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Kurzfassung

Diese Dissertation widmet sich der Studie von ökonometrischen Modellen
mit glatten Übergangsfunktionen (smooth transition regression models). Ein
Überblick über solche Modelle nach dem letzten Stand der Literatur wird im
zweiten und dritten Kapitel präsentiert. Verschiedene Formen der Funk-
tionen, die den Übergang zwischen den Parameterregimes steuern, werden
im zweiten Kapitel untersucht. Der dritte Abschnitt diskutiert die Frage
von Spezifikation, Schätzung und Bewertung solcher Modelle. Für die ver-
schiedenen Spezifikationstests, die bei der Suche nach einem passenden Re-
gressionsmodell mit glatten Übergangsfunktionen erforderlich sind, werden
verschiedene Varianten des Lagrange Multiplikator Tests verwendet und in
einem Kapitelanhang erklärt.
Während ausführliche Untersuchungen auf dem Gebiet der univariaten

nichtlinearen Modellbildung durchgeführt worden sind, muss die statistis-
che Theorie der multivariaten nichtlinearen Modellbildung noch entwickelt
werden. Diese Arbeit stellt in den weiteren Kapiteln dazu einige Beiträge
zur Verfügung. Die ersten Versuche zur Erweiterung der nichtlinearen Re-
gressionsmodelle mit glatten Übergangsfunktionen auf vektorautoregressive
Modelle sind in den letzten Jahren erschienen. Ein Beitrag befasst sich mit
dem Testen auf gemeinsame nichtlineare Komponenten in multiplen Zeitrei-
henmodellen. Spezifikation und Schätzung von Gleichungssystemen ist vere-
infacht, weil die Existenz von gemeinsamen Nichtlinearitäten die Dimension
der nichtlinearen Komponenten reduziert und damit eine sparsame Para-
metrisierung des Modells ermöglicht. Ein weiterer Beitrag betrifft Spezi-
fikationsfragen in vektorautoregressiven Modellen, denen in einem weiteren
Teil des vierten Kapitels nachgegangen wird. Die gegenwärtige Literatur
über Spezifikations- und Schätzungsverfahren wird zusammengefasst und in-
sofern erweitert als unterschiedliche Übergangsvariable und unterschiedliche
Übergangsfunktionen in verschiedenen Gleichungen vorkommen. Die vorge-
schlagene erweiterte Spezifikationsprozedur wird im letzten Teil des vierten
Kapitels erklärt. Es wird gezeigt, dass die Zulassung verschiedener Typen
von Nichtlinearitäten beziehungsweise unterschiedlicher Übergangsvariablen
eine sinnvolle Verallgemeinerung ist.
Im fünften Kapitel präsentieren wir eine Anwendung des Tests auf gemein-

same Nichtlinearitäten um die Komponenten des realen Wechselkurses vom
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Slowenischen Tolar gegenüber den Währungen von den fünf wichtigsten Han-
delspartnern Sloweniens zu analysieren. Bei nur einem der fünf untersuchten
Fällen kann eine gemeinsame nichtlineare Komponente die Entwicklung der
Komponenten des realenWechselkurses ausreichend darstellen. Dieses Resul-
tat entspricht der ökonomischen Realität und erlaubt eine sinnvolle Interpre-
tation der geschichtlichen Entwicklung. Das sechste Kapitel widmet sich der
Spezifikation eines nichtlinearen monetären Inflationsmodells. Dieses Modell
besteht aus einer realen Geldnachfragegleichung erweitert um eine Phillips
Kurve und dem Gesetz von Okun. Das Ziel dieser Untersuchung ist ein
Vergleich der verschiedenen Eigenschaften, die durch die Spezifikation mit
glatten Übergangsfunktionen auftreten, mit denen von linearen Modellen.
Die Systemsimulation lässt auf eine für die Wirtschaftspolitik interessante
Eigenschaft schliessen, dass sich nämlich monetäre Veränderungen auf Ar-
beitslosigkeit und Inflation asymmetrisch auswirken.
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Abstract

This thesis is devoted to studying econometric models of smooth transi-
tion characterized by continuously changing parameter regimes. In chapter
two a review of such models is presented. Various functional forms of the
function that governs the transition between the regimes are examined. The
following chapter discusses the issue of specifying, estimating and evaluating
smooth transition models. The Lagrange multiplier test is usefully applied
for the different specification tests required in the process of finding an appro-
priate smooth transition model. The review of the specification procedure,
estimation and subsequent evaluation follows the recent literature.
Whereas there has been extensive research in the field of univariate non-

linear modeling, the statistical theory of multivariate nonlinear modeling has
yet to be developed. The first attempts at extending nonlinear smooth tran-
sition regression techniques to vector autoregressive models have emerged in
the last few years. One approach tries to test for common nonlinear compo-
nents in multiple time series. Specification and estimation of the system of
equations is simplified, since the existence of the common nonlinearities re-
duces the dimension of the nonlinear components in the system and enables
parsimony. In a further section of chapter four a smooth transition approach
is applied to vector autoregressive models. Starting from recent literature
the specification and estimation techniques are reviewed and extended to the
case of including more than one transition function and allowing for different
transition variables in different equations. The proposed augmented specifi-
cation procedure is explained in the last section of chapter four. It turns out
that consideration of different types of nonlinearity or transition variables do
indeed make sense.
In chapter five we present a practical implementation of the common non-

linearities test to analyze the components of the real exchange rates of the
Slovenian Tolar versus the currencies of its five major trading partners. In
only one of the five cases examined one common nonlinear component can
adequately describe the development of the real exchange rate components.
This result matches very well with economic reality and permits a good inter-
pretation of the historic events. Chapter six is devoted to the specification of
a nonlinear monetary model of inflation characterized by the real money de-
mand equation augmented by the Phillips curve and the equation of Okun‘s
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law. The objective of this investigation is to analyze different properties that
derive from specification using smooth transition regression as compared to a
linear specification. The simulation of the system reveals the fact interesting
for the economic policy that a monetary impact leads to asymmetric effects
on unemployment and inflation.
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Chapter 1

Introduction

Macroeconomic modeling has long been dominated by the assumption of
linearity. Although it is generally excepted that the economy can be well
described by a set of nonlinear relations among major economic variables,
it was mainly because of simplicity that linear techniques to estimate such
relations were usually applied in econometric model building. Individual
equations were specified in order to maintain linearity in the estimated pa-
rameters, often using logarithmic or exponential transformations to achieve
this property. With the progress of computing power it became easier to
move from the spectrum of linear techniques to nonlinear ones. From the
economic perspective, this move was particularly supported by the observa-
tion of serious structural changes in major economic relationships and the
fact of asymmetric reactions to policy interventions.
The present investigation concentrates on a specific technique to ana-

lyze economic relationships, which exhibit certain structural properties. The
properties are characterized by different parameter regimes that obtain under
certain conditions. These are often mentioned by economic theory maintain-
ing the idea that the economy behaves differently if values of certain variables
lie in one region rather than in another, or, in other words, follow different
regimes. A simple model that can generate such a situation would be the dis-
crete switching model where parameters (or variables) visit a finite number
of different regimes. The smooth transition regression model assumes that
transitions between regimes are continuous. For many practical situations
such a smooth transition seems to be a more realistic assumption that the
abrupt switches. In chapter two a review of such models that have surfaced
in the literature since the late 1980‘s is presented. Various functional forms
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of the function that governs the transition between the regimes are discussed.
The following chapter is then devoted to the problem of specifying, estimat-
ing and evaluating smooth transition models. First, one has to start with the
basic test of the null hypothesis of linearity. Since linearity is definitely the
simplest assumption for a model builder to employ, it should be examined
whether it is worth to deviate from it by considering the specific alternative
of the nonlinear model. The Lagrange multiplier test will be usefully applied
for the different specification tests required in the process of finding an ap-
propriate smooth transition model. Because it appears in several versions a
short survey is included as appendix to this chapter. The review of the spec-
ification procedure, estimation and subsequent evaluation follows the recent
literature.
While for the estimation of single equation smooth transition regressions

a well accepted specification procedure exists, this is quite different for the
estimation of equation systems. As many issues in economics require the
specification of several relationships, techniques to handle nonlinear features
in systems are required. Only during the recent years such methods have ap-
peared in the literature. Most of the work has been done in the framework of
vector autoregressive models. Since every equation in a vector autoregressive
model could also be estimated independently from the others (although not
efficiently), such models lend themselves easily to an extension of the smooth
transition approach. So far, two directions of research have appeared. One
approach tries to test for common nonlinear components in multiple time
series. The common nonlinearities approach is based on the canonical corre-
lations technique. Specification and estimation of the system of equations is
simplified, since the existence of the common nonlinearities reduces the di-
mension of the nonlinear components in the system and enables parsimony.
The first section of chapter four critically reviews this approach. Applications
of this technique are rare. In chapter five we present a practical implementa-
tion of this test devoted to an analysis of the components of the real exchange
rates of the Slovenian Tolar versus the currencies of its five major trading
partners. It turns out that in only one of the five cases examined one com-
mon nonlinear component can adequately describe the development of the
real exchange rate components. This result matches very well with economic
reality and permits a good interpretation of the historic events.
In the second section a smooth transition approach is applied to vector

autoregressive models. Starting from recent literature the specification and
estimation techniques are reviewed and extended to the case of including
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more than one transition function and allowing for different transition vari-
ables in different equations. The proposed augmented specification procedure
is explained in the last section of chapter four. A model and the data are
taken from Camacho [10] and subjected to a set of tests to discover possible
transition variables and the types of the transition functions. It turns out
that consideration of different types of nonlinearity or transition variables
do indeed make sense. However, there is a greater ambiguity concerning the
choice of transition variables in the different equations of the system.
Chapter six is devoted to the specification of a small system of equa-

tions based on the monetary approach to the explanation of inflation and
unemployment. Data for Western Germany are used. The objective of this
investigation is to analyze different properties that derive from specifica-
tion using smooth transition regression as compared to a linear specification.
Such studies are hardly to be found in the literature. Since the structure of
the model is recursive, one can resort to an application of the single equa-
tion approach. The simulation of the system reveals the fact interesting for
the economic policy that a monetary impact leads to asymmetric effects on
unemployment and inflation.
From the economic point of view the current investigation indicates two

aspects that could fruitfully be pursued in the construction of macro-models.
The first one aims at the reduction of the dimension of nonlinear influences in
order to achieve parsimonious models. Our application to the real exchange
rate model shows that it is indeed possible to economize in this respect. The
other aspect considers the variety of possible nonlinearities in the design of
macroeconomic systems and their use for policy analysis. The potential to
explore the extent of asymmetric effects should secure a relevant role for the
smooth transition regression approach in econometric model building.

17



Chapter 2

Smooth transition regression
models

2.1 Some simple nonlinear models

The building of macroeconomic models has long been dominated by the as-
sumption of linearity. Nevertheless, it seems to be generally accepted that
the economy is nonlinear, insofar as major economic variables are basically
nonlinearly related.
Many elements of economic theory mention the idea that the economy

behaves differently if values of certain variables lie in one region rather than
in another, or, in other words, follow different regimes. The first attempt at
modeling such phenomena is represented by the so-called discrete switching
models, where a finite number of different regimes is assumed.
We start with a linear model of the form

yt = x
0
tθ + εt, (2.1)

where xt = (xt1, xt2, . . . , xtk)0 is a vector of explanatory variables of the model,
θ = (θ1, θ2, . . . , θk)

0 is a parameter vector and {εt} are independent identically
distributed errors with zero mean and constant variance. By assuming that
the parameter vector θ is a function of a variable st we obtain a generalization
of model (2.1):

yt = x
0
tθ(st) + εt. (2.2)

This locally linear approximation of the underlying nonlinear relationship
between the observed variables can model an infinite number of different
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regimes. The simplest version takes into account only the two extreme
regimes and can be written as

yt = x
0
tθ1 + (x

0
tθ2) ·G(st) + εt, (2.3)

where

G(st) =

(
0, if st < c
1, if st > c

is the Heaviside function indicating whether st exceeds the constant c or not.
For obvious reasons, the model (2.3) is referred to as the discreet switching
regression model.
The central tool of this class of models is the switching variable st that

can be either observable or unobservable. However, the estimation of such
models is complicated as the Heaviside function is not differentiable and the
constant c is not known in advance.
Since the estimation of the discrete model (2.3) is not straightforward,

it has been proposed by Goldfeld and Quandt [72] to replace the Heaviside
function with the cumulative normal distribution function with mean c and
constant variance σ2, i.e.

F (st) =
1√
2πσ2

Z st

−∞
exp

µ
−(s− c)

2

2σ2

¶
ds.

This can be interpreted as the first attempt to approximate the discrete step
function (2.3) with a smooth function.

2.2 Types of smooth transition regression
models

Due to the fact that smooth transition between regimes is often more conve-
nient and realistic than just the sudden switches, several scientists proposed
a generalization of discrete switching models of the following form.

Definition 2.1. A model with a functional form

yt = x
0
tϕ+ (x

0
tθ) ·G(γ, c; st) + ut, t = 1, 2, . . . , T, (2.4)
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where xt ∈ Rp+1 is the vector of explanatory variables containing lags of the
endogenous variable yt and the exogenous variables, i.e.

xt = (1, xt1, xt2, . . . , xtp)
0 = (1, yt−1, . . . , yt−m, zt1, . . . , ztn)0,

ϕ = (ϕ0,ϕ1, . . . ,ϕp)
0 ∈ Rp+1 and θ = (θ0, θ1, . . . , θp)

0 ∈ Rp+1 are the parame-
ter vectors and ut is a sequence of independent identically distributed errors,
is a Smooth transition regression model (STR model).

G denotes a continuous transition function usually bounded between 0
and 1. Because of this property not only the two extreme states can be
explained by the model, but also a continuum of states that lie between
those two extremes. The slope parameter γ is an indicator of the speed of
transition between 0 and 1, whereas the threshold parameter c points to
where the transition takes place. The transition variable st is usually one of
the explanatory variables or the time trend.
Let us explain in some detail the most often used transition functions.

2.2.1 LSTR1 model

The transition function of the logistic STR model or the LSTR1 model is
defined as

G1(γ, c; st) =
1

1 + e−γ(st−c)
, γ > 0. (2.5)

This type of the transition function was first proposed by Maddala [52], but
it only became popular due to the work of professor Teräsvirta and coworkers
(see [73] and [74]).
G1 is a monotonously increasing function of the transition variable st,

bounded between 0 and 1. Additionally, G1(γ, c; c) = 0.5, therefore we can
say that the location parameter c represents the point of transition between
the two extreme regimes with limst→−∞G1 = 0 and limst→∞G1 = 1. The
restriction γ > 0 is an identifying restriction. As we can see from Figure
2.1, the slope parameter γ indicates how rapidly the transition from 0 to 1
takes place. While a moderate value of γ = 1 imposes a slow transition, the
function with γ = 10 changes quite fast.
If γ → ∞ in the definition of G1, then the model (2.4) converges to

a switching regression model with the extreme regimes yt = x0tϕ + ut and
yt = x

0
t(ϕ+ θ) + ut. For γ = 0, the function G1 is constant and equal to 0.5.

In this case model (2.4) simplifies to a linear regression model.
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Figure 2.1: LSTR1 transition functions with c = 1

2.2.2 LSTR2 model

Monotonous transition may not always be satisfactory in applications. An
example of a nonmonotonous transition function, which is especially useful
in case of reswitching, is the quadratic logistic function

G2(γ, c1, c2; st) =
1

1 + e−γ(st−c1)(st−c2)
, γ > 0, c1 ≤ c2. (2.6)

Again, the restrictions on γ, c1 and c2 are identifying restrictions. G2 is
symmetric about the point c1+c2

2
and limst→±∞G2(γ, c1, c2; st) = 1. G2 is

never equal 0, its minimal value lies between 0 and 0.5. Two examples of the
function G2 with different values of the parameters are depicted in Figure
2.2.
As before, we consider the model obtained when γ →∞:

lim
γ→∞

G2(γ, c1, c2; st) =

(1, if st < c1 or st > c2
0, if c1 < st < c2
1
2
, if st = c1 or st = c2

Setting γ = 0 again returns a linear model.
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Figure 2.2: LSTR2 transition functions with c1 = −1 and c2 = 1

Due to the symmetric course of this transition function, the LSTR2 model
is a special case of a three regime switching regression model that enables
reswitching to the previous regime.

2.2.3 ESTR model

Sometimes it is desirable that small absolute values of the transition variable
are related to small values of the transition function. The smooth transition
regression model with an exponential transition function of the form

G3(γ, c; st) = 1− e−γ(st−c)2 , γ > 0, (2.7)

complies with the above condition for c = 0. This is the so-called ESTR
model. The function G3 is nonmonotonous and symmetric about the point
c.
By setting γ = 0 we obtain a linear model.

lim
γ→∞

G3(γ, c; st) =

(
1, if st 6= c
0, if st = c
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Figure 2.3: ESTR transition functions with c = 0

therefore it is in practice difficult to distinguish an ESTR model from a linear
model for large values of γ.
Both the LSTR2 model and the ESTR model enable reswitching, but

they differ in the rapidity of reswitching. One can see from Figure 2.3 that
for a large value of γ the transition from 1 to 0 and back to 1 is sudden for
the ESTR model, as compared to the LSTR2 model, where the reswitching
can be slower when the gap between c1 and c2 is large.

2.2.4 Reswitching model

Two reswitches can be modeled with the nonmonotonous transition function
introduced by Lin and Teräsvirta [48]:

G4(γ, c1, c2, c3; st) =
1

1 + e−γ(st−c1)(st−c2)(st−c3)
, γ > 0, c1 ≤ c2 ≤ c3.

(2.8)
The transition function (2.8) can be generalized to a case where the exponent
is any polynomial of order 3 with real - valued roots. The Figure 2.4 depicts
the transition function G4 for γ = 1 and for γ = 10.
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Figure 2.4: Reswitching functions with c1 = −3, c2 = −1 an c3 = 1

As before, the γ - value determines the speed of transition between the
extreme regimes. For γ →∞, we obtain a linear model:

lim
γ→∞

G4(γ, c1, c2, c3; st) =

(0, if st < c1 or c2 < st < c3
1, if c1 < st < c2 or st > c3
1
2
, if st = c1 or st = c2 or st = c3
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Chapter 3

Specification, estimation and
evaluation of STR models

3.1 Testing linearity against STR

Before one starts the modeling cycle for a given data set, the following ques-
tion should be cleared: Is the underlying relationship linear or nonlinear?
The test that tries to answer this question was developed by Lukkonen,
Saikkonen and Teräsvirta [51]. Their approach has two important advan-
tages. Firstly, the asymptotic distribution under the null hypothesis of line-
arity is a standard distribution. Secondly, the test can be carried out just
by using ordinary least squares. In order to discuss testing the statistical
hypotheses within the STR framework, some additional assumptions about
model (2.4) are necessary:

1. The stochastic variables among the exogenous variables zt1, zt2, . . . , ztn
are assumed nonstationary, whereas the nonstochastic ones are dummy
variables.

2. st is assumed to be a stationary variable or the time trend.

3. Cross - moments Eztiztj, Eztiskt , Eyt−ls
k
t and Eyt−lztj are assumed to

exist for k ≤ 3, i, j = 1, 2, . . . , n and l = 1, 2, . . . ,m.
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We shall restrict our attention to LSTR1, LSTR2 and ESTR models. Next,
we redefine the transition function as follows:

G∗i =

(
Gi − 1

2
, for i = 1, 2

Gi, for i = 3
(3.1)

The advantage of G∗i over Gi lies in the fact that G
∗
i takes the value zero

when γ = 0. Model (2.4) can be rewritten as

yt = x
0
tϕ+ (x

0
tθ) ·G∗i (γ, c; st) + ut, i = 1, 2, 3. (3.2)

The parameter vectors ϕ and θ change, but the functional form stays the
same.
Under additional assumption ut ∼ N(0,σ2), the conditional log - likeli-

hood function of model (3.2) takes the form

TX
t=1

`(ϕ, θ, γ, c; yt|xt, st) = −T
2
ln(2π)− T

2
ln(σ2)− 1

2σ2

TX
t=1

u2t . (3.3)

The roots of the lag polynomial 1−Pm
j=1 ϕjL

j are assumed to lie outside the
unit circle. The null hypothesis of linearity for model (3.2) can be expressed
as

H0 : γ = 0 against H1 : γ > 0 (3.4)

or as
H 0
0 : θ = 0 against H 0

1 : θ 6= 0. (3.5)

This indicates an identification problem, because the model is identified un-
der the alternative, but not identified under the null hypothesis. Namely,
the parameters c and θ are nuisance parameters (for the null hypothesis
H0 : γ = 0) that are not present in the model under H0 and whose values do
not affect the value of the log - likelihood. Consequently, the Likelihood ratio
test, the Lagrange multiplier and the Wald test do not have their standard
asymptotic distributions under the null hypothesis and one cannot use these
tests for a consistent estimation of the parameters c and θ.
To overcome this problem, Luukkonen, Saikkonen and Teräsvirta [51] re-

placed the transition function G∗i with its Taylor approximation of a suitable
order. Let us explain the procedure in more detail.
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We start with the logistic transition function G∗1 and its first order Taylor
approximation around γ = 0:

T1(γ, c; st) = G∗1(0, c; st) +
∂G∗1(γ, c; st)

∂γ


γ=0

· γ +R1(γ, c; st)

= 0 +
(st − c) · e−γ(st−c)
(1 + e−γ(st−c))2


γ=0

· γ +R1(γ, c; st)

=
1

4
(st − c) γ +R1(γ, c; st)

= −1
4
c γ +

1

4
γ st +R1(γ, c; st)

= δ0 + δ1 st +R1(γ, c; st), (3.6)

where δ0 and δ1 are defined as δ0 = −14 c γ and δ1 =
1
4
γ. Replacing G∗1 with

T1(γ, c; st) in (3.2) yields

yt = x0tϕ+ (x
0
tθ) · (δ0 + δ1 st +R1(γ, c; st)) + ut

= x0t(ϕ+ δ0θ) + x
0
tst(δ1θ) + x

0
tθR1(γ, c; st) + ut

= x0tη0 + x
0
tstη1 + u

∗
t , (3.7)

with u∗t = x
0
tθR1(γ, c; st) + ut, η0 = ϕ + δ0θ and η1 = δ1θ. Thus, the former

null hypothesis of linearity H0 : γ = 0 can also be tested as

H 00
0 : η1 = 0 against H 00

1 : η1 6= 0 (3.8)

by performing a Lagrange multiplier (LM) type test. This test has the ad-
vantage that the estimation of the nonlinear model under the alternative
hypothesis is not necessary. Different versions of the Lagrange multiplier
test are discussed in the appendix to this chapter. Note that u∗t = ut under
H0. Using the formula (3.101), the LM test statistic can be computed as

LM =
1

σ̂2R

µ TX
t=1

wtût

¶0³
M22 −M21M

−1
11 M12

´−1 µ TX
t=1

wtût

¶
, (3.9)

where
zt = xt, wt = xtst,

M11 =
TX
t=1

ztz
0
t, M22 =

TX
t=1

wtw
0
t, M12 =M

0
21 =

TX
t=1

ztw
0
t,
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ût is the residual estimated under the null hypothesis and the restricted
estimator σ̂2R is equal to

1
T

PT
t=1 û

2
t . The derivation of the above test statistic

is described in detail in section 3.6.4. Under the null hypothesis, the statistic
has an asymptotic χ2 distribution with p+1 degrees of freedom, when the
so-called regularity conditions are fulfilled. Basically, the moments used in
the LM test statistic (3.9) have to exist (see section A.2.4 for details).
We have to emphasize that auxiliary regression (3.7) is suitable only if st

does not belong to xt. In the opposite case the variable st appears twice on
the right-hand side of equation (3.7). The problem is solved by dropping the
constant from the vector xt by defining

x̃t = (xt1, xt2, . . . , xtp)
0 (3.10)

and transforming equation (3.7) into

yt = x
0
tη0 + (x̃

0
tst)η1 + u

∗
t . (3.11)

The degree of freedom of the asymptotic χ2 distribution is reduced by 1,
since there are p restrictions left under the null hypothesis H 00

0 : η1 = 0.
Luukkonen, Saikkonen and Teräsvirta [50] investigated the power prop-

erties of the proposed linearity test by simulation. It turned out that the
LM-type test has good power already in small samples, with the exception
of the case when st is one of the explanatory variables and only the first ele-
ment of the vector θ is different from 0. This means that the extreme regimes
of model (2.4) differ only in the constant term. Obviously, the test has no
power if θ = (θ0, 0, . . . , 0)

0, θ0 6= 0, as η1 is equal to zero even under the
alternative hypothesis of a nonlinear model. The problem can be solved by
using a higher-order Taylor approximation of the transition function. Since
the second partial derivative of the transition function G∗1 is equal to zero at
γ = 0, it seems sensible to use the third-order Taylor polynomial,

T3(γ, c; st) = δ0 + δ1 st + δ2 s
2
t + δ3 s

3
t +R3(γ, c; st). (3.12)

After replacing the transition function G with T3 in equation (2.4) and rear-
ranging the terms, one obtains

yt = x
0
tη0 + (x̃

0
tst)η1 + (x̃

0
ts
2
t )η2 + (x̃

0
ts
3
t )η3 + u

∗
t , (3.13)

with u∗t = x
0
tθR3(γ, c; st) + ut. The null hypothesis of linearity,

H 000
0 : η1 = η2 = η3 = 0, (3.14)
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is tested as for equations (3.7) and (3.11), with the LM test of the form (3.9).
Only the vector wt has to be changed to

wt = (x̃
0
tst, x̃

0
ts
2
t , x̃

0
ts
3
t )
0.

The computed test statistic is asymptotically χ2-distributed with 3p degrees
of freedom. The alternative hypothesis to (3.14) is obviously H 000

1 : at least
one of the ηi, i = 1, 2, 3, is not equal to 0.
So far, we have only discussed linearity testing for the LSTR1 model

under the alternative hypothesis. In case of the ESTR model, the first-order
Taylor approximation of the transition function G∗3 leads to a polynomial of
degree 2 in the transition variable st. Escribano and Jordá [20] argue that the
first-order Taylor expansion is not sufficient to reflect the characteristics of
the original transition function. They propose using the second-order Taylor
polynomial, instead. Consequently, the degree of freedom of the resulting
LM test statistic amounts to 2p in the first case and 4p in the second case.
The linearity test for the LSTR2 model is developed in a similar way. One

could use the Taylor approximation of order one, which yields a polynomial
of degree 2 in the transition function st and the LM test statistic with 2p
degrees of freedom, or the Taylor approximation of order three, which leads
to a polynomial of degree 6 and the test statistic with 6p degrees of freedom.
The second partial derivative of the transition function G∗2 with respect to
γ is equal to 0 at γ = 0, therefore we have left out the Taylor expansion of
order 2. Because of the high number of coefficients that have to be tested in
the second case, it is better to use only the first-order Taylor approximation
at the expansion point γ = 0.
We shall restrict our attention to first-order Taylor polynomials for ESTR

and LSTR2 transition functions, to obtain a general linearity test that covers
all 3 STR models. Namely, we could run auxiliary regression (3.13) and test
the null hypothesis H 000

0 : η1 = η2 = η3 = 0 in all 3 cases. ESTR and
LSTR2 transition functions would lead to regression (3.13) with η3 = 0, but
the proposed linearity test would still have power against ESTR and LSTR2
models under the alternative.
If the number of restrictions under the null hypothesis is large when

compared to the sample size, the asymptotic χ2 distribution is likely to be
a poor approximation for the actual small-sample distribution of the LM
test statistic. In this case, an F - approximation of the test statistic works
much better, as the empirical size of the test remains close to the nominal
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size while the power is good. For this reason, Granger and Teräsvirta [27]
suggest using the F - test for testing linearity against STR. The description
of the F - approximation of the LM test in given in section 3.6.5. The test is
performed in 3 steps:

1. After regressing yt on xt, use the obtained residuals to define the resid-
ual sum of squares SSR0 =

PT
t=1 û

2
t .

2. Compute the residual sum of squares (SSR1) from regressing ût on
(x0t, x̃

0
tst, x̃

0
ts
2
t , x̃

0
ts
3
t )
0.

3. Calculate the F statistic as

F =
(SSR0 − SSR1)/(3p)
SSR1/(T − 4p− 1) . (3.15)

Under null hypothesis (3.14), the test statistic is F-distributed with 3p
and T-4p-1 degrees of freedom.

The above theory covers the possibility when st is one of the explanatory
variables, i.e. st is an element of xt. If this is not the case, the auxiliary
regression to be run is

yt = x
0
tη0 + (x

0
tst)η1 + (x

0
ts
2
t )η2 + (x

0
ts
3
t )η3 + u

∗
t , (3.16)

The resulting F statistic has 3(p+1) and T-4p-4 degrees of freedom.

3.2 Model specification

3.2.1 Choosing the transition variable

When developing the linearity test, we have always assumed that the tran-
sition variable st is known. But the choice of the transition variable is not
straightforward, since the underlying economic theory often gives no clues
as to which variable should be taken for the transition variable under the
alternative. If we are choosing st only from the the set of explanatory vari-
ables, then we can specify the transition variable as a linear combination of
the elements of x̃t of the form

st = a
0x̃t = (0, . . . , 0, 1, 0, . . . , 0)0x̃t. (3.17)
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The position of the only nonzero element of the vector a determines the
transition variable, but it is not known when performing the linearity test.
The procedure is explained in Luukkonen, Saikkonen and Teräsvirta [50] and
involves approximating the transition function with its third order Taylor
polynomial, substituting it for G in equation (2.4) and replacing st with a0x̃t.
This yields the auxiliary regression

yt = x
0
tη0+

pX
i=1

pX
j=i

η1ijxtixtj+

pX
i=1

pX
j=1

η2ijxtix
2
tj+

pX
i=1

pX
j=1

η3ijxtix
3
tj+u

∗
t , (3.18)

with the null hypothesis of linearity of the form

H0 : η1ij = 0, i = 1, 2, . . . , p, j = i, i+ 1, . . . , p, (3.19)

η2ij = η3ij = 0, i = 1, 2, . . . , p, j = 1, 2, . . . , p.

The resulting LM statistic is asymptotically χ2-distributed with degree of
freedom equal to p(p+1)

2
+ 2p2. As this expression increases fast with the

growing p, a restricted version of (3.18) is usually used in practice:

yt = x
0
tη0 +

pX
i=1

pX
j=i

η1ijxtixtj +

pX
j=1

η3jx
3
tj + u

∗
t . (3.20)

For the null hypothesis

H0 : η1ij = 0, i = 1, 2, . . . , p, j = i, i+ 1, . . . , p, (3.21)

η3j = 0, j = 1, 2, . . . , p,

the degree of freedom is reduced to the value of p(p+1)
2

+ p. This is a general
test of linearity against the alternative of a STR model, where the transition
variable does not have to be known a priori. If the choice of the transition
variable is restricted to a subset of the elements of x̃t, the procedure can be
modified accordingly.
An alternative way of proceeding is to test the null hypothesis of linearity

with auxiliary regression (3.13) for each of the possible transition variables in
turn. The candidates for the transition variable are usually the explanatory
variables and the time trend. If the null is rejected for more than one variable,
the variable with the strongest rejection of linearity (i.e. with the lowest
p-value) is chosen for the transition variable. This intuitive and heuristic
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procedure can be justified by observing that the test is most powerful when
the alternative hypothesis is correctly specified, and this is achieved for the
"right" transition variable. It has to be emphasized that one cannot control
the overall significance level of the linearity test for this heuristic procedure,
since several individual tests have to be performed. If the overall significance
level is important, one should test the null of linearity with a test based on
auxiliary regression (3.18) or (3.20), where the transition variable does not
have to be determined a priori.

3.2.2 Choosing the transition function

If the transition variable has already been decided upon, the next step in the
modeling process consists of choosing the transition function. For each of
the 3 types of the transition function in model (2.4), Granger and Teräsvirta
[27] expressed the vectors η1, η2 and η3 of auxiliary regression (3.13), namely

yt = x
0
tη0 + (x̃

0
tst)η1 + (x̃

0
ts
2
t )η2 + (x̃

0
ts
3
t )η3 + u

∗
t , (3.22)

as functions of the parameters γ, c (or parameters c1 and c2 for LSTR2
model), θ = (θ0, θ1, . . . , θp)0 = (θ0, θ̃0)0, and the values of the first three partial
derivatives of the transition function G at the point γ = 0. They concluded
the following:

(i) η3 = 0 for ESTR and LSTR2 models assuming that the first-order Taylor
approximation of the transition function was used. For LSTR1 model,
η3 is generally not equal to 0 (unless θ̃ = 0).

(ii) η2 = 0 in case of an LSTR1 model with θ0 = c = 0. For ESTR and
LSTR2 models, η2 is usually different from 0.

(iii) η1 = 0 for ESTR models with θ0 = c = 0 and for LSTR2 models with
θ0 = c1 = c2 = 0. In case of an LSTR1 model, η1 is generally not equal
to 0.

Consequently, Granger and Teräsvirta [27] based their decision rule on a
sequence of nested hypotheses:

H04 : η3 = 0, (3.23)

H03 : η2 = 0| η3 = 0,
H02 : η1 = 0| η2 = η3 = 0.
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The 3 hypotheses are tested with a sequence of F-tests named F4, F3 and
F2, respectively. If the rejection of the hypothesis H03 is the strongest,
Granger and Teräsvirta advise choosing the LSTR2 or the ESTR model. In
the practice, one usually chooses the LSTR2 model and additionally tests the
hypothesis c1 = c2 after estimation. If it cannot be rejected, it seems better
to choose the LSTR2 model, otherwise ESTR should be chosen. In case of
the strongest rejection of the hypothesis H04 or H02, LSTR1 is selected as
the appropriate model.
There is also an alternative to the previously described decision rule,

which requires a high computational load. For fixed values of γ and c, model
(2.4) is linear in parameters and can be estimated by ordinary least squares.
In the first step, the parameters γ and c run through a two-dimensional
grid for LSTR1 models, or the parameters γ, c1 and c2 take the values from
a three-dimensional grid in case of LSTR2 models. At each point of the
grid the obtained linear model (linear in parameters) is estimated. The
parameters c, c1 and c2 are allowed to take only the values between the
observed minimum and the observed maximum of the transition variable st.
In the second step, one chooses the estimated model with the best fit from
the set of all LSTR1 and LSTR2 models. As the measure of the best fit,
standard error of regression can be used. If the LSTR2 model was chosen,
the hypothesis c1 = c2 is tested and if it is not rejected, ESTR model is
selected. The same grid-search procedure is used for setting the starting
values for the estimation of STR models.
Teräsvirta [73] conducted a series of simulation experiments to investigate

the properties of the proposed heuristic specification strategy for choosing the
transition variable and the transition function. The study was conducted for
smooth transition autoregressive (STAR) models in the univariate setting.
Different types of STAR models were examined and their parameters were
varied. The "true" transition variable was the lagged endogenous variable
yt−d, where the delay parameter d ran from 1 to 5. For each d the linearity
test was performed for every possible transition variable in turn (i.e. for
yt−1, yt−2, . . . , yt−5) and the variable with the lowest p-value was chosen. The
empirical size of the overall linearity test was 3 to 4 % when the nominal
size was 5 %. The results of the simulation study justified the heuristic
specification procedure and also showed that the power of the linearity test
is better for higher γ values and for lower values of the delay parameter d.
The decision rule for choosing the type of the transition function was tested
for distinguishing between LSTAR1 and ESTAR models. It works best when
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the number of observations of the transition variable that lie below c is about
the same as the number of observations above c. The performance of the rule
improves with the sample size.

3.3 Estimation of STR models

The specified STR model is usually estimated with nonlinear least squares
or with maximum likelihood estimation under the assumption of normally
distributed errors. Both methods are equivalent in this case. As already
described in the previous section, the grid search can be applied to obtain
initial estimates of the parameters. Nonlinear optimization procedures are
used to maximize the log-likelihood or to minimize the sum of squared resid-
uals. The applied STR models from the next chapters are estimated with the
Gauss package or with EViews. Several nonlinear optimization algorithms
are available in Gauss. For example, the Newton - Raphson algorithm, the
Broyden - Fletcher - Goldfarb - Shanno (BFGS) algorithm, the steepest de-
scent algorithm and the Davidon - Fletcher - Powell (DFP) algorithm are
all implemented in the Gauss library Optmum. A complete exposition on
nonlinear optimization is given in Fletcher [22] and in Nocedal and Wright
[57].
An additional remark should be made on the slope parameter γ of the

transition function. The magnitude of the parameter γ depends on the mag-
nitude of the transition variable st and is therefore not scale-free. The nu-
merical optimization is more stable if the exponent of the transition function
is standardized prior to optimization. In other words, it is advisable to di-
vide γ by the sample standard deviation (in case of LSTR1 models) or by the
sample variance (for ESTR and LSTR2 models) of the transition variable.
In this way the magnitude of the slope parameter is brought closer to the
magnitude of other parameters.

3.4 Misspecification tests

After estimating the specified STR model, one has to perform the specifica-
tion tests to check if the underlying assumptions hold. The tests described in
this section were first developed by Eitrheim and Teräsvirta [18] in a univari-
ate setting, i.e. for smooth transition autoregressive (STAR) models. The
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generalization to STR models is straightforward, provided that:

1. the parameters of the smooth transition models are estimated consis-
tently,

2. the estimates are asymptotically normally distributed.

Extensive discussion on both conditions can be found in Wooldridge [83] and
in Escribano and Mira [21]. The description of all misspecification tests for
STR models is given in Teräsvirta [72].

3.4.1 Error autocorrelation

The usual tests of Ljung and Box cannot be applied in this case, since their
asymptotic distribution under the null hypothesis is unknown when they are
calculated from estimated residuals of a STAR or STR model.
Let us start the development of the test by considering a general STR

model with the functional form

yt = M(xt;ψ) + ut, (3.24)

M(xt;ψ) = x0tϕ+ (x
0
tθ)Gi(γ, c; st), i = 1, 2, 3,

and AR(q) errors

ut = a1ut−1 + a2ut−2 + · · ·+ aqut−q + εt = a
0vt + εt, (3.25)

where a = (a1, a2, · · · , aq)0, vt = (ut−1, ut−2, · · · , ut−q)0, ψ = (ϕ0, θ0, γ, c)0, and
the errors εt are independently identically distributed with εt ∼ N(0,σ2).
Using the lag operator L, one can rewrite equation (3.25) as

εt =

µ
1−

qX
i=1

aiL
i

¶
ut =: p(L)ut. (3.26)

The null hypothesis of no error autocorrelation up to lag order q is therefore
H0 : a = 0 and the alternative hypothesis is H1 : a 6= 0. The roots of the
polynomial p(z) are assumed to lie outside the unit circle.
The derivation of the test is given in a more general setting, when the

function M is only supposed to be at least twice continuously differentiable
with respect to its parameters. Eitrheim and Teräsvirta [18] impose an ad-
ditional assumption that under the null hypothesis {yt} is stationary and er-
godic. This assumption is important for consistent estimation of parameters
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by nonlinear least squares (NLS). A comprehensive and technical discussion
on the necessary and sufficient conditions for consistent NLS estimation can
be found in Klimko and Nelson [44].
Assume that the starting values y0, y−1, . . . , y−q+1 and x0, x−1, . . . , x−q+1

are known. Since

εt = ut − a0vt =
³
yt −M(xt;ψ)

´
−

qX
j=1

aj

³
yt−j −M(xt−j;ψ)

´
, (3.27)

the conditional log - likelihood function is

l = c− T
2
lnσ2 − 1

2σ2

TX
t=1

ε2t (3.28)

= c− T
2
lnσ2 − 1

2σ2
·

·
TX
t=1

µ
yt −M(xt;ψ)−

qX
j=1

ajyt−j +
qX
j=1

ajM(xt−j;ψ)
¶2
.

The parameters of the model are stacked in the vector η = (ψ0, a0)0, with the
exception of σ2. As the information matrix is block diagonal, we can consider
σ2 fixed when computing the test statistic. A similar argument is explained
in the derivation of the LM test in section 3.6.2. The first partial derivatives
of the log - likelihood function are

∂l

∂aj
=

1

σ2

TX
t=1

εt

µ
yt−j −M(xt−j;ψ)

¶
, j = 1, 2, . . . , q,

∂l

∂ψ
=

1

σ2

TX
t=1

εt

µ
∂M(xt;ψ)

∂ψ
−

qX
j=1

aj
∂M(xt−j;ψ)

∂ψ

¶
. (3.29)

Taking into account that for STR models

∂M(xt;ψ)

∂ψ
=

µ
∂M

∂ϕ0
,
∂M

∂θ0
,
∂M

∂γ
,
∂M

∂c

¶0
=

µ
x0t, x

0
tGi,

∂Gi
∂γ

θ0xt,
∂Gi
∂c

θ0xt

¶0
, i = 1, 2, 3, (3.30)

the necessary partial derivatives can be computed for the 3 types of the
transition function:
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1. LSTR1

G1(γ, c; st) =
1

1 + e−γ(st−c)
γ > 0,

∂G1(γ, c; st)

∂γ
=

e−γ(st−c)(st − c)³
1 + e−γ(st−c)

´2
=

(st − c)³
e
γ
2
(st−c) + e−

γ
2
(st−c)

´2
∂G1(γ, c; st)

∂c
= − γ³

e
γ
2
(st−c) + e−

γ
2
(st−c)

´2 (3.31)

2. LSTR2

G2(γ, c1, c2; st) =
1

1 + e−γ(st−c1)(st−c2)
γ > 0, c1 ≤ c2

∂G2(γ, c1, c2; st)

∂γ
=

(st − c1)(st − c2)³
e
γ
2
(st−c1)(st−c2) + e−

γ
2
(st−c1)(st−c2)

´2
∂G2(γ, c1, c2; st)

∂c1
=

−γ(st − c2)³
e
γ
2
(st−c1)(st−c2) + e−

γ
2
(st−c1)(st−c2)

´2
∂G2(γ, c1, c2; st)

∂c2
=

−γ(st − c1)³
e
γ
2
(st−c1)(st−c2) + e−

γ
2
(st−c1)(st−c2)

´2 (3.32)

3. ESTR

G3(γ, c; st) = 1− e−γ(st−c)2 γ > 0

∂G3(γ, c; st)

∂γ
= (st − c)2e−γ(st−c)2

∂G3(γ, c; st)

∂c
= −2γ(st − c)e−γ(st−c)2 (3.33)
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Let us denote ∂M(xt;ψ̂)

∂ψ̂
by ẑt. Using formula (3.101) for the computation

of the Lagrange multiplier test statistic yields

LM =
1

σ̂2

Ã
TX
t=1

ûtv̂t

!0
Î−1
Ã

TX
t=1

ûtv̂t

!
,

Î−1 =

Ã
TX
t=1

v̂tv̂
0
t −

µ TX
t=1

v̂tẑ
0
t

¶µ TX
t=1

ẑtẑ
0
t

¶−1µ TX
t=1

ẑtv̂
0
t

¶!−1
. (3.34)

We have already observed that under H0 consistent estimators of (3.29) are
given by

∂ l̂

∂a
=

1

σ̂2

TX
t=1

ûtv̂t,

∂ l̂

∂ψ
=

1

σ̂2

TX
t=1

ûtẑt, (3.35)

where ût−j = yt−j −M(xt−j; ψ̂), j = 0, 1, . . . , q, v̂t = (ût−1, ût−2, . . . , ût−q)0,
ψ̂ is the NLS estimator of ψ under H0 and σ̂ = 1

T

PT
t=1 û

2
t . Obviously, LM is

asymptotically χ2 - distributed with q degrees of freedom.
Eitrheim and Teräsvirta [18] suggest using the F - version of the test

statistic, because its empirical size is close to the nominal size and its power
is good. They investigated the size and power properties by means of a
simulation study. The proposed F - test (discussed in section 3.6.5) is usually
carried out in 3 steps:

1. After estimating the model by NLS (under the assumption of no error
autocorrelation), use the obtained residuals to define the residual sum
of squares SSR0 =

PT
t=1 û

2
t .

2. Compute the residual sum of squares (SSR1) from the auxiliary regres-
sion of ût on v̂t and ẑt.

3. If the dimension of the vector ẑt is denoted by n, then the test statistic
is given by

F =
(SSR0 − SSR1)/q
SSR1/(T − n− q) . (3.36)
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3.4.2 Testing for remaining nonlinearity

After a smooth transition regression model has been estimated, a natural
question arises: Does the specified model adequately capture the nonlinear
features of the observed time series? Intuitively, one would probably come
up with the idea of introducing an additional additive nonlinear term of the
smooth transition kind into model (2.4):

yt = x
0
tϕ+ (x

0
tθ) ·G(γ1, c1; st) + (x0tψ) ·H(γ2, c2; rt) + ut. (3.37)

To develop the test of no remaining nonlinearity, one may obviously perform
the same steps as for the original linearity test. The null hypothesis γ2 = 0
suffers from the identification problem, which can be solved as before by
approximating the transition function H with its Taylor polynomial of order
3 around γ2 = 0. After rearranging some of the terms in equation (3.37), the
model translates to

yt = x
0
tβ0 + (x

0
tθ) ·G(γ1, c1; st) + (x̃0trt)β1 + (x̃0tr2t )β2 + (x̃0tr3t )β3 + u∗t . (3.38)

The null hypothesis of no remaining nonlinearity is H0 : β1 = β2 = β3 = 0.
To compute the test statistic from auxiliary regression (3.38), the 3 steps of
the no error autocorrelation test are performed with only one modification.
Namely, in the second step v̂t now stands for (x̃0trt, x̃

0
tr
2
t , x̃

0
tr
3
t )
0. The resulting

F-statistic has 3p and T-4p-1 degrees of freedom.
The vector x̃t does not have to include all of the components of xt (with

the exception of the constant term), but only a suitable subset. In other
words, some of the parameters may be equal to zero.
As noted by Teräsvita [72], it is not sensible to carry out the test of

no remaining nonlinearity for several possible transition variables in turn.
One should better use the generalized version of the test, derived under the
assumption that the transition variable rt is a linear combination of the
components of x̃t. In this case, the transition variable is of the form a0x̃t,
where the vector a contains only one nonzero element. This idea has already
been described and used in the section about the linearity test.
The test of no remaining nonlinearity can be modified so as to allow a

more general additive nonlinear term under the alternative hypothesis:

yt = x
0
tϕ+ (x

0
tθ) ·G(γ, c; st) +K(xt) + ut. (3.39)

The third order Taylor expansion of the function K(xt) exists when K is
at least three times continuously differentiable. If so, we write down the
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expansion around the point xt = x0t :

K(xt) = κ00xt +
pX
i=1

pX
j=i

κijxtixtj +

pX
i=1

pX
j=i

pX
l=j

κijlxtixtjxtl +RK(xt). (3.40)

After substituting K(xt) with (3.40) in (3.39), one obtains

yt = x0tβ0 + (x
0
tθ) ·G(γ, c; st) +

+

pX
i=1

pX
j=i

κijxtixtj +

pX
i=1

pX
j=i

pX
l=j

κijlxtixtjxtl + u
∗
t (3.41)

Under the null hypothesis of no remaining nonlinearity the function K(xt) is
linear, hence

H0 : κij = 0, i = 1, . . . , p, j = i, . . . , p;

κijl = 0, i = 1, . . . , p, j = i, . . . , p, l = j, . . . , p. (3.42)

The hypothesis can be tested by an F-test. One has to be careful not to
ignore the fact that many parameters are restricted under the null hypothesis.
Consequently, the test should not be used if p is large and the sample is small,
because of low power.

3.4.3 Parameter constancy test

As parameter constancy is assumed when the parameters of a smooth tran-
sition model are tested, this assumption should be verified in order to avoid
misspecification. In linear models, most of the parameter tests are performed
to test for a single structural break (or a finite number of breaks) in the sam-
ple. Lin and Teräsvirta [48], on the other hand, consider deterministic change
in parameters over time as an alternative to the hypothesis of parameter con-
stancy. In their paper, the alternative hypothesis is a parametric hypothesis
with smoothly changing parameters. Another kind of parameter constancy
tests can also be found in the literature, where the parameters under the al-
ternative are stochastic. For example, Nyblom and Mäkeläinen [59], Nyblom
[58] and Hansen [31] are concerned with random walk - type parameters un-
der the alternative. Following Teräsvirta [72], this subsection generalizes the
results obtained by Lin and Teräsvirta [48] for STAR models.
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We start with the STR model

yt = (x
0
t )
0ϕ0(t) + (x1t )

0θ0(t)G(γ, c; st) + ut, (3.43)

where the vector x0t of length p0 contains only those elements of the vector xt
whose coefficients are not assumed zero a priori, and the vector x1t of length p1
in the nonlinear part is defined in a similar way. Suppose that the parameters
of the transition function (γ and c) do not change over time, whereas the
parameter vectors ϕ0 and θ0 are time - dependent. More specifically, assume
that the time - dependency is described by the functions

ϕ0(t) = ϕ0 + λ1H(γ1, c1; t),

θ0(t) = θ0 + λ2H(γ1, c1; t), (3.44)

with ϕ0 and λ1 of the same dimension as the vector x0t , while θ
0 and λ2 are

of the same dimension as the vector x1t . The parameter vector c1 contains
1, 2 or 3 parameters. For the function H, 3 possibilities were proposed by
Jansen and Teräsvirta [38]:

H1(γ1, c1; t) =
1

1 + e−γ1(t−c1)
− 1
2
,

H2(γ1, c1; t) =
1

1 + e−γ1(t−c11)(t−c12)
− 1
2
,

H3(γ1, c1; t) =
1

1 + e−γ1(t−c11)(t−c12)(t−c13)
− 1
2
, (3.45)

under the usual assumptions of γ > 0 and c11 ≤ c12 ≤ c13. The parameter
γ is the slope parameter indicating how fast the parameters of the model
change.
The function H1 enables a single structural break, for γ1 → ∞. By

choosingH2 with c11 < c12 two structural breaks can be modeled, whereasH3
is used in case of asymmetrically and nonmonotonically changing parameters.
When discussing the parameter constancy test, the transition function is

set to H3, since the functions H1 and H2 can be considered as special cases
of H3. Our goal is to test the null hypothesis of parameter constancy

H0 : γ1 = 0 (3.46)

against the alternative hypothesis H1 : γ1 > 0. Again, the problem of nui-
sance parameters is encountered under H0, and is also dealt with in the same
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way as for the linearity tests. In the first step, H3 is approximated by its
Taylor polynomial of order one around γ = 0, which gives

H3(γ1, c1; t) = δ0 + δ1(t− c11)(t− c12)(t− c13) +R3(γ1, c1; t)
= d0 + d1t+ d2t

2 + d3t
3 +R3(γ1, c1; t)

= T3(γ1, c1; t) +R3(γ1, c1; t). (3.47)

After approximating ϕ0(t) and θ0(t) in model (3.43) with the help of (3.47),
one obtains

yt = (x0t )
0β0 + (x0t t)

0β1 + (x0t t
2)0β2 + (x0t t

3)0β3 + (3.48)

+
³
(x1t )

0β4 + (x1t t)
0β5 + (x1t t

2)0β6 + (x1t t
3)0β7

´
G(γ, c; st) + u

∗
t ,

where u∗t = ut +
³
(x0t )

0λ1 + (x1t )
0λ2G(γ, c; st)

´
R3(γ1, c1; t) and βj is equal to

γbj, for j = 1, 2, 3, 5, 6, 7. Obviously, the parameters are constant when the
hypothesis

H0 : β1 = β2 = β3 = β5 = β6 = β7 = 0 (3.49)

holds. To derive the asymptotic normality of the estimated parameter vector
and consequently the asymptotic χ2-distribution of the LM test, it is impor-
tant to notice that the partial derivatives ∂G

∂γ
= gγ(t) and ∂G

∂c
= gc(t) are

bounded functions. These partial derivatives were computed in subsection
3.4.1 and are given in equations (3.31), (3.32) and (3.33) for the transition
functions G1, G2 and G3, respectively. Eitrheim and Teräsvirta [18] estab-
lished the asymptotic theory using the fact that the previously mentioned
functions gγ(t) and gc(t) are bounded (see [18] for details). The LM test
statistic is again computed from equation (3.101), namely

LM =
1

σ̂2

Ã
TX
t=1

ŵtût

!0³
M̂22 − M̂21M̂

−1
11 M̂12

´−1Ã TX
t=1

ŵtût

!
, (3.50)

with

ẑt =
³
(x0t )

0,
¡
x1tG(γ̂, ĉ; st)

¢0
, ĝγ(t), ĝc(t)

´0
, (3.51)

ŵt =
³
(x0t t)

0, (x0t t
2)0, (x0t t

3)0,
¡
x1t tĜ

¢0
,
¡
x1t t

2Ĝ
¢0
,
¡
x1t t

3Ĝ
¢0´0

, (3.52)

Ĝ = G(γ̂, ĉ; st),
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M̂11 =
PT

t=1 ẑtẑ
0
t, M̂22 =

PT
t=1 ŵtŵ

0
t, M̂12 = M̂ 0

21 =
PT

t=1 ẑtŵ
0
t, ût is the

residual estimated under the null hypothesis and σ̂2 = 1
T

PT
t=1 û

2
t . The test

statistic is asymptotically χ2-distributed with 3(p0 + p1) degrees of freedom.
Again, using the F-test instead of the LM-test is recommended. The degrees
of freedom of the F statistic are 3(p0 + p1) and T − 4(p0 + p1), respectively.
For the function H2, the null hypothesis is

H0 : β1 = β2 = β5 = β6 = 0, (3.53)

and for H3,
H0 : β1 = β5 = 0. (3.54)

Sometimes one may wish to test the parameter constancy only for a subset
of the parameters of a given model. For this purpose, the vectors of regressors
x0t and x

1
t are partitioned into vectors x

01
t , x

02
t and x11t , x

12
t , respectively.

Partitioning the parameter vectors ϕ and θ in (3.43) accordingly leads to

yt = (x
01
t )

0ϕ1 + (x02t )
0ϕ02(t) +

³
(x11t )

0θ1 + (x12t )
0θ02(t)

´
G(γ, c; st) + ut. (3.55)

The parameter constancy test can now be carried out only for the coefficients
of the vectors x02t and x12t .
Lin and Teräsvirta [48] suggest slightly different functions to characterize

parameter change. Namely, the polynomials in the exponent of H1 and H3
are replaced by general polynomials of order 1 and 3, respectively, whereas
the function replacing H2 is not a logistic function and its exponent is a
square of a linear polynomial. In the notation of Lin and Teräsvirta [48],

Fk(γ1,α; t) =
1

1 + e−γ1(tk+α1tk−1+...+αk−1t+αk)
, k = 1, 3,

Fk(γ1,α; t) = 1− e−γ1(t−α)2 , k = 2. (3.56)

Replacing the function F3 by its first order Taylor approximation in (3.43)
yields a reparametrized model

yt = s
0
tλ+ (st ⊗ x̃t)0δ + ut, (3.57)

where st = (1, t, t2, t3)0, λ = (λ0,λ1,λ2,λ3)0, x̃t = (yt−1, . . . , yt−m, zt1, . . . , ztn)0,
(st ⊗ x̃t) = (x̃0t, tx̃

0
t, t

2x̃0t, t
3x̃0t)

0 and δ = (δ00, δ
0
1, δ

0
2, δ

0
3)
0, while the vectors δi,

i = 0, 1, 2, 3 are of length m + n. Instead of γ1 = 0, the null hypothesis of
parameter constancy can be written as

H0 : λ1 = λ2 = λ3 = δ1 = δ2 = δ3 = 0. (3.58)
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The usual LM test statistic for testing linear restrictions can easily be
derived and used to test hypothesis (3.58). But Lin and Teräsvirta [48]
recommend using the F-statistic instead. They argue that the F-statistic has
better small sample properties, since its empirical size is close to the nominal
size, whereas for the χ2-test the difference between the empirical size and the
nominal size can be substantial in small samples. The tests are called LM1,
LM2 and LM3 (for k = 1, 2, 3, respectively), although they are not Lagrange
multiplier tests.
The small sample properties of the 3 tests are studied by means of Monte

Carlo experiments and the results are compared to those of the CUSUM test,
CUSUMQ test and the test with the random walk alternative hypothesis of
Nyblom [58], called the N-test. In case of a single structural break in the
generated data, the highest power is achieved by LM tests, but the power of
the N-test is also satisfactory. The results of the CUSUM and CUSUMQ test
are not encouraging. While the CUSUM test preforms worse if the change of
the parameters occurs late in the sample, the CUSUMQ test demonstrates
low power in general. A case of a double breakpoint is also investigated. After
the second breakpoint, the data generating process is the same as before the
first breakpoint. Thus, the change in the parameters is not monotonic and the
power properties of LM1 are inferior to those of LM2 and LM3, as expected.
The N-test behaves similarly as the LM1 test and the CUSUM test performs
even worse, signaling that it is difficult to detect a double break with the
help of CUSUM.
If one wishes to estimate the parameters under the alternative hypothesis,

a suitable value of k has to be chosen first. Unfortunately, the economic
theory does not provide any guidance in the selection process. Following
Granger and Teräsvirta [27], Lin and Teräsvirta [48] solved the problem by
devising a sequence of nested hypotheses. A similar hypotheses sequence has
already been discussed in section 3.2, where it was used in the process of STR
model specification. First, test the hypothesis (3.58) under the assumption of
model (3.57) with k=3. If (3.58) is rejected, proceed by testing the hypothesis

H03 : λ3 = 0, δ3 = 0 (3.59)

against its obvious alternative hypothesis. While rejecting (3.59) signals
the transition function F3, the next hypothesis has to be tested if (3.59) is
accepted, namely

H02 : λ2 = 0, δ2 = 0 | λ3 = 0, δ3 = 0. (3.60)
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If the hypothesis (3.60) is accepted, use F1, otherwise use F2. Testing the last
hypothesis in the sequence (after accepting all of the previous hypotheses),
namely

H01 : λ1 = 0, δ1 = 0 | λ2 = λ3 = 0, δ2 = δ3 = 0, (3.61)

is equivalent to using the original parameter constancy test against k=1.
Camacho [10] suggests a more general function to characterize the alter-

native to parameter constancy (the integer k is not bounded to the case of
1, 2 or 3). The description is given in chapter 4, since Camacho’s work was
done in the VAR setting.

3.4.4 Other misspecification tests

The LM test of no autoregressive conditional heteroscedasticity of Engle [19]
and McLeod and Li [55], and the Lomnicki-Jarque-Berra test of the normal
distribution of errors are performed in the same way as in the linear setting
and are therefore not discussed here.
All 3 misspecification tests described in this section are designed as tests

against specified parametric alternatives. In Granger and Teräsvirta [28], a
comprehensive overview of tests used in nonlinear modeling can be found,
including nonparametric tests.

3.5 Comparison with linear models

Several applied studies were conducted, where the comparison of linear re-
gression models and STR models was in favor of the STR models. Most
recently Teräsvirta, van Dijk and Medeiros [75] examined the forecasting
accuracy of linear autoregressive and smooth transition autoregressive time
series models for several macroeconomic variables of the G7 countries. The
results show that the STARmodels usually outperform the linear ARmodels.
The authors also point out that careful specification is crucial in nonlinear
time series modeling. Camacho [10] examined the nonlinear forecasting power
of the composite index of leading indicators to predict both output growth
and the business-cycle phases of the US economy. The obtained smooth
transition vector autoregressive (STVAR) model was found to be superior to
the linear VAR model with respect to the forecasting ability. The STVAR
models are discussed in the next chapter. Weise [80] investigated whether
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monetary policy has asymmetric effects on output and prices using a non-
linear STR approach. He found out that output responds more strongly to
negative shocks than to positive shocks in low growth states, while price
level responds more strongly to negative shocks regardless of state. This
again shows that working with a nonlinear model generates a result that is
known in practice, but not achieved by linear models.

3.6 Appendix to chapter 3: Forms of the La-
grange multiplier test

Because of the importance of the Lagrange multiplier (LM) test for testing the
null hypothesis of linearity, different forms of the test are studied in a separate
section. Extensive discussion on this topic can be found in Greene [28],
Harvey [32] and Davidson and MacKinnon [16]. The asymptotic properties
of the maximum likelihood estimator and the definitions of the Likelihood
ratio, Wald and Lagrange multiplier test are given in appendix A.
Suppose we would like to test if the parameter vector θ = (θ1, θ2, . . . , θm)0

satisfies a set of q conditions or restrictions. If the restrictions are linear,
they can be written as

Rθ = r, (3.62)

where R is a full rank matrix with dimensions q × m and r is a vector of
length q. To test such a hypothesis, three asymptotically equivalent test
procedures are available, namely the Likelihood ratio, Wald and Lagrange
multiplier test. In a more general formulation, nonlinear restrictions are also
allowed. In this case, the restrictions under the null hypothesis take the form

H0 : c(θ) = r, (3.63)

where c(θ) = (c1(θ), c2(θ), . . . , cq(θ))0 and the functions cj(θ), j = 1, 2, . . . , q,
are continuously differentiable. The alternative hypothesis is

H1 : c(θ) 6= r. (3.64)

Recall that the Lagrange multiplier test is used when the restricted max-
imum likelihood estimator (θ̂R) is easier to compute than the unrestricted
estimator (θ̂U). A typical example is a nonlinear model, which becomes line-
ar under the imposed restrictions. Intuitively, if the restrictions are valid,
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then the vector of partial derivatives ∂ lnL(θ)
∂θ

(the score vector) evaluated at
the restricted maximum likelihood estimator θ̂R will be close to zero. The
Lagrange multiplier test statistic for testing null hypothesis (3.63) is of the
form

LM =

µ
∂ lnL(θ)

∂θ


θ=θ̂R

¶0³
I(θ̂R)

´−1µ∂ lnL(θ)

∂θ


θ=θ̂R

¶
. (3.65)

Under the null hypothesis, the LM test statistic is asymptotically χ2-distri-
buted with q degrees of freedom. For details, see appendix A. To make the
notation shorter and easier to read, we shall write ∂ lnL(θ̂)

∂θ̂
instead of

∂ lnL(θ)

∂θ


θ=θ̂

,

thus using the same symbol for a variable and its value at a fixed point.

3.6.1 Restrictions involving only a subset of parame-
ters

In practice, it is often the case that only a subset of parameters has to be
tested. Let us partition the parameter vector θ = (θ1, θ2, . . . , θm)0 into two
subvectors,

θ =

µ
θ(1)

θ(2)

¶
, (3.66)

such that the restrictions under the null hypothesis involve only the vector
θ(2) of length m2. Thus, the null hypothesis is

H0 : c(θ
(2))− r = 0. (3.67)

The information matrix has to be partitioned accordingly as

I(θ) =

µ
I11 I12
I21 I22

¶
, (3.68)

where I11, I12, I21 and I22 are matrices of dimensions m1 × m1, m1 × m2,
m2 ×m1 and m2 ×m2, respectively. Obviously,

∂ lnL(θ̂R)

∂θ̂
(1)
R

= 0, (3.69)
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as the components of the vector θ(1) do not enter the constraints under H0.
Note that the zero on the right-hand side of the previous equation stands
for the m1-dimensional vector of zeroes. By taking into consideration the
formula for the partitioned inverse, the Lagrange multiplier test statistic

LM1 =

µ
00
µ
∂ lnL(θ̂R)

∂θ̂
(2)
R

¶0¶µ
I11 I12
I21 I22

¶−1Ã 0
∂ lnL(θ̂R)

∂θ̂
(2)
R

!
(3.70)

can be written as

LM2 =

µ
∂ lnL(θ̂R)

∂θ̂
(2)
R

¶0³
I22 − I21I−111 I12

´−1 ∂ lnL(θ̂R)
∂θ̂

(2)
R

. (3.71)

It has to be emphasized that every block of the information matrix is com-
puted at the restricted maximum likelihood estimator θ̂R. Additionally, if
the information matrix is block diagonal under the null hypothesis, that is
I12 = I21 = 0, the test statistic LM2 simplifies to

LM3 =

µ
∂ lnL(θ̂R)

∂θ̂
(2)
R

¶0¡
I22
¢−1 ∂ lnL(θ̂R)

∂θ̂
(2)
R

. (3.72)

An important special case of restrictions involving only a subset of para-
meters, which is often used when testing the null hypothesis of linearity of a
model, is

H0 : θ
(2) = 0. (3.73)

3.6.2 LM test and nonlinear regression models

Generally, any regression model can be expressed as

yt = g(xt; β) + ut, t = 1, 2, . . . , n. (3.74)

We say that regression model (3.74) is nonlinear, if the function g is non-
linear in parameters (stacked in the parameter vector β). The vector of all
parameters of the model is given by θ = (β0,σ2)0. Let us denote the sum of
squares that has to be minimized by

S(β) =
nX
t=1

³
yt − g(xt; β)

´2
. (3.75)
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Provided that the residuals ut, t = 1, 2, . . . , n, are normally distributed with
mean 0 and the covariance matrix equal to σ2 times the identity matrix, the
log-likelihood function can be computed as

lnL(θ) = −n
2
ln(2π)− n

2
lnσ2 − 1

2σ2
S(β). (3.76)

It follows from equation (3.76) that the maximum likelihood estimator of the
parameter vector β and its nonlinear least squares estimator coincide. Both
estimators are determined by solving the equation

∂S(β)

∂β
= 0. (3.77)

In order to estimate the information matrix, the following partial derivatives
need to be computed:

∂ lnL(θ)

∂β
=

1

σ2

nX
t=1

ht
³
yt − g(xt;β)

´
=
1

σ2

nX
t=1

htut,

ht =
∂g(xt; β)

∂β
= −∂ut

∂β
. (3.78)

After differentiating for the second time and taking into account the relation

E(yt − g(xt; β)) = E(ut) = 0, (3.79)

one obtains

E

µ
−∂2 lnL(θ)

∂β∂β0

¶
=
1

σ2

nX
t=1

hth
0
t (3.80)

and

E

µ
−∂2 lnL(θ)

∂β∂σ2

¶
= E

µ
1

σ4

nX
t=1

htut

¶
= 0. (3.81)

We have just shown that the information matrix is block diagonal, which
simplifies the Lagrange multiplier test statistic. As a direct consequence of
Theorem A.7, the estimator β̂ is asymptotically normally distributed with
the asymptotic covariance matrix equal to σ2

¡Pn
t=1 hth

0
t

¢−1
.

While applying the Lagrange multiplier test in the process of smooth
transition regression modeling, we never impose restrictions on the parameter
σ2. It is therefore reasonable to construct the LM test for testing only the
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constraints involving the parameter vector β. Let β̂R denote the restricted
ML estimator of model (3.74) under the null hypothesis

H0 : c(β)− r = 0. (3.82)

Combining the results from equations (3.78) and (3.80) gives the test statistic

LM4 =
1

σ̂2R

µ nX
t=1

ĥtût

¶0µ nX
t=1

ĥtĥ
0
t

¶−1µ nX
t=1

ĥtût

¶
(3.83)

for testing null hypothesis (3.82). The sign hat (̂) above the variables is used
to denote their values at the restricted estimator β̂R, for example

σ̂2R =
1

n

nX
t=1

û2t =
1

n

nX
t=1

u2t (β̂R). (3.84)

3.6.3 Using the coefficient of multiple correlation

One of the most popular forms of the Lagrange multiplier test statistic in-
volves the coefficient of multiple correlation R2 of a suitably chosen auxiliary
regression. Recall that for the classical linear regression model

yt = x
0
tβ + ut, t = 1, 2, . . . , n, (3.85)

or in the matrix form
y = Xβ + u, (3.86)

R2 is defined as the explained sum of squares divided by the total sum of
squares (in the deviated form), namely

R2 =

Pn
t=1(ŷt − ȳ)2Pn
t=1(yt − ȳ)2

. (3.87)

Some algebraic manipulation yields

R2 =

Pn
t=1 ŷ

2
t − nȳ2Pn

t=1 y
2
t − nȳ2

=
β̂0X 0Xβ̂ − nȳ2
y0y − nȳ2

=
y0X(X 0X)−1X 0y − nȳ2

y0y − nȳ2

=

³Pn
t=1 xtyt

´0³Pn
t=1 xtx

0
t

´−1³Pn
t=1 xtyt

´
− nȳ2Pn

t=1 y
2
t − nȳ2

. (3.88)

50



In particular, if ȳ = 0, then the previous expression simplifies to

R2 =

³Pn
t=1 xtyt

´0³Pn
t=1 xtx

0
t

´−1³Pn
t=1 xtyt

´
Pn

t=1 y
2
t

. (3.89)

The Lagrange multiplier test statistic LM4 defined by equation (3.83) can
be rewritten as

LM5 =
nPn
t=1 û

2
t

µ nX
t=1

ĥtût

¶0µ nX
t=1

ĥtĥ
0
t

¶−1µ nX
t=1

ĥtût

¶
. (3.90)

The comparison of LM5 and the last form of the multiple correlation coeffi-
cient R2 says that the LM test for testing the restrictions

H0 : c(β)− r = 0 (3.91)

imposed on the parameters of the model

yt = g(xt; β) + ut, t = 1, 2, . . . , n, (3.92)

can also be performed with the help of the statistic

LM6 = nR2, (3.93)

where R2 is the squared multiple correlation coefficient obtained from the
auxiliary regression of ût on ĥt. Note that the conclusion holds only if

¯̂u =
1

n

nX
t=1

ût = 0.

This is the case when nonlinear regression model (3.92) contains a constant
term, although the derivation still holds asymptotically even if the constant
term is not present in the model.

3.6.4 LM test and linear regression models

As a special case of model (3.92), we consider a linear regression model

yt = x
0
tβ + ut, t = 1, 2, . . . , n, (3.94)
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while the restrictions under the null hypothesis remain the same. Evidently,
ht =

∂(x0tβ)
∂β

= xt in this setting. Transforming the LM5 test statistic given by
equation (3.90) now yields

LM7 =
1

σ̂2R

µ nX
t=1

xtût

¶0µ nX
t=1

xtx
0
t

¶−1µ nX
t=1

xtût

¶
. (3.95)

On the other hand, the LM7 statistic is still of the form nR2, but R2 stands
for the squared multiple correlation coefficient obtained from the auxiliary
regression of ût on xt. Note that ût denotes the residuals of the restricted
model.
In the STR modeling process, one often has to test the null hypothesis

that a subset of parameters in an auxiliary linear regression model of the form
(3.94) is equal to zero. Therefore, the parameter vector β = (β1,β2, . . . ,βk)0

is partitioned into two subvectors,

β =

µ
β(1)

β(2)

¶
, (3.96)

similarly as in subsection 3.6.1. The null hypothesis reads

H0 : β
(2) = 0, (3.97)

where the vector β(2) is of length k2. The vector xt is partitioned into a
k1-vector zt and a k2-vector wt and model (3.94) becomes

yt = z
0
tβ
(1) + w0tβ

(2) + ut, t = 1, 2, . . . , n. (3.98)

To derive the Lagrange multiplier test statistic, we only have to replace
g(xt; β) with z0tβ

(1)+w0tβ
(2) in subsection 3.6.2 and then modify the derivation

accordingly. The results of subsection 3.6.1 are also taken into account.
Obviously,

∂ lnL(θ)

∂β(1)
=

1

σ2

nX
t=1

ztut,

∂ lnL(θ)

∂β(2)
=

1

σ2

nX
t=1

wtut, (3.99)
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and

I11 = E

µ
− ∂2 lnL(θ)

∂β(1)∂β(1)0

¶
=
1

σ2

nX
t=1

ztz
0
t,

I22 = E

µ
− ∂2 lnL(θ)

∂β(2)∂β(2)0

¶
=
1

σ2

nX
t=1

wtw
0
t,

I12 = I
0
21 = E

µ
− ∂2 lnL(θ)

∂β(1)∂β(2)0

¶
=
1

σ2

nX
t=1

ztw
0
t. (3.100)

The LM2 test statistic (3.71) now reads

LM8 =
1

σ̂2R

µ nX
t=1

wtût

¶0³
M22 −M21M

−1
11 M12

´−1 µ nX
t=1

wtût

¶
, (3.101)

whereM11 =
Pn

t=1 ztz
0
t, M22 =

Pn
t=1wtw

0
t,M12 =M

0
21 =

Pn
t=1 ztw

0
t, ût is the

residual estimated under the null hypothesis and the restricted estimator σ̂2R
is equal to 1

n

Pn
t=1 û

2
t .

3.6.5 Modified LM test

Suppose that we would like to test null hypothesis (3.97) for model (3.98)
with an LM test. If the number of the elements of xt is large when compared
to the sample size, the asymptotic χ2 distribution is likely to be a poor ap-
proximation for the actual small sample distribution of the LM test statistic.
In this case, an F - approximation of the test statistic works much better,
as the empirical size of the test remains close to the nominal size while the
power is good.
Let us denote the vector of the estimated OLS residuals for the model

yt = x
0
tβ + ut = z

0
tβ
(1) + w0tβ

(2) + ut (3.102)

by û, the vector of the estimated residuals of the restricted model

yt = z
0
tβ
(1) + u0t (3.103)

by û0 and the residuals obtained when regressing û0t on xt by ε̂. The cor-
responding sums of squares are denoted by SSR = û0û, SSR0 = û00û0 and
SSRε = ε̂0ε̂, respectively. It follows from subsection 3.6.4 that the LM
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test statistic for testing null hypothesis (3.97) is nR2, where R2 denotes the
squared multiple correlation coefficient from regressing û0t on xt. In our
notation,

R2 =
SSR0 − SSRε

SSR0
. (3.104)

However, SSRε = SSR, which can be shown as follows. By using the stan-
dard notationM = I−X(X 0X)−1X 0 and taking into account thatMX = 0,
one obtains

ε̂ =Mû0 =M

µ
y −X

µ
β̂(1)

0

¶¶
=My = û. (3.105)

Thus, the residuals from the regression of û0t on xt coincide with the residuals
obtained when regressing yt on xt. The Lagrange multiplier test statistic can
be written as

LM9 = nR2 = n
SSR0 − SSR

SSR0
= n

³
1− SSR

SSR0

´
. (3.106)

The standard F-statistic for testing null hypothesis (3.97) is

F =
(SSR0 − SSR)/k2
SSR/(n− k) . (3.107)

It is easy to verify that the equation

LM9 =
n k2
n−kF

k2
n−kF + 1

(3.108)

holds. Consequently, the LM9 statistic is a monotonous function of the F-
statistic and the Lagrange multiplier principle leads to the F-test.
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Chapter 4

Systems of equations

An important problem in the identification process of economic systems is
usually related to the question whether the model can be kept linear or
whether nonlinear features are so dominant that they must be considered in
the specification. From recent studies of univariate models one has learned
that there is much to be gained by allowing a nonlinear specification. Repre-
sentations of asymmetric reactions, structural changes and other phenomena
of economic development can be fruitfully investigated by nonlinear mod-
eling techniques. As many issues in economics require the specification of
several relationships, techniques to handle nonlinear features in systems are
required. Only during the recent years such methods have appeared in the
literature. Most of the work has been done in the nonlinear VAR framework.
Anderson and Vahid [2] devised a procedure for detecting common non-

linear components in a multivariate system of variables. The common non-
linearities approach is based on the canonical correlations technique and can
help us interpret the relationships between different economic variables. The
specification and estimation of the system of equations is also simplified, since
the existence of common nonlinearities reduces the dimension of nonlinear
components in the system and enables parsimony. This is particulary im-
portant in empirical investigations involving economic time series of shorter
length. Namely, most of the macroeconomic indicators are published on a
quarterly basis.
Weise [80], van Dijk [78] and Camacho [10] extended the STR model-

ing approach developed by Teräsvirta and coworkers to vector autoregressive
models of smooth transition. Their STR specification is limited to the case
where the transition between different parameter regimes is governed by the
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same transition variable and the same type of transition function in every
equation of the system. They argue that since the economic practice im-
poses common nonlinear features, all equations share the same switching
regime. But this argument is not convincing, since such a conclusion cannot
be derived from economic theory, while applied econometric studies analyz-
ing nonlinear systems are scarce. For this reason we shall try to extend their
approach by allowing different smooth transition functional forms in different
equations. The proposed augmented specification procedure is explained in
section 4.3.

4.1 Testing multiple equation systems for
common nonlinear components

Anderson and Vahid [2] describe a generalized method of moment test for
common nonlinear components in multiple time series. The number of non-
linear functions that need to be estimated can be reduced if the system
contains common nonlinear components. The basic idea behind their work is
to detect all linear combinations of the (possibly nonlinear) variables that do
not exhibit nonlinear properties. The number of such linear combinations de-
termines the number of common nonlinear components. The usual statistic
and econometric tests are adapted to meet the needs of multivariate systems.
The canonical correlations procedure is used to obtain the estimates of the
linear combinations without the nonlinear properties. The paper discusses
the tests for which the alternative is specified and also those for which the
alternative is not specified.

4.1.1 Definition of common nonlinearity

Let us first explain the notion of common nonlinearity as defined in [2]. Sup-
pose that the conditional mean of the i - th component of an n - dimensional
vector yt given a k - dimensional vector xt can be written as

E(yit|xt) = β
0
ixt + ψi(xt, θi), i = 1, . . . , n, (4.1)

where the function ψi is nonlinear in xt and possibly also in the parameter
θi. If one can find s < n linearly independent linear combinations of the
components of the vector yt with a linear conditional mean, than there exists
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an n× s matrix A with a full column rank for which the equation
A
0
ψ(xt, θ) = 0

holds. ψ and θ stand for the vectors (ψ1,ψ2, . . . ,ψn)
0
and (θ1, θ2, . . . , θn)

0
,

respectively. Obviously, A is not unique. As the matrix A · H, where H
is any s × s nonsingular matrix, also satisfies the previous equation, the
matrix A can be normalized without loss of generality. A particularly useful
normalization contains an s×s identity matrix as the first block. The matrix
ψ is partitioned analogously:

A =

·
Is
A∗∗

¸
, ψ(xt, θ) =

·
ψ∗(xt, θ)
ψ∗∗(xt, θ)

¸
.

From A
0
ψ(xt, θ) = 0 follows ψ∗(xt, θ) = −A∗∗0ψ∗∗(xt, θ) and

ψ(xt, θ) =

· −A∗∗0
In−s

¸
ψ∗∗(xt, θ).

Finally, we can eliminate s nonlinear components and therefore write the
conditional expectation of the vector yt in terms of only n-s nonlinear com-
ponents:

E(yt|xt) = Bxt +A⊥ψ∗∗(xt, θ), (4.2)

with A⊥ =
· −A∗∗0
In−s

¸
and B equal to the n× k matrix of stacked vectors β0

i,

i = 1, . . . , n.

Definition 4.1. We say that the system (4.1) has n - s common nonlinear
components when it is possible to rewrite (4.1) in the form (4.2) and if s is
the largest integer with this property.

4.1.2 Canonical correlations

It is often the case that when given two large groups of variables, one would
like to study the interrelations. The technique of canonical correlations en-
ables such between - group comparisons. An extensive discussion of canonical
correlations can be found in a book by T.W. Anderson [3].
Let z denote an n - dimensional vector with the covariance matrix Σ,

which is assumed to be positive definite, partitioned into subvectors z1 and
z2,

z =

µ
z1
z2

¶
,
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where z1 is an n1 - dimensional vector and z2 is an n2 - dimensional vector
with n1 ≤ n2. By applying the same partitioning to the covariance matrix
we can write it in the form

Σ =

µ
Σ11 Σ12
Σ21 Σ22

¶
. (4.3)

Additionally, assume that E(z) = 0. Our task is to determine real vectors
α with n1 components and γ with n2 components such that the correlation
between the variables u = α

0
z1 and v = γ

0
z2 is maximal. As multiplication

of α or γ by a positive number does not change the correlation coefficient, it
is sensible to perform the following normalization:

1 = E(u2) = E(α
0
z1z

0
1α) = α

0
Σ11α, (4.4)

1 = E(v2) = E(γ
0
z2z

0
2γ) = γ

0
Σ22γ. (4.5)

Evidently,
Corr(u, v) = E(uv) = E(α

0
z1z

0
2γ) = α

0
Σ12γ. (4.6)

Thus, we have to find the vectors α and γ that maximize (4.6) subject to
(4.4) and (4.5). If we set

ψ = α
0
Σ12γ − 1

2
λ(α

0
Σ11α− 1)− 1

2
µ(γ

0
Σ22γ − 1), (4.7)

where λ and µ are the Lagrange multipliers, then (after some algebraic ma-
nipulation) the Lagrange multiplier technique yields a system of equationsµ −λΣ11 Σ12

Σ21 −λΣ22
¶µ

α
γ

¶
= 0. (4.8)

The previous system has a nontrivial solution if and only if¯̄̄̄ −λΣ11 Σ12
Σ21 −λΣ22

¯̄̄̄
= 0. (4.9)

The left - hand side of the above expression is a polynomial in λ of degree n.
Let us write its n roots in a decreasing order:

λ1 ≥ λ2 ≥ . . . ≥ λn. (4.10)
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Definition 4.2 ([3], Definition 12.2.1). Let z =
¡
z1
z2

¢
, where z1 has n1 com-

ponents and z2 has n2 (= n−n1 ≥ n1) components. The rth pair of canonical
variates are the pair of linear combinations ur = α

0
rz1 and vr = γ

0
rz2, each of

unit variance and uncorrelated with the first r—1 pairs of canonical variates,
having maximum correlation. The correlation is the rth canonical correlation.

Theorem 4.3 ([3], Theorem 12.2.1). Let z =
¡
z1
z2

¢
be a random vector

with covariance matrix Σ. The rth canonical correlation λr between z1 and
z2 is the rth largest root of equation (4.9). The vectors αr and γr defining
the rth pair of canonical variates ur = α

0
rz1 and vr = γ

0
rz2 satisfy (4.8) for

λ = λr, and (4.4) and (4.5).

For the proof, see [3].

4.1.3 The common nonlinearities test

Since the common nonlinearities test is deduced from the test of overidenti-
fying restrictions in the generalized method of moments (GMM) framework,
it has an asymptotic χ2 - distribution provided that the regularity conditions
described below hold. A thorough discussion of necessary and sufficient con-
ditions is given in Wooldridge [83]. Regularity conditions are:

1. The variables are essentially stationary and weekly dependent.
The stochastic process {xt : t ∈ N} is essentially stationary, if the set
{E(x2t ) : t ∈ N} is bounded. When, in addition,

σ2T ≡ V ar
µ TX
t=1

xt

¶
= O(T ), σ−2T = O(T−1), (4.11)

and the central limit theorem holds, namely,PT
t=1

¡
xt − E(xt)

¢
σT

d−→ N(0, 1), (4.12)

then the process is weekly dependent.

2. The assumptions GMM.1 to GMM.10 (as defined in Wooldridge) hold.
These conditions guarantee that the GMM estimator exists, is consis-
tent and asymptotically normally distributed.
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Suppose that the null hypothesis of linearity is rejected for every compo-
nent of the n - vector yt. In this case, the conditional mean of yit, i = 1, . . . , n,
is of the form (4.1). If there is a linear combination α

0
1yt of the components

of the vector yt with a linear conditional mean, than the number of nonlinear
components in the system can be reduced. A reduction of this kind requires

E
³
(α

0
1y
†
t )⊗ w†t

´
= 0, (4.13)

where ⊗ denotes the Kronecker product. Note that y†t has had the part lin-
ear in xt removed. w

†
t stands for the m - dimensional vector of nonlinear

regressors, as applied in the univariate setting after substituting the transi-
tion function with its Taylor approximation. Exact definition of w†t in case of
a smooth transition vector autoregressive model is given on page 63. Because
of the structure of equation (4.13), we can use the generalized method of mo-
ments (GMM) to estimate the vector α1. By replacing the moment condition

with the corresponding sample mean 1
T

PT
t=1

³
(α

0
1y
†
t )⊗w†t

´
, we can construct

the objective function (see Greene [28], p. 538):

Q =
1

T

TX
t=1

³
(α

0
1y
†
t )⊗ w†t

´0
× V̂ −11T ×

1

T

TX
t=1

³
(α

0
1y
†
t )⊗ w†t

´
(4.14)

=
1

T 2
α
0
1Y

0
WV̂ −11T W

0
Y α1.

The optimal GMM estimator of α1 minimizes the above objective function.
While Y and W denote the matrices with stacked vectors y†t and w

†
t as rows,

V̂1T stands for the matrix that complies with the condition

plimV̂1T = lim
T→∞

E(T−1(W
0
Y α1α

0
1Y

0
W )). (4.15)

The question we have to answer is how to estimate the rank and the basis
of the space of vectors that satisfy equation (4.13). Let the matrix α consist
of s such vectors, α1,α2, . . . ,αs, written as columns. If the operator vec(A)
concatenates the columns of the given matrix A into one column vector,
then the objective function for estimating the matrix α with the generalized
method of moments is of the form

Q =
1

T 2
vec

0
(Y α)(Is ⊗W )V̂ −1T (Is ⊗W 0

)vec(Y α),
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where

plimV̂T = lim
T→∞

E

·
1

T
(Is ⊗W 0

)vec(Y α)vec
0
(Y α)(Is ⊗W )

¸
.

Under the assumptions of no serial correlation and no heteroscedasticity,

V̂T = Σ̂⊗ W
0
W

T

turns out to be a suitable choice, with Σ̂ equal to a consistent estimate of
E(α

0
y†ty

†0
t α).

Anderson and Vahid propose to perform the test in several steps:

1. Calculate Σ̂;

2. Determine the rank of α in a loop. Set s to 0. While overidentifying
restrictions are not rejected, do the following:

a. increase s by 1,

b. perform the GMM estimation,

c. test the overidentifying restrictions.

The identifying restrictions can be carried out by setting Σ̂ equal to the
identity matrix, which also simplifies the procedure, as shown by the next
lemma.

Lemma 4.4 ([2], Lemma 2.2). Under the normalization

(1/T )α
0
Y

0
Y α = Is,

1. the GMM estimators of columns of α are the canonical coefficient vec-
tors of y†t corresponding to {λ2i , i = 1, . . . , s}, the s smallest estimated
squared canonical correlations between y†t and w

†
t .

2. The test statistic for the overidentifying restrictions is T
Ps

i=1 λ
2
i , which

has the same asymptotic distribution as the statistic −TPs
i=1 ln(1−λ2i ).

(This latter statistic is the standard likelihood ratio test of the null that
the s smallest canonical correlations are zero under the assumption of
normality.)
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The proof of the lemma is given in [2]. As already mentioned, the regu-
larity conditions guarantee the asymptotic χ2 distribution of the common
nonlinearities test statistic. The degree of freedom is equal to the number
of overidentifying restrictions, in our case (m − n)s + s2. Observe that the
number of moment conditions in

E
³
(α

0
jy
†
t )⊗ w†t

´
= 0, j = 1, 2, . . . , s, (4.16)

is equal to ms, whereas the number of parameters (i.e. components of the
matrix α) to be estimated is ns− s2, since s2 parameters are determined by
normalization. Therefore, the number of overidentifying restrictions is equal
to ms− (ns− s2).

Testing for common STAR nonlinearities

Definition 4.5. A smooth transition vector autoregressive model, shortly
STVAR(p), is a model of the form

yt = A0 +A1(L)yt +G(st)[B0 +B1(L)yt] + εt, (4.17)

where yt is an n - vector time series, A0 and B0 are n - vectors of constants,
A1(L) and B1(L) are pth order matrix polynomials in the lag operator with
A1(0) = B1(0) = 0, εt is an n×1 i.i.d. (0,Σ) sequence, G is an n×n diagonal
transition matrix with a typical diagonal entry Gi(sit), and sit is one of the
np lagged regressors in ylags = (y

0
t−1, y

0
t−2, . . . , y

0
t−p)

0
. The specification that

each transition function Gi(sit) is a logistic function of the form

Gi(sit) = (1 + exp[−γi(sit − ci)])−1,

where γ > 0, leads to the logistic STVAR model.

In the study of univariate LSTAR models by Lukkonen et al. [51] and
Teräsvirta [73], the models with sit = yit−d are discussed. After the logistic
transition function is replaced by its third order Taylor approximation around
γ = 0, the univariate linearity test is developed. The procedure is explained
in detail in section 3.1. Testing a single variable in the multivariate setting
is similar. The null hypothesis of linearity, i.e.

H0 : β2j = β3j = β4j = 0, j = 1, . . . , np,
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based on the auxiliary regression

yit = β0+ β
0
1(ylagst) + β

0
2(ylagst · sit) + β

0
3(ylagst · s2it) + β

0
4(ylagst · s3it) + vit,

is tested against the alternative hypothesis of a STAR model. If the pre-
viously described regularity conditions hold true, then the test statistic is
asymptotically χ2-distributed.
Suppose that in the smoooth transition vector autoregressive setting the

univariate LSTAR test is applied to y1t, y2t, . . . , ynt, every time with the same
transition variable st. If the test rejects the null hypothesis of linearity for
at least two variables, say ykt and ylt, it is possible that the variables share a
common nonlinearity. In this case one can find at least one n - dimensional
vector α for which the condition (4.13) is fulfilled:

E
³
(α

0
y†t )⊗ w†t

´
= 0, (4.18)

with w†t equal to ((ylagst ·st)0 , (ylagst ·s2t )0 , (ylagst ·s3t )0)0. The sign † indicates
that the influence of the linear terms, namely the constant and the ylags,
has been removed from the vector wt by regressing it on the constant and
the components of the vector ylags. Taking into account the results from
Lemma 4.4, the test statistic for the null hypothesis that there are at least s
linearly independent linear combinations of the components of the vector yt
with a linear conditional mean is of the form

J = T
sX
i=1

λ2i . (4.19)

The λi are the estimated canonical correlations between the variable groups
y†t and w

†
t . Obviously, if there are s independent linear combinations with

a linear mean in a model where all n dependent variables are nonlinear in
mean, then there are n-s common nonlinear components. The null hypothesis
is rejected when there are more than n-s common nonlinear components.
Provided that the described regularity conditions hold, the test statistic J
has an asymptotic χ2-distribution with (3p− 1)ns+ s2 degrees of freedom.

Finite sample properties of the test

Anderson and Vahid conducted several Monte Carlo experiments in order
to evaluate the properties of the test when STAR nonlinearities are present.
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They restricted their attention to the bivariate and trivariate case with 0, 1
or 2 and 0, 1, 2 or 3 nonlinearities of the LSTAR type with the same known
transition variable in the true data generating process (DGP), respectively.
The simulations with sample sizes of 100 and 300 were preformed in each

case. The bivariate LSTAR test performed well, especially in the sample
size of 300, whereas the trivariate LSTAR test had difficulty distinguishing
between the cases of 1, 2 and 3 common nonlinear components. It has to be
emphasized that the chosen nonlinear data generating processes were close
to linear because of the small values of the γ parameters. When performed
on DGPs with higher γ values, the tests performed substantially better.

Applications

In their paper, Anderson and Vahid apply the common nonlinearities ap-
proach for modeling business cycles in Canada and United States, and for
developing a nonlinear model of real US aggregates. Both nonlinear mod-
els are shown to be superior to their linear counterparts. It is well known
that the business cycles are asymmetric insofar as the recessions are more
pronounced but last only a short period of time, whereas the expansions are
usually long - lasting but mild. For this reason the linear VAR models are
not appropriate for modeling business cycles. Anderson and Vahid propose
a smooth transition vector autoregressive model to be used instead. It turns
out that one common nonlinear component can account for the asymmetries
of business cycles in Canada and US. In the second empirical investigation,
the linear real business cycle model proposed by King et al. [43] is reexam-
ined and the hypothesis of linearity is rejected in favor of a logistic smooth
transition vector autoregressive model. We have to note that both empirical
nonlinear models exhibit potential for forecasting.

4.2 A smooth transition approach to vector
autoregressive models

Whereas there has been extensive research in the field of univariate nonlinear
modeling, the statistical theory of multivariate nonlinear modeling has yet to
be developed. The first attempts at extending nonlinear smooth transition
regression techniques to a multivariate setting can be found in Weise [80],
van Dijk [78] and Camacho [10]. Similarly, multivariate Markov - switching
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models are treated in Krolzig [46] and multivariate threshold models in Tsay
[77].
Weise [80], van Dijk [78] and Camacho [10] extended the univariate STR

modeling approach developed by Teräsvirta and coworkers to vector autore-
gressive models of smooth transition. Their STR specification is limited to
the case where the transition between different parameter regimes is governed
by the same transition variable and the same type of transition function in
every equation of the system. They argue that since the economic practice
imposes common nonlinear features, all equations share the same switching
regime. After using a three - equation linear structural model as a starting
point, Weise [80] develops and analyzes the obtained reduced form, which is
given in a form of a vector autoregressive model. Van Dijk [78] applies the
STVAR modeling approach to study the intraday spots and futures prices
of the FTSE100 index, whereas Camacho [10] examines the nonlinear fore-
casting power of the composite index of leading indicators to predict both
output growth and the business - cycle phases of the US economy. Since all
three studies are similar, while the most comprehensive description of the
methodological approach is given by Camacho [10], we shall start with a
short review of his work.

4.2.1 Specification and estimation

Camacho [10] considers a 2 - dimensional smooth transition vector autore-
gressive model

yt = ϕ
0
yXt + (θ

0
yXt)Gy(syt) + uyt (4.20)

xt = ϕ
0
xXt + (θ

0
xXt)Gx(sxt) + uxt,

where Xt = (1, yt−1, xt−1, . . . , yt−p, xt−p)
0
= (1, X̃

0
t)
0
, ϕy,ϕx, θy, θx are the

corresponding parameter vectors and Ut = (uyt, uxt)
0 ∼ N(0,Ω) is a vector

series of serially uncorrelated errors. The difference Dit = sit−ci, i = x, y, in
the exponent of the transition function Gi is called the switching expression.
The letters yt and xt are used for the two variables in the autoregressive
system, since the smooth transition approach is applied to the rate of growth
of US GDP and the rate of growth of the US composite index of leading
indicators, respectively. The discussion is restricted to the case of sxt = syt
and Gx = Gy, where the same transition variable and the same transition
function is specified in both equations.
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After the linear VAR has been specified, the linearity test is applied. The
problems with nuisance parameters are solved with suitable Taylor series
expansions, as usually. The auxiliary regression to be performed in case the
transition variable st belongs to Xt is

yt = η
0
y0Xt +

3X
h=1

η
0
yhX̃ts

h
t + vyt

xt = η
0
x0Xt +

3X
h=1

η
0
xhX̃ts

h
t + vxt (4.21)

and the null hypothesis of linearity reads as

H0 : ηi1 = ηi2 = ηi3 = 0, i = x, y. (4.22)

Consequently, the null hypothesis can be tested with the Lagrange multiplier
test discussed in the appendix to chapter three.
If the null hypothesis of linearity is rejected in favor of the alternative

smooth transition vector autoregressive model, one has to decide which tran-
sition function to use. The decision is based on the sequence of nested hy-
potheses tests described in section 3.2.2. The parameters of the specified
model are estimated with the maximum likelihood estimator under the as-
sumption of normally distributed errors:

Ut = (uyx, uxt)
0 ∼ N (0,Ω) . (4.23)

4.2.2 Testing the model adequacy

As proposed by Eitrheim and Teräsvirta [18], three tests are performed in
order to check for the adequacy of the estimated model, namely the Serially
independent errors test (SI test), the Parameter constancy test (PC test) and
the No remaining nonlinearity test (NRN test). The multivariate generaliza-
tions of the three test as developed by Camacho are discussed below.

Serially independent errors test

The serially independent errors test allows for the autocorrelation of residuals
under the alternative hypothesis, i.e.

Yt = F (Xt,Ψ) + Ut, (4.24)
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with Ut = (uyt, uxt)
0
, Yt = (yt, xt)

0
, F (Xt,Ψ) = (Fy(Xt,Ψy), Fx(Xt,Ψx))

0
,

Fi(Xt,Ψi) = ϕ
0
iXt + (θ

0
iXt)Gi(sit) and Ψ = (Ψ

0
y,Ψ

0
x)

0
. The vector

Ψi = (ϕ
0
i, θ

0
i, γi, ci)

0
, i = y, x, (4.25)

contains all of the unknown parameters from Fi(Xt,Ψi). Under the assump-
tion of AR(r) errors, the vector Ut takes the form

Ut = Λ(L)Ut + ζt, ζt ∼ N (0,Γ) , (4.26)

where ζt is serially independent and

Λ(L) = Λ1L+ . . .+ ΛrL
r (4.27)

is a 2 × 2 matrix polynomial of order r in the lag operator L that can be
represented by a 2× 2r matrix

eΦ = µ Φ0yy Φ0yx
Φ0xy Φ0xx

¶
. (4.28)

Note that Φ0ij, i, j ∈ {x, y}, are row vectors of length r defined in an obvious
way. In other words, if

Vt = (uy,t−1, . . . , uy,t−r, ux,t−1 . . . , ux,t−r)
0
, (4.29)

then the equation
Λ(L)Ut = eΦVt (4.30)

holds. Since the operation vec stacks the columns of a given matrix into a long
column vector, the vector Φ defined by Φ = vec(eΦ0

) = (Φ0yy,Φ
0
yx,Φ

0
xy,Φ

0
xx)

0

contains both rows of the matrix eΦ concatenated into a vector of length 4r.
All parameters of the model that have to be estimated are contained in the
vector ϑ = (Ψ

0
,Φ

0
)
0
. The null hypothesis of no serial correlation of errors can

be tested by H0 : Φ = 0 with the Lagrange multiplier test. As the vector Φ
contains 4r elements, the test statistics is asymptotically χ2-distributed with
4r degrees of freedom. The standard Lagrange multiplier test statistics can
be written as

LM =
1

T
m

0
Φ

³
MΦΦ −MΦΨ(MΨΨ)

−1M
0
ΦΨ

´−1
mΦ. (4.31)
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While mΦ is a vector of partial derivatives of the score, the matrices M are
blocks of the partitioned information matrix.
Camacho simplifies the test statistics in the following way. Pre-multiplying

equation (4.24) by (I − Λ(L)) gives

(I − Λ(L))Yt = (I − Λ(L))F (Xt,Ψ) + ζt, (4.32)

with the likelihood function

Lt =
1

(2π)|Γ| 12 exp
µ
−1
2
ζ 0tΓ

−1ζt

¶
(4.33)

and the score

lt = C − 1
2
ln |Γ|− 1

2

¡
ζ 0tΓ

−1ζt
¢

= C − 1
2
ln |Γ|− 1

2

¡
ζ2ytΓ

yy + 2ζytζxtΓ
yx + ζ2xtΓ

xx
¢
. (4.34)

Note that Γij, i, j ∈ {x, y}, are blocks of the matrix Γ−1 and the vector
ζt is partitioned in an analogous way. Let us denote by the underbar of
an expression its maximum likelihood estimate under the null hypothesis.
Taking into account equations (4.34) and (4.26), one can express the LM
test statistic in terms of known quantities. From equation

ζit = uit − (φ0iy,φ0ix)(v0yt, v0xt)0, i ∈ {x, y} (4.35)

follows that the partial derivatives ∂lt/∂φij can be expressed as

∂lt/∂φij =
³
Γyiζ

yt
+ Γxiζ

xt

´
vjt, i, j ∈ {x, y}, (4.36)

and the vector mφ is equal to

mφ =
X¡

∂lt/∂φ
0
yy, ∂lt/∂φ

0
yx, ∂lt/∂φ

0
xy, ∂lt/∂φ

0
xx

¢0
=

X³
Γ−1ζ

t
⊗ V t

´
. (4.37)

Each of the block matrices of the Hessian matrix

M =
1

T

X
∂2lt/∂ϑ∂ϑ

0 =
µ
Mφφ MφΨ

MΨφ MΨΨ

¶
(4.38)
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consists of 16 matrices. For example, the upper left block Mφφ consists of
the matrices

M(φij,φhk) =
1

T

X
∂2lt/∂φij∂φ

0
hk, (4.39)

that may be estimated by

M(φij,φhk) = Γihvjtv
0
kt, (4.40)

therefore
Mφφ =

1

T

X¡
Γ−1 ⊗ V tV 0t

¢
. (4.41)

Similarly,

MφΨ =
1

T

X
∂2lt/∂φ∂Ψ

0 .=
1

T

X¡
Γ−1Z 0t ⊗ V t

¢
MΨφ = M 0

φΨ

MΨΨ =
1

T

X
∂2lt/∂Ψ∂Ψ0 .=

1

T

X¡
ZtΓ

−1Z 0t
¢
, (4.42)

where Zt = (zyt, zxt) with zit = ∂Fi(Xt,Ψi)/∂Ψi, i ∈ {x, y}.

Parameter constancy test

Since the parameters of a smooth transition vector autoregressive model are
estimated under the assumption of parameter constancy, it is important to
develop the PC test in the multivariate setting. The null hypothesis of para-
meter constancy is tested against the alternative hypothesis of time-varying
parameters of the form

ϕi(t) = ϕi + λ1iHi(t), θi(t) = θi + λ2iHi(t), i = x, y, (4.43)

where

Hi(t) = (1 + exp(−γ1i(tk + νi(k−1)tk−1 + . . .+ νi1t+ νi0)))
−1 − 0.5. (4.44)

Hi(t) thus enables nonmonotonic and asymmetric change in the parameters
ϕi(t) and θi(t). The transition function parameters γi and ci are assumed
constant also under the alternative hypothesis. Let us use the first order
Taylor expansion around γi = 0 in place of Hi(t) in equation (4.43). After
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substituting ϕi and θi for ϕi(t) and θi(t), respectively, system (4.20) can be
written as

yt = ω
0
y0Ayt + ω

0
y1Aytt+ . . .+ ω

0
ykAytt

k +

+
³
ω̃
0
y0Ãyt + ω̃

0
y1Ãytt+ . . .+ ω̃

0
ykÃytt

k
´
Gy + vyt

xt = ω
0
x0Axt + ω

0
x1Axtt+ . . .+ ω

0
xkAxtt

k +

+
³
ω̃
0
x0Ãxt + ω̃

0
x1Ãxtt+ . . .+ ω̃

0
xkÃxtt

k
´
Gx + vxt (4.45)

and the null hypothesis of constant parameters is of the form

H0 : ωi1 = . . . = ωik = 0, ω̃i1 = . . . = ω̃ik = 0, i = x, y. (4.46)

Note that the vector Ayt contains only those elements of the vectorXt, whose
coefficients in the linear part of the yt equation are not assumed zero a priori,
and the vector Ãyt in the nonlinear part of the same equation is defined in an
analogous way. Having performed auxiliary regression (4.45), one can test
for constant parameters with a standard Lagrange multiplier type test.

No remaining nonlinearity test

Following Eitrheim and Teräsvirta [18], Camacho introduces a smooth tran-
sition vector autoregressive model with 2 additive components

yt = ϕ
0
yXyt + (θ

0
yXyt)G

1
y(s

1
yt) + (θ̃

0
yXt)G

2
y(s

2
yt) + uyt

xt = ϕ
0
xXxt + (θ

0
xXxt)G

1
x(s

1
xt) + (θ̃

0
xXt)G

2
x(s

2
xt) + uxt. (4.47)

The test is performed in a similar way as the linearity test, i.e. the Taylor
approximation of a suitable order is used instead of the transition function
G2i . The auxiliary regression to be performed in case the transition variable
s2xt = s

2
yt = zt belongs to Xt is

yt = α
0
yXyt + eα0

yXytG
1
y + δ

0
yXyt + eδ0yXytG

1
y +

+
3X
h=1

ξ
0
yhX̃tz

h
t + vyt

xt = α
0
xXxt + eα0

xXxtG
1
x + δ

0
xXxt + eδ0xXxtG

1
x +

+
3X
h=1

ξ
0
xhX̃tz

h
t + vxt (4.48)
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and the null hypothesis of no remaining nonlinearity can be written as

H0 : ξi1 = ξi2 = ξi3 = 0, δi = eδi = 0, i = x, y. (4.49)

New notation was introduced in the auxiliary regressions above. The vectors
ϕi and θi are divided into two subvectors, namely αi and eαi, respectively,
with nonzero components, and δi and eδi, respectively, that are assumed to be
zero in the parameter estimation. This can be done without loss of generality.
Analogously, the vector of explanatory variables is divided into subvectors
Xit and X it. Obviously, the null hypothesis of no remaining nonlinearity can
be tested with the Lagrange multiplier test.

Predictive accuracy of the estimated model

After the null hypothesis of linearity is rejected, one has to choose a suit-
able transition variable from a set of many available candidates. As already
mentioned, Teräsvirta [73] suggests choosing the variable with the smallest
p-value. However, Camacho points out two drawbacks of this heuristical
method. Firstly, the decision is not clear when the p-values are similar. Sec-
ondly, even if the linearity is weekly rejected for one of the candidates for the
transition variable, the obtained nonlinear model may have good forecasting
properties. Camacho solves the problem by estimating the specified smooth
transition vector autoregressive model for each of the transition variables re-
jecting the null of linearity and then choosing the best model on the basis
of predictive accuracy. The type of the transition function for each of the
transition variables is selected following the decision rule from section 3.2.2.
Several measures of predictive accuracy are employed, namely

1. Certain positive rate (CPR) and certain negative rate (CNR)
CPR (CNR) is defined as the percentage of quarters in which the model
correctly predicts GDP rises (falls).

2. False positive rate (FPR) and false negative rate (FNR)
FPR (FNR) is defined as the percentage of quarters in which the actual
output growth is positive (negative) and the output growth as predicted
by the model is negative (positive).

3. Mean square error (MSE)
MSE is defined as

MSE =
1

T

TX
t=1

(yt − byt)2
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and measures the difference between the actual output growth yt and
the estimated output growth byt.

4. Turning points error (TPE)

TPE =
1

T

TX
t=1

(dt − bdt)2,
where dt equals 1 in times of official recessions. Due to the fact that
the value of the logistic transition function can be interpreted as the
probability of expansion, the estimated probability of recession is given
by bdt = 1−Gy.

5. Diebold-Mariano (DM), Modified Diebold-Mariano (MDM), Morgan-
Granger-Newbold (MGN) and Meese-Rogoff (MR) tests
MSE and TPE can be used as measures for comparing forecasting pro-
perties of several competing models. With the DM, MDM, MGN and
MR tests one can test the null hypothesis of no difference in forecasting
accuracy of these competing models.

4.3 Smooth transition vector autoregressive
models with different transition variables

As already mentioned, Weise [80], van Dijk [78] and Camacho [10] all assume
the same transition variable and the same type of the transition function
in every equation of a smooth transition vector autoregressive model, with
the interpretation that the economic practice imposes common nonlinear
features. But this argument is not convincing, since such a conclusion cannot
be derived from economic theory, while applied econometric studies analyzing
nonlinear systems are scarce. For this reason we shall try to extend the
work of Camacho by allowing different smooth transition functional forms in
different equations.
When performing the system linearity test Camacho postulates a two-

variable linear VAR(p) model under the null hypothesis and the smooth
transition vector autoregressive model

yt = ϕ
0
yXt + (θ

0
yXt)Gy(syt) + uyt (4.50)

xt = ϕ
0
xXt + (θ

0
xXt)Gx(sxt) + uxt,
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where
Xt = (1, yt−1, xt−1, . . . , yt−p, xt−p)

0
= (1, X̃

0
t)
0
,

with the same transition variable syt = sxt = st and the same type of tran-
sition function Gx = Gy = G under the alternative. After estimating the
auxiliary regression

yt = X 0
tηy0 + (X̃

0
tst)ηy1 + (X̃

0
ts
2
t )ηy2 + (X̃

0
ts
3
t )ηy3 + vyt (4.51)

xt = X 0
tηx0 + (X̃

0
tst)ηx1 + (X̃

0
ts
2
t )ηx2 + (X̃

0
ts
3
t )ηx3 + vxt,

the null hypothesis

H0 : ηi1 = ηi2 = ηi3 = 0, i = x, y, (4.52)

(with the alternative of at least one of the coefficient vectors different from
zero) is tested. The equations in (4.51) are estimated as a system with the
method of maximum likelihood. Single equation estimators would also be
consistent, although not efficient. The null hypothesis (4.52) can be tested
with the LM test described in section 3.6.
If the restriction syt = sxt = st is not imposed, the system linearity test

can be performed by testing the same null hypothesis, this time based on the
auxiliary regression allowing for different transition variables

yt = X 0
tηy0 + (X̃

0
tsyt)ηy1 + (X̃

0
ts
2
yt)ηy2 + (X̃

0
ts
3
yt)ηy3 + vyt (4.53)

xt = X 0
tηx0 + (X̃

0
tsxt)ηx1 + (X̃

0
ts
2
xt)ηx2 + (X̃

0
ts
3
xt)ηx3 + vxt.

The system linearity test will be rejected if at least one of the relation-
ships under observation is nonlinear, or more specifically, is characterized by
smooth transition between parameter regimes. It is reasonable to believe
that situations with only one of the equations being nonlinear can occur in
the economic practice. Estimating both equations with the smooth transition
specification would be inefficient in this case. To solve this problem, single
equation linearity tests based on the system estimates of auxiliary regression
(4.53) may be applied. For example, to develop the single equation linearity
test for the first equation, the null hypothesis

H0 : ηy1 = ηy2 = ηy3 = 0 (4.54)

should be verified. Testing such a null hypothesis corresponds to imposing
the model

yt = ϕ
0
yXt + uyt (4.55)

xt = ϕ
0
xXt + (θ

0
xXt)Gx(sxt) + uxt
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under the null and model (4.50) with the STR specification in both equations
under the alternative. The heuristic procedure for selecting the transition
variable(s) can be derived similarly to the one explained by Teräsvirta [73]
in the univariate setting:

1. Perform the system linearity test for each of the pairs of the possible
transition variables in turn.

2. Carry out single equation linearity tests for each of the pairs of transi-
tion variables that reject the system linearity test.

3. (i) If there are pairs of transition variables for which the single equation
tests reject the null hypothesis of linearity for both equations,
choose the pair with the strongest rejection of the system linearity
test.

(ii) If for each of the pairs rejecting the null of system linearity only one
of the single equation linearity tests is rejected, choose the pair
of transition variables with the strongest rejection of the single
equation test. Specify the corresponding equation as a smooth
transition regression, while specifying the other equation as linear.

After the transition variables (or variable) have been chosen, the decision
about the type of the transition function should be made. Camacho proposes
a straightforward generalization of the sequence of nested hypotheses from
section 3.2.2, namely

H04 : ηy3 = ηx3 = 0, (4.56)

H03 : ηy2 = ηx2 = 0| ηy3 = ηx3 = 0,

H02 : ηy1 = ηx1 = 0| ηy2 = ηx2 = ηy3 = ηx3 = 0,

which can be tested with a sequence of F tests. The coefficient vectors ηij
refer to auxiliary regression (4.51). The decision rule determines the type of
the transition function depending on the nested hypothesis with the strongest
rejection (see section 3.2.2 for details). Note that the same functional form
is selected for both equations.
If the assumption of the same type of the transition function in both

equations, namely Gx = Gy = G, is also relaxed, the transition function
is chosen for each equation separately. In case of the first equation, the
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regressions in (4.53) are estimated with a system estimation method and the
following sequence of nested hypotheses is verified:

H04 : ηy3 = 0, (4.57)

H03 : ηy2 = 0| ηy3 = 0,
H02 : ηy1 = 0| ηy2 = ηy3 = 0.

When the second equation has a linear specification, auxiliary regression
(4.53) should be modified accordingly, with the coefficient vectors ηx1, ηx2
and ηx3 set to zero prior to estimation.
An alternative specification procedure would follow the suggestion of Ca-

macho and specify a model for each pair of the transition variables rejecting
the null hypothesis of system linearity. The final model can be selected on the
basis of forecasting power or any other measure of the model adequacy. Of
course this strategy is more time consuming, especially if the null hypothesis
of system linearity is rejected for several pairs of transition variables. Our
approach extends the modeling cycle developed by Camacho, since the set
of models considered for smooth transition specification includes all of the
models studied by Camacho.
To illustrate the proposed heuristic procedure, we shall apply it to the

data analyzed by Camacho and obtained from his web site (see appendix C).
The letters yt and xt are used for the two variables in the autoregressive
system, since the smooth transition approach is applied to the rate of growth
of US GDP and the rate of growth of US composite index of leading indica-
tors, respectively. Both series include quarterly observations from 1959:1 to
2002:1.
Let us first derive the final model of Camacho. Using the information

criteria, a linear VAR(1) model is specified and subjected to the the system
linearity tests. In addition to yt−1 and xt−1, the variables yt−2 and xt−2
are also regarded as candidates for the transition variable. The results are
given in the corresponding rows of Table 4.1. As the null of system linea-
rity is rejected in all four cases, Camacho estimates four smooth transition
autoregressive models. The type of the transition function for each of the
transition variables is selected using the decision rule explained on page 74
and is the same for both equations. The final model is decided upon on the
basis of predictive accuracy (see previous section for details). The maximum
likelihood estimates of the final model given below are slightly different from
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those in the paper by Camacho [10]:

yt = 0.603 · xt−1 + 0.900 ∗
µ

1

1 + e−1.840(yt−2−0.116)

¶
(4.58)

(0.092) (0.200) (1.359) (0.393)

xt = 0.415− 0.364 · yt−1 + 0.507 · xt−1 +
(0.126) (0.154) (0.060)

+
¡−0.308 + 0.324 · yt−1¢ ∗µ 1

1 + e−4.413(yt−2−0.373)

¶
.

(0.252) (0.213) (10.100) (0.343)

As pointed out by Teräsvirta, precise joint estimation of the slope parameter
and the threshold can be problematic.
When the restrictions regarding the transition variable and the type of

the transition function are omitted, the linearity tests have to be carried out
for every pair of the possible transition variables. The results of the system
linearity tests as well as single equation tests are given in Table 4.1.
It can be observed that the single equation linearity test is strongly re-

jected for every pair of the transition variables when testing the second equa-
tion, while this holds true only for the pair xt−2, yt−1 in case of the first equa-
tion. Thus the rejection of system linearity is due mainly to the nonlinear
features in the second relation. Following the previously explained heuristic
procedure, we choose the transition variables xt−2 and yt−1 for the first and
second equation, respectively.
Next, the question of the type of the transition function in each of the

equations has to be investigated. The sequence of nested hypotheses (4.57) is
performed with the results given in Table 4.2. The F2 test yields the lowest
p-value for both equations thus indicating the LSTR1 transition model in
both cases.
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Tvar in 1. LINEARITY TESTS (p-values)
and 2. eq. System test First eq. test Second eq. test
xt−1, xt−1 0.0020 0.4137 0.0017
xt−1, xt−2 0.0091 0.1882 0.0103
xt−1, yt−1 0.0039 0.1475 0.0038
xt−1, yt−2 0.0076 0.1332 0.0083
xt−2, xt−1 0.0003 0.0774 0.0004
xt−2, xt−2 0.0037 0.0755 0.0082
xt−2, yt−1 0.0008 0.0300 0.0014
xt−2, yt−2 0.0033 0.0565 0.0073
yt−1, xt−1 0.0041 0.6775 0.0003
yt−1, xt−2 0.0553 0.8199 0.0075
yt−1, yt−1 0.0315 0.8003 0.0035
yt−1, yt−2 0.0529 0.7331 0.0070
yt−2, xt−1 0.0018 0.3793 0.0005
yt−2, xt−2 0.0119 0.2449 0.0054
yt−2, yt−1 0.0057 0.2106 0.0022
yt−2, yt−2 0.0114 0.2005 0.0052

Table 4.1: Linearity test results (p-values)

NESTED TESTS (p-values)
Tvar in 1. First equation Second equation
and 2. eq. F4 F3 F2 F4 F3 F2
xt−2, yt−1 0.2250 0.3676 0.0112 0.6859 0.0370 0.0008

Table 4.2: Tests for choosing the type of transition function (p-values)
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The maximum likelihood estimates of the specified smooth transition vec-
tor autoregressive model are given by

yt = 0.467 · xt−1 + 1.213 ∗
µ

1

1 + e−1.389(xt−2−0.053)

¶
(4.59)

(0.103) (0.371) (0.900) (0.523)

xt = −1.561 + 0.475 · xt−1 − 1.680 · yt−1 +
(2.891) (0.059) (2.119)

+ 1.489 · yt−1 ∗
µ

1

1 + e−2.592(yt−1+0.614)

¶
(1.580) (3.288) (0.994)

It can be deducted from Table 4.3 that models (4.58) and (4.59) are com-
parable in terms of fit, if model (4.59) is not even slightly better. Therefore
it would be wise to consider also (4.59) when searching for the model with
the best forecasting properties.

Model First equation Second equation
Value logL R2 S.E. R2 S.E.

Model (4.58) -327.14 0.352 0.754 0.253 0.718
Model (4.59) -322.20 0.369 0.744 0.287 0.701

Table 4.3: Comparing the fit of models (4.58) and (4.59)

The modeling procedure proposed by Camacho has several drawbacks.
Firstly, the system linearity test based on auxiliary regression (4.51) is re-
jected if at least one of the equations includes nonlinear terms. Specifying
every equation as nonlinear based only on the rejection of the system linearity
test thus neglects the possibility of a system involving linear and nonlinear
equations and can yield inefficient estimates. In chapter 6 we develop a non-
linear monetary model of inflation characterized by the real money demand
equation augmented by the Phillips curve and the equation of Okun’s law.
It turns out that while the money demand equation and the Phillips curve
exhibit nonlinear features, the Okun‘s law should be specified as a linear
equation, since the single equation linearity tests cannot be rejected in any
case. Additionally, the regime changes in the money demand equation and
in the Phillips curve are governed by different transition variables.
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Secondly, the limitations in the specified functional form can be justified
neither by the relationships postulated within the economic theory nor by
taking into account the very few existing applied studies. In chapter 5 we
present an application of the common nonlinearities approach to analyze
the components of the real exchange rates of the Slovenian Tolar versus the
currencies of its five major trading partners. It turns out that in only one
of the five cases examined one common nonlinear component can adequately
describe the development of the three real exchange rate components, while
in other four cases a model involving at least two nonlinear terms should be
specified. Thus, the specification with the same transition variable and the
same type of the transition function in every equation of a smooth transition
vector autoregressive model is too restrictive and should not be imposed a
priory.
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Chapter 5

Real Tolar - Euro exchange
rate model

In this chapter, three-variable smooth transition vector autoregressive mod-
els of the consumer price index for Slovenia, consumer price index of an-
other country and the nominal exchange rate between the currencies of both
countries are discussed. The investigation applies the common nonlinearities
techniques to small models of the real exchange rate, decomposed into its
three components, domestic prices (Pt), foreign prices (P ∗t ) and the nominal
exchange rate (St). The empirical investigation includes five most important
foreign trade partners of Slovenia, namely Germany, Italy, France, Austria
and Croatia.
Monthly data for the period from January 1988 till December 2003 were

obtained from the Bank of Slovenia and from the Statistical Office of the
Republic of Slovenia. Due to the fact that Slovenia declared independence in
June 1991 and introduced its own currency (Tolar) in October of the same
year, only the data for the period from January 1993, when Tolar was already
an established currency, were used in the study. In the case of Croatia, the
period under investigation was shortened additionally because of the war.
Only the data from April 1995 till December 2003 were taken into account.
The econometric model employs variables expressed in growth rates with the
help of the logarithmic transformation, therefore small letters are used to
denote the transformed variables.
In a preliminary specification, all equations were modeled as linear re-

lationships. This simplifies the search for an appropriate nonlinear specifi-
cation. Firstly, unit root tests were applied to the variables pt, p∗t and st
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for each of the countries. All of the variables turned out to be integrated
of order 1, or I(1), as one cannot reject the null hypothesis of unit root for
any variable. Next, cointegration tests were performed and the linear vector
error correction models (VECM) were specified. The null hypothesis of no
cointegrating relations could not be rejected only in case of Croatia, there-
fore a linear VAR model in the differenced variables ∆pt, ∆p∗t and ∆st was
specified. Orthogonal seasonal dummy variables, denoted by d1 to d12, were
introduced into some of the models to reduce the autocorrelation effects.
Test results of the preliminary linear specification and the estimates of the
VECM models are given in appendix B.

5.1 Linearity test results

In order to improve specification we investigate the influence of nonlinearities,
which we assume to be of the smooth transition kind. For this purpose,
we test the null hypothesis of linearity against the alternative of a smooth
transition autoregressive model for each of the equations and each of the
possible transition variables in turn. The values of the F-statistic (and the
corresponding p-values in brackets) are given in Table 5.1 below. The coin-
tegrating equations are denoted by ce1 and ce2.

Germany
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.642 (0.039) 1.072 (0.393) 4.178 (0.000)
∆pt−1 1.135 (0.321) 1.251 (0.211) 1.819 (0.017)
∆p∗t−1 0.847 (0.699) 0.567 (0.965) 1.383 (0.124)
∆st−1 1.397 (0.117) 0.995 (0.492) 2.612 (0.000)
∆pt−2 1.936 (0.009) 0.554 (0.971) 2.566 (0.000)
∆p∗t−2 1.034 (0.440) 1.432 (0.101) 0.791 (0.772)
∆st−2 1.601 (0.047) 0.684 (0.889) 4.175 (0.000)
∆pt−3 0.711 (0.864) 1.022 (0.457) 2.037 (0.006)
∆p∗t−3 1.387 (0.122) 1.264 (0.200) 1.352 (0.141)
∆st−3 1.146 (0.309) 0.456 (0.993) 3.471 (0.000)
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Italy
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.480 (0.125) 0.898 (0.574) 3.104 (0.000)
∆pt−1 1.123 (0.347) 1.558 (0.098) 1.494 (0.120)
∆p∗t−1 2.797 (0.001) 2.757 (0.001) 1.809 (0.042)
∆st−1 1.681 (0.065) 1.022 (0.442) 2.248 (0.009)

France
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.213 (0.250) 0.645 (0.917) 3.172 (0.000)
∆pt−1 0.878 (0.655) 0.935 (0.576) 1.334 (0.160)
∆p∗t−1 0.665 (0.901) 1.3710 (0.139) 0.642 (0.919)
∆st−1 1.210 (0.253) 0.790 (0.771) 2.527 (0.001)
∆pt−2 1.276 (0.199) 0.760 (0.806) 1.160 (0.300)
∆p∗t−2 1.022 (0.460) 0.829 (0.721) 0.682 (0.887)
∆st−2 1.857 (0.017) 0.939 (0.571) 3.609 (0.000)
∆pt−3 1.112 (0.351) 0.776 (0.787) 2.226 (0.003)
∆p∗t−3 0.861 (0.677) 0.973 (0.524) 1.249 (0.220)
∆st−3 1.150 (0.310) 0.843 (0.701) 2.045 (0.007)

Austria
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.392 (0.153) 1.002 (0.468) 2.752 (0.001)
ce2t 2.619 (0.001) 1.712 (0.043) 3.423 (0.000)
∆pt−1 1.284 (0.216) 1.207 (0.272) 1.817 (0.034)
∆p∗t−1 1.356 (0.172) 1.146 (0.323) 1.655 (0.061)
∆st−1 1.765 (0.041) 1.355 (0.173) 4.024 (0.000)

Croatia
transition variable ∆p equation ∆p∗ equation ∆s equation

∆pt−1 1.222 (0.282) 1.432 (0.166) 0.840 (0.617)
∆p∗t−1 0.755 (0.704) 1.110 (0.365) 2.719 (0.004)
∆st−1 0.616 (0.834) 0.638 (0.814) 4.208 (0.000)

Table 5.1: F-values (and p-values) for testing linearity against STR

The goal of the study is to obtain a model with only one common nonli-
near component, because in this way a parsimonious specification is achieved.
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Obviously, the necessary condition for the existence of such a model is a
transition variable for which the null hypothesis of linearity is rejected for
every equation in the model. There are only two variables that comply
with this condition in our case, namely the variable ∆p∗t−1 in the model for
Italy and the variable ce2t in the model for Austria (see Table 5.1). The
significance level of 5 % is assumed. Table 5.2 shows the results of the
common nonlinearities test for both of the mentioned transition variables.

Italy
tvar: ∆p∗t−1

s p-value df
1 0.230 10
2 0.033 22
3 0.000 36

Austria
tvar: ce2t

s p-value df
1 0.262 13
2 0.079 28
3 0.001 45

Table 5.2: Common nonlinearities test for Italy and Austria

In accordance with the theory from section 4.1, s equals 1 for Italy and
2 for Austria. The number of common nonlinear components, which is de-
termined by the formula n-s, takes the value of 2 for Italy and the value of
1 for Austria. Consequently, we shall concentrate on the model for Austria
from now on.

5.2 Estimated model for Austria

The full information maximum likelihood (FIML) estimator was employed
to allow for correlated residuals in different equations. Due to occasional
problems with convergence of the nonlinear optimization procedure some
experimentation to find appropriate starting values was required. The final
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set of estimates obtained for the parameters of the nonlinear logistic smooth
transition vector error correction model of the Slovenian Tolar versus the
Austrian Schilling, respectively Euro, can be found below. The estimated
standard errors are given in brackets.
Common nonlinear component:

comt =
1

1 + e−53.0123(ce2t+0.0993)
∗ (5.1)

(29.608) (0.016)

∗
Ã
−0.0315− 0.0717 · ce1t − 0.2177 · ce2t +

(0.0096) (0.0196) (0.0613)

+ 0.4792 ·∆p∗t−1 + 0.1063 ·∆st−1
!

(0.2486) (0.0573)

First equation:

∆pt = 0.0384 + 0.0388 · ce1t + 0.1506 · ce2t − 0.6346 ·∆p∗t−1 + (5.2)

(0.0091) (0.0188) (0.0663) (0.2491)

+ 0.0086 · d1t + 0.0055 · d2t + 0.0053 ∗ d3t + 0.0053 · d4t +
(0.0015) (0.0020) (0.0018) (0.0015)

+ 0.0056 · d5t + 0.0033 · d7t + 0.0057 · d9t + 0.0036 · d10t +
(0.0015) (0.0019) (0.0016) (0.0025)

+ 0.0047 · d11t + 0.0025 · d12t + comt

(0.0015) (0.0018)

Second equation:

∆p∗t = 0.0031 + 0.0072 · ce2t + 0.0526 ·∆st−1 + 0.0016 · d2t + (5.3)

(0.0010) (0.0052) (0.0390) (0.0013)

+ 0.0013 · d7t − 0.0027 · d9t + 0.0620 · comt

(0.0009) (0.0009) (0.0147)
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Third equation:

∆st = 0.0620 + 0.1642 · ce1t + 0.4629 · ce2t − 1.1531 ·∆p∗t−1 + (5.4)

(0.0147) (0.0305) (0.1055) (0.4513)

+ 0.5001 ·∆st−1 − 0.0024 · d5t − 0.0022 · d7t + 1.9444 · comt

(0.0905) (0.0017) (0.0020) (0.6469)

Note that both of the crucial parameters in the common nonlinear part,
γ and c, are significant at the 10 % level. The γ value of approximately 53
indicates rapid transition between the two extreme regimes.
A comparison of single equations from the linear and nonlinear system

(Table 5.3) reveals an increase in explanatory power for equations 1 and
3 (R2 increases from 0.62 to 0.65 and from 0.67 to 0.76, respectively) and
a decrease in the standard error of regression from 0.0039 to 0.0038 and
from 0.0051 to 0.0043, respectively. For equation 2, the situation is just the
opposite. There is a decrease in explanatory power, while the standard error
of regression stays the same. It should be emphasized that there are better
ways to analyze systems of equations than single-equation comparison. If we
compare the value of the log likelihood for both systems, we can observe that
it is higher for the nonlinear system (1668.52 as compared to 1649.64 for the
linear system), indicating an improvement in specification.

Linear system
∆p equation ∆p∗ equation ∆s equation

R2 0.62 0.22 0.67
S.E. 0.0039 0.0028 0.0051

Nonlinear system
∆p equation ∆p∗ equation ∆s equation

R2 0.65 0.17 0.76
S.E. 0.0038 0.0028 0.0043

Table 5.3: Comparing equations in the linear and nonlinear system
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5.3 Conclusion

The obtained real exchange rate model of the Slovenian Tolar versus Austrian
Schilling, respectively Euro, contains only one common nonlinear component,
as desired. On the other hand, models for Germany, Italy, France and Croatia
cannot be adequately described with the help of only one type of nonlinearity.
One of the possible explanations for such results could be the late accession of
Austria to the European Union. Austria joined EU in the year 1995, whereas
Germany, Italy and France were already member states in the year 1993,
when we started our investigation. The process of Austria’s EU accession
had a deep impact on its economic structure and the relation to its neighbour
states. In particular prices have been severely affected. These adjustments
together with those ongoing in neighbouring Slovenia seem to be captured
by a common nonlinear factor in the components of the real exchange rate.
It concerns especially the effects of the lagged Austrian inflation rate and the
nominal exchange rate, besides the cointegration terms. This lends economic
support to the specification of a logistic smooth transition model with only
one common nonlinear component.
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Chapter 6

A nonlinear monetary model of
inflation

6.1 Theoretical specification

We start with a model of monetary inflation theory which can be shortly
characterized by an equation describing the monetary system augmented by
a Phillips curve and the equation of Okun’s law. The simple elementary
system is given by (see [23]):

mt = xt + πt, (6.1)

πt = π∗t − b(ut − u∗),
ut − ut−1 = −a(xt − x∗t ).

These three equations determine three unknown variables: real growth
rate (xt), inflation rate (πt) and unemployment rate (ut) in terms of given
monetary growth. The first equation representing the quantity equation in
growth rates (assuming constant velocity) will be substituted by a demand
for real money equation, which may not be homogenous of degree 0 in its
arguments. We assume the nominal money stock to be given by the monetary
authority. The equilibrium in the monetary sector can be described by a
general equation expressing the relationship between money stock, output
and prices, respectively interest rates. The Phillips curve relates inflation to
the deviation of the unemployment rate from its natural rate (u∗) augmented
by backward and forward inflationary expectations. Okun’s law provides a
relationship between the change in unemployment rate and the deviation of
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the actual from the trend rate of real output growth (x∗t ). By considering an
Okun type relationship and additional supply effects in the Phillips curve the
resulting model exhibits essential features of the "triangle model" as defined
by Gordon [26]. Supply effects may include tax changes, rates of change in
import or oil prices, or the change in the unemployment rate which may give
rise to hysteresis. The (excess) demand side is typically represented by the
unemployment gap and may also incorporate lagged effects of the growth of
the stock of money.
This monetary approach to an explanation of inflation will be applied to

seasonally adjusted quarterly data from West Germany between 1970:1 and
1998:4.

6.1.1 About the money demand and the quantity equa-
tion

Let us denote the stock of money by M. Money is understood by its narrow
definition as the currency in circulation plus the sight deposits. This sum is
usually denoted by M1.
As explained in Burda and Wyplosz [8], the demand for nominal money is

proportional to the price level (P), or, in other words, the demand for money
is the demand for real money. The money demand also depends on the real
output (X) and the nominal interest rate (r). Obviously, the higher the real
output, the higher the money demand and the higher the interest rate, the
lower the money demand. The relationship can be written in a compact form
as

M

P
= f(X, r). (6.2)

The velocity of money (V) is a measure of how many times (on average)
a unit of money is spent during a fixed time period, which is usually a year.
V is defined by the so-called quantity equation as the ratio

V =
P ·X
M

. (6.3)

If, for example, V = 2, then we say that the stock of money turns around
twice a year. In the quantity theory the velocity of money is assumed con-
stant, since the price level is determined by the quantity of money. Expressing
equation (6.3) in terms of M,

M =
P ·X
V

, (6.4)
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and taking logarithms under the assumption of constant velocity (with the
value of 1) yields

m = π + x. (6.5)

Small letters were used to denote the growth rates in the logarithmic form.
Thus, the first equation of system (6.1) is the quantity equation. For the pur-
pose of estimation it will be substituted by the demand for money equation
and referred to as the "surrogate quantity equation".

6.1.2 About the Phillips curve

In 1958, the British economist A.W. Phillips [62] published his famous paper
about the relationship between the change of money wages and the rate of
unemployment. Based on the UK data for the period from 1861 till 1957,
he concluded that the dependency between the observed variables can be
described by a downward sloping curve. Two years later, Samuelson and
Sollow [64] modified the concept of the Phillips curve to represent a relation-
ship between the rate of inflation and the rate of unemployment. Since the
relationship was supposed to be stable, the Phillips curve became increasingly
popular as a policy instrument allowing the policy makers to choose between
alternative combinations of inflation and unemployment. The implied trade-
off between inflation and unemployment meant that a reasonably high rate
of inflation could be tolerated as this would lead to lower unemployment.
However, in the 1970‘s, several countries experienced stagflation - a phe-

nomenon of a high inflation combined with a high unemployment rate. Obvi-
ously, this was in contradiction with the theory of a stable Phillips curve. As
a consequence, new theories emerged, explaining how stagflation could oc-
cur. Milton Fridman proposed the so-called expectations-augmented Phillips
curve. The equation of the Phillips curve was expanded to include a para-
meter for the expected rate of inflation (π∗t ),

πt = π∗t − b(ut − u∗), (6.6)

implying that different expected rates of inflation correspond to alternative
Phillips curves. Linear Phillips curve (6.6) can be written more generally in
the form

πt = π∗t + f(ut). (6.7)

As depicted in Figure 6.1, a change in the expected rate of inflation shifts the
Phillips curve. The augmented theory distinguishes between the short-term
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Figure 6.1: Expectations augmented Phillips curve

and the long-term Phillips curve. In the short run given by equation (6.6)
there is a trade-off between the inflation rate and the unemployment rate,
while in the long run the Phillips curve can be depicted by a vertical line
(Figure 6.1). To establish this claim, one only has to observe that in the long
run expectations are fully adjusted and there is no deviation of the actual rate
of inflation from the expected rate of inflation. Thus, the vertical Phillips
curve given by the formula ut = u∗ can easily be derived from equation (6.6).

6.1.3 About the Okun‘s law

Okun’s law describes the short-run relationship between the GDP gap and
the unemployment rate. This empirical relationship, developed by A.M.
Okun in the 1970‘s, can be stated as follows (compare Frisch [23]):

ut = u
∗ − a

Ã
Xt −X∗

t

X∗
t

!
, (6.8)

where a > 0 is a constant term, ut and u∗ denote the actual and the natural
rate of unemployment, Xt stands for the actual real output and X∗

t for the
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potential real output. Okun’s estimate of the parameter a for the United
States was approximately 0.3, implying that for each percentage point by
which the unemployment rate is higher than the natural rate, real output
is approximately 3.3 % lower than the potential real output. As a slightly
more general relationship between the rate of unemployment and the rate of
growth of real output we can write

ut = ut−1 − a
³
xt − x∗t

´
, (6.9)

with x∗t denoting the expected rate of real growth following the long-run
trend. The difference xt − x∗t is usually called the output gap.

6.2 Linear econometric model

The econometric model employs transformations of variables into growth
rates. In a preliminary specification, all equations are modeled as linear
relationships. This simplifies the search for an appropriate nonlinear specifi-
cation. The starting point of our empirical investigation is the system

mt = xt + πt, (6.10)

πt = π∗t − b(ut − u∗),
ut = ut−1 − a(xt − x∗t ),

which we shall augment with additional explanatory variables and adjust-
ment terms, thus allowing the dynamic specification. On the basis of these
empirical results further investigations will have to reveal any remaining non-
linearity in these relations.

6.2.1 Surrogate quantity equation

The first equation specifies real money demand growth (mt) as dependent
variable explained by adjustment terms representing the adjustment of real
money growth to output growth (xt) and prices. The dynamic linear speci-
fication of the surrogate quantity equation is of the form

mt = a+ b(L)xt + c(L)∆πt−1 + d(L)mt−1 + f(L)π
f
t + εt. (6.11)

The forward looking price expectation (πft ) is defined on page 96. A maxi-
mum of 4 lags was allowed in the lag polynomials b(L), c(L), d(L) and f(L),
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SURROGATE QUANTITY EQUATION
Dependent Variable: mt

Sample (adjusted): 1970:1 1998:4 (Observations: 116)
Variable Coefficient Std. Error t-Statistic Prob.
const. 0.023727 0.005669 4.185161 0.0001
xt 0.183880 0.127073 1.447037 0.1508
xt−4 0.211157 0.098361 2.146751 0.0341
∆πt−1 -0.582542 0.264546 -2.202045 0.0298
mt−1 0.883156 0.047842 18.45990 0.0000
mt−4 -0.267305 0.050737 -5.268417 0.0000
πft -0.005449 0.001437 -3.792490 0.0002

dummy1 0.112028 0.016734 6.694747 0.0000
R2 = 0.855, S.E. = 0.022, SSR = 0.054, AIC = -4.690

Table 6.1: OLS results for surrogate quantity equation (6.11)

thus extending over a period of a year because of the quarterly data. The
least squares estimates (with the insignificant variables removed) are given
in Table 6.1.
Results of the LM test of no error autocorrelation in Table 6.2 do not

indicate autocorrelation, nor is there any evidence of ARCH effects. The ob-
tained linear equation also proved satisfactory after being tested for normality
of errors, autocorrelations, heteroscedasticity and misspecification, but the
CUSUM and CUSUMQ tests indicate problems with parameter constancy.
The CUSUM and CUSUMQ tests are based on the cumulative sum of the
recursive residuals and the cumulative sum of the squared recursive residu-
als, respectively. The tests reject the null hypothesis of parameter constancy
when the value of the cumulative sum statistic lies outside the area between
the two critical lines establishing the 5 % significance level. The plots in
Figure 6.2 and Figure 6.3 both reveal values of the test statistic outside the
critical lines in the period from 1991:3 till 1993:1 and thus suggest structural
breaks in the surrogate quantity equation.
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Test Jarque-Bera
White

(cross terms)
Ljung-Box
(4 lags)

Test statistic
(p-value)

1.0705
(0.5855)

32.8128
(0.2854)

3.5264
(0.4740)

Test
RESET

(1 fitted term)
RESET

(2 fitted terms)
RESET

(3 fitted terms)
Test statistic
(p-value)

2.6805
(0.1016)

2.8020
(0.2464)

3.2566
(0.3537)

Test
Serial LM
(1 lag)

Serial LM
(2 lags)

Serial LM
(4 lags)

Test statistic
(p-value)

2.4817
(0.1152)

2.5010
(0.2864)

4.1963
(0.3862)

Test
ARCH LM
(1 lag)

ARCH LM
(2 lags)

ARCH LM
(4 lags)

Test statistic
(p-value)

0.1385
(0.7098)

0.2339
(0.8896)

1.5566
(0.6693)

Table 6.2: Specification and diagnostic tests for linear surrogate quantity
equation (6.11)
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Figure 6.2: CUSUM test for linear surrogate quantity equation (6.11)
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Figure 6.3: CUSUMQ test for linear surrogate quantity equation (6.11)

Figure 6.4 depicts recursive coefficient estimates of the linear surrogate
quantity equation. Recursive estimates of a parameter vector are obtained by
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least squares estimation over gradually increasing periods. Sudden changes in
the course of the recursive estimates imply structural change, whereas smooth
changes hint at misspecification. The two-standard-error bands around each
recursive coefficient are also shown in the plot. In our case, the coefficients
C(1) and C(7) of the constant and the πft variable display the most variation.
The surrogate quantity equation is a potential candidate for nonlinear STR
specification, since several coefficients do not seem to be constant over time.
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Figure 6.4: Recursive coefficients for linear surrogate quantity equation (6.11)
(following the estimated coefficients in Table 6.1 row-wise)
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6.2.2 Phillips curve

PHILLIPS CURVE
Dependent Variable: ∆πt

Sample (adjusted): 1969:3 1998:4 (Observations: 118)
Variable Coefficient St. Error t-Statistic Prob.
const. 0.007590 0.002537 2.991486 0.0035
∆πt−1 0.418053 0.087216 4.793325 0.0000
πt−1 -0.247808 0.055656 -4.452521 0.0000
πt−4 -0.166698 0.067031 -2.486884 0.0145
∆πt−8 -0.089575 0.056247 -1.592533 0.1144
∆πt−12 -0.110270 0.055852 -1.974331 0.0511
πt−5 0.165211 0.053915 3.064292 0.0028
πft 0.000746 0.000404 1.846239 0.0678
π0t 0.176137 0.014223 12.38415 0.0000
π0t−1 -0.203229 0.024364 -8.341309 0.0000
π0t−2 0.098185 0.019734 4.975404 0.0000
λt−2 -0.073331 0.026445 -2.772931 0.0066
ut -0.000693 0.000218 -3.174645 0.0020
mt−2 0.029236 0.015522 1.883461 0.0625
mt−3 -0.074374 0.021147 -3.516986 0.0007
mt−4 0.064679 0.016840 3.840904 0.0002

dummy2 0.010957 0.002014 5.440388 0.0000
R2 = 0.809, S.E. = 0.004, SSR = 0.002, AIC = -8.027

Table 6.3: OLS results for linear Phillips curve (6.13)

The Phillips curve is modeled according to considerations in Böhm [6].
The inflation rate (πt) depends on the unemployment gap (ut − u∗), energy
price inflation (π0t ) and expected inflation modeled by backward and for-
ward looking components. Forward looking price expectation (πft ) equals
the difference between the nominal and the real rate of interest according to
Fisher’s formula

rnt = r
f
t + πft . (6.12)

As nominal rate, we use the long term government bond yield while the
real interest rate is represented by a proxy variable, the ratio of the sum

96



of real GDP over four quarters to the corresponding sum of real investment
expenditures. In view of the modification of the Phillips curve by Samuelson
and Solow [64], labour productivity growth (λt) is also considered in the
equation. Thus, the Phillips curve in its linear specification including several
lagged effects is given by

πt = a+ b(L)πt−1 + c(L)∆πt−1 + d(L)π
f
t + f(ut − u∗) + (6.13)

+ g(L)π0t + h(L)λt + j(L)mt−1 + εt,

where the degrees of the lag polynomials b(L) and c(L) were a priori limited
by the value of 12 and the degrees of the polynomials d(L), g(L), h(L) and
j(L) by the value of 4. The estimation results obtained after removing the
insignificant variables are given in Table 6.3.

Test Jarque-Bera
White

(no cross terms)
Ljung-Box
(4 lags)

Test statistic
(p-value)

0.1200
(0.9418)

51.8977
(0.0145)

3.1752
(0.5290)

Test
RESET

(1 fitted term)
RESET

(2 fitted terms)
RESET

(3 fitted terms)
Test statistic
(p-value)

0.0246
(0.8755)

9.5854
(0.0083)

12.0409
(0.0072)

Test
Serial LM
(1 lag)

Serial LM
(2 lags)

Serial LM
(4 lags)

Test statistic
(p-value)

0.0012
(0.9729)

0.8031
(0.6693)

4.5190
(0.3403)

Test
ARCH LM
(1 lag)

ARCH LM
(2 lags)

ARCH LM
(4 lags)

Test statistic
(p-value)

0.9555
(0.3283)

5.1675
(0.0755)

5.2638
(0.2613)

Table 6.4: Specification and diagnostic tests for linear Phillips curve (6.13)

Specification and diagnostic tests are performed to evaluate the estimated
equation. The p-values of the Jarque-Bera test and the LM test of no error
autocorrelation show that the null hypotheses of the normal distribution of
the error term and of no error autocorrelation, respectively, cannot be re-
jected (Table 6.4). One can also see from Table 6.4 that there are no ARCH
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effects present in our model, while the CUSUM and CUSUMQ tests in Fig-
ures 6.5 and 6.6 detect only slight problems regarding parameter constancy.
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Figure 6.5: CUSUM test for linear Phillips curve (6.13)

-0.4

0.0

0.4

0.8

1.2

1.6

91 92 93 94 95 96 97 98

CUSUM of Squares 5% Significance

Figure 6.6: CUSUM of squares test for linear Phillips curve (6.13)

However, inspection of the properties of the estimated linear equation
indicates misspecification problems (Table 6.4). The Ramsey RESET test
with 2 and with 3 fitted terms rejects the null hypothesis of the normally
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distributed white noise errors. RESET is a general test for incorrect func-
tional form based on an augmented auxiliary regression including powers of
the estimated dependent variable (i.e. ŷ2, ŷ3, ŷ4, . . .) as explanatory variables.
The White test statistic with the p-value of 0.01 rejects the null hypothesis of
no heteroscedasticity. Actually, the White statistic tests three assumptions,
due to the fact that under the null hypothesis the disturbances are supposed
to be homoscedastic, independent of the regressors and that the linear spec-
ification of the model is supposed to be correct. Thus, if any of the three
assumptions does not hold the test statistic gives significant values.
Recursive estimates of the linear Phillips curve are displayed in Figure 6.7.

Several of the recursive estimates exhibit smooth change, thus signaling mis-
specification. Especially the coefficients C(8), C(5), and C(6) of the forward
looking price expectation variable (πft ), the ∆πt−8 and the ∆πt−12 variable,
respectively, evolve gradually over time. Recall that the variable πft was the
one to exhibit the most coefficient variation also in case of the linear surrogate
quantity equation (Figure 6.4).
Due to the misspecification problems indicated by the RESET test, White

test and the recursive residuals, nonlinear specification will be considered for
modeling the Phillips curve.
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Figure 6.7: Recursive coefficients for linear Phillips curve (6.13)
(following the estimated coefficients in Table 6.3 row-wise)
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6.2.3 Okun’s law

As already mentioned, Okun’s law describes the short-run relationship be-
tween the the unemployment rate (ut) and the output gap (xt − x∗t ). x∗t
denotes the expected rate of real growth following the long-run trend. Pro-
ceeding as in Grant [27], four approaches for modeling x∗t via the business
cycle were applied: simple average, linear trend, the Hodrick-Prescott de-
composition and the Beveridge-Nelson decomposition. Since simple average
did not perform worse than the other three methods, it was chosen as the
appropriate method.
Due to the unit root in the unemployment rate series, the first difference

of the unemployment rate was employed as the dependent variable. Lagged
variables ut and ∆ut were included in the specification to account for the
proper dynamics:

∆ut = a+ b(xt − x∗) + c · ut−1 + d(L)∆ut−1 + εt, (6.14)

with the degree of the lag polynomial d(L) restricted to 4. We found reason-
able linear estimates of the Okun’s law, which are given in Table 6.5.

OKUN‘S LAW
Dependent Variable: ∆ut

Sample (adjusted): 1970:2 2000:3 (Observations: 122)
Variable Coefficient Std. Error t-Statistic Prob.
xt − x∗ -4.953883 0.805964 -6.146531 0.0000
const. 0.131311 0.031709 4.141159 0.0001
ut−1 -0.017967 0.004797 -3.745722 0.0003
∆ut−1 0.428198 0.068666 6.235993 0.0000
dummy3 0.636079 0.102657 6.196183 0.0000
dummy4 -0.433570 0.143116 -3.029498 0.0030
R2 = 0.695, S.E. = 0.141, SSR = 2.298, AIC = -1.036

Table 6.5: OLS results for linear Okun’s law (6.14)

The estimated Okun’s equation passed several of the specification and
diagnostic tests, the results of which are given in Table 6.6. While there
are no problems with the normal distribution of residuals, autocorrelation
and heteroscedasticity, the Ramsey RESET test with 2 fitted terms indi-
cates misspecification at the 5 % significance level. In addition, the ARCH
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LM test with 2 and 4 lags detects autoregressive conditional heterosceda-
sticity, although this problem does not invalidate the properties of the OLS
estimator. The CUSUM and CUSUMQ tests were used to investigate the
parameter stability issue. According to the plots in Figures 6.8 and 6.9, the
null hypothesis of parameter constancy cannot be rejected.

Test Jarque-Bera
White

(cross terms)
Ljung-Box
(4 lags)

Test statistic
(p-value)

0.9620
(0.6182)

9.0993
(0.6944)

3.1722
(0.5290)

Test
RESET

(1 fitted term)
RESET

(2 fitted terms)
RESET

(3 fitted terms)
Test statistic
(p-value)

0.0555
(0.8137)

6.0378
(0.0489)

6.6690
(0.0832)

Test
Serial LM
(1 lag)

Serial LM
(2 lags)

Serial LM
(4 lags)

Test statistic
(p-value)

0.3266
(0.5677)

0.4025
(0.8177)

0.4167
(0.9368)

Test
ARCH LM
(1 lag)

ARCH LM
(2 lags)

ARCH LM
(4 lags)

Test statistic
(p-value)

2.2328
(0.1351)

15.8188
(0.0004)

17.1305
(0.0018)

Table 6.6: Specification and diagnostic tests for linear Okun’s law (6.14)

The recursive coefficients for the linear Okun’s law are plotted in Figure
6.10. Four of the six recursive coefficient estimates exhibit significant vari-
ation over time, only the last two coefficients (of the two dummy variables)
seem to be constant. Most pronounced are the changes in the coefficients
C(3) and C(4) belonging to the lagged unemployment rate variable and the
lagged first difference in the unemployment rate variable, respectively, around
the year 1997. This indication of misspecification, together with the low p-
value of the Ramsey RESET test, makes the Okun’s law a suitable candidate
for nonlinear specification.
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Figure 6.8: CUSUM test for linear Okun’s law (6.14)
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Figure 6.9: CUSUM of squares test for linear Okun’s law (6.14)
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Figure 6.10: Recursive coefficients for linear Okun’s law (6.14)
(following the estimated coefficients in Table 6.5 row-wise)
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It has to be emphasized that the dummy variables were introduced into
each of the three equations to reduce the ARCH effects caused by the outliers
in the years 1991 and 1992, when the German reunion took place. To sum
up the results of this section, inspection of the properties of the estimated
linear equations indicates in all cases problems with parameter stability or
misspecification. CUSUM an CUSUMQ tests reveal structural breaks in the
surrogate quantity equation in the period from 1991:3 till 1993:1, whereas the
Ramsey RESET test with 2 fitted terms rejects the null hypothesis of NID
errors for the Phillips curve and the Okun’s law. Additionally, significant
variation is revealed in some of the recursive coefficients of each equation. In
order to improve specification we need to investigate the influence of nonli-
nearities, which we shall assume to be of the smooth transition kind.
Let us conclude with a remark regarding the estimation of our system.

The linear model consisting of equations (6.11), (6.13) and (6.14) is a simul-
taneous system because of the endogenous variable ut on the right-hand side
of the Phillips curve given by equation (6.13). But this system is recursive,
since it is possible to express sequentially each of the endogenous variables
only in terms of predetermined variables. Due to problems with starting
values, near singular moment matrices, no convergence of the nonlinear op-
timization algorithms and other numerical problems (when estimating the
nonlinear model in section 6.3.1), each of the three equations in the system
was estimated with single-equation methods also for the linear model. As
the system is recursive, consistent estimates are obtained in this way.

6.3 Nonlinear model

Nonlinear money demand

Since representation of asymmetric reactions, structural changes and other
phenomena of economic developments can be fruitfully investigated by non-
linear modeling techniques, the issue of a possible nonlinear money demand
specification has been studied by several authors. Chen and Wu [11] show
that employing the conventional linear cointegration approach in examining
long-run money demand may not be appropriate after taking into account
the existence of transaction costs. They provide evidence that deviations
from equilibrium money demand follow an exponential smooth transition
autoregressive process that is mean-reverting outside a given range and has
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a unit-root inside the range. Similarly, Sarno, Taylor and Peel [66] argue
that several theoretical models of money demand imply nonlinear functional
forms for the aggregate demand for money, characterized by smooth adjust-
ment toward long-run equilibrium. Their paper proposes a nonlinear equi-
librium correction model of U.S. money demand that is shown to be stable
over the sample period from 1869 to 1997. The use of an exponential smooth
transition regression model, with the lagged long-run equilibrium error act-
ing as the transition variable, implies faster adjustment toward equilibrium,
the greater the absolute size of the deviation from equilibrium. In a similar
study, Sarno [65] presents a stable empirical model for the demand for narrow
money in Italy using annual data spanning from Italian unification in 1861
through to 1991. A nonlinear functional form of the aggregate demand for
money is characterized by smooth adjustment towards long-run equilibrium,
again achieved by estimating a nonlinear error correction model in the form
of an exponential smooth transition regression.
Several authors studied the money demand equation during hyperinfla-

tion. According to the findings of Petrovíc and Mladenovíc [61], the modified
money demand in Yugoslavia in the period from 1992 till 1994 is nonlinear
with decreasing semielasticity of money demand. Tallman, Tang and Wang
[70], on the other hand, employed the data from the Chinese hyperinfla-
tionary episode, expanding the standard Caganian money demand function
to include both anticipated inflation and relative price effects in a nonlin-
ear fashion. Their empirical findings suggest that conventional econometric
investigations of money demand during hyperinflation overlook important
nonlinear interactions between real and monetary activities and, hence, un-
derestimate the welfare costs of hyperinflation.

Nonlinear Phillips curve

Substantial theoretical and empirical evidence can be found in the litera-
ture suggesting nonlinearity in the output-inflation relationship, namely a
nonlinear Phillips curve. Dolado, Ramon and Naveira [17] investigate the
implications of a nonlinear Phillips curve for the derivation of optimal mon-
etary policy rules. They show that combined with a quadratic loss function,
the optimal policy is also nonlinear, with the policy-maker increasing interest
rates by a larger amount when inflation or output are above target than the
amount it will reduce them when they are below target. The main prediction
of their model is that such a source of nonlinearity leads to the inclusion of
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the interaction between expected inflation and the output gap in an other-
wise linear Taylor rule. The model of Schaling [67] features a convex Phillips
curve, in that positive deviations of aggregate demand from potential are
more inflationary than negative deviations are disinflationary. Corrado and
Holly [14] consider the performance of optimal policy rules when the under-
lying relationship between inflation and the output gap may be nonlinear.
In particular, if the inflation-output trade-off exhibits nonlinearities this will
impart a bias to inflation when a linear rule is used. To correct this bias they
propose a piecewise linear rule, which can be thought of as an approximation
to the nonlinear rule of Schaling [67].
Hooker [36] identifies a structural break in core US inflation Phillips

curves such that oil prices contributed substantially before 1981, but since
that time pass-through has been negligible. In the framework of a Keynesian
monetary macro model, Chiarella et al. [12] study implications of kinked
Phillips curves and alternative monetary policy rules. Nobay and Peel [56]
analyze optimal discretionary monetary policy under a non-linear Phillips
curve. It is shown that the results are in marked contrast to conventional
results that are drawn from the linear paradigm. Specifically, there exists a
deflation bias in expected output, while the inflation bias cannot be signed.
Collard and Juillard [13] propose to apply to the simulation of general non-
linear rational-expectation models a method where the expectation functions
are approximated through a higher-order Taylor expansion. Their macroeco-
nomic model features a nonlinear Phillips curve. Tambakis [71] argues that
recent theoretical and empirical work has cast doubt on the hypotheses of
a linear Phillips curve and a symmetric quadratic loss function underlying
traditional thinking on monetary policy. In his paper he studies the one-
period optimal monetary policy problem under an asymmetric loss function
corresponding to the "opportunistic approach" to disinflation and a convex
Phillips curve.
Mayes and Viren [53] highlight the implications for a single monetary

policy when key economic relationships are nonlinear or asymmetric at a
disaggregate level. Using data for the EU and OECD countries they show
that there are considerable non-linearities and asymmetries in the Phillips
and Okun curves. High unemployment has relatively limited effect in pulling
inflation down while low unemployment can be much more effective in driving
it up.
To accommodate potentially important departure from linearity of the

Phillips curve, Huh [37] employs a vector autoregression (VAR) model of
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output, inflation, and the terms of trade augmented with logistic smooth
transition autoregression specifications. Empirical results indicate that the
model captures the nonlinear features present in the data well. Based on this
nonlinear approximation, the output costs for reducing inflation are found to
vary, depending critically on the state of the economy, the size of intended
inflation change, and whether policymakers seek to disinflate or prevent in-
flation from rising. This implies that inferences based on the conventional
linear Phillips curve may provide misleading signals about the cost of lower-
ing inflation and thus the appropriate policy stance. Böhm [6] also employs
the smooth transition regression modeling approach. In a formulation of an
inflation equation for Austria, which includes the demand and supply fea-
tures, he explores the capacity of STR models to improve upon specification.
The nonlinearities and asymmetries are found to be relevant ingredients in
the Austrian inflation equation and the change in the unemployment rate is
shown to have a larger impact on inflation during periods of high volatility
of price increases.

Nonlinear Okun‘s law

While the linear relationship between output and unemployment rate in the
United States was established empirically by Okun, Prachowny [63] provided
theoretical derivation of the relation in a special case. Under the assumptions
that the aggregate production function is of a Cobb - Douglas type and that
the capital stock and a disembodied technology factor are always at their
long - run levels, Prachowny established a log linear relationship between the
output gap and capacity utilization gap, labour supply gap and hours worked
gap. Weber and West [79] used the Box - Cox transformation, which allows
empirical testing of the log linear Okun’s law specification against more gen-
eral alternatives. They found strong support in favour of the Prachowny’s
log linear functional form of the Okun’s law. The issue of stability of the
Okun’s law relationship has been discussed extensively by several authors.
Blanchard [5] claims that the stability of the Okun’s coefficient has decreased
with time. The effect of the output change on unemployment is supposed
to be stronger due to the intense international competition, less legal pro-
tection for the workers and reduced labour hoarding. Sögner and Stiassny
[68] use Baysian methods to test for discrete structural breaks in the Okun’s
law and Kalman filter to check for continuous parameter changes. 15 OECD
countries are included in their study. The first approach does not detect any
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structural breaks, whereas the results of the second approach imply contin-
uous parameter changes for 10 of the countries. The relationships between
output and labour demand and labour supply, respectively, are also discussed
in the paper. The authors conclude that for most countries the change in the
Okun’s coefficient results mainly from an increased reaction of employment to
GDP change. A nonlinear relationship between cyclical unemployment and
cyclical output is proposed by Cuaresma [15]. For the US data, the linear
specification is strongly rejected in favor of a piecewise linear specification.
The estimated Okun’s coefficient is significantly higher for expansions than
for recessions, implying that output changes cause asymmetric and regime
dependent changes in the unemployment rate. Additionally, unemployment
shocks tend to be more persistent in times of expansion. The findings of
Mayes and Viren [53] for EU and OECD countries are similar. Asymmetry
is built into the Okun’s law with the help of the threshold model and the er-
ror correction mechanism, which enables regime dependent correction paths.
Most of the countries included in the study exhibit asymmetric relationship
between unemployment rate and change in output.

6.3.1 Testing linearity against STR

Each of the three equations is now subjected to linearity tests. In every case,
all significant explanatory variables from the estimated linear equation are
considered as suitable candidates for a transition variable, with the addition
of the time trend. The OLS estimates of the linear surrogate quantity equa-
tion, linear Phillips curve and linear Okun’s law can be found in Tables 6.1,
6.3 and 6.5, respectively.

Surrogate quantity equation

The results of the linearity tests for the surrogate quantity equation are
given in the second column of Table 6.7. The variable xt−4 does not exhibit
potential for nonlinear specification,whereas the test is strongly rejected for
all other six candidates. As explained in subsection 3.2.1, the variable mt−4
with the strongest rejection of the null hypothesis of linearity, i.e. with the
lowest p-value, is selected for the transition variable.
The next step in the modeling process consists of choosing the type of

the transition function. The decision rule is based on a sequence of nested
hypotheses, which are tested with F-type tests named F4, F3, and F2 (see

109



subsection 3.2.2 for details). Basically, the aim of these tests is to determine
the degree of the polynomial in auxiliary regression (3.22) obtained after the
transition function in the STR model is replaced by its Taylor approximation
around γ = 0. Following Teräsvirta [73], the LSTR1 transition function is
chosen, as the F2 test has the lowest p-value in case of the previously selected
transition variable mt−4 (Table 6.7).

SURROGATE QUANTITY EQUATION
Variable F-test F4-test F3-test F2-test

ttrend
2.3383
(0.0028)

2.6015
(0.0174)

2.6158
(0.0164)

1.4620
(0.1894)

xt
2.1617
(0.0062)

1.5166
(0.1722)

1.7743
(0.1015)

3.1389
(0.0048)

xt−4
1.4783
(0.1034)

0.7533
(0.6277)

1.3475
(0.2370)

2.5564
(0.0182)

∆πt−1
2.3838
(0.0023)

1.7722
(0.1031)

2.9608
(0.0075)

2.1552
(0.0445)

mt−1
2.5023
(0.0014)

1.1519
(0.3389)

3.0606
(0.0060)

3.1299
(0.0049)

mt−4
2.5366
(0.0012)

3.0211
(0.0069)

0.8138
(0.5780)

3.5351
(0.0019)

πft
1.8201
(0.0266)

2.4554
(0.0240)

1.2178
(0.3008)

1.7021
(0.1169)

df 22, 87 7, 87 7, 94 7, 101

Table 6.7: F-values (and p-values) of the linearity tests for the surrogate
quantity equation

Phillips curve

From the second column of Table 6.8 with the linearity test results for the
Phillips curve we obtain a set of nine suggested transition variables (with
p-values below 0.05), from which we choose the variable with the strongest
rejection of linearity. This is the variable mt−2 in our case. Note that lagged
money growth was selected to be the transition variable also for the surrogate
quantity equation, only that it is now lagged 2 times.
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PHILLIPS CURVE
Variable F-test F4-test F3-test F2-test

ttrend
1.8274
(0.0174)

2.1217
(0.0217)

1.1073
(0.3667)

1.6001
(0.0869)

∆πt−1
2.0394
(0.0064)

1.4443
(0.1592)

2.4285
(0.0060)

1.4994
(0.1196)

πt−1
1.6366
(0.0419)

1.5258
(0.1270)

0.9073
(0.5643)

2.2298
(0.0098)

πt−4
1.2605
(0.2073)

0.7590
(0.7214)

1.4331
(0.1535)

1.7142
(0.0597)

∆πt−8
0.8453
(0.7219)

0.4812
(0.9453)

1.1130
(0.3617)

1.2651
(0.2393)

∆πt−12
1.3384
(0.1524)

1.2311
(0.2781)

1.3955
(0.1712)

1.2288
(0.2644)

πt−5
1.3137
(0.1683)

0.9873
(0.4842)

1.9154
(0.0340)

0.9602
(0.5065)

πft
1.8682
(0.0144)

1.3288
(0.2168)

1.7354
(0.0609)

2.0472
(0.0189)

π0t
1.6030
(0.0488)

1.2918
(0.2386)

1.2029
(0.2893)

2.0969
(0.0158)

π0t−1
1.3350
(0.1545)

1.2738
(0.2498)

0.6912
(0.7926)

2.0742
(0.0172)

π0t−2
1.3113
(0.1699)

1.1995
(0.3006)

0.7013
(0.7827)

2.1086
(0.0152)

λt−2
1.0655
(0.4110)

0.9075
(0.5654)

1.2097
(0.2842)

1.1526
(0.3233)

ut
1.8317
(0.0170)

1.8731
(0.0461)

1.1664
(0.3173)

1.8654
(0.0357)

mt−2
2.4265
(0.0010)

3.0185
(0.0014)

0.9951
(0.4727)

1.9842
(0.0236)

mt−3
1.9963
(0.0079)

1.6067
(0.1009)

1.9518
(0.0301)

1.6771
(0.0675)

mt−4
1.9241
(0.0110)

1.6857
(0.0803)

2.2049
(0.0129)

1.1442
(0.3302)

df 49, 51 16, 51 16, 67 16, 83

Table 6.8: F-values (and p-values) of the linearity tests for the Phillips curve
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A comparison of the F4, F3 and F2 test statistics for the transition vari-
ablemt−2 in Table 6.8 shows that F4 yields the lowest p-value, thus indicating
the LSTR1 transition function.

Okun‘s law

When it comes to the Okun‘s law, the results are unexpected. The null
hypothesis of linearity is not rejected for any candidate for the transition
variable (second column of Table 6.9), not even at the 10 % significance
level.

OKUN‘S LAW
Variable F-test F4-test F3-test F2-test

ttrend
1.3097
(0.2193)

2.4543
(0.0504)

0.9118
(0.4599)

0.8000
(0.5277)

xt − x∗ 1.5387
(0.1161)

2.0633
(0.0910)

1.9709
(0.1042)

0.8253
(0.5118)

ut−1
0.8491
(0.6079)

0.2426
(0.9135)

1.4665
(0.2175)

1.1052
(0.3578)

∆ut−1
1.2270
(0.2712)

0.6275
(0.6440)

1.8459
(0.1254)

1.5155
(0.2025)

df 13, 103 4, 103 4, 107 4, 111

Table 6.9: F-values (and p-values) of the linearity tests for the Okun‘s law

Because of the low p-value of the Ramsey RESET test and the variation
in the recursive coefficients of the linear Okun‘s law, the linearity test was
expected to be rejected as well. We also tried to estimate Okun‘s law using
seasonally unadjusted data for West Germany. In order to deal with season-
ality we have chosen to work with the fourth difference of the unemployment
rate ut as dependent variable. After several attempts of specifying a model
linear in the output gap, the squared gap variable was also employed. The
outcome was just the opposite as for seasonally adjusted data. Namely, lin-
earity was rejected for 4 of the 5 possible transition variables. The results of
the estimation are given in section 6.5. The comparison of both attempts at
specifying and estimating Okun‘s law points out the sensitivity of the non-
linear modeling process and shows that the final outcome can be influenced
by several factors.
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6.3.2 Estimates of the nonlinear equations

When estimating the STR specifications of the surrogate quantity equation
and the Phillips curve, all of the significant variables from the preliminary
linear model with the estimates given in Tables 6.1 and 6.3 were considered
as explanatory variables. Due to occasional problems with convergence of the
nonlinear optimization procedure some experimentation to find appropriate
starting values was required. The final set of estimates obtained for the
parameters of the nonlinear surrogate quantity equation and the nonlinear
Phillips curve can be found in equations (6.15) and (6.16).

Nonlinear surrogate quantity equation

Removing the insignificant variables from the nonlinear surrogate quantity
equation yields

mt = 0.0112 + 0.2213 · xt + 0.1766 · xt−4 − 0.6599 ·∆πt−1 + (6.15)

(0.0039) (0.1194) (0.0878) (0.2259)

+ 0.9274 ·mt−1 + 0.0920 · dummy1 +
³
−0.2096 ·mt−1 − 0.0104 · πft

´
·

(0.0500) (0.0166) (0.0793) (0.0022)

· [1 + exp{−4.1174(mt−4 − 0.0572)/0.0571}]−1.
(1.6579) (0.0101)

The signs and the magnitudes of the coefficients are in accordance with
the underlying economic theory. The γ value of approximately 4.12 indicates
moderate speed of transition between the two extreme regimes, as shown in
Figure 6.11, where the transition function is plotted against the transition
variable.
The strongly nonlinear behavior implied by our empirical estimates of

the nonlinear surrogate quantity equation is made clear by the plot of the
estimated transition function against the transition variable given in Figure
6.12. The plot displays significant variation in the values of the transition
function and shows that also the extreme regime with G = 1 is achieved.
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Figure 6.11: Scatter plot of the transition function against the transition
variable for surrogate quantity equation (6.15)
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Figure 6.12: Transition function for surrogate quantity equation (6.15)

Next, the estimated equation is submitted to the specification and di-
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agnostic tests. As shown by results given in Tables 6.10, 6.11 and 6.12,
the equation displays white noise residuals and shows no evidence of ARCH
effects and error autocorrelation.

Jarque-Bera test p-value 0.0799
Ljung-Box p-value (8 lags) 0.5679

AIC -7.6044
R2 0.8699

S. E. of residuals 0.0214
Ratio var(nonlin)/var(lin) 0.7231
No. of observations 116

Table 6.10: Specification and diagnostic tests for nonlinear surrogate quantity
equation (6.15)

Lag Autocorrelation McLeod-Li p-value ARCH LM p-value
1 0.1109 0.1891 0.1984
2 -0.0171 0.1031 0.1417
3 -0.0094 0.1876 0.2749
4 -0.1527 0.3135 0.4276
5 0.0194 0.3359 0.4489
6 0.0521 0.0637 0.1040
7 0.1066 0.0632 0.1555
8 -0.0891 0.0560 0.2247

Table 6.11: McLeod-Li and ARCH tests for nonlinear surrogate quantity
equation (6.15)

Another key assumption of STR estimation is the parameter constancy.
The LM1, LM2 and LM3 tests described in section 3.4.3 were applied to
investigate the stability of parameters. As one can see from the results in
Tables 6.13 and 6.14, the LM3 test yields a p-value just below 0.05 for the
lagged money growth variable mt−1 in the nonlinear part of the surrogate
quantity equation and thus points to a problem with the stability of this
coefficient estimate. Recall that the LM3 test was developed for detecting
time-dependent parameters following a non-monotonous function under the
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No. of lags F-statistics Deg. of freedom p-value
1 1.3505 1, 105 0.2478
2 0.6704 2, 104 0.5137
3 0.4505 3, 103 0.7175
4 1.0722 4, 102 0.3743
5 0.8671 5, 101 0.5061
6 0.7279 6, 100 0.6282
7 0.7774 7, 99 0.6077
8 0.9154 8, 98 0.5073

Table 6.12: LM test of no remaining error autocorrelation for nonlinear sur-
rogate quantity equation (6.15)

alternative hypothesis. Except formt−1 in the nonlinear part of the equation,
the null hypothesis of parameter constancy cannot be rejected.

Variable: const Variable: xt
Test F-statistic df p-value Test F-statistic df p-value
LM3 2.5699 3, 103 0.0583 LM3 1.4952 3, 103 0.2203
LM2 0.3091 2, 104 0.7348 LM2 0.4695 2, 104 0.6266
LM1 0.1293 1, 105 0.7199 LM1 0.1168 1, 105 0.7332

Variable: xt−4 Variable: ∆πt−1
Test F-statistic df p-value Test F-statistic df p-value
LM3 1.0553 3, 103 0.3715 LM3 1.2018 3, 103 0.3129
LM2 0.6741 2, 104 0.5118 LM2 0.4556 2, 104 0.6353
LM1 0.6241 1, 105 0.4313 LM1 0.4928 1, 105 0.4842

Variable: mt−1
Test F-statistic df p-value
LM3 1.0791 3, 103 0.3614
LM2 0.1179 2, 104 0.8889
LM1 0.0533 1, 105 0.8177

Table 6.13: Parameter constancy test for the parameters in the linear part
of surrogate quantity equation (6.15)

To sum up, the null hypothesis of linearity tested against the alternative
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Variable: mt−1 Variable: πft
Test F-statistic df p-value Test F-statistic df p-value
LM3 2.7304 3, 103 0.0477 LM3 1.5439 3, 103 0.2077
LM2 1.2224 2, 104 0.2987 LM2 2.3334 2, 104 0.1020
LM1 1.6606 3, 105 0.2004 LM1 0.0822 3, 105 0.7750

Table 6.14: Parameter constancy test for the parameters in the nonlinear
part of surrogate quantity equation (6.15)

smooth transition regression specification had to be rejected for every possible
transition variable with the exception of xt−4, which confirms our intuition
that the linear relationship of the surrogate quantity equation (estimated
as money demand equation) can be improved by consideration of regime
changes. Our results suggest that the failure to allow for nonlinear dynamics
may help explain the difficulty of much empirical research in obtaining stable
money demand equations.

Nonlinear Phillips curve

The estimated nonlinear Phillips curve is given by the next equation:

∆πt = 0.1874 · π0t + 0.0548 · πt−5 − 0.0545 · λt−2 − (6.16)

(0.0122) (0.0240) (0.0233)

− 0.0582 ·mt−3 + 0.0894 · π0t−2 + 0.0607 ·mt−4 + 0.0118 +
(0.0154) (0.0133) (0.0150) (0.0023)

+ 0.0129 · dummy2 + 0.4132 ·∆πt−1 − 0.3286 · πt−1 −
(0.0018) (0.0291) (0.0478)

− 0.1478 ·∆πt−12 − 0.1867 · π0t−1 − 0.0012ut +
(0.0591) (0.0188) (0.0002)

+ (0.1768 ·∆πt−12 − 0.0228 · π0t−1 + 0.0004 · ut) ·
(0.0863) (0.0111) (0.0002)

· [1 + exp{−42.8009(mt−2 − 0.0599)/0.0569}]−1.
(0.0057) (0.0027)

The value of the slope parameter γ is approximately 42.8, which is much
higher than in case of the surrogate quantity equation. One can see from
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Figure 6.13 that the transition function changes abruptly from 0 to 1 when
the transition variablemt−2 approaches the threshold value of 0.06. Thus, the
estimated smooth transition regression model is close to switching regression.
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Figure 6.13: Scatter plot of the transition function against the transition
variable for Phillips curve (6.16)

By plotting the transition function against time, the frequent changes
between the two extreme regimes become apparent (Figure 6.14). Both the
values of 0 and the values near 1 are attained several times during the sample
period.
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Figure 6.14: Transition function for Phillips curve (6.16)

The estimated nonlinear Phillips curve passed the diagnostic checking
satisfactorily. The p-values of the Jarque-Bera test and the test of no re-
maining error autocorrelation show that the null hypotheses of the normal
distribution of the error term and of no error autocorrelation, respectively,
cannot be rejected. The tests of parameter constancy detects no problems
and there are also no ARCH effects present in our models. The results are
given in Tables 6.15, 6.16, 6.17 and 6.18.

Jarque-Bera test p-value 0.5817
Ljung-Box p-value (8 lags) 0.2027

AIC -10.8753
R2 0.8167

S. E. of residuals 0.0041
Ratio var(nonlin)/var(lin) 0.9441
No. of observations 116

Table 6.15: Specification and diagnostic tests for nonlinear Phillips curve
(6.16)
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Lag Autocorrelation McLeod-Li p-value ARCH LM p-value
1 0.0019 0.5365 0.5377
2 -0.0056 0.1451 0.1570
3 0.11529 0.2487 0.2830
4 -0.1986 0.3926 0.4393
5 0.0156 0.3507 0.3451
6 0.1529 0.4858 0.4854
7 -0.0017 0.5706 0.6130
8 -0.1367 0.6437 0.7090

Table 6.16: McLeod-Li and ARCH tests for nonlinear Phillips curve (6.16)

No. of lags F-statistics Deg. of freedom p-value
1 0.00004 1, 97 0.9949
2 0.00878 2, 96 0.9913
3 0.79609 3, 95 0.4990
4 1.58683 4, 94 0.1842
5 1.25602 5, 93 0.2897
6 1.42658 6, 92 0.2129
7 1.27978 7, 91 0.2692
8 1.56149 8, 90 0.1477

Table 6.17: LM test of no remaining error autocorrelation for nonlinear
Phillips curve (6.16)

The nonlinear Phillips curve proposed here yields a slight improvement in
R2 relative to the best-fitting linear equation in Table 6.3 and appears to be
superior in several respects, also passing the battery of diagnostic tests and
displaying parameter constancy despite the number of fundamental changes
characterizing the West German history over our sample period.

6.4 Simulation and interpretation

We have thus obtained the final estimates of our nonlinear model. Since the
null of linearity was not rejected for any of the possible transition variables
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Variables in the Variables in the
linear part nonlinear part

Test F-statistic df p-value Test F-statistic df p-value
LM3 2.1430 36, 62 0.0712 LM3 0.5490 9, 89 0.8347
LM2 1.5388 24, 74 0.0821 LM2 0.7435 6, 92 0.6161
LM1 1.6825 12, 86 0.0848 LM1 0.3648 3, 95 0.7785

Table 6.18: Parameter constancy test for the parameters in the linear and
nonlinear part of Phillips curve (6.16)

of the Okun‘s law, linear Okun‘s law with estimates given in Table 6.5 is
added to nonlinear surrogate quantity equation (6.15) and nonlinear Phillips
curve (6.16) to complete our system. The comparison of the linear system
estimates given in Tables 6.1, 6.3 and 6.5 with the estimated nonlinear model
reveals a slight increase in the explanatory power and a slight decrease in the
standard error of regression for the surrogate quantity equation and for the
Phillips curve.
The estimated nonlinear system is also inspected for its dynamic proper-

ties. Contrary to estimation, the money stock is considered a policy instru-
ment to influence the inflationary process as well as the unemployment rate.
Additionally, the reaction of a change in oil prices, in the forward looking
expected inflation rate and to a productivity shock is also evaluated. In the
latter cases, reactions turn out to be rather symmetric, while shocks in the
money stock exhibit significant asymmetries. The graphs in Figure 6.15 and
Figure 6.16 show the impact of a unit shock of one standard deviation of the
money stock to inflation and unemployment.
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Figure 6.15: Effect of an initial unit shock of the money stock to inflation

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

00 05 10 15 20 25 30 35 40 45 50

negative money stock shock to unemployment rate
positive money stock shock to unemployment rate

Figure 6.16: Effect of an initial unit shock of the money stock to unemploy-
ment

Maintained unit shock of one standard deviation of the money stock cre-
ates a permanent increase in inflation by 2.4 % points and a decrease in
unemployment rate by 8.2 % points. Also in this case the asymmetric re-
action to monetary policy is obvious (Figures 6.17 and 6.18). This again
shows that working with a nonlinear model generates a result that is known
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in practice, but not achieved by linear models.
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Figure 6.17: Effect of a maintained unit shock of the money stock to inflation
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Figure 6.18: Effect of a maintained unit shock of the money stock to unem-
ployment
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6.5 Okun‘s law with seasonally unadjusted
data

In this case, we used seasonally unadjusted quarterly data for West Germany
for the period from 1970 till 1998. After several attempts of specifying a
model linear in the output gap, the following estimation result including the
squared gap was obtained. In order to deal with seasonality we have chosen
to work with

vt = ut − ut−4 (6.17)

(fourth difference of the unemployment rate ut) as dependent variable. Ad-
ditionally, it has proved useful to apply a difference transformation

∆v = vt − vt−1
when searching for the appropriate dynamics. In the table below, gap stands
for the difference xt−x∗, with the expected rate of real growth x∗ set constant
and equal to the arithmetic mean of x. The estimation results are given in
Table 6.19.

Dependent variable: ∆v
Variable Coefficient Std. Error t-value p-value
gapt -0.046370 0.009330 -4.970098 0.0000
gap2t 0.008583 0.002319 3.700537 0.0003
const -0.019394 0.022577 -0.858988 0.3921
vt−1 -0.196022 0.031227 -6.277342 0.0000
∆vt−1 0.424695 0.060624 7.005416 0.0000
∆vt−3 0.178839 0.074396 2.403888 0.0178
∆vt−4 -0.188553 0.070806 -2.662937 0.0088

dummy1t -0.666660 0.199169 -3.347206 0.0011
dummy2t 0.541498 0.119728 4.522714 0.0000
T=127, R2 = 0.6276, S.E.= 0.1946, AIC= -0.3675

Table 6.19: Estimation results for Okun’s law

The obtained linear model proved satisfactory after being tested for nor-
mality, autocorrelations, ARCH effects and constancy of coefficients, but the
Ramsey RESET test and the White test indicate problems due to misspeci-
fication. Test results can be found in Table 6.20 and in Figure 6.19.
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Test Jarque-Bera
Breusch-Godfrey

(6 lags)
Ljung-Box
(6 lags)

Test statistic
(p-value)

3.3828
(0.1843)

1.6028
(0.1529)

4.8098
(0.5680)

Test
ARCH LM
(4 lags)

Ramsey RESET
(2 fitted terms)

White
(cross terms)

Test statistic
(p-value)

3.5073
(0.4768)

7.0194
(0.0299)

61.0637
(0.0007)

Table 6.20: Specification and diagnostic tests
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Figure 6.19: Cusum of squares

Next, the linearity test is performed for each of the possible transition
variables. The variable ∆vt−1 is chosen for the transition variable, as it has
the lowest p-value (second column of Table 6.21). The p-values of the tests
F4, F3 and F2 (also given Table 6.21) are calculated and compared in order
to decide upon the type of the transition function. With the smallest one
being the p-value of F3, we select the ESTR model. Alternatively, LSTR2
model could be chosen and the hypothesis c1 = c2 tested to see which of the
models ESTR and LSTR2 is more appropriate.
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Variable F-test F4-test F3-test F2-test

ttrend
1.3656
(0.1553)

1.8467
(0.0869)

0.8566
(0.5435)

1.2839
(0.2648)

gap2
2.1836
(0.0055)

0.8733
(0.5306)

2.3991
(0.0257)

3.0576
(0.0056)

vt−1
1.8242
(0.0261)

0.8555
(0.5446)

2.4293
(0.0240)

2.0486
(0.0551)

∆vt−1
4.0094
(0.0000)

3.0765
(0.0057)

4.3349
(0.0003)

2.9076
(0.0079)

∆vt−3
2.2833
(0.0036)

2.5188
(0.0201)

2.5255
(0.0194)

1.2808
(0.2663)

∆vt−4
1.7681
(0.0330)

2.7082
(0.0131)

1.8583
(0.0840)

0.4459
(0.8711)

df 21, 97 7, 97 7, 104 7, 111

Table 6.21: F-values (and p-values) of the linearity test

After eliminating the insignificant variables, one obtains the estimated
coefficients as shown in equation (6.18):

∆vt = −0.1099 · vt−1 + 0.4727 ·∆vt−1 + 0.1212 ·∆vt−3 − (6.18)

(0.0341) (0.0599) (0.0657)

− 0.0422 · gapt − 0.7308 · dummy1t + 0.6099 · dummy2t +
(0.0084) (0.1683) (0.1039)

+ (−0.1739− 0.2378 · vt−1 − 0.5881 ·∆vt−4 + 0.0400 · gap2t ) ·
(0.0722) (0.0808) (0.2795) (0.0113)

· [1− exp{−1.2706(∆vt−1 − 0.1142)2/0.3085}]
(0.5963) (0.0383)

The estimate of the coefficient c makes sense, because it lies in the range of
the transition variable. The low value of γ = 1.27 indicates slow transition
between the two extreme regimes. The variable gap2 is significant in the
nonlinear part, but insignificant in the linear part.
Finally, specification and diagnostic tests are performed to evaluate the

obtained model. The p-values of the Jarque-Bera test and the test of no
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remaining error autocorrelation show that the null hypotheses of the normal
distribution of the error term and of no error autocorrelation, respectively,
cannot be rejected (Tables 6.22 and 6.23). One can see from Table 6.24 that
there are no ARCH effects present in our model. The test of parameter con-
stancy detects only problems concerning the constant term in the nonlinear
part of the model (Table 6.25).

Jarque-Bera test p-value 0.6495
Ljung-Box p-value (8 lags) 0.8926

AIC -3.4703
R2 0.7275

S. E. of residuals 0.1686
Ratio var(nonlin)/var(lin) 0.6540
No. of observations 127

Table 6.22: Specification and diagnostic tests

No. of Lags F-statistics Deg. of freedom p-value
1 1.3672 1, 114 0.2447
2 0.7417 2, 113 0.4786
3 1.2626 3, 112 0.2907
4 0.9568 4, 111 0.4343
5 0.8579 5, 110 0.5119
6 0.7409 6, 109 0.6179

Table 6.23: LM test of no remaining error autocorrelation
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Lag Autocorrelation McLeod-Li p-value ARCH LM p-value
1 0.0960 0.2203 0.2290
2 0.0314 0.4629 0.4527
3 0.1038 0.3122 0.2843
4 -0.0108 0.4750 0.4107
5 0.0681 0.6266 0.5323
6 -0.0272 0.5358 0.5796

Table 6.24: McLeod-Li and ARCH tests

Test F-statistic Deg. of freedom p-value
LM3 5.1279 3, 111 0.0023
LM2 6.4165 2, 112 0.0023
LM1 12.4408 1, 113 0.0006

Table 6.25: Parameter constancy tests for the constant term in the nonlinear
part of the model
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By plotting the transition function against time, the frequent changes
between the two extreme regimes become apparent (Figure 6.20). Both the
value of 0 and the values near to 1 are attained several times during the
sample period.
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Figure 6.20: Transition function

A comparison of the linear and nonlinear model reveals an increase in
explanatory power (R2 increases from 0.63 to 0.73) and a decrease in the
standard error of regression from 0.19 to 0.17. The null hypothesis of lin-
earity tested against the alternative of a smooth transition regression model
has to be rejected for every possible transition variable with the exception
of the time trend. Both of these facts confirm our intuition that the line-
ar relationship of Okun’s law can be improved by consideration of regime
changes.
By plotting the transition function G and the unemployment rate u in the

same graph (Figure 6.21) one can observe that most of the major changes of
the transition function occur when the unemployment rate has risen to new
heights. This can be associated with major structural shifts in the German
economy in those periods. As expected, one of the structural changes is de-
tected in the early nineties, when the German reunion was taking place. Thus
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Figure 6.21: Unemployment rate and transition function

the nonlinear part of the model seems to capture the uneven development in
the economy rather well.
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Chapter 7

Conclusion

An important problem in the identification process of economic systems is
usually related to the question if the model can be kept linear or whether
nonlinear features are so dominant that they must be considered in the speci-
fication. From recent studies of univariate models one has learned that there
is much to be gained by allowing a nonlinear specification. Representations of
asymmetric reactions, structural changes and other phenomena of economic
development can be fruitfully investigated by nonlinear modeling techniques.
The smooth transition regression approach is one of the nonlinear techniques
gaining importance in the econometric model building. The single equation
smooth transition modeling has been studied extensively by several authors.
Following the recent literature, chapters two and three summarize the various
STR functional forms as well as the specification, estimation and evaluation
procedure.
Since many issues in economics require the specification of several rela-

tionships, techniques to handle nonlinear features in systems are required.
Only during the recent years such methods have appeared in the literature.
As described in chapter four, Anderson and Vahid [2] devised a procedure
for detecting common nonlinear components in a multivariate system of vari-
ables. The common nonlinearities approach is based on the canonical correla-
tions technique and can help us interpret the relationships between different
economic variables. The specification and estimation of the system of equa-
tions is also simplified, since the existence of common nonlinearities reduces
the dimension of nonlinear components in the system and enables parsimony.
This is particulary important in empirical investigations involving economic
time series of shorter length. Namely, most of the macroeconomic indicators
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are published on a quarterly basis.
Weise [80], van Dijk [78] and Camacho [10] extended the univariate STR

modeling approach developed by Teräsvirta and coworkers to vector autore-
gressive models of smooth transition. This approach at generalizing the
single equation STR techniques is discussed in section 4.2. The smooth
transition specification is limited to the case where the transition between
different parameter regimes is governed by the same transition variable and
the same type of transition function in every equation of the system. Weise,
van Dijk and Camacho argue that since the economic practice imposes com-
mon nonlinear features, all equations share the same switching regime. But
this argument is not convincing, since such a conclusion cannot be derived
from economic theory, while applied econometric studies analyzing nonlinear
systems are scarce. For this reason we extend their approach by allowing
different smooth transition functional forms in different equations. The pro-
posed extended specification procedure described in section 4.3 involves not
only system linearity tests, but also single equation tests. Thus, systems
including linear as well as nonlinear equations can be specified. All linearity
tests are based on system estimates (to achieve efficiency) of a suitable aux-
iliary regression without restricting the choice of the transition variable. The
decision rule for selecting the type of the transition function is also augmented
to allow different types of the transition function in different equations of the
system.
In chapter five, three-variable smooth transition vector autoregressive

models of the consumer price index for Slovenia, consumer price index of
another country and the nominal exchange rate between the currencies of
both countries are discussed. The investigation thus applies the common
nonlinearities techniques to small models of the real exchange rate, decom-
posed into its three components. The models for the five most important
foreign trade partners of Slovenia, namely Germany, Italy, France, Austria
and Croatia, are studied. The obtained real exchange rate model of the
Slovenian Tolar versus Austrian Schilling, respectively Euro, contains only
one common nonlinear component, as desired. On the other hand, models
for Germany, Italy, France and Croatia cannot be adequately described with
the help of only one type of nonlinearity. One of the possible explanations
for such results could be the late accession of Austria to the European Union.
Austria joined EU in the year 1995, whereas Germany, Italy and France were
already member states in the year 1993, when we started our investigation.
The process of Austria’s EU accession had a deep impact on its economic
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structure and the relation to its neighbour states. In particular prices have
been severely affected. These adjustments together with those ongoing in
neighbouring Slovenia seem to be captured by a common nonlinear factor
in the components of the real exchange rate. It concerns especially the ef-
fects of the lagged Austrian inflation rate and the nominal exchange rate,
besides the cointegration terms. This lends economic support to the specifi-
cation of a logistic smooth transition model with only one common nonlinear
component.
A small nonlinear monetary model of inflation for West Germany is de-

veloped in chapter six. An equation describing the monetary system is aug-
mented by the Phillips curve and the equation of Okun‘s law. It turns out
that while the money demand equation and the Phillips curve exhibit non-
linear features, the Okun‘s law should be specified as a linear equation, since
the single equation linearity tests cannot be rejected in any case. Addition-
ally, the regime changes in the money demand equation and in the Phillips
curve are governed by different transition variables. The estimated nonlinear
system is inspected for its dynamic properties. Contrary to estimation, the
money stock is considered a policy instrument to influence the inflationary
process as well as the unemployment rate. The reaction of a change in oil
prices, in the forward looking expected inflation rate and to a productivity
shock is also evaluated. In the latter cases, reactions turn out to be rather
symmetric, while shocks in the money stock exhibit significant asymmetries.
This again shows that working with a nonlinear model generates a result that
is known in practice, but not achieved by linear models.
The empirical investigations in chapters five and six again point out the

drawbacks of the restricted smooth transition vector autoregressive specifi-
cation proposed by Weise [80], van Dijk [78] and Camacho [10], imposing
the same transition variable and the same type of the transition function in
every equation. Chapter six reveals that the regime changes in the money
demand equation and in the Phillips curve are governed by different transi-
tion variables, while only one of the five real exchange rate models studied in
chapter five can be adequately described by one type of nonlinearity. Thus,
the specification with the same transition variable and the same type of the
transition function in every equation of a system is too restrictive and should
not be imposed a priory.
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Appendix A

Testing procedures

Because of the importance of the asymptotic distributions of the test statis-
tics from the previous chapters - especially the Lagrange multiplier test - for
the smooth transition regression models, a special chapter is devoted to this
topic.

A.1 Maximum likelihood estimation

A comprehensive discussion about the method of maximum likelihood can
be found in Harvey [32] and Greene [28]. The summary in this and the
next sections of this chapter is based on both books, whereas the notation is
the same as in Greene and the asymptotic theory theorems are taken from
Amemiya [1], White [81] and Davidson and MacKinnon [16].
Suppose that we draw a random sample y = (y1, y2, . . . , yn)0 with n ele-

ments from a distribution with the probability density function f(x|θ), where
θ = (θ1, θ2, . . . , θm)

0 is a vector of parameters of the given distribution. The
parameter vector θ is often not known and has to be estimated. The joint
density of the obtained independent and identically distributed observations
is of the form

f(y1, y2, . . . , yn|θ) =
nY
i=1

f(yi|θ). (A.1)

The function f(y1, y2, . . . , yn|θ) may be interpreted in another way. For a
fixed random sample y = (y1, y2, . . . , yn)0, f(y1, y2, . . . , yn|θ) depends only on
the parameter vector θ, therefore we can define a new function as

L(θ|y1, y2, . . . , yn) = f(y1, y2, . . . , yn|θ). (A.2)
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Definition A.1. The function L(θ|y) is called the likelihood function.
L is a function of the parameter vector θ, conditioned on the data. In case
of a discrete random vector y, L(θ|y) denotes the probability of drawing the
random sample y that has actually been drawn. The interpretation is not
the same for a continuous random vector y, since the probability of drawing
any particular sample is zero, but the principle is similar.

Definition A.2. The term maximum likelihood estimator (MLE) is often
used to mean two different concepts:

(1) the value of θ that globally maximizes the likelihood function over the
parameter space Θ,

(2) any root of the likelihood equation

∂L(θ|y)
∂θ

= 0. (A.3)

We will use the definition (2) and refer to the definition (1) as the global max-
imum likelihood estimator. Note that a solution of the likelihood equation
fulfills only the necessary condition for a local extremum. If, in addition, the
Hessian matrix of second derivatives is negative definite, then the solution
corresponds to a local maximum of the likelihood function.
Instead of the likelihood function L, one usually uses the log - likelihood

function l, defined as

l(θ|y) = lnL(θ|y) =
nX
i=1

ln f(yi|θ), (A.4)

which is easier to work with. Our next task is to state the large - sample
properties of the maximum likelihood estimator θ̂. Let us first explain the so-
called regularity conditions, under which one is able to derive the asymptotic
properties. Note that the derivations are computed with respect to θ, while
yi, i = 1, 2, . . . , n, are treated as random variables in conditions R2 and R3.

Definition A.3 ([16], [28]). The regularity conditions are:

R1. The function ln f(yi|θ) is at least three times continuously differentiable
with respect to θ, for all yi and for all θ ∈ Θ.
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R2. The expectations of the first and the second derivatives of ln f(yi|θ) exist.
R3. There exists a function z such that for all yi¯̄̄̄

∂3 ln f(yi|θ)
∂θj∂θk∂θl

¯̄̄̄
< z(yi|θ) ∀j, k, l ∈ {1, 2, . . . ,m}, ∀θ ∈ Θ, (A.5)

and z(yi|θ) has a finite expectation.
Let us denote the true value of the parameter vector by θ0. The partial

derivatives ∂ ln f(yi|θ)
∂θ

and ∂2 ln f(yi|θ)
∂θ∂θ0 are denoted by gi andHi, respectively, and

the notation gi(θ0) is used to indicate the value of the function gi evaluated
at the true parameter vector θ0. Hence, the score vector

g =
∂ lnL(θ|y)

∂θ
(A.6)

is the sum of the vectors gi, i = 1, . . . , n, and the Hessian of the log-likelihood
function lnL(θ|y) is

H =
∂2 lnL(θ|y)

∂θ∂θ0
=

nX
i=1

Hi. (A.7)

The information matrix, which plays an important role in the derivation
of the minimum variance bound and asymptotic efficiency of the maximum
likelihood estimator, is defined as

I(θ0) = −E
µ
∂2 lnL(θ|y)

∂θ∂θ0


θ=θ0

¶
. (A.8)

For the class of unbiased estimators, the minimum variance bound is de-
termined by the well-known Cramér-Rao theorem. Since the MLE is often
biased, the minimum variance bound and asymptotic efficiency refer to the
class of all consistent, asymptotically normally distributed estimators, ab-
breviated as CAN.

Definition A.4. An estimator is asymptotically efficient, if it belongs to the
class of CAN estimators and if its asymptotic covariance matrix is not larger
than the asymptotic covariance matrix of any other CAN estimator (i.e. the
asymptotic covariance matrix of the less efficient estimator equals that of the
efficient estimator plus a positive semidefinite matrix).
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Definition A.5. If
√
n(zn − µ) d→ N(0, V ), then the random vector zn is

asymptotically normally distributed, zn
a∼ N(µ, 1

n
V ), and the asymptotic

covariance matrix is denoted by AsyV ar(zn) = 1
n
V .

The expectation and the variance of the score vector are given by the
next proposition.

Proposition A.6. If the regularity conditions R1 to R3 are fulfilled, then

E

µ
∂ lnL(θ|y)

∂θ


θ=θ0

¶
= E(g(θ0)) = 0, (A.9)

and

V ar

µ
∂ lnL(θ|y)

∂θ


θ=θ0

¶
= V ar(g(θ0)) (A.10)

= E

·µ
∂ lnL(θ|y)

∂θ
· ∂ lnL(θ|y)

∂θ0

¶
θ=θ0

¸
= I(θ0).

The second result is known as the information matrix equality.

We can now state the large-sample properties of the maximum likelihood
estimator.

Theorem A.7 ([28], Theorem 17.1 and Theorem 17.4). Under the
regularity conditions R1 - R3, the maximum likelihood estimator θ̂ has the
following asymptotic properties:

(i) Consistency: plimθ̂ = θ0.

(ii) Asymptotic normality: θ̂ a∼ N
³
θ0, I(θ0)

−1
´
and AsyV ar(θ̂) = I(θ0)−1.

(iii) Asymptotic efficiency: θ̂ is asymptotically efficient.

(iv) Cramér-Rao lower bound: Minimum variance bound for a CAN estima-
tor of the parameter vector θ0 is given by

I(θ0)
−1 =

Ã
−E

µ
∂2 lnL(θ|y)

∂θ∂θ0


θ=θ0

¶!−1
, (A.11)
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i.e. if ψ̂ is any consistent, asymptotically normally distributed estima-
tor of the parameter vector θ0, then AsyV ar(ψ̂) ≥ I(θ0)−1. It follows
from (i) and (ii) that the minimum variance bound is achieved by the
MLE θ̂.

A sketch of the proof can be found in Greene [28] and an exact proof in
Davidson and MacKinnon [16].

The asymptotic covariance matrix I(θ0)−1 =
µ
−E

³
∂2 lnL(θ|y)

∂θ∂θ0

θ=θ0

´¶−1
contains the parameter vector θ0, which has yet to be estimated. Hence, the
question how to estimate the asymptotic covariance matrix arises. Greene
[28] describes three possibilities:

(1) Under the assumption that the expected values of the second derivatives
of the log-likelihood function with respect to θ are known, one may
simply calculate their value at the maximum likelihood estimator θ̂.
But in practice this is rarely the case.

(2) To avoid deriving the expected values, the second derivatives are evalu-
ated at θ̂:

Î(θ̂)−1 =

Ã
−
µ
∂2 lnL(θ|y)

∂θ∂θ0


θ=θ̂

¶!−1
. (A.12)

The obtained estimator can be justified by observing that instead of the
expected values the sample means were used. The law of large numbers
and the consistency of θ̂ guarantee the consistency of this estimator.

(3) An even simpler estimator

ˆ̂
I(θ̂)−1 =

Ã
nX
i=1

ĝiĝ
0
i

!−1
=
³
Ĝ0Ĝ

´−1
, (A.13)

with ĝi = gi(θ̂) and Ĝ =
³
ĝ1, ĝ2, . . . , ĝn

´0
, is based on the information

matrix equality fromProposition A.6, which states that the information
matrix equals the covariance matrix of the first derivative of the log-
likelihood function. This estimator is called the BHHH estimator (since
it was first advocated by Berndt, Hall, Hall and Hausman, see [4]) or the
outer product of gradients estimator (for obvious reasons). The central
limit theorem guarantees the consistency of the BHHH estimator (see
Davidson and MacKinnon [16] for details).
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A.2 Classical testing procedures

Suppose we would like to test if the parameter vector θ = (θ1, θ2, . . . , θm)
0

satisfies a set of q conditions or restrictions. If the restrictions are linear,
they can be written as

Rθ = r, (A.14)

where R is a full rank matrix with dimensions q×m and r is a vector of length
q. To test such a hypothesis, three asymptotically equivalent test procedures
are available. In a more general formulation, nonlinear restrictions are also
allowed. In this case, the restrictions under the null hypothesis take the form

H0 : c(θ) = r, (A.15)

where c(θ) = (c1(θ), c2(θ), . . . , cq(θ))0 and the functions cj(θ), j = 1, 2, . . . , q,
are continuously differentiable. The alternative hypothesis is

H1 : c(θ) 6= r. (A.16)

A comprehensive discussion about the derivation of the tests and their as-
ymptotic distributions under the null hypothesis of nonlinear restrictions is
given in White [81].

A.2.1 Likelihood ratio test

Let us denote by θ̂U the unrestricted maximum likelihood estimator and
by θ̂R the restricted estimator, where the imposed restrictions are taken into
account. If L̂U and L̂R stand for the value of the likelihood function evaluated
at the estimators θ̂U and θ̂R, respectively, and if the restrictions hold, then
intuitively L̂R should be close to L̂U . In other words, the likelihood ratio,
defined as

λ =
L̂R

L̂U
, (A.17)

should be close to 1. λ cannot be greater than 1, since the restricted maxi-
mum cannot exceed the unrestricted one. The likelihood ratio test statistic
is of the form

LR = −2 lnλ. (A.18)

As we shall see later, the logarithm of the likelihood ratio is used in the test
statistic in order to obtain a known distribution.
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The LR statistic suffers the disadvantage of requiring both the unre-
stricted and the restricted estimator. In spite of that, it is popular, since it
is easy to calculate.

A.2.2 Wald test

The Wald test is based on the observation that when the null hypothesis

H0 : c(θ)− r = 0 (A.19)

holds, c(θ̂U)− r should be close to zero. The Wald test statistic is

W =
³
c
¡
θ̂U
¢− r´0³AsyV ar¡c¡θ̂U¢− r¢´−1³c¡θ̂U¢− r´. (A.20)

The Wald test is used when the unrestricted estimator is easier to compute
than the restricted estimator. To construct the Wald test, one has to derive
the asymptotic covariance matrix of the (possibly) nonlinear vector function
c
¡
θ̂U
¢
. This can be done by using the next proposition.

Proposition A.8 ([28], Theorem D.22 and Theorem 6.1). If θ̂n is an
m-vector of consistent asymptotically normally distributed parameter estima-
tors, i.e.

plim θ̂n = θ0,

θ̂n
a∼ N

µ
θ0, Vn

¶
, (A.21)

and if c(θ) is a vector of q continuously differentiable functions (with respect
to θ) not involving n, then

c(θ̂n)
a∼ N

µ
c(θ0), C(θ0)VnC(θ0)

0
¶
, (A.22)

where C(θ0) =
∂c(θ)
∂θ0 |θ=θ0 is a q ×m-matrix of partial derivatives.

The proof of the proposition is based on the Slutsky theorem, saying that
for a continuous function g and for a sequence xn converging in probability,
plimg(xn) is equal to g(plimxn). From the Slutsky theorem it follows that

plimc(θ̂n) = c(θ0). (A.23)
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Let us briefly describe the idea of the proof. Since plim θ̂n = θ0, the higher-
order terms in the Taylor expansion

c(θ̂n) = c(θ0) + C(θ0)(θ̂n − θ0) + higher − order terms (A.24)

can be neglected in large samples, therefore c(θ̂n) has the same asymptotic
distribution as c(θ0) + C(θ0)(θ̂n − θ0) and

AsyV ar(c(θ̂n)) = C(θ0)AsyV ar(θ̂n)C(θ0)
0, (A.25)

as stated in the proposition.
The true parameter value θ0 is not known, hence the MLE θ̂U is used in

its place to obtain the estimated asymptotic covariance matrix:

Ĉ =
∂c(θ)

∂θ0


θ=θ̂U

(A.26)

and
EstAsyV ar

¡
c(θ̂U)− r

¢
= Ĉ

³
EstAsyV ar(θ̂U)

´
Ĉ 0. (A.27)

In the special case of linear restrictions, when c(θ) = Rθ, Ĉ is equal to R
and

EstAsyV ar
¡
c(θ̂U)− r

¢
= R

³
EstAsyV ar(θ̂U)

´
R0. (A.28)

From Theorem A.7 we know that the asymptotic covariance matrix of the
MLE θ̂ is equal to I(θ0)−1. We have already described 3 possibilities for
estimating I(θ0)−1 on page 146.

A.2.3 Lagrange multiplier test

The Lagrange multiplier test is used when the restricted estimator is easier
to compute than the unrestricted estimator. A typical example is a nonlinear
model, which becomes linear under the imposed restrictions. Intuitively, if
the restrictions

c(θ)− r = 0 (A.29)

are valid, then the vector of partial derivatives ∂ lnL(θ)
∂θ

(the score vector)
evaluated at the restricted maximum likelihood estimator θ̂R will be close to
zero. To derive the restricted MLE, let us define the Lagrangean function

lnN(θ) = lnL(θ) + λ0(c(θ)− r), (A.30)
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where λ is the vector of Lagrange multipliers. After solving the system

∂ lnN(θ)

∂θ
=

∂ lnL(θ)

∂θ
+ C 0λ = 0,

∂ lnN(θ)

∂λ
= c(θ)− r = 0, (A.31)

with C equal to the derivatives matrix ∂c(θ)
∂θ0 , one obtains the restricted es-

timator θ̂R and the estimated vector of Lagrange multipliers λ̂. As already
mentioned,

∂ lnL(θ)

∂θ


θ=θ̂R

= −Ĉ 0λ̂ = g(θ̂R) (A.32)

is supposed to be close to zero if restrictions (A.29) hold. Recall that by
Proposition A.6 the covariance matrix of the score vector is equal to the
information matrix. Thus, using similar reasoning as with the Wald test
statistic, the Lagrange multiplier test statistic is defined by

LM =

µ
∂ lnL(θ)

∂θ


θ=θ̂R

¶0³
I(θ̂R)

´−1µ∂ lnL(θ)

∂θ


θ=θ̂R

¶
. (A.33)

A.2.4 Asymptotic distribution of the three tests

As already mentioned, the three tests are asymptotically equivalent. To
derive the asymptotic distribution of the tests, one has to consider the asym-
ptotic normal distribution of the maximum likelihood estimator (see Theorem
A.7) and the following proposition.

Proposition A.9 ([81], Corollary 4.28). Let bn be a random vector with
k components and bn

a∼ N(0, Vn), with Vn a k × k positive definite matrix.
Then

b0nV
−1
n bn

a∼ χ2k, (A.34)

where χ2k is a χ2 random variable with k degrees of freedom.

Typically, the asymptotic covariance matrix Vn is unknown, but its con-
sistent estimator in the form of the estimated asymptotic covariance matrix
is often available. The use of the consistent estimator of the asymptotic
covariance matrix is justified by the next proposition.
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Proposition A.10 ([81], Theorem 4.30). Let the assumptions of Propo-
sition A.9 hold. If there exists a sequence of positive semidefinite symmetric
matrices {V̂n} such that Vn − V̂n P→ 0, where Vn is O(1), and if there ex-
ists a real number δ > 0 with the property that for all n sufficiently large
det(Vn) > δ > 0, then

b0nV̂
−1
n bn

a∼ χ2k. (A.35)

The asymptotic distributions of the three tests can now be stated.

Theorem A.11. Provided that the regularity conditions R1 - R3 hold, the
Likelihood ratio, Wald and Lagrange multiplier test statistics, defined by
(A.18), (A.20) and (A.33), respectively, are asymptotically χ2q - distributed
under null hypothesis (A.19).

For the proof, see Greene [28] or White [81]. It has to be emphasized that
the small-sample properties of the three tests are usually not known.
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Appendix B

Linear vector error correction
models for the real exchange
rate

This chapter describes preliminary specification of the linear vector error
correction models (VECM) for the application of the common nonlinearities
modeling approach. Three-variable models of domestic prices (Pt), foreign
prices (P ∗t ) and the nominal exchange rate between the currencies of the
two countries (St) are constructed. The models have been applied to 5 most
important foreign trade partners of Slovenia, namely Germany, Italy, France,
Austria and Croatia. The econometric model employs variables expressed in
growth rates with the help of the logarithmic transformation, therefore small
letters are used to denote the transformed variables.
Firstly, unit root tests were applied to the variables pt, p∗t and st for

each of the countries. Usually, augmented Dickey - Fuller (ADF) test with
automatic lag length selection and maximal lag length of 12 was used. In-
tercept and time trend (denoted by ttrend) were included, when they were
significant at the 5 % level. In case of doubt, other unit root tests, namely
Kwiatkowski-Phillips-Schmidt-Shin (KPSS), Phillips-Perron (PP) and and
Ng-Perron (NP) were also conducted. It has to be emphasized that the null
hypothesis is unit root in the series, with the exception of the Kwiatkowski-
Phillips-Schmidt-Shin test, where the series is stationary under the null. All
of the variables turned out to be integrated of order 1, or I(1). The results of
the unit root tests for the variable pt are given here, since this variable (log-
arithm of domestic prices, i.e. prices in Slovenia) is present in every model.
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Variable: pt

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept and trend)
p-value 0.1370 0.0000

Table B.1: Unit root test results for the variable pt

The variable is integrated of order 1.
Next, cointegration tests were performed and the linear vector error cor-

rection models (VECM) were specified. The null hypothesis of no cointegrat-
ing relations could not be rejected only in case of Croatia, therefore a linear
VAR model in the differenced variables ∆pt, ∆p∗t and ∆st was specified. Or-
thogonal seasonal dummy variables, denoted by d1 to d12, were introduced
into some of the models to reduce the autocorrelation effects. When per-
forming the cointegration tests, the lag length was determined with the help
of the 5 information criteria implemented in EViews (sequential modified LR
test, final prediction error, Akaike information criterion, Schwarz information
criterion and Hannan-Quinn information criterion). The lag length was set
to the value that was optimal for the majority of the information criteria.
The deterministic trend settings for the cointegration tests were specified
according to the unit root test results of the 3 variables in each model.

B.1 Results for Germany

Results of the unit root tests (Table B.2): the variables p∗t and st are both
integrated of order 1. Cointegration test results in Table B.3 indicate 1
cointegrating equation of the form:

ce1t = pt−1 + 0.5409 · p∗t−1 − 0.9757 · st−1 − 0.0027 · ttrendt (B.1)

(1.1559) (0.2345) (0.0013)

− 2.0702

Estimates of the linear vector error correction model can be found in Table
B.4 and results of the common nonlinearities test in Table B.5.
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UNIT ROOT TESTS FOR GERMANY
Variable: p∗t

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept)
p-value 0.0577 0.0000

Test
KPSS

(level, intercept and trend)
test statistic LM = 0.2845 5 % critical value: 0.1460

Variable: st

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept)
p-value 0.0766 0.0001

Test
KPSS

(level, intercept and trend)
test statistic LM = 0.2117 5 % critical value: 0.1460

Table B.2: Unit root test results for Germany

COINTEGRATION TEST RESULTS FOR GERMANY
Lag length: 3

Hypothesized
number of CE(s)

Trace test
statistic

5 % critical
value

none 51.7855 42.44
at most 1 20.9089 25.32
at most 2 7.3941 12.25

Hypothesized
number of CE(s)

Max-eigenvalue
test statistic

5 % critical
value

none 30.8766 25.54
at most 1 13.5148 18.96
at most 2 7.3941 12.25

Table B.3: Johansen cointegration test results for Germany
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VECM(3) MODEL FOR GERMANY
Sample: 1993:05 2003:12, Included observations: 128

Variable ∆pt equation ∆p∗t equation ∆st equation
ce1t -0.0749 (0.0149) 0.0070 (0.0076) -0.0353 (0.0169)
∆pt−1 0.1684 (0.0869) -0.0493 (0.0444) 0.1155 (0.0985)
∆pt−2 0.0933 (0.0880) 0.0583 (0.0450) -0.0867 (0.0997)
∆pt−3 -0.0416 (0.0890) 0.1331 (0.0455) -0.1911 (0.1008)
∆p∗t−1 0.0156 (0.1814) 0.1026 (0.0928) 0.0608 (0.2056)
∆p∗t−2 -0.1346 (0.1829) -0.0464 (0.0935) 0.0847 (0.2073)
∆p∗t−3 0.1559 (0.1743) -0.2628 (0.0892) 0.0731 (0.1976)
∆st−1 0.1630 (0.0798) 0.0906 (0.0408) 0.7356 (0.0905)
∆st−2 -0.1877 (0.0996) -0.0596 (0.0509) -0.1512 (0.1129)
∆st−3 -0.0150 (0.0796) 0.0578 (0.0407) -0.1814 (0.0902)
const 0.0061 (0.0011) 1.87E-05 (0.0006) 0.0038 (0.0012)
d12t -0.0018 (0.0016) 0.0013 (0.0008) -0.0002 (0.0018)
R2 0.4604 0.2492 0.5833
S.E. 0.0046 0.0023 0.0052
AIC -7.8556 -9.1966 -7.6056
BIC -7.5882 -8.9292 -7.3382
AIC = −24.3918, BIC = −23.5006, logL = 1619.976

Table B.4: Coefficient estimates (and p-values) of the VECM(3) model for
Germany

155



COMMON NONLINEARITIES TEST FOR GERMANY
tvar: ce1t tvar:∆ pt−1 tvar: ∆p∗t−1 tvar: ∆st−1 tvar: ∆ pt−2
s p-value s p-value s p-value s p-value s p-value
1 0.300 1 0.077 1 0.826 1 0.834 1 0.705
2 0.022 2 0.012 2 0.442 2 0.048 2 0.155
3 0.000 3 0.000 3 0.011 3 0.000 3 0.000
tvar: ∆p∗t−2 tvar: ∆st−2 tvar: ∆pt−3 tvar:∆ p∗t−3 tvar: ∆st−3
s p-value s p-value s p-value s p-value s p-value
1 0.610 1 0.685 1 0.851 1 0.290 1 0.998
2 0.320 2 0.030 2 0.244 2 0.070 2 0.460
3 0.152 3 0.000 3 0.000 3 0.070 3 0.000
df s=1: 28, s=2: 58, s=3: 90

Table B.5: Common nonlinearities test for Germany

B.2 Results for Italy

Results of the unit root tests (Table B.6): the variables p∗t and st are both
I(1). Trace test statistic from Table B.7 indicates 3 cointegrating equations,
while max - eigenvalue test indicates 1 cointegrating equation of the form:

ce1t = pt−1 − 1.2874 · p∗t−1 − 1.1614 · st−1 + 7.2065 (B.2)

(0.6957) (0.2512)

Estimates of the linear vector error correction model can be found in Table
B.8 and results of the common nonlinearities test in Table B.9.
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UNIT ROOT TESTS FOR ITALY
Variable: p∗t

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept and trend)
p-value 0.2913 0.0000

Variable: st

Test
ADF

(level, intercept)
ADF

(1st diff., intercept)
p-value 0.1834 0.0000

Table B.6: Unit root test results for Italy

COINTEGRATION TEST RESULTS FOR ITALY
Lag length: 1

Hypothesized
number of CE(s)

Trace test
statistic

5 % critical
value

none 53.0637 29.68
at most 1 22.6405 15.41
at most 2 9.4433 3.76

Hypothesized
number of CE(s)

Max-eigenvalue
test statistic

5 % critical
value

none 30.4232 20.97
at most 1 13.1971 14.07
at most 2 9.4433 3.76

Table B.7: Johansen cointegration test results for Italy
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VECM(1) MODEL FOR ITALY
Sample: 1993:03 2003:12, Included observations: 130

Variable ∆p equation ∆p∗ equation ∆s equation
ce1t 0.0090 (0.0037) 0.0059 (0.0013) 0.0576 (0.0196)
∆pt−1 0.4298 (0.0850) 0.0105 (0.0289) -0.3784 (0.4468)
∆p∗t−1 0.2082 (0.2663) -0.0408 (0.0895) -1.4555 (1.4002)
∆st−1 0.0107 (0.0170) 0.0037 (0.0057) 0.2083 (0.0893)
const 0.0038 (0.0010) 0.0024 (0.0003) 0.0118 (0.0053)
d1t 0.0107 (0.0017) 0.0018 (0.0006) -8.54E-05 (0.0090)
d2t 0.0043 (0.0018) 0.0016 (0.0006) 0.0138 (0.0093)
d3t 0.0054 (0.0017) 0.0020 (0.0006) -0.0023 (0.0087)
d4t 0.0058 (0.0017) 0.0001 (0.0006) -0.0039 (0.0088)
d5t 0.0063 (0.0017) 0.0017 (0.0006) 0.0088 (0.0087)
d7t 0.0056 (0.0017) -0.0004 (0.0006) -0.0034 (0.0087)
d10t 0.0051 (0.0017) 0.0011 (0.0006) -0.0035 (0.0087)
d11t 0.0061 (0.0017) 0.0015 (0.0006) 0.0085 (0.0086)
d9t 0.0095 (0.0017) -0.0002 (0.0006) 0.0096 (0.0090)
d12t 0.0039 (0.0016) -0.0008 (0.0006) 0.0109 (0.0086)
R2 0.5112 0.4452 0.1640
S.E. 0.0044 0.0015 0.0231
AIC -7.9121 -10.093 -4.5925
BIC -7.5812 -9.7622 -4.2616
AIC = −22.2396, BIC = −21.1808, logL = 1517.478

Table B.8: Coefficient estimates (and p-values) of the VECM(1) model for
Italy
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COMMON NONLINEARITIES TEST FOR ITALY
tvar: ce1t tvar:∆ pt−1 tvar: ∆p∗t−1 tvar: ∆st−1
s p-value s p-value s p-value s p-value
1 0.789 1 0.488 1 0.230 1 0.176
2 0.255 2 0.164 2 0.033 2 0.038
3 0.000 3 0.008 3 0.000 3 0.000
df s=1: 10, s=2: 22, s=3: 36

Table B.9: Common nonlinearities test for Italy

B.3 Results for France

Results of the unit root tests (Table B.10): the variables p∗t and st are both
integrated of order 1. Cointegration test results in Table B.11 indicate 1
cointegrating equation of the form:

ce1t = pt−1 + 2.4023 · p∗t−1 − 0.7141 · st−1 − 0.0056 · ttrendt − (B.3)

(1.2230) (0.3190) (0.0017)

− 11.8832

Estimates of the linear vector error correction model can be found in Table
B.12 and results of the common nonlinearities test in Table B.13.
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UNIT ROOT TESTS FOR FRANCE
Variable: p∗t

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept)
p-value 0.6511 0.0000

Variable: st

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept)
p-value 0.1202 0.0000

Test
KPSS

(level, intercept and trend)
test statistic LM = 0.5032 5 % critical value: 0.1460

Table B.10: Unit root test results for France

COINTEGRATION TEST RESULTS FOR FRANCE
Lag length: 3

Hypothesized
number of CE(s)

Trace test
statistic

5 % critical
value

none 52.0628 42.44
at most 1 21.3704 25.32
at most 2 2.9876 12.25

Hypothesized
number of CE(s)

Max-eigenvalue
test statistic

5 % critical
value

none 30.6924 25.54
at most 1 18.3828 18.96
at most 2 2.9876 12.25

Table B.11: Johansen cointegration test results for France
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VECM(3) MODEL FOR FRANCE
Sample: 1993:05 2003:12, Included observations: 128

Variable ∆pt equation ∆p∗t equation ∆st equation
ce1t -0.0471 (0.0086) -0.0011 (0.0041) -0.0547 (0.0200)
∆pt−1 0.2636 (0.0950) -0.0277 (0.0453) -0.0425 (0.2204)
∆pt−2 -0.0138 (0.0924) 0.0034 (0.0441) -0.1294 (0.2145)
∆pt−3 -0.0441 (0.0896) 0.0132 (0.0427) -0.4689 (0.2079)
∆p∗t−1 0.0636 (0.2086) -0.0108 (0.0995) -0.1814 (0.4841)
∆p∗t−2 -0.1322 (0.2188) -0.0924 (0.1044) 0.5511 (0.5078)
∆p∗t−3 0.4835 (0.2114) 0.0413 (0.1008) 1.1207 (0.4907)
∆st−1 0.0227 (0.0392) 0.0081 (0.0187) 0.3419 (0.0910)
∆st−2 -0.1224 (0.0414) -0.0037 (0.0198) 0.0929 (0.0961)
∆st−3 0.0244 (0.0406) 0.0075 (0.0194) -0.2751 (0.0942)
const 0.0060 (0.0010) 0.0014 (0.0005) 0.0069 (0.0024)
d1t 0.0107 (0.0015) -7.57E-05 (0.0007) 0.0052 (0.0036)
d2t 0.0057 (0.0016) 0.0024 (0.0008) 0.0028 (0.0040)
d3t 0.0062 (0.0017) 0.0029 (0.0008) -0.0002 (0.0040)
d5t 0.0058 (0.0016) 0.0012 (0.0007) -0.0022 (0.0036)
d12t 0.0039 (0.0014) 0.0002 (0.0007) -0.0015 (0.0033)
d4t 0.0079 (0.0018) 0.0013 (0.0008) 0.0085 (0.0041)
d7t 0.0048 (0.0015) -0.0020 (0.0007) 0.0003 (0.0036)
d9t 0.0077 (0.0018) 0.0019 (0.0009) -0.0027 (0.0041)
d10t 0.0063 (0.0017) 0.0008 (0.0008) 0.0075 (0.0040)
d11t 0.0058 (0.0017) -0.0001 (0.0008) 0.0024 (0.0038)
R2 0.6629 0.3815 0.3649
S.E. 0.0038 0.0018 0.0087
AIC -8.1854 -9.6662 -6.5016
BIC -7.7175 -9.1983 -6.0337

AIC = −23.9052, BIC = −22.4123, logL = 1631.337
Table B.12: Coefficient estimates (and p-values) of the VECM(3) model for
France
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COMMON NONLINEARITIES TEST FOR FRANCE
tvar: ce1t tvar:∆ pt−1 tvar: ∆p∗t−1 tvar: ∆st−1 tvar: ∆ pt−2
s p-value s p-value s p-value s p-value s p-value
1 0.413 1 0.662 1 0.681 1 0.648 1 0.121
2 0.020 2 0.067 2 0.649 2 0.001 2 0.041
3 0.000 3 0.000 3 0.150 3 0.000 3 0.000
tvar: ∆p∗t−2 tvar: ∆st−2 tvar: ∆pt−3 tvar:∆ p∗t−3 tvar: ∆st−3
s p-value s p-value s p-value s p-value s p-value
1 0.789 1 0.658 1 0.396 1 0.190 1 0.697
2 0.256 2 0.003 2 0.013 2 0.056 2 0.029
3 0.044 3 0.000 3 0.000 3 0.009 3 0.000
df s=1: 28, s=2: 58, s=3: 90

Table B.13: Common nonlinearities test for France

B.4 Results for Austria

Results of the unit root tests (Table B.14): the variables p∗t and st are both
integrated of order 1. Cointegration test results in Table B.15 indicate 2
cointegrating equations of the form:

ce1t = p∗t−1 − 3.9639 · st−1 + 0.0142 · ttrendt + 15.0858 (B.4)

(0.6605) (0.0030)

ce2t = pt−1 + 0.4985 · st−1 − 0.0079 · ttrendt − 6.9070
(0.3569) (0.0016)

Estimates of the linear vector error correction model can be found in Table
B.16 and results of the common nonlinearities test in Table B.17.
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UNIT ROOT TESTS FOR AUSTRIA
Variable: p∗t

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept)
p-value 0.1714 0.0000

Variable: st

Test
ADF

(level, intercept and trend)
ADF

(1st diff., intercept)
p-value 0.0768 0.0001

Test
KPSS

(level, intercept and trend)
test statistic LM = 0.2117 5 % critical value: 0.1460

Table B.14: Unit root test results for Austria

COINTEGRATION TEST RESULTS FOR AUSTRIA
Lag length: 1

Hypothesized
number of CE(s)

Trace test
statistic

5 % critical
value

none 84.7897 42.44
at most 1 36.3163 25.32
at most 2 7.1575 12.25

Hypothesized
number of CE(s)

Max-eigenvalue
test statistic

5 % critical
value

none 48.4734 25.54
at most 1 29.1588 18.96
at most 2 7.1575 12.25

Table B.15: Johansen cointegration test results for Austria
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VECM(1) MODEL FOR AUSTRIA
Sample: 1993:03 2003:12, Included observations: 130

Variable ∆pt equation ∆p∗t equation ∆st equation
ce1t -0.0241 (0.0056) -0.0043 (0.0040) 0.0360 (0.0074)
ce2t -0.0651 (0.0113) -0.0073 (0.0080) 0.0299 (0.0148)
∆pt−1 0.2276 (0.0831) -0.0212 (0.0588) 0.1534 (0.1091)
∆p∗t−1 -0.2740 (0.1291) 0.0870 (0.0914) -0.4474 (0.1696)
∆st−1 0.0056 (0.0489) 0.0621 (0.0346) 0.6138 (0.0642)
const 0.0064 (0.0008) 0.0012 (0.0006) 0.0015 (0.0011)
d1t 0.0095 (0.0015) 0.0006 (0.0011) 0.0011 (0.0020)
d2t 0.0051 (0.0016) 0.0015 (0.0011) -0.0010 (0.0020)
d3t 0.0060 (0.0015) 0.0007 (0.0010) 0.0007 (0.0019)
d4t 0.0062 (0.0014) -0.0009 (0.0010) 0.0014 (0.0019)
d5t 0.0060 (0.0015) -0.0003 (0.0010) -0.0021 (0.0019)
d7t 0.0043 (0.0015) 0.0010 (0.0011) -0.0023 (0.0020)
d9t 0.0075 (0.0015) -0.0030 (0.0011) 0.0010 (0.0020)
d10t 0.0040 (0.0015) -0.0005 (0.0011) 0.0007 (0.0020)
d11t 0.0055 (0.0015) -0.0014 (0.0010) 0.0025 (0.0019)
d12t 0.0032 (0.0015) 4.99E-05 (0.0011) -0.0005 (0.0019)
R2 0.6180 0.2230 0.6692
S.E. 0.0039 0.0028 0.0051
AIC -8.1433 -8.8335 -7.5975
BIC -7.7904 -8.4805 -7.2445
AIC = −24.1235, BIC = −22.8882, logL = 1649.636

Table B.16: Coefficient estimates (and p-values) of the VECM(1) model for
Austria
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COMMON NONLINEARITIES TEST FOR AUSTRIA
tvar: ce1t tvar: ce2t tvar: ∆ pt−1 tvar: ∆p∗t−1 tvar: ∆st−1
s p-value s p-value s p-value s p-value s p-value
1 0.214 1 0.262 1 0.172 1 0.286 1 0.490
2 0.055 2 0.079 2 0.010 2 0.024 2 0.132
3 0.001 3 0.001 3 0.000 3 0.000 3 0.000
df s=1: 13, s=2: 28, s=3: 45

Table B.17: Common nonlinearities test for Austria

UNIT ROOT TESTS FOR CROATIA
Variable: p∗t

Test
ADF

(level, intercept)
ADF

(1st diff., intercept)
p-value 0.1792 0.0000

Variable: st

Test
ADF

(level, intercept)
ADF

(1st diff., intercept)
p-value 0.6181 0.0000

Table B.18: Unit root test results for Croatia

B.5 Results for Croatia

Results of the unit root tests (Table B.18): the variables p∗t and st are both
integrated of order 1. Cointegration test results in Table B.19 indicate no
cointegrating equations. Estimates of the linear vector autoregressive model
in the differenced variables can be found in Table B.20 and results of the
common nonlinearities test in Table B.21.
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COINTEGRATION TEST RESULTS FOR CROATIA
Lag length: 1

Hypothesized
number of CE(s)

Trace test
statistic

5 % critical
value

none 21.7833 29.68
at most 1 7.0661 15.41
at most 2 1.8141 3.76

Hypothesized
number of CE(s)

Max-eigenvalue
test statistic

5 % critical
value

none 14.7172 20.97
at most 1 5.2520 14.07
at most 2 1.8141 3.76

Table B.19: Johansen cointegration test results for Croatia

VAR(1) MODEL FOR CROATIA
Sample: 1995:06 2003:12, Included observations: 103

Variable ∆pt equation ∆p∗t equation ∆st equation
∆pt−1 0.1606 (0.0948) 0.0311 (0.1561) 0.2413 (0.2308)
∆p∗t−1 0.0841 (0.0711) 0.2770 (0.1171) 0.0201 (0.1731)
∆st−1 0.1062 (0.0405) 0.0674 (0.0666) 0.3240 (0.0986)
const 0.0046 (0.0006) 0.0018 (0.0010) 0.0005 (0.0015)
d6t -0.0068 (0.0014) -0.0090 (0.0023) -0.0016 (0.0033)
d8t -0.0064 (0.0015) -0.0052 (0.0025) -0.0029 (0.0036)
d12t -0.0022 (0.0013) 0.0017 (0.0022) -2.14E-05 (0.0032)
R2 0.3821 0.2580 0.1324
S.E. 0.0037 0.0061 0.0091
AIC -8.2862 -7.2889 -6.5064
BIC -8.1072 -7.1099 -6.3274

AIC = −21.9788, BIC = −21.4416, logL = 1152.906
Table B.20: Coefficient estimates (and p-values) of the VAR(1) model for
Croatia
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COM. NONLIN. TEST FOR CROATIA
tvar: ∆ pt−1 tvar: ∆p∗t−1 tvar: ∆st−1
s p-value s p-value s p-value
1 0.797 1 0.297 1 0.723
2 0.763 2 0.177 2 0.499
3 0.298 3 0.001 3 0.000
df s=1: 7, s=2: 16, s=3: 27

Table B.21: Common nonlinearities test for Croatia
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Appendix C

Data and program sources

All the data used in the empirical investigations can be found on the enclosed
CD. Here is a short description of the included files:

• The file real exchange rate model.xls contains the CPI time series for
Slovenia, Austria, Germany, Italy, France and Croatia and the corre-
sponding nominal exchange rate series used in chapter five. The data
were obtained from the Bank of Slovenia and from the Statistical Office
of the Republic of Slovenia.

• The data for the empirical investigation in chapter six were obtained
from an OECD data disc and are given in the file monetary model of
inflation.xls. The following time series are included: unemployment
rate, inflation rate, forward looking price expectation, energy price in-
flation, labor productivity growth, real money growth and real growth
rate.

• The data of M. Camacho used in section 4.3 can be downloaded from
his web page:

http://www.um.es/econometria/Maximo.
The US composite index of leading indicators series and the US GDP
series are given in files cli.data and gdp.data, respectively.

The specified models were estimated and evaluated with the help of the
EViews and Gauss program packages. Several Gauss routines implement-
ing the univariate STR modeling process were made available by professor
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Teräsvirta and integrated into a user-friendly program by students of the In-
stitute of mathematical methods in economics (previously Institute of econo-
metrics, operations research and system theory). The common nonlinearities
tests in chapter five were performed with the help of the Gauss programs
written by professor Vahid that were adapted to suit our needs. For the
calculations in section 4.3, the code written by Camacho (obtained from his
web page) was modified to allow different transition variables in different
equations of the system. Programs for single equation linearity tests (first
equation linearity test.gau and second equation linearity test.gau) were de-
veloped with the help of the system linearity test code (system linearity
test.gau).
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