data file or the 〈input file formater〉, cf. Section B.3.
If the - -plots flag is set following the files from Table B.9 are additionally created to the ones from
Table B.5.

Filename Description Columns content

cusum_min_(no)chp.crv minimum difference CUSUM chart 1: index

in (no) change point case 2: data values

cusum_max_(no)chp.crv maximum difference CUSUM chart 1: index

in (no) change point case 2: data values

cusum_origin_(no)chp.crv CUSUM chart of original signal in 1: index

(no) change point case 2: data values

histogram_cusumdiff_(no)chp.crv histogram of CUSUM chart differ- 1: bin min values

ences in case of (no) change point 2: bin max values

3: bin mean values

4: data values

conf_val_(no)chp.txt contains the parameters ε, γε and

differences of origin CUSUM chart

in case of (no) change point

Table B.9: Additionally created files for data-plots at the bootstrap and CUSUM detection algorithm



APPENDIX C

FILE FORMATS

Important file formats related to the Python implementations for this work are presented now.

C.1 Binary Curve File

The curve file format was originally introduced as one of the output formats of the minimosNT
simulator [IUE 2004]. In its binary version the binary curve file (brv) format characters and
values are saved as binary instead of ASCII numbers. The big advantage is that values are saved
with a defined number of bytes. So they need less memory space in contrast to the ASCII text
format. The saving of memory will not be noticed for a small number of values but can improve
performance for long rows points, e.g. with measurement data.
The basic layout of a binary curve file consists of a header with variable length, followed by
data blocks. The header consists of the basic file information, while the data blocks contain the
measurement values. The values of the type unsigned integer or floating point values are stored
in little-endian format. For further information on endianess refer to Section A.2.
Figure C.1 shows the principal layout of a binary curve file. In the header section all cells are
important and none can be omitted.

Figure C.1: Binary curve file format, header and data blocks, for VID = 1

67
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The header presented in Figure C.1 consists of:

1. VID: The version id (VID) represents the current version of the binary curve file format.
This option is introduced to enable further development, to ensure the compatibility of
the file format and the conversion tools. An ASCII character which is not interpreted as
printable character is recommended, preferably from the range of ASCII 0 to ASCII 31.
With the VID it is possible to detect if the file is a binary file or not.

2. LENHEAD: The length of the file header in bytes. The first data block starts at the offset
LENHEAD.

3. NUMDBL: The number of data blocks.

4. BPARA: Data values can be represented by different floating point formats. The bytes
parameter (BPARA) can either be 16, 24, 32 or 64. Information on composition of floating
point formats can be found in Section A.3.

5. NUMCOM: The number of comment strings following.

6. STRCOM: The comments are stored as null terminated strings.

7. PPARA: Number of parameters (’#p’-line in the curve format).

8. NUMNA: The number of quantities (equals the number of columns).

9. STRNA: The NUMNA strings of names stored as null terminated strings.

10. NUMUN: The number of units (NUMUN) must either be equal to the number of names
(NUMNA) or zero (in case the ASCII curve file does not contain a ’#u’-line).

11. STRUN: Null terminated strings of units.

12. POSDBL: Finally the header contains the absolute start positions of the data blocks in the
binary curve file, counted from the beginning of the binary curve file.

After the header is discussed, the composition of the data blocks is now shown:

1. NUMDVL: First the number of data values is stored.

2. SCALF: To ensure that each value can optimally be represented by floating numbers with
the size defined by BPARA scale factors are introduced for each column separately. They
are saved column wise. The following values have all be multiplied with their scaling
factors to obtain the original values.

3. VALUES: Now all the values are stored column wise. Each column has an equal number
of values. Therefore the number of value tuples can be calculated by dividing the number
of data values NUMDVL by the number of names NUMNA.

It is possible that there are several data blocks (separated by empty lines in the ASCII curve
format). Their absolute start positions in the file are given by the headers parameter POSDBL.
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C.2 Measurement Data File Format

Values obtained by experimental setup are saved in tx4 files. There are two different file speci-
fications, which can be treated by all scripts written in the scope of this thesis. In order to deal
with this file type one should remove all ASCII 0 characters first. The single cells are separated
by a horizontal tabulator, ASCII character 9. All the lines have the same number of cells.
The header contains the file identification, the file name and optionally a date and time cell.
The first cell in this file must always be equal to 4. It is followed by the file name and the date
and time of creating the measurements. Because all lines count the same number of cells all the
following cells in the first line are empty.
After the header the two versions have to be distinguished. This is done by looking for the cell
names ’Rep’ and ’S_Rep’.
The whole format for version 1 is shown in Table C.1. Version 1 headers do not contain the date
and time field. The first column without a name contains a value tlog representing the relative

4 SPT9_ZA910186#20_T=170◦_hyst_ ...
...

...
...

...
...

...
...

...
...

. . .
Rep1 Rep2 ...

0 1.E-6 ...
-5.921 -707.25 -708.01 ...
-5.444 -732.61 -734.20 ...
-5.119 -737.43 -738.68 ...
-4.807 -737.16 -738.43 ...

...
...

...
...

...
...

...
...

...
. . .

Table C.1: Typical *.tx4 file format for version 1

relaxation time. It is converted by
t = 10tlog · 1s. (C.1)

The first cell under the column name contains the stress time.
In version 2, which is shown in Table C.2, the structure is very similar to version 1. In contrast
to version 1 the header now contains date and time information. The stress time is the row
above the column names ’S_RepX’. The line below the names are additional information and
not necessary for evaluation. The second line below the column names contains the cumulated
time in seconds. There are also some process parameters stored in the first columns, which are
neglected for change point evaluation.

C.3 Change Point Detection File Format

The format of a typical switch file is shown in Listing C.1. The header, declared as comments
in the curve file style, contains the conversion date and time as well as the used detection algo-
rithm. In line 3 the command line used to create this file is given.
In the data section the first column identifies the file number where the step was detected. The
corresponding filename is given in the header section. The second column represents the occur-
rence time of the change point followed by the step size in the third column.
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4 SPT9_ZA910168#20... 24 Sep 2009 15:50:56 ...
...

...
...

...
...

...
...

...
...

. . .
9.E-6 1.E-5 ...

X S_Rep0 ...
0 1.E-5 ...

0.93201 343.04 ...
-5.398 -1001.87 -1007.94 ...

id= 0 -5.194 -1001.64 -1005.36 ...
RS= 5100 -4.983 -1001.87 -1005.28 ...
RP= 2150 -4.735 -1001.72 -1007.24 ...

...
...

...
...

...
...

...
...

...
. . .

Table C.2: Typical *.tx4 file format for version 2

1 ## switch file for change point detection created on 2011 -08 -17 at

20:44

2 ## detection script: wavelet detection

3 ## python main ./data/switchfilefordoku /#21_%d.crv -a 10 -o 15 -t 0.0

-y haar -d soft -l 3 -s histogram -g 0.95

4 ## nr = 0: origin file name: SPT9_ZA 910186#20_ cp#45H_SPFETDLHC_dr23_T

=130._ hyststr _; stress time: 1.000100e-05s; Rep9

5 ## nr = 1: origin file name: SPT9_ZA 910186#20_ cp#45H_SPFETDLHC_dr23_T

=130._ hyststr _; stress time: 1.000100e-05s; Rep10

6 ## nr = 2: origin file name: SPT9_ZA 910186#20_ cp#45H_SPFETDLHC_dr23_T

=130._ hyststr _; stress time: 1.000100e-05s; Rep11

7 ## nr = 3: origin file name: SPT9_ZA 910186#20_ cp#45H_SPFETDLHC_dr23_T

=130._ hyststr _; stress time: 1.000100e-05s; Rep12

8 ## nr = 4: origin file name: SPT9_ZA 910186#20_ cp#45H_SPFETDLHC_dr23_T

=130._ hyststr _; stress time: 1.000100e-05s; Rep13

9 #p 1

10 #b 64

11 #n nr t d

12 #u 1 1 1

13 0.000000e+00 3.069526e-03 -6.622727e+00

14 0.000000e+00 3.178605e-02 -2.700000e-01

15 0.000000e+00 4.606901e-02 4.525000e-01

16 0.000000e+00 5.606712e-02 -4.631250e-01

17 0.000000e+00 3.067635e-01 1.386250e-01

18 1.000000e+00 3.849505e-04 -9.707500e+00

19 1.000000e+00 7.692567e-04 -4.780205e+00

Listing C.1: Switch file format
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