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Kurzfassung

Seilschwebebahnen stellen ein wichtiges Transportmittelin gebirgigen Regionen dar. Dennoch
kommt es jährlich, trotz hoher Sicherheitsmaßnahmen, zu mehreren unverhergesehenen Zwis-
chenfällen und leider auch zu Unfällen. Einige davon haben ihre Ursache in menschlichen Ver-
sagen, aber andere passieren auch aufgrund eines ungünstigen Zusammenwirkens von Anord-
nung und Betriebsbedingungen der Seilbahnen. Das hat zur Folge, daß manchmal große
unerwünschte Schwingungen des Seiles (Pumpschwingungen) auftreten. Diese gefährden aber
nicht nur den Fahrkomfort sondern auch die Sicherheit. Selbst bei der Planung moderner
Einseilumlaufbahnen greift man auf ziemlich einfache Modelle zurück, wenn man mögliche
Pumpschwingungen vorhersagen oder analysieren möchte. Manche dieser Modelle reduzieren
das komplexe mechanische System der gesamten Seilbahn auf ein System mit nur sehr wenig
Freiheitsgraden. Dieser starken Vereinfachung gehen klarerweise eine Vielzahl von Annahmen
voraus deren Gültigkeit aber fraglich ist. Dennoch bietetbereits das Seil alleine - als eindi-
mensionale kontinuierliche Struktur betrachtet - mit seinen unendlich vielen Freiheitsgraden
eine sehr facettenreiche und interessante Dynamik. Da diese daher auch bei der Erklärung von
Pumpschwingungen berücksichtigt werden sollte, ist der Ausgangspunkt dieser Untersuchung
die Dynamik eines axial bewegten Seiles.

Nach Aufstellung der allgemeinen Bewegungsgleichungen eines zwischen zweïOsen in
einem äußeren Kraftfeld räumlich und axial bewegten Seiles wird der Fall des konstanten Schw-
erefeldes diskutiert. Es werden die möglichen stationären Bewegungszustände beschrieben und
die Abhängigkeit dieser von der axialen Geschwindigkeit erläutert, wenn die Seilkraft in einer
der Ösen vorgegeben wird. Das entspricht auch der Situation in den Seilfeldern einer Ein-
seilumlaufbahn. In weiterer Folge wird das entsprechende linearisierte Problem diskutiert und
damit die Eigenfrequenzen und Eigenmoden, wobei auch hier die Abhängigkeit von der axialen
Geschwindigkeit behandelt wird. Außerdem wird erläutertwarum nicht zu erwarten ist, dass
Pumpschwingungen auf Grund von Selbsterregung entstehen.
Nach Aufstellung der stationären Bewegungsgleichungen eines axial bewegten biegesteifen
Seiles zwischen zwei Rollen, wird die Biegesteifigkeit als mathematische Störung behandelt.
Dies führt auf ein reguläres singulär gestörtes Randwertproblem, welches formal mit einer
asymptotischen Entwicklung approximiert wird. Dieses analytische Ergebnis wird mit der nu-
merischen Lösung dieses Randwertproblems verglichen. Weiters werden die Ergebnisse für die
stationäre Bewegung mit Finite Elemente Simulationen verglichen.
Die Seilbewegungsformen zweier benachbarter Seilfelder sind nicht voneinander unabhängig,
sondern werden durch die Seilkraft auf der dazwischen liegenden Stütze gekoppelt. Daher wer-
den die möglichen konvexen stationären Bewegungszustände in einem Seilfeld erörtert, wenn
die Kraft auf einer angrenzenden Stütze vorgegeben ist. Durch konsequente Weiterführung
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dieserÜberlegung erhält man den mechanisch stabilen stationären Bewegungszustand der Seil-
schleife einer Einseilumlaufbahn, bei der die Seilkraft inder Spannstation festgelegt wird. Mit
Hilfe dieses stationären Zustands der Seilschleife einerEinseilumlaufbahn kann ein dreidimen-
sionales Finite Elemente Modell einer solchen Seilbahn aufgestellt werden. An Hand von Sim-
ulationsbeispielen wird erklärt, wie Pumpschwingungen durch Resonanzen zustandekommen
können und wie praktische Probleme analysiert werden können.



Abstract

Aerial ropeways play an important role for transportation in mountainous regions. Unfortu-
nately, even if utmost care is taken of their operation, every year several accidents occur. Some
due to human mistakes, but some others also due to a combination of bad design and bad op-
erational conditions that might lead to sometimes large, undesired oscillations of the cable(sag-
oscillations). These oscillations are not only a problem ofcomfort for the passengers but can
also be a safety problem. Nowadays, when ropeways are constructed, rather simple models are
used to predict and analyse sag-oscillations. Some of thesemodels in fact reduce the complex
mechanical system of the entire ropeway to a few degrees of freedom which implies a lot of
underlying questionable assumptions. Moreover, the mere cable as a one-dimensional contin-
uous structure offers a variety of phenomena due to its infinite number of degrees of freedom.
Therefore, in this work the problem of sag-oscillations of the hauling rope is approached by
investigating the dynamics of axially moving cables.

First of all the equations of motion of the axially moving cable between two eyelets in an
external force field in a three-dimensional space are derived. After specializing in the constant
gravitational field, a survey of the different steady-statemotions is given and the dependence of
the configuration on the line speed is illustrated when the cable tension is prescribed in one of
the eyelets. This comes up to the situation in the span between the towers of a monocable rope-
way. Subsequently the corresponding linearized problem isstudied and the influence of differ-
ent line-speeds on the in-plane eigenfrequencies in a ropeway span is illustrated. Furthermore,
it is explained why solely external excitations are assumedto be the reason for sag-oscillations.
After deriving the steady-state equations of motion for thenot completely flexible cable be-
tween two rolls, the slight bending stiffness is treated as aperturbation. This yields a regular
singularly perturbed boundary value problem for which a formal approximation of the solution
is showed. This analytical result is compared with the numerical result of the boundary value
problem. Moreover, the steady-state configurations of the cable between two rolls are checked
by Finite Element simulations.
The interaction of the configurations of two adjacent cable spans is controlled by the cable ten-
sion at the sheave assembly of the interjacent tower. Hence the possible convex steady-state
configurations in a span for a given cable tension at one of theadjacent towers are discussed.
Based on this idea a steady-state configuration for a whole cable loop of a circulating mono-
cable ropeway for a prescribed tension in the haulage devicecan be obtained. Subsequently
this configuration is used to perform three-dimensional Finite Element simulations of arbitrary
monocable ropeways and finally, it is also discussed how sag-oscillations can be caused by
resonances as well as how real ropeways can be simulated.
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Notations

Symbol Meaning

Chapter 2
v constant velocity (line speed) of the cable in the eyelets
l cable length between the in- and the outlet
t time

χ(t) cable configuration at timet
E=(e1,e2,e3) fixed orthonormal vector basis

x1,x2,x3 Cartesian coordinates corresponding toE
g constant gravitational acceleration
g −ge2
s arc length

r(s, t) position ofχ(t)
τ reference time
ξ reference arc length

s(ξ , t) bijection between cable points and configuration points
R(ξ , t) position of the cable

h cable segment length
P(ξ , t) section force of the cable (cable tension)
F(ξ , t) the resultant external force per unit length

ξc center of mass of a small cable segment
O Landau order symbol
ρ mass density
A section area

p(s, t) section force of the configuration
f(s, t) external force per unit length function
D/Dt (v ∂/∂s+∂/∂ t)

rB=(xB,yB,0) position of the outlet
Chapter 3

ŝ, t̂, r̂ , p̂,c dimensionless quantities instead ofs, t, r ,p,v
χ0 steady-state configuration

r0(s)=(x0(s) ,y0(s) ,0) position ofχ0

p0(s) steady-state section force function
(. . .)′ ∂/∂s(. . .)

˙(. . .) ∂/∂ t(. . .)
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Symbol Meaning

t0(s) tangential vector ofχ0
n0(s) normal vector ofχ0

a0=(a,b,0) integration constant vector
‖ · ‖ Euclidean norm onR3

p̃ ‖p0‖−c2

p̃(±) two solutions for ˜p
α0(s) inclination angle ofχ0
κ0(s) curvature ofχ0

cx,cy integration constants
pmin min

s∈[0,1]
‖p0(s)‖

vcrit minimal velocity that is necessary for concave configurations
ε small perturbation parameter

r1(s, t) linear correction ofr(s, t)
p1(s, t) linear correction ofp(s, t)

u1,u2,u3 tangential, normal and binormal component ofr1

q1,q2,q3 tangential, normal and binormal component ofp1

γ(s) 1−c2/‖p0(s)‖
ℜ real part

(z1,z2,z3,z4) has to fulfill (u1,u2,q1,q2) = ℜ(z1,z2,z3,z4)
(z5,z6) has to fulfill (u3,q3) = ℜ(z5,z6)

ζk(s)=ξk(s)+ i ηk(s) components of the in-plane eigenfunction(k= 1, . . . ,4) and of
the out-of-plane eigenfunction(k=5,6)

µ = λ + i ω in-plane eigenvalue
ν = λ̄ + i ω̄ out-of-plane eigenvalue

r (in)
1 projection ofr1 onto thex1,x2-plane

r (out)
1 x3-component ofr1

A(in),B(in) the two independent components of an in-plane eigenmode
A(out),B(out) the two independent components of an out-of-plane eigenmode

f (dimensional) eigenfrequency
f1 lowest eigenfrequency

Chapter 4
l reference length (redefinition)

CA circle line representing the inlet roll
rA,mA radius and centre ofCA

xA,yA,φ ,sA x1-coordinate,x2-coordinate, inclination angle and arclength
at the point where the cable loses the contact with the rollCA

CB circle line representing the outlet roll
rB,mB radius and centre ofCB

xB,yB,ψ,sB x1-coordinate,x2-coordinate, inclination angle and arclength
at the point where the cable touches the rollCB first

TC
∣
∣
r tangential manifold onC at the pointr ∈ C

sA,0,sB,0 steady-state part ofsA,sB
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Symbol Meaning

sA,1,sB,1 linear correction ofsA,sB

P0,Q0 tangential and normal component ofp0

p∗
0 fictitious cable section force

P∗
0 tangential component ofp∗

0
H∗

0 ,V∗
0 horizontal and vertical component ofp∗

0
M0 = M0e3 sectional bending moment

B bending stiffness
ŝA,0, ŝB,0, x̂0, ŷ0 dimensionless quantities instead ofsA,0,sB,0,x0,y0

κ̂0, Ĥ∗
0 ,Q̂0,β dimensionless quantities instead ofκ0,H∗

0 ,Q0,B

x(k)
A ,x(k)

B ,y(k)
A ,y(k)

B xA,xB,yA,yB in thek-th iteration step

s(k)
A,0,s

(k)
B,0,φ

(k),ψ(k) sA,0,sB,0,φ ,ψ in thek-th iteration step
l (k) configuration length in thek-th iteration step
t scaled arclength variable during an iteration step

(.)′ d(.)/dt (redefinition)
y (κ0,Q0)
z (y0,α0)
f right hand side of the the singular part of the ODE
g right hand side of the the regular part of the ODE
b boundary conditions of the singularly perturbed BVP

(ȳ, z̄)=
(
κ̄,Q̄0, ȳ0, ᾱ0

)
solution of the reduced equation

ϕ auxiliary function for expressinḡy
µ−,e− stable eigenvalue and the corresponding eigenvector
µ+,e+ unstable eigenvalue and the corresponding eigenvector

τ,σ boundary layer variables
Ly = (Lκ0,LQ0) left boundary layer term
Ry = (Rκ0,RQ0) right boundary layer term

Chapter 6
Y0 catenary as a function of thex-value
pA ficticious cable tension at the inlet

f (a,c) a cosh(c/a) (redefinition)
M0,M1 manifolds associated with the boundary conditions

pcrit critical cable tension
acrit critical catenary parameter

Chapter 7
d is the distance between two adjacent cabins
f frequency of cabins entering the span (redefinition)
N number of cabins
l length of the cable loop

mcab mass of a cabin
Ii j tensor of rotational inertia
E Young’s modulus

∆tmax maximal time increment
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Chapter 1

Introduction

Nowadays, in particular when people shall be carried, oftencirculating monocable aerial rope-
waysare projected. These are ropeways where the transporting units (e.g. chairs or little cabins)
are attached to a single carrying and hauling rope orcable.1 This cable is a closed loop and
moves either through the air or over rolls. The latter is the case in the drive device, the haulage
device and on the towers. (s. Fig. 1.1)

Figure 1.1: Scheme of a circulating monocable aerial ropeway, e.g. a ski-lift.
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@@R
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��
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bottom
terminal

top
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In the drive device the cable is constrained to an axial motion with a constant velocity, and
in the haulage device the cable tension is prescribed. Finally if the ropeway is used as a means
of transportation over a large distance, towers withsheave assemblies, which are assemblies of
rolls (s. Fig. 1.2), are necessary along the track of the ropeway in order to reduce the sag of the
cable that is hanging in the air. Therefore the drive device,the haulage device and the towers
subdivide the track of the ropeway into severalspans.

The terminals where people get in or off normally coincide with either a driving device or
a haulage device. Usually the carrying units are attached tothe cable with detachable grips, so

1Here and in the following the words ’rope’, ’cable’ and ’string’ are used as synonyms.
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CHAPTER 1. INTRODUCTION 13

(a) A tower with a carrying sheave assembly. (b) Another carrying sheave assembly.

(c) A holding-down sheave assembly. (d) A sheave assembly that wedges the cable in.

Figure 1.2: On each tower a sheave assembly, that is an assembly of rolls, constrains the cable
to stay in its track. That means that the cable is forced to move over (Figs. 1.2(a) & 1.2(b)),
under (Fig. 1.2(c)) or between sheave assemblies (Fig. 1.2(d)).

that loading and unloading at low speed is possible, which isalso more comfortable. Only in
chair-lifts the chairs are sometimes permanently attachedto the cable.

In ropeway engineering the transient dynamics ofsag-oscillations2 are of particular interest
for circulating monocable aerial ropeways [12]. This is a nearly periodic change of the sag of
the cable curve with amplitudes of some meters and time periods of some seconds. It is not
only a problem of comfort for the passengers but can also be a safety problem.

Until now, when ropeways are constructed, rather simple models are used to predict and

2In German:Pumpschwingungen.
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analyse sag-oscillations [4, 12, 11]. Some of these models in fact imply only a single degree
of freedom for each span. Nevertheless, following literature, the cable as a one-dimensional
continuous structure offers a variety of phenomena due to its infinite number of degrees of free-
dom. Therefore in our investigation on sag-oscillations wewill primarily look at the dynamics
of axially moving cables.

In the year 1851 Rohrs [25] first modelled the vibrations of a uniform, inextensible sus-
pended chain hanging freely under its own weight. He obtained the approximate natural fre-
quencies or eigenfrequencies and responses of a cable with asmall sag to span ratio3 that is
defined as a sag to span ratio less than 1:8. Then in 1868 Routh [26] considered the symmetric
transverse vibration of a heterogeneous chain hanging in the form of a cycloid. He obtained an
analytical solution and the application of this chain modelto the uniform chain yielded Rohrs
model. Their solutions for cabel eigenfrequencies converged in the limit of a vanishing cable
sag, but they failed to reproduce the spectrum of the classical taut string. This shortcoming was
firstly explained by Irvine and Caughey [8] in 1974. They demonstrated that including cable
elasticity allows the small sagged cable model of Rohr to pass smoothly to the taut string model
in the limit of a vanishing cable sag. But also the earlier models of Soler [32] in 1970 and
Simpson [30] in 1972 were already capable of this transition. Furthermore, Simpson was the
first who analysed the linear in-plane vibration of a translating - that is an axially moving -
cable. His cable was elastic, had a small sag and moved through two fixed eyelets at the same
elevation. The small sag assumption guaranteed analyticalsolutions for the eigenfrequencies
and for the eigenmode shapes. Simpson noted that the introduction of a cable line speed leads
to complex vibration modes, that means to a non-constant phase shift in displacement along the
cable span. In 1985 Triantafyllou [37] extended Simpson’s plane travelling cable model to in-
clude either a very small or a very large cable sag and inclined eyelets. However, the cable in a
ropeway may have an arbitrary sag - not only a small or a very large one - and also out-of-plane
motions may occur. In 1987 Perkins and Mote [18] analysed thein-plane and the out-of-plane
linear vibrations of translating elastic cables having an arbitrary initial sag and an arbitrary eye-
let inclination after discretizing the equations by Galerkin’s method. Since in this calculations
the elasticity was crucial, they made some assumptions for the strain in the cable and the choice
of the material cable parameters in order to get the equations of motion. In 2001 Miroshnik [13]
analysed the steady-state motion of an inelastic axially moving cable. Besides the gravitational
force, he also introduced a viscous force acting tangentially on the cable. His solutions for
the inelastic cable were analytical. Two restrictions weremade in all of the mentioned analy-
sis: Firstly, the boundaries were always two eyelets, but inmost of the applications for axially
moving cables - such as in aerial ropeways - the boundaries are pulleys or rolls. Secondly, real
ropes have a bending stiffness which may play an important role for the solutions, especially
if the boundaries are not eyelets. As we shall see, in this case a slight bending stiffness can be
introduced by means of a boundary layer solution using the singular perturbation theory.

3Instead of ’small sag to span ratio’ we will just say ’small sag’.



Chapter 2

Mechanical Model and Equations of
Motion for the Cable

Consider acable, modelled as an inextensible homogeneousone-dimensional structurewith-
out bending stiffness or torsion rigidity, moving in an external force field in three-dimensional
space. In our case this external force field consists of a constant gravitational force field and in
some spatial regions of contact forces1 between the cable and other materia, such as rolls or a
viscous medium.

Let there be twoeyelets, modelled as two different fixed points in space through which the
cable always runs through and where as a consequence the motion of the cable can only be an
axial one. Letv be a constantvelocityof the purely axial motion in both of the two eyelets such
that the mass of the connecting cable part always stays the same. Hence forv 6= 0 it makes
sense to denote one eyelet as theinlet and the other one as theoutlet. Furthermore due to the
inextensibility of the cable, it has always the samelength lbetween the in- and the outlet.
In some cases it is useful to define aclosed cableidentifying cable materia which runs through
the inlet with the cable materia that simultaneously runs through the outlet. This situation
becomes a physical one if the two eyelets are unified in a single one which drives the cable.

For everytime t∈ R the cable has a certainconfigurationχ(t) which is defined as the curve
that is described by the cable part connecting the eyelets att.

We introduce Cartesian coordinatesx1,x2,x3 corresponding to the orthonormal vector basis
E=(e1,e2,e3) so that the inlet coincides with the origin, that the outlet lies in thex1,x2-plane
with a non-negativex1-component and in such a way that the constant gravitationalacceleration
can be written asg=−ge2. Then letχ(t) be located byr(s, t) with the arc lengths∈ [0, l ] so
thatr(0, t) = 0 is valid for all t.

At a fixed reference timeτ the cable material can be labelled by thereference arc lengthξ
in such a way thatξ = 0 denotes the material cable point which passes the inlet att = τ. Since
v is constant and the cable is inextensible, a material cable point between the in- and the outlet
which is labelled byξ can be identified with the curve point of the configurationχ(t) at arc
length

s(ξ , t) = ξ +v(t − τ) . (2.1)

1Here and in the following self-contact of the cable is not taken into account.

15
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Let R(ξ , t) be the position of the material point (labelled by)ξ at time t in our coordinate
system. Then the following relation holds:

R(ξ , t) = r(s(ξ , t), t) . (2.2)

Consider at timet a very small cable material segment of lengthh on its path from the in- to
the outlet and labelled by the interval[ξ ,ξ +h], so that the endpoints are located atR(ξ , t) and
R(ξ + h, t). If we cut this segment out of the cable then letP(ξ + h, t) and−P(ξ , t) be the
section forces acting on the right and left border. Due to thelack of bending stiffness the vector
P(ξ , t) can only be tangential to the cable. This fact and the inextensibility of the cable can be
expressed by:

∂
∂ξ

R(ξ , t) =
P(ξ , t)

‖P(ξ , t)‖, ∀ξ . (2.3)

Equation (2.3) also implies that the cable tension and the cable tangential vector have always
the same orientation. Furthermore we denote the function ofthe resultant external force per unit
length byF(ξ , t). With the center of massξc ∈ (ξ ,ξ +h) of this cable segment, Newton’s law
yields:2

ρAh
∂ 2

∂ t2R(ξc, t) = h F(ξc, t)+P(ξ +h, t)−P(ξ , t)+O(h2) ,

where the constantsρ andA denote the mass density and the section area. After dividingthis
equation byh the limit h→ 0 yields:

ρA
∂ 2

∂ t2R(ξ , t) = F(ξ , t)+
∂

∂ξ
P(ξ , t) . (2.4)

Eqs. (2.3) and (2.4) are theequations of motionfor R andP - the state variables of thematerial
cable pointξ . In the same way as in (2.2) we define a cable force functionp(s, t) as well as
an external force per unit length functionf(s, t) so thatp(s(ξ , t), t) = P(ξ , t) andf(s(ξ , t), t) =
F(ξ , t). With eqs. (2.1) and (2.2) we get:

∂
∂ t

R(ξ , t) =
d
dt

r(s(ξ , t), t)

=
∂s(ξ , t)

∂ t
∂
∂s

r(s(ξ , t), t)+
∂
∂ t

r(s(ξ , t), t)

=
(
v

∂
∂s

+
∂
∂ t

)
r(s(ξ , t), t) ,

∂
∂ξ

P(ξ , t) =
∂s(ξ , t)

∂ξ
∂
∂s

p(s(ξ , t), t) =
∂
∂s

p(s(ξ , t), t) .

2The (Landau) order symbolO has the following meaning: Withf (ε),g(ε) ∈ R for ε ∈ (0,ε0] the relation
f (ε) = O(g(ε)) for ε → 0 holds, if there is a constantC > 0, which is independent ofε, in such a way that
| f (ε)| ≤C|g(ε)| for ε ∈ (0,ε0].
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On the one hand, defining the operatorD2

Dt2 =
(
v ∂

∂s + ∂
∂ t

)2
we get from eq. (2.4):

ρA
D2

Dt2r(s, t) = f(s, t)+
∂
∂s

p(s, t), ∀s∈ [0, l ] (2.5)

and on the other hand we get from eq. (2.3):

∂
∂s

r(s, t) =
p(s, t)

‖p(s, t)‖, ∀s∈ [0, l ] . (2.6)

Thus (2.5) and (2.6) are theequations of motionfor r andp - the state variables of thecable
configuration point s. Furthermore, ifrB with ‖rB‖ ≤ l denotes the position of the outlet (within
thex1,x2-plane) then the following six boundary conditions have to be fulfilled:

r(0, t) = 0, r(l , t) = rB, ∀t. (2.7)

Hence we can summarize the whole problem:

∀s∈ [0, l ] :







ρA
D2

Dt2r(s, t) = f(s, t)+
∂
∂s

p(s, t),

∂
∂s

r(s, t) =
p(s, t)
‖p(s, t)‖,

r(0, t) = 0,

r(l , t) = rB .

(2.8)

Finally it should be remarked that the same system of forces is acting on the cable as it is
acting on a streamtube fluid or on the fluid within a massless tube [38, 34, 7]. Therefore the
linear momentum balance law and the angular momentum balance law can be applied in the
same way as to the fluid within such a piece of tube. Obviously,a cable configuration point
corresponds in this analogy to a point on the centerline of a fluid conveying tube.



Chapter 3

The Cable in a Constant Gravitational
Field

The external force per unit length for a free - that is withoutany contact - moving cable in a
constant gravitational field isf(s, t) = −ρAge2 and therefore eq. (2.5) yields:

ρA
D2

Dt2r(s, t) = −ρAge2+
∂
∂s

p(s, t), ∀s∈ [0, l ] .

This equation as well as the inextensibility eq. (2.6) can bebrought into a dimensionless form
by substituting

s= ŝ l, t = t̂
√

l/g, r = r̂ l , p = p̂ρAgl, v = c
√

gl (3.1)

and dropping afterwards the ” ˆ ”-symbol as well as redefiningD2

Dt2 =
(
c ∂

∂s + ∂
∂ t

)2
. Thus we can

summarize the whole problem:

∀s∈ [0,1] :







D2

Dt2r(s, t) = −e2 +
∂
∂s

p(s, t),

∂
∂s

r(s, t) =
p(s, t)

‖p(s, t)‖,

r(0, t) = 0,

r(1, t) = rB, ‖rB‖ ≤ 1 .

(3.2)

3.1 The Steady-State Problem

Now we look for a time-independent orsteady-statesolution of problem (3.2). We denote the
time-independent configuration byχ0 and the corresponding functions byr0(s) andp0(s). Thus

18
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with the abbreviation(. . .)′ = ∂
∂s(. . .) we get from problem (3.2) the steady-state subproblem:

∀s∈ [0,1] :







c2r ′′0(s) = −e2 +p′
0(s),

r ′0(s) =
p0(s)

‖p0(s)‖
,

r0(0) = 0,

r0(1) = rB .

(3.3)

Let χ0 have the tangential vectort0(s) and the normal vectorn0(s) - each of them has length
one. Then because oft0(s) = r ′0(s), the two differential equations in (3.3) are equivalent to

p0(s) = ‖p0(s)‖ t0(s),
[(
‖p0(s)‖−c2) t0(s)

]′
= e2

We integrate the last equation and get
(
‖p0(s)‖−c2) t0(s) = s e2+a0 (3.4)

with the integration constanta0 ∈ R
3. Eq. (3.4) shows that all the tangential vectors ofχ0 lie

in the subspace that is spanned bye2 anda0. If the inlet lies in the origin and the outlet in a
point of thex1,x2-plane, thena0 and therefore alsoχ0 has to lie in thex1,x2-plane.1 It is useful
to define the function ˜p = ‖p0‖−c2, which doesn’t have to be positive. Then eq. (3.4) can be
written as

p̃(s) t0(s) = a e1 +(s+b) e2 a,b∈ R . (3.5)

Squaring eq. (3.5) yields

p̃2 = a2+(s+b)2

and hence there are obviouslytwo solutions for ˜p, namely:

p̃(±) = ±
√

a2+(s+b)2 . (3.6)

Finally we choose the orientation of thex1-axis in such a way that thex1-component of the outlet
is a non-negative value. As a consequence thex1-component of the tangential vector, which
never changes its sign also has to be a non-negative value. Therefore we have to distinguish the
four casesa > 0, aց 0+, aր 0− anda < 0.

3.1.1 Curved configurations

This is the case when the outlet doesn’t lie on thex2-axis. From eq. (3.5) and (3.6) we get the
tangential vector. We have to distinguishtwo cases:

t0(s) =





x′0(s)
y′0(s)
z′0(s)



 =
1

√

a2+
(
s+b

)2





a
s+b

0



 ·
{

(+1), a > 0, p̃ = p̃(+)

(−1), a < 0, p̃ = p̃(−)
(3.7)

1Hence we will not care about thex3-component in the notation of this section.
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If we devide thex2-component oft0 by thex1-component, we get the slope oft0 relative to the
x1-axis. Thus the inclination angle and the curvature are:

α0(s) = arctan

(
s+b

a

)

, κ0(s) =
a

a2+(s+b)2 .

In both of the cases integration of eq. (3.7) yields

x0(s) = a arsinh

(
s+b

a

)

+cx , cx ∈ R (3.8)

y0(s) = a

√

1+

(
s+b

a

)2

+cy , cy ∈ R (3.9)

and with rB = (xB,yB,0) the constantsa,b,cx,cy have to be chosen in such a way that the
boundary conditions

x0(0) = 0, y0(0) = 0, x0(1) = xB, y0(1) = yB (3.10)

are fulfilled. If we expressy0 by x0 using eq. (3.8) and eq. (3.9) then we get

y0 = cy +a cosh

(
x0−cx

a

)

. (3.11)

3.1.2 Straight configurations

This can only be the case when the outlet lies on thex2-axis. From eq. (3.5) and (3.6) we get
the tangential vector fors 6= −b. Here we have to distinguishtwo cases:

t0(s) =





x′0(s)
y′0(s)
z′0(s)



 =
1

|s+b|





0
s+b

0



 ·
{

(+1), aց 0+, p̃ = p̃(+)

(−1), aր 0−, p̃ = p̃(−)
(3.12)

Integration yields:

y0(s) = cy + |s+b| ·
{

(+1), aց 0+, p̃ = p̃(+)

(−1), aր 0−, p̃ = p̃(−)
, cy ∈ R . (3.13)

With rB = (0,yB,0) the constantsb,cy have to be chosen in such a way that the boundary
conditions

y0(0) = 0, y0(1) = yB

are fulfilled.
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3.1.3 Remarks

The cable configuration or curve that connects the two eyelets in a gravitational field can be only
one of the four types described above, but not a combination of them, since due to eq. (3.6) this
would imply a jump in the cable tension‖p0‖. Such a jump is impossible without an external
point load.

Fora 6= 0 we notice from eq. (3.11) thaty0 as a function ofx0 is convexif a> 0 andconcave
if a < 0. For all a the cable configurations are independent of the velocity c. In particular
the convex curve connecting the eyelets for an arbitrary velocity c is exactly the same as in
statics. Unlike in statics the existence of concave configurations is possible. Since the cable
has to be under tension as a matter of fact, concave configurations are only possible if for the
cable configuration points ˜p < 0 and simultaneously‖p0‖ = p̃+c2 > 0 can be satisfied. Hence
c > 0 must hold and that is why in the case of elastic cables Perkins and Mote [18] called this
phenomenonspeed tensioning.

Comparing eq. (3.6) with eq. (3.9) and (3.13), we notice thatin any case the relation

‖p0‖ = y0−cy +c2 (3.14)

holds. Obviously the cable-tension‖p0‖ is linearly dependent on the ’height’y0 and thus in the
same way as the hydrostatical pressure depends on height in fluid mechanics.

3.1.4 Example

We want to check whether the concave steady-state configuration is relevant for the application
of cable dynamics to circulating monocable aerial ropeways. As mentioned above, ˜p must
become less than zero. Therefore the critical value for the ˜p is given, if ‖p0‖ = c2 or after
substituting back into dimensional quantitiesp0 → p̂0 → p0/(ρAg), c→ v/

√
gl :

‖p0‖ = ρAv2 .

Hence, if we know the tension‖p0‖ = pmin at the lower eyelet, we can calculate the critical
velocity

vcrit =

√
pmin

ρA
. (3.15)

Concave configurations do exist only forv > vcrit. The value ofvcrit becomes small, ifpmin is
small or if ρA is big. For monocable aerial ropewayspmin > 104 N andρA < 10 kg/m. From
eq. (3.15) follows thatvcrit > 31.6 m/s. Nowadays even the fastest monocable ropeways do not
surpass a velocity of 10m/s. This means we are at least at factor three under the criticalvelocity,
and therefore the concave steady-state configuration is nowadays not relevant for this kind of
ropeways.

3.1.5 Example

The first large span for the outgoing rope after the bottom terminal of a circulating monocable
gondola ropeway that carries ski-tourists to a mountain (s.Fig.3.1) shall be bordered by two
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Figure 3.1: Scheme of the ropeway span in example 3.1.5.

towers, so that the horizontal distance of the cable in the air is 67.65mand the vertical distance is
19.25m. The haulage device shall be installed at the bottom terminal of the ropeway prescribing
there a cable tension‖p0‖ = 240000N. Since the lower tower lies at the same height as the
hauling device, the cable tension there is the same. In absence of gondolas, the sag and the
length of the steady-state cable configuration are uniquelygiven by the cable tension on the
lower tower. Using the equations of section 3.1.1, we want toanalyse to what extent the cable
line speedv in the steady-state convex configuration influences the curve length if the prescribed
cable tension on the lower tower is kept constant. In our caseFig.3.2 shows that up to a cable
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Figure 3.2: Example 3.1.5: The curve lengthl of the convex steady-state configuration in de-
pendence on the cable line speedv.

line speed of 120m/s the curve length and therefore also the sag (s. Fig.3.3) of the rope is
approximately constant. Then the length increases rapidlyuntil it reaches a maximum at a
cable velocity of 169.74m/s. Above this speed value the tensioning device is not able anymore
to support the cable tension of the span. As was stated in the example before: nowadays even
the fastest monocable ropeways do not surpass a line speed of10 m/s. This means that in our
application the sag would practically not depend on the linespeed.
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Figure 3.3: The sag of the convex steady-state configurationin the span of example 3.1.5 in-
creases with the increasing line speedv. Forv = 169.74m/s, the maximal sag is reached.

3.2 The Linearized Problem

We now want to study the dynamics of the cable if it is almost but not exactly in the steady-state
motion.

Let χ0 be a steady-state configuration of (3.2) and letε be the distance between the state
of a general configurationχ(t) and the state ofχ0, both elements of a suitable Banachspace.
Assuming thatε is very small, we make the following ansatz:

r(s, t) = r0(s)+ ε r1(s, t)+O(ε2) ,

p(s, t) = p0(s)+ ε p1(s, t)+O(ε2) ,

Plugging this into the first equation in (3.2) and comparing coefficients ofε, we come to

D2

Dt2r1(s, t) = p′
1(s, t), ∀s∈ [0,1] . (3.16)

Furthermore we have

1
‖p‖ =

[
(p0 + ε p1 + . . .) · (p0 + ε p1 + . . .)

]− 1
2

=
[

p2
0 +2ε p0 ·p1+O(ε2)

]− 1
2

=
1

‖p0‖
[

1+2ε
p0 ·p1

p2
0

+O(ε2)
]− 1

2
,

so that if the absolute value of the term 2ε p0·p1
p2

0
+ O(ε2) within the brackets is smaller than
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one, it makes sense to write:

p
‖p‖ =

(p0+ ε p1+ . . .)

‖p0‖
[

1− ε
p0 ·p1

p2
0

+ . . .
]

=
p0

‖p0‖
+ ε

(
p1

‖p0‖
− p0

‖p0‖

(
p0

‖p0‖
· p1

‖p0‖

))

+O(ε2) .

Plugging this into the second equation in (3.2) and comparing coefficients ofε, we come to

r ′1 =
p1

‖p0‖
− p0

‖p0‖

(
p0

‖p0‖
· p1

‖p0‖

)

. (3.17)

In the same way we get the homogeneous boundary conditions and we summarize:

∀s∈ [0,1] :







D2

Dt2r1 = p′
1,

r ′1 =
p1

‖p0‖
− p0

‖p0‖

(
p0

‖p0‖
· p1

‖p0‖

)

,

r1(0, t) = 0,

r1(1, t) = 0 .

(3.18)

We make the following ansatz

r1(s, t) = u1(s, t) t0(s)+u2(s, t)n0(s)+u3(s, t)e3 , (3.19)

p1(s, t) = q1(s, t) t0(s)+q2(s, t)n0(s)+q3(s, t)e3 (3.20)

and using the relations

t′0(s) = κ0(s)n0(s), n′
0(s) = −κ0(s) t0(s),

we get

r ′1 = (u′1−κ0u2) t0+(u′2 +κ0u1)n0 +u′3e3 , (3.21)

p′
1 = (q′1−κ0q2) t0+(q′2 +κ0q1)n0 +q′3e3 . (3.22)

Besides, due to the inextensibility and due to (3.3) we have

t0 = r ′0 =
p0

‖p0‖
and plugging (3.20) into eq. (3.17) we come to

r ′1 =
p1

‖p0‖
− t0

(

t0 ·
p1

‖p0‖

)

= n0

(

n0 ·
p1

‖p0‖

)

+e3

(

e3 ·
p1

‖p0‖

)

=
1

‖p0‖
(q2n0+q3e3) . (3.23)
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Comparing (3.23) with (3.21), we get the following three equations:

u′1−κ0u2 = 0, (3.24)

u′2+κ0u1 =
q2

‖p0‖
, (3.25)

u′3 =
q3

‖p0‖
. (3.26)

The homogeneous boundary conditions in (3.18) are equal to:

u1(0, t) = 0, u1(1, t) = 0,

u2(0, t) = 0, u2(1, t) = 0,

u3(0, t) = 0, u3(1, t) = 0.

With the abbreviatioṅA = ∂
∂ t A for an arbitrary quantityA we get from (3.19) and (3.23)

r̈1 = ü1 t0 + ü2n0+ ü3e3 ,

ṙ ′1 =
1

‖p0‖
(q̇2n0+ q̇3e3) ,

r ′′1 =
1

‖p0‖

[

−q2κ0 t0 +

(

q′2−
‖p0‖′
‖p0‖

q2

)

n0 +

(

q′3−
‖p0‖′
‖p0‖

q3

)

e3

]

,

so that

D2

Dt2r1 = r̈1 +2cṙ ′1 +c2r ′′1

= ü1 t0 + ü2n0+ ü3e3 +
2c

‖p0‖
q̇2n0+

2c
‖p0‖

q̇3e3

− c2

‖p0‖
q2κ0 t0 +

c2

‖p0‖

(

q′2−
‖p0‖′
‖p0‖

q2

)

n0 +
c2

‖p0‖

(

q′3−
‖p0‖′
‖p0‖

q3

)

e3

=

[

ü1−
c2

‖p0‖
q2κ0

]

t0+

[

ü2+
2c

‖p0‖
q̇2+

c2

‖p0‖

(

q′2−
‖p0‖′
‖p0‖

q2

)]

n0 (3.27)

+

[

ü3 +
2c

‖p0‖
q̇3+

c2

‖p0‖

(

q′3−
‖p0‖′
‖p0‖

q3

)]

e3

Due to (3.16) this should be equal top′
1. Thus the comparison of (3.27) with (3.22) yields

q′1−κ0q2 = ü1−
c2

‖p0‖
q2κ0 , (3.28)

q′2+κ0q1 = ü2+
2c

‖p0‖
q̇2+

c2

‖p0‖

(

q′2−
‖p0‖′
‖p0‖

q2

)

, (3.29)

q′3 = ü3+
2c

‖p0‖
q̇3+

c2

‖p0‖

(

q′3−
‖p0‖′
‖p0‖

q3

)

. (3.30)
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As we can see from eq. (3.26) and (3.30), the equations of (3.18) concerning thex3-direction
can be decoupled. Therefore, defining the function

γ(s) = 1− c2

‖p0(s)‖
,

eqs. (3.24)-(3.26) and (3.28)-(3.30) with the homogeneousboundary conditions describe an
in-plane-motion

∀s∈ [0,1] :







u′1 = κ0u2,

u′2 = −κ0u1+
q2

‖p0‖
,

q′1 = ü1+ γ κ0q2,

q′2 =

[

ü2+
2c

‖p0‖
q̇2−

c2‖p0‖′
‖p0‖2 q2−κ0q1

]
1
γ
,

u1(0, t) = 0,

u2(0, t) = 0,

u1(1, t) = 0,

u2(1, t) = 0

(3.31)

and anout-of-plane-motion

∀s∈ [0,1] :







u′3 =
q3

‖p0‖
,

q′3 =

[

ü3 +
2c

‖p0‖
q̇3−

c2‖p0‖′
‖p0‖2 q3

]
1
γ
,

u3(0, t) = 0,

u3(1, t) = 0,

(3.32)

which can be solved separately.
In the following sections it will be comfortable to use complex quantities. Therefore we

denote byℜz the real part ofz∈ C or the vector of the real parts of the components ofz if
z∈ Cn, with 1≤ n < ∞.

3.2.1 Eigenmodes of the In-plane-motion

With
(u1,u2,q1,q2)= ℜ(z1,z2,z3,z4) we convert problem (3.31) into a complex one and try to find
solutions using the complex ansatz

zk(s, t) = eµtζk(s), ∀k, (3.33)
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choosingµ ∈ C in such a way that the now ordinary differential equation system

∀s∈ [0,1] :







ζ ′
1 = κ0ζ2,

ζ ′
2 = −κ0 ζ1+

1
‖p0‖

ζ4,

ζ ′
3 = µ2ζ1+ γ κ0ζ4,

ζ ′
4 =

[

µ2ζ2 +
2c

‖p0‖
µζ4−

c2‖p0‖′
‖p0‖2 ζ4−κ0ζ3

]

/γ,

(3.34)

with the complex homogeneous boundary conditions

ζ1(0) = 0, (3.35)

ζ2(0) = 0, (3.36)

ζ1(1) = 0, (3.37)

ζ2(1) = 0 (3.38)

can be fulfilled. Obviously, solutions of the boundary valueproblem (3.34)-(3.38) are unique up
to an arbitrary complex factor. Therefore we can demand one more complex equation (or two
real equations) to be fulfilled at a boundary value - thus we choose the following normalization
and phase condition:

|ζ1(0)|2+ |ζ2(0)|2
︸ ︷︷ ︸

=0, eq.(3.35),(3.36)

+|ζ3(0)|2+ |ζ4(0)|2 = 1, ζ3(0) = ζ̄3(0) ∈ R . (3.39)

By separating real- and imaginary-part for

ζk(s) = ξk(s)+ i ηk(s),

µ = λ + i ω,

and also in the eqs. (3.34)-(3.38), we get the followingeightcoupled real ordinary differential
equations:

ξ ′
1 = κ0ξ2,

ξ ′
2 = −κ0ξ1 +

1
‖p0‖

ξ4,

ξ ′
3 =

(
λ 2−ω2)ξ1+ γ κ0ξ4−2λωη1,

ξ ′
4 =

[
(
λ 2−ω2)ξ2−κ0ξ3 +

(
2cλ
‖p0‖

− c2‖p0‖′
‖p0‖2

)

ξ4−2λωη2−
2cω
‖p0‖

η4

]
1
γ
,

η ′
1 = κ0η2,

η ′
2 = −κ0η1 +

1
‖p0‖

η4,

η ′
3 =

(
λ 2−ω2)η1+ γ κ0η4+2λωξ1,

η ′
4 =

[
(
λ 2−ω2)η2−κ0η3+

(
2cλ
‖p0‖

− c2‖p0‖′
‖p0‖2

)

η4+2λωξ2 +
2cω
‖p0‖

ξ4

]
1
γ
,

(3.40)
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and as mentioned above the real parametersλ andω have to be chosen in such a way that these
eightboundary conditions

ξ1(0) = 0 , (3.41)

η1(0) = 0 , (3.42)

ξ2(0) = 0 , (3.43)

η2(0) = 0 , (3.44)

ξ1(1) = 0 , (3.45)

η1(1) = 0 , (3.46)

ξ2(1) = 0 , (3.47)

η2(1) = 0 , (3.48)

are fulfilled. The normalization-phase convention (3.39) can be formulated now as:

ξ 2
3 (0)+ξ 2

4 (0)+η2
4(0) = 1 , (3.49)

η3(0) = 0 . (3.50)

In order to find the right(λ ,ω)-values, we look at the system (3.40) withnewboundary condi-
tions substitutingtwo of the last four boundary conditions - let us say for instanceeqs. (3.45)
and (3.46) - by the eqs. (3.49) and (3.50). We solve this boundary value problem varying the
values ofλ andω as long as the original boundary condition eqs. (3.45) and (3.46) are fulfilled.
By evaluating the real part of (3.33) we get the solutions of (3.31):

u1 = eλ t(ξ1cosωt −η1sinωt
)
,

u2 = eλ t(ξ2cosωt −η2sinωt
)
,

q1 = eλ t(ξ3cosωt −η3sinωt
)
,

q2 = eλ t(ξ4cosωt −η4sinωt
)

.

(3.51)

If we plug the expressions foru1 andu2 into eq. (3.19) and project it into thex1,x2-plane, we
get for the linear correction termr1 = r (in)

1

r (in)
1 = u1 t0+u2n0

= eλ t [(ξ1 t0+ξ2n0)cosωt − (η1 t0+η2n0)sinωt]

As a consequence for a particular eigenvalueλ + iω the linear correctionr (in)
1 has two indepen-

dent amplitudes, the coefficients ofeλ t cosωt and ofeλ t sinωt:

A(in) = ξ1 t0 +ξ2n0 ,

B(in) = η1 t0 +η2n0 .

Therefore every in-plane eigenmode is represented by thesetwo components:

r0 +aA(in), a∈ R , (3.52)

r0+bB(in), b∈ R , (3.53)

wherea andb are arbitrary constants.
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3.2.2 Eigenmodes of the Out-of-plane-motion

With (u3,q3)= ℜ(z5,z6) we convert problem (3.32) into a complex one and again we try to
find solutions using a complex ansatz

zk(s, t) = eνtζk(s), k∈{5,6} (3.54)

by choosingν ∈ C in such a way that the ordinary differential equation system

∀s∈ [0,1] :







ζ ′
5 =

1
‖p0‖

ζ6,

ζ ′
6 =

[

ν2ζ5+
2c

‖p0‖
νζ6−

c2‖p0‖′
‖p0‖2 ζ6

]
1
γ
,

(3.55)

fulfills the boundary conditions

ζ5(0) = 0, (3.56)

ζ5(1) = 0, (3.57)

and the normalization-phase condition

‖ζ6(0)‖2 = 1, ζ6(0) = ζ̄6(0) ∈ R, (3.58)

which is equal toζ6(0) = ±1. After separating real- and imaginary- part in

ζk(s) = ξk(s)+ i ηk(s), k∈{5,6},
ν = λ̄ + i ω̄ ,

and also in the eqs. (3.55)-(3.57), we get the followingfour coupled real ordinary differential
equations:

ξ ′
5 =

1
‖p0‖

ξ6,

ξ ′
6 =

[
(
λ̄ 2− ω̄2) ξ5+

(
2cλ̄
‖p0‖

− c2‖p0‖′
‖p0‖2

)

ξ6−2λ̄ ω̄ η5−
2cω̄
‖p0‖

η6

]
1
γ
,

η ′
5 =

1
‖p0‖

η6,

η ′
6 =

[
(
λ̄ 2− ω̄2) η5+

(
2cλ̄
‖p0‖

− c2‖p0‖′
‖p0‖2

)

η6+2λ̄ ω̄ ξ5 +
2cω̄
‖p0‖

ξ6

]
1
γ
,

(3.59)

and with the right values of̄λ andω̄ , thesefour boundary conditions

ξ5(0) = 0 , (3.60)

η5(0) = 0 , (3.61)

ξ5(1) = 0 , (3.62)

η5(1) = 0 (3.63)
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are fulfilled. Using the normalization-phase convention (3.58) in the form

ξ6(0) = ±1 , (3.64)

η6(0) = 0 (3.65)

instead of eqs. (3.62)-(3.63) for the boundary value problem will help us to find the right values
for λ̄ andω̄, simply by testing ifξ5(1) andη5(1) vanish, and the solution is:

u3 = eλ̄ t(ξ5cosω̄t −η5sinω̄t
)
,

q3 = eλ̄ t(ξ6cosω̄t −η6sinω̄t
)

.
(3.66)

Plugging the expression foru3 into thex3-component of eq. (3.19), we get for the linear correc-
tion r1 = r (out)

1 of the out-of-plane motion

r (out)
1 = u3e3

= eλ̄ t[(ξ5e3
)

cosω̄t −
(
η5e3

)
sinω̄t

]

Also here for a particular eigenvaluēλ + iω̄ the linear correctionr (out)
1 has the two independent

amplitudes which are the coefficients ofeλ t cosωt and ofeλ t sinωt:

A(out) = ξ5e3 ,

B(out) = η5e3 .

Since the steady-state configurations lie within thex1,x2-plane, every out-of-plane eigenmode
is represented by these two components:

āA(out), ā∈ R ,

b̄B(out), b̄∈ R ,

whereā andb̄ are again arbitrary constants.

3.2.3 Remarks

Since in our model no damping mechanism is included, we can expect thatλ , the real part of the
eigenvalue, vanishes. However, from a mathematical point of view this is not obvious, because
the governing equations of motions (3.28)-(3.30) include first order time derivations.

As we shall see in chapter 4, if we take rolls instead of eyelets as boundaries, the linear
correction termr1 vanishes at the points where the steady-state configurationtouches the rolls
tangentially. Therefore in this case the boundary conditions of the linearized problem turn out
to be the same as if there were two eyelets on the surfaces of the two rolls.
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3.2.4 Example

We now extend example 3.1.5 and calculate the lowest eigenvalue of the in-plane motion for the
ropeway-span problem without gondolas using the equationsof sec. 3.2.1. In fact it turns out
that the real part of the eigenvalue,λ , is at least numerically equal to zero. From the imaginary
partω of the dimensionless eigenvalue we get the dimensional eigenfrequency

f =
1

2π

√
g
l

ω .

In Fig. 3.4 the lowest eigenfrequencyf1 is plotted as a function of the cable line speedv which
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Figure 3.4: The lowest eigenfrequency of the cable span in the ropeway of example 3.2.4 (or
3.1.5) in dependence on the line speed.

is given in the steady-state configuration. The frequency achieves a global minimum at the
limiting speed ofv = 169.74 m/s (see also example 3.1.5). In Fig. 3.5 the dimensional version
of the component (3.52) from the lowest in-plane eigenmode is plotted with a suitable chosen
constant scaling factora for the line speedsv = 0 m/s, v = 105 m/s and v = 169.74 m/s.
Additionally the corresponding steady-state configuration is plotted, so that the nodes - the
zeros of the linear correction term - in this eigenmode are visible. With increasing line speed
v, the node moves monotonously towards the inlet or inlet roll. The other component, (3.53),
which is plotted in Fig. 3.6, is even more interesting to observe, since in this case not only the
initial node of the component moves monotonously towards the inlet, but also a second node
appears above a certain line speed (v ≈ 40 m/s). Looking at the lowest ten eigenfrequencies
depending on the line speedv in Fig. 3.7, we notice that for constantv the spectrum is similar
to the spectrum of the tensioned but not axially moving elastic string, where the increment
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Figure 3.5: Example 3.2.4: The first component (3.52) of the lowest eigenmode and the corre-
sponding steady-state configuration for three different line speedsv.
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Figure 3.6: Example 3.2.4: The second component (3.53) of the lowest eigenmode and the
corresponding steady-state configuration for four different line speedsv.

between two sequent eigenfrequencies is a constantf0. However, the crucial difference is that
in our case the lowest eigenfrequency is not aroundf0 - as it would be in the elastic string case
- but it is around 2f0 - quite an octave higher. As it is visible in Fig. 3.5 and 3.6, the lowest
eigenmode has at least one node - unlike the elastic string, which has no nodes in its lowest
eigenmode. The reason for this is also evident, because an eigenmode without nodes implies
extensibility, which is excluded in our model for the cable.We can compare our results, at least
qualitatively with results of similar problems such as the elastic travelling cable of Perkins and
Mote in [18]. Their mechanical model differs from the above-mentioned model with regard to
two properties: Firstly, the cable is elastic and thereforethe length of the cable configuration is
not conserved. Secondly, not the cable tension at the inlet is prescribed like in example 3.2.4, but
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Figure 3.7: Example 3.2.4: The lower part of the eigenfrequency-spectrum varying with the
line speedv.

Figure 3.8: Example of Perkins and Mote in [18]: The figure shows the lowest non-dimensional
in-plane eigenfrequencies of an elastic cable in dependency on the non-dimensional line speed.
Here the cable mass between the in- and the outlet is conserved.

the total cable mass between the fixed inlet and outlet is conserved and in particular independent
of the cable line speed. In our case, the eigenfrequencies decrease monotonically as functions
of cable speed and also the tangents for vanishing cable speed are always horizontal. Due to the
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different boundary conditions, there is no limiting cable velocity in the elastic cable example,
and therefore all the eigenfrequencies approach asymptotically zero.

3.2.5 Remarks

The lowest eigenmode of a cable in a constant gravitational field for low axial velocity can be
illustrated best in the following way.

Imagine the outlet nearby the inlet and the cable configuration with a huge sag, in such a
way that from far away it looks like a single down-hanging folded chain or pendulum. Then the
simplest motion would be a motion of the whole chain similar to the one of a mathematical pen-
dulum. And exactly this motion is described by an oscillation with an asymmetric eigenmode,
which has an odd number of nodes.

As we stated at the end of chapter 2, there is a remarkable analogy between the cable and a
fluid conveying tube. Holmes and Marsden showed in [7] that such a fluid conveying tube with
pinned ends isnotaself-excitingsystem. Therefore we expect that in particular the phenomenon
of violent sag-oscillations of the cable [12] in certain cable spans of a ropeway (s. chapter 1) is
not caused by self-excitation, but solely byexternalexcitation. For instance the equidistantly
attached cabins or chairs excite periodically in time the cable configuration in a certain span.



Chapter 4

Rolls as boundaries

In many technical applications - not only in aerial ropeways- the cable is either hanging in the
air or in contact with rolls. Thus again we take a look at the dynamics of a cable in a constant
gravitational field like in chapter 3, but now we let the cableconfiguration be bounded by rolls
instead of eyelets (s. Fig.4.1). The contact between the cable and the roll can be either with or
without friction. If there is friction, the roll surface shall have the same velocity as the cable. For
vanishing friction we assume that the roll is at rest. In any case of contact the cable shall touch
the roll tangentially. The equations of motions are the sameas in chapter 3, but the boundary
conditions are different. To give a first survey, we only study the planar problem. LetCA be
the circle line representing the roll that we have now instead of the inlet, and in the same way
let CB be the circle line that replaces the outlet. The kinematic boundary condition is that the
cable touches both of the rolls tangentially with the velocity v. In Fig. 4.2 we see the left or
inlet roll. The cable first is in contact with the rollCA, where the cable configuration has the
shape of a circle segment. At the point denoted by the arclength sA the cable loses the contact
with the roll, but still has the same tangent. Of course the location of this point as well assA are
time-dependent.
Fixing a reference lengthl and using the transformation (3.1) of chapter 3, we have for all t the

Figure 4.1: In many technical applications - not only in aerial ropeways - the cable at the
boundaries moves over rolls.

CA

CB

35
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Figure 4.2: The left roll: the location of the cable configuration point where the cable loses
contact with the roll is time-dependent.

xA

sA φ
rA

CA

dimensionless problem1

∀s∈ [sA(t),sB(t)] :







D2

Dt2r(s, t) = −e2 +
∂
∂s

p(s, t),

∂
∂s

r(s, t) =
p(s, t)

‖p(s, t)‖,

r(sA(t), t)∈ CA, r ′(sA(t), t)∈ TCA
∣
∣
r(sA(t),t),

r(sB(t), t)∈ CB, r ′(sB(t), t)∈ TCB
∣
∣
r(sB(t),t) .

(4.1)

4.1 The Steady-State Problem

Since for our applications concerning ropeways only the convex steady-state plays a significant
role (see ex. 3.1.4 in chapt. 3), we will confine here the problem to this case. Therefore letχ0

be the convex steady-state configuration solution of

∀s∈ [sA,0,sB,0] :







c2r ′′0(s) = −e2 +p′
0(s),

r ′0(s) =
p0(s)

‖p0(s)‖
,

r(sA,0, t) ∈ CA, r ′(sA,0, t) ∈ TCA
∣
∣
r(sA,0,t)

,

r(sB,0, t) ∈ CB, r ′(sB,0, t) ∈ TCB
∣
∣
r(sB,0,t)

.

(4.2)

The points on the rolls where the cable configuration touchesthem tangentially are denoted by
the arclengthssA,0 andsB,0 which initially are unknown. These points can be determinedby a
numerical iteration procedure.

1By TM
∣
∣
x we denote the tangential vectorspace on the manifoldM at the pointx ∈ M .
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4.2 The linearized problem

As in section 3.2 of chapter 3, we will now study the dynamics of the cable if it is almost but
not exactly in the steady-state motion of the convex steady-state configuration of problem (4.1).
Let ε be again the distance between the state of a general configuration χ(t) and the state of
χ0. Assuming thatε is very small, we can use the same ansatz as in section 3.2 of chapter 3.
Aditionally, for the left role (s. Fig.4.2) we make the ansatz

sA(t) = sA,0+ ε sA,1(t)+O(ε2)

so that on the one hand

r (sA(t) , t) = r0(sA(t))+ ε r1(sA(t) , t)+O
(
ε2) ,

= r0
(
sA,0

)
+

(
sA(t)−sA,0

)
r ′0

(
sA,0

)
+ ε r1

(
sA,0, t

)
+O

(
ε2) ,

= r0
(
sA,0

)
+ ε

(
sA,1(t) r ′0

(
sA,0

)
+ r1

(
sA,0, t

))
+O

(
ε2) . (4.3)

On the other hand we have the circle line

CA =

{

x
∣
∣
∣x = mA + rA

(
sin(s/rA)

cos(s/rA)

)

, s∈ (−rAπ, rAπ]

}

and its tangent manifold2

TCA =

{

x
∣
∣
∣x = λ

(
cos(s/rA)

−sin(s/rA)

)

, s∈ (−rAπ, rAπ], λ ∈ R

}

so that if we expand

sin

(
sA(t)

rA

)

= sin

(
sA,0

rA

)

+ ε sA,1(t)
1
rA

cos

(
sA,0

rA

)

+O
(
ε2) ,

cos

(
sA(t)

rA

)

= cos

(
sA,0

rA

)

− ε sA,1(t)
1
rA

sin

(
sA,0

rA

)

+O
(
ε2) ,

we can write

r (sA(t) , t) ∈ CA ⇔ r (sA(t) , t) = mA + rA

(
sin(sA(t)/rA)
cos(sA(t)/rA)

)

= mA + rA

(
sin

(
sA,0/rA

)

cos
(
sA,0/rA

)

)

︸ ︷︷ ︸

=r0(sA,0)∈CA

+ε sA,1(t)

(
cos

(
sA,0/rA

)

−sin
(
sA,0/rA

)

)

︸ ︷︷ ︸

=r ′0(sA,0)∈TCA

∣
∣

r0(sA,0)

+O
(
ε2) .

Comparing the last equation with eq.(4.3) we conclude that

r1
(
sA,0, t

)
= 0 (4.4)

2The tangent manifoldTM is the union of all tangent vectorspaces of the manifoldM
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and therefore

r1(sA(t) , t) = r1
(
sA,0, t

)

︸ ︷︷ ︸

0

+
(
sA(t)−sA,0

)

︸ ︷︷ ︸

ε sA,1(t)+O(ε2)

r ′1
(
sA,0, t

)
+O

(
ε2)

= ε sA,1(t) r ′1
(
sA,0, t

)
+O

(
ε2)

ε r1(sA(t) , t) = O
(
ε2)

or rather

r (sA(t) , t) = r0(sA(t))+O
(
ε2) .

Of course the same applies tosB(t) on the right roll. Hence we can summarize the linearized
problem in the following way:

∀s∈ [sA,0,sB,0] :







D2

Dt2r1 = p′
1,

r ′1 =
p1

‖p0‖
− p0

‖p0‖

(
p0

‖p0‖
· p1

‖p0‖

)

,

r1
(
sA,0, t

)
= 0,

r1(sB,0, t) = 0.

(4.5)

Up to a scaling length factor, the linearized problem is equal to the eyelet problem (3.18) in
chapter 3. We conclude that if the cable is almost but not exactly in the steady-state motion
(0 < ε ≪ 1), we first have to find the arclengthssA,0 andsB,0 or the points on the rolls where
the cable loses the contact in the steady-state motion. By taking these points as fixed eyelets,
we then get the right eigenfrequencies and eigenmodes.

4.3 A Not Perfectly Flexible Cable

In this section we analyse, in how far the planar steady-state solution of the cable between two
rolls in a constant gravitational field changes if the cable is not perfectly flexible. As a conse-
quence, aditionally to the tangential section forceP0 there is now a non-vanishing transversal
section force componentQ0, so that the cable tensionp0 can be written as

p0 = P0t0+Q0n0 .

The curvature of the steady-state configuration is defined by

α ′
0 = κ0 ,

whereα0 is the inclination angle of the tangential vector

t0 =

(
x′0
y′0

)

=

(
cosα0

sinα0

)
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of the steady-state configuration of the inextensible cable. The corresponding normal vector is

n0 =

(−sinα0

cosα0

)

.

Like in eq. (2.5) of chapter 2 we get from Newton’s law

ρA
D2

Dt2r0(s) = f +p′
0(s), ∀s∈ I , (4.6)

with the external force per unit lengthf = −ρAge2 and the arclength intervalI = [sA,0,sB,0]
which is apriori unknown due to the geometry of the boundaries. Eq. (4.6) is equal to

(
ρAv2t0

)′
= f +(P0t0)

′ +(Q0n0)
′

and can be written as

0 = f +(P∗
0 t0)

′+(Q0n0)
′

with the fictitious tangential cable section force

P∗
0 = P0−ρAv2 .

Thus eq. (4.6) corresponds to a ficticious statical problem

0 = f +p∗
0
′, ∀s∈ I , (4.7)

with the cable tension

p∗
0 = P∗

0 t0 +Q0n0 ,

which also can be written in terms of cartesian components:

p∗
0 = H∗

0e1+V∗
0 e2 .

The transformation between the two bases is
(

P∗
0

Q0

)

=

(
cosα0 sinα0

−sinα0 cosα0

)(
H∗

0

V∗
0

)

. (4.8)

From eq. (4.7) follows:

H∗
0
′ = 0 ,

V∗
0
′ = ρAg .

HenceH∗
0 is a constant. From eq. (4.8) we deduce

Q0
′ = (−H∗

0 sinα0+V∗
0 cosα0)

′ ,

= −κ0(H∗
0 cosα0 +V∗

0 sinα0)+ρAgcosα0 ,



4.3: A Not Perfectly Flexible Cable 40

as well as

V∗
0 = (Q0+H∗

0 sinα0)/cosα0 .

Combining the last two equations yields:

Q0
′ = −κ0(H∗

0 +Q0sinα0)/cosα0+ρAgcosα0 .

Now we also have to take care of the non-vanishing sectional bending moment:

M0 = M0e3 .

Applying the angular momentum law on a cable segment like we did with Newton’s law in
chapter 2 and neglecting rotary inertia terms, we get further equations of motion, namely

ρA
D
Dt

(

r0(s)× D
Dt

r0(s)

)

= r0(s)× f +(r0(s)×p0(s))′ +M ′
0(s) , ∀s∈ I , (4.9)

for the cable configuration. Eq. (4.9) is equal to

ρAv(r0×vt0)
′ = r0× f +(r0×p0)

′+M ′
0

and this yields:

0 = r0× f +(r0×p∗
0 +M0)

′

= r0×
(
f +p∗

0
′)

︸ ︷︷ ︸

=0

+ t0×p∗
0

︸ ︷︷ ︸

=Q0e3

+M′
0e3 .

Therefore we have:

M′
0 = −Q0 . (4.10)

Since the cables in our applications to ropeways are steelwire-ropes or of similar material qual-
ity, it makes sense to assume that the cable has elastic bending characteristics - that is in dimen-
sional quantities:

M0 = Bκ0 , (4.11)

where the constantB denotes the bending stiffness. The combination of eqs. (4.10) and (4.11)
leads to

Bκ ′
0 = −Q0 .

We summarize the equations of motions:

∀s∈ [sA,0,sB,0] :







x′0 = cosα0

y′0 = sinα0

α ′
0 = κ0

κ ′
0 = −Q0/B

Q′
0 = −κ0(H∗

0 +Q0sinα0)/cosα0 +ρAgcosα0

.
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After choosing an appropriate reference lengthl - like for instance the cable length between
the rolls if the bending stiffness vanishes - we bring the system into a dimensionless form by
substituting

s= ŝ l, sA,0 = ŝA,0 l , sB,0 = ŝB,0 l , x0 = x̂0 l ,

y0 = ŷ0 l , κ0 = κ̂0/l , H∗
0 = Ĥ∗

0 ρAgl, Q0 = Q̂0

√

ρAgB/l

and dropping afterwards the ” ˆ ”-symbol. We introduce the dimensionless bending stiffness
parameter

β =

√

B
ρAgl3

and get the dimensionless equations of motions:

∀s∈ [sA,0,sB,0] :







x′0 = cosα0

y′0 = sinα0

α ′
0 = κ0

βκ ′
0 = −Q0

βQ′
0 = −κ0(H∗

0 +βQ0sinα0)/cosα0+cosα0

. (4.12)

In the system (4.12) we have on the one hand five first order equations for the five unknown and
depending variablesx0, y0, α0, κ0 andQ0. On the other hand we have the three parameterssA,0,
sB,0 andH∗

0 , which have to be chosen iteratively in such a way that the boundary conditions

x0
(
sA,0

)
= xA, y0

(
sA,0

)
= yA, α0

(
sA,0

)
= φ , κ0

(
sA,0

)
= −1/rA,

x0(sB,0) = xB, y0(sB,0) = yB, α0(sB,0) = ψ, κ0(sB,0) = −1/rB
(4.13)

on the rolls (s. Fig. 4.2) can be fulfilled. Although the solution of (4.12) & (4.13) has to be
found iteratively - in a similar manner as in sec. 4.1 - for every step the boundary conditions are
of the same type as (4.13). For instance, in thek-th step, where besidesrA andrB the quantities

s(k)
A,0, s(k)

B,0, x(k)
A , x(k)

B , y(k)
A , y(k)

B , φ (k) andψ(k) are given, we have to solve (4.12) with the boundary
conditions

x0

(

s(k)
A,0

)

= x(k)
A , y0

(

s(k)
A,0

)

= y(k)
A , α0

(

s(k)
A,0

)

= φ (k), κ0

(

s(k)
A,0

)

= −1/rA,

x0

(

s(k)
B,0

)

= x(k)
B , y0

(

s(k)
B,0

)

= y(k)
B , α0

(

s(k)
B,0

)

= ψ(k), κ0

(

s(k)
B,0

)

= −1/rB.
(4.14)

One should bear in mind that the parameterH∗
0 is modified from step to step in such a way

that these boundary conditions can be fulfilled best. From eq. (4.14) we also see thatx0(s)(k) is
given by integration:

x0(s)(k) = x(k)
A +

∫ s

s(k)A,0

cosα0(t)dt,
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and (4.12) reduces to a fourth-order system in the variablesy0, α0, κ0 andQ0. Moreover, since

CA is a circleline (s. Fig.4.2), we can expressx(k)
A by y(k)

A and rA as well asφ (k) by s(k)
A,0 and

rA. Of course, for the circelineCB the situation is similar and therefore only four of the eight
equations in (4.14) remain as necessary boundary conditions for the boundary value problem in

thek-th iteration step, into which we also introduce the new parameterl (k) = s(k)
B,0−s(k)

A,0 as well

as a new independent variablet = (s− s(k)
A,0)/l (k), so that with the abbreviation(.)′ = d(.)/dt

we finally have the following problem in thek-th iteration step:

∀s∈ [0,1] :







y′0 = l (k) sinα0,

α ′
0 = l (k)κ0,

βκ ′
0 = −l (k)Q0,

βQ′
0 = l (k)

(
−κ0(H∗

0 +βQ0sinα0)/cosα0+cosα0
)
,

y0(0) = y(k)
A , κ0(0) = −1/rA,

y0(1) = y(k)
B , κ0(1) = −1/rB.

(4.15)

The other equations in (4.14), which are not used for the boundary value problem, remain
important since they are necessary for the iteration procedure which is performed in the same
way as in sec. 4.1.

If we are interested in the case of almost perfect flexible cables, we can consider the slight
bending stiffness as a small perturbation of the completelyflexible cable. This is the case for
β ≪ 1 and hence the problem (4.15) becomes:

4.3.1 A Singularly Perturbed Boundary Value Problem

We try to derive a formal approximation of the solution of (4.15) in the form of a matched
asymptotic expansion (s. a. O’Malley [14]). First we have tocheck whether the problem is a
regular singularly perturbed boundary value problem (s. a. appendix A). The problem (4.15)
has the form

∀t ∈ [0,1] :

{

βy′ = f(y,z,β ),

z′ = g(y,z),

0 = b(y(0) ,z(0) ,y(1) ,z(1)),

with y = (κ0,Q0) andz = (y0,α0). Forβ = 0, the reduced equation0 = f(ȳ, z̄,0) is:

(
0
0

)

=

( −l (k)Q̄0

l (k)
(
−κ̄0H∗

0/cosᾱ0+cosᾱ0
)

)

,

which can be uniquely solved with respect toȳ = ϕ(z̄):

(
κ̄0

Q̄0

)

=

(
cos2 ᾱ0/H∗

0

0

)

. (4.16)
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The matrixfy(ϕ(z̄), z̄,0) that is

(
0 −l (k)

−l (k)H∗
0/cosᾱ0 0

)

,

has the negative (stable) eigenvalueµ− with the corresponding eigenvectore− ,

µ− = −l (k)
√

H∗
0/cosᾱ0 , e− =

(
1

√
H∗

0/cosᾱ0

)

,

as well as the positive (unstable) eigenvalueµ+ with the corresponding eigenvectore+ ,

µ+ = l (k)
√

H∗
0/cosᾱ0 , e+ =

(
1

−
√

H∗
0/cosᾱ0

)

.

If the unperturbed configuration is curved, then cosᾱ0 > 0. Furthermore, if the configuration is
the convex one - that is the case in our ropeway applications (s. sec. 3.1.1 of chapter 3) - then
H∗

0 > 0 and the eigenvalues are real. Consequently the eigenvectorse− ande+ have a transversal
component to the hyperplanes of the phase-space whereκ is constant. Hence the boundary
conditionsκ0(0) = −1/rA andκ0(1) = −1/rB can be fulfilled for sure. Therefore we have a

Figure 4.3: The eigenvectore− (e+) of the linearized problem att=0 (t=1) has a component
transversal to the hyperplaneκ =−1/rA (κ =−1/rB). Thus the problem (4.15) is well posed.

Q

κ
−1/rA

(κ0(0)
Q0(0)

)
e−

e+

regular singularly perturbed problem, and based on the theory that was developed by Vasileva
& Butuzov [39], Esipova [6] as well as Schmeiser [27], a formal asymptotic approximation for
the solution of (4.15) can be constructed using the following ansatz for the solution:

y(t,β ) = ϕ(z̄(t))+Ly (τ)+Ry(σ)+O(β ) ,

z(t,β ) = z̄(t)+O(β ) ,
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that is
(

κ0(t,β )

Q0(t,β )

)

=

(
cos2 ᾱ0/H∗

0

0

)

+

(
Lκ0(τ)

LQ0(τ)

)

+

(
Rκ0(σ)

RQ0(σ)

)

+O(β ) ,

(
y0(t,β )

α0(t,β )

)

=

(
ȳ0(t)
ᾱ0(t)

)

+O(β ) ,

In the last formulas, theboundary layer variablesτ = t/β andσ = (1− t)/β for the left (t = 0)
and the right (t = 1) boundary were introduced. The left and the right layer terms,Ly andRy,
have to fulfillLy (∞) = Ry(∞) = 0:

Lκ0(∞) = Rκ0(∞) = 0, (4.17)

LQ0 (∞) = RQ0(∞) = 0. (4.18)

From the first of the two equations in (4.15) and from (4.16) weget z̄′ = g(ϕ(z̄(t)), z̄):
(

ȳ′0
ᾱ ′

0

)

= l (k)
(

sinᾱ0

cos2 ᾱ0/H∗
0

)

. (4.19)

The equation for the left layer term,ddτ Ly(τ) = f(ϕ(z̄(0))+Ly(τ), z̄(0),0), is:

d
dτ

(
Lκ0(τ)

LQ0(τ)

)

= l (k)
( −LQ0(τ)

−Lκ0(τ)H∗
0/cosᾱ0(0)

)

, (4.20)

and the equationddτ Ry(σ) = f(ϕ(z̄(1))+Ry(σ), z̄(1),0) for the right layer term is:

d
dσ

(
Rκ0(σ)

RQ0(σ)

)

= l (k)
(

RQ0(σ)

Rκ0(σ)H∗
0/cosᾱ0(1)

)

. (4.21)

Finally, the boundary conditionb(ϕ(z̄(0))+Ly(0), z̄(0),ϕ(z̄(1))+Ry(0), z̄(1)) = 0 yields:

cos2 ᾱ0(0)/H∗
0 +Lκ0(0)+1/rA = 0, (4.22)

ȳ0(0)−y(k)
A = 0, (4.23)

cos2 ᾱ0(1)/H∗
0 +Rκ0(0)+1/rB = 0, (4.24)

ȳ0(1)−y(k)
B = 0. (4.25)

The eqs. (4.19), (4.23) and (4.25) together lead to the same result as the equations of the catenary
problem that we discussed in sec. 4.1. As we said above one should not forget that the parameter
H∗

0 varies from step to step in such a way that in every step we havea different unperturbed
or steady-state solution as well as a different boundary layer term. Since the second-order
system (4.20) is linear and with constant coefficients, we can integrate it fulfilling the boundary
conditions (4.17) and (4.22). Thus we have:

(
Lκ0(τ)

LQ0(τ)

)

= − 1/rA+cos2 ᾱ0(0)/H∗
0

exp
(
l (k)

√
H∗

0/cosᾱ0(0)τ
)

(
1

√
H∗

0/cosᾱ0(0)

)

.

In the same way we get from the eqs. (4.21), (4.17) and (4.24):
(

Rκ0(σ)

RQ0(σ)

)

= − 1/rB+cos2 ᾱ0(1)/H∗
0

exp
(
l (k)

√
H∗

0/cosᾱ0(1)σ
)

(
1

−
√

H∗
0/cosᾱ0(1)

)

.
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4.3.2 Example

We now apply the formulas of sec. 4.3.1 to an example. Letl , the reference length, be the
length of the (unique) convex configuration connecting the highest points of the two rollsCA

andCB, which shall have the same radius,r = rA = rB, and which are at the same elevation (y-
value) (s. Fig. 4.4). Therefore the steady-state solution is a symmetric one and has a reflectional

Figure 4.4: Example 4.3.2: A slightly bending-stiff cable moves axially between two rolls
which have the same radius and are at the same elevation.

CA CB

-

6

x

y

symmetry with respect to the vertical axis that goes throughthe lowest point of the cable. In the
k-th step we get the matched approximation:

x0 = x(k)
A +H∗

0

(

arsinh[
l (k)

2H∗
0
]+arsinh[

l (k)

H∗
0
(t−1

2
)]

)

+O(β )

y0 = y(k)
A +H∗

0

(
√

1+[
l (k)

2H∗
0
]2−

√

1+[
l (k)

H∗
0
(t−1

2
)]2

)

+O(β )

α0 = arctan[
l (k)

H∗
0
(t−1

2
)]+O(β ) (4.26)

κ0 =
H∗

0

H∗
0

2+
[
l (k)

(
t− 1

2

)]2−
2
r +

2H∗
0

H∗
0

2+(l (k)/2)
2

e
l(k)

2β
4
√

H∗
0

2+(l (k)/2)
2

cosh

[

l (k)
(
t− 1

2

)

β
4
√

H∗
0

2+
(
l (k)/2

)2

]

+O(β )

Q0 =
4
√

H∗
0

2+
(
l (k)/2

)2

2
r +

2H∗
0

H∗
0

2+(l (k)/2)
2

e
l(k)

2β
4
√

H∗
0

2+(l (k)/2)
2

sinh

[

l (k)
(
t− 1

2

)

β
4
√

H∗
0

2+
(
l (k)/2

)2

]

+O(β )

In Fig. 4.5(a) the two leading terms forκ0 given in (4.26) are plotted for three different values
of the bending stiffnessβ . The solution depicted is the result of the iterative process. The ac-
curacy of the analytically found asymptotic solution presented in Fig. 4.5(a) has been checked
by a numerically calculated solution of the iterative non-linear boundary value problem (4.15)
with COLSYS [2]. This solution is shown in Fig. 4.5(b). Obviously for smallβ very good
agreement is achieved. The only perspicuous difference is visible for t = 0.5. The reason for
this is that in contrast to the numerical solution, the matched asymptotic expansion disregards
the inextensibility of the cable.
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Per definition, the integration of the curvatureκ0 respective to the arclengths yields the incli-
nation angleα0 of the steady-state configuration. Therefore we get a new, bythe boundary
layers corrected angle through integration. But the resulting new configuration will a priori not
match the boundary conditions. Hence the ficticious horizontal force - the parameterH∗

0 - has
to be modified until the remaining boundary conditions can befulfilled with sufficient accuracy.
Thus the iteration procedure for the not completely flexiblebut completely inextensible cable
with constant cable lengthl between the the two rolls also implies a variation of the parameter
H∗

0 that depends on the line speed. The configurations resultingfrom such a force adaptive it-
eration procedure, applied to our example, are plotted for the dimensionless bending stiffnesses
β 2 = 0.001 in Fig. 4.6(a) andβ 2 = 0.01 in Fig. 4.6(b). In both pictures the corresponding
completely flexible configuration is plotted with a dashed line. It is interesting to observe in
these figures how the point on the roll where the cable loses contact is varying when the bend-
ing stiffness is increasing. Therefore, in Fig. 4.7(a) we zoom in the left roll and observe this
point for differentβ 2-values, but now as the numerical result of the iterative boundary value
problem (4.15) with COLSYS. Finally, the same numerical integration for differentβ 2 yields
the steady-state angleα0 that is plotted in Fig. 4.7(b).
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(a) Leading two terms in the matched asymptotic curvature expansion in (4.26).
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(b) Curvature resulting from the numerical solution of the iterative boundary value prob-
lem (4.15) with COLSYS [2].

Figure 4.5: Steady-state curvatureκ0 of the symmetric ex. 4.3.2 with the roll-radiusr = l/20
and the bending stiffnessesβ . The different solution methods yield very well coincidingresults.
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(a) β 2 = 0.001 (solid line) andβ 2 = 0 (dashed line)

(b) β 2 = 0.01 (solid line) andβ 2 = 0 (dashed line)

Figure 4.6: Example 4.3.2: The figure shows how the steady-state shape of the configuration
varies when the curvature in (4.26) is integrated and consequently a matching iteration proce-
dure is performed. The configurations with (β 2 > 0, solid line) and without (β 2 = 0, dashed
line) bending stiffness are depicted. It also becomes clearhow the bending stiffness forces the
variation of the point on the roll where it loses contact.
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(a) The steady-state configuration on the left roll for different bending
stiffness values - the point where the cable loses contact istagged.

(b) The inclination angle of the steady-state configuration.

Figure 4.7: Results of the iterative boundary value problem(4.15) using COLSYS [2].
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Chapter 5

Numerical Simulation of the Steady-State
Solution between Two Rolls

In this chapter we describe one of the Finite Element simulations that we performed in order to
check the steady-state results from chapter 4. For this purpose we usedABAQUS/StandardVers.
6.4.1 which incorporates an implicit time-integrator for the direct method in dynamical appli-
cations. In particular we are interested in surveying the influence of a slight bending stiffness in
the two-dimensional problem.

The axial motion implies a large displacement of the cable structure that may have an arbi-
trary sag between the rolls. Therefore the problem is in a geometrical sense highly non-linear.
Since the inextensible cable with a slight bending stiffness is modelled by two-dimensional
beam elements that have a very high axial stiffness and a verylow bending stiffness, the stiffness
matrix is numerically ill-conditioned. The supports of thecable as well as the rolls are mod-
elled as two-dimensional ’rigid bodies’, which are bordered by rigid and analytically defined
line segments in the plane. The contact between the cable andthe rigid bodies is frictionless and
the impacts of the cable elements on the ’surface’ of the rigid bodies are completely inelastic.
Moreover, the special geometry of the supports and the rollsincrease the complexity of this
non-linear contact problem. A sufficient period of time has to pass by until the cable motion
tunes in a more or less axial steady-state motion. Consequently a large number of elements is
necessary, if the cable does not have a cyclic structure.
All the facts mentioned above affect in a crucial manner the complexity of the numerical prob-
lem, resulting in a long simulation time even for the planar problem. Furthermore we noticed
that if the cable is not a closed or cyclic structure the use ofmore than one CPU in a parallel
mode does not appreciably improve the computing time. To optimize the choice of elements as
well as the settings of the time integrator, a large number ofnumerical tests is required.

In Fig. 5.1 we see different models that were tested to simulate the steady-state case. There
are basically two types of models depending on the cable structure: either a closed one (e.g. Fig.
5.1(e)) or a open one. The advantage of closed structures is that they get by with few elements,
the disadvantage is that due to the initial curvature of the elements the relaxed configuration
is not a straight one and thus the steady-state configurationis periodically disturbed. Another
problem with the cyclic structures is that due to the inelastic impacts between the cable elements
and the rigid bodies, a drive mechanism is necessary. The simplest open model is depicted in
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(a) A cable hanging between two ’tables’ is drawn on the one end and pushed on the other end.

(b) Similar model to 5.1(a), but now there is a roll between the two tables.

(c) Like 5.1(b), but with two rolls.

(d) A crossed cable.

(e) A crossed and closed cable.

(f) Vertical cable feed-in.

(g) Model with a curvature prescribing inlet and outlet.

Figure 5.1: Different two-dimensional FE-models used to simulate a steady-state cable motion
over rolls. The cable is modelled as a combination of hybrid truss- and beam- Elements. The
latter have a slight bending stiffness. The rolls and tablesare modelled as analytical rigid bodies.
The contact between this bodies and the cable is frictionless. The cable has no self-contact.
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Fig. 5.1(a). The cable has on the one hand an initial positionat which it is hanging between
two rigid flat ’tables’ and on the other hand a constant and purely axial initial velocity. As the
arrows shall indicate, the cable moves from left to right. Therefore the major part of it lies
initially on the left table and at the end of the simulation the whole cable is located on the right
table. In order to keep the axial velocity of the elements approximately constant during the
whole simulation, the velocity is permanently prescribed on both endpoints of the cable. The
edges of the tables are formed roundly to make the borders of the hanging cable similar to rolls.
Nevertheless the cable behaves there in a different way thanon rolls, since the bending stiff
cable loses already contact before it passes the edge and thus the curvature cannot be freely
prescribed. For this reason the border has to match more the shape of a roll. The model in
Fig. 5.1(b) has such a roll in the middle and therefore two spans that are the model domains
where the cable is hanging without having contact. The disadvantage here is that each of the
spans is asymmetric due to the two different boundary conditions. This problem is improved
in the model that is depicted in Fig. 5.1(c). The span in the middle is now symmetric, but
the stability of the equilibrium of the system consisting ofthree coupled cable spans must be
checked. Besides, the simulation time increases drastically. The models shown in Figs. 5.1(d)-
5.1(g) have only a single span which is bordered by two rolls.The model in Fig. 5.1(d) is based
on the assumption that no self-contact is defined for the cable. Hence the cable can be crossed
without a problem. The disadvantage here is that the sag mustbe large enough. Also in the
models of the Figs. 5.1(e) and 5.1(f) the sag cannot be chosenarbitrarily. The model displayed in
Fig. 5.1(g) seems to be most convenient for our purpose. There are two rolls fixed at the border
of each of the tables. During the simulation the straight part of the cable that is initially lying on
the left table (plotted in red in Fig. 5.2) has to pass a small hole under the first roll (from the left)
and then another small hole between the first and the second roll. Thus the cable is forced to
have contact with the second roll before it gets into the span. Similar is the situation on the right
table where the cable after having contact with the roll and passing two small holes is finally
horizontally drawn away along the table. The pairs of rolls on each of the tables can be regarded
as eyelets that additionally prescribe the curvature of therolls. Fig. 5.2 shows the model at the
beginning of the simulation. The cable structure consists of two parts: the first part (blue) to
which 160 hybrid truss elements T2D2H are assigned, models acompletely flexible and nearly
inextensible cable and has a length of approximately 3.25m. The sequent part (red) to which
492 hybrid beam elements B21H are assigned, models a nearly inextensible cable with a slight
bending stiffness (EJ = 0.0025Nm2) and has a length of approximately 10m. Both element
types have the same mass density (4400kg/m3) and belong to the linear and hybrid formulated
two-node-elements. Since the cable has a relatively high axial stiffness (EA= 1040kN), it is
reasonable to use elements in a hybrid formulation. At the beginning of the simulation to every
node a tangential velocity of 10m/s is assigned, so that the cable moves from the left to the right.
In the same manner if it is possible1 an initial cable tension corresponding to the steady-state
case is assigned to every element of the cable. During the entire simulation time (T = 1s) the
horizontal velocity of 10m/sat both endpoints is prescribed. In the last third of this time period
the configuration within the span fluctuates slightly arounda ’steady-state’ curve (s. Fig. 5.3).

1In version 6.4.1 ofABAQUS/Standardunexpected severe problems arise when an initial stress to beam ele-
ments is assigned. The support service of this commercial software promised this shortcoming would disappear in
one of the following versions.
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Figure 5.2: Initial configuration of the FE-Simulation withthe model of Fig. 5.1(g). The red
part of the cable is built up of two-dimensional hybrid beam elements B21H.
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The transient dynamical configuration is kind of asymmetricand can be compared with the
corresponding symmetric result of the matched asymptotic expansion in chapter 4 (s. Fig. 5.4).
Besides, we can also check the simulation configuration against the results of the solution of
the iterative non-linear boundary value problem (4.15) with COLSYS [2] for different bending
stiffness values. (s. Fig. 5.5). We are not able to give a clear answer to the question of why
the configuration of the Finite Element Simulation is asymmetric. One reason may be that
this happens because of discretization errors, another could be the inelastic interaction between
the cable and the rigid surface. It should be underlined thatneither a material damping was
included in the model nor was any numerical damping in the implicit time integration method
(Hilber-Hughes-Taylor) added.
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Figure 5.3: The cable in the span: the configuration after 0.86sof the simulation time is depicted
in red, the completely flexible initial configuration in blue.
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Figure 5.4:The configuration with bending stiffness approximated by a matched asymptotic expansion.
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Figure 5.5: Comparison between the FE-simulation configuration after 0.86sand the numerical
steady-state solution with COLSYS [2] for different bending stiffness valuesβ .



Chapter 6

Coupled Cable Spans

Up to now we were only looking at the motion of a cable between two eyelets or two rolls. As
we mentioned in the introduction, the cable of a monocable circulating ropeway is a closed loop
and moves either through the air or over rolls. The sections,where the cable moves through the
air over a more or less wide distance, are called the cable spans. Since it is a single cable that
passes through different spans, the dynamics of the cable-configurations in all cable spans of
the ropeway are coupled.

As we stated in eq. (3.14) of chapter 3, the steady-state cable tension in a constant gravita-
tional field is a linear function of height. We can generalizethis statement to be valid for the
entire cable loop of the whole ropeway by assuming that thereis no friction and no damping
mechanism between the spans. Hence in every point of the cable loop the section force is deter-
mined if we know the prescribed cable tension in the haulage device. This device is normally
located in one of the ropeway terminals where loading and unloading takes place. Let us num-
ber the spans all the way through, denoting the adjacent spanto the haulage device with the
outgoing rope as the first one. Thus the prescribed cable tension in the haulage device regulates
the sag of the steady-state cable configuration in the first and in the last span. Then the cable
tension is transmitted over a tower from the first span to the second span where it determines
the sag of the second span. Over the next tower the cable tension is directed to the third span
etc. Since the knowledge about this ’force-interaction’ between two neighbouring cable spans
is also important for the calculation of the initial configuration in a numerical simulation, we
now take a look at:

6.1 How the Cable Tension at the Border of a Span Influences
the Sag

Let there be a convex steady-state configuration of an axially moving cable connecting two
eyelets with a given cable tension at the inlet. We use the parametrization of the catenary where
they-value is given as a function of thex-value, that is the functionY0 with Y0(x0(s)) = y0(s).
Then we choose the horizontal distancexB between the inlet and the outlet as reference lengthl
in order to apply the transformation (3.1) of chapter 3. Hence the eqs. (3.10), (3.11) and (3.14)
yield the following dimensionless problem: The constantscx, cy anda have to be chosen in such
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a way that the functionY0(x0) = cy +a cosh[(x0−cx)/a] fulfills the boundary conditions

Y0(0) = 0, (6.1)

Y0(1) = yB, (6.2)
(
‖p0‖−c2)

∣
∣
∣
x=0

= Y0(0)−cy = pA, (6.3)

with the given parametersyB, c andpA. Plugging (6.1) into (6.3) we getcy = −pA. Therefore,
by substituting

Y0(x0) = a cosh

(
x0−cx

a

)

− pA (6.4)

into (6.1) and (6.2) as well as defining the function

f (a,c) = a cosh
(c

a

)

, (6.5)

we get the two equations

f (a,cx) = pA,

f (a,cx−1) = pA +yB.
(6.6)

Hence the pairs(a,cx) that fit in (6.4) lie in the intersection of the two one-dimensional mani-
folds

M0 = {(a,cx) | f (a,cx) = pA} ,

M1 = {(a,cx) | f (a,cx−1) = pA +yB} .
(6.7)

The function f (a,c) is discussed in detail in appendix B. Due to the convexity of each of the
domains enclosed byM0 andM1, the setM0∩M1 can only consist of no (s. Fig. 6.1(a)), one
(s. Fig. 6.1(b)) or two (s. Fig. 6.1(c)) intersection pointsin the open half-planea> 0. In Fig. 6.1
we also see how the number of intersection points depends onpA. For 0≤ pA < pcrit there are
no intersection points (s. Fig. 6.1(d)). Then forpA = pcrit the two cone-sectionsM0 andM1

touch each other in the only intersection point (s. Fig. 6.1(d)). And finally for pA > pcrit there
are always two intersection points (s. Fig. 6.1(d)).
Thus for fixed eyelet-elevationyB, the cable tensionpA at the left eyelet is a function of the
catenary parametera (s.a. Fig. 6.2):

pA = p(a).

Due to the convex and conical properties off (a,c) (s. app. B) the functionp(a) has for any
yB the following characteristics: Firstly, there are two asymptotes, one foraց 0+ and one for
a→ ∞. Secondly, there is a positive parameteracrit in such a way that

dp
da

< 0, 0 < a < acrit ,

dp
da

= 0, a = acrit ,

dp
da

> 0, acrit < a.
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(a) pA < pcrit (b) pA = pcrit (c) pA > pcrit

(d) pA < pcrit (e) pA = pcrit (f) pA > pcrit

Figure 6.1: The two eqs. in (6.6) define implicitly the two curvesM0 andM1 (s. Figs. 6.1(a)-
6.1(c)) in thea,cx-plane. Here the curves are depicted foryB = 0.3 and intersect only ifpA, the
prescribed cable tension at the left eyelet is equal to (s. Fig. 6.1(b)) or greater than (s. Fig. 6.1(c))
a critical valuepcrit = 0.6255. The figures 6.1(d)-6.1(f) show the dependence ofa on pA.

a a a

cx cx cx

a a a

pA pA pA

M0 M0 M0

M1 M1 M1

Thus for 0< a < acrit the cable tensionp increases ifa decreases - the latter is for instance
the case if caused by a slight perturbation the sag increasesand the cable length between the
eyelets becomes longer. If in this case the prescribed cabletensionpA is kept constant, the
sag will increase perpetually. An analogous acceleration,but in the other direction, takes place
if by a slight perturbationa is increased. Therefore the steady-state solutions for 0< a <
acrit are mechanicallyunstable. In the other case that isacrit < a we notice thatp decreases
if a decreases. Consequently a perturbing small enlargement ofthe sag would decrease the
necessary cable tensionp so that a constantpA would work against the perturbation. In this
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Figure 6.2: The convex functionp(a) is enclosed by two asymptotes and has a local minimum at
a= acrit . The steady-state solutions for 0< a< acrit are the unstable solutions and the solutions
for acrit < a are stable.
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@@R
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sense the equilibrium solutions foracrit < a arestable. In Fig. 6.3(b) we see as an example how
the stable and the unstable configurations look like ifyB = 0.3 andpA ≈ 5pcrit .

In ropeway applications of course the interesting steady-state configuration is the mechan-
ically stable one. The corresponding intersection point ofM0 andM1 is found by a Newton-
iteration in which due to the convex and conical properties of f (a,c) ’successful’ initial values
can be given easily. Finally, this procedure is applied to every span of the ropeway and a stable
steady-state configuration of the entire cable loop of the ropeway is determined. Since in every
span there is such a critical cable tensionpcrit so that the prescribed cable tensionpA at the bor-
dering tower of this span has to fulfillpA > pcrit , we necessarily also get a minimal prescribed
cable tension in the haulage device of the aerial ropeway.
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(a) The two intersection points ofM0

andM1 correspond to a stable and an
unstable configuration.

(b) The stable and
the unstable (dashed)
configuration.

(c) For pA > pcrit there are twoa-
branches, a stable and an unstable
(dashed) one.

Figure 6.3: In this plots foryB = 0.3 andpA = 3.1 we see how different the resulting steady-state
configurations are ifpA is perspicuously higher thanpcrit (herepcrit = 0.6255). In particular
one of the solutions is always mechanically stable and the other unstable.
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Chapter 7

Numerical Simulation of The Dynamics of
Ropeways with Finite Elements

In this chapter we describe a way to simulate the three-dimensional dynamics of a circulat-
ing monocable aerial ropeway using the Finite Element Method. For this purpose we used
ABAQUS/ExplicitVers. 6.5.3 which incorporates an explicit time-integrator for the direct method
in dynamical applications. Just as in chapter 5, the mainly axial motion of the cable implies
large displacements. Therefore the problem is in a geometrical sense non-linear. The special
geometry of the pulleys and the sheave assemblies increase the complexity of this non-linear
contact problem.

7.1 The components of the model

In chapter 6 we saw how the steady-state configuration of coupled cable spans of the ropeway
can be determined. By applying this method successively to all the cable spans, a steady-state
configuration for the whole cable loop is obtained. This yields the initial positions and initial
velocities of the nodes of the cable loop elements as well as their initial stresses. The cable is
modelled by three-dimensional truss elements. In fact the use of more realistic beam elements
instead of truss elements would demand a prescription of theinitial bending moment in every
node. Hence the inclusion of a bending stiffness of the cablewould require a steady-state
bending moment calculation (s. chapter 4) of the whole cableloop before the Finite Element
Analysis can start. In this model there is no self-contact ofthe cable.

On the towers of a ropeway the cable is in contact with rolls that are gathered in a sheave
assembly. As we saw in chapter 1 (Fig. 1.2), the cable passes such sheave assemblies above or
beneath and sometimes also above and beneath. In most of the cases the shape of a carrying
or holding-down sheave assembly with many rolls can be sufficiently well approximated by an
enveloping circular cylinder surface part. The corresponding cylinder radius would be much
larger than the radius of the involved rolls. All the different types of sheave assemblies can be
modelled by ageneralized sheave assembly. This is a symmetric hyperbolically bent surface
which is generated by a semicircle that rotates around a non-intersecting axis of the same plane
(s. Fig. 7.1). The contact between this funnel-shaped rigidsurface and the cable, which slides
through it like through a three-dimensional eyelet (s. Fig.7.2(a)), is defined as frictionless. The
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Figure 7.1: A generalized sheave assembly can be modelled bya three-dimensional surface of
revolution: a semicircle that has a radius which depends on the envelope of the rolls rotates
around a non-intersecting axis of the same plane.

generalized sheave assembly prevents the cable from leaving the track whenever the mesh of the
cable loop is sufficiently fine enough. This retention of the cable track on the sheave assembly
is nowadays still a very practical safety-problem for whichseveral investigations have to be
carried out [5].

The haulage pulley is the part of the ropeway where the cable tension is prescribed and
controlled. It is normally a sheave with an unconstrained vertical rotation axis and it is pulled
pneumatically or by a weight perpendicularly to this axis. Usually it is situated in one of the ter-
minals or where the cable has to turn round an angle of 180 degrees. The drive pulley is the part
of the ropeway where the axial cable line speed is stipulated. It is also a sheave with a vertical
rotation axis, but normally it cannot move horizontally like the haulage pulley. If the haulage
pulley and the drive pulley coincide in this terminal, a differential gear has to be installed.
We model the pulleys as rigid circular cylinders with a vertical axis, combined with a cylindric
bearing surface or horizontal ramp that keeps the cable in the same height (s. Figs.7.2(c) &
7.2(d)). For the sake of cable routing, at each terminal two eyelets or generalized sheave as-
semblies for the incoming and the outgoing rope are necessary. The contact between the cable
and the circular cylinder surface of the haulage pulley, as well as the contact between the cable
and the ramps is frictionless. Only along the segment where the cable contacts the drive pulley,
friction is necessary.

Finally, the cabins or gondolas that are attached to the cable, can be modelled in two ways:
either they are simply attached to the cable in certain nodesas combinations of concentrated
mass elements with concentrated inertia elements, or they are attached as rigid bodies with
shape, mass and inertia tensor of a circular cylinder. In thelatter case the cabins are connected
to the cable by spring-dashpot elements.
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(a) Basically the generalized sheave assembly. . .

1

2

3

(b) . . . acts like a three-dimensional eyelet.
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(c) The haulage pulley and the drive pulley. . .
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(d) . . . are modelled by cylindrical surfaces.

Figure 7.2: The generalized sheave assemblies on the towersand the haulage and drive pulleys
of the bottom and top terminals are modelled by analytical rigid surfaces.



7.2: Sag-Oscillations due to Resonances 66

Figure 7.3: An illustrative Finite Element model of a ropeway with two spans used to simulate
sag-oscillations. The drive pulley is located in the top terminal (on the right).

7.2 Sag-Oscillations due to Resonances

At the end of chapter 3 it was remarked that sag-oscillationscan be expected only if the cable
is externally excited.

A periodic external excitation of the cable happens for instance when the line speedv of
the monocable ropeway is kept constant and the cabins or chairs are attached to the cable in
equidistant positions. Ifd is the distance between two adjacent cabins, thenf = v/d is the
frequency of cabins entering the span from the outmost roll of a sheave assembly. Sinced=N/l ,
whereN is the total number of cabins attached to the cable loop of length1 l , we have:

f = Nv/l (7.1)

In Fig. 7.3 a ropeway model with two spans for the limited purpose of illustration of sag-
oscillations is depicted. The first span has a horizontal distance of 20m and a vertical distance
of 10m, the second span located next to the drive pulley has a horizontal distance of 30m and
a vertical distance of 5m. The cable loop with a mass densityρ =8895kg/m3, a section area
A=9.05·10−4m2 and a Young’ modulusE=2·1011Pahas an undistorted length ofl =149.3m
and is modelled by thousand 2-node truss elements. The cabins are modelled by a combination
of concentrated mass elements (mcab=10kg) with spherically symmetric rotary inertia elements
(Ii j =δi j m2

cab/2 kg m2). They are connected to the cable loop by connector elements. The initial
sags correspond to a prescribed cable tension of 928.53N in the cable when it turns around the
haulage pulley.

The Figs. 7.4–7.6 show a series of Finite Element simulations with this model.
In Fig. 7.4 we see eight simulations forv=4.5m/s after the elapsed simulation timet =40.4s.
During the whole simulation the most violent sag-oscillations are visible for the model with
four cabins (N=4). Then, in Fig. 7.5 the simulations forv=6m/s after an elapsed simulation
time t =40.9s can be seen. The most violent sag-oscillations are observedin the model with
three cabins (N=3). Finally, in Fig. 7.6 we see eight simulations forv=9m/s after an elapsed

1If the cabins are detached in the terminals,l is not exactly the cable loop length but still well defined.
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Figure 7.4: The model from Fig. 7.3 with different numbers ofcabins (N=0,1,2. . .7) after an
elapsed simulation timet =40.4s. In this series of simulations the line speed isv=4.5m/s.
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Figure 7.5: Like Fig. 7.4, but now after an elapsed simulation timet =40.9sand for a line speed
v=6m/s.
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Figure 7.6: Like Fig. 7.4, but now after an elapsed simulation timet =22.8sand for a line speed
v = 9m/s.
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1
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Figure 7.7: The preprocessor programfiat for ABAQUS/Explicit attaches cabins or gondolas to
the cable that are modelled as cylindrical rigid bodies witha prescribed mass and inertia tensor.
They are connected to the cable by spring-dashpot elements.

simulation timet =22.8s. In this case the most violent sag-oscillations are visiblefor the model
with four cabins (N=2).
For all the three different velocities the maximal sag-oscillations in this test series happen if
Nv= 18 m/s, that is due to eq. (7.1) for the same frequencyf of cabins which leave a span
bordering tower. Hence the example of the series of simulations suggests that sag-oscillations
are a resonance phenomenon due to external excitations.

7.3 Preprocessing

Whenever circulating monocable aerial ropeways are projected, it might be very helpful to pre-
dict sag-oscillations due to resonances. Therefore we developed a programfiat which generates
input files for a direct dynamic analysis of such a ropeway model with ABAQUS/Explicit 6.5.3.
The user feeds the program with important parameters such asthe positions of the towers and
the pulleys, the material constants, the number of truss elements and the number of cabins
(s. Fig. 7.7) which are equidistantly attached to the cable.Theoretically there is no limitation
for the size of the model, but of course it is a moot point whether it is reasonable to simulate the
whole ropeway.

7.4 Example

As an example we produce withfiat the Finite Element model of the Silvrettabahn in Ischgl
(Austria) [12] (s. Fig. 7.8). This is a monocable ropeway which comprises 21 cable spans, and
each gondola carries six persons.
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Figure 7.8: Finite Element model of the Silvrettabahn in Ischgl (Austria) [12]
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7.5 Remarks

As mentioned above, it is questionable whether the simulation of a whole ropeway is reasonable.
For instance the ski lift in Fig. 7.8 comprises 21 cable spansand has an undistorted cable length
of 3790.4m. Attaching 70 gondolas to the cable loop, which we model by 20000 linear truss
elements, we can simulate the operation of the lift with a line speed ofv = 5m/s. If we limit
the time increment to∆tmax= 10−5s, ABAQUS/Explicit Vers. 6.5.3 requires seven days2 for
the simulation timet = 9.9s. Hence in this time the gondola covers a distance less than 49.5m.
Since some of the cable spans are longer than 200m it would take more than a month to simulate
the path of a cabin from one tower to another.

7.6 Example

Fig. 7.9 shows another example of how the model produced by the programfiat can be used to
simulate realistic situations. The produced ABAQUS input-file was modified in such a way that
a similar situation like the tragical accident that took place in Soelden (Austria) in the summer
of 2005 could be re-enacted. A helicopter that was flying 200m over an aerial ropeway lost
a concrete hopper with a load of 750kg. Unfortunately the cable was hit by the hopper not
far away from a gondola (s. Fig. 7.9(b)). Due to the impact thecoupling mechanism of the
gondola opened in such a way that the cabin fell down. Subsequently, this caused oscillations
which were so violent that even persons in the adjacent gondolas were thrown out through the
windows.

2computing on a cluster node with four Alpha-EV68 processors(1 GHz, 8 MB Cache/CPU)
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(a) t = 31.2s (b) t = 31.4s

(c) t = 31.5s (d) t = 31.6s

(e) t = 31.8s (f) t = 32.2s

Figure 7.9: The cable of the ropeway is hit by a hopper not far away from a gondola
(s. Fig. 7.9(b)). Due to the impact the coupling mechanism ofthe gondola opens in such a
way that the cabin falls down.



Chapter 8

Conclusion

In our investigation on sag-oscillations of circulating monocable aerial ropeways we primarily
looked at the dynamics of axially moving cables.
After deriving the equations of motions for the cable that moves in an external force field in a
three-dimensional space, we observed that the same system of forces is acting on the cable as it
is acting on the fluid within a massless tube. Hence the motionof the cable configuration is the
same as of the centerline of such a fluid conveying tube.
In a constant gravitational field the steady-state configuration between two eyelets is in general
either a convex or a concave catenary. Due to the inextensibility of the cable, the corresponding
catenary parameter is independent of the cable line speed. Unlike in the static case, a concave
configuration can be mechanically stable.
We discussed the steady-state configuration in dependence on the cable line speed if the cable
tension is prescribed in one of the eyelets. Hence we made twoobservations for typical contem-
porary ropeway applications: on the one hand that the concave steady-state configuration is not
a relevant one, and on the other hand that the sag does practically not depend on the line speed.
As a matter of fact the cable-tension is linearly dependent on the height and thus in the same
way as the hydrostatical pressure depends on height in fluid mechanics.
We analysed the eigenfrequencies and eigenmodes of the in-plane motion in dependence on
the cable line speed if the cable tension is prescribed in oneof the eyelets. Hence we saw that
for typical contemporary ropeway applications the lowest eigenfrequencies and eigenmodes are
practically independent of the line-speed. Nevertheless we saw that the line speed still remains
to be an important parameter since it is proportional to the external excitation frequency that is
acting on the cable caused by the equidistantly attached gondolas or chairs.
We showed that if we take rolls instead of eyelets as boundaries, the linear correction term van-
ishes at the points, where the steady-state configuration touches the rolls tangentially. Therefore
in this case the boundary conditions of the linearized problem turn out to be the same as if there
were two eyelets on the surfaces of the two rolls.
Moreover, we discussed the relationship between the shape of the lowest eigenmode and the
inextensibility of the cable.
Based on the analogy between the cable configuration and the fluid conveying tube, we stated
that there is no self-excitation of the axially moving cablebetween two eyelets. In particular we
came to the conclusion that violent sag-oscillations of aerial ropeways are caused by external
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oscillations.
In addition, we saw to what extend the planar steady-state solution of the cable between two
rolls in a constant gravitational field changes if the cable is not perfectly flexible. Thus, in the
case of almost perfect flexible cables we considered the slight bending stiffness as a small per-
turbation of the completely flexible cable. We showed that this is a regular singularly perturbed
boundary value problem and after introducing boundary layer variables, we derived a formal
approximation for the solution that is a matched asymptoticexpansion. This analytical results
were compared with numerical results that were computed in Fortran90 using the boundary
value solver COLSYS. Especially at the boundaries where thebending stiffness plays a crucial
role, the two different methods showed very good agreement.
We described various two-dimensional Finite Element simulations with ABAQUS/Standard that
were performed in order to check the results concerning the steady-state motion of the cable.
Then we looked at the cable of a circulating monocable aerialropeway which is actually a cable
loop. We observed that if we prescribe the cable tension on a tower in the adjacent cable span,
there might be two, one or no possible steady-state configuration. In the case of two solutions,
one is mechanically stable and the other one is mechanicallyunstable.
Between two neighbouring cable spans of a ropeway there is always a certain ’force-interaction’
over the sheave assemblies of the common tower. Thus if the prescribed cable tension in the
haulage device of the ropeway is high enough, a mechanicallystable steady-state configuration
of the cable loop can be determined. This configuration is forinstance necessary if a three-
dimensional Finite Element model of a ropeway has to be performed.
Furthermore we showed an illustrative series of simulations that indicate how sag-oscillations
could be caused by resonance due to a periodic excitation of an axially moving cable. Basically
the phenomenon of sag-oscillations can be explained without elasticity. Crucial, however, is
the fact that two or more cable spans have to be involved. Obviously the configuration length
in one cable span increases while simultaneously the configuration length in an adjacent span
decreases.
Finally, for the purpose of testing ropeways we developed a program in C++ that helps to gen-
erate input-files for ABAQUS/Explicit.
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Appendix A

Regular Singularly Perturbed Boundary
Value Problem

In the subsection 4.3.1 of chapter 4 we perturbed the perfectly flexible cable with a slight bend-
ing stiffness and saw that the steady-state configuration turned out to be a regular singularly
perturbed boundary value problem. Since there are also singular singularly perturbed bound-
ary value problems, we want to state now more precisely how a regular singularly perturbed
boundary value can be defined and how a formal approximation of the solution is derived in
the form of a matched asymptotic expansion (s. a. O’Malley [14]). Furthermore we also will
go through the existence and the uniqueness of the solution (s. Schmeiser [27, 28] for more
details). Consider a singularly perturbed boundary value problem of the form

εy′ = f (y,z, t,ε),

z′ = g(y,z, t,ε),

0 = b
(
y(0) ,z(0) ,y(1) ,z(1)

)
,

(A.1)

where(.)′ = d(.)/dt andt ∈ [0,1]. Furthermore,y is a(n+ +n−)-vector,z is ann0-vector and
f , g andb are appropriate mappings. Let the reduced equations

0 = f (ȳ, z̄, t,0)

be uniquely solvable with respect to ¯y = φ(z̄, t). Suppose that the matrixfy (φ (z̄, t) , z̄, t,0)
hasn− (stable) eigenvalues with strictly negative real parts andn+ (unstable) eigenvalues with
strictly positive real parts for allt in the closed interval[0,1]. For a solution of (A.1) we make
the ansatz

y(t,ε) = φ (z̄(t) , t)+Ly(τ)+Ry(σ)+O(ε)

z(t,ε) = z̄(t)+O(ε),
(A.2)
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whereτ = t/ε, Ly(∞) = Ry(∞) = 0. Substituting in (A.1) yields

z̄′ = g(φ (z̄, t) ,z, t,0),

d
dτ

Ly = f (φ (z̄(0) ,0)+Ly, z̄(0) ,0,0) ,

d
dσ

Ry= − f (φ (z̄(1) ,1)+Ry, z̄(1) ,1,0) ,

0 = b
(
φ (z̄(0) ,0)+Ly(0) , z̄(0) ,φ (z̄(1) ,1)+Ry(0) , z̄(1)

)
,

Ly(∞) = Ry(∞) = 0.

(A.3)

Schmeiser [27] deduced the following theorem about existence and uniqueness from the papers
of Vasileva & Butuzov [39] and Esipova [6]:

Theorem 1. Let f , g and b be continuously differentiable with respect toall variables. Let
problem (A.3) have a stable solution(z̄,Ly,Ry), i.e. the linearization of (A.3) at(z̄,Ly,Ry) is
invertible. Then there are constantsε0,δ > 0, in such a way that for0 < ε ≤ ε0 a solution
(y(t,ε) ,z(t,ε)) of (A.1) exists, which satisfies (A.2) and is unique in a ball with radiusδ and
centre(φ (z̄, t)+Ly(τ)+Ry(σ) , z̄(t)) in the space C1[0,1].



Appendix B

Properties of f (a,c) = a cosh(c/a)

In eq. (6.5) of chapter 6 we definedf (a,c) and used some characteristics of this function, which
we will discuss now more in detail.

The functionf (a,c) is asymmetric with respect to the variablea and symmetric with regard
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Figure B.1: Contour-plots of the functionf (a,c) in eq. (6.5) - light color means high value. The
similarity between the two pictures of different ’zoom’-factor is typical for the parallel plane
sections of a geometrically three-dimensional coneΓ ⊂ R3 for whichΓ ⊂ λΓ holds withλ > 0.
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c

a

c

to the variablec (s. Fig. B.1) and fulfills for allλ the equation

f (λa,λc) = λ f (a,c) .

Thus all the curvesC = {(a,c) | f (a,c) = p}∪ (0,0) with different p are similar to each other
and f is more a homogeneous function of order one. In other words the graph off is geomet-
rically a conical surface with its vertex in(0,0). Hence it becomes also clear that for non-zero
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Figure B.2: The domain enclosed by the lineC = {(a,c) | f (a,c) = p}∪ (0,0) has the areap2.
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a one of the eigenvalues of the Hessian matrix off (a,c) in thea,c-plane is zero and that at the
point (a,c) the eigenvector to the zero-eigenvalue is(a,c). The other eigenvalue, representing
the other main curvature, is positive for positivea. As a consequence for constant non-zerop
the closed lineC where f (a,c)= p (s. Fig. B.2), encloses a convex domain in the(a,c)-plane
with an areaA. The implicitly given function ofC can be integrated analytically resulting in
A = p2.
Finally, for the sequencegn(x) = n/cosh(nx) with n∈N it can be easily shown that

∫ ∞
−∞ gn(x)dx=

π for everyn and moreover that limn→∞ gn(x) = πδ (x). Hence we have

lim
aց0+

1
f (a,c)

= πδ (c) ,

so that the behaviour off (a,c) for aց 0+ becomes comprehensible.
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[4] E. CZITARY , Über die Schwingungen des Zugseiles von Seilschwebebahnen, Österr. Ing.-
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