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Kurzfassung

Seilschwebebahnen stellen ein wichtiges Transportnmtigébirgigen Regionen dar. Dennoch
kommt es jahrlich, trotz hoher Sicherheitsmalinahmen, elareren unverhergesehenen Zwis-
chenfallen und leider auch zu Unfallen. Einige davon nahes Ursache in menschlichen Ver-
sagen, aber andere passieren auch aufgrund eines uggingtisammenwirkens von Anord-
nung und Betriebsbedingungen der Seilbahnen. Das hat mye Ftald manchmal grol3e
unerwinschte Schwingungen des Seiles (Pumpschwinguagéreten. Diese gefahrden aber
nicht nur den Fahrkomfort sondern auch die Sicherheit. ssddbi der Planung moderner
Einseilumlaufbahnen greift man auf ziemlich einfache Mdeuriick, wenn man mogliche
Pumpschwingungen vorhersagen oder analysieren moctaech dieser Modelle reduzieren
das komplexe mechanische System der gesamten Seilbahim &ystem mit nur sehr wenig
Freiheitsgraden. Dieser starken Vereinfachung geheerkaise eine Vielzahl von Annahmen
voraus deren Glltigkeit aber fraglich ist. Dennoch bigieteits das Seil alleine - als eindi-
mensionale kontinuierliche Struktur betrachtet - mit saiminendlich vielen Freiheitsgraden
eine sehr facettenreiche und interessante Dynamik. Da de#ser auch bei der Erklarung von
Pumpschwingungen berticksichtigt werden sollte, ist desgangspunkt dieser Untersuchung
die Dynamik eines axial bewegten Seiles.

Nach Aufstellung der allgemeinen Bewegungsgleichungarsezwischen zweDsen in
einem aul3eren Kraftfeld raumlich und axial bewegteneSeilird der Fall des konstanten Schw-
erefeldes diskutiert. Es werden die moglichen statien&@ewegungszustande beschrieben und
die Abhangigkeit dieser von der axialen Geschwindigkeéigert, wenn die Seilkraft in einer
der Osen vorgegeben wird. Das entspricht auch der SituatioreiSkilfeldern einer Ein-
seilumlaufbahn. In weiterer Folge wird das entsprechemdatisierte Problem diskutiert und
damit die Eigenfrequenzen und Eigenmoden, wobei auch reeklsthangigkeit von der axialen
Geschwindigkeit behandelt wird. AufRerdem wird erlauveatum nicht zu erwarten ist, dass
Pumpschwingungen auf Grund von Selbsterregung entstehen.

Nach Aufstellung der stationaren Bewegungsgleichungeeseaxial bewegten biegesteifen
Seiles zwischen zwei Rollen, wird die Biegesteifigkeit alstinematische Storung behandelt.
Dies fuhrt auf ein regulares singular gestortes Ramtpweblem, welches formal mit einer
asymptotischen Entwicklung approximiert wird. Dieseslyimsche Ergebnis wird mit der nu-
merischen Losung dieses Randwertproblems verglicherteeaverden die Ergebnisse fur die
stationare Bewegung mit Finite Elemente Simulationegharen.

Die Seilbewegungsformen zweier benachbarter Seilfelidiel richt voneinander unabhangig,
sondern werden durch die Seilkraft auf der dazwischentidge Stiutze gekoppelt. Daher wer-
den die moglichen konvexen stationaren Bewegungszdstién einem Seilfeld erortert, wenn
die Kraft auf einer angrenzenden Stiitze vorgegeben isticiDkonsequente Weiterfiihrung



dieserUberlegung erhalt man den mechanisch stabilen statorBewegungszustand der Seil-
schleife einer Einseilumlaufbahn, bei der die Seilkrafién Spannstation festgelegt wird. Mit
Hilfe dieses stationaren Zustands der Seilschleife dtmeseilumlaufbahn kann ein dreidimen-
sionales Finite Elemente Modell einer solchen Seilbahgesitllt werden. An Hand von Sim-
ulationsbeispielen wird erklart, wie Pumpschwingungernct Resonanzen zustandekommen
konnen und wie praktische Probleme analysiert werdemé&idn




Abstract

Aerial ropeways play an important role for transportationmountainous regions. Unfortu-
nately, even if utmost care is taken of their operation, yeyear several accidents occur. Some
due to human mistakes, but some others also due to a conadnrmdtbad design and bad op-
erational conditions that might lead to sometimes largedesited oscillations of the cable(sag-
oscillations). These oscillations are not only a problencahfort for the passengers but can
also be a safety problem. Nowadays, when ropeways are ootedr rather simple models are
used to predict and analyse sag-oscillations. Some of theslels in fact reduce the complex
mechanical system of the entire ropeway to a few degreeseetirm which implies a lot of
underlying questionable assumptions. Moreover, the mankeas a one-dimensional contin-
uous structure offers a variety of phenomena due to its tefmimber of degrees of freedom.
Therefore, in this work the problem of sag-oscillations lué hauling rope is approached by
investigating the dynamics of axially moving cables.

First of all the equations of motion of the axially moving tabetween two eyelets in an
external force field in a three-dimensional space are deriddter specializing in the constant
gravitational field, a survey of the different steady-stat#ions is given and the dependence of
the configuration on the line speed is illustrated when theecgension is prescribed in one of
the eyelets. This comes up to the situation in the span betthegowers of a monocable rope-
way. Subsequently the corresponding linearized problestugied and the influence of differ-
ent line-speeds on the in-plane eigenfrequencies in a @psepan is illustrated. Furthermore,
it is explained why solely external excitations are assutodx the reason for sag-oscillations.
After deriving the steady-state equations of motion for tlo¢ completely flexible cable be-
tween two rolls, the slight bending stiffness is treated aerurbation. This yields a regular
singularly perturbed boundary value problem for which arfakapproximation of the solution
is showed. This analytical result is compared with the nuraéresult of the boundary value
problem. Moreover, the steady-state configurations of #ibecbetween two rolls are checked
by Finite Element simulations.

The interaction of the configurations of two adjacent capkns is controlled by the cable ten-
sion at the sheave assembly of the interjacent tower. Hdrmecedssible convex steady-state
configurations in a span for a given cable tension at one otlj@cent towers are discussed.
Based on this idea a steady-state configuration for a whdike ¢daop of a circulating mono-
cable ropeway for a prescribed tension in the haulage de@nebe obtained. Subsequently
this configuration is used to perform three-dimensionait&iElement simulations of arbitrary
monocable ropeways and finally, it is also discussed howosadlations can be caused by
resonances as well as how real ropeways can be simulated.



Notations

Symbol Meaning
Chapter 2
v constant velocity (line speed) of the cable in the eyelets
I cable length between the in- and the outlet
t time
X (1) cable configuration at time
E=(e,e,e3) fixed orthonormal vector basis
X1, X2, X3 Cartesian coordinates correspondinggto
g constant gravitational acceleration
g —ge
S arc length
r(st) position of x (t)
T reference time
¢ reference arc length
s(é,t) bijection between cable points and configuration points
R(¢,t) position of the cable
h cable segment length
P(&,t) section force of the cable (cable tension)
F(&,t) the resultant external force per unit length
& center of mass of a small cable segment
O Landau order symbol
p mass density
A section area
p(s,t) section force of the configuration
f(s,1) external force per unit length function
D/Dt (vd/ds+d/ot)
re=(xas,ys,0) position of the outlet
Chapter 3
st,f,p,c dimensionless quantities insteadsdf, r, p, v
X0 steady-state configuration

position of xo

steady-state section force function
2/0s(...)

a/ot(...)




A(Out) B(Out)
f

Symbol | Meaning |
to(s) tangential vector ofo
No(S) normal vector ofxg
ap=(a,b,0) integration constant vector
-] Euclidean norm oiR®
p Ipol| — ¢
pl+) two solutions forp™
ao(s) inclination angle ofxo
Ko(S) curvature ofxo
Cx, Cy integration constants
Pmin i IPo (s)]l
Verit minimal velocity that is necessary for concave configuretio
£ small perturbation parameter
ri(s,t) linear correction of (s;t)
p1(s,t) linear correction op(s,t)
Up, Uo, U3 tangential, normal and binormal component of
J1, 02,03 tangential, normal and binormal componenpef
V() 1-¢/|lpo(9)]
0 real part
(21,22,23,24) has to fulfill (uy, uz,q1,02) = O (21, 22, 23,24)
(25, 25) has to fulfill (uz,q3) = O (25, Z5)
{k(s)=¢&k(s) +ink(s) | components of the in-plane eigenfunctign=1,...,4) and of
the out-of-plane eigenfunctiofk=5, 6)
H=A+iw in-plane eigenvalue
V=A+iw out-of-plane eigenvalue
r(in) projection ofr, onto thexy, xo>-plane
r(l%’”t) xz-component of 1
An) B(in) the two independent components of an in-plane eigenmode

the two independent components of an out-of-plane eigeem
(dimensional) eigenfrequency

f1 lowest eigenfrequency
Chapter 4
I reference length (redefinition)
Gn circle line representing the inlet roll
ra,Ma radius and centre &
Xa, YA, @, Sa Xp-coordinatexp-coordinate, inclination angle and arclength
at the point where the cable loses the contact with thezpll
©B circle line representing the outlet roll
rg, Mg radius and centre &g
Xg, Y8, U, S8 Xp-coordinatexp-coordinate, inclination angle and arclength
at the point where the cable touches the wlfirst
T%]r tangential manifold or¥” at the point € ¥
SA.0,SB,0 steady-state part Gh, Sg

od




Symbol

Meaning

SA 1,981
P07Q0
Po
)
Ho. Vo

Mo = Mo€s
B

5,0, 58,0, X0, Yo
K07H(>|)<7Q07B
K (k) (k) . (k
0

k Kk
RN

linear correction ofa, Sg

tangential and normal componentymf

fictitious cable section force

tangential component qf)

horizontal and vertical component p§
sectional bending moment

bending stiffness

dimensionless quantities insteadspf, Ss,0, X0, Yo
dimensionless quantities insteadkaf H, Qo, B

Xa, X8, YA, Y in thek-th iteration step
SA.0,S8,0, @, Y in thek-th iteration step

configuration length in thk-th iteration step
scaled arclength variable during an iteration step

() d(.) /dt (redefinition)
y (Ko, Qo)
z (Yo, Qo)
f right hand side of the the singular part of the ODE
g right hand side of the the regular part of the ODE
b boundary conditions of the singularly perturbed BVP
(¥,2)=(k,Qo, Yo, 00) | solution of the reduced equation
¢ auxiliary function for expressing
U_,e_ stable eigenvalue and the corresponding eigenvector
[T unstable eigenvalue and the corresponding eigenvector
T,0 boundary layer variables
Ly = (Lko,LQo) left boundary layer term
Ry = (Rko,RQy) right boundary layer term
Chapter 6
Yo catenary as a function of thevalue
PA ficticious cable tension at the inlet
f(a,c) a cosh(c/a) (redefinition)
Mo, M manifolds associated with the boundary conditions
Perit critical cable tension
Acrit critical catenary parameter
Chapter 7
d is the distance between two adjacent cabins
f frequency of cabins entering the span (redefinition)
N number of cabins
I length of the cable loop
Meab mass of a cabin
lij tensor of rotational inertia
E Young’s modulus

maximal time increment
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Chapter 1

Introduction

Nowadays, in particular when people shall be carried, afterulating monocable aerial rope-
waysare projected. These are ropeways where the transportitsyery. chairs or little cabins)
are attached to a single carrying and hauling ropeaiie! This cable is a closed loop and
moves either through the air or over rolls. The latter is theedn the drive device, the haulage
device and on the towers. (s. Fig. 1.1)

top
terminal

t/o Wi
bottom /

termina

a span

Figure 1.1: Scheme of a circulating monocable aerial rogeeg. a ski-lift.

In the drive device the cable is constrained to an axial motigh a constant velocity, and
in the haulage device the cable tension is prescribed. liFifidhe ropeway is used as a means
of transportation over a large distance, towers 8tieave assemblieghich are assemblies of
rolls (s. Fig. 1.2), are necessary along the track of thewagen order to reduce the sag of the
cable that is hanging in the air. Therefore the drive dewite haulage device and the towers
subdivide the track of the ropeway into sevespans

The terminals where people get in or off normally coincidéwaither a driving device or
a haulage device. Usually the carrying units are attachéuetoable with detachable grips, so

Here and in the following the words 'rope’, ‘cable’ and ’sigi are used as synonyms.

12
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mmrlmwnrlx!,;iﬂf't;

(a) A tower with a carrying sheave assembly. (b) Another carrying sheave assembly.

g
]

(c) A holding-down sheave assembly. (d) A sheave assembly that wedges the cable in.

Figure 1.2: On each tower a sheave assembly, that is an agsafnnblls, constrains the cable
to stay in its track. That means that the cable is forced toenawer (Figs. 1.2(a) & 1.2(b)),
under (Fig. 1.2(c)) or between sheave assemblies (Figd)).-2(

that loading and unloading at low speed is possible, whi@diss more comfortable. Only in
chair-lifts the chairs are sometimes permanently attathéue cable.

In ropeway engineering the transient dynamicsag-oscillationd are of particular interest
for circulating monocable aerial ropeways [12]. This is anheperiodic change of the sag of
the cable curve with amplitudes of some meters and time @gemd some seconds. It is not
only a problem of comfort for the passengers but can also béetiygproblem.

Until now, when ropeways are constructed, rather simpleaisodre used to predict and

2|n German:Pumpschwingungen
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analyse sag-oscillations [4, 12, 11]. Some of these moddisct imply only a single degree
of freedom for each span. Nevertheless, following literatuhe cable as a one-dimensional
continuous structure offers a variety of phenomena due fafinite number of degrees of free-
dom. Therefore in our investigation on sag-oscillationswileprimarily look at the dynamics
of axially moving cables.

In the year 1851 Rohrs [25] first modelled the vibrations ofnéarm, inextensible sus-
pended chain hanging freely under its own weight. He obththe approximate natural fre-
quencies or eigenfrequencies and responses of a cable sitrath sag to span ratichat is
defined as a sag to span ratio less than 1:8. Then in 1868 Rafijtbdnsidered the symmetric
transverse vibration of a heterogeneous chain hangingifotim of a cycloid. He obtained an
analytical solution and the application of this chain madeihe uniform chain yielded Rohrs
model. Their solutions for cabel eigenfrequencies coreetig the limit of a vanishing cable
sag, but they failed to reproduce the spectrum of the clalssiat string. This shortcoming was
firstly explained by Irvine and Caughey [8] in 1974. They dastoated that including cable
elasticity allows the small sagged cable model of Rohr t@ gasoothly to the taut string model
in the limit of a vanishing cable sag. But also the earlier sisaf Soler [32] in 1970 and
Simpson [30] in 1972 were already capable of this transitidarthermore, Simpson was the
first who analysed the linear in-plane vibration of a tramsta- that is an axially moving -
cable. His cable was elastic, had a small sag and moved thtewgyfixed eyelets at the same
elevation. The small sag assumption guaranteed analgtdations for the eigenfrequencies
and for the eigenmode shapes. Simpson noted that the itiodwf a cable line speed leads
to complex vibration modes, that means to a non-constarsgpstaift in displacement along the
cable span. In 1985 Triantafyllou [37] extended Simpsofése travelling cable model to in-
clude either a very small or a very large cable sag and intlayelets. However, the cable in a
ropeway may have an arbitrary sag - not only a small or a vegglane - and also out-of-plane
motions may occur. In 1987 Perkins and Mote [18] analysedrtfmane and the out-of-plane
linear vibrations of translating elastic cables having dniteary initial sag and an arbitrary eye-
let inclination after discretizing the equations by Galeikmethod. Since in this calculations
the elasticity was crucial, they made some assumptionféostrain in the cable and the choice
of the material cable parameters in order to get the equatibmotion. In 2001 Miroshnik [13]
analysed the steady-state motion of an inelastic axiallyingocable. Besides the gravitational
force, he also introduced a viscous force acting tangéytiad the cable. His solutions for
the inelastic cable were analytical. Two restrictions weale in all of the mentioned analy-
sis: Firstly, the boundaries were always two eyelets, batast of the applications for axially
moving cables - such as in aerial ropeways - the boundamregudieys or rolls. Secondly, real
ropes have a bending stiffness which may play an importdatfop the solutions, especially
if the boundaries are not eyelets. As we shall see, in this aadight bending stiffness can be
introduced by means of a boundary layer solution using thgusar perturbation theory.

3Instead of 'small sag to span ratio’ we will just say 'smalysa




Chapter 2

Mechanical Model and Equations of
Motion for the Cable

Consider acable modelled as an inextensible homogeneons-dimensional structureith-
out bending stiffness or torsion rigidity, moving in an exi@ force field in three-dimensional
space. In our case this external force field consists of atapnnhgravitational force field and in
some spatial regions of contact foréémetween the cable and other materia, such as rolls or a
viscous medium.

Let there be twaeyelets modelled as two different fixed points in space through whine
cable always runs through and where as a consequence ttenmbthe cable can only be an
axial one. Letv be a constantelocityof the purely axial motion in both of the two eyelets such
that the mass of the connecting cable part always stays the.shlence fow # 0 it makes
sense to denote one eyelet asitilet and the other one as tloaitlet Furthermore due to the
inextensibility of the cable, it has always the samregth | between the in- and the outlet.

In some cases it is useful to definelased cabledentifying cable materia which runs through
the inlet with the cable materia that simultaneously runsugh the outlet. This situation
becomes a physical one if the two eyelets are unified in aesimg which drives the cable.

For everytime t€ R the cable has a certagonfigurationy (t) which is defined as the curve
that is described by the cable part connecting the eyeléts at

We introduce Cartesian coordinat@sxy, x3 corresponding to the orthonormal vector basis
E = (e1,e,€3) so that the inlet coincides with the origin, that the outies lin thexs, X>-plane
with a non-negative;-component and in such a way that the constant gravitatamaleration
can be written ag=—gey. Then letx(t) be located by (s,t) with the arc lengtlse [0,1] so
thatr (0,t) = O is valid for allt.

At a fixedreference tima the cable material can be labelled by teérence arc lengtly
in such a way thaf = 0 denotes the material cable point which passes the infetat Since
v is constant and the cable is inextensible, a material cabig petween the in- and the outlet
which is labelled by¢ can be identified with the curve point of the configuratjp(t) at arc
length

S(é,t)=&+v(it—1) . (2.1)

'Here and in the following self-contact of the cable is nottainto account.

15
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Let R(&,t) be the position of the material point (labelled b¥y)at timet in our coordinate
system. Then the following relation holds:

R(E,D) =r(s(E.t).1). (2.2)

Consider at timé a very small cable material segment of lengthn its path from the in- to
the outlet and labelled by the inter§l, £ + h|, so that the endpoints are locatedr&€ ,t) and
R(& +h,t). If we cut this segment out of the cable then € + h,t) and —P(&,t) be the
section forces acting on the right and left border. Due tddhbk of bending stiffness the vector
P(&,t) can only be tangential to the cable. This fact and the inesiidity of the cable can be
expressed by:

4 P&

aef Y = EE T

Equation (2.3) also implies that the cable tension and théedangential vector have always
the same orientation. Furthermore we denote the functitimeafesultant external force per unit
length byF(&,t). With the center of mas& € (&, € +h) of this cable segment, Newton’s law
yields?

Ve . (2.3)

2
pAh%R(fc,t) =hF(&,t)+P(E+h,t)—P(E,1)+0(h?) ,

where the constanys andA denote the mass density and the section area. After divitlisg
equation byh the limith — 0 yields:

02

PAZRED =F(E.0+

t) . 2.4
9 s P(&.1) (2.4)
Egs. (2.3) and (2.4) are tleguations of motiofor R andP - the state variables of theaterial
cable pointé. In the same way as in (2.2) we define a cable force fungiiet) as well as
an external force per unit length functiéfs,t) so thatp(s(¢,t),t) = P(&,t) andf(s(&,t),t) =
F(&,t). With egs. (2.1) and (2.2) we get:

0
ER(f t)_d_ (s(¢,t),t)
_9s(&t) 9 %
at S5of (S0, D) + o1 (s(€,1).1)
-2 DrsEn.n).
d ds(&,t) 0 _9
9g P80 = =55 GaP(S(E. ). = Fp(s(E. 1))

2The (Landay order symbolO has the following meaning: Witli(£),g(g) € R for € € (0, &) the relation
f(e) = O(g(e)) for € — 0 holds, if there is a consta@ > 0, which is independent o, in such a way that
[f(e)l <Clg(e)| for & € (0, ).
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On the one hand, defining the opera&zg = (Vais + %)2 we get from eq. (2.4):

2

D 0
pASE! (SO =f(st)+ o p(st), vse[O,l] (2.5)

and on the other hand we get from eq. (2.3):

5, ~ p(st)
a5 SV = oo el &0

Thus (2.5) and (2.6) are thejuations of motioffor r andp - the state variables of theable
configuration point sFurthermore, if g with ||rg|| <| denotes the position of the outlet (within
thexy, Xo-plane) then the following six boundary conditions haveedudfilled:

r(o,t) =0, r(l,t) =rg, vit. (2.7)

Hence we can summarize the whole problem:

D2 0
pA—Zr(S,t) = f(S,t) + —p<S,t),
Vse [0,1]: D; ¢ Js
9 r(sty= PBY_ (2.8)
Js [p(s, 1)l
r(o,t) =0,
r(it)=rg.

Finally it should be remarked that the same system of forsexciing on the cable as it is
acting on a streamtube fluid or on the fluid within a masslelss {88, 34, 7]. Therefore the
linear momentum balance law and the angular momentum balamccan be applied in the
same way as to the fluid within such a piece of tube. Obviowslyable configuration point
corresponds in this analogy to a point on the centerline afid 8onveying tube.




Chapter 3

The Cable in a Constant Gravitational
Field

The external force per unit length for a free - that is withany contact - moving cable in a
constant gravitational field i§s,t) = —pAge; and therefore eq. (2.5) yields:

2

D 0
pAD—tzr<S7t) - _pAge2+ d_sp<s7t)7 Vse [07” :

This equation as well as the inextensibility eq. (2.6) camtmeight into a dimensionless form
by substituting

s=§l, t =f\/1/g, r=Fl, p = ppAg|, v=cy/gl (3.1)

and dropping afterwards the ” ~ "-symbol as well as redefhﬁ%g: (c(%—i— %)2. Thus we can

summarize the whole problem:

2 P

Wr(sﬂ) =—e+ d_sp<s’t)’
p(s;t)

I S7 - )

os" Y = o]

Vse[0,1]:

(3.2)

r(0,t) =0,
r(Lt)y=rg, |rel|<1.

3.1 The Steady-State Problem

Now we look for a time-independent steady-statsolution of problem (3.2). We denote the
time-independent configuration kg and the corresponding functions ky(s) andpo(s). Thus

18
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with the abbreviation...)" = dis(. ..) we get from problem (3.2) the steady-state subproblem:

c?rg(s) = —e2+Po(s),
Vse [0,1]: /() = Po(S)
~ Ipa(9)I” (3.3)

Let xo have the tangential vecttg(s) and the normal vectany(s) - each of them has length
one. Then because f(s) = ry(s), the two differential equations in (3.3) are equivalent to

Po(s) = [Ipa(s) | to(s),
[(IPo(s)| =) to(s)]" = 2
We integrate the last equation and get
(Ipo(s)]| — ) to(s) = sex+a (3.4)

with the integration constamy € R3. Eq. (3.4) shows that all the tangential vectorsypfie

in the subspace that is spannedésyandag. If the inlet lies in the origin and the outlet in a
point of thexy, xo-plane, therag and therefore alsgo has to lie in thexq, Xo-plane? It is useful

to define the functiomp = ||po|| — ¢, which doesn’t have to be positive. Then eq. (3.4) can be
written as

p(s) to(s) =ae;+(s+b) e abekR. (3.5)
Squaring eqg. (3.5) yields
ﬁ2:a2_|_<s+b)2

and hence there are obviouslyo solutions forp; namely:

P = +1/a2+ (s+b)?. (3.6)

Finally we choose the orientation of tkg-axis in such a way that the-component of the outlet
IS a non-negative value. As a consequencexihreomponent of the tangential vector, which
never changes its sign also has to be a non-negative valeeefdhe we have to distinguish the
four casesa > 0,a\,0",a 0 anda< 0.

3.1.1 Curved configurations

This is the case when the outlet doesn't lie onxh@xis. From eq. (3.5) and (3.6) we get the
tangential vector. We have to distinguisto cases:

Xo(S) 1 a (+1), a>0, fim
to(s) = [ ¥i(9) | = st b { , ,
0 (zﬁ(s)) a2+(s+b)2( 0 ) (-1), a<0,

'Hence we will not care about the-component in the notation of this section.

+)
(=)

(3.7)

o
I
T
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If we devide thex,-component ofg by thex;-component, we get the slopetgfrelative to the
xp-axis. Thus the inclination angle and the curvature are:

ao(s) = arctan(ﬂ) Ko(S) = &
° a )’ ° a2+ (s+b)?
In both of the cases integration of eq. (3.7) yields
Xo(S) =a arsinh(%)) +Cx , cER (3.8)
s+b\?
yo(s)=a/1+ <T) +Cy, cyeR (3.9)

and withrg = (xg,ys,0) the constants, b, cy,c, have to be chosen in such a way that the
boundary conditions

X(0) =0, Yo(0) =0, x0(1) = s, Yo(1) =YB (3.10)

are fulfilled. If we expresgg by Xp using eq. (3.8) and eq. (3.9) then we get

Yo=Cy+a cosh(XO;CX) . (3.11)

3.1.2 Straight configurations

This can only be the case when the outlet lies on¢haxis. From eq. (3.5) and (3.6) we get
the tangential vector fas# —b. Here we have to distinguigtvo cases:

Xo(S) 1 (9 [(+1), axo0* p=p*
o (?ﬁ’g) e (Sﬁb) {0 D050 e

Integration yields:

(+1), a\.0", p=p"

(-1, a0, p=p") y R (5.19)

Yo(S) ZCy+|S+b|'{

With rg = (0,yg,0) the constantd, cy have to be chosen in such a way that the boundary
conditions

Yo(0) =0, Yo(1) =VYB

are fulfilled.
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3.1.3 Remarks

The cable configuration or curve that connects the two ey#iet gravitational field can be only
one of the four types described above, but not a combinafitrem, since due to eq. (3.6) this
would imply a jump in the cable tensidjpo||. Such a jump is impossible without an external
point load.

Fora+ 0 we notice from eq. (3.11) thgg as a function okg is convexf a > 0 andconcave
if a < 0. For alla the cable configurations are independent of the velocityirt particular
the convex curve connecting the eyelets for an arbitrargoisi c is exactly the same as in
statics. Unlike in statics the existence of concave condiijoms is possible. Since the cable
has to be under tension as a matter of fact, concave confignsadre only possible if for the
cable configuration pointg < 0 and simultaneouslypo|| = f+ ¢ > 0 can be satisfied. Hence
¢ > 0 must hold and that is why in the case of elastic cables Pedad Mote [18] called this
phenomenospeed tensioning

Comparing eq. (3.6) with eqg. (3.9) and (3.13), we notice ithany case the relation

Ipoll = Yo — &y + ¢ (3.14)

holds. Obviously the cable-tensi¢ipo|| is linearly dependent on the 'heighy and thus in the
same way as the hydrostatical pressure depends on heighidimféchanics.

3.1.4 Example

We want to check whether the concave steady-state configuiatrelevant for the application
of cable dynamics to circulating monocable aerial ropewafs mentioned abovep must
become less than zero. Therefore the critical value forpthe given, if ||po|| = ¢ or after
substituting back into dimensional quantitigs— po — po/(pAQ), ¢ — v/\/gl :

IPol| = PAV .

Hence, if we know the tensiofpo|| = pmin at the lower eyelet, we can calculate the critical

velocity
Vorit = 4 / F;)mi” . (3.15)

Concave configurations do exist only for> vqit. The value ofvgit becomes small, ipmin is
small or if pA is big. For monocable aerial ropewaggin > 10* N andpA < 10 kg/m. From

eq. (3.15) follows that,j; > 31.6 nys. Nowadays even the fastest monocable ropeways do not
surpass a velocity of 18ys. This means we are at least at factor three under the crtatity,

and therefore the concave steady-state configuration isa@ys not relevant for this kind of
ropeways.

3.1.5 Example

The first large span for the outgoing rope after the bottomiteal of a circulating monocable
gondola ropeway that carries ski-tourists to a mountairri@.3.1) shall be bordered by two
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Figure 3.1: Scheme of the ropeway span in example 3.1.5.

towers, so that the horizontal distance of the cable in this 6i7.65mand the vertical distance is
19.25m. The haulage device shall be installed at the bottom terrofribe ropeway prescribing
there a cable tensiofpo|| = 240000N. Since the lower tower lies at the same height as the
hauling device, the cable tension there is the same. In absgingondolas, the sag and the
length of the steady-state cable configuration are uniggielgn by the cable tension on the
lower tower. Using the equations of section 3.1.1, we wasrin@ayse to what extent the cable
line speed/in the steady-state convex configuration influences theedength if the prescribed
cable tension on the lower tower is kept constant. In our E&$8.2 shows that up to a cable

71.6

ﬁrescribed tension: p0=240kN ——
71.4

712
71
70.8

70.6

steady-state cable length I[m]

704

702 L L L L L L L L
0 20 40 60 80 100 120 140 160
line speed v[m/s]

Figure 3.2: Example 3.1.5: The curve lengtbf the convex steady-state configuration in de-
pendence on the cable line speed

line speed of 120ry/s the curve length and therefore also the sag (s. Fig.3.3)efdpe is
approximately constant. Then the length increases rapidty it reaches a maximum at a
cable velocity of 1694 mys. Above this speed value the tensioning device is not ablenany
to support the cable tension of the span. As was stated inxdma@e before: nowadays even
the fastest monocable ropeways do not surpass a line spd€chgé. This means that in our
application the sag would practically not depend on thedimeed.
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25 T T T T T T T

y[m]

0 10 20 30 40 50 60
x[m]

Figure 3.3: The sag of the convex steady-state configuratitime span of example 3.1.5 in-
creases with the increasing line speedrorv = 16974 nys, the maximal sag is reached.

3.2 The Linearized Problem

We now want to study the dynamics of the cable if it is almostimi exactly in the steady-state
motion.

Let xo be a steady-state configuration of (3.2) andeldte the distance between the state
of a general configuratiof (t) and the state ofp, both elements of a suitable Banachspace.
Assuming that is very small, we make the following ansatz:

r(st)=ro(s)+eri(st)+0O(e?),
p(S,t) - pO(S) + spl(s7t> + O(£2> )
Plugging this into the first equation in (3.2) and compariogfticients ofe, we come to

2

er(st) = p3.<s7t)7 VSE [07 1] . (316)

Furthermore we have

NI

ﬁ: [(Po+€p1+-..)- (Po+€PL+-..)]

= [IO% +2€po-p1+ 0(52)]

NI

1
_ 1 [1+28p0‘2p1+0(82)] 2,
[Pol| P5

so that if the absolute value of the terrreg_g%pl 4+ O(€?) within the brackets is smaller than
0
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one, it makes sense to write:

Ipll Ipol| p3

_ _Po +£< PL  Po <Do P ))-1—0(52).
| Poll [Poll  IIPoll \llpoll |lPol|

Plugging this into the second equation in (3.2) and comparoefficients ok, we come to

P _ (PotEPLE)fy PP

PL  Po < Po P2 )
ri= — : . (3.17)
Y ol TIpoll \lIpoll [Ipol
In the same way we get the homogeneous boundary conditichs@summarize:
D? f—p!
2 1— VM
Vse[0,1]: Dt 0 0 0 0
r’=1—°<°-1), 3.18
= Tpoll ~ Teoll \Tipoll " Tipol (3-18)
r1(07t> = 07
rl(l,t) =0.
We make the following ansatz
ri(s,t) = uy(s,t)to(s) + uz(s,t) no(s) +us(s,t) 3, (3.19)
p1(S,t) = qu(s,t) to(S) + d2(S, ) No(S) +Ga(s;t) €3 (3.20)
and using the relations
to(S) = Ko(S) No(s), No(s) = —Ko(S)to(s),
we get
r1 = (U — Kolp) to+ (U + KoU1) No + Uses (3.21)
p1 = (41 — KoG2)to+ (G2 +KoG1) No + Cl3€3 - (3.22)

Besides, due to the inextensibility and due to (3.3) we have

Po
[Pol|

and plugging (3.20) into eq. (3.17) we come to

P1 pP1
rn=-——to|to —
L™ Tpo] °(° HpoH)

P1 P1
=n Ngp-——— | + L
°( 0 HPOH) 63(63 HpoH)

1
= ——(Q2no+0gz€3) . (3.23)
| Pol|

/
to=rp=
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Comparing (3.23) with (3.21), we get the following three atijpns:

Uy — Koz = 0, (3.24)
Uy + Koy = i, (3.25)
1ol
gs
Up=—> (3.26)
" ol

The homogeneous boundary conditions in (3.18) are equal to:

u(0,t) =0, ui(1,t) =0,
uz 07t) =Y, uz 17t =Y,
u3(0,t) =0, us(1,t) =

With the abbreviatior\ = thfor an arbitrary quantityA we get from (3.19) and (3.23)

F1=Utg+Uzxno+Uzes,

-/

1 ) )
1 =——=(Qno+0zes) ,
| Pol|

1 [[poll’ [[Poll’
r”:—{—Kt—l—(/— No+ | 05— &l ,
1 ||p0|| 0z2Kolo a2 ||p0|| 02 0 a3 ||p0|| az

so that
2
thrl_r1+2cr1+c2 “
. . . 2C
=Uito+Uxng+Uzez+ —QoNp+ ——03€3
1Pol| ||I00||
c? c <, IPol’ ) c? </ [P/’ )
OoKoto+ — | Oh — 02 ) No+— (O3 — Uz ) €3
~Timol 20 Tipol \ %2 ipo] Ipoll \ ™ lpol|
) c? } [ 2c c2 <, Ipoll’ )}
= U1 — ——Q2Ko| to+ [U2+ o+ o — a2 | | no (3.27)
[1 1ol Ipoll =" Tipoll \ "2 Tlpoll
.2 c? llpoll’
+ |U3z+ Oz + (OI'— %H €3
{ [Pl IPoll \ ™ [pol]

Due to (3.16) this should be equalp. Thus the comparison of (3.27) with (3.22) yields

. c?
01 — KoGp = Uy — ——CKo , (3.28)
lIPoll
2c c? lIpoll’
b+ K + <’— ) 3.29
G2+ Kot =ty 18t o \ %27 g ® (3:29)

2c c? o’
03 = O3+ (q’ - qs) : (3.30)
T Hp | IPoll \° [pol]
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As we can see from eq. (3.26) and (3.30), the equations o8)&dncerning thes-direction
can be decoupled. Therefore, defining the function

2

C

V) =1— 0,
=1 @

egs. (3.24)-(3.26) and (3.28)-(3.30) with the homogendmusdary conditions describe an
in-planemotion

(
u; = KoUg,
Up = —KoUp + ﬁ,
vse0.4): 0p = U1+ YKo Q2
1 — )
0 = |Uz2+ 2 Q2—C2”po”/QZ—KOOI1 ! (3.31)
- IPoll ™ [poll? y’ '
u(0,t) =0,
UZ(Ovt) - 07
Ul(l,t) =0,
u(1,t)=0
and anout-of-planemotion
Ué: 0z
IPoll”
vVse 0,1
0. o= [gs % qS_CszoH/q3 1 (3.32)
° [Poll IPoll> ]y’ '
uz(0,t) =0,

which can be solved separately.

In the following sections it will be comfortable to use complquantities. Therefore we
denote bylJz the real part oz € C or the vector of the real parts of the componentgz df
ze C",with1<n< o,

3.2.1 Eigenmodes of the In-plane-motion

With
(ug,U2,01,02) = 0(z1, 22,23, 24) We convert problem (3.31) into a complex one and try to find
solutions using the complex ansatz

z(s,t) = €' ¢k(s), VK, (3.33)
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choosingu € C in such a way that the now ordinary differential equatiorteys

;

{ =Kolz,
1
Zé =—Ko{1+ m(&
vse[0,1:{ , 0 (3.34)
{3 = U1+ YyKods,
2c c?[poll
4 = WP+ —ula— {a—Kol3| /Y,
. ool M5 Tipol? 4~ 10%)/
with the complex homogeneous boundary conditions

21(0) =0, (3.35)
22(0) =0, (3.36)
(1(1) =0, (3.37)
{5(1) =0 (3.38)

can be fulfilled. Obviously, solutions of the boundary vgtueblem (3.34)-(3.38) are unique up
to an arbitrary complex factor. Therefore we can demand oo romplex equation (or two

real equations) to be fulfilled at a boundary value - thus waosk the following normalization

and phase condition:

[22(0) P +122(0) P +]Z3(0)|* + | Za(0) P = 1, 73(0) = 23(0) e R . (3.39)
—0, eq/(3.35),(3.36)

By separating real- and imaginary-part for
k(s) = &k(s) +ink(s),
U=A+Iiw,

and also in the egs. (3.34)-(3.38), we get the followaemght coupled real ordinary differential
equations:

& =koéz,
1
&= —Koé1+——E&,
2 | Po|
&= (A?—w?) &1+ yKoéa—22 iy,
2cA 2 ! 2cw 1
=00 & ot (o~ Gy ) &s-2Aeme [
, 0 0 0 (3.40)
N1 = Kol2,
Ny = —KoN1+ L n
— —RO/![1 T 14,
2 [ Po|
N = (A2— ?) N1+ yKoNa+2A wéy,
2cA  A[pol’ 2cw . 11
Ny = {Az_wz '72—Ko'73+( - )n4+2/\w52+—54} -
2= | (V=) ool ~ Tipol? nol %)y
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and as mentioned above the real parameteasdw have to be chosen in such a way that these
eightboundary conditions

§1(0)=0, (3.41)
n1(0)=0, (3.42)
&(0)=0, (3.43)
n2(0)=0, (3.44)
§1(1)=0, (3.45)
ni(l)=0, (3.46)
&2(1)=0, (3.47)
n2(1)=0, (3.48)
are fulfilled. The normalization-phase convention (3.38) be formulated now as:

&(0) +&(0) +nf(0) =1, (3.49)
n3(0)=0. (3.50)

In order to find the rightA, w)-values, we look at the system (3.40) witbwboundary condi-
tions substitutingwo of the last four boundary conditions - let us say for instaegs. (3.45)
and (3.46) - by the egs. (3.49) and (3.50). We solve this bayndalue problem varying the
values ofA andw as long as the original boundary condition egs. (3.45) antbj3re fulfilled.
By evaluating the real part of (3.33) we get the solutions3a31):

uy = e (& coswt — Ny sinat),

U = €M (& coswt — nasinat),

q1 = €M (&3 coswt — nsinat),

e = €M (E4coswt — nasinat) .

If we plug the expressions far; andu; into eq. (3.19) and project it into the, xe-plane, we
get for the linear correction term = rg”)

(3.51)

I’gn) =Uitp+Uxng
= M [(&1to+ E2Ng) coswt — (N1to -+ N2Ng) Sinwt]
As a consequence for a particular eigenvalueiw the linear correctiomg”) has two indepen-
dent amplitudes, the coefficients @ coswt and ofe!t sinwt:

AW = &1t +&ng,
B™ = n1to+nzno .
Therefore every in-plane eigenmode is represented by theseomponents:
ro+aAlm acR, (3.52)
ro+bBM,  beR, (3.53)

wherea andb are arbitrary constants.
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3.2.2 Eigenmodes of the Out-of-plane-motion

With (usz,gs3) = 0(zs,25) we convert problem (3.32) into a complex one and again wegatry t
find solutions using a complex ansatz

z(st)=€"%(s), ke{5,6} (3.54)
by choosingv € C in such a way that the ordinary differential equation system

1

5= pg
Vse 0,1} : 3.55
N o [eges 28 g ol ]2 (5:59)
Hp I IPoll? ]y’
fulfills the boundary conditions
{5(0) =0, (3.56)
I5(1) =0, (3.57)

and the normalization-phase condition

126(0)2=1,  Z6(0)={6(0) €R, (3.58)

which is equal to{s(0) = +£1. After separating real- and imaginary- part in

( ) ( )+|r’k(s>7 k€{576}7
vV=2»X +iw,

and also in the egs. (3.55)-(3.57), we get the followliogr coupled real ordinary differential
equations:

1
&= ¢
> lpo] *° B
- 2cA  c?|poll’ — 2cw 1
& = {(Az—az) Es+( _ Sl )Eezmns—ne] L
IPoll - [[Po IPoll 1y (3.59)
1 :
Ng = —1e
> Ipoll B
2cA  c*[pol/ TS 1
n’:[)\z—a_)z n+< - )n+2)\w5 +—E]—,
o= | WO g~ ol ) T OE g y
and with the right values of and w, thesefour boundary conditions
&(0) =0, (3.60)
ns(0)=0, (3.61)
&(1) =0, (3.62)
ns(1) =0 (3.63)
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are fulfilled. Using the normalization-phase conventio®&3} in the form

¢6(0) = +1, (3.64)
ne(0) =0 (3.65)

instead of egs. (3.62)-(3.63) for the boundary value probiéll help us to find the right values
for A andw, simply by testing if€5(1) andns(1) vanish, and the solution is:

— M (&5cosit — Nssindt
L=e & S ene ) (3.66)
gs = €' (&g cosit — nesinat) .

Plugging the expression foi into thexs-component of eq. (3.19), we get for the linear correc-
tionry = r(1°”t) of the out-of-plane motion
r(1out) — Us€s
= M| (&5 e3) coswt — (s es) sint]

Also here for a particular eigenvallxeﬁ—ia_)the linear correctiom(f”t) has the two independent
amplitudes which are the coefficientsedf coswt and ofe? sinawt:

A(OUt) - E5e3 5
B = nse;.

Since the steady-state configurations lie withinxhe«x-plane, every out-of-plane eigenmode
is represented by these two components:

aAll  FeR,
bBOW pheR,

wherea andb are again arbitrary constants.

3.2.3 Remarks

Since in our model no damping mechanism is included, we cpectthaiA, the real part of the
eigenvalue, vanishes. However, from a mathematical péwieav this is not obvious, because
the governing equations of motions (3.28)-(3.30) incluck tirder time derivations.

As we shall see in chapter 4, if we take rolls instead of egedstboundaries, the linear
correction ternr 1 vanishes at the points where the steady-state configurtatimmes the rolls
tangentially. Therefore in this case the boundary conattiof the linearized problem turn out
to be the same as if there were two eyelets on the surfaces oithrolls.
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3.2.4 Example

We now extend example 3.1.5 and calculate the lowest eigeneéthe in-plane motion for the
ropeway-span problem without gondolas using the equatbssec. 3.2.1. In fact it turns out
that the real part of the eigenvalug,is at least numerically equal to zero. From the imaginary
partw of the dimensionless eigenvalue we get the dimensionah&gguency

_1 /9

o\

In Fig. 3.4 the lowest eigenfrequenéyis plotted as a function of the cable line speeahich

prescribed cable tension ||py||=240kN ———

lowest eigenfrequency f; [Hz]

O | | | | | | | |
0 20 40 60 80 100 120 140 160

line speed v[m/s]

Figure 3.4: The lowest eigenfrequency of the cable spandndpeway of example 3.2.4 (or
3.1.5) in dependence on the line speed.

is given in the steady-state configuration. The frequentyeaes a global minimum at the
limiting speed ofv = 16974 nys (see also example 3.1.5). In Fig. 3.5 the dimensional versio
of the component (3.52) from the lowest in-plane eigenmed#atted with a suitable chosen
constant scaling factoa for the line speeds = 0 mys, v = 105my/s andv = 16974 nys.
Additionally the corresponding steady-state configurai® plotted, so that the nodes - the
zeros of the linear correction term - in this eigenmode aséie. With increasing line speed
v, the node moves monotonously towards the inlet or inlet fbile other component, (3.53),
which is plotted in Fig. 3.6, is even more interesting to ebsgsince in this case not only the
initial node of the component moves monotonously towaresittet, but also a second node
appears above a certain line speed:=(40 nys). Looking at the lowest ten eigenfrequencies
depending on the line spe&dn Fig. 3.7, we notice that for constanthe spectrum is similar
to the spectrum of the tensioned but not axially moving elasiring, where the increment
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E
>
-5 0m/s _
105m/s
-10 169.?4 m/s e | | | |
X[m]

Figure 3.5: Example 3.2.4: The first component (3.52) of tveelst eigenmode and the corre-
sponding steady-state configuration for three differemd 8peeds.

20 r //"“—-;\\;_
15 t i
10
T 5l
>
I 0 m/s
5t 40m/s
7 105m/fs
10 1, | | | 169.74mis
0 10 20 30 40 50 60

x[m]

Figure 3.6: Example 3.2.4: The second component (3.53) etdest eigenmode and the
corresponding steady-state configuration for four diffieime speeds.

between two sequent eigenfrequencies is a conggatiowever, the crucial difference is that
in our case the lowest eigenfrequency is not arofydas it would be in the elastic string case
- but it is around 2y - quite an octave higher. As it is visible in Fig. 3.5 and 3I& towest
eigenmode has at least one node - unlike the elastic stringghwas no nodes in its lowest
eigenmode. The reason for this is also evident, becauseganmode without nodes implies
extensibility, which is excluded in our model for the calllée can compare our results, at least
qualitatively with results of similar problems such as thasgc travelling cable of Perkins and
Mote in [18]. Their mechanical model differs from the abawentioned model with regard to
two properties: Firstly, the cable is elastic and theretheelength of the cable configuration is
not conserved. Secondly, not the cable tension at the syeescribed like in example 3.2.4, but
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frequency f[Hz]

O | | | | | | | =
0 20 40 60 80 100 120 140 160

line speed v[m/s]

Figure 3.7: Example 3.2.4: The lower part of the eigenfregyespectrum varying with the
line speed.
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Figure 3.8: Example of Perkins and Mote in [18]: The figurevgsithe lowest non-dimensional
in-plane eigenfrequencies of an elastic cable in deperydamthe non-dimensional line speed.
Here the cable mass between the in- and the outlet is comkerve

the total cable mass between the fixed inlet and outlet isstead and in particular independent
of the cable line speed. In our case, the eigenfrequenc@sakie monotonically as functions
of cable speed and also the tangents for vanishing cabld spe@lways horizontal. Due to the
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different boundary conditions, there is no limiting cabtdocity in the elastic cable example,
and therefore all the eigenfrequencies approach asyrogligtzero.

3.2.5 Remarks

The lowest eigenmode of a cable in a constant gravitatioelal for low axial velocity can be
illustrated best in the following way.

Imagine the outlet nearby the inlet and the cable configumatiith a huge sag, in such a
way that from far away it looks like a single down-hangingied chain or pendulum. Then the
simplest motion would be a motion of the whole chain simiteihie one of a mathematical pen-
dulum. And exactly this motion is described by an oscillatrath an asymmetric eigenmode,
which has an odd number of nodes.

As we stated at the end of chapter 2, there is a remarkableg@nbétween the cable and a
fluid conveying tube. Holmes and Marsden showed in [7] thaehsufluid conveying tube with
pinned ends iaotaself-excitingsystem. Therefore we expect that in particular the phenomen
of violent sag-oscillations of the cable [12] in certain leabpans of a ropeway (s. chapter 1) is
not caused by self-excitation, but solely byternalexcitation. For instance the equidistantly
attached cabins or chairs excite periodically in time tHd@ecaonfiguration in a certain span.




Chapter 4

Rolls as boundaries

In many technical applications - not only in aerial ropewatfse cable is either hanging in the
air or in contact with rolls. Thus again we take a look at thaaiyics of a cable in a constant
gravitational field like in chapter 3, but now we let the catdafiguration be bounded by rolls
instead of eyelets (s. Fig.4.1). The contact between thke eadal the roll can be either with or
without friction. If there is friction, the roll surface sthhave the same velocity as the cable. For
vanishing friction we assume that the roll is at rest. In amyecof contact the cable shall touch
the roll tangentially. The equations of motions are the samm chapter 3, but the boundary
conditions are different. To give a first survey, we only sttige planar problem. Leta be
the circle line representing the roll that we have now indtefthe inlet, and in the same way
let 4B be the circle line that replaces the outlet. The kinematigndary condition is that the
cable touches both of the rolls tangentially with the velp®i In Fig. 4.2 we see the left or
inlet roll. The cable first is in contact with the ra#ia, where the cable configuration has the
shape of a circle segment. At the point denoted by the arttiesaghe cable loses the contact
with the roll, but still has the same tangent. Of course tieation of this point as well asy are
time-dependent.

Fixing a reference lengthand using the transformation (3.1) of chapter 3, we havelfdrtae

Cn

Figure 4.1: In many technical applications - not only in aeropeways - the cable at the
boundaries moves over rolls.

35
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Figure 4.2: The left roll: the location of the cable configioa point where the cable loses
contact with the roll is time-dependent.

dimensionless probleln

D? J
o' (81) = —e+ - p(st),
Vse [sa(t),ss(t)]: F) p(s,t)
55" V= Tois ol @

r(sa(t),t) € €a, r'(sa(t),t) e T%A}r(sA(t),t)’
r(sa(t),t) € €a, r'(sa(t),t) € TC|, gy -

4.1 The Steady-State Problem

Since for our applications concerning ropeways only theveristeady-state plays a significant
role (see ex. 3.1.4 in chapt. 3), we will confine here the mblo this case. Therefore Igf
be the convex steady-state configuration solution of

c?ri(s) = —ex+pp(s),
Vse [sa0,880/ 1y (s) = Po(s)
0 Ipo(s)[|’ (4.2)
r<SA7O7t) € (gA7 rI<SA7O7t) = T(gA’r(SAﬁo,t)’

r(sso,t) €%, I'(Sso,t)€ T%B]r(

sgort)

The points on the rolls where the cable configuration touthes tangentially are denoted by
the arclengthsa o andsg o which initially are unknown. These points can be determibga
numerical iteration procedure.

1By T///\X we denote the tangential vectorspace on the manifglat the poinx € ..
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4.2 The linearized problem

As in section 3.2 of chapter 3, we will now study the dynamitthe cable if it is almost but
not exactly in the steady-state motion of the convex stestdie configuration of problem (4.1).
Let € be again the distance between the state of a general conitguyet) and the state of
Xo- Assuming that is very small, we can use the same ansatz as in section 3.2apfesis.
Aditionally, for the left role (s. Fig.4.2) we make the arsat

sa(t) = sao+£sa1(t) +O(&?)
so that on the one hand

ro(sa(t))+ers(sa(t),t)+0(e?)
0 (SA70) + (SA (t) — SA’O) r6 (SA,O) +E&rq (SA7o,t) +0 (82) ,
o (SA70) + & (SA71 (t) r6 (SA70) +r (SA70,t)) +0 (82) . (4.3)

r(sa(t),t)

I
-

On the other hand we have the circle line

sin(s/ra)

A= {X’X = Mat rA(cos(s/rA)

) , SE (=TATLIATT }
and its tangent manifofd

TéA= {x‘x =A (f(s)frf?é/rrAZ))’ SE (—rATLIATY, A € R}

so that if we expand

sin<SA—(t)) — sin(w) +esA71(t)icos<m) +0(&?) ,

ra ra A 'a
cos<SA—(t)) = cos(w) —esa1(t) Lsin <ﬂ) +0(&?)
ra ra A 'a
we can write
F(Sa(t),1) € Ga = 1 (Sa(t),t) = Ma+Ta <§(')”S((2‘:\ ((tté//rri\f))
—mara (et Y re s ( CoRn) ) vo(e).

:rO(S/:;J)E‘fA :ré(SAﬁO)e;(gA‘r()(SAﬁo)
Comparing the last equation with eq.(4.3) we conclude that

r1(sao,t) =0 (4.4)

2The tangent manifold . is the union of all tangent vectorspaces of the manifefd
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and therefore

r1(sa(t),t) =r1(sao.t) + (sa(t) —sao)ri (sao,t) +O (&%)

N J/ N J/
~~ N

0 £ sa1(t)+0(£2)
=esa1(t) ri(saot) +O(&?)
er1(sa(t),t)=0(?)

or rather
r(sa(t),t) =ro(sa(t)) +O(e?) .

Of course the same appliesdg(t) on the right roll. Hence we can summarize the linearized
problem in the following way:

2
%rl:pav
Vs € [sa0,80] : S o B ( Po pl) n
L™ Tipoll  TIpoll \JIpoll TIpol )’ (4.5)
ri(sao,t) =0,
ri(sso,t) =0.

Up to a scaling length factor, the linearized problem is étudhe eyelet problem (3.18) in

chapter 3. We conclude that if the cable is almost but nottgxactthe steady-state motion

(0 < € 1), we first have to find the arclengtBsg andsg g or the points on the rolls where
the cable loses the contact in the steady-state motion. Bygdhese points as fixed eyelets,
we then get the right eigenfrequencies and eigenmodes.

4.3 A Not Perfectly Flexible Cable

In this section we analyse, in how far the planar steady stalution of the cable between two

rolls in a constant gravitational field changes if the cablaat perfectly flexible. As a conse-

guence, aditionally to the tangential section foRgehere is now a non-vanishing transversal
section force componef)p, so that the cable tensigy can be written as

Po = Poto+ Qoo -
The curvature of the steady-state configuration is defined by
ap =Ko,

whereaqg is the inclination angle of the tangential vector

o= ()= (ne)
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of the steady-state configuration of the inextensible calthe corresponding normal vector is

—sinag
Nop = .
COoSag

Like in eq. (2.5) of chapter 2 we get from Newton’s law

2

D
pAWro(s) =f+pp(s), Vsel, (4.6)

with the external force per unit length= —pAge, and the arclength interval= [sa o, Sg o]
which is apriori unknown due to the geometry of the boundartsy. (4.6) is equal to

(pAVPto) = f + (Poto)’ + (Qono)’
and can be written as
0=f+ (Pjto)" + (Qono)’
with the fictitious tangential cable section force
P; = Py— pAV .
Thus eq. (4.6) corresponds to a ficticious statical problem
0=f+py, Vsel, (4.7)

with the cable tension

Po = Poto+Qono ,
which also can be written in terms of cartesian components:

po=Hger +Vge: .

The transformation between the two bases is

P\ [ cosap sinag) (Hg (4.8)
Qo) \—sinag cosag Vi) '
From eq. (4.7) follows:
Hg' =0,
V' = pAg.

HenceH; is a constant. From eq. (4.8) we deduce

Qo' = (—Hgsinap+ Vg cosap)’ |
= —Ko (Hg cosap + Vg sinap) + pAgcosay ,
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as well as
Vg = (Qo+ Hg sinap) / cosag .
Combining the last two equations yields:
Qo' = —Ko(Hg +Qosinao) / cosao + pAgcosao -
Now we also have to take care of the non-vanishing secticeradipg moment:
Mg = Mpes .

Applying the angular momentum law on a cable segment like ideanith Newton'’s law in
chapter 2 and neglecting rotary inertia terms, we get futkgeiations of motion, namely

pA% <r0(8) X %ro(s)) =ro(s) xf+(ro(s) x po(s)) +Mg(s), Vsel, (4.9)

for the cable configuration. Eq. (4.9) is equal to
PAV(rg x Vtg) = ro x f+ (ro x po)’ +Mp
and this yields:
O0=roxf+4(rox ps+Mp)
=rox (f+pg’) +tox pg+Moes -
H,—/ R/—/
=0 =Qoes
Therefore we have:
My=—Qo . (4.10)

Since the cables in our applications to ropeways are steehopes or of similar material qual-
ity, it makes sense to assume that the cable has elastiolgeettiracteristics - that is in dimen-
sional quantities:

Mo = Bkop , (4.11)

where the constar@ denotes the bending stiffness. The combination of eqsO)4dd (4.11)
leads to

BK(/) = —Qo .

We summarize the equations of motions:

(X, =cosag
Yo =sinag
Vse [sa0,88,0] i { 0) =Ko
Ko =—Qo/B
Qy = —ko(Hg + Qosinag)/ cosag + pAgcosag

\
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After choosing an appropriate reference lengthlike for instance the cable length between
the rolls if the bending stiffness vanishes - we bring théesysinto a dimensionless form by
substituting

s=S§l, sa0="3a0l, s80=3%0l, Xo =Xol,

Yo ="Yol, Ko = Ko/, Ho = Hg pAgl, Qo = Qov/PAgB/I
and dropping afterwards the "~ "-symbol. We introduce theeinsionless bending stiffness
parameter

B
B = \/ pAgl3

and get the dimensionless equations of motions:

(X,  =cosag
Yo = sinag
Vs [sa0,88,0] 1§ O = Ko . (4.12)
Bky =-Qo
(BQy = —Ko(Hg +BQosinap)/ cosap + cosag

In the system (4.12) we have on the one hand five first ordettieqgdor the five unknown and
depending variablesy, yo, 0o, Ko andQp. On the other hand we have the three parameggys
sg,0 andH, which have to be chosen iteratively in such a way that thextlary conditions

X0 (SA0) =Xa, Yo(Sa0) =Ya, Qo(Sa0) =@, Ko(sao0) =—1/ra, (4.13)
Xo(S8,0) = X8, Yo(Ss0)=Y8, 00(SB0) =1, Ko(Sso)=—1/rs '

on the rolls (s. Fig. 4.2) can be fulfilled. Although the sautof (4.12) & (4.13) has to be
found iteratively - in a similar manner as in sec. 4.1 - forrg\atep the boundary conditions are

of the same type as (4.13). For instance, inkitk step, where besideg andrg the quantities
sﬂ%, sg% xg‘), xg‘), g‘), yg‘), o andy® are given, we have to solve (4.12) with the boundary
conditions

X0 (Sg(,)o> = Xg(), Yo (sﬂ%) _ '(Ak), % (Sﬂ%) o 7
X0 <5|(3k)o) =%’ ¥o (Sék@ Y8 a0 (Slgk%)) =y, <S|(3ko) = —1/rg.

One should bear in mind that the parametigris modified from step to step in such a way

that these boundary conditions can be fulfilled best. Fronf4ef4) we also see thag (s)(k) is
given by integration:

Y

<S§*kj°> — (4.14)

Ko
Ko

S
xo(8)") = x ¢ /S . costo(t)d,
A0
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and (4.12) reduces to a fourth-order system in the varighle®, ko andQg. Moreover, since
%n is a circleline (s. Fig.4.2), we can expreéé> by yg‘) andra as well asp®¥ by sﬂ% and

ra. Of course, for the circelin&g the situation is similar and therefore only four of the eight
equations in (4.14) remain as necessary boundary conglittwrthe boundary value problem in

thek-th iteration step, into which we also introduce the new paterl (¥ = sg% - sﬂ% as well

as a new independent varialtle- (s— sﬂ%)/l(k), so that with the abbreviatiof)’ = d (.) /dt
we finally have the following problem in theth iteration step:

Yo  =I1®sinay,
/ — (k)
vselo,q: % =1k
BK(I) = _l( )Q07
BQy =1® (—ko(Hg+ BQosinag)/ cosag+ cosay) (4.15)
¥o(0) =Yy, Kko(0) = —1/ra,

Yo (1) yg‘), Ko(1l) = —1/rg.

The other equations in (4.14), which are not used for the daynvalue problem, remain
important since they are necessary for the iteration praeedhich is performed in the same
way as in sec. 4.1.

If we are interested in the case of almost perfect flexibléesalwve can consider the slight
bending stiffness as a small perturbation of the compldtekble cable. This is the case for
B < 1 and hence the problem (4.15) becomes:

4.3.1 A Singularly Perturbed Boundary Value Problem

We try to derive a formal approximation of the solution ofl®) in the form of a matched
asymptotic expansion (s. a. O'Malley [14]). First we havehbeck whether the problem is a
regular singularly perturbed boundary value problem (s. a. appeAdli The problem (4.15)
has the form

=1
e (0.: {f,y “ep)

0=Db(y(0),2(0),y(1),z(1)),

with y = (ko, Qo) andz = (yp, ). For 3 =0, the reduced equatidh= f(y, z,0) is:

0\ —10 Qg
0) \IM(—koHg/cosap+cosag) )’

which can be uniquely solved with respecyte- ¢ (z):

Ko\ 0052070/H5<>
()= (/™). (4.16)
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The matrixfy(¢(z),z0) thatis

0 —1K)
(—I(")Hg/cosﬁo 0 )’

has the negative (stable) eigenvaluewith the corresponding eigenvectr ,

— 1
— 10, [y — _
U I Hg/ cosao , e ( e /cosao)’

as well as the positive (unstable) eigenvaluewith the corresponding eigenvecir ,

— 1
— 1K Sy — .
U =1 Hg/ cosao , e, (_ He /cosao)

If the unperturbed configuration is curved, then@gs- 0. Furthermore, if the configuration is
the convex one - that is the case in our ropeway applicatensgc. 3.1.1 of chapter 3) - then
Hj > 0 and the eigenvalues are real. Consequently the eigemsectande, have a transversal
component to the hyperplanes of the phase-space whéeonstant. Hence the boundary
conditionskp (0) = —1/ra andko(1) = —1/rg can be fulfilled for sure. Therefore we have a

—1/I’A

Figure 4.3: The eigenvecta_ (e, ) of the linearized problem &t=0 (t=1) has a component
transversal to the hyperplane=—1/ra (k=-—1/rg). Thus the problem (4.15) is well posed.

regular singularly perturbed problem, and based on thayttbat was developed by Vasileva
& Butuzov [39], Esipova [6] as well as Schmeiser [27], a folasymptotic approximation for
the solution of (4.15) can be constructed using the follgnansatz for the solution:

y(t,B)=¢(z(t))+Ly (1) +Ry(0)+0O(B),
z(t,B) =z(t)+O(B),
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that is
)= () (L) * (i) ~o®)
(i) = (i) o®

In the last formulas, theoundary layer variables =t/3 ando = (1—t) /3 for the left ¢ = 0)
and the rightt(= 1) boundary were introduced. The left and the right layengty andRy,
have to fulfillLy () = Ry () = O:

Lko (00) = RKo (00) =0, (4.17)
LQg () = RQy(e0) = 0. (4.18)
From the first of the two equations in (4.15) and from (4.16)g&&z = g(¢(z(t)),2):
)7 (K SinCYO
(5) (i)
The equation for the left layer terrg:Ly (1) = f(¢(z(0)) + Ly (1),Z(0),0), is:
d Lko(T)\ (k)( —LQo (1) )
st (0n(0) =" (Lo cosi(@): 20
and the equatlogiRy =f(¢(z(1)) +Ry(0),z(1),0) for the right layer term is:
Rko(0)) R (0)
o (R ) 1 (011 s 2D
Finally, the boundary condltlorh) (0))+Ly(0 ) 2(0),¢(z(1)) +Ry(0),z(1)) = 0 yields:
coszao( ) /HS +Lko(0)+1/ra=0, (4.22)
%0 (0)—ya' =0, (4.23)
cos ap (1) /Hg + Rko(0)+1/rg = 0, (4.24)
¥o(1) —yy) =o. (4.25)

The egs. (4.19), (4.23) and (4.25) together lead to the sasuét as the equations of the catenary
problem that we discussed in sec. 4.1. As we said above onddstat forget that the parameter

Hg varies from step to step in such a way that in every step we aaliferent unperturbed

or steady-state solution as well as a different boundargrlégrm. Since the second-order

system (4.20) is linear and with constant coefficients, weicgegrate it fulfilling the boundary
conditions (4.17) and (4.22). Thus we have:

<LK0(T)) _ 1/ra+cogao(0) /Hg < 1 )
LQo(1))  exp(10,/Hi/cosap (0)7) \ \/Hg/cosao(0)/
In the same way we get from the egs. (4.21), (4.17) and (4.24):

(RKo(O')):_ 1/rg+cosap(1) /Hg ( 1 )
RQ(0) exp(I®¥/H5/ cosap (1) o) Hg/cosao (1))
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4.3.2 Example

We now apply the formulas of sec. 4.3.1 to an example. |Léhe reference length, be the
length of the (unique) convex configuration connecting tigiést points of the two rollga
and%g, which shall have the same radiuss ra = rg, and which are at the same elevatign (
value) (s. Fig. 4.4). Therefore the steady-state solus@symmetric one and has a reflectional

Figure 4.4: Example 4.3.2: A slightly bending-stiff cablewes axially between two rolls
which have the same radius and are at the same elevation.

symmetry with respect to the vertical axis that goes thrahghowest point of the cable. In the
k-th step we get the matched approximation:

| (k) | (k) 1

_ K 5 ; inHL_(+_ =
X0 = Xp +H0<arsmﬁ2H8]+arsmﬁH8 (t 2)]>+O(B)
_ K * |t 2_ @ _} 2
[k 1
ag = arctan—(t—2)] +O(B) (4.26)
2+L62 1K) 1
H* r %2 (1(K) t—=
Ko = 0 S Hg +(I /2) ZCOSh ( 2)</H52+(|(k)/2)2 +O(B)
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In Fig. 4.5(a) the two leading terms fap given in (4.26) are plotted for three different values
of the bending stiffnesB. The solution depicted is the result of the iterative precéhe ac-
curacy of the analytically found asymptotic solution préasel in Fig. 4.5(a) has been checked
by a numerically calculated solution of the iterative norear boundary value problem (4.15)
with COLSYS [2]. This solution is shown in Fig. 4.5(b). Obugly for small very good
agreement is achieved. The only perspicuous differencesiisle fort = 0.5. The reason for
this is that in contrast to the numerical solution, the matchsymptotic expansion disregards
the inextensibility of the cable.
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Per definition, the integration of the curvatuigrespective to the arclengyields the incli-
nation angleag of the steady-state configuration. Therefore we get a newhéyoundary
layers corrected angle through integration. But the resytiew configuration will a priori not
match the boundary conditions. Hence the ficticious hoteldorce - the parametét; - has

to be modified until the remaining boundary conditions cafulféled with sufficient accuracy.
Thus the iteration procedure for the not completely flextnlie completely inextensible cable
with constant cable lengthbetween the the two rolls also implies a variation of the peater
H; that depends on the line speed. The configurations restditbngsuch a force adaptive it-
eration procedure, applied to our example, are plottech®dimensionless bending stiffnesses
B2 = 0.001 in Fig. 4.6(a) ang8? = 0.01 in Fig. 4.6(b). In both pictures the corresponding
completely flexible configuration is plotted with a dashewli It is interesting to observe in
these figures how the point on the roll where the cable losetcbis varying when the bend-
ing stiffness is increasing. Therefore, in Fig. 4.7(a) wermadn the left roll and observe this
point for differentB?-values, but now as the numerical result of the iterativenolany value
problem (4.15) with COLSYS. Finally, the same numericaggration for differen{3? yields
the steady-state angtg that is plotted in Fig. 4.7(b).
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(a) Leading two terms in the matched asymptotic curvatup@aegion in (4.26).
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(b) Curvature resulting from the numerical solution of ttexative boundary value prob-
lem (4.15) with COLSYS [2].

Figure 4.5: Steady-state curvatuggof the symmetric ex. 4.3.2 with the roll-radius=1/20
and the bending stiffnessBs The different solution methods yield very well coincidirggults.
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(a) B2 = 0.001 (solid line) angB3? = 0 (dashed line)

(b) B% = 0.01 (solid line) ang3? = 0 (dashed line)

Figure 4.6: Example 4.3.2: The figure shows how the steaatg-shape of the configuration
varies when the curvature in (4.26) is integrated and caregty a matching iteration proce-
dure is performed. The configurations witB%(> 0, solid line) and withoutf§2 = 0, dashed
line) bending stiffness are depicted. It also becomes tiearthe bending stiffness forces the
variation of the point on the roll where it loses contact.
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(b) The inclination angle of the steady-state configuration

Figure 4.7: Results of the iterative boundary value problér5) using COLSYS [2].




Chapter 5

Numerical Simulation of the Steady-State
Solution between Two Rolls

In this chapter we describe one of the Finite Element simariatthat we performed in order to
check the steady-state results from chapter 4. For thisogsernwe usedABAQUS/Standarders.
6.4.1 which incorporates an implicit time-integrator foetdirect method in dynamical appli-
cations. In particular we are interested in surveying tfleémce of a slight bending stiffness in
the two-dimensional problem.

The axial motion implies a large displacement of the calbylecttre that may have an arbi-
trary sag between the rolls. Therefore the problem is in anggiacal sense highly non-linear.
Since the inextensible cable with a slight bending stiffnssmodelled by two-dimensional
beam elements that have a very high axial stiffness and dawtyending stiffness, the stiffness
matrix is numerically ill-conditioned. The supports of tbable as well as the rolls are mod-
elled as two-dimensional 'rigid bodies’, which are borakbg rigid and analytically defined
line segments in the plane. The contact between the cabliamidjid bodies is frictionless and
the impacts of the cable elements on the 'surface’ of thel figidies are completely inelastic.
Moreover, the special geometry of the supports and the irudiease the complexity of this
non-linear contact problem. A sufficient period of time hagpass by until the cable motion
tunes in a more or less axial steady-state motion. Conséyuwelarge number of elements is
necessary, if the cable does not have a cyclic structure.

All the facts mentioned above affect in a crucial manner thelexity of the numerical prob-

lem, resulting in a long simulation time even for the planaiylem. Furthermore we noticed
that if the cable is not a closed or cyclic structure the usmoife than one CPU in a parallel
mode does not appreciably improve the computing time. Torope the choice of elements as
well as the settings of the time integrator, a large numbeawuaferical tests is required.

In Fig. 5.1 we see different models that were tested to sitaule steady-state case. There
are basically two types of models depending on the cabletsirer either a closed one (e.g. Fig.
5.1(e)) or a open one. The advantage of closed structurleatifhiey get by with few elements,
the disadvantage is that due to the initial curvature of teenents the relaxed configuration
is not a straight one and thus the steady-state configuratipariodically disturbed. Another
problem with the cyclic structures is that due to the inétasipacts between the cable elements
and the rigid bodies, a drive mechanism is necessary. Thelestmopen model is depicted in
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— —

(a) A cable hanging between two 'tables’ is drawn on the ortkaard pushed on the other end.

— —

(b) Similar model to 5.1(a), but now there is a roll betweeantthio tables.

(c) Like 5.1(b), but with two rolls.

(e) A crossed and closed cable.

(f) Vertical cable feed-in.

(g) Model with a curvature prescribing inlet and outlet.

Figure 5.1: Different two-dimensional FE-models used towdate a steady-state cable motion
over rolls. The cable is modelled as a combination of hybuidd- and beam- Elements. The
latter have a slight bending stiffness. The rolls and tadtesnodelled as analytical rigid bodies.
The contact between this bodies and the cable is frictignlElse cable has no self-contact.
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Fig. 5.1(a). The cable has on the one hand an initial posétomhich it is hanging between
two rigid flat 'tables’ and on the other hand a constant anelguwaxial initial velocity. As the
arrows shall indicate, the cable moves from left to right.ef&fore the major part of it lies
initially on the left table and at the end of the simulatioa thhole cable is located on the right
table. In order to keep the axial velocity of the elementsrapimately constant during the
whole simulation, the velocity is permanently prescribadooth endpoints of the cable. The
edges of the tables are formed roundly to make the borderedfanging cable similar to rolls.
Nevertheless the cable behaves there in a different waydhawlls, since the bending stiff
cable loses already contact before it passes the edge amdhingurvature cannot be freely
prescribed. For this reason the border has to match morehtipesof a roll. The model in
Fig. 5.1(b) has such a roll in the middle and therefore twansghat are the model domains
where the cable is hanging without having contact. The d@aidge here is that each of the
spans is asymmetric due to the two different boundary cmmdit This problem is improved
in the model that is depicted in Fig. 5.1(c). The span in thdda is now symmetric, but
the stability of the equilibrium of the system consistingtimfee coupled cable spans must be
checked. Besides, the simulation time increases drdgtiddde models shown in Figs. 5.1(d)-
5.1(g) have only a single span which is bordered by two rdllee model in Fig. 5.1(d) is based
on the assumption that no self-contact is defined for theecdtnce the cable can be crossed
without a problem. The disadvantage here is that the sag beuktrge enough. Also in the
models of the Figs. 5.1(e) and 5.1(f) the sag cannot be cltasbérarily. The model displayed in
Fig. 5.1(g) seems to be most convenient for our purpose.eTdrertwo rolls fixed at the border
of each of the tables. During the simulation the straight peihe cable that is initially lying on
the left table (plotted in red in Fig. 5.2) has to pass a snwé hinder the first roll (from the left)
and then another small hole between the first and the secdnd hus the cable is forced to
have contact with the second roll before it gets into the sBamilar is the situation on the right
table where the cable after having contact with the roll aasspng two small holes is finally
horizontally drawn away along the table. The pairs of roliach of the tables can be regarded
as eyelets that additionally prescribe the curvature ofdhs. Fig. 5.2 shows the model at the
beginning of the simulation. The cable structure consistsvo parts: the first part (blue) to
which 160 hybrid truss elements T2D2H are assigned, modmswletely flexible and nearly
inextensible cable and has a length of approximate®sr8. The sequent part (red) to which
492 hybrid beam elements B21H are assigned, models a neaxiensible cable with a slight
bending stiffnessEJ = 0.0023Nn?) and has a length of approximatelyriO Both element
types have the same mass density (44fn°) and belong to the linear and hybrid formulated
two-node-elements. Since the cable has a relatively higdd atiffness EA = 104&kN), it is
reasonable to use elements in a hybrid formulation. At tlggnmeng of the simulation to every
node a tangential velocity of by sis assigned, so that the cable moves from the left to the.right
In the same manner if it is possiblen initial cable tension corresponding to the steady-state
case is assigned to every element of the cable. During the emntulation time T = 1s) the
horizontal velocity of 1@h/s at both endpoints is prescribed. In the last third of thistmeriod
the configuration within the span fluctuates slightly aroaristeady-state’ curve (s. Fig. 5.3).

Lin version 6.4.1 ofABAQUS/Standardnexpected severe problems arise when an initial stressaim lele-
ments is assigned. The support service of this commerdiavae promised this shortcoming would disappear in
one of the following versions.
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Figure 5.2: Initial configuration of the FE-Simulation witihhe model of Fig. 5.1(g). The red

part of the cable is built up of two-dimensional hybrid bedeneents B21H.
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The transient dynamical configuration is kind of asymmednd can be compared with the
corresponding symmetric result of the matched asymptapeamsion in chapter 4 (s. Fig. 5.4).
Besides, we can also check the simulation configuratiomag#ie results of the solution of
the iterative non-linear boundary value problem (4.15p@OLSYS [2] for different bending
stiffness values. (s. Fig. 5.5). We are not able to give ardeawer to the question of why
the configuration of the Finite Element Simulation is asyririoe One reason may be that
this happens because of discretization errors, anothda betthe inelastic interaction between
the cable and the rigid surface. It should be underlined e@ther a material damping was
included in the model nor was any numerical damping in thdioipime integration method
(Hilber-Hughes-Taylor) added.
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Figure 5.3: The cable in the span: the configuration af@@sbf the simulation time is depicted

in red, the completely flexible initial configuration in blue
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Figure 5.4:The configuration with bending stiffness approximated byadéamed asymptotic expansion.
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Figure 5.5: Comparison between the FE-simulation configarafter 086s and the numerical
steady-state solution with COLSYS [2] for different berglstiffness value§.




Chapter 6

Coupled Cable Spans

Up to now we were only looking at the motion of a cable betweemeyelets or two rolls. As
we mentioned in the introduction, the cable of a monocalteitating ropeway is a closed loop
and moves either through the air or over rolls. The sectiwhsre the cable moves through the
air over a more or less wide distance, are called the cablessf&ince it is a single cable that
passes through different spans, the dynamics of the cabiggarations in all cable spans of
the ropeway are coupled.

As we stated in eq. (3.14) of chapter 3, the steady-state ¢absion in a constant gravita-
tional field is a linear function of height. We can generalizis statement to be valid for the
entire cable loop of the whole ropeway by assuming that tleen® friction and no damping
mechanism between the spans. Hence in every point of the madp the section force is deter-
mined if we know the prescribed cable tension in the haulaygcd. This device is normally
located in one of the ropeway terminals where loading andadihg takes place. Let us num-
ber the spans all the way through, denoting the adjacent tepte haulage device with the
outgoing rope as the first one. Thus the prescribed cabletemsthe haulage device regulates
the sag of the steady-state cable configuration in the fidtrathe last span. Then the cable
tension is transmitted over a tower from the first span to dw®id span where it determines
the sag of the second span. Over the next tower the cabl®teissiirected to the third span
etc. Since the knowledge about this 'force-interactiortiien two neighbouring cable spans
is also important for the calculation of the initial configtion in a numerical simulation, we
now take a look at:

6.1 How the Cable Tension at the Border of a Span Influences
the Sag

Let there be a convex steady-state configuration of an sxmatlving cable connecting two
eyelets with a given cable tension at the inlet. We use thanpetrization of the catenary where
they-value is given as a function of thevalue, that is the functioMy with Yo(xo(S)) = Yo(S).
Then we choose the horizontal distaxgébetween the inlet and the outlet as reference lehgth
in order to apply the transformation (3.1) of chapter 3. Hethe egs. (3.10), (3.11) and (3.14)
yield the following dimensionless problem: The constants, anda have to be chosenin such
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a way that the functiorp(Xo) = ¢y + a coshj(xg — cx) /& fulfills the boundary conditions

Yo(0) =0, (6.1)
Yo(1) = Ve, (6.2)
(IIpoll —CZ)’XZOZYO(O)—CyZ PA (6.3)

with the given parametess, ¢ andpa. Plugging (6.1) into (6.3) we get, = —pa. Therefore,
by substituting

Yo(Xo) = a cosh(x0 ; CX) — A (6.4)
into (6.1) and (6.2) as well as defining the function
c
f(a,c)=a cosh<a>, (6.5)
we get the two equations
f<a7 CX) = Pa,

6.6
f(a,cx—1) = pa+ys. (6.6)
Hence the pair$a, cy) that fit in (6.4) lie in the intersection of the two one-dimemsal mani-
folds

o= {(a,c)|f(a,cx) = pa},
A1 =1{(8,6x)[f(a,6x—1) = pa+Ys}-

The functionf (a,c) is discussed in detail in appendix B. Due to the convexityaufheof the
domains enclosed hy7p and.#, the set#yN .#1 can only consist of no (s. Fig. 6.1(a)), one
(s. Fig. 6.1(b)) or two (s. Fig. 6.1(c)) intersection poimshe open half-plana> 0. In Fig. 6.1
we also see how the number of intersection points depengg.ofor 0< pa < perit there are
no intersection points (s. Fig. 6.1(d)). Then foyx = pgit the two cone-sections?y and.Z1
touch each other in the only intersection point (s. Fig.@)L(And finally for pa > pcrit there
are always two intersection points (s. Fig. 6.1(d)).

Thus for fixed eyelet-elevatioys, the cable tensioma at the left eyelet is a function of the
catenary parameter(s.a. Fig. 6.2):

(6.7)

Pa = p(a).

Due to the convex and conical propertiesfgf, c) (s. app. B) the functiop(a) has for any
yg the following characteristics: Firstly, there are two agyates, one foa \, 0" and one for
a— o, Secondly, there is a positive paramedgy; in such a way that

dp

d_a<07 O<a<aCI’it7
d

d_:.207 a:aCI'it7

dp

da’ 0, agit<a
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Figure 6.1: The two egs. in (6.6) define implicitly the twoees. 7 and.#; (s. Figs. 6.1(a)-
6.1(c)) in thea, cx-plane. Here the curves are depictedyige= 0.3 and intersect only ipa, the
prescribed cable tension at the left eyelet is equal to ¢s &1(b)) or greater than (s. Fig. 6.1(c))
a critical valuepgrit = 0.6255. The figures 6.1(d)-6.1(f) show the dependenceasf pa.

Thus for 0< a < agit the cable tensiom increases ifa decreases - the latter is for instance
the case if caused by a slight perturbation the sag increaskshe cable length between the
eyelets becomes longer. If in this case the prescribed ¢abonpa is kept constant, the
sag will increase perpetually. An analogous accelerabahin the other direction, takes place
if by a slight perturbatiora is increased. Therefore the steady-state solutions farad<
acrit are mechanicallynstable In the other case that &yt < a we notice thafp decreases
if a decreases. Consequently a perturbing small enlargemeaheafag would decrease the
necessary cable tensignso that a constana would work against the perturbation. In this
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Perit +

a‘crit

Figure 6.2: The convex functign(a) is enclosed by two asymptotes and has a local minimum at
a= aqit. The steady-state solutions fok(a < acrit are the unstable solutions and the solutions
for agit < aare stable.

sense the equilibrium solutions fagi; < a arestable In Fig. 6.3(b) we see as an example how
the stable and the unstable configurations look likg if= 0.3 andpa = 5pcit -

In ropeway applications of course the interesting steddieonfiguration is the mechan-
ically stable one. The corresponding intersection poiniZgf and.# is found by a Newton-
iteration in which due to the convex and conical propertie$(a, c) 'successful’ initial values
can be given easily. Finally, this procedure is applied &rggpan of the ropeway and a stable
steady-state configuration of the entire cable loop of tipeway is determined. Since in every
span there is such a critical cable tenspmpn so that the prescribed cable tensimnat the bor-
dering tower of this span has to fulfily > pcrit, we necessarily also get a minimal prescribed
cable tension in the haulage device of the aerial ropeway.
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(a) The two intersection points o#( (b) The stable and
and.#; correspond to a stable and an the unstable (dashed)

unstable configuration. configuration.
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(c) For pa > peit there are twoa-
branches, a stable and an unstable

(dashed) one.

Figure 6.3: In this plots foyg = 0.3 andpa = 3.1 we see how different the resulting steady-state
configurations are ipa is perspicuously higher thapi; (herepeit = 0.6255). In particular
one of the solutions is always mechanically stable and theratnstable.




Chapter 7

Numerical Simulation of The Dynamics of
Ropeways with Finite Elements

In this chapter we describe a way to simulate the three-déineal dynamics of a circulat-
ing monocable aerial ropeway using the Finite Element MethBor this purpose we used
ABAQUS/Expliciters. 6.5.3 which incorporates an explicit time-integrébo the direct method
in dynamical applications. Just as in chapter 5, the mairigl anotion of the cable implies
large displacements. Therefore the problem is in a geooca¢sense non-linear. The special
geometry of the pulleys and the sheave assemblies increasmiinplexity of this non-linear
contact problem.

7.1 The components of the model

In chapter 6 we saw how the steady-state configuration ofledugable spans of the ropeway
can be determined. By applying this method successivelll tbeacable spans, a steady-state
configuration for the whole cable loop is obtained. Thisgseathe initial positions and initial
velocities of the nodes of the cable loop elements as weheis initial stresses. The cable is
modelled by three-dimensional truss elements. In fact geaf more realistic beam elements
instead of truss elements would demand a prescription ahttial bending moment in every
node. Hence the inclusion of a bending stiffness of the calueld require a steady-state
bending moment calculation (s. chapter 4) of the whole ckdadp before the Finite Element
Analysis can start. In this model there is no self-conta¢hefcable.

On the towers of a ropeway the cable is in contact with roli t#ve gathered in a sheave
assembly. As we saw in chapter 1 (Fig. 1.2), the cable passéssheave assemblies above or
beneath and sometimes also above and beneath. In most cigée the shape of a carrying
or holding-down sheave assembly with many rolls can be sefffily well approximated by an
enveloping circular cylinder surface part. The correspogaylinder radius would be much
larger than the radius of the involved rolls. All the diffateéypes of sheave assemblies can be
modelled by ageneralized sheave assemblihis is a symmetric hyperbolically bent surface
which is generated by a semicircle that rotates around damersecting axis of the same plane
(s. Fig. 7.1). The contact between this funnel-shaped sgithce and the cable, which slides
through it like through a three-dimensional eyelet (s. Fig(a)), is defined as frictionless. The
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Figure 7.1: A generalized sheave assembly can be modelladhrge-dimensional surface of
revolution: a semicircle that has a radius which dependsherehvelope of the rolls rotates
around a non-intersecting axis of the same plane.

generalized sheave assembly prevents the cable from ¢ednarirack whenever the mesh of the
cable loop is sufficiently fine enough. This retention of thble track on the sheave assembly
is nowadays still a very practical safety-problem for whggveral investigations have to be
carried out [5].

The haulage pulley is the part of the ropeway where the caisidn is prescribed and
controlled. It is normally a sheave with an unconstrainedica rotation axis and it is pulled
pneumatically or by a weight perpendicularly to this axisubdlly it is situated in one of the ter-
minals or where the cable has to turn round an angle of 18@dsgiThe drive pulley is the part
of the ropeway where the axial cable line speed is stipuldtas also a sheave with a vertical
rotation axis, but normally it cannot move horizontallydikhe haulage pulley. If the haulage
pulley and the drive pulley coincide in this terminal, a iintial gear has to be installed.

We model the pulleys as rigid circular cylinders with a veatiaxis, combined with a cylindric
bearing surface or horizontal ramp that keeps the cablears#iime height (s. Figs.7.2(c) &
7.2(d)). For the sake of cable routing, at each terminal tyelets or generalized sheave as-
semblies for the incoming and the outgoing rope are necgsEhe contact between the cable
and the circular cylinder surface of the haulage pulley, e & the contact between the cable
and the ramps is frictionless. Only along the segment wheredble contacts the drive pulley,
friction is necessary.

Finally, the cabins or gondolas that are attached to theecabh be modelled in two ways:
either they are simply attached to the cable in certain nadesombinations of concentrated
mass elements with concentrated inertia elements, or tteepttéached as rigid bodies with
shape, mass and inertia tensor of a circular cylinder. Indtter case the cabins are connected
to the cable by spring-dashpot elements.
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(a) Basically the generalized sheave assembly. .. (b) ...acts like a three-dimensional eyelet.

(c) The haulage pulley and the drive pulley. .. (d) ...are modelled by cylindrical surfaces.

Figure 7.2: The generalized sheave assemblies on the tawéithe haulage and drive pulleys
of the bottom and top terminals are modelled by analyticatirsurfaces.
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Figure 7.3: An illustrative Finite Element model of a ropgweith two spans used to simulate
sag-oscillations. The drive pulley is located in the toprieal (on the right).

7.2 Sag-Oscillations due to Resonances

At the end of chapter 3 it was remarked that sag-oscillatt@msbe expected only if the cable
is externally excited.

A periodic external excitation of the cable happens foranse when the line speedof
the monocable ropeway is kept constant and the cabins orschig@ attached to the cable in
equidistant positions. Ifl is the distance between two adjacent cabins, therv/d is the
frequency of cabins entering the span from the outmost fallslheave assembly. Sinde-N/I,
whereN is the total number of cabins attached to the cable loop aftiér, we have:

f =N/l (7.1)

In Fig. 7.3 a ropeway model with two spans for the limited s of illustration of sag-
oscillations is depicted. The first span has a horizontahdee of 201 and a vertical distance
of 10m, the second span located next to the drive pulley has a hakdistance of 3® and
a vertical distance ofrs. The cable loop with a mass densjty=889%g/m?, a section area
A=9.05-10“*n? and a Young’ modulug =2- 10''Pahas an undistorted length bf 149.3m
and is modelled by thousand 2-node truss elements. Thescaf@modelled by a combination
of concentrated mass elementg{,=10kg) with spherically symmetric rotary inertia elements
(lij=&;m2,,/2 kg nf). They are connected to the cable loop by connector eleninésinitial
sags correspond to a prescribed cable tension ab3R8n the cable when it turns around the
haulage pulley.

The Figs. 7.4-7.6 show a series of Finite Element simulatwith this model.

In Fig. 7.4 we see eight simulations for=4.5mys after the elapsed simulation tinhe-40.4s.
During the whole simulation the most violent sag-oscitiasi are visible for the model with
four cabins N=4). Then, in Fig. 7.5 the simulations fer=6nys after an elapsed simulation
time t =40.9s can be seen. The most violent sag-oscillations are obsamvié® model with
three cabinsN =3). Finally, in Fig. 7.6 we see eight simulations for 9y/s after an elapsed

Lif the cabins are detached in the terminais, not exactly the cable loop length but still well defined.
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Figure 7.4: The model from Fig. 7.3 with different numbersabins N=0,1,2...7) after an
elapsed simulation time=40.4s. In this series of simulations the line speeds4.5nys.
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Figure 7.5: Like Fig. 7.4, but now after an elapsed simutatimet =40.9sand for a line speed

v="6Iys.
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Figure 7.6: Like Fig. 7.4, but now after an elapsed simutatimet =22.8sand for a line speed

v =9mys.
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Figure 7.7: The preprocessor progréat for ABAQUS/EXxplicit attaches cabins or gondolas to
the cable that are modelled as cylindrical rigid bodies wifirescribed mass and inertia tensor.
They are connected to the cable by spring-dashpot elements.

simulation timet =22.8s. In this case the most violent sag-oscillations are vidiiri¢he model
with four cabins N=2).

For all the three different velocities the maximal sag-lbettons in this test series happen if
Nv=18 m/s, that is due to eq. (7.1) for the same frequericgf cabins which leave a span
bordering tower. Hence the example of the series of sinarlatsuggests that sag-oscillations
are a resonance phenomenon due to external excitations.

7.3 Preprocessing

Whenever circulating monocable aerial ropeways are pi@ged might be very helpful to pre-
dict sag-oscillations due to resonances. Therefore wdale»@ a progranfiat which generates
input files for a direct dynamic analysis of such a ropeway ehadth ABAQUS/Explicit 6.5.3
The user feeds the program with important parameters suttfegsositions of the towers and
the pulleys, the material constants, the number of trusmeriés and the number of cabins
(s. Fig. 7.7) which are equidistantly attached to the calbleeoretically there is no limitation
for the size of the model, but of course it is a moot point whethis reasonable to simulate the
whole ropeway.

7.4 Example

As an example we produce wiffat the Finite Element model of the Silvrettabahn in Ischgl
(Austria) [12] (s. Fig. 7.8). This is a monocable ropeway athcomprises 21 cable spans, and
each gondola carries six persons.
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Step: Stepol Step: Stepol
Increment  990001: Step Time = 9,900 Increment 990001 Step Time =  9.900
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T Step. Sepo
Increment 990001 Step Time = 9,900

oL
Increment 990001 Step Time =  9.900
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Step: Stepol Step: Stepol
Increment  990001: Step Time = 9,900 increment 990001 Step Time = 9.900
Deformed Var: U Deformation Scale Factor: +1.000e+00 Def or med_Var Defor mati on Scal e Factor: +1.000e+00

Figure 7.8: Finite Element model of the Silvrettabahn imtgdAustria) [12]
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7.5 Remarks

As mentioned above, it is questionable whether the sinariat a whole ropeway is reasonable.
For instance the ski lift in Fig. 7.8 comprises 21 cable sartshas an undistorted cable length
of 37904m. Attaching 70 gondolas to the cable loop, which we model b0R0linear truss
elements, we can simulate the operation of the lift with a Bpeed off = 5m/s. If we limit
the time increment té\tyax= 10"°s, ABAQUS/Explicit Vers. 6.5.3 requires seven dayer
the simulation time& = 9.9s. Hence in this time the gondola covers a distance less th&m49
Since some of the cable spans are longer tham20@ould take more than a month to simulate
the path of a cabin from one tower to another.

7.6 Example

Fig. 7.9 shows another example of how the model produceddprhgranfiat can be used to
simulate realistic situations. The produced ABAQUS infiletvwas modified in such a way that
a similar situation like the tragical accident that tookgaelan Soelden (Austria) in the summer
of 2005 could be re-enacted. A helicopter that was flying)2@9er an aerial ropeway lost
a concrete hopper with a load of &) Unfortunately the cable was hit by the hopper not
far away from a gondola (s. Fig. 7.9(b)). Due to the impactdbepling mechanism of the
gondola opened in such a way that the cabin fell down. Suleselyuthis caused oscillations
which were so violent that even persons in the adjacent dasdeere thrown out through the
windows.

2computing on a cluster node with four Alpha-EV68 proces§biGHz, 8 MB Cache/CPU)
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(c)t =315s (d)t=316s

(e)t=318s (Ht=322s

Figure 7.9: The cable of the ropeway is hit by a hopper not faayafrom a gondola
(s. Fig. 7.9(b)). Due to the impact the coupling mechanisnthefgondola opens in such a
way that the cabin falls down.




Chapter 8

Conclusion

In our investigation on sag-oscillations of circulatingmocable aerial ropeways we primarily
looked at the dynamics of axially moving cables.

After deriving the equations of motions for the cable thatvewin an external force field in a
three-dimensional space, we observed that the same sybternes is acting on the cable as it
is acting on the fluid within a massless tube. Hence the maiidine cable configuration is the
same as of the centerline of such a fluid conveying tube.

In a constant gravitational field the steady-state configamdetween two eyelets is in general
either a convex or a concave catenary. Due to the inextdibsifithe cable, the corresponding
catenary parameter is independent of the cable line speslkeln the static case, a concave
configuration can be mechanically stable.

We discussed the steady-state configuration in dependenite@able line speed if the cable
tension is prescribed in one of the eyelets. Hence we madeltaervations for typical contem-
porary ropeway applications: on the one hand that the ces@ady-state configuration is not
a relevant one, and on the other hand that the sag does ptlyatict depend on the line speed.
As a matter of fact the cable-tension is linearly dependerthe height and thus in the same
way as the hydrostatical pressure depends on height in flaahamnics.

We analysed the eigenfrequencies and eigenmodes of tHarie-motion in dependence on
the cable line speed if the cable tension is prescribed inobtige eyelets. Hence we saw that
for typical contemporary ropeway applications the lowégeefrequencies and eigenmodes are
practically independent of the line-speed. Neverthelessaw that the line speed still remains
to be an important parameter since it is proportional to #teraal excitation frequency that is
acting on the cable caused by the equidistantly attacheday@s or chairs.

We showed that if we take rolls instead of eyelets as boueslate linear correction term van-
ishes at the points, where the steady-state configuratimmés the rolls tangentially. Therefore
in this case the boundary conditions of the linearized goltiurn out to be the same as if there
were two eyelets on the surfaces of the two rolls.

Moreover, we discussed the relationship between the shiaihe towest eigenmode and the
inextensibility of the cable.

Based on the analogy between the cable configuration anduidecfinveying tube, we stated
that there is no self-excitation of the axially moving calbdgween two eyelets. In particular we
came to the conclusion that violent sag-oscillations ofehe€opeways are caused by external
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oscillations.

In addition, we saw to what extend the planar steady-stdtgico of the cable between two
rolls in a constant gravitational field changes if the cableat perfectly flexible. Thus, in the
case of almost perfect flexible cables we considered thbtdlignding stiffness as a small per-
turbation of the completely flexible cable. We showed thatitha regular singularly perturbed
boundary value problem and after introducing boundaryrlageiables, we derived a formal
approximation for the solution that is a matched asympw@tigansion. This analytical results
were compared with numerical results that were computedntr&n90 using the boundary
value solver COLSYS. Especially at the boundaries wherdémeling stiffness plays a crucial
role, the two different methods showed very good agreement.

We described various two-dimensional Finite Element satioihs with ABAQUS/Standard that
were performed in order to check the results concerningtéaag-state motion of the cable.
Then we looked at the cable of a circulating monocable asydway which is actually a cable
loop. We observed that if we prescribe the cable tension owartin the adjacent cable span,
there might be two, one or no possible steady-state configaran the case of two solutions,
one is mechanically stable and the other one is mechanisadiiable.

Between two neighbouring cable spans of a ropeway there/ayala certain 'force-interaction’
over the sheave assemblies of the common tower. Thus if gecpbed cable tension in the
haulage device of the ropeway is high enough, a mechanst@ble steady-state configuration
of the cable loop can be determined. This configuration isrfstance necessary if a three-
dimensional Finite Element model of a ropeway has to be pmed.

Furthermore we showed an illustrative series of simulatithvat indicate how sag-oscillations
could be caused by resonance due to a periodic excitatiamafially moving cable. Basically
the phenomenon of sag-oscillations can be explained witbkasticity. Crucial, however, is
the fact that two or more cable spans have to be involved. @isly the configuration length
in one cable span increases while simultaneously the coafiga length in an adjacent span
decreases.

Finally, for the purpose of testing ropeways we developecbgram in C++ that helps to gen-
erate input-files for ABAQUS/Explicit.
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Appendix A

Regular Singularly Perturbed Boundary
Value Problem

In the subsection 4.3.1 of chapter 4 we perturbed the péridexible cable with a slight bend-

ing stiffness and saw that the steady-state configuratioretliout to be a regular singularly
perturbed boundary value problem. Since there are alsawilgingingularly perturbed bound-
ary value problems, we want to state now more precisely hoegalar singularly perturbed
boundary value can be defined and how a formal approximafidieosolution is derived in

the form of a matched asymptotic expansion (s. a. O'Malle))[1Furthermore we also will

go through the existence and the uniqueness of the soludioB¢hmeiser [27, 28] for more
details). Consider a singularly perturbed boundary vateblem of the form

ey = f(y,zt,¢),
Z=g(y,zt,¢€), (A1)

0= b(y(O) 7Z(O> ,Y(l) 72(1))7

where(.) = d(.) /dt andt € [0,1]. Furthermorey is a(n, +n_)-vector,zis anng-vector and
f, gandb are appropriate mappings. Let the reduced equations

0=1(y,2t,0)

be uniquely solvable with respect o= ¢(zt). Suppose that the matrik, (¢ (zt),zt,0)
hasn_ (stable) eigenvalues with strictly negative real parts andunstable) eigenvalues with
strictly positive real parts for atlin the closed intervdl0, 1]. For a solution of (A.1) we make
the ansatz

y(t,€) = @(z(t) ,t) +Ly(1) + Ry(0) + O(¢)

z(t,e) = z(t) + O(¢), (A-2)
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wheret =t/¢g, Ly(o) = Ry(o) = 0. Substituting in (A.1) yields

Z: g(¢(z_7t>7z7t7o>7

ly="1(9(2(0).0)+ Ly, 7(0).0,0).
2 Ry= 1 ((z(1).1)+ Ry Z(1),10). (3

0=Db(p(z(0),0) +Ly(0), Z(0), @(Z(1),1) +Ry(0) Z(1)),
Ly() = Ry(®) =0,

Schmeiser [27] deduced the following theorem about extgt@md uniqueness from the papers
of Vasileva & Butuzov [39] and Esipova [6]:

Theorem 1. Let f, g and b be continuously differentiable with respecafiovariables. Let
problem (A.3) have a stable solutidm Ly, Ry), i.e. the linearization of (A.3) afz Ly,Ry) is
invertible. Then there are constantg, d > 0, in such a way that fof < € < & a solution
(y(t,e),z(t,€)) of (A.1) exists, which satisfies (A.2) and is unique in a bt wadius é and
centre(@(zt) 4+ Ly(1) +Ry(0),z(t)) in the space &0, 1].




Appendix B

Properties of f(a,c) =acosh(c/a)

In eq. (6.5) of chapter 6 we defindda, c) and used some characteristics of this function, which
we will discuss now more in detail.
The functionf (a,c) is asymmetric with respect to the varialbland symmetric with regard

Figure B.1: Contour-plots of the functidr{a, c) in eq. (6.5) - light color means high value. The
similarity between the two pictures of different 'zoometar is typical for the parallel plane
sections of a geometrically three-dimensional cbreR3 for whichl™ € AT holds withA > 0.

to the variables (s. Fig. B.1) and fulfills for ald the equation
f(Aa,Ac)=Af(ac).

Thus all the curve&” = {(a,c)|f(a,c) = p} U (0,0) with different p are similar to each other
andf is more a homogeneous function of order one. In other worelgithph off is geomet-
rically a conical surface with its vertex if®, 0). Hence it becomes also clear that for non-zero
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Figure B.2: The domain enclosed by the life= {(a,c)|f(a,c) = p} U(0,0) has the are@’.

a one of the eigenvalues of the Hessian matriX (d, c) in thea, c-plane is zero and that at the
point (a,c) the eigenvector to the zero-eigenvalugasc). The other eigenvalue, representing
the other main curvature, is positive for positaeAs a consequence for constant non-zgro
the closed lin&g” wheref(a,c)=p (s. Fig. B.2), encloses a convex domain in taec)-plane
with azn areaA. The implicitly given function of¢” can be integrated analytically resulting in
A=p-

Finally, for the sequenag,(x) = n/ cosh(nx) with n € N it can be easily shown thdf’, g, (x) dx=
rtfor everyn and moreover that lif.. gn (X) = 11 (X). Hence we have

lim
a\o f(ac)

= 119(C),

so that the behaviour df(a,c) for a™\, 0" becomes comprehensible.
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