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Abstract

The dyadic deontic logic system F is one of the best known preference-based deontic
logics. It was introduced as a propositional logic, by Lennart Åqvist to offer a solution
to contrary-to-duty paradoxes plaguing the field of deontic logic. This thesis addressed
the challenging topic of extending the system F to first-order. We construct a first-order
dyadic deontic logic system extending propositional F, which includes equality and def-
inite descriptions in its language and an extensional dyadic deontic operator. To better
understand equality, definite descriptions and extensional operators and why we want our
system to include them, we investigate them in detail. We show which characterising
properties a logic system has to fulfil to express those notions meaningfully and accur-
ately. Furthermore, we demonstrate which problems must be circumvented when defining
such a system. We provide two different first-order dyadic deontic logic systems extend-
ing the propositional system F. For each of them we introduce semantics, using Kripke
models, and a Hilbert calculus. Moreover, we show that the Hilbert axiomatisations are
sound in their respective semantics, that is if there is a derivation of a formula ϕ in the
calculus from a set of premises Γ, then ϕ is a semantical consequence of Γ.

Keywords: Dyadic deontic logic, First-order modal logic, Definite descriptions,
Extensionality, Åqvist’s system F
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1 Introduction

1.1 Problem Statement

Deontic logic is the branch of logic concerned with obligation, permission and related
normative notions. Besides its theoretical interest, deontic logic finds applications in
many fields ranging from law to artificial intelligence. The best-known propositional
deontic logic is standard deontic logic SDL introduced by von Wright in [19], which set
the groundwork for later deontic logics. SDL extends classical propositional logic with
the operators ⃝(.) and P(.) to express that something ought to be and that something is
permitted, respectively. For example, the SDL formula

PA ⊃⃝B

is read as "If A is permitted, then it ought to be that B". SDL is also called monadic
deontic logic since its deontic operators are one-place.
SDL suffers, however, from many so-called paradoxes. On the one hand, there are deriv-
able formulas which are counterintuitive from a common-sense reading. On the other
hand, some formulas are underivable in SDL even though they should be derivable.
Furthermore, SDL cannot deal with contrary-to-duty (CTD) reasoning, which concerns
norms that prescribe what to do in cases of violation or sub-ideality. Contrary-to-duty
reasoning is essential to our moral thinking, as in the statement, "If you are guilty, you
should confess". Chisholm’s paradox is one of the most famous paradoxes regarding the
derivability of counterintuitive formulas and CTD reasoning, see [2]. This paradox deals
with four logically independent statements which cannot be formalised in SDL without
being either logically dependent or contradictory to each other. Those four statements
are:

• It ought to be that Jones goes to the assistance of his neighbours.

• It ought to be that if Jones does go, he tells them he is coming.

• If Jones does not go, then he ought not to tell them he is coming.

• Jones does not go.
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1 Introduction

To solve this paradox, various deontic logics have been introduced, see e.g. the two
volumes of the handbook [6] and [7]. Considering that obligations are often given as
conditional statements, as "If A happens, then there is the obligation to do B", a binary
obligation operator ⃝(./.) was introduced by von Wright in 1956 to express under which
condition an obligation has to be met, see [20]. This so-called dyadic deontic operator,
expressing a conditional obligation ⃝(B/A), read as: "B is obligatory, given A", gave
rise to the field of Dyadic Deontic Logic, or DDL for short. The idea for the dyadic
deontic operator was to introduce a counterpart to the material implication ⊃ of classical
logic used in SDL, which does not share certain properties suited for a deontic context.
For example, in contrast to a material implication, the dyadic deontic formula ⃝(B/A),
together with the formula A, should in general, not imply the formula ⃝B. Furthermore,
the so-called strengthening of the antecedent "⃝(B/A) implies ⃝(B/A∧C)" should also
not apply. A natural language example of why the latter should not apply would be: "The
obligation to cook dinner under the condition that you have guests over" does not imply
"The obligation to cook dinner under the condition that you have guests over and your
kitchen is on fire".
Out of the field of economics, rational choice theory was developed, see [12], which
is based on the idea that individuals use their self-interests to make choices that will
provide them with the most significant benefit. This gave rise to preference-based systems
for DDL, analysing deontic modalities using possible world semantics, see [11] and [3].
A preference relation ranks the possible worlds in terms of betterness or comparative
goodness, where one world gets ranked better than another iff it violates fewer obligations
than the other. In those systems, a conditional obligation ⃝(B/A) is true when the so-
called best worlds in which A is true are worlds in which B is true as well.
The preference-based semantics for dyadic deontic logic were formulated into a modal
logic by Åqvist [1] and Lewis [14]. Åqvist’s modal setting also contains a modal operator
�(.) to express necessitation. For example, the formula

�B ⊃�⃝ (B/A)

can be read as "The necessity of B implies the necessity of the obligation for B under the
condition A." One of the landmark systems in DDL is Åqvist’s system F introduced in
[1]. System F can adequately address contrary-to-duty obligations. For example, the four
statements of Chisholm’s paradox can be formulated without being logically dependent
on each other or arriving at a contradiction. The solution to this paradox, written in the
syntax of the system F is

⃝(g/⊤), ⃝(t/g), ⃝(¬t/¬g) and ¬g,

2



1 Introduction

where g represents that Jones goes to his neighbour’s assistance, t represents that Jones
tells his neighbour that he is coming, and ⊤ stands for a true statement. The paradox
is avoided by writing the antecedents of the second and third statements of Chisholm’s
paradox as the condition of the conditional obligation operator instead of antecedents of
a material implication.

Another way to solve certain deontic paradoxes is to extend a propositional deontic logic
system to the first-order level. As in classical first-order logic, in first-order deontic logic,
quantifiers ∀ and ∃ are used to quantify over variables of the language to talk about the
existing objects in the logic, for example, to express sentences of the form "One has an
obligation to help under the condition that there exists a person that needs help." The
paradox of gentle murder, introduced in [5] by Forrester, is concerned with the following
three logically independent and non-contradictory statements:

• It is obligatory that Smith not murders Jones.

• It is obligatory that, if Smith murders Jones, Smith murders Jones gently.

• Smith murders Jones.

Formalising those three statements in propositional SDL results in the obligation for
Smith to murder Jones. This is not only an undesired outcome in itself but also in direct
contradiction to the first statement. Sinnott-Armstrong demonstrated one possible solu-
tion for this paradox in the 1985 article [17]. He shows that by adding quantifiers to SDL,
we can formalise the three statements of Forrester’s paradox without creating a contra-
dictory or counterintuitive statement. The idea behind the solution is that the second
statement can be written with the help of quantifiers as

∃xM(x, j,s)⊃ ∃x(M(x, j,s)∧⃝G(x)),

where M(x, j,s) represents that x is an act of murder by Smith of Jones and G(x) repres-
ents that x is done gently. This paradox of propositional deontic logic, which cannot be
dealt with propositional SDL, shows us how introducing quantifiers to deontic logic also
leads to the solution of certain paradoxes.

When adding quantifiers and terms to a propositional logic system, one can introduce an
equality symbol (.) = (.) to build formulas describing when two terms are equal. Further-
more, definite descriptions, which are phrases describing a unique act, object or person,
can be added to a logic system to describe terms via a unique property. Syntactically, a
definite description is a term built from a formula. This is done in the form of ιxϕ(x)

3



1 Introduction

and is read as "the unique person/object x for which ϕ(x) is true". It is reasonable to add
equality and definite descriptions to a deontic logic since, more often than not, if we talk
about another person, we describe this person in the form of a unique feature instead of
naming them by their name, for example, "The author of The Lord of the Rings" or "My
next door neighbour". Equality and definite descriptions are, at first glance, straightfor-
ward concepts. We all seem to know what it means for two objects in our everyday life
to be equal or what it means to describe an object through a unique feature. The concepts
become more difficult to describe if we talk about abstract formulas and if the logic con-
taining them allows a form of Extensionality, which is a natural requirement for deontic
logic.
The principle of Extensionality is dealt with in many aspects of mathematics, logic and
even our everyday life. For someone familiar with set theory, the first thing that comes to
mind if they hear the word Extensionality is probably the axiom of Extensionality.

∀x∀y(x = y)↔∀z(z ∈ x ↔ z ∈ y)

This axiom declares that two sets are equal if and only if they contain exactly the same
elements. In other words, a set is determined uniquely by its members. This represents the
main idea behind Extensionality in mathematics: two objects are considered equal if they
have the same external properties, even though they might be defined differently. While
there are many uses of Extensionality in mathematics, not just in set theory, one could
argue that this all comes down to the axiom of Extensionality since set theory serves as its
base. For example the functions f (x) = x2 + 10x+ 25 and g(x) = (x+ 5)2, even though
they are defined differently, are extensionally equal 1, because f and g always produce
the same value given the same input.
The basic idea of Extensionality in logic is that if we have two terms that are seen as
equal, we can replace one term with the other in a formula without changing the truth
value of that formula. When dealing with equality, it makes sense for two equal terms
not to change the validity of certain formulas if we replace one term with the other. The
point made by Lou Goble in [10] is that it is natural to consider the deontic operator ex-
tensional. Since in a deontic logic, our terms usually range over people, we would like
for two formulas containing obligations to be equivalent if they just differ by the use of
different terms for the same person. There are arguments to be made that the conditional
obligation operator of DDL can be considered extensional as well since obligations and
conditions should not depend on how or by which name we describe a person, an object
or an act. When we talk about an obligation using a definite description, we mean the
obligation for the person or object we are describing, not for the description itself. The

1if f and g are defined on the same domain
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1 Introduction

idea of looking at people or objects independently of their description is something we
want when talking about obligations. For example, if a judge gives the statement, "The
accused had the obligation to help, given that he was present at the time", then the judge
refers with "the accused" to the specific person in the courtroom, not to any other person
in a different scenario.

This thesis aims to introduce a first-order dyadic deontic logic system, containing equality
and definite descriptions, extending the propositional system F, in which the conditional
obligation operator is extensional in both arguments. This raises the following hindrances
to overcome. Firstly, Åqvist’s system F is only a propositional dyadic deontic logic sys-
tem. Therefore we have to extend F and its semantics into a first-order dyadic deontic
logic system without changing the underlying system F.
Another problem lies in the semantics given to F. The propositional preference-based se-
mantics used for Åqvist’s system F evaluate formulas contained inside the scope of the
conditional obligations operator at the best worlds in which the condition is true. Those
worlds can be different from the world we started in. Hence even though obligations could
refer to a world different from the current world, we nevertheless want them to refer to
the same person or object we are discussing at the current world. We want to keep the
interpretation of our variables inside of an obligation bound to the world we consider the
obligation in. When we use definite descriptions to describe an object or a person who
has the duty to fulfil an obligation in a possible world semantics, we have to be careful
for our definite description to not "lose" the person or object we are talking about. This
challenge is going to be a big part of this thesis.
The third problem lies on the syntactic level. This problem was discussed for SDL by
Lou Goble in [8]. Goble states that one has to be careful when dealing with extensional
deontic operators in a first-order deontic logic system containing equality and definite de-
scription. Indeed, without adding restrictions on the axiomatisation of the propositional
rules of SDL, it results in the collapse of the deontic operator. This means that every
formula A is equivalent to ⃝A, which renders the deontic operator irrelevant.

This brings us to the main research question of this thesis:

Is it possible to create a first-order dyadic deontic logic system extending the pro-
positional system F, with an extensional deontic operator ⃝, while avoiding its
collapse?

5



1 Introduction

Considering that F also contains the modal operator �, whose Extensionality can be put
into question, the thesis second research question arises:

Is it possible to create a first-order dyadic deontic logic system extending the pro-
positional system F, with an extensional deontic operator ⃝ and a non-extensional
modal operator �?

1.2 Thesis Results and Structure

In order to answer both question, we build two first-order dyadic deontic logic systems
extending propositional F in which the conditional obligation operator is extensional in
both arguments. To answer the first research question, we will build a system as described
in this question, called F∀

1 . This system will extend system F with one minor change.
Afterwards, we tackle the second research question by building a second system, called
F∀

2 , with the help of the already established system. This system will extend system F
with more changes than the first system.
This thesis is mainly based on the paper [9] by Lou Goble that introduces a first-order
monadic deontic logic system containing equality, definite description and an extensional
obligation operator while still avoiding its collapse. The move to a first-order dyadic
setting offers additional challenges, which we discuss in detail in Chapter 2 of this thesis.
This thesis consists of six chapters and is structured as follows.

Chapter 2 introduces Åqvist’s system F and its semantics and explains why this thesis
focuses on this particular system. Afterwards, we explore the axioms we want to add to
our first-order extension that let us consider every operator in this system extensional and
the axioms that characterise definite descriptions. We also give a formal proof showing
that adding the axioms defining Extensionality and definite descriptions to a first-order
version of the system F results in the collapse of the deontic and modal operator similarly
to what has been shown by Lou Goble in [10]. Afterwards, we discuss further prob-
lems that can arise when defining a first-order dyadic deontic logic system containing an
extensional deontic operator and how to circumvent them.

Chapter 3 defines the language, syntax and semantics of our first system, called F∀
1 .

The semantics are based on the propositional preference-based semantics of Åqvist’s sys-
tem F and let us define which formulas are valid in F∀

1 . Then we show the properties that
the semantics of F∀

1 fulfil.

6



1 Introduction

Chapter 4 defines the notion of a formal proof and a provable formula for F∀
1 . This is

done in the form of a first-order Hilbert axiomatisation, called HF∀
1 , based on the Hilbert

axiomatisation of system F, but also including the axioms described in Chapter 2. We
then present the connection between HF∀

1 and F∀
1 in the form of a soundness proof, which

shows that every provable formula in the Hilbert axiomatisation is valid in F∀
1 . This shows

us that F∀
1 is fully extensional, which means that every operator of this system fulfils the

Extensionality axioms defined in Chapter 2.

Chapter 5 uses the syntax and adjusts the semantics and the Hilbert axiomatisation
of the previous chapters to introduce a second system, called F∀

2 , and a second Hilbert
axiomatisation, called HF∀

2 . In this system, the modal operator � cannot be considered
extensional anymore, making it a non-extensional operator while maintaining its obliga-
tion operator’s Extensionality. In this chapter we give a soundness proof of the second
established Hilbert axiomatisation in accordance with their semantics and also discuss the
similarities and main differences between F∀

1 and F∀
2 and between HF∀

1 and HF∀
2 .

Chapter 6 ends this thesis with a summary of the findings. We also give directions for
future work in the form of further research questions.

7



2 Preliminaries

This chapter aims to introduce Åqvist’s system F, to explain how it is defined and why
this thesis focuses on F. We also discuss first-order dyadic deontic logic and what axioms
a first-order dyadic deontic logic has to fulfil for its operators to be considered extensional
and how to add definite descriptions. In this chapter, we also revisit the problem of the
deontic collapse described by Goble, but in this case, for the system F. We describe new
issues that arise when we extend the system F into first-order with an extensional dyadic
deontic operator and how this will affect the definition of the semantics built in this thesis.

2.1 Hilbert Systems and Semantics

A Hilbert-style deduction system, named after David Hilbert and also called a Hilbert
system or Hilbert axiomatisation, consists of a set of logical axioms and a set of inference
rules. Logical axioms are formulas obtained through certain formula schemas, where a
formula schema describes an infinite set of formulas of a fixed pattern. For example, every
formula that can be derived by substituting ϕ in the formula schema ¬(ϕ ∧¬ϕ) with a
formula of the syntax of the system F is an axiom in F. A rule of inference describes
which formulas can be derived given one or more formulas. One example of a rule of
inference contained in most Hilbert systems is the rule of modus ponens which allows us
to derive a formula ϕ from the already derived formulas ψ ⊃ ϕ and ψ . Every formula
that can be derived by starting with one or more finitely many axioms and using finitely
many rules of inference is called provable (in symbols: ⊢ ϕ) in that respective Hilbert
system, and the finite sequence of axioms and rules building this derivation is called a
formal proof.
Formal semantics, also called the semantics of a logic, are used to give formulas an inter-
pretation and determine their meaning. The semantics of a logic can be defined in many
different ways. Still, in general, they are algebraic structures which assign a certain truth
value to a formula to define if this formula is valid (in symbols: |= ϕ).
Optimally, even though the semantics and the Hilbert axiomatisation are independently
defined, the set of all provable formulas is equal to the set of all valid formulas. In other
words, one has to show that for every formula ϕ , the notions ⊢ ϕ and |= ϕ are equivalent.

8



2 Preliminaries

Showing for every formula ϕ that ⊢ ϕ implies |= ϕ is called a soundness proof and shows
that every formula derivable in the Hilbert axiomatisation is valid in the semantics. Prov-
ing for every formula ϕ that |= ϕ implies ⊢ ϕ , is called a completeness proof and shows
that every valid formula is provable in the Hilbert system.

2.2 Åqvist’s System F

Åqvist introduced three different propositional dyadic deontic logic (DDL) systems called
E, F and G respectively. The three systems are built on the following syntax:

Definition 2.2.1. The language L used for Åqvist’s systems consists of the following:

• A countable set of propositional variables P := {p,q,r, ...}

• Two logical connectives ∧,¬

• A binary obligation operator ⃝(./.)

• A unary modal operator �
A string of symbols of the language L is called a formula if they are arranged in a certain
finite order. The formula definition is given inductively.

Definition 2.2.2. A finite string of symbols ϕ is called a formula if ϕ ∈P or if it is of the

form ψ ∧χ , ¬ψ , ⃝(ψ/χ), or �ψ , given two already established formulas ψ and χ .

Definition 2.2.3. The symbols ∨,⊃,↔,♢ and P are defined the following way:

Let ϕ and ψ be formulas in the above-defined language, then

• ϕ ∨ψ := ¬(¬ϕ ∧¬ψ)

• ϕ ⊃ ψ := ¬(ϕ ∧¬ψ)

• ϕ ↔ ψ := (ϕ ⊃ ψ)∧ (ψ ⊃ ϕ)

• ♢ϕ := ¬�¬ϕ , read as "ϕ is possible"

• P(ϕ/ψ) := ¬⃝ (¬ϕ/ψ), read as "ϕ is permitted given ψ"

9



2 Preliminaries

The systems E, F and G contain the modal logic S5 as a sublogic, see [13]. S5 is char-
acterised by the axioms �(ϕ ⊃ ψ), �ϕ ⊃ ϕ and ♢ϕ ⊃�♢ϕ . The Hilbert axiomatisation
given to the system E is:

Axioms:

All truth-functional tautologies (PL)

S5-schemata for � and ♢ (S5)

⃝ (ϕ ⊃ χ/ψ)⊃ (⃝(ϕ/ψ)⊃⃝(χ/ψ)) (COK)

⃝ (ϕ/ψ)⊃�⃝ (ϕ/ψ) (Abs)

�ϕ ⊃⃝(ϕ/ψ) (Nec)

�(ϕ ↔ ψ)⊃ (⃝(χ/ϕ)↔⃝(χ/ψ)) (Ext)

⃝ (ϕ/ϕ) (Id)

⃝ (ϕ/ψ ∧χ)⊃⃝(χ ⊃ ϕ/ψ) (Sh)

Rules:

If ⊢ ϕ and ⊢ ϕ ⊃ χ then ⊢ χ (MP)

If ⊢ ϕ then ⊢�ϕ (N)

The Hilbert axiomatisation given to the system F is the same as for system E, including
the extra axiom:

♢ψ ⊃ (⃝(ϕ/ψ)⊃ P(ϕ/ψ)) (D*)

The Hilbert axiomatisation given to the system G is the same as for system F, including
the extra axiom:

(P(ψ/ϕ)∧⃝(ψ ⊃ χ/ϕ))⊃⃝(χ/ϕ ∧ψ) (SP)

The axioms of those systems represent statements whose validity is accepted in general.
For example, the axiom COK says that the obligation for ϕ implying χ under the con-
dition ψ implies that obligation for ϕ under the condition ψ implies the obligation for χ
under the condition ψ . In other words, the obligation of an implication implies that the
obligation of the antecedent implies the obligation of the consequent. The reason we fo-
cus specifically on the system F and not on the system E, which is a subsystem of system
F, is that the system F contains the axiom D*. It says that if ψ is possible, the obligation
for ϕ under the condition ψ implies the permission for ϕ under the condition ψ . This

10



2 Preliminaries

axiom represents the dyadic deontic logic counterpart to the standard deontic logic axiom
⃝ϕ ⊃ Pϕ . This axiom is one of the leading causes of the deontic collapse in SDL, as
shown in [8]. For similar reasons, we are focusing on system F rather than system G,
which is an extension of system F. System G encompasses system F and adds the axiom
SP, which states that if ψ is permitted and ψ implying χ is obligated, both under the
condition ϕ then χ is obligated under the condition of ϕ and ψ . Although this axiom is
interesting, it does not add anything new that would be relevant to the original problem
proposed in Goble’s paper.

Remark 2.2.4. The formula �ϕ ↔⃝(⊥/¬ϕ) is provable for any formula ϕ .

The semantics introduced for the systems E, F and G use preference models to define
which formulas are valid. Those are structures of the following form:

Definition 2.2.5 (Preference Model). M = ⟨W,⪰,υ⟩ is called a preference model, where

• W ̸= /0 is a set of possible worlds

• ⪰⊆W ×W is a binary relation on W called the betterness relation

• υ is a function which maps every propositional letter to a set of possible worlds.

The definition for a formula ϕ being true at a world w in a model M (in symbols:
M,w |= ϕ) is given through a double induction with the help of the so-called truth sets
||ϕ||M and best truth sets best(||ϕ||M). Sets of the form ||ϕ||M are sets of worlds repres-
enting all worlds of M in which ϕ is true. This means M,w |= ϕ ⇔ w ∈ ||ϕ||M. The set
best(||ϕ||M) contains the best worlds out of ||ϕ||M according to the betterness relation ⪰.
The best worlds can be defined in different, not always equivalent, ways.

Definition 2.2.6. Let M = ⟨W,⪰,υ⟩ be a preference model and W ′⊆W be a set of worlds.

Then we call

opt(W ′) := {w ∈W ′ : ∀v ∈W (v ∈W ′ ⇒ v ⪰ w)}

the set of optimal worlds of W ′.

The other common notion for best worlds in DDL is that of the maximal world:

Definition 2.2.7. Let M = ⟨W,⪰,υ⟩ be a preference model and W ′⊆W be a set of worlds.

Then we call

max(W ′) := {w ∈W ′ : ∀v ∈W ((v ∈W ′∧w ⪰ v)⇒ v ⪰ w)}

the set of maximal worlds of W ′.

11
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The definitions of optimality and maximality are taken from the paper [15]. In this thesis,
we are focusing on optimal sets.

Definition 2.2.8 (Truth in F). Given a preference model M = ⟨W,⪰,υ⟩, a formula ϕ and

a world w ∈W, we define what it means that ϕ is true in M at w:

• If ϕ ∈ P then M,w |= ϕ iff w ∈ υ(ϕ)

• If ϕ = ¬ψ , then M,w |= ϕ iff M,w ̸|= ψ

• If ϕ = ψ ∧χ , then M,w |= ϕ iff M,w |= ψ and M,w |= χ

• If ϕ =�ψ , then M,w |= ϕ iff ∀v ∈W : M,v |= ψ

• If ϕ =⃝(ψ/χ), then M,w |= ϕ iff best(||χ||M)⊆ ||ψ||M

A formula is called valid, if it is true at every world of every preference model.

The properties to which a class of models has to subscribe to such that it is sound and com-
plete regarding one of Åqvist’s systems varies from system to system. Some examples of
properties used are reflexivity, limitedness and totalness:

Definition 2.2.9. A preference model M = ⟨W,⪰,υ⟩ is called reflexive if

∀w ∈W : w ⪰ w.

holds. A preference model M = ⟨W,⪰,υ⟩ fulfils the limitedness property if for every

formula ϕ

||ϕ||M ̸= /0 ⇒ best(||ϕ||M) ̸= /0

holds. A preference model M = ⟨W,⪰,υ⟩ is called total if

∀w,v ∈W : w ⪰ v∨ v ⪰ w

holds.

The completeness of Åqvist’s systems E and F with respect to their respective preference-
based semantics is one of the oldest problems in deontic logic. In [15], Parent shows that
the system F is sound and complete with respect to the class of preference models in which
the betterness relation is limited, the class of those in which it is limited and reflexive, and
the class of those in which it is limited and total. 1

1for both definitions of best, respectively

12
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Our first-order dyadic deontic logic’s semantics are based on the class of preference mod-
els in which the betterness relation is limited and reflexive, and best worlds are defined as
optimal worlds. 2 We now define the reflexive closure for an arbitrary binary relation to
make our examples easier to read, since all models in this thesis will have the reflexivity
property:

Definition 2.2.10. Given a binary relation B⊆X ×X we call RC(B) :=B∪{(z,z) : z∈X}
the reflexive closure of B.

As mentioned in Chapter 1, the four statements of Chisholm’s paradox can be expressed
in the system F 3 without contradiction, as the formulas

⃝(g/⊤), ⃝(t/g), ⃝(¬t/¬g), ¬g,

where g represents that Jones goes to his neighbour’s assistance, t represents that Jones
tells his neighbour that he is coming, and ⊤ stands for a true statement. To check that
those four formulas do not contradict each other, in other words, that they are all satisfiable
simultaneously, we have to build a preference model in which all those four statements
are true at the same world. Since this thesis focuses on the models in which the betterness
relation is limited and reflexive, we will also give the following model those properties
and call a world a best world if it is an optimal world.

Example 2.2.11. Let be the preference model M := ⟨W,⪰,υ⟩ with

W :={w1,w2,w3,w4}
⪰:=RC({(w1,w2),(w1,w3),(w1,w4),(w2,w4),(w3,w4)})

υ(g) :={w2,w4}
υ(t) :={w1,w4}

In this model the four formulas ⃝(g/⊤), ⃝(t/g), ⃝(¬t/¬g) and ¬g are true at the

worlds w1 and w3, because w1 ̸∈ υ(g), w3 ̸∈ υ(g) and best(||⊤||) = {w4} ⊆ {w2,w4} =
||g||, best(||g||) = {w4} ⊆ {w1,w4}= ||t|| and best(||¬g||) = {w3} ⊆ {w2,w3}= ||¬t||.

In the figure below, an arrow pointed from a world w to a world v represents w ⪰ v. Notice
that one world is ranked better than another in this model if fewer obligations are violated.
Violating an obligation in this context means that the condition of an obligation holds but

2If the same or similar results can be achieved with different properties and a different notion of best
worlds is up to further research.

3also in the systems E and G

13



2 Preliminaries

w1

w2 w3

w4

t

g

g, t

Figure 2.1: Solution to Chisholm’s paradox

the obligation itself does not. This does not mean that the obligation is not valid in the
model, since this is dependent on the evaluation of the formula in the best worlds where
the condition holds true. For example, at world w4, no given obligation is violated, but
world w2 violates the obligation "It ought to be that if Jones does go, he tells them he is
coming".

2.3 First-Order DDL, Extensionality and Definite

Descriptions

The solution to the Forrester paradox in first-order deontic logic, see p. 3, shows that the
quantification over acts and people gives us much more freedom regarding the formalisa-
tion of obligations and permissions. In propositional deontic logic, an obligation stated
as "Everyone is obliged to do the act A" and an obligation stated as "The act A should be
done" cannot be formulated differently enough to highlight the distinction between those
two statements. However, with the help of quantifiers, we could write the first statement
as ∀x⃝A(x) and the second statement as ⃝∃xA(x).
In the case of dyadic deontic logic, adding quantifiers lets us be more precise with the
obligation’s meaning and the condition inside of the conditional obligation operator than
in propositional DDL. Let H(y) represent "y helps" and A(x) represent "x is under attack":

1. ∀x∀y⃝ (H(y)/A(x))

2. ⃝(∀xH(y)/∀yA(x))

The first formula purely focuses on the individuals alone. It could be used to formalise
the statement:

14
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"Every individual has an obligation to help under the condition that anyone is under
attack."

The second one states an obligation for every person in an ideal world, seen as a collective,
under the condition that something is happening to a person in an ideal world. It could be
used to formalise the statement:

"We have the obligation to help under the condition that we are under attack."

When we talk about every individual, as in the above statement, we would like to imply
a statement which talks about a specific existing person. For example, if "Tom exists"
and the first statement holds true, then it should imply that "Everyone has an obligation
to help under the condition Tom is attacked." holds true. On the other hand, even if "Tom
exists" and the second statement hold true, we could argue that the statement "We have
the obligation to help under the condition Tom is attacked" is generally not true. This
example shows that in first-order dyadic deontic logic, we can emphasise the distinction
between the obligation referring to every individual or to a collective, the same holds for
the condition. 4

When introducing Extensionality into our first-order logic we have to decide which ax-
ioms and/or rules our logic system has to fulfil to consider it extensional. One of the
axiom schemas we will focus on in this thesis is Universal Instantiation:

∃x(x = t)⊃ (∀xϕ(x)⊃ ϕ(t)) (UI)

It represents the statement: If there exists an object t, then if a formula ϕ is true for every
existing object, the formula ϕ is true for the object t. We can view Universal Instantiation
as the Extensionality of our logic regarding quantifiers. It lets us replace a variable inside
a formula bound by a universal quantifier on the outside with an existing object. Let us
give an example of the use of UI in a deontic context using the example given above:

"If Tom exists, then if every individual has an obligation to help under the condition that
anyone is under attack", we can infer that "Every individual has an obligation to help
under the condition that Tom is under attack".

This statement could be written as

∃x(x = t)⊃ (∀x∀y⃝ (H(y)/A(x))⊃ ∀y⃝ (H(y)/A(t))).

4One could also give different possible meanings to the formulas ∀x⃝ (∀yH(y)/A(x)) and
∀y⃝ (H(y)/∀xA(x)).

15



2 Preliminaries

We should mention that outside the field of deontic logic, we would not like UI to be a
valid formula schema, especially if the logic contains definite descriptions. For example,
in the case of temporal logic [16], which is used to reason about time and temporal in-
formation, the validity of UI should not be accepted. Otherwise, given the two statements

• "The pope currently exists."

• "For every currently existing person, it will always be the case that they were born
before 2025."

we could derive the statement: "It will always be the case that the pope was born before
2025." This statement is counterintuitive to the idea of the title of pope passing from per-
son to person, and therefore at one point in time, or at least within the next 150 years,
there is going to be a pope born after 2025.

When dealing with equality, it makes sense for two equal terms not to change the validity
of a formula if we replace one term with the other. This brings us to the other formula
schema we want to focus on, which we call the Axiom of Replacement:

t = s ⊃ (ϕ(t)↔ ϕ(s)) (I)

This formula schema represents a form of replacement rule for equal objects. If t and s

represent the same object, then the same formulas should hold if we use t instead of s and
vice versa. In our everyday life, we often use the contraposition of this formula as a tool
to argue why two things are not the same. For example, the sentence

"The key you are holding is not my house key since this one is silver and my house key
is golden."

represents a statement that will generally be accepted without much protest. This is be-
cause if two objects do NOT share a certain property, in this case, colour, then they cannot
be the same object or, in this case, the same key. In a deontic context, one could argue that
I should hold without restrictions since obligations do not depend on how we describe a
person. For example:

"If Tom is the person with the yellow shirt, then the obligation to help Tom is equivalent
to the obligation to help the person with the yellow shirt."

UI and I are used by Goble in [9] to in his first-order logic system to characterise the Ex-
tensionality of his deontic operator. The validity of UI and I in the semantics of first-order
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dyadic deontic is not as straightforward as it seems. Problems arise if placing terms in
a formula changes the meaning of those terms. This can happen if ϕ changes the world
from which we originally started from. For example let w be a world at which the equality
t = s holds. The evaluation of the formula ⃝ϕ(t) at w depends on the evaluation of ϕ(t)
at a best world v, which could be different from w. At this new world v the interpretation
of the terms t and s must not be the same, hence we can not imply ϕ(t)↔ ϕ(s) at v. This
would mean t = s ̸⊃ ⃝ϕ(t) ↔ ⃝ϕ(s) at world w. Since this world change is the basic
idea behind the interpretation of the modal operator � and the obligation operator ⃝, the
change can happen if the terms are contained in the scopes of such operators. Hence we
want to craft the semantics for our first-order dyadic deontic logic system in such a way
that we can talk about terms like definite descriptions in a deontic context without losing
the meaning of those descriptions in the process of evaluating the formula in which the
descriptions appear.5

One way of introducing definite description into a first-order system is by adding the
following axiom schemas:

∀y((∀x(ϕ ↔ x = y))⊃ y = ιxϕ) (D1)

∃y(y = ιxϕ)⊃ ∃!xϕ (D2)

D1 and D2 are used by Thomason in [18] to syntactically characterise definite descrip-
tions. D1 states that "For every individual y if for every individual x the truth value of a
formula ϕ is the same as for x being equal to y then y is the unique individual that can be
characterised by the definite description ιxϕ . An exemplary statement for D1 would be:

"If a person is the one and only who invented a certain object, we can call him or her "the
inventor of that object".

D2 describes the other way around. It states that "If there exists an individual for which
the definite description of ιxϕ fits, he or she is the unique individual with the property of
ϕ" a definitive statement for D2 would be:

"If a person can be defined through "the inventor of a certain object", they are the only
individual who invented that object."

5This idea is based on Goble’s paper [9].
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2.4 The Deontic Collapse

Goble has demonstrated that adding axioms and rules to a first-order monadic deontic
logic, which let us consider the obligations to be extensional, and adding equality and
definite descriptions to the logic, leads to the collapse of the deontic operator. This means
that ϕ ↔⃝ϕ is provable for every formula ϕ , which renders the deontic operator useless.
A similar problem arises when we try to add Extensionality to a first-order dyadic deontic
logic containing the axiom D*. Using defining axioms for definite descriptions and want-
ing the Axiom of Replacement and Universal Instantiation to work in our first-order logic
without placing restrictions on the axioms and rules of the propositional system F, we run
into the problem that the operators � and ⃝ collapse into trivialities. Below we see a
formal proof of this phenomenon. In short, the problem arises from the fact that adding
definite descriptions to a system that is extensional to a certain point without restricting
its original rules results in every formula implying its own obligation as well as its own
necessity and vice versa.
We now give a formal proof for the collapse of the dyadic deontic operator ⃝ with axioms
and rules of the system F, as well as the axioms D1, D2, I and UI and basic first-order
rules for the quantifiers. We start by proving ϕ ⊃ �ϕ and ϕ ⊃⃝(ϕ/ψ) where ϕ is an
arbitrary formula which does not contain x as a free variable.

(a) ϕ ⊃ ∀x[(x = t ∧ϕ)↔ x = t] (Tautology + Quantifier rules)
(b) ∀y[∀x((x = y∧ϕ)↔ x = y)⊃ y = ιx(x = y∧ϕ))] (D1)
(c) ∃y(y = t)⊃ [∀x[(x = t ∧ϕ)↔ x = t]⊃ t = ιx(x = t ∧ϕ)] (b + UI)
(d) ∃y(y = t)⊃ [ϕ ⊃ t = ιx(x = t ∧ϕ)] (a + c)
(e) t = ιx(x = t ∧ϕ)⊃ [�∃y(y = t)↔�∃y(y = ιx(x = t ∧ϕ))] (I)
(f) ∃y(y = t)⊃ [ϕ ⊃ [�∃y(y = t)↔�∃y(y = ιx(x = t ∧ϕ))]] (d + e)
(g) �∃y(y = t)⊃ [ϕ ⊃�∃y(y = ιx(x = t ∧ϕ))] (f + S5)
(h) ∃y(y = ιx(x = t ∧ϕ))⊃ ∃!x(x = t ∧ϕ) (D2)
(i) ∃y(y = ιx(x = t ∧ϕ))⊃ ϕ (h + Quantifier rules)
(j) �∃y(y = ιx(x = t ∧ϕ))⊃�ϕ (i + N + S5)
(k) �∃y(y = t)⊃ (ϕ ⊃�ϕ) (g + j)
(l) �∃y(y = t) (Assumption)
(m) ϕ ⊃�ϕ (l + k + MP)
(n) �ϕ ⊃⃝(ϕ/ψ) (Nec)
(o) ϕ ⊃⃝(ϕ/ψ) (m + n)

We can see that assuming something simple like the necessary existence of a certain term
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t will result in ϕ ⊃ �ϕ and ϕ ⊃⃝(ϕ/ψ) being provable for every formula ϕ and every
formula ψ . Suppose we also assume that ψ is possible. In that case, we can even prove
ϕ ↔⃝(ϕ/ψ) which completely collapses the ⃝ operator and makes the obligation of a
formula equivalent to the formula itself:

(a) ¬ϕ ⊃⃝(¬ϕ/ψ) (Proof above)
(b) ¬⃝ (¬ϕ/ψ)⊃ ϕ (Contraposition of a)
(c) P(ϕ/ψ)⊃ ϕ (b + definition of P)
(d) ♢ψ ⊃ (⃝(ϕ/ψ)⊃ P(ϕ/ψ)) (D*)
(e) ♢ψ ⊃ (⃝(ϕ/ψ)⊃ ϕ) (c + d)
(f) ♢ψ (Assumption)
(g) ⃝(ϕ/ψ)⊃ ϕ (e + f + MP)

One could argue that this problem arises from the Extensionality of the � operator since
we used the axioms I and UI on formulas containing the operator �. What if we only
allow them on formulas not containing �? Do we still run into the same problem? The
answer is yes, which we show in the following proof. We now assume that the axioms
I and UI hold only for formulas in which the replaced variable or term is not contained
inside the scope of a � operator. We can still construct a proof for ϕ ⊃⃝(ϕ/ψ), where
ψ is any formula and ⃝(ϕ/ψ)⊃ ϕ:

(a) ∃y(y = t)⊃ [ϕ ⊃ t = ιx(x = t ∧ϕ)] (Same as before)
(b) ∃y(y = ιx(x = t ∧ϕ))⊃ ϕ (Same as before)
(c) �[∃y(y = ιx(x = t ∧ϕ))⊃ ϕ] (b + N)
(d) ⃝([∃y(y = ιx(x = t ∧ϕ))⊃ ϕ]/ψ) (c + Nec + MP)
(e) ⃝([∃y(y = ιx(x = t ∧ϕ))]/ψ)⊃⃝(ϕ/ψ) (d + COK)
(f) t = ιx(x = t ∧ϕ)⊃ [⃝(∃y(y = t)/ψ)↔⃝(∃y(y = ιx(x = t ∧ϕ))/ψ)] (I)
(g) �∃y(y = t) (Assumption)
(h) ⃝(∃y(y = t)/ψ) (g + Nec + MP)
(i) t = ιx(x = t ∧ϕ)⊃⃝(∃y(y = ιx(x = t ∧ϕ))/ψ) (f + h)
(j) t = ιx(x = t ∧ϕ)⊃⃝(ϕ/ψ) (e + i)
(k) ∃y(y = t) (g + S5)
(l) ϕ ⊃ t = ιx(x = t ∧ϕ) (a + k + MP)
(m) ϕ ⊃⃝(ϕ/ψ) (j + l)
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The proof for ⃝(ϕ/ψ)⊃ ϕ is the same as in the previous case.
In this thesis we circumvent the collapse of the operators by placing a restriction on the
rule N as seen in Goble’s paper [9]. This restriction blocks the steps from (i) to (j) in the
first proof and (b) to (c) in the third proof.

2.5 Global and Local Operators

This section discusses a new problem that arises when dealing with an extensional oper-
ator. We also highlight how this problems leads us to consider two different interpretations
for the operator �.

We start this section with the following (informal) definition: Given a possible world
semantics, then we call a modal operator global if its truth value is not dependent on the
world it is evaluated in, in other words, an operator ◊ is called global if for any formula
ϕ the formula ◊ϕ being true at one world of a model implies ◊ϕ being true at all worlds
of that model. If ◊ is not a global operator, we call it a local operator. In the preference-
based semantics of system F, both the � operator and the ⃝ operator are global operators.
Given this definition, we now look at an example of why we have to be careful when we
use the Axiom of Replacement on formulas that include definite descriptions contained
in a global operator.

Example 2.5.1 (Switching seats). Let us consider the scenario depicted in figure 2.2. At

the dinner table are five seats. Because the apartment is small, there is not enough space

for the person in the corner to get up and walk away easily without the person to their

right making some room. For reasons of etiquette, the person to the right of the person

sitting in the corner has the obligation to get up under the condition that the person in the

corner gets up. Now let us define the following formulas

• L(x,y) represents "x is sitting to the left of y"

• G(x) represents "x gets up"

• C(x) represents "x sits in the corner".

As a result, we can write the above-described obligation as the formula

⃝(G( ιyL( ιxC(x),y))/G( ιxC(x))).

At world w the equalities x1 =

ιxC(x) and x2 =

ιyL( ιxC(x),y) hold if the variable x1 is

assigned to the person b and the variable x2 is assigned to the person i, since b is the
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person sitting in the corner and to the left of i. Hence at the world w if x1 gets up x2

has the obligation to get up too, this is represented in the formula ⃝(G(x2)/G(x1)). We

would therefore like for the formula ⃝(G(x2)/G(x1)) to be true at w as well.

b i

t

m s

World w

t m

b

i s

World v

Figure 2.2: Switching seats

So far no new problem has been created. Still, this example is not only given to mo-
tivate why we should consider conditional obligations to be extensional but should also
highlight another problem we encounter when we want our dyadic deontic operator to be
extensional. Namely, we cannot expect an extensional operator to have a global interpret-
ation. In general, our obligations will not be valid globally if they are valid in one world.
By extending the example above, we can demonstrate how the Extensionality of our for-
mulas and global interpretations of a conditional obligation do not mix well with definite
descriptions. Let us consider the same scenario as before but with the persons sitting in a
different order around the table, like at the world v. Hence the formula ⃝(G(x2)/G(x1))

should in general not be true at the world v even though ⃝(G( ιyL( ιxC(x),y))/G( ιxC(x)))

is true at the world v. We can see that the obligation ⃝(G(x2)/G(x1)) is only locally true,
even though ⃝(G( ιyL( ιxC(x),y))/G( ιxC(x))) holds at both worlds. This means that at
the world w, x2 has an obligation to get up under the condition that x1 gets up, but this
does not transcend to a world in which x1 is not the person sitting to x2’s left. Since in the
propositional Åqvist’s system F, in contrast to SDL, the conditional obligation operator
and the necessity operator are global operators, this is an entirely new aspect we have to
consider, which is not considered in [9].
This example shows us that we can consider obligations extensional, but we must confine
our interpretation to a local level! Even though we have an obligation for something in
one world, this does not have to be the case in another. This should not discourage the
Extensionality of the dyadic obligation operator, but it demonstrates that we must be care-
ful if we want the operator to be extensional. For example, one part of how to circumvent
this problem is to use variable assignments that are dependent on the worlds.
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Given the observation in the example above, we should discuss the evaluation of a formula
G(t) at a world with the interpretation of the term t bound to another world. When we
keep the terms of a formula bound to the world we are evaluating the formula in, we
can derive certain formulas which, at first sight seem counterintuitive but do indeed make
sense if we keep the local nature of our interpretation in mind.

Example 2.5.2 (Kind tyrant). Let us demonstrate what that means by considering the

following three statements concerning a "kind tyrant":

• Every person has an obligation to be kind to others.

• Every person has the obligation not to be a tyrant.

• There exists a tyrant.

Those three statements do not contradict each other and are logically independent. If we

say the formula T (x) represents "x is a tyrant", and the formula K(x) represents "x is

kind", we can formalise the three statements the following way:

• ∀x⃝ (K(x)/⊤)

• ∀x⃝ (¬T (x)/⊤)

• ∃y(y = ιzT (z))

From the first and the third statement, we can conclude that: "The tyrant has an obligation

to be kind". From the second and the third statement, we can imply the statement: "The

tyrant has an obligation not to be a tyrant". We can write those two inferred statements

as ⃝(K( ιzT (z))/⊤) and ⃝(¬T ( ιzT (z))/⊤) respectively. In propositional DDL, if a

formula contains a non-conditional obligation, the semantics checks the interpretation

of the formula, inside the scope of the obligation, in the best worlds of the model. The

formula ⃝(K( ιzT (z))/⊤) seems to state that in the best possible world, the tyrant is kind,

but this interpretation is a little too unspecific. The statement we want to describe with this

formula is revealed if we look at the tyrant independently of their title, we get the desired

interpretation. This means the person we call a tyrant in our current world is obligated to

be kind without worrying if they are a tyrant in the best world. This interpretation can be

made clearer if we take a look at the formula ⃝(¬T ( ιzT (z))/⊤), which, at first, seems

like a contradictory statement. Although what ⃝(¬T ( ιzT (z))/⊤) actually states is an

obligation for our current tyrant not to be a tyrant. In other words, the person we call a

tyrant is not a tyrant in the best possible world. Since the axiom UI is going to be valid

in the semantics we are going to establish in this thesis the formula ⃝(¬T ( ιzT (z))/⊤)
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will be true at a world w if the formulas ∀x⃝ (¬T (x)/⊤) and ∃y(y = ιzT (z)) are true

at the world w.6 The reason for this is the local interpretation of the definite description

ιzT (z) in our semantics, which ties the interpretation to the world in the obligation gets

evaluated in.

We have now seen many arguments for the Extensionality of the conditional obligation
operator ⃝. What about the Extensionality of the necessitation operator �? In this case,
it depends on our interpretation of necessitation. Let us again say the formula T (x) rep-
resents "x is a tyrant", and the formula K(x) represents "x is kind" what do we mean by
�¬K( ιzT (z)) being true at a world w? We could say that the unique tyrant from world
w is necessarily not kind, which would mean that the tyrant from world w is not kind in
any world. This would align with our local interpretation of our conditional obligation
operator and make the � operator extensional but not global. On the other hand, if we
want necessitation to be stronger, we could interpret � as a global operator. In that regard,
we could say �¬K( ιzT (z)) is true at a world w means that the tyrant of every world is not
kind in any world. The second interpretation would make the necessitation global but not
extensional. Both interpretations seem to make sense in their own way. The main focus of
this thesis is on the first interpretation, which aligns with the main research question pro-
posed in Chapter 1. In Chapters 3 and 4, we will build the syntax, semantics and Hilbert
axiomatisation of a first-order dyadic deontic logic system, in which every formula can be
considered extensional, no matter if it contains a certain operator or not. In Chapter 5, we
will consider the second interpretation of the � operator and tackle the second research
question proposed in the introduction.

6Translating the formulas into the first-order deontic logic system which Lou Goble has established in [9]
then (∀x⃝ (¬T (x))∧∃y(y = ιzT (z))⊃⃝(¬T ( ιzT (z))) does hold as well.

23



3 Syntax and Semantics

Here we introduce the syntax and semantics of the first-order extension of F which we
call F∀

1 . At the end of this chapter, we revisit the paradoxes discussed in Chapter 2 and
show that F∀

1 entails their desired result.

3.1 Language and Formulas

The definitions in this thesis concerning first-order modal logic are based on the work
done on first-order modal logic by M. Fitting, R. Mendelsohn, L. Goble and R. Thomason,
see [4], [9] and [18]. We start by defining the language L for our first-order dyadic
deontic logic containing identity and definite descriptions. It consists of two countable
disjoint sets V and C, representing the variables and constants of our logic respectively,
seven different logical symbols, and for each n ∈ Z+ a countable set of n-place predicate
symbols which are pairwise disjoint and also disjoint from V and C.

Definition 3.1.1. The language L contains:

• A countable and well-ordered set of variables V := {x,y,z, ...}

• A countable and well-ordered set of constants C := {a,b,c, ...}

• Two logical connectives ∧,¬

• Three first-order logic symbols ∀, ι,=

• A binary obligation operator ⃝(./.)

• A unary modal operator �
• For each for n ∈ Z+ a countable set of n-place predicate symbols P := {An,Bn, ...}

We want to define all terms, formulas and the free and bound variables (for short, f v

and bv, respectively) in those terms and formulas. The notions of free and bound will
be helpful when we later define the replacement of one variable by another because we
do not want to replace a variable bound by a quantifier or replace a free variable with a
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variable which will be bound in the resulting formula.
Since we want our terms and formulas to be a finite sequence of symbols, in other words,
we want them to be well-formed, we have to build them from the ground up. Therefore we
are simultaneously defining the so-called depth (for short de) of our terms and formulas.
The depth of a term or formula is a natural number which counts how many instances
of definite descriptions have been used on top of each other to build the current term or
formula. For example the term ιy(y = ιxϕ) has a depth of 2 if ϕ is a formula with the
depth of 1. One natural language example of a definite description of depth 2 would be
"The partner of the King of Norway". The definition of depth will help us later in this
thesis when we want to use induction over our formula construction.
Starting with the base level of our syntax, we first define the so-called atomic terms and
formulas.

Definition 3.1.2 (Atomic term). If t ∈ V ∪C is a symbol from the set of variables or the

set of constants we call it an atomic term with f v(t) := {t}∩V and bv(t) := /0.

Definition 3.1.3 (Atomic formula). If An ∈ P is a n-place predicate symbol and t1, ..., tn ∈
V ∪C are atomic terms then An(t1, ..., tn) is an atomic formula with f v(An(t1, ..., tn)) :=
{t1, ..., tn}∩V and bv(An(t1, ..., tn)) := /0.

Using this base, we can now inductively define our well-formed terms and well-formed
formulas used in our logic.

Definition 3.1.4 (Terms and Formulas).

• Every atomic term is a term of depth 0

• Every atomic formula is a formula of depth 0

• If t1 and t2 are terms then t1 = t2 is a formula with

de(t1 = t2) := max{de(t1),de(t2)}, f v(t1 = t2) := f v(t1)∪ f v(t2) and

bv(t1 = t2) := bv(t1)∪bv(t2)

• If ϕ is a formula then ¬ϕ is a formula with

de(¬ϕ) := de(ϕ), f v(¬ϕ) := f v(ϕ) and bv(¬ϕ) := bv(ϕ)

• If ϕ is a formula then �ϕ is a formula read as "the necessity for ϕ" with

de(�ϕ) := de(ϕ), f v(�ϕ) := f v(ϕ) and bv(�ϕ) := bv(ϕ)

• If ϕ and ψ are formulas then ϕ ∧ψ is a formula with

de(ϕ ∧ψ) := max{de(ϕ),de(ψ)}, f v(ϕ ∧ψ) := f v(ϕ)∪ f v(ψ) and

bv(ϕ ∧ψ) := bv(ϕ)∪bv(ψ)
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• If ϕ and ψ are formulas then ⃝(ϕ/ψ) is a formula read as

"the obligation for ϕ under the condition ψ" with

de(⃝(ϕ/ψ)) := max{de(ϕ),de(ψ)}, f v(⃝(ϕ/ψ)) := f v(ϕ)∪ f v(ψ) and

bv(⃝(ϕ/ψ)) := bv(ϕ)∪bv(ψ)

• If ϕ is a formula and x ∈V then ∀xϕ is a formula with

de(∀xϕ) := de(ϕ), f v(∀xϕ) := f v(ϕ)\{x} and bv(∀xϕ) := bv(ϕ)∪{x}

• If ϕ is a formula and x ∈V then ιxϕ is a term with

de( ιxϕ) := de(ϕ)+1, f v( ιxϕ) := f v(ϕ)\{x} and bv( ιxϕ) := bv(ϕ)∪{x}

• If Rn ∈ P is a n-place predicate symbol and t1, ..., tn are terms then

Rn(t1, ..., tn) is a formula with

de(Rn(t1, ..., tn)) := max{t1, ..., tn}, f v(Rn(t1, ..., tn)) :=
�

i=1,...,n
f v(ti) and

bv(Rn(t1, ..., tn)) :=
�

i=1,...,n
bv(ti)

We call the set of all (well-formed) formulas WF.

Definition 3.1.5 (Derived connectives). The symbols ∨,⊥,⊤,⊃,↔,∃,∃!,♢ and P are

defined the following way:

Let ϕ and ψ be formulas in WF, t a term and x ∈V a variable:

• ϕ ∨ψ := ¬(¬ϕ ∧¬ψ)

• ⊥ := ¬ϕ ∧ϕ (for any ϕ)

• ⊤ := ¬⊥

• ϕ ⊃ ψ := ¬(ϕ ∧¬ψ)

• ϕ ↔ ψ := (ϕ ⊃ ψ)∧ (ψ ⊃ ϕ)

• ∃xϕ := ¬∀x¬ϕ

• ∃!xϕ := ∃y∀x(x = y ↔ ϕ), y is the first element of V such that y ̸∈ f v(ϕ)∪bv(ϕ)

• ♢ϕ := ¬�¬ϕ

• P(ϕ/ψ) := ¬⃝ (¬ϕ/ψ)

• ⃝(ϕ) :=⃝(ϕ/⊤)

• P(ϕ) := ¬⃝ (¬ϕ)
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• E(t) := ∃x(x = t), x is the first element of V such that x ̸∈ f v(t)∪bv(t) 1

Given two term t1 and t2 we also define t1 ̸= t2 := ¬(t1 = t2).

Next, we formally define formulas that are built by replacing a term t inside of a given
formula ϕ with a term s. In the following definition, we have to be careful not to replace a
term which contains a variable bound by a quantifier in ϕ , or replace it with a term which
contains a variable which a quantifier binds in ϕ .

Definition 3.1.6. Given a formula ϕ and two terms t and s with f v(t)∩ bv(ϕ) = /0 and

f v(s)∩bv(ϕ) = /0 we define ϕt�→s as the formula in which zero up to all free 2 occurrences

of t in ϕ have been replaced by s and ϕt⇒s as the formula in which ALL free occurrences

of t in ϕ have been replaced by s.

Given Definition 3.1.4 of the formula and term construction, we can see that term replace-
ment in Definition 3.1.6 distributes over the symbols ¬,∧,�,⃝ and ∀ with respect to the
terms which have been replaced.

Fact 3.1.7. Given two formula ϕ and ψ , a variable x ∈ V and two terms t and s with

f v(t)∩bv(ϕ) = /0, f v(s)∩bv(ϕ) = /0, f v(t)∩bv(ψ) = /0 and f v(s)∩bv(ψ) = /0 then:

• (¬ϕ)t⇒s = ¬(ϕt⇒s)

• (ϕ ∧ψ)t⇒s = ϕt⇒s ∧ψt�→s

• (�ϕ)t⇒s =�(ϕt⇒s)

• ⃝(ϕ/ψ)t⇒s =⃝(ϕt⇒s/ψt⇒s)

• (∀xϕ)t⇒s = ∀x(ϕt⇒s)
3

Similarly if ϕt�→s is used instead of ϕt⇒s.

Because of this fact, we can drop the brackets when talking about replacement. Using the
definition of term replacement we can give the following definition in which all constants
and definite description of a formula get replaced by new free variables. This definition
will later be used to define a rule in our proof system.

Definition 3.1.8. Given a formula ϕ , we define ϕ∗ as the formula in which all terms

t1, ..., tn, which are not variables and are occurring in the formula ϕ , have been replaced

by x1, ...,xn ∈ V respectively. The variables x1, ...,xn are the first, pairwise different, ele-

ments of V such that x1, ...,xn ̸∈ f v(ϕ)∪bv(ϕ).
1This definition is taken from [18] and guarantees us that the new x does not bind an already existing

variable in t by the quantifier ∃.
2Here free means that the term does not contain a variable bound by a quantifier.
3For this equality we also need x ̸∈ f v(t)∪ f v(s) to hold.
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Example 3.1.9. Let A,B and C be predicate symbols, x,y,z ∈ V the first three variables

of V , c ∈C a constant and ϕ ∈WF a well-formed formula:

• A( ιyϕ,c)∗ = A(x,z)

• ∀xA( ιyB(y,d),x)∗ = ∀xA(z,x)

• A( ιyB( ιxC(x,y)),y)∗ = A(z,y)

• A(y,y)∗ = A(y,y)

3.2 Frames, Models and Validity

In this section, we introduce the semantics for F∀
1 the first-order extension of system

F containing equality and definite descriptions, which uses the previously established
syntax. The models our first-order logic, which evaluate the well-formed formulas, are
based on the preference models of the propositional semantics of system F. We start by
defining the frames on which our models are built on.

Definition 3.2.1 (Frame). F = ⟨W,⪰,D⟩ is called a frame, where

• W ̸= /0 is a set of worlds

• ⪰⊆W ×W is a binary relation on W called the betterness relation

• D is a function which maps every world w ∈W to a non-empty set Dw, D is called

the domain function, and Dw is called the domain of the world w

We say that a world w is at least as good as a world v iff w ⪰ v.

Definition 3.2.2. Given a frame F = ⟨W,⪰,D⟩, we call D :=
�

w∈W
Dw the existing domain

of F and D+ := D∪{D} the (whole) domain of F .

A frame is the underlying structure of a model. A single world w ∈W is only one possible
world as part of the set of all worlds in F . Different statements can be true at each world,
also properties of certain objects or persons can change from world to world.
The worlds are ranked by the betterness relation, which does not yet have any properties
assigned to it. Since "w is at least as good as a world v" is meant in the sense of obligations
fulfilled, we have to choose the properties of ⪰ accordingly, but we need more definitions
before we can define them properly.
Different objects or persons can exist at different worlds as indicated by the domain Dw

of a world w. Including the element D in the whole domain D+ of a frame, gives us the
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extra element D, which is not contained in the domain of any world. 4 This element
of the whole domain will be used to interpret definite descriptions that do not designate.
Such a definite description is either a description of something that does not exist or is
not uniquely defined through the description. A natural language example for the first one
would be "The King of France". An example of the second one would be "The person
with long hair" if this description is used at a metal concert.

Definition 3.2.3 (Model). M = ⟨W,⪰,D, I⟩ is called a model (on the frame

F = ⟨W,⪰,D⟩), where I is a function (called interpretation function) such that:

• for c ∈C and w ∈W: I(c,w) ∈ D+

• for Rn ∈ P and w ∈W: I(Rn,w)⊆ (D+)n

The intuitive understanding for, an element a of the domain D+ to be an element of
I(A,w), is that a has the property A at w.
Our formulas can contain free and bound variables, therefore, we need a way to define
what happens to them in our models. Consequently we define variable assignments that
assign each variable-world pair (x,w) to an element of the whole domain.

Definition 3.2.4 (Variable assignment). Given a model M = ⟨W,⪰,D, I⟩ we call a func-

tion g : V ×W �→ D+ a variable assignment (of M ). 5

The assignment g(x,w) = a can be understood as "everyone at the world w sees x as the
element a". Notice that g(x,w) does not have to be an element of the domain of w 6. The
individual domains are used to define all objects which are addressed by the ∀ quantifier
at a world. To capture this notion we define an x-variant of a variable assignment g at

a world w as the variable assignment h which replaces all assignments of a variable x, at
every world, with an element of the domain of w.

Definition 3.2.5 (x-variant). Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g of

M , a variable x ∈V and a world w ∈W we call a variable assignment h an x-variant of

g at w if for every (y,v) ∈ (V\{x})×W we have g(y,v) = h(y,v) and for every v,v′ ∈ W

we have h(x,v) = h(x,v′) ∈ Dw.

The following definition will be used for some proofs later in this thesis:

Definition 3.2.6. Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g of M and an

element of the whole domain d ∈ D+. We write gx⇒d for the variable assignment, which

replaces every assignment of the variable x at any world with the element d:
4D ̸∈ D
5The output of a variable assignment is dependent on the worlds.
6The element a does not even have to be contained in the existing domain.
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gx⇒d(z,v) :=

 d if (z,v) ∈ {x}×W

g(z,v) otherwise

Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world w ∈W and a formula
ϕ ∈ WF we want to define what it means that ϕ is true in M at w under g. We call the
set of all worlds v for which ϕ is true in M at w under g the ϕ-worlds of M under g

according to w and write this set as ||ϕ||Mg,w. An intuitive meaning for a world v ∈ ||ϕ||Mg,w
is that the formula ϕ holds true at v under g if looked at from the point of view of a person
living at the world w. It is important to mention that v ∈ ||ϕ||Mg,w does not convey a truth
value for the formula ϕ per se, but it is used to define the truth value for ϕ per inductive
definition. Alternatively one could write M ,v |=w

g ϕ instead of v ∈ ||ϕ||Mg,w and define the
sets afterwards accordingly, which is a more common way to do it. However, since we
want to emphasise that v ∈ ||ϕ||Mg,w does not define a truth value directly, we are sticking
with the first one. Furthermore, for the proofs in this thesis, we will mostly work with the
sets directly, making the proofs easier to read and explain.
Given a set ||ϕ||Mg,w we can define a set of worlds called the best ϕ-worlds of M under g

according to w. A set best(||ϕ||Mg,w) contains all ϕ-worlds v of M under g according to w

for which there is no "better" alternative, although there could be ϕ-worlds of M under
g according to w to which v is as good as the world itself. Since a world in best(||ϕ||Mg,w)
is therefore at least as good as every other ϕ-world v of M under g according to w in F∀

1

we also call a world in best(||ϕ||Mg,w) an optimal ϕ-world of M under g according to w.

Definition 3.2.7. Given a model M = ⟨W,⪰,D, I⟩ and a set of the worlds W ′ ⊆ W we

call

best(W ′) := {v ∈W ′ : ∀v′ ∈W (v′ ∈W ′ ⇒ v ⪰ v′)}

the best W ′ worlds in M .

We will now simultaneously define the above described sets ||ϕ||Mg,w and the following
function (I ∗g)w recursively, such that for every term t, we get (I ∗g)w(t) ∈D∪{D}. The
motivation for (I ∗g)w(t) = p is that a person living at the world w interprets the term t as
the object p.

Definition 3.2.8. Let M = ⟨W,⪰,D, I⟩ be a model, g a variable assignment of M ,

t a term, ϕ a well-formed formula and w ∈W a world:

• If t = x ∈V then (I ∗g)w(t) := g(x,w)

• If t = c ∈C then (I ∗g)w(t) := I(c,w)

30



3 Syntax and Semantics

• If Rn ∈ P and t1, ..., tn are terms, then

||Rn(t1, ..., tn)||Mg,w := {v ∈W : ⟨(I ∗g)w(t1), ...,(I ∗g)w(tn)⟩ ∈ I(Rn,v)}

• If t1 and t2 are terms, then

||t1 = t2||Mg,w := {v ∈W : (I ∗g)w(t1) = (I ∗g)w(t2)}

• If ϕ = ¬ψ , then

||ϕ||Mg,w :=W\||ψ||Mg,w

• If ϕ = ψ ∧χ , then

||ϕ||Mg,w := ||ψ||Mg,w ∩||χ||Mg,w

• If ϕ = ∀xψ , then

||ϕ||Mg,w := {v ∈W : v ∈ ||ψ||Mh,w for all x-variants h of g at v}

• If ϕ =�ψ , then

||ϕ||Mg,w := {v ∈W : ||ψ||Mg,w =W}

• If ϕ =⃝(ψ/χ), then

||ϕ||Mg,w := {v ∈W : best(||χ||Mg,w)⊆ ||ψ||Mg,w}

• If t = ιxϕ , then

(I ∗g)w(t) :=


h(x,w) if h is the unique x-variant of g at w

such that w ∈ ||ϕ||Mh,w
D otherwise

Definition 3.2.9 (Truth in F∀
1). Given a model M = ⟨W,⪰,D, I⟩, a variable assignment

g, a formula ϕ and a world w we define what it means that ϕ is true in M in F∀
1 at w

under g (in symbols: M ,w |=1
g ϕ) as

M ,w |=1
g ϕ :⇔ w ∈ ||ϕ||Mg,w

Remark 3.2.10. From the definition above it follows that for any model

M = ⟨W,⪰,D, I⟩, variable assignment g, and world w given that a formula ϕ ∈ WF
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is of the form �ψ,⃝(ψ/χ) or t1 = t2 then the set ||ϕ||Mg,w is either equal to W or to /0.

It is important to note that ||ϕ||Mg,w = W in general does NOT imply M ,v |=1
g ϕ for any

v ∈ W other than w. The equality ||ϕ||Mg,w = W can be seen as a ϕ being necessarily
true at the world w, which means that ϕ is true at every world for someone who refers
to every object the way they are defined at the world w. Therefore ||t1 = t2||Mg,w = W

should not be confused with t1 and t2 having the same interpretation at every world and
rather understood as t1 and t2 being equal for someone who refers to every object the way
they are defined at world w, which does not depend on any world different from w. The
meaning of M ,w |=1

g �ϕ is that ϕ holds true under g at every world from the point of
view of someone living at w.
Now we can define the properties we want our models to have and use them to define a
whole class of models:

Definition 3.2.11. We say that a model M = ⟨W,⪰,D, I⟩ is reflexive if

∀w ∈W : w ⪰ w.

We say that a model M = ⟨W,⪰,D, I⟩ fulfils the limitedness property (of F∀
1) if for every

formula ϕ , variable assignment g and world w ∈W we have

||ϕ||Mg,w ̸= /0 ⇒ best(||ϕ||Mg,w) ̸= /0.

We define U1 as the class of all models which are reflexive and fulfil the limitedness

property of F∀
1 .

Let us start with the explanation of why we want our models to fulfil the limitedness
property. Given a model M , a world w, a formula ϕ and a variable assignment g, we
want that if there exists a world v (not necessarily different from w) at which the formula
ϕ is true under g for a person living at w than there should also exist an optimal ϕ-world
of M under g according to w. This guarantees us that given a model M , a world w, a
formula ϕ and a variable assignment g, there is no infinite chain of increasingly better
worlds at which the formula ϕ is true under g for a person living at w. Also, in the
propositional case, the limitedness property is the one that is added to the models to make
the axiom D* of the system F sound, without it, this is, in general not true.
In the case of reflexivity, let us take any model M and any world w, then it seems fitting
to say that this world w is at least as good as w itself. Also, regarding the definition of
our best worlds, we need the betterness relation to be reflexive. Otherwise, if a world
w is not in relation with itself, then w can never be an element of a best set of worlds.
More specific if w ̸⪰ w then for any set if worlds W ′ ⊆ W we have w ̸∈ best(W ′). Given
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a model M which does not fulfil reflexivity but does fulfil the limitedness property we
could find a world w such that w ̸⪰ w and therefore best({w}) = /0. This would clash with
the limitedness property, so to eliminate such redundant cases, we just add the property
of reflexivity to all of our models.
We have defined what it means in F∀

1 for a formula ϕ to be true in a model M at a world
w under a variable assignment g, and now we want to scale this definition up to the entire
class of models U1.

Definition 3.2.12 (Validity in F∀
1). A formula ϕ ∈WF is called valid in a model M in F∀

1

at a world w if for every variable assignment g we have that ϕ is true in M at w under g,

in symbols:

M ,w |=1 ϕ

A formula ϕ ∈ WFis called valid in M in F∀
1 if for every world w we have ϕ is true in

M at w, in symbols:

M |=1 ϕ

A formula ϕ ∈WF is called valid in a class of models M in F∀
1 . If for every model M ∈M

we have ϕ is valid in M in F∀
1 , in symbols:

M |=1 ϕ

A formula ϕ ∈WF is called valid in F∀
1 if ϕ is valid in the class U1 in F∀

1 from Definition

3.2.11, in symbols:

|=1 ϕ

Using the definition of validity we can give a even more specific definition, the one of
semantic entailment. This definition can be used to describe what it means for one or
more formulas to semantically entail another formula in F∀

1 .

Definition 3.2.13. Given a set of formulas Γ ⊆WF and a formula ϕ ∈WF then we say Γ
semantically entails ϕ in F∀

1 (in symbols: Γ |=1 ϕ) if for every model M = ⟨W,⪰,D, I⟩,
every variable assignment g and every world w ∈W we have

(∀ψ ∈ Γ : M ,w |=1
g ψ)⇒ M ,w |=1

g ϕ.

Remark 3.2.14. |=1 ϕ ⇔ /0 |=1 ϕ

33



3 Syntax and Semantics

We should mention what happens to non-denoting terms in our semantics. More precisely,
what is the interpretation of a definite description that does not exist or is not unique. An
example of such term is ιx⊥. Another would ιx∃y(x = y) if the domain of the world at
which this formula is evaluated contains more than one element. By definition a non-
denoting definite description will always be assigned to the element D. This element
is not contained in the existing domain or in other words, not contained in the domain
of any world 7. Therefore in F∀

1 , the formula ∃y(y = ιxϕ) will never be true at any
model and any world at which ιxϕ does not denote. Although formulas containing a
non-denoting definite description can be true at a world or even be valid, for example, the
formula ιx⊥= ιx⊥ is valid. The formula A( ιx⊥) can be true at a world depending on the
interpretation of the predicate symbol A. A non-denoting definite description can have
certain properties but can neither exist nor be equal to something existing.

3.3 Logical Symbols and Derived Connectives

In this section we show that the truth definition at a world, and therefore the validity
definition in F∀

1 , behave the usual way. This means that the logical connectives and the
quantifiers have identical or similar interpretations as in classical first-order logic. We
also show how the operators � and ⃝ as well as all the derived connectives, given in
Definition 3.1.5, behave in F∀

1 .

We start with formulas of the form ¬ϕ and ϕ ∧ψ:

Lemma 3.3.1. Given any model M = ⟨W,⪰,D, I⟩, variable assignment g, world w ∈W

and any two formulas ϕ,ψ ∈WF, then

M ,w |=1
g ¬ϕ ⇔ M ,w ̸|=1

g ϕ

M ,w |=1
g ϕ ∧ψ ⇔ M ,w |=1

g ϕ and M ,w |=1
g ψ.

Proof. By definition ||¬ϕ||Mg,w =W\||ϕ||Mg,w. This implies that w ∈ ||¬ϕ||Mg,w is equivalent
to w ̸∈ ||ϕ||Mg,w. Also by definition ||ϕ ∧ψ||Mg,w = ||ϕ||Mg,w ∩ ||ψ||Mg,w. This implies that
w ∈ ||ϕ ∧ψ||Mg,w is equivalent to w being an element of ||ϕ||Mg,w and ||ψ||Mg,w.

Now we take a closer look at the derived connectives ∨,⊃ and ↔:

7The idea is taken from Goble’s paper [9].
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Lemma 3.3.2. Given any model M = ⟨W,⪰,D, I⟩, variable assignment g, world w ∈W

and any two formulas ϕ,ψ ∈WF, then

M ,w |=1
g ϕ ∨ψ ⇔ M ,w |=1

g ϕ or M ,w |=1
g ψ

M ,w |=1
g ϕ ⊃ ψ ⇔ M ,w ̸|=1

g ϕ or M ,w |=1
g ψ

M ,w |=1
g ϕ ↔ ψ ⇔ M ,w |=1

g ϕ iff M ,w |=1
g ψ.

Proof. The equality ||ϕ ∨ψ||Mg,w = ||ϕ||Mg,w ∪ ||ψ||Mg,w 8 implies that w ∈ ||ϕ ∨ψ||Mg,w is
equivalent to w ∈ ||ϕ||Mg,w or w ∈ ||ψ||Mg,w.
The equality ||ϕ ⊃ ψ||Mg,w = W\(||ϕ||Mg,w)∪ ||ψ||Mg,w 9 implies that w ∈ ||ϕ ⊃ ψ||Mg,w is
equivalent to w ̸∈ ||ϕ||Mg,w or w ∈ ||ψ||Mg,w.
The last statement follows directly from the following chain of equivalences:

w ∈ ||ϕ ↔ ψ||Mg,w ⇔
w ∈ ||¬(ϕ ∧¬ψ)∧¬(¬ϕ ∧ψ)||Mg,w ⇔

w ∈ (W\||ϕ||Mg,w ∪||ψ||Mg,w)∩ (||ϕ||Mg,w ∪W\||ψ||Mg,w)⇔
w ∈ (||ϕ||Mg,w ∩||ψ||Mg,w)∪ (W\(||ϕ||Mg,w ∪||ψ||Mg,w))⇔

w ∈ ||ϕ||Mg,w ∩||ψ||Mg,w or w ̸∈ ||ϕ||Mg,w ∪||ψ||Mg,w

Remark 3.3.3. For the symbols ⊥ and ⊤ it follows from the lemmas above that for

any model M = ⟨W,⪰,D, I⟩, variable assignment g, and world w ∈ W the equalities

||⊥||Mg,w = /0 and ||⊤||Mg,w =W hold.

After establishing the interpretation of all propositional connectives contained in classical
logic, we can show that F∀

1 contains classical propositional logic as a sublogic. This means
that any propositional tautology is valid in F∀

1 . First, we must properly define what "being
a propositional tautology" means in our first-order dyadic deontic logic.

Definition 3.3.4. A well-formed formula ϕ ∈ WF is called a propositional tautology if

there exists a tautology τ in classical propositional logic such that ϕ can be obtained by

uniformly subsidising propositional variables with well-formed formulas of WF.

8||ϕ ∨ψ||Mg,w =W\(||¬ϕ ∧¬ψ||Mg,w) =W\((W\||ϕ||Mg,w)∩ (W\||ψ||Mg,w)) = ||ϕ||Mg,w ∪||ψ||Mg,w
9||ϕ ⊃ ψ||Mg,w = ||¬(ϕ ∧¬ψ)||Mg,w =W\(||ϕ||Mg,w ∩ (W\||ψ||Mg,w)) =W\(||ϕ||Mg,w)∪||ψ||Mg,w
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Example 3.3.5. Some examples for propositional tautologies of our logic are:

• ⃝(ϕ/ψ)∨¬⃝ (ϕ/ψ)

• ∀xϕ ⊃ ∀xϕ

• ¬(�ϕ ∧¬�ϕ)

We can use the lemmas above to show that any propositional tautology is valid in F∀
1 .

More precisely:

Theorem 3.3.6. Given a propositional tautology ϕ , a model M = ⟨W,⪰,D, I⟩, variable

assignment g of M , and world w ∈W then M ,w |=1
g ϕ .

Proof. This follows directly from Lemma 3.3.1 and Lemma 3.3.2.

For the final part of this section we are going to take a closer look the interpretations of
all the other operators and connectives, not yet discussed in this section. The following
lemmas are going to be used in proofs throughout this thesis.

Lemma 3.3.7. Given any model M = ⟨W,⪰,D, I⟩, variable assignment g, world w ∈W

and any two formulas ϕ,ψ ∈WF, then

M ,w |=1
g �ϕ ⇔ W = ||ϕ||Mg,w.

M ,w |=1
g ⃝(ϕ/ψ) ⇔ best(||ψ||Mg,w)⊆ ||ϕ||Mg,w.

Proof. Both claims follow directly from Definition 3.2.8.

Lemma 3.3.8. Given any model M = ⟨W,⪰,D, I⟩, variable assignment g, world w ∈W

and any two formulas ϕ,ψ ∈WF, then

M ,w |=1
g ♢ϕ ⇔ ||ϕ||Mg,w ̸= /0

M ,w |=1
g P(ϕ/ψ) ⇔ best(||ψ||Mg,w)∩||ϕ||Mg,w ̸= /0

Proof. The first claim follows from the following chain of equivalences:

M ,w |=1
g ♢ϕ ⇔ w ∈ ||♢ϕ||Mg,w ⇔ w ̸∈ ||�¬ϕ||Mg,w ⇔ ||�¬ϕ||Mg,w = /0

⇔∃v ∈W : v ̸∈ ||¬ϕ||Mg,w ⇔∃v ∈W : v ∈ ||ϕ||Mg,w ⇔ ||ϕ||Mg,w ̸= /0
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The second claim follows from:

M ,w |=1
g P(ϕ/ψ)⇔ w ∈ ||P(ϕ/ψ)||Mg,w ⇔ w ̸∈ ||O(¬ϕ/ψ)||Mg,w

⇔{v ∈W : best(||ψ||Mg,w)⊆ ||¬ϕ||Mg,w}= /0

⇔ best(||ψ||Mg,w) ̸⊆ ||¬ϕ||Mg,w
⇔ best(||ψ||Mg,w) ̸⊆W\||ϕ||Mg,w
⇔∃v ∈W : v ∈ best(||ψ||Mg,w) and v ∈ ||ϕ||Mg,w
⇔ best(||ψ||Mg,w)∩||ϕ||Mg,w ̸= /0

Lemma 3.3.9. Given any model M = ⟨W,⪰,D, I⟩, variable x ∈ V variable assignment

g, world w ∈W and formula ϕ ∈WF, then

M ,w |=1
g ∀xϕ holds iff M ,w |=1

h ϕ holds for every x-variant h of g at w.

M ,w |=1
g ∃xϕ holds iff M ,w |=1

h ϕ holds for an x-variant of g at w.

M ,w |=1
g ∃!xϕ holds iff M ,w |=1

h ϕ holds for exactly one x-variant h of g at w.

Proof. The first claim follows directly from Definitions 3.2.8 and 3.2.9.
The second claim follows from the fact that by definition w ∈ ||∃xϕ||Mg,w is equivalent to
w ̸∈ ||∀x¬ϕ||Mg,w. This is equivalent to the existence of an x-variant h of g at w such that
w ̸∈ ||¬ϕ||Mh,w, which is furthermore equivalent to w ∈ ||ϕ||Mh,w.
The last claim can be shown the following way. By definition w∈ ||∃!xϕ||Mg,w is equivalent
to w ∈ ||∃y∀x(x = y ↔ ϕ)||Mg,w. This is equivalent to the existence of a y-variant j of g at
w such that w ∈ ||∀x(x = y ↔ ϕ)||Mj,w. Furthermore this is equivalent to the existence of a
y-variant j of g at w such that for all x-variants h of j at w it holds that w∈ ||x= y↔ϕ||Mh,w.
This lets us conclude that there exists a unique element d ∈Dw such that w∈ ||ϕ||Mh,w holds
exactly for the x-variant h at w with h = gx⇒d .

Lemma 3.3.10. Given any model M = ⟨W,⪰,D, I⟩, variable assignment g, world w ∈W

and any two formula ϕ,ψ ∈WF then

M ,w |=1
g �(ϕ ↔ ψ) ⇔ ||ϕ||Mg,w = ||ψ||Mg,w.

Proof. This follows directly from the proof of Lemma 3.3.2 and the interpretation of the
� operator in F∀

1 .
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Lemma 3.3.11. Given any model M = ⟨W,⪰,D, I⟩, variable assignment g, world w ∈W

and any two terms t and s, then

M ,w |=1
g t = s ⇔ (I ∗g)w(t) = (I ∗g)w(s)

M ,w |=1
g E(t) ⇔ (I ∗g)w(t) ∈ Dw.

Proof. The first claim follows directly from the definition since w ∈ ||t = s||Mg,w is equi-
valent to (I ∗g)w(t) = (I ∗g)w(s). The second claim follows from the following chain of
equivalences:

M ,w |=1
g E(t) ⇔

w ∈ ||∃(x = t)||Mg,w ⇔
There exists an x-variant h of g at w such that w ∈ ||(x = t)||Mh,w ⇔
There exists an x-variant h of g at w such that (I ∗h)w(x) = (I ∗h)w(t) ⇔ 10

There exists an x-variant h of g at w such that h(x,w) = (I ∗g)w(t) ⇔
(I ∗g)w(t) ∈ Dw

With the help of the above proven lemmas we can show that in F∀
1 , the dyadic deontic

operator can be used to define the � operator.

Theorem 3.3.12. �ϕ ↔⃝(⊥/¬ϕ) is valid in F∀
1 .

Proof. Given a model M ∈ U1, a world w ∈ W , a variable assignment g and a for-
mula ϕ then v ∈ ||⃝ (⊥/¬ϕ)||Mg,w is equivalent to best(W\||ϕ||Mg,w) ⊆ /0 for any world
v ∈ W . Because of the limitedness property given to our models in Definition 3.2.11 the
following equivalence holds best(W\||ϕ||Mg,w) = /0 ⇔ ||ϕ||Mg,w =W . This lets us conclude
||⃝ (⊥/¬ϕ)||Mg,w = ||�ϕ||Mg,w.

3.4 Paradoxes revisited

Before moving on to the next chapter we show that the paradoxes discussed in Chapter 2
are resolved in F∀

1 . We start with the "Switching seats" paradox, see Example 2.5.1.

10This equivalence holds since x does not appear in t as a free variable.

38



3 Syntax and Semantics

Proposition 3.4.1. Let Γ := {⃝(G( ιyL( ιxC(x),y))/G( ιxC(x))),x1 =

ιxC(x),x2 =

ιyL( ιxC(x),y)}
then

Γ |=1 ⃝(G(x2)/G(x1)).

Proof. Let M = ⟨W,⪰,D, I⟩ be a model in U1. Given any variable assignment g of
M , if at a world w ∈W the formulas ⃝(G( ιyχ( ιxC(x),y))/G( ιxC(x))),x1 =

ιxC(x) and
x2 =

ιyL( ιxC(x),y) are true under g then we can infer:

best(||G( ιxC(x))||Mg,w)⊆ ||G( ιyL( ιxC(x),y))||Mg,w
g(x1,w) = (I ∗g)w(

ιxC(x))

g(x2,w) = (I ∗g)w(

ιyL( ιxC(x),y))

This implies that for every world v ∈ W (I ∗ g)w(x1) ∈ I(G,v) and (I ∗ g)w(

ιxC(x)) ∈
I(G,v) are equivalent as well as (I ∗g)w(x2)∈ I(G,v) and ιyL( ιxC(x),y)∈ I(G,v). Hence
the equalities ||G(x1)||Mg,w = ||G( ιxC(x))||Mg,w and ||G(x2)||Mg,w = ||G( ιyL( ιxC(x),y))||Mg,w
hold. We can conclude that best(||G(x1)||Mg,w)⊆ ||G(x2)||Mg,w, which means

M ,w |=1
g ⃝(G(x2)/G(x1)).

11

The "Kind tyrant" paradox also yields the desired semantic entailment, see Example 2.5.2.

Proposition 3.4.2. Let Γ := {∀x⃝ (K(x)),∀x⃝ (¬T (x)),∃y(y = ιzT (z))} then

Γ |=1 ⃝(K( ιzT (z)))∧⃝(¬T ( ιzT (z))).

Proof. Let M = ⟨W,⪰,D, I⟩ be a model in U1. Given any variable assignment g of M ,
if at a world w ∈W the formulas ∀x⃝ (K(x)),∀x⃝ (¬T (x)) and ∃y(y = ιzT (z)) are true,
then we can infer that, for every x-variant h of g at w we have:

M ,w |=1
h ⃝(K(x)), M ,w |=1

h ⃝(¬T (x)) and (I ∗g)w(

ιzT (z)) ∈ Dw

Therefore there exists an x-variant h of g at w with h(x,w) = (I ∗g)w(

ιzT (z)) and since x

does not appear as a free variable in K( ιzT (z)) and ¬T ( ιzT (z)) this implies

M ,w |=1
g ⃝(K( ιzT (z))) and M ,w |=1

g ⃝(¬T ( ιzT (z))).

11This obligation does not have to be true at a world different from w.
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An example of a model fulfilling the "Kind tyrant" paradox would be:

Example 3.4.3. Let M := ⟨W,⪰,D, I⟩ be a model with

W := {w,v}
⪰ := RC({(v,w)})

Dw := {a,b}, Dv := {c}
I(K,w) := {b}, I(K,v) := {a,b,c}
I(T,w) := {a}, I(T,v) := {}

w v

K(b),T (a) K(a),K(b),K(c)

Figure 3.1: Kind tyrant model

Let g be any variable assignment of M . If h is an x-variant of g at w then by defin-

ition h(x,w) ∈ Dw = {a,b}. Therefore h(x,w) ∈ I(K,v) which means v ∈ ||K(x)||Mh,w.

Since this implies best(||⊤||Mh,w) = {v} ⊆ ||K(x)||Mh,w we can conclude M ,w |=1
h ⃝K(x).

This implies M ,w |=1
g ∀x⃝K(x). If h is an x-variant of g at w then h(x,w) ̸∈ I(T,v)

which means v ∈ ||¬T (x)||Mh,w. Since this implies best(||⊤||Mh,w) = {v} ⊆ ||¬T (x)||Mh,w we

can conclude M ,w |=1
h ⃝¬T (x). This implies M ,w |=1

g ∀x⃝¬T (x). Finally because

(I ∗g)w(

ιzT (z)) = a ∈ Dw we have M ,w |=1
g ∃y(y = ιzT (z)).

We can see that M ,w |=1
g ⃝¬T ( ιzT (z)) must hold by the proposition above. M ,w |=1

g

⃝¬T ( ιzT (z)) can also be followed from the fact that best(||⊤||Mg,w) = {v} ⊆ {v} =

||¬T ( ιzT (z))||Mg,w.
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Here we introduce a Hilbert axiomatisation for F∀
1 . The axiomatisation, which we refer

to as HF∀
1 is shown to be (strongly) sound in F∀

1 , that is if every formula provable (from
assumptions) in HF∀

1 is true at every world under every variable assignment (at which the
assumptions are true) in F∀

1 .

4.1 Provability in F∀
1

The Hilbert system HF∀
1 consists of the following axiom schemas and inference rules:

Axioms:

All axioms of system F (F)

t = s ⊃ (ϕ ↔ ϕt�→s) (I)

E(t)⊃ (∀xϕ ⊃ ϕx⇒t) (UI)

∃x∃y(x = y) (Ex)

t = t (E1)

t ̸= s ⊃�t ̸= s (E2)

∀y((∀x(ϕ ↔ x = y))⊃ y = ιxϕ) (D1)

E( ιxϕ)⊃ ∃!xϕ (D2)

∀x(E(x)⊃ ϕ)⊃ ∀xϕ (UQ)

(∀xϕ ∧∀xψ)↔∀x(ϕ ∧ψ) (QD)

Rules:

If ⊢ ϕ ⊃ t ̸= x then ⊢ ¬ϕ where x ̸∈ f ree(ϕ) (R1)

If ⊢ ϕ and ⊢ ϕ ⊃ χ then ⊢ χ (MP)

If ⊢ ϕ∗ then ⊢�ϕ (N*)

If ⊢ ϕ ⊃ ψ then ⊢ ϕ ⊃ ∀xψ where x ̸∈ f ree(ϕ) (IU)

If ⊢ ϕ ⊃�ψ then ⊢ ϕ ⊃�∀xψ where x ̸∈ f ree(ϕ) (IUB)
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Remark 4.1.1. Axioms I and UI have the usual restrictions concerning the bound vari-

ables in ϕ (as mentioned in Definition 3.1.6). This means in I it must hold that bv(ϕ)∩
f v(t) = /0 and bv(ϕ)∩ f v(s) = /0 and in UI it must hold that bv(ϕ)∩ f v(t) = /0.

HF∀
1 includes every axiom of F, the Axiom of Replacement, and Universal Instantiation

with no restrictions on which operators appear in the formulas. It also contains the rule
MP and a variation of the old rule N, called N*, which is discussed in detail in Section
4.2. Furthermore HF∀

1 contains the axiom Ex which shows that there is always an existing
object. This relates to the non-emptiness of every world domain. The axioms E1 and E2
define the equality symbol and its relation to the necessitation operator. D1 and D2 are the
axioms discussed in Chapter 2 to define definite description in our system. The axioms
UQ and QD and the rules IU and IUB are here for introducing the universal quantifier
and its relation with �, E(x), ∧ and free and bound variables. The rule R1 states that
every element in the whole domain can be assigned to any free variable in our system.1

Given HF∀
1 above, we can define what it means for a well-formed formula to be provable.

We call R1, MP, IU and IUB the binary inference rules of HF∀
1 .

Definition 4.1.2 (Provability in HF∀
1). Let ϕ ∈ WF be a well-formed formula. We say a

sequence ϕ1, ...,ϕn of well-formed formulas is a (formal) HF∀
1-proof of ϕ if ϕn = ϕ and

for all i = 1, ...,n one of the following holds:

• ϕi is an instance of an axiom schema of HF∀
1 .

• There exist j,k < i such that ϕi is the result of an application of a binary inference

rule of HF∀
1 to ϕ j and ϕk.

• There exists j < i such that ϕi =�ψ and ϕ j = ψ∗.

We say a well-formed formula ϕ ∈ WF is provable in HF∀
1 (in symbols: ⊢1 ϕ) if there

exists a HF∀
1-proof of ϕ .

An example of a provable formula schema is:

Example 4.1.3. The formula schema t = s ⊃ �t = s is provable in HF∀
1 . A formal HF∀

1-

proof of t = s ⊃�t = s is

1The axioms and rules introducing the universal quantifier are taken from [18] and [9].
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(a) x = x (E1)

(b) �t = t (a + N*)

(c) t = s ⊃ (�t = t ↔�t = s) (I)

(d) �t = t ⊃ [(t = s ⊃ (�t = t ↔�t = s))⊃ (t = s ⊃�t = s)] (Tautology)

(e) (t = s ⊃ (�t = t ↔�t = s))⊃ (t = s ⊃�t = s) (b + d + MP)

(f) t = s ⊃�t = s (c + e + MP)

Definition 4.1.4 (Derivability from assumptions in HF∀
1). Let ϕ ∈WF be a well-formed

formula and Γ ⊆WF a set of well-formed formulas, which we call assumptions. We say

ϕ is derivable from Γ in HF∀
1 (in symbols: Γ ⊢1 ϕ) if there exists a sequence ϕ1, ...,ϕn of

well-formed formulas with ϕn = ϕ and for all i = 1, ...,n one of the following holds:

• ⊢1 ϕi.

• ϕi ∈ Γ

• There exist j,k < i such that ϕi is the result of an application of modus ponens to

ϕ j and ϕk.

Remark 4.1.5. ⊢1 ϕ ⇔ /0 ⊢1 ϕ . This means the definition of derivability from assump-

tions in HF∀
1 is more general than the definition of derivability from assumptions in HF∀

1 .

Therefore we also say "ϕ is provable from the assumptions Γ" if Γ ⊢1 ϕ holds.

Given the definition of derivability in HF∀
1 , we can show that the "Kind tyrant" paradox

from Chapter 2 gives the desired result in HF∀
1 . In other words, the formulas T ( ιzT (z)))

⃝(K( ιzT (z))) are derivable from the set {∀x⃝ (K(x)),∀x⃝ (¬T (x)),∃y(y = ιzT (z))}.
Let us consider the following example:

Example 4.1.6. ⃝(¬T ( ιzT (z))) is derivable from ∀x⃝ (¬T (x)) and ∃y(y = ιzT (z)).

{∀x⃝ (¬T (x)),∃y(y = ιzT (z))} ⊢1 ⃝(¬T ( ιzT (z)))

(a) ∃y(y = ιzT (z))⊃ (∀x⃝ (¬T (x))⊃⃝(¬T ( ιzT (z))) (UI)

(b) ∃y(y = ιzT (z)) (Assumption)

(c) (∀x⃝ (¬T (x)))⊃⃝(¬T ( ιzT (z)) (a + b + MP)

(d) ∀x⃝ (¬T (x)) (Assumption)

(e) ¬T ( ιzT (z) (c + d + MP)

Before we show the connection between the semantics defined in Chapter 3 and the Hil-
bert axiomatisation defined in this chapter we need a definition which captures this con-
nection.
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Definition 4.1.7 (Soundness). We say HF∀
1 is (weakly) sound in F∀

1 if for every well-

formed formula ϕ ∈WF the implication

⊢1 ϕ ⇒|=1 ϕ

holds. We say HF∀
1 is strongly sound in F∀

1 if for every well-formed formula ϕ ∈WF and

every set of well-formed formulas Γ ⊆WF the implication

Γ ⊢1 ϕ ⇒ Γ |=1 ϕ

holds.

The weak soundness proof for HF∀
1 can be accomplished by showing that every instance

of an axiom of HF∀
1 is valid in F∀

1 and by showing that the inference rules of HF∀
1 preserve

validity. In those cases, we call the axiom schemas and the inference rules sound in F∀
1 .

At the end of this chapter we will see that strong soundness follows from weak soundness.

4.2 Inclusion of F

In this section, we show that all rules and axioms of F, except of N, are sound in F∀
1 . This

shows us that the semantics of F∀
1 does indeed extend the propositional system F, except

of N, into first-order. We also discuss the new rule N* in detail.

Theorem 4.2.1. All axioms of F and the rule modus ponens are sound in F∀
1 .

Proof. Let in the following ϕ,ψ and χ be well-formed formulas, M = ⟨W,⪰,D, I⟩ a
model, w ∈W a world and g a variable assignment of M :

• ϕ is a truth-functional tautology.

The validity of ϕ follows from Theorem 3.3.6

• �(ϕ ⊃ χ)⊃ (�ϕ ⊃�χ)

M ,w |=1
g �(ϕ ⊃ χ) is equivalent to W\||ϕ||Mg,w ∪ ||χ||Mg,w = W 2. Now if w ∈

||�ϕ||Mg,w then ||ϕ||Mg,w =W , therefore together with M ,w |=1
g �(ϕ ⊃ χ) it follows

that ||χ||Mg,w =W , which lets us conclude M ,w |=1
g �χ .

• �ϕ ⊃ ϕ

Since M ,w |=1
g �ϕ holds iff ||ϕ||Mg,w = W it follows that ϕ holds in w under g

according to w, which means M ,w |=1
g ϕ .

2M ,w |=1
g �(ϕ ⊃ χ)⇔ w ∈ ||�(ϕ ⊃ χ)||Mg,w ⇔ ||ϕ ⊃ χ||Mg,w =W ⇔W\||ϕ||Mg,w ∪||χ||Mg,w =W
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• ♢ϕ ⊃�♢ϕ

If M ,w |=1
g ♢ϕ then w ∈ ||¬�¬ϕ||Mg,w which implies ||¬�¬ϕ||Mg,w = W , therefore

||�¬�¬ϕ||Mg,w =W , hence w ∈ ||�♢ϕ||Mg,w.

• ⃝(ϕ ⊃ χ/ψ)⊃ (⃝(ϕ/ψ)⊃⃝(χ/ψ))

This follows from the following three equivalences:
M ,w |=1

g ⃝(ϕ ⊃ χ/ψ)⇔ best(||ψ||Mg,w)⊆W\||ϕ||Mg,w ∪||χ||Mg,w,
M ,w |=1

g ⃝(ϕ/ψ)⇔ best(||ψ||Mg,w)⊆ ||ϕ||Mg,w and
M ,w |=1

g ⃝(χ/ψ)⇔ best(||ψ||Mg,w)⊆ ||χ||Mg,w.

• ⃝(ϕ/ψ)⊃�⃝ (ϕ/ψ)

M ,w |=1
g ⃝(ϕ/ψ) is equivalent to {v ∈ W : best(||ψ||Mg,w) ⊆ ||ϕ||Mg,w} = W and

therefore to ||⃝ (ϕ/ψ)||Mg,w =W , which means w ∈ ||�⃝ (ϕ/ψ)||Mg,w.

• �ϕ ⊃⃝(ϕ/ψ)

Since M ,w |=1
g �ϕ is equivalent to ||ϕ||Mg,w = W , it follows that w ∈ ||�ϕ||Mg,w

implies that for any formula ψ ∈WF we have best(||ψ||Mg,w)⊆W = ||ϕ||Mg,w.

• �(ϕ ↔ ψ)⊃ (⃝(χ/ϕ)↔⃝(χ/ψ))

M ,w |=1
g �(ϕ ↔ ψ) holds iff ||ϕ||Mg,w = ||ψ||Mg,w (see Lemma 3.3.10), therefore

it follows that best(||ϕ||Mg,w) = best(||ψ||Mg,w). This implies that best(||ϕ||Mg,w) ⊆
||χ||Mg,w is equivalent to bestMg,w(ψ)⊆ ||χ||Mg,w.

• ⃝(ϕ/ϕ)

This follows from best(||ϕ||Mg,w) ⊆ ||ϕ||Mg,w which holds by definition of the best
worlds.

• ⃝(ϕ/ψ ∧χ)⊃⃝(χ ⊃ ϕ/ψ)

Let v ∈ best(||ψ||Mg,w) be an arbitrary but fixed optimized ϕ-world of M under g ac-
cording to w and let us assume that M ,w |=1

g ⃝(ϕ/ψ ∧ χ) holds, then
best(||ψ ∧χ||Mg,w)⊆ ||ϕ||Mg,w. We now differ between two cases:
First if v ∈ ||χ||Mg,w then v ∈ ||ψ||Mg,w ∩ ||χ||Mg,w. As a result for all v′ with
v′ ∈ ||ψ||Mg,w ∩ ||χ||Mg,w = ||ψ ∧ χ||Mg,w we have v ⪰ v′ which means that
v ∈ best(||ψ ∧ χ||Mg,w) ⊆ ||ϕ||Mg,w ⊆ ||χ ⊃ ϕ||Mg,w. Since v ∈ best(||ψ||Mg,w) was ar-
bitrary we can conclude M ,w |=1

g ⃝(χ ⊃ ϕ/ψ).
In the second case v ̸∈ ||χ||Mg,w then v ∈W\||χ||Mg,w ∪||ϕ||Mg,w = ||χ ⊃ ϕ||Mg,w. Hence
again since v ∈ best(||ψ||Mg,w) was arbitrary we can conclude
M ,w |=1

g ⃝(χ ⊃ ϕ/ψ).
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• ♢ψ ⊃ (⃝(ϕ/ψ)⊃ P(ϕ/ψ))

M ,w |=1
g ♢ψ is equivalent to the existence of a world v ∈W such that v ∈ ||ϕ||Mg,w

and M ,w |=1
g ⃝(ϕ/ψ) is equivalent to best(||ψ||Mg,w)⊆ ||ϕ||Mg,w. Furthermore using

the limitedness property of our betterness relation ⪰ and v ∈ ||ϕ||Mg,w we can find a
world v′ ∈ W such that v′ ∈ best(||ψ||Mg,w). Now if M ,w |=1

g ♢ψ and
M ,w |=1

g ⃝(ϕ/ψ) hold we can find a world v′ with v′ ∈ best(||ψ||Mg,w) ⊆ ||ϕ||Mg,w.
This lets us conclude best(||ψ||Mg,w) ∩ ||ϕ||Mg,w ̸= /0, which is equivalent to
M ,w |=1

g P(ϕ/ψ).

• The rule MP

Modus ponens follows directly from Lemma 3.3.2.

The only part of the System F which is not sound in F∀
1 is the rule N. This can be formal-

ised as the following proposition:

Proposition 4.2.2. The implication

|=1 ψ ⇒|=1 �ψ

does not hold for every formula ψ ∈WF.

This proposition can be proven by exhibiting a counterexample. We start by showing that
the formula ψ := ∃y(y = ιxR(x)) ⊃ R( ιxR(x)) is a valid in F∀

1 . Afterwards we define a
model M in which �∃y(y = ιxR(x))⊃ R( ιxR(x)) is not valid.

Proposition 4.2.3. Let M := ⟨W,⪰,D, I⟩ be a model, g a variable assignment, w ∈W a

world, two variables x,y ∈V and a 1-place predicate symbol R, then:

M ,w |=1
g ∃y(y = ιxR(x))⊃ R( ιxR(x))

In particular:

|=1 ∃y(y = ιxR(x))⊃ R( ιxR(x))

Proof. We fix a model M = ⟨W,⪰,D, I⟩, a variable assignment g, and a world w ∈ W .
In the case that M ,w ̸|=1

g ∃y(y = ιxR(x)) the implication is true at w by default (see
Lemma 3.3.2). In the other case, there exists a y-variant h of g at w such that (I ∗h)w(y) =

(I ∗ h)w(

ιxR(x)), which implies that h(y,w) = e for an e ∈ Dw. By definition, e is the
unique element with e ∈ I(R,w). As a result it follows that w ∈ ||R( ιxR(x))||Mh,w. Since
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y does not appear in the formula R( ιxR(x)) we have ||R( ιxR(x))||Mh,w = ||R( ιxR(x))||Mg,w
which implies w ∈ ||R( ιxR(x))||Mg,w. Hence, the formula ∃y(y = ιxR(x)) ⊃ R( ιxR(x)) is
true in M at w under g. Since the model, the variable assignment and the world were
arbitrary, it follows that |=1 ∃y(y = ιxR(x))⊃ R( ιxR(x)).

Even if the formula ψ is valid, we can show that �ψ is not. This can be demonstrated
with the help of the following counterexample:

Example 4.2.4. Given a variable a model M := ⟨W,⪰,D, I⟩ with

W := {w,v}
⪰ := {(w,w),(v,w),(v,v)}

Dw := {a,b}, Dv := {a,b}
I(R,w) := {a}, I(R,v) := {b}

w v
R(a) R(b)

Figure 4.1: Counter-model rule N

Proof of Proposition 4.2.2. Let ψ be the formula ∃y(y = ιxR(x))⊃ R( ιxR(x)) from Pro-
position 4.2.3 and M as in Example 4.2.4. Although ψ is true at every world of M we
are going to show that w ̸∈ ||�ψ||Mg,w for any variable assignment g.
Given a fixed variable assignment g we can define the following y-variant h of g at v:

h(x,v′) :=

a if x = y

g(x,v′) otherwise

For this variable assignment h, it holds that (I ∗ h)w(y) = a = (I ∗ h)w(

ιxR(x)). There-
fore v ∈ ||∃y(y = ιxR(x))||Mg,w and since (I ∗ g)w(

ιxR(x)) = a ̸∈ I(R,v) it follows that
v ̸∈ ||R( ιxR(x))||Mg,w, which lets us conclude v ̸∈ ||∃y(y = ιxR(x)) ⊃ R( ιxR(x))||Mg,w. In
total we have w ̸∈ ||�ψ||Mg,w which means

M ,w ̸|=1
g �[(∃y(y = ιxR(x))⊃ R( ιxR(x)))].
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Since M ∈ U1 the formula �ψ is not valid in F∀
1 .

The reason for N not being a sound rule in F∀
1 is that if a formula contains a definite de-

scription or a constant, it could be the case that this formula holds at every world as seen
from the point of view of that world, but it does not have to be the case that the formula
holds at another world from the point of view which is not the same world.
Let us use a natural language example of this phenomenon to give a better understanding
to our interpretation of necessity. The importance is to keep the local interpretation of
our terms in mind. If we interpret the formula R(x) in the example above as "x is wear-
ing a pink hat", then the validity of the formula ∃y(y = ιxR(x)) ⊃ R( ιxR(x)) in F∀

1 can
be interpreted as: "If the person wearing a pink hat exists, then they are wearing a pink
hat", which is a statement whose validity is not to question. Nonetheless, the formula
�[∃y(y = ιxR(x))⊃ R( ιxR(x))] represents the statement: It is necessary that if the person
wearing a pink hat (fixed from the point of view of the world we are referencing from)
exists, this person (fixed from the point of view of the world we are referencing from) is
wearing a pink hat. This does not hold if the person changes hats from world to world.

We have just seen that in general the assumption of the validity of a formula is too weak to
imply the validity of the necessity of this formula in F∀

1 . A strengthening of the antecedent
is needed to create a sound rule in F∀

1 . The idea for the new inference rule N* is taken
from Goble’s paper [9] and it is defined as:

Definition 4.2.5. If ⊢1 ϕ∗ then ⊢1 �ϕ , where ϕ∗ is the result of replacing all constants

and definite descriptions in ϕ with free variables not occurring in ϕ , see Definition 3.1.8.

We want to prove that the rule N* does preserve validity in F∀
1 . In other words, we want

to show that the rule N* is sound:

Theorem 4.2.6. Given a well-formed formula ϕ ∈WF and a model M then

M |=1 ϕ∗ implies M |=1 �ϕ.

This theorem can be proven with the help of two lemmas. The first lemma states that
the validity of a formula of the form ϕ∗ in a model implies the validity of �ϕ∗ in that
model.3 The second lemma states that the validity of a formula ϕ∗ in a model implies
the validity of ϕ in that model. The proofs of both lemmas are built on the fact that the
variable assignments of a model M range over all possible elements of the whole domain
of M , see Definition 3.2.4.

3This means that given formula which does not contain constants or definite descriptions, the rule N does
indeed preserve validity.
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Lemma 4.2.7. Given a well-formed formula ϕ ∈WF and a model M then

M |=1 ϕ∗ ⇒ M |=1 �ϕ∗.

Proof. Let ϕ be any fixed, well-formed formula and M = ⟨W,⪰,D, I⟩ a model. If for
every world w ∈ W and every variable assignment g of M it holds that M ,w |=1

g ϕ∗, it
follows that w ∈ ||ϕ∗||Mg,w for every world w ∈W and every variable assignment g of M .
Now let us take two arbitrary but fixed worlds v,w ∈W and an arbitrary but fixed variable
assignment g and define a new variable assignment h : V ×W → D+ of M as:

h(x,v′) :=

g(x,w) if v′ = v

g(x,v′) otherwise

Since h copies the variables how g sees them at w to v (∀x ∈V : h(x,v) = g(x,w)) we get
the equality ||ϕ∗||Mh,v = ||ϕ∗||Mg,w. This gives us v ∈ ||ϕ∗||Mh,v = ||ϕ∗||Mg,w. Since v was arbit-
rary we can conclude ||ϕ∗||Mg,w = W , which by definition is equivalent to w ∈ ||�ϕ∗||Mg,w
and to M ,w |=1

g �ϕ∗. Because w was an arbitrary world and g was an arbitrary variable
assignment of M , we can further conclude M |=1 �ϕ∗.

Lemma 4.2.8. Given a well-formed formula ϕ ∈WF and a model M then

M |=1 ϕ∗ ⇒ M |=1 ϕ.

Proof. We are going to prove the second lemma by contraposition. Let us assume that
there exists a model M = ⟨W,⪰,D, I⟩, a world w ∈W and a variable assignment g such
that M ,w ̸|=1

g ϕ . Let t1, ..., tn be all terms in ϕ which are replaced by the corresponding
variables x1, ...,xn in ϕ∗ then for the variable assignment

h(x,v) :=

(I ∗g)w(ti) if (x,v) = (xi,w) for i ∈ {1, ...,n}
g(x,v) otherwise

we have M ,w ̸|=1
h ϕ∗.

Theorem 4.2.6 can now be proven by putting Lemma 4.2.7 and Lemma 4.2.8 together:

Proof of Theorem 4.2.6. M |=1 ϕ∗ ⇒ M |=1 �ϕ∗ ⇔ M |=1 (�ϕ)∗ ⇒ M |=1 �ϕ .

Theorem 4.2.1 together with Theorem 4.2.6 show us that if we only take into account
the terms and formulas without constants or definite descriptions then all the axioms and
rules of F are sound in F∀

1 . Therefore the F∀
1 without constants or definite descriptions are

in fact first-order dyadic deontic logic semantics of an extension of the system F.
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4.3 The Axiom I in F∀
1

This section is dedicated to proving soundness of the axiom I in F∀
1 . This means that given

a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world w ∈W , two terms t and s and
a formula ϕ as in Definition 3.1.6 we want to show

M ,w |=1
g t = s ⊃ (ϕ ↔ ϕt�→s).

To prove the soundness of the Axiom of Replacement in F∀
1 , we use the following the-

orem:

Theorem 4.3.1. Given a model M = ⟨W,⪰,D, I⟩, two terms s and t, a variable assign-

ment g, a world w∈W and a formula ϕ ∈WF with f v(t)∩bv(ϕ)= /0 and f v(s)∩bv(ϕ)=
/0 then (I ∗g)w(t) = (I ∗g)w(s) implies:

||ϕt�→s||Mg,w = ||ϕ||Mg,w (4.1)

The proof of this theorem is given in three steps. First, we show that the set equivalence
4.1 holds for all atomic formulas, then for all formulas of depth zero and finally for all
formulas. This is done by induction over the formula construction of all formulas of depth
zero and then by induction over the depth of the formulas. We start by proving the set
equivalence 4.1 for every atomic formula.

Lemma 4.3.2. Given a model M = ⟨W,⪰,D, I⟩, two terms s and t, a variable assignment

g, a world w∈W and an atomic formula An(t1, ..., tn), then (I∗g)w(t) = (I∗g)w(s) implies

||An(t1, ..., tn)t�→s||Mg,w = ||An(t1, ..., tn)||Mg,w.

Proof. Since we are dealing with an atomic formula for every i = 1, ...,n it holds that
ti ∈V ∪C. Hence the only case where t can appear in An(t1, ..., tn) is as a ti, because all ti
do not contain further terms.
If for all i = 1, ...,n it holds that ti ̸= t then An(t1, ..., tn)t�→s and An(t1, ..., tn) are the same
formula and therefore ||An(t1, ..., tn)t�→s||Mg,w = ||An(t1, ..., tn)||Mg,w by default.
In the other case there exists (at least one) i = 1, ...,n such that ti = t. Without loss
of generality let us assume that t1 = t, then An(t1, ..., tn)t�→s = An(s, ..., tn). By defin-
ition v ∈ ||An(t1, ..., tn)||Mg,w is equivalent to ⟨(I ∗ g)w(t1), ...,(I ∗ g)w(tn)⟩ ∈ I(An,v) and
because of the equalities (I ∗ g)w(t1) = (I ∗ g)w(t) = (I ∗ g)w(s) this is also equivalent to
⟨(I∗g)w(s),(I∗g)w(t2), ...,(I∗g)w(tn)⟩ ∈ I(An,v). In conclusion we get ||An(t1, ..., tn)t�→s||Mg,w =

||An(t1, ..., tn)||Mg,w.
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Next, we will prove the equivalence 4.1 for every formula of the form t1 = t2 of depth 0.

Lemma 4.3.3. Given a model M = ⟨W,⪰,D, I⟩, two terms s, t, a variable assignment g,

a world w ∈W, two terms t1, t2 ∈V ∪C, then (I ∗g)w(t) = (I ∗g)w(s) implies

||(t1 = t2)t�→s||Mg,w = ||t1 = t2||Mg,w.

Proof. Similarly as in the proof of the lemma above the only non-trivial case we have
to consider is if either t1 or t2 is the term t, w.l.o.g t = t1. Then the claim follows from
the following equivalences: v ∈ ||t1 = t2||Mg,w ⇔ (I ∗g)w(t1) = (I ∗g)w(t2)⇔ (I ∗g)w(s) =

(I ∗g)w(t2)⇔ v ∈ ||(t1 = t2)t�→s||Mg,w.

Remark 4.3.4. Lemma 4.3.2 and 4.3.3 have been proven for any two terms, any variable

assignment and any world.

To finish the first part of the proof of Theorem 4.3.1, we will prove the equivalence 4.1
for every formula ϕ ∈ WF with de(ϕ) = 0 by induction over the formula construction
without definite descriptions.

Lemma 4.3.5. Given a model M = ⟨W,⪰,D, I⟩, two terms s and t, a variable assign-

ment g, a world w ∈ W and a formula ϕ ∈ WF with de(ϕ) = 0, f v(t)∩ bv(ϕ) = /0 and

f v(s)∩bv(ϕ) = /0, then (I ∗g)w(t) = (I ∗g)w(s) implies

||ϕt�→s||Mg,w = ||ϕ||Mg,w.

Proof. If ϕ is an atomic formula or of the form t1 = t2, we have already seen a proof in
Lemma 4.3.2 and Lemma 4.3.3. Now we work by induction over the formula construction
of all formulas of depth zero, given in Definition 3.1.4.
Let us therefore assume that given two formulas ψ and χ of depth 0, the set equival-
ence 4.1 already holds for any variable assignment, world and any two terms fulfilling
f v(t)∩ bv(ψ) = /0, f v(s)∩ bv(ψ) = /0, f v(t)∩ bv(χ) = /0 and f v(s)∩ bv(χ) = /0. This
means if w′ ∈ W is any world and h is any variable assignment, then (I ∗ h)w′(t) =

(I ∗ h)w′(s) implies ||ψt�→s||Mh,w′ = ||ψ||Mh,w′ and ||χt�→s||Mh,w′ = ||χ||Mh,w′ . Now we consider
every case of how a well-formed ϕ of depth zero can be constructed from ψ and χ . We
show that the set equivalence 4.1 holds for ϕ given the restrictions concerning the terms t

and s:

ϕ = ¬ψ:

||ϕt�→s||Mg,w =W/||ψt�→s||Mg,w =W/||ψ||Mg,w = ||ϕ||Mg,w
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ϕ = ψ ∧χ:

||ϕt�→s||Mg,w = ||ψt�→s||Mg,w ∩||χt�→s||Mg,w = ||ψ||Mg,w ∩||χ||Mg,w = ||ϕ||Mg,w
ϕ =�ψ:

∀v ∈W : (v ∈ ||ϕt�→s||Mg,w ⇔W = ||ψt�→s||Mg,w = ||ψ||Mg,w ⇔ v ∈ ||ϕ||Mg,w)

ϕ = ∀xψ:
Since f v(t)∩ bv(ϕ) = /0 = f v(s)∩ bv(ϕ) it follows that x ̸∈ f v(t) and x ̸∈ f v(s). Hence
given an x-variant h of g (at any world v) we get (I ∗g)w(t) = (I ∗h)w(t) and (I ∗g)w(s) =

(I∗h)w(s) which implies (I∗h)w(t)= (I∗h)w(s). A world v being an element of ||ϕt�→s||Mg,w
is by definition equivalent to v ∈ ||ψt�→s||Mh,w for all x-variants h of g at v. By use of the in-
duction hypothesis we can conclude that this is equivalent to v ∈ ||ψ||Mh,w for all x-variants
h of g at v, which is the definition for v ∈ ||ϕ||Mg,w.

ϕ =⃝(ψ/χ):
It follows directly from the definition of the best worlds that ||χt�→s||Mg,w = ||χ||Mg,w im-
plies best(||χt�→s||Mg,w) = best(||χ||Mg,w).4 Hence we can conclude that best(||χt�→s||Mg,w)⊆
||ψt�→s||Mg,w and best(||χ||Mg,w) ⊆ ||ψ||Mg,w are equivalent, which leads us to
||ϕt�→s||Mg,w = ||ϕ||Mg,w.

Now finally, we want to prove Theorem 4.3.1. This will be achieved by induction over
the depth of the formulas.

Proof of Theorem 4.3.1. The start of this induction proof (for all formulas ϕ ∈ WF with
de(ϕ) = 0) has already been done in Lemma 4.3.5.
Given an arbitrary but fixed m ∈ N, we assume the set equivalence 4.1 holds for every
formula of depth lower or equal to m. This means if w′ ∈ W is a world, h a variable
assignment and ψ a formula with de(ψ) ≤ m then (I ∗ h)w′(t) = (I ∗ h)w′(s) implies
||ψt�→s||Mh,w′ = ||ψ||Mh,w′ . We are now using this assumption to prove the set equivalence
4.1 for any formula ϕ of depth lower or equal to m+1.
Let us start with formulas of the form ϕ = Rn(t1, ..., tn), where Rn is an n-place pre-
dicate symbol. If for a fixed i = 1, ...,n the term ti is of the form ιxψ , for a variable
x and a formula ψ , then by definition de(ψ) ≤ m. Since x ̸∈ f v(t)∪ f v(s) the equi-
valence (I ∗ g)w(t) = (I ∗ g)w(t) implies (I ∗ h)w(t) = (I ∗ h)w(t) for every x-variant h

4v ∈ best(||χt�→s||Mg,w)⇔ v ∈ ||χt�→s||Mg,w ∧ [∀v′ ∈W (v′ ∈ ||χt�→s||Mg,w ⇒ v ⪰ v′)]
⇔ v ∈ |χ||Mg,w ∧ [∀v′ ∈W (v′ ∈ ||χ||Mg,w ⇒ v ⪰ v′)]⇔ v ∈ best(||χ||Mg,w)
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of g (at any world). Hence by the induction hypothesis and because bv(ψ) ⊆ bv(ϕ)
we have ||ψ||Mh,w = ||ψt�→s||Mh,w for every x-variant h of g (at any world). Using this
equivalence and the definition of the evaluation of a definite description ιxψ we can
conclude (I ∗ g)w(

ιxψ) = (I ∗ g)w(

ιxψt�→s). On the other hand if for a i = 1, ...,n the
term ti is not of the form ιxψ then ti ∈ V ∪C. For this type of term we already know
that (I ∗ g)w(ti) = (I ∗ g)w((ti)t�→s) holds (see proof of Lemma 4.3.2). We can conclude
that for all i = 1, ...,n, it is true that (I ∗ g)w(ti) = (I ∗ g)w((ti)t�→s). Hence we arrive at
||Rn(t1, ..., tn)t�→s||Mg,w = ||Rn(t1, ..., tn)||Mg,w.
With the same argument we can also infer that for any two terms t1, t2 with
de(t1)≤ m+1 and de(t2)≤ m+1 the equivalence ||(t1 = t2)t�→s||Mg,w = ||t1 = t2||Mg,w holds.
Constructing well-formed formulas with ¬,∧,∀,� and ⃝ out of formulas with depth
lower or equal to m+ 1 does result in a formula of depth lower or equal to m+ 1. For
that reason and because of the fact that we did not use the property de(ϕ) = 0 in the
induction proof of Lemma 4.3.5 we can conclude that (I ∗ g)w(t) = (I ∗ g)w(s) implies
||ϕt�→s||Mg,w = ||ϕ||Mg,w for any formula with de(ϕ)≤ m+1.

With the help of Theorem 4.3.1 the following corollary follows directly:

Corollary 4.3.6. Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world

w∈W, two terms t,s and a formula ϕ ∈WF with bv(ϕ)∩ f v(t) = /0 and bv(ϕ)∩ f v(s) = /0
then

M ,w |=1
g t = s ⊃ (ϕ ↔ ϕt�→s).

In particular: Given two terms t,s and a formula ϕ ∈ WF with bv(ϕ)∩ f v(t) = /0 and

bv(ϕ)∩ f v(s) = /0 then

|=1 t = s ⊃ (ϕ ↔ ϕt�→s).

4.4 The Axiom UI in F∀
1

Here we show the axiom UI is sound in F∀
1 . This means that given a model M = ⟨W,⪰

,D, I⟩, a variable assignment g, a world w ∈ W , two terms t and s and a formula ϕ as in
Definition 3.1.6 we want to show

M ,w |=1
g E(t)⊃ (∀xϕ ⊃ ϕx⇒t).

We are going to show the soundness of UI in F∀
1 with the help of the following theorem:
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Theorem 4.4.1. Given a formula well-formed ϕ ∈ WF, a model M , a variable assign-

ment g, a world w ∈ W, a term t with bv(ϕ)∩ f v(t) = /0 and d := (I ∗ g)w(t) then the

following equation holds:

||ϕx⇒t ||Mg,w = ||ϕ||Mgx⇒d ,w (4.2)

The proof of this theorem is again done by induction over the formula construction. We
start by proving this theorem for every atomic formula.

Lemma 4.4.2. Given a atomic formula An(t1, ..., tn), a model M , a term t and d :=
(I ∗g)w(t) then the following equation holds

||An(t1, ..., tn)x⇒t ||Mg,w = ||An(t1, ..., tn)||Mgx⇒d ,w

Proof. If v ∈ ||An(t1, ..., tn)||Mg,w then by definition we have ⟨(I ∗g)w(t1), ...,(I ∗g)w(tn)⟩ ∈
I(An,v). Since we are dealing with an atomic formula for every i = 1, ...n we have
ti ∈ V ∪C. Hence the only case where x can appear in An(t1, ..., tn) is as a ti, because
all ti do not contain further terms.
If for all i = 1, ...,n it holds that ti ̸= x then An(t1, ..., tn)x⇒t and An(t1, ..., tn) are the same
formula and the different evaluation of x does not affect the sets, therefore
||An(t1, ..., tn)x⇒t ||Mg,w = ||An(t1, ..., tn)||Mgx⇒t ,w. In the other case that there exists (at least
one) i = 1, ...,n such that ti = x. In this case v′ ∈ ||An(t1, ..., tn)x⇒t ||Mg,w holds if and only if
⟨(I ∗g)w(t1), ...,(I ∗g)w(tn)⟩ ∈ I(An,v′) holds, where all ti with ti = x have been replaced
by t. Now since (I ∗g)w(t) = (I ∗gx⇒d)w(x) this is equivalent to v′ ∈ ||An(t1, ..., tn)||Mgx⇒d ,w.

Next, we will prove Theorem 4.4.1 for every formula of the form t1 = t2 of depth 0.

Lemma 4.4.3. Given a model M = ⟨W,⪰,D, I⟩, a term t, a variable assignment g, a

world w ∈W, two terms t1, t2 ∈V ∪C and d := (I ∗g)w(t) then

||(t1 = t2)x⇒t ||Mg,w = ||t1 = t2||Mgx⇒d ,w.

Proof. As in the proof of the lemma above the only non-trivial case we have to consider
is if either t1 or t2 is the variable x, w.l.o.g x = t1. In this case for all v ∈W the following
equivalences hold v∈ ||(t1 = t2)x⇒t ||Mg,w ⇔ (I ∗g)w(t) = (I ∗g)w(t2)⇔ v∈ ||t1 = t2||Mgx⇒d ,w,
which proves the lemma.

Remark 4.4.4. Lemma 4.4.2 and 4.4.3 have been proven for any term, any variable as-

signment and any world.

54



4 Hilbert Axiomatisation

To finish the first part of the proof of Theorem 4.4.1, we will prove the set equivalence 4.2
for every formula ϕ ∈WF with de(ϕ) = 0 by induction over the formula construction of
all formulas of depth zero.

Lemma 4.4.5. Given a model M = ⟨W,⪰,D, I⟩, a term t, a variable assignment g, a

world w ∈ W and a formula ϕ ∈ WF with de(ϕ) = 0, f v(t) ∩ bv(ϕ) = /0 and

d := (I ∗g)w(t) then

||ϕx⇒t ||Mg,w = ||ϕ||Mgx⇒d ,w.

Proof. If ϕ is an atomic formula or of the form t1 = t2 of depth 0, we have already seen a
proof in Lemmas 4.4.2 and 4.4.3. Now we work by induction over the formula construc-
tion given in Definition 3.1.4.
Let us therefore assume that given two formulas ψ and χ of depth 0, the set equi-
valence 4.2 already holds for any variable assignment, world and any term t fulfilling
f v(t)∩bv(ψ) = /0, and f v(t)∩bv(χ) = /0. This means if w′ ∈W is a world and h a vari-
able assignment, then ||ψx⇒t ||Mh,w′ = ||ψ||Mhx⇒d ,w′ and ||χx⇒t ||Mh,w′ = ||χ||Mhx⇒d ,w′ .
Now we consider every case of how a well-formed ϕ of depth zero can be built. The
cases ϕ = ¬ψ , ϕ = ψ ∧ χ , ϕ = �ψ and ϕ = ⃝(ψ/χ) can be proven in the same way
as in Lemma 4.3.5. The only step that needs some extra explanation is when ϕ = ∀yψ .
Starting with an arbitrary world v ∈ W such that v ∈ ||ϕx⇒t ||Mg,w. This is equivalent to
v ∈ ||ψx⇒t ||Mg′,w for all y-variants g′ of g at v by Definition 3.2.9. By use of the induction
assumption together with the fact that y ̸∈ bv(t), we can conclude that this is equivalent to
v ∈ ||ψ||Mg′,w for all y-variants g′ of gx⇒d at v. Therefore we arrive at v ∈ ||∀yψ||Mgx⇒d ,w.

Now finally, we want to prove Theorem 4.4.1. We will do this by induction over the depth
of ϕ .

Proof of Theorem 4.4.1. Given a number m ∈ N we assume that Theorem 4.4.1 holds
for every formula ϕ with de(ϕ) ≤ m. Given a formula ψ of depth lower or equal to
m + 1 and with bv(ψ)∩ f v(t) = /0, if ιyϕ appears as a term in the formula ψ it fol-
lows that de(ϕ) ≤ n and y ̸∈ f v(t). The induction assumption then lets us derive that
(I ∗g)w(

ιyϕx⇒t) = (I ∗gx⇒t)w(

ιyϕ). By the same induction steps as in the proof of The-
orem 4.3.1 we can conclude that the equivalence ||ϕx⇒t ||Mg,w = ||ϕ||Mgx⇒d ,w holds.

As a corollary of Theorem 4.4.1 follows the soundness of UI in F∀
1:

Corollary 4.4.6. Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world

w ∈W, a variable x ∈V , a term t, a formula ϕ ∈WF with bv(ϕ)∩ f v(t) = /0 then
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4 Hilbert Axiomatisation

M ,w |=1
g E(t)⊃ (∀xϕ ⊃ ϕx⇒t).

In particular: Given a term a variable x ∈ V , a term t and a formula ϕ ∈ WF with

bv(ϕ)∩ f v(t) = /0 then

|=1 E(t)⊃ (∀xϕ ⊃ ϕx⇒t).

Proof. Since w ∈ ||E(t)||Mg,w is equivalent to (I ∗ g)w(t) ∈ Dw the assumption
M ,w |=1

g E(t) makes the variable assignment gx⇒d an x-variant of g at w. This fact,
together with Theorem 4.4.1 proves the corollary.

4.5 Soundness

We conclude this chapter by showing that the Hilbert axiomatisation HF∀
1 is strongly

sound in F∀
1 . We start by showing that it is weakly sound.

Theorem 4.5.1. Given a well-formed formula ϕ ∈ WF, a model M = ⟨W,⪰,D, I⟩, a

world w ∈W and a variable assignment g of M :

⊢1 ϕ ⇒ M ,w |=1
g ϕ

More specific:

⊢1 ϕ ⇒|=1 ϕ

Proof. As mentioned in the beginning of this chapter, a soundness proof is achieved by
showing that every instance of axioms are valid and that every rule preserves validity. We
start with the axioms of HF∀

1:

• All axioms of system F.

This has been shown in Theorem 4.2.1.

• t = s ⊃ (ϕ ↔ ϕt�→s)

This has been shown in Corollary 4.3.6.

• E(t)⊃ (∀xϕ ⊃ ϕx⇒t)

This has been shown in Corollary 4.4.6.
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• ∃x∃y(x = y)

This follows from a property in Definition 3.2.3 of our models. Namely, for every
world w of every model M we have, the domain Dw is not empty.

• t = t

This follows directly from Definition 3.2.9.

• t ̸= s ⊃�t ̸= s

This follows from the following equivalences: w ∈ ||t ̸= s||Mg,w ⇔
w ∈W\||t = s||Mg,w ⇔ ||t = s||Mg,w = /0 ⇔ ||t ̸= s||Mg,w =W ⇔ w ∈ ||�t ̸= s||Mg,w.

• ∀y((∀x(ϕ ↔ x = y))⊃ y = ιxϕ)

Let h be a y-variant of g at w then w ∈ ||∀x(ϕ ↔ x = y)||Mh,w is equivalent to
w ∈ ||ϕ||Mj,w ⇔ w ∈ ||x = y||Mj,w for all x-variants j of h at w. This is furthermore
equivalent to w ∈ ||ϕ||Mj,w ⇔ j(x,w) = j(y,w) = h(y,w) for all x-variants j of h at
w. This means that w ∈ ||ϕ||Mj,w holds for exactly one x-variant j of h at w and
for this j the equivalence j(x,w) = h(y,w) holds. In other words this means that
w ∈ ||y = ιxϕ||Mh,w. Since h was an arbitrary y-variant of g at w we can conclude
M ,w |=1

g ∀y((∀x(ϕ ↔ x = y))⊃ y = ιxϕ).

• E( ιxϕ)⊃ ∃!xϕ

M ,w |=1
g E( ιxϕ) is equivalent to (I ∗ g)w(

ιxϕ) ∈ Dw. As a result (I ∗ g)w(

ιxϕ) ̸=
{D} which means that there is a unique x-variant h of g at w such that w ∈ ||ϕ||Mh,w.

• ∀x(E(x)⊃ ϕ)⊃ ∀xϕ

For w ∈ ||∀x(E(x) ⊃ ϕ)||Mg,w to be true we need for all x variants h of g at w for
either w ̸∈ ||E(x)||Mh,w or w ∈ ||ϕ||Mh,w to hold. Since w ̸∈ ||E(x)||Mh,w is equivalent to
h(x,w) ̸∈ Dw the first case cannot be true. We can conclude that w ∈ ||∀x(E(x) ⊃
ϕ)||Mg,w implies that for all x variants h of g at w we have w ∈ ||ϕ||Mh,w.

• (∀xϕ ∧∀xψ)↔∀x(ϕ ∧ψ)

v ∈ ||∀xϕ ∧ ∀xψ||Mg,w means that for every x-variant h of g at v it holds that
v ∈ ||ϕ||Mh,w and that for every x-variant h of g at v we have v ∈ ||ψ||Mh,w. This is
the same as saying that for every x-variant h of g at v we have v ∈ ||ϕ||Mh,w ∩||ψ||Mh,w
which is equivalent to v ∈ ||∀x(ϕ ∧ψ)||Mg,w.

Now we show that every rule of HF∀
1 is sound in F∀

1:
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4 Hilbert Axiomatisation

• The rule R1

We are going to prove this by contraposition. Suppose there exists a model M , a
world w, a well-formed formula ϕ and a variable assignment g such that
M ,w ̸|=1

g ¬ϕ . Then w ̸∈ ||¬ϕ||Mg,w which is equivalent to w ∈ ||ϕ||Mg,w. Using the
term t in the formula ϕ ⊃ t ̸= x, we can define the following variable assignment:

h(z,v) :=

(I ∗g)w(t) if (z,v) = (x,w)

g(z,v) otherwise

By using the fact that x ̸∈ f ree(ϕ) it follows that ||ϕ||Mg,w = ||ϕ||Mh,w and
w ∈ ||t = x||Mg,w. In total this gives us w ̸∈ ||ϕ ⊃ t ̸= x||Mg,w.

• The rule MP

This has been shown in Theorem 4.2.1.

• The rule N*

This has been shown in Theorem 4.2.6.

• The rule IU

By contraposition. Suppose there exists a model M , a world w, two well-formed
formulas ϕ and ψ and a variable assignment g such that M ,w ̸|=1

g ϕ ⊃ ∀xψ . Then
w ̸∈ ||ϕ ⊃ ∀xψ||Mg,w which is equivalent to w ∈ ||ϕ||Mg,w and w ̸∈ ||∀xψ||Mg,w. Hence
we can find an x-variant of g at w such that w ̸∈ ||ψ||Mh,w. If x ̸∈ f ree(ϕ), it holds that
||ϕ||Mg,w = ||ϕ||Mg,h. We have therefore found a world w in and a variable assignment
h of M such that w ̸∈ ||ϕ ⊃ ψ||Mh,w which means M ̸|=1

g ϕ ⊃ ψ .

• The rule IUB

By contraposition. Suppose there exists a model M , a world w, two well-formed
formulas ϕ and ψ and a variable assignment g such that M ,w ̸|=1

g ϕ ⊃�∀xψ . Then
w ̸∈ ||ϕ ⊃�∀xψ||Mg,w which is equivalent to w ∈ ||ϕ||Mg,w and W ̸= ||∀xψ||Mg,w. Hence
we can find a world v and an x-variant of g at v such that v ̸∈ ||ψ||Mh,w which implies
w ̸∈ ||�ψ||Mh,w. If x ̸∈ f ree(ϕ), it holds that ||ϕ||Mg,w = ||ϕ||Mh,w. We have therefore
found a world w and a variable assignment h of M such that w ̸∈ ||ϕ ⊃ �ψ||Mh,w
which means M ̸|=1

h ϕ ⊃�ψ .
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4 Hilbert Axiomatisation

Theorem 4.5.2 (Strong soundness). HF∀
1 is strongly sound in F∀

1 .

Proof. Let us fix a well-formed formula ϕ ∈ WF and a set of well-formed formulas
Γ ⊆ WF . We show that Γ ⊢1 ϕ implies Γ |=1 ϕ . Let M = ⟨W,⪰,D, I⟩ be a model,
w ∈ W a world and g a variable assignment of M such that ∀ψ ∈ Γ : M ,w |=1

g ψ . Let
us assume that Γ ⊢1 ϕ holds. This means there exists a sequence of formulas ϕ1, ...,ϕn

as in Definition 4.1.4. We show that for every formula ϕi of this sequence M ,w |=1
g ϕi

holds by induction over i ∈ {1, ...,n}. For ϕ1 it must either hold that ⊢1 ϕ1 or ϕ1 ∈ Γ. In
the first case M ,w |=1

g ϕ1 follows from weak soundness. In the second case M ,w |=1
g ϕ1

follows from the assumption. Now let ϕi be a fixed element of the sequence such that for
all j < i M ,w |=1

g ϕ j holds. If ⊢1 ϕi or ϕi ∈ Γ then M ,w |=1
g ϕi follows again from weak

soundness and assumption respectively. If ϕi ∈ Γ is derived by modus pones, then we can
find two formulas ϕ j and ϕk in the sequence with j,k < i such that ϕ j = (ϕk ⊃ ϕi). Since
M ,w |=1

g ϕk ⊃ ϕi and M ,w |=1
g ϕk hold by the induction assumption we can conclude

M ,w |=1
g ϕi. Finally, since ϕn = ϕ we get M ,w |=1

g ϕ .
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Here we explore the other possible interpretation of the � operator mentioned at the end
of Chapter 2. Therefore we want � to now be a global operator, which means �ϕ being
true at one world under a variable assignment implies �ϕ being true at all worlds under
that variable assignment. The main goal of this chapter is to show that it is possible to
create a first-order dyadic deontic logic system with an extensional deontic operator and
a global non-extensional modal operator, in which most, but not all, of the axioms of F
are sound. To achieve this, we define semantics of a second system, which we call F∀

2 .
We also revisit the "Switching seats" paradox and show that in F∀

2 , we can use the modal
operator to express the difference between a local and global obligation. At the end of
this chapter we introduce a Hilbert axiomatisation of F∀

2 , which we call HF∀
2 and give a

soundness proof.

5.1 Truth and Validity

We start by defining sets of the form [ϕ]Mg,w for F∀
2 . Those sets will serve the same function

as the sets ||ϕ||Mg,w of F∀
1 , see Definition 3.2.8. The sets ||ϕ||Mg,w and [ϕ]Mg,w are equal if ϕ

does not contain the modal operator �. Therefore the semantics of F∀
2 will only differ

from the semantics of F∀
1 in the evaluation of the modal operator �. In F∀

2 , the modal
operator � is a global and non-extensional operator. Therefore in this system, the axioms
I and UI will only be sound for every well-formed formula not containing the operator �.
We have the same intuitive understanding of v ∈ [ϕ]Mg,w as for v ∈ ||ϕ||Mg,w, namely that ϕ
holds true at v for a person living at w. Hence in F∀

2 , [ϕ]Mg,w =W , can also be seen as a ϕ
being true at every world for someone who refers to every object the way they are defined
at world w. The important difference is that in F∀

2 we define ϕ being necessarily true at a
world w as [ϕ]Mg,v = W for all worlds v ∈ W . This means that in F∀

2 the interpretation of
the � operator is stronger in F∀

1 .
We are again going to simultaneously define a function Ig

w recursively, such that for every
term t we get Ig

w(t) ∈ D∪{D}. The motivation for Ig
w(t) = p is that a person living at the

world w interprets the term t as the object p, but in this case, in F∀
2 .

60



5 The System F∀
2

Definition 5.1.1. Let M = ⟨W,⪰,D, I⟩ be a model, g a variable assignment of M ,

t a term, ϕ a well-formed formula and w ∈W a world:

• If t = x ∈V then Ig
w(t) := g(x,w)

• If t = c ∈C then Ig
w(t) := I(c,w)

• If Rn ∈ P and t1, ..., tn are terms, then

[Rn(t1, ..., tn)]Mg,w := {v ∈W : ⟨Ig
w(t1), ..., I

g
w(tn)⟩ ∈ I(Rn,v)}

• If t1 and t2 are terms, then

[t1 = t2]Mg,w := {v ∈W : Ig
w(t1) = Ig

w(t2)}

• If ϕ = ¬ψ , then

[ϕ]Mg,w :=W\[ψ]Mg,w

• If ϕ = ψ ∧χ , then

[ϕ]Mg,w := [ψ]Mg,w ∩ [χ]Mg,w

• If ϕ = ∀xψ , then

[ϕ]Mg,w := {v ∈W : v ∈ [ψ]Mh,w for all x-variants h of g at v}

• If ϕ =�ψ , then

[ϕ]Mg,w := {v ∈W : ∀k ∈W [ψ]Mg,k =W}

• If ϕ =⃝(ψ/χ), then

[ϕ]Mg,w := {v ∈W : best([χ]Mg,w)⊆ [ψ]Mg,w}

• If t = ιxϕ , then

Ig
w(t) :=


h(x,w) if h is the unique x-variant of g at w

such that w ∈ [ϕ]Mh,w
D otherwise
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Definition 5.1.2. We say that a model M = ⟨W,⪰,D, I⟩ fulfils the limitedness property of

F∀
2 if for every formula ϕ , variable assignment g and world w ∈W we have

[ϕ]Mg,w ̸= /0 ⇒ best([ϕ]Mg,w) ̸= /0.

We define U2 as the class of all models which are reflexive and fulfil the limitedness

property of F∀
2 .

The definitions for truth, validity and semantic entailment in F∀
2 (in symbols: |=2) are as

in F∀
1 , by switching the sets of the form ||ϕ||Mg,w with sets of the form [ϕ]Mg,w.

The first thing to mention is that every well-formed formula ϕ ∈ WF , which does not
contain the modal operator �, has the same truth sets in both systems. More precisely:

Fact 5.1.3. Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world w and

formula ϕ which does not contain the modal operator � then:

||ϕ||Mg,w = [ϕ]Mg,w

This fact leads to the following corollary:

Corollary 5.1.4. Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world

w ∈W and a formula ϕ ∈WF which does not contain the modal operator � then:

M ,w |=1
g ϕ ⇔ M ,w |=2

g ϕ

In particular:

M |=1 ϕ ⇔ M |=2 ϕ

We can see that the logical connectives ¬,∧, the quantifier ∀, the equality symbol =, the
dyadic deontic operator ⃝ as well as the derived connectives ⊤,⊥,∨,⊃,↔,∃,∃! and P

have the same interpretations as in F∀
1 see Lemmas 3.3.1, 3.3.2, 3.3.7, 3.3.8 and 3.3.9.

Let us move on to the differences between Systems 1 and 2, in other words, let us take a
look at the interpretation of the � operator in F∀

2 . The following lemmas show that in F∀
2

a formula of the form �ϕ is not dependent on the world it is evaluated at. The lemmas
will also be used in the soundness proof at the end of this chapter.
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Lemma 5.1.5. Given a model M = ⟨W,⪰,D, I⟩, variable x ∈ V , variable assignment g,

world w ∈W and a formula ϕ ∈WF, then

M ,w |=2
g�ϕ holds iff ∀k ∈W : [ϕ]Mg,k =W

M ,w |=2
g♢ϕ holds iff ∃k ∈W : [ϕ]Mg,k ̸= /0.

Proof. The first claim follows directly from the definition.
The second claim can seen by the following string of equivalences:
M ,w |=2

g ♢ϕ ⇔w∈ [♢ϕ]Mg,w ⇔w ̸∈ [�¬ϕ]Mg,w ⇔ [�¬ϕ]Mg,w = /0⇔∃v,k∈W : v ̸∈ [¬ϕ]Mg,k ⇔
∃v,k ∈W : v ∈ [ϕ]Mg,k ⇔∃k ∈W : [ϕ]Mg,k ̸= /0

Lemma 5.1.6. Given a model M = ⟨W,⪰,D, I⟩, variable x ∈ V , variable assignment g,

world w ∈W and a formula ϕ ∈WF, then

M ,w |=2
g �(ϕ ↔ ψ) is equivalent to ∀v ∈W : [ϕ]Mg,v = [ψ]Mg,v.

Proof. This follows directly from the proof of Lemma 3.3.2 and the interpretation of F∀
2’s

� operator.

Not so surprisingly, in F∀
2 , the deontic operator ⃝ cannot be used to define �, since one

of them is a global operator and the other is not:

Theorem 5.1.7. �ϕ ↔⃝(⊥/¬ϕ) is NOT valid in F∀
2 .

Proof. Given a variable x ∈ V , two 1-place predicate symbol R and Q and a model
M := ⟨W,⪰,D, I⟩ with

W := {w,v}
⪰ := RC({(v,w)})

Dw := {a,b}, Dv = {a,b}
I(R,w) := {a}, I(R,v) := {a}
I(Q,w) := {a}, I(Q,v) := {b}

Given any variable assignment g then Ig
v (

ιxQ(x)) = b ̸∈ I(R,w), therefore
[R( ιxQ(x))]Mg,v ̸= W , which means M ,w ̸|=2

g �R( ιxQ(x)). On the other hand since
Ig
w(

ιxQ(x)) = a ∈ I(R,w) and Ig
w(

ιxQ(x)) = a ∈ I(R,v) we have [R( ιxQ(x))]Mg,w = {w,v},
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which lets us imply best(W\[R( ιxQ(x))]Mg,w) = best( /0) ⊆ /0 and therefore
M ,w |=2

g ⃝(⊥/¬R( ιxQ(x))).

w v

R(a),Q(a) R(a),Q(b)

Figure 5.1: Counter-model �−⃝ relation in F∀
2

One important distinction between F∀
1 and F∀

2 is that F∀
2 lets us highlight the differences

between local and global obligations. This means if given a model M = ⟨W,⪰,D, I⟩
and a world w ∈ W , F∀

2 we can distinguish between M ,w |=2 ⃝(ϕ/ψ) and M ,w |=2

�⃝(ϕ/ψ). The first one describes that the obligation holds true (maybe only) at world w

and the second one means that the obligation holds true at every world. Let us demonstrate
this distinction by revisiting the "Switching seats" paradox. Since in Example 2.5.1 we
want the statement "the person to the right of the person sitting in the corner has the
obligation to get up under the condition that the person in the corner gets up" to be true at
every world we write it as �⃝ (G( ιyL( ιxC(x),y))/G( ιxC(x))).

Proposition 5.1.8. Let Γ := {�⃝ (G( ιyL( ιxC(x),y))/G( ιxC(x))),x1 =

ιxC(x),

x2 =

ιyL( ιxC(x),y)} then

Γ |=2 ⃝(G(x2)/G(x1)) but Γ ̸|=2 �⃝ (G(x2)/G(x1)).

Proof. Since M ,w |=2
g �⃝(G(x2)/G(x1)) implies M ,w |=2

g ⃝(G(x2)/G(x1)) the proof
for Γ |=2 ⃝(G(x2)/G(x1)) is the same as the one for Γ |=1 ⃝(G(x2)/G(x1)). We can
show Γ ̸|=2 �⃝ (G(x2)/G(x1)) by the use of the following counterexample:

Example 5.1.9. Given a variable x∈V , two 1-place predicate symbols C and G, a 2-place

predicate symbol L, a model M := ⟨W,⪰,D, I⟩ with

W := {w,v}
⪰ := RC({(v,w)})

Dw := {b, i, t}, Dv := {b, i, t}
I(C,w) := {b}, I(C,v) := {t}
I(G,w) := {}, I(G,v) := {b, i}
I(L,w) := {(b, i)}, I(L,v) := {}
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Given a variable assignment g with g(x1,w) = b, g(x2,w) = i, g(x1,v) = i and

g(x2,v) =D then we can see that at the world w the equalities in Γ are true in regards to g.

Also since best([G( ιxC(x))]Mg,w) = best({v}) = {v} ⊆ {v} = [G( ιyL( ιxC(x),y)))]Mg,w and

because best([G( ιxC(x))]Mg,v) = best( /0) = /0 ⊆ /0 = [G( ιyL( ιxC(x),y)))]Mg,v the formula

�⃝(G( ιyL( ιxC(x),y))/G( ιxC(x))) is true at the world w under g. On the other hand be-

cause best([G(x1)]
M
g,v) = best({v}) = {v} ̸⊆ /0 = [G(x2)]

M
g,v we do NOT have

M ,w |=2
g �⃝ (G(x2)/G(x1)).

w v

C(b),L(b, i) C(t),G(b),G(i)

Figure 5.2: Switching seats model

5.2 Provability and Soundness

We now introduce a Hilbert axiomatisation for F∀
2 , which we call HF∀

2 . Given HF∀
2 , we

define what it means for a formula ϕ ∈ WF to be provable in HF∀
2 (in symbols: ⊢2) the

same way as in HF∀
1 , but replacing the axiom schemas and rules of HF∀

1 by the the axioms
and rules of HF∀

2 . The same goes for the definition of weak and strong soundness of HF∀
2

in F∀
2 .

As we have seen in the previous section, F∀
1 and F∀

2 are similar in many ways. Therefore
we take HF∀

1 as a basis for this second Hilbert axiomatisation and check which axioms
and rules have to be altered to create a sound Hilbert System for F∀

2 . We are going to prove
in this section that all rules of HF∀

1 are also sound in F∀
2 . Let us, therefore, discuss which

axioms of HF∀
1 need to be altered to fit F∀

2 . Because of the different interpretation of the
� operator the formula schema t ̸= s ⊃ �t ̸= s is not valid in F∀

2 for every pair of terms t

and s, hence the axiom E2 is not going to be part of HF∀
2 . The axioms Nec and Ext must

be elevated to new axioms Nec2 and Ext2 by strengthening their respective consequences
since the original rules would be too weak for F∀

2 . The axioms I and UI have restrictions
placed on them, making them applicable if the replaced term is not contained in the scope
of the � operator. Unsurprisingly, the axiom Abs is not sound in F∀

2 because this would
mean that ⃝ would be a global operator, which it is not. The axiom D* is also not sound

65



5 The System F∀
2

sound in F∀
2 because of the different interpretation of the derived operator ♢. Those two

axioms are replaced by their weakened counterparts, the rule Abs E and the axiom D,
respectively. HF∀

2 consists of the following axioms and rules:

Axioms:

All truth functional tautologies (PL)

S5-schemata for � and ♢ (S5)

P(ϕ/ψ)↔¬⃝ (¬ϕ/ψ) (DfP)

⃝ (ϕ ⊃ χ/ψ)⊃ (⃝(ϕ/ψ)⊃⃝(χ/ψ)) (COK)

�ϕ ⊃�⃝ (ϕ/ψ) (Nec2)

�(ϕ ↔ ψ)⊃�(⃝(χ/ϕ)↔⃝(χ/ψ)) (Ext2)

⃝ (ϕ/ϕ) (Id)

⃝ (ϕ/ψ ∧χ)⊃⃝(χ ⊃ ϕ/ψ) (Sh)

t = s ⊃ (ϕ ↔ ϕt�→s) if t is not in the scope of the � operator (I)

E(t)⊃ (∀xϕ ⊃ ϕx⇒t) if x is not in the scope of the � operator (UI)

∃x∃y(x = y) (Ex)

t = t (E1)

∀y((∀x(ϕ ↔ x = y))⊃ y = ιxϕ) (D1)

E( ιxϕ)⊃ ∃!xϕ (D2)

∀x(E(x)⊃ ϕ)⊃ ∀xϕ (UQ)

(∀xϕ ∧∀xψ)↔∀x(ϕ ∧ψ) (QD)

⃝ϕ ⊃ Pϕ (D)

Rules:

If ⊢⃝(ϕ/ψ) then ⊢�⃝ (ϕ/ψ) (Abs E)

If ⊢ ϕ ⊃ t ̸= x then ⊢ ¬ϕ where x ̸∈ free(ϕ) (R1)

If ⊢ ϕ and ⊢ ϕ ⊃ χ then ⊢ χ (MP)

If ⊢ ϕ∗ then ⊢�ϕ (N*)

If ⊢ ϕ ⊃ ψ then ⊢ ϕ ⊃ ∀xψ where x ̸∈ free(ϕ) (IU)

If ⊢ ϕ ⊃�ψ then ⊢ ϕ ⊃�∀xψ where x ̸∈ free(ϕ) (IUB)

In the same way, as for F∀
1 , the soundness proof for F∀

2 can be accomplished by showing
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that every instance of every axiom of HF∀
2 is valid and that the inference rules preserve

validity in F∀
2 . Hence for the final part of this thesis, we show that HF∀

2 is strongly sound
in F∀

2 by first showing that is weakly sound in F∀
2:

Theorem 5.2.1. Given a well-formed formula ϕ ∈ WF, a model M = ⟨W,⪰,D, I⟩, a

world w ∈W and a variable assignment g of M the implication

⊢2 ϕ ⇒ M ,w |=2
g ϕ

holds. In general, the implication

⊢2 ϕ ⇒|=2 ϕ

holds.

Let us start with the axioms of the propositional system F. As we have already seen in
Example 5.1.9 Abs is not sound in F∀

2 . Nevertheless, most of the axioms of F are sound
in F∀

2 . More specific, all rules and axioms except for N, Abs and D* are sound in F∀
2 . In

the soundness proof of the axioms of F in F∀
1 , we did not use the interpretation of � when

talking about the axiom schemas not containing the modal operator � in their formula
schema. We can therefore see that the following theorem holds.

Theorem 5.2.2. Every axiom of system F not containing the modal operator � in its

formula schema is sound in F∀
2 .

Proof. Replace ||ϕ||Mg,w with [ϕ]Mg,w in the soundness proofs of the axioms COK, Id, Sh
and the rule MP.

Even though the interpretation of the � operator is different in F∀
2 than in F∀

1 , the axioms
Nec and Ext, 1 as well as the S5-schemata for � and ♢ are sound in F∀

2 .

Theorem 5.2.3. The axioms of S5 and the axioms Nec2 and Ext2 are sound in F∀
2 .

Proof. • �(ϕ ⊃ χ)⊃ (�ϕ ⊃�χ)

M ,w |=2
g �(ϕ ⊃ χ) is equivalent to ∀k ∈ W : W\[ϕ]Mg,k ∪ [χ]Mg,k = W . Now if w ∈

[�ϕ]Mg,w then ∀k ∈W : [ϕ]Mg,k =W , therefore together with M ,w |=2
g �(ϕ ⊃ χ) we

can infer that ∀k ∈W : [χ]Mg,k =W , which lets us conclude M ,w |=2
g �χ .

1They were replaced in HF∀
2 by their stronger versions Nec2 and Ext2.
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• �ϕ ⊃ ϕ

Since M ,w |=1
g �ϕ holds iff ∀k ∈W : [ϕ]Mg,k =W it follows that ϕ holds in w under

g according to w, which means M ,w |=2
g ϕ .

• ♢ϕ ⊃�♢ϕ

If M ,w |=2
g ♢ϕ then w∈ [¬�¬ϕ]Mg,w which implies ∀k ∈W : [¬�¬ϕ]Mg,k =W , there-

fore [�¬�¬ϕ]Mg,w =W , hence w ∈ [�♢ϕ]Mg,w.

• �ϕ ⊃�⃝ (ϕ/ψ)

Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g and a world w ∈W then
the following equivalences hold: M ,w |=2

g �ϕ ⇔ w ∈ {v ∈ W : ∀k ∈ W [ϕ]Mg,k =
W}⇔W = {v ∈W : ∀k ∈W [ϕ]Mg,k =W}⇔ ∀k ∈W : [ϕ]Mg,k =W . Hence given any
well-formed formula ψ ∈WF , we can conclude that for every world k ∈W we have
best([ψ]Mg,k)⊆W = [ϕ]Mg,k which is equivalent to M ,w |=2

g �⃝ (ϕ/ψ).

• �(ϕ ↔ ψ)⊃�(⃝(χ/ϕ)↔⃝(χ/ψ))

M ,w |=2
g �(ϕ ↔ ψ) is equivalent to ∀k ∈ W : [ϕ]Mg,k = [ψ]Mg,k, see Lemma 5.1.6.

This equivalence implies that from M ,w |=2
g,w �(ϕ ↔ ψ) it follows that for every

world k the optimized ϕ worlds of M in the F∀
2 under g according to k coincide

with the optimized ψ worlds of M in the F∀
2 under g according to k. This means

∀k ∈ W : best([ϕ]Mg,k) = best([ψ]Mg,k). This implication lets us conclude that
M ,w |=2

g �(ϕ ↔ ψ)⊃�(⃝(χ/ψ)↔⃝(χ/ϕ)).

I and UI are sound in F∀
2 under certain restrictions: we cannot replace terms inside the

scope of the � operator without changing the formula’s truth value, as already seen in
Example 5.1.9. The soundness of I and UI can be proven by showing that Theorems
4.3.1 and 4.4.1 also hold for F∀

2 if we do not allow ϕ to contain the modal operator �:

Theorem 5.2.4. Given a model M = ⟨W,⪰,D, I⟩, two terms s and t, a variable assign-

ment g, a world w ∈W and a formula ϕ ∈WF which does not contain the modal operator

� and with f v(t)∩bv(ϕ) = /0 and f v(s)∩bv(ϕ) = /0 then Ig
w(t) = Ig

w(s) implies:

[ϕt�→s]
M
g,w = [ϕ]Mg,w (5.1)

Proof. This is the same proof as for Theorem 4.3.1 except that we replace the connota-
tions for F∀

1 with those for F∀
2 and skip the step containing the � operator.
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Theorem 5.2.5. Given a formula well-formed ϕ ∈WF which does not contain the modal

operator �, a model M , a variable assignment g, a world w ∈ W, a term t with

bv(ϕ)∩ f v(t) = /0 and d := Ig
w(t) then the following equation holds:

[ϕx⇒t ]
M
g,w = [ϕ]Mgx⇒d ,w

Proof. This is the same proof as for Theorem 4.4.1 except that we replace the connota-
tions for F∀

1 with those for F∀
2 and skip the step containing the � operator.

The theorems above imply the following corollaries in the same way as in Chapter 4:

Corollary 5.2.6. Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world

w ∈W, two terms t,s and a formula ϕ ∈WF which does not contain the modal operator

� and with bv(ϕ)∩ f v(t) = /0 and bv(ϕ)∩ f v(s) = /0 then

M ,w |=2
g t = s ⊃ (ϕ ↔ ϕt�→s).

In particular: Given two terms t,s and a formula ϕ ∈ WF which does not contain the

modal operator � and with bv(ϕ)∩ f v(t) = /0 and bv(ϕ)∩ f v(s) = /0 then

|=2 t = s ⊃ (ϕ ↔ ϕt�→s).

Corollary 5.2.7. Given a model M = ⟨W,⪰,D, I⟩, a variable assignment g, a world

w ∈W, a variable x ∈V , a term t, a formula ϕ ∈WF which does not contain the modal

operator � and with bv(ϕ)∩ f v(t) = /0 then

M ,w |=2
g E(t)⊃ (∀xϕ ⊃ ϕx⇒t).

In particular: Given a variable x ∈ V , a term t and a formula ϕ ∈ WF which does not

contain the modal operator � and with bv(ϕ)∩ f v(t) = /0 then

|=2 E(t)⊃ (∀xϕ ⊃ ϕx⇒t).

We are again using two lemmas to prove that the rule N* is sound, but now in F∀
2 .

Lemma 5.2.8. Given a well-formed formula ϕ ∈WF and a model M then

M |=2 ϕ∗ ⇒ M |=2 �ϕ∗.

Proof. Let ϕ be any fixed, well-formed formula and M = ⟨W,⪰,D, I⟩ a model. If for
every world w ∈ W and every variable assignment g of M it holds that M ,w |=2

g ϕ∗, it
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follows that w ∈ [ϕ∗]Mg,w for every world w ∈ W and every variable assignment g of M .
Now let us take two arbitrary but fixed worlds v,w ∈W and an arbitrary but fixed variable
assignment g and define a new variable assignment h : V ×W → D+ of M as:

h(x,v′) :=


g(x,w) if v′ = v

g(x,v) if v′ = w

g(x,v′) otherwise

Since h and g only swap how they see the variables at w and v we get the equality [ϕ∗]Mh,v =
[ϕ∗]Mg,w. It follows that v ∈ [ϕ∗]Mh,v = [ϕ∗]Mg,w. Since v was arbitrary we can conclude
[ϕ∗]Mg,w =W . Since w was an arbitrary world and g was an arbitrary variable assignment
of M , we can further conclude ∀w ∈ W : [ϕ∗]Mg,w = W for all variable assignments g of
M which means M |=2 �ϕ∗.

Lemma 5.2.9. Given a well-formed formula ϕ ∈WF and a model M then

M |=2 ϕ∗ ⇒ M |=2 ϕ.

Proof. The following proof is done by contraposition. Let us assume that there ex-
ists a model M = ⟨W,⪰,D, I⟩, a world w ∈ W and a variable assignment g such that
M ,w ̸|=2

g ϕ . Let t1, ..., tn be all terms in ϕ which are replaced by the corresponding vari-
ables x1, ...,xn in ϕ∗ then for the variable assignment

h(x,v) :=

Ig
v (ti) if (x,v) ∈ {xi}×W where i ∈ {1, ...,n}

g(x,v) otherwise

we have M ,w ̸|=2
h ϕ∗.

Putting those two lemmas together, we can prove the soundness of rule N*:

Theorem 5.2.10. Given a well-formed formula ϕ ∈WF and a model M then

M |=2 ϕ∗ implies M |=2 �ϕ.

Proof. M |=2 ϕ∗ ⇒ M |=2 �ϕ∗ ⇔ M |=2 (�ϕ)∗ ⇒ M |=2 �ϕ .

In F∀
2 the soundness proofs for the axioms Ex, E1, D1, D2, UQ and QD and the rules

R1 and IU are the same as for F∀
1 , by just replacing sets of the form ||ϕ||Mg,w with [ϕ]Mg,w.

Therefore, for this final proof, the only part left to prove is the soundness of the axiom D
and of the rules Abs E and IUB:
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Proof of Theorem 5.2.1.

• ⃝ϕ ⊃ Pϕ

M ,w |=2
g ⃝ϕ is equivalent to best([⊤]Mg,w) ⊆ [ϕ]Mg,w. Furthermore using the lim-

itedness property of our betterness relation ⪰ we get best([⊤]Mg,w) ̸= /0. This means
we can find a world v′ ∈ W with v′ ∈ best([⊤]Mg,w) ⊆ [ϕ]Mg,w. This lets us conclude
best([⊤]Mg,w)∩ [ϕ]Mg,w ̸= /0, which is equivalent to M ,w |=2

g Pϕ .

• The rule Abs E

M |=2 ⃝(ϕ/ψ) is equivalent to {v ∈W : best([ψ]Mg,w)⊆ [ϕ]Mg,w}=W for all worlds
w and all variable assignments g. This is the same as {v∈W : ∀w∈W best([ψ]Mg,w)⊆
[ϕ]Mg,w} = W for all variable assignments g which is equivalent to
M |=2 �⃝ (ϕ/ψ).

• The rule IUB

By contraposition: Suppose there exists a model M , a world w, two well-formed
formulas ϕ and ψ and a variable assignment g such that M ,w ̸|=2

g ϕ ⊃�∀xψ . Then
w ̸∈ [ϕ ⊃ �∀xψ]Mg,w which is equivalent to w ∈ [ϕ]Mg,w and w ̸∈ [�∀xψ]Mg,w. Hence
we can find two worlds v and v′ and an x-variant of g at v such that v ̸∈ [ψ]Mh,v′

which implies w ̸∈ [�ψ]Mh,v′ = [�ψ]Mh,w.2 If x ̸∈ f ree(ϕ) it holds that [ϕ]Mg,w = [ϕ]Mh,w.
We have therefore found a world w and a variable assignment h of M such that
w ̸∈ [ϕ ⊃�ψ]Mh,w which means M ̸|= ϕ ⊃�ψ .

Remark 5.2.11. Strong soundness of HF∀
2 follows directly from weak soundness of HF∀

2

and by the respective definition of derivability, similar to HF∀
1 .

2A set of the form [�ψ]Mh,v′ does not depend on v′.
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The main goal of this thesis was to create a first-order dyadic deontic logic system ex-
tending the propositional system F, that includes equality, definite description and an
extensional conditional obligation operator.
We discussed which axioms such a dyadic deontic logic has to fulfil and based on the
work done in [8], we have shown that adding those axioms to a first-order extension of F
results in the collapse of the modal and deontic operators if no restrictions are placed on
the rules of F. In particular a restriction on the rule N was needed to avoid the collapse of
the operators.
We have established the semantics for a first-order dyadic deontic logic system called F∀

1 .
In this system, the interpretation of every term gets bound to the world at which the for-
mula is evaluated, even if the term is contained inside a modal or deontic operator.
The Hilbert axiomatisation HF∀

1 includes every axiom of the propositional system F, a
restricted version of the rule N and the axioms concerning extensional operators and def-
inite descriptions. Finally, by showing that this Hilbert system is sound in the semantics
of the previous chapter, we can answer the main research question of this thesis:

Is it possible to create a first-order dyadic deontic logic system extending the pro-
positional system F, with an extensional deontic operator ⃝, while avoiding its
collapse?

Answer: Yes, it is possible, with the minor exception of putting a restriction on the rule N.

By defining and discussing the "Switching seats" paradox, we have seen that considering
an operator to be extensional and global simultaneously results in contradictory state-
ments. Hence, in this thesis, we only considered our dyadic deontic operator to have a
local interpretation. In F∀

2 we made the � operator into a global operator by strengthening
its interpretation. This made it a non-extensional operator while keeping the Extensional-
ity of ⃝ unchanged. We defined a Hilbert axiomatisation HF∀

2 for F∀
2 and by showing that

this Hilbert system is sound in F∀
2 , we have seen that it is possible to create a first-order

dyadic deontic logic system with an extensional deontic operator ⃝ and a non-extensional
modal operator �.
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Unsurprisingly, we did not create a first-order system with an extensional deontic oper-
ator ⃝ and a non-extensional modal operator � without losing at least one axiom of the
propositional system F. HF∀

2 does not contain the axioms Abs and D*. However, those
two axioms are replaced by a weaker rule and axiom, respectively. The reason is that
for all axioms of F to be sound, the operators � and ⃝ have to share a similar connec-
tion as they do in the propositional system F. Since in the system F the formula schema
�ϕ ↔⃝(⊥/¬ϕ) is provable for every formula ϕ we cannot expect for all axioms of F to
be sound when the properties of � and ⃝ differ too much. Nevertheless, we have shown
that it is possible to create a first-order dyadic deontic logic system with an extensional
deontic operator ⃝ and a non-extensional modal operator � with most of the axioms of
F being sound. Therefore we can answer the second research question:

Is it possible to create a first-order dyadic deontic logic system extending the pro-
positional system F, with an extensional deontic operator ⃝ and a non-extensional
modal operator �?

Answer: Yes, it is possible, with the exception of putting a restriction on the rule N and
weakening the axioms Abs and D*.

6.1 Further research

The biggest unanswered questions of this thesis are: "Is every valid formula of F∀
1 prov-

able in HF∀
1?" and "Is every valid formula of F∀

2 provable in HF∀
2?". In other words,

"Are F∀
1 and F∀

2 complete with regards to the introduced axiomatisations?". To achieve
completeness it may be the case that missing axioms and rules have to be added to the
proposed Hilbert systems in Chapters 4 and 5.
Another suggestion for future research is to check which properties in Definition 3.2.1
and Definition 3.2.3 can be changed without changing the axioms or rules of the HF∀

1 or
HF∀

2 too much or at all. Examples of questions regarding such property changes are: "Is
it possible for the betterness relation ⪰ to have different properties than reflexivity and
limitedness?", "Which effect would it have if the best worlds are defined as the maximal
worlds of a set instead of the optimal worlds of a set?" and "What happens if the domains
of a model are increasing or decreasing regarding the betterness relation?"
Lastly, it would be interesting to check if combining F∀

1 and F∀
2 into one system is pos-

sible. "Is it possible to define a system with two different necessitation operators, one
being an extensional and local operator like in F∀

1 and the other being a non-extensional
global operator, like in F∀

2?" This new system would cover the expressiveness of both sys-
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tems established in this thesis and could be used to express even more detailed statements
than F∀

1 or F∀
2 alone.
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