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Kurzfassung

In dieser Arbeit werden drei Modelle in Zusammenhang mit zeitunabhängig-
er sowie zeitabhängiger Streuung an mehreren Objekten analytisch und nume-
risch diskutiert. Für diese Modelle wurden Programme entwickelt, die numeri-
sche Näherungen für die Lösungen der entsprechenden Gleichungen produzie-
ren. Allen Systemen gemeinsam ist eine mathematische Beschreibung, mit der
die erhaltenen Ergebnisse im Rahmen der Maxwell-Theorie, der Akustik oder
der Quantenmechanik interpretiert werden können.

Das erste System ist ein zweidimensionales System, welches aus ellipti-
schen nicht überlappenden Zylindern besteht, die in einem homogenen Me-
dium eingebettet sind, wobei die Anzahl der Zylinder, ihre Position und Geo-
metrie sowie ihre Materialkonstanten frei gewählt werden können. Die Lösung
des entsprechenden zeitunabhängigen Streuproblems liefert die asymptotische
Winkelabhängigkeit der Intensitätsverteilung der gestreuten Welle, wobei auf
die Interferenz mit der einfallenden Welle nicht näher eingegangen wird. Diese
Lösung wird mit einem Separationsansatzes in elliptischen Koordinaten zuerst
für einen Zylinder erhalten. Um diese Lösungen für einen elliptischen Zylin-
der darstellen zu können, sind spezielle Funktionen notwendig, die sogenannten
Mathieufunktionen. Diese sind zwar in der einschlägigen Literatur zu finden,
sind aber im Allgemeinen eher wenig bekannt. Die Streuung an einem einzel-
nen elliptischen Zylinder kann noch mit den Mathieufunktionen berechnet wer-
den, die in öffentlich verfügbaren Bibliotheken erhältlich sind. Um die Streuung
an mehreren solchen Objekten zu berechnen, ist die numerische Beherrschung
des Additionstheorems für Mathieufunktionen notwendig. Von diesem existiert
derzeit keine allgemein verfügbare Implementierung. Darüber hinaus stellte sich
heraus, dass es für die numerische Konvergenz in dem gewünschten Parameter-
bereich notwendig war, die Mathieufunktionen mit weitaus größerer Präzision
zu berechnen als dies die oben erwähnten Programme tun. Es war somit eine
Hauptaufgabe dieser Dissertation, ein Programmpaket zur Berechnung der Ma-
thieufunktionen und dem zugeordneten inneren Additionstheorem in beliebiger
Präzision zu erstellen und zu testen.

Aus einer Überlagerung von zeitunabhängigen Lösungen mit einem geeigne-
ten Gewichtsfaktor erhält man eine zeitabhängige Version des Streuproblems,
in welchem ein zunächst freies Wellenpaket auf die Streuer trifft. In der Nähe
der Streuer treten dann Interferenzeffekte auf, welche mit der zeitunabhängigen
Theorie nicht beschrieben werden können. Lange nach dem Streuprozess nähert
sich dann die zeitabhängige Lösung der schon vorhin berechneten zeitunabhängi-
gen an. Die numerische Berechnung dieser zeitabhängigen Lösungen erwies sich
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als sehr aufwändig: die erwähnte Überlagerung der zeitunabhängigen Lösungen
muss für eine sehr grosse Zahl von Richtungen und Wellenlängen durchgeführt
werden, was das Interesse an der praktischen Anwendung dieser numerischen
Lösung begrenzt. Da sie allerdings mit beliebiger Präzision für beliebige Zeiten
berechnet werden kann, ist das erstellte Programm als Refernz für Vergleiche
mit anderen Methoden durchaus interessant. Weiters ist mit der Weiterentwick-
lung der Computertechnik zu erwarten, dass das Programm in der heutigen
Form in einiger Zeit durchaus auch dazu verwendet werden kann, physikalische
Anwendungen wie photonische Kristalle zu simulieren.

Das zweite System besteht ebenfalls aus zweidimensionalen Dirichlet-Streu-
ern, diesmal von beliebiger Form, die sich in einem durch Dirichlet-Randbedin-
gungen gegebenen Wellenleiter befinden. In diesem Modell können größere An-
ordnungen von Streuern betrachtet werden, insbesonders dann, wenn sie re-
gelmäßig wiederkehren, da freie Lösungen an verschiedenen Querschnitten des
Wellenleiters immer mittels der sogenannten Transfermatrix miteinander in Be-
ziehung gebracht werden können. Ein Programm wurde erstellt, welches die zei-
tunabhängige Lösung für eine Anordnung von gleichen, durch eine geschlossene
Kurve parametrisierbare Streuern berechnet. Mit diesem Programm sollen in
Zukunft Lokalisierungseffekte in zwei Dimensionen gesucht werden.

Um diese Lokalisierungseffekte besser zu verstehen, wurde die Untersuchung
des dritten Modells gestartet: dieses ist ein eindimensionales Modell, welches aus
einem Dirac-Kamm besteht, bei dem nur endlich viele Potenziale ungleich Null
sind; es kann als einfaches Modell für einen unvollkommenen eindimensiona-
len Kristall gesehen werden. Wenn die Potenzialverteilung symmetrisch ist, so
können lokalisierte Zustände sowohl analytisch wie auch numerische gefunden
werden. Das neue an diesem Zugang ist, dass analytisch der Zusammenhang
zwischen Transmissionskoeffizient und einem in dieser Arbeit definierten Lo-
kalisierungsmaß hergeleitet wurde. Des weiteren wurde in einer zeitabhängigen
Rechnung ein Wellenpaket simuliert, welches ausserhalb des endlichen ”Kristal-
les” startet, in diesen eindringt, zum Teil reflektiert oder transmittiert wird,
zum anderen Teil aber relativ lange im Kristall eingeschlossen bleibt, bevor es
langsam wieder herausfliesst.



Abstract

In this thesis three models related to time-independent and time-dependent
scattering at several obstacles are discussed both analytically and numerically.
Programs which produce numerical approximations to the solutions were de-
velopped for these three models. All systems have in common that they are
described in a framework which permits to interpret the results obtained in
Maxwell theory, in acoustics, and in quantum mechanics.

The first system is a two-dimensional one which consists of elliptical, non-
overlapping cylinders embedded in a homogeneous medium. The number of
cylinders, their relative positions and geometries as well a their material con-
stants are parameters which may be freely choosen. The solution of the cor-
responding time-independent scattering problem yields the asymptotic angular
dependence of the scattered wave but does not provide information on its inter-
action with the incident wave. This solution is first obtained for one cylinder
using the separation of variables technique in an elliptical coordinate system.
To express these solutions for one elliptical cylinder one needs special functions,
the so-called Mathieu functions: although they can be found in literature, their
knowledge and use is not widespread. Scattering at one single elliptical cylin-
der may be calculated with a numerical implementation of Mathieu functions
which are publicly available. For the same calculation with several objects, a re-
liable implementation of the addition theorem for Mathieu functions is needed;
presently, no such library is available. During the implementation, it was found
that in order to obtain numerical convergence of this addition theorem for the
desired parameter range, it was necessary to know the Mathieu functions with
a much greater precision than provided by already existing and available imple-
mentations. Therefore, one of the principal tasks of this thesis was to produce
and test a software package which provides reliable approximations for Math-
ieu functions and the corresponding inner addition theorem. This required
the implementation of an internal part of the calculation in arbitrary precision
arithmetic.

In the sequel time-dependent solutions of the scattering process were ob-
tained by superposition of time-independent solutions with appropriate weight
factors. In these time-dependent solutions, a free wave packet which is free in
the beginning hits the scatterers. In the vicinity of the scatterers, interference
effects occur which cannot be described by time-independent theory. A long
time after the scattering process, the time-dependent solution converges asymp-
totically to the already calculated time-independent solution. The numerical
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calculation of this time-dependent solutions turned out to be very expensive
in terms of computational cost: the superposition of the time-independent so-
lutions has to be performed for a large number of directions and wavelengths.
This limits the possibility of an application of this numerical scheme to physical
problems of practical interest. However, as the solution can be calculated with
arbitrary precision for arbitrary times, the program should be of interest as a
reference for comparison with other methods. As well, one can expect that with
ongoing development of computer technology it will become possible to use the
program in its present form to simulate physical devices like photonic crystals.

The second system studied consists of Dirichlet scatterers of arbitrary shape
which are placed in a waveguide given by Dirichlet boundary conditions. In this
model, one can study more extended structures of scatterers, in particular regu-
lar arrays, because free solutions at different cross sections in the waveguide can
be related with the transfer matrix technique. A repetition of this process yields
a repetition of the structure; the numerical realisation of this is computationally
very cheap. A program has been written which calculates a time-independent
solution of a given structure of identical scatterers which may be described by
a closed curve. With this program, it is intended to study localisation effects
in two dimensions.

In order to get more insight into localisation effects in two and three dimen-
sions, the analysis of a third model was undertaken. This model consists of a
Dirac comb in one dimension with only a finite number of non-zero potentials.
It may be seen as a simple model for an imperfect one-dimensional crystal. If
the potential distribution is symmetrical, localised states can be found analyt-
ically and numerically. An interesting result is the fact that maxima of the
transmission and localisation (in a measure defined in this work) are related to
each other. As well, in a time-dependent simulation, a wave packet was sim-
ulated which starts from outside of this finite ”crystal”, enters the crystal, is
partially reflected or transmitted, but in part also kept enclosed in the crystal
for a relatively long time before it dissipates slowly.
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Chapter 1

Introduction

The physical problem considered in this thesis is multiple scattering [1] of waves,
i.e., scattering in one and two dimensions by finite arrays of objects with var-
ious boundary conditions. In this context, scattering means the interaction of
an incident field with one or more obstacles. The solution of this problem is
theoretically interesting and important in many areas of physics, whence it is
a classical topic of research. The solution of the problem of many scatterers is
more complex than for one and thus it took longer to understand it: one of the
first papers on multiple scattering was written by Závǐska in 1913 [2]; for recent
research see, e.g., [3], where a problem similar to the one studied in chapter 3 is
discussed. The notion of multiple scattering refers to a recursive way of solving
the problem of scattering by several objects: the mathematical description of
the physical process starts by ignoring completely the interaction between the
waves of the individual obstacles, then introduces various ’orders of scattering’
by taking the scattered waves from every obstacle as new incoming waves. This
process eventually leads to a converging series and is one way to treat scattering
by several objects.

In this thesis, we consider several models. In all of them it is assumed that
the reaction of the objects to the incoming field may be described by linear
response theory. The first model considered is scattering of electrodynamic,
acoustical or quantum mechanical waves by elliptical cylinders. The necessary
mathematical framework is formulated in chapter 2 along with the boundary
conditions and asymptotic conditions at infinity which allow one to obtain a
unique solution of the problem. The reason why elliptical cylinders were chosen
is that it provides for each obstacle two more degrees of freedom than in the
simplest model (cylindrical obstacles): the ratio of the axes and the orientation
may be varied for each cylidner. Formally this problem is closely related to the
three-dimensional problem of scattering by ellipsoids. Despite of the general
analogy and the close relation of the special functions involved the treatment
in two dimensions is much simpler because only one scalar function of two
variables has to be computed. Thus it seemed to be reasonable to study this
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2 CHAPTER 1. INTRODUCTION

problem first.

The time-independent scattered fields are calculated in chapter 3 using the
separation of variables technique for an arbitrary number of scatterers with
given positions, geometries and material constants. The separation of variables
technique is based on the choice of the ’right’ coordinate system in which the
Helmholtz equation is solved; it anticipates the fact that in the following the
vacuum does not fill the whole space but only the exterior of one or more regions
which have a simple geometrical form in an appropriately chosen coordinate
system. The scattered wave is then expanded in eigenfunctions of the Helmholtz
equations. To determine the yet unknown coefficients of the expansion of the
scattered wave, we employ the boundary conditions described in chapter 2.
During this process, the field inside the scatterer is calculated, too.

If two or more scatterers are present it is not possible to solve the scattering
problem by simply adding the scattering waves of the isolated single scatterers
to the incident plane wave. The first-order multiple scattering approximation is
obtained if the response of the second cylinder to the primary scattering wave of
the first cylinder is added to the primary scattering wave of the second cylinder,
and vice versa. This yields the already mentioned iteration scheme which con-
verges to the solution of the multiple scattering problem: the incoming plane
wave plus an outgoing scattering wave for each scatterer. The mathematical
tool needed to realise this program is the so-called addition theorem where an
outgoing wave related to one coordinate system is expressed as superposition
of regular partial waves related to another coordinate system.

The second model is described in chapter 4: the physical process of scatter-
ing is now taking place in the interior of a waveguide with Dirichlet boundary
conditions. The waveguide has the advantage that by means of the transfer ma-
trix method, which relates free solutions at two cross sections of the waveguide,
calculations for bigger structures or even a periodic structure are easier per-
formed. The solution is based on the Green’s function method for an arbitrary
number of Dirichlet scatterers of arbitrary shape.

One application of multiple scattering is to understand localisation effects
due to constructive and destructive interference. The concepts for these local-
isation phenomena are discussed in chapter 5 with a one-dimensional model
system based on a transfer matrix approach. This approach turns out to be
useful for finite structures, both regular and irregular ones. In the first ones,
the concept of bands and gaps can be introduced with great advantage: they
express the fact that, depending on their wavelengths, some waves can pene-
trate the structure in question while others cannot. An interesting phenomenon
is localisation, in particular time-dependent localisation which is not so com-
monly studied. In chapter five, the situation of a wave packet entering a finite
one-dimensional crystal described by a Dirac comb is discussed in detail and
related to ’localised states’.



3

In order to proceed from the time-independent solutions already found to
time-dependent ones, we introduce in chapter 6 a weighted integral over two-
dimensional k space which yields a time-dependent solution. Here, the choice
of an efficient integration method is crucial for the numerical approximation.
Details of this choice are given in chapter 8.

In chapter seven, Mathieu functions are described in detail. They are special
functions analogous to sine and cosine, with the difference that the underlying
coordinate system is not circular but elliptical. These functions were used in
chapter 3 for time-independent scattering by elliptical scatterers embedded in
vacuum.

In chapter 8, the chosen numerical implementation of the formulas pre-
sented in the previous chapters is described in some detail. Chapter 9 presents
numerical results obtained with the code written during this thesis, and finally,
chapter 10 summarises, concludes and gives an outlook.
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Chapter 2

Formulation of the problem

In this chapter, the physical problems and the equations used to describe them
are presented. In particular, a common framework is formulated for electro-
magnetic, quantum mechanical, and acoustical scattering problems. We start
by explaining what is meant by scattering and then introduce the mathematical
framework we are working with, the meaning of the parameters entering there,
and the boundary conditions needed to obtain a unique solution of the given
problem.

2.1 Introduction to scattering

Fig. 2.1 shows a schematic view of the scattering problem considered here. An
incident field uin interacts with a scatterer which occupies a bounded region
O with surface ∂O in two-dimensional space R2. The total field utot in the

incident
field

scatterer

scattered field

Figure 2.1: Schematic scattering process

surrounding medium R2\O is equal to the sum of the incident and the scattered
field, i.e. utot = uin+usc. The field inside the scatterer is called the internal field
uint. The problem is to determine the unknown scattered and internal fields in

5
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terms of the known incident fields. The mathematical formulation is based on
Helmholtz equations in R2 \O and O, boundary conditions on ∂O that depend
on the physical nature of the field (electromagnetism, quantum mechanics, and
acoustics), and an asymptotic boundary condition far away from the scatterer
which we introduce in chapter 3. We show that with certain assumptions, we
can find the same basic equations regardless of the theory we are working with.
Thus, it is possible to interpret the results obtained in this thesis as solutions
of electrodynamic, quantum mechanical, and acoustical problems.

Figure 2.2: Schematic evolution of a free wave packet

The time-dependent scattering process for one scatterer is sketched here
in order to illustrate time-dependent scattering and also to relate it to time-
independent scattering. In Fig. 2.2 a free gaussian wave packet moves upwards
with constant velocity, its horizontal extension being essential given by the
two branches of a hyperbola (cf. chapter 6). If a scatterer is placed at the
center of this hyperbola, the initial evolution of the wave packet is the same as
long as the packet is sufficiently far away from the obstacle (Fig. 2.3). Long
after scattering process the wave packet is concentrated in a ring which moves
outwards from the scatterer with constant velocity. The wave packet is given

Figure 2.3: Schematic evolution of a scattered wave packet long before and long
after the scattering process
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by the superposition of the original free wave packet and a scattering wave
packet both located within the ring. The angular dependence of the scattering
wave packet is usually determined by time-independent scattering theory. Note
that within the hyperbola the two packets interfere, reducing the intensity in
the forward direction. This corresponds to the shadow caused by the obstacle.
Information about the scattering process, e.g., the structure of the wave packet
in the vicinity of the scatterer, is implicitly fixed by time-independent theory
but cannot be easily deduced from this theory.

The time-dependent general equation is(
∆− 1

c2(x)
∂2

∂t2

)
u(x, t) = 0, (2.1)

where we assume that
lim

|x|→∞
c(x) = c0. (2.2)

The Fourier transform

u(x, t) =
1
2π

∫ ∞

−∞
u(x, ω)e−iωt dω (2.3)

and its inverse
u(x, ω) =

∫ ∞

−∞
u(x, t)eiωt dt (2.4)

yield a time-independent version of (2.1) for every value of ω:(
∆ + γ2k2

)
u(x) = 0, (2.5)

with
c0k = ω, γ(x) =

c0
c(x)

. (2.6)

γ(x) is a function whose meaning depends on the underlying physical theory.
In our models, γ(x) is constant inside and outside the obstacle with different
values.

γ(x) =

{
1 x ∈ R2 \O
γ 6= 1 x ∈ O

(2.7)

It will be specified later on for the three theories under consideration. We will
only consider boundary conditions at the surface ∂O which can be put into the
following general form1.

u(x)
∣∣
x∈∂O+ = γ0u(x)

∣∣
x∈∂O− (2.8)

∂

∂n
u(x)

∣∣
x∈∂O+ = γ1

∂

∂n
u(x)

∣∣
x∈∂O− (2.9)

Eqns. (2.7) and (2.8) may be generalised in an obvious way for any finite
number of obstacles.

1This means that we do not consider acoustical impedance boundary conditions
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2.2 Electromagnetism

In SI units, the Maxwell equations in a medium read as follows.

divD = ρ (2.10)

rotE +
∂B
∂t

= 0 (2.11)

divB = 0 (2.12)

rotH− ∂D
∂t

= J (2.13)

J and ρ denote the free current density and the free charges. They are sources
which are independent of the materials, i.e., all the induced currents and charges
are included in the fields H and D. The medium is characterised by two macro-
scopic fields: the polarisation density P and the magnetisation density M,
which are related to the fields D, E, B and H by [4]

D = ε0E + P = (1 + χe ) ε0E = εrε0E = εE, (2.14)

B = µ0 (H + M) = (1 + χm )µ0H = µrµ0H = µH. (2.15)

In these formulas, the quantities characterising the materials are called as fol-
lows: χe is the electrical susceptibility, χm the magnetic susceptibility, ε is called
electrical permittivity, and finally µ is known as the magnetic permeability. The
constants ε0 and µ0 are the vacuum values of ε and µ. They are related to the
vacuum velocity of light c0 by the relation

ε0µ0 =
1
c20
. (2.16)

We limit ourselves to isotropic, homogeneous materials, i.e., εr and µr are scalar
quantities whose magnitude does not depend on the field strengths, but may
depend on the position in space. In this case Maxwell’s equations reduce to

divE =
ρ

εrε0
, (2.17)

rotE +
∂B
∂t

= 0, (2.18)

divB = 0, (2.19)

rotB− εrµr
c20

∂E
∂t

= µrµ0J. (2.20)

Note that the frequency dependence of ε and µ is neglected in these equations,
although every real material exhibits such a dependence. However, this depen-
dence is not crucial for our purposes. In the following, we will limit ourselves
to a material with all the restrictions mentioned so far. Using the equality

rot rotA = grad divA−∆A (2.21)
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we get by straightforward combination of Maxwell equations the inhomogeneous
vector Helmholtz equation

∆E− εrµr
c20

∂2E
∂t2

= µrµ0J. (2.22)

Boundary conditions

If a change in the material constants occurs – caused by the obstacle O with
surface ∂O that we intend to study – the normal components of D and B and
the tangential components of E and H on either side of the obstacle are related
according to [4]

n · (D2 −D1) = σ, (2.23)

n× (E2 −E1) = 0, (2.24)

n · (B2 −B1) = 0, (2.25)

n× (H2 −H1) = K. (2.26)

n denotes the normal vector on ∂O. Here, it is assumed that the external
charge density ρ is singular at the interface and may therefore be interpreted
as an idealised surface charge density σ. As well, K is the idealised surface
current flowing on ∂O. Note that these still are the external sources and not
any induced charges or induced current densities. The induced charges and
currents are reflected in the discontinuities at ∂O of the normal component of
E and the tangential component of B.

Harmonic time dependence

Fields with a harmonic time dependence e−iωt, where ω = kc0, lead to the
following Fourier decomposition of the Maxwell equations.

divEk =
ρ

εrε0
(2.27)

rotEk − iωBk = 0 (2.28)

divBk = 0 (2.29)

rotBk + iω
εrµr
c20

Ek = µrµ0Jk. (2.30)

With ω2

c20
= k2 the wave equations for the electric and the magnetic field become

(
∆ + εrµrk

2
)
Ek =

1
εrε0

gradρ− iωµrµ0Jk, (2.31)(
∆ + εrµrk

2
)
Bk = −µrµ0rotJk. (2.32)
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The model studied

In the following, we assume that εr and µr are piecewise constant functions
inside and outside the obstacles.

εr(x) =

{
1 x /∈ O
εr 6= 1 x ∈ O

(2.33)

µr(x) =

{
1 x /∈ O
µr 6= 1 x ∈ O

(2.34)

We further assume that free charges and currents do not exist within a finite
distance of the obstacles.

J = 0 (2.35)

K = 0 (2.36)

ρ = 0 (2.37)

σ = 0 (2.38)

We then obtain the wave equations (2.1) and (2.5) with

γ = εrµr. (2.39)

Two-dimensional problems

Next we assume that the problem considered is two-dimensional, i.e., that all
planes parallel to a chosen axis – say the z axis – are physically equivalent: the
field vectors do not depend on z, and the obstacle is a cylinder with arbitrary
cross section whose axis is parallel to the z axis. The Maxwell equations then
simplify in the following way [5]: They decouple and we obtain two cases of
different polarisation, one called the transversal electric (TE) and the other
transversal magnetic (TM). Note that the terminology used for these two cases
is not unique [6]. The k vector of the incident field lies in the x-y plane.
The TE polarisation then refers to the situation where the incident electric
field is transverse to the x-y plane, i.e., E(x) = E(x, y)ez. As this means
that the electric field is parallel to the obstacle, we will call this the E‖-case.
Similarly, the TM polarised case refers to an incident wave with magnetic field
H(x) = H(x, y)ez. As this implies that Ez(x, y) ≡ 0, we refer to this as the
E⊥-case.

2.2.1 General equation and boundary conditions

We further have to specify the boundary conditions on the surface ∂O of the
obstacle O for the two cases. That is, the constants γ0 and γ1 vary depending
on whether we consider the E‖ or the E⊥ case.
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The E‖-case

We set Ek(x) = u(x)ez, i.e., the incident electric field is parallel to the cylinder
axis z, and the magnetic field is normal to the cylinder. We then get the
following coefficients for the boundary conditions (2.8) and (2.9)

γ0 = 1 Etang continuous, (2.40)

γ1 =
1
µr

Htang continuous. (2.41)

In the limit of the perfectly conducting cylinder (εr → ∞, µr → 0, εrµr =
const.) we get only one boundary condition, namely

u(x)
∣∣
x∈∂O = 0. (2.42)

The E⊥-case

Similarly, we set Bk(x) = u(x)ez here; now we get from Maxwell equations and
the boundary conditions the following relation for general boundary conditions
and material constants.

γ0 =
1
µr

Htang continuous (2.43)

γ1 =
1

εrµr
Etang continuous (2.44)

In the limit of the perfectly conducting cylinder (εr → ∞, µr → 0, εrµr =
const.) we now get the boundary condition

∂

∂n
u(x)

∣∣
x∈∂O = 0. (2.45)

2.3 Quantum Mechanics

The situation in quantum mechanics is less complex. We want to solve the
one-particle Schrödinger equation [7]

i~
∂ψ(x, t)
∂t

= − ~2

2m
∆ψ(x, t) + V (x)ψ(x, t), (2.46)

whose time-independent form is obtained with the ansatz ψ(x, t) = u(x)e−
i
~Et:

− ~2

2m
∆u(x) + V (x)u(x) = Eu(x). (2.47)

The model studied

In the following, we assume that V (x) is a piecewise constant function inside
and outside the obstacles.

V (x) =

{
0 x /∈ O
V 6= 1 x ∈ O

(2.48)
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2.3.1 General equation and boundary conditions

Again, we obtain the general time-independent and time-dependent wave equa-
tions (2.5) and (2.1). If, k2 and γ2(x) are given by

k2 =
2m
~2
E, (2.49)

γ2(x)k2 =
2m
~2

(E − V (x)) . (2.50)

The boundary conditions at ∂O are determined by the fact that the wave func-
tion and its normal derivative have to be continuous. Thus, the coefficients for
(2.8) and (2.9) are

γ0 = 1 u(x) continuous, (2.51)

γ1 = 1
∂

∂n
u(x) continuous. (2.52)

In the limit V →∞, the derivative of the wave function jumps and we get the
Dirichlet boundary condition

u(x)
∣∣
x∈∂O = 0. (2.53)

2.4 Acoustics

The wave equation for a homogeneous, lossless, source-free medium at rest is
given by the familiar wave equation for the density [8]

c2(x)∆ρ(x, t)− ∂2ρ(x, t)
∂t2

= 0. (2.54)

However, as the boundary conditions introduced below will depend on normal
velocity and pressure, this is a too general equation. Thus, we introduce the
further assumption that, in the equilibrium state, the fluid is at rest and that
the acoustical changes are isentropic. In this case, the relation between the
acoustical pressure and its equilibrium value is given by

P

P0
=
(
ρ

ρ0

)γ
,

where γ is the ratio of the specific heats. Linearisation yields the following
relations between the acoustical pressure p = P − P0, the acoustical density
δ = ρ − ρ0, and the speed of sound c0. The index 0 denotes equilibrium
quantities.

p = c20δ (2.55)

c20 =
γP0

ρ0
(2.56)
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Eventually, we get a more specialised version of the wave equation which is ex-
pressed in terms of pressure and thus expressed in the desired quantity, suitable
for simple application of the boundary conditions.

∆p(x, t)− 1
c2(x)

∂2p(x, t)
∂t2

= 0 (2.57)

A quantity that we will need further on is the velocity

u(x, t) = − 1
ρ0

∫
grad p(x, t) dt. (2.58)

Harmonic time dependence

Assuming again harmonic time dependence, i.e.,

p(x, t) = p(x)e−iωt, (2.59)

we obtain the now already familiar form of the wave equation when kc0 = ω

∆p(x) +
c20

c2(x)
k2p(x) = 0. (2.60)

The harmonic and linearised expression for the velocity (2.58) is

u(x) =
1

ikρ0c0
grad p(x). (2.61)

The model studied

We assume in the following that c(x) and ρ(x) describe two different media.

c(x) =

{
c+ x /∈ O
c− x ∈ O

(2.62)

ρ(x) =

{
ρ+ x /∈ O
ρ− x ∈ O

(2.63)

Boundary conditions

The boundary conditions on the surfaces of obstacles are: both the normal
velocity through the boundary surface and the pressure across the surface have
to be continuous.

p(x)
∣∣
x∈∂O+ = p(x)

∣∣
x∈∂O− (2.64)

1
ρ+
0

∂

∂n
p(x)

∣∣
x∈∂O+ =

1
ρ−0

∂

∂n
p(x)

∣∣
x∈∂O− (2.65)

The speed of sound c(x) does not appear in (2.65) because it has no effect in
the order considered in the linearised theory. Two limits to these boundary
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conditions exist: the acoustically soft case where the pressure vanishes on the
surface

p(x)
∣∣
x∈∂O = 0, (2.66)

and the acoustically hard case, where the normal velocity, and thus in our model
the normal derivative of the pressure, vanishes on the surface.

∂

∂n
p(x)

∣∣
x∈∂O = 0 (2.67)

2.4.1 General equation and boundary conditions

Again, the equation has the desired form for the pressure p(x) = u(x). With
the equilibrium speed of sound c0, we get the following expressions for k2 and
γ2:

k2 =
ω2

c20
, (2.68)

γ2(x) =
c20

c2(x)
. (2.69)

Finally, the γ coefficients for (2.8) and (2.9) are

γ0 = 1 p(x) continuous, (2.70)

γ1 =
ρ+
0

ρ−0
u(x) continuous. (2.71)

2.5 Summary

In this chapter, we introduced the Helmholtz equation and the corresponding
boundary conditions for two-dimensional electromagnetic, quantum mechanical
and acoustical problems. The meaning of the constants has been given for
each of these theories. These equations, supplemented by suitable asymptotic
boundary conditions, are the mathematical framework used to discuss various
scattering problems.



Chapter 3

Scattering in vacuum

In this chapter we discuss solutions of the time-independent Helmholtz equation
in an infinite domain in which an array of cylinders is embedded.(

∆ + k2
)
u(x) = 0, for x ∈ R2 \O (3.1a)(

∆ + γ2
i k

2
)
u(x) = 0, for x ∈ Oi (3.1b)

Here, O is the union of several bounded regions (’scatterers’) Oi ⊂ R2

O =
⋃
i

Oi, Oi ∩Oj = ∅. (3.2)

We will use the separation of variables technique for elliptical cylinder geometry.
A review of other methods commonly used to solve scattering problems may be
found in [9]. It is well known [10] that the Helmholtz equation plus boundary
conditions at the scatterer are not sufficient to obtain a unique solution of
the time-independent scattering problem. This question has been investigated
by Sommerfeld [11] in connection with the Green function of the Helmholtz
equation for spaces of infinite extent: a supplementary condition has to be
added in order to uniquely specify the scattering problem in an infinite domain.
This condition is called radiation condition.

Formulation of the time-independent scalar scattering problem

The function u(x) = uin(x) + usc(x), whose physical meaning was discussed in
chapter 2, is uniquely determined [12] if the following conditions are fulfilled.

(a) u(x) satisfies (3.1a) and (3.1b).

(b) u(x) satisfies homogeneous boundary conditions of the type

u(x)
∣∣
x∈∂O+

i
= γ

(i)
0 u(x)

∣∣
x∈∂O−i

(3.3)

∂

∂n
u(x)

∣∣
x∈∂O+

i
= γ

(i)
1

∂

∂n
u(x)

∣∣
x∈∂O−i

(3.4)

where γ(i)
0 and γ(i)

1 are constants or specified functions of position.

15
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(c) For r = |x|, the scattering wave usc(x) fulfills the radiation condition

lim
r→∞

r
1
2

(
∂usc(x)
∂r

− ikusc(x)
)

= 0. (3.5)

The sense of the − sign in the radiation condition will become more evident
in chapter 6, where time-dependent scattering is introduced.

Separation of variables method

The basic idea of the separation of variables method [9] is to make a separation
ansatz for the solution of the scalar Helmholtz equation (3.1a, 3.1b) and to
obtain from the scalar Helmholtz equation a set of differential equations for
each component. In order to make this happen, we first have to formulate the
partial differential equation in a coordinate system adapted to the geometry of
the problem. Then, in this particular coordinate system, we have to separate the
equation into as many ordinary differential equations as there are dimensions to
the problem. The solutions of these equations are finally used as building blocks
for the construction of an unique solution that fulfills the boundary conditions
[13].

The separation of variables method is very useful if the shape of the scatterer
may be described by a simple geometric form. There exist (at least) eleven
coordinate systems called separable coordinate systems for which this method
works for the Helmholtz equation [14]. These coordinate systems allow families
of separated solutions from which all solutions of the Helmholtz equation can
be built up.

3.1 Scattering by one elliptical cylinder

First, we solve the scattering problem for one elliptical cylinder as sketched in
Fig. 3.1. Now we are looking for a function uk fulfilling the scalar Helmholtz
equations (

∆ + k2
)
uk(ξ, η) = 0 ξ > ξ0 (3.6)(

∆ + γ2k2
)
uk(ξ, η) = 0 ξ < ξ0 (3.7)

in the implicitly defined elliptical coordinate system

(x, y) =x = (h cosh ξ cos η, h sinh ξ sin η) = X(h, ξ) (3.8)

(ξ, η) = ξ =

cosh−1

√
sh,x,y +

√
th,x,y

2h2
, σ(x, y) + cos−1

√
sh,x,y −

√
th,x,y

2h2

 = Ξ(h,x)

(3.9)
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uin(ξ,η)

(ξ,η)

usc(ξ,η)

boundary
conditions

asymptotic
boundary
conditions

γ, γ
0
, γ

1
(ξ

0
,η)

h h

Figure 3.1: Scattering by one elliptic cylinder

where the σ(x, y) depends on the quadrant containing (x, y) in the following
way.

σ(x, y) =


0 x > 0, y > 0
π
2 x < 0, y > 0

π x < 0, y < 0
3π
2 x > 0, y < 0

(3.10)

Finally, 2h is the distance between the two focal points and

sh,x,y =h2 + x2 + y2, (3.11)

th,x,y =4h2y2 +
(
x2 + y2 − h2

)2
. (3.12)

In the coordinate system (3.8), the Laplacian reads [14]

∆ =
2

h2 [cosh 2ξ − cos 2η ]

(
∂2

∂ξ2
+

∂2

∂η2

)
. (3.13)

In addition to (3.6) and (3.7) we impose the following conditions.

1. Continuity of uk(ξ, η) and graduk(ξ, η) for x /∈ ∂O. As we see from (3.9),
necessary conditions for smoothness of uk(ξ, η) are

lim
ε→0

[
uk(ξ, ε)−uk(ξ, 2π − ε)

]
= 0 , (3.14)

lim
ε→0

[
∂

∂η
uk(ξ, ε)− ∂

∂η
uk(ξ, 2π − ε)

]
= 0 , (3.15)

lim
ε→0

[
uk(ε, η)−uk(ε, 2π − η)

]
= 0 , (3.16)

lim
ε→0

[
∂

∂ξ
uk(ε, η)+

∂

∂ξ
uk(ε, 2π − η)

]
= 0 . (3.17)
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2. Radiation condition in elliptical coordinates

lim
ξ→∞

√
heξ

(
1
heξ

∂

∂ξ
− ik

)[
uk(ξ, η)− uin

k (ξ, η)
]

= 0 (3.18)

where uin
k (ξ, η) is the incoming wave eik·x in elliptical coordinates.

k = (k cosβ, k sin β)T (3.19)

uin
k (ξ, η) = eik·x =

∞∑
p=−∞

ep(β; qk)M(1)
p (ξ; qk)mep(η; qk), (3.20)

ep(β; qk) =

{
ipmep(β; qk) p ≥ 0

−(ip)mep(β; qk) p < 0.
(3.21)

In these equations

qk =
k2h2

4
(3.22)

and the functions M(1)
p (ξ; qk) and mep(η; qk) are Mathieu functions and

Modified Mathieu functions in the notation of chapter 7.

3. Boundary conditions at ξ = ξ0.

lim
ε→0

[
uk(ξ0 + ε, η)−γ0uk(ξ0 − ε, η)

]
= 0 (3.23)

lim
ε→0

[ ∂
∂ξ
uk(ξ0 + ε, η)−γ1

∂

∂ξ
uk(ξ0 − ε, η)

]
= 0 (3.24)

The constants γ0 and γ1 are discussed in chapter 2.

General solution

Solutions of (3.6) are products of Mathieu functions mem(η; q) in the ’angular’
variable η and modified Mathieu functions M(j)

p (ξ; q) in the ’radial’ variable
ξ (cf. chapter 7). There exist two linearly independent modified Mathieu
functions which we characterize by their behaviour when the ellipse becomes a
cylinder (h → 0). The first one, M(1)

p (ξ; q), becomes the Bessel function and
the second one, M(2)

p (ξ; q), the Neumann function; moreover M(3)
p = M(1)

p +
iM(2)

p and M(4)
p = M(1)

p − iM(2)
p . These functions and their properties will be

discussed in chapter 7. The products of angular and radial Mathieu functions
are called ’partial waves’ related to a certain k. M(3)

p (ξ; qk)mep(η; qk) is called an
’outgoing’ partial wave in the sense of (3.5) and M(1)

p (ξ; qk)mep(η; qk) a ’regular’
partial wave because it is smooth. A general solution uk(ξ, η) of equations (3.6)
and (3.7) is

uk(ξ, η) =

{
u

(i)
k (ξ, η) for ξ < ξ0

u
(e)
k (ξ, η) for ξ > ξ0

(3.25)
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where

iuk(ξ, η) =
∞∑

p=−∞
apM(1)

p (ξ; γ2qk)mep(η; γ2qk) (3.26)

and

euk(ξ, η) =
∞∑

p=−∞

[
cpM(1)

p (ξ; qk) + dpM(3)
p (ξ; qk)

]
mep(η; qk). (3.27)

Asymptotic boundary condition

The radiation condition (3.18) implies that

cp = ep = ep(β, qk). (3.28)

Boundary condition at the obstacle

With (3.28), the boundary conditions at ξ = ξ0 become

∞∑
p=−∞

[
epM(1)

p (ξ0; qk) + dpM(3)
p (ξ0; qk)

]
mep(η; qk) =

γ0

∞∑
p=−∞

apM(1)
p (ξ0; γ2qk)mep(η; γ2qk) (3.29)

and

∞∑
p=−∞

[
ep

dM(1)
p

dξ
(ξ0; qk) + dp

dM(3)
p

dξ
(ξ0; qk)

]
mep(η; qk) =

γ1

∞∑
p=−∞

ap
dM(1)

p

dξ
(ξ0; γ2qk)mep(η; γ2qk). (3.30)

Solution of the truncated set of linear equations

Since the parameters in the Mathieu functions are qk on the left hand side and
γ2qk on the right hand side, the situation is more complicated than for circular
cylinders where the same angular functions appear on both sides. With

Apr(q1, q2) =
∫ 2π

0
mep(η; q1)mer(η; q2) dη (3.31)
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eqs. (3.29) and (3.30) become by integration over
∫ 2π
0 mer(η; qk) dη

drM(3)
r (ξ0; qk)− γ0

∞∑
p=−∞

M(1)
p (ξ0; γ2qk)Apr(qk; γ2qk)ap =

−erM(1)
r (ξ0; qk), (3.32)

dr
dM(3)

r

dξ
(ξ0; qk)− γ1

∞∑
p=−∞

dM(1)
p

dξ
(ξ0; γ2qk)Apr(qk; γ2qk)ap =

−er
dM(1)

r

dξ
(ξ0; qk). (3.33)

For actual calculation, this linear system has to be truncated with −P ≤ p ≤ P

and −R ≤ r ≤ R (cf. section 8.3 for the details on the truncation procedure).
In order to formulate these equations as a linear system which can be solved by
standard methods, we introduce the following matrices. We use the notation
Diag (d1, d2, . . . , dN ) for diagonal matrices with the entries d1, d2, . . . , dN .

AR×P (qk, γ2qk) =

 A−R,−P (qk; γ2qk) · · · A−R,P (qk; γ2qk)
...

...
AR,−P (qk; γ2qk) · · · AR,P (qk; γ2qk)

 (3.34)

MR×R =Diag

(
M(3)
−R (ξ0; qk)

M(1)
−R (ξ0; qk)

, · · · ,
M(3)
R (ξ0; qk)

M(1)
R (ξ0; qk)

)
(3.35)

M∂
R×R =Diag

 ∂
∂ξM

(3)
−R (ξ0; qk)

∂
∂ξM

(1)
−R (ξ0; qk)

, · · · ,
∂
∂ξM

(3)
R (ξ0; qk)

∂
∂ξM

(1)
R (ξ0; qk)

 (3.36)

dMR×R =Diag

(
1

M(1)
−R (ξ0; qk)

, · · · , 1

M(1)
R (ξ0; qk)

)
(3.37)

dM∂
R×R =Diag

 1
∂
∂ξM

(1)
−R (ξ0; qk)

, · · · , 1
∂
∂ξM

(1)
R (ξ0; qk)

 (3.38)

iMP×P =Diag
(
M(1)
−P
(
ξ0; γ2qk

)
, · · · ,M(1)

P

(
ξ0; γ2qk

))
(3.39)

iM∂
P×P =Diag

(
∂

∂ξ
M(1)
−P
(
ξ0; γ2qk

)
, · · · , ∂

∂ξ
M(1)
P

(
ξ0; γ2qk

))
(3.40)

A vector xR with index R means that the vector x which has an infinite number
of components is truncated to

xR = (x−R, x−R+1, . . . , xR−1, xR) . (3.41)

We now reformulate the equations (3.32) and (3.33) in the following way.

MR×R dR = − eR + γ0
dMR×R AR×P

(
qk; γ2qk

)
iMP×P aP (3.42)

M∂
R×R dR = − eR + γ1

dM∂
R×R AR×P

(
qk; γ2qk

)
iM∂

P×P aP (3.43)
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If we eliminate aP , we obtain

XdR = −YeR (3.44)

with

X =

[
1
γ0

(
dMR×RAR×P (qk; γ2qk) iMP×P

)−1
MR×R (ξ0; qk)−

1
γ1

(
dM∂

R×RAR×P (qk; γ2qk) iM∂
P×P

)−1
M∂
R×R (ξ0; qk)

]
, (3.45)

Y =

[
1
γ0

(
dMR×RAR×P (qk; γ2qk) iMP×P

)−1
−

1
γ1

(
dM∂

R×RAR×P (qk; γ2qk) iM∂
P×P

)−1
]
. (3.46)

Note that for the inverse of the matrices to exist, we must demand R = P .
If we do not wish to set R = P or if, in a possible evaluation scheme, matrix
inversion is not the preferred method of solution, it is more convenient to join
the two vectors dR and aP into one single vector called vR+P :

vR+P = (d−R, . . . ,dR,a−P , . . . ,aP ) . (3.47)

Then, we obtain, with the 2R× (R+ S) matrix

U =

[
−MR×R γ0

dMR×R AR×P
(
qk; γ2qk

)
iMP×P

−M∂
R×R γ1

dM∂
R×R AR×P

(
qk; γ2qk

)
iM∂

P×P

]
(3.48)

and the vector
eR+P = (e−R, . . . , eR, e−P , . . . , eP ) (3.49)

the set of linear equations
UvR+P = eR+P . (3.50)

As we will see, it is also more convenient to demand R = P in this formulation.

Limiting cases

Note that in the limit of Dirichlet boundary conditions at ∂O and u = 0 in O

(e.g., ideally conducting cylinder for the E‖ case, soft acoustic obstacle) (3.29)
and (3.30) become, according to chapter 2, am = 0 and

∞∑
p=−∞

[
cpM(1)

p (ξ0; qk) + dpM(3)
p (ξ0; qk)

]
mep(η; qk) = 0 (3.51)

with the solution

dp(α, qk) = − M(1)
p (ξ0; qk)

M(3)
p (ξ0; qk)

ep(α, qk) . (3.52)
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incoming
wave

N scatterers

scattered wave

Figure 3.2: Multiple scattering by elliptical cylinders

Similarly, the Neumann limit (e.g., ideally conducting cylinder for the E⊥
case, hard acoustic obstacle) leads to the boundary conditon

∞∑
p=−∞

[
cp

dM(1)
p

dξ
(ξ0; qk) + dp

dM(3)
p

dξ
(ξ0; qk)

]
mep(η; qk) = 0 (3.53)

with the solution

dp(α, qk) = −
dM

(1)
p

dξ (ξ0; qk)

dM
(3)
p

dξ (ξ0; qk)
ep(α, qk) . (3.54)

3.2 Scattering by several elliptical cylinders

Next we consider time-independent scattering of electromagnetic waves by an
array of elliptical cylinders. If N > 1 scatterers are present it is not possible
to solve the scattering problem by simply adding the scattering waves of the
isolated single scatterers (’primary scattering waves’) to the incoming plane
wave. This is an approximation which only makes sense if the distances between
any two scatterers exceeds a critical value that depends on the wave length of
the incoming wave and the related cross section of the single scatterers. If this
condition is not satisfied one has to take into account that a scattering wave
which emerges from one cylinder modifies the regular field in the vicinity of
another cylinder. As illustrated in Fig. 3.2, no a priori limitations are imposed
on the number of scatterers, on the geometric parameters that fix their elliptical
form, on their orientation, on their relative positions (except that overlap is
forbidden), and on their material constants.

To describe non-confocal elliptical coordinates labelled with an index l we
use the following implicitly defined excentric coordinate system.

x = ρ(l) cosψ(l) + h(l)
(
cosh ξ(l) cos η(l) cosα(l) − sinh ξ(l) sin η(l) sinα(l)

)
(3.55)

y = ρ(l) sinψ(l) + h(l)
(
cosh ξ(l) cos η(l) sinα(l) + sinh ξ(l) sin η(l) cosα(l)

)
(3.56)



3.2. SCATTERING BY SEVERAL ELLIPTICAL CYLINDERS 23

With (3.8) and (3.9), we can write this as follows.

x =x(l) + D(α(l))X
(
h(l), ξ(l)

)
= X(l)

(
ξ(l)
)

(3.57)

ξ(l) =Ξ
(
h(l),D(−α(l))(x− x(l))

)
= ξ(l)(x) (3.58)

D(α) =

(
cosα − sinα
sinα cosα

)
(3.59)

Besides ρ(l), ψ(l), α(l) and h(l), the parameters of the l’th cylinder are its ra-
dius ξl,0 and the material constants γ(l), γ

(l)
0 , and γ

(l)
1 . The area covered by

the l’th cylinder is denoted by Ol ⊂ R2, bounded by the ellipse ∂Ol which
is parametrised by ξ

(l)
0 =

(
ξ
(l)
l,0 , η

(l)
)
. If a quantity is cylinder-dependent, its

cylinder number is added as a superscript in parentheses. An exception to this
rule is ξ

(m)
l,0 = ξ(m)(X(l)(ξ(l)

0 )) meaning the ’elliptic’ radius of the l’th cylinder
expressed in the coordinate system of the m’th cylinder.

General solution

Let u(l)
k (ξ(l), η(l)) be the incoming wave expressed in the coordinates of the

l’th cylinder, iu
(m)
k (ξ(m), η(m)) the interal wave of the m’th cylinder, and

eu
(m)
k (ξ(m), η(m)) the outgoing (scattering) wave from the same cylinder. The

superscript (l) in ξ and η denotes the fact that these are local coordinates rela-
tive to the coordinate system of the l’th cylinder as defined in (3.55) and (3.56).
They are given by

eu
(m)
k (ξ, η) =

∞∑
p=−∞

d(m)
p M(3)

p

(
ξ; q(m)

k

)
mep

(
η; q(m)

k

)
for ξ > ξm,0,

(3.60)

iu
(m)
k (ξ, η) =

∞∑
p=−∞

a(m)
p M(1)

p

(
ξ; γ(m)2q

(m)
k

)
mep

(
η; γ(m)2q

(m)
k

)
for ξ < ξm,0,

(3.61)

where

q
(l)
k =

k2h(l)2

4
. (3.62)

The total wave function is

uk(x) =uin
k (x) +

N∑
m=1

eu
(m)
k

(
ξ(m)(x)

)
for x /∈

⋃
m

Om (3.63)

uk(x) = iu
(l)
k (ξ(l)(x)) for x ∈ Ol (3.64)
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Plane wave

If the origin of the l’th coordinate system is denoted by r(l)
0 , the incoming

wave function in this coordinate system may be expressed with the help of the
two-dimensional rotation matrix D(α) given in (3.59) as follows. Note that
k · D(α(l))x = D(−α(l))k · x.

u
in,(l)
k (r(l)

0 , α(l); ξ(l), η(l)) = eik·r
(l)
0 eik·D(α(l))xl = eik·r

(l)
0 uin

D(−α(l))k
(ξ(l), η(l)) (3.65)

= eik·r
(l)
0

∞∑
p=−∞

ep(β − α(l); q(l)k )M(1)
p (ξ(l); q(l)k )mep(η(l); q(l)k )

(3.66)

For the definition of β see (3.19).

Boundary conditions at the obstacles

The N boundary conditions for the obstacles labelled by 1 ≤ l ≤ N read as
follows.

u
in,(l)
k (r(l)

0 , α(l); ξ(l)
l,0) +

N∑
m=1

eu
(m)
k (ξ(m)

l,0 ) = γ
(l)
0

iu
(l)
k (ξ(l)

l,0) (3.67)

∂

∂ξ(l)
u

in,(l)
k (r(l)

0 , α(l); ξ(l)
l,0) +

N∑
m=1

∂

∂ξ(l)
eu

(m)
k (ξ(m)

l,0 ) = γ
(l)
1

∂

∂ξ(l)
iu

(l)
k (ξ(l)

l,0) (3.68)

If we consider the boundary equations at a given cylinder with index l, the
first step is now to express all the outgoing fields from all other cylinders with
index m 6= l with the help of the addition theorem.

Addition theorem

To solve these equations, we have to express an outgoing partial wave related
to one coordinate system (index l) as superposition of regular partial waves
related to another coordinate system (index m) as sketched in Fig. 3.3. This
may be done with the so-called addition theorem for Mathieu functions.

M(j)
p (ξ(l); q(l)k )mep(η(l); q(l)k ) =

∞∑
r=−∞

B(j)
r,p (ρ

lm, α(l) − α(m), k, q
(l)
k , q

(m)
k )×

M(1)
r (ξ(m); q(m)

k )mer(η(m); q(m)
k ) (3.69)

The addition theorem and its coefficients B(j)
r,p (v, α, k, q1, q2) are described in

detail in chapter 7.
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ρlm

r
0

(m)

r
0

(l)

α(m)

α(l)

Figure 3.3: Two elliptical coordinate systems

The set of linear equations

The transformed equations (3.67) and (3.68) read as follows.
∞∑

p=−∞
e(l)p M(1)

p

(
ξ
(l)
l,0 ; q

(l)
k

)
mep

(
η(l); q(l)k

)
+

N∑
m=1
m6=l

∞∑
p=−∞

d(m)
p ×

∞∑
r=−∞

B(3)
r,p (ρlm, αm − α(l), k, q

(m)
k , q

(l)
k )M(1)

r (ξ(l)l,0 ; q
(l)
k )mer(η(l); q(l)k )

+
∞∑

p=−∞
d(l)
p M(3)

p

(
ξ
(l)
l,0 ; q

(l)
k

)
mep

(
η(l); q(l)k

)

=γ(l)
0

N∑
m=1

a(l)
p M(1)

p

(
ξ
(l)
l,0 ; γ

(l)2q
(l)
k

)
mep

(
η(l); γ(l)2q

(l)
k

)
(3.70)

∞∑
p=−∞

e(l)p
∂

∂ξ(l)
M(1)
p

(
ξ
(l)
l,0 ; q

(l)
k

)
mep

(
η(l); q(l)k

)
+

N∑
m=1
m6=l

∞∑
p=−∞

d(m)
p ×

∂

∂ξ(l)

∞∑
r=−∞

B(3)
r,p (ρlm, αm − α(l), k, q

(m)
k , q

(l)
k )M(1)

r (ξ(l)l,0 ; q
(l)
k )mer(η(l); q(l)k )

+
∂

∂ξ(l)

∞∑
p=−∞

d(l)
p M(3)

p

(
ξ
(l)
l,0 ; q

(l)
k

)
mep

(
η(l); q(l)k

)
=γ(l)

1

∞∑
p=−∞

a(l)
p

∂

∂ξ(l)
M(1)
p

(
ξ
(l)
l,0 ; γ

(l)2q
(l)
k

)
mep

(
η(l); γ(l)2q

(l)
k

)
(3.71)
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Truncated set of linear equations

We multiply the equations we obtained in this way with mer
(
η(l); q(l)k

)
and

integrate them over η(l) from 0 to 2π. This yields, using (3.31)

M(3)
rl

(
ξ
(l)
l,0 ; q

(l)
k

)
M(1)
rl

(
ξ
(l)
l,0 ; q

(l)
k

)d(l)
rl

=− e(l)rl −
N∑

m=1
m6=l

∞∑
pm=−∞

d(m)
pm

B(3)
rl,pm

(ρlm, αm − α(l), k, q
(m)
k , q

(l)
k )+

+ γ
(l)
0

∞∑
pl=−∞

a(l)
pl

M(1)
pl

(
ξ
(l)
l,0 ; γ

(l)2q
(l)
k

)
M(1)
rl

(
ξ
(l)
l,0 ; q

(l)
k

) Arl,pl

(
q
(l)
k ; γ(l)2q

(l)
k

)
(3.72)

∂
∂ξ(l)

M(3)
rl

(
ξ
(l)
l,0 ; q

(l)
k

)
∂

∂ξ(l)
M(1)
rl

(
ξ
(l)
l,0 ; q

(l)
k

)d(l)
rl

=− e(l)rl −
N∑

m=1
m6=l

∞∑
pm=−∞

d(m)
pm

B(3)
rl,pm

(ρlm, α(l) − α(m), k, q
(l)
k , q

(m)
k )+

+ γ
(l)
1

∞∑
pl=−∞

a(l)
pl

∂
∂ξ(l)

M(1)
pl

(
ξ
(l)
l,0 ; γ

(l)2q
(l)
k

)
∂

∂ξ(l)
M(1)
rl

(
ξ
(l)
l,0 ; q

(l)
k

) Arl,pl

(
q
(l)
k ; γ(l)2q

(l)
k

)
(3.73)

In order to write this equation in matrix form, we introduce the following
notation. Assume that vectors d(l) and a(l) are truncated according to chapter
8.3. Their components are

(
d(l)
)
rl
, −Rl < rl < Rl and

(
a(l)
)
pl

, −Pl < pl < Pl.
We introduce the following matrices.

M(l) =Diag

M(3)
−Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
M(1)
−Rl

(
ξ
(l)
l,0 ; q

(l)
k

) , · · · , M(3)
Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
M(1)
Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
 (3.74)

M(l)∂ =Diag

 ∂
∂ξ(l)

M(3)
−Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
∂

∂ξ(l)
M(1)
−Rl

(
ξ
(l)
l,0 ; q

(l)
k

) , · · · , ∂
∂ξ(l)

M(3)
Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
∂

∂ξ(l)
M(1)
Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
 (3.75)

dM(l) =Diag

 1

M(1)
−Rl

(
ξ
(l)
l,0 ; q

(l)
k

) , · · · , 1

M(1)
Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
 (3.76)

dM(l)∂ =Diag

 1
∂

∂ξ(l)
M(1)
−Rl

(
ξ
(l)
l,0 ; q

(l)
k

) , · · · , 1
∂

∂ξ(l)
M(1)
Rl

(
ξ
(l)
l,0 ; q

(l)
k

)
 (3.77)

iM(l)n =Diag
(
M(1)
−Pl

(
ξ
(l)
l,0 ; γ

(l)2q
(l)
k

)
, · · · ,M(1)

Pl

(
ξ
(l)
l,0 ; q

(l)
k

))
(3.78)

iM(l)n∂ =Diag
(

∂

∂ξ(l)
M(1)
−Pl

(
ξ
(l)
l,0 ; γ

(l)2q
(l)
k

)
, · · · , ∂

∂ξ(l)
M(1)
Pl

(
ξ
(l)
l,0 ; q

(l)
k

))
(3.79)
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As well, let T(l,m) be defined by

T(l,m) =


B

(3)
−Rl,−Rm

(·) . . . B
(3)
−Rl,+Rm

(·)
...

...
B

(3)
Rl,−Rm

(·) . . . B
(3)
Rl,+Rm

(·)

 (3.80)

where

B(j)
m,n(·) ≡ B(j)

m,n(ρ
lm, α(l) − α(m), k, q

(l)
k , q

(m)
k ). (3.81)

This yields the following equations.

M(l)d(l) = − e(l) −
∑
m=1
m6=l

T(l,m)d(m) + γ
(l)
0

dM(l)A
(
q
(l)
k ; γ(l)2q

(l)
k

)
iM(l)a(l)

(3.82)

M(l)∂d(l) = − e(l) −
∑
m=1
m6=l

T(l,m)d(m) + γ
(l)
1

dM(l)∂A
(
q
(l)
k ; γ(l)2q

(l)
k

)
iM(l)∂a(l)

(3.83)

Elimination of a(l) yields[
1

γ
(l)
0

(
dM(l)A(·) iM(l)

)−1
M(l) − 1

γ
(l)
1

(
dM(l)∂A(·) iM(l)

)−1
M(l)∂

]
d(l)

=

[
1

γ
(l)
0

(
dM(l)A(·) iM(l)

)−1
− 1

γ
(l)
1

(
dM(l)∂A(·) iM(l)

)−1
]−e(l) −

∑
m=1
m6=l

T(l,m)d(m)


(3.84)

where

A(·) = A
(
q
(l)
k ; γ(l)2q

(l)
k

)
. (3.85)

With

X(l) =

[
1

γ
(l)
0

(
dM(l)A(·) iM(l)

)−1
M(l) − 1

γ
(l)
1

(
dM(l)∂A(·) iM(l)

)−1
M(l)∂

]
(3.86)

Y(l) =

[
1

γ
(l)
0

(
dM(l)A(·) iM(l)

)−1
− 1

γ
(l)
1

(
dM(l)∂A(·) iM(l)

)−1
]

(3.87)

we can write the N equations 1 ≤ l ≤ N as

X(l)d(l) = Y(l)

−e(l) −
∑
m6=l

T(l,m)d(m)

 . (3.88)
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Iterative solution

The iterative approach to solve (3.88) starts with the single-scattering solutions
d(l)

0 for every scatterer. The equivalent of (3.50) for the l’th scatterer may be
written in the form of (3.88) as

X(l)d(l)
0 = −Y(l)e(l). (3.89)

In these vectors, the index 0 denotes the ’order’ of the approximation. The
single-scattering approximation which neglects all the interactions between the
scattering bodies will be called order 0. Now, we take the zero-order outgoing
waves d(m)

0 of all the cylinders and form a new incoming wave for the l’th
cylinder with partial wave coefficients f (l)

0 .

f (l)
0 =

∑
m6=l

T(l,m)d(m)
0 (3.90)

Now, this yields a first-order approximation for the coefficients d:

X(l)d(l)
1 = −Y(l)f (l). (3.91)

If we continue this process by taking now the d(l)
1 as incoming waves, we obtain

a converging iterative scheme, starting with (3.89).

X(l)d(l)
i+1 = −Y(l)

∑
m6=l

T(l,m)d(m)
i . (3.92)

This scheme corresponds to a matrix inversion as described below. As for nu-
merical computation the latter is much faster, we focus on the ’matrix-inversion
technique’ for solving the multiple scattering problem from now on.

Solution by solving the linear system

With the help of the extended vectors

de =
(
d(1)T , . . . ,d(N)T

)T
(3.93)

eeY =
((

Y(1)e(1)
)T

, . . . ,
(
Y(N)e(N)

)T )T
(3.94)

we eventually get a set of linear equations that may be solved with standard
methods.

Ude = eeY (3.95)

Here, U is given by

U =


X(1) Y(1)T(1,2) · · · Y(1)T(1,N)

Y(2)T(2,1) X(2) · · · Y(2)T(2,N)

...
. . .

...
Y(N−1)T(N−1,1) · · · X(N−1) Y(N−1)T(N−1,N)

Y(N)T(N,1) Y(N)T(N,2) · · · Y(N)T(N,N−1) X(N)

 .

(3.96)
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Limiting cases

In the limit of Dirichlet scatterers, the boundary conditions (3.67) and (3.68)
at the l’th obstacle simplifiy to

uin
k (ξ(l)

l,0) +
N∑
m=1

u
(m)
k (ξ(m)

l,0 ) = 0 . (3.97)

Writing this explicitly we get

M(3)
rl (ξ(l); q(l)k )

M(1)
rl (ξ(l); q(l)k )

dlrl = −eik·r
(l)
0 erl(β − α(l); ρ(l), ψ(l))−

N∑
m=1
m6=l

∞∑
pm=−∞

d(m)
pm

B(3)
rl,pm

(·),

(3.98)
where

B(j)
r,p (·) ≡ B(j)

r,p (ρ
lm, α(l) − α(m), k, q

(l)
k , q

(m)
k ). (3.99)

In the same way as before this yields a matrix equation

UDde = ee (3.100)

where

UD =


M(1) T(1,2) · · · T(1,N)

T(2,1) M(2) · · · T(2,N)

...
. . .

...
T(N−1,1) · · · M(N−1) T(N−1,N)

T(N,1) T(N,2) · · · T(N,N−1) M(N)

 (3.101)

and

ee =
((

e(1)
)T

, . . . ,
(
e(N)

)T )T
. (3.102)

For Neumann scatterers, the boundary conditions (3.67) and (3.68) at the
l’th obstacle simplifiy to

∂

∂ξ(l)
uin
k (ξ(l)

l,0) +
N∑
m=1

∂

∂ξ(l)
u

(m)
k (ξl,0) = 0 . (3.103)

Writing this explicitly we get

∂
∂ξ(l)

M(3)
rl (ξ(l); q(l)k )

∂
∂ξ(l)

M(1)
rl (ξ(l); q(l)k )

dlrl = −eik·r
(l)
0 erl(β−α

(l); ρ(l), ψ(l))−
N∑

m=1
m6=l

∞∑
pm=−∞

d(m)
pm

B(3)
rl,pm

(·),

(3.104)
where B(j)

m,n(·) is again given by (3.99). In the same way as before this yields a
matrix equation

UNde = ee (3.105)
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where

UN =


M(1)∂ T(1,2) · · · T(1,N)

T(2,1) M(2)∂ · · · T(2,N)

...
. . .

...
T(N−1,1) · · · M(N−1)∂ T(N−1,N)

T(N,1) T(N,2) · · · T(N,N−1) M(N)∂

 . (3.106)

Both (3.105) and (3.100) are sets of linear equations which may be solved
with standard methods [15].

Asymptotic boundary condition

Another form of the addition theorem (cf. chapter 7), called exterior addition
theorem is given by

M(j)
p (ξ(l); q(l)k )mep(η(l); q(l)k ) =

∞∑
r=−∞

Ar(ρlm, α(l) − α(m), k, q
(l)
k , q

(m)
k )×

M(j)
r+p(ξ

(m); q(m)
k )mer(η(m); q(m)

k ). (3.107)

This shows that the sum of outgoing scattered waves from all scatterers can be
brought into the following form which is valid for ξ large enough (cf. chapter 7
again).

usc(ξ, η) =
∞∑

p=−∞
d′p

(
d(l), . . . ,d(N)

)
Mp(ξ; qk)mep(η; qk) (3.108)

Thus, all the outgoing waves from all the cylinders fulfill the asymptotic bound-
ary condition as in (3.18). usc(x) has the asymptotic behaviour

usc(x) =
eikr√
kr

[
u∞

(x
r

)
+O

(
1
r

)]
(3.109)

The M(j)
p are defined to fulfill M(j)

p (ξ; q) → Z
(j)
m (2

√
q cosh ξ) for ξ → ∞. With

2
√
q cosh ξ ≈ √

qeξ for ξ � 1 and

H(1),(2)
m (ξ) → (−i)m

√
2
πξ
e±i(ξ−

π
4
)

we get

M(3,4)
p (ξ; q) → e±i

√
qeξ√√
qeξ

(−i)m
√

2
π
e±i

π
4 . (3.110)

So, we define a far-zone field for one scatterer

u∞(η) = (−i)m 1 + i√
π

∞∑
p=−∞

d(m)
p mep

(
η; q(m)

k

)
. (3.111)
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For several scatterers, we have r = r(l)
0 + r(l). This means that M(j)

p (ξ; q) →
Z

(j)
m (2

√
q cosh ξ−k|r(l)

0 | cos( η−ψ(l)) for ξ →∞, therefore the far-zone field for
several scatterers is

u∞(η) =
∞∑

p=−∞

1 + i√
π

N∑
m=1

(−i)me−k|r
(m)
0 | cos(η−ψ(m))d(m)

p mep
(
η; q(m)

k

)
. (3.112)

3.3 Summary

In this chapter, we considered time-independent scattering of electromagnetic
waves by an array of elliptical cylinders. The mathematical model is formu-
lated explicitly in elliptical geometry and solved by the separation of variables
method. No a priori limitations are imposed on the number of scatterers, on
the geometric parameters that fix their elliptical form, on their orientation, on
their relative positions (except that overlap is forbidden), and on their material
constants.

The solution is obtained in two steps: first, a solution of the single scattering
problem (scattering by one elliptical cylinder) is obtained. By using the addition
theorem for Mathieu functions (cf. chapter 7) two solution methods for the
problem of several scatterers is then given for a given wave vector k: first, an
iterative approach which makes clear why the framework of solution for several
scatterers is called multiple scattering. Second, a numerically more efficient
approach is presented which is based on solving the set of linear equations
directly.
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Chapter 4

Scattering in a waveguide

This chapter deals with several scatterers in a two-dimensional waveguide where
x is the longitudinal and y the transverse direction. This waveguide is described
by Dirichlet boundary conditions at y = 0 and y = W . Note that this implies
a modification of the asymptotic boundary condition. The physical meaning
of these boundary conditions is a ’potential wall’ of infinite height in quantum
mechanics, an ideal conductor for the E‖ case in electrodynamics, and two
infinite acoustically soft walls in acoustics. The waveguide contains several
obstacles Oi ⊂ R2 whose shapes are parametrised by closed curves ∂Oi. See
Fig. 4.1 for an illustration of the geometry. We demand that u(x) satisfies
Dirichlet boundary conditions on ∂Oi.

Figure 4.1: Obstacles in waveguide

Waveguide modes

Free solutions u(x, y) in the waveguide without any obstacles must be solutions
to the Helmholtz equation

(
∆ + k2

)
u(x, y) = 0, for (x, y) ∈ D (4.1)

in the domain

D = (−∞,∞)× [0,W ], (4.2)

33
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and fulfil the boundary conditions

u(x, 0) =0, (4.3)

u(x,W ) = 0. (4.4)

The general free solution is given by

ufree(x, y;x0) =
∞∑
n=1

anφn(y)eiκn(x−x0) + bnφn(y)e−iκn(x−x0), (4.5)

where

φn(y) =

√
2
W

sin(kny), (4.6)

kn =
nπ

W
, (4.7)

κn =
√
k2 − k2

n . (4.8)

The index n labels the modes of the waveguide. If κn is real, the mode is called
propagating, if it is imaginary, it is called evanescent. Note that for a given k,
there exist always only a finite number of propagating modes. The function (4.5)
is well-behaved for any finite x. In order to calculate real scattering problems,
we have to make sure that no exponentially growing waves are present for
x→ ±∞.

4.1 Green’s function formulation

In order to formulate an integral equation for the problem sketched in Fig. 4.1,
we have to calculate the Green’s function Gk(x,x′), first. From its definition,
it has to satisfy the inhomogeneous wave equation(

∆ + k2
)
Gk(x,x′) = −δ(x− x′) = −δ(x− x′)δ(y − y′), (x, y) ∈ D. (4.9)

Here, x = (x, y), x′ = (x′, y′) and

D = (−∞,∞)× (0,W ). (4.10)

The boundary conditions imposed on Gk(x,x′) are:

1. Dirichlet boundary conditions on the walls

Gk(x,x′) = 0, on y = 0, y = W. (4.11)

2. At infinity Gk(x,x′) must consist of outgoing waves only.

lim
x→+∞

(
∂

∂x
− iκn

)∫ W

0
G(x,x′)φn(y′) dy′ = 0 (4.12)

lim
x→−∞

(
∂

∂x
+ iκn

)∫ W

0
G(x,x′)φn(y′) dy′ = 0 (4.13)
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In view of (4.11), let us make the ansatz

Gk(x,x′) =
∞∑
n=1

φn(y)φn(y′)fn(x, x′). (4.14)

Substituting this into (4.9), we obtain

∞∑
n=1

(
∂

∂x2
+ κ2

n

)
φn(y)φn(y′)fn(x, x′) = −δ(x− x′)δ(y − y′). (4.15)

Note that either κn > 0 or κn = iκ′n with κ′n > 0. By applying a test function,
we see that (4.15) is equivalent to the following differential equation for fn.(

∂

∂x2
+ κ2

n

)
fn(x, x′) = −δ(x− x′)

2
W

(4.16)

For x 6= x′, fn satisfies the homogeneous one-dimensional wave equation so that
we can write, using the radiation conditions (4.12) and (4.13),

fn =

{
Cne

iκn(x− x′) for x > x′

Cne
−iκn(x− x′) for x < x′.

(4.17)

The amplitude Cn is the same for both cases, since G must be continuous across
x = x′. In order to determine Cn, we integrate (4.16) once with respect to x.
As

lim
ε→0

∫ x′+ε

x′−ε

(
∂

∂y2
+ κ2

n

)
fn(x, x′) dx = lim

ε→0

∂fn
∂x

∣∣∣x′+ε
x′−ε

= − lim
ε→0

2
W

∫ x=x′+ε

x=x′−ε
δ(x− x′) = − 2

W
(4.18)

and as from (4.17) we see that the discontinuity of ∂fn

∂x across the x = 0 plane
is 2iκnCn, we see that

Cn =
i

κnW
. (4.19)

Therefore, we obtain finally [16]

Gk(x,x′) =
i

W

∞∑
n=1

sin
(
nπ
W y
)
sin
(
nπ
W y′

)
κn

eiκn|x−x′|. (4.20)

4.1.1 Formulation of the problem

We outline some properties of the scattering solutions to the two-dimensional
Helmholtz equation (4.1) for a single obstacle O ⊂ D with the help of the
Green’s function (4.20). Given an integrable function ψ(x), we define the single-
layer potential [17]

[Sψ] (x) =
∫
∂O
Gk(x,x′(s))ψ(x′(s)) ds, x ∈ D \O. (4.21)
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y=0

x=0

y=W

s
1
(ϕ1)

ϕ1

r
1

Figure 4.2: Coordinates for describing a scatterer in the waveguide

It is a solution to the Helmholtz equation in D \ O and satisfies the same
boundary and asymptotic conditions as Gk(x,x′) (4.11 - 4.13). For a given
curve ∂O ⊂ D, which is parametrised by (cf. Fig. 4.2)

s1 (r1, ϕ1) = r1 + s1(ϕ1), 0 ≤ ϕ1 < 2π, (4.22)

we demand
u
(
s1 (r1, ϕ1)

)
= 0, for 0 ≤ ϕ1 < 2π. (4.23)

A general solution for u(x) is given by the sum of a given incident field

uin(x;x0) =
∞∑
n=1

ain
n φn(y)e

iκn(x−x0) + binn φn(y)e
−iκn(x−x0) (4.24)

and the single layer potential of a yet unknown source distribution ψ
(
s1 (r1, ϕ1)

)
:

u(x) = uin(x;x0) + [Sψ] (x) = uin(x;x0) + usc(x)

= uin(x;x0) +
∫ 2π

0
Gk
(
x, s1 (r1, ϕ1)

)
ψ
(
s1 (r1, ϕ1)

) ∣∣∣∣ ds1

dϕ1

∣∣∣∣ dϕ1. (4.25)

4.2 Solution of the waveguide problem

Now, we make a Fourier ansatz for the unknown source distribution ψ on the
boundary.

ψ
(
s1 (r1, ϕ1)

) ∣∣∣∣ ds1

dϕ1

∣∣∣∣ = ∞∑
m=−∞

jme
imϕ1 (4.26)

This leads to the field

usc(x) =
∞∑

m=−∞
jmu

sc
m(x) (4.27)
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where

usc
m(x) =

i

W

∞∑
n=1

φn(y)
κn

∫ 2π

0
φn(s1 (r1, ϕ1) · ey)eiκn|x−s1(r1,ϕ1)·ex|eimϕ1 dϕ1.

(4.28)
In order to calculate the jm, we multiply the boundary condition

uin
(
s1 (r1, ϕ) ;x0

)
+

∞∑
m=−∞

jmu
sc
m

(
s1 (r1, ϕ)

)
= 0 0 ≤ ϕ < 2π (4.29)

by einϕ and integrate it over ϕ from 0 to 2π. This yields for every n ∈ Z an
equation

∞∑
l=1

[
V a
n,l(x0)ain

l + V b
n,l(x0)binl

]
+

∞∑
m=−∞

Un,m jm = 0, (4.30)

where

Un,m =
∫ 2π

0
usc
m

(
s1 (r1, ϕ)

)
einϕ dϕ, (4.31)

V a
n,l(x0) =

∫ 2π

0
φl
(
s1 (r1, ϕ) · ey

)
eiκl(s

1(r1,ϕ)·ex−x0)einϕ dϕ, (4.32)

V b
n,l(x0) =

∫ 2π

0
φl(s1 (r1, ϕ) · ey)e−iκl(s

1(r1,ϕ)·ex−x0)einϕ dϕ. (4.33)

This is a linear set of equations. In vector and matrix notation, we obtain

j = −U−1
[
Vaain + V bbin

]
. (4.34)

Several scatterers with overlap in x-direction

Next, we discuss the situation where several scatterers Ok ⊂ D, 1 ≤ k ≤ N ,
are present in the waveguide. With the unknown source distributions ψk, the
general solution for the N scatterers is

u(x) = uin(x;x0) +
N∑
k=1

[
Sψk

]
(x) = uin(x;x0) +

N∑
k=1

usc,k(x)

= uin(x;x0) +
N∑
k=1

∫ 2π

0
Gk

(
x, sk (rk, ϕk)

)
ψ
(
sk (rk, ϕk)

) ∣∣∣∣ dsk

dϕk

∣∣∣∣ dϕk.

(4.35)

Similarly to (4.22), we parametrise ∂Ok by

sk (rk, ϕk) = rk + sk(ϕk), 0 ≤ ϕk < 2π. (4.36)

We need functions

ψk(
(
sk (rk, ϕk)

) ∣∣∣∣ dsk

dϕk

∣∣∣∣ = ∞∑
m=−∞

jkme
imϕk (4.37)
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on the surfaces ∂Ok of the scatterers. To solve the N boundary equations, on
the surfaces ∂Oi, we introduce

usc,k
m (x) =

i

W

∞∑
n=1

φn(y)
κn

∫ 2π

0
φn(sk (rk, ϕk) · ey)eiκn|x−sk(rk,ϕk)·ex|eimϕk dϕk.

(4.38)
The boundary equations read for 1 ≤ i ≤ N

0 = u(si (ri, ϕi)) = uin(si (ri, ϕi) ;x0) +
N∑
k=1

[
Sψk

]
(si (ri, ϕi))

= uin(si (ri, ϕi) ;x0) +
N∑
k=1

∞∑
m=−∞

usc,k
m (si (ri, ϕi))jkm, 0 ≤ φi < 2π.

(4.39)

Next, we multiply (4.39) by einϕi , and integrate over ϕi from 0 to 2π. This
yields for every 1 ≤ i ≤ N and every n ∈ Z an equation

∞∑
l=1

[
V a,i
n,l (x0)ain

l + V b,i
n,l (x0)binl

]
+

N∑
k=1

∞∑
m=−∞

U i,kn,m j
k
m = 0, (4.40)

where

U i,kn,m =
∫ 2π

0
usc,k
m

(
si (ri, ϕi)

)
einϕi dϕi, (4.41)

V a,i
n,l (x0) =

∫ 2π

0
φl
(
si (ri, ϕi) · ey

)
eiκl(s

i(ri,ϕi)·ex−x0)einϕi dϕi, (4.42)

V b,i
n,l (x0) =

∫ 2π

0
φl(si (ri, ϕi) · ey)e−iκl(s

i(ri,ϕi)·ex−x0)einϕi dϕi. (4.43)

This is again a linear set of equations. Using

je =
[(

j1
)T
,
(
j2
)T
, . . . ,

(
jN
)T ]T

, (4.44)

and

V e,a =


V a,1

V a,2

...
V a,N

 , V e,b =


V b,1

V b,2

...
V b,N

 , (4.45)

U e =


U1,1 U1,2 · · · U1,N

U2,1 U2,2 · · · U2,N

...
. . .

...
UN,1 UN,2 · · · UN,N

 , (4.46)

we rewrite it as follows:

je = − (U e)−1 [V e,aain + V e,abin
]
. (4.47)
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4.3 Transfer Matrix

Take the two free solutions uL(x;xL) and uR(x;xR) defined to the left and to
the right of the scatterer(s).

uL(x;xL) =
∞∑
n=1

aLnφn(y)e
iκn(x−xL) + bLnφn(y)e

−iκn(x−xL), −∞ < x ≤ xL,

(4.48)

uR(x;xR) =
∞∑
n=1

aRnφn(y)e
iκn(x−xR) + bRnφn(y)e

−iκn(x−xR), xR ≤ x <∞.

(4.49)

Similarly to chapter 3, a will denote a vector with an infinite number of compo-
nents (a1, a2, . . . , aN , aN+1, . . . ) and aN the finite vector (a1, a2, . . . , aN ). Now,
in (4.25), set uin(x;x0) = uL(x;xL), and u(x) = uR(x;xR). With the source
distributions given by (4.34) or (4.47), uR(x;xR) is then uniquely determined
by the coefficients aL and bL. The transfer matrix T(xL, xR) is defined as the
matrix which describes this relation in the following way (cf. Fig. 4.3).(

aR

bR

)
= T(xL, xR)

(
aL

bL

)
. (4.50)

Note that once the transfer matrix is known for a given source distribution j,
we can calculate the solution for an arbitrary number of identical structures
with the same source distribution by multiplying the free-wave coefficients on
one side of the obstacles with the transfer matrix as often as necessary.

x=x
L

x=x
R

y=0

y=W

aL aR

bL bR

Figure 4.3: Transfer Matrix relating free solutions
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4.3.1 Determination of the transfer matrix for one scatterer

Now, take (4.25) and its derivative, both with uin(x;x0) = uL(x;xL), and
u(x) = uR(x;xR) and the source distribution (4.26) at a point x with x >

xR, and identify these functions with the free solutions (4.48 - 4.49) and its
derivatives, respectively.

uR(x;xR) =uL(x;xL) +
∞∑

m=−∞
jmu

sc
m(x, y) (4.51)

∂

∂x
uR(x;xR) =

∂

∂x
uL(x;xL) +

∞∑
m=−∞

jm
∂

∂x
usc
m(x, y) (4.52)

We multiply both equations by φl(y) and integrate them from 0 to W over y.
This yields

aRl e
iκl(x−xR) + bRl e

−iκl(x−xR) = aLl e
iκl(x−xL) + bLl e

−iκl(x−xL)

+
∞∑

m=−∞
jm

∫ W

0
φl(y)usc

m(x, y) dy,

(4.53)

iκl

[
aRl e

iκl(x−xR) − bRl e
−iκl(x−xR)

]
= iκl

[
aLl e

iκl(x−xL) − bLl e
−iκl(x−xL)

]
+

∞∑
m=−∞

jm

∫ W

0
φl(y)

∂

∂x
usc
m(x, y) dy.

(4.54)

With the definitions

Xl,m(x) =
∫ W

0
φl(y)usc

m(x, y) dy (4.55)

Xd
l,m(x) =

1
iκl

∫ W

0
φl(y)

∂

∂x
usc
m(x, y) dy (4.56)

and x = xR equations (4.53) and (4.54) become

aRl + bRl = aLl e
iκl(xR−xL) + bLl e

−iκl(xR−xL) +
∞∑

m=−∞
Xl,m(xR)jm (4.57)

aRl − bRl = aLl e
iκl(xR−xL) − bLl e

−iκl(xR−xL) +
∞∑

m=−∞
Xd
l,m(xR)jm. (4.58)

In matrix notation, we obtain

aR + bR =T (1)(xR;xL)aL + T (2)(xR;xL)bL +X(xR)j, (4.59)

aR − bR =T (1)(xR;xL)aL − T (2)(xR;xL)bL +Xd(xR)j, (4.60)
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where the elements of the diagonal matrices T (1)(x;x0), T (2)(x;x0) are defined
by

T (1)
m,n(x;xL) = δm,ne

iκn(x−xL), (4.61)

T (2)
m,n(x;xL) = δm,ne

−iκn(x−xL). (4.62)

Now, knowing from (4.34)

j = −U−1
[
V aaL + V bbL

]
(4.63)

from eq. (4.30), we end up with the following equations (in which we omit the
arguments for brevity).

aR + bR =
[
T (1) −XU−1V a

]
aL +

[
T (2) −XU−1V b

]
bL (4.64)

aR − bR =
[
T (1) −XdU−1V a

]
aL +

[
−T (2) −XdU−1V b

]
bL (4.65)

To shorten the notation, we introduce now

M1 =
[
T (1) −XU−1V a

]
, (4.66)

M2 =
[
T (2) −XU−1V b

]
, (4.67)

M3 =
[
T (1) −XdU−1V a

]
, (4.68)

M4 =
[
−T (2) −XdU−1V b

]
. (4.69)

Finally, we obtain with

aR + bR =M1aL +M2bL, (4.70)

aR − bR =M3aL +M4bL, (4.71)

the following solution for aR and bR in transfer matrix form:(
aR

bR

)
=

1
2

(
M1 +M3 M2 +M4

M1 −M3 M2 −M4

)(
aL

bL

)
(4.72)

4.3.2 The transfer matrix for several scatterers

We perform a similar procedure in order to relate again uL (4.51) and uR (4.52)
for N obstacles. We start again with the following equations derived from (4.25)

uR(x;xR) =uL(x;xL) +
N∑
k=1

∞∑
m=−∞

jkmu
sc,k
m (x, y), (4.73)

∂

∂x
uR(x;xR) =

∂

∂x
uL(x;xL) +

N∑
k=1

∞∑
m=−∞

jkm
∂

∂x
usc,k
m (x, y), (4.74)
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multiply these by φl(y) and integrate them from 0 to W over y. This yields
with

Xk
l,m(x) =

∫ W

0
φl(y)usc,k

m (x, y) dy (4.75)

Xdk
l,m(x) =

1
iκl

∫ W

0
φl(y)

∂

∂x
usc,k
m (x, y) dy (4.76)

and x = xR equations the following equations in matrix notation

aR + bR =T (1)(xR;xL)aL + T (2)(xR;xL)bL +Xe(xR) je, (4.77)

aR − bR =T (1)(xR;xL)aL − T (2)(xR;xL)bL +Xde(xR) je. (4.78)

Here,

Xe =
(
X1, X2, . . . , Xn

)
, Xde =

(
Xd1, Xd2, . . . , Xdn

)
. (4.79)

Now, knowing from (4.47)

j = − (U e)−1
[
V eaaL + V ebbL

]
(4.80)

we obtain

aR + bR =
[
T (1) −Xe (U e )−1 V ea

]
aL +

[
T (2) −Xe (U e )−1 V eb

]
bL (4.81)

aR − bR =
[
T (1) −Xde (U e )−1 V ea

]
aL +

[
−T (2) −Xed (U e )−1 V eb

]
bL

(4.82)

We introduce now the matrices

M e
1 =

[
T (1) −Xe (U e )−1 V ea

]
, (4.83)

M e
2 =

[
T (2) −Xe (U e )−1 V eb

]
, (4.84)

M e
3 =

[
T (1) −Xde (U e )−1 V ea

]
, (4.85)

M e
4 =

[
−T (2) −Xde (U e )−1 V eb

]
. (4.86)

With these, the transfer matrix for N obstacles is formally the same as for one
scatterer. It is given by(

aR

bR

)
=

1
2

(
M e

1 +M e
3 M e

2 +M e
4

M e
1 −M e

3 M e
2 −M e

4

)(
aL

bL

)
. (4.87)

4.3.3 General properties of the transfer matrix

Time reversal

Time-invariance of the time-dependent Helmholtz equation (2.1) means that
if u(x, t) is a solution, so is u(x,−t). The Fourier transforms are u(x, ω) and
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u∗(x, ω), respectively, and are both solutions to the Helmholtz equation (4.1).
This means that the time-inversed counterparts to uL(x;xL) and uR(x;xR):

−uL(x;xL) = uL
∗
(x;xL), (4.88)

−uR−(x;xR) = uR
∗
(x;xR). (4.89)

These are solutions for the free waveguide problem (4.1 - 4.4), too. Their
components are denoted by −a and −b, respectively. Comparison yields their
relation to the components of (4.48) and (4.49) [18].(

−aR
−bR

)
=

(
0 I
I 0

)(
a∗L
b∗L

)
= Q

(
a∗L
b∗L

)
. (4.90)

Here, the matrix Q is defined by

Q =

(
0 I
I 0

)
. (4.91)

As the vectors −a and −b have to be related by the same transfer matrix
(4.50), (

−aR
−bR

)
= T(xL, xR)

(
−aL
−bL

)
, (4.92)

we obtain the time-reversal invariance requirement

T∗(xL, xR) = Q T(xL, xR) Q. (4.93)

Flux conservation

The time-averaged flux density for the Helmholtz equation is (cf. chapter 2)

〈j(x, y)〉 = Re

{
u(x, y)

[
ex
∂u∗(x, y)

∂x
+ ey

∂u∗(x, y)
∂y

]}
. (4.94)

As the total flux through every section x = x0 has to be constant, we note that
in the expression

F (x;w) =
∫ w

0
〈j(x, y)〉 · ex dy, (4.95)

the value of F (x;W ) is constant and independent of x. With the orthogonality
relation ∫ W

0
φm(y)φn(y) dy = δm,n (4.96)

the total flow F (x;W ) of the free solution (4.5) is

F (x;W ) =Re

{∫ W

0
u(x0, y)

∂u(x0, y)
∂x

}
= Re

{ ∞∑
n=1

iκn [ana∗n − bnb
∗
n]

}
.

(4.97)



44 CHAPTER 4. SCATTERING IN A WAVEGUIDE

Thus, with
√

K = Diag
(√
κ1,

√
κ2, . . . ,

√
κN−1,

√
κN , . . .

)
we get the expression

F (x;W ) =

( √
K 0
0

√
K

)(
a
b

)†(
I 0
0 −I

)( √
K 0
0

√
K

)(
a
b

)
.

(4.98)
If we compare now the flux of the free solutions (4.48) and (4.49), and use

W =

(
I 0
0 −I

)
, (4.99)

we obtain(
aL
bL

)†
W

(
aL
bL

)
=

(
aR
bR

)†
W

(
aR
bR

)

=

(
aL
bL

)†
T(xL, xR)† W T(xL, xR)

(
aL
bL

)
. (4.100)

Thus, we obtain the flux conservation requirement

T†(xL, xR) W T(xL, xR) = W. (4.101)

By multiplication with T†
−1(xL, xR) from the left and with T(xL, xR)−1 from

the right, and the observation (W)−1 = W, we obtain the equivalent form

T(xL, xR) W T†(xL, xR) = W. (4.102)

General form

If we suppose that the transfer matrix has the structure

T(xL, xR) =

(
a b

c d

)
, (4.103)

where a, b, c and d denote N ×N matrixes, then we see from (4.93) that

d = a∗, c = b∗, (4.104)

so that (4.103) becomes

T(xL, xR) =

(
a b

b∗ a∗

)
. (4.105)

Flux conservation (4.101) yields

a†a− bT b∗ = I, (4.106)

a†b = bTa∗. (4.107)

The equivalent condition (4.102) yields in the same way

a†a− bb† = I, (4.108)

abT = baT . (4.109)
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The scattering matrix

The scattering matrix relates the outgoing to the incoming modes. Defining that
a mode with exponential eiκnx ’runs to the right’, we set aL = ain, bL = bout,
aR = aout, and bR = bin. With these quantities, we define the scattering
matrix(

aout

bout

)
= S(xL, xR)

(
ain

bin

)
=

(
S11 S12

S21 S22

)(
ain

bin

)
. (4.110)

Note that S(xL, xR) is related to the transfer matrix in the following way.

a = S11 − S12S
−1
22 S21 (4.111)

a∗ = S−1
22 (4.112)

b = S12S
−1
22 (4.113)

b∗ = −S22S
−1
21 (4.114)

By means of these equations, the scattering matrix may be calculated from the
transfer matrix. It will be used during the numerical implementation in chapter
(8) because its use presents some advantages over the transfer matrix.

4.3.4 Solution to the initial problem

In order to solve the problem initially proposed and depicted in Fig. 4.1, we
cut the array of scatterers into non-overlapping slices to which we apply the
transfer matrix method as sketched in Fig. 4.4. Then, in the given example,

T
1

T
2

T
3

T
4

T
5

T
6

uL uR

Figure 4.4: Transfer matrix method

the transfer matrix of the whole system is obtained by multiplication of the
transfer matrices of the single ’slices’.(

aR

bR

)
= T6T5T4T3T2T1

(
aL

bL

)
(4.115)

Note that the numerical calculation is not straightforward. It is discussed in
chapter 8.
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4.4 Summary

In this chapter, we presented the problem of several Dirichlet scatterers in a
waveguide where the projection of the scatterers normal to the infinite axis
of the waveguide may be overlapping. For finite slices with a finite number
of scatterers, we derive expressions for transfer matrices which may be used
subsequently to calculate the solution for an arbitrary number of obstacles. In
order to obtain these transfer matrices, an equation for the unknown source
distribution at the boundary of the scatterer(s) in question is derived by a
Green’s function approach. An ansatz for this unknown function is made as a
Fourier series and subsequently, a set of linear equations is derived which relates
the coefficients of the series to the initial data given as the coefficients of an
incoming wave that exists to the left of all scatterers.



Chapter 5

Scattering in one dimension

5.1 The problem

In order to understand the nature of localisation phenomena occurring with
repulsive potentials, we look at the following one-dimensional model. Consider
the Schrödinger equation

− ~2

2m
d2

dx2
ψ(x) + V (x)ψ(x) = E ψ(x), (5.1)

with a Dirac comb potential of variable height given by

V (x) =
∞∑

n=−∞
v2n+1 δ(x− 2n− 1), (5.2)

where v2n+1 = v∗2n+1, v2n = 0, and the comb is of finite length (one-dimensional
’finite crystal’).

vn = 0 for |n| > 2N (5.3)

In the following, we use units where

~2/2m = 1.

The assumption vn ≥ 0 implies E = k2 with k = k∗ ≥ 0. At a given point
x in the ’cell’ number with n, the wave function may be represented as a linear
combination of plane waves with amplitudes A and B.

ψ(x) = A2n e
ik(x−2n) +B2n e

−ik(x−2n) for 2n− 1 < x < 2n+ 1. (5.4)

Since V (x) = V (x)∗, ψ(x) may be chosen to be real, i.e.,

ψ(x) = ψ(x)∗ ⇐⇒ B2n = A∗2n. (5.5)

We abbreviate the coefficient vector as(
A2n

A∗2n

)
= V2n. (5.6)

47
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From (5.4, 5.5), we obtain

2A2n = ψ(2n) + i ϕ(2n) with ϕ(x) =
1
k

dψ(x)
dx

. (5.7)

The coefficients of two adjacent cells are related by a transfer matrix

V2n+2 = T2n+1 V2n, (5.8)

where T2n+1 is of the form

T =

(
s+ it y + iz

y − iz s− it

)
(5.9)

with
detT = s2 + t2 − y2 − z2 = 1 (5.10)

For T = T2n+1 = T (κ, v) with κ = 2k and v = v2n+1, the functions appearing
in the transfer matrix are given by

s(κ, v) = cosκ+ (v/κ) sinκ , (5.11)

t(κ, v) = sinκ− (v/κ) cosκ , (5.12)

y(κ, v) = 0 , (5.13)

z(κ, v) = − v/κ. (5.14)

Note that y = 0 is a consequence of the fact that v2n+1 δ(x−2n−1) is symmetric
with respect to the reflection x− 2n− 1 → −x+ 2n+ 1.

As detT2n+1 = 1 for all n, all vectors V2n may be generated from a single
one and if one of them vanishes, so do all of them.

5.1.1 Symmetric combs

We now make the simplifying assumption that all combs are symmetric.

v2n+1 = v−2n−1 (5.15)

This entails the following

(i) y = 0 in the nondiagonal elements of the transfer matrix T which relates
the free wave right of the crystal to the free wave left of it.

V2N = T V−2N = T2N−1 . . . T−2N+1 V−2N (5.16)

Proof by induction: The upper nondiagonal element of T11 = T1 T1 is

iz11 = 2is1z1, (5.17)

and that of T212 = T2 T1 T2 is

iz212 = i(s22z1 + t22z1 + 2s1s2z2 − 2t1t2z2 + z1z
2
2). (5.18)
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(ii) For every energy E > 0, the two linearly independent eigenfunctions may
be chosen to be even (p = 0) and odd (p = 1), respectively.

ψp(x) = (−1)p ψp(−x) ⇐⇒ Ap−2n = (−1)p (Ap2n)
∗ (5.19)

Even and odd eigenfuctions are normalised such that for −1 < x < 1 we
have ψ0(x) = 2 cos kx and ψ1(x) = 2 sin kx. The vectors (5.6) for even
and odd eigenfunctions can be expressed with the help of transfer matrices
and the following coefficients in the cell with number 0.

V0
0(κ, v) = U0 =

(
1
1

)
V1

0(κ, v) = U1 =

(
−i
i

)
(5.20)

5.1.2 Transmission coefficient T

The transmission coefficient T is related to the transfer matrix T with elements
s± it and ±iz in the following way.

T = (s2 + t2)−1 = (1 + z2)−1 (5.21)

T = 1 ⇐⇒ z = 0 (5.22)

Note that for asymmetric combs y does not vanish identically whence T = 1
would imply both y = y(κ) = 0 and z = z(κ) = 0. To satisfy both conditions
simulaneously is impossible in general.

The transmission coefficient is also related to the even and odd eigenfunc-
tions in the following way. From (5.6), (5.9) with y = 0, and (5.16), we see
that

ReA0
2N (A1

2N )∗ = − z ImA0
2N (A1

2N )∗. (5.23)

Setting Ap2N = |Ap2N | exp iγp, we obtain

T = sin2(γ0 − γ1). (5.24)

This shows that T = 0 if the even and odd wave functions outside the crystal
have common nodes, and that T = 1 if the distance between these nodes is half
a wavelength.

5.1.3 Localisation

As a measure of the amplitude of the wave function in the interval (2n−1, 2n+
1), we take

2 |V2n|2 = 4 |A2n|2 = |ψ(2n)|2 + |ψ(2n)|2. (5.25)

Therefore

Πin = 2 |A−2N |2 +
N−1∑

n=−N+1

4 |A2n|2 + 2 |A2N |2 (5.26)
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Figure 5.1: Comparison between exact norm of wave function inside the crystal
and the approximation Πin

is a (rough) measure for finding the particle inside the crystal and

Πout = 4N |A−2N |2 + 4N |A2N |2 (5.27)

is the corresponding measure for finding the particle in one of the two intervals
to the left and to the right of the crystal, each of it being half as long as the
crystal. We define the ’measure of localisation’ as

Λ =
Πin

Πin + Πout
∈ (0, 1). (5.28)

It might seem more natural to define Πin and Πout by the corresponding
integrals over |ψ(x)|2. Fig. (5.1) shows a comparison between the exact integral,
coloured in red, over the squared wavefunction from one end of the crystal to
the other and corresponding approximation (5.26), coloured in blue. The figure
shows clearly that (5.26) is a good approximation to the exact value of the
integral.

5.1.4 Properties of the matrix T (κ, v)

The characteristic equation of the transfer matrix (5.9) is ω2 − 2s ω + 1 = 0
whence the two eigenvalues of T (κ, v) are given by

ω(κ, v)±1 = s(κ, v)± r(κ, v) (5.29)

where for nπ < κ < (n+ 1)π

r(κ, v) =

{
(−1)n

√
s(κ, v)2 − 1 for s(κ, v)2 > 1 ,

i (−1)n
√

1− s(κ, v)2 for s(κ, v)2 < 1 .
(5.30)

The sum of the two eigenvalues may be used to define band and gap regions of
the crystal, painted in red and green in Fig. 5.2. The corresponding eigenvec-
tors, defined by the equation

T (κ, v)W±(κ, v) = ω(κ, v)±1 W±(κ, v) , (5.31)
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Figure 5.2: Band and gap regions for one-dimensional crystal

are

W±(κ, v) =

(
α(κ, v)∓1/2

α(κ, v)±1/2

)
, (5.32)

with

α(κ, v)±1 = − t(κ, v)± i r(κ, v)
z(κ, v)

. (5.33)

Note that r(κ, v), ω(κ, v), and α(κ, v) are continuous functions of κ and

ω(κ, v) = ω(κ, v)∗, |α(κ, v)| = 1 for s(κ, v)2 > 1 , (5.34)

|ω(κ, v)| = 1, α(κ, v) = α(κ, v)∗ for s(κ, v)2 < 1 . (5.35)

The change between unimodular and real values occurs whenever

2 r(κ, v) = ω(κ, v)− ω(κ, v)−1 = i z(κ, v)
(
α(κ, v)− α(κ, v)−1

)
(5.36)

becomes equal to zero. This happens at the ’upper band edges’ κ = nπ,
n = 1, 2, 3, . . . , and at the ’lower band edges’ κn, n = 1, 2 . . . , which satisfy
(n− 1)π < κn < nπ and

v

κ
=

{
tan κ

2 for n odd,
− cot κ2 for n even.

(5.37)

κ = κn : ω±1 = s = (−1)n+1 , α±1 = −t/z = (−1)n+1 (5.38)

κ = nπ : ω±1 = s = (−1)n , α±1 = −t/z = (−1)n (5.39)

It follows from (5.31) and (5.32) that for integer n

T (κ, v)n = Adiag(ωn, ω−n)A−1 , (5.40)
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where A and A−1 are given by

A =

(
α−1/2 α+1/2

α+1/2 α−1/2

)
, A−1 =

1
α−1 − α

(
α−1/2 −α+1/2

−α+1/2 α−1/2

)
. (5.41)

In these equations, α = α(κ, v) and ω = ω(κ, v).

5.2 Perfect comb

First, we examine the perfect comb with 2N delta spikes of equal height. In
this case the matrix T = T (κ, v)2N of eq. (5.16) is of the form

T 2N =
1

α−1 − α

(
αω−2N − α−1ω2N ω2N − ω−2N

ω−2N − ω2N αω2N − α−1ω−2N

)
. (5.42)

In the first gap region, 0 < κ < κ1, ω(κ, v) > 1 and ω(κ, v)2N � 1 if v or/and N
are large. In this case T ≈ 0 because of (5.21). In the first band region κ1 < κ <

π, |ω(κ, v)| = 1 and its argument increases continuously from 0 to π, cf. (5.38),
and (5.39). The argument of ω(κ, v)2N increases therefore continuously from
0 to 2Nπ, so that its imaginary part (1/2)

(
ω(κ, v)2N − ω(κ, v)−2N

)
vanishes

2N + 1 times, namely for ω(κ, v) = eimπ/2N , m = 0, 1, 2, . . . , 2N . For m = 0
and m = 2N , ω(κ, v) − ω(κ, v)−1 = 0 and α(κ, v) − α(κ, v)−1 = 0 but their
ratio is different from zero, see (5.36). This leaves us with the well-known result
that the first band region contains 2N − 1 ’resonances’ where the transmission
coefficient assumes its maximum value T = 1. These considerations are easily
extended to higher energies.

In the perfect comb,

U0 =
1

α1/2 + α−1/2

(
W+ + W−), U1 =

i

α1/2 − α−1/2

(
W+ −W−),

(5.43)

where W± are the eigenvectors (5.32) of T (κ, v). With (5.6 - 5.8), (5.20), (5.43),
and (5.31), we obtain for n = 0, . . . , N

ψ0(2n) = U0 · TnU0 = ωn + ω−n, (5.44)

ϕ0(2n) = −U1 · TnU0 = − iβ
(
ωn − ω−n

)
, (5.45)

ψ1(2n) = U0 · TnU1 = i β−1
(
ωn − ω−n

)
, (5.46)

ϕ1(2n) = −U1 · TnU1 =
(
ωn + ω−n

)
, (5.47)

where
β =

α− 1
α+ 1

. (5.48)

In the first gap |α| = 1, β = −β∗, and ω = ω∗ > 1. If ωN � 1 such that
terms of order ω−2N (relative to the leading term) may be neglected, then both
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eigenfunctions increase, in essence, exponentially with the distance from the
center of the crystal. In this case ψ1(x) ≈ iβ−1ψ0(x) for x > 2N − 1 which
implies T ≈ 0. In the first band 0 < α = α∗ < 1, −1 < β = β∗ < 0, and

tan γ0 = β
ωN − ω−N

ωN + ω−N
, tan γ1 = β

ωN + ω−N

ωN − ω−N
. (5.49)

The nodes of the even and the odd eigenfunction outside the crystal are therefore
shifted by half a wavelength if, and only if, ωN = ω−N (even resonances) or
ωN = −ω−N (odd resonances).

In the first gap

4 |Ap2n|
2 = |β|−2p

[(
1 + |β|2

)(
ω2n + ω−2n

)
+ 2(−1)p

(
1− |β|2

)]
(5.50)

so that

Πp
out = 2N |β|−2p

[(
1 + |β|2

)(
ωN + ω−N

)
+ 2(−1)p

(
1− |β|2

)]
, (5.51)

Πp
in = |β|−2p

[(
1 + |β|2

)
F2N (ω) + 4N(−1)p

(
1− |β|2

)]
, (5.52)

F2N (ω) =
ω2N+1 − ω−2N−1 + ω2N−1 − ω−2N+1

ω − ω−1
. (5.53)

For ωN � 1, Πp
in ≈ (1/2N) Πp

out and Λp ≈ (1/2N) which is consistent with the
(average) exponential growth of the eigenfunctions ψp(x) for 0 < x < 2N .

In the first band

4 |Ap2n|
2 = β−2p

[
4β2 +

(
1− β2

) ∣∣ω2n + (−1)pω−2n
∣∣2] (5.54)

and hence

Πp
out = 2N β−2p

[
4β2 +

(
1− β2

) ∣∣ω2N + (−1)pω−2N
∣∣2] . (5.55)

This is an oscillating function of ω, the minima and maxima being essentially
given by those of |ω2N + (−1)pω−2N |2 since β is slowly varying with ω. On the
other hand, the oscillations of

Πp
in = β−2p

[
4N
(
1 + |β|2

)
+ (−1)p

(
1− β2

)
F2N (ω)

]
. (5.56)

are negligible so that the oscilations of Λp are determined by those of Πp
out. In

the vicinity of each resonance energy, where T = 1, therefore one of the two
functions Πp

out has a local minimum and the corresponding function Λp a local
maximum.
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5.3 Comb with a gap

A comb with a gap is given by the symmetric potentials

v2n+1 = v−2n−1 =

{
v for 2L < 2n+ 1 < 2L+ 2M = 2N
0 otherwise

(5.57)

This means that the transfer matrix (5.16) is

T = T (v, κ)M D(κ)2L T (v, κ)M , (5.58)

where

D(κ) = T (0, κ) = diag (eiκ, e−iκ). (5.59)

With T (v, κ)M = T2, D(κ)2L = T1 (and hence z1 = 0), we obtain from (5.18)

i z212 = 2i z2 (s1s2 − t1t2) = 2i z2 Re (s1 + i t1)(s2 + i t2) (5.60)

From this equation, we see that the condition for full transmission, T = 1, can
only be fulfilled if z2 = 0 or Re (s1 + i t1)(s2 + i t2) = 0.

(i) z2 = 0. Resonances of a given comb are also resonances of a comb that
consists of two such combs separated by a gap. (Obvious: T2 is always
diagonal, and if T1 becomes so, so does T2T1T2). There are M − 1 such
resonances in each of the bands of the potential v.

(ii) Re (s1 + i t1)(s2 + i t2) = 0. These resonances result from the interaction
of the two perfect combs.

(s1 + i t1)(s2 + i t2) = e2iLκfM (v, κ) (5.61)

fM (v, κ) =
α−1ωM − αω−M

α−1 − α

=
1
2

(ωM + ω−M )(α−1 − α) + (ωM − ω−M )(α−1 + α)
α−1 − α

=
1
2

(ωM + ω−M ) + i t
M−1∑
m=0

ωM−1−2m (5.62)

with α = α(κ, v), ω = ω(κ, v), and t = t(κ, v). Both (5.61) and (5.62) are
continuous functions of κ. We are especially interested in the argument of
(5.61) because T = 1 whenever it becomes equal to a half-integer multiple
of π.
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First gap

The first gap is given by 0 < κ < κ1. It follows from (5.62), (5.12), (5.14), and
(5.38) that

fM (v, κ) → 1
2

(
ω(0, v)M + ω(0, v)−M

)
+ i (−∞) for κ→ 0 (5.63)

and
fM (v, κ) → 1 + i (Mv/κ1) for κ→ κ1 . (5.64)

The argument of fM (v, κ) increases continuously from −π/2 to

δ1 = arctan(Mv/κ1) ∈ (0, π/2) (5.65)

(without assuming these values). As a consequence the argument of the func-
tion (5.61) increases continuously from −π/2 to 2Lκ1 + δ1 and the number of
resonances in the first gap is

G1 =
∞∑
n=0

Θ
(
2Lκ1 + δ1 −

(
n+ 1

2

)
π
)
. (5.66)

First band

The first band is given by κ1 < κ < π. Here

fM (v, κ) → (−1)M
(
1− i (Mv/π)

)
for κ→ π. (5.67)

Since now 0 < α < 1 and ω = cosφ + i sinφ with 0 < φ < π the argument of
the function

fM (v, κ) = cos(Mφ) +
α−1 + α

α−1 − α
sin(Mφ) (5.68)

increases continuously from δ1 to Mπ − ε1 where

ε1 = arctan(Mv/π) ∈ (0, π/2) . (5.69)

Accordingly the argument of (5.61) increases continuously from δ1 + 2Lκ1 to
(2L + M)π − ε1 and one obtains, in addition to the M − 1 rsonances already
found, another

B1 =
∞∑
n=0

Θ
((
n+ 1

2

)
π − 2Lκ1 − δ1

)
Θ
(
(M + 2L)π − ε1 −

(
n+ 1

2

)
π
)

(5.70)

resonances in the first band. Since ε1 < π/2 the total number of resonances in
the range κ ∈ (0, π) is the same as for a perfect comb of the same length.

G1 +B1 + (M − 1) = 2L+ 2M − 1 = 2N − 1 (5.71)
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Wave functions

For 0 ≤ n ≤ L

V0
2n = cos(κn)U0 − sin(κn)U1 , V1

2n = sin(κn)U0 + cos(κn)U1, (5.72)

whence for 0 ≤ m ≤M we obtain

V0
2L+2m =

cos(κL)
α1/2 + α−1/2

(
ωmW+ + ω−mW−)

− i sin(κL)
α1/2 − α−1/2

(
ωmW+ − ω−mW−) , (5.73)

V1
2L+2m =

sin(κL)
α1/2 + α−1/2

(
ωmW+ + ω−mW−)

+
i cos(κL)

α1/2 − α−1/2

(
ωmW+ − ω−mW−) . (5.74)

Therefore

ψ0(2N) = cos(κL)
(
ωM + ω−M

)
,− i sin(κL)β−1

(
ωM − ω−M

)
, (5.75)

ϕ0(2N) = − sin(κL)
(
ωM + ω−M

)
− i cos(κL)β

(
ωM − ω−M

)
, (5.76)

ψ1(2N) = sin(κL)
(
ωM + ω−M

)
+ i cos(κL)β−1

(
ωM − ω−M

)
, (5.77)

ϕ1(2N) = cos(κL)
(
ωM + ω−M

)
− i sin(κL)β

(
ωM − ω−M

)
. (5.78)

Provided that
cos(κL)− i β±1 sin(κL) 6≈ 0 (5.79)

and ωM � 1 we find in the first gap

ϕ0(2N) ≈ − i β ψ0(2N) ≈ ωM [−i β cos(κL)− sin(κL)] (5.80)

ϕ1(2N) ≈ − i β ψ1(2N) ≈ ωM [−i β sin(κL) + cos(κL)] (5.81)

which implies ψ0(x) ∝ ψ1(x) for x > 2N and thus T ≈ 0. However, if

cos(κL)− i β−1 sin(κL) = 0 ⇐⇒ V0
2L ∝ W− (5.82)

then
ϕ0(2N)
ψ0(2N)

= −i β ≈ − ϕ1(2N)
ψ1(2N)

(5.83)

and the transmission coefficient is essentially different from zero for those en-
ergies where (5.82) holds true. Comparison of (5.80), (5.81), and (5.83) shows
that in the vicinity of these energies γ0, the phase of A0

2N , increases suddenly by
π whereas γ1, the phase of A1

2N , remains essentially the same. Because of (5.24)
T thereore assumes its maximum value 1 witin this narrow energy range. On
the other hand, condition (5.82) means that the amplitude of the wave function
ψ0(x), which is constant for |x| < 2L, decreases (on the average) exponentially
for 2L < |x| < 2N , a property that vanishes when the energy is even slightly
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varied. If cos(κL)− i β sin(κL) = 0, the situation is esentially the same except
that even and odd eigenfunctions change their roles. In both cases we find in
the first gap G1 (5.66) sharp maxima of the transmission coefficient, and at es-
sentially the same energies a maximum of one of the two localisation measures.
Between these resonances T ≈ 0, both wavefunctions are exponentially grow-
ing at the ends of the comb, and the localisation measures are correspondingly
small (Λp � 0.5).

5.4 Summary

A one-dimensional localisation model based on the Schrödinger equation and
a finite Dirac-comb potential was formulated. The comparison of the trans-
mission coefficient and a localisation measure for wave functions allows one to
make predictions for the k-dependence of localised states. It can be seen that
the transmission coefficient, which depends on the relative phase of the two
linearly independent solutions outside the crystal, is related to the localisation
coefficient which depends essentially on the magnitudes of these wave functions.
This connection was shown analytically for two models, a finite Dirac comb of
equal potential heights and a similar Dirac comb with a ”hole”in the middle.
The same phenomena were also observed in numerical studies of more general
symmetric combs.
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Chapter 6

Time dependent scattering

This chapter deals with solutions of the time-dependent Helmholtz equation
(2.1) with a piecewise constant γ(x) as in (2.7). The time-dependent solutions
are obtained by a generalised inverse Fourier transform of time-independent
wave functions in k-space u(k,x) with a Gaussian weight factor. These u(k,x)
were obtained in chapters 3, 4 and 5.

6.1 Scattering in vacuum

The time-dependent solution has the form

u(x, t) =
1

2 π

∫
R2

u(k,x)ψ̃(k, t) d2k, (6.1)

where

ψ̃(k, t) = ψ̃0(k)e−iω(k)t, (6.2)

ψ̃0(k) ∈ L2(R2), (6.3)

and
ω(k) = α1k + α2k

2. (6.4)

Here, α1 > 0 and α2 > 0 depend on the model chosen. From chapter 2, we
know that for electromagnetical and acoustical problems, α1 = c and α2 = 0,
as well as for quantum mechanical problems, α1 = 0 and α2 = ~

2mk
2.

A two-dimensional Gaussian wave packet which moves in the direction of
the wave vector k0 is described by the weight factor

ψ̃0(k) =

√
2Γ
π
e−Γ(k−k0)2 . (6.5)

The normalisation is chosen to fulfil∥∥∥ψ̃0

∥∥∥ =
(∫

R2

ψ̃0(k)ψ̃∗0(k) d2k
) 1

2

= 1. (6.6)

59
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A free plane wave is described by

u(k,x) = eik·x. (6.7)

The corresponding free wave packet takes the form of a two-dimensional Fourier
integral:

ψ(x, t) =
1
2π

√
2Γ
π

∫
R2

eik·xe− Γ(k− k0)2e−i(α1k+α2k2)t d2k, (6.8)

This corresponds to the situation where we have a Gaussian wave packet with
an initial wave vector k0 and a ’shape’ constant Γ determining its spread in
k-space and x-space, respectively. In general, only numerical solutions for (6.8)
are available. The method how to obtain these numerical solutions is described
in chapter 8.

6.1.1 Exact solutions

Analytic solutions for (6.8) are only available in special cases. Note that for
all these, we tacitly assume that α1, α2 and Γ are real, as well as Γ > 0.
The integrals may be evaluated using integral tables or standard software like
Mathematica [19].

State at t = 0

The solution ψ(x, 0) reads

ψ(x, 0) =
1
2π

√
2Γ
π

∫ ∞

−∞
eikxx−Γ(kx−k0,x)2 dkx

∫ ∞

−∞
eikyy−Γ(ky−k0,y)2 dky,

=

√
1

2πΓ
e−

1
4Γ

x2+ik0·x. (6.9)

From the density

|ψ(x, 0)|2 =
1

2πΓ
e−

1
2 Γ

x2
(6.10)

and its plots (cf. Fig. 6.1.1) we see that Γ is a measure for the width of the
wave packet at t = 0.

Quantum mechanical dispersion relation α1 = 0

The quantum-mechanical case α1 = 0, i.e., ω(k) ∝ k2 is exactly solvable, too.

ψ(x, t) =
1
2π

√
2Γ
π

∫
R2

eik·xe− Γ(k− k0)2e−iα2k2t d2k

=

√
2Γ
π

1
2(Γ + itα2)

e
−k2

0Γ+
(ix+2Γk0)2

4(Γ+iα2t) (6.11)
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Figure 6.1: Width of the two-dimensional wave packet for various Γ

The absolute value of ψ(x, t)

|ψ(x, t)| =
√

2Γ
π

1
2
√

Γ2 + α2
2t

2
e
− Γ

4(Γ2+α2
2t2)

(x−2α2k0t)2

(6.12)

shows that the ’quantum mechanical’ wave packet travels with a speed propor-
tional to k0. As well, the wave packet disperses for α2 6= 0, i.e., for d2ω

dk2 6= 0.
This can be seen from the pre-factors in rftd:qma.

6.1.2 Approximate solutions

Asymptotics for the plane wave

With k = (kx, ky) = (k cosα, k sinα) and x = (x, y) = (r cosφ, r sinφ) we can
write the plane wave (6.7) as [12]

eik·x = eikr cos(φ−α) =
∞∑

m=−∞
imJm(kr)eim(φ−α). (6.13)

From [20] we know the asymptotic form of H(1),(2)
m :

Hm(z) →
√

2
πz

(∓i)me±i(z−
π
4
). (6.14)

Assume now that kr � m. Then,

imJm(kr) = im
1
2

[
H(1)
m (kr) +H(2)

m (kr)
]

=
1
2

[
imH(1)

m (kr) + (−1)mi−mH(2)
m (kr)

]
. (6.15)

can be approximated by its asymptotic form. This yields for (6.13)

eik·x ≈ Np
1√
k

∞∑
m=−∞

[
ei(kr−

π
4
) + e±imπe−(kr−π

4 )
]
eim(φ−α), (6.16)

where

Np =

√
1

2πr
. (6.17)
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Asymptotics for the Gaussian weight factor

With the modified Bessel function of integer order Im(x) = i−mJm(ix) we
obtain also in analogy to (6.13)

e2Γkk0 cosα =
∞∑

m=−∞
Im(2Γkk0)eimα, (6.18)

thus we have the following series representation for ψ̃0.

ψ̃0(k) = Ne−Γ(k2+k2
0)

∞∑
m=−∞

Im(2Γkk0)eimα. (6.19)

Here, N is the normalisation constant such that ‖ψ̃‖ = 1. The asymptotic form
of the modified Bessel function Im(x) for large arguments x is given by [21]

Im(x) ≈ 1√
2πx

ex
[
e−

m2

2x +O

(
1
x4

)]
. (6.20)

Assume now that k0

√
Γ � 1, and that k

√
Γ � 1

2k0
√

Γ
, then

Im(2Γkk0) ≈
1√

4πΓkk0
e2Γkk0e

− m2

4Γkk0 . (6.21)

As the factor e−Γ(k−k0)2 has a sharp maximum around k ≈ k0, we set k ≈ k0

in the exponential of (6.21) and obtain for ψ̃0(k) the approximation

ψ̃0(k) = N ′ 1√
k
e−Γ(k2−k2

0)
∞∑

m=−∞
e
− m2

4Γk2
0
+imα

. (6.22)

For k0

√
Γ � 1, we approximate the series with an integral:

∞∑
m=−∞

e
− m2

4Γk2
0
+imα

≈
∫ ∞

−∞
e
− m2

4Γk2
0
+imα

dm =
√

4k2
0πΓe−Γk2

0α
2
. (6.23)

This yields finally an approximation for ψ̃0(k) which is separated in a radial
and an angular part:

ψ̃0 = Nkψ̃0,k(k)Nαψ̃0,α(α) (6.24)

where

ψ̃0,k(k) =
1√
k
e−Γ(k−k0)2 , (6.25)

ψ̃0,α(α) = e−Γk2
0α

2
. (6.26)

The normalisation factors are chosen such that∥∥∥ψ̃0

∥∥∥2
=
∫ ∞

0
k dk

∫ π

−π
ψ̃0(k)ψ∗0(k) = 1. (6.27)
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In particular,

1
N2
k

=
∫ ∞

0
e−2Γ(k−k0)2 =

√
π

2Γ
1 + erf(

√
2Γk0)

2
, (6.28)

1
N2
α

=
∫ π

−π
e−2Γk2

0α
2

=
√

π

2Γk2
0

erf(
√

2πk0

√
Γ ). (6.29)

and as k0

√
Γ � 1 and the error function converges very quickly towards its

limit limx→∞ erf(x) = 1, we can approximate the normalisation constants to

Nk =
(

2Γ
π

) 1
4

, (6.30)

Nα =
(

2Γk2
0

π

) 1
4

. (6.31)

Stationary phase method

Next, we search for an approximation to the integral∫ b

a
A(k)eiΦ(k) dk (6.32)

where

1. A(k) is changing slowly, and Φ(k) is changing fast, i.e.,

dA
dk

� dΦ
dk

almost everywhere in (a, b). (6.33)

2. Φ(k) is oscillating very quickly.

Φ(b)− Φ(a)
2π

� 1 (6.34)

The approximation presented here is called the method of stationary phase. It
is applicable to integrals of the form (6.32 - 6.34). Under these circumstances,
the major contribution to the integral is made in intervals Ji around values
Φ(k) = Φ(ki) defined by dΦ

dk (ki) = 0. In Fig. 6.1.2 this argument is justified
visually. We call the points ki with this property stationary points and split the
interval [a, b] into the sum of the intervals J = ∪Ji and a part Je = [a, b] \∪Ji.
We state that ∫

Je

A(k)eiΦ(k) dk ≈ 0. (6.35)

An expansion of the remaining integral yields∫
J
A(k)eiΦ(k) dk =

∑
i

∫
Ji

[
A(ki) +

dA
dk

(ki)(k − ki) + . . .

]
× e

i
h
Φ(ki)+

1
2

d2Φ
dk2 (ki)(k−ki)

2+...
i
dk (6.36)

≈
∑
i

A(ki)eiΦ(ki)

∫
Ji

ei
1
2

d2Φ
dk2 (ki)(k−ki)

2

dk. (6.37)
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Figure 6.2: Stationary phase method

As all the contributions from k /∈ Ji are neglectable, we can write the integral
as ∫

J
A(k)eiΦ(k) dk dk =

∑
i

A(ki)eiΦ(ki)

∫ ∞

−∞
ei

1
2

d2Φ
dk2 (ki)(k−ki)

2

dk. (6.38)

The integral in (6.38) is a standard integral with a solution in closed form:∫ ∞

−∞

[
cos ak2 + i sin ak2

]
=
√

π

|a|
1 + sign a√

2
=
√

π

|a|
ei

π
4

sign a. (6.39)

Eventually, the stationary phase approximation reads∫ b

a
A(k)eiΦ(k) dk ≈

∑
i

A(ki)

√√√√ 2π∣∣∣ d2Φ
dk2 (ki)

∣∣∣ei
h
Φ(ki)+

π
4
sign d2 Φ

dk2 (ki)
i
. (6.40)

6.1.3 Free solutions

Now, take (6.1) in polar coordinates for k = (k, α)

u(x, t) =
1

2 π

∫ ∞

0

∫ 2π

0
u(k,x)ψ̃(k, t)k dk dα, (6.41)

and insert (6.2), (6.24), (6.7) and (6.13). This yields

u(x, t) =NkNαNp

∞∑
m=−∞

∫ ∞

0

[
ei(kr−

π
4
) + e±imπe−(kr−π

4
)
]
e−Γ(k−k0)2e−iω(k)t dk

×
∞∑

n=−∞
e
− n2

4Γk2
0
+imφ 1

2 π

∫ 2π

0
ei(n−m)α dα. (6.42)
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Note that −π < φ < π. Integration over α yields

u(x, t) =NkNαNp

{ ∞∑
m=−∞

e
− m2

4Γk2
0
+imφ−iπ

4

∫ ∞

0
e−Γ(k−k0)2−iω(k)t+ikr

+
∞∑

m=−∞
e
− m2

4Γk2
0
+im(φ±π)−iπ

4

∫ ∞

0
e−Γ(k−k0)2−iω(k)t−ikr

}
. (6.43)

With (6.23), and

Iσ(r, t) =
∫ ∞

0
e−Γ(k−k0)2−i(α1k+α2k2)t+iσkr dk, (6.44)

Ns =
√

4k2
0πΓ, σ = ±1, (6.45)

we can approximate this as

u(x, t) =NkNαNpNs

∑
σ=±1

e−Γk2
0(φ∓π

2
±σ π

2
)2Iσ(r, t). (6.46)

Next, we approximate Iσ(r, t) with the method of stationary phase. There is
one stationary point

ks =
σr − α1t

2tα2
, (6.47)

and with (6.40) we obtain

Iσ(r, t) ≈
√

π

α2
e
− Γ

4t2α2
2
(r−σ dω

dk
(k0)t)2

ei[−ω(ks)+σksr+
π
4
α2]. (6.48)

According to (6.35), with the approximations made Iσ(r, t) ≈ 0 for r 6≈ σ dω
dk (k0)t.

Finally, we obtain for the limits t→ ±∞ for u(x, t) with N = NkNαNpNs

√
π
α2

lim
t→∞

|u(x, t)| ≈ Ne−Γk2
0φ

2
e
− Γ

4t2α2
2
[r− dω

dk
(k0)t]2

, (6.49)

lim
t→−∞

|u(x, t)| ≈ Ne−Γk2
0(φ±π)2e

− Γ

4t2α2
2
[r+ dω

dk
(k0)t]2

. (6.50)

From the form of these equations we deduce the following statements.

1. The free wave packets evolve asymptotically in a hyperbola whose enve-
lope is given by e− Γk2

0φ
2
for positive times and by e− Γk0(φ±π)2 for negative

times (cf. Fig. 2.2).

2. The velocity of the peak of the wave packet travels with a speed which is
given by the group velocity dω

dk (k0).
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6.1.4 Scattered wave packet

In the presence of a scatterer, the time-independent solution has the form

u(k,x) = eik·x + usc(k,x), (6.51)

where usc(k,x) is a solution which fulfills the Helmholtz equation (2.5), the
boundary conditions (2.8 - 2.9) on the obstacle and the Sommerfeld radiation
condition (3.5). Expansion of usc(k,x) in cylindrical coordinates yields

usc(k, α, r, φ) =
∞∑

m=−∞
dm(k)Hm(kr)eim(φ−α). (6.52)

For the time-dependent scattered field, we obtain after integration over α

usc(r, φ) = N ′
∫ ∞

0
e− Γ(k−k0)2−iω(k)t+ikr︸ ︷︷ ︸

I+(r,t)

∞∑
m=−∞

√
2
πr
dm(k0)e

− m2

4Γk2
0
+imφ

. (6.53)

Therefore, the scattered wave packet has the form

usc(r, φ) ≈ I+(r, t)W sc
+ (φ) (6.54)

with

W sc
+ (φ) = N ′

√
2
πr

∞∑
m=−∞

dm(k0)e
− m2

4Γk2
0
+imφ

. (6.55)

The Sommerfeld radiation condition ensures that usc(r, t) is a linear combi-
nation of ’outgoing’ waves Hm(kr)eimφ. They are called ’outgoing’ because
I+(r, t) ≈ 0 for t < 0, and thus

u(x, t) ≈ ufree(x, t), for t < 0. (6.56)

Note that outside of the hyperbola for t > 0, ψfree
t (x, t) ≈ 0. In this region, the

angular dependence of u(x, t) is given by W sc
+ (φ) and thus time-independent.

These facts are illustrated by the right-hand side of Fig. 2.3 where the free
wave packet is shown in blue and the area where I+(r, t)W sc

+ (φ) 6≈ 0 in red.

6.2 Waveguide

For the waveguide model the time-dependent solutions have the form

u(x, t) =

√
1
2π

∫ ∞

−∞
u(k,x)ψ̃(k, t) dk, (6.57)

where

ψ̃(k, t) = ψ̃0(k)e−iω(k)t, (6.58)

ψ̃0(k) =
√
π

Γ
e−Γ(k−k0)2 . (6.59)
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Free wave packet

A free solution of the Helmholtz equation has the form

ufree(x, k) =
∞∑
n=1

sin(kny)
[
ane

iκn(x−x0) + bne
−iκn(x−x0)

]
, (6.60)

where

kn =
nπ

W
, (6.61)

κn = κn(k) =
√
k2 − k2

n, (6.62)

and the free wavepacket is therefore given by

ufree(x, t) =

√
1
2π

√
Γ
π

∫ ∞

−∞
e−Γ(k−k0)2

∞∑
n=1

sin(kny)
[
ane

iκn(x−x0)

+ bne
−iκn(x−x0)

]
e−iω(k)t dk. (6.63)

Stationary points only exist for real κn, i.e., if the sum over n ends at M =⌈
kW
π

⌉
, where dxe denotes the first integer bigger or equal than x. We will call

the remainder of the infinite sum, where n is such that κn is imaginary, r(x, t).

r(x, t) = ra(x, t) + rb(x, t), (6.64)

ra(x, t) = N

∫ ∞

−∞
e−Γ(k−k0)2

∞∑
n=M

sin(kny)ane−|κn|(x−x0)e−iω(k)t, (6.65)

rb(x, t) = N

∫ ∞

−∞
e−Γ(k−k0)2

∞∑
n=M

sin(kny)bne|κn|(x−x0)e−iω(k)t. (6.66)

Note that for |x| → ∞, either the exponential of ra(x, t) or the exponential of
rb(x, t) diverges. Thus, we require an = 0, and bn = 0 for M ≤ n < ∞ for a
free solution with infinite domain; in other words, a free solution with infinite
domain may not contain evanescent waves1. In the following, we will therefore
require that r(x, t) = 0.

For the search of stationary points, we make the approximation k ≈ k0 in
the square root of κn. This is justified by the exponential factor e−Γ(k−k0)2 in
the integrand. A Taylor expansion of d

dkκn around k = k0 yields

d
dk

√
k2 −

(nπ
W

)2
=

k0√
k2

0 −
(
nπ
W

)2 −
(
nπ
W

)2(
k2

0 −
(
nπ
W

)) 3
2

(k − k0) +O
(
[k − k0]

2
)
.

(6.67)

1Another way to get rid of the exponentially growing waves is to split the infinite domain

in two half-infinite domains at a point x = x0, allowing for exponentially decaying waves in

every direction like in (4.48) and (4.49).
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As stationary points we obtain

kσ,n ≈
k0√

k2
0 −

(
nπ
W

)2 σ(x− x0)
2α2t

− α1

2α2
, σ = ±1. (6.68)

The ± sign reflects the signs in the exponential which corresponds to the coef-
ficients an and bn, respectively. Thus, for the free wave packet, we obtain

ufree(x, t) ≈N
M−1∑
n=1

ane
− Γ

2α2

24x−x0+ dω
dk

(k0)t

r
k2
0−(nπ

W )2

k0

35

×
√√√√ 2π∣∣∣ d2Φ

dk2 (k+,n)
∣∣∣ sin(kny)e

i
q
k2
+,n−k2

n(x−x0)−iω(k+,n)t

+N
M−1∑
n=1

bne
− Γ

2α2

24x−x0− dω
dk

(k0)t

r
k2
0−(nπ

W )2

k0

35

×
√√√√ 2π∣∣∣ d2Φ

dk2 (k−,n)
∣∣∣ sin(kny)e

i
q
k2
−,n−k2

n(x−x0)−iω(k−,n)t
. (6.69)

In these equations,
d2Φ
dk2

(k) =
k2
n

(k2 − k2
n)

3
2

− 2α2t. (6.70)

We see that the for |x − x0| 6≈

∣∣∣∣∣ dω
dk (k0)t

q
k2
0−(nπ

W )2

k0

∣∣∣∣∣, ufree(x, t) ≈ 0. Thus, we

obtained a sum of travelling wave packets where a mode n travels with the

speed dω
dk (k0)

q
k2
0−(nπ

W )2

k0
.

Scattered wave

For the scattered wave, we start with

u(x, t) = ufree(x, t) + usc(x, t). (6.71)

Take a given source distribution ψ(x′) as in chapter 4, then the scattered field
is (4.21)

usc(x) =
∫
∂O
Gk(x,x′(s))ψ(x′(s)) ds. (6.72)

In this representation of the solution, the evanescent waves with κn imaginary
cannot cause any problems because for |x| � 1, the exponential eiκn|x−x′(s)| �
1. The time-dependent scattered wave for this source distribution is then given
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by

usc(x, t) =

√
1
2π

i

W

∞∑
n=1

sin(kny)
∫
∂O

sin(kny′(s))ψ(x′(s))

×
∫ ∞

−∞

1
κn
e−Γ(k−k0)2eiκn|x−x′(s) |−iω(k)t dk ds. (6.73)

With the same approximation as for the free wave packet, we obtain for the
stationary points

ks,n(s) ≈
k0√

k2
0 −

(
nπ
W

)2 |x− x′(s)|
2α2t

− α1

2α2
. (6.74)

The stationary-phase approximation for the integral is therefore

usc(x, t) =

√
1
2π

i

W

M−1∑
n=1

sin(kny)
e−iω(ks,n)t√
k2
s,n − k2

n

e−Γ(k2
s,n−k0)2

√√√√ 2π∣∣∣ d2Φ
dk2 (ks,n)

∣∣∣
×
∫
∂O

sin(kny′(s))ψ(x′(s))ei
√
k2

s,n−k2
n|x−x′(s) |+π

4
sign d2Φ

dk2 (ks,n) ds

(6.75)

We see that for the scattered wave, the modes travel with the same speed as

for the free wave as usc(x, t) ≈ 0 for |x− x′(s)| 6≈

∣∣∣∣∣ dω
dk (k0)t

q
k2
0−(nπ

W )2

k0

∣∣∣∣∣, where s

parametrises the surface of the scattering body.

6.3 One-dimensional case

In one dimension, the time-dependent solution reads

u(x, t) =

√
1

2 π

∫ ∞

− ∞
u(k, x)ψ̃(k, t) dk, (6.76)

with

ψ̃(k, t) = ψ̃0(k)e−iω(k)t, (6.77)

ψ̃0(k) =
(

Γ
π

) 1
4

e−Γ(k−k0)2 . (6.78)

The one-dimensional normalisation is chosen such that∥∥∥ψ̃0

∥∥∥ =
(∫ ∞

−∞
ψ̃0(k)ψ̃∗0(k) dk

) 1
2

= 1. (6.79)

The one-dimensional free plane wave is described by

u(k, x) = eikx. (6.80)
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The corresponding free wave packet is described by the integral

ψ(x, t) =

√
1
2π

(
Γ
π

) 1
4
∫ ∞

−∞
eikxe− Γ(k− k0)2e−iω(k)t dk, (6.81)

where

ω(k) = (α1|k|+ α2k
2), α1 ≥ 0, α2 ≥ 0. (6.82)

6.3.1 Exact solutions

The advantage of the one-dimensional case is that more analytical solutions are
available as in the two-dimensional case. They are described below.

Free wave packet with α1 = 0, α2 > 0 (quantum mechanics)

The quantum-mechanical case α1 = 0, i.e. ω(k) ∝ k2 is exactly solvable for all
dimensions. The one-dimensional integral to be evaluated here is of the form

ψ±q (x, t) =

√
1
2π

(
Γ
π

) 1
4
∫ ∞

− ∞
e±ikxe− Γ(k− k0)2e−iα2k2t dk

=
(

Γ
4π

) 1
4 1√

Γ + itα2
e
−k2

0Γ+
(±ix+2Γk0)2

4(Γ+iα2t) (6.83)

Similarly to the two-dimensional case, the absolute value of ψ(x, t) is given by

∣∣ψ±q (x, t)
∣∣2 =

(
Γ
4π

) 1
2 1√

Γ2 + α2
2t

2
e
− Γ

2(Γ2+α2
2t2)

(∓x+2α2k0t)2

; (6.84)

it shows that the quantum mechanical wave packet travels with a speed pro-
portional to k0 and disperses. For t → ±∞, we observe two phenomena: first,
the width of the wave packet, determined by the pre-factor − Γ

2
√

Γ2+α2
2t

2
, be-

comes larger with increasing absolute values of t. Secondly, the peak of the
wave packet travels at x = ∓2α2k0t with the velocity dω

dk (k0). In particular, we
note that for

k0 > 0,
dω
dk

(k0) = 2α2k0 > 0, (6.85)

the following asymptotics hold true.

ψ+
q (x, t� 1) ≈ 0 for x < 0 (6.86)

ψ+
q (x, t� −1) ≈ 0 for x > 0 (6.87)

ψ−q (x, t� 1) ≈ 0 for x > 0 (6.88)

ψ−q (x, t� −1) ≈ 0 for x < 0 (6.89)
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max
x

ψ+
q (x, t� 1) ≈ dω

dk0
t� 1 (6.90)

max
x

ψ+
q (x, t� −1) ≈ dω

dk0
t� −1 (6.91)

max
x

ψ−q (x, t� 1) ≈ − dω
dk0

t� −1 (6.92)

max
x

ψ−q (x, t� −1) ≈ − dω
dk0

t� 1 (6.93)

Thus, we see that ψ+
q (x, t) is a wave packet which travels from −∞ to +∞ and

ψ−q (x, t) travels in the opposite direction.

Free wave packet with α1 > 0, α2 = 0 (electromagnetism)

The integral may be written down with the help of the error function [20].

ψ±e (x, t) =

√
1
2π

(
Γ
π

) 1
4
∫ ∞

− ∞
e±ikxe− Γ(k− k0)2e−ic|k|t dk

=
(

1
4πΓ

) 1
4

{
e−

1
4Γ

(x−ct)2±ik0(x−ct)
[
1± erf

(
2Γk0 ± i(x− ct)√

4Γ

)]

+ e−
1
4Γ

(x+ct)2±ik0(x+ct)

[
1∓ erf

(
2Γk0 ± i(x+ ct)√

4Γ

)]}
(6.94)

Here, erf(z) is defined by

erf(z) =
2√
π

∫ z

0
e−t

2
dt. (6.95)

In this case, there is no dispersion of the wave packet: its width is always
characterised by Γ. Note that ψ±e (x, t) ≈ 0 for x 6≈ ±ct, thus the main peak
travels in the same direction as k0 with the velocity dω

dk (k0). We assume now
that

√
Γk0 � 1, i.e. the width of the wave packet (which is characterised by√

Γ is much bigger then the average wave length λ0 = 2π
k0

. Then, for x ≈ ∓ct,
erf(. . . ) in (6.94) is given approximately by erf(

√
Γk0). As limx→∞ erf(x) = 1

converges quickly, this is approximately 1. The asymptotic expressions for
ψ±e (x, t) with

k0 > 0,
dω
dk

(k0) = α1sign k0 > 0 (6.96)

are given by the following equations.

ψ+
e (x, t� 1) ≈ 0 for x < 0 (6.97)

ψ+
e (x, t� −1) ≈ 0 for x > 0 (6.98)

ψ−e (x, t� 1) ≈ 0 for x > 0 (6.99)

ψ−e (x, t� −1) ≈ 0 for x < 0 (6.100)
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max
x

ψ+
e (x, t� 1) ≈ dω

dk0
t� 1 (6.101)

max
x

ψ+
e (x, t� −1) ≈ dω

dk0
t� −1 (6.102)

max
x

ψ−e (x, t� −1) ≈ − dω
dk0

t� −1 (6.103)

max
x

ψ−e (x, t� −1) ≈ − dω
dk0

t� 1 (6.104)

Again, we see that ψ+
e (x, t) is a wave packet whose peak of constant height

travels from −∞ to +∞; as well, ψ−e (x, t) travels in the opposite direction from
+∞ to −∞.

6.3.2 Scattered wave packet

A scattering ’body’ which may be described with a γ(x) that is bounded to the
interval [−x0, x0] can be described outside of this interval by the sum of two
related free solutions.

u(k, x) = uin(k, x) + usc(k, x) for |x| > x0 (6.105)

uin(k, x) = aineikx + bine−ikx (6.106)

usc(k, x) =

{
asc(k)eikx x > x0

bsc(k)e−ikx x < x0

. (6.107)

The scattering matrix relates the coefficients of the free solutions long before
(u−∞(k, x)) and long after (u∞(k, x)) the scattering process.(

a∞

b∞

)
= S(k)

(
a−∞

b−∞

)
=

[
S11(k) S12(k)
S21(k) S22(k)

](
a−∞

b−∞

)
(6.108)

The free solutions are given by

u−∞(k, x) = a−∞eikx + b−∞e−ikx, (6.109)

u∞(k, x) = a∞eikx + b∞e−ikx, (6.110)

where the coefficients are related to the ones already defined by

a−∞ = ain, b−∞ = bin,

a∞ = ain + asc, b∞ = bin + bsc.
(6.111)

Conservation of the probability current leads for the scattering matrix to the
relations

|S11(k)|2 + |S12(k)|2 = 1, (6.112)

|S21(k)|2 + |S22(k)|2 = 1, (6.113)

S11(k)S∗12(k) + S21(k)S∗22(k) = 0. (6.114)
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From these relations, we show that S(k) and ST (k) are unitary. Time-reversal
invariance signifies that if u(x, t) is a solution and γ(x) is real, then u∗(x,−t) is
also a solution of the same Helmholtz equation with the same γ(x). Note that
that this operation interchanges incoming and outgoing waves. In terms of the
scattering matrix, this means

S(k) = ST (k). (6.115)

Furthermore, as for every u(k, x) the function u(k, x)∗ is also a solution to the
one-dimensional Helmholtz equations, the equation

S(−k) = S†(k) (6.116)

holds. Finally, if the scattering potential is symmetric, i.e., γ(x) = γ(−x), then
S(k) may be written as

S(k) =

[
t(k) −r∗(k)
r(k) t∗(k)

]
, (6.117)

where r(k) and t(k) are the reflection and transmission amplitudes. The corre-
sponding reflection and transmission probabilities are given byR(k) = r(k)r(k)∗

and T (k) = t(k)t(k)∗. Note that R(k) + T (k) = 1. The scattered wave fulfills
the Sommerfeld radiation condition in one dimension which states that at in-
finity, usc(x, k) must consist of outgoing waves only.

lim
x→+∞

(
∂

∂x
− ik

)
usc(x, k) = 0 (6.118)

lim
x→−∞

(
∂

∂x
+ ik

)
usc(x, k) = 0 (6.119)

The scattered wave packet is given by the following integral.

ψsc(x, t) =


(

Γ
4π3

) 1
4
∫ ∞

−∞
asc(k)eikxe−Γ(k−k0)2e−i(α1k+α2k2)t dk x > x0(

Γ
4π3

) 1
4
∫ ∞

−∞
bsc(k)e−ikxe−Γ(k−k0)2e−i(α1k+α2k2)t dk x < x0

(6.120)

Because of the sharp peak of e−Γ(k−k0)2 around k ≈ k0, we approximate asc(k)
and bsc(k) in the integrand with asc(k0) and bsc(k0). Note that this approx-
imation is not good enough to explain the two peaks in the time-dependent
behaviour of wave packets hitting the one-dimensional model for localisation as
shown in chapter 9. Now, omitting the subscript e or q for the electrodynamical
or the quantum mechanical case, we rewrite ψsc(x, t) as follows.

ψsc(x, t) ≈

{
asc(k0)ψ+(x, t) x > x0

bsc(k0)ψ−(x, t) x < x0

(6.121)
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In the usual situation ain = 1, bin = 0, the full wave packet may be written
as follows.

ψ(x, t) ≈

{
t(k0)ψ+(x, t) x > x0

r(k0)ψ−(x, t) + ψ+(x, t) x < x0

(6.122)

Looking at (6.86 - 6.93) and (6.97 - 6.104), we see that long before the scattering
process, the wave packet is given by

ψ(x, t� −1) ≈ ψ+(x, t), (6.123)

i.e., long before the scattering process, (6.122) describes the free solution ψ+(x, t)
coming from −∞ to hit the scattering potential. Long after the scattering pro-
cess, the wave packet is given by the following expression.

ψ(x, t� 1) ≈

{
t(k0)ψ+(x, t) x > x0

r(k0)ψ−(x, t) x < x0

(6.124)

From this, we see that asymptotically long after the scattering process, we have
a transmitted wave packet travelling in the direction of k0 with the intensity
T (k0) and a reflected wave packet which travels in the opposite direction with
the intensity R(k0).

6.4 Summary

We have presented a method which may be used to obtain time-dependent wave
packets as a weighted superposition of the time-independent solutions obtained
in previous chapters. Analytic solutions as well as asymptotic expressions were
given for scattering in vacuum, for waveguide scattering with and without scat-
terers, and for one-dimensional scattering. Only in one dimension, it is possible
to find an analytic solution for free electrodynamical and acoustical wave pack-
ets. In higher dimensions, this is only possible in the quantum mechanical
model. In vacuum, the evolution of the free wave packet in a hyperbola and its
interaction with the scattering wave packet was described for asymptotically
large times.



Chapter 7

Mathieu functions

Mathieu functions were introduced in 1868 [22]. They are needed whenever
a separation of variables technique is used to solve the Helmholtz equation in
elliptic coordinates [23]. For example, these functions are needed to describe
the scattering of classical and quantum mechanical waves by elliptical objects
[24]. The exact solution obtained this way can be used to test the accuracy of
other numerical schemes [25].

7.1 Eigenvalues of the Mathieu equation

Floquet solutions of the Mathieu equation

First, we introduce Mathieu functions using a terminology that refers to the
eigenvalues of these functions with respect to certain operators. Mathieu func-
tions are solutions of the Mathieu equation

Ĥq y(z) = − y′′(z) + 2q cos 2z y(z) = λ y(z) . (7.1)

We consider only values q > 0 and ask for solutions that are normalizable in
the following sense. ∫ π

0
|y(z)|2 dz = ‖y(z)‖2 <∞ (7.2)

To classify these solutions it is useful to introduce two more operators, namely

T̂π y(z) = y(z + π) (7.3)

and
Ŝ0 y(z) = y(−z) . (7.4)

Note that both T̂π and Ŝ0 commute with Ĥq,

Ŝ0 Ĥ
q = Ĥq Ŝ0 , T̂π Ĥ

q = Ĥq T̂π , (7.5)

but that
Ŝ0 T̂π Ŝ0 = T̂−1

π = T̂−π . (7.6)
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In a quantum mechanical context, where Ĥq is the Hamiltonian, T̂π and Ŝ0 are
unitary operators that commute with Ĥq and generate a symmetry group of
infinite order (dihedral group D∞). Accordingly, the irreducible representations
of this group may be used to label the eigenfunctions and eigenvalues of Ĥq.
To this end we first consider the eigenvalue equation

T̂π y(z) = eiµπ y(z) with µ ∈ (−1,+1] . (7.7)

A solution of (7.1) which satifies (7.7) is called Floquet solution of the Mathieu
equation with characteristc exponent µ.

Characteristic exponent µ ∈ (0, 1)

For given µ ∈ (0, 1) the functions satisfying both (7.7) and (7.2) span a separable
Hilbert space where the scalar product of two elements a(z) and b(z) is defined
by

(a, b) =
1
π

∫ π

0
a∗(z)b(z) dz (7.8)

and the functions

uµ,2r(z) = ei(µ+2r)z , r = 0,∓1,∓2, . . . . (7.9)

constitute an orthonormal basis. The action of Ĥq onto the elements of this
basis,

Ĥq uµ,2r(z) =
∑
r′

(
Hq
µ

)
r′,r

uµ,2r′(z) , (7.10)

is given by the matrix Hq
µ with elements(

Hq
µ

)
r′,r

=
(
uµ,2r′(z), Ĥq uµ,2r(z)

)
. (7.11)

Hq
µ is Hermitean and bounded from below.

The Floquet solutions of (7.1) with characteristic exponent µ ∈ (0, 1) may
therefore be obtained by a two-step procedure (algebraic eigenvalue problem):

• determination of the eigenvalues of the Hermitean matrix

Hq
µ =



(µ+ 0)2 q q 0 0 · · ·
q (µ− 2)2 0 q 0 · · ·
q 0 (µ+ 2)2 0 q · · ·
0 q 0 (µ− 4)2 0 · · ·
0 0 q 0 (µ+ 4)2 · · ·
...

...
...

...
...

. . .


(7.12)

with row and column indices

r = 0,−1,+1,−2,+2, . . . . (7.13)
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The eigenvalues λqµ,n of this matrix with

n = 0, 1, 2, . . . (7.14)

are nondegenerate and bounded from below whence they may be ordered
according to their magnitude.

λqµ,0 < λqµ,1 < λqµ,2 < . . . (7.15)

• calculation of the related eigenvectors by solving the equations∑
r′

(
Hq
µ

)
r,r′

(Cqµ,n)r′ = λqµ,n (Cqµ,n)r . (7.16)

To obtain a unique solution of (7.16), we impose the following conventions.(
Cqµ,n

)
r

=
(
Cqµ,n

)∗
r
, (7.17)∑

r

(
Cqµ,n

)2
r

= 1. (7.18)

(7.16), (7.17) and (7.18) determine the eigenvectors Cqµ,n up to a sign
which is fixed by a convection, cf. equations (7.39), (7.51), (7.78) below.

The common eigenfunction of Ĥq and T̂π related to the eigenvalues λqµ,n and
eiµπ is then ∑

r

(Cqµ,n)r uµ,2r(z) = yqµ,n(z) . (7.19)

Because of (7.17) and (7.18) these functions satisfy∫ π

0
dz
∣∣yqµ,n(z)∣∣2 = π. (7.20)

Characteristic exponent µ ∈ (−1, 0)

The only difference in the approach outlined above is the sign of the charac-
teristic exponent. Inspection of (7.12) shows that for µ ∈ (0, 1) the matrix
Hq
−µ may be obtained from the matrix Hq

µ by the orthogonal transformation
Hq
−µ = W †

−H
q
µW− where

W− =



1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 1 0 0 0 · · ·
0 0 0 0 1 · · ·
0 0 0 1 0 · · ·
...

...
...

...
...

. . .


; (7.21)
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this corresponds to a permutation of rows and colums (indices 0,-1,+1,-2,+2,
. . .→ 0,+1,-1,+2,-2,. . .). Therefore

λqµ,n = λq−µ,n for n = 0, 1, 2, . . . . (7.22)

Another way to derive this relation is to consider the function Ŝ0 y
q
µ,n(z) where

yqµ,n(z) is a Floquet solution with characteristic exponent µ ∈ (0, 1) and eigen-
value λqµ,n. It follows from (7.5) that Ŝ0 y

q
µ,n(z) is also an eigenfunction of Ĥq

with eigenvalue λqµ,n; but because of (7.6) this function has the characteristic
exponent −µ ∈ (−1, 0). Since the eigenvalues of Hq

µ are nondegenerate and Flo-
quet solutions with noninteger characteristic exponent are linearly independent
it is possible to choose the normalization constants and phase factors in such a
way that

yq−µ,n(z) = Ŝ0y
q
µ,n(z) = yqµ,n(−z) for 0 < |µ| < 1 . (7.23)

Characteristic exponent µ = 0

In the space spanned by the functions u0,2r(z) the translation operator T̂π
becomes the identity operator so that it is possible to diagonalize T̂π, Ŝ0, and
Ĥq, simultaneously. Let W0 be the unitary matrix

W0 =



1 0 0 0 0 · · ·
0 1√

2
i√
2

0 0 · · ·
0 1√

2
−i√

2
0 0 · · ·

0 0 0 1√
2

i√
2

· · ·
0 0 0 1√

2
−i√

2
· · ·

...
...

...
...

...
. . .


(7.24)

with row index (7.13) and column index

sp = 0+, 1+, 1−, 2+, 2−, . . . . (7.25)

Then

W †
0 H

q
0 W0 =



02
√

2q 0 0 0 · · ·√
2q 22 0 q 0 · · ·
0 0 22 0 q · · ·
0 q 0 42 0 · · ·
0 0 q 0 42 · · ·
...

...
...

...
...

. . .


∼ Hq

0+ ⊕Hq
0− (7.26)
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(row/column index (7.25)). The first submatrix

Hq
0+ =



02
√

2q 0 0 0 · · ·√
2q 22 q 0 0 · · ·
0 q 42 q 0 · · ·
0 0 q 62 q · · ·
0 0 0 q 82 · · ·
...

...
...

...
...

. . .


(7.27)

with row and column index

s+ = 0+, 1+, 2+, . . . (7.28)

shows the action of Ĥq onto the following basis.

v2s+(z) =

{
1 for s = 0
√

2 cos 2sz for s > 0
(7.29)

=

u0,0(z) for s = 0
1√
2
u0,−2s(z) + 1√

2
u0,2s(z) for s > 0

(7.30)

The eigenvalues of (7.27) are denoted as [20]

λq0,2m = aq2m (7.31)

m = 0, 1, 2, . . . (7.32)

and its eigenvectors are calculated according to

∞∑
s′=0

(
Hq

0+

)
s,s′

(Aq2m)s′ = aq2m (Aq2m)s , (7.33)

(Aq2m)s = (Aq2m)∗s , (7.34)∑
s

(Aq2m)2s = 1, (7.35)

and ∑
s

(Aq2m)s > 0. (7.36)

The related eigenfunctions read

yq0,2m(z) =
∞∑
s=0

(Aq2m)s v2s+(z) =
∑
r

(
Cq0,2m

)
r
u0,2r(z) , (7.37)

(
Cq0,2m

)
0

= (Aq2m)0 ,
(
Cq0,2m

)
±r

=
1√
2

(Aq2m)r for r > 0 (7.38)
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and are normalized as the functions for µ ∈ (0, 1), see eq. (7.20). The phase
convention (7.36) is equivalent to

yq0,2m(0) > 0. (7.39)

The second submatrix is

Hq
0− =



22 q 0 0 0 · · ·
q 42 q 0 0 · · ·
0 q 62 q 0 · · ·
0 0 q 82 q · · ·
0 0 0 q 102 · · ·
...

...
...

...
...

. . .


, (7.40)

where row and column indices are given by

s− = 1−, 2−, 3−, . . . . (7.41)

The corresponding basis is

v2s−(z) =
√

2 sin 2sz (7.42)

=
i√
2
u0,−2s −

i√
2
u0,2s (7.43)

The eigenvalues of (7.40) are denoted as [20]

λq0,2m+1 = bq2m+2 . (7.44)

The eigenvectors are defined by
∞∑
s′=1

(
Hq

0−
)
s,s′

(Bq
2m+2)s′ = bq2m+2 (Bq

2m+2)s , (7.45)

(
Bq

2m+2

)
s

=
(
Bq

2m+2

)∗
s
, (7.46)∑

s

(
Bq

2m+2

)2
s

= 1, (7.47)

and ∑
s

s
(
Bq

2m+2

)
s
> 0. (7.48)

The related eigenfunctions read

yq0,2m+1(z) =
∞∑
s=1

(Bq
2m+2)s v(2s)−(z) =

∑
r

(
Cq0,2m+1

)
r
u0,2r(z) , (7.49)

(
Cq0,2m+1

)
±r

= ∓ i√
2

(
Bq

2m+2

)
r

for r > 0 (7.50)

and are normalized as the functions for µ ∈ (0, 1), see eq. (7.20). The phase
convention (7.48) corresponds to[

d
dz

yq0,2m+1(z)
]
z=0

> 0. (7.51)
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Characteristic exponent µ = 1

In this case, the operator T̂π becomes again a multiple of the identity operator,
namely −1. Following the same procedure as in the case µ = 0 we introduce
the unitary matrix

W1 =



1√
2

−i√
2

0 0 · · ·
1√
2

i√
2

0 0 · · ·
0 0 1√

2
−i√

2
· · ·

0 0 1√
2

i√
2

· · ·
...

...
...

...
. . .


(7.52)

with row index (7.13) and column index

sp = 0+, 0−, 1+, 1−, 2+, 2−, . . . . (7.53)

Then

W †
1 H

q
1 W1 =



1 + q 0 q 0 0 0 · · ·
0 1− q 0 q 0 0 · · ·
q 0 32 0 q 0 · · ·
0 q 0 32 0 q · · ·
0 0 q 0 52 0 · · ·
0 0 0 q 0 52 · · ·
...

...
...

...
...

. . .


∼ Hq

1+ ⊕Hq
1− . (7.54)

The first submatrix is

Hq
1+ =



1 + q q 0 0 0 · · ·
q 32 q 0 0 · · ·
0 q 52 q 0 · · ·
0 0 q 72 q · · ·
0 0 0 q 92 · · ·
...

...
...

...
...

. . .


. (7.55)

where rows and columns refer to the indices s+, eq. (7.28). The corresponding
basis is

v(2s+1)+(z) =
√

2 cos(2s+ 1)z (7.56)

=
1√
2
u1,2s +

1√
2
u1,−2s−2 (7.57)

The eigenvalues, eigenvectors, and eigenfunctions are given by the following
equations.

λq1,2m+1 = aq2m+1 (7.58)
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∞∑
s′=0

(
Hq

1+

)
s,s′

(Aq2m+1)s′ = aq2m+1(A
q
2m+1)s (7.59)

(
Aq2m+1

)
s

=
(
Aq2m+1

)∗
s

(7.60)∑
s

(
Aq2m+1

)2
s

= 1 (7.61)

∑
s

(
Aq2m+1

)
s
> 0 (7.62)

yq1,2m+1(z) =
∞∑
s=0

(Aq2m+1)sv(2s+1)+(z) =
∑
r

(
Cq1,2m+1

)
r
u1,2r(z) (7.63)

(
Cq1,2m+1

)
r

=
1√
2

(
Aq2m+1

)
r

for r ≥ 0 (7.64)(
Cq1,2m+1

)
r

=
1√
2

(
Aq2m+1

)
−r−1

for r < 0 (7.65)

and are normalized as the functions for µ ∈ (0, 1), see eq. (7.20). The phase
convention (7.62) corresponds to

yq1,2m+1(0) > 0. (7.66)

The last submatrix is

Hq
1− =



1− q q 0 0 0 · · ·
q 32 q 0 0 · · ·
0 q 52 q 0 · · ·
0 0 q 72 q · · ·
0 0 0 q 92 · · ·
...

...
...

...
...

. . .


(7.67)

where rows and columns refer to the indices s− given by eq. (7.41). The
corresponding basis is now

v(2s+1)−(z) =
√

2 sin(2s+ 1)z (7.68)

= − i√
2
u1,2s +

i√
2
u1,−2s−2 (7.69)

and the eigenvalues, eigenvectors, and eigenfunctions read as follows.

λq1,2m = bq2m+1 (7.70)

∞∑
s′=0

(
Hq

1−
)
s,s′

(Bq
2m+1)s′ = bq2m+1(B

q
2m+1)s (7.71)

(
Bq

2m+1

)
s

=
(
Bq

2m+1

)∗
s

(7.72)∑
s

(
Bq

2m+1

)2
s

= 1 (7.73)
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∑
s

(2s+ 1)
(
Bq

2m+1

)
s
> 0 (7.74)

yq1,2m(z) =
∞∑
s=0

(Bq
2m+1)sv(2s+1)−(z) =

∑
r

(
Cq1,2m

)
r
u1,2r(z) (7.75)

(
Cq1,2m+1

)
r

= − i√
2

(
Bq

2m+1

)
r

for r ≥ 0 (7.76)

(
Cq1,2m+1

)
r

=
i√
2

(
Bq

2m+1

)
−r−1

for r < 0 (7.77)

The functions (7.75) are again normalized according to (7.20). The phase con-
vention (7.74) corresponds to[

d
dz

yq1,2m(z)
]
z=0

> 0. (7.78)

Characteristic exponent µ 6∈ (−1, 1]

If the characteristic exponent is not in the interval (−1, 1], we decompose it
according to µ+ 2k accordingg to µ ∈ (−1, 1] and k ∈ Z. Looking at

Hq
µ+2k =



(µ+ 2k)2 q q 0 0 · · ·
q (µ+ 2k − 2)2 0 q 0 · · ·
q 0 (µ+ 2k + 2)2 0 q · · ·
0 q 0 (µ+ 2k − 4)2 0 · · ·
0 0 q 0 (µ+ 2k + 4)2 · · ·
...

...
...

...
...

. . .


(7.79)

we see that it corresponds to Hq
µ if columns and rows are appropriately rear-

ranged. (
Hq
µ+2k

)
r,r′

=
(
Hq
µ

)
r+k,r′+k

(7.80)

We therefore relate the eigenvalues and eigenvectors of Hq
µ+2k to those of Hq

µ

in the following way.

λqµ+2k,n = λqµ,n (7.81)(
Cqµ+2k,n

)
r

=
(
Cqµ,n

)
r+k

(7.82)

7.1.1 Recurrence relations

Line r of (7.16) corresponds to

[
λqµ,m − (µ+ 2r)2

] (
Cqµ,m

)
r
− q

[(
Cqµ,m

)
r+1

+
(
Cqµ,m

)
r−1

]
= 0. (7.83)
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Line s of (7.33) yields

aq2m (Aq2m)0 −
√

2q (Aq2m)1 = 0 , (7.84)

(aq2m − 4) (Aq2m)1 − q
[√

2 (Aq2m )0 + (Aq2m)2
]

= 0 , (7.85)[
aq2m − (2s)2

]
(Aq2m)s − q

[
(Aq2m)s−1 + (Aq2m)s+1

]
= 0 s ≥ 2 . (7.86)

Equivalently, from (7.59) we obtain

(
aq2m+1 − 1− q

) (
Aq2m+1

)
0
− q

(
Aq2m+1

)
1

= 0 , (7.87)[
aq2m+1 − (2s+ 1)2

] (
Aq2m+1

)
s
− q

[(
Aq2m+1

)
s−1

+
(
Aq2m+1

)
s+1

]
= 0 s ≥ 1 .

(7.88)

(7.45) yields

(
bq2m+2 − 4

) (
Bq

2m+2

)
0
− q

(
Bq

2m+2

)
1

= 0 , (7.89)[
bq2m+2 − (2s+ 2)2

] (
Bq

2m+2

)
s
− q

[(
Bq

2m+2

)
s−1

+
(
Bq

2m+2

)
s+1

]
= 0 s ≥ 2 ,

(7.90)

and with (7.71) we finally obtain

(
bq2m+1 − 1 + q

) (
Bq

2m+1

)
0
− q

(
Bq

2m+1

)
1

= 0 , (7.91)[
bq2m+1 − (2s+ 1)2

] (
Bq

2m+1

)
s
− q

[(
Bq

2m+1

)
s−1

+
(
Bq

2m+1

)
s+1

]
= 0 s ≥ 2 .

(7.92)

Terminology of Meixner and Schäfke

A very convenient notation is introduced in [26]. Its advantage is that all
Mathieu functions can be considered as one single function, the distinction
between the four cases being taken care of by the notation used. Following [26]
we write for m = 0, 1, 2, . . .

1√
2
yq0,2m(z) = ce2m(z; q) =

1√
2
me2m(z; q) , (7.93)

1√
2
yq1,2m(z) = ce2m+1(z; q) =

1√
2
me2m+1(z; q) , (7.94)

1√
2
yq1,2m+1(z) = se2m+1(z; q) =

i√
2
me−2m−1(z; q) , (7.95)

1√
2
yq0,2m+1(z) = se2m+2(z; q) =

i√
2
me−2m−2(z; q) . (7.96)
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In [26], a one-index notation for the (Cqµ,n)r coefficients is used which is denoted
by cm2r(q). For m > 0, it is related to the previously defined coefficients by

c2m2r (q) =
(
Cq0,2m

)
r
, (7.97)

c2m+1
2r (q) =

(
Cq1,2m

)
r
, (7.98)

c−2m−1
2r (q) =

(
Cq1,2m+1

)
r
, (7.99)

c−2m−2
2r (q) =

(
Cq0,2m+1

)
r
. (7.100)

The index n of the functions cen(z; q) and sen(z; q) is called the order of these
Mathieu functions. The eigenvalues related to the eigenfunctions (7.93) - (7.96)
are aq2m, aq2m+1, b

q
2m+1, b

q
2m+2 and

aq0 < bq1 < aq1 < bq2 < aq2 < bq3 < aq3 < . . . . (7.101)

Note that for q → 0 we have

bqm → aqm for m > 0 (7.102)

and

lim
q→0

cen(z; q) → cosnz , (7.103)

lim
q→0

sen(z; q) → sinnz . (7.104)

7.2 The modified Mathieu functions

If we replace the variable z in the Mathieu equation (7.1) by iz we obtain the
modified Mathieu equation

d2y

dz2
− (λ− 2q cosh 2z) y = 0. (7.105)

Solutions of (7.105) may be obtained from the previously defined Mathieu func-
tions by substituting z → iz. The functions obtained are series in coshnz and
sinhnz, the coefficients being the same as for the Mathieu functions with real
argument.

Although theoretically well-defined, this series representation is numerically
inconvenient. It is more efficient to use a series representation in Hankel func-
tions. The symbol Zm with m ∈ N0 has the following meaning.

Z(j)
m (z) =


Jm(z) j = 1

Ym(z) j = 2

Jm(z) + iYm(z) j = 3

Jm(z)− iYm(z) j = 4

(7.106)
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Jm(z) is the Bessel function with

Jm(z) →
√

2
πz

cos
(
z − mπ

2
− π

4

)
for z →∞ , (7.107)

Ym(z) is the Neumann function with

Ym(z) →
√

2
πz

sin
(
z − mπ

2
− π

4

)
for z →∞ , (7.108)

and Z(3,4)
m (z) are the related Hankel functions with asymptotic form [20]

Z(3)
m (z) →(−i)m

√
2
πz
e+i(z−

π
4
) (7.109)

Z(4)
m (z) →(−i)m

√
2
πz
e−i(z−

π
4
). (7.110)

Using these functions, we introduce the following modified Mathieu functions.

Mc(j)
2n (z; q) =

1
ce2n(0; q)

∞∑
r=0

(−1)n−r (Aq2n)r Z(j)
2r (2

√
q cosh z) (7.111)

Mc(j)
2n+1(z; q) =

1
ce2n+1(0; q)

∞∑
r=0

(−1)n−r
(
Aq2n+1

)
r
Z(j)

2r+1(2
√
q cosh z) (7.112)

Ms(j)2n+2(z; q) =
tanh z

se′2n+2(0; q)

∞∑
r=0

(−1)n−r(2r + 2)
(
Bq

2n+2

)
r
Z(j)

2r+2(2
√
q cosh z)

(7.113)

Ms(j)2n+1(z; q) =
tanh z

se′2n+1(0; q)

∞∑
r=0

(−1)n−r(2r + 1)
(
Bq

2n+1

)
r
Z(j)

2r+1(2
√
q cosh z)

(7.114)

The relation of these functions to the functions men(iz; q) is discussed in [26].
For j > 1, the following equivalent series representations [26] are more useful
for numerical calculations (cf. chapter 8).

Mc(j)
2n (z; q) =

1
(1 + δs,0) (Aq2n )s

∞∑
r=0

(−1)n+r (Aq2n )r ×

[
Jr−s(

√
qe−z)Z(j)

r+s(
√
qez)

+Jr+s(
√
qe−z)Z(j)

r−s(
√
qez)

]
(7.115)

Mc(j)
2n+1(z; q) =

1(
Aq2n+1

)
s

∞∑
r=0

(−1)n+r
(
Aq2n+1

)
r
×

[
Jr−s(

√
qe−z)Z(j)

r+s+1(
√
qez)

+Jr+s+1(
√
qe−z)Z(j)

r−s(
√
qez)

]
(7.116)

Ms(j)2n+2(z; q) =
1(

Bq
2n+2

)
s

∞∑
r=0

(−1)n+r
(
Bq

2n+2

)
r
×

[
Jr−s(

√
qe−z)Z(j)

r+s+2(
√
qez)

−Jr+s+2(
√
qe−z)Z(j)

r−s(
√
qez)

]
(7.117)

Ms(j)2n+1(z; q) =
1(

Bq
2n+1

)
s

∞∑
r=0

(−1)n+r
(
Bq

2n+1

)
r
×

[
Jr−s(

√
qe−z)Z(j)

r+s+1(
√
qez)

−Jr+s+1(
√
qe−z)Z(j)

r−s(
√
qez)

]
(7.118)
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Note that in (7.115) - (7.118) s = 0, 1, 2, . . . is a free index and Z
(j)
−m(z) =

(−1)mZ(j)
m (z). Finally, the functions M (j)

m (z; q) are defined in the following
way.

M (j)
m (z; q) = Mc(j)

m (z; q) (m = 0, 1, 2, . . . ) (7.119)

(−1)mM (j)
−m(z; q) = Ms(j)m (z; q) (m = 1, 2, 3, . . . ) (7.120)

The asymptotic behaviour of these functions is given by [26]

M (j)
m (z; q) → Z(j)

m (2
√
q cosh z) for z →∞. (7.121)

7.3 Eigenfunctions of the Helmholtz equation

With the Laplacian (3.13), the Helmholtz equation (2.5) with piecewise constant
γ(x) reads

−∂
2u

∂ξ2
− γ2h

2k2

2
cosh 2ξ =

∂2u

∂η2
− γ2h

2k2

2
. (7.122)

From the ansatz u(ξ, η) = U(ξ)V (η) we obtain the following two ordinary dif-
ferential equations with the separation constant λ and qk = h2k2

4 as in (3.22).

−U ′′(ξ) +
(
λ− 2γ2q cosh 2ξ

)
U(ξ) = 0 (7.123)

V ′′(η) +
(
λ− 2γ2q cos 2η

)
V (η) = 0 (7.124)

Eq. (7.124) is equivalent to (7.1) and (7.123) to (7.105). Thus, we know that we
can write the general solution for given λ, called partial wave, for the Helmholtz
equation in elliptic coordinates as sum of two linearly independent solution, e.g.,

up(ξ, η) = apM(1)
p (ξ; γ2qk)mep(η; γ2qk) + bpM(3)

p (ξ; γ2qk)mep(η; γ2qk). (7.125)

Smoothness around the x-axis

Note that the conditions (3.14 - 3.17) have to be fulfilled for a partial wave
inside of a scattering body. For p > 0, the sign of mep(η; γ2qk) flips when
going though y = 0; for p < 0, the sign of d

dηmep(η; γ2qk) flips. This jump

is ’compensated’ for the regular partial wave M (1)
p (ξ; γ2qk)mep(η; γ2qk) by the

fact that, for ξ → 0, M (1)
p (ξ; γ2qk) → 0 for p > 0 and d

dξM
(1)
p (ξ; γ2qk) → 0 for

p < 0. However, the ξ-derivatives of the singular partial wave M (2)
p (ξ; γ2qk) do

not become zero, thus M (2)
p (ξ; γ2qk)mep(η; γ2qk) is not continuous; therefore,

it cannot be part of the solution (3.26) inside of a scattering body. This is
illustrated in Fig. (7.3).
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Figure 7.1: Discontinuity of the partial wave M(2)
−2 (ξ(x, y); 2) me−2 (η(x, y); 2)

7.4 Addition theorem for Mathieu functions

The addition theorem relates two solutions of the Helmholtz equation in dif-
ferent coordinate systems. It was used in chapter (3) to solve the scattering
problem for N elliptical scatterers. We formulate it here for the two elliptical
coordinate systems

ξ(1) =Ξ
(
h(1),D(−α(1))(x− x(1))

)
= ξ(1)(x), (7.126)

ξ(2) =Ξ
(
h(2),D(−α(2))(x− x(2))

)
= ξ(2)(x), (7.127)

where Ξ(h,x) is given by (3.9) and D(α) by (3.59). The origins of the two co-
ordinate systems are joined by the vector ρ = (ρ, ψ) = x(1) − x(2). We assume
that the geometric parameters α(i), h(i), and h(i) are all real. Formulas for com-
plex parameters are similar, but the expansions are valid in more complicated
regions [27]. For the description of the addition theorem coefficients, we will
use the terminology (7.97 - 7.100). Now, the exterior Addition theorem

M (j)
p (ξ(1); q(1))mep(η(1); q(1)) =

∞∑
s=−∞

AsM
(j)
p+s(ξ

(2); q(2))mep+s(η(2); q(2)),

(7.128)

As =
∞∑

l=−∞
r=−∞

(−1)l+scp2r(q
(1))cp+s2(r−l)(q

(2))e−i(p+2r)(α1−α2)J2l−s(kρ)ei(2l−s)ψ,

(7.129)

is valid in the region coloured in blue in Fig. 7.4

ξ(2) > ξ(2)max, (7.130)

where

ξ(2)
max = max

[
(x(1) + D(α(1))

(
h

0

)
,x(1) + D(α(1))

(
−h
0

)]
. (7.131)
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Figure 7.2: Range of addition theorem

The interior Addition theorem

M (j)
m (ξ(1); q(1))mem(η(1); q(1)) =

∞∑
r=−∞

B(j)
r,mM

(1)
r (ξ(2); q(2))mer(η(2); q(2)),

(7.132)

B(j)
r,m(q(1), q(2)) =

∞∑
f=−∞
g=−∞

(−1)g−f+mcm2g(q
(1))cr2f (q

(2))Z(j)
r−m+2(f−g)(kρ)

× e−i[r−m+2(f−g)]ψe−i(2g+m) (α1−α2), (7.133)

is valid in the region coloured in red in Fig. 7.4

ξ(2) < ξ
(2)
min, (7.134)

where

ξ
(2)
min = min

[
(x(1) + D(α(1))

(
h

0

)
,x(1) + D(α(1))

(
−h
0

)]
. (7.135)

Note that in (7.133), the exponent of (−1)g−f+m differs from that in [28].

7.5 Summary

In this chapter, Mathieu functions were introduced as square-integrable eigen-
functions of commuting operators. The advantage of this approach is that the
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labelling of Mathieu functions is clearly related to eigenvalue problems. This
labelling is then related to the notation of Meixner and Schäfke [26] which
excels in its simplicity all others, in particular the standard notation of [20].
The expansion coefficients of the Mathieu functions obtained in the first sec-
tion are also used to define the Modified Mathieu functions and appear in the
interior and exterior addition theorems for solutions of the Helmholtz equation
in elliptic coordinates.



Chapter 8

Numerical Implementation

8.1 Mathieu Functions

Numerical routines for Mathieu functions are available, e.g. [29], [19], but the
numerics of the addition theorem requires an implementation with supplemen-
tary precision. The approach presented here combines a well-known iterative
approach [26] with matrix techniques [30], [31]; the matrix part is similar to the
method used by Stamnes and Spjelkavik [32].

The Mathieu library implemented as described here allows the numerical
calculation of the functions in the required precision. In addition it provides
the user with a formalism [26] that is of comparable simplicity as calculations
in spherical coordinates (cosine, sine, Bessel and Hankel functions).

The software presented here is written in an object-oriented language (C++)
and organized around an ’object’ which calculates and stores the Mathieu eigen-
values and eigenvectors. This object may then be used to calculate approxima-
tions for the eigenfunctions by truncating the corresponding series.

The object has to be initialized before Mathieu functions can be computed
for various arguments (cf. fig. 8.1). The necessary subroutines are embedded
in the object. The advantage of this object-oriented implementation is that the
allocation, calculation and deallocation of the series coefficients is invisible to
the user. As well, debugging is facilitated by the operator overloading feature
of the language with which bounds checking may easily be introduced and then
removed afterwards for performance reasons. The routines are designed for
multiple evaluations of Mathieu functions with the same q. Thus, evaluation
for different arguments is performed fast once the object is initialized.

The calculation of the coefficients is based on three public domain libraries:
LAPACK [15] for the calculation of the eigenvalues of a tridiagonal matrix and
GMP [33] for the iterative procudure which is performed in arbitrary precision.
The Bessel and Hankel functions in the summation of the truncated series of the
modified Mathieu functions are calculated with GSL [34]. To obtain Mathieu
functions in arbitrary precision, one would just have to use Bessel and Hankel

91
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m, q

End

Estimate truncation
for matrices

Calculate approximate
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Compute correction δλ

q=0 q>0

δλ > ε

Replace λ by λ + δλ

Estimate dimension of
eigenvector

Increase dimension
of eigenvector

q ?

δλ ?

δλ < ε

Special case
(polar coordinates)

Figure 8.1: Flowchart of the initialization procedure

functions of the desired precision.

The case q = 0 is easily treated: the Mathieu functions become sine and
cosine functions, and the modified Mathieu functions reduce to Bessel, Neu-
mann and Hankel functions [26]. For q > 0, we first calculate an estimate for
the eigenvalues λqµ,n as described in section 8.1.1 below; afterwards in section
8.1.2 it is estimated how many components of the eigenvector will be needed.
Finally in section 8.1.3 the estimate for λqµ,n is iteratively refined.
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8.1.1 Approximate eigenvalues

The eigenvalue problems that define the Mathieu functions are suited for auto-
mated calculation of an approximation to the characteristic values λqµ,n (also for
calculation of the eigenvectors Cqm, but this will not be exploited here). To this
end, we start from one of the matrices H0+,H0−,H1+,H1−, eqs. (7.27, 7.40,
7.55, 7.67). The infinite matrix is truncated at dimension N(n, q) according to
the following heuristic rule.

0 ≤ n < 10 N = 20×max(1, log q) (8.1)

n ≥ 10 N = 2n×max(1, log q) (8.2)

Then, the real eigenvalues of the truncated matrix are calculated using the dou-
ble precision routine dstev for tridiagonal symmetric matrices from CLAPACK
[15].

8.1.2 Approximate eigenvectors

Next we need an estimate for the range 1 < s < Smax such that (Aqm)s < ε

or (Bq
m)s < ε for s > Smax. We know that for the converging solution of a

three-term recursion

yk+1 −Dkyk + yk−1 = 0 k = 1, 2, 3, . . . (8.3)

the following relation holds true [26].

|yk| ≤
1

|Dk| − 1
|yk−1| (8.4)

For the components of the eigenvector Aq2n this implies

∣∣(Aq2n)s∣∣ ≤ 1∣∣∣aq
2n−(2s)2

q

∣∣∣− 1

∣∣(Aq2n)s−1

∣∣ . (8.5)

For an estimate of S that fulfills

(Aq2n)s < ε fors > S, (8.6)

we assume that the value of (Aq2n)s at s = 0 is equal to 1. Then we use
(8.5) to estimate the magnitude of the coefficients for increasing s. The typical
behaviour of the coefficients is shown in fig. 8.1.2: there is only one maximum,
after which the absolute value of the coefficients decreases with s according to
(8.5).
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Figure 8.2: Typical values of Cqµ,m coefficients

8.1.3 Iteration procedure for eigenvalues and eigenvectors

The core of the numerical calculation of Mathieu functions as proposed here is
an iteration scheme which yields eigenvectors and eigenvalues with a prescribed
precision. We use the iterative method of [26] because it is both efficient when
good estimates for eigenvalues are available and easy to implement using an
arbitrary precision library (in contrast to methods requiring equation solvers).
As the original source [26] is written in German, the procedure will be briefly
described here for aq2n and Aq2n. The three other cases are treated analogously.
If we set

(Aq2n)s+1

(A2n)s
= Ns (8.7)

in relations (7.84) - (7.86), we obtain

N0 =
aq2n√
2q
, (8.8)

√
2

1
N0

+N1 =
aq2n − 4

q
, (8.9)

1
Ns−1

+Ns =
aq2n − (2s)2

q
for s ≥ 2 . (8.10)

It follows that
lim
S→∞

F (aq∗2n, S) = 0 (8.11)

if

F (aq2n, S) =
aq2n
q
− 2

aq
2n−22

q −
1

aq
2n−42

q −
1

aq
2n−62

q −
· · · 1

aq
2n−(2S)2

q

, (8.12)

aq∗2n is the exact eigenvalue, and Ns → 0 for s→∞. The last condition follows
from [26]

4s2Ns + q = q O

(
1
s

)
for s →∞ . (8.13)
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We start the iteration from a given pair (aq2n, S) and use the magnitude of
the function (8.12) as measure for the quality of the eigenvalue aq2n and the
dimension S of the eigenvector.

In the beginning, we calculate the quotients N0|L, . . . , NS|L according to the
recurrence relations (8.8) - (8.10). Here, L indicates that these recursions are
relations that ’run from the left’ (increasing s). Assuming NS to vanish exactly
we may use equations (8.10) and (8.9) to define a recursion that ’runs from the
right’.

NS|R = 0 (8.14)

NS−1|R =
q

aq2n − (2S)2
(8.15)

NS−2|R =
1

aq
2n−(2S−2)2

q −NS−1|R

(8.16)

. . .

N0|R =
1√
2

1
aq
2n−4
q −N1|R

(8.17)

If we change aq2n by δaq2n, the quotients Ns will change according to

δN0 =
δaq2n√

2q
(8.18)

δN1 =
δaq2n
q

+
√

2
N2

0

δN0 (8.19)

δNs =
δaq2n
q

+
1

N2
s−1

δNs−1 for s ≥ 2 (8.20)

or

δNs = N2
s

[
δNs+1 −

δaq2n
q

]
for s ≥ 2. (8.21)

Therefore

δNt|L =
δaq2n
q

[
1 +

1
N2
t−1

+
1

N2
t−1N

2
t−2

+ · · ·+ 1
N2
t−1N

2
t−2 · · ·N2

1N
2
0

]
(8.22)

and

δNt|R = −δa
q
2n

q

[
N2
t +N2

t N
2
t+1 + · · ·+N2

t N
2
t+1 · · ·N2

S

]
. (8.23)

If we require
Nt|R + δNt|R = Nt|L + δNt|L . (8.24)

for an index 2 < t < S then δaq2n has to be determined from

Nt|R −Nt|L =
δaq2n
q

[
1 +

1
N2
t−1

+
1

N2
t−1N

2
t−2

+ · · ·+ 1
N2
t−1N

2
t−2 · · ·N2

1N
2
0

+

N2
t +N2

t N
2
t+1 + · · ·+N2

t N
2
t+1 · · ·N2

S

]
. (8.25)
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We now choose t according to the condition

F (aq2n + δaq2n(a
q
2n, S, t), S) → min . (8.26)

The magnitude of the right-hand side of (8.26) then determines whether the
procedure has to be iterated or not. If yes, the pair (aq2n + δaq2n, S + 1) is used
as input in the next interation step.

8.1.4 Numerical validation

The tests performed are based on the calculation of the eigenvalue. If the value
obtained is a good approximation to the true eigenvalue, so will be the related
eigenvectors. It has turned out that in available standard packages the correct
calculation of the eigenvalues is not always assured.

The quality of the eigenvalues is tested with δ = F (aq2n, S) (cf. eq. (8.12))
and analogous functions for the other eigenvalues. However, for some λqn, (8.26)
is very unstable, so it was necessary for testing purposes to obtain the eigenvalue
up to a much higher precision than necessary for the use of the routines in
vacuum scattering problems.

The eigenvalues listed in [20] are reproduced correctly by our calculation
package. A selected list of eigenvalues not listed in [20] is shown in Table 8.1.
The smallness of δ indicates the accuracy of the approximation.

µ, n m q λqn δ

1, 52 −53 15 2809.04 1.43891× 10−23

1, 52 −53 150 2813.01 5.50336× 10−73

1, 52 −53 1500 3261.11 6.61372× 10−151

1, 52 −53 15000 −5744.58 1.38183× 10−153

0, 7 −8 20 67.2522 −1.54185× 10−85

0, 7 −8 200 −6.29144 −4.90374× 10−88

0, 7 −8 2000 −2687.24 −3.17698× 10−85

0, 7 −8 20000 −35785.8 −4.87859× 10−87

1, 9 9 10 81.6283 3.71361× 10−124

1, 9 9 100 126.396 8.32945× 10−130

1, 9 9 1000 −845.479 4.5954× 10−126

1, 9 9 10000 −16245.8 1.26889× 10−125

0, 48 48 13 2304.04 2.04218× 10−34

0, 48 48 130 2307.67 6.48867× 10−81

0, 48 48 1300 2729.32 8.02361× 10−126

0, 48 48 13000 −5129.57 3.2098× 10−154

Table 8.1: Numerical test of eigenvalue precision
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Next we compare the eigenvalues given in Table 8.1 with the corresponding
values obtained from other sources [29], [19].

µ, n m q λqµ,n Mathematica Alhargan
1, 52 −53 15 2809.04 2809.04 2809.04
1, 52 −53 150 2813.01 2813.01 2813.01
1, 52 −53 1500 3261.11 −2922 .79 3261.11
1, 52 −53 15000 −5744.58 −5744.58 −5706 .88
0, 7 −8 20 67.2522 67.2522 67.2522
0, 7 −8 200 −6.29144 −6.29144 −6.29144
0, 7 −8 2000 −2687.24 −2687.24 −2687 .23
0, 7 −8 20000 −35785.8 −35785.8 −37959 .83
1, 9 9 10 81.6283 81.6283 81.6283
1, 9 9 100 126.396 126.396 126.396
1, 9 9 1000 −845.479 −845.479 −845.479
1, 9 9 10000 −16245.8 −16245.8 −15768 .42
0, 48 48 13 2304.04 2304.04 2304.04
0, 48 48 130 2307.67 2307.67 2307.67
0, 48 48 1300 2729.32 5350 .44 2729.32
0, 48 48 13000 −5129.57 −5129.57 −5070 .66

Table 8.2: Comparison of eigenvalues obtained by different methods

Although Mathematica probably uses a similar routine for the determination
of the eigenvalues, there seems to be a problem. As it is not possible to calculate
a particular eigenvalue of a matrix, perhaps the error lies in choosing the right
eigenvalue out of the list of all the eigenvalues. The issue is illustrated by Fig.
8.3.

8.2 Addition Theorem

For the numerical calculation of the interior addition theorem given by (7.132)
and (7.133)

M (j)
m (ξ(1); q(1))mem(η(1); q(1)) =

∞∑
r=−∞

B(j)
r,mM

(1)
r (ξ(2); q(2))mer(η(2); q(2)),

(8.27)

B(j)
r,m(q(1), q(2)) =

∞∑
f=−∞
g=−∞

(−1)g−f+mcm2g(q
(1))cr2f (q

(2))Z(j)
r−m+2(f−g)(kρ)

× e−i[r−m+2(f−g)]ψe−i(2g+m) (α1−α2), (8.28)
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Figure 8.3: Eigenvalue λq1,52 as calculated by Mathematica

we need to estimate the range of fmin ≤ f ≤ fmax and gmin ≤ g ≤ gmax which is
used to truncate the series for (8.28). As well, for a given m, we need numbers
Rmin and Rmax to truncate the summation over r in the right-hand side of
(8.27).

To determine at which f, g we may stop the calculation the coefficient B(3)
r,m,

we look at the quantity

S
(3)
r,m,F,G(kρ) =

B
(3)
r,m,F,G(kρ) +B

(3)
r,m,−F,−G(kρ)

F,G∑
f=−F
g=−G

B
(3)
r,m,f,g(kρ)

(8.29)

where

B
(3)
r,m,f,g(kρ)M

(1)
r

(
ξ(2); q(2)

)
=cm2g(q

(1))cr2f (q
(2))Z(j)

r−m+2(f−g)(kρ)

×M(1)
r

(
ξ(2); q(2)

)
, (8.30)

The series abortion number X is chosen according to the following equation
where δ is the desired relative precision.∣∣∣S(3)

r,m,X,X

∣∣∣ < δ. (8.31)

Typical numerical values are given in Fig. 8.4, where the X values for δ = 10−20

are plotted on a r,m grid where −10 ≤ r ≤ 10 and −10 ≤ m ≤ 10. The
remaining parameters are x(1) = (−4|0), α(1) = 10◦ and x(2) = (0|0), α(1) = 30◦.
We see that X values between 10 and 20 are sufficient for the desired precision.
In the very same way, we proceed to an estimate for the truncation of (8.27)
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Figure 8.4: Flowchart of the initialization procedure

with the help of

T
(3)
m,R(ξ(2)) =

B
(3)
R,mM(1)

R

(
ξ(2); q(2)

)
+B

(3)
−R,m(kρ)M(1)

−R
(
ξ(2); q(2)

)
∑R

r=−RB
(3)
r,m(kρ)M(1)

r

(
ξ(2); q(2)

) . (8.32)

We demand again T
(3)
m,R(ξ(2)) < ε and series coefficients which are calculated

with a precision of 10−20. Looking for the same geometry at the point x =
(−2|1), we see from table 8.3 that for a desired ε = 10−6, we need for this
particular point a cutoff parameter between 32 and 64.

Note that when comparing the size of the BR,m and the size of M (1)
R that

increasing m values demand a very high amount of precision of the Mathieu
functions: e.g., any error made in M (1)

13 is multiplied by 1030.

8.3 Time-independent scattering in vacuum

For the numerical calculation of the scattered field (3.63) a cutoff parameter
P (ε) is chosen such that the following a-posteriori estimate is fulfilled for every
scatterer m.

SP (a, b, α, β, k) =
d

(m)
P (ε)(β,k)M (3)

P (ξ(m), q
(m)
k ) + d

(m)
−P (β,k)M−P (ξ(m), q

(m)
k )∑

p=−P (ε)

P (ε)d(m)
p (β,k)M (3)

p (ξ(m), q
(m)
k )

< ε.

(8.33)
For Dirichlet scatterers, the following alternative estimate works well. Since the
Mathieu function M(2)

m (ξ; qk) typically has its maximum value around ξ = 0 (it
behaves asymptotically for small qk or large ξ like the Neumann function), an
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m R T
(3)
m,R(ξ(2)) |BR,m|+ |B−R,m| |M (1)

R (ξ(2))|+ |M (1)
−R(ξ(2))|

−13 61 7.069× 10−7 6.827× 1027 5.919× 10−34

−12 61 7.409× 10−7 1.442× 1027 5.919× 10−34

−11 53 9.278× 10−7 1.616× 1020 1.642× 10−26

...
...

...
...

...
−4 35 7.640× 10−7 9.736× 104 5.676× 10−12

−3 29 1.205× 10−7 9.323× 101 5.501× 10−8

−2 35 4.146× 10−7 2.218× 104 5.676× 10−12

−1 35 3.593× 10−7 7.805× 103 5.676× 10−12

0 32 3.308× 10−7 3.256× 102 6.558× 10−10

1 32 4.359× 10−7 8.330× 102 6.558× 10−10

2 32 4.814× 10−7 1.291× 103 6.558× 10−10

3 32 6.176× 10−7 1.750× 103 6.558× 10−10

4 33 2.076× 10−8 7.906× 103 1.080× 10−10

...
...

...
...

...
11 56 4.275× 10−7 2.849× 1022 3.405× 10−29

12 57 1.537× 10−7 1.026× 1024 4.392× 10−30

13 64 5.416× 10−7 1.870× 1030 8.345× 10−37

Table 8.3: Cutoff value for interior addition theorem

estimate for the maximum of
∣∣∣dm(β,k)M(3)

m (u; qk)
∣∣∣ is given by[

dmM(3)
m (u; qk)

]
u=u0

≈ M(1)
m (u0; qk) . (8.34)

The condition
R(ε) =

{
m : M(1)

m (u0; qk) < ε
}

(8.35)

with ε ≈ 10−15 yields reliable results.
In Tab. 8.4, the cutoff parameters SP (a, b, α, β, k) for ε = 10−9 can be seen

for the time-independent plots for one cylinder as shown in section (9.1). For
brevity, SP is denoted as SDP (k) for Dirichlet scatterers with only k as parameter
and SNP (k) for Neumann scatterers.

Note that there is no difference between Dirichlet and Neumann scatterers.
As to be expected, an increase in k demands more partial waves.

8.4 Waveguide Scattering

8.4.1 Calculation of the coefficients

The coefficients (4.31, 4.32, 4.33, 4.41, 4.42, 4.43, 4.55, 4.56, 4.75, 4.76) are all
calculated with Gaussian quadrature rules as described in section 8.5.1.
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b RD(1) RN (1) RD(3) RN (3) RD(4) RN (4) RD(5) RN (5)
0.99 10 10 15 15 17 17 20 21
0.95 20 21 15 15 17 17 20 21
0.9 20 20 15 15 17 17 20 20
0.75 20 20 14 15 16 16 20 20
0.5 18 18 13 14 15 15 18 18
0.25 16 17 12 13 14 14 16 17
0.1 15 16 12 12 13 13 15 16
0.05 15 16 12 12 13 13 15 16
0.01 15 14 11 12 13 12 15 14

Table 8.4: Cutoff values for single vacuum scatterers

8.4.2 Evanescent waves

For numerical calculation of eq. (4.20), it has to be truncated. Looking at an
a-posteriori estimate of it, we examine for various x−x′ and y−y′ the function

Sk,N (x,x′) =

sin
(
Nπ

W
y

)
sin
(
Nπ

W
y′
)

κN
eiκN |x−x′|

N∑
n=1

sin
(
nπ
W y
)
sin
(
nπ
W y′

)
κn

eiκn|x−x′|

(8.36)

In our calculations, we limited the summation always to 20 evanescent waves:
this way, numerical convergence was obtained for all parameter ranges used.
However, it would be possible to reduce computational cost considerably with
a more rigourous truncation condition.

8.4.3 Transfer matrix

The transfer matrix (4.50) is ill-conditionned. This can be measured by the
condition number of the transfer matrix: for a linear equation system Ax =
b with a disturbed matrix A → A + ∆A, an estimate of the relative error
introduced by the disturbance is [35]

‖∆x‖
‖∆x + x‖

≤ K
‖∆A‖

‖∆A+A‖
, (8.37)

where the condition number K is given by

K = ‖A‖‖A−1‖, (8.38)

and the matrix-norm ‖·‖ for a matrix A with elements aik, is one of the following
commonly used norms.
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• The column-sum norm ‖A‖1 = max1≤i≤m
∑m

i=1 |aik |

• The spectral norm ‖A‖2 = max1≤k≤n
√

max1≤k≤n{λiATA}

• The line-sum norm ‖A‖∞ = max1≤k≤n
∑m

i=1 |aik |

Looking at the transfer matrix of vacuum,

(
aR

bR

)
=



eiκ1(xR−xL) 0
. . .

eiκn(xR−xL)

e−iκ1(xR−xL)

. . .
0 e−iκn(xR−xL)


(
aL

bL

)
,

(8.39)
we see that its condition number K∞ = ‖T‖∞‖T−1‖∞ is given by

K∞ [T vacuum ] = e2|κmax(zR−zL). (8.40)

Typical condition numbers for circular obstacles are K ≈ 1013. The scattering
matrix is, with typical condition numbers for the same situation K ≈ 1010,
much better conditionned.

x=x
1

x=x
2

x=x
3

y=0

y=W

ai aR

bi bR

aL

bL

ai

bi

Figure 8.5: Combining two scattering matrices

Two scattering matrices(
ai

bL

)
=

[
S

(1)
11 S

(1)
12

S
(1)
21 S

(1)
22

](
aL

bi

)
,

(
aR

bi

)
=

[
S

(1)
11 S

(1)
12

S
(1)
21 S

(1)
22

](
ai

bR

)
(8.41)

can be combined as shown in Fig. 8.5 to(
aR

bL

)
=

[
C11 S12

C21 S22

](
aL

bR

)
, (8.42)
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where

C11 = S
(2)
11

[
1− S

(1)
12 S

(2)
21

]−1
S

(1)
11 , (8.43)

C12 = S
(2)
11

[
1− S

(1)
12 S

(2)
21

]−1
S

(1)
12 S

(2)
22 + S

(2)
12 , (8.44)

C21 = S
(1)
21 + S

(1)
22 S

(2)
21

[
1− S

(1)
12 S

(2)
21

]−1
S

(1)
11 , (8.45)

C22 = S
(1)
22 S

(2)
21

[
1− S

(1)
12 S

(2)
21

]−1
S

(1)
12 S

(2)
22 + S

(1)
22 S

(2)
22 . (8.46)

8.5 Numerical Integration

In this section, we describe the methods used to obtain numerical approxima-
tions for one-dimensional integrals like

I1
[a,b]f =

∫ b

a
f(x) dx (8.47)

or also two-dimensional integrals like

I2
[a,b]×[c,d]f =

∫ b

a

∫ d

c
f(x, y) dxdy. (8.48)

One-dimensional numerical integration is also called quadrature, two-dimensional
integration cubature [35]. These methods are applied usually when analytic
expressions for (8.47) or (8.48) cannot be given or when they are simply not
needed. Usually, numerical integration approximates the integral with a weighted
sum over the values of the integrand within the range of integration. The aim
is to obtain the integrand as accurately as possible with the smallest number
of evaluations of the integrand. An N -point quadrature rule of order n is a
formula of the form

Q1–[a, b]f =
N∑
k=1

wkf(xk) (8.49)

with the nodes a ≤ x1 < x2 < · · · < xn ≤ b and weights wk chosen such that

Q1f[a,b] = I1
[a,b]f (8.50)

is exact for all polynomials up to degree n. A rule which uses the value of
the integrand at the endpoints, f(a) or f(b), is called a closed formula. If
we cannot evaluate the integrand at the endpoints, e.g. because it has an
integrable singularity there, we choose an open quadrature rule which only uses
values a < xi < b. Note that a higher order does not imply higher accuracy in
practical calculations. In two dimensions, an N -point cubature rule of order n
is given by [36]

Q2
[a,b]×[c,d]f =

N∑
k=1

wkf(xk, yk). (8.51)

Again, a ≤ x1 < x2 < · · · < xn ≤ b and c ≤ y1 < y2 < · · · < yn ≤ d; the rest of
the terminology is also the same.
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8.5.1 Quadrature

For one-dimensional numerical integration, a variety of methods exist, e.g., the
trapezoidal rule, Simpson’s rule, ”pulcherrima”, and Milers rule denote the
first four special cases of the so-called Newton-Côtes rules which are obtained
by approximation of a function with a Lagrange polynomial and subsequent
analytical integration of the polynomial [35]. Various methods exist for the
approximation of oscillating integrands [37, 38, 39]. However, their use is limited
for our applications because they usually work very well only for the integration
of integrands which oscillate quickly with one frequency.

If we do not choose the abscissas in advance and calculate the corresponding
weights afterwards, but take them also as degrees of freedom, we can achieve
quadrature rules of higher degrees. In one dimension, a general form of optimal
quadrature rules is known. This optimal quadrature rule is called Gaussian
Quadrature Rule [35]; it integrates a polynomial of degree 2n+ 1 exactly with
n points. The rules (up to 16 digits) which were used for this thesis are

• The 3-point rule

xi wi

0 0.888888888888889
± 0.7745966692414833 0.5555555555555556

• The 5-point rule

xi wi

0 0.5688888888888889
± 0.5384693101056830 0.4786286704993664
± 0.9061798459386639 0.2369268850561890

• The 7-point rule

xi wi

0 0.4179591836734693
± 0.4058451513773971 0.3818300505051189
± 0.7415311855993944 0.2797053914892766
± 0.9491079123427585 0.1294849661688696

• The 9-point rule

xi wi

0 0.3302393550012597
± 0.3242534234038089 0.3123470770400028
± 0.6133714327005903 0.2606106964029354
± 0.8360311073266357 0.1806481606948574
± 0.9681602395076260 0.08127438836157441

• The 11-point rule
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xi wi

0 0.2729250867779006
± 0.2695431559523449 0.2628045445102466
± 0.5190961292068118 0.2331937645919904
± 0.7301520055740493 0.1862902109277342
± 0.8870625997680952 0.1255803694649046
± 0.9782286581460569 0.05566856711617366

• The 15-point rule

xi wi

0 0.2025782419255612
± 0.2011940939974345 0.1984314853271115
± 0.3941513470775633 0.1861610000155622
± 0.5709721726085388 0.1662692058169939
± 0.7244177313601700 0.1395706779261543
± 0.8482065834104272 0.1071592204671719
± 0.9372733924007059 0.0703660474881081
± 0.9879925180204854 0.03075324199611726

• The 21-point rule

xi wi

0 0.1460811336496904
± 0.1455618541608951 0.1445244039899701
± 0.2880213168024011 0.1398873947910732
± 0.4243421202074388 0.1322689386333375
± 0.5516188358872198 0.1218314160537285
± 0.6671388041974123 0.1087972991671484
± 0.7684399634756779 0.09344442345603386
± 0.8533633645833173 0.07610011362837930
± 0.9200993341504008 0.05713442542685721
± 0.9672268385663063 0.03695378977085249
± 0.9937521706203895 0.01601722825777433

In this thesis, they were needed for the calculation of the time-dependent in-
tegrals as (6.1) and for the waveguide scattering coefficients (4.31, 4.32, 4.33,
4.41, 4.42, 4.43, 4.55, 4.56, 4.75, 4.76).

We use a combination of the following quadrature rules: 3-5, 7-9, 9-15,
15-21. The difference between the first and the second rule is always taken
as an error estimate e

[
Q1f

]
. If the error estimate is acceptable, then the

value of the higher order integration rule is taken as estimate for the true
value of the integral. Note that using Gauss-Kronrod rules [40], one could
reuse some points which are already calculated. However, in one-dimensional
integration, calculation time was not such a concern as that this implementation
was necessary.
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8.5.2 Cubature

For higher-dimensional integration, the situation is more complicated [41, 42].
Some particular rules exist for which it is proven that they perform an inte-
gration of a polynomial up to a certain order exactly with the least number
of points, but no general rule comparable to the Gaussian quadrature rules
is available. Whenever for comparison purposes, arbitrary precision cubature
rules were necessary and thus the nodes and points had to be recalculated, the
formulas of [43] were used. All the rules we used and many more may be found
in the a review on available cubature rules [44]. A particular cubature method
which also specifies how the error estimate was obtained is always denoted by
two number of points: N -M , where again each number specifies a cubature rule
and the difference between the values obtained with rules is used as an error
estimate. The value of the higher order rule is then used as an estimate for the
integral in the particular subarea.

• The 4-7 rule (order 3 / order 5)

• The 7-10 rule (order 5 / order 6)

• The 7-12 rule (order 5 / order 7)

• The 10-12 rule (order 6 / order 7)

• The 10-17 rule (order 6 / order 9)

• The 17-24 rule (order 9 / order 11)

• The 24-33 rule (order 11 / order 13)

• The 33-44 rule (order 13 / order 15)

• The 44-60 rule (order 15 / order 17)

• The 60-72 rule (order 17 / order 19)

8.5.3 Adaptive integration procedure

We chose an adaptive approach [45] for the numerical calculation of integrals.
This takes care of integrands which require a significantly higher concentration
of points in some intervals than in others (cf. Fig. X). The following algorithm
was used to obtain an approximation to the integral with a relative precision δ.

1. Calculation of Q1
[a,b]f as an approximation for I1f and estimation of the

error e
[
Q1

[a,b]f
]

of the approximation. If the error is smaller than δ, the
process is terminated. Otherwise,

2. we define a set of subintervals which is initially S = {[a, b] }. Then, we
set x1 = a and x2 = b.
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3. Calculate Q1h
x1,

x1+x2
2

if and Q1h
x1+x2

2
,x2

if and their corresponding error

estimates. Remove the interval [x1, x2] from S and add the intervals[
[x1,

x1+x2
2

]
and

[
x1+x2

2 , x2

]
to it. If e

[
Q1h

x1,
x1+x2

2

if
]
+e

[
Q1h

x1+x2
2

,x2

if
]
<

δ, accept the sum of all the estimates for the integrals of the subintervals
as an approximation for I1f . Otherwise,

4. S consists now of M subintervals Li, 1 ≤ i ≤ M . Take the interval
Lj = [xj1, xj2] ∈ S with the property e

[
Q1
Lj
f
]
> e

[
Q1
Li
f
]

for all i 6= j.
Set x1 = xj,1 and x2 = xj,2 and proceed to 2) if the number of iterations
does not exceed a defined limit.

The adaptive cubature algorithm works similarly with a subdivision of one area
in four subareas of equal size.

8.6 1D scattering

8.6.1 Transfer matrix

The transfer matrices of the one-dimensional system were all calculated using
arbitrary precision arithmetic [33]. In this manner, numerical problems were
avoided at the expense of longer calculation times. However, in one dimension
this is no essential problem.

8.6.2 Time-dependent scattering

The wave functions are implemented as functions returning complex double
values which may be integrated by the routines of 8.5.1.

A comparison of the efficiency of these routines for the one-dimensional
integration is given in Table 8.5. There, the integral (6.1) is evaluated for
various paramteres k0 and Γ. The rest of the parameters are α2 = 3

2 , t = 1
and x = α2t − 1

10
√

(Γ)
. The integration interval (−∞,∞) is approximated by

(− 5√
Γ
, 5√

Γ
). All the integrations reproduced the exact integral to a precision of

10−6 or slightly better.

8.7 Interpolation

For efficiency reasons, we interpolate the scattering coefficients, the radial Math-
ieu functions, and the angular Mathieu functions each on a two-dimensional grid
as described below.
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3-5 7-9 9-15 15-21
k0 = 1, Γ = 1 776 240 312 252
k0 = 1, Γ = 3 552 208 168 180
k0 = 1, Γ = 6 472 144 168 180
k0 = 2, Γ = 1 1512 400 360 252
k0 = 2, Γ = 3 984 272 360 252
k0 = 2, Γ = 6 856 240 168 180
k0 = 3, Γ = 1 3096 752 600 468
k0 = 3, Γ = 3 2488 528 408 252
k0 = 3, Γ = 6 1096 240 360 252
k0 = 4, Γ = 1 6552 848 1080 540
k0 = 4, Γ = 3 3608 560 744 252
k0 = 4, Γ = 6 2184 400 312 252

Table 8.5: Necessary number of integration points for one-dimensional time-
dependent scattering integral

8.7.1 Details of the interpolation procedure

Take a function f(x, y) and a grid {x1, . . . , xM} × {y1, . . . , yN}. The values
f(xi, yj) are denoted by fi,j . For a given point (x, y), the indices i = i(x, y) and
j = j(x, y) are the ones which fulfill

xi ≤ x ≤ xi+1, (8.52)

yj ≤ y ≤ yj+1. (8.53)

Then, the values at the four points surrounding this interior point are fi,j ,
fi+1,j , fi,j+1, and fi+1,j+1. The simplest interpolation in two dimensions is
bilinear interpolation on the grid square [46]. For i = i(x, y) and j = j(x, y),
its formulas are

t =
x− xi
xi+1 − xi

, (8.54)

u =
y − yi
yi+1 − yi

, (8.55)

and

f(x, y) ≈ (1− t)(1− u)fi,j + t(1− u)fi+1,j + tufi,j+1 + (1− t)ufi+1,j+1. (8.56)

We obtain a better approximation to the true value if we take into account not
only the values fi,j at each grid point, but also the gradients ∂f

∂x (xi, xj) = fxi,j ,
∂f
∂y (xi, xj) = fyi,j , and ∂2f

∂x∂y (xi, xj) = fxyi,j . To obtain such an approximation, we
use an interpolation function which is cubic in the scaled coordinates t and u

and fulfills the following requirements.



8.7. INTERPOLATION 109

1. The values of the function and the specified derivates are reproduced
exactly on the grid points.

2. The values of the function and the specified dedrivates change continu-
ously as the interpolating point crosses from one grid square to another.

The interpolation method described in the following is called bicubic interpola-
tion [46]. With

Cij =


cij00 cij01 cij02 cij03
cij10 cij11 cij12 cij13
cij20 cij21 cij22 cij23
cij30 cij31 cij32 cij33

 , (8.57)

and

t =
(
1, t, t2, t3

)T
, (8.58)

u =
(
1, u, u2, u3

)T
, (8.59)

we make the following ansatz for the function and its derivative:

f(x, y) ≈ gij(t, u) = tTCij u, (8.60)

∂f

∂x
(x, y) ≈ gijx (t, u) =

dtT

dt
Cij u, (8.61)

∂f

∂y
(x, y) ≈ gijy (t, u) = tCij

duT

du
, (8.62)

∂2f

∂x∂y
(x, y) ≈ gijxy(t, u) =

dtT

dt
Cij

duT

du
. (8.63)

Now, the matrix Cij has to be calculated from the values at the grid points. If
we write the initial data as a vector dij and the coefficients of the matrix Cij

as a vector cij ,

cij =
(
cij00, c

ij
01, c

ij
02, c

ij
03, c

ij
10, c

ij
11, c

ij
12, c

ij
13, c

ij
20, c

ij
21, c

ij
22, c

ij
23, c

ij
30, c

ij
31, c

ij
32, c

ij
33

)
,

(8.64)

dij =
(
fi,j , fi+1,j , fi,j+1, fi+1,j+1, f

x
i,j , f

x
i+1,j , f

x
i,j+1, f

x
i+1,j+1,

fyi,j , f
y
i+1,j , f

y
i,j+1, f

y
i+1,j+1, f

xy
i,j , f

xy
i+1,j , f

xy
i,j+1, f

xy
i+1,j+1

)
, (8.65)

we can relate them with the 16× 16 matrix M defined by

cij = Mdij . (8.66)

We obtain the matrix M by solving the 16 equations
gij(0, 0) gij(0, 1) gij(1, 0) gij(1, 1)
gijx (0, 0) gijx (0, 1) gijx (1, 0) gijx (1, 1)
gijy (0, 0) gijy (0, 1) gijy (1, 0) gijy (1, 1)
gijxy(0, 0) gijxy(0, 1) gijxy(1, 0) gijxy(1, 1)

 =


fij fi+1,j fi,j+1 fi+1,j+1

fxij fxi+1,j fxi,j+1 fxi+1,j+1

fyij fyi+1,j fyi,j+1 fyi+1,j+1

fxyij fxyi+1,j fxyi,j+1 fxyi+1,j+1

 .
(8.67)
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The solution is

M =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
-3 0 0 3 0 0 0 0 -2 0 0 -1 0 0 0 0
2 0 0 -2 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 -3 0 0 3 0 0 0 0 -2 0 0 -1
0 0 0 0 2 0 0 -2 0 0 0 0 1 0 0 1
-3 3 0 0 -2 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -3 3 0 0 -2 -1 0 0
9 -9 9 -9 6 3 -3 -6 6 -6 -3 3 4 2 1 2
-6 6 -6 6 -4 -2 2 4 -3 3 3 -3 -2 -1 -1 -2
2 -2 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 -2 0 0 1 1 0 0
-6 6 -6 6 -3 -3 3 3 -4 4 2 -2 -2 -2 -1 -1
4 -4 4 -4 2 2 -2 -2 2 -2 -2 2 1 1 1 1



.

(8.68)

8.8 Time-dependent scattering in vacuum

The calculation of the time-dependent integral (6.1) requires for every point
in x-space whose value is not equal to zero a grid of about 20000 points in
k-space for a relative precision of 10−2; if the value of a point is zero, we cannot
reasonably use an estimate of relative precision as this will lead to an explosion
of calculation time. This is the main reason for the fact that the numerical
approximation of the solution is so expensive, and the reason why calculation
of the coefficients and their interpolation afterwards is separated. The cubature
procedure used for the integral is the adaptive cubature algorithm described
above with a 13-25 point rule.

8.8.1 Estimation of computational cost

The calculations were performed on an Athlon64 3500+ with 1GB of RAM. On
this computer, the tabulation of the Mathieu functions with the grid described
takes about 8 hours. The tabulation of the scattering coefficients on the chosen
grid depends on the size of the scatterer and on the k values used; for one
scatterer, it takes 3-6 hours with the chosen grid; for 2-3 scatterers one day.
Once the scattering coefficients are calculated for a given system, the interpo-
lation and integration procedure is relatively quick: a density plot of 50× 50 is
produced in about 2 hours with the precision and number of integration points
described above.

A comparison with other numerical scattering methods, many of which are
described in [9], is beyond the scope of this thesis: it would be necessary to
calculate a numerical solution for a given system with several different methods.
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Rule Time (s)
4-7 15778
7-10 5776
7-12 5264
10-12 1185
10-17 1152
17-24 168
24-33 112
33-44 92
44-60 87
60-72 78

Table 8.6: Performance of cubature rules

In Tab. 8.6, we see a comparison of the time needed for the calculation
of Fig. 8.6 according to (6.81) on a 80 × 80 points grid in x-space with the
parameters Γ = 2, k0 = (1, 0), α1 = 1, α2 = 0, t = 2.
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Figure 8.6: Free wave packet

We see very clearly, unlike the case of the cubature of the free wave packet
in one dimension, that higher order cubature rules perform much better here.

8.9 Summary

Having formulated the algebraic eigenvalue problems for Mathieu functions in
Section (7.1), we first present a package of subroutines which, due to the im-
plementation in arbitrary precision, are more accurate than the ones presently
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available. The iteration scheme used here depends on good initial values for the
eigenvalues, which are obtained by formulating an eigenvalue procedure which
is numerically solved with standard linear algebra routines. Numerical tests
indicate that available routines can fail in extreme parameter regions.

Next, the chosen method for the numerical calculation of the Addition the-
orem was presented, based on an a-posteriori estimate of the truncation of the
series. The procedure for the calculation of time-independent scattering is also
based on a a posteriori error estimate. In the numerical solution of the waveg-
uide scattering problem, the large magnitude of the condition number of the
transfer matrix was pointed out. A remedy to this problem is the reformulation
for several scatterers in terms of the scattering matrices. Finally, the numerical
integration and interpolation methods used were briefly described.



Chapter 9

Numerical Results

9.1 Time-independent scattering in vacuum

For the time-independent plots in vacuum, we plot (3.111) in the following way.
A plot for 0 ≤ η ≤ 2π would be seen in the left of Fig. 9.1. On the right-hand
side, we see a curve plotted whose circular cylindric coordinates are given by
(|u∞(η)|, η). This type of plot is also called ’parametric plot’.
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Figure 9.1: Angular intensity plot styles
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9.1.1 One scatterer

The plots in Fig. 9.2 to 9.7 agree well with results known in literature [47].
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Figure 9.2: Angular intensity plot for Dirichlet scatterer with a = 1, b = 0.01,
β = 90◦
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Figure 9.3: Angular intensity plot for Neumann scatterer with a = 1, b = 0.01,
β = 90◦
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Figure 9.4: Angular intensity plot for Dirichlet scatterer with a = 1, b = 0.5,
β = 90◦
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Figure 9.5: Angular intensity plot for Neumann scatterer with a = 1, b = 0.5,
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Figure 9.6: Angular intensity plot for Dirichlet scatterer with a = 1, b = 0.9,
β = 90◦
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9.1.2 Several scatterers

The following configurations are examined:

Configuration 1 Two cylinders with a = 2, b = 1 at (0, 2) and (0,−2)

β = 0β = 90

β = 0β = 90

Configuration 1 Configuration 2

Figure 9.8: Time-independent multiple scattering configuarions 1 and 2

Configuration 2 Three cylinders with a = 2, b = 1 at (0, 3), (0, 0) and (0,−3)

Configuration 3 Four cylinders, all of them rotated by π
4 with axes a = 3,

b = 1, placed at (−4,−4), (0, 4), (4,−4), and (8, 4).

β = 0β = 90

Figure 9.9: Time-independent multiple scattering configuarion 3

These results are interesting for comparison to other results in literature.
They all fulfil numerically the prescribed boundary conditions at the obstacles;
however, they do not agree completely with the results in [48]. We believe
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that one possible explanation are the problems related to the numerical imple-
mentation of the addition theorem which led us to the implementation of the
coefficient calculation routine in arbitrary precision as described in chapter 8.
It is possible that in 1991, similar techniques were not available and thus the
results do not agree.
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Figure 9.10: Multiple scattering configuration 1, Dirichlet b.c., β = 0
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Figure 9.11: Multiple scattering configuration 1, Neumann b.c., β = 0
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Figure 9.12: Multiple scattering configuration 1, Dirichlet b.c., β = 90
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Figure 9.13: Multiple scattering configuration 1, Neumann b.c., β = 90
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Figure 9.14: Multiple scattering configuration 2, Dirichlet b.c., β = 0
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Figure 9.15: Multiple scattering configuration 2, Neumann b.c., β = 0
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Figure 9.16: Multiple scattering configuration 2, Dirichlet b.c., β = 90
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Figure 9.17: Multiple scattering configuration 2, Neumann b.c., β = 90
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Figure 9.18: Multiple scattering configuration 3, Dirichlet b.c., β = 0
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Figure 9.19: Multiple scattering configuration 3, Neumann b.c., β = 0
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Figure 9.20: Multiple scattering configuration 3, Dirichlet b.c., β = 90
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Figure 9.21: Multiple scattering configuration 3, Neumann b.c., β = 90
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9.2 Time-dependent scattering in vacuum

Results of the time-dependent scattering code are displayed in figures 9.2 and
9.2. In these figures, we see a gaussian wave packet with parameters k0 = (0, 2)
and γ = 2 travelling along the y axis from negative to positive values. It is
scattered by three elliptical cylinders with axes a = 1, b = 1

2 at positions (0, 2),
(−2, 0), and (2, 0), respectively. The latter two are rotated by π

4 .
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Figure 9.22: Density plot
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Figure 9.23: Density plot
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9.3 Scattering in Waveguide

In the following figures, the absolute value of wave function inside a waveguide
is plotted for various values of k and for varying circular cylinder radius. The
other parameters are W = 5 and L = 4. To the left of every figure, we see a
density plot of the wave function, and to the right, we see a plot of F (x, y) as
described in (4.95).
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Figure 9.24: Waveguide: N = 6,M = 6, d = 2, r = 0.5, k = 2 and mode 1
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Figure 9.25: Waveguide: N = 6,M = 6, d = 2, r = 0.5, k = 2 and mode 2
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Figure 9.26: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 1 and mode 1
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Figure 9.27: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 1.5 and mode 1
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Figure 9.28: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 2 and mode 1
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Figure 9.29: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 1 and mode 2
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Figure 9.30: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 2.5 and mode 1
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Figure 9.31: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 3 and mode 1
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Figure 9.32: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 3.5 and mode 1
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Figure 9.33: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 4.5 and mode 1
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Figure 9.34: Waveguide: N = 6,M = 6, d = 1, r = 0.5, k = 5.5 and mode 1
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9.4 Scattering in 1D

In this section, the phenomenon of time-dependent localisation is illustrated
for a wave packet hitting a symmetric comb which consists of 12 evenly spaced
delta potentials: 3 delta potentials with V = 0.5 followed by 6 delta-potentials
of height 0, finally followed by again 3 delta potentials with V = 0.5 (cf. Fig.
9.4). The transmission and localisation coefficients for this system are displayed
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Figure 9.35: One-dimensional model for localisation

in Fig. 9.4. We see that the maxima of the transmission coefficient correspond
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Figure 9.36: Transmission coefficient and localisation coefficient

to maxima of the localisation coefficient. Note that the latter is plotten for even
(red) and odd (blue) wave functions. The numerical values for the first and the
second maxima of the transmission coefficient are k1 = 0.3793000572532422
and k2 = 0.7410735144813703. The wave functions for these wavelength can be
seen in Fig. 9.4 and Fig. 9.4 for the exact k values as well as for k1,2 + 0.05.
The non-localisation of the wave function with a small deviance of the k value
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is due to the sharpness of the maxima in the localisation coefficient.
In Fig. 9.39 and 9.40, a symmetric Gaussian wave packets with parameters

x0 = ±800, Γ = 15000, c = 1, and k0 = k1 (corresponding to the first even
localised state as in Fig. 9.4) hits the finite Dirac comb as described above.
To the left, the squared wave function is plotted, with a scale which permits
to see the maxima of the wave packet evolving outside of the Dirac comb. To
the right, the same wave function is plotted on a scale which permits to see the
maximum of the wave function inside the ’crystal’. At t = 2600, we already
see in the zoomed image to the right of the figure that a part of the wave gets
’trapped’ inside the Delta potentials; while the parts of the wave which have
k-values which are too far away from k1 get reflected, the parts very near to
the resonance wavelength get trapped. They lead to the formation of a second
maximum (visible from t = 4000 on) in the free wave packet far away from the
Dirac comb.

In Fig. 9.41, a similar situation is displayed for the odd localised state
k1. Note that the wave packet hitting the model is anti-symmetric; as the
square of the wave function is plotted, this can not be seen in the figures – the
corresponding symmetric wave packet is totally reflected.
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Figure 9.37: Wave functions for 1st (even) localised state
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Figure 9.39: Symmetric wave packet / 1st even localised state
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Figure 9.40: Symmetric wave packet / 1st odd localised state
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Figure 9.41: Antisymmetric wave packet / 1st odd localised state
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9.5 Summary

Results of the software packages for time-independent scattering in vacuum,
time-dependent scattering in vacuum, time-independent scattering in a waveg-
uide, and time-dependent localisation in one dimension were presented in this
chapter. For the one-dimensional model, the time-dependent evolution of a
wave packet which gets trapped inside a finite Dirac comb was shown.
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Chapter 10

Conclusion

In this thesis, multiple scattering models were studied using the mathematical
framework introduced in chapter 2. This framework is based on the Helmholtz
equation, asymptotic boundary conditions at infinity, and boundary conditions
for the obstacles. The solutions can be interpreted as two-dimensional electro-
magnetic, quantum mechanical, or acoustical problems.

Three models were studied: time-dependent scattering in vacuum by sev-
eral elliptic cylinders, time-independent scattering in a waveguide by arbitrar-
ily shaped objects, and time-dependent scattering and localisation in a one-
dimensional Dirac comb model.

Scattering in vacuum

The solution for time-dependent scattering in vacuum by an array of elliptical
cylinders is constructed in chapters 3, 6, 7 and 8: in chapter 3, time-independent
scattering theory for elliptical scatterers in vacuum is introduced. No a priori
limitations are imposed on the number of scatterers, on the geometric parame-
ters that fix their elliptical form, on their orientation, on their relative positions
(except that overlap is forbidden), and on their material constants. Here, time-
independent scattering is formulated explicitly in elliptical geometry and solved
by the separation of variables method.

The solution is obtained in two steps: first, a solution of the single scat-
tering problem is calculated. By means of the addition theorem for Mathieu
functions the outgoing field from one cylinder is then expressed in the vicinity
of another cylinder as superposition of incoming fields. This is needed to fulfil
the boundary conditions at all scatterers simultaneously. The procedure for
the truncation of the series appearing in time-independent scattering theory is
based on an a posteriori error estimate (cf. chapter 8).

To calculate the solution of the problem explicitly, we need the Mathieu
functions which were introduced in chapter 7 as square-integrable eigenfunctions
of commuting operators. The notation used here for the Mathieu functions [26]
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excels all other notations in its simplicity, in particular the standard notation
of [20]. Series for the Mathieu functions are derived; the expansion coefficients
obtained in this way are used subsequently to define the Modified Mathieu
functions and also to treat numerically the addition theorem for solutions of the
Helmholtz equation in elliptic coordinates. In chapter 8, the details of a package
of subroutines for the numerical calculation of Mathieu functions are presented.
The coefficients are obtained with an iteration scheme which relies on good
initial guesses for the eigenvalues; these guesses are obtained by formulating
an eigenvalue procedure which is then numerically solved with standard linear
algebra routines. As the calculation of these coefficients is implemented in
arbitrary precision arithmetic, is is possible to obtain Mathieu functions with a
higher precision than with other libraries publicly available. Note also that the
routines present are not only more precise than others, but that numerical tests
indicate that the available routines for the calculation of Mathieu functions
fail in some parameter regions. However, this higher precision obtained here
is a necessary requirement for the numerical convergence of the series in the
addition theorem.

In chapter 6, the method used to obtain time-dependent wave packets as
weighted superpositions of time-independent solutions which are already nu-
merically available is presented. Analytic solutions as well as asymptotic ex-
pressions were given for scattering in vacuum; an exact analytic solution is only
available for the evolution of a quantum mechanical wave packet. The evolution
of this free wave packet and its interaction with the scattering wave packet is
described for asymptotically large times. For the efficient calculation of numer-
ical time-dependent solutions, it proved necessary to separate the calculation in
two steps: first, the tabulation of Mathieu functions and expansion coefficients
for the scattered fields; secondly, the interpolation and subsequent integration
with cubature formulas to obtain the time-dependent solutions. The interpo-
lation method as well as the performance of the cubature rules is discussed in
chapter 8.

In chapter 9, results of time-independent theory are shown which agree with
the ones given in literature. In addition, an application of the time-dependent
code is shown: scattering by three elliptic Dirichlet cylinders.

Scattering in a waveguide

In chapter 4, we presented the problem of several Dirichlet scatterers in a waveg-
uide where the projection of the scatterers normal to the infinite axis of the
waveguide may be overlapping. For finite slices with a finite number of scatter-
ers, we derive expressions for transfer matrices which may be used subsequently
to calculate the solution for an arbitrary number of obstacles. In order to ob-
tain these transfer matrices, an equation for the unknown source distribution
at the boundary of the scatterer(s) in question is derived by a Green’s function
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approach. An ansatz for this unknown function is made as a Fourier series and
subsequently a set of linear equations is derived which relates the coefficients
of the series to the initial data given by the incident free wave which is defined
left of all scatterers. In chapter 8, the important aspects of the numerical im-
plementation chosen are discussed. In the numerical solution of the waveguide
scattering problem, the large magnitude of the condition number of the trans-
fer matrix was pointed out: a remedy to this problem is the reformulation for
several scatterers in terms of the scattering matrices.

In chapter 9, we present examples of time-independent scattering in a waveg-
uide for various wave numbers and shapes of scatterers.

One-dimensional scattering and localistion

In chapter 5, a one-dimensional localisation model based on the Schrödinger
equation and a finite Dirac-comb potential was formulated. The definition
of a localisation measure allows one to make predictions for the dependence
of localised states on the wavelength of the incident field. In chapter 6, we
have presented a method which may be used to obtain time-dependent wave
packets as a weighted superposition of the time-independent solutions. Analytic
solutions as well as asymptotic expressions were given: in one dimension, it is
possible to find an analytic solution also for free electrodynamical and acoustical
wave packets. Then, the evolution of the free wave packet and its interaction
with the scattering wave packet was described for asymptotically large times in
one dimension.

In chapter 9, we present an example of a time-dependent localisation phe-
nomenon: one even and one odd ’localised’ state inside a small finite one-
dimensional structure are excited by a wave packet starting outside of this
crystal.

Outlook

Is is intended to generalise the results from one-dimensional localisation to the
two-dimensional waveguide model by formulating a transmission coefficient for
various modes, defining a measure for localisation similar to the one in 1D, and
finally searching for localised states for particular modes.
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