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Performance Evaluation and Optimization of standard-Ethernet 
Traffic in TTEthernet Systems 

 

Nowadays standard Ethernet is widely used in home and office computer networks, and well 
recognized as the low-layer protocol of the Internet protocol. There are three main advantages of 
using today’s Ethernet technology: (1) high bandwidths, for example with Fast Ethernet and 
Gigabit Ethernet, (2) open standard protocol, defined in IEEE 802.3, and (3) low prices of 
commercial-off-the-shelf standard-Ethernet devices. In additional, today’s Ethernet technology, 
which is so-called switched Ethernet, has higher bandwidth utilization than traditional Ethernet 
based on bus network topology, since switched Ethernet provides full-duplex communication 
and no collision occurrence. However standard-Ethernet, which was not originally designed for 
real-time communication, does not provide a timely-determinism property. In the last decade 
there have been many designs that adapt standard Ethernet to provide temporal guarantees. Such 
a standard-Ethernet based protocol augmenting with temporal guarantees is called real-time 
Ethernet (e.g. Ethernet POWERLINK, SERCOS III, PROFINET IRT, Ethernet/IP, MODBUS-
TCP, AFDX, and TTEthernet).  

Recently there has been a main driving force behind applications of real-time Ethernet that is the 
increasing demand for a seamless connectivity between legacy Ethernet networks and real-time 
Ethernet networks. This can be seen in the industrial automation domain, for example, the 
connectivity between the administrative tasks of a company (office networks) and the factory 
floor (fieldbus networks) has been increased. Another main driving force for adapting standard 
Ethernet to real-time Ethernet is to integrate all application types into a single standard-Ethernet 
based network. Such a single standard-Ethernet based network is potentially very cost effective, 
and reduces the complexity of network infrastructure. 

TTEthernet was designed to be a novel unified communication architecture that meets the 
requirements of all application types from non real-time applications, to real-time applications, to 
the most demanding safety-critical real-time applications. TTEthernet were aimed to altogether 
achieve the three main properties: (1) determinism property for real-time traffic, (2) full 
standard-Ethernet compatibility for real-time communication, and (3) high Ethernet-bandwidth 
utilization for standard-Ethernet traffic. Due to the fact that TT traffic in TTEthernet systems 
takes precedence over standard-Ethernet traffic, the flow of standard-Ethernet traffic depends 
only on a TT-traffic communication schedule. The objective of this thesis is to investigate a TT-
traffic scheduling approach for obtaining the highest performance of standard-Ethernet traffic 
coexisting with the TT traffic in the same TTEthernet systems. The throughput and timing-
performance of standard-Ethernet traffic are evaluated in both simulated and physical 100-Mbps 
TTEthernet systems. For the simulated TTEthernet systems a simulation model for TTEthernet 
systems is developed and implemented.   
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CHAPTER 1 

Introduction 

 

Ethernet technology is well established and widely used in home and office networks, known 
as Local Area Networks (LANs). The benefits of using Ethernet networks include: the low cost 
of commercial-off-the-shelf Ethernet devices, and the extremely high bandwidths available; for 
example with Fast Ethernet and Gigabit Ethernet. Additional benefits include that Ethernet is an 
open standard, defined in IEEE 802.3 [IEE05a]. Today’s Ethernet technology is based on 
switched Ethernet [IEE04], where the Ethernet controllers of computer nodes are interconnected 
via switching devices called Ethernet switches. Switched Ethernet eliminates the disadvantages 
of traditional Ethernet based on a bus topology; i.e. switched Ethernet has full-duplex 
communication and no collision occurrence. Furthermore, advanced features of switched 
Ethernet enhance Ethernet utilization, e.g. virtual LAN [IEE05b]. Ethernet technology used in 
open world systems [KAGS05] such as the Internet has therefore become desirable for adoption 
in distributed systems of closed-world systems [KAGS05]; such as industrial automation 
networks, aerospace networks, and automotive networks. These distributed systems of closed-
world systems require temporal guarantees for message communication. The fact that switched 
Ethernet was not originally designed for real-time communication is therefore problematic. With 
advancements in modern Ethernet technology however, switched Ethernet can now obtain real-
time communication guarantees under certain conditions; i.e. very light traffic loads [LL02] 
[LL06a] or clearly separated routes of Ethernet frames in Ethernet switches [Ana02]. However, it 
would be futile for distributed real-time systems to be unable to utilize the high bandwidths 
available from standard Ethernet. In the past decade there have been many designs [Fel05] 
[Dec05] that have adapted standard Ethernet to be capable of: providing temporal guarantees, 
and obtaining a better utilization of today’s Ethernet bandwidths for real-time communication. 
Such a standard Ethernet-based protocol augmenting with temporal guarantees is called real-time 
Ethernet [Fel05] [WK06]. 

Besides achievable real-time performance of real-time Ethernets, one of the main driving forces 
behind applications of real-time Ethernets is the increasing demand for a seamless connectivity 
between Ethernet networks in open world systems and real-time Ethernet networks in closed-
world systems. For example, in the industrial automation domain [JISW09], the demand for 
connecting between the administrative tasks of a company (office networks) and the factory floor 
(fieldbus networks) has increased. Another interesting point of adapting standard Ethernet for 
use in closed-world systems is that integrating all types of applications into a single network 
based on standard Ethernet is potentially very cost effective. One example from the automotive 
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domain shows that the Ethernet-based unified communication network infrastructure, which is 
used for all application types in a car including: infotainments, multimedia, and engine control 
applications, reduced both the complexity and cost of such typical network infrastructures 
[MEM08]. Another outstanding protocol of real-time Ethernet for integrating all application 
types into a single network infrastructure is TTEthernet [TTE08]. TTEthernet was designed to be 
a novel unified communication architecture, based on Ethernet, that meets the requirements of all 
applications types; from non real-time applications (e.g. web browsers), to real-time applications 
(e.g. multimedia applications), to the most demanding safety-critical real-time applications (e.g. 
fly-by-wire applications). Therefore, TTEthernet is inherently suited for mixed-criticality 
systems [SB08] [SBH09]. 

 

1.1 Problem Statement 

In real-time Ethernet networks, messages can be classified into two message classes: non real-
time messages and real-time messages [Ste06]. The non real-time messages are standard 
Ethernet messages that are transported according to the standard Ethernet specification [IEE04]. 
These non real-time messages can be seen in standard Ethernet networks, e.g. office or Internet 
networks. The real-time messages are standard Ethernet-based messages that are transmitted with 
temporal guarantees; i.e. transmission latency and jitter are bounded within their specified 
values. It is imperative that non real-time messages do not interfere with the timely behavior of 
real-time messages, which coexist in the same real-time Ethernet network. 

 

1.1.1 Dataflow integration in a real-time Ethernet network 

Dataflow integration in a real-time Ethernet network denotes that both non real-time traffic 
(standard Ethernet traffic) and real-time traffic can coexist in the same physical network. Most 
real-time Ethernet networks are capable of dataflow integration. We classify dataflow integration 
according to the network topology of real-time Ethernets: line or ring topology, or star topology. 
These are described as follows: 

 Line or ring topology: Some protocols of real-time Ethernets are suitable for a line or 
ring topology, e.g. Ethernet POWERLINK [EPS08] and SERCOS III [SER07]. These 
protocols allow non real-time traffic to flow in the network if and only if all devices are 
in a synchronized state. In an Ethernet POWERLINK network, only one device of the 
controlled nodes is granted permission from the managing node to send non real-time 
messages in the asynchronous phase. Therefore, the bandwidth utilization for non real-
time traffic in an Ethernet POWERLINK network is low. For SERCOS III, the protocol 
uses a logical ring network structure, and devices can only transmit non real-time 
messages in a certain interval (called the non real-time channel) of a communication 
cycle. The non real-time channel in a SERCOS III device is established after the 
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communication cycle is synchronized. In other words, the non real-time messages in a 
SERCOS III device are delayed until the non real-time channel of the communication 
cycle is already established. This makes SERCOS III unable to fully utilize Ethernet 
bandwidths for non real-time traffic. 

 Star topology: Some real-time Ethernets were designed to be suitable for a star network 
topology; e.g. PROFINET IRT [PI09], Ethernet/IP [Pau01], MODBUS-TCP [Acr05], 
AFDX [Con05], and TTEthernet [TTE08]. Each of these protocols is further described in 
Chapter 3 - State of the art. These protocols do not change the network structure of 
modern Ethernet technology, switched Ethernet [LL02]. In a star topology, switching 
devices are responsible for handling both non real-time traffic and real-time traffic. The 
switching devices aim to maintain all functionalities of standard Ethernet switches for 
the transmission of standard Ethernet traffic (the store and forward mechanism), as well 
as adding a mechanism in order to provide temporal guarantees for real-time traffic. 
Therefore, these real-time Ethernets allow legacy Ethernet devices to connect to the 
networks without modification. This is not the case for AFDX however, which uses a 
bandwidth limiting approach whereby a legacy Ethernet device cannot directly connect 
to an AFDX Switch. This is because there is no mechanism to handle the non real-time 
messages interfering with the timely behavior of the real-time messages. In other real-
time Ethernets based on a star topology however, there are mechanisms that handle both 
real-time traffic and non real-time traffic, so that the non real-time messages cannot 
interfere with the timely behavior of real-time messages (in the same real-time Ethernet 
device). With these protocols, non real-time messages from legacy Ethernet devices can 
be arbitrarily sent into the connected switching device. These non real-time messages 
can be stored in the buffer of the switching device, and then sent out if there are no real-
time messages currently transmitting on the same output port. The bandwidth utilization 
for non real-time messages in these real-time Ethernet networks is higher than the ones 
in real-time Ethernet networks using a line or ring topology. Therefore, we aim to focus 
the dataflow integration in real-time Ethernet networks based on a star topology. Based 
on our literature review we classify the dataflow integration mechanisms of a switching 
device, in real-time Ethernet networks based on a star topology, into three main 
approaches: Message Prioritization, Two-channel Partition, and Time-triggered 
Communication Scheduling. 

1. Message Prioritization approach: This approach utilizes the tag field of an Ethernet 
frame, as defined in IEEE 802.1Q [IEE05b]. The tag value is used to identify certain 
types of traffic. Real-time Ethernets using this approach (e.g. Ethernet/IP and 
MODBUS-TCP) make use of standard, commercial-off-the-shelf Ethernet switches 
as switching devices. A real-time message is prioritized over non real-time messages 
by specifying the higher-priority traffic class in the tag field of the real-time 
message. An Ethernet switch queues traffic of the same class on a first-come, first-
served basis. A real-time message in the Ethernet switch cannot preempt a non real-
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time message that is currently transmitting. Therefore, such real-time messages will 
be delayed until the non real-time message has been completely transmitted. With 
this approach, more than one real-time message with the same specified priority 
could be simultaneously received at a switching device. Consequently, some of the 
real-time messages may be delayed, and in turn miss their deadlines. This approach 
is recommended for use in networks where the amount of traffic is limited. Such 
limiting can be achieved using the recommendations for Ethernet/IP [Ana02], or 
bandwidth limiting mechanisms (e.g. the Token-bucket approach [ARI06]) for 
AFDX. Using such methods, the timely behavior of all real-time messages can be 
maintained. 

2. Two-channel Partition approach: This approach is used in PROFINET IRT. With 
this approach a communication cycle is partitioned into two channels: a real-time 
channel and a non real-time channel. The real-time messages can be transmitted only 
in the real-time channel, whereas the non real-time messages can be transmitted only 
in the non real-time channel. In a switching device, the non real-time messages have 
to wait until the time interval of the non real-time channel arrives. Additionally, the 
non real-time messages can only be forwarded if the switching device is in the 
synchronization state. Otherwise, the non real-time messages remain in the buffer of 
the switching device. This approach has substantial advantages over the Message 
Prioritization approach, namely that the non real-time messages cannot interfere with 
the timely behavior of the real-time messages in a switching device. Furthermore, the 
real-time traffic in this approach can utilize high Ethernet bandwidth without a 
quantity limitation on the real-time traffic. The major drawback of this approach is 
that non real-time messages cannot pass through a switching device if 
synchronization in the switching device is not established. 

3. Time-triggered Communication Scheduling approach: This approach is used in 
TTEthernet [TTE08], which supports mixed-criticality applications [Mir09] 
[SMJ08]. With this approach, the transmission of real-time messages is performed 
according to a predefined, time-triggered communication schedule (TT schedule). A 
switching device called a TTE switch handles the real-time messages according to the 
TT schedule, and the non real-time messages according to the standard Ethernet 
specification (i.e. store and forward). All the time-triggered Ethernet devices (TTE 
switches and TTEthernet end systems) in a TTEthernet network contain a common 
TT schedule. The real-time messages can pass through a TTE switch if two 
conditions are satisfied: the TTE switch is in the synchronization state, and the real-
time messages arrive in the duration of the specified acceptance window [TTE08]. 
TTEthernet End systems that are in the synchronization state enable the transmission 
of real-time messages with respect to the predefined TT schedule. A real-time 
message is called a time-triggered message, and a non real-time message is called an 
event-triggered message. According to [SBH09], there are three integration methods 
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to solve the confliction between time-triggered and event-triggered messages in a 
TTE switch. These are described as follows: 

 Preemption method: An event-triggered message transmitting at a TTE switch is 
preempted, as soon as a time-triggered message arrives. The event-triggered 
message will therefore have to be re-transmitted as soon as possible. 

 Timely Block method: With a predefined TT schedule, a TTE switch can relay an 
event-triggered message, if it is guaranteed that the transmission of the event-
triggered message will have completed before a time-triggered message has to be 
relayed. Otherwise, the event-triggered message is blocked in the buffer of the 
TTE switch, so that the time-triggered message can be timely relayed. 

 Shuffling method: An event-triggered message continues to be relayed by the 
TTE switch when a time-triggered message arrives. The time-triggered message 
will be transmitted after the relay process of the event-triggered message is 
completed. 

 

1.1.2 Performance of standard Ethernet in a TTEthernet network 

Besides the determinism property of real-time traffic in TTEthernet, another outstanding feature 
of TTEthernet is that of high bandwidth utilization for the non real-time, standard Ethernet 
traffic. This high utilization is possible because non real-time messages in a TTE network can 
pass through a TTE device irrespectively of synchronization state. The flow of non real-time 
traffic in a TTE device can therefore occur during either the non-synchronization state, or the 
synchronization state. In the non-synchronization state, the non real-time messages can pass 
through an unsynchronized TTE device according to the standard Ethernet specification [IEE04]. 
In the synchronization state, non real-time messages can only pass through the synchronized 
TTE device when there are no time-triggered messages requiring transmission (according to the 
time-triggered communication schedule). If a real-time message is relaying at a TTE device, the 
non real-time messages are delayed, remaining in the device's buffer.  In other words, non real-
time messages cannot interfere with the timely behavior of the real-time messages. The 
performance of non real-time traffic in a TTE network is strongly dependent on the scheduling of 
time-triggered traffic. In this thesis we propose a new scheduling approach for the time-triggered 
traffic in a TTEthernet network. The purpose of this scheduling approach is to optimize the 
performance of standard Ethernet traffic. We present a mathematical analysis of each of the 
possible TT schedules obtained during the induction of our scheduling approach. We then report 
the most optimal TT schedule. In addition, we propose a TTEthernet simulation model based on 
discrete event simulation. The behavior of switched Ethernet in this simulation model is 
calibrated using existing results from published documents. We prove our scheduling approach 
using both the simulation model and experiments on a real TTE system. The results show that 
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the full performance of standard Ethernet is possible in a TTEthernet system using TT schedules 
from our scheduling approach. 

 

1.2 Structure of Thesis 

The remainder of this thesis is organized as follows: 

 Chapter 2 gives an overview of the basic terms and concepts of distributed real-time 
systems. The two paradigms of distributed communications: time-triggered and event-
triggered, are briefly described, as is the determinism property in real-time 
communication. This chapter also describes the terms of open and closed world systems. 
Lastly, the concept of discrete event simulation is addressed, upon which our proposed 
simulation model is based. 

 Chapter 3 presents the state of the art of real-time Ethernet. Real-time Ethernets from the 
industrial automation domain (e.g. Ethernet/IP, SERCOS III, and PROFINET) and the 
aerospace domain (e.g. AFDX) are described, as is TTEthernet. 

 Chapter 4 presents our TTEthernet simulation model. Firstly the relationship between 
simulation time and local clock time is described. All the system components of a 
TTEthernet system are then explained. The calibration results from simulated TTEthernet 
systems based on our simulation model with the results from published papers are shown. 

 Chapter 5 proposes our TT-traffic scheduling approach for TTEthernet systems. With this 
approach, the possible time-triggered communication schedules of given time-critical 
applications are obtained; i.e. periods and offsets of the time-triggered traffic from the 
given time-critical applications. The mathematical analysis of this approach is expressed 
to show the bandwidth utilization of the standard Ethernet traffic for each obtained 
schedule. Two possible forms of offsets in the schedules are described: continuous offset 
form and distributed offset form. Examples of time-critical applications are given. The 
optimized schedule for these time-critical applications is then obtained using our 
scheduling approach. 

 Chapter 6 presents and analyzes the results of Ethernet performance in a TTEthernet 
system using our proposed scheduling approach.  The specified periods of given time-
critical applications are used in our TT-traffic scheduling approach. The experimental 
setups of TTEthernet system are fully described. This includes: the network structure of 
TTEthernet systems, how to generate the time-triggered messages from a TTEthernet end 
system regarding the obtained schedules, and how to generate standard Ethernet 
messages from commercial-off-the-shelf Ethernet devices. 
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 Chapter 7 presents the conclusion of this thesis, and gives an outlook for future work. 
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CHAPTER 2 

Basic Concepts 
 

This chapter presents the basic concepts and terminology used in this thesis. The first section 
begins with an overview of distributed real-time systems, and the classification of 
communication systems with regard to communication trigger. The second section focuses on 
the basic concept of time-triggered communication, a fundamental part of TTEthernet. It 
comprises the following relevant topics: reference clock, local clock, global time base, clock 
synchronization, cluster cycle, message permanence, and determinism. The third section, 
Ethernet technology, describes the history and operational principle of shared and switched 
Ethernet. In the fourth section we present the performance metrics of switched Ethernet, which 
are used to quantify channel utilization (throughput) and timing behavior (latency). We also 
provide an overview of mixed-criticality systems in a TTEthernet network. This chapter ends 
with the concept of discrete event simulation, used in building our simulation model for 
TTEthernet systems. 

2.1 Distributed Real-Time Systems 

A real-time computer system is a computer system in which correctness of the system 
behavior depends not only on the logical results of the computations, but also the physical 
instant at which these results are produced [Kop97, pp.2]. A real-time computer system and its 
environment form the real-time system depicted in Fig. 2.1. A real-time system can be 
decomposed into the following three sub-systems (called clusters): operator cluster, 
computational cluster, and controlled cluster [Kop97]. The operator cluster and controlled 
cluster form the environment of a real-time system, whereas the computation cluster refers to the 
real-time computer system. Humans can deal with a real-time computer system at the operational 
cluster via input devices (e.g. keyboard or push button) and output devices (e.g. display panel or 
touch screen). The controlled objects in the controlled cluster are interfaced with the operational 
cluster through sensors (e.g. thermocouple, or tachometer) and actuators (e.g. motor or electrical 
heater). The real-time computer system must react to stimuli from the environment (controlled 
objects and operators) within time intervals specified via deadlines. A deadline is a bounded 
instant by which a real-time computer system must react in order to satisfy the required timing 
behavior. With regard to the consequence of missing a specified deadline, real-time computer 
systems are classified into two categories: hard real-time computer systems and soft real-time 
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computer systems.  If the consequence of missing a deadline may result in catastrophe (e.g. 
human injury), such a real-time computer system is called a hard real-time computer system. A 
hard real-time system is also called a safety-critical real-time computer system [Kop97]. If the 
consequence of missing a deadline will not result in a catastrophe, only degrade system 
performance, such a real-time computer system is called a soft real-time computer system.   

 

     

 

 

 

 

Fig. 2.1: A real-time system 

A distributed real-time system is a real-time system that consists of a set of real-time computer 
systems (called nodes) that are distributed and interconnected via a real-time communication 
system. Each node in a distributed real-time system can be divided into two sub-systems: a 
communication controller and a host computer. The interface between the host computer and the 
communication controller is called the communication network interface (CNI). The set of 
communication controllers and the common communication network form the communication 
system [Obe05]. The communication system is used for transporting messages from the CNI of a 
sender node to the respective CNI of the receiver nodes. A real-time communication system is a 
communication system in which the correctness of message communication does not only 
depend on valid message content, but also on the timely delivery of messages. 

 

 

 

 

 

 

 

Fig. 2.2: A distributed real-time system 
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2.1.1 Characteristics of a communication channel  

The characteristics of a communication channel are determined by the following two 
properties: bandwidth and propagation delay. 

 Bandwidth is the maximum number of message bits that can be transmitted in a 
communication channel in a single unit of time. For example, the bandwidths of Fast 
Ethernet and Gigabit Ethernet are 100 Mbps and 1000 Mbps, respectively. Bandwidth is 
a physical characteristic of a channel, and thus remains constant over time. 

 Propagation delay is the time interval that a message bit takes to get from one end of a 
communication medium to the other. The propagation delay of a copper cable is 
approximately 2/3 of the transmission speed of light in vacuum (i.e. 2/3 * 300,000 
km/second). 

 

2.1.2 Event and State Messages 

There are two types of message information: event information and state information [Kop97]. 
Event information is the value of an event (a significant change in the value of a state variable), 
whereas state information is the current value of a state variable (e.g. temperature). Message 
semantics related to event information and state information are referred to as event messages 
and state messages [Kop97].  

 Event messages contain event information sent from a sender node exactly once after the 
occurrence of an event. When event messages have arrived at a receiver node, they are 
queued and then read sequentially. Each message is discarded after it is read. This 
denotes that the data in the queue is consumed by the reading process of the host 
computer at the receiver node.  

 State messages carry state information. The communication controller of a sender decides 
autonomously to send a state message, i.e. it is independent of event occurrences or any 
control signal from the host computer of the sender. The data in a state message is always 
stored in the same place at the CNI of the sender node. Since a state variable is valid for 
a time period, the host computer of the sender node can replace the old state data with the 
new data. The communication controller reads the data periodically from the CNI of the 
sender node, and then sends a state message with that data. The data stored at the CNI is 
not consumed by the sending process. The state message data that arrives at the receiver 
node overwrites the old data. The reading process of the host computer at the receiver 
node does not remove the data from the CNI, i.e. the data is not consumed by the reading 
process of the host computer. 
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2.1.3 Event-triggered and Time-triggered Communication Systems 

A communication trigger is an event that initiates the transmission of a message in the 
communication system of a distributed real-time system. Communication triggers are classified 
as either: event-triggered or time-triggered [Kop97]. The difference between these triggers 
depends on the sources of control signals: event-triggered control signals are derived from a 
significant change of state in the environment of a host computer, whereas time-triggered control 
signals are derived from a predefined instant in a communication system. Communication 
systems are classified according to their communication triggers as either: time-triggered 
communication systems or event-triggered communication systems [Kop97] [Obe05]. These are 
described as follows:  

 Event-triggered communication systems: The control signals of an event-triggered 
communication system are external to that system. The decision of when to send a message 
in an event-triggered communication system is made by the application software in a host 
computer. Transmission of all messages in an event-triggered communication system is 
initiated whenever the CNIs receive control signals (interrupt mechanisms) from the host 
computers. Messages that are generated by control signals from event triggers are called 
event-triggered messages. An example of a well-known communication protocol that 
transports event-triggered messages is Ethernet. In an event-triggered communication 
system, more than one node can simultaneously transmit their respective messages to a 
particular receiving node. In a shared Ethernet network, the Carrier Sense Multiple 
Access/Collision Detection (CSMA/CD) mechanism resolves the access conflict from the 
concurrently sending messages. However, this causes uncertain network latencies and low 
network utilization. In a switched Ethernet network, the concurrently sending messages will 
be queued in an Ethernet switch. Therefore, some of these messages may be delayed, or 
dropped out of the switch's buffer (this is known as a buffer overflow).  

 Time-triggered communication systems: The control signals of a time-triggered 
communication system reside within that system. Thus the decision of when to send a 
message is taken by the system. All communication controllers in a time-triggered 
communication system must have consistent views of global time, and contain the global 
communication schedule. All the messages in a time-triggered communication system are 
initiated by time-triggers, i.e. the control signals are generated when the progression of global 
time reaches the predefined instant specified in the global communication schedule. In a 
time-triggered communication system, the host computers cannot influence the temporal 
behavior, i.e. no control signals from the host computers are able to cross the CNIs. It is not 
possible for control signal errors to propagate from the host computers to the communication 
system, and vice versa [Kop97]. The messages that are activated by time-triggers are called 
time-triggered messages. An example of a well-known protocol that transmits time-triggered 
messages is the Time-Triggered Protocol (TTP) [KG93].  
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2.2 The concepts of time-triggered communication for TTEthernet  

TTEthernet is a communication protocol that adopted the time-triggered communication 
paradigm into Ethernet networks [KAGS05]. In this section we present the basic concepts of 
time-triggered communication [Kop97], as these are a prerequisite for understanding 
TTEthernet. We describe the following concepts of time-triggered communication: 

 

2.2.1 Reference Clock and Local Clock 

In a time-triggered communication system, each communication controller has an individual 
local clock that is used for capturing the progression of time. The time that is indicated by the 
local clock of a node is called local clock time. Note that the communication controller and the 
host computer of a node can have either the same local clock or individual local clocks. In this 
thesis we consider the host computer and communication controller of a node to share the same 
local clock. The local clock of a node contains a physical clock that consists of a counter, and a 
physical oscillator mechanism. The physical oscillator (e.g. crystal resonator) increases the 
counter value every constant time interval. Each time event in which the counter value is 
increased by a physical oscillator is called a microtick. The granularity of a local clock's time is a 
set of microticks, and is referred to as a macrotick, or simply, tick.  

In abstraction, a reference clock is defined as a clock that operates with a very high frequency, 
and is in perfect agreement with the international standard of time, known as the International 
Atomic Time (TAI) [Kop97]. The TAI officially defined the measure standard of a second based 
on the atomic clock (cesium-133 atom). TAI is a chronoscopic timescale, i.e. a timescale without 
any discontinuities [Kop97, pp. 51]. Therefore, in a time-triggered communication system, we 
refer to the time defined by TAI.   

Clock drift is the drift of a physical clock k between microtick i and microtick i+1. It denotes the 
frequency ratio between this clock k and the reference clock, at the instant of microtick i. The 
drift is determined by measuring the duration of a granule of the clock k with the reference clock 
and dividing it by the nominal number of reference clock microticks in a granule [Kop97]. If the 
value of a clock drift is equal to one, then the physical clock is running at the same speed as the 
reference clock. If the clock drift’s value is greater than one, the physical clock is running faster 
than the reference clock. 

Drift rate is a practical term that expresses the clock drift of a physical clock. The definition of 
drift rate is the absolute value of the subtraction between the clock drift and 1, as expressed in 
Equation 2.1. A physical clock which has a drift rate of zero is called the perfect clock.    

Drift rate = |clock drift -1|……………………………………………………………………..(2.1)    
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In reality, physical clocks are not perfect clocks. This is due to varying drift rates caused by the 
influence of environmental conditions, e.g. a change of the ambient temperature, a change of the 
voltage level supplied into a resonator, or the aging of a resonator [Kop97]. The maximum drift 
rate of a resonator in a physical clock is guaranteed, and specified in the data sheet from the 
manufacturer. Typical maximum drift rates of resonators are in the range of 10-2 to 10-7 sec/sec 
[Kop97].  

The drift offset of two physical clocks is the time difference between their respective microticks. 
The precision of all physical clocks in a time-triggered communication system denotes the 
maximum drift offset between any two physical clocks during a specific interval of interest.  

 

2.2.2 Global Time and Clock Synchronization 

For the operation of a time-triggered communication system, the global-time base is of 
significant importance. This is because each communication controller in a time-triggered 
communication system transmits its time-triggered messages with respect to the common 
communication schedule. A prerequisite to the transmission of time-triggered messages is that 
the system-wide global-time base at each communication controller must have already been 
established via a clock synchronization mechanism. The local view of the global time of a node 
is indicated by its local clock time.  

Due to the fact that the drift rates of any two physical clocks will not be identical, any two local 
clocks will always run apart. The clock synchronization process in a time-triggered 
communication system will bring the local clock times of all nodes into close relation with each 
other (i.e. within a specified precision). Each node must periodically synchronize its local clock 
with the local clocks of all other nodes in order to establish a global time base with a specified 
(bounded) precision. The resynchronization period is called the resynchronization interval (Rint). 
The (possible) maximum drift offset of any two physical clocks in a time-triggered 
communication system during the resynchronization interval is not greater than 2ρRint, where ρ 
is the maximum specified drift rate of the two physical clocks.  

In a time-triggered communication system, there is always the jitter of communication delay; the 
difference between the maximum and minimum transport delays of all messages. Jitter affects 
the transport of a message between two nodes. Therefore, the achievable precision of the clock 
synchronization does not only depend on the drift offset between any two physical clocks, but 
also on the jitter of communication delay. Thus, the clock error of the clock synchronization 
between two nodes is the summation of the clock offset between the two nodes and the deviation 
of the transport delay from the expected one.  
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2.2.3 Cluster Cycle  

A real-time cluster is a set of cooperating computing components that are connected by a real-
time communication system [Kop08]. A time-triggered communication system sends and 
receives messages according to the (common) communication schedule, which is derived from 
scheduling time-triggered traffic into a cluster cycle. A cluster cycle is an interval of time 
containing events of time-triggered message transmissions. The length of a cluster cycle is 
typically designed to be equal to the Least Common Multiple (LCM) of all periods of real-time 
applications in a real-time cluster. All transmission instants of real-time applications in a real-
time cluster are assigned in a cluster cycle using two terms: period and offset. The offset in a 
cluster cycle denotes a point in time which is relative to the cluster cycle reference. The offsets 
of all real-time applications in a real-time cluster are assigned in order to avoid a conflict of 
message transmission. All real-time applications start transmitting their respective time-triggered 
messages at their individual offsets.  Each real-time application sends a time-triggered message 
once every individual period, after the offset time has elapsed. Figure 2.3 illustrates a cluster 
cycle of 6 milliseconds that contains the transmission instants of two real-time applications: 
appl1 and appl2. A period of 3 milliseconds and a 0 second offset are assigned to appl1, while 
appl2 has a period of 2 milliseconds and an offset of 0.5 milliseconds (in its cluster cycle).    

 

 

 

 

 

 

 

Fig. 2.3: A cluster cycle of two real-time applications (Appl1 and Appl2) 

 

2.2.4 Message Permanence  

A message that has arrived at a receiver node becomes permanent at a specific point in time, 
known as the permanence point in time. This point in time occurs when the receiver node knows 
that all messages sent to it, prior to the sending point in time of the current message, have 
arrived. Note that this is on the condition that no messages are lost during transmission. The 
permanence point in time can be considered to be equal to or greater than the sending point in 
time plus the maximum worst-case transport delay (of all communication channels in a real-time 
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cluster). In TTEthernet, the concept of message permanence is used for a precise reestablishment 
of temporal order when receiving synchronization messages at a receiver node. Any receiver 
node in a TTEthernet network knows a priori the permanence point in time (PermanencePIT) of a 
synchronization message. This can be calculated using Equation 2.2. The worst-case transport 
delay (TDWC), which is equal to or greater than the maximum transport delay of synchronization 
messages from all communication channels (in the real-time cluster of a TTEthernet system), can 
be derived from either calculation or measurement. The point in time when a message is received 
at the receiver node is defined as the receiving point in time (ReceivingPIT). A synchronization 
message in a TTEthernet network contains the accumulated delay, called dynamic delay 
(Ddynamic), throughout the communication channel from the sender to the receiver.     

PermanencePIT = ReceivingPIT + TDWC - Ddynamic ……………………………….…………...(2.2) 

 

2.2.5 Determinism 

In a safety-critical distributed system, the real-time communication system must support timely 
and deterministic communication in order to achieve fault-tolerance. For example, replica 
determinism [KG93] demands redundant nodes to take the same decision at approximately the 
same point in time [LM07]. With regard to time-triggered communication, Kopetz [KAGS05] 
defined timely and deterministic multicast transmission channels for safety-critical distributed 
systems with the following three properties:  

1. Given that a message is sent at the send instant tsend, then receive instants treceive at all 
receivers of the (multicast) message will be in the interval (tsend + dmin, tsend+dmax), where 
dmin is called the minimum delay and dmax is called the maximum delay. The difference 
dmax-dmin is called the jitter of the transmission channel. dmax and dmin are a priori known 
characteristic parameters of the given transmission channel.  

2. The receiver order of the messages is the same as the send order. The send order among 
all messages is established by the temporal order of the send instants of the messages as 
observed by an omniscient outside observer. 

3. If the send instants of n (where n>1) messages are the same, then an order of the n 
messages will be established in an a priori known manner. 

For the first property, each message in a timely and deterministic communication channel must 
be transmitted with a small jitter that is known a priori in advance. For the second property, 
receivers must receive all messages in exactly the same order as the send order of senders, even 
in different communication channels. The last property ensures that messages transmitted at 
approximately the same instant and from different independent channels are received in the same 
order at all receivers in an a priori known manner. TTEthernet adopts the principle of time-
triggered communication [KG93] on Ethernet to enable this determinism property.   
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2.3 Ethernet Technology 

     Ethernet is an open standard communication protocol. It was standardized by the Institute of 
Electrical and Electronics Engineers (IEEE) in the IEEE standard 802 part 3 [IEE05a].  Ethernet 
was invented in 1976 at the Xerox Palo Alto Research Center as a local area network, 
connecting: workstations, servers, and laser printers. The data transmission rate of this original 
Ethernet was 2.94 Mbps. This original Ethernet was developed from the concept based on the 
protocol Aloha [Spu00]. According to Abramson [Abr77], pure Aloha obtains a maximum 
channel utilization of approximately 18 percent, and channel utilization of slotted Aloha raises 
utilization up to 37 percent. These utilizations are low (less than 50 percent) because of the 
increasing rate of the collisions under the increasing load. The original Ethernet was an enhanced 
version of Aloha, i.e. the original Ethernet achieved better channel utilization than Aloha.  

 

2.3.1 Ethernet Standard as IEEE 802.3  

The original 10-Mbps Ethernet standard was first published in 1980 by the DEC Intel-Xerox 
vendor consortium [Spu00]. This Ethernet standard that was known as the DIX Ethernet, and 
was entitled: The Ethernet, A Local Area Network: Data Link Layer and Physical Layer 
Specifications. The DIX Ethernet contains the operation and specification of Ethernet for a single 
media system based on thick coaxial cable. The IEEE standard for open Ethernet was first 
published in 1985 with the title: IEEE 802.3 Carrier Sense Multiple Access with Collision 
Detection (CSMA/CD) Access Method and Physical Layer Specifications. The original IEEE 
802.3 standard adopted the original DIX Ethernet standard with few modifications. The original 
IEEE 802.3 standard described media systems based on thick coaxial cable. The next 
development of the original IEEE 802.3 was to use a variety of transmission media (i.e. thin 
coaxial, twisted-pair, and fiber optic cables) in 10 Mbps systems. Higher speed versions of 
Ethernet were introduced and standardized as the supplement of IEEE 802.3 (i.e. in 1995 for 100 
Mbps Ethernet -- Fast Ethernet, and in 1998 for 1000 Mbps -- Gigabit Ethernet).    

   

2.3.2 Shared Ethernet  

The original IEEE 802.3 standard describes 10 Mbps Ethernet in a shared communication 
channel. Ethernet that runs in a communication network based on a shared communication 
channel is called shared Ethernet [Spu00]. Shared Ethernet is where all host computers are 
connected to the same communication channel, and compete with one another for network 
access. The physical connection of a shared Ethernet network is illustrated in Fig. 2.4. Shared 
Ethernet uses a mechanism called Carrier Sense Multiple Access/Collision Detection 
(CSMA/CD) for gaining access to a shared communication channel. The Ethernet standard 
employs the Manchester encoding and decoding [Sei98] for data transmission in network 
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communication mediums. The communication of a shared Ethernet network is half-duplex 
communication, denoting that a node can either send or receive a message at any one time.    

 

 

 

 

 

 

 

 

Fig. 2.4: A shared Ethernet network 

CSMA/CD  

The mechanism of CSMA/CD is briefly explained as follows. Once a node in a shared Ethernet 
network is ready to send an Ethernet frame, the node checks whether the shared medium is idle. 
If the shared medium is idle, the node will transmit the Ethernet frame immediately. Otherwise, 
the node has to wait until the shared medium becomes idle. A message collision may still occur 
however, if more than one node decides to transmit their respective messages at approximately 
the same instant. Each node has the CSMA/CD mechanism for detecting a collision occurrence in 
the shared communication medium. If a node that is sending a message detects a collision 
occurrence, the node will stop transmitting and wait for a random amount of time before 
retrying. The random amount of time is derived from the algorithm: Truncated Binary 
Exponential Backoff [IEE03]. In this algorithm, the IEEE 802.3 standard defines 16 as the 
maximum number of retransmission attempts.  

 

Ethernet Frame Format 

 

 

 

Fig. 2.5: The Ethernet frame format 
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The IEEE 802.3 standard defines the fields in the Ethernet frame format as follows.  

 Preamble Field: A 56-bit pattern of alternating ones and zeros. It is used for 
synchronizing the receiver’s clock to an incoming Ethernet frame.  

 Start of Delimiter (SFD) Field: Indicates the beginning of an Ethernet frame. It consists 
of the following single byte: 10101011. 

 Destination Address Field: Contains a 48-bit value which a receiving node uses to decide 
whether or not an incoming message has to be received or dropped. If a message is sent 
in unicast form, the Destination Address field of the message contains the Media Access 
Control (MAC) address of an intended destination node.  

 Source Address Field: Contains the MAC address of a sending node.  

 Length/Type Field: Indicates either the length of the payload data or the type of an 
Ethernet frame. If the value of the Length/Type field is less than or equal to 1500, this 
value denotes the number of the payload data. If the value is greater than 1536, this value 
is used to indicate which protocol is encapsulated in the payload data of an Ethernet 
frame. In the latter case this field is called an EtherType Field. The meaning of this field 
when it has a range between 1501 and 1535 is undefined. All values of EtherType can be 
accessed at the website [IEE]. Examples of EtherType values are: 0x8000 for Internet 
Protocol version 4 (IPv4), and 0x891d for Protocol Control Frame (PCF, used in high-
availability fault-tolerant TTEthernet).  

 Payload Data Field: Contains either the payload data of an Ethernet frame, or 
encapsulates the sub-frame(s) of a higher-layer protocol(s), e.g. a frame of IPv4. The 
IEEE 802.3 standard defines the length of this field to be in a range between 46 and 1500 
bytes. If the payload data contains less than 46 bytes, it will be padded with zeros until 
the minimum size of the payload data reaches 46 bytes.    

 Frame Check Sequence (FCS) Field: A four-octet field used to verify that the information 
of a received frame was not corrupted during transmission. The method used for the 
verification is known as Cyclic Redundancy Check (CRC). The field contains a 32-bit 
CRC value which is created by the MAC of a sending node, and then recalculated by the 
MAC of a receiving node. If the CRC value of a received frame does not match the 
recalculated CRC of the receiving node, the received frame will be identified as 
damaged, and thus be discarded. Otherwise, the received frame is valid, and will be 
forwarded to other processes in the receiver node.    

The IEEE 802.3 standard defines the minimum idle period between any two consecutive 
Ethernet frames as 96 bit times. The period between two consecutive Ethernet frames is 
called the inter-frame gap (IFG), or inter-packet gap (IPG). The 96 bit times of the IFG 
denotes the transmission time of 96 bits equal to: 9.6 microseconds for 10-Mbps 
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Ethernet, 960 nanoseconds for 100-Mbps Ethernet, and 96 nanoseconds for 1-Gbps 
Ethernet.   

 

Repeaters and Hubs 

A repeater is a two-port device that retransmits the electrical signal it receives as input, typically 
after it has been amplified. This is shown in Fig. 2.6(a). An Ethernet hub, more commonly 
referred to as simply a hub, is a multiport repeater, as depicted in Fig. 2.6(b). A network segment 
of coaxial-based shared Ethernet has a restricted size due to signal attenuation. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6: Repeater (a) and hub (b) connection in a shared Ethernet network 

To extend the network size, multiple network segments can be connected with repeaters or hubs. 
Such multiple network segments form a larger collision domain. In twisted pair-based shared 
Ethernet, a hub forms a network segment that connects end stations and network devices 
together, as depicted in Fig. 2.6(b).  

In shared Ethernet, adding a network device (a hub or repeater) creates a larger collision domain. 
The larger the collision domain, the lower bandwidth utilization will be. This is because there are 
more devices that can try to send an Ethernet frame at any one time.  

 

2.3.3 Switched Ethernet 

The collision problem in a shared Ethernet network is resolved by means of switched Ethernet 
[Fei00] [Puz02]. In switched Ethernet, an Ethernet switch is used instead of a hub to restrict the 
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collision domain into only one node, and one connected port of an Ethernet switch. This is 
shown in Fig. 2.7. No collisions occur in switched Ethernet networks. Switched Ethernet allows 
all devices full bandwidth utilization, i.e. a node can send out an Ethernet message without being 
aware of any collision with other Ethernet frames. Note that this is regardless of Ethernet 
overhead or inter-frame gap. This feature of switched Ethernet implies that the CSMD/CD 
mechanism in shared Ethernet is no longer required.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.7: An Ethernet switch with 4 ports 

 

In contrast to half-duplex communication in shared Ethernet, switched Ethernet allows nodes to 
have their dedicated bandwidth on point-to-point connections support full-duplex 
communication. This means that a node in a switched Ethernet network can send and receive 
Ethernet frames simultaneously, without any collision occurrence. The typical switching method 
in a COTS Ethernet switch is the Store and Forward method [LL02], and is explained as 
follows: Once an Ethernet switch has received an Ethernet message from a sender node, it 
verifies the CRC value in the FCS field of the Ethernet frame with the calculated one. If both 
CRC values are the same, the Ethernet switch checks the address table regarding which port(s) 
the Ethernet frame has to be relayed to. The Ethernet frame will be discarded if its CRC is not 
identical to the calculated one. After the Ethernet switch knows the output port(s), it stores the 
Ethernet frame to the output port's buffer(s). The Ethernet controller(s) of the output port(s) 
forwards the Ethernet frames from the buffer(s) on a First Come First Served basis. The 
significant drawback of using an Ethernet switch is that its buffer could overflow in cases of high 
load conditions (i.e. some of the Ethernet frames receiving at the Ethernet switch could be 
dropped).  
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2.4 Ethernet Performance Metrics 

Switched Ethernet no longer requires the CSMA/CD mechanism of shared Ethernet. Switched 
Ethernet obtains full channel utilization of a link regardless of the overhead of an Ethernet frame, 
or inter-frame gap (IFG). There are many performance aspects of switched Ethernet, i.e. 
throughput, latency, frame loss rate, back-to-back frames, jitter, and bit error rate [Flu08]. Most 
studies presenting results on the performance of a switched Ethernet network are concerned with 
bandwidth, i.e. throughput [PJ05] [PA02] [ASV00] [FO00]. Besides throughput, another 
significant aspect of performance of switched Ethernet involved with timing performance is 
latency [LH04] [LDK10]. Latency is referred to via several terms, e.g. end-to-end delay [HF04] 
[LL02], round-trip time [VVT06], or message delay [KSS07]. Some applications in switched 
Ethernet networks (e.g. voice over IP, and online gaming) demand timing guarantees in message 
transmission. The test report [EAN09] of the European Advanced Networking Test Center 
(EANTC) shows the performance of a gigabit Ethernet switch (Arista’s 7148SX 48-port, 10GbE 
switch) by two performance characteristics: throughput and latency. In this thesis, throughput 
and latency are the key performance measures of standard Ethernet in a TTEthernet system. 
Therefore, the basic concept of throughput and latency in a switched Ethernet network are 
presented in detail as follows:  

 

2.4.1 Throughput 

Network throughput is a measure of how much data can be sent across a network per unit of 
time. Throughput also denotes the average rate of successful message delivery over a 
communication channel. The throughput of a given protocol layer is defined as the number of 
bits per second (bps) transferred from a given layer to its upper layer, as a result of 
communication. In case of the data link layer (MAC layer of Ethernet) of the OSI reference 
model, throughput considers only data which are forwarded to the OSI layer above (the network 
layer). This is always less than the bandwidth utilization at the physical layer due to the overhead 
caused by protocol headers (added at the MAC layer). The detail of channel utilization is 
explained in the Channel Utilization section. It is worth noting that throughput and bandwidth 
are different things. Bandwidth (also called channel capacity) is a measure of the data-carrying 
capacity of a data communication channel, and is thus a constant value. Throughput values 
however tend to vary. The maximum possible throughput of switched Ethernet is always less 
than the bandwidth. This is because throughput does not count the overheads of Ethernet frames 
(i.e. Ethernet headers, Inter-frame gaps). Throughput can be difficult to approximate as it can be 
negatively affected by interference and by other traffic.  
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Maximum Theoretical Throughput 

With regard to switched Ethernet, the maximum theoretical throughput can be calculated with 
respect to the payload data size of an Ethernet frame (see Equation 2.3). 

Given that:  

The maximum theoretical throughput = MTT 

 Payload Data size in bits = PD 

 Preamble size in bits = Pr = 56 bits 

 Start of Delimiter in bits = SFD = 8 bits 

 Ethernet Header size in bits = EH = 112 bits 

 Frame Check Sequence size in bits = FCS = 32 bits 

 Inter-frame Gap size in bytes = IFG = 96 bits 

 Bandwidth = Ethernet bandwidth 

 

MTT = PD/(Pr+SFD+EH+PD+FCS+IFG)*Bandwidth…………………….…………(2.3) 

 

Note that the maximum size of the payload data of an Ethernet frame is 1,500 bytes, and the 
minimum size is 46 bytes. Considering the bandwidth of Fast Ethernet (100 Mbps), the 
maximum theoretical throughput with regard to the maximum size of an Ethernet frame can be 
calculated using Equation 2.1 as 97.53 Mbps. In case of the minimum size of an Ethernet frame, 
the maximum theoretical throughput is 54.76 Mbps. 

 

Channel Utilization 

Channel utilization is also called bandwidth utilization. It is the total number of bits transferred at 
the physical layer to communicate a certain amount of data to a higher layer (the data link later 
for Ethernet), divided by the time taken to communicate the data. Channel utilization is 
expressed as a percentage of the transmission data rate at the physical layer. For the channel 
utilization of switched Ethernet, the data in bits is all bits of all fields in an Ethernet frame 
transmitted at the physical layer (i.e. Preamble, Start of Delimiter, Ethernet header, Payload data, 
and Frame Check Sequence). Channel utilization counts all transmitted frames irrespective of 
whether they are corrupted or correctly received. Note that there are two main points where 
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throughput differs from channel utilization: throughput takes only data in the payload field of an 
Ethernet frame into account; and counts only frames that are received at the intended destinations 
correctly. Channel utilization is typically expressed as a percentage of the data transmission rate 
with respect to channel capacity (Ethernet bandwidth). In switched Ethernet, the maximum 
channel utilization is the maximum possible data rate at the physical layer, and can be calculated 
with respect to Ethernet frame size    (see Equation 2.4). 

Given that:  

The maximum channel utilization = MCU 

 Payload Data size in bits = PD 

 Preamble size in bits = Pr = 56 bits 

 Start of Delimiter in bits = SFD = 8 bits 

 Ethernet Header size in bits = EH = 112 bits 

 Frame Check Sequence size in bits = FCS = 32 bits 

 Inter-frame Gap size in bytes = IFG = 96 bits 

 

 MCU = (Pr+SFD+EH+PD+FCS)/(Pr+SFD+EH+PD+FCS+IFG)*100%............……(2.4) 

 

Note that the maximum and minimum size of the payload data in an Ethernet frame is 1,500 
bytes and 46 bytes, respectively. The channel utilizations of maximum-sized Ethernet frames and 
minimum-sized Ethernet frames are 99.22% and 85.71%, respectively. It is notable that channel 
utilization of maximum-sized Ethernet frames is superior.   

 

2.4.2 Latency  

Latency in a communication network refers to the timing of data transfer, i.e. it is defined as the 
time it takes for a message to traverse a network from transmitter (source) to receiver 
(destination). Latency is an important aspect of performance, and is demanded in delay-sensitive 
applications, e.g. voice over IP, video conferencing [SJR05] [BGM10], or online gaming 
[LDK10]. In some cases, excessive network latency can cause such delay-sensitive applications 
to be unusable. Network latency is referred to using various terms, such as: end-to-end latency 
(or end-to-end delay) [HF04] [LL02] [SJR05], round-trip latency (or round trip time) [VVT06], 
or message delay [KSS07]. These terms refer to the timing performance of message delivery on a 
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network, even if they do not all share a common definition. For example, end-to-end latency is 
the time it takes for a message to get from source to destination, whereas round-trip latency is the 
time it takes for a message to get from source to destination and then back to source. In a 
switched Ethernet network, the transport delay of an Ethernet frame transmitting from the 
Ethernet controller of a source node to the Ethernet controller of the intended destination node, is 
affected by the following sources of latency: 1) Transmission latency at a transmitter, 2) Wire-
line latency, 3) Switch fabric latency, 4) Frame queuing latency in Ethernet switches, and 5) 
forwarding latency at the Ethernet switches. These latency sources are depicted in Figure 2.8.  

(1) Transmission Latency at a transmitter (LT): The transmission latency (LT) (also called the 
transmission time) is the time it takes for an entire Ethernet frame to transmit from the physical 
layer of the Ethernet controller at a transmitter (at the source node in Figure 2.8) into the 
connected transmission line. It can be calculated using Equation 2.5.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.8: Sources of latency in a switched Ethernet network 

LT = FS/TR ………………………………………………………..………………..…(2.5) 

, where LT is the transmission latency, FS is the frame size in bits, and TR is the transmission 
rate in bits per second (or Ethernet bandwidth).  

 

(2) Wire-line latency (LWR): The wire-line latency is the propagation delay of a transmission line. 
It denotes the time it takes for a bit of an Ethernet frame to travel over a transmission line. Using 
copper cable as a transmission line, a signal can travel with a transmission speed of 
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approximately 2/3 of the speed of light (3x108 m/s) in vacuum [Kop97]. The wire-line latency 
can be calculated using Equation 2.6. 

LWR =TL/TS …………………………..………………………………………………(2.6) 

, where LWR is the wire-line latency in seconds, TL is the length of a transmission line in meters, 
and TS is the transmission speed of a signal travelling over a transmission line. For example, if 
the length of a copper cable is 100 meters, the wire-line latency is approximately 0.5 
microseconds (LWR = 100 / (2/3x3x108)). Note that in local area networks, this form of latency is 
negligible compared with the other contributors to latency [Rug08].    

(3) Switch Fabric Latency (LSF): The switch fabric is the component of an Ethernet switch that 
moves an incoming Ethernet message from an input port to an output port(s). Typically the 
switch fabric of an Ethernet switch contains the following functions: the store and forward 
engine, the MAC address table, and the VLAN (Virtual LAN) functions [Rug08]. Therefore, the 
switch fabric of an Ethernet switch introduces delays for message transport in a switched 
Ethernet network. The switch fabric latency value of an Ethernet switch must be specified in its 
product datasheet, e.g. the switch fabric latency on RuggedSwitch® products is 5.2 microseconds 
[Rug08]. Switch fabric latency may be indicated by the forwarding rate, e.g. the forwarding rate 
of the Cisco Catalyst 3560G-48TS Switch based on 64-byte packets is 38.7 Mpps (million 
packets per seconds) [Cis09].      

(4) Frame Queuing Latency (LFQ): Ethernet switches use queues to eliminate the problem of 
frame collisions that exist in shared Ethernet networks. The queue of an Ethernet switch 
performs incoming Ethernet frames on a First Come First Served basis.  Frame queuing 
introduces a non-deterministic factor to latency because it is very difficult to predict exact 
Ethernet traffic patterns on a network. Even though message prioritization was introduced in 
IEEE 802.1Q [IEE05b] to increase the quality of service in an Ethernet switch, the unpredictable 
queuing of multiple frames with the highest priority level is still an issue (in non-deterministic 
latency). Additional problems include that if a low-prioritized Ethernet frame has already started 
transmission, that transmission must be completed before the Ethernet switch begins transmitting 
any new, high-prioritized Ethernet frame(s). Despite the difficulty in predicting frame queuing 
latency, it can be calculated (using Equation 2.7) if the number of preceding Ethernet frames 
(NQ) existing in the queue of an Ethernet switch is known. Note that if there are no Ethernet 
frames buffering the queue of an Ethernet switch, then the frame queuing latency (LFQ) is equal 
to zero. 

 

LFQ ൌ ∑ ሺLFሻ୧
NQ
୧ୀଵ  …………………………...……………………………………..…….(2.7) 
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, where (LF)i is the Forwarding Latency of the ith Ethernet frame in the queue, and NQ is the 
number of Ethernet frames in the queues.  

(5) Forwarding Latency (LF): Forwarding Latency is the transmission latency of an output port 
of an Ethernet switch. The calculation is the same as for the transmission latency of a transmitter.  

   LF = FS/TR ………………………………………….………………………………(2.8) 

The total network latency (LTOTAL) of a switched Ethernet network, starting from the time 
when an Ethernet frame is transmitting from the source node, up until the time when the entire 
Ethernet frame has arrived at the destination node, can be calculated using Equation 2.9: 

 

ை்஺௅்ܮ ൌ ሺௌை௎ோ஼ாሻ்ܮ ൅ ௐோሺ௧௢௧௔௟ሻܮ ൅ ∑ ൫ܮௌி ൅ ிொܮ ൅ ி൯௜ܮ
ேೄೈ
௜ୀଵ  …………………..(2.9) 

 

, where the number of Ethernet frames in each of the queues of the Ethernet switches is known.   

 

2.4 Mixed-criticality systems 

TTEthernet supports mixed-criticality systems, i.e. applications with different criticality levels 
interacting and coexisting in a single communication infrastructure. The time-triggered 
communication paradigm [KG93] enables deterministic communication in TTEthernet. This 
means that TTEthernet can obtain temporal guarantees for hard real-time applications, and 
support fault-tolerant real-time systems [KAGS05]. TTEthernet provides a set of time-triggered 
services that are implemented on top of standard Ethernet (IEEE802.3) [IEE05a]. In addition to 
time-triggered communication, TTEthernet was also designed to be fully compatible with 
standard Ethernet. This means that commercial-off-the-shelf (COTS) Ethernet devices can, 
without modification, directly connect to TTE switches for transmission of standard Ethernet 
traffic. A COTS Ethernet device, which transmits standard Ethernet frames in an event-triggered 
manner [HRB07], cannot interfere with the timely behavior of time-triggered messages. 
TTEthernet allows applications with bandwidth constraints (e.g. multimedia applications, AFDX 
applications [Con05]) to coexist in the same communication infrastructure. Thus, TTEthernet 
classifies traffic for mixed-criticality applications into three different traffic classes: time-
triggered traffic, rate-constraint traffic, and best-effort traffic. The details of these traffic classes 
are given in the TTEthernet section in Chapter 3 – State of the art.    
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2.5 Discrete Event Simulation 

There are two main types of simulation: continuous simulation and discrete event simulation 
[OB09]. Continuous simulation is suitable for systems where the state variables change 
continuously with respect to the progression of time. Discrete event simulation is suitable for 
systems where the state variables change in discrete times (discrete time steps). In a discrete 
event simulation, the simulation time advances as the next event occurs, i.e. the duration of each 
time step is uncertain because the next event could occur at any point in simulation time. In a 
continuous simulation run using a digital computer, the size of the time steps are equal, and so 
sufficiently small that there are no transitions within the system between any two consecutive 
time steps. In this thesis, we found discrete event simulation to be the most suitable for a 
TTEthernet system. This is because the continuous simulation issue regarding time step 
transitions is not a problem in a discrete event simulation. In addition to this advantage, a 
discrete event simulation can also increase the efficiency of executing a simulation model for a 
TTEthernet system (in which event-triggered traffic may occur at any point). Therefore, we have 
developed a simulation model of a TTEthernet system based on discrete event simulation.   

 

Java-based discrete event simulation 

We use the Java runtime environment and the Java library J-Sim [JSim] for implementing our  
TTEthernet simulation model. J-Sim is an object-oriented library for the development of java-
based discrete event simulations. It is written purely in Java, is freeware, and is based on known 
principles from the Simula language [Kac02].  

With regard to discrete event simulation, every simulation has its own time, called the simulation 
time. The simulation time represents a reference clock time, i.e. it has a drift rate of zero. One 
simulation step in a distributed event simulation executes one event in the common event list. 
This event occurs at one exact point in the simulation time. Two or more simulation steps can be 
executed at the same simulation time.  New simulation steps can be created dynamically. Once 
the execution of the current simulation step has finished, the next one to be executed is 
determined from the common event list. In J-Sim, all simulation events are stored in the common 
event list, called the simulation calendar. An event is an object containing information about an 
executed point in the simulation time (timestamp) and a process that will be run at that time. 
When a new event is put into the simulation calendar, it is sorted in ascending order of the 
simulation time. Therefore, the event with the lowest timestamp will be removed and executed 
first. Each event is put in the simulation calendar by either itself or other events with a known 
point in the simulation time. J-Sim provides a step() method in the class JSimSimulation, for the 
execution of a single simulation step.  The event processes in the simulation calendar are 
instantiated from the classes inherited from the class JSimProcess. Each event process has a life() 
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method, containing the code describing its process behavior. There are five main methods the 
processes use to interact with the simulation calendar. These are described as follows:   

 Activate (point in simulation time): Inserts a new event into the simulation calendar. The 
process which is currently executing can use this method to activate any other processes.  

 Hold (time interval): Temporarily suspends the currently running process (in the 
simulation calendar) for the specified time interval. This method can only be invoked by 
the currently running process. 

 Passivate (): Suspends the currently running process by dropping it from the simulation 
calendar. The process stays out of the simulation calendar until another process invokes 
its activate method. This method can only be invoked by the currently running process. 

 Cancel (): Removes a specified process from the simulation calendar. The currently 
running process can invoke this method on itself as well as on any other processes. A 
process that was invoked by this method stays out of the simulation calendar until another 
process invokes its activate method. 

 Reactivate (): Re-inserts the currently running process into the simulation calendar. This 
occurs at the current point in simulation time. All other events at the same point in 
simulation time will be executed beforehand.  
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CHAPTER 3 

State-of-the-art 
 

Ethernet, which is widely used in home and office computer networks, was originally not 
designed for real-time communication. Standard Ethernet is not suitable for real-time 
communication, as it is not a timing-deterministic communication protocol [Dec05] [Fel05]. 
With the advancement of modern Ethernet technology, bandwidths are extremely high (as seen 
in Fast and Gigabit Ethernet technologies). This is especially true when compared with other 
modern communication protocols, such as: Flexray from the automotive domain (10 Mbps) 
[NHB05], Profibus from the industrial automation domain (12 Mbps), and ARINC 429 from the 
aerospace domain (100 kbps) [SV08]. Besides high Ethernet bandwidth, the cost of commercial-
off-the-shelf (COTS) Ethernet devices is low. Therefore Ethernet, which is conventionally used 
in open-world systems [KAGS05], is attractive for use in real-time communication networks 
demanded by closed-world systems [KAGS05] (e.g. fly-by-wire systems, fieldbus systems, and 
so on).  

Over the past decade many solutions have been developed to adopt standard Ethernet to be 
capable of providing the temporal guarantees required by real-time communication networks 
[Fel05] [Dec05]. Such solutions (i.e. standard Ethernet-based protocols augmenting with 
temporal guarantees) are called real-time Ethernet [Fel05] [WK06]. Most solutions of real-time 
Ethernet have emerged from the industrial automation domain. Examples of such solutions are: 
PROINET IO, EtherNet/IP, Ethernet POWERLINK, EtherCAT, Profinet and SERCOS III 
[Dec05] [Fel05]. In the avionics domain, standard Ethernet was also used in safety-critical real-
time systems. Two such systems are AFDX [Con05] and TTEthernet [TTE08]. We have selected 
interesting protocols of real-time Ethernet that are dominant in the current market and academic 
research. These are: EtherNet/IP, PROFINET, MODBUS-TCP, Ethernet POWERLINK, 
EtherCAT, SERCOS III, AFDX, and TTEthernet. The following significant aspects of these 
protocols will be described in the sections that follow: protocol structure, functionality, 
performance, and their ability to coexist with legacy Ethernet devices.   

 

3.1 EtherNet/IP 

EtherNet/IP (Ethernet/Industrial Protocol) [Pau01][Odv06] is an industrial communication 
protocol developed and maintained by ControlNet International (CI), Open DeviceNet Vendors 
Association (ODVA), and the Industrial Ethernet Association (IEA). EtherNet/IP is an open 
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application-layer protocol that runs on top of the transport layer (TCP or UDP) of the TCP/IP 
protocol model. It uses the open object-oriented CIP (Common Industrial Protocol) as the 
application layer, as depicted in Fig. 3.1. The CIP is useful for interoperability between an 
industrial communication network (an Ethernet/IP, ControlNet or DeviceNet network) and a 
standard-Ethernet network. EtherNet/IP offers a real-time solution by using strict 
recommendations [Ana02], but it is still not deterministic. It is also not a hard real-time 
communication protocol due to both: variable delays in the Ethernet/IP protocol stack, and 
uncertain queuing delays occurring at the Ethernet switches.  

 

 

 

 

 

 

 

Fig. 3.1: The EtherNet/IP protocol stack and TCP/IP protocol model 

3.1.1 Structure and Functionality of EtherNet/IP 

EtherNet/IP is an application-layer protocol that runs on top of the transport layer of the TCP/IP 
protocol model.  It employs both TCP (Transmission Control Protocol) and UDP (User 
Datagram Protocol) for message transmission. At the operation initialization of Ethernet/IP, TCP 
is used for establishing a connection between distributed devices. An EtherNet/IP message based 
on TCP is called an explicit message, as shown in Fig. 3.2. The transmission of an explicit 
message is reliable, but there is no timing guarantee. This is due to the potential retransmission 
of an explicit message in the TCP/IP mechanism. EtherNet/IP uses UDP for real-time 
communication in both unicast and multicast transmission forms. An Ethernet/IP message based 
on UDP is called an implicit message, as shown in Fig. 3.2. Implicit messages are exchanged 
based on the producer-consumer model, where a single transmitting device (producer) sends a 
message to many receiving devices (consumers) at a time. This producer-consumer model 
performs its operation based on an Internet Protocol (IP) multicast service (i.e. the service of the 
producer-consumer model is mapped to an Ethernet multicast service). An implicit message 
contains only time-critical data, whereas an explicit message includes command information. 
According to [Pau01], there are four kinds of implicit messages available in the CIP 
specification: polled, change of state, cyclic and strobed. Cyclic messages are preferred for 
implicit message exchange in EtherNet/IP networks. They are produced by a producer device 
according to a predetermined schedule. A consumer device accepts an arriving cyclic message if 
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and only if the connection between those devices has been established. The mechanism of 
Ethernet/IP connection establishment provides a timeout mechanism that can detect a data 
delivery problem before any real-time messages are transmitted. Although Ethernet/IP employs 
implicit messages for real-time communication, the transport delays of implicit messages in an 
Ethernet/IP network are uncertain. This is due to variable delays in the Ethernet/IP protocol 
stack, and queuing delays occurring at Ethernet switches. With the advent of extremely high 
Ethernet-bandwidth (i.e. Fast and Gigabit Ethernet), EtherNet/IP networks are suitable for some 
real-time applications, but not for high-speed real-time systems (e.g. high-speed motion control 
systems).  

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: Explicit and implicit messaging of Ethernet/IP 

 

CIP (Common Industrial Protocol)  

Ethernet/IP extends commercial-off-the-shelf standard Ethernet with CIP, as shown in Fig. 3.2. 
CIP proposes an interoperability platform for manufacturing applications from different venders 
(i.e. so that devices produced by different vendors can communicate with each other without 
modification). Therefore, messages from devices in EtherNET/IP networks can transmit to 
devices in other kinds of networks (e.g. DeviceNet and ControlNet networks) without using a 
gateway device. CIP makes devices from different vendors compatible with each other by using 
an object model approach. The object model used in CIP is called the CIP object model. CIP also 
provides a suite of services for: control, configuration, and data collection. These services can be 
transported via either implicit or explicit messages. Each device from a manufacturer is defined 
using their identification information, called the device profile.  
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CIP Object Model  

CIP is an object-oriented protocol at the application layer of the TCP/IP protocol model. Each 
CIP object contains attributes (data), services (commands), connections, and behaviors (reactions 
to events). Objects that behave identically in two or more devices are grouped together.  The 
grouping of these objects in a device is referred to as the object model. The concept of the object 
model supports interoperability of type-identical devices from different vendors. In addition, the 
CIP object model (based on a producer-consumer model) provides more efficient resource 
utilization than a source-destination based model. This is because a data message can be 
simultaneously transmitted from a sender device (the producer) to many receiver devices (the 
consumers).    

 

Device Profile 

In CIP networks, which consist of devices from many vendors, CIP supports interoperability 
between devices by defining standard groupings of objects as device profiles. Devices that have 
the same profile behave identically, even if they are supplied by different vendors.   

 

3.1.2 Performance of EtherNet/IP 

EtherNet/IP adopts advanced Ethernet technology (Fast and Gigabit Ethernet) for industrial 
networks without modification. Therefore, the mechanism of a standard Ethernet switch 
determines the real-time communication behavior of EtherNet/IP. Ethernet switches in 
EtherNet/IP networks are responsible for relaying all incoming Ethernet frames in multicast form 
(i.e. incoming Ethernet frames are forwarded to all switch ports except the switch port receiving 
the frames node). Forwarding an incoming Ethernet frame in multicast form degrades network 
performance (i.e. forwarding Ethernet frames are not needed in some Ethernet switch ports, and 
they could interfere with other traffic). EtherNet/IP takes advantage of some advanced features 
of modern Ethernet technology to reduce undesired traffic loads from multicast transmission. 
The following recommendations [Ana02] regarding EtherNet/IP were made in order to enhance 
its real-time capability.     

 VLAN (Virtual Local Area Network): Sub-networks in an Ethernet switch can be separated 
using VLAN features, as depicted in Fig. 3.3. Therefore, the real-time messages transmitted 
in multicast form are confined in predefined individual sub-networks in the Ethernet switch. 
This guarantees that real-time messages in one sub-network cannot interfere with other sub-
networks.  

 



3. State-of-the-art                                                                                                      3.1 EtherNet/IP                         

35 
 

 

 

 

 

 

 

 

Fig. 3.3: An Ethernet switch configured with two VLANs 

 

 

 

 

 

 

 

 

 

Fig. 3.4: An EtherNet/IP network with producer-consumer communication 

 

 IGMP (Internet Group Management Protocol) snooping: The IGMP snooping in Layer 2 
switches eliminates undesired IP multicast traffic generated inside the VLAN. An example is 
shown in Fig. 3.4. This figure depicts IP multicast messages from Controller B destined for 
Controller C, and IGMP snooping being activated in the SW2 switch. The IP multicast 
messages are confined to the switch, to which both controllers are connected. 

 TTL (Time-To-Live): The TTL thresholds of IP messages can be set in Layer 3 switches. An 
Example is shown in Fig. 3.4. In this figure, IP multicast messages forwarded by the Layer 3 
switch to the Layer 2 switches are checked against their TTL threshold. The IP multicast 
messages will be discarded if their TTL is less than a TTL threshold specified in the Layer 3 
switch. On the contrary, IP multicast messages in which their TTL values are 1, and from the 
Layer 2 switches as shown Fig. 3.4 will be blocked at the Layer 3 switch.  
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With these recommendations, EtherNet/IP devices can achieve real-time performance without 
modification to existing COTS Ethernet hardware. According to [Ana02], the currently 
achievable end-to-end response time in an EtherNet/IP network consisting of eight producers and 
one consumer is 7 ms (with use of the aforementioned recommendations). However, the 
recommendations only reduce undesired traffic in an EtherNet/IP network. EtherNet/IP networks 
are still unable to handle a high amount of real-time traffic in a deterministic manner. As a result, 
EtherNet/IP networks can be used for real-time applications if and only if the amount of real-
time traffic is limited.  

 

3.2 PROFINET 

PROFINET [PI09] is an industrial Ethernet standard which was devised by PROFIBUS 
International (PI). PROFINET aims to adapt Ethernet for all types of industrial automation 
networks (information-level networks, control-level networks and field-level networks). Since 
there are various real-time requirements for industrial automation applications, PROFINET 
provides two high layer protocols, namely PROFINET CBA (Component Based Automation) and 
PROFINET IO. Both PROFINET CBA and PROFINET IO have different real-time 
achievements, and are therefore employed at different levels of factory communication systems. 
PROFINET CBA is suited for component-based machine-to-machine communication via 
TCP/IP, whereas PROFINET IO is used for fast data exchange between controllers and field 
devices (especially in time-critical synchronous applications such as motion controllers). With 
reference to [PAS06], PROFINET defines three types of traffic: non real-time traffic, real-time 
class 1, and real-time class. These are shown in Table 3.1.  PROFINET CBA handles both non 
real-time traffic and traffic of real-time class 1, whereas PROFINET IO handles traffic of both 
real-time class 1 and class 2. Note that performance of real-time class 2 is only possible with 
PROFINET IO. The real-time class 2 is known as isochronous real-time, and is based on a 
highly precise and synchronized cycle of message transmission.   

 

Table 3.1: Real-time classes of PROFINET [PAS06] 

Type of traffic Periodicity/Reaction times Jitter (%) 

Non real-time  ≥ 100 ms ≥ 100 

Real-time class 1 ≥ 5 ms ≥ 15 

Real-time class 2 ≥ 250 μs ≤ 0.4 (1μs) 

Note that Jitter is computed with respect to periodicity. 
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3.2.1 Structure and Functionality of PROFINET 

There are two sub-protocols of PROFINET: PROFINET CBA and PROFINET IO. Both of these 
are described in the sections that follow. 

 

3.2.1.1 PROFINET CBA: PROFINET CBA is a high-level network protocol for industrial 
applications. It adopts Ethernet hardware and software for industrial networks without 
modification. PROFINET CBA focuses on technological components (i.e. all components act 
independently and coordinate their tasks to form an integrated system). A PROFINET CBA 
application is a device-specific implementation of the PROFINET CBA Runtime Object Model. 
The Runtime Object Model describes the objects within a device (their interface and methods). 
The basic components of a Runtime Object Model (depicted in Fig 3.5) are: Physical Device 
(PD), Logical Device (LD), Runtime Auto (RT-Auto), and Active Control Connection Object 
(ACCO). The component hardware that connects to an Ethernet network is represented by a PD.  
An application (e.g. a sensor or actuator task) in a device is represented by a LD. In a single PD, 
there can be many LDs. A Runtime Auto represents an automation function. Since a LD can 
have many functions, any LD could have several RT-Autos. An active control connection object 
(ACCO) provides configurable connections to every RT-Auto object.   

 

 

 

 

 

 

Fig. 3.5: Runtime Object Model of a PROFINET CBA device 

Besides the Runtime Object Model, PROFINET CBA also supports DCOM (Distributed 
Component Object Model) [BOX98]. The DCOM extends COM (Component Object Model) by 
including all functionalities for distributing data across a network in a reliable, secure, and 
efficient manner. PROFINET CBA interfaces to the outside world using a COM interface. A 
COM interface is a collection of Properties, Methods, and Events. Properties are the public data 
of a PROFINET CBA object. Methods define services and functions provided by a COM 
interface. Events signal a change in state for the interface. PROFINET CBA supports both non 
real-time and real-time class 1 communication. The communication behavior of PROFINET 
CBA (based on the DCOM model) is explained as follows: The DCOM model exchanges data 
according to a producer-consumer model. The data exchange occurs only when a value at the 
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producer side has changed. A message transmission of PROFINET CBA begins with a cyclic 
event, called the QoS (Quality of Service) event. As shown in Fig. 3.6, when a QoS event occurs 
(1), the ACCO producer invokes the RT-Auto for checking any change of the values (2). If there 
is a change, the new data is transferred to the ACCO consumer (3) over the DCOM, TCP/IP 
stack and Ethernet networks. Subsequently, the ACCO Consumer receives the data from the 
DCOM at the consumer side (4), and in turn deliveries them to the RT-Auto (5 - the application 
function). 

 

 

 

 

    

 

 

 

 

Fig. 3.6: Data exchange in PROFINET CBA over DCOM 

3.2.1.2 PROFINET IO: PROFINET IO was introduced to satisfy stringent timing requirements 
in PROFINET networks. It can be used to connect distributed I/O devices for fast data exchange, 
e.g. for motion control applications. PROFINET I/O is designed to support all types of traffic: 
non real-time (Non-RT), real-time class 1 (RT Class 1), and real-time class 2 (RT Class 2). 
PROFINET IO classifies devices into the following three types:  

1. IO-Controller: An intelligent device such as a programmable logic controller. An IO-
Controller performs automation tasks.  

2. IO-Device: A distributed I/O field device such as a sensor, an actuator, or an electronic 
terminator.  

3. IO-Supervisor: A device that exchange both configuration and diagnosis data with IO-
controllers and IO-devices. An IO-Supervisor can be a personal computer or a human 
machine interface (HMI) device.  

The message traffic from IO-Supervisors does not typically require real-time constraints. On the 
contrary, data exchange between IO-Controllers and IO-Devices require a temporal guarantee. 
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Since message communications in PROFINET IO networks are based on switched Ethernet, 
switching devices play an important role in handling all kinds of traffic (real-time and non real-
time). The switching devices can be standard-Ethernet switches according to the IEEE 802.3 
[IEE05], or modified ones. A simple PROFINET IO network connecting all types of PROFINET 
IO devices via one switching device is shown in Fig. 3.7.  

 

 

 

 

 

 

 

 

Fig. 3.7: A simple PROFINET IO network connecting all types of PROFINET IO devices 

 

 

 

 

 

 

Fig. 3.8: Traffic scheduling in one communication cycle of PROFINET IO 

PROFINET IO uses the concept of TDMA (Time Division Multiple Access), where one 
communication cycle is divided into two phases: a real-time phase (RT phase) and a non real-
time phase (NRT phase). This is depicted in Fig. 7.8. The RT phase contains two kinds of traffic: 
isochronous real-time (IRT) traffic and acyclic real-time (acyclic-RT) traffic. The IRT traffic is 
offline-scheduled and cyclically transmitted. The acyclic-RT traffic is triggered by an event 
occurrence, and transmitted with a real-time constraint. Acyclic-RT traffic is typically derived 
from an occurrence of an alarm event. The NRT phase used for NRT traffic occurs at the last 
period of a communication cycle, as depicted in Fig. 7.8. The NRT traffic may be standard 
TCP/IP, UDP/IP, raw Ethernet or PROFINET CBA traffic. A communication cycle of 
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PROFINET IO is continuously repeated by each station in a PROFINET IO network. The IRT 
phase, which is the beginning part of a communication cycle of PROFINET IO, needs precise 
clock synchronization. This denotes that all traffic of a PROFINET IO device can be transmitted 
into the underlying PROFINET IO network only if the precise clock synchronization of the 
device is established. In a PROFINET IO network, IRT frames are passed through the underlying 
switching devices without any interpretation of the address information in the IRT frames. The 
switching devices can do so since they contain a common predefined schedule. In the acyclic-RT 
phase, switching devices behave as standard Ethernet switches, where they relay acyclic-RT 
frames from one port to other ports with regard to the address information in the frames. All 
NRT frames are transmitted within the NRT phase on a first-come first-serve basis. All 
switching devices for PROFINET IO are synchronized by means of IEEE 1588 [IEE02] with the 
extension proposed by [JSW04], where accumulating local clock errors caused by cascading 
switching devices are alleviated.  

The implementation of automation tasks may be subdivided in several application processes 
executed by different PROFINET IO devices. The data exchange of application processes 
between PROFINET IO devices exclusively takes place via Application Relationships (ARs). An 
AR contains all necessary data for establishment of data exchange. An AR consists of one or 
more Communication Relationships (CRs). In PROFINET IO there are three kinds of data 
exchange services in a CR: I/O Data Object, Alarm Data Object, and Record Data Object. These 
are described as follows: 

 IO Data Object: I/O data objects are used for transmission of IRT traffic between an IO-
Controller and an IO-Device. This transmission occurs within the isochronous phase of a 
communication cycle of PROFINET IO. IO data between I/O data objects is transferred via 
an IO Data CR, as shown in Fig. 3.9. 

 Alarm Data Object: An alarm object transfers its alarm data when an alarm event occurs. It 
can send its alarm data only within the acyclic-RT phase of a communication cycle of 
PROFINET IO. The reception of an alarm object has to be explicitly acknowledged. Alarm 
data between alarm objects is transferred via an Alarm CR, as shown in Fig. 3.9. 

 Record Data Object: Record data objects are used for configuration, monitoring, and 
diagnosis. A record data object transfers its record data via Record Data CRs. It does this 
within the NRT phase of a communication cycle. This is shown in Fig. 3.9.   
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Fig. 3.9: Communication Relations (CRs) between two PROFINET IO devices  

 

Similar to PROFIBUS DP [CSCM06], all PROFINET IO field devices must be described with a 
GSD (General Station Description) file [KDDS08], which is in XML format. A GSD file 
contains all technical information and functions. This information is relevant for engineering and 
data exchange. GSD files are provided by device manufacturers. A vendor-independent 
configuration tool reads information from a GSD file, and downloads it to an IO controller. The 
IO controller uses this information to configure and parameterize all its associated IO devices. 
This is carried out during runtime, and before entering the cyclic data exchange mode. IO-
Devices enter the cyclic data exchange state after configuration and parameterization, if the 
startup state has been successful. The data exchange transmission of all frame types (Isochronous 
frames, acyclic-RT frames, and NRT frames) is performed in their own individual phase in a 
communication cycle. All RT, Isochronous and acyclic-RT frames are identified with a value of 
0x8892 in the EtherType field, according to the standard Ethernet frame format. In addition, all 
RT frames bypass the UDP/IP stack, and directly access the Ethernet MAC layer.  

 

3.2.2 Performance of PROFINET 

PROFINET IO supports stringent timing constraints that are suitable for hard real-time 
applications, whereas PROFINET CBA does not. PROFINET IO can transport all kinds of 
traffic within the same PROFINET IO network. The RT communication in PROFINET IO 
follows a fixed communication schedule. Each communication cycle starts with the transmission 
of IRT process data. The duration of each cycle is defined as being between 31.25 and 4 
milliseconds [Fel04]. Duration of the real-time phase is recommended not to exceed 60% of a 
communication cycle duration (50% for IRT frames, and 10% for acyclic-RT frames), so that the 
remaining time duration can be used for transmission of NRT traffic [PI09]. This implies that at 
least two maximum-sized standard Ethernet frames based on Fast Ethernet (100 Mbps) are able 
to be transmitted in 1 millisecond of a communication cycle [PI09]. This corresponds to a 
transmission time of approximately 250 microseconds.  According to [Eth10a], there currently 
exists a PROFINET IO network implementation with the lowest communication cycle time of 
0.5 milliseconds. To handle all kinds of traffic, standard-Ethernet switches, which are based on 
address-based switching, are modified as IRT suitable switches. IRT suitable switches can 
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forward IRT traffic on a time synchronization-based switching basis. With regard to an IRT 
suitable switch, routes between receiving and transmitting ports are able to be predefined. The 
IRT communication of PROFINET IO can be done by employing the PTCP (Precision Transport 
Clock Protocol) of the IEEE 1588 standard. This is used to synchronize the local clocks of all 
stations and IRT suitable switches in a PROFINET IO network [KDDS08]. With PTCP, the 
effect to clock precision caused by many cascading switches in a largely distributed automation 
system is considerably reduced. To achieve very low jitter in the IRT communication of 
PROFINET IO, devices and IRT suitable switches require hardware implementations with ASIC 
(Application-Specific Integrated Circuit) technology. As a result, a jitter of below 1 microsecond 
can be achieved in IRT communication. In addition, IRT communication can achieve a low 
transport delay by introducing the cut-through technique of switched Ethernet in an IRT suitable 
switch [JE04] (e.g. HARTING Ha-VIS Fast Track Switch [HTG10]). However, the cut-through 
technique is not compliant with full-duplex Ethernet bridged technology, which uses the store-
and-forward technique [JE04] [IEE98]. According to [JSW07] and [Pry08], a transport delay in a 
cut-through Ethernet switch is approximately 3 microseconds.  

 

3.3 MODBUS-TCP  
 

MODBUS-TCP [Acr05] [LL06b] [JH08] is one of several industrial Ethernet communication 
protocols developed by the Schneider Electric Company.  MODBUS-TCP is a variant of the 
MODBUS protocol family, and is based on the TCP/IP protocol suite. MODBUS is a serial 
communication protocol for a fieldbus network. It connects field devices such as: sensors, 
actuators, and field device controllers such as PLCs (Programmable Logic Controllers). A 
MODBUS-TCP frame is embedded into a TCP frame in order to utilize available TCP/IP 
protocol networks, reducing development efforts when connecting fieldbus networks to office 
networks. However, MODBUS-TCP is not a timing-deterministic protocol.  

 

3.3.1 Structure and Functionality of MODBUS-TCP 

MODBUS-TCP is an application layer messaging protocol. A MODBUS-TCP frame, called an 
Application Data Unit (ADU), consists of a MODBUS Application Protocol (MBAP) header, 
and a Protocol Data Unit (PDU). This is shown in Fig. 3.10. The PDU is derived from a 
traditional MODBUS data frame, but without either the address or checksum fields. MODBUS-
TCP employs the Frame Check Sequence field of the Ethernet frame format, instead of the 
checksum field of the more traditional MODBUS data frame format. The address field of the 
traditional MODBUS data frame format is not used in MODBUS-TCP. It is instead supplanted 
by the Unit Identifier field, as depicted in Fig. 3.10. Each ADU field is described as follows: The 
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Transaction Identifier field is used for synchronization between messages of transaction pairing. 
The Protocol Identifier field identifies protocol type. It is equal to zero for MODBUS-TCP. The 
Length Field contains the number of the remaining bytes in the remaining fields (the Unit 
Identifier, Function Code, and Data fields). The Unit Identifier field is used to identify a slave or 
server address.   

MODBUS-TCP makes use of the TCP/IP standard model for MODBUS-TCP message transport, 
as shown in Table 3.2. MODBUS-TCP transports application data at the application layer, and 
employs TCP/IP and Ethernet to carry it between stations. The ADU of MODBUS-TCP is 
embedded into the data field of a standard TCP frame, as shown in Fig. 3.11. The TCP frame 
with the ADU is sent via port 502, which is specifically reserved for MODBUS-TCP 
applications. MODBUS-TCP shares the same physical and data link layers of standard Ethernet 
(IEEE 802.3 [IEE05]). This means that MODBUS-TCP is fully compatible with standard 
Ethernet devices.  

 

 

 

 

   

 

 

 

Fig. 3.10: Application Data Unit (ADU) of MODBUS-TCP 

MODBUS-TCP is a connection-oriented protocol since it uses the Transmission Control 
Protocol (TCP). MODBUS-TCP follows a client/server model at the application layer, as shown 
in Fig. 3.12. This model is also referred to as the master/slave model (i.e. a MODBUS-TCP 
client and server can also be referred to as a MODBUS-TCP master and slave, respectively). 
With a client/server model, a MODBUS-TCP device (the client) sends a request message to 
another, required MODBUS-TCP device (the server). The server can send a response message 
when it has received the request message. This implies that only a client can initiate message 
transaction. However, some devices can operate as both clients and servers.  If a server is unable 
to process a request from a client, it returns an exception response containing an error function 
code. All functions of MODBUS-TCP operate on memory registers to control, monitor, and 
configure I/O devices. A connection of MODBUS-TCP messages is a point-to-point 
communication path between two MODBUS-TCP devices. Each connection requires a source 
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address, a destination address, and a connection ID, in each direction. Therefore, MODBUS-TCP 
communication is restricted to unicast messages. The MODBUS-TCP client may establish many 
simultaneous TCP connections at any given time. Each TCP connection uses a different, unused 
port to send its message.  In the meantime, a MODBUS-TCP server receives all messages via 
port 502, which is used as a reserved listening/receiving port. In cases where a message is lost in 
transit, retransmission is required.  

Table 3.2: MODBUS-TCP model, OSI reference model and TCP/IP standard model 

Layer OSI reference model 
TCP/IP standard 

model 
MODBUS-TCP 

model 

7 Application 

Application 
Application 

(MODBUS-TCP) 
6 Presentation 

5 Session 

4 Transport Transport Transport (TCP) 

3 Network Internet Internet 

2 Data Link Data Link Data Link (Ethernet) 

1 Physical Physical Physical (Ethernet) 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11: Construction of an Ethernet frame for MODBUS-TCP 
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Fig. 3.12: The Client/Server communication model of MODBUS-TCP 

 

3.3.2 Performance of MODBUS-TCP 

Since MODBUS-TCP transports data over the TCP/IP protocol, MODBUS-TCP performance is 
very similar to TCP/IP performance. MODBUS-TCP provides non-deterministic 
communication, the same as TCP/IP and Ethernet. This implies that MODBUS-TCP is not 
suitable for hard real-time applications with low latency requirements. Like Ethernet, MODBUS-
TCP can be implemented in every type of topology (line, ring, or star). Therefore, the transport 
delay of MODBUS-TCP messages between devices depends on network topology and hardware. 
Although MODBUS-TCP is not suitable for high-speed and hard real-time applications, it is 
adequate to use in low-speed and soft real-time applications. MODBUS-TCP also works well 
with non-control systems where high critical-time is not the case (e.g. for maintenance and 
diagnosis purposes). With regard to the client/server communication model, the response time of 
a MODBUS-TCP transaction is taken into account for real-time constraints. The timeout 
mechanism at a MODBUS-TCP client for MODBUS-TCP message retransmission should not be 
smaller than the expected maximum response time. If the client timeout is larger than the 
expected maximum response time, message congestion will occur in the underlying network. 
The client timeout is dependent on several factors, such as: network topology, bandwidth of 
network interface hardware, and the amount of other traffic within the network.   
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3.4 SERCOS III  

SERCOS III [SER07] was designed to merge the hard real-time aspects of the SERCOS 
interfaces (SERCOS I and SERCOS II) with Ethernet. SERCOS I and II are standardized open 
digital interfaces for communication between industrial controls, motion devices (drives), and 
input/output (I/O) devices. Modern Ethernet bandwidth is extremely high, but Ethernet is not a 
deterministic protocol. SERCOS III provides deterministic communication behavior to standard 
Ethernet, while maintaining the important features of the SERCOS I and II interfaces (e.g. 
topology, profiles, telegram structure, and synchronization). Additionally, SERCOS III supports 
real time traffic coexistence with standard-Ethernet traffic.  

 

3.4.1 Structure and Functionality of SERCOS III 

SERCOS III uses a master/slave communication structure. A SERCOS III network consists of 
one master device and one or more slave devices. Both master and slave devices (all SERCOS 
III devices) have two ports each, as depicted in Fig. 3.13. Both ports of a SERCOS III device are 
standard-Ethernet ports (IEEE 802.3 [IEE05]).  The network topologies supported by SERCOS 
III are ring and line topologies, as illustrated in Fig. 3.13. A master device in both topologies is 
responsible for starting the transmissions of telegrams. A slave device is responsible for relaying 
telegrams to the next slave device. A slave device returns telegrams back to the previously 
transmitting slave device if there is no further slave device. In a ring topology network, two ports 
of a master device are used and looped via slave devices. Note that SERCOS III does not use the 
star topology seen in switched Ethernet. This means that no hub or switch is needed in a 
SERCOS III network. Therefore, there is no delay time or jitter caused by Ethernet switches or 
hubs. However, the hardware development of SERCOS III requires considerable effort for both 
topologies. With regard to ring topology as a SERCOS III network structure, a master device 
initiates two identical telegrams. Each of these telegrams is transmitted via a different port of the 
master device. Each slave device relays an incoming telegram to the next slave device, as 
depicted in Fig. 3.13 (b). The last slave device which connects to another port of the master 
device forwards the telegram back to the master device. The flows of two identical telegrams 
shown in Fig. 3.13 (b) follow the sequence numbers 11→12→13→14 and 21→22→23→24. 
Note that the two identical telegrams transmitted from the master device arrive approximately at 
the same point in time. In cases where a line topology is used as a SERCOS III network 
structure, the last slave device returns an incoming telegram back to the previously sending 
device. The telegram then flows back via the same route as it was transported, as depicted in Fig. 
3.13 (a) (i.e. the telegram flow is 1→2→3→4→5→6). SERCOS III has a fault tolerance feature 
in a ring network structure. If a break at a network cable takes place at any point in a ring 
network structure, the system automatically switches over from a ring structure to a line 
structure, as illustrated in Fig. 3.13 (b) and Fig. 3.14. In Fig. 3.14, two new flows for two 
identical messages from the master device are 11→12, and 21→22→23→24. A SERCOS III 
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network in line topology does not offer a redundant telegram transfer, but less cabling than for a 
ring network is typically required. 

 

 

 

 

 

 

 

 

 

Fig. 3.13: Two SERCOS III network structures: (a) Line Topology, (b) Ring Topology 

 

 

 

 

 

Fig. 3.14: Two message flows in a ring network structure of SERCOS III when a wire breaks 

SERCOS III supports both real-time and non real-time traffic in the separated channels of one 
communication cycle (real-time traffic in the real-time channel, non real-time traffic in the non 
real-time channel). This is depicted in Fig. 3.15.  A communication cycle time of SERCOS III 
ranging from 31.25 microseconds to 65 milliseconds is chosen by the user depending on the 
given application. The real-time channel is divided into two parts with respect to telegram type, 
these are the Master Data Telegrams (MDTs) and Answer Telegrams (ATs), as shown in Fig. 15. 
SERCOS III supports up to 4 MDT telegrams and 4 AT telegrams in a communication cycle. 
MDT telegrams contain information (command data), whereas AT telegrams contain status data 
(e.g. feedback values and sensor data). Slave devices fill status data in predefined areas in AT 
telegrams, update the checksum, and then pass the AT telegrams to the next device. The status 
data in AT telegrams is read by the master device or other slave devices. SERCOS III nodes 
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allow the non real-time channel of one communication cycle to be used to exchange non real-
time data in other Ethernet-based messages, such as TCP/IP messages.  

 

 

 

 

Fig. 3.15: One communication cycle of SERCOS III 

 

 

 

 

 

Fig. 3.16: The structure of a SERCOS III telegram  

A SERCOS III telegram is based on the standard-Ethernet frame format. The payload data field 
of the standard-Ethernet frame format contains the two main fields of a SERCOS III telegram: 
SERCOS III header and SERCOS III data, as shown in Fig. 3.16. The Ethernet type field, with a 
unique value of 0x88CD, identifies SERCOS III data. All SERCOS III telegrams are issued by a 
master device and intended for all slave devices. Therefore, the Destination Address field of the 
standard-Ethernet frame format is defined as a broadcast address (all ones). The Source Address 
field is assigned with the MAC address (Ethernet hardware address) of a master device. The 
SERCOS III header field contains control and status information specific to SERCOS III. The 
SERCOS III data field carries values in a set of variables (e.g. feedback values or set-point 
values) in each device within a SERCOS III network.  

With regard to synchronization, SERCOS III uses the first MDT telegram in a communication 
cycle for synchronizing the local clocks of slave devices with the local clock of their master 
device. The Master Synchronization Telegram (MST) field in the first MDT telegram is used for 
this synchronization purpose. Precise clock synchronization in SERCOS III networks can be 
achieved without the timing information of local clocks. A synchronization interval of SERCOS 
III is a time interval between the MST fields of two consecutive first MDT telegrams, as 
depicted in Fig. 3.17. This synchronization interval is an exact equidistant time interval and 
equal to a communication cycle time.  

 



3. State-of-the-art                                                                                                     3.4 SERCOS III 

49 
 

 

 

 

 

 

 

Fig. 3.17: Synchronization interval in SERCOS III 

Unlike a master/slave communication (e.g. Ethernet POWERLINK communication), slave 
devices in a SERCOS III network can communicate with other slave devices without waiting for 
control messages from the master device each time. Communication between multiple slave 
devices in a SERCOS III network is called Cross Communication (CC), as shown in Fig. 3.18. 
Slave devices in a SERCOS III network can also communicate with other slave devices in other 
SERCOS III networks, via the master device of each network. Communication between master 
devices is called Controller to Controller (C2C) communication, as shown in Fig. 3.18.  

 

 

 

 

 

 

 

 

 

Fig. 3.18: Cross Communication (CC) and Controller to Controller (C2C) in two ring networks 

NRT frames based on standard Ethernet (e.g. TCP/IP messages from outside networks) can 
access SERCOS III networks in two methods. The first method is to make use of unused ports of 
SERCOS III devices, as depicted in Fig. 19 (a). This figure illustrates the NRT frames from a 
laptop accessing a SERCOS III network via the unused SERCOS III port of the last slave device. 
The second method is to use a SERCOS III device with one or more additional Ethernet ports 
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installed, as shown in Fig. 19 (b). With such a device, NRT frames can access anywhere along a 
SERCOS III network. Such  Commercially these special devices are available commercially (e.g. 
netSwitch SERCOS III [Hil08]).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19: NRT-frame access (a) via an available unused port (b) via a custom device  

 

3.4.2 Performance of SERCOS III 

Based on modern Ethernet technology, SERCOS III can obtain higher transmission speeds than 
SERCOS I and SERCOS II. SERCOS III uses hardware-based synchronization to achieve a jitter 
of less than 1 microsecond. With such a small jitter, SERCOS III is a deterministic protocol and 
allows links to the existing manufacturing communication infrastructure.  Non real-time traffic 
based on Ethernet is allowed to coincide with SERCOS III real-time traffic in a SERCOS III 
network. Non real-time messages can only be transported within the non real-time channel of a 
communication cycle. The SERCOS I and SERCOS II interfaces use fiber optic interfaces for 
noise immunity. With modern Ethernet technology, SERCOS III can make use of twisted-pair 
cables without noise problems. SERCOS III also has a fiber optic-based implementation for 
high-noise-critical applications. Regarding fault tolerance, all SERCOS III devices in a ring 
network structure can continue operation if a wire break occurs. SERCOS III also supports a hot 
plugging feature, where a SERCOS III device can be inserted and removed during network 
operation. SERCOS III boasts highly efficient use of Fast Ethernet bandwidth (i.e. up to 1,494 
bytes from all SERCOS III devices in one Ethernet frame are bundled together with 44 bytes of 
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overhead data). Therefore, the bandwidth utilization increases up to 97% for Fast Ethernet. 
However, transport delay between SERCOS III devices depends on all interconnected nodes 
used in each transmission. This is because all SERCOS III telegrams must travel through each 
interconnected node.   

 

3.5 EtherCAT 

EtherCAT [Eth09] [Eth10b] stands for Ethernet for Control Automation Technology. It was 
designed to target high-performance Ethernet-based fieldbus systems requiring a short cycle 
time, and a low communication jitter. Typical data length per node in a fieldbus network is very 
small, and less than the minimum length (46 bytes) of the payload data in an Ethernet frame. 
EtherCAT increases Ethernet bandwidth utilization by all nodes sharing Ethernet frames, rather 
than generating individual Ethernet frames. EtherCAT utilizes a standard-Ethernet  device for 
generating standard-Ethernet frames for a whole EtherCAT network. Each of the other devices in 
an EtherCAT network requires a dedicated hardware device instead of a standard-Ethernet 
device. EtherCAT was integrated into the international fieldbus standard IEC 61158 [IEC00] and 
IEC 61784-2 [IEC07].  

 

3.5.1 Structure and Functionality of EtherCAT 

An EtherCAT network structure consists of one node for the master (EtherCAT-master node) 
and one or more nodes for the slaves (EtherCAT-slave nodes). An EtherCAT-master node uses a 
standard-Ethernet medium access controller (MAC) for generating standard-Ethernet based 
frames. An EtherCAT-slave node requires dedicated hardware for an EtherCAT network 
interface. This dedicated hardware comprises two physical Ethernet ports that support bi-
directional communication. Fig. 3.20 depicts an EtherCAT network in which an EtherCAT-
master node connects to three EtherCAT-slave nodes in a line topology. The EtherCAT-master 
node is responsible for initiating EtherCAT messages, and transmitting them to the EtherCAT-
slave node (a). Each EtherCAT-slave node passes the EtherCAT messages from one port to 
another. In other words, the EtherCAT messages are not received and subsequently retransmitted 
by any of the EtherCAT-slave nodes. While the EtherCAT messages are crossing from one port 
to another at one of the Ethernet-slave nodes, the node extracts the output data addressed to it 
and inserts the new input data on-the-fly. The last EtherCAT-slave node (node (c) in Fig. 3.20) 
returns the EtherCAT message back to the EtherCAT-master node.  Notice that the physical 
connection in an EtherCAT network is a line structure, but that communication occurs in a 
logical ring structure. In Fig. 3.20, the last EtherCAT-slave node in the row (c) detects no 
connection to other EtherCAT-slave nodes, and then automatically short circuits a pair of 
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transceivers (Rx and Tx) together. Therefore, EtherCAT messages always loop back to the 
EtherCAT-master node at the last EtherCAT-slave node.   

 

 

 

 

Fig. 3.20: An Ethernet network in a physical line structure 

A physical network structure of EtherCAT can be extended in the form of a branch. A branch 
extension in an Ethernet network involves adding a network interface in an EtherCAT-slave 
node. Fig. 3.21 shows the EtherCAT-slave node (a) with three network interfaces making a 
branch connection with another EtherCAT-slave node (d).  

 

 

 

 

 

 

 

Fig. 3.21: A branch extension in an EtherCAT network 

EtherCAT uses a single large Ethernet frame for carrying EtherCAT telegrams to and from each 
EtherCAT device. There are two structures an EtherCAT message can take: the first is based on 
the standard-Ethernet frame format, while the second is based on the UDP (User Datagram 
Protocol) message format. These are shown in Fig. 3.22 (a) and Fig. 3.22 (b), respectively. When 
an EtherCAT message is based on the standard-Ethernet frame format, the EtherCAT header and 
EtherCAT telegrams are embedded in the payload data field of the standard-Ethernet frame, as 
depicted in Fig. 3.22 (b). EtherCAT telegrams are used for exchanging real-time data among an 
EtherCAT-master node and EtherCAT-slave nodes. EtherCAT messages based on the standard-
Ethernet frame format are used in exclusive EtherCAT networks. EtherCAT networks can also 
be connected with other networks, e.g. office networks or even additional EtherCAT ones. This 
is achieved using an EtherCAT message based on the UDP frame format. The EtherCAT header 



3. State-of-the-art                                                                                                        3.5 EtherCAT 

53 
 

 

and all EtherCAT telegrams based on UDP are encapsulated within a UDP frame, as depicted in 
Fig. 3.22 (b).  

 

 

 

 

 

 

 

 

 

Fig. 3.22: An EtherCAT message based on standard Ethernet frame (a), and UDP (b) 

An EtherCAT frame consists of one EtherCAT header and several EtherCAT telegrams, as 
shown in Fig. 3.23. An EtherCAT telegram begins with a 10-byte telegram header, which 
specifies the type of operation (e.g. read or write). The data field of an EtherCAT telegram 
contains process data, which is distributed among EtherCAT devices. The last field of an 
EtherCAT telegram, called the working counter, is used by an EtherCAT-master node to check 
whether an EtherCAT telegram was correctly processed at each addressed EtherCAT-slave node. 
During the operation of extracting and/or inserting process data to an EtherCAT telegram, each 
addressed EtherCAT-slave node increments the working counter’s value. The EtherCAT-master 
node, knowing how many EtherCAT-slave nodes are addressed by an EtherCAT telegram, can 
check from its working counter whether all EtherCAT-slave nodes have exchanged their data. 
EtherCAT can also check whether EtherCAT telegrams have been correctly transmitted, by 
verifying the checksum value in the frame check sequence (FCS) field of an Ethernet frame. 

 

 

 

 

 

 

Fig. 3.23: The structure of an EtherCAT frame and an EtherCAT telegram 
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EtherCAT supports a system availability property. This is implemented by connecting the last 
EtherCAT-slave node to an additional standard Ethernet port on the EtherCAT-master node, as 
depicted in Fig. 3.24. This turns the physical line structure into a physical ring structure. A ring 
structure guarantees that if any EtherCAT-slave device or cable fails, then the functional 
EtherCAT-slave devices can reroute traffic such that the system continues to operate. This is 
illustrated in Fig. 3.25. Note that the reroute of traffic occurs in one cycle time. 

 

 

 

 

 

 

 

Fig. 3.24: An EtherCAT network in a physical ring structure 

 

 

 

 

 

 

 

Fig. 3.25: A broken cable in a ring network structure of EtherCAT 

EtherCAT does not use a notion of system-wide global-time for real-time communication.  
However, clock synchronization is required for simultaneous actions in some distributed 
applications (e.g. an application where several servo axes carry out their coordinated movements 
simultaneously). The clock synchronization of EtherCAT is fully based on hardware 
implementation. Each EtherCAT device measures the time difference between an incoming 
EtherCAT frame and its returning EtherCAT frames. With this time difference, an EtherCAT-
master node can determine the offsets of the propagation delays between the EtherCAT-master 
node clock and each EtherCAT-slave clock. This implies that the EtherCAT-master node knows 
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its local clock’s point in time when an incoming EtherCAT messages arrives at each EtherCAT-
slave node. EtherCAT can achieve clock synchronization with a jitter of less than 1 microsecond. 
External synchronization (e.g. clock synchronization between several EtherCAT-master clocks) 
is based on the IEEE 1588 standard [IEE02].  

 

3.5.2 Performance of EtherCAT  

According to [Eth10b], EtherCAT achieves a cycle time of 300 microseconds, provided that up 
to 1486 bytes of process data for 12000 digital input and outputs are exchanged in a single 
Ethernet frame. In comparison to other industrial Ethernets (SERCOS III, Profinet-IRT, Ethernet 
POWERLINK and Profinet), EtherCAT takes the least cycle time (276 microseconds) under 
these conditions [Eth09]. With such a small cycle time, EtherCAT utilizes around 44% of total 
network bandwidth (i.e. 56% still remains for other traffic). However, only the EtherCAT-master 
node is built from COTS (commercial-of-the-shelf) components, and its functionality relies on 
software. On the contrary to EtherCAT-master nodes, all EtherCAT-slave nodes are 
implemented using dedicated hardware. Such dedicated hardware is not fully compatible with 
standard-Ethernet hardware. Additionally, EtherCAT cannot take advantage of future 
developments of standard Ethernet without a reimplementation of slave node hardware.  

 

3.6 Ethernet POWERLINK 

Ethernet POWERLINK [EPS08] is a real-time Ethernet protocol for industrial networks. It was 
first developed by the Austrian automation company (B&R Industrial Automation Corporation) 
as proprietary technology in November 2001. It was then released as an open technology in 
2002. The Ethernet POWERLINK Standardization Group (EPSG) was formed in 2003, to 
manage the Ethernet POWERLINK standard. Later, Ethernet POWERLINK version 2 was 
made, which is fully integrated with the mechanisms of CANopen [BCF98].  

 

3.6.1 Structure and Functionality of Ethernet POWERLINK 

Ethernet POWERLINK was designed to be suitable for bus-based Ethernet (so-called shared 
Ethernet). With modern (switched) Ethernet using a star topology, Ethernet POWERLINK can 
be applied where all nodes connect to each other via standard-Ethernet switches. However, a 
network structure in star topology is not recommended for Ethernet POWERLINK, because it 
introduces high transport delays. Ethernet POWERLINK uses a time-slot based master-slave 
communication scheme. An Ethernet POWERLINK network consists of a master node called 
Managing Node (MN), and slave nodes called Controller Nodes (CNs). The data exchange 
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between the MN and CNs is performed in predefined time slots. A CN can transmit frames as 
soon as it has received a request frame from the MN. The MN is responsible for organizing all 
cycle timings for the CNs. The MN starts a communication cycle by transmitting to all CNs a 
special, Start of Cycle frame (SoC). The SoC frames from the MN are used for synchronizing all 
CNs. After a SoC frame has been sent by the MN, the MN sends a Poll Request (PReq) frame to 
all CNs. In order to avoid communication conflict, only one of the CNs identified by the PReq 
frame can reply to a Poll Respond (PRes) frame. The MN continues sending other PReqs frames 
and then gets the corresponding PRes frames from the addressed CNs. 

 

 

 

 

 

 

Fig. 3.26: Master-slave communication in one Ethernet POWERLINK cycle 

One Ethernet POWERLINK cycle is divided into two phases: the isochronous phase and the 
asynchronous phase, as shown in Fig. 3.26. The first period of the cycle is the isochronous phase, 
in which all time-critical data is transmitted using PReq and PRes messages. The latter period of 
the cycle is the asynchronous phase, in which non real-time messages based on standard Ethernet 
(e.g. TCP/IP messages) are arbitrarily sent. After the isochronous phase, the MN informs all CNs 
of the beginning of the asynchronous phase by sending a Start of Asynchronous (SoA) frame to 
all CNs. Only one device of the controlled nodes is granted permission from the managing node 
to send non real-time messages in the asynchronous phase. All nodes are idle during the idle 
period of the asynchronous phase. The MN repeats the processes of the synchronous phase in the 
upcoming cycle.  

 

 

 

 

 

Fig. 3.27: Time-slot sharing in Ethernet POWERLINK cycles 
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In order to enhance the bandwidth utilization of Ethernet POWERLINK, CNs can share time-
slots within the isochronous phase, as illustrated in Fig. 3.27. In this figure there are three 
controlled nodes (CN1, CN2 and CN3) which have the same cyclic message period (one cycle 
time), while the other eight controlled nodes (CN4, CN5, CN6, CN7, CN8, CN9, CN10 and 
CN11) require a cyclic message period of three cycles. The eight controlled nodes can share their 
time-slots in different cycles (e.g. the CN4, CN7 and CN10 nodes share the same time slot but 
transmit in different cycles). Likewise the CN5, CN8 and CN11 nodes are assigned to use the 
same time-slot but in different cycles. Again, the CN6 and CN9 nodes are allowed to transmit in 
the same time-slot, but in different cycles.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.28: Ethernet POWERLINK protocol stack with reference to OSI Model [OSI96] 

Ethernet POWERLINK runs on top of standard Ethernet. In Fig. 3.28, the Ethernet 
POWERLINK-Lower Layer is capable of accessing and handling standard-Ethernet controllers. 
The Ethernet POWERLINK-Lower Layer also follows a specified cycle schedule for cyclic data 
exchange. Ethernet POWERLINK transfers time-critical data via Process Data Objects (PDOs) 
in the isochronous phase of a communication cycle. Non time-critical data (e.g. diagnostic data 
and configuration parameters) are transported via Service Data Objects (SDOs) in the 
asynchronous phase. The SDO data transfer is based not only on exclusive Ethernet frames, but 
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also on the UDP (User Datagram Protocol) of the TCP/IP protocol suite. However, a standard-
Ethernet device without an Ethernet POWERLINK protocol stack cannot work in an Ethernet 
POWERLINK network. Standard Ethernet devices can be integrated in an Ethernet 
POWERLINK network using a dedicated gateway device, e.g. EPLGW (Ethernet to Ethernet 
POWERLINK Gateway) [SHF06].  The application layer of Ethernet POWERLINK adopts the 
object dictionary concept of CANopen [BCF98]. The object dictionary is an interface between 
the application and the communication. Each object dictionary entry directly allocates a 
reference to a variable containing application data. The communication services (PDOs and 
SDOs) access these application data variables directly. Therefore, migration from existing 
CANopen applications to Ethernet POWERLINK devices requires only trivial modifications.   

 

3.6.2 Performance of Ethernet POWERLINK 

Ethernet POWERLINK communicates cyclic process data during the isochronous phase of a 
communication cycle. A managing node (MN) uses a polling method to send a request frame, 
and then waits for the corresponding response frame from the targeted controlled node (CN). 
With such a polling method, Ethernet POWERLINK has to ensure that the fixed timeout interval 
(TO), which starts when the transmission of a request frame begins, does not expire before the 
corresponding response frame from the targeted CN is received. In cases where the response 
frame from the targeted CN arrives late, the next request frame from the managing node may 
collide with the incoming response frame. Therefore, the duration of an Ethernet POWERLINK 
communication cycle depends on the response time of each Ethernet POWERLINK device. 
Since Ethernet POWERLINK was designed to be based on a bus network topology, the 
maximum transport delay in bus topology is lower than in star topology (because no transport 
delay occurs in switching devices). Ethernet POWERLINK can also be used in star network 
topology, but this is not recommended. In addition, the total number of CNs in an Ethernet 
POWERLINK network affects the length of the communication cycle. The higher the total 
number of controlled nodes, the larger the achievable cycle time is. According to [FS07], 
Ethernet POWERLINK achieves a jitter of less than 1 microsecond. A software implementation 
of the Ethernet POWERLINK-Lower Layer in typical micro-controllers can achieve a response 
time in the range of 3-10 microseconds [FS07]. The problem of using a software-based Ethernet 
POWERLINK-Lower Layer is the uncertainty of the response times when changing the 
hardware micro-controller platform. Instead of hardware micro-controller platforms, a dedicated 
hardware device (e.g. FPGA - Field Programmable Gate Array) is used, guaranteeing response 
times of less than 1 microsecond [FS07]. By using theoretical analysis [CSV08], the time 
duration of the isochronous phase for an Ethernet POWERLINK network with 16 controlled 
nodes and one Ethernet hub is 423.4 microseconds, regardless of propagation delays from 
network cables. If there are more than 16 controlled nodes under the same condition, the cycle 
time will be larger than 423.4 microseconds.  
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3.7 AFDX  

AFDX (Avionic Full Duplex Switch Ethernet) [ARI06] [Con05] is a standard that defines the 
electrical and protocol specifications for the exchange of data between avionics subsystems. 
AFDX is contained in ARINC 664 Part 7 [ARI06], and was formally issued on June 27 2005. It 
was originally introduced by Airbus, and is based on modern Ethernet technology (Fast and 
Gigabit Ethernet). In comparison to its predecessors, it has a much higher bandwidth (up to 1000 
Mbps compared to the 2 Mbps supported by ARINC 629 [ARI99]). AFDX utilizes COTS 
Ethernet devices, and extends standard Ethernet with the bandwidth allocation mechanism for 
AFDX traffic. AFDX provides high data integrity via the AFDX frame format, and supports 
fault-tolerant operation by redundant message communication.  

 

3.7.1 Structure and Functionality  

Avionics subsystems connecting components of a control system (e.g. sensors, actuators, and 
controllers) communicate with each other via an AFDX network, as depicted in Fig. 3.29. The 
AFDX network, which is structured based on a star network topology, consists of three main 
elements: an AFDX End System, an AFDX Switch and an AFDX Link, as depicted in Fig. 3.29. 
The End System is an interface between an Avionics Subsystem and an AFDX Switch (via an 
AFDX Link). The AFDX Link makes use of a standard Ethernet cable providing full-duplex 
communication. An Avionics computer system comprises one or more Avionics subsystems and 
one End System, as depicted in Fig. 3.29. According to ARINC 653 [ARI05], an interface of a 
partition-based operating system is required to communicate between Avionics subsystems, so 
that any faults occurring do not propagate.  

 

 

 

 

 

 

 

 

Fig. 3.29: The Avionics Subsystems connect to each other via an AFDX network 
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Applications on Avionic computer systems can send and receive messages through AFDX 
communication ports. There are two types of AFDX communication ports defined in ARINC 
653: sampling ports and queuing ports.  Both sampling and queuing ports are mapped to the 
UDP ports of the end systems in an Avionic computer system, as depicted in Fig. 3.30. The 
sampling and queuing ports differ mainly in message reception. Both ports are explained as 
follows: 

 Sampling port: Provides a storage buffer for a single message. A new arriving message 
overwrites a message currently stored in the buffer. Reading the message in a sampling 
port does not remove the message from the buffer. Each sampling port has a freshness 
indicator. The freshness indicator is set when a new message is received, and it is cleared 
when the stored message is read. With such a freshness indicator, an End system can 
identify whether the transmitting Avionics subsystem has stopped transmitting, or 
repeatedly sent a message with the same value.  

 Queuing port: Has queue buffers for a fixed number of messages, specified by a 
configuration parameter. A new arriving message is appended in the queue buffer of a 
queuing port. Handling all messages in a queuing port is done on First-In First-Out 
(FIFO) basis. Contrary to a sampling port, reading a message from a queuing port is to 
remove the message from the buffer. 

 

 

 

 

 

 

 

 

 

Fig. 3.30: The AFDX Communication ports at an End System 

AFDX also provides another port type, called the Service Access Point (SAP). This is used in an 
End System for communicating with non-AFDX systems. An example application that uses SAP 
ports is TFTP (Trivial File Transfer Protocol). Connecting a legacy Ethernet network with an 
AFDX network can be done using a Gateway and an End System, as shown in Fig. 3.29. In a 
standard-Ethernet switch, an incoming Ethernet frame is routed to one or more output ports of 
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the Ethernet switch, based on its destination MAC address. Standard-Ethernet switches use the 
MAC address learning mechanism, and recognize which output ports the incoming Ethernet 
frame should be sent to. The MAC address learning mechanism causes uncertain delays in 
Ethernet switches. In AFDX networks, a concept called Virtual Link (VL) is used for predefining 
routes of Ethernet frames in switches.  There may be one or many VLs in an AFDX switch. A 
VL is a logical unidirectional connection from one source end system to one or more destination 
end systems, as depicted in Fig. 3.31.  

 

 

 

 

 

 

 

 

 

Fig. 3.31: Four Virtual Links (VL 1, VL 2, VL 3 and VL 4) in an AFDX network 

Each VL is identified by a value in the Virtual Link ID field, which is defined as a 16-bit value in 
the Destination Address field of the Ethernet frame format (see Fig. 3.32). Looking at Fig. 3.31, 
the Virtual Link ID of VL 1 is 100, so messages with this Virtual Link ID from End System 1 are 
always relayed by AFDX switch 1 to End System 2 and End System 3. 

 

 

 

 

Fig. 3.32: The Destination Address field in Ethernet frame format for AFDX 

AFDX messages are based on Ethernet and the UDP. Avionics Subsystems send their messages 
to connected End Systems via AFDX ports. The End Systems encapsulate the messages with 
Ethernet frames before transmitting them through the AFDX network. A message from an 
Avionics subsystem is embedded in the UDP Payload field, and has a variable size of between 
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17 and 1471 bytes, as shown in Fig. 3.33. If a message comprises less than 17 bytes, it is padded 
with null bytes until it reaches the required minimum size (17 bytes). This is because the 
specification of standard Ethernet defines the minimum size of the Ethernet Payload field as 46 
bytes. AFDX also defines a 1-byte field called Sequence Number (SN). This is contained in the 
UDP Payload field and is used to indicate message sequence. The SN field is located in the last 
part of the UDP Payload field. The value of the SN field is increased by one each time an End 
system transmits the comprising AFDX message. The SN value is initialized to zero, and will 
continue to 255 until is rolls back to 1. The SN value of zero is reserved as the End System Reset 
value. Each Virtual Link has an individual SN value.  

 

Fig. 3.33: The AFDX message format based on the Ethernet and UDP frame formats 

 

 

 

 

 

 

Fig. 3.34: The two redundant AFDX networks 

AFDX supports a fault-tolerant property by means of message redundancy. As depicted in Fig. 
3.34, two independent AFDX Switch networks (A and B) are used for transporting redundant 
messages in the AFDX system. Each message transmitted by End System 1 is duplicated, so 
there are two identical messages (Message A and Message B). Message A is sent to AFDX 
Switch network A, while Message B is transmitted to AFDX Switch network B. Under normal 
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operation, End System 2 will receive the two identical messages. End System 2 then checks if 
the value of the Frame Check Sequence field of each received message corresponds with the one 
calculated at the MAC Layer, as shown in Fig. 3.35. Only messages with valid values are passed 
to the next stage, Integrity Checking. This stage checks whether the value in the Sequence 
Number field of a received AFDX message is in the correct, ascending order. If the received 
AFDX message is in the correct order, it is passed to the next stage, Redundant Management. 
Otherwise, the message is discarded. If more than one redundant message arrives at the 
Redundant Management unit, only the earliest one will be carried on to the next step. The rest 
will be discarded.   

 

 

 

 

 

 

 

 

Fig. 3.35: The receiving process of the AFDX frames in an End System 

Virtual Links in an AFDX network denote a logical unidirectional connection from a source End 
System to one or more destination End Systems. A Virtual Link is characterized by the following 
two parameters: 

 Bandwidth Allocation Gap (BAG): The minimum interval between the starting bits of two 
consecutive Ethernet frames transmitted on a Virtual Link, as depicted in Fig. 3.37 
(Traffic Regulator 1). A BAG value is equal to the power of two that results in a range 
from 1 to 128 milliseconds (i.e. 20, 21, 22, 23, 24, 25, 26 and 27 milliseconds). 

 Largest Ethernet frame (Lmax): The maximum Ethernet frame size (in bytes) that is 
allowed to transmit on a Virtual Link.  

With these characteristics of a Virtual Link (BAG and Lmax), the maximum bandwidth 
utilization of a Virtual Link can be calculated using Lmax / BAG. For example, a Virtual Link 
assigned with a BAG of 16 milliseconds and an Lmax of 200 bytes would have a maximum 
bandwidth utilization of 100,000 bits per second.  
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Messages that are moved from Avionic subsystems to AFDX communication ports are 
encapsulated with UDP, IP, and Ethernet frames. These encapsulated AFDX messages will be 
placed in the buffers of the appropriate Virtual Links on a First-In First-Out (FIFO) basis. The 
transmission of AFDX messages from each Virtual Link in an AFDX End System is scheduled 
by the Virtual Link Scheduler. The Virtual Link Scheduler has to ensure that each Virtual Link in 
the AFDX End System conforms to its bandwidth constraints (BAG and Lmax).  

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.36: The scheduling of the Virtual Link Schedule in an AFDX End System 

 

 

 

 

 

 

Fig. 3.37: An illustration of the inputs and outputs of two Traffic Regulators 
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A Virtual Link Scheduler consists of a traffic regulator for each Virtual Link, and a Virtual Link 
Multiplexer, as depicted in Fig. 3.36. The traffic regulator of each Virtual Link controls the time 
duration between any two consecutive AFDX messages, as illustrated in Fig. 3.37.  The Virtual 
Link Multiplexer of an AFDX End System is used for multiplexing the outputs of the traffic 
regulators. The messages from the output of the Virtual Link Multiplexer are duplicated at the 
Redundancy Management unit, shown in Fig. 3.36. Each of the identical AFDX messages is sent 
to one of the independent AFDX Switch networks. 

 

3.7.2 Performance of AFDX  

With regard to real-time performance, the jitter caused by the AFDX mechanism is still an issue 
for analyzing a worst-case end-to-end delay [DXL10] [CXW09] [LSF09]. Jitters occurring in an 
AFDX End System and an AFDX switch can be examined using the following methods: 

 Jitter caused by an AFDX End System: In an AFDX End System, Virtual Links and the 
Virtual Link Scheduler are the most significant causes of jitter. Jitter at a Virtual Link is 
introduced if a message arrives at the non-empty queue [Con05], especially if more than one 
sub Virtual Link is using the same Virtual Link. AFDX handles the messages from sub 
Virtual Links using round-robin scheduling, which is known to induce jitter [Con05]. In 
accordance with the ARINC 664 specification, the maximum number of sub Virtual Links in 
one Virtual Link is limited to four. In a Virtual Link Scheduler, jitter caused by multiplexing 
the multiple Virtual Links can occur when multiple Virtual Links are scheduled at the same 
time, meaning that their BAG values coincide. The ARINC 664 specification [ARI06] 
defines the maximum allowed jitter caused by multiplexing for each Virtual Link using the 
following formulas [Con05] [Act05]:   

max _jitter ൑ ݏߤ 40 ൅  
∑ ൫ଶ଴ା௅௠௔௫ೕ൯଼כೕאሼೞ೐೟ ೚೑ ೇಽೞሽ

ே௕௪
 …………………...….……..(3.1) 

max _jitter ൑  (3.2)…………..…………………………………………… ݏߤ 500

Nbw is the link bandwidth of Ethernet (e.g. 100 Mbps for Fast Ethernet). Note that formula 
3.2 denotes the highest bound of the maximum allowed jitter of each Virtual Link. 

 Jitter caused by an AFDX Switch: Jitter in an AFDX Switch is introduced where more than 
one Virtual Link uses the same output port. More precisely, jitter can occur when messages 
from different Virtual Links are sending at the same output port of an AFDX switch 
simultaneously. AFDX handles this message contention using Traffic Policing [Act05]. With 
Traffic Policing, output ports of an AFDX Switch are configured with respective maximum 
transmission rates (i.e. messages that cause excessive transmission rates over the configured 
maximum are dropped). Thus, the jitter of messages from each Virtual Link can be bounded. 
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Furthermore, legacy Ethernet devices cannot directly connect to an AFDX Switch because 
standard-Ethernet traffic will interfere with the timely behavior of AFDX traffic (i.e there is 
no mechanism to handle the interference from standard-Ethernet traffic in an AFDX Switch). 
However, legacy Ethernet devices from non-AFDX networks can connect to an AFDX 
network, by using two dedicated components: a gateway and an End system, as depicted in 
Fig. 3.29.  

 

3.8 TTEthernet 

TTEthernet [TTE08] is a time-triggered communication protocol that expands standard Ethernet 
[IEE05] with services to meet time-critical, deterministic, and safety-relevant conditions. 
TTEthernet was developed by TTTech Computertechnik AG [TTTech] as an industrial protocol. 
It was further developed from the academic TT-Ethernet research [KAGS05] [SGAK06]. 
TTEthernet effectively supports mixed-criticality applications coexisting in a single network 
infrastructure. With the concept of time-triggered communication [KG93], TTEthernet can 
handle a variety of temporal requirements, including those suitable for: non real-time 
applications (e.g. Internet applications), soft real-time applications (e.g. multimedia 
applications), and hard real-time applications (e.g. fly-by-wire applications). TTEthernet is fully 
compliant with standard Ethernet, and transparently integrates real-time traffic with standard 
Ethernet traffic. It was designed to obtain timely and deterministic communication [KAGS05] 
for real-time traffic (time-triggered traffic) in an Ethernet-based network (i.e. there is no 
interference to real-time traffic from non real-time traffic). By using a common time-triggered 
(TT) communication schedule, TTEthernet can determine which TTEthernet device is going to 
transmit time-triggered messages, and a priori predict when the time-triggered messages will 
arrive at their intended destinations. TTEthernet can handle non real-time traffic without a 
degradation of timing performance to real-time traffic. This implies that the throughput of real-
time traffic in a TTEthernet network is constant, because of the very low jitter. In addition, 
TTEthernet provides fault-tolerance approaches for safety-relevant applications, such as fault-
tolerant clock synchronization, network redundancy, fault-tolerant startup, and so on [TTE08]. 
With regard to standard-Ethernet traffic, TTEthernet ensures high channel utilization. This is 
because standard Ethernet traffic can flow through TTEthernet devices irrespective of whether 
the system-wide global time base has been established. TTEthernet has recently been 
standardized as SAE 6802 [AVI11].  

 

3.8.1 Structure and Functionality of TTEthernet 

TTEthernet classifies message traffic into three classes: time-triggered messages, rate-
constrained messages, and best-effort messages. In compliance with standard Ethernet, every 
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message in a TTEthernet network is encapsulated with a standard Ethernet frame before 
transmitting, as depicted in Fig. 3.38. Each of the message classes are explained as follows:  

 Time-triggered messages (TT messages): Used for transmitting real-time data. The 
transmissions of all TT messages are scheduled without confliction in a common TT-
communication schedule. TT messages take precedence over messages of other traffic 
classes. Therefore, the transport delays of TT messages between two end systems are 
known a-priori, and have a very small jitter. In addition, TT messages of an end system 
are transmitted when the system-wide synchronized time-base at the end system has been 
established.  

 Rate-constrained messages (RC messages): Used for applications which require a 
bounded message transmission rate (e.g. multimedia applications). Another example of 
applications using RC messages is AFDX [Con05], where Virtual Links for transmitting 
messages require a bounded transmission rate for assigning the Bandwidth Allocation 
Gap. Applications using RC messages have less stringent timing-determinism and real-
time requirements than ones using TT messages.  

 Best-effort messages (BE messages): Used for standard Ethernet traffic. BE messages are 
transmitted without timing or transmission-rate constraints. There is no guarantee of 
arrival times for BE messages at their specified end systems. Therefore, BE messages are 
only suited for non real-time traffic. In a TTEthernet network, BE messages have less 
priority than TT and RC messages, and use the bandwidth remaining after their 
transmission.   

 

 

 

 

 

 

 

 

 

 

Fig. 3.38: The protocol layers of TTEthernet compliant with standard Ethernet 
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Fig. 3.39 shows a TTEthernet system consisting of a set of end systems and TTEthernet switches 
(TTE switches). The end systems connect with each other via the TTE switches. The network 
structure of TTEthernet, which complies with switched Ethernet, is in a star topology. A 
TTEthernet end system consists of a host computer and a TTEthernet controller. The host 
computer of a TTEthernet end system executes applications, while the communication controller 
is responsible for executing the TTEthernet communication protocol. The TTEthernet controller 
contains all time-triggered communication services. The applications in the host computer run 
independently of the TTEthernet controller. The TTEthernet controller and the host computer are 
connected via a communication network interface (CNI). There is full-duplex message 
communication between each end system and its connected TTE switches. All TTEthernet end 
systems and TTE switches handle TT traffic in consideration with the common TT 
communication schedule. TT messages can be transmitted at a TTEthernet End System, or 
relayed by a TTE switch if and only if the system-wide global-time base has been established by 
the clock synchronization mechanism [TTE08].  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.39: Legacy Ethernet devices coexisting with TTEthernet end systems in a TTEthernet 
system 

TTEthernet also supports two redundant communication channels, as shown in Fig. 3.40. 
Therefore, faults occurring in one of two redundant communication channels (e.g. a break in a 
network cable) can be tolerated.  

The clock synchronization of TTEthernet can be configured to operate as master-slave clock 
synchronization or multi-master clock synchronization. Therefore, the clock synchronization of 
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TTEthernet can be used in a broad range of applications. Master-slave clock synchronization, 
which is simple to configure, is mostly used in industrial control applications. Multi-master clock 
synchronization is suitable for highly fault-tolerant systems (e.g. fly-by-wire systems). The 
system-wide global-time base in a TTEthernet network is performed on the cluster cycle 
specified in the common TT communication schedule. The definition of the cluster cycle is 
explained in Chapter 2 – Basic Concepts. Both synchronization and TT messages are transmitted 
and received with regard to their assigned instants along the cluster cycle of a real-time cluster, 
as illustrated in Fig. 3.41. A real-time cluster in a TTEthernet system is called a TTEthernet 
cluster. TTEthernet defines a dedicated synchronization message, called the Protocol Control 
Frame (PCF). A PCF contains accumulated time information regarding travel from sender to 
receiver, as depicted in Fig. 3.42. The PCF field containing this accumulated information is 
called the transparent clock. A TTEthernet end system or switch uses the PCF’s transparent 
clock of a received message to calculate its time correction value. In additional, TTEthernet 
applies the concept of Message Permanence (explained in Chapter 2 – Basic Concepts). This is 
used to reorder messages received at a TTEthernet end system or TTE switch. This denotes that 
messages arriving at a TTEthernet end system can be rearranged in transmission order (as 
observed by an omniscient external observer [Kop97]). The function of TTEthernet that 
determines the permanence points in time for receiving messages is called the Message 
Permanence Function. This means that a receiving message becomes permanent at its 
permanence points in time, when the receiver has already received all prior messages to the 
current one.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.40: The two communication channels in a TTEthernet system 
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Fig. 3.41: The cluster cycle in a TTEthernet system 

 

 

 

 

 

 

Fig. 3.42: The Transparent Clock of a PCF in a TTEthernet system 

The most important parameter in the Message Permanence Function is the maximum 
transmission delay. The maximum transmission delay is a bounded transmission delay. It is 
either equal to or greater than the maximum value of the transport delays of PCFs travelling from 
all senders to all receivers in a TTEthernet cluster. In Fig. 3.42, the receiver uses the transparent 
clock value of a receiving PCF to calculate its permanence point in time, as detailed by Equation 
2.2 (located in Chapter 2 - Basic Concepts). 

 

 

 

 

 

 

 

 

Fig. 3.43: Two steps of the clock synchronization in a TTEthernet system 
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There are three types of TTEthernet clock synchronization devices: synchronization master, 
compression master, and synchronization client. Fig. 3.43 depicts two steps of the clock 
synchronization process in a TTEthernet system. In the first step, the synchronization masters 
send their respective PCFs to the compression master, according to the specified sending instants 
in the common TT communication schedule. The compression master then calculates a fault-
tolerant averaging value [Kop97] from the relative arrival times of the incoming PCFs (i.e. from 
their relative permanence points in time). The compression master then corrects its clock time. In 
the second step, the compression master sends the new PCFs back to the synchronization 
masters, as well as to the synchronization clients. The synchronization masters and 
synchronization clients receive the PCFs from the compression master, and then perform the 
corrections to their local clock times.  

In a TTEthernet system, the TTEthernet devices perform their startup services as soon as they are 
powered. The TTEthernet startup service is responsible for establishing the system-wide global-
time base for all TTEthernet devices. TTEthernet provides three PCF frame types for this startup 
service: cold-start frame, cold-start acknowledgement frame, and integration frame. Only 
synchronization masters perform the initial transmission of these frames. In the startup state of 
TTEthernet, synchronization masters use cold-start frames and cold-start acknowledgement 
frames to obtain the global consistent point in real time for initial clock synchronization. 
TTEthernet provides the fault-tolerant handshake fault tolerance mechanism for the startup 
service. The details of the TTEthernet startup service can be found in the TTEthernet 
specification [TTE08]. 

TTEthernet provides a clique detection service for detecting disjoint subsets of TTEthernet 
devices that are synchronized within their respective subsets in a TTEthernet cluster 
(synchronization domain). A TTEthernet device performs this clique detection service by 
checking the membership state specified in a receiving PCF with its current membership state. 
TTEthernet also provides a clique resolution service, which re-establishes the clock 
synchronization in a synchronization domain after cliques have been detected. Therefore, there 
will be only one set of synchronized TTEthernet devices in a synchronization domain. 
TTEthernet defines the clique detection and resolution services as part of the startup service. 
Both clique detection and resolution services enhance the reliability of the system-wide global-
time base in a TTEthernet system. 

 

3.8.2 Performance of TTEthernet 

Based on the time-triggered communication paradigm [Kop08] [KG93], the timing performance 
of TT traffic in a TTEthernet network does not depend on the amount of standard Ethernet traffic 
(i.e. standard-Ethernet frames cannot interfere with the timely behavior of time-triggered 
messages). TTEthernet devices send time-triggered messages with regard to a common 
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confliction-free time-triggered (TT) communication schedule. Each TTEthernet device knows 
when time-triggered messages are transmitted, and a priori predict the arrival time of each time-
triggered message. Therefore, the timing performance of time-triggered traffic in TTEthernet is 
maximized, and has very low jitter. With the determinism property of time-triggered 
communication [KAGS05] in TTEthernet, it is suitable for fault-tolerant real-time systems 
(because it supports network redundancy). With regard to the performance of standard-Ethernet 
traffic in a TTEthernet network, although it has lower priority than time-triggered traffic, 
TTEthernet still achieves high channel utilization. This is because the standard-Ethernet traffic 
can flow through TTEthernet devices, regardless of whether or not their system-wide global-time 
base has been established. Currently, there are both hardware and software-based versions of 
TTEthernet devices available, which are provided by the TTTech Company [TTTech]. 
According to [BSK11], the end-to-end latencies of TT traffic in a 100-Mbps TTEthernet network 
with a software-based TTEthernet end system and a hardware-based TTE switch remain 
approximately constant, with a jitter of less than 10 microseconds. This jitter can be reduced to 
less than a few microseconds by using a hardware-based TTEthernet end system instead of a 
software-based one. In addition, both 1-Gbps TTE switches and 1-Gbps TTEthernet end systems 
are currently available, and suitable for very high-speed mixed-criticality applications [TTTech].   
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CHAPTER 4 

A Simulation Model for TTEthernet Systems 
 

In this chapter we propose a simulation model for TTEthernet systems. Our simulation model, 
which is based on the concept of discrete event simulation, is built to describe the behavior of a 
real world TTEthernet system. This chapter begins with an explanation of the relationship 
between simulation time and local-clock time. We then present the simulation model of the 
TTEthernet system components. We use the Java library “J-Sim” (as described in Chapter 2 - 
Basic Concepts) and a Java runtime environment for implementing our simulation model.  We 
calibrate this model using existing results from published papers [LL08][Rug08].  

 

4.1 The relationship between simulation time and local-clock time 

The simulation time of our simulation model represents the progression of real time, which is 
measured by a reference clock (a clock with a drift rate of zero). In a TTEthernet (TTE) system, 
each TTE device (either a TTE end system or a TTE switch) has its own local clock, which 
expresses its local-clock time. Each local clock in every TTE device has a varying drift rate. The 
varying drift rate of a local clock is bounded by its specified maximum drift rate. In our 
simulation model, the local clock of a TTE device performs the local-clock time progression 
using its specified maximum drift rate. Therefore, the local-clock time will deviate from a 
reference clock within the drift offset value derived from its specified maximum drift rate, at a 
particular time interval of interest. We depict the relationship of simulation time and local clock 
time in Fig. 4.1. We obtain the local-clock time of a local clock using Equation 4.1. 

Tclock_current = Tclock_last + (Tsim_current - Tsim_last) * (1+ ρ) ………………………………………(4.1) 

Where,  

Tclock_current is the local-clock time at the current simulation time (Tsim_current) 

Tclock_last is the local-clock time at the last simulation time (Tsim_last) 

Tsim_current is the current simulation time  

Tsim_last is the last simulation time at the last update of a local-clock time.  

ρ = the specified maximum drift rate of a local clock  
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Due to clock synchronization, the last local-clock time (Tclock_last) is updated by the corrected 
local-clock time (Tclock_current) at a resynchronization point in simulation time (Tsim_current). The last 
simulation time (Tsim_last) is then updated with the current simulation time (Tsim_current). The 
details of how to obtain the corrected local-clock time are described in the local-clock component 
section. 

 

 

 

 

 

 

 

 

Fig. 4.1: The relationship between simulation time and local clock time 

 

4.2 The simulation model of TTE system components 

In this section we describe our simulation model of all TTE system components. Firstly, the 
simulation model structure, which is based on discrete event simulation, is presented. The 
simulation model structure for a TTE system mainly consists of a cluster list, a network-cable 
list, and two main methods (i.e. Life and Init). These are depicted in Fig. 4.2. In a discrete event 
simulation, there is an event list containing all events to be executed. In J-Sim, this event list is 
called a simulation calendar. An event in a simulation calendar consists of a component’s 
reference and the event’s point in simulation time. When the event’s point in simulation time is 
reached, the Life method of the component indexed by the event is executed. We call the arrival 
of an event’s point in simulation time the event occurrence.  

 Cluster List: We model a TTE cluster as a cluster component. A cluster component is 
mainly composed of a set of node and TTE-switch components. A cluster list is a 
container of all cluster components in a TTE system’s simulation. Events that are 
requested from any component in a cluster list are added into the simulation calendar (as 
depicted in Fig. 4.2). These events occur at their event’s points in simulation time, i.e. the 
components of these events are activated to be executed.  
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 Network-cable List: We model an Ethernet network cable as a network-cable component. 
The network-cable list in a TTE system’s simulation contains all network-cable 
components. Similar to the cluster list, events that are requested from a network-cable 
component are added into the simulation calendar (as depicted in Fig. 4.2). The 
components of these events are activated to be executed at their event’s points in 
simulation time.   

 Event List: All event processes are held in an event list, and are executed with respect to 
their event’s point in simulation time. We use the J-Sim simulation calendar as an event 
list.  

 

 

 

 

 

 

 

Fig. 4.2: The simulation model structure for a TTEthernet system 

 Life method: The Life method is the main method of a TTE system’s simulation. This 
method executes simulation steps, i.e. the Life methods of the components are executed in 
ascending time order. 

 Init method: The Init method is executed when a TTE system’s simulation begins. This 
method adds the startup events of all components to the simulation calendar, in order to 
start their operations at user-defined startup times.  

 

4.2.1 Cluster component 

A cluster component consists of a set of node components and TTE-switch components, all of 
which connect with each other via network-cable components. A cluster component provides a 
node list, a TTE-switch list (for containing node components), and TTE-switch components, 
respectively. This is shown in Fig. 4.3. The node and TTE-switch components from different  
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cluster components can also connect with each other via a network-cable component. 

 

 

 

 

 

 

Fig. 4.3: A cluster component 

 Node list: A Node list contains all node components that belong to a particular cluster 
component. Events that are requested from the node components are added into the 
simulation calendar. The components of these events are activated to be executed at their 
event’s points in simulation time.   

 TTE-switch list: A TTE-switch list contains all TTE-switch components that belong to a 
particular cluster component. Similar to a node list, events that are requested from the 
TTE-switch components are added into the simulation calendar. The components of these 
events are activated to be executed at their event’s points in simulation time. 

 TTE-configuration component: A TTE-configuration component contains the TTE 
configuration parameters, e.g. synchronization device type, synchronization priority, 
maximum transmission delay, local-clock precision, acceptance widow, integration cycle 
duration, and so on. These parameters are described in the TTE-configuration component 
section. Once a TTE-engine component starts running, it loads all TTE-configuration 
parameter values from the TTE-configuration component.  

 Cluster-TT-schedule list: A Cluster-TT-schedule list belongs to a cluster component, and 
stores TT-schedule components. Each TT-schedule component contains a user-assigned 
TT-traffic load. The TT-schedule component is described in the TT-schedule component 
section. 

 

4.2.2 Node component 

We model a TTE end system as a node component. There are two main operations in a node 
component: standard-Ethernet communication, and TT communication.  
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Fig. 4.4: A node component 

 

Standard-Ethernet communication: The transmission of standard-Ethernet frames is based on 
event-triggered communication. As shown in Fig. 4.4, a node component has an ET-traffic list 
that stores ET-traffic components. An ET-traffic component contains a user-assigned 
transmission pattern of standard-Ethernet traffic. An ET-traffic component has the following 
parameters: 

 Data Size: The payload data size of a standard-Ethernet frame.  

 Transmission Rate: The transmission rate of a standard-Ethernet frame. 

 Transmission Type: The transmission type of a standard-Ethernet frame: unicast, 
multicast, or broadcast. 

 Destination Node: This parameter is specified only if the Transmission Type parameter is 
unicast. It indicates the destination node of a standard-Ethernet frame. We model a 
standard-Ethernet frame as an Ethernet-frame component. A node component can receive 
an incoming Ethernet-frame component if the destination node parameter of the 
incoming Ethernet-frame component matches to the node component. Otherwise, the 
node component drops the incoming Ethernet-frame component.  

 Traffic Type: This parameter indicates the traffic type of an Ethernet-frame component. 
There are two traffic types for standard-Ethernet traffic: RC (Rate-constrained) and BE 
(Best-effort). The RC traffic type is for high-priority standard-Ethernet traffic, whereas 
the BE traffic type is for low-priority standard-Ethernet traffic.   
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Fig. 4.5: The derivation of the ET-traffic events in the ET-traffic event list 

As shown in Fig. 4.5, once a node component begins its operation, it initializes ET-traffic events 
in the ET-traffic event list. An ET-traffic event consists of an ET-traffic component’s reference, 
and an ET-traffic event’s point in simulation time. At the ET-traffic event’s point in simulation 
time, the node component dispatches an Ethernet-frame component, as depicted in Fig. 4.5. In 
event-triggered communication, we define that the ET-traffic event’s point in time is the same as 
the ET-traffic event’s point in simulation time. All ET-traffic events in the ET-traffic event list 
are in ascending order with respect to their event’s point in time. A node component considers 
the ET-traffic event with the lowest point in time, and dispatches an Ethernet-frame component. 
After every node component dispatches an Ethernet-frame component, the ET-traffic event with 
the lowest point in time is updated by a time delay, as depicted in Fig. 4.6.  

 

 

 

 

 

Fig. 4.6: Timing diagram of transmitting Ethernet frames 

In a node component, there are two methods for generating and receiving standard-Ethernet 
messages, these are the Send method and Receive method, respectively. 

 Send method: This method generates and dispatches a standard-Ethernet frame to the 
communication-controller component, as depicted in Fig. 4.4. Firstly, the ET-traffic 
components in an ET-traffic list are read. Then a time delay between the dispatching 
points in time of two consecutive standard-Ethernet frames is calculated. Finally, 
Ethernet-frame components are dispatched with a period of the calculated time delay, as 
depicted in Fig. 4.6. The time delay is derived from the Transmission Rate parameter of 
an ET-traffic component. We model a standard-Ethernet frame as an Ethernet-frame 
component, as described in the Ethernet-frame component section.  
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 Receive method: This method performs the standard-Ethernet reception service of a node 
component, when the communication-controller component receives an entire standard-
Ethernet frame (as depicted in Fig. 4.4). This standard-Ethernet reception service includes 
a process to record receiver information for analysis purposes.    

 

TT communication: In a node component, the TTE-engine component dispatches and receives 
TT messages and PCFs to/from the communication-controller component (as depicted in Fig. 
4.4). The TT communication of a node component is described in the following sections: TTE-
engine component, communication-controller component, and local-clock component.  

The parameters of a node component: In our simulation model we provide the following 
parameters for a node component:     

 Drift Rate: The local-clock drift rate of a node component. The parameter unit takes the 
form of second/second (sec/sec).  

 Startup Time: Determines a startup point of node operation in simulation time. If 
simulation time has not reached the startup time of a node component, all operations of 
the underlying components (i.e. local-clock, communication controller, and TTE-engine 
components) cannot get started.  

 Communication Protocol: Determines a communication protocol used in a 
communication-controller component. There are two communication protocols: Ethernet 
(for standard-Ethernet devices), and TTEthernet (for TTE devices). If this parameter is 
set to Ethernet, the communication-controller component performs as a standard-Ethernet 
controller. If the parameter is set to TTEthernet, the communication-controller 
component performs as a TTEthernet controller. In a TTEthernet controller, the time-
triggered traffic can coexist with standard-Ethernet traffic.       

 

4.2.3 Network-Cable component 

We model an Ethernet network cable as a network-cable component. A network-cable 
component consists of two transmission-line components and two connector components, as 
depicted in Fig. 4.7.  The network-cable component supports full-duplex communication. One of 
two underlying transmission-line components takes a message from one end to another (in one 
direction), while another transmission-line component delivers a message in the opposite 
direction. A connector component has a connection parameter that identifies which 
communication-controller component or TTE-switch-port component it connects to.  



 
                                                                                                                      4. A Simulation Model 
4.2 The simulation model of TTE system components                               for TTEthernet Systems                         

80 
 

 

 

 

 

 

 

 

Fig. 4.7: The internal structure of a network-cable component 

Transmission-Line component: A transmission-line component relays a message from the 
connected transmitter component to the connected receiver component. The relaying time is 
specified in the propagation delay parameter of the transmission-line component.  A 
transmission-line component has one event list and two main methods (i.e. message-propagation 
service, and Life), as depicted in Fig. 4.8. The message-propagation service method is executed 
when a connected transmitter component transmits a message component. Note that a message 
component is an Ethernet-frame, a PCF, or a TT-message component. The message-propagation 
service method of a transmission-line component is invoked by the connected transmitter 
component. This method adds a transmission-line event into the simulation calendar, and the 
message component into the message list. The transmission-line event consists of the 
transmission-line component’s reference and the receiving point in simulation time. The 
receiving point in simulation time is equal to the point in simulation time when a message arrives 
at the transmission-line component plus the parameter value of propagation delay.  We call the 
execution of the Life method at this receiving point in simulation time the transmission-line event 
occurrence. When a transmission-line event occurs, the Life method of the transmission-line 
component forwards the corresponding message component to the connected receiver 
component. Note that a network-cable component has two propagation delay parameters, one for 
each transmission-line component.  

 

 

 

 

 

 

Fig. 4.8: A transmission-line component 
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Connector component: A connector component has two main parameters: receiver-connector 
(RX) and transmitter-connector (TX). The receiver-connector parameter indicates which 
transmission-line component of a network-cable component connects to the receiver component 
of a node or TTE-switch-port component. The transmitter-connector parameter indicates which 
transmission-line component of a network-cable component connects to the transmitter 
component of a node or TTE-switch-port component.     

 

4.2.4 Local-Clock component 

We model the local clock of a node or TTE switch as a local-clock component. A node or TTE-
switch component has its own individual local-clock component. The specified maximum drift 
rate of a local-clock component is a parameter used for generating the local-clock time. The 
local-clock component handles a time-triggered (TT) schedule event that requests from the TTE-
engine component (both components are in the same TTE device). A TT schedule event consists 
of a TT communication service and a TT schedule event’s point in time. A local-clock 
component creates a local-clock event when it obtains a TT schedule event. A local-clock event 
consists of the local-clock component’s reference and the TT schedule event’s point in 
simulation time. The local-clock component inserts the TT schedule event into the TT schedule 
event list, and adds the local-clock event into the simulation calendar. When the local-clock 
event in the simulation calendar occurs, the Life method of the local-clock component removes 
the corresponding TT schedule event. The Life method then triggers execution of the TT 
communication service in the TTE-engine component. We provide the following methods in a 
local-clock component:  

 

 

 

 

 

 

 

 

Fig. 4.9: A local-clock component 
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 Local-clock correction: Correct the local-clock time of a local-clock component so that it is 
synchronized with all others in a TTE cluster. The clock correction term (clock_correction) 
is a result of the clock synchronization from a TTE-engine component. The clock 
correction term is used to update the local-clock time (Tclock_current). The updated local-clock 
time (Tclock_update) is calculated using Equation 4.2. The local-clock time (Tclock_current) is 
derived from Equation 4.1 

 

Tclock_update = Tclock_current + clock_correction………………..……….….………………(4.2) 

 

If the clock correction term (clock_correction) is a positive value, it denotes that the local-
clock component runs slower than the majority of all local-clock components, and vice 
versa. After obtaining the updated local-clock time (Tclock_update), two variables (Tclock_last 
and Tsim_last) referred to in Equation 4.1 are replaced with Tclock_update, and Tsim_current, 
respectively.    

 

 Updating the local-clock event in the simulation calendar: Due to the effect of local-clock 
correction, the local-clock event’s point in simulation time has to be updated.  This is done 
by canceling the local-clock event in the simulation calendar. The local-clock event’s point 
in simulation time is recalculated using Equation 4.3. The local-clock event with the new 
point in simulation time is then reinserted into the simulation calendar. 

 

Tୱ୧୫_୲୧୫ୣ ൌ Tୱ୧୫_ୡ୳୰୰ୣ୬୲ ൅
൫Tౢ౥ౙ౗ౢ_ౙౢ౥ౙౡ_౪౟ౣ౛ି Tౢ౥ౙ౗ౢ_ౙౢ౥ౙౡ_ౙ౫౨౨౛౤౪൯

ሺଵାୢ୧୰୤୲_୰ୟ୲ୣሻ
 …………………(4.3) 

 

, where Tsim_time is an updated event’s point in simulation time 

   Tsim_current is a current simulation time 

   Tlocal_clock_time is a scheduled event’s point in local-clock time 

   Tlocal_clock_current is a current local-clock time 

   drift_rate is the drift rate parameter of a local-clock component 
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 Adding a local-clock event: A local-clock component generates a local-clock event that 
corresponds to a time-triggered schedule event received from the TTE-engine component. 
A time-triggered schedule event consists of a TT communication service and a TT schedule 
event’s point in simulation time. A local-clock event consists of the local-clock 
component’s reference and the TT schedule event’s point in simulation time. The local-
clock component inserts the generated local-clock event into the local-clock event list. All 
local-clock events in the local-clock event list are sorted in ascending order with regard to 
their points in simulation time. This method cancels the local-clock event in the simulation 
calendar. The local-clock event with the lowest point in simulation time is then reinserted 
into the simulation calendar.     

 Life: This method processes a local-clock event at its occurring point in simulation time. 
Initially the first TT schedule event in the TT schedule event list is removed. We call a 
local-clock event occurring at its point in simulation time the TT schedule event 
occurrence. When a TT schedule event occurs, this process calls its TT communication 
service in the referred TTE-engine component to perform the TT communication service.  

 Setting the local-clock time: A TTE-engine component sets an initial value for the local-
clock time when the TTE-engine component begins the synchronization process. The initial 
value of the local-clock time is either a scheduled dispatch point in time, or a scheduled 
reception point in time. After the local-clock time is set, the TT schedule event list of the 
local-clock component is cleared, and the local-clock event in the simulation calendar is 
canceled.  

 Simulation time: A local-clock time can be converted to simulation time using Equation 
4.1. 

 Local-clock time: A simulation time can be converted to local-clock time using Equation 
4.1. 

 

4.2.5 Communication-Controller component 

We model a communication controller as a communication-controller component. A 
communication-controller component is composed of two components: a transmitter component 
and a receiver component, as depicted in Fig. 4.10. The communication-controller component 
has a queue buffer for standard-Ethernet frames, as well as a buffer for PCF and TT messages.  

 A queue buffer for standard Ethernet frames (ET queue buffer): This FIFO queue buffer is 
used for storing Ethernet-frame components, and is divided into two sub queue buffers: RC 
queue buffer and BE queue buffer. An Ethernet-frame component has a Traffic Type 
parameter, identifying which sub queue buffer should be used to store it. Removing an 
Ethernet-frame component from the ET queue buffer is to remove the first Ethernet-frame 
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component from the RC queue buffer. However, if the RC queue buffer is empty, then the 
first Ethernet-frame component in the BE queue buffer is read.   

 A buffer for PCF and TT messages (TT buffer): This buffer stores either a PCF or a TT 
component.      

 

 

 

 

 

 

 

Fig. 4.10: A communication-controller component 

A communication-controller component has a parameter indicating its bandwidth. In this thesis, 
we focus on two Ethernet bandwidths: 100 Mbps and 1 Gbps. A communication-controller 
component provides the following methods for handling TT messages, PCFs, and standard-
Ethernet frames:  

 Transmitting a standard-Ethernet frame: This method puts a standard-Ethernet frame into the 
ET queue buffer of a communication-controller component. It then adds a message-
transmission event to the simulation calendar. A message-transmission event consists of a 
transmitter component’s reference, and the message-transmission event’s point in simulation 
time. When the message-transmission event occurs at its point in simulation time, the Life 
method of the transmitter component is processed.   

 Transmitting a PCF or TT message: This method stores a message from a TTE-engine 
component (i.e. a PCF or TT message) to the TT buffer of a communication-controller 
component. It then adds a message-transmission event to the simulation calendar. A 
message-transmission event consists of a transmitter component’s reference, and the 
message-transmission event’s point in simulation time. When this message-transmission 
event occurs at its point in simulation time, the Life method of the transmitter component is 
processed.  

 Receiving a message: This method is invoked when the receiver component has received an 
entire message. If the message is a PCF or TT message, this method will relay it to the TTE-
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engine component. If the message is a standard-Ethernet frame, this method will relay it to 
the Receive method of the node component.  

    

4.2.6 Transmitter component 

A transmitter component is a part of a communication-controller component or a TTE-switch-
port component. It is used for transmitting all messages to the connected transmission-line 
component. All messages to be transmitted come from the ET queue buffer and the TT buffer of 
an upper component. This upper component is either a communication-controller component or 
a TTE-switch-port component. The user-defined bandwidth value of the upper component 
determines the transmission rate of the transmitter component.  

 

 

 

 

 

 

 

Fig. 4.11: A transmitter component 

A transmitter component has Life methods for transmitting standard-Ethernet frames, PCFs, and 
TT messages. The Life method starts executing when a message-transmission event occurs (from 
the simulation calendar). The Life method has the following processes:  

 Check message buffers: Since TT messages and PCFs are prioritized over standard-Ethernet 
frames, the Life method firstly performs the transmission of messages in the TT buffer.  If the 
TT buffer is empty, the transmission of messages in the ET queue buffer is performed.  

 Transmit a starting message: We model the transmission simulation of a message by our two-
message transmission approach, as depicted in Fig. 4.12. The essence of this approach is that 
one message is split into two messages: a starting message, and an ending message. A 
transmitter component begins to transmit a message by sending the starting message to the 
connected transmission-line component. 

 Delay transmission time: After the transmitter component transmits the starting message, it 
delays itself with the transmission time of the message. The transmission time is calculated 
as the length of the entire message divided by the user-defined bandwidth. The Life method 



 
                                                                                                                      4. A Simulation Model 
4.2 The simulation model of TTE system components                               for TTEthernet Systems                         

86 
 

 

inserts a delay event into the simulation calendar. The delay event’s point in simulation time 
is equal to the starting-message transmission’s point in time plus the delay of the 
transmission time. When the delay event occurs, the Life method is activated to transmit an 
ending message, as depicted in Fig. 4.12. 

 

 

 

 

Fig. 4.12: Timing diagram of two-message transmission 

 Transmit an ending message: After the delay of the transmission time has elapsed, the ending 
message is transmitted to the connected transmission-line component.  

 Delay with an inter-frame gap: The Life method ends by inserting a delay of inter-frame gap 
(IFG) into the simulation calendar. The delay event’s point in simulation time is equal to the 
ending-message transmission’s point in time plus the delay of IFG. When the delay event 
occurs, the Life method is activated to transmit an ending message, as depicted in Fig. 4.12.  

The two-message transmission approach is useful for identifying an incomplete message, i.e. a 
receiver component can check if it has received only one of two complementary messages. In the 
case of transmission of PCFs however, there are a few differences to the steps described above. 
Before transmitting the starting message of a PCF message, the time interval between the current 
local-clock time and the dispatch point in local-clock time is accumulated. This is because a PCF 
may dispatch from a TTE-engine component while a transmitter component is transmitting a 
standard-Ethernet frame. Therefore, the PCF has to wait in the TT buffer until the transmission 
of the standard-Ethernet frame has finished.    

 

4.2.7 Receiver component 

A receiver component is a part of a communication-controller component or a TTE-switch-port 
component. It is used for receiving all messages from the connected transmission-line 
component. The received messages are relayed to the communication-controller component or 
the TTE-switch-port component. There are two main methods in a receiver component: the 
Message-reception method and the Life method. These are described as follows: 
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Fig. 4.13: A receiver component 

 Message-reception method: This method is executed when a message is transmitted from the 
connected transmission-line component. The method stores the receiving message to a 
message buffer, as depicted in Fig. 4.13. The message buffer contains only one message, i.e. 
storing a message into the message buffer will replace its current message. After a message is 
stored in the message buffer, a reception event is added to the simulation calendar. A 
reception event consists of a receiver component reference and the reception event’s point in 
simulation time. The reception event’s point in simulation time is equal to the current point in 
simulation time. This means that a reception event occurs at a receiver component as soon as 
a message is received. The process of CRC validity is included in this method.  

 Life method: Once a reception event occurs, the Life method is activated to remove the 
message in the message buffer, as depicted in Fig. 4.13. If the message is a starting message, 
it will be stored in the starting-message buffer. Storing a starting message will replace the 
current message in the starting-message buffer. This means that there is only one message in 
the starting-message buffer at any one time. If the received message is an ending message, it 
is compared with the current message in the starting-message buffer. If it is found that both 
messages originated from the same message, the ending message is sent to the next process. 
Otherwise, the ending message is discarded.   

 

4.2.8 TTE-Switch component 

In our simulation model, we model a TTEthernet switch as a TTE-switch component. A TTE-
switch component is mainly composed of a TTE-engine component, one or more TTE-switch-
port components, and a local-clock component, as depicted in Fig. 4.14.  

A TTE-engine component is responsible for handling PCFs and TT messages, according to the 
TTEthernet specification [TTE08]. A TTE-switch component has the following user-defined 
parameters: 
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Fig. 4.14: A TTE-switch component with two TTE-switch-port components 

 Buffer Memory Size: The overall buffer memory size of all TTE-switch-port components. 
These buffers are used for storing Ethernet-frame components. Due to the non-blocking 
technology of switched Ethernet, standard Ethernet frames are not queued at an input port of 
an Ethernet switch. Therefore, we provide the overall buffer memory of a TTE-switch 
component for the queue buffers of all output ports. To efficiently utilize the buffer memory 
of a TTE switch for the queue buffer, we define the buffer memory of a TTE-switch 
component as shared buffer memory. In cases where all standard Ethernet framers are 
relaying at only a particular TTE-switch-port component, that particular component can use 
all shared buffer memory. In our simulation model, there is no component for shared buffer 
memory, instead we use a variable indicating the shared-buffer-memory size. Each time a 
standard Ethernet message is to be stored in the ET buffer of a TTE-switch-port component, 
that component calculates the remaining shared-buffer-memory size. The remaining shared-
buffer-memory size (Sizeremaining_sbm) is calculated using Equation 4.5. It is equal to the 
overall shared-buffer-memory size (Sizesbm) minus the currently used shared-buffer-memory 
size (of all TTE-switch-port components).   

௥௘௠௔௜௡௜௡௚_௦௕௠݁ݖ݅ܵ ൌ ∑ ௦௕௠െ݁ݖ݅ܵ ா்_஻௨௙௙௘௥ሺ௜ሻ݁ݖ݅ݏ
గ
௜ୀ଴    ….………………………………(4.5)  

, where Sizeremaining_sbm is the remaining shared-buffer-memory size of a TTE-switch component 

         Sizesbm is the shared-buffer-memory size of a TTE-switch component 

         SizeET_Buffer(i) is the ET buffer of the ith TTE-switch-port component 

If the remaining shared-buffer-memory size is less than the size of a received standard-
Ethernet frame, the received frame will be stored in the buffer of the TTE-switch-port 



 
4. A Simulation Model  
for TTEthernet Systems                               4.2 The simulation model of TTE system components                         

89 
 

component. Otherwise, the received frame is discarded and memory overflow information is 
recorded. 

 Drift Rate: The local-clock drift rate of a TTE-switch component. The local-clock component 
of a TTE-switch component is identical to the local-clock component of a node component. 

 ET Latency: The average delay when an entire standard Ethernet frame travels from a 
receiver component to the ET buffer of a transmitter component (in a TTE-switch).  

 TT Latency: The bounded delay when an entire TT message frame travels from a receiver 
component to the TT buffer of a transmitter component (in a TTE-switch).  

 Startup Time: Determines a starting point for a TTE-switch component in simulation time. If 
the progression of simulation time has not yet reached the startup-time, all operations of the 
TTE-switch component, and its underlying components (e.g. local-clock, receiver, 
transmitter, message-permanence components) cannot be performed.  

A TTE-switch component has the following methods for handling all incoming and outgoing 
messages using its underlying TTE-switch-port components:  

 Life: Executed when a relaying event’s point in simulation time (in the simulation calendar) 
is reached. A relaying event consists of a TTE-switch component’s reference, and the 
relaying event’s point in simulation time. This method removes the first relaying event in the 
message list of the TTE-switch component. This is the event with the lowest point in 
simulation time. Depending on the type of message removed, there are three distinct methods 
used for their dispatching: ET-dispatching, TT-dispatching, and PCF-dispatching. These 
methods are described as follows: 

 ET-dispatching: Forwards a standard-Ethernet frame (an ET-frame component) from the 
message list of a TTE-switch component to its transmitter components (in compliance with 
the standard-Ethernet specification). Firstly, the destination type of the Ethernet-frame 
component is checked (it will be either: broadcast, multicast, or unicast). If this indicates 
either broadcast or multicast, the Ethernet-frame component will be duplicated and then 
relayed to all other TTE-switch-port components. If the destination type parameter of the 
received Ethernet-frame component indicates a unicast address, the receiver parameter of the 
received Ethernet-frame component is looked up in the MAC address table. The MAC 
address table contains sets of a TTE-switch-port component’s reference and the 
corresponding node component’s reference. If the receiver parameter of the received 
Ethernet-frame component matches with the one in the MAC address table, its matching 
TTE-switch-port component is used to relay a duplicated Ethernet-frame component. If no 
matching parameter is found in the MAC address table, this process will relay the received 
Ethernet-frame component in broadcast form.  

 PCF-dispatching: Relays a received PCF (a PCF component) from the message list of a 
TTE-switch component onto all its other TTE-switch-port components. The received PCF 
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component is duplicated and then relayed to the TTE-switch-port components. Note that all 
received PCF components in the message list are obtained from the TTE-engine component. 
The TTE-engine component handles the PCF components according to the TTEthernet 
specification [TTE08]. 

 TT-dispatching: Relays a received TT message (a TT-message component) from the message 
list of a TTE-switch component to predefined TTE-switch-port components. A received TT-
message component is duplicated and then relayed to predefined TTE-switch-port 
components. The transmitter component of each TTE-switch-port component is then 
activated to transmit the TT-message components.  

 Message-relaying: Delays a message for a user-defined latency. For a standard-Ethernet 
frame, this method delays an Ethernet-frame component for the ET-latency of a TTE-switch 
component. For a PCF/TT message, this method delays a PCF or TT-message component for 
the TT-latency of a TTE-switch component. This method starts its operation by adding an 
incoming message and its relaying event’s point in simulation time into the message list of a 
TTE-switch component. The message list contains sets of a message component and its 
relaying event’s point in simulation time. The relaying event’s point in simulation time is 
derived from the point in simulation time when the message-relaying method is invoked to 
relay the message, plus the value of the user-defined latency (i.e. an ET-latency value for a 
standard-Ethernet frame, or a TT-latency value for a PCF/TT message). A relaying event is 
then generated, consisting of a TTE-switch component’s reference, and the relaying event’s 
point in simulation time. This method cancels the relaying event in the simulation calendar, 
and then reinserts the relaying event generated from the first message in the message list. 
Note that all messages in the message list are arranged in ascending order according to their 
points in simulation time.   

 

4.2.9 TTE-Switch-Port component 

We model the communication controller of a TTE switch as a TTE-switch-port component. The 
TTE-switch-port component transmits and receives all messages from a connected transmission-
line component. A TTE-switch-port component is mainly composed of two components: a 
transmitter component, and a receiver component. A TTE-switch-port component has a queue 
buffer for standard-Ethernet frames, and a buffer for PCF and TT messages. These are described 
as follows: 

 A queue buffer for standard Ethernet frames (ET queue buffer): This FIFO queue buffer is 
used for storing Ethernet-frame components. The size of the ET queue buffer (in bytes) is 
defined by the user. The buffer is divided into two sub queue buffers: RC queue buffer and 
BE queue buffer. An Ethernet-frame component has a Traffic Type parameter, identifying 
which sub queue buffer should be used to store it. Removing an Ethernet-frame component 
from the ET queue buffer is to remove the first Ethernet-frame component from the RC 
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queue buffer. However, if the RC queue buffer is empty, then the first Ethernet-frame 
component in the BE queue buffer is read. 

 A buffer for PCF or TT messages (TT buffer): This buffer stores a PCF or TT message.      

 

 

 

 

 

 

 

 

Fig. 4.15: A TTE-switch-port component 

A TTE-switch-port component has a parameter indicating its bandwidth. In this thesis, we focus 
on two Ethernet bandwidths: 100 Mbps and 1 Gbps. A TTE-switch-port component provides the 
following methods for handling TT messages, PCFs, and standard-Ethernet frames:  

 Transmitting a standard-Ethernet frame: This method puts an Ethernet-frame component to 
the ET queue buffer of a TTE-switch-port component. It then adds a message-transmission 
event to the simulation calendar. A message-transmission event consists of a transmitter 
component’s reference, and the message-transmission event’s point in simulation time. When 
the message-transmission event occurs at its point in simulation time, the Life method of the 
transmitter component is processed. Note that every time an Ethernet-frame component is 
stored in the ET queue buffer of a TTE-switch-port component, the method checks if the 
remaining shared-buffer-memory size of the TTE-switch component is sufficient (as 
described in the section 4.2.9).  If not, the Ethernet-frame component will not be stored in the 
ET queue buffer, and buffer overflow information is recorded.  

 Transmitting a PCF or TT message: This method stores a message from a TTE-engine 
component (i.e. a PCF or TT message) to the TT buffer. It then adds a message-transmission 
event to the simulation calendar. A message-transmission event consists of a transmitter 
component’s reference, and the message-transmission event’s point in simulation time. When 
this message-transmission event occurs at its point in simulation time, the Life method of the 
transmitter component is processed. Once the local-clock component of a TTE-engine 
component is globally synchronized, the TT buffers of all underlying TTE-switch-port 
component are emptied.      



 
                                                                                                                      4. A Simulation Model 
4.2 The simulation model of TTE system components                               for TTEthernet Systems                         

92 
 

 

 Receiving a message: This method receives an entire message from the receiver component, 
as depicted in Fig. 4.15. If the message is a PCF or TT-message component, it is forwarded  
to the TTE-engine component. If the message is an Ethernet-frame component, it is 
forwarded to the Message-relaying method of a TTE-switch component. Before forwarding 
the Ethernet-frame component, the MAC address table is queried for the sender parameter of 
the Ethernet-frame. A check is made to see if the sender parameter matches with any node’s 
reference. If there is not a match, the sender parameter of the Ethernet-frame component and 
the TTE-switch-port component are recorded as the node component’s reference and the 
TTE-switch-port component’s reference (in the MAC address table). If there is a match, a 
further check is made between the TTE-switch-port component of the matching node in the 
MAC address table and the TTE-switch-port component which the Ethernet-frame 
component is from. If both TTE-switch-port components are not matched to each other, the 
TTE-switch-port component’s reference in the MAC address table is replaced with the one 
from the Ethernet-frame. If a match is found in the MAC address table, the MAC address 
table remains unmodified. 

 

4.2.10 TTEthernet-Engine (TTE-Engine) component 

We model a TTEthernet engine as a TTE-engine component, as shown in Fig. 4.16. There are 
four main components inside a TTE-engine component. These are described as follows:  

 

 

 

 

 

 

 

 

 

 

Fig. 4.16: A TTE-engine component 
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1. Message-permanence component: This component delays an incoming message (a PCF 
component) until its permanent point in simulation time (i.e. until the message has become 
permanent). This PCF component is forwarded from a communication-controller component 
or TTE-switch-port component. In a message-permanence component, there is a PCF List 
and the two main methods. These are described as follows: 

 

 

 

 

 

 

 

Fig. 4.17: A message-permanence component 

 Permanence method: This method receives an incoming PCF component from a 
communication-controller component or a TTE-switch-port component. A message-
permanence event is generated, consisting of the message-permanence component’s 
reference and the PCF component’s calculated permanence point in simulation time. The 
message-permanence event is then added into the simulation calendar. A message-
permanence event consists of the message-permanence component’s reference, and the 
message-permanence event’s point in simulation time. The PCF component is also added 
into the PCF list of the message-permanence component. The permanence delay of a PCF is 
obtained by the following process.  

Permanence delay of a PCF: This process determines a permanence point in simulation time 
for a received PCF component. Once a TTE-engine component has received a PCF 
component, the time interval between the receiving time instant of the starting message and 
the receiving time instant of the corresponding ending message is accumulated in the 
transparent clock (of the PCF component). Note that this time interval is equal to the 
transmission time of the PCF component, as illustrated in Fig. 4.11. Besides the time 
interval, the predefined propagation delay of the connected transmission-line component is 
also accumulated in the transparent clock of the PCF component. The permanent delay of the 
PCF component is obtained using Equation 4.6. The permanence delay determines the 
permanence point in simulation time, which is derived from Equation 4.7.  
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Tpermanence_delay = Tmax_transmission_delay – Ttransparent_clock ……….…………………………(4.6) 

Tpermanence_pit = Tcurrent_sim + Tpermanence_delay …………………………………..………...(4.7) 

      , where Tpermanence_delay = the permanence delay of a PCF component 

 Tmax_transmission_delay = the maximum transmission delay of a TTE cluster 

 Ttransparent_clock = the transparent clock of a PCF component 

 Tcurrent_sim = a current point in simulation time 

 Tpermanence_pit = a permanence point in simulation time 

 Life method: This method forwards a permanent PCF to the permanent-message service in a 
TTE-engine component. This occurs at the same time as a message-permanence event. A 
permanent PCF component from a message-permanence component is forwarded to either: a 
message-compression component, or the TTE state machine for a permanent PCF. If a TTE-
engine component is identified as a compression master, permanent PCF components are 
forwarded to the message-compression component, as shown in Fig. 4.16. Otherwise, the 
permanent PCF components are forwarded to the TTE state machine for permanent PCFs. 
The TTE state machine for permanent PCFs provides functions to handle the arrival of 
permanent PCFs.  

 

2. Message-compression component: We model the compression function of TTEthernet as 
the message-compression component. This component delays a permanent PCF component 
until its compressed point in time. There are two main methods in a compression component: 
Compression and Life. These are described as follows:   

 

 

 

 

 

 

Fig. 4.18: A message-compression component 
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 Compression: Determines a permanent PCF’s compressed point in simulation time, as 
derived from the compression function of TTEthernet [TTE08]. Firstly, a message-
compression event is generated, consisting of the message-compression component’s 
reference, and the permanent PCF’s compressed point in simulation time. This message-
compression event is added into the simulation calendar. A permanent PCF component is 
then added into the PCF list of the message-compression component,  as depicted in Fig. 
4.18.   

 Life: Forwards a TTE-engine component’s permanent message from the PCF list to the TTE 
state machine for message compression. This occurs at the same time as a message-
compression event, meaning that the message-compression event’s compressed point in 
simulation time has been reached. After the TTE state machine for message compression has 
been executed, the compressed PCF component is dispatched at the dispatch point in time, as 
depicted in Fig. 4.19. A compressed PCF’s dispatch point in time is derived from its 
compressed point in time plus a user-defined dispatch delay. In our simulation model, a 
compressed PCF component is dispatched from a TTE-engine component to a 
communication-controller component (in a node component), or to a TTE-switch-port 
component (in a TTE-switch component), at a user-defined dispatch point in time.      

 

 

 

 

 

Fig. 4.19: Timing diagram for PCF transmission in a compression master 

 

3. Local-timer component: We model a timer for a TTEthernet engine as a local-timer 
component, as depicted in Fig. 4.20. The TTE state machines in a TTE-engine component 
can obtain a timer from a local-timer component by invoking the start-timer method. The 
start-timer method begins by stopping the currently running timer, canceling the local-timer 
event in the simulation calendar. A new local-timer event is then added into the simulation 
calendar. A local-timer event consists of the local-timer component’s reference, and the 
local-timer event’s point in simulation time. This point in simulation time is a timeout 
event’s point in simulation time. It is derived from Equation 4.8.  
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Fig. 4.20: A local-timer component 

Tsim_timeout = Tsim_current + TItiming/(1+ρ) ……………..………………….…….…(4.8)  

, where Tsim_timeout = a timeout event’s point in simulation time 

          Tsim_current = a current point in simulation time 

                 TItiming = a time interval of a timer  

    ρ = the drift rate of a local clock 

Once the timeout event’s point in simulation time is reached, the Life method is activated to 
execute the TTE state machine for timeout event. The TTE state machine for timeout event is 
a TTE state machine concerning timeout event occurrence. Examples of the timeout 
parameters of TTEthernet [TTE08] are as follows: cm_listen_timeout, sm_coldstart_timeout, 
sm_restart_timeout, sm_listen_timeout, cm_ca_timeout, sm_ca_offset, and sm_cs_offset.   

 

4. Clock-correction-delay component: We model a TTEthernet clock correction delay as a 
clock-correction-delay component, as depicted in Fig. 4.21.  

 

 

 

 

 

 

Fig. 4.21: A clock-correction-delay component 
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A TTE-engine component requests a local-clock time correction through its clock-correction-
delay component. This request is triggered by a timeout event of the local-timer component, 
as depicted in Fig. 4.22. In Fig. 4.21, a clock-correction-delay component stores the received 
clock-correction term, and activates the Life method. The Life method creates a time delay by 
adding a delay event to the simulation calendar. A delay event consists of a clock-correction-
delay component’s reference, and the delay event’s point in simulation time. This point in 
simulation time can be calculated using Equation 4.9.  

Tsim_delay_event = Tsim_current + TItime_delay/(1+ρ) ……………………………………....…...…(4.9)  

, where Tsim_delay_event = a delay event’s point in simulation time 

          Tsim_current = a current point in simulation time 

          TItime_delay = a time delay based on local-clock time  

  ρ = the drift rate of a local clock 

 

 

 

 

 

 

Fig. 4.22: Timing diagram of a local-clock correction event 

The time delay for a delay event is derived from a clock correction delay minus half of the 
acceptance window, as depicted in Fig. 4.22. The clock correction delay is a user-defined 
configuration parameter of TTEthernet. When the delay event’s point in simulation time is 
reached, the Life method of the clock-correction-delay component invokes the local-clock 
component to correct its local-clock time.  

 

Time-triggered communication services 

A TTE-engine component performs time-triggered communication services by using the local-
clock component within the same node or TTE-switch component. The TTE-engine component 
requests a time-triggered communication service by adding a time-triggered schedule event to 
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the local-clock component, as depicted in Fig. 4.16 and Fig. 4.8. A time-triggered schedule event 
consists of a TT communication service, and the TT schedule event’s point in simulation time. 
When a time-triggered schedule event’s point in simulation time is reached, the specified TT 
communication service is performed. A TTE-engine component provides the TTE state machine 
for TT communication services to achieve this. These TT communication services are described 
as follows: 

 SM_DISPACTH_SERVICE: Used for dispatching an integration frame (PCF) at a 
synchronization master or synchronization client. 

 SMC_SCHEDULED_RECEIVICE_SERVICE: Used for receiving an integration frame 
(PCF) at a synchronization master or synchronization client. 

 CM_SCHEDULED_RECEIVE_SERVICE: Used for receiving an integration frame (PCF) at 
a compression master.  

 SMC_ASYNC_UPDATE_SERVICE: Used for updating the membership state at a 
synchronization master or synchronization client. 

 CM_ASYNC_UPDATE_SERVICE: Used for updating the membership state at a 
compression master. 

 SMC_ASYNC_EVAL_SERVICE: Used for the asynchronous clique detection of a 
synchronization master or synchronization client.   

 TT_DISPATCH_SERVICE: Used for dispatching a TT message.  

 TT_SCHEDULE_RECEIVE_SERVICE: Used for receiving a TT message with regard to a 
TT communication schedule.  

 

TTE state machines 

In our simulation model, we split the TTE state machine of TTEthernet into several event 
occurrence specific TTE state machines. These TTE state machines belong to a TTE-engine 
component. In a TTE-engine component, we use a global state variable to determine the current 
state of all TTE state machines. We call this global state variable a protocol state variable. All 
TTE state machines use the same protocol state variable to determine which state’s process has 
to be performed, as depicted in Fig. 4.23.   

 TTE state machine for a permanent PCF: This TTE state machine is invoked when a PCF 
component has become permanent at the permanence point in time. This is invoked if and 
only if the TTE-engine component is a synchronization master or a synchronization client.  
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 TTE state machine for a compressed PCF: Invoked when a compressed PCF component 
arrives at a compressed point in time.  

 TTE state machine for a timeout event: Invoked when a timeout event of a local-timer 
component occurs.  

 TTE state machine for TT reception: Invoked when an entire TT-message component is 
received.  

 TTE state machine for TT services: Invoked when a time-triggered schedule event from a 
local-clock component occurs. Each state of this TTE state machine has methods for the 
respective TT schedule services, as mentioned in the time-triggered communication services 
section.  

 TTE state machine for the Life method: Used by the main method of a TTE-engine 
component to interface with the simulation calendar. There is only the Init state in this 
method. An initialized TTE-engine component takes the Init state, where the TTEthernet 
configuration (including a user-defined synchronization device type) and TT communication 
schedule are loaded.  

 

 

 

 

 

 

 

Fig. 4.23: The operation model of a TTE state-machine 

 

Message Transmission 

With respect to the globally synchronized TTE-engine component, both TT-messages and PCFs 
are transmitted according to the TT communication schedule. If the TTE-engine component is 
not globally synchronized, only PCFs are transmitted according to the TTE state machines. A 
TTE-engine component transmits TT messages and PCFs by dispatching them to a TTE-switch-
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port component or a communication-controller component. Note that no standard-Ethernet 
frames are forwarded from a TTE-engine component. The transmission of TT messages and 
PCFs  are described with regard to synchronization device type as follows: 

 Dispatching PCFs: In a TTE-engine component, PCF transmissions happen in a 
synchronization master and a compression master. There are no PCF transmissions in a 
synchronization client.   

 Synchronization master: A TTE-engine component transmits PCFs with regard to 
synchronization state. If the TTE-engine component is not in a synchronization state, the 
TTE-engine component sends PCFs by means of the Fault-tolerance Handshake 
[TTE08]. This is where timeout events are used for determining a PCF’s dispatching 
point in simulation time. If the TTE-engine component is in a synchronization state, the 
TTE-engine component sends PCFs (only integration frames) according to the TT 
communication schedule. That is where the TTE-engine component requests a TT 
schedule event, including the TT communication service (SM_DISPACTH_SERVICE) 
at the local-clock component.  

 Compression master: A TTE-engine component transmits a compressed PCF at the 
compressed PCF’s dispatch point in time, as depicted in Fig. 4.24. The dispatch point in 
time is derived from the compressed PCF’s compressed point in time plus a user-defined 
dispatch delay. In our simulation model, once a message-compression event has occurred, 
the TTE state machine for a compressed message requests a local-timer event for 
dispatching the compressed PCF. This local-timer event has the same timeout value as 
the user-defined dispatch delay. 

 

 

 

 

 

 

    Fig. 4.24: Timing diagram for compressed-PCF transmission 

 Dispatching TT messages: The TTE-engine component transmits TT messages according to 
the TT communication schedule, if it is in a synchronization state. The TTE-engine 
component requests a TT schedule event from the local-clock component. This includes a TT 
communication service (TT_DISPATCH_SERVICE). 
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4.2.11 TT-schedule component 

A cluster component has the cluster-TT-schedule list used for storing TT-schedule components. 
A TT-schedule component contains a user-defined TT-traffic load. This TT-traffic load has the 
following parameters: 

 Cluster: Indicates the cluster component. 

 Node: Indicates the node component.  

 In/Out: Indicates a TT message direction: transmission or reception.  

 Period: The assigned period.  

 Period_ID: Identification of the assigned period.  

 Size: The TT-message size.  

 Phase: The offsets of the assigned period, obtained by our scheduling approach.   

 

 

 

 

 

 

 

 

Fig. 4.25: The TT-schedule components of a cluster component (three TTE devices) 

A TTE-engine component has a TT-schedule-event list that contains all TT-schedule events in a 
TTE cluster cycle (as depicted in Fig. 4.25). We model a TT-message communication event as a 
TT-schedule event, consisting of a TT-schedule component, and the TT-schedule event’s point in 
time. All TT-schedule events in a TT-schedule-event list are in ascending order with respect to 
their points in time. All the TT-schedule event’s points in time for a TTE cluster cycle are 
obtained by our scheduling approach.  
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4.2.12 TT-message component 

We model a TT message as a TT-message component. The TT-message component has the 
following parameters: 

 Period_ID: Identifies the user-assigned TT-traffic load of the TT-message component. This 
parameter identifies the TT-schedule components that the TT-message component belongs to.    

 Data: Contains the payload data of the TT-message component.  

 Data Length: Determines the payload data length. 

 Sender: Identifies the node component which transmits the TT-message component. 

 Frame Check Sequence: A CRC value contained in the Frame Check Sequence field of the 
standard-Ethernet frame (upon which the TT-message component is based).  

 

4.2.13 PCF component 

We model a PCF as a PCF component. The PCF component has the following parameters: 

 Integration Cycle: The sequence number of the PCF component in a TTE cluster cycle. Used 
in a PCF as an integration frame.  

 Membership: Contains the membership value of a synchronization device. If this parameter 
is sent from a synchronization master device, it is a unique membership of this device. If 
however this parameter is sent from a compression master device, it is a membership result 
from the compression function of TTEthernet.  

 PCF Type: Indicates the type of the PCF component. There are three types of PCFs: 
Integration frames, coldstart frames, and coldstart acknowledge frames.  

 Transparent Clock: Contains the accumulated transport delay of the PCF component.  

 Frame Check Sequence: A CRC value contained in the Frame Check Sequence field of the 
standard-Ethernet frame (upon which the PCF component is based).   

 

4.2.14 Ethernet-frame component 

We model a standard-Ethernet frame as an Ethernet-frame component. The Ethernet-frame 
component has the following parameters: 

 Sender: Indicates the node component which transmits the Ethernet-frame component. 
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 Receiver: Indicates the node component which is predefined to receive the Ethernet-frame 
component.  

 Destination Type: Indicates the type of the Ethernet-frame component. There are three types 
of standard-Ethernet frames: unicast, multicast, and broadcast.  

 Data: Contains the payload data.  

 Data Length: Determines the payload data length.  

 Traffic Type: Used for determining which sub queue buffer of the ET buffer (in a node or 
TTE-switch component) the Ethernet-frame  component has to be stored. There are two 
possible parameter values: RC traffic and BE traffic.  

 Frame Check Sequence: A CRC value contained in the Frame Check Sequence field of the 
Ethernet-frame component.  

 

4.2.15 TTE-configuration component 

We provide a TTE-configuration component for containing all synchronization parameters of 
TTEthernet. A TTE-configuration component is part of a cluster component. All synchronization 
parameters are TTE-cluster-specific. These parameters are described as follows:   

1. Maximum transmission delay: A bounded value of a PCF’s accumulated transport 
delay from one node to another (in a TTE cluster). This parameter is user-defined, and is 
equal to or greater than the maximum possible value of the accumulated transport delay 
of a PCF.  

2. Local clock precision: Denotes a bounded clock precision in the local view of any TTE 
device in a TTE cluster. Its default value is 1 microsecond.  

3. Acceptance window: Denotes a bounded clock precision in the global view of any TTE 
device in a TTE cluster. It is equal to two times the local clock precision of the TTE 
cluster.  

4. Observation window: Used in the compression function of a compression master. This 
value indicates a maximum possible error of arrival for messages in the local view of the 
compression master. It is equal to the value of the local clock precision in the TTE 
cluster. 

5. Number of faulty masters: The upper bound on the permitted number of faulty 
synchronization masters (in a TTE cluster). Used in the compression function of a 
compression master. This value determines the maximum observation window of the 
compression master.  
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6. Maximum observation window: Used in the compression function of a compression 
master. This value is a result of defining the number of faulty masters and the observation 
window, as detailed in the TTEthernet specification [TTE08].  

7. Calculation overhead: A bounded time delay for calculating the function of fault-
tolerant clock synchronization (in the compression function of TTEthernet). The result of 
the fault-tolerant clock synchronization is a local-clock correction value.  

8. Clock correction delay: A time delay used for determining when, in the process of clock 
synchronization, should local-clock correction occur. This point in time is equal to a 
PCF’s scheduled reception point in time plus a clock correction delay. This value should 
be greater than an acceptance window, so that the corrected local-clock value will not 
occur within the previous acceptance window. Therefore, we define the clock correction 
delay in the simulation model to be 1.5 times the acceptance window. 

9. Integration cycle duration: A resynchronization time interval of two consecutive PCFs. 
This is achieved by all synchronization masters in a particular cluster sending their 
respective PCF every specified time period. This value is derived from our scheduling 
approach. 

10. Cluster cycle duration: The duration of a cluster cycle. In a TTE system, a local clock 
has a maximum local-clock time of cluster cycle duration. This value is derived from our 
scheduling approach.  

11.  sm_listen_duration: Used in the TTE state machine, as detailed in the TTEthernet 
specification [TTE08]. 

12.  sm_coldstart_timeout: Used in the TTE state machine, as detailed in the TTEthernet 
specification [TTE08]. 

13.  sm_cs_offset: Used in the TTE state machine, as detailed in the TTEthernet specification 
[TTE08]. 

14.  sm_ca_offset: Used in the TTE state machine, as detailed in the TTEthernet 
specification [TTE08]. 

15.  sm_restart_timeout: Used in the TTE state machine, as detailed in the TTEthernet 
specification [TTE08]. 

16.  cm_ca_timeout: Used in the TTE state machine, as detailed in the TTEthernet 
specification [TTE08]. 

17.  cm_in_timeout: Used in the TTE state machine, as detailed in the TTEthernet 
specification [TTE08]. 
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4.3 The calibration of the simulation model 

We have implemented our simulation model using the J-Sim library and the Java run-time 
environment. We perform the calibrations of the implemented model with published results. In 
the implemented simulation, there are two types of message traffic: standard-Ethernet traffic and 
TT traffic. For TT traffic, the TT communication is schedule-predefined and deterministic. 
Therefore, the validation process of TT communication was performed according to a predefined 
confliction-free TT-communication schedule. For standard-Ethernet traffic, communication is 
non-deterministic. The non-deterministic latency of a standard-Ethernet frame is caused by frame 
queuing in an Ethernet switch. Therefore, we perform the calibrations of the implemented 
simulation with published results from [LL02] and [Rug08]. This is described in detail in the 
sections that follow. 

 

4.3.1 Queuing delay of switched Ethernet 

We calibrate our implemented simulation with the analytical result from [LL02]. This paper 
provides an analytical model for the queuing delay of a standard-Ethernet frame, as shown in 
Equation 4.10 [LL02].   

 

ொܦ ൌ ∑ ሾ96 ൅ ௞ܮሺݔܽ݉ ൅ ,௛ܮ 576ሻሿݐ௕
ே೜
௞ୀଵ  ………………………………….....(4.10) 

 

, where DQ is the queuing delay which a standard-Ethernet frame takes, 

     tb is one-bit time of the Ethernet-frame transmission,  

Lh is the bit length of a standard-Ethernet-frame overhead including the frame check sequence, 

     Lk is the bit length of the payload data in the kth standard-Ethernet frame,  

     Nq is the number of frames which are contained in the queue buffer.  

Note that the smallest number of bits in a standard-Ethernet frame (i.e. for the payload data) is  
46 bytes. The tb is one-bit time of Ethernet-frame transmission (e.g. it is equal to 1/10Mbps for 
10-Mbps Ethernet).  

According to [LL02], an Ethernet network will obtain the maximum queuing delay from the 
analytical model. This Ethernet network consists of 14 slave stations, one master station, and one 
Ethernet switch. All the slave stations generate a standard-Ethernet frame every 1 millisecond, 
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and then transmit it to the master station. The bandwidth of each Ethernet device is 10 Mbps. 
The payload data size of each Ethernet frame is defined as 144 bits (i.e. this result in 576 bits of a 
frame size). In a worst-case communication delay (maximum communication delay), a standard-
Ethernet frame is received by the Ethernet switch with 13 frames stored in the queue buffer. By 
means of the analytical model (Equation 4.10), the maximum queuing delay of such a standard-
Ethernet frame is 873.2 μs [LL02].    

We calibrate the implemented simulation with the result of the analytical model by measuring 
the communication jitter of the Ethernet network. The communication jitter is the difference 
between the maximum and minimum end-to-end delays. We found that the communication jitter 
is equal to the maximum queuing delay of the Ethernet switch. Communication jitter does not 
depend on network configuration, implying that it remains constant in any network configuration 
(e.g. network cable length, switch latency, forwarding latency) except Ethernet bandwidth. In 
other words, the jitter communication delay is a maximum delay that a standard-Ethernet frame 
spends in the queue buffer of an Ethernet switch. In the simulation, we record the end-to-end 
delays of all standard-Ethernet frames (from the slave stations) at the master station. The 
maximum and minimum end-to-end delay of the standard-Ethernet frames can be obtained from 
the recorded end-to-end delays. We describe how we setup the network configuration of this 
Ethernet network below. We define the standard-Ethernet traffic load of this Ethernet network 
according to the one defined in the analytical model (i.e. all slave stations transmit a 576-bit 
standard-Ethernet frame every period of 1 millisecond). In this simulation, we define all slave 
stations to generate their respective Ethernet traffic loads at the same point in simulation time, so 
that we can obtain the worst-case communication jitter. The Ethernet network structure of this 
simulation is shown in Fig. 4.26. The results from both this simulation and the analytical model 
are shown in Table 4.1. We conclude that the simulation communication jitter coincides with the 
analytical queuing delay (873.6 μs). 

Network Configuration: We setup the network configuration with the following parameter 
values: 

 Ethernet Switch: The configuration of the Ethernet switch is based on the following 3COM 
SuperStack II Switch 1100 specification:   

 Bandwidth: 10 Mbps 

 Shared Buffer Memory: 800 Kbytes (dynamic TX shared buffer memory)  

 Ethernet Latency (ET_Latency): 8 microseconds (Store and Forward) 

 Ethernet Controller: 10 Mbps  

 Network Cable: 0.1 μs. This is derived from the propagation speed of 2.0 x 108 m/s and a 
cable length of 20m. 
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Fig. 4.26: The network configuration, 14 slave stations and one master station 

Table 4.1: Maximum, minimum, and jitter of the end-to-end delay from the slave stations to the 
master station 

Frame size 
(bits) 

Our simulation model 
Analytical 

model 
Maximum end-to-end 

delay (μs) 
Minimum end-to-end 

delay (μs) 
Jitter (μs) Queuing 

delay (μs) 
576  997.833 124.233 873.6 873.6 

 

 

4.3.2 Latency on a switched Ethernet network 

We calibrate our implemented simulation with the analytical results from [Rug08]. This paper 
provides an analytical model for the switch latency of a standard-Ethernet frame (in an Ethernet 
switch). The switch latency is a time interval. It starts from the point when an entire standard-
Ethernet frame arrives at an input port, and ends at the point when the last bit of that frame is 
transmitted from an output port. In cases where several Ethernet switches coexist, the switch 
latency is the accumulated latency for all Ethernet switches where the Ethernet frame has passed. 
In this paper there are four main scenarios which each have analytical results. These scenarios 
are explained in the sections that follow.  
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4.3.2.1 Simple Ethernet Network: This scenario considers a simple network consisting of 
several nodes connected to an Ethernet switch. In this scenario there are 15 transmitter nodes and 
one receiver node, as shown in Fig. 4.27.  

 

 

 

 

 

 

Fig. 4.27: A simple Switched Ethernet Network  

All Ethernet-controller bandwidths in this network are 100 Mbps. The switch fabric latency of an 
Ethernet switch is the same as that of a RuggedSwitch product (i.e. 5.2 μs) [Rug08]. This 
scenario is divided into the following three sub-scenarios: 

 Light network load with a minimum-size frame of 64 bytes: In this scenario, one 
transmitter node transmits standard-Ethernet frames to the receiver node. The lengths of 
these standard-Ethernet frames are identical and equal to 64 bytes. In our simulation, we 
define the transmission period of the standard-Ethernet frames as 1 millisecond. The 
results from our implemented simulation and the analytical model are shown in Fig. 4.28.   

 Light network load with a maximum-size frame of 1518 bytes: In this scenario, one 
transmitter node transmits standard-Ethernet frames to the receiver node. The lengths of 
these standard-Ethernet frames are identical and equal to 1518 bytes. In our simulation, 
we define the transmission period of the standard-Ethernet frames as 1 millisecond. The 
results from our implemented simulation and the analytical model are shown in Fig. 4.29. 

 Heavy network load with a maximum-size frame of 1518 bytes: In this scenario, every 
transmitter node transmits standard-Ethernet frames to the receiver node. The lengths of 
these standard-Ethernet frames are identical and equal to 1518 bytes. The analytical 
model considers the worst-case switch latency, where the Ethernet switch receives frames 
from every transmitter node at the same point in time. The worst-case switch latency is a 
time interval between when the Ethernet switch starts to receive the last frame, to when it 
starts to transmit it. The results from our implemented simulation and the analytical 
model are shown in Fig. 4.29. 
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4.3.2.2 IEC 61850-9-1 Traffic: IEC 61850 is a standard for the design of electrical substation 
automation. The communication protocol of IEC 61850 is defined as high-speed switched 
Ethernet. This scenario has a network consisting of 12 transmitter nodes, one receiver node, and 
one Ethernet switch. The data in each transmitter node is sampled with a sampling rate of 128 
samples per cycle (60 Hz). This means that the transmission period of these standard-Ethernet 
frames is 1/(128*60) seconds. Each standard-Ethernet frame has a bit-length of 984 bits (123 
bytes). Therefore, each transmitter node sends standard-Ethernet frames with a transmission rate 
of 128*60*984 bps (7,557,120 bps). Note that the total standard-Ethernet traffic of all the 
transmitter nodes is 90.65844 Mbps (7,557,120 bps*12), which is less than an output port’s 
Ethernet bandwidth (100 Mbps). The switch fabric latency of an Ethernet switch is the same as 
that of a RuggedSwitch product (5.2 μs) [Rug08]. The analytical result shows that the best-case 
and worst-case switch latencies are 15.04 and 123.28 μs, respectively. In our implemented 
simulation, we set all transmitter nodes to transmit standard-Ethernet frames simultaneously. The 
simulation results and analytical results are shown in Fig. 4.29. 

 

4.3.2.3 Multiple switches: In this scenario, there is a network comprising 12 transmitter nodes, 
three Ethernet switches, and one receiver, as depicted in Fig. 4.28. All transmitter nodes have the 
same standard-Ethernet traffic pattern as the one in the previous scenario, IEC 61850-9-1 Traffic. 
Therefore, all transmitter nodes send a standard-Ethernet frame with a bit-length of 984 bits (123 
bytes) and a transmission period of 1/(128*60) seconds. The switch fabric latency of an Ethernet 
switch is the same as that of a RuggedSwitch product (5.2 μs) [Rug08]. The analytical result 
shows that the best-case and worst-case switch latencies are 30.08 and 138.32 μs, respectively. In 
our simulation, we set all transmitter nodes to transmit standard-Ethernet frames simultaneously. 
The simulation results and analytical results are shown in Fig. 4.29. 

 

 

 

 

 

 

   

Fig. 4.28: A network comprising three Ethernet switches and 12 transmitter nodes 
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4.3.2.4 Mixed Network Traffic and Prioritization: In this scenario, the standard-Ethernet 
traffic is classified into high-priority and low-priority traffic. This network is structured the same 
as the network in the Multiple switches scenario. The Ethernet frames of sampled data (IEC 
61850-9-1 Traffic) are defined as high-priority traffic, whereas the other standard-Ethernet 
frames are assigned as low-priority traffic. The switch fabric latency of an Ethernet-switch is the 
same as that of a RuggedSwitch product (5.2μs) [Rug08]. The analytical result shows that the 
worst-case switch latency of the high-priority standard-Ethernet frames is 384.36 μs. In our 
simulation model, we define high-priority standard-Ethernet frames as rate-constraint traffic 
(RC-traffic), and low-priority standard-Ethernet frames as best-effort traffic (BE-traffic). The 
low-priority standard-Ethernet frames are transmitted from all transmitter nodes with a 
transmission rate of 10/12 Mbps each. We set the total number of high-priority standard-Ethernet 
frames as 2,000 frames per transmitter node. The simulation results and analytical results are 
shown in Fig. 4.29. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.29: The results from the analytical model [Rug08] and our simulation 
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4.4 Summary 

In this chapter, we have presented our simulation model for a TTE system. All components of 
the simulation model have been described. Due to the fact that the TT communication of a TTE 
system is predefined and deterministic, the TT communication in our implemented simulation 
can be validated with a predefined confliction-free communication schedule. Since the 
communication of standard Ethernet is non-deterministic, we have calibrated the simulation 
results from our simulation model with the analytical results from published papers [LL02] 
[Rug08].  The calibration results show that the results from the simulations based on our 
simulation model coincide with the analytical results.  
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CHAPTER 5 

A TT-traffic Scheduling Approach for 
TTEthernet Systems 

 
In this chapter we present our TT-traffic scheduling approach for TTEthernet systems. This 
approach aims to obtain all possible TT-communication schedules, and analyze the remaining 
bandwidth and timing property for standard-Ethernet traffic in TTEthernet systems. In 
TTEthernet systems, the standard-Ethernet traffic is used for non-real-time applications, whereas 
the TT traffic is used for real-time applications (including safety-critical ones). TT messages, 
which are transported with deterministic delays and low jitter, take precedence over standard-
Ethernet frames. This denotes that the transport of standard-Ethernet frames cannot interfere with 
the timely behavior of TT-message communication. Since TT-message communication follows a 
TT-communication schedule, the performance of standard-Ethernet message communication 
depends not only on the amount of standard-Ethernet traffic, but also the TT-communication 
schedule (periods and offsets). In this chapter, we describe how to enumerate all the possible TT-
communication schedules (based on our TT-traffic scheduling approach) from the specified 
periods of given time-critical applications. With our approach, an amount of bandwidth for 
standard-Ethernet traffic in a TTEthernet network is analyzed. We present two possible offset 
forms: continuous offset form and distributed offset form. Examples of time-critical applications 
are also given to illustrate our TT-traffic scheduling approach.    

 

5.1 TTE Cluster cycle 

A TTE-cluster cycle is a real-time cluster cycle for a TTE cluster. We refer to a TTE cluster 
cycle as simply a cluster cycle hereafter. All TT-message transmission events in a TTE cluster 
are scheduled in a cluster cycle. An event pattern of TT-message transmission is repeated every 
cluster cycle. The length of a cluster cycle is represented by a positive integer, approximately 
equal to the smallest period from all scheduled periods in a cluster cycle (as depicted in Fig. 5.1). 
Fig. 5.1 shows three time-critical applications (A, B, and C) scheduled in a cluster cycle. The 
applications have periods (2, 4, and 6 milliseconds, respectively). We can calculate the length of 
a cluster cycle by means of Least Common Multiple (LCM). The LCM of 2, 4, and 6, denoted as 
LCM (2, 4, 6), is 12.  
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Fig. 5.1: A cluster cycle of three time-critical applications (A, B, C with periods of 2, 4, 6 msec.) 

 

5.2 Period of TT traffic 

The TT traffic of a time-critical application is scheduled in a cluster cycle using two parameters: 
period and offset. In this section we describe how to obtain all possible schedules from the 
periods of given time-critical applications. In our approach, we mathematically analyze an 
amount of remaining bandwidth for standard-Ethernet traffic. The schedule with the maximum 
remaining bandwidth for standard-Ethernet traffic is supposed to be the optimal one. We call this 
approach, which obtain that optimal schedule, the remaining-bandwidth maximization approach. 
This approach is illustrated with four time-critical applications. These time-critical applications 
(appl_1, appl_2, appl_3, and appl_4) have periods of 3, 4, 4, and 5 milliseconds, respectively. 
The Ethernet payload-data sizes of TT messages for the applications are 100, 46, 500, and 1000 
bytes, respectively. Note that the Ethernet payload-data size of appl_2 is equal to that of a 
Protocol Control Frame (PCF). The remaining-bandwidth maximization approach is described as 
follows. 

 

5.2.1 Enumerate all possible schedules from given periods  

We define each period of a given time-critical application as a based period. In our example, the 
based periods of the four applications are 3, 4, 4, and 5 milliseconds. With three based periods in 
our example (the based periods of two applications are identical), we obtain three possible 
schedules for the four time-critical applications. We do this using the following two processes: 
find satisfied based-periods of given time-critical applications, and calculate satisfied harmonic-
periods of given time-critical applications.  

 Find satisfied based-periods of given time-critical applications: We can obtain satisfied 
based-periods of given time-critical applications as follows. Each based period of given time-
critical applications is to be checked with the following satisfied condition: if the based 
period of a time-critical application is satisfied, then it is equal or less than the lowest period 
of all given time-critical applications. If the based period of a time-critical application is not 
satisfied (i.e. the lowest period of all the given time-critical applications is greater than the 



5. A TT-traffic Scheduling Approach for TTEthernet Systems                   5.2 Period of TT traffic                    

115 
 

based period), then the based period is changed to half of its current value. The updated 
based period is then checked with the satisfied condition again. This process is repeatedly 
performed until the satisfied condition is reached. We call a based period that reaches the 
satisfied condition a satisfied based-period. In our example, the satisfied based-periods of the 
four applications are 3, 2, 2, and 2.5 milliseconds, respectively. Note that the satisfied based-
periods of two applications are identical (2 milliseconds). We conclude that the satisfied 
based-periods of the four time-critical applications are 2, 2.5, and 3 milliseconds.  

 Calculate satisfied harmonic-periods of given time-critical applications: We define 
harmonic periods of a satisfied based-period as the number of satisfied based-periods or 
N*(satisfied based-periods), where N is a positive integer. The satisfied harmonic-period of a 
time-critical application is the maximum of the time-critical application’s harmonic 
periods,that is equal or less than the period of the time-critical application. In our example, 
the satisfied harmonic-periods of the four time-critical applications (based on their respective 
satisfied based-periods) can be obtained as follows.  

o Based on a satisfied based-period of 2 milliseconds: The harmonic periods based on 2 
milliseconds are {2, 4, 6, 8, 10, ... }.  The satisfied harmonic-periods of the four 
applications are 2, 4, 4, and 4 milliseconds.  

o Based on a satisfied based-period of 2.5 milliseconds: The harmonic periods based on 
2.5 milliseconds are {2.5, 5, 7.5, 10, 12.5, ... }. The satisfied harmonic-periods of the 
four applications are 2.5, 2.5, 2.5, and 5 milliseconds. 

o Based on a satisfied based-period of 3 milliseconds: The harmonic periods based on 3 
milliseconds are {3, 6, 9, 12, 15, ... }. The satisfied harmonic-periods of the four 
applications are all equal to 3 milliseconds. 

In our example we obtain three possible schedules from the satisfied harmonic-periods of the 
time-critical applications, as summarized in Table 5.1.  

Table 5.1: The satisfied harmonic-periods of given time-critical applications in all possible 
schedules 

Schedule Satisfied  
based-period 

Satisfied harmonic-periods 
appl_1  

(3 msec.) 
appl_2  

(4 msec.) 
appl_3  

(4 msec.) 
appl_4 

(5 msec.) 
1sd schedule 2 msec. 2 msec. 4 msec. 4 msec. 4 msec. 
2nd schedule 2.5 msec. 2.5 msec. 2.5 msec. 2.5 msec. 5 msec. 
3rd schedule 3 msec. 3 msec. 3 msec. 3 msec. 3 msec. 
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5.2.2 Calculate a used bandwidth for TT traffic (UBTT) 

After we obtain the satisfied harmonic-period of each schedule, we calculate a Used Bandwidth 
for TT traffic (UBTT) in each schedule, using Equation (5.1).   

UBTT ൌ ∑ ቆ
ଵ

୮ୣ୰୧୭ୢ౟
ൈ ሺFS୧ ൅ IFGሻቇ୬

୧ୀଵ  …..............................................................…….(5.1) 

Where,   periodi is the satisfied harmonic-period of the ith time-critical application in a schedule, 

 FSi is the total size of a frame in bits from the ith time-critical application, 

 IFG is the time interval of an inter-frame gap (96 bit-times). 

Note that FSi is a summation of Ethernet payload data, Ethernet overhead (14 bytes), and Frame 
Check Sequence (4 bytes). From the above example, we can calculate the UBTT for each of the 
obtained schedules as follows:  

 UBTT of the first schedule: The satisfied harmonic-periods of appl_1, appl_2, appl_3 and 
appl_4 are 2, 4, 4, and 4 milliseconds. The Ethernet payload-data size of a TT-message for 
100, 46, 500, and1000 bytes, respectively. The UBTTs of these applications are denoted as 
UBTTappl_1, UBTTappl2, UBTTappl3 and UBTTappl4, respectively.  

UBTTappl_1 = (1/(2*10-3))*(100*8 + 14*8 + 4*8 + 96) = 520 kbps  

UBTTappl_2 = (1/(4*10-3))*(46*8 + 14*8 + 4*8 + 96) = 152 kbps  

UBTTappl_3 = (1/(4*10-3))*(500*8 + 14*8 + 4*8 + 96) = 1,060 kbps  

UBTTappl_4 = (1/(4*10-3))*(1000*8 + 14*8 + 4*8 + 96) = 2,060 kbps  

UBTT = (520 + 152 + 1,060 + 2,060) kbps= 3,792 kbps 

 UBTT of the second schedule: The satisfied harmonic-periods of appl_1, appl_2, appl_3 and 
appl_4 are 2.5, 2.5, 2.5, and 5 milliseconds. The Ethernet payload-data size of a TT-message 
for these applications is 100, 46, 500, and 1000 bytes, respectively. The UBTTs of these 
applications are denoted as UBTTappl_1, UBTTappl2, UBTTappl3 and UBTTappl4, respectively.  

UBTTappl_1 = (1/(2.5*10-3))*(100*8 + 14*8 + 4*8 + 96) = 416 kbps  

UBTTappl_2 = (1/(2.5*10-3))*(46*8 + 14*8 + 4*8 + 96) = 243.2 kbps  

UBTTappl_3 = (1/(2.5*10-3))*(500*8 + 14*8 + 4*8 + 96) = 1,696 kbps  

UBTTappl_4 = (1/(5*10-3))*(1000*8 + 14*8 + 4*8 + 96) = 1,648 kbps 

UBTT = (416 + 243.2 + 1,696 + 1,648) kbps = 4,003.2 kbps 



5. A TT-traffic Scheduling Approach for TTEthernet Systems                   5.2 Period of TT traffic                    

117 
 

 UBTT of the third schedule: The satisfied harmonic-periods of appl_1, appl_2, appl_3 and 
appl_4 are all 3 milliseconds. The Ethernet payload-data size of a TT-message for these 
applications is 100, 46, 500, and 1000 bytes, respectively. The UBTTs of these applications 
are denoted as UBTTappl_1, UBTTappl2, UBTTappl3 and UBTTappl4, respectively.  

 UBTTappl_1 = (1/(3*10-3)) * (100*8 + 14*8 + 4*8 + 96) = 346.67 kbps  

UBTTappl_2 = (1/(3*10-3)) * (46*8 + 14*8 + 4*8 + 96) = 202.67 kbps 

UBTTappl_3 = (1/(3*10-3)) * (500*8 + 14*8 + 4*8 + 96) = 1,413.33 kbps 

UBTTappl_4 = (1/(3*10-3)) * (1000*8 + 14*8 + 4*8 + 96) = 2,746.67 kbps  

UBTT = (346.67 + 202.67 + 1,413.33 + 2,746.67) kbps = 4,709.34 kbps 

5.2.3 Calculate the remaining bandwidth for standard-Ethernet traffic (RBSE) 

In a TTE system, standard-Ethernet frames can be transported through a TTE switch while no 
TT-messages in that switch are transmitting. The Ethernet bandwidth remaining after TT-traffic 
transmission is used for the transmission of standard-Ethernet traffic. We call this bandwidth 
used for standard-Ethernet frame transmission the remaining bandwidth for standard-Ethernet 
traffic (RBSE). In our example, we use Fast Ethernet, which has a bandwidth of 100 Mbps. The 
RBSE in a TTE network can be calculated using Equation 5.2. The calculated result of all the 
obtained schedules from the above example is shown below, where the first schedule gives the 
highest RBSE. We therefore conclude that the first schedule is the optimal schedule for the four 
time-critical applications. The optimal schedule consists of a set of periods for the four time-
critical applications. These periods are 2, 4, 4, and 4 milliseconds. In the next section we 
consider the offsets of these periods.   

 RBSE = Network Bandwidth - UBTT, ……….…………..……………..……………(5.2) 

, where  

 RBSE is the remaining bandwidth for standard-Ethernet traffic, 

 The Fast-Ethernet’s bandwidth is 100 Mbps, UBTT is the used bandwidth for TT traffic. 

In our example, we calculate the RBSE as follows:  

 First schedule:      RBSE = 100 Mbps - 3,792 kbps = 96,208 kbps 

 Second schedule:  RBSE = 100 Mbps - 4,003.2 kbps = 95,996.8 kbps 

 Third schedule:     RBSE = 100 Mbps - 4,709.34 kbps = 95,290.66 kbps 
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5.3 Offset of TT traffic 

In this section we describe how to obtain the offsets of time-critical applications for a schedule. 
In our TT-traffic scheduling approach, the schedule we use to find the offsets is a result of the 
previous section Period of TT traffic (i.e. the schedule is an optimal schedule from the previous 
section). We present two possible offset forms: continuous offset form and distributed offset 
form. In the continuous offset form, TT messages from time-critical applications are transmitted 
contiguously, as depicted in Fig. 5.2(a). In the distributed offset from, standard-Ethernet frames 
are able to be transmitted between any two consecutive TT messages, as depicted in Fig. 5.2(b). 
In TTEthernet systems, standard-Ethernet frames cannot be transmitted at the same time as a TT 
message, as depicted in Fig. 5.3. Once a standard-Ethernet frame arrives at the transmitter of an 
Ethernet controller, a TTEthernet engine checks whether the transmission of that standard-
Ethernet frame will fall in a TT-message transmission interval or not. If the TTEthernet engine 
finds that the transmission of a standard-Ethernet frame will fall in a TT-message transmission 
interval, the standard-Ethernet frame has to wait until the TT-message transmission has 
completed. This implies that the transport delay of a standard-Ethernet frame depends not only 
on the Ethernet frame queuing in Ethernet switches, but also on the TT-message transmission 
schedule. In Fig. 5.3, it is shown that regardless of Ethernet-frame queuing, a standard-Ethernet 
frame that arrives at the transmitter of an Ethernet controller has to wait (at most) for the TT-
message transmission interval plus the transmission time of the standard-Ethernet frame and an 
inter-frame gap (IFG). In the distributed offset form, a TT-message transmission interval is 
reduced in comparison to the interval in continuous offset form. This implies that the worst-case 
transport delay of a standard-Ethernet frame with a TT-communication schedule using the 
distributed offset form is smaller than the one in the same TTE network with a TT 
communication schedule using the continuous offset form. We describe both offset forms in 
detail in section 5.3.1 and 5.3.2. 

 

 

 

 

 

 

 

Fig. 5.2: Ethernet and TT message transmission in continuous offset form (a), and distributed 
offset form (b)  
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Fig. 5.3: Timing diagram of the transmission of two TT messages and one Ethernet frame 

 

5.3.1 Continuous offset form  

In principle of continuous offset form, TT messages are transmitted contiguously, as depicted in 
Fig. 5.4. This means that no standard-Ethernet frames can be transmitted in between contiguous 
TT messages. Standard-Ethernet frames are therefore transmitted in the remaining time, after the 
transmission of a set of contiguous TT messages has finished.  

 

 

 

 

Fig. 5.4: The TT-traffic transmission of two time-critical applications in continuous offset form 

 

5.3.1.1 A time interval between two contiguous messages in continuous offset form 

In this section we analyze a time interval between two contiguous messages (i.e. between two 
contiguous TT-messages and between a TT message and a PCF) in a TTEthernet system. In a 
TTEthernet network, when all TTE devices are synchronized with each other, a TT message or a 
PCF is transported through the TTEthernet network without waiting for any other messages in 
any TTE device. This is because a TT-communication schedule in a TTEthernet system is 
defined to be confliction-free. In order to assign offsets in a confliction-free TT-communication 
schedule, a time interval between two consecutive messages is analyzed. In this analysis, we 
assume that a TT message is forwarded by a TTE switch in multicast form (i.e. a TT message 
received at a TTE switch is duplicated and then forwarded to all other ports of the TTE switch). 
According to the TTEthernet specification [TTE08], the offset of PCF traffic in a TT 
communication schedule is zero (OffsetPCF = 0). TT messages can be transmitted only after all 
TTE devices have completely received PCFs. A PCF starts traveling from a synchronization 
master to a compression master in the same TTE cluster. The compression master compresses 
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the received PCF and then distributes it to all synchronization masters and synchronization 
clients. The time it takes for a PCF to be transmitted from a synchronization master to a 
compression master and back to a node (ܶܦ௉஼ி) is shown in Equation 5.3. The compression 
master delay of TTEthernet is the time it takes for a compression master to relay a PCF, and is 
described in detail in the TTEthernet specification [TTE08]. The time interval between a PCF 
and a TT message is equal to TDPCF, as depicted in Fig. 5.5. 

 

௉஼ிܦܶ ൌ 2 כ ெ்஽ܦ ൅ ஼ெ஽ܦ ൅ ஼஼஽ܦ ൅ ܩܨܫ ൅  ஺ௐ,…..…………….…….....………..(5.3)ܦ

 

, where TDPCF is a PCF transport delay from a synchronization master to a compression master 
and back to a node (in the same TTE cluster), DMTD is the maximum transmission delay of 
TTEthernet, DCMD is the compression master delay of TTEthernet, DCCD is the clock correction 
delay of TTEthernet, IFG is a time interval of an inter-frame gap, and DAW is the acceptance 
window of TTEthernet. 

 

 

 

 

 

Fig. 5.5: A time interval between a PCF and a TT message 

 

1. With regard to the transmission of two contiguous TT-messages, a time interval between 
them in continuous offset form depends on their sender node(s). Therefore, there are two 
scenarios of TT-message transmission in continuous offset form with regard to sender 
nodes. These are described as follows: Two contiguous TT-messages sent from the same 
sender node: The second TT-message of these two contiguous TT-messages can be 
transmitted when the transmission of the first TT-message at the same sender node is 
completed (Fig. 5.6). The time interval between two TT-messages is equal to an inter-
frame gap plus the acceptance window of TTEthernet. The time interval between two 
consecutive TT-message’s dispatch points in time is derived from Equation 5.4.  

 

 

A PCF + IFG A TT message + IFG

Progression of real time

Transport Delay of a PCF (TDPCF)

AW

2*DMTD+DCMD+DCCD+IFG
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Fig. 5.6: Two contiguous TT-messages from the same sender node  

in continuous offset form 

்்ܫܶ    ൌ ܶ ்்ܶ_ଵ൅ ܦூிீ൅ ܦ஺ௐ , ………………………..……...…………..………….(5.4) 

, where TITT is the time interval between two contiguous TT-message’s dispatch points in 
time, TTTT_1 is the transmission time of the first TT message of two contiguous TT-
messages, DIFG is a time interval of an inter-frame gap, and DAW is the acceptance 
window of TTEthernet.  

2. Two contiguous TT-messages sent from two different sender nodes: We call a node 
transmitting the first and second TT-message of two contiguous TT-messages the first 
node and second node, respectively. We assume that TT messages are transmitted in a 
multicast form. Thus, the second TT-message can be transmitted from the second node 
after the first TT-message from the first node has been completely transmitted to the 
second node. The time interval between the two contiguous TT-messages depends on 
TTE-network delays between both nodes, as shown in Fig. 5.7. The time interval between 
the two contiguous TT-message’s dispatch points in time is derived from Equation 5.5. 
Note that the time interval between two consecutive TT-message’s dispatch points in 
time (from different sender nodes) is equal to the one from the sender plus the TTE-
network delay between both nodes.  

 

 

 

Fig. 5.7: Two contiguous TT-messages from two different sender nodes  

in continuous offset form 

ሺ௜ሻ்்ܫܶ    ൌ ܶ ௠ܶ௦௚ሺ௜ሻ ൅ ூிீሺ௜ሻܦ ൅ ஺ௐܦ ൅  ாሺ௜ሻ , .………….….……...…………...(5.5)்்ܦܰ

ாሺ௜ሻ்்ܦܰ ൌ ௦௘௡ௗ௘௥ሺ௜ሻܦ௦௘௡ௗ௘௥ሺ௜ሻ൅ܲܦܦ  ൅  ∑ ܵܮ ሺܹ௜,௝ሻ
ேೞೢ
௝ୀଵ  ,.…………………..……..….….(5.6) 

ܵܮ    ሺܹ௜,௝ሻ ൌ  ܶ ௠ܶ௦௚ሺ௜,௝ሻ ൅ ூிீሺ௜,௝ሻܦ ൅ ሺ௜,௝ሻܦܲ ൅ ሺ௝ሻܦܦ ൅  ሺ௝ሻ ,………………………...(5.7)ܮܶܶ
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, where  

TITT(i) is the time interval between the ith and (i+1)th TT-message’s dispatch points in 
time, 

TTmsg(i) is the transmission time of the ith TT message, 

DIFG is a time interval of an inter-frame gap,  

DAW is the acceptance window of TTEthernet,  

NDTTE(i) is the transport delay of the ith TT message from the ith TT message’s sender 
node to the (i+1)th TT message’s sender node.  

DDୱୣ୬ୢୣ୰ሺ୧ሻ is the dispatch delay of the ith TT message at the ith TT message’s sender 

node, 

PDୱୣ୬ୢୣ୰ሺ୧ሻ is the propagation delay of an Ethernet network cable connected to the ith TT 

message’s sender node, 

LSWሺ୧,୨ሻ is the latency of the jth TTE switch for relaying the ith TT message,  

ௌܰௐ is the total number of TTE switches which the ith TT messages passes through 
between the ith TT message’s sender node to the (i+1)th TT messages’s sender node, 

TT୫ୱ୥ሺ୧,୨ሻ is the transmission time of the ith TT message at the jth TTE switch,  

DIFGሺ୧,୨ሻ is the time interval of an inter-frame gap of the ith TT message at the jth TTE 

switch, 

PDሺ୧,୨ሻ is the propagation delay of an Ethernet network cable where the ith TT message is 

transmitted out at the jth TTE switch, 

DD୨ is the dispatch delay of the jth TTE switch for a TT message, 

TTL୨ is the TT latency of the jth TTE switch for relaying a TT message.  

 

5.3.1.2 A remaining time in a satisfied based-period in continuous offset form 

In this section we analyze a time interval not used for TT-traffic transmission within a satisfied 
based-period in continuous offset form (depicted in Fig. 5.8). We call this time interval a 
remaining time of a satisfied based-period. The remaining time of a satisfied based-period is a 
time interval that remains from the TT-traffic transmission of time-critical applications, which 
are already scheduled within the satisfied based-period. Other TT traffic can be scheduled in the 
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remaining time of a satisfied based-period. In addition, a TTE device can utilize the remaining 
time of a satisfied based-period to transport standard-Ethernet frames, if the remaining time is 
sufficient to transport them without any interference to the timely behavior of TT-traffic. Fig. 
5.8(b) depicts the transmission of two TT messages within a satisfied based-period in continuous 
offset form. The remaining time of a satisfied based-period can be calculated using Equation 5.8.  

 

 

 

 

 

 

 

 

Fig. 5.8: The remaining time of a satisfied based-period in continuous offset form 

 

X ൌ  SBP െ ∑ TITTሺ୧ሻ
N
୧ୀଵ  , ………...…………...…………………...……………..…..…….....(5.8) 

, where 

    X is the remaining time of a satisfied based-period,  

    SBP is the satisfied based-period of a TT-communication schedule,  

    TITT(i) is the time interval between the ith and (i+1)th TT-message’s dispatch points in time, 

     N is the number of TT messages in the satisfied based-period.  

 

5.3.1.3 Offsets in continuous offset form 

In a TT communication schedule, the offset of PCF traffic is always zero.  In Fig. 5.9, the first 
offset of TT traffic (OffsetTT_1) is equal to the time it takes for a PCF to be transmitted from a 

synchronization master to a compression master and then back to a node ( ), as derived 
from Equation 5.3. The second offset of TT traffic (OffsetTT_2) is equal to the first offset of TT 
traffic (OffsetTT_(1)) plus the time interval between the two contiguous TT message’s dispatch 
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points in time (TITT), as derived from Equation 5.4 or Equation 5.5.  All offsets of TT traffic in a 
TTE cluster can be calculated using Equation 5.9.   

 

 

 

 

 

Fig. 5.9: The offsets of a PCF and three TT messages in a TT-communication schedule 

 

ሺ௝ሻ_்்ݐ݁ݏ݂݂ܱ ൌ ௉஼ிܦܶ ൅ ∑ ሺ௜ିଵሻ_்்ܫܶ
௝ିଵ
௜ୀଵ  ,……..…………..………….…………..….(5.9) 

, where  

 OffsetTT_(j) is the offset of TT traffic of the jth time-critical application,  

 TDPCF is the PCF transport delay from a synchronization master to a compression master 
 and back to any node in a TTE cluster, as derived from Equation 5.3, 

 TITT_(i-1) is the time interval between the (i-1)th TT message and the ith TT message, as 
 derived from Equation 5.4 and 5.5. Note that TI(0) is equal to zero. 

 

5.3.1.4 Continuous offset form in a TTE cluster cycle 

In the previous sections we have introduced the fundamental concept of continuous offset form. 
In this section we extend this concept into a TTE-cluster cycle. Based on continuous offset form, 
we can obtain the offsets of time-critical applications in a TTE-cluster cycle, by using the 
method described below. In this method, one of the given time-critical applications takes 
responsibility to generate PCFs (synchronization messages). Our method is illustrated with four 
time-critical applications. These applications are called appl_1, appl_2, appl_3 and appl_4. They 
have periods of 2, 4, 4, and 6 milliseconds, respectively. The Ethernet-payload-data sizes of a TT 
message for the four applications are 100, 46, 500, and 1000 bytes, respectively.  

1) Sort the given time-critical applications: We sort the given time-critical applications in 
ascending order with regard to their periods. The first time-critical application with the 
lowest period (post sorting) has the highest scheduling priority in a TTE-cluster cycle. Note 
that the time-critical application with the lowest period will transmit a TT message in every 
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time interval of the satisfied based-period along a TTE-cluster cycle. In our example, the 
sorted order of the time-critical applications is: appl_1, appl_2, appl_3 and appl_4. The 
sorted time-critical applications will be scheduled in ascending order for the next step (i.e. 
appl_1 is the time-critical application to be considered first in the next step).  

2) Calculate the number of time-slots for a TTE-cluster cycle and time-critical applications: 
The lowest period of time-critical applications in a schedule is the satisfied based-period of 
the schedule. A TTE-cluster cycle is equal to the Least Common Multiple (LCM) of all time-
critical application periods. The TTE-cluster cycle also denotes a number of satisfied based-
periods. We call a satisfied based-period a time-slot. A TTE cluster cycle consists of a set of 
the LCM number of connected time-slots. We call all connected time-slots in a TTE-cluster 
cycle cluster-cycle time-slots, as depicted in Fig. 5.10. The number of cluster-cycle time-slots 
is denoted as NTScluster. In our example, the lengths of the TTE-cluster cycle and the time slot 
are equal to 12, and 2 milliseconds, respectively. Therefore, the number of cluster-cycle 
time-slots (NTScluster) is 6. We also define the number of time-slots for one period of a time-
critical application (NTSappl) in a schedule as the satisfied harmonic-period of the time-
critical application divided by the satisfied based-period. We denote the number of time-slots 
for one period of a time-critical application as NTSappl. The number of time-slots for appl_1’s 
period is one(NTSappl_1). The number of time-slots for appl_2’s period is two (NTSappl_2). The 
number of time-slots for appl_3’s period is two (NTSappl_3). The number of time-slots for 
appl_4’s period is three time-slots (NTSappl_4). This denotes that one TT message from 
appl_1 is transmitted every time-slot. One TT message from appl_2 and appl_3 are 
transmitted every two time-slots. One TT message from appl_4 is transmitted every three 
time-slots.  

 

 

 

Fig. 5.10: The cluster-cycle time-slots in a TTE cluster cycle 

3) Put PCFs and TT messages from the sorted time-critical applications into time-slots: In this 
process we consider each of the sorted time-critical applications in ascending order. The first 
time-critical application (post sorting) is the first to put its messages into the time-slots. We 
put PCFs and TT messages from each of the sorted time-critical applications into time-slots 
using the following steps: 

Step 1: Find possible sets of time-slots for scheduling TT-messages from a time-critical 
application: The number of possible sets of time-slots is equal to the number of time-slots for 
a time-critical application (NTSappl). Due to the periodic transmission of TT traffic, a set of 
time-slots for scheduling TT-messages is defined using Equation 5.10. In our example, 
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appl_1 (NTSappl_1) has one time-slot. Thus, appl_1 has the following set of time-slots: {1st, 
2nd, 3rd, 4th, 5th, 6th}. For appl_2, NTSappl_2 is two time-slots. Thus there are two set of time-
slots, which are {1st, 3rd, 5th} and {2nd, 4th, 6th}. For appl_3, there are also two sets of time-
slots: {1st, 3rd, 5th} and {2nd, 4th, 6th}. For appl_4 there are three set of time-slots: {1st, 4th}, 
{2nd, 5th} and {3rd, 6th}. 

TSn = TS1 + (n-1)*NTSappl, TSn ≤ NTScluster ,………….………………..……………..(5.10) 

, where  TSn is the set of time-slots for a time-critical application {TS1, TS2, …, TSn}, 

   TS1 is the firstly-selected time-slot for a time-critical application, 

 n is a positive integer = {1,2,3,…}, 

 NTSappl is the number of time-slots for a time-critical application, 

 NTScluster is the total number of time-slots in a TTE cluster cycle. 

Step 2: Find the lowest remaining time of each set of time-slots: The remaining time of each 
time-slot in a set of time-slots is calculated using Equation 5.8. The lowest remaining time in 
a set of time-slots is used to put a TT message or PCF in all time-slots. For instance, the 
remaining time of the 3rd time-slot is lowest in the first set of time-slots of appl_3 {the 1st, 3rd 
and 5th time-slots}. Thus, the TT-message’s dispatch point in time for appl_3 is the time 
interval of a time-slot minus the lowest remaining time. This dispatch point in time in the 3rd 
time-slot is used for the dispatch points in time in other time-slots {the 3rd and 5th time-slots} 
in the first set of time-slots {the 1st, 3rd, and 5th time-slots}, as shown in Fig. 5.11(c). Note 
that a dispatch point in time in a time-slot is not greater than the time interval of the time-
slot. Before putting a TT message in a set of time-slots, the lowest remaining time of a set of 
time-slots is checked to see whether or not it is sufficient to schedule the TT message. This is 
described in the following step.  

Step 3: Check the lowest remaining time of each set of time-slots with the sufficient 
condition: The lowest remaining time of a set of time-slots for a time-critical application will 
be checked with the sufficient condition. The sufficient condition is that the remaining time 
of a time-slot is equal to or greater than zero, after putting a TT message or PCF from a 
time-critical application into the time-slot. If the lowest-remaining time-slot of a set of time-
slots does not satisfy the sufficient condition, the lowest remaining time of the next set of 
time-slots (of the same time-critical application) will be checked. If no set of time-slots 
satisfies the sufficient condition, the process will stop and a scheduling failure is reported.  
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Fig. 5.11: TT messages scheduled in time-slots in continuous offset form 

In our example, appl_1 has one set of time-slots (the 1st, 2nd, 3rd, 4th, 5th and 6th time-slots). A 
TT message from appl_1 is put in each time-slot in this set of time-slots, as shown in Fig. 
5.11(a). For appl_2, there are two sets of time-slots, the 1st, 3rd and 5th time-slots and the 2nd, 
4th, and 6th time-slots. The first set of time-slots for appl_2 (the lowest remaining time in the 
set of time-slots) is initially checked with the sufficient condition. If the first set of time-slots 
for appl_2 satisfies the sufficient condition, a TT message from appl_2 will be put in each 
time-slot in the first set of time-slots, as shown in Fig. 5.11(b). For appl_3, there are also two 
sets of time-slots, the 1st, 3rd and 5th time-slots and the 2nd, 4th and 6th time-slots}. The first set 
of time-slots is considered first. If the first set of time-slots satisfies the sufficient condition, a 
TT message from appl_3 will be put in each time-slot in the first set of time-slots, as shown 
in Fig. 5.11(c). For appl_4, there are three sets of time-slots, the 1st and 4th time-slots, the 2nd 
and 5th time-slots and the 3rd and 6th time-slots. If the first set of time-slots satisfies the 
sufficient condition, a TT message from appl_4 will be put in each time-slot in the first set of 
time-slots, as shown in Fig. 5.11(d). In cases where the first set of time-slots does not satisfy 
the sufficient condition, the second set of time-slots will be checked. If the second set of 
time-slots for appl_4 does not satisfy the sufficient condition, the third set of time-slots will 
be checked. If no set of time-slots satisfies the sufficient condition, the process stops and a 
scheduling failure is reported.      



5.3 Offset of TT traffic                    5. A TT-traffic Scheduling Approach for TTEthernet Systems             

128 
 

4) Find the offsets of PCF and TT traffic in a TTE-cluster cycle: In this process we calculate the 
offsets of PCF and TT traffic from the result of the previous process. By using Equation 5.3, 
5.4 and 5.5, a time interval between any two contiguous message’s dispatch points in time 
(TITT) along a time-slot can be calculated. The offset of a message within a time-slot is the 
summation of the time intervals (TITT(s)) of the preceding messages within the message’s 
time-slot, plus time intervals of all preceding time-slots. In our example, the offset of the 
first, second, third and fourth time-critical applications (OffsetTT(1), OffsetTT(2), OffsetTT(3) and 
OffsetTT(4), respectively) are shown below. 

OffsetTT(1) = 0 

OffsetTT(2) = OffsetPCF = TDPCF , T2 is a PCF 

OffsetTT(3) = TDPCF + TITT(2) 

OffsetTT(4) = TDPCF + TITT(2) + TITT(3) 

 

 

 

 

 

 

    

 

Fig. 5.12: The offsets of TT traffic before and after the shifting process (continuous offset form) 

Since the offset of PCF traffic in TTEthernet is defined as zero, all offsets will be shifted 
with the offset of PCF traffic. This is, that all the offsets are to be subtracted from the PCF 
offset (OffsetPCF). If the result from the subtraction (the new offset) is negative, the new 
offset will be added with the period of the time-critical application which it belongs to. Thus, 
all new offsets are positive values. The result from shifting all the offsets with the PCF offset 
is shown below, and is depicted in Fig. 5.12.  

OffsetTT(1) = PeriodTT(1) - TDPCF 

OffsetTT(2) = OffsetPCF = 0 

OffsetTT(3) = TDPCF + TITT(2) - TDPCF = TITT(2) 
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OffsetTT(4) = TDPCF + TITT(2) + TITT(3) - TDPCF = TITT(2) + TITT(3) 

5) Schedule all TT messages and PCFs in a TTE-cluster cycle: In the previous processes we 
obtained all the offsets of time-critical applications. In this process, we calculate all dispatch 
instants of PCFs and TT messages along a TTE cluster cycle using Equations 5.11 and 5.12. 
PCFs arrive at a TTE device at the receive points in time. These are calculated using 
Equation 5.13 for a synchronization master or a synchronization client, or Equation 5.14 for a 
compression master. TT messages are received by a TTE device at receive points in time. 
These are calculated using Equation 5.15.  

ܫܦ ௉ܶ஼ி ൌ ሺ݊ െ 1ሻሺܲ݁݀݋݅ݎ௉஼ிሻ, ݊ ൌ ሼ1, 2, 3, … , ஼௟௨௦௧௘௥ ௖௬௖௟௘

௉௘௥௜௢ௗು಴ಷ
ሽ ………………………(5.11) 

ܫܦ ்்ܶሺ௜ሻ ൌ ሺ௜ሻ்்ݐ݁ݏ݂݂ܱ ൅ ሺ݊ െ 1ሻ൫்்ܲ݁݀݋݅ݎሺ௜ሻ൯, ݊ ൌ ሼ1, 2, 3, … , ஼௟௨௦௧௘௥ ௖௬௖௟௘

௉௘௥௜௢ௗ೅೅ሺ೔ሻ
ሽ …..(5.12) 

RITPCF(SM/SC) = DITPCF + TPCF + IFG + ܶܦ௉஼ி,……..…………………………….....(5.13) 

RITPCF(CM) = DITPCF + TPCF + IFG + ܦܶܯ௉஼ி,……………………………………....(5.14) 

RITTT(i,j) = DITTT(i) + TTT(i) + IFG + NDTTE(i,j) ,……..……………………………….(5.15)  

, where DITPCF is the dispatch points in time for PCF traffic in a TTE cluster cycle, 

 PeriodPCF is the transmission period of PCF traffic, 

 DITTT(i) is the dispatch points in time for TT traffic of the ith time-critical application in a 
 TTE cluster cycle, 

 OffsetTT(i) is the offset of TT traffic of the ith time-critical application in a TTE cluster 
 cycle. 

 TPCF is the transmission time of a PCF = (PCF’s length)/(Ethernet bandwidth), 

 IFG is the time interval of an inter-frame gap, 

 TDPCF is the PCF transport delay from a synchronization master to a compression master 
 and back to any node in the same TTE cluster (Equation 5.3), 

 RITPCF(SM/CM) is the receiving points in time for PCF messages at a synchronization 
 master  or a synchronization client, 

 MTDPCF is the maximum transmission delay of a TTE system, 

 RITPCF(SM/CM) is the receiving points in time for PCF messages at a compression master, 

 RITTT(i,j) is the receiving points in time for TT messages of the ith time-critical application 
 at the jth TTE device, 
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 TTT(i) is the transmission time of a TT message of the ith time-critical application (TT 
 message’s length)/(Ethernet bandwidth), 

 NDTTE(i,j) is the TTE-network delay of a TT message of the ith time-critical application 
 from the TT message’s sender node to the jth TTE device.  

 

5.3.2 Distributed offset form  

In principle of distributed offset form, standard-Ethernet frames can be transmitted between any 
two consecutive TT-messages, as depicted in Fig. 5.13. This means that a time interval between 
any two consecutive TT-messages can be used to transmit standard-Ethernet frames, if and only 
if the time interval is sufficient to transmit the standard-Ethernet frames. We assume that 
standard-Ethernet frames have an equal possibility of arriving at a TTE device at any point in 
time. Therefore, we equally distribute the amount of remaining time for standard-Ethernet frame 
transmission within a time interval of a satisfied based-period. Due to unfixed sizes of standard-
Ethernet frames (46-1500 bytes of payload data), we define the remaining time for transmitting 
standard-Ethernet frames to be at least equal to a maximum-sized Ethernet frame, plus an inter-
frame gap. With such a remaining time, at least one standard-Ethernet frame can be transmitted.  

 

5.3.2.1 A remaining time in a satisfied based-period in distributed offset form 

In this section we analyze a remaining time for standard-Ethernet frame transmission within a 
time interval of a satisfied based-period in distributed offset form. A TTE device can utilize this 
remaining time to transmit standard-Ethernet frames. We assume that standard-Ethernet frames 
have an equal possibility of arriving at a TTE device at any point in time. Therefore, an interval 
of a remaining time between any two TT messages within a satisfied based-period is the same as 
any other within that satisfied based-period, as depicted in Fig. 5.13 (X1 = X2). Additionally, a 
remaining time for standard-Ethernet transmission shall be equal or greater than the transmission 
time of a maximum-sized Ethernet frame, so that a maximum-sized Ethernet frame can be 
transmitted. In distributed offset form, a remaining time for standard-Ethernet frame 
transmission within a time interval of a satisfied based-period can be calculated using Equations 
5.16, 5.17 and 5.18.       
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Fig. 5.13: The transmission of two TT messages in distributed offset form 

ܺ ൌ  ௝ܺ כ ܰ ൌ ܲܤܵ െ ൛்ܶݎ ்ሺ௜ሻ ൅ ሺܹܣ ൅ ሻܩܨܫ כ ݊ൟ , ………..…..……..….…..……….......(5.16) 

ݎ்ܶ ்ሺ௜ሻ ൌ ଵ

஻ௐ
∑ ௜݁ݖ݅ݏ_݃ݏ݉

௡
௜ୀ଴  , ……………………………………….....……………….….(5.17) 

ܺ ൌ  ௝ܺ כ ܰ ൌ  ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ൅ ڮ ܺே ൌ ∑ ݆ܺே
௝ୀଵ  ,………...…..…….…………..……...(5.18) 

, where  X is the overall remaining time for standard-Ethernet traffic in a satisfied based-period,  

 Xj is the jth remaining time for standard-Ethernet traffic within the satisfied based-period, 

 SBP is the satisfied based-period of a TT communication schedule, 

 msg_sizei is the size of the ith frame in bits within the satisfied based-period,  

 n is the number of TT messages in the satisfied based-period,  

 IFG is a time interval of an inter-frame gap, 

 BW is the Ethernet bandwidth, 

 AW is the acceptance window of TTEthernet, 

 N is the number of TT messages in the satisfied based-period, 

 TrTT(i) is the transmission time of the ith TT-message. 

In cases where a remaining time between any two TT-messages (Xj) is less than the transmission 
time of a maximum-sized standard-Ethernet frame plus an inter-frame gap (IFG), there shall be 
at least one remaining time that is equal or greater than the transmission time of a maximum-
sized standard-Ethernet frame plus an IFG. This is so the problem of a maximum-sized standard-
Ethernet frame not being able to pass through a TTE device can be avoided. In this case a 
remaining time between any two consecutive TT messages is equal to the transmission time of a 
maximum-sized standard-Ethernet frame. If a remaining time is less than the transmission time 
of a maximum-sized standard-Ethernet frame, TT messages within this remaining time will be 
scheduled in continuous offset form, as depicted in Fig. 5.14(c).  
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Fig. 5.14: Two unequal remaining times in a satisfied based-period in distributed offset form 

With regard to TTE-network delays, the overall remaining time of a satisfied based-period is 
illustrated in Fig. 5.15 (X1+X2), and calculated using Equation 5.19. A remaining time between 
any two TT-messages can be obtained using Equation 5.18. If two consecutive TT-messages are 
transmitted from the same sender node, the TTE-network delay (NDTTE) in Equation 5.19 will be 
zero. Otherwise, the TTE-network delay in Equation 5.19 is calculated using Equation 5.21.  

 

 

 

Fig. 5.15: Remaining times in distributed offset form in consideration of TTE network delays 

X ൌ  SBP െ ሼTrTT ൅ N כ ሺAW ൅ IFGሻ ൅ NDTTEሽ , ………...……...……………..…..….......(5.19) 
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   LSWሺ୧,୨ሻ ൌ  TT୫ୱ୥ሺ୧,୨ሻ ൅ DIFGሺ୧,୨ሻ ൅ PDሺ୧,୨ሻ ൅ TTLሺ୧,୨ሻ ൅ DDሺ୧,୨ሻ ,……………….…….….......(5.22) 

, where 

 X is the overall remaining time for standard-Ethernet traffic in a satisfied based-period,  

 SBP is the satisfied based-period of a TT-communication schedule, 
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 TrTT is the summation of all TT-message transmission time in the satisfied based-period, 

 N is the number of TT messages in the satisfied based-period,  

 IFG is the time interval of an inter-frame gap, 

 AW is the acceptance window of TTEthernet, 

 BW is the Ethernet bandwidth, 

 NDTTE is the TTE-network delay of all TT messages in the satisfied based-period,  

 msg_sizei is the size of the ith frame in bits within the satisfied based-period,  

DDୱୣ୬ୢୣ୰ሺ୨ሻ is the dispatch delay of the jth TT message at a sender node, 

 TTmsg(j) is the transmission time of the jth TT message at the sender node, 

 DIFG(j) is the time interval of an inter-frame gap of the jth TT message at the sender node,  

PDୱୣ୬ୢୣ୰ሺ୨ሻ is the propagation delay of an Ethernet network cable connected to the sender 

node which transmits the jth TT message, 

LSWሺ୧,୨ሻ is the latency of the ith TTE switch for relaying the jth TT message,  

TT୫ୱ୥ሺ୧,୨ሻ is the transmission time of the jth TT message at the ith TTE switch, 

DIFGሺ୧,୨ሻ is an inter-frame gap (IFG) of the jth TT message at the ith TTE switch, 

LSWሺ୧,୨ሻ is the latency of the jth TTE switch for relaying the ith TT message,  

ௌܰௐ is the total number of TTE switches which the jth TT messages passes through from 
the sender node to a receiver node, 

PDሺ୧,୨ሻ is the propagation delay of an Ethernet network cable where the jth TT message 

uses to transmit out at the ith TTE switch, 

TTLሺ୧,୨ሻ is the TT latency of the ith TTE switch for the jth TT message,  

DDሺ୧,୨ሻ is the dispatch delay of the ith TTE switch for the jth TT message. 

 

5.3.2.2 A time interval between two consecutive TT messages in a satisfied based-period 

In this section we analyze a time interval between two consecutive messages (i.e. between two 
consecutive TT messages or between a TT message and a PCF) within a satisfied based-period in 
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distributed offset form. In this analysis, we assume that a TT message is forwarded by a TTE 
switch in multicast form (i.e. a TT message received at a TTE switch is duplicated and then 
forwarded to all other ports of the TTE switch). With regard to TT-message transmission, a time 
interval between two consecutive TT-message’s dispatch points in time depends on the sender 
node(s) of the two consecutive TT-messages. Therefore, there are two scenarios of TT-message 
transmission in distributed offset form with regard to sender nodes. These are described as 
follows. 

1. Two consecutive TT-messages sent from the same sender node: The second TT-message of 
the two consecutive TT-messages can be transmitted after the transmission of the first TT-
message (at the sender node) is complete, as shown in Fig. 5.16. The time interval (TITT) 
between the two consecutive TT-message’s dispatch points in time can be calculated using 
Equation 5.23. In this case, the TTE-network delay of the first TT message is not taken into 
account.  

 

 

 

 

Fig. 5.16: Two consecutive TT-messages transmitted from the same sender  

in distributed offset form 

்்ܫܶ ൌ ܶ ்்ܶ_௠௦௚ ൅ ூிீܦ ൅ ஺ௐܦ ൅ ଵܺ,…………………………………………....…(5.23) 

, where TITT is the time interval between two consecutive TT-message’s dispatch points in 
time, TTTT_msg is the transmission time of the first TT message of two consecutive TT-
messages, DIFG is a time interval of an inter-frame gap, and DAW is the acceptance window of 
TTEthernet , X1 is the remaining time between two consecutive TT-messages.  

2. Two consecutive TT-messages sent from two different sender nodes: We call a node 
transmitting the first and second TT-message of two consecutive TT-messages the first node 
and second node, respectively. We assume that TT messages are transmitted in multicast 
form. Thus, the second TT-message can be transmitted from the second node after the first 
message from the first node has completely arrived at the second node. The time interval 
(TITT) between the two consecutive TT-messages depends on TTE-network delays between 
the first and second nodes, as shown in Fig. 5.17. The time interval between the two 
consecutive TT-message’s dispatch points in time from different sender nodes is derived 
from Equation 5.24.  
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Fig. 5.17: Two consecutive TT-messages from two different senders in distributed offset form 
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, where  

TITT is the time interval between two consecutive TT-message’s dispatch points in time, 

TTTT_msg is the transmission time of the first TT-message of two consecutive TT-
messages, 

DIFG is a time interval of an inter-frame gap of the first TT-message at a sender node of 
the first TT-message,  

DAW is the acceptance window of TTEthernet,  

NDTTE is the TTE-network delay between the first node (the sender node of the first TT 
message) and the second node (the sender node of the second TT message), 

X1 is the remaining time between two consecutive TT-messages, 

DDୱୣ୬ୢୣ୰ is the dispatch delay of the first TT-message at the sender node of the first TT-
message, 

PDୱୣ୬ୢୣ୰ is the propagation delay of an Ethernet network cable connected to the sender 
node of the first TT-message, 

LSW୧ is the latency of the ith TTE switch for relaying the first TT message,  

ௌܰௐ is the total number of TTE switches which the first TT messages passes through 
between the sender node of the first TT-message and the sender node of the second TT-
message, 

TTTT_୫ୱ୥ሺ୧ሻ is the transmission time of the first TT message at the ith TTE switch,  
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DIFGሺ୧ሻ  is the time interval of an inter-frame gap (IFG) at the ith TTE switch, 

PD୧ is the propagation delay of an Ethernet network cable where the first TT message is 
transmitted from the ith TTE switch, 

TTL୧ is the TT latency of the ith TTE switch for a TT message,  

DD୧ is the dispatch delay of TTEthernet at the ith TTE switch. 

 

5.3.2.3 A time interval between a PCF and TT message in a satisfied based-period 

According to the TTEthernet specification [TTE08], the offset of PCF traffic in a TT 
communication schedule is defined as zero (OffsetPCF = 0). TT messages can be transmitted only 
after all TTE devices within a TTE cluster have completely received their PCFs, as depicted in 
Fig. 5.18. A PCF travels from a synchronization master to a compression master in a TTE 
cluster. The compression master compresses the received PCF and then distributes it to all 
synchronization masters and synchronization clients in the same TTE cluster. The time it takes 
for a PCF to be transmitted from a synchronization master to the compression master and back to 

a node ( ) is calculated using Equation 5.3. The compression master delay of TTEthernet is 
the time it takes for a compression master to relay a PCF. It is described in detail in the 
TTEthernet specification [TTE08]. The time interval between a PCF and a TT message can be 
calculated using Equation 5.27. 

  

 

 

 

 

Fig. 5.18: The time interval between a PCF and a TT message in distributed offset form 

 

௉்ܫܶ ൌ ௉஼ிܦܶ ൅  ଵܺ , ………………………………….…….…….....…..……….………....(5.27) 

, where TIPT is the time interval between a PCF and TT message’s dispatch points in time, TDPCF 
is the PCF transport delay from a synchronization master to a compression master and back to 
any node in the same TTE cluster (as calculated using Equation 5.3), and X1 is the remaining 
time between a PCF and TT message.  
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5.3.2.4 Offsets in distributed offset form 

In a TT-communication schedule, the offset of PCF traffic is always zero.  In Fig. 5.19, the first 
offset of TT traffic (OffsetTT_1) in a TT-communication schedule is equal to the time interval 
between a PCF and a TT message (TIPT), as derived from Equation 5.27. The second offset of TT 
traffic (OffsetTT_2) is equal to the first offset of TT traffic (OffsetTT_1) plus the time interval 
between the two TT message’s dispatch points in time (TITT), as derived from Equation 5.23 or 
Equation 5.24.  All offsets of TT traffic based on distributed offset form in a TTE cluster cycle 
can be obtained using Equation 5.28.   

 

 

 

 

 

Fig. 5.19: The offsets of a PCF and three TT messages in a TT-communication schedule 

 

ሺ௝ሻ_்்ݐ݁ݏ݂݂ܱ ൌ ௉்ܫܶ ൅ ∑ ሺ௜ିଵሻ_்்ܫܶ
௝ିଵ
௜ୀଵ  ,……..…………..………….……………...(5.28) 

, where OffsetTT_(j) is the offset of TT traffic of the ith time-critical application.  

 TIPT is the time interval between a PCF and TT message’s dispatch points in time, as 
 calculated using Equation 5.27, 

 TITT_(i-1) is the time interval between the (i-1)th TT-message and the ith TT-message 
 points in time, as derived from Equation 5.23 or Equation 5.24. Note that TI(0) is equal to 
 zero. 

 

5.3.2.5 Distributed offset form in a TTE cluster cycle 

In the previous sections we have introduced the fundamental concept of distributed offset form. 
In this section we extend this concept into a TTE-cluster cycle. Based on distributed offset form, 
we can obtain the offsets of time-critical applications in a TTE-cluster cycle, by using the 
method described below. In this method, one of given time-critical applications takes 
responsibility to generate PCFs (synchronization messages). Our method is illustrated with four 
time-critical applications. We call these applications appl_1, appl_2, appl_3 and appl_4. They 
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have periods of 2, 4, 4, and 6 milliseconds, respectively. The Ethernet payload-data size of a TT 
message for the four applications is 100, 46, 500, and 1000 bytes, respectively.  

1) Sort the given time-critical applications: We sort the given time-critical applications using 
two parameters: periods and Ethernet payload-data sizes of time-critical applications. Firstly, 
the time-critical applications are sorted in ascending order with regard to their periods. If 
there is a tie, they will then be sorted using their Ethernet payload-data sizes in descending 
order. The first time-critical application of the sorted time-critical applications has the 
highest priority to be scheduled in a TTE cluster cycle. Note that the time-critical application 
with the lowest period will transmit a TT message in every time interval of a satisfied based-
period along a TTE cluster cycle. In our example, the sorted order of the time-critical 
applications is: appl_1, appl_3, appl_2 and appl_4. The sorted time-critical applications will 
be scheduled in ascending order for the next step (i.e. appl_1 is the time-critical application 
to be considered first in the next step). 

 

2) Calculate the number of time-slots for a TTE-cluster cycle and time-critical applications: 
The lowest period of time-critical applications in a schedule is the satisfied based-period of 
the schedule. A TTE-cluster cycle is equal to the Least Common Multiple (LCM) of all 
periods of time-critical applications in a schedule. The TTE-cluster cycle also denotes a 
number of satisfied based-periods. We call a time interval of a satisfied based-period a time-
slot. A TTE-cluster cycle consists of a set of the LCM number of connected time-slots. We 
call all connected time-slots in a TTE-cluster cycle cluster-cycle time-slots, as depicted in 
Fig. 5.20. The number of time-slots in a TTE-cluster cycle is denoted as NTScluster. In our 
example, the lengths of a TTE-cluster cycle and the time-slot are equal to 12, and 2 
milliseconds, respectively. Therefore, the number of the cluster-cycle time-slots (NTScluster) is 
6. We also define the number of time-slots for one period of a time-critical application in a 
schedule as the satisfied harmonic-period of the time-critical application divided by the 
satisfied based-period. We denote the number of time-slots for one period of a time-critical 
application as NTSappl. In our example, the number of time-slots for appl_1’s period 
(NTSappl_1) is one. The number of time-slots for appl_2’s period (NTSappl_2) is two. The 
number of time-slots for appl_3’s period (NTSappl_3) is also two. The number of time-slots for 
appl_4’s period (NTSappl_4) is three. This denotes that one TT message from appl_1 is 
transmitted every time-slot. One TT message from appl_2 and appl_3 are transmitted every 
two time-slots. One TT message from appl_4 is transmitted every three time-slots.  
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Fig. 5.20: The number of time-slots for time-critical applications  

 

3) Put PCFs and TT messages from the sorted time-critical applications into time-slots: In this 
process we consider each of the sorted time-critical applications in order. That is, the 1st 
time-critical application in the sorted time-critical applications is considered first to put its 
messages into the time-slots. We put PCFs and TT messages from each of the sorted time-
critical applications into time-slots using the following steps: 

Step 1: Find possible sets of time-slots for scheduling TT-messages: The number of possible 
sets of time-slots is equal to the number of time-slots for a time-critical application (NTSappl). 
Due to the periodic transmission of TT traffic, a set of time-slots for scheduling TT-messages 
is defined using Equation 5.10. In our example, appl_1 has one time-slot (NTSappl_1 = 1). 
Thus, appl_1 has the following set of time-slots: {1st, 2nd, 3rd, 4th, 5th, 6th}. For appl_2, 
NTSappl_2 is equal to two. Thus, there are two sets of time-slots: {1st, 3rd, 5th} and {2nd, 4th, 
6th}. For appl_3, there are also two sets of time-slots: {1st, 3rd, 5th} and {2nd, 4th, 6th}. For 
appl_4 there are three sets of time-slots: {1st, 4th}, {2nd, 5th} and {3rd, 6th}. 

Step 2: Find the lowest remaining time of each set of time-slots for a time-critical 
application: The remaining time of each time-slot is calculated using Equation 5.8. The 
lowest remaining time of each set of time-slots is used in the next step.  

Step 3: Find a set of time-slots having the maximum of the lowest remaining-times of all sets 
of time-slots: We select the set of time-slots that has the maximum value of the lowest 
remaining time of all sets of time-slots. With such a set of time-slots for the time-critical 
application, TT messages and PCFs from that application are to be scheduled into the set of 
time-slots.  
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Fig. 5.21: TT messages contained in the time-slots of a TTE cluster cycle  

In our example, NTSappl_1 is equal to one. There is one set of time-slots for appl_1, the 1st, 
2nd, 3rd, 4th, 5th and 6th time-slots. A TT message is put in each of the sets of time-slots in 
continuous offset form, as shown in Fig. 5.21(a). For appl_3, NTSappl_3 is equal to two. There 
are two sets of time-slots for appl_3, the 1st, 3rd and 5th time-slots and the 2nd, 4th and 6th time-
slots. After scheduling TT traffic from appl_1, the remaining time of each time-slot is the 
same, as depicted in Fig. 5.21(a). All sets of time-slots for appl_3 have an equal priority for 
being scheduled with TT traffic. We select the first set of time-slots to be scheduled with TT 
messages from appl_3 in continuous offset form, as depicted in Fig. 5.21(b). For appl_2, 
NTSappl_2 is equal to two. There are two sets of time-slots for appl_2, the 1st, 3rd and 5th time-
slots and the 2nd, 4th and 6th time-slots. After scheduling TT traffic from appl_3, the lowest 
remaining time of the second set of time-slots is higher than that of the first set, as depicted 
in Fig. 5.21(b). Thus, the second set of time-slots is scheduled with PCFs from appl_2 in 
continuous offset form, as depicted in Fig. 5.21(c). Note that appl_2 is responsible for 
generating PCFs. For appl_4 there are three sets of time-slots, the 1st and 4th time-slots, 2nd 
and 5th time-slots and 3rd and 6th time-slots. The lowest remaining time for each set of time-
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slots is the same, as depicted in Fig. 5.21(c). We select the first set of time-slots for appl_4 to 
be scheduled with TT messages in continuous offset form, as depicted in Fig. 5.21(d).           

4) Find the offsets of PCF and TT traffic in distributed offset form: In this process we distribute 
the remaining time of each time-slot in distributed offset form. The offsets of PCFs and TT 
messages can be obtained using the following steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.22: The scheduling process based on distributed offset form in a TTE cluster cycle 

Step 1: Schedule TT messages and PCFs in each time-slot in distributed offset form: In this 
step, all the time-slots from the previous process are considered in ascending order with 
regard to their remaining time. The time-slot with the lowest remaining time will be 
scheduled in distributed offset form first. The offsets of all messages which have already 
been scheduled in a time-slot will be the offsets of the messages (from the same time-critical 
applications) in other time-slots. In our example, we assume that all  time-slots in ascending 
order of remaining time are the 4th, 1st, 2nd, 6th, 3rd and 5th time-slots.  Fig. 5.22 depicts the 
scheduling result based on distributed offset form in this step.  
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Step 2: Calculate the offsets of PCF/TT traffic for all time-critical applications: The offsets of 
messages in a time-slot can be calculated using Equation 5.28. The concept behind this 
equation is depicted in Fig. 5.23. Note that appl_2 is responsible for generating PCFs.  

 

 

 

 

 

 

Fig. 5.23: The offsets of PCF and TT traffic in a TTE-cluster cycle (distributed offset form) 

Step 3: Shift all the offsets with the time interval of the PCF offset: Due to the offset of PCF 
traffic in TTEthernet being defined as zero, all offsets from Step 2 are subtracted from the 
PCF offset (OffsetPCF), as shown in Equation 5.29. If the result of the subtraction (the new 
offset) is negative, the new offset will be added with the period of the time-critical 
application which the new offset belongs to. The result from shifting all offsets with the time 
interval of the PCF is depicted in Fig. 5.24. 

 

 

  

 

 

 

 

 

 

Fig. 5.24: The offsets of TT traffic after the shifting process (distributed offset form) 
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      , where OffsetTT_(i) is the offset of TT traffic of the ith time-critical application after shifting, 

  OffsetTT(i) is the offset of TT traffic of the ith time-critical application before shifting, 

  OffsetPCF is the offset of PCF traffic before shifting, 

  Periodi is the period of the ith time-critical application, 

5) Schedule PCF/TT traffic in a TTE cluster cycle: In the previous processes we obtain all  
offsets of time-critical applications. In this process, we calculate all dispatch instants of PCFs 
and TT messages along a TTE cluster cycle, using Equations 5.30 and 5.31, respectively. 
PCFs arrive at a TTE device at receiving points in time. These are calculated using Equation 
5.32 (for a synchronization master or a synchronization client) and Equation 5.33 (for a 
compression master). TT messages are received by TTE devices at receiving points in time. 
These are calculated using Equation 5.34.  

ܫܦ ௉ܶ஼ி ൌ ሺ݊ െ 1ሻሺܲ݁݀݋݅ݎ௉஼ிሻ, ݊ ൌ ሼ1, 2, 3, … , ஼௟௨௦௧௘௥ ௖௬௖௟௘

௉௘௥௜௢ௗು಴ಷ
ሽ ………………………(5.30) 

ܫܦ ்்ܶሺ௜ሻ ൌ ሺ௜ሻ்்ݐ݁ݏ݂݂ܱ ൅ ሺ݊ െ 1ሻ൫்்ܲ݁݀݋݅ݎሺ௜ሻ൯, ݊ ൌ ሼ1, 2, 3, … , ஼௟௨௦௧௘௥ ௖௬௖௟௘

௉௘௥௜௢ௗು಴ಷ
ሽ …..(5.31) 

RITPCF(SM/SC) = DITPCF + TPCF + IFG + ܶܦ௉஼ி,……..…………………………….....(5.32) 

RITPCF(CM) = DITPCF + TPCF + IFG + ܦܶܯ௉஼ி,……………………………………....(5.33) 

RITTT(i,j) = DITTT(i) + TTT(i) + IFG + NDTTE(i,j) ,………..…………………………….(5.34)  

, where DITPCF is the dispatch points in time for PCF traffic in a TTE cluster cycle, 

 PeriodPCF is the transmission period of PCF traffic, 

 DITTT(i) is the dispatch points in time for TT traffic of the ith time-critical application in a 
 TTE-cluster cycle, 

 OffsetTT(i) is the offset of TT traffic of the ith time-critical application in a TTE cluster 
 cycle. 

 TPCF is the transmission time of a PCF = (PCF’s length)/(Ethernet bandwidth), 

 IFG is the time interval of an inter-frame gap, 

 TDPCF is the PCF transport delay from a synchronization master to a compression master 
 and back to any node in the same TTE cluster (Equation 5.3), 
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 RITPCF(SM/SC) is the receiving points in time for PCF messages at a synchronization 
 master  or a synchronization client, 

 MTDPCF is the maximum transmission delay of a TTE system, 

 RITPCF(CM) is the receiving points in time for PCF messages at a compression master, 

 RITTT(i,j) is the receiving points in time for TT messages of the ith time-critical application 
 at the jth TTE device, 

 TTT(i) is the transmission time of a TT message of the ith time-critical application (TT 
 message’s length)/(Ethernet bandwidth), 

 NDTTE(i,j) is the TTE-network delay of a TT message of the ith time-critical application 
 from a source node to the jth TTE device. 

 

5.4 Summary 

By using our TT-traffic scheduling approach, we can obtain various TT-communication 
schedules from (distributed) time-critical applications. In our TT-traffic scheduling approach, we 
propose the remaining-bandwidth maximization approach for obtaining optimal periods of time-
critical applications. In this approach, we firstly enumerate possible schedules (periods only) 
from the periods of specified time-critical applications. Each possible schedule is then analyzed 
by calculating the amount of remaining bandwidth for standard-Ethernet traffic. The schedule 
with the highest remaining bandwidth for standard-Ethernet traffic is supposed to be the optimal 
one in term of throughput. We use the periods from the obtained schedules to find the offsets of 
the periods. In our TT-traffic scheduling approach, we classify offset forms into two possible 
forms: continuous offset form and distributed offset form. In both offset forms we have analyzed 
the maximum waiting time of standard-Ethernet traffic caused by TT-traffic transmission. We 
have found that a TT communication schedule based on distributed offset form results in less 
waiting time for standard-Ethernet traffic than one based on continuous offset form. 
Additionally, we have presented the principles of both offset forms and methodologies to apply 
them into a TTE cluster cycle. With both periods and offsets of specified time-critical 
applications, we can obtain the dispatch and receiving points in time for all TT messages and 
PCFs along the TTE cluster cycle. The TTE cluster cycle with such dispatch and receiving points 
in time is the TT-communication schedule for TTEthernet systems. 
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CHAPTER 6 

Performance of standard-Ethernet Traffic in 
TTEthernet Systems 

 

In this chapter we evaluate the performance of standard-Ethernet traffic in both simulated and 
actual 100-Mbps TTEthernet systems. We do this using a variety of confliction-free time-
triggered (TT) communication schedules. This chapter begins by detailing the methods used to 
set up and configure a network structure for both a simulated and an actual TTEthernet network. 
By using our scheduling approach, all possible TT communication schedules are enumerated 
from the specified periods of given time-critical applications. We assign standard-Ethernet traffic 
to both types of TTEthernet system (simulated and real), in order to measure the performance 
achieved (throughput and latency). This chapter finishes with an analysis and summary of our 
obtained results. 

6.1 Network structure and configuration 

We define a TTEthernet network structure comprising a single TTE switch and the following 
three nodes: a standard-Ethernet frame sender node (the sender node for ET traffic), a node to 
generate TT messages (the sender node for TT traffic), and a receiver node. This network 
structure is depicted in Fig. 1. 

 

 

 

 

 

 

 

 Fig. 6.1: Our TTEthernet network structure 
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6.1.1 The TTE switch: A 100-Mbps 8 port TTE switch containing a TT-communication 
schedule. With this schedule, the TTE switch can receive and dispatch TT messages at 
predefined points in time. In a TTE switch, the TT traffic takes precedence over the standard-
Ethernet traffic. The TTE switch we use in the real TTEthernet network is available from 
TTTech [TTTech]. In the simulated TTE switch, we define the TTE switch’s configuration as 
follows: 

 The queue buffer for standard-Ethernet frames is 256,000 bytes. 

 The transmission rate of standard-Ethernet traffic is 100 Mbps per port. 

 The latency for relaying a TT message (TT latency) is 0.01 microseconds. This value is 
always constant.  

 The latency for relaying a standard-Ethernet frame (ET latency) is 6.72 microseconds. 
This value is derived from the forwarding rate of an AT-FS750/16 16 port Fast Ethernet 
WebSmart Switch (148,800 pps) [All09]. 

6.1.2 The sender node for ET traffic: Used for transmitting Ethernet frames to the receiver 
node via the TTE switch. The sender node contains a 100-Mbps Ethernet controller interface. In 
the simulated TTEthernet network, the sender node cannot transmit TTEthernet traffic. Therefore 
the node transmits only standard-Ethernet traffic. The sender node for ET traffic used in the real 
TTEthernet network is a personal computer (Intel Pentium 4 CPU 2.80 GHz) with a Linux based 
operating system (Ubuntu version 2.6.24-19). 

6.1.3 The sender node for TT traffic: A 100-Mbps TTEthernet end system used for 
transmitting TT messages to the receiver node via the TTE switch. TT messages are transmitted 
according to its TT communication schedule. We define this sender node as a synchronization 
master. In the simulated TTEthernet network, the sender node for TT traffic can only transmit 
TTEthernet traffic. The sender node for TT traffic used in the real TTEthernet network is 
available from TTTech [TTTech]. 

6.1.4 The receiver node: Used for receiving all messages (both TT messages and standard-
Ethernet frames) from the TTE switch.  In the real TTEthernet network, we use a laptop (Intel 
Core 2 T7200 2 GHz with a Linux based operating system – Ubuntu version 2.6.24-19) as the 
receiver node. It is also used to monitor traffic from the TTE switch, and measure standard-
Ethernet performance. 

6.1.5 The network cables: We use standard-Ethernet cables to connect the TTE switch and each 
node in a star network topology. In the simulated TTEthernet system, we define the length of 
each network cable as 5 meters. Therefore, the propagation delay of each network cable is 0.075 
microseconds. Note that the speed of light in a copper cable is 2/3 times the speed of light in 
vacuum (3x108 m/s) [Kop97, pp. 160].   
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6.1.6 TTEthernet configuration: We set the configuration parameters of TTEthernet as 
follows:  

 Bounded local precision: Set to 0.5 microseconds for the simulated TTEthernet system 
and 2 microseconds for the real TTEthernet system. The acceptance window is 
automatically equal to 2 times the bounded local precision. This makes the acceptance 
windows of the simulated TTEthernet system and the actual TTEthernet system 1 and 4 
microseconds, respectively. The acceptance window parameter also denotes a bounded 
cluster precision of global time.  

 Faulty master nodes: In our work, faulty master nodes are not considered.  

 

6.2 Generating standard-Ethernet traffic  

In Fig. 6.1, the sender node for ET traffic generates standard-Ethernet frames and sends them to 
the receiver node, via the TTE switch. All Ethernet frames are sent in unicast form. In our work, 
the sender node for ET traffic transmits standard-Ethernet frames into the TTEthernet network. 
The purpose of this is to measure the performance of the standard-Ethernet traffic. We define the 
pattern of generating standard-Ethernet traffic for both types of TTEthernet systems as follows:  

6.2.1 Generating standard-Ethernet traffic in the simulated TTEthernet system: We define 
the patterns of generating standard-Ethernet traffic in the simulated TTEthernet system with 
respect to the following key performance parameters:  

 6.2.1.1 Standard-Ethernet Throughput: We define four experimental scenarios with 
 respect to the following standard-Ethernet payload data sizes: 46, 512, 1024 and 1500 
 bytes.  Each experimental scenario transmits Ethernet messages with the full 
 bandwidth of the Ethernet controller for the ET traffic sender node . At the receiver node, 
 the average throughput of the standard-Ethernet traffic is recorded.   

 6.2.1.2 Transport delays of Ethernet frames: Each of the four experimental 
 scenarios described above have seven sub-scenarios, each with a different transmission 
 rate of  Ethernet payload data  (10%, 20%, 30%, 40%, 50%, 60% and 70% of the 100-
 Mbps  bandwidth). At the receiver node, the transport delays of the standard-Ethernet 
 frames  for each sub-scenario  are recorded. In these scenarios, the inter-departure time 
 between any two generated standard-Ethernet frames are random with a poisson 
 distribution. 

6.2.2 Generating standard-Ethernet traffic in the physical TTEthernet system: We make 
use of available software tools for generating standard-Ethernet traffic, and for measuring 
standard-Ethernet performance.  The following are the key performance parameters for the 
physical TTEthernet system: 
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 6.2.2.1 UDP Throughput: To measure the standard-Ethernet performance in a physical  
 TTEthernet system, we utilize the open-source tool: Distributed Internet Traffic
 Generator (D-ITG) version 2.6.1d [DIGT] [BDP07]. More specifically, this tool is used 
 for generating standard-Ethernet traffic, and  measuring its average throughput. With 
 D-ITG, we can define the standard-Ethernet traffic in the form of UDP traffic. The 
 Ethernet payload data size of a UDP message is equal to the summation of the IP header 
 length (20 bytes), the UDP header length (8 bytes), and the  UDP message’s payload data 
 size. To obtain the maximum throughput, we define the amount of generated UDP traffic 
 as 100% of Fast Ethernet’s bandwidth. The UDP  payload data  size of  each UDP 
 message is 1,472 bytes, denoting 1,500 bytes of Ethernet payload data. The 
 physical TTEthernet network structure is shown in Fig. 6.1.  

 6.2.2.2 Round trip delays of standard-Ethernet frames: To measure the timing 
 performance of standard-Ethernet traffic in the physical TTEthernet system, we firstly 
 need to generate such traffic. To do this we use the ICMP  (Internet Control Message 
 Protocol) request/reply, or the standard 'ping' command. We then measure the round trip 
 delays. An ICMP message is encapsulated by the Internet Protocol (IP) and standard 
 Ethernet. The  Ethernet payload data size of an ICMP message is equal to the summation 
 of the IP header length (20 bytes), ICMP header length (8 bytes), and ICMP payload data 
 size. We define the ICMP payload data size of each ICMP message as 1,472 bytes, 
 denoting 1,500 bytes  of Ethernet payload data. The inter-departure time between any 
 two ICMP messages is 200 microseconds (i.e. at around a standard-Ethernet traffic load 
 of 61.52 Mbps, including the overhead and inter-frame gap).  

 

6.3 Generating TT traffic 

The sender node for TT traffic is responsible for generating TT traffic according to a predefined 
TT communication schedule. By using our scheduling approach, we obtain the various TT 
communication schedules from the specified periods of given time-critical applications. In our 
experiments, we run eight time-critical applications in the sender node for TT traffic. The given 
periods of these time-critical applications (appl_1, appl_2, appl_3, appl_4, appl_5, appl_6, 
appl_7 and appl_8) are 3, 3, 3, 4, 4, 4, 5 and 5 milliseconds, respectively. The Ethernet payload 
data sizes of these time-critical applications are 1,500, 1,400, 1,300, 1,500, 1,400, 1,300, 1,500 
and 1,400 bytes, respectively. We define the resynchronization period of PCF traffic as 5 
milliseconds. The Ethernet payload data size of a PCF is 46 bytes. Based on our scheduling 
approach, the scheduling result of both TT and PCF traffic in the simulated TTEthernet systems 
is shown in Table 6.1. 
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Table 6.1: The TT communication schedules for the simulated TTEthernet systems 

Application size period Offset 
form 

1st schedule 2nd schedule 3rd schedule 
Perio

d 
Offset 
(us) 

Perio
d 

Offset 
(us) period Offset 

(us) 

Appl_1 1500 
bytes 3 ms Con. 3 ms 2,063.68 2 ms 1,063.68 2.5 ms 1,563.68 

Dis. 236.16 125.04 217.72 

Appl_2 1400 
bytes 3 ms Con. 3 ms 2,187.72 2 ms 1,187.72 2.5 ms 1,687.72 

Dis. 588.64 591.48 551.76 

Appl_3 1300 
bytes 3 ms Con. 3 ms 2,303.76 2 ms 1,303.76 2.5 ms 1,803.76 

Dis. 933.12 924.92 877.8 

Appl_4 1500 
bytes 4 ms Con. 3 ms 2,411.8 4 ms 3,411.80 2.5 ms 1,911.8 

Dis. 1,269.6 1,250.36 1,195.84 

Appl_5 1400 
bytes 4 ms Con. 3 ms 2,535.84 4 ms 3,535.84 2.5 ms 2,035.84 

Dis. 1,622.08 1,591.8 1,529.88 

Appl_6 1300 
bytes 4 ms Con. 3 ms 2,651.88 4 ms 3,651.88 2.5 ms 2,151.88 

Dis. 1,966.56 1,925.24 1,855.92 

Appl_7 1500 
bytes 5 ms Con. 3 ms 2,759.92 4 ms 3,759.92 5 ms 4,759.92 

Dis. 2,303.04 3,275.28 2,278.82 

Appl_8 1400 
bytes 5 ms Con. 3 ms 2,883.96 4 ms 3,883.96 5 ms 4,883.96 

Dis. 2,655.52 3,641.64 4,673.96 

PCF 46 
bytes 5 ms Con. 3 ms 0 us 4 ms 0 us 5 ms 0 us 

Dis. 0 us 0 us 0 us 
Remaining Bandwidth for  
standard-Ethernet traffic 69,024 kbps 68,188 kbps 67,686.4 kbps 

Note that Con. and Dis. denote continuous offset form and distributed offset form, respectively. 

 

In a physical 100-Mbps TTEthernet system, the minimum time interval between the dispatch 
instants of any two consecutive TT messages is bounded to be not less than 200 microseconds. 
Thus, standard-Ethernet frames can be transmitted between any two consecutive TT messages. In 
other words, we cannot schedule the given time-critical applications in continuous offset form in 
our physical TTEthernet system. However, by using a constraint where there is a minimum time 
interval between the dispatch instants of any two consecutive TT messages, we can utilize 
continuous offset form. The scheduling result for our physical TTEthernet system is shown in 
Table 6.2.  
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Table 6.2: The TT communication schedules for the actual TTEthernet systems 

Applicatio
n size period Offset 

form 

1st schedule 2nd schedule 3rd schedule 
Period offset perio

d 
offset period Offset 

Appl_1 1500 
bytes 3 ms Con. 3 ms 1400 us 2 ms 400 us 2.5 ms 900 us 

Dis. 200 us 250 us 750 us 

Appl_2 1400 
bytes 3 ms Con. 3 ms 1600 us 2 ms 600 us 2.5 ms 1100 us 

Dis. 550 us 600 us 1000 us 

Appl_3 1300 
bytes 3 ms Con. 3 ms 1800 us 2 ms 800 us 2.5 ms 1300 us 

Dis. 900 us 950 us 1250 us 

Appl_4 1500 
bytes 4 ms Con. 3 ms 2000 us 4 ms 3000 us 2.5 ms 1500 us 

Dis. 1250 us 3300 us 1500 us 

Appl_5 1400 
bytes 4 ms Con. 3 ms 2200 us 4 ms 3200 us 2.5 ms 1700 us 

Dis. 1600 us 1300 us 1750 us 

Appl_6 1300 
bytes 4 ms Con. 3 ms 2400 us 4 ms 3400 us 2.5 ms 1900 us 

Dis. 1950 us 1650 us 2000 us 

Appl_7 1500 
bytes 5 ms Con. 3 ms 2600 us 4 ms 3600 us 5 ms 4600 us 

Dis. 2300 us 3650 us 2250 us 

Appl_8 1400 
bytes 5 ms Con. 3 ms 2800 us 4 ms 3800 us 5 ms 4800 us 

Dis. 2650 us 2000 us 4750 us 

PCF 46 
bytes 5 ms Con. 3 ms 0 us 4 ms 0 us 5 ms 0 us 

Dis. 0 us 0 us 0 us 
Remaining Bandwidth for  
standard-Ethernet traffic 69,024 kbps 68,188 kbps 67,686.4 kbps 

Note that Con. and Dis. denote continuous offset form and distributed offset form, respectively. 

 

6.4 Performance analysis of standard-Ethernet traffic in TTE systems 

In this section we describe the results of running both the simulated and physical TTEthernet 
systems. We present the performance metrics regarding standard-Ethernet traffic for each type of 
system. 

 

6.4.1 The throughputs of standard-Ethernet traffic in the simulated TTE systems 

To measure standard-Ethernet throughput in the simulated TTEthernet systems, we use four 
experimental scenarios of standard-Ethernet traffic loads, with respect to the following Ethernet 
payload data sizes: 46, 512, 1024 and 1500 bytes. Each experimental scenario has seven sub-
scenarios, containing the following TT communication schedules: (1) no TT schedule, (2) the 
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first schedule in continuous offset form, (3) the first schedule in distributed offset form, (4) the 
second schedule in continuous offset form, (5) the second schedule in distributed offset form, (6) 
the third schedule in continuous offset form, and (7) the third schedule in distributed offset form. 
In each experimental scenario, the sender node for ET traffic transmits standard-Ethernet 
messages with the full available bandwidth of its Ethernet controller. The throughputs of 
standard-Ethernet traffic in the simulated TTEthernet system is given in Table 6.3, and depicted 
in Fig. 6.2.  

Table 6.3: The throughputs of standard-Ethernet traffic in the simulated TTEthernet systems  

Contents Throughputs (bits per second) of Ethernet frames 
Ethernet payload data sizes 46 bytes 512 bytes 1024 bytes 1500 bytes 
(1) No TT schedule 54,761,904.76 93,090,909.09 96,421,845.57 97,529,258.78 
(2) First schedule in COF 37,413,333.33 62,805,333.33 65,536,000.00 64,000,000.00 
(3) First schedule in DOF 36,432,000.00 61,440,000.00 49,152,000.00 36,000,000.00 
(4) Second schedule in COF 36,984,000.00 61,440,000.00 63,488,000.00 63,000,000.00 
(5) Second schedule in DOF 36,616,000.00 54,272,000.00 53,248,000.00 36,000,000.00 
(6) Third schedule in COF 36,726,400.00 61,440,000.00 63,897,600.00 62,400,000.00 
(7) Third schedule in DOF 36,432,000.00 54,067,200.00 52,428,800.00 40,800,000.00 
Note that COF and DOF are the abbreviations of Continuous Offset Form and Distributed Offset 
Form, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2: The throughputs of standard-Ethernet traffic in the simulated TTEthernet systems 
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Throughput analysis of standard-Ethernet traffic: Using the simulation results, we now 
analyze the standard-Ethernet traffic throughputs. 

 

 

 

 

 

 

Fig. 6.3: The transmission of a standard-Ethernet frame in the simulated TTE switch 

 

(1) Schedules in continuous offset form give higher standard-Ethernet throughputs than the 
corresponding schedules in distributed offset form. For example, in Table 6.3, with 
regard to the 1,500 byte data size, the standard-Ethernet throughput in the first schedule 
in continuous offset form is higher than that for the first schedule in distributed offset 
form (64 versus 36 Mbps). This is because a standard-Ethernet frame in the simulated 
TTE switch cannot be transmitted while a TT message is being transmitted, as depicted in 
Fig. 6.3. In other words, once a standard-Ethernet frame arrives at the transmitter of a 
TTE-switch port, the TTEthernet engine checks whether its transmission will fall in the 
forthcoming TT-message transmission interval. If the TTEthernet engine finds that the 
transmission of the standard-Ethernet frame will fall in the forthcoming TT-message 
transmission interval, the standard-Ethernet frame has to wait in the queue buffer until the 
TT-message transmission has finished. This implies that a standard-Ethernet frame can 
pass through a switch if it arrives at the transmitter of the TTE-switch port before any 
dispatching point in time for TT messages. This is calculated using the time interval of 
the standard-Ethernet frame’s transmission time plus the inter-frame gap of standard-
Ethernet, as depicted in Fig 6.3. We call this time interval the advanced blocking time for 
TT traffic. The advanced blocking time for TT traffic depends on the size of the arriving 
standard-Ethernet frame, as depicted in Fig 6.3. If the size of this frame is large, the 
advanced blocking time for TT traffic increases. A schedule in distributed offset form 
introduces a higher amount of advanced blocking time for TT traffic within its TTE 
cluster cycle than the corresponding schedule in continuous offset form. Therefore, a 
schedule in continuous offset form provides higher standard-Ethernet throughput than its 
corresponding schedule in distributed offset form.  
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(2) The first schedule in continuous offset form gives the highest standard-Ethernet 
throughput in all schedules (other than where there is no TT schedule), as shown in Table 
6.3. Schedules in continuous offset form provide sets of closely consecutive TT-message 
transmissions, whereas schedules in distributed offset form evenly distribute TT-message 
transmissions. Therefore, the advanced blocking time for TT traffic in a switch using a 
schedule in continuous offset form is less than one using the corresponding schedule in 
distributed offset form. Thus, standard-Ethernet traffic using a schedule in continuous 
offset form can highly utilize the bandwidth remaining after TT traffic transmission. The 
standard-Ethernet throughputs from all schedules in continuous offset form in the 
maximum Ethernet payload data size (1,500 bytes) scenario correspond to the results 
generated by the remaining-bandwidth maximization approach, as shown in Table 6.2. As 
shown in the table, for the simulated TTEthernet system with the maximum Ethernet 
payload data size (1500 bytes), the first and third schedules in continuous offset form 
result in the highest (64,000,000 bps) and lowest (62,400,000) standard-Ethernet 
throughputs, respectively. In the results for the remaining bandwidth for standard-
Ethernet traffic according to Table 6.2, the first and third schedules give the highest and 
lowest remaining-bandwidth for standard-Ethernet traffic (69,024 kbps and 67,686.4 
kbps, respectively).  

 

(3) Throughputs of standard-Ethernet traffic with schedules in distributed offset form depend 
on Ethernet payload data size. It can be seen in the case of 512 bytes of payload data size, 
that the first schedule in distributed offset form results in the highest standard-Ethernet 
throughput with respect to all the schedules in distributed offset form. For the cases of 46 
and 1024 bytes of payload data size, the second schedule in distributed offset form gives 
the highest standard-Ethernet throughput. In the case of the maximum Ethernet payload 
data size (1500 bytes), the third schedule in distributed offset form results in the highest 
standard-Ethernet throughput. Therefore, standard-Ethernet throughput in the simulated 
TTEthernet network using a schedule in distributed offset form not only depends on the 
amount of TT traffic, but also on the Ethernet payload data size.  

 

(4) The first schedule in continuous offset form is the optimal TT communication schedule 
with regard to standard-Ethernet throughput. This is because it provides the highest 
throughput of standard-Ethernet traffic in the simulated TTEthernet network in all 
scenarios of Ethernet payload data size. We have explained why a schedule in continuous 
offset form gives a small advanced blocking time for TT traffic in comparison to the 
corresponding schedule in distributed offset form.  
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6.4.2 Transport delays of standard-Ethernet traffic in the simulated TTE systems 

For the transport delay measurement of standard-Ethernet traffic in the simulated TTEthernet 
systems, we have setup four experimental scenarios of standard-Ethernet traffic loads with 
respect to various Ethernet payload data sizes (i.e. 46, 512, 1024 and 1500 bytes). Each 
experimental scenario has sub-scenarios that vary the standard-Ethernet traffic load, as detailed 
in Section 6.2.1.2. We measure and record the transport delays of each incoming standard-
Ethernet frame at the receiver node. The transport delay of a standard-Ethernet frame is a time 
delay starting from the point in time when the standard-Ethernet frame is transmitted from the 
sender node, to the point in time when the entire standard-Ethernet frame is received at the 
receiver node. The simulation results are concluded with the average, standard deviation, and 
maximum of all transported standard-Ethernet frame’s transport delays, as shown in the 
following tables and figures.   

 

 

    

 

 

 

 

 

 

 

 

 

Fig. 6.4: The average transport delays of the standard-Ethernet traffic (46-byte Ethernet payload 
data) in the simulated TTEthernet systems 
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Table 6.4: The average transport delays of the standard-Ethernet traffic (46-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The average transport delays of the standard-Ethernet Ethernet traffic 
with 46-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 18.39 200.96 42.08 174.20 42.81 188.12 43.22 
20 Mbps 18.39 252.87 48.82 218.73 49.81 236.17 50.35 
30 Mbps 18.39 346.82 61.35 537.46 65.35 322.81 63.14 
40 Mbps 18.39 BOF BOF BOF BOF BOF BOF 
50 Mbps 18.39 BOF BOF BOF BOF BOF BOF 
60 Mbps 18.39 BOF BOF BOF BOF BOF BOF 
70 Mbps BOF BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5: The standard deviations of the standard-Ethernet traffic (46-byte Ethernet payload data) 
in the simulated TTEthernet systems 

 



6.4 Performance analysis of         6. Performance of standard-Ethernet Traffic 
standard-Ethernet traffic in TTE systems                                       in TTEthernet Systems 
 

156 
 

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

10 Mbps 20 Mbps 30 Mbps

m
ic
ro
se
co
n
d
s

Transmission rate of Ethernet payload data

The maximum transport delays of the Ethernet frames 
(46 bytes of Ethernet payload data)

No schedule

1st schedule (COF)

1st schedule (DOF)

2nd schedule (COF)

2nd schedule (DOF)

3rd schedule (COF)

3rd schedule (DOF)

 

Table 6.5: The standard deviations of the transport delays of the standard-Ethernet traffic (46-
byte Ethernet payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The standard deviation of the transport delays of the standard-Ethernet traffic  
with 46-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 0.00 286.34 36.81 258.31 37.14 261.96 37.30 
20 Mbps 0.00 305.47 39.06 277.66 39.35 278.77 39.45 
30 Mbps 0.00 316.70 40.29 288.98 42.76 287.13 39.99 
40 Mbps 0.00 BOF BOF BOF BOF BOF BOF 
50 Mbps 0.00 BOF BOF BOF BOF BOF BOF 
60 Mbps 0.00 BOF BOF BOF BOF BOF BOF 
70 Mbps BOF BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6: The maximum transport delays of the standard-Ethernet traffic (46-byte Ethernet 
payload data) in the simulated TTEthernet systems 
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Table 6.6: The maximum transport delays of the standard-Ethernet traffic (46-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The maximum transport delays of the standard-Ethernet traffic  
with 46-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 18.39 976.76 149.04 976.76 148.84 976.76 149.00 
20 Mbps 18.39 968.55 149.04 968.56 149.12 968.56 149.00 
30 Mbps 18.39 968.82 149.04 968.82 189.38 968.82 149.03 
40 Mbps 18.39 BOF BOF BOF BOF BOF BOF 
50 Mbps 18.39 BOF BOF BOF BOF BOF BOF 
60 Mbps BOF BOF BOF BOF BOF BOF BOF 
70 Mbps BOF BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7: The average transport delays of the standard-Ethernet traffic (512-byte Ethernet payload 
data) in the simulated TTEthernet systems 
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Table 6.7: The average transport delays of the standard-Ethernet traffic (512-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The average transport delays of the standard-Ethernet Ethernet traffic 
with 512-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 92.95 268.95 128.29 241.96 128.41 252.98 129.07 
20 Mbps 92.95 291.91 127.82 263.67 128.59 275.61 128.88 
30 Mbps 92.95 321.52 133.06 289.47 134.39 304.75 134.70 
40 Mbps 92.95 364.30 140.27 326.68 140.86 345.66 142.19 
50 Mbps 92.95 425.44 150.92 402.91 158.72 402.76 153.44 
60 Mbps 92.95 527.91 181.17 579.19 BOF 536.42 BOF 
70 Mbps 92.95 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8: The standard deviations of the standard-Ethernet traffic (512-byte Ethernet payload 
data) in the simulated TTEthernet systems 
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 Table 6.8: The standard deviations of the transport delays of the standard-Ethernet traffic (512-
byte Ethernet payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The standard deviation of the transport delays of the standard-Ethernet traffic  
with 512-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 0.00 288.97 50.43 257.76 50.02 261.55 50.45 
20 Mbps 0.00 299.17 49.85 269.60 50.23 271.18 50.15 
30 Mbps 0.00 308.62 48.56 279.59 48.93 281.10 48.88 
40 Mbps 0.00 318.92 48.91 290.92 48.89 290.77 48.98 
50 Mbps 0.00 322.50 47.58 292.16 51.93 293.49 47.23 
60 Mbps 0.00 304.49 44.79 272.58 BOF 271.32 BOF 
70 Mbps 0.00 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 6.9: The maximum transport delays of the standard-Ethernet traffic (512-byte Ethernet 
payload data) in the simulated TTEthernet systems 
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Table 6.9: The maximum transport delays of the standard-Ethernet traffic (512-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The maximum transport delays of the standard-Ethernet traffic  
with 512-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 92.95 1078.63 258.32 1067.43 252.80 1067.43 260.40 
20 Mbps 92.95 1078.64 259.59 1080.24 259.20 1067.44 260.40 
30 Mbps 92.95 1078.63 260.45 1078.10 260.26 1071.70 260.44 
40 Mbps 92.95 1078.63 259.91 1080.24 260.63 1078.63 260.68 
50 Mbps 92.95 1078.64 260.88 1078.96 317.44 1078.96 260.40 
60 Mbps 92.95 1079.70 282.48 1080.24 BOF 1079.70 BOF 
70 Mbps 92.95 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10: The average transport delays of the standard-Ethernet traffic (1024-byte Ethernet 
payload data) in the simulated TTEthernet systems 
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Table 6.10: The average transport delays of the standard-Ethernet traffic (1024-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

Average transport delays of the standard-Ethernet Ethernet traffic 
with 1024-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 174.87 371.18 232.08 329.72 231.35 352.59 230.64 
20 Mbps 174.87 381.28 230.75 351.84 230.91 365.63 232.84 
30 Mbps 174.87 429.00 232.54 376.93 232.52 393.10 232.97 
40 Mbps 174.87 453.01 239.40 415.60 240.11 433.53 241.80 
50 Mbps 174.87 507.67 BOF 471.22 276.44 487.98 252.05 
60 Mbps 174.87 605.65 BOF 630.70 BOF 586.18 BOF 
70 Mbps 174.87 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.11: The standard deviations of the standard-Ethernet traffic (1024-byte Ethernet payload 
data) in the simulated TTEthernet systems 
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Table 6.11: The standard deviation of the transport delays of the standard-Ethernet traffic (1024-
byte Ethernet payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The standard deviation of the transport delays of the standard-Ethernet traffic  
with 1024-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 0.00 310.77 66.67 258.20 65.38 285.71 64.42 
20 Mbps 0.00 309.16 65.65 276.73 65.45 281.60 66.29 
30 Mbps 0.00 330.67 66.43 285.61 66.00 288.75 65.86 
40 Mbps 0.00 327.61 61.00 297.76 61.46 298.30 60.95 
50 Mbps 0.00 329.63 BOF 302.28 66.06 301.20 58.50 
60 Mbps 0.00 317.98 BOF 286.33 BOF 284.79 BOF 
70 Mbps 0.00 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12: The maximum transport delays of the standard-Ethernet traffic (1024-byte Ethernet 
payload data) in the simulated TTEthernet systems 
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Table 6.12: The maximum transport delays of the standard-Ethernet traffic (1024-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The maximum transport delays of the standard-Ethernet traffic  
with 1024-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 174.87 1175.60 380.72 1159.59 383.36 1193.20 373.80 
20 Mbps 174.87 1196.40 383.75 1185.20 383.36 1193.19 383.23 
30 Mbps 174.87 1179.33 383.54 1189.46 383.36 1193.19 381.89 
40 Mbps 174.87 1202.79 383.76 1197.99 383.35 1199.60 383.24 
50 Mbps 174.87 1198.96 BOF 1199.28 440.32 1198.96 383.27 
60 Mbps 174.87 1203.86 BOF 1200.13 BOF 1197.46 BOF 
70 Mbps 174.87 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.13: The average transport delays of the standard-Ethernet traffic (1500-byte Ethernet 
payload data) in the simulated TTEthernet systems 
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Table 6.13: The average transport delays of the standard-Ethernet traffic (1500-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The maximum transport delays of the standard-Ethernet traffic  
with 1500-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 251.03 347.56 337.35 355.84 344.94 415.41 328.43 
20 Mbps 251.03 347.25 338.08 401.78 362.51 433.24 329.11 
30 Mbps 251.03 454.52 330.26 379.49 345.19 458.82 329.78 
40 Mbps 251.03 462.82 BOF 479.37 BOF 497.86 460.54 
50 Mbps 251.03 563.62 BOF 549.36 BOF 576.48 BOF 
60 Mbps 251.03 612.23 BOF 656.86 BOF 620.27 BOF 
70 Mbps 251.03 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.14: The standard deviation of the standard-Ethernet traffic (1500-byte Ethernet payload 
data) in the simulated TTEthernet systems 
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Table 6.14: The standard deviation of the transport delays of the standard-Ethernet traffic (1500-
byte Ethernet payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The standard deviation of the transport delays of the standard-Ethernet traffic  
with 1500-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 0.00 192.83 88.67 210.59 56.81 270.12 75.95 
20 Mbps 0.00 191.89 88.81 255.59 105.12 271.42 76.17 
30 Mbps 0.00 289.53 76.91 218.82 56.39 276.81 76.50 
40 Mbps 0.00 276.58 BOF 291.56 BOF 292.40 106.37 
50 Mbps 0.00 321.66 BOF 298.58 BOF 306.89 BOF 
60 Mbps 0.00 301.24 BOF 271.59 BOF 273.07 BOF 
70 Mbps 0.00 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.15: The maximum transport delays of the standard-Ethernet traffic (1500-byte Ethernet 
payload data) in the simulated TTEthernet systems 
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Table 6.15: The maximum transport delays of the standard-Ethernet traffic (1500-byte Ethernet 
payload data) in the simulated TTEthernet systems  

Transmission 
rates of Ethernet 

payload data 

The maximum transport delays of the standard-Ethernet traffic  
with 1500-byte Ethernet payload data (microseconds) 

No 
schedule 

1st schedule 2nd schedule 3rd schedule 
COF DOF COF DOF COF DOF 

10 Mbps 251.03 728.88 481.36 928.88 428.68 1128.88 488.96 
20 Mbps 251.03 728.88 481.36 1128.88 570.24 1128.88 488.96 
30 Mbps 251.03 1128.88 481.36 928.88 428.68 1128.88 488.96 
40 Mbps 251.03 1028.88 BOF 1228.88 BOF 1228.88 685.12 
50 Mbps 251.03 1208.88 BOF 1248.88 BOF 1288.88 BOF 
60 Mbps 251.03 1128.88 BOF 1128.88 BOF 1128.88 BOF 
70 Mbps 251.03 BOF BOF BOF BOF BOF BOF 

Note that COF means continuous offset form, DOF means distributed offset form, and BOF 
means buffer overflow 

 

Timing-performance analysis of standard-Ethernet traffic: From the simulation results, we 
can analyze the average, maximum and standard deviation of the transport delays of the 
standard-Ethernet traffic. This is described as follows:  

 

 

 

 

 

 

 

 

 

Fig. 6.16: The transmission of a standard-Ethernet frame in the simulated TTE switch in which 
the TT traffic is scheduled by means of (a) continuous offset form, and (b) distributed offset 

form 
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(1) The average transport delays of standard-Ethernet traffic in the simulated TTEthernet 
systems using schedules in distributed offset form are always smaller than those for the 
corresponding schedules in continuous offset form. This is because a standard-Ethernet 
frame has to wait in the queue buffer of the switch for its advanced blocking time plus the 
transmission time of TT traffic, as depicted in Fig. 6.16. In Fig. 6.16 (b), the TT traffic 
scheduled by means of distributed offset form makes a standard-Ethernet frame wait for 
the transmission of one TT message at the simulated TTE switch. This differs from the 
corresponding TT traffic scheduled by means of continuous offset form (Fig. 6.16 (a)), 
which provides a longer waiting time for the standard-Ethernet frame due to the 
transmission of more than one TT message.   

 

(2) Although the schedules in distributed offset form result in high timing performance 
(small average transport delays) of standard-Ethernet frames, they provide less remaining 
bandwidth for standard-Ethernet traffic than the corresponding schedules in continuous 
offset form. This can be obviously seen by the buffer overflow results in Table 6.13. Note 
that a buffer overflow occurs when message traffic at a TTE-switch port is larger than the 
bandwidth. This occurred in the case of the maximum standard-Ethernet payload data 
size (1,500 bytes), as shown in Table 6.13. It can be seen in this table that the simulated 
TTE switch for standard-Ethernet traffic overflowed when the transmission rate was 
greater than 40 Mbps for the first and second schedule in distributed offset form, and 50 
Mbps for the third schedule in distributed offset form. For the schedules in continuous 
offset form, the queue buffer overflowed when the transmission rate was greater than 70 
Mbps. These results correspond to the standard-Ethernet throughput results in Section 
6.4.1. For example, in Table 6.3, the throughputs of standard-Ethernet traffic in the case 
of a 1500-byte Ethernet payload data size are 36 Mbps for the first schedule in distributed 
offset form. In Table 6.13, the results (average transport delays) for the system using the 
first schedule in distributed offset form are 330.26 microseconds, with overflow 
occurring when the transmission rates of Ethernet payload data are greater than 30 Mbps. 

 

(3) The average transport delays of standard-Ethernet frames in the simulated TTEthernet 
systems using schedules in distributed offset form are almost constant (or increase only 
slightly) with respect to higher standard-Ethernet traffic loads. This is contrary to the 
schedules in continuous offset form, where the average transport delays increase rapidly 
with higher amounts of standard-Ethernet traffic. This is because the schedules in 
distributed offset form have evenly distributed TT traffic in their TTE cluster cycles. 
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(4) The standard deviations of transport delays in systems using schedules in distributed 
offset form are smaller than those using schedules in continuous offset form. For 
example, in Table 6.11, the standard deviations of the transport delays in the case of 
1024-byte Ethernet payload data and a transmission rate of 40 Mbps are 327.61, and 
61.00 microseconds, for the first schedules in continuous offset form, and distributed 
offset form, respectively.   

 

(5) The maximum transport delays in systems using schedules in distributed offset form are 
smaller than those using schedules in continuous offset form. In Fig. 6.16 (a), it is clear 
that a standard-Ethernet frame in continuous offset form has to wait for the transmission 
of more than one TT message. On the other hand, a standard-Ethernet frame in TTE 
systems using distributed offset form has to wait for the transmission of only one TT 
message, as depicted in Fig. 6.16 (b).  

 

6.4.3 The throughputs of UDP traffic in the physical TTE systems 

As mentioned earlier, we measure the throughputs of standard-Ethernet traffic in the physical 
TTEthernet systems using D-ITG [DITG] [BDP07]. With the D-ITG software tool, we generate 
standard-Ethernet UDP traffic. The Ethernet payload data size of a UDP message is equal to the 
summation of the IP header length (20 bytes), UDP header length (8 bytes), and the UDP 
message’s payload data size. In the physical TTEthernet systems, TT communication schedules 
in continuous offset form are restricted such that the time interval between the dispatch instants 
of any two consecutive TT messages cannot be less than 200 microseconds. Note that this allows 
standard-Ethernet frames to be transmitted between any two consecutive TT messages. In this 
Section, we measure the maximum throughput of UDP traffic in the physical TTEthernet 
systems. According to Section 6.2.2, the amount of UDP traffic at the sender node for ET traffic 
is defined as 100% of the standard-Ethernet bandwidth. The UDP payload data size is fixed at 
1,472 bytes (or 1,500 bytes of Ethernet payload data). The maximum throughputs of UDP traffic 
are shown in Table 6.16.  
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Table 6.16: The throughputs of UDP traffic (1,472 bytes of UDP payload data) in the physical 
TTEthernet systems  

Schedules Offset form The UDP throughputs  
with 1,472 bytes of UDP payload data 

No TT traffic - 95.60 Mbit/s 

The 1st schedule Continuous offset form 65.87 MBit/s 
Distributed offset form 65.87 MBit/s 

The 2nd Schedule Continuous offset form 65.07 MBit/s 
Distributed offset form 65.07 MBit/s 

The 3rd schedule Continuous offset form 64.59 MBit/s 
Distributed offset form 64.59 MBit/s 

 

Throughput analysis of UDP traffic: From the results shown in Table 6.16, we can analyze the 
UDP throughputs as follows:  

(1) The UDP throughput from the physical TTEthernet system in the case of no TT traffic 
(95.60 Mbps) is nearly the same as the theoretical one (95.71 Mbps) derived from 
Equation 6.1.  

maximum UDP throughput ൌ UDP_PS ൈଵ଴଴ Mୠ୮ୱ 

UDP_PSା UDP_OLା IP_OLାE୲୦_OL
 …………….……..(6.1) 

 

  Where, UDP_PS is the UDP payload data size (1,472 bytes).  

        UDP_O is the UDP overhead length (20 bytes). 

        IP_O is the IP overhead length (8 bytes).  

 Eth_O is the Ethernet overhead length (Preamble + Ethernet header + Frame Check    
Sequence + Inter-frame gap) equal to 8 + 14 + 4 + 12 = 38 bytes.   
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TT message shows EtherType (0x88d7)
PCF shows EtherType (0x891d)

UDP message shows IP  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.17: The messages transmitted from the physical TTE switch having a TT-
communication schedule (with a period and offset of 400 and 200 microseconds, 
respectively).  

 

(2) The UDP throughputs in the physical TTEthernet network using schedules in continuous 
offset form are equal to those in the corresponding schedules in distributed offset form. 
For example, UDP throughput using the first schedule in continuous offset form (65.87 
Mbps) is equal to that of the first schedule in distributed offset form. We have found that 
the mechanism in the physical TTE switch is different from the one used in our 
simulation model. The physical switch uses the shuffling method [SBH09] to handle 
conflicting standard-Ethernet and TT traffic. This denotes that if a TT message requires 
transmitting at a port during transmission of a standard-Ethernet frame, the standard-
Ethernet transmission continues regardless. The TT message is therefore transmitted after 
the transmission of the standard-Ethernet frame. To prove that the physical TTE switch 
supports the shuffling method, we setup a TT communication schedule consisting of one 
time-critical application (TT traffic with a transmission period of 400 milliseconds), and 
PCF traffic with a transmission period of 400 milliseconds. Each of the TT messages of 
the time-critical application has 1,500 bytes of Ethernet payload data. The time-critical 
application is scheduled with an offset of 200 milliseconds. With this schedule, a 
simulated TTE switch allows transmission of one standard-Ethernet frame after the 
transmission of a PCF message, but before the transmission of the consecutive TT 
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message. The result showed that there is more than one standard-Ethernet frame 
transmitted at the switch, as depicted in Fig. 6.17. Therefore, the bandwidth utilization for 
standard-Ethernet traffic in the physical TTE switch is high, even though the TT traffic is 
scheduled in distributed offset form.  

 

(3) The UDP throughputs in the physical TTE network are higher than those in the simulated 
network scheduled in distributed offset form. In our simulation model, we use the timely 
block method [SBH09] to handle conflicting standard-Ethernet and TT traffic. The timely 
block method guarantees that all standard-Ethernet frames in a TTE switch have 
completely finished transmitting before the forthcoming dispatch instant of TT traffic. 
With this method, the timing performance of TT traffic is maximized (i.e. there is no 
interference from the transmission of standard-Ethernet traffic to the timing performance 
of TT traffic). However, the timely block method causes standard-Ethernet frames to be 
blocked in the queue buffer of a TTE switch for their advanced blocking time, plus the 
forthcoming TT-message transmission time. This is explained in Section 6.4.1. With 
regard to TT traffic scheduled in distributed offset form, the bandwidth utilization for 
standard-Ethernet traffic in the physical TTE switch (using the shuffling method) is 
higher than that in the simulated TTE switch (using the timely block method). This is 
because there is no advanced blocking time for TT traffic in the physical TTE switch. 

    

(4) The result of UDP throughput in the physical TTEthernet systems in each schedule 
(shown in Table 6.16) correspond to the remaining bandwidths for standard-Ethernet 
traffic, as shown in Table 6.2. This table shows the first schedule giving the highest UDP 
throughput (65.87 Mbps) of all schedules in the physical network. Similarly, the first 
schedule also provides the highest remaining bandwidth for standard-Ethernet traffic 
(69,024 kbps). In the physical TTEthernet systems, the UDP throughput of the third 
schedule is the lowest (64.59 Mbps). Similarly, the third schedule has the lowest 
remaining bandwidth for standard-Ethernet traffic (67,686.4 kbps). Both these results 
correspond to each other, because the physical TTE switch employs the shuffling method 
(i.e. there is no advanced blocking time). Therefore, the TT communication schedule with 
the highest remaining bandwidth for standard-Ethernet traffic must also provide the 
highest throughput of Ethernet-based messages.        

 

6.4.4 Round trip delays of standard-Ethernet traffic in the physical TTEthernet systems 

We use the ICMP request/reply known as the 'ping' command for measuring round trip delays of 
standard-Ethernet traffic. An ICMP message is encapsulated by the Internet Protocol (IP) and 
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standard Ethernet. The Ethernet payload data size of an ICMP message is equal to the summation 
of the IP header length (20 bytes), the ICMP header length (8 bytes), and the ICMP message’s 
payload data size. In Fig. 6.1, the sender node for TT traffic is responsible for generating ICMP 
messages. The ICMP traffic is defined according to Section 6.2.2.2, where the ICMP payload 
data size is 1,472 bytes (or 1,500 bytes of Ethernet payload data). The inter-departure time 
between any two ICMP messages is 200 microseconds. The measurement results show the 
minimum, average and standard deviation of the round trip delays for all transported ICMP 
messages. This is shown in Table 6.17. 

Table 6.17: The minimum, average and standard deviation of the round trip delays of the ICMP 
traffic (1,472 bytes of ICMP payload data) in the physical TTEthernet systems  

Schedules Offset forms 
Round trip delays of ICMP traffic (us) 

Minimum round 
trip delay 

Average round trip 
delays 

Standard 
deviation 

First 
schedule 

Continuous offset form 626.0 735.6 44.2 
Distributed offset form 626.0 728.4 38.5 

Second 
Schedule 

Continuous offset form 626.0 755.4 50.9 
Distributed offset form 626.0 742.4 50.6 

Third 
schedule 

Continuous offset form 626.0 738.0 41.3 
Distributed offset form 626.0 726.3 38.7 

 

Timing-performance analysis of ICMP traffic: From the results of the round trip delays in the 
physical TTEthernet network, we can analyze the minimum, average and standard deviation of 
the round trip delays of all transported ICMP traffic. This is described as follows:  

(1) The average round trip delays of ICMP traffic in the physical TTEthernet systems using 
schedules in distributed offset form are smaller than those for the corresponding 
schedules in continuous offset form. For example, the average round trip delays using the 
first schedules in both continuous offset form and distributed offset form are 735.6 and 
728.4 microseconds, respectively. Note that the schedules in continuous offset form (with 
the constraint described in Section 6.3) are analogous to schedules in distributed offset 
form where the TT traffic is unevenly distributed in the TTE cluster cycle. However, in 
our scheduling approach, TT traffic scheduled in distributed offset form is evenly 
distributed in the TTE cluster cycle. The average round trip delays of Ethernet-based 
messages in the physical TTEthernet systems (shown in Table 6.17) correspond to the 
average transport delays of standard-Ethernet frames in the simulated TTEthernet 
systems. This means that schedules in distributed offset form provide lower average 
transport delays in the simulated TTEthernet network than schedules in continuous offset 
form.      
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(2) The standard deviations of the ICMP round trip delays in the physical TTE systems using 
schedules in distributed offset form are smaller than the corresponding ones in continuous 
offset form. As shown in Table 6.17, the standard deviations for the first schedules in 
continuous offset form and distributed offset form are 44.2 and 38.5 microseconds, 
respectively. This means that a schedule where TT traffic is evenly distributed results in 
smaller standard deviations than the corresponding schedule where TT traffic is unevenly 
distributed (a schedule in continuous offset form). This corresponds to the results in the 
simulated TTEthernet systems. Thus, schedules in distributed offset form always result in 
smaller ICMP transport delay standard deviations than the corresponding schedules in 
continuous offset form.   

 

(3) The timing performance of Ethernet-based messages in the physical TTEthernet network 
depends on the arrangement of TT traffic in the TT communication schedule. As shown 
in Table 6.17, the schedules in distributed offset form provide better timing performance 
of ICMP traffic than the corresponding schedules in continuous offset form. 

 

(4) The minimum round trip delay of ICMP traffic is the best case (shortest) round trip delay. 
This occurs when an ICMP message is transported into a TTEthernet network without 
any interference from TT traffic. As shown in Table 6.17, the minimum round trip delay 
of ICMP traffic in all schedules is equal.  

 

6.5 Summary 

In this chapter we have analyzed the performance of standard-Ethernet traffic in both the 
simulated and physical TTEthernet systems. In the simulated TTEthernet systems based on our 
simulation model, the first schedule in continuous offset form resulted in the highest standard-
Ethernet throughput. The standard-Ethernet throughputs from the simulated TTEthernet systems 
in distributed offset form were lower than the corresponding ones in continuous offset form. In 
the simulated TTEthernet systems, the TTE switch utilized the timely block method to handle 
conflicting TT and standard-Ethernet traffic. By doing this it obtained the maximum 
performance of TT traffic, due to the standard-Ethernet traffic not being able to interfere with the 
timely behavior of the TT traffic. In the physical 100-Mbps TTEthernet systems, the first 
schedule in continuous offset form resulted in the highest throughput of UDP traffic. On the 
contrary to the simulated TTEthernet systems, the physical TTE systems had equal throughput 
performance for both distributed offset form and continuous offset form. This is because of the 
following two reasons. Firstly, the physical TTE switch (which employs the shuffling method to 
handle conflicting TT and standard-Ethernet traffic) allows a standard-Ethernet frame to 
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continue its transmission until completion, even though the dispatch instant of a TT message 
may have been reached. The second reason is that in the physical TTEthernet systems, TT traffic 
scheduled in continuous offset form has to be scheduled with a constraint so that the time 
interval between any two consecutive TT messages is not less than 200 microseconds. Therefore, 
standard-Ethernet frames in the physical TTE switch using continuous offset form can be 
transmitted during such a time interval. With regard to the timing performance of standard-
Ethernet traffic, TT traffic scheduled in distributed offset form resulted in better timing 
performance of standard-Ethernet traffic than that TT traffic scheduled in continuous offset form.  
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CHAPTER 7 

Conclusion 
 
In this chapter, we present the conclusion of this thesis. According to our literature review we 
found that most protocols of real-time Ethernet were not aimed to altogether achieve the three 
main properties: (1) determinism property for real-time traffic, (2) full standard-Ethernet 
compatibility for real-time communication, and (3) high Ethernet-bandwidth utilization for 
coexisting standard-Ethernet traffic. For TTEthernet these three properties were focused in 
TTEthernet’s design. With the time-triggered communication paradigm [Kop97] TTEthernet 
fully support the determinism property [KG93], which is used for developing highly safety-
critical systems. Regarding the second property, TTEthernet was designed to expand standard 
Ethernet [IEE05] with services to meet time-critical, deterministic, and safety-relevant conditions 
[TTE08]. Therefore there is no modification of standard-Ethernet hardware for TTEthernet 
implementation. In the last property TTEthernet achieve the high Ethernet-bandwidth utilization 
for coexisting standard-Ethernet traffic. This is because the coexisting standard-Ethernet traffic 
can flow through TTE switches regardless of whether they are in the synchronization state of 
TTEthernet. However the flow of standard-Ethernet traffic in TTE switches which are in the 
synchronization state of TTEthernet depends on their common TT-communication schedule. 
This is due to the fact that the TT traffic takes precedence over standard-Ethernet traffic. In this 
thesis we investigate a TT-traffic scheduling approach for obtaining the high performance of 
standard-Ethernet traffic coexisting with the TT traffic in the same TTEthernet network. This 
thesis contains three main contributions: the simulation model for TTEthernet systems, the TT-
traffic scheduling approach, and the performance evaluation of standard-Ethernet traffic in 
TTEthernet systems. We conclude our work results with regard to three contributions as follows.    

 
7.1 The simulation model for TTEthernet systems 

We have proposed the simulation model for TTEthernet systems. The design of our simulation 
model is based on the concept of discrete event simulation. With this simulation model, all the 
components of TTEthernet systems were described. We have implemented the simulation from 
our simulation model, using a Java runtime environment and the Java library “J-Sim”. Due to the 
determinism property of TTEthernet for TT traffic, we validate the flow of the TT 
communication of simulated TTEthernet systems with a predefined confliction-free TT 
communication schedule. Since the communication of standard Ethernet is non-deterministic, we 
have calibrated the simulation results from our simulation model with the analytical ones from 
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the published papers [LL02] [Rug08].  The calibration outcome shows that the results from the 
simulations based on our simulation model coincide with the analytical ones.  
 
7.2 The TT-traffic Scheduling approach for TTEthernet systems 

We have proposed the TT-traffic scheduling approach for TTEthernet systems. Our TT-traffic 
scheduling approach aims to find an optimal TT-communication schedule for standard-Ethernet 
traffic performance in TTEthernet systems. In this thesis the throughput and timing-performance 
of standard-Ethernet traffic in TTEthernet systems are the key performance parameters. By using 
our TT-traffic scheduling approach we can enumerate various TT-communication schedules 
(new periods) from the specified periods of given time-critical applications. With each TT-
communication schedule the amount of remaining bandwidth for standard-Ethernet traffic is then 
analyzed mathematically. The TT-communication schedule resulting in the highest amount of 
remaining bandwidth for standard-Ethernet traffic is supposed to be the optimal one (optimal 
periods). The length of a TT-communication schedule denotes the TTE cluster cycle length. It is 
calculated by means of Least Common Multiple (LCM). In term of offset for TT-communication 
schedules, we classified offset forms into two possible forms: continuous offset form, and 
distributed offset form. With both offset forms, the analysis of the maximum waiting time of 
standard-Ethernet frames due to TT-message transmission was presented. We found that a TT-
communication schedule in distributed offset form results less maximum waiting time of 
standard-Ethernet frames than that in continuous offset form. Furthermore we presented the 
methodology applying the obtained periods and offset to the dispatching and receiving points in 
time for all TT messages and PCFs in the TTE cluster cycle. A TTE cluster cycle along with 
dispatching and receiving points in time for TT message and PCFs are the TT-communication 
schedules. Based on our analysis, the TT-communication schedule with the highest remaining 
bandwidth for standard-Ethernet traffic, and in distributed offset form is supposed to be the 
optimal one. 

 
7.3 Performance Analysis of standard-Ethernet traffic in TTEthernet 
systems 

We have analyzed the performance of standard-Ethernet traffic in both simulated and physical 
100-Mbps TTEthernet systems. The key performance parameters of standard-Ethernet traffic are 
throughout and latency. In the simulated TTEthernet systems, the simulated TTE switch uses the 
timely block method to handle conflicting time-triggered (TT) and standard-Ethernet traffic. With 
the timely block method, the performance of TT traffic is maximized (i.e. there is no interference 
from standard-Ethernet traffic to the TT traffic). With regard to the throughput of standard-
Ethernet traffic, the simulated TTEthernet systems using a TT-communication schedule in 
continuous offset form provide better throughput of standard-Ethernet traffic than those using the 
corresponding schedule in distributed offset form. This is because a TT-communication schedule 
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in distributed offset form results in a higher amount of advanced blocking time for TT traffic than 
the corresponding one in on continuous offset form. An advanced blocking time for TT traffic is 
the time interval which a standard-Ethernet frame is blocked in the queue buffer of a TTE switch 
before the forthcoming TT-message transmission in order to avoid the message confliction. With 
regard to the timing performance of standard-Ethernet traffic, the simulation outcome shows that 
the simulated TTEthernet systems using a TT-communication schedule in distributed offset form 
gives better timing-performance of standard-Ethernet traffic than those using the corresponding 
schedule in continuous offset form. Notice that there is a tradeoff between the throughput and 
timing-performance of standard-Ethernet traffic in the simulated TTEthernet systems using the 
TT-communication schedules in continuous offset form and distributed offset form.  

In the physical 100-Mbps TTEthernet systems, the TTE switch uses the shuffling method to 
handle conflicting TT and standard-Ethernet traffic. The experimental results show that a 
schedule in continuous offset form results in the same UDP throughput performance as that in 
distributed offset form. This is because the shuffling method does not cause advanced blocking 
time for TT traffic. In additional, the experimental results of UDP throughput in the physical 
TTEthernet systems correspond to the remaining bandwidths for standard-Ethernet traffic 
calculated using our TT-scheduling approach. The first schedule results in both the highest UDP 
throughput in the physical TTEthernet system, and the highest remaining bandwidth for 
standard-Ethernet traffic. With regard to the timing-performance of standard-Ethernet traffic, the 
round trip delays of ICMP traffic in the physical TTEthernet systems were observed. The results 
show that TT traffic scheduled in distributed offset form gives better timing-performance of 
standard-Ethernet traffic than that scheduled in continuous offset form. In the physical 
TTEthernet systems, TT-communication schedules based on continuous offset form are 
restricted such that the time interval between the dispatch instants of any two consecutive TT 
messages cannot be less than 200 microseconds. Note that this allows standard-Ethernet frames 
to be transmitted between any two consecutive TT messages. In the end we conclude that the 
first schedule in distributed offset form is an optimal one for physical 100-Mbps TTEthernet 
systems.  

        
7.4 Outlook  

In the future, our research work focuses on the performance enhancement of standard-Ethernet 
traffic in TTE switches in which the timely block method is used. With the timely block method, 
the performance of TT traffic in TTEthernet systems is maximized (i.e. there is no interference 
from standard-Ethernet traffic to the TT traffic). According to the results (both throughput and 
transport delay) in the simulated TTEthernet systems, there is a tradeoff between the throughput 
and timing-performance of the standard-Ethernet traffic. This tradeoff should be solved in order 
to gain higher performance of standard-Ethernet traffic in TTEthernet systems. In the future, 
therefore we tend to enhance throughput performance for standard-Ethernet traffic in TTE 
switches during advanced blocking time for TT traffic. With such that, TT traffic scheduled in 
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distributed offset form can achieve both high throughput and timing-performance for standard-
Ethernet traffic in TTEthernet systems.  
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Appendix A 

List of Abbreviations  
 

ACCO   Active Control Connection Object  

ADU   Application Data Unit  

AFDX   Avionics Full Duplex Switch Ethernet  

AR   Application Relationship  

ARINC  Aeronautical Radio, Incorporated  

ASIC   Application-Specific Integrated Circuit  

AT   Answer Telegram  

BAG   Bandwidth Allocation Gap  

BC   Best-Effort  

BOF   Buffer Overflow  

CBA   Component Based Automation  

CC   Cross Communication  

CI    ControlNet International  

CIP   Common Industrial Protocol  

CN   Controller Node  

COF   Continuous Offset Form  

COM   Component Object Model  

COTS   Commercial Off-The-Shelf  

CR   Communication Relationship  

CRC   Cyclic Redundancy Check  

CSMA/CD  Carrier Sense Multiple Access/Collision Detection  
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C2C   Controller to Controller  

DCOM  Distributed Component Object Model  

DOF    Distributed Offset Form  

D-ITG   Distributed Internet Traffic Generator  

EANTC  European Advanced Networking Test Center  

EPLGW  Ethernet to Ethernet POWERLINK Gateway  

EPSG    Ethernet POWERLINK Standardization  

ET    Ethernet  

FIFO   First-In First-Out  

FPGA   Field Programmable Gate Array  

GSD   General Station Description  

FCS   Frame Check Sequence  

LAN    Local Area Network 

LCM    Least Common Multiple  

LD   Logical Device  

Lmax   Largest Ethernet Frame  

MAC   Media Access Control  

ICMP   Internet Control Message Protocol  

IEA   Industrial Ethernet Association  

IEEE   Institute of Electrical and Electronics Engineers  

IGMP    Internet Group Management Protocol  

IFG   Inter-frame Gap  

IP   Internet Protocol  

IPG   Inter-packet Gap  

IPv4    Internet Protocol version 4  
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IRT   Isochronous Real-Time  

I/O   Input/Output  

MBAP   MODBUS Application Protocol  

MDT   Master Data Telegram  

MN   Managing Node  

MST   Master Synchronization Telegram  

NRT   Non Real-Time  

ODVA   Open DeviceNet Vendors Association  

OSI    Open System Interconnection  

PCF   Protocol Control Frame  

PD   Physical Device  

PDU   Protocol Data Unit  

PI   PROFIBUS International  

PLC   Programmable Logic Controller  

PReq   Poll Request  

PRes   Poll Response  

PTCP    Precision Transport Clock Protocol  

QoS   Quality of Service  

RBSE   Remaining Bandwidth for Standard-Ethernet Traffic  

RC   Rate-Constrained  

RT   Real-Time  

RT-Auto  Runtime Auto  

SAP   Service Access Point  

SDO   Service Data Object  

SoA   Start of Asynchronous  
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SoC   Start of Cycle  

SN   Sequence Number  

PDO   Process Data Object  

TAI   International Atomic Time  

TCP   Transmission Control Protocol  

TCP/IP  Transmission Control Protocol/Internet Protocol  

TDMA   Time Division Multiple Access  

TFTP   Trivial File Transfer Protocol  

TTP    Time-Triggered Protocol  

TT   Time-Triggered  

TTE    TTEthernet  

TTL   Time-To-Live  

UBTT   Used Bandwidth for Time-Triggered Traffic  

UDP    User Datagram Protocol  

VL   Virtual Link  

VLAN   Virtual Local Area Network  
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