
Trajectory (re)planning of a quadcopter in indoor environments
with unknown obstacles

DIPLOMA THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Univ.-Prof. Dr. techn. A. Kugi
M. N. Vu, M.Eng.

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Martin Zimmermann

Matriculation number 01604997

Vienna, October 2022

Complex Dynamical Systems Group
A-1040 Wien, Gußhausstr. 27–29, Internet: https://www.acin.tuwien.ac.at

Preamble
At this point, I would like to thank all those who have contributed to the success of this
master thesis through their professional and personal support.

My special thanks go to my supervisor Minh, for offering this exciting topic and his
exceptional support, be it in the form of setting up software, mathematical issues or
guidance to practical solutions. I will always be grateful for his flexibility, motivation in
desperate times and advices for the future.

I would also like to thank Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Kugi for the
mediation of this work, for his commitment as a lecturer in the introductory and in-depth
courses of automation and control engineering, in order to give each student a profound
understanding of this subject.

Furthermore, I cannot thank Dr. Dr. Werner Mach enough for always supporting this
work with patience and dedication as part of my student work placement at Siemens AG.

A special thanks goes to my family, first and foremost my parents, who supported me
in every possible way throughout my studies. Also, a heartfelt thanks to my girlfriend
Melanie for her continued personal support during my studies and for proofreading this
thesis. In this context I would also like to thank my siblings Doris, Carola and Gerhard,
who also agreed to proofread this work.

Vienna, October 2022

I

Abstract
In recent decades, the development of unmanned aerial vehicles (UAVs), driven by
research and industry, has been playing an important role in various fields. In this thesis,
the trajectory planning and obstacle avoidance of a quadcopter in indoor environments
with unknown obstacles is presented.

The quadcopter is equipped with a single-board computer and an autopilot program.
The single-board computer executes the Robot Operating System (ROS), which is used
to specify the trajectory as well as to process data from sensors of the quadcopter. The
autopilot program takes over the hardware-related commands and calculates the motor
control outputs based on the computed trajectory and data from sensors.

The proposed trajectory planning consists of two following steps. First, a collision-free
path consisting of several waypoints is computed by using the optimal rapidly exploring
random tree (RRT*) algorithm. Note that the line-of-sight (LOS) algorithm is employed
to smooth and reduce as much as possible the number of waypoints of the computed
path. Second, a constrained quadratic program is utilized to calculate the control inputs
by exploiting the differential flatness property of the quadcopter.

In addition, a depth camera is used to detect unknown obstacles in the environment.
Thereby, the quadcopter can decide whether to activate the replanning algorithm or to
follow a computed one.

Finally, the proposed methods are validated in simulations and experiments with the
real quadcopter.

II

Kurzzusammenfassung
In den letzten Jahrzehnten spielen unbemannte Luftfahrzeuge in Forschung und Indus-
trie in verschiedenen Bereichen eine immer wichtigere Rolle. Die vorliegende Arbeit
befasst sich mit der Trajektorienplanung und Hindernisvermeidung eines Quadcopters in
Innenumgebungen mit unbekannten Hindernissen.

Der verwendete Quadcopter stellt einen Einplatinencomputer und einen Autopiloten
bereit. Der Einplatinencomputer betreibt das Robot Operating System (ROS), welches
die Vorgabe der Trajektorie des Quadcopters erlaubt und des Weiteren Messdaten
des Quadcopters zur Verfügung stellt. Der Autopilot übernimmt die hardwarenahen
Befehle und berechnet basierend auf der gegebenen Trajektorie und den Sensordaten die
Ausgangsgrößen für die Motoransteuerung.

Die Trajektorienplanung erfolgt auf Basis der differentiellen Flachheit der Dynamik
des Quadcopters. Mit Hilfe des RRT* Algorithmus wird ein kollisionsfreier Pfad vom
vorgegebenen Start- zum Zielpunkt im dreidimensionalen Raum ermittelt. Anschließend
wird dieser Pfad geglättet und die Stellgrößen über ein quadratisches Programm ermittelt.

Die Tiefenkamera wird verwendet, um neue unbekannte Objekte in der Umgebung zu
erfassen. Dadurch wird entschieden, ob der Algorithmus zur Neuplanung aktiviert oder
der berechneten Trajektorie weiterhin gefolgt wird.

Abschließend wird eine Validierung der vorliegenden Methoden sowohl in Simulationen
als auch in Experimenten mit dem realen Quadcopter durchgeführt.

III

Contents
1 Introduction 1

2 Literature Review 3
2.1 Modeling . 3
2.2 Autonomous Navigation . 3

2.2.1 Path and Trajectory Planning . 4
2.2.2 Obstacle Detection . 5

3 Setup and Equipment 6
3.1 Intel Aero RTF drone . 6

3.1.1 Intel Aero compute board . 7
3.1.2 Intel Aero flight controller board 7
3.1.3 Sensors . 8

3.2 Simulation environment . 9
3.3 Overview of the simulation and experiment setup 10

4 Mathematical Modeling 12
4.1 Coordinate Frames . 12
4.2 System Dynamics . 14
4.3 Differential Flatness . 16

5 Trajectory (re)planning 19
5.1 Overview of simulation and experimental setup 19
5.2 RRT/RRT* - Rapidly Exploring Random Tree 20
5.3 Line of Sight Optimization . 25

5.3.1 Yaw angle planning . 26
5.3.2 Gilbert-Johnson-Keerthi Distance Algorithm 27

5.4 Trajectory Generation . 30
5.5 Obstacle Avoidance and Replanning . 35

5.5.1 Sense and Process . 35
5.5.2 Obstacle Detection . 36

Point Cloud Approach . 36
Eight-Corner Approach . 37

5.5.3 Trajectory Validation . 38
5.5.4 Replanning . 40

IV

Contents V

6 Experimental Validation 43
6.1 Influence of Parameters on Trajectory Planning 43

6.1.1 Variation of RRT* Parameters . 44
6.1.2 RRT* Rerouting . 46
6.1.3 Variation of Trajectory Generation Weights 48

6.2 Simulation - Comparison Obstacle Detection Approaches 51
6.3 Simulation - Replanning . 56

6.3.1 Environment and Parameters . 56
6.3.2 Results . 56

6.4 Experiment - Replanning . 62
6.4.1 Environment and Parameters . 62
6.4.2 Results . 64

7 Conclusions 69

A Minimum Snap Trajectory - Minimum Principle of Pontryagin 71

List of Figures
3.1 Intel Aero ready-to-fly (RTF) used in the thesis [35]. 6
3.2 Cascaded Multicopter Control Architecture of the PX4 Autopilot [40]. . . 8
3.3 Overview of the simulation and experiment setup. 11

4.1 The quadrotor with the three coordinate frames. 12
4.2 Forces and moments acting on quadcopter frame. 14

5.1 The visualization of the flight environment. 20
5.2 Flow chart of the overall trajectory planning process 21
5.3 Simple scenario of the LOS optimization. 26
5.4 Example of the yaw trajectory waypoint creation. 26
5.5 Example for the working principle of the GJK algorithm in 2D. 29
5.6 Example for a time-optimal 15-step trajectory. 32
5.7 Detailed workflow of the Sense and Process block. 35
5.8 Detailed workflow of the Replanning block. 40

6.1 Evolutions of RRT* algorithm with different sets of parameters. 45
6.2 Example for the RRT* rerouting. 47
6.3 Different penalizing weights for the position and yaw trajectory 49
6.4 Position trajectory for different sets of weights from Table 6.7. 50
6.5 Environment of the simulation flight. 52
6.6 Evolution of the environment with two different obstacle detection ap-

proaches. 54
6.7 Final environments of the point cloud and eight-corner approach. 55
6.8 Box plot of run times of obstacle detection approaches. 55
6.9 Trajectory planning process of the simulation experiment 58
6.10 Resulting trajectory of the simulated flight 59
6.11 Trajectory tracking error of the simulated flight. 60
6.12 Real-life experiment environment. 63
6.13 Trajectory planning process of the real-life experiment. 65
6.14 Resulting trajectory of the real-life experiment. 66
6.15 Trajectory tracking error of the real-life experiment. 67

VI

List of Tables
6.1 Environment parameters. 44
6.2 Parameter sets of the RRT* algorithm. 44
6.3 Runtimes of parameter variation of the RRT* algorithm. 44
6.4 Parameters of the RRT* Rerouting example. 46
6.5 Result of the RRT* Rerouting example. 46
6.6 Run times of RRT* rerouting for different number of nodes in the tree. . . 47
6.7 Two sets of penalizing weights for the position and yaw trajectory. 50
6.8 Parameters for the obstacle detection approaches for comparison. 52
6.9 Run times statistics of the obstacle detection approaches. 53
6.10 Flight environment parameters of the simulation experiment. 57
6.11 Dynamic constraints for the trajectory planning of the simulation experiment. 57
6.12 Parameters of the RRT* algorithm of the simulation experiment. 57
6.13 Penalizing weights for the trajectory generation of the simulation experiment. 57
6.14 Parameters for the eight-corner approach of the simulation experiment. . 57
6.15 Flight environment parameters for the real-life experiment. 62
6.16 Parameters of the RRT* algorithm for the real-life experiment. 63
6.17 Dynamic constraints for trajectory planning for the real-life experiment. . 63
6.18 Penalizing weights of trajectory generation of the real-life experiment. . . 63
6.19 Parameters of the eight-corner approach for the real-life experiment. . . . 64

VII

1 Introduction
In recent decades, unmanned aerial vehicles (UAVs) have attracted great interest and
have undergone extensive development in industry and academia. There are numerous
applications for UAVs, ranging from aerial photography [1], aerial manipulation [2], search
and rescue observation [3], to structural inspection and in agriculture as well as geography,
e.g. [4],[5]. In general, UAVs can operate in high-risk areas that are inaccessible to
humans, such as contaminated or flammable environments, without endangering human
lives or requiring expensive tools for exploration. In addition, compared to traditional
ground-based robots, UAVs are versatile and agile as well as capable of flying at various
altitudes. This allows them to navigate inaccessible environments.

There are various configurations of UAVs that have been developed in recent years, see,
e.g., [6]. These UAV configurations, which diversify in weight, flexibility, speed, size, and
cost, are designed for low-budget systems for the regular consumer to high-end systems
for military customers. A detailed classification of UAV configurations can be found in
[7]. This work focuses on quadcopters, which belong to the group of vertical takeoff and
landing (VTOL) aircrafts. The quadcopter has four motors whose axe of rotation are
aligned with the vertical axis of the main frame. Unlike other VTOL vehicles, such as
helicopters, quadcopters can hover in one place because two motors rotate clockwise and
two rotate counterclockwise to cancel each others momentum out, without additional
measures such as a tail-rotor. This results in a more simplified mechanical design and
high maneuverability. In indoor environments with several obstacles, a quadcopter is
often equipped with four rotor guards to avoid possible collisions with the environment.

UAVs are directly controlled by a human, called UAV’s pilot. However, manual
control requires a highly skilled pilot and limits the range of operations. Furthermore,
the pilot’s position must be actively changed if the drone is flown behind obstacles in
cluttered environments. Many systems allow flying in first-person perspective (FPV),
which requires a stable wireless video connection that can be problematic in certain
environments, especially for indoor flights. These constraints are pushing forward the
development of autonomous aircraft. Most applications require UAVs to navigate safely
and quickly in various unknown environments, detecting and avoiding obstacles as they
traverse these areas. This work focuses on the development of a trajectory (re)planning
algorithm that helps to navigate the quadcopter autonomously from a takeoff position to
a target in an indoor environment with unknown obstacles.

The presented thesis is structured as follows. In Chapter 2, approaches for modeling,
path planning, and obstacle detection are briefly reviewed. Chapter 3 provides insight into

1

1 Introduction 2

the hardware and software used in this thesis. The chosen setup allows the quadcopter
to be controlled from a ground control station (GCS) and to detect unknown obstacles
during the flight. In Chapter 4, the mathematical model is derived. This serves as the
basis for trajectory planning in Chapter 5. Thereby, a path from the start position to
the target position is computed by the optimal raplidly exploring random tree (RRT*).
Then, an optimized smooth trajectory through all the path segments are computed by
using quadratic programming (QP). To this end, the proposed replanning algorithm
automatically recomputes the trajectory when unknown obstacles are detected that
could potentially collide with the drone. Simulation and experiment results in different
scenarios are demonstrated in Chapter 6. Finally, Chapter 7 summarizes this work and
provides an outlook on further improvements.

2 Literature Review
There has been exciting progress in UAV research in recent times. The large number of
applications in research and industry brought a multitude of different solutions, some of
which are listed in this chapter that are relevant to this work. First, some contributions
to the mathematical modeling of quadrotors are listed in Section 2.1, followed by an
overview of different solutions concerning autonomous navigation in Section 2.2, with the
core modules “Path and Trajectory Planning” in Section 2.2.1 and “Obstacle Detection”
in Section 2.2.2.

2.1 Modeling
In order to realize autonomous robots, complex algorithms are necessary, which usually
require knowledge of the mathematical model of the system. There are several models
for quadrotors varying in complexity. A common model neglecting friction forces and
aerodynamic effects is presented in [8] which is proven to be a differentially flat system.
In [9], the model is extended with first order drag effects, which leads to reduced tracking
errors for higher speeds or in case of wind disturbances. The work presented in [10] shows
that the extended dynamical model of a quadrotor, which considers rotor drag, is also a
differentially flat system.

2.2 Autonomous Navigation
Autonomous navigation of a quadcopter in a known or unknown environment requires
two main capabilities: First, the quadcopter must be able to plan its movement towards
targets. Second, the quadcopter has to locate its position and efficiently avoid possible
obstacles during the motion.

For autonomous navigation of quadcopters, there are various methods that can be
applied. In [11], the authors utilized a laser range finder for mapping the environment,
serving as a basis for a frontier-based waypoint planner in 2D to explore its environment.
In [12], a two-step approach for motion planning is proposed, consisting of a path
planning utilizing the Dijkstra search algorithm. The path computed in [12] is further
processed into a B-spline trajectory, in combination with a stereo camera setup. In [13],
an initial path is obtained via RRT*, followed by a minimal jerk trajectory optimization

3

2 Literature Review 4

to guarantee a smooth motion of the quadcopter, whereas a laser range finder was used
to scan the environment.

2.2.1 Path and Trajectory Planning
In path and trajectory planning, a classical two-step approach, see, e.g., [12–14], is
commonly employed. In the first step, a quick planning to the desired target position is
performed with different path planning methods without considering the system dynamics,
yielding a piecewise linear path, see, e.g., [12], [13]. Secondly, a dynamically feasible
trajectory is computed by considering this piecewise linear path using various methods,
see, e.g., [15], [14].

In the first step of the two-step approach, various graph search algorithms such as
Dijkstra [16] and A* [17] are used to find a feasible path in a discretized occupancy map.
On the other hand, sampling-based algorithms such as the probabilistic roadmap (PRM)
[18] and the rapidly exploring random tree (RRT) [19] are used to compute a path in 3D
or in the state space of the system.

The RRT* algorithm [20], also called optimal RRT algorithm, finds the path from an
initial state towards a final state by randomly sampling states and building a planning
tree. In this approach, rewiring steps are considered to reconstruct a tree, not only when
adding new states, but also considering them as surrogate nodes for existing states in the
tree. This helps the RRT* algorithm to provably converge to the optimal solution when
the planning time is infinite, see [20]. There are several improvements of RRT* in the
literature, such as, e.g., RRT*-SMART [21], which adds heuristics in the sampling process
to speed up the convergence rate. In [22], the authors introduced the Informed-RRT*
algorithm. Therein, after finding a first solution using the standard RRT* [20], samples
of the system state are only allowed in the subspace created by the first solution. This
reduction of the search space increases the probability to quickly find a better solution.
Nonetheless, sampling-based motion planning is outperformed by a search-and-optimize
approach in lower dimensions, since it is impractical to perform optimization for vehicles
with nonlinear 12-DOF dynamics in the state space [14].

Once the initial path is obtained, it proved to be practical to assign a polynomial to
each segment of the path, due to the differential flatness property of the dynamics of the
quadrotor. These polynomials are optimized to yield a smooth trajectory via a quadratic
program (QP) or gradient descent method, considering constraints on the endpoints of
each segment, see, e.g., [8], [13], [14], [23].

Another class of methods used in motion planning are based on motion primitives [24].
Discrete short-duration inputs are used to discretize the state space of the system into
a state lattice with motion primitives forming edges in the graph. Then graph search
algorithms, e.g., A*, are used to find a feasible solution trough this graph [25], [24]. A
drawback of this approach is the need to discretize both of the workspace and the state
space. For example, motion primitives can only be generated for a finite number of start

2 Literature Review 5

and end velocities. Therefore, the performance of the algorithm is tightly linked to the
number of generated motion primitives [25]. Additionally, each motion primitive requires
the integration of the system equations, which is unfavorable for vehicles with non linear
dynamics.

Recently, Vu et al. [26, 27] introduced a two-stage approach in which an offline trajectory
database is created in the first stage and linear constrained quadratic programming
(LCQP) is applied in the second (online) stage. In this method, the offline trajectory
database plays an important role as it provides reference trajectories for an LCQP and
helps to speed up the computing time of this LCQP. Although this two-stage approach
can be applied to other applications, see, e.g., [28] and [29], the ability to deal with
dynamic obstacles is still a challenge.

2.2.2 Obstacle Detection
Obstacle detection and avoidance has been implemented on various robot platforms
with several sensors, such as 2D-Lidar sensors [30], ultrasonic sensors [31], laser range
finder [11], [13], stereo cameras [12], and RGB-D cameras [32]. Most of these sensors
have in common that they deliver a depth image in form of point clouds. A general
survey on point cloud segmentation is given in [33], which is the basis to recognize
separate objects. An excellent contribution is described in [34], where a technique for
distinguishing dynamic and static obstacles based on the input of one RGB-D camera is
described.

3 Setup and Equipment
This chapter gives an overview of the used drone and the firmware architecture. Section 3.1
contains the essential information of the hardware and software of the quadcopter. Then,
insights into the software architecture, which allows to control the drone from another
PC, are presented. Section 3.2 briefly introduces the simulation environment. Finally, an
overview of the simulation and experimental setup is presented in Section 3.3.

Figure 3.1: Intel Aero ready-to-fly (RTF) used in the thesis [35].

3.1 Intel Aero RTF drone
The Intel Aero ready-to-fly (RTF) drone is used in this thesis, as shown in Figure 3.1.
Since indoor space is limited and there are various obstacles of different sizes and shapes,
small and agile systems are better suited for maneuvering. On the other hand, sensors,
for perception of the environment and the required computations of complex algorithms,
e.g., computer vision task, trajectory planning task, require powerful hardware, which is
costly. The development platform in this thesis offers a good trade-off between agility
and the cost of the hardware.

6

3 Setup and Equipment 7

The Intel Aero RTF consists of two main components, i.e. the Intel Aero compute
board and the Intel Aero flight controller board. The communication protocol is processed
via a high-speed FPGA interface. Additionally, middleware, i.e. Robot Operating System
(ROS), is installed on the compute board and takes care of the high-level tasks, e.g.
computer vision task, communications from/to a ground control station. On the other
hand, a firmware, i.e. PX4 Autopilot, is installed on the Intel flight controller to handle
the low-level tasks, e.g. reading IMU, gyroscopes, barometers, GPS and controlling
brushless motors. More details on the components of the Intel Aero RTF drone are
presented in the following.

3.1.1 Intel Aero compute board
The Intel Aero compute board contains the Intel Atom x7-Z8750 1.60 GHz processor with
integrated graphics processing unit and 4 GB of RAM. An Ubuntu distribution and the
open-source Robot Operating System (ROS) 18.04 Melodic are installed in the compute
board. In addition, a wifi module, allowing connection to external devices, is integrated
in the compute board. This offers the possibility to configure and control the drone via
a remote PC, known as ground control station (GCS). Ideally, the obstacle avoidance
module and the trajectory optimization can be processed onboard if the computing
power of the compute board is sufficient. However, since the Intel Atom X7-Z8750 has
limited computing power, only the data fusion of the extended Kalman filter (EKF)
[36] is processed onboard. The obstacle avoidance module and the proposed trajectory
(re)planning are computed by a companion PC, which is connected to the Intel Aero
compute board via wifi.

3.1.2 Intel Aero flight controller board
The Intel Aero flight controller comprises the STM32F427VI that executes the PX4
Autopilot program [37], which is an open source flight controller for several kinds of
vehicles from drones to ground vehicles. In addition, this flight controller connects with
the compute board via the MAX 10 FPGA.

The PX4 autopilot firmware has a modular structure that consists of parts such as
internal communication, integration of sensor data, and motor control. A very relevant
part for further considerations is the controller architecture of the PX4 autopilot, which is
shown in Figure 3.2. The flight controller is a cascaded controller, consisting of P and PID
controllers for tracking the position, velocity, orientation and angular rate. This cascaded
controller takes into account desired setpoints and state estimations, which are computed
by the EKF that fuses data from sensors, e.g., IMUs, barometers, accelerometers, GPS
and RGB-D camera. The outputs of the controller are PWM signals for the motors via
electronic speed controllers (ESCs).

The Intel Aero flight controller communicates with the Intel Aero compute board via a

3 Setup and Equipment 8

fast serial link with the MAVLINK protocol [38]. This protocol is a very lightweight mes-
saging protocol for communicating with drones and between onboard drone components
[39]. Data streams are handled as topics in a publish-subscribe pattern, configuration
sub-protocols are implemented point-to-point. Although a variety of standard messages
are available, MAVLINK enables developers to add custom message types via XML files.
The open-source ROS node, named MAVROS, running on the compute board, represents
the missing connection between MAVLINK and ROS, handling all message conversion in
both directions for the operator.

The PX4 Autopilot provides different flight modes. These modes are divided into
two main categories: manual modes, i.e., the user has control of the drone via a remote
control (RC), and autonomous modes, i.e., the autopilot controls the drone without user
intervention. In this thesis, the autonomous mode, named “offboard mode”, is employed,
which allows a ground control station to control the drone. More specifically, several
ROS topics are implemented to generate the desired trajectory for position, velocity,
acceleration, attitude, and attitude rate, which are then fed into the cascaded controller
in the flight controller. In our specific application, the trajectory (re)planning for the
obstacle-free and dynamically feasibile trajectory is computed in 6 Hz from a ground
station PC. Then, this planned trajectory is sent to the compute board via wifi and is
executed by the drone flight controller.

Figure 3.2: Cascaded Multicopter Control Architecture of the PX4 Autopilot [40].

3.1.3 Sensors
The Intel Aero RTF comes with several sensors to perceive its environment, which are
directly connected to either the compute board or the flight controller. The system used
in this work has an accelerometer and gyroscope combined in an inertial measurement
unit (IMU), a magnetometer, an altitude sensor, a GPS module with a compass, a
downward-facing monochrome camera, and a forward-facing RGB-D camera.

3 Setup and Equipment 9

The latter camera is an Intel RealSense R200 camera with a full HD RGB color image
and a VGA-resolved depth image produced by a stereo array of infrared cameras. To
increase the accuracy of the depth estimation, an infrared projector is also used. This
camera is connected to the Intel Aero compute board via USB and transmits data at 30 Hz
at full resolution or at 60 Hz at reduced resolution. Note that in this work, only reduced
resolution depth image information is employed to implement the obstacle avoidance
function.

The PX4 Autopilot uses an EKF to estimate the system state from different sensors.
In a cluttered environment, some sensors, e.g., GPS and magnetometers, may be severely
disturbed or non-functional at all, which makes a solid position estimation impossible.
PX4 warns the operator in case of poorly calibrated sensors and prevents the drone from
taking off. To overcome this problem, a reliable source of the droneÂ´s position can
be obtained with the help of a motion capture system. In our setup, the OptiTrack
motion capture system is used [41]. This system emits infrared light and receives the
reflections of specific markers attached to the object to be tracked with multiple cameras.
It enables a sampling rate of up to 250 Hz with the accuracy of less than 1 mm and 1°.
The estimation of the OptiTrack system is fed into the EKF module of the PX4 autopilot
program of the drone.

3.2 Simulation environment
Simulation is very useful to test specific modules separately during the development
process. There are many reasons why simulation or digital twins become more and
more popular. First and foremost, the development and extensive tests can be carried
out without a real system, which above all drastically increases the safety for people
and machines especially in dangerous applications. The case of failure on a real system
during a test run may lead to a considerably longer development time and exploding
costs. However, in simulation only a simple restart is necessary. Furthermore, simulation
environments yield debugging information without the need of additional sensors or
hardware.

In this work, the open-source simulator Gazebo is set up on the ground control station.
This physics engine based simulator offers an excellent connection to ROS and enables
the software-in-the-loop (SITL) simulation of the PX4 flight stack, which allows the PX4
firmware used in the simulation to be transferred to the real flight controller. In addition,
a library model of the RGB-D camera, IMU, and other sensors can be simulated in the
Gazebo simulation environment. Overall, the Gazebo simulator represents an excellent
development tool for this application and enables almost direct sim-to-real transfer.

3 Setup and Equipment 10

3.3 Overview of the simulation and experiment setup
This section gives an overview of the simulation and experimental setup. The overall
system architecture is illustrated in Figure 3.3.

The compute board and the flight controller board are illustrated in the blue and grey
block, respectively. These two blocks communicate with each other using the MAVLINK
protocol. The trajectory planning and obstacle avoidance module is implemented in a
ground station PC. This module connects with the ROS node in the compute board via
WLAN.

The overall processes of simulations as well as experiments are listed in the following
paragraph. First, an obstacle-free optimal trajectory from the given starting point to a
target point is computed by the proposed trajectory planning algorithm in the ground
control station. Then, this desired trajectory is sent to the ROS node in the compute
board via wifi. The point cloud data, captured by the RGB-D camera on the compute
board, is updated to the obstacle detection block in the ground station PC. Thereby, the
proposed algorithm can detect if there is a new obstacle and proceeds with the trajectory
replanning scheme to generate a new obstacle-free trajectory.

In experiments, the OptiTrack provides highly precise pose information of the drone
that is fused with the EKF on the compute board. This yields a very robust real-time
positioning of the drone by fusing data of other sensors in the GPS-denied environment.
Finally, the cascaded controller is able to generate the desired PWM signals for the ESCs
of the motors.

3 Setup and Equipment 11

Figure 3.3: Overview of the simulation and experiment setup.

4 Mathematical Modeling
This section presents the mathematical model of the quadrotor, which serves as a basis
for the subsequent sections. First, coordinate systems, used to derive the mathematical
model of the quadrotor, are introduced. Then, the system dynamics is derived using
Euler’s equations. Finally, the differential flatness property of the quadrotor is exploited,
see, e.g., [15], where all the system states and inputs can be parameterized by flat outputs
and their time derivatives. These flat outputs are then used in the proposed trajectory
replanning algorithm.

4.1 Coordinate Frames

xW

yW

zW =

xC

yC

zC

xB

yB

zB

ψ

r

Figure 4.1: The world coordinate, intermediate coordinate, and the body coordinate
frame are denoted as IW , IC , and IB, respectively.

Three coordinate frames that are used to derive the mathematical modeling of the
drone are defined in Figure 4.1. The fixed world coordinate frame IW is defined by
three unit vectors xW , yW , and zW . To track the movement of the quadrotor, the body
coordinate frame IB of three unit vectors xB, yB, and zB, located at the center of mass

12

4 Mathematical Modeling 13

of the drone, is illustrated in Figure 4.1. Note that the unit vector xB and zB are
pointing toward the flight direction and upward. The position of the center of mass in
the world frame is given by vector r = [x, y, z]T. The intermediate coordinate frame IC

is obtained by rotating the world frame around the vector zW with the angle ψ. This
intermediate coordinate frame is used for deriving the differential flatness property of the
drone in Section 4.3. Z-X-Y Euler-angle convention is used to describe the rotation of
the quadrotor in the world coordinate system IW . Thereby, the rotation matrix from IB

to IW is given by

W RB = Rz,ψRx,φRy,θ =

cψcθ − sψsφsθ −sψcφ cψsθ + sψsφcθ
sψcθ + cψsφsθ cψcφ sψsθ − cψsφcθ

−cφsθ sφ cφcθ

, (4.1)

where Ri,α, i ∈ {x, y, z}, α ∈ {ψ, φ, θ} denotes the rotation around the axis i with the
angle α. Note that sα and cα are the compact form of sin(α) and cos(α). Using the
quadcopter center of mass position r in the world frame, a vector Bp in the body-fixed
coordinate system can be transformed to the world frame by

W p = W RB
Bp + r. (4.2)

The angular velocity of the body frame in the world frame W ωB yields

W ωB =
�

W xB
W yB

W zB

p
q
r

 (4.3)

where p, q and r in (4.3) are computed fromp
q
r

 = (Rx,φRy,θ)T

0
0
ψ̇

 + RT
y,θ

φ̇
0
0

 +

0
θ̇
0

 =

cθ 0 −cφsθ
0 1 sφ
sθ 0 cφcθ

φ̇

θ̇

ψ̇

 = BW

φ̇

θ̇

ψ̇

. (4.4)

The latter equation describes the transformation matrix BW from the angular velocities
of the Euler angles in the world frame to the angular velocity of the body frame. Since
(4.4) is expressed in the body frame and by applying the Z-X-Y Euler convention, the
transformation matrix BW can be written as

BW =

cθ 0 −cφsθ
0 1 sφ
sθ 0 cφcθ

 =
�

BxC
ByB

BzW

. (4.5)

Additionally, the transformation of BW to the world frame yields

W W = W RB
BW =

cψ −sψcφ 0
sψ cψcφ 0
0 sφ 1

 =
�

W xC
W yB

W zW

. (4.6)

4 Mathematical Modeling 14

The angular velocity of the intermediate frame IC in the world frame W ωC reads as

W ωC =
�

W xC
W yC

W zC

0
0
ψ̇

 = ψ̇zW . (4.7)

Note that zC = zW , since the intermediate frame C is created by only rotating with the
yaw angle ψ around the zW axis.

4.2 System Dynamics
In this section, the system dynamics of the quadrotor is presented in detail. In Figure 4.2,

xW

yW

zW

xB

yB
zB

F1

F2

F3

F4

M1

M2

M3

M4

L

mg
r

Figure 4.2: Forces and moments acting on quadcopter frame. The body coordinate frame
IB which is aligned with the rotor axes of the quadrotor, other than in
Figure 4.1, is only used in this section for easier derivation.

a simplified quadcopter model is illustrated. Therein, the world coordinate frame IW

and the body frame IB are aligned along the rotor axes. Fi and Mi denote the force
and moment exerted by the four rotors of the quadcopter. The position vector r denotes
the center of mass of the UAV in the world frame. Moreover, L is the distance from
the center of mass to the axis of rotation of each rotor and ωi is the angular rate of the
i-th motor, which produces a force Fi in zB direction. A moment Mi is in the opposite
direction of the rotation of its blades. Fi and Mi are computed in the form

Fi = kF ω2
i , Mi = kM ω2

i , i ∈ {1, ..., 4}, (4.8)

with the constant parameters kF , kM > 0.

4 Mathematical Modeling 15

In Figure 4.2, the rotor 1 and 3 rotate in the opposite of the zB-direction while the
motor 2 and 4 rotate in zB-direction. Thus, the moment M1 and M3 act in zB direction
whereas M2 and M4 act in the opposite direction. Note that this rotation setting is
necessary for the quadcopter to cancel out its yaw momentum while hovering. Since
the gravity is in zW -direction, by adding up all forces of the rotors in the system, the
acceleration of the center of mass is computed as

mr̈ =

 0
0

−mg

 + W RB

 0
0�
Fi

. (4.9)

With the known moment of inertia matrix I of the quadcopter with respect to the body
frame IB , the angular acceleration of the quadcopter in the body frame IB is derived by
using the Euler equations in the form

I

ṗ
q̇
ṙ

 =

 L(F2 − F4)
L(F3 − F1)

M1 − M2 + M3 − M4

 −
p

q
r

 × I

p
q
r

. (4.10)

As the motor dynamics are fast compared to the rigid-body dynamics and aerodynamics,
it is assumed that the desired rotor speeds ωi can be reached instantaneously on demand.
Therefore, the system inputs u1 and u2 are computed as

u1 =
�

Fi, u2 =

u2
u3
u4

 =

 L(F2 − F4)
L(F3 − F1)

M1 − M2 + M3 − M4

, (4.11)

where u1 and u2 = [u2, u3, u4]T are the net thrust and moment vector in the body
coordinate frame, respectively.

Combining (4.9), (4.10) and (4.11), the quadcopter system dynamics in state-space
form reads as

ṙ = v

v̇ = −gzW + u1
m

W zB

W ṘB = W RBωB

ω̇B = I−1

−ωB × IωB +

u2
u3
u4

,

(4.12)

where v is the linear velocity of the quadcopter center of mass. Note that the system
state of (4.12) can be combined in the form

x =
�
x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r

T
. (4.13)

4 Mathematical Modeling 16

Combining (4.9), (4.10), (4.12), and (4.13), the system dynamics of the quadcopter are
expressed in the form

ẋ = f(x, u) with uT =
�
u1, uT

2

. (4.14)

4.3 Differential Flatness
This section presents the differential flatness property of the quadcopter in a compact
form. For more details, the reader is referred to [8], [10]. The differential flatness property
allows that the state x and input u = [u1, uT

2]T of (4.14) can be parameterized by a flat
output and its time derivatives. This simplifies to compute the control inputs of the
quadcopter for a given trajectory of the flat outputs. For easier readability, all vectors in
this section are considered in the world frame IW without additional notation. The flat
output is chosen to be the quadcopter center of mass position r = [x, y, z]T and the yaw
angle ψ (heading), combined in the vector

σ =
�
x, y, z, ψ

T
. (4.15)

In the following, the smooth map

(x, u) = Φ(σ, σ̇, σ̈,
...
σ ,

....
σ) (4.16)

is introduced. The position, velocity, and acceleration of the system are simply defined
by the first three terms of σ, σ̇ and σ̈. Considering (4.9) and the desired accelerations of
the flat output in the form

m

 σ̈1
σ̈2

σ̈3 + g

 = mt = u1zB, t =
�
σ̈1, σ̈2, σ̈3 + g

T
. (4.17)

The z-axis of the body frame zB and the net body force u1 are defined as

zB = t
�t� u1 = m�t�. (4.18)

Note that the input u1 is defined by the second derivatives of the position of the
quadcopter. Since the yaw angle σ4 = ψ, the x-axis of the intermediate frame xC in
Figure 4.1 can be written as

xC =
�
cos σ4 sin σ4 0

T
. (4.19)

Then, xB and yB can be derived by utilizing the local Z-X-Y Euler angle parameteri-
zation

yB = zB × xC

�zB × xC� , xB = yB × zB. (4.20)

4 Mathematical Modeling 17

This equation holds true, as long as the singularity where xC and zB are parallel is not
encountered. The rotation matrix from body frame to world frame is defined as

W RB =
�
xB yB zB

. (4.21)

Therefore, with (4.21) and the flat output σ and its derivatives, the Euler angles φ, θ
and ψ can be determined. By taking the first derivative of (4.9) in the form

mȧ = u̇1zB + ωB × u1zB, ȧ = v̈ = ...r (4.22)

and projecting it along zB, the derivative of the input u1 yields

u̇1 = zB · mȧ (4.23)

Substituting (4.23) in (4.22), the vector hω, which is the projection of m
a ȧ onto the

xB − yB plane, reads as

hω = ωB × zB = m

u1
(ȧ − (zB · ȧ)zB). (4.24)

Considering (4.3) and (4.24), the body frame components p and q of the angular
velocity are computed in the form

p = −hω · yB, q = hω · xB. (4.25)

To find the component r of the angular velocity, the mapping between the derivatives of
the Euler angles and the angular velocity in the body frame, see (4.4), (4.5) and (4.6),

ωB = pxB + qyB + rzB =
�
xB yB zB

p
q
r

 =
�
xC yB zW

φ̇

θ̇

ψ̇

, (4.26)

is taken into account. Using (4.25) and the given ψ̇, the zB component r of the angular
velocity ωB can be computed from (4.26). Therefore, the full state x of the system can
be determined by the flat outputs and their derivatives.

Taking the second derivative of (4.9), we have

m
dȧ
dt

= dωB

dt
× u1zB + ωB × d(zBu1)

dt
+ dzB

dt
u̇1 + ü1zB

mä = αB × u1zB + ωB ×
�

u1
dzB

dt
+ u̇1zB

�
+ ωB × u̇1zB + ü1zB (4.27)

mä = αB × u1zB + ωB × (ωB × u1zB) + 2ωB × u̇1zB + ü1zB,

4 Mathematical Modeling 18

with αB denoting the derivative of the angular velocity ωB of the body frame. Note that
the time derivative u1

dzB
dt = ωB × u1zB in the second line of (4.27) is orthogonal to ωB

and zB. Thereby, projection of (4.27) along the vector zB results in

ü1 = zB · mä − zB · (ωB × (ωB × u1zB)). (4.28)

The components of the angular acceleration along xB and yB are derived by computing

hα = αB × zB, (4.29)

leading to
ṗ = −hα · yB, q̇ = hα · xB. (4.30)

Calculating the first derivative of (4.26) considering the angular velocities of the interme-
diate frame and the body frame results in

ṗxB + p
dxB

dt
+ q̇yB + q

dyB

dt
+ ṙzB + r

dzB

dt
= φ̈xC + φ̇

dxC

dt
+ θ̈yB + θ̇

dyB

dt
+ ψ̈zWxB

yB

zB

Tṗ

q̇
ṙ

 + ωB × ωB = ωC × φ̇xC + ωB × θ̇yB +

xC

yB

zW

Tφ̈

θ̈

ψ̈

 (4.31)

xB

yB

zB

Tṗ

q̇
ṙ

 = ωC × φ̇xC + ωB × θ̇yB +

xC

yB

zW

Tφ̈

θ̈

ψ̈

.

The zB component of the angular acceleration is obtained from the third scalar equation
of (4.31) with a given value of ψ̈.

Considering (4.17) - (4.31), it is obvious that the angular velocity [p, q, r]T and angular
acceleration [ṗ, q̇, ṙ]T are functions of the flat outputs and their derivatives. Since (4.10)
can be utilized to compute the net body moments

u2 =

u2
u3
u4

 = I

ṗ
q̇
ṙ

 +

p
q
r

 × I

p
q
r

, (4.32)

u2 is a function of the flat outputs σ and their derivatives.

5 Trajectory (re)planning
In this chapter, a trajectory planning framework is proposed for the quadcopter in
environments with unknown obstacles. Furthermore, this proposed framework is capable
of replanning in case the environment has changed, e.g., new obstacles appear. This is
also the main focus of this work. Various scenarios with different settings are investigated
to verify the effectiveness of the proposed algorithm.

The remainder of this chapter is structured as follows. In Section 5.1, an overview of
the simulation and experimental setup is briefly introduced. Then, the optimal Rapidly
Exploring Random Tree algorithm (RRT*) and the Line of Sight (LOS) algorithm are
presented in Section 5.2 and 5.3, respectively. Using the obstacle-free path from RRT*
and LOS, the trajectory generation for the quadcopter is introduced in Section 5.4.
Finally, the (re)planning capabality of the proposed algorithm is presented in Section 5.5.

5.1 Overview of simulation and experimental setup
Without loss of generality, the UAV can be treated as a point located at the quadcopter’s
center of mass. In this work, obstacles, modeled as cuboids, are inflated in each dimension
for safety purposes. An example of the flight environment is illustrated in Figure 5.1,
including two inflated obstacles. The admissible flight range is defined as the set X .
For the sake of simplicity and safety, all obstacles in the set O are considered as convex
obstacles, i.e., cuboids. By excluding obstacles, the obstacle-free space is denoted as
Xfree = X \ O.

The overview of the proposed trajectory (re)planning framework consisting of the
offline and the online trajectory planning block is depicted in Fig. 5.2. The offline
block on the left-hand side of Fig. 5.2 is explained in the following. First, the RRT∗

algorithm [42] is utilized to compute a piecewise linear collision free path from an initial
location to a target location. Since only the path of the quadcopter is computed by the
RRT*, constraints on the system dynamics (4.14) are neglected in this path planning
step. Second, to reduce the complexity of the path computed by RRT∗, the Line of Sight
(LOS) algorithm is implemented to prune the trajectory tree. This helps to reduce the
number of optimization variables and computation time. The Gilbert-Johnson-Keerthi
(GJK) algorithm [43] is applied to compute Euclidean distances between trajectory points
and the obstacles. Thereby, the proposed algorithm can check whether the points on the
current path are collision free or not. Then, further actions such as sampling a new 3D
point in the RRT* algorithm and activating the (re)planning can be taken into account.

19

5 Trajectory (re)planning 20

Figure 5.1: The visualization of the environment with the admissible flight space X in
gray area and examples of possible obstacles O. The obstacles (in red color)
are inflated (in green color) due to safety reasons.

After computing the collision free path consisting set of path points, also called waypoints,
this path is divided into a sequence of polynomial segments between waypoints which
will be optimized into smooth trajectories by utilizing the differential flatness property of
the quadrotor, see, e.g., [15] and [14].

Once having the first offline trajectory from the offline block, the online block on the
right side of Fig. 5.2 is subsequently executed. During the flight, the RGB-D camera is
employed to check for unknown obstacles in the environment. Once new obstacles are
detected, a feasibility check of the pre-computed trajectory is initiated, leading to the
rerouting of the tree structure from RRT* and regeneration of the trajectory. Note that
the Online − ROS Loop block is iteratively executed as a ROS node to detect and avoid
obstacles during flight. Matlab Timer Callback is utilized to send the actual trajectory
via ROS to the quadcopter at 6 Hz.

5.2 RRT/RRT* - Rapidly Exploring Random Tree
The Rapidly Exploring Random Tree (RRT) is the most popular path planning algorithm
which was originally introduced by Lavalle et al. [19]. Later, a variant of the RRT, i.e.,
RRT*, is developed by Karaman et al. [20]. This path planning algorithm guarantees to
compute asymptotically optimal solutions. In the followings, a brief introduction of the
RRT* is presented.

A Rapidly Exploring Random Tree G consists of a set of nodes or vertices V and a set

5 Trajectory (re)planning 21

Figure 5.2: Flow chart of the overall trajectory planning process. The offline process is
run prior to the flight. Processes in light blue background are executed online
during the flight. All tasks are executed on the GroundControl station in
Matlab and blue blocks "Send Trajectory" and "Sense and Process" indicate
a data exchange with MAVROS.

5 Trajectory (re)planning 22

of edges E . The pseudocode of the RRT* algorithm is illustrated in Alg. 1. Note that
some basic functions utilized in Alg. 1 are introduced below.

• Function SampleFree(Xfree) returns a random point from the obstacle-free space
Xfree.

• Function AddNode : (x, G, O, �, ρ) → G adds the vertex x to the tree G
• Function Nearest :(G, x) → v ∈ V provides the vertex in V with the smallest

Euclidean distance to x.

• The function Near :(G, x, ρ) → V � ⊆ V, with the positive real number ρ ∈ R≥0,
returns the vertices that are contained in a ball of radius ρ with its center at x.

• Steering function Steer :(x, y, �) → z, with x ∈ X, yields a point z ∈ X that linearly
extends the tree from vertex x towards y in the three dimensional space R3 with
the user-defined parameter �. If y lies within the �-sphere of x, the length of the
edge is not altered, and z = y.

• The boolean function CollisionFree :(x, y, O) returns true if the line segment between
x and y lies in Xfree.

• Considering two nodes x, y ∈ R3, Line(x, y) : [0, s] → X denotes the straight-line
path from x to y.

• The function Parent :(v) → u maps a vertex v ∈ V to the unique vertex u ∈ V,
such that (u, v) ∈ E .

• If v0 ∈ V is the root vertex of the tree, v0 = Parent(v0).

• Cost :(v → R≥0) maps a vertex v ∈ V to the cost of the unique path from the root
of the tree to v, whereas the function C :(x, y) → R≥0 delivers the cost of the edge
from x to y as Euclidean distance between these vertices.

In lines 1 − 2 of Alg. 1, the set of vertices is initialized with the goal position. The
stopping criteria, i.e., the maximum of the size of V, is set. The function AddNode is
presented in the sub-algorithm Alg. 2.

At each iteration, a point xrand ∈ Xfree is sampled (in line 4, Alg. 1). Then, this
point is handed over to the Algorithm 2 in line 5. The nearest vertex xnearest ∈ V to the
sampled point is computed (in line 1, Alg. 2). The steering function extends the tree
from vertex xnearest towards xrand, yielding vertex xnew (in line 2, Alg. 2). In the next
step, the algorithm checks whether the resulting path between (xnearest, xnew) violates
the obstacle constraints (line 3, Alg. 2). If so, the vertex xnew is dropped and a new
iteration is initiated. In the collision free case, the vertex is added to the tree, setting
xnearest to be the parent node of xnew for the moment, also computing the cost cmin to

5 Trajectory (re)planning 23

reach xnew (lines 4 − 6, Alg. 2). As preparation for the rerouting steps, in line 7, Alg.
2, the near vertices Xnear in V inside a ball of radius ρ centered at xnew are computed.
Each vertex in the set Xnear is then considered, from which vertex yields a shorter path
to xnew (lines 8 − 14, Alg. 2). If so, the corresponding node is set to be the parent node
xmin and the value of cmin is updated, leading to the minimum-cost path to the recently
added vertex (lines 11 − 12, Alg. 2). After the first rerouting step, the edge (xmin, xnew)
is added to the tree G in line 15, Alg. 2. In the second rerouting step at lines 16 − 22 of
Alg. 2, all vertices in Xnear are reconsidered to search for a vertex that reached over a
shorter route due to the newly added vertex xnew. If one vertice xnear can be reached via
xnew and the overall length of this path shows up to be shorter (lines 17 − 18, Alg. 2),
the existing edge (Parent(xnear), xnear) is dropped and replaced by (xnew, xnear) (line 20,
Alg. 2). In Alg. 1, lines 3 − 6 are repeated until the desired number of nodes numNodes
in the tree is reached. Next, the start node is added to the tree G in the same manner as

Input: Xfree, (xstart, xgoal) ∈ Xfree, O, numNodes, �, ρ
Output: G = (V, E), wppos

1 V ← {xgoal}; E ← ∅
2 G = (V, E)
3 while size(V) ≤ numNodes do
4 xrand ← SampleFree(Xfree)
5 G ← AddNode(xrand, G, O, �, ρ)
6 end
7 G ← AddNode(xstart, G, O, �, ρ)
8 xtemp ← xstart;
9 wppos ← {xtemp}

10 while Parent(xtemp) �= xgoal do
11 xtemp ← Parent(xtemp)
12 wppos ← wppos ∪ {xtemp}
13 end
14 wppos ← wppos ∪ {xgoal}

Algorithm 1: RRT* algorithm

the other vertices (line 7, Alg. 1). At this stage of the RRT* algorithm, the tree G holds
the goal position as root and the start position as general vertex. To obtain a collision
free path from the algorithm, a temporary point and a set of position waypoints wppos

is initialized with the starting point (lines 8 − 9, Alg. 1). In lines 10 − 13, Alg. 1, the
tree is traversed by utilizing the Parent function and adding them to the set of waypoints.
This is repeated until the goal node is reached. Finally, in line 14, Alg. 1, the goal node
is added to the set of position waypoints wppos.

The RRT* yields the collision free shortest path consisting of waypoints wppos from
start to goal. However, this generated path is not smooth due to the randomness of the

5 Trajectory (re)planning 24

Input: xrand, G, O, �, ρ
Output: G = (V, E)

1 xnearest = Nearest(G = (V, E), xrand)
2 xnew ← Steer(xnearest, xrand, �)
3 if CollisionFree(xnearest, xnew, O) then
4 V ← V ∪ {xnew}
5 xmin ← xnearest

6 cmin ← Cost(xnearest) + C(Line(xnearest, xnew))
7 Xnear ← Near(G = (V, E), xnew, ρ)
8 for xnear ∈ Xnear do
9 if CollisionFree(xnear, xnew, O) ∧ Cost(xnear)+

10 C(Line(xnear, xnew)) < cmin then
11 xmin ← xnear

12 cmin ← Cost(xnear) + C(Line(xnearest, xnew))
13 end
14 end
15 E ← E ∪ {(xmin, xnew}
16 for xnear ∈ Xnear do
17 if CollisionFree(xnew, xnear, O) ∧ Cost(xnew)+
18 C(Line(xnew, xnear)) < Cost(xnear) then
19 xparent ← Parent(xnear)
20 E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)}
21 end
22 end
23 end

Algorithm 2: Function AddNode of the RRT* algorithm

5 Trajectory (re)planning 25

generated tree of the RRT* algorithm. Hence, in the next subsection, the line of sight
(LOS) is utilized to remove the unnecessary points of the generated path.

5.3 Line of Sight Optimization
The Line of Sight optimization removes redundant points from the set of position
waypoints wppos. The pseudocode for the Line of Sight optimization is given in Alg.
3. In addition, a simplified scenario is depicted in Figure 5.3. Starting with the first
waypoint as temporary vertice xtemp in green (line 1, Alg. 3), the algorithm begins to
first check for the longest possible straight-lined, collision free path from xtemp. The LOS
first checks for an open connection to the last waypoint (Figure 5.3(a)). If there is a
collision, the counting index i is increased (line 7, Alg. 3) to find a collision free path to
the parent of the previous waypoint, see Figure 5.3(b). This procedure is repeated (lines
3-11, Alg. 3), until a collision free path is found. Since the initial set of waypoints is
already collision free, there is always one path found which contains less waypoints w.r.t.
the path in Figure 5.3(a). For example in Figure 5.3(d), a collision free path is found.

This algorithm minimizes the number of waypoints, as well as the total distance of
the computed path by RRT*. The reduced set of waypoints is then processed to a
dynamically feasible trajectory, which is explained in Section 5.4.

Input: wppos, O
Output: wppos

1 xtemp ← wppos(1)
2 i = 0
3 while xtemp �= wppos(end) do
4 if CollisionFree(xtemp, wppos(end − i), O) then
5 wppos ← DeleteWaypointsBetween(xtemp, wppos(end − i)
6 xtemp ← wppos(end − i)
7 i = 0
8 continue
9 end

10 i = i + 1
11 end

Algorithm 3: Line of Sight Optimization (LOS)

5 Trajectory (re)planning 26

Figure 5.3: Simple scenario of the LOS optimization.

5.3.1 Yaw angle planning
The flat outputs of the quadcopter are the position of the center of mass r = [x, y, z]T
and its yaw angle ψ. There is still a missing yaw angle definition, since RRT* and LOS
only define the path of the position r =

�
x, y, z

. Hence, the yaw path has to be taken

into account.

wppos,1

wppos,2 wppos,3

wppos,4

sp1

sp2

sp3 sp4 sp5

sp6

sp7
ψ1

ψ2

ψ3 ψ4

ψ5

ψ6

ψ7

Figure 5.4: Example of the yaw trajectory waypoint creation.

Note that it is important to plan the yaw trajectory in a way that the front-facing
camera can capture unknown obstacles in the direction of flight. This is accomplished by
first inserting an additional point between vertices of the computed LOS path to create a
fine grid of support points spi along the path, as visualized in Figure 5.4. This leads
to a number of Y = (2M − 1) support points and (2M − 2) yaw trajectory segments
respectively, with M as the number of position waypoints wppos obtained from the

5 Trajectory (re)planning 27

LOS algorithm and M − 1 as the number of position trajectory segments. A yaw angle
waypoint ψi is computed in the form

ψi = arctan
spi+1,y − spi,y

spi+1,x − spi,x

, i = 2, ..., Y − 1, (5.1)

whereas the first yaw angle is fixed by the initial pose of the drone and the last one is set
by the user to ensure the drone will reach a specific final pose at the end of the trajectory.

To this end, the set of yaw waypoints

wpyaw = {ψ1, ψ2, . . . , ψY } (5.2)

will be used to generate a meaningful yaw trajectory.

5.3.2 Gilbert-Johnson-Keerthi Distance Algorithm
In this subsection, the Gilbert-Johnson-Keerthi distance algorithm [43], utilized for
computing the distance between two convex sets, is introduced. The GJK is widely used
in applications, e.g., robotics, rigid-body dynamics, computer graphics, physics, and
computational mechanics [44]. Furthermore, this algorithm can be utilized to determine
collisions of convex sets. In this work, the GJK algorithm is used in the RRT*, LOS,
and to check whether the path is collision free or not. A simplified description of the
GJK algorithm is given below.

The GJK algorithm substantially relies on the concept of the Minkowski sum. Consid-
ering the convex shapes A and B, the Minkowski sum of A and B is the addition of all
points of A to all points of B in the form

C = A + B = {a + b|a ∈ A, b ∈ B}, (5.3)

yielding a convex shape C. The subtraction C in the Minkowski sum, referred as Minkowski
difference

C = A − B = {a − b|a ∈ A, b ∈ B}, (5.4)

is again a convex set. Performing a Minkowski difference of intersecting shapes A and B,
the obtained convex shape C contains the origin {0}. This core statement is crucial in
the implementation of the algorithm. The problem of determining the intersection of two
shapes is transformed into the task, to check whether the origin is inside the Minkowski
difference of these shapes.

The GJK algorithm does not actually compute the Minkowski difference, but iteratively
builds a polygon inside the Minkowski difference called simplex that attempts to enclose
the origin. The simplex is therefore a subset of the Minkowski difference. If the simplex
encloses the origin, the Minkowski difference also contains it, since this is a property of
convex sets. The simplex is constructed with the help of a support function s. Support

5 Trajectory (re)planning 28

functions map a search direction d to the furthest point of a shape S in that direction,
the so-called support point p.

p = sS(d) = arg max
v∈S

vTd (5.5)

With a support point of shape A in direction d, and a support point of shape B in
(−d)-direction, a support point p of the Minkowski difference of (5.4) is obtained as

sC(d) = sA(d) − sB(−d) = p ∈ C. (5.6)

The usage of support function increases the performance of the algorithm, as the simplex
with the maximum area is constructed via support points. This fact increases the
possibility that the simplex encloses the origin.

In Figure 5.5, the basic principle of the GJK algorithm is explained with a 2D example.
The shape A and the shape B are illustrated in green and blue color, respectively. The
Minkowski difference in (5.4) is depicted as red region in Figure 5.5(a). The first point of
the simplex is initialized with a random search direction d, indicated as arrow inside each
shape in Figure 5.5(b). Note that the search directions of shape A and B are in opposite
orientations. This yields the first vertex of the simplex. The next search direction is
chosen to be towards the origin, as the algorithm attempts to build a polygon that
encloses the origin, see Figure 5.5(c). Using this direction in (5.6), the second point of
the simplex is obtained, see Figure 5.5(c). The third search direction d is then chosen
to be the normal vector on the connection of the first two points of the simplex, again
towards the origin, see Figure 5.5(d). Applying this direction to (5.6), the third point is
obtained. The simplex after the initialization is given in violet color in Figure 5.5(d).
The examination, whether the origin is inside the simplex or not, is performed by a series
of line tests in 2D using cross and dot products. As the simplex does not contain the
origin, a new search direction is constructed based on the cross and dot products. The
new search direction is again the normal vector towards the origin, from the side of the
simplex closest to the origin. The third point is removed from the simplex, and the new
one is added, see Figure 5.5(e). The obtained simplex encloses the origin. Thus, an
intersection of A and B is detected. In the non-intersection case, an end-criterion for the
algorithm is a constant simplex over two iterations, which does not contain the origin.

The same concept applies to the 3D case, with the difference that the simplex has the
shape of a tetrahedron instead of a triangle. Also, more elaborate plane tests must be
performed instead of line tests to determine the location of the origin relative to the
simplex.

5 Trajectory (re)planning 29

Figure 5.5: Example for the working principle of the GJK algorithm in 2D.

5 Trajectory (re)planning 30

5.4 Trajectory Generation
Combining the results from Section 5.3 and Section 5.3.1, the path from the initial
position to the target position is given as a set of position waypoints in the form

wppos = {wppos,1, wppos,2, ..., wppos,M }, (5.7)

with wppos,i = [xi, yi, zi]T and M as the number of position waypoints. In addition, a
set of yaw angle waypoints

wpyaw = {ψ1, ψ2, ..., ψY }, (5.8)

with Y = 2M − 1 as the number of yaw angle waypoints is defined. The trajectory
generation can be separated into four independent optimization problems for each flat
output, see, e.g., [45], [8]. In the following, the trajectory generation process is explained
for a position trajectory. The same principle applies to the yaw trajectory, differences to
position trajectories are noted accordingly.

Since the system state x and the control input u can be straightforwardly computed
in (4.14), the trajectory is parameterized by the time t in the following. For each
optimization problem, a flat output trajectory, considered as a piecewise polynomial
function, reads as

P (t) =

����������

P1(t) = p10 + p11t + p12t2 + · · · + p1N tN t0 ≤ t < t1, m = 1
P2(t) = p20 + p21t + p22t2 + · · · + p2N tN t1 ≤ t < t2, m = 2

...
PM (t) = pM0 + pM1t + pM2t2 + · · · + pMN tN tm−1 ≤ t < tm, m = M − 1

where tm is the time segment, P (t) is a flat output trajectory and N is the order of the
trajectory polynomial. For position trajectories, i.e. x(t), y(t) and z(t), the number of
segments is m = M − 1. On the other hand, for the yaw trajectory ψ(t), the number
of segments results in m = Y − 1. Note that more yaw angle waypoints than position
waypoints are imposed in the independent optimization problems, as it is important to
ensure the front-facing camera can capture obstacles in direction of flight. To generate a
smooth trajectory with snap minimization, the order of the time parameterized polynomial
P (t) is N = 7. The proof of this optimization is given in the Appendix.

Since the cost function (5.9) depends on the segment time Tm = tm − tm−1, a priori
selection of this travel time is needed. This segment time Tm can be computed trivially by
dividing the length of the segment over the average speed of the quadcopter [14]. Another
approach is to utilize the time-optimal trajectory planning [45], taking into account the
bounds on velocity, acceleration, and jerk of the quadcopter. A precise analysis of the
time-optimal trajectory planning algorithm is out of scope of this thesis, only the basic

5 Trajectory (re)planning 31

idea is presented below. The time-optimal trajectory planning algorithm, also called the
15-step algorithm, sequentially computes the time-optimal trajectory for each flat output.
Considering constant values for the snap (smax, 0, −smax), a flat output is parameterized
as a 4th-order polynomial in time. In Figure 5.6, the 15 stages of the snap s over the
time t are presented. In each step, at least one derivative reaches its limit. If the velocity
limit is reached with a specific set of limitations for each derivative, then the retrieved
trajectory is considered as time optimal. However, if the maximum speed is not achieved
due to the application or constraints, the received trajectory is not time optimal. This
algorithm is executed for the three positions σ1 = x, σ2 = y, σ3 = z and each segment m,
m = 1, . . . , M − 1, yielding three different segment times per segment. To ensure that the
final trajectory can be followed by the quadcopter, the longest time estimation of each
position segment m will be further used in the quadratic program (QP) for every flat
output as Tm, which allows to reach the waypoints synchronously in every dimension.

As more yaw angle trajectory segments than position trajectory segments are obtained
with the implemented approach, these segment times have to be adjusted accordingly for
yaw angle trajectory generation. In Section 5.3.1, for construction of the yaw trajectory
support points each position path segment was bisected, see Figure 5.4. Therefore, the
segment times Tm of the position segment are also bisected for the yaw angle trajectory
generation process.

The cost function of the mth segment of (5.9) is defined as

Jm(w, Tm) =
Tm�
0

w1P �
m(t)2 + w2P ��

m(t)2 + ... + wN P (N)
m (t)2dt = pm

T Qm(Tm)pm, (5.9)

where pm is the vector of the N + 1 coefficients of the polynomial Pm(t) and wi >
0, i = 1, . . . , N is the the weight of the ith derivative, denoted by ()�, ()�, . . . , ()N . The
construction of the Hessian matrix Qm(Tm) is shown by a simple example in the following.
Assuming to generate a minimum velocity trajectory for a time segment of the order
N = 4, the basic polynomial function P (t) with the corresponding velocity P �(t) reads as

P (t) = p0 + p1t + p2t2 + p3t3 + p4t4 (5.10)
P �(t) = p1 + 2p2t + 3p3t2 + 4p4t3. (5.11)

The cost function for a minimum velocity trajectory of one segment m with weight w1 = 1
results in

Jminvel
=

Tm�
0

P �
m(t)2dt. (5.12)

5 Trajectory (re)planning 32

Figure 5.6: Example for a time-optimal 15-step trajectory, where p,v,a,j and s denote
the position, velocity, acceleration, jerk and snap. The steps can be clearly
seen in the trend of the snap s over time t.

The square of P �
m(t) is expressed in the form

P �
m(t)2 = (p1 + 2p2t + 3p3t2 + 4p4t3)(p1 + 2p2t + 3p3t2 + 4p4t3) =�

p2
1 + 2p1p2t + 3p1p3t2 + 4p1p4t3 +

2p1p2t + 4p2
2t2 + 6p2p3t3 + 8p2p4t4 +

3p1p3t2 + 6p2p3t3 + 9p3t4 + 12p3p4t5 +
4p1p4t3 + 8p2p4t4 + 12p3p4t5 + 16p4t6 �

.

5 Trajectory (re)planning 33

Hence, the cost function (5.12) reads as

Jminvel
=

Tm�
0

P �
m(t)2dt =

�
p2

1t + 2p1p2
t2

2 + 3p1p3
t3

3 + 4p1p4
t4

4 +
2p1p2

t2

2 + 4p2
2

t3

3 + 6p2p3
t4

4 + 8p2p4
t5

5 +
3p1p3

t3

3 + 6p2p3
t4

4 + 9p3
t5

5 + 12p3p4
t6

6 +
4p1p4

t4

4 + 8p2p4
t5

5 + 12p3p4
t6

6 + 16p4
t7

7
�|t=Tm

t=0 ,

For a compact notation, (5.12) can be expressed in matrix form

Jminvel
=

�
p0 p1 p2 p3 p4

0 0 0 0 0
0 Tm T 2

m T 3
m T 4

m

0 T 2
m 4T 3

m
3 6T 4

m
4 8T 5

m
5

0 T 3
m 6T 4

m
4 9T 5

m
5 12T 6

m
6

0 T 4
m 8T 5

m
5 12T 6

m
6 16T 7

m
7

p0
p1
p2
p3
p4

 = pT Q(Tm)p.

(5.13)
Note that if more than one derivative are considered in the cost function, the same
procedure can be applied and the Hessian matrices are summed up.

Combining the cost matrices of each segment, the total cost function of M−1 polynomial
segments used by the QP can be written in the form

Jtot =

 p1
...

pM−1

T Q1(T1)

. . .
QM (TM−1)

 p1

...
pM−1

. (5.14)

In order to guarantee the continuity of the trajectory, constraints on the endpoints of
each segment are considered. This allows an endpoint of a trajectory segment to be equal
to an initial point of the subsequent trajectory segment, which helps to create smooth
transitions between segments [14].

These constraints are obtained via a mapping matrix Am between the polynomial
coefficients pm and the endpoint derivatives dm for each segment m in the form

Ampm = dm, (5.15)

where Am = [A0, AT]Tm and dm = [d0, dT]Tm. Here, d0 and dT denote the corresponding
values of the derivatives of the start points and endpoints. If there are no specific values
for the endpoint derivatives, continuity constraints must be introduced to enforce a
smooth transition between the segments. To do so, the derivatives at the end of segment
m are enforced to be equal to the derivatives at the beginning of the (m + 1)st segment.

5 Trajectory (re)planning 34

AT,mpm = A0,m+1pm+1 (5.16a)

AT,mpm − A0,m+1pm+1 = 0 (5.16b)

Thus, the constraint at the start of segment m of (5.15) reads as

P �
m(0) = pm,1 + 2pm,2t + 3pm,3t2 + 4pm,4t3|t=0

=
�
0 1 0 0 0

pm,0
pm,1
pm,2
pm,3
pm,4

 = A0,mpm = d0,m = 0,

and the constraint at the end of segment m + 1 reads as

P �
m+1(Tm+1) = pm+1,1 + 2pm+1,2t + 3pm+1,3t2 + 4pm+1,4t3|t=Tm+1

=
�
0 1 2Tm+1 3T 2

m+1 4T 3
m+1

pm+1,0
pm+1,1
pm+1,2
pm+1,3
pm+1,4

 = AT,m+1pm+1 = dT,m+1 = 0.

Additionally, the continuity condition (5.16b) is constructed

P �
m(Tm) − P �

m+1(0) = 0
= {pm,1 + 2pm,2t + 3pm,3t2 + 4pm,4t3}|t=Tm−

{pm+1,1 + 2pm+1,2t + 3pm+1,3t2 + 4pm+1,4t3}|t=0

=
�
0 1 2Tm 3T 2

m 4T 3
m

pm,0
pm,1
pm,2
pm,3
pm,4

 −
�
0 1 0 0 0

pm+1,0
pm+1,1
pm+1,2
pm+1,3
pm+1,4

= ATm,mpm − A0,m+1pm+1 = 0.

All constraints for M segments can be written into a single set of equality constraints
in the form of

Atot

 p1
...

pM−1

 =

 d1
...

dM−1

. (5.17)

Combining (5.14) and (5.17), the constrained optimization problem reads as

5 Trajectory (re)planning 35

min
P1,...,PM−1

 p1
...

pM−1

T Q1(T1)

. . .
QM (TM−1)

 p1

...
pM−1

s.t. Atot

 p1
...

pM−1

 =

 d1
...

dM−1

.

(5.18)

5.5 Obstacle Avoidance and Replanning
This section explains the online ROS loop in Figure 5.2. This helps the quadcopter to
detect new obstacles and to compute an online collision free trajectory.

In Figure 5.2, the Sense and Process block interacts with the ROS master, fetching
the latest position, orientation and depth camera image of the quadcopter. The depth
camera point cloud is processed and transformed online in order to detect new obstacles.
Two different approaches are presented to detect new obstacles. The first approach mainly
depends on the computer vision toolbox of Matlab utilizing point cloud functionalities.
The second approach relies on the GJK algorithm. Once a new obstacle is detected,
the environment information is updated and a decision is made whether replanning is
necessary or not. If the drone is predicted to collide with new obstacles, the replanning
will be activated using previously introduced procedures, i.e., RRT* and LOS for finding
the collision free waypoints and the constrained trajectory generation. The current
trajectory is sent via a ROS publisher to the drone, constantly initiated by a callback
function. If the trajectory is finished or a replanning is not possible in time, the drone is
landed immediately.

5.5.1 Sense and Process

Figure 5.7: Detailed workflow of the Sense and Process block.

A detailed visualization of the Sense and Process block [34] in Figure 5.2 is shown in
Figure 5.7. To improve the computational efficiency, the crop and downsample processes
are taken into account. Therefore, the raw input is first cropped to remove cloud points

5 Trajectory (re)planning 36

which are too far away from the quadcopter’s position. Then, the downsampling process
is employed to keep a single point in a voxel of size 0.1 m. Since the RGB-D camera is
sensitive to noise, filtering processes are necessary to pre-process raw point clouds. Depth
camera data is represented in the body frame, which has to be transformed by using
(4.2) to the world coordinate frame. In general, the position and depth camera data are
not acquired at the exact same time. Thus, there is a time difference tdiff = tpos − tpc

between these two events.
When the quadcopter moves very quickly, the motion blur could cause wrong point

cloud outputs, leading to a failure of a collision free trajectory replanning. To solve this
issue, similar to [34], we only accept the filtered point cloud if the angular velocity of
the three Euler angles e = {φ, θ, ψ} is lower then a limit ωmax. Before transformation,
the pose message from the UAV should be aligned with the point cloud timestamp
tpc by the estimation in (5.19), where r0 and e0 denote the position and the Euler
angles measurement at timestamp tpos. The translational and rotational velocities are
approximated to be constant during tdiff�

rsync

esync

�
=

�
r0
e0

�
−

�
v

ωBW

�
tdiff . (5.19)

After the synchronisation, the depth data is cropped again to the boundaries of the
available flight space Xfree. The obtained point cloud is then clustered taking a distance
threshold threshpcsegdist to spatially distinguish multiple clusters. Since depth camera
data is very noisy, especially in highly enlighted and reflective environments, a cluster is
considered as valid if it contains a minimum number of data points. Finally, to determine
if one cluster of the depth camera information represents a new obstacle, the two following
obstacle detection approaches are applied.

5.5.2 Obstacle Detection
Point Cloud Approach

When using this method, a point cloud of the previously known surroundings, denoted
by pcworld, is stored serving as a reference. This data may be retrieved from previous
flights or can be generated beforehand. The pseudocode of this approach is given in
Alg. 4, whereas the function convertPc2Box(pc) takes a point cloud pc and returns its
hit box with the maximum length in each dimension of pc. The algorithm takes the
current environment pcworld. The obtained point cloud clusters from the depth camera
are denoted by clusters. Also, a threshold value for differentiating known and new point
clouds has to be set. An updated pcworld and a set of new obstacles Onew regarding
trajectory replanning are returned. Each cluster is checked, whether it constitutes a
new obstacle or not (lines 2 − 9, Alg. 4). For this purpose, the Matlab function
findPointsInROI is utilized in line 3 of Alg. 4. The spatial area of the cluster pcO from

5 Trajectory (re)planning 37

the well-known point cloud pcworld, which is named pcW , is used to check their similarity.
A search for the nearest neighbor in pcW for each point of pcO is conducted utilizing the
Matlab function knnsearch, see line 4 of Alg. 4. Once this task is completed, a rmse
of all distances is calculated, which serves as a measure for determining if that cluster
represents an unknown obstacle, see line 5 of Alg. 4. The distinction between a known
and an unknown obstacle is performed by a threshold value threshrmse, which can be
adjusted depending on the application or object size. When a cluster is detected to be
unknown or new, its bounding box is treated as a new object in the further process of
replanning, see line 6 of Alg. 4 and the Update Environment block in Figure 5.2. In
order to update the overall world point cloud pcworld, it is merged with pcO by using the
Matlab function pcmerge in line 7 of Alg. 4.

Input: pcworld, clusters, threshrmse

Output: Onew, pcworld

1 Onew ← {}
2 for pcO ∈ clusters do
3 pcW ← findPointsInROI(pcworld, pcO)
4 d ← knnsearch(pcO, pcW)
5 if rmse(d > threshrmse then
6 Onew ← Onew ∪ convertPc2Box(pcO)
7 pcworld ← pcmerge(pcworld, pcO)
8 end
9 end

Algorithm 4: Point cloud approach.

Eight-Corner Approach

This approach reduces each point cloud cluster to a cuboid-shaped box with the maximum
length of the cluster in each dimension, leading to a convex set of eight corner points
representing one cluster or obstacle. The pseudocode of this approach is listed in Alg. 5.
Some functions used in Alg. 5 are introduced in the following.

• Function getDistanceMatrix(C, O) returns a distance matrix, containing the mini-
mum distance between each box C ∈ C and each known obstacle O ∈ O. Therefore,
the GJK algorithm is utilized.

• Function mergeBoxes(A, B) merges two cuboid hit boxes A and B to one hit box.

• Function getCornerDistances(A, B) returns the minimum distance of each corner of
the hit box A to the closest known obstacle B.

5 Trajectory (re)planning 38

The information about the environment is provided by a set of obstacles O, whereby
each one is represented by its eight corner point coordinates. As parameters, Alg. 5 also
gets the detected point cloud clusters and a distance threshold threshdist. The outputs
are the newly detected obstacles Onew as well as the set of known obstacles O.

At first, all point cloud clusters are converted to a set of cuboid boxes in line 2 of Alg.
5. If new obstacles are detected, they will be added to the set O, see lines 3 − 6 of Alg.
5. The vector D holds the minimum distance of each box to the closest known obstacle,
I holds the corresponding index idx of the closest obstacle in O w.r.t. C, see line 7 of
Alg. 5. Each box C ∈ C undergoes checking processes in lines 8 − 24 of Alg. 5, whether
it represents a new obstacle or not. If the smallest distance d between the found box C
and the closest known object is greater than the threshold value threshdist, the found
object C is recognized as a new object, see lines 10 − 13 of Alg. 5. In lines 14 − 18 of
Alg. 5, a check for intersecting boxes is made, which is reflected by a distance of zero. If
known obstacles and found obstacles are intersecting, both are merged and updated as
new obstacles (line 15, Alg. 5). The previously known obstacle is removed in line 16,
as it would be redundant. In line 19 of Alg. 5, the distance of each corner of the newly
detected hit box C to the closest known obstacle O(idx) is obtained. If the minimum
distance d of the convex set C to O(idx) is smaller than threshdist, and one corner point
of C is further away than the threshold, both hit boxes are merged, see lines 21 − 22 of
Alg. 5. This condition allows the assembly of several clusters, obtained from one big real
obstacle, to one hit box for trajectory replanning even with bad transformations of the
depth camera data. This avoids detecting redundant objects.

5.5.3 Trajectory Validation
The trajectory validation block conducts a validity check of the current UAV trajectory,
if unknown obstacles are detected. In the first step of this verification, newly discovered
obstacles are inflated by a safety margin in every dimension to guarantee no collisions.
After that, intersection checks of all straight-line path segments of the current trajectory
with the new obstacles are conducted. The penalizing weights in (5.9) ensure, that
the final position trajectory is reasonably close to the straight-line path obtained from
the RRT* planner. Therefore, only small deviations are expected. This simplification
leads to a faster processing of the validity check, since we save multiple evaluations of
the polynomials in the x−, y− and z−direction. If all new obstacles do not yield an
intersection with the current path, no action is performed and the current trajectory will
further be followed by the quadcopter.

Note that an estimation whether a trajectory replanning is feasible during flight is
made when there are possible collisions with new obstacles. Trajectory replanning is
initiated, if the following conditions are fulfilled:

• The target position is still reachable. In other words, the goal is not occupied by
an object.

5 Trajectory (re)planning 39

Input: O, clusters, threshdist

Output: Onew, O
1 Onew ← {}
2 C ← convertPc2Box(clusters)
3 if size(O) == 0 & size(C) > 0 then
4 Onew ← C
5 return
6 end
7 D, I ← min

�
getDistanceMatrix(C, O)

�
8 for C ∈ C do
9 d ← D(i); idx ← I(i);

10 if d > threshdist then
11 Onew ← Onew ∪ C
12 continue
13 end
14 if d == 0 then
15 Onew ← Onew ∪ mergeBoxes(C, O(idx))
16 O ← O \ O(idx)
17 continue
18 end
19 dcorner ← getCornerDistances(C, O(idx))
20 if max(dcorner) > threshdist & d < threshdist then
21 Onew ← Onew ∪ mergeBoxes(C, O(idx))
22 O ← O \ O(idx)
23 end
24 end

Algorithm 5: Eight corner approach.

5 Trajectory (re)planning 40

• There is a minimum distance between the quadcopter and newly detected obstacles.
This minimum distance is determined by the maximum velocity of the drone and
the maximum trajectory replanning time.

If one of the two conditions is not met, the drone will immediately land at its position
and the program will be aborted. Otherwise, the trajectory replanning is executed.

5.5.4 Replanning
This block represents the trajectory replanning. This helps the UAV to still reach the
desired goal. Figure 5.8 briefly depicts the overall workflow of the replanning procedure,
mainly consisting of previously described algorithms.

Figure 5.8: Detailed workflow of the Replanning block.

The first task is the rerouting of the consisting tree from RRT* considering newly
detected obstacles, which has also been conducted in [46] in a similar way. The pseudocode
of the rerouting step is given in Alg. 6.

Every edge Ev = (Parent(v), v) leading to each vertex v of the tree G, except for the
goal node xgoal, is checked for freedom of collisions (line 2, Alg. 6). If one edge is
interrupted by a new obstacle, it is marked to be removed from the tree (lines 3 − 4, Alg.
6). If the considered vertex v is included by an obstacle, it is marked to be cropped from
the tree since it is not reachable anymore (lines 6 − 8, Alg. 6). Otherwise, an attempt
to find a new parent node for vertex v is made, based on the first replanning step of
the RRT* algorithm in Alg. 2 (lines 8 − 26, Alg. 6). As no valid parent node is known,
the minimum cost is set to a very high value in order to allow for the first collision free
connection to be valid (lines 9 − 11, Alg. 6). With Xnear, all nodes inside a ball of radius
ρ centered at v are found (line 12, Alg.6). Each vertex xnear ∈ Xnear is then investigated,
whether it yields a collision free and shorter path (lines 13 − 20, Alg. 6). After all near
vertices Xnear have been checked and are valid, a collision free path could be found and
the (repairing) edge (xmin, v) is added to the tree G (lines 21 − 22, Alg. 6). When v
is not reachable due to the new obstacle, the corresponding node will be marked to be
removed from the tree (lines 23 − 25, Alg. 6). In line 29 of Alg. 6, all lost connection-free
nodes are removed from the set of nodes V.

Once every node of the tree is examined, the tree G is collision free. To find the minimum-
cost path from the estimated position after replanning to the goal, the estimated position
is added to the tree G. By traversing the tree from this vertex with the Parent function,
a sequence of waypoints wp describing the shortest piecewise linear path to the goal is

5 Trajectory (re)planning 41

obtained. The following steps from Figure 5.8, e.g., LOS, yaw waypoints definition, and
trajectory generation, are introduced in Section 5.3 and Section 5.4.

5 Trajectory (re)planning 42

Input: G = (V, E), O, ρ
Output: G = (V, E)

1 Vlost ← {}
2 for v ∈ V \ {xgoal} do
3 xparent ← Parent(v)
4 if not CollisionFree(xparent, v, O) then
5 E ← E \ {(xparent, v}
6 if InsideObstacle(v, O) then
7 Vlost ← Vlost ∪ {v}
8 else
9 cmin ← 1e15

10 xmin ← []
11 valid ← false
12 Xnear ← Near(G = (V, E), v, ρ)
13 for xnear ∈ Xnear do
14 if CollisionFree(xnear, v, O) ∧ Cost(xnear)+
15 C(Line(xnear, v)) < cmin then
16 xmin ← xnear

17 cmin ← Cost(xnear) + C(Line(xnear, v))
18 valid ← true

19 end
20 end
21 if valid then
22 E ← E ∪ {(xmin, v)}
23 else
24 Vlost ← Vlost ∪ {v}
25 end
26 end
27 end
28 end
29 V ← V \ Vlost

Algorithm 6: Reroute RRT*.

6 Experimental Validation
In this chapter, the proposed trajectory (re)planning concept is evaluated in both
simulation and experiments. Simulations are performed in Matlab (R2021b, Version
9.11.0.1809720) on the Notebook with an Intel i7-10750H, 2.6 GHz and 32 GB RAM.

In simulations, the flight simulator in Gazebo and the PX4 autopilot program are
executed on a different PC. This imitates the real-world scenario where the trajectory
(re)planning is executed on a ground control station. The Gazebo simulator computes
precise information, e.g., position, velocity, and orientation of all objects in the simulation
including the quadcopter at any time instance. This information is published in ROS
topics. For real life experiments, the Intel Aero RTF compute board runs the Linux
Distribution Ubuntu 18.04 with ROS Kinetic. Similar to the simulation environment,
the PX4 Firmware version 1.9 is used in the flight controller for a seamless sim-to-real
transfer.

The first part of this chapter deals with the influence of various parameters that affect
the result of the trajectory planning, specifically the path planning with RRT* and
the replanning approach in Section 6.1. Next, the two presented obstacle detection
approaches in Section 5.5.2 are evaluated utilizing depth camera data from a simulated
flight in Section 6.2. Section 6.3 shows a simulated flight that contains the smooth
replanning of the trajectory. Finally, real life experiments concerning online trajectory
replanning are demonstrated in Section 6.4.

6.1 Influence of Parameters on Trajectory Planning
Since trajectory replanning is performed autonomously during flight, choosing a suitable
set of parameters for the proposed algorithms is very important. In this section, the
influence of the different parameter sets used in the trajectory planning is investigated.
More specifically, we vary the steering distance �, the rerouting radius ρ as well as the
number of nodes numNodes of the RRT* algorithm and discuss their impact on the
resulting tree structure. Furthermore, for a given set of waypoints obtained from RRT*,
we examine the influence of the penalty weights wi in the optimization problem (5.9) on
the final trajectory of the quadcopter. All experiments in this section are executed in
Matlab on the GroundControl Station.

The parameters of the considered environment for the following investigation are listed
in Table 6.1.

43

6 Experimental Validation 44

Parameter Value [m]
xmax 10
ymax 10
zmax 5

start position
�
2 2 0.5

target position

�
9 9 2.5

Table 6.1: Environment parameters.

Set 1 Set 2 Set 3 Set 4
numNodes 500 500 2000 500

� 0.5 m 0.5 m 0.25 m 0.25 m
ρ 1.5 m 2.5 m 0.75 m 0.75 m

Table 6.2: Parameter sets of the RRT* algorithm.

6.1.1 Variation of RRT* Parameters
Four different sets of parameters are listed in Table 6.2. Monte Carlo simulations are
performed with all sets of parameters.

In Figure 6.1, the obtained tree structures from the RRT* algorithm drastically vary
among the sets of parameters. Specifically, for the parameter set number 4, the small
number of nodes and the short steering distance � provide a tree structure that only
occupies the flight space to a small extent. Due to the low population and the short
rerouting distance ρ, there are only a few main branches towards the target position.
They may be cut off by new obstacles, which makes arriving at the destination impossible.
Figure 6.1(3) depicts a tree with the same � and ρ, however, with a significantly higher
number of nodes compared to the set 2 and 3. This leads to an extraordinarily good
exploration of the flight space. However, many turning paths due to the short rerouting
distance � are obtained. The runtime for creating and including so many nodes in the tree
structure is significantly higher compared to other parameter sets. Since replanning has to
be accomplished online, such a large number of nodes is not desirable. Figure 6.1(1) and
(2) show a tree with the same number of nodes and steering distance, but with different
�. These sets result in the same proper exploration of the flight space, which is benefitial
for the avoidance of new obstacles. Furthermore, it is clear that subsequent edges in the

Set 1 Set 2 Set 3 Set 4
avg. run time [s] 0.743 0.764 10.411 0.725

Table 6.3: Runtimes of parameter variation of the RRT* algorithm.

6 Experimental Validation 45

Figure 6.1: Evolutions of RRT* algorithm with different sets of parameters. The number
on the top right of each subfigure indicates the set number from Table 6.2.
The red and blue dot indicate the target and start position, respectively.

6 Experimental Validation 46

Parameter Value
numNodes 500

� 0.7 m
ρ 2.1 m

Table 6.4: Parameters of the RRT* Rerouting example.

Parameter Initial tree Rerouted tree
numNodes 500 483

number of waypoints 8 9
path length 10.46 m 12.11 m

Table 6.5: Result of the RRT* Rerouting example.

set 2 appear much more straightforward, which is well suited for path planning of the
quadcopter. A path straightening is subsequently accomplished with the Line of Sight
(LOS) optimization, which solves the problem of a poorly chosen rerouting parameter ρ.
The difference in run times of parameter sets 1 and 2 is negligible for this small number
of vertices. In conclusion, to create an appropriate population of the nodes in the flight
space, the number of nodes and the steering distance � have to be investigated thoroughly.
In addition, the rerouting parameter ρ leads to longer edges of the tree. However, the
LOS optimization removes redundant vertices of the obtained path afterwards.

6.1.2 RRT* Rerouting
This section gives an overview of the rerouting procedure, which processes a sub RRT*
algorithm to detour the initial trajectory in case of the appearance of new obstacles.
The same environmental setup as in the previous examples is reused with two known
obstacles. If a new obstacle is detected that intersects the initial path, the rerouting
algorithm is executed.

All parameters for this example of RRT* rerouting are given in Table 6.4 including
the parameters (numNodes,�,ρ) for the RRT* algorithm in Alg. 1,2, to generate the
initial tree, and for the RRT* rerouting algorithm in Alg. 6. The search radius ρ of the
rerouting algorithm is chosen to be the same as for the basic RRT* algorithm, because
the RRT* rerouting algorithm is mainly based on the first rerouting step in lines 5 − 14,
Alg. 2.

Note that the run time of the RRT* algorithm heavily depends on the number of nodes
in the tree. Therefore, the algorithm is executed multiple times with a different number
of nodes in the inital tree, leading to the average run times listed in Table 6.6.

Figure 6.2(a) depicts the initial tree with the shortest collision free path. After detecting
a larger object, the rerouting procedure is executed. The rerouted path is illustrated in

6 Experimental Validation 47

Figure 6.2: Example for the RRT* rerouting. The left picture depicts the initial tree, the
right shows the rerouted tree with the new obstacle. The green lines indicate
the shortest collision free path from the start to the target point. The black
nodes refer to the waypoints. The red crosses mark the lost vertices.

numNodes 100 250 500 1000 2000
avg. run time [ms] 10.5 46.6 136.0 416.0 1942

Table 6.6: Run times of RRT* rerouting for different number of nodes in the tree.

6 Experimental Validation 48

Figure 6.2(b). The main findings of this example are listed below:

• When obstacles are recognized, tree nodes occupied by these new obstacles are
discarded. This reduces the total number of nodes in the tree. For this reason,
when parameterizing the RRT* algorithm, we have to ensure that the entire flight
space is evenly populated in order to avoid possible dead ends.

• In Table 6.5, the increase of the number of waypoints leads to an increase in the
corresponding path lengths. Additionally, more waypoints lead to an increased
set of optimization variables, which implies a higher computation time for the
optimization. These consequences are partially mitigated by the LOS optimization
afterwards.

• Another important statement that can be made is the high run time dependence of
replanning on the number of nodes in the tree, see Table 6.6. Due to the need to
check every connection in the tree, and the fact that in the event of a cut edge to a
specific vertex more surrounding nodes have to be checked for possible connections
the necessary run time increases exponentially. This fact suggests building a tree
with a few nodes, but this undermines the probability of finding a collision free and
short path.

In conclusion, the parameterization of the RRT* algorithm, especially the choice of the
number of nodes, is a trade-off decision which depends on the scenario and application.
For instance, in an application with the need for aggressive trajectories and fast trajectory
replanning, a smaller number of nodes can be chosen. If one needs a higher probability
to find the shortest path for different sizes of objects, a higher number of nodes is helpful.

6.1.3 Variation of Trajectory Generation Weights
The tree obtained by using RRT* is used to create a dynamically feasible trajectory for
the quadcopter. The coefficients of the polynomial of the trajectory are computed with
quadratic programming. In this subsection, the effect of different user-defined weights of
the optimization problem (5.9) is investigated. Two different sets of user-defined weights
wpos, with N = 4, and wyaw, with N = 2, according to (5.9) are given in Table 6.7.
The two time evolutions of the trajectories are depicted in Figure 6.3. In addition, a
three-dimensional representation of the position trajectories is visualized in Figure 6.4.

As can be seen in Figure 6.3 and Figure 6.4, the two trajectories differ considerably
despite the same waypoints and segment times due to the different user-defined weights in
the optimization. The segment times are defined by the 15-step time-optimal trajectory
generation algorithm according to Section 5.4 utilizing a set of dynamic constraints of the
quadcopter in Table 6.11. Set 1 in Table 6.7, with lower value of the low derivative orders
and higher value of the high derivative orders, leads to a curved and smooth trajectory,
see Figure 6.3(a). However, it has a high deviation from the collision free path, which

6 Experimental Validation 49

Figure 6.3: Different penalizing weights for the position and yaw trajectory for equal
waypoints, indicated with marks. The left shows the obtained trajectory for
parameter set 1, the right depicts set 2.

6 Experimental Validation 50

Set 1 Set 2
wpos

�
1 0 0 10

 �
1e5 0 0 10

wyaw

�
0.1 1e3

 �
1e4 100

Table 6.7: Two sets of penalizing weights for the position and yaw trajectory.

Figure 6.4: Position trajectory for different sets of weights from Table 6.7. The blue and
red line show the trajectories computed with parameter set 1 and parameter
set 2, respectively.

6 Experimental Validation 51

makes the trajectory potentially unsafe, see Figure 6.4. Thus, further verification would
be required to ensure that the trajectory is collision free. Note that if the yaw angle
varies significantly, it is not guaranteed that the drone will be oriented in the direction of
flight to detect new objects. In general, higher weight values for the higher derivative
orders as in set 1, show a smoother trajectory.

On the other hand, with set 2, a strong guidance of the position and facing direction
along the path is achieved, which is desirable in the context of safety, see Figure 6.4.
This increases the probability of recognizing dangerous objects during flight. However,
the drawback is to have aggressive inputs over time, which could be infeasible for the
system due to actuator constraints. At this point, it should be noted that depending
on the application the shape of the trajectory can be determined with the choice of the
penalizing weights in (5.9). A trade-off regarding the deviation from the collision free
straight lined path and smoothness of the trajectory has to be made with respect to
dynamic constraints.

6.2 Simulation - Comparison Obstacle Detection Approaches
This section evaluates and compares the two proposed approaches for detecting new
obstacles from Section 5.5.2. The first approach is based on point cloud processing
methods provided by the computer vision toolbox from Matlab. The second approach
relies mainly on the GJK algorithm. The depth camera data used in this section are
taken from Gazebo. The position, velocity, and orientation data are obtained from
the PX4 estimator. The status of the estimator is based on various sensor data, see
Section 3.1.3. This leads to slight deviations between the real and the estimated positions
and orientations. Since an external vision system is not available for every application,
e.g. exploring a tunnel or in disaster environments, the object detection should be robust
against measurement and estimation inaccuracies.

To evaluate the two obstacle detection approaches, the scenery in Figure 6.5 is used.
This scenario simulates a workshop or production hall with shelves or cabinets. The
new obstacle is illustrated in red color. It should be noted that no walls and ceilings are
considered in the simulation, since they are cut off during the object detection procedure.
Due to the large objects, there will be a lot of depth points per cluster. The parameter
settings for both methods are listed in Table 6.8. The depth camera sent 62 different
point clouds with a resolution of 320 x 240 during the flight experiment, which were
processed with both approaches. Figure 6.8 depicts a box plot of the run times of the
obstacle detection process, the statistics is given in Table 6.9.

An insight into the evolution of the captured environments is given in Figure 6.6. The
left column shows the point cloud representation of the current known environment in
purple, whereas newly detected clusters are visualized in green. The middle column
depicts the obtained environment with the point cloud approach, the right one results

6 Experimental Validation 52

Figure 6.5: Environment of the simulation flight. The three bigger obstacles on the
ground are considered during trajectory planning, the unknown red object
intersects with the shortest path from the start to the target position.

Parameter Value
ωmax 1 rad/s

voxel size 8 cm
min. cluster points 8

threshpcsegdist 0.15 m
threshrmse 0.15 m

Table 6.8: Parameters for the obstacle detection approaches for comparison.

6 Experimental Validation 53

point-cloud eight-corner
avg. run time [ms] 160.6 131.4

median [ms] 143.2 123.8
min. run time [ms] 120.0 111.8
max. run time [ms] 368.3 194.8
75th percentile [ms] 183.2 139.7

outliers 2 5

Table 6.9: Run times statistics of the obstacle detection approaches.

from the eight-corner approach on the same data set. The inital environment with all
known obstacles is illustrated at the top of column two und and three. The environments
are updated from top to bottom over time. The magenta cross and arrow indicate the
position and heading of the drone at the particular time instance.

The two methods give different results due to the inaccuracies of the position estimation.
In Figure 6.6, the side surface of one object is considered with both approaches as a
new object. The depth camera points deviate distinctly after the transformation with
the inaccurate pose information from the real position of the object. Obviously, the
rsme value of the comparison of each cluster point (green) to its closest point from the
known obstacle (purple) is bigger than the treshold value, yielding a new obstacle with
the point cloud approach, see Figure 6.6 (2b). The point clouds of the known world
and the cluster describing the new obstacle are merged, see Subfigure (3a). Considering
the eight-corner approach in Figure 6.6 (2c), the closest obstacle is merged together
with the cluster, yielding one bigger, outer-left obstacle. Subfigure (3a) depicts the first
snippet of an unknown obstacle, captured by the depth camera, in green. The point cloud
approach yields one small yellow obstacle in Figure 6.6 (3b), wheres the eight-corner
approach merges the small cluster with the closest obstacle in Subfigure (3c). The same
principle applies in Figure 6.6(4a). The full front of the new obstacle is detected with the
depth camera. This leads to a separate, bigger obstacle with the point cloud approach
Figure 6.6(4b). The previously detected yellow obstacle, see Figure 6.6(3b), shows a too
big difference to the green depth point cluster in Subfigure (4a). On the other side, the
eight-corner method merges both, as they are intersecting, see Figure 6.6(4c). The final
configurations of both approaches are depicted in Figure 6.7.

The main differences of both methods are summarized in the following. The point
cloud approach does not alter the size of an existing obstacle. If a cluster, obtained
from depth camera data, happens to deviate more than a predefined measure from the
closest known obstacle, it will be considered as a separate new obstacle. This may lead
to redundant obstacle detections, since obstacles are from the same real object. Note
that the unnecessary higher number of modeled obstacles slow down the collision-check
and the replanning procedure in later processes. On the other hand, the eight-corner

6 Experimental Validation 54

Figure 6.6: Evolution of the environment with two different obstacle detection approaches.
The column (a) shows the current environment in purple and the new cluster
in green as point cloud, column (b) depicts the obtained obstacles from the
point cloud based approach. The column (c) is obtained with the eight-corner
approach. The position and facing direction is indicated in purple.

6 Experimental Validation 55

Figure 6.7: Final environments of the point cloud and eight-corner approach.

Figure 6.8: Box plot of run times of obstacle detection approaches.

6 Experimental Validation 56

approach considers only the hit box of the closest known obstacle and cluster. If both
intersect or are very close, they are merged together to one bigger box. This could lead
to clearly oversized models of obstacles, especially if the real obstacle may be non-convex.
Furthermore, close obstacles, which are in fact further apart than the segmentation
distance, may be merged to one obstacle due to poor position estimation. This may lead
to very unfavorable constellations, such as the ones in Figure 6.6 (4c). This is definitely
a drawback compared to the point cloud approach, which allows to describe obstacles in
more detail.

In Figure 6.8, the run times of the two approaches are depicted. The eight-corner
approach is faster than the point cloud approach. The median of the eight-corner method
is approximately the minimum time of the point cloud approach. Although the box plot
of the eight-corner approach has 5 outliers, the absolute span of the distribution of 83 ms
is also much smaller, compared to 248 ms of the point cloud method.

The smaller number of final obstacles outweighs the disadvantage of a possible false
fusion of multiple objects when having a poor position estimation. Since we use OptiTrack
in the real-life test for precise position and orientation measurements, the eight-corner
method is used to extract new obstacles in the following flight experiments.

6.3 Simulation - Replanning
The previous chapters show the necessary building blocks for the trajectory generation, the
replanning if a new obstacle appears in the flight space, and the methods for detecting new
obstacles. The following simulation combines all modules to demonstrate the trajectory
(re)planning strategy. In this simulation, a flight is performed in a larger environment
with known obstacles using Gazebo. The initial trajectory is planned to avoid the three
known objects on the ground. However, a fourth unknown object appears in the flight
space, which requires a replanning of the trajectory.

6.3.1 Environment and Parameters
The scenery of the simulation flight is illustrated in Figure 6.5 with the environment
parameters in Table 6.10. The parameter set for the RRT* and rerouting algorithm is
given in Table 6.12, system constraints used for estimating segment times are presented
in Table 6.11. Penalizing weights for the trajectory optimization (5.9) and parameters
for the obstacle detection with the eight-corner approach are listed in Table 6.13 and
Table 6.14, respectively.

6.3.2 Results
The trajectory planning process is depicted in Figure 6.9. Figure 6.9(a) shows a simulated
3D scenario, while Figure 6.9(b) presents the initial position trajectory in yellow. After

6 Experimental Validation 57

Parameter Value [m]
xmax 10
ymax 10
zmax 5

inflation distance (x,y) 0.5
inflation distance (z) 0.35

Table 6.10: Flight environment parameters of the simulation experiment.

Parameter Value
vmax 1 m/s
amax 5 m/s
jmax 8 m/s
smax 20 m/s

Table 6.11: Dynamic constraints for the trajectory planning of the simulation experiment.

Parameter Value
numNodes 500

� 1 m
ρ 3 m

Table 6.12: Parameters of the RRT* algorithm of the simulation experiment.

weights
wpos

�
1e4 0 0 10

wyaw

�
1e3 10

Table 6.13: Penalizing weights for the trajectory generation of the simulation experiment.

Parameter Value
ωmax 1 rad/s

voxel size 8 cm
min. cluster points 8

threshpcsegdist 0.15 m

Table 6.14: Parameters for the eight-corner approach of the simulation experiment.

6 Experimental Validation 58

5.66 s in Subfigure Figure 6.9(c), the unknown obstacle is detected by the eight-corner
approach. Thereby, the trajectory replanning is activated. Note that the newly detected
obstacle is inflated due to safety reasons. In Figure 6.9(d), the replanned trajectory is
depicted in green. The time evolution of the computed trajectory is given in Figure 6.10.

Figure 6.9: Trajectory planning process of the simulation experiment. Snapshots of the
simulation at start and at replanning can be seen in the left, the planned
trajectories with obstacles in the right column. The first row depicts the
initial setting at t = 0 s, the second row the updated environment and the
replanned trajectory at t = 5.66 s

The overall trajectory is composed of two partial trajectories, which are divided by a
dashed vertical line and steadily merge into each other.

The tracking error of the trajectory is defined as

er(t) = rdes(t) − r(t), eψ(t) = ψdes(t) − ψ(t), (6.1)

from the desired position rdes(t) and the real position r(t) at time t, the same applies
to the yaw angle ψ. This simulation shows a successful test flight. The drone started

6 Experimental Validation 59

Figure 6.10: Resulting trajectory of the simulated flight. The vertical dashed line at
5.66 s indicates a trajectory replanning, the small marks show waypoints.

6 Experimental Validation 60

Figure 6.11: Trajectory tracking error of the simulated flight. The dashed lines depict
the desired trajectory, whereas the full lines indicate the ground truth data.
The green line shows the cross-track error stated in (6.2), neglecting the
tangential component of the trajectory tracking error.

6 Experimental Validation 61

from the bottom left corner of the flight space, travelled along the initial trajectory and
the obstacle detection recognized the unknown object in the mid-flight. Therefore, a
trajectory replanning was activated, leading to a safe trajectory towards the target, i.e.
the green path in Figure 6.9(d).

In Figure 6.10, the time evolution of the trajectory is visualized. When considering the
higher derivatives of the position r(t) and the yaw angle ψ(t), we see a steady transition
at the time instance of replanning, i.e., at t = 5.66 s in Figure 6.10(e) and Figure 6.10(h).
Another noticeable feature are the peaks that occur at the waypoints in the higher
derivatives, which are within the defined limits. In Figure 6.10(b), the desired maximum
velocity is slightly surpassed in y-direction in the first part of the trajectory, which is
possible due to the polynomial-based approach.

The trajectory tracking errors for the position r(t) and the yaw angle ψ(t) according
to (6.1) are shown in Figure 6.11. It can be stated that the position tracking errors in
each dimension are not satisfactory, since they are larger than the inflation distance of
the obstacles. The position and orientation control of the drone is based on P and PID
controllers, see Section 3.3. The drone is always slightly lagging behind in the tangential
direction of the trajectory, which results in a larger tracking error at certain times t.
Therefore, the cross-track error ecross−track is introduced in [15] to compute the closest
point on the trajectory rdes to the current position r. At each time instance of the
position trajectory, a unit tangent vector t is defined. For t, a normal vector n and a
binormal vector b can be determined. The cross-track error reads as

ecross−track = �((rdes − r) · n)n + ((rdes − r) · b)b�. (6.2)

Here, the position error in tangential direction is ignored, since we are more concerned
about reducing the cross-track error rather than the error in the tangential direction of
the trajectory [15]. As mentioned above, when neglecting the tangential tracking error, a
maximum cross-track error of 29 cm after approximately t = 3 s is obtained, which is also
slightly too high. Moreover, in the worst case, it can mean a collision with an object.
This can be attributed to poor position estimation and high speeds of the quadcopter
at that time and the controller architecture. The yaw angle error of the drone peaks at
the very end, where a sharp turn towards the end-facing direction happens. However, it
stays within reasonable bounds to perceive the environment. Also, right after rerouting,
a rather long time of approximately 2 s went past, until the UAV orients towards the
desired direction. The tracking errors may be improved by lower trajectory weights,
longer segments times or tuning the PID-control parameters more aggressively. Since
the main focus of this thesis is on the (re)planning method, no further efforts were made
to reduce the trajectory tracking error by improving the existing trajectory tracking
controller of PX4 [40].

6 Experimental Validation 62

Parameter Value [m]
xmax 3.5
ymax 1.3
zmax 1.6

inflation distance (x,y) 0.5
inflation distance (z) 0.35

start position
�
0.3 0 1

target position

�
3.3 −0.25 0.5

Table 6.15: Flight environment parameters for the real-life experiment.

6.4 Experiment - Replanning
Simulations presented in the previous section show the functionality of the trajectory
planning and obstacle avoidance. For safety reasons, trajectory constraints are tightened,
which lead to slower and less aggressive trajectories. This allows the operator in case
of a failure to instantaneously initiate the quadcopter to hover or land via RC. In this
scenario, a flight environment with one fixed obstacle on the ground is set up, which is
not considered when planning an initial trajectory. Since this obstacle is located on the
line of sight between start and target position, a first replanning step is necessary. After
the UAV started to follow the trajectory, the human operator steps into the planned
path to force the trajectory replanner to compute a collision free trajectory.

6.4.1 Environment and Parameters
The experiment is conducted inside a laboratory, shown in Figure 6.12, with a flight
space of 3.5 m x 1.3 m x 1.6 m. Note that safety margins from surrounding obstacles are
already considered. Each dimension of the detected obstacles will be inflated with values
from Table 6.15 in all directions. An OptiTrack motion capture system with six cameras
is used to localize the drone. These cameras are placed around the flight space such
that each camera captures the maximum possible area. In order to increase safety in
case of failure and to avoid damage, safety nets were installed. The parameter set for
the RRT* algorithm and the rerouting is given in Table 6.16, system state constraints
used for estimating segment times are presented in Table 6.17. Penalizing weights for the
trajectory optimization (5.9) and parameters for obstacle detection with the eight-corner
approach are listed in Table 6.18 and Table 6.19.

6 Experimental Validation 63

Figure 6.12: Real-life experiments are executed in this laboratory. The blue marks on
the floor indicate the boarders of the flight space. Flights are conducted
with various obstacles.

Parameter Value
numNodes 500

� 50 cm
ρ 150 cm

Table 6.16: Parameters of the RRT* algorithm for the real-life experiment.

Parameter Value
vmax 0.5 m/s
amax 5 m/s
jmax 8 m/s
smax 10 m/s

Table 6.17: Dynamic constraints for trajectory planning for the real-life experiment.

weights
wpos

�
1e4 0 0 5

wyaw

�
1e3 10

Table 6.18: Penalizing weights of trajectory generation of the real-life experiment.

6 Experimental Validation 64

Parameter Value
ωmax 0.5 rad/s

voxel size 5 cm
min. cluster points 8

threshpcsegdist 0.15 m

Table 6.19: Parameters of the eight-corner approach for the real-life experiment.

6.4.2 Results
The trajectory planning process is visualized in Figure 6.13. The dashed yellow line
indicates the initial trajectory for an obstacle-free scenario. In the very first step, the
fixed obstacle is detected. Immediately the trajectory replanning is activated, which
yields the trajectory in green color in Figure 6.13(b). A short time after the quadcopter
started to follow the trajectory in green, another unknown obstacle, i.e. the operator,
interferes the planned flight path and is partly detected. This replanning step yields the
trajectory in blue in Figure 6.13(d). The final trajectory in red is obtained after merging
depth camera data to the correct size of the human in Figure 6.13(e) and (f).

A time evolution of the obtained trajectory is given in Figure 6.14. The overall
trajectory is composed of four partial trajectories, which are divided by dashed vertical
lines and steadily merge into each other.

The tracking error of the trajectory is depicted in Figure 6.15. The tracking error in
(6.1) results from the desired position and the real position at time t. The same procedure
is applied to the yaw trajectory. The cross-track error according to (6.2) is depicted in
green, which neglects the error in tangential direction.

The real test proves the performance of the proposed trajectory planning and the
obstacle avoidance method. After detecting the fixed obstacle in the middle of the flight
space in the first depth camera frame, the trajectory replanning was activated. Since the
quadcopter was not in motion at the very beginning of the experiment, the replanned
trajectory, depicted in green color in Figure 6.13, almost starts from the same position
as the initial one in yellow color. After the UAV started to follow the trajectory, the
operator stepped into the planned path, yielding another replanned trajectory in blue.
The operator was not fully detected, therefore, after reducing the angular speed following
a sharp turn, the full size of the operator in the field of view of the depth camera was
perceived, leading to a necessary third replanning step that creates the final trajectory
towards the target position.

In Figure 6.14, it can be seen that all derivatives of each flat output are continuous
at replanning times, guaranteeing continuous inputs to the system. Also the position
trajectory stays within reasonable bounds for all derivatives. In the time between 3.33 s
and 5 s, a very sharp maneuver in yaw happens, the drone has to turn around its own axis
in a very short time to be aligned with the flight direction again. This leads to a high yaw

6 Experimental Validation 65

Figure 6.13: Trajectory planning process of the real-life experiment. Snapshots of the
experiments at replanning timestamps can be seen in the left, the planned
trajectories with obstacles in the right column. The first row depicts the
planning process at t = 0.33 s, the second at t = 3.33 s and the last one at
t = 5 s.

6 Experimental Validation 66

Figure 6.14: Resulting trajectory of the real-life experiment. The vertical dashed lines at
0.33 s, 3.33 s and 5 s indicate a trajectory replanning, the small marks show
waypoints.

6 Experimental Validation 67

Figure 6.15: Trajectory tracking error of the real-life experiment. The dashed lines depict
the desired trajectory, whereas the full lines indicate the ground truth data.
The green line shows the cross-track error stated in (6.2), neglecting the
tangential component of the trajectory tracking error.

6 Experimental Validation 68

rate and sharp peaks in the angular acceleration. As the yaw angle is not included in the
path cost in the RRT* and the segment time estimation for the trajectory optimization
(5.9), the yaw trajectory could be very aggressive for certain scenarios. The yaw trajectory
error in Figure 6.15 is jerky after this rapid maneuver, indicating that the replanned
yaw trajectory was too aggressive for the settings of the PX4 flight controller. In fact,
the PX4 flight controller limits the yaw rate in autonomous flight modes by default to
increase safety. The tremendous error in the yaw trajectory suggests that reasonable
dynamic specifications should also be made for the yaw trajectory for the segment time
estimation. Another solution may be the implementation of additional depth camera and
distance sensors to perceive the surroundings of the quadcopter. The cross-track error
stays within 27 cm, which is the maximum distance of the rotor protectors to the center of
mass, which means the trajectory is safe for all instances of time. A very important fact
to note at this point is that the Intel Aero RTF in combination with the PX4 Autopilot
struggles to steadily hover at low altitudes or close to other surroundings. Although we
do not suffer from bad position estimation, the UAV has flight stability problems when
approaching a specific location. A possible cause could be the drag effects, since the Intel
Aero RTF has a respectable size and weight for indoor flights.

7 Conclusions
In this thesis, the topic of trajectory (re)planning and object avoidance is concerned, which
is a central topic for higher-level applications, e.g. autonomous exploration, inspection or
transportation. The focus is on the development of a trajectory (re)planning algorithm
that helps navigating the quadcopter autonomously from a takeoff position to a target
position in the presence of known and unknown obstacles.

In Chapter 3, the available hardware and software is introduced. The Intel Aero
Ready-To-Fly (RTF) platform was used, since it has a reasonable size for indoor flights
and offers various sensors to estimate its position and to perceive its surroundings. The
Intel Aero compute board runs an Ubuntu distribution with ROS, which allows a modular
combination of several tasks, and utilizes a wifi module for a connection to remote PCs.
The Intel Aero flight controller with the PX4 flight stack takes care of low-level tasks like
motor control and the position and attitude control. Both compute boards are connected
via the MAVLink protocol and the MAVROS library. The quadcopter is commanded in
autonomous mode via a remote PC, the so-called ground control station (GCS). The data
exchange between the PC and the drone occurs via ROS topics. The front-facing RGB-D
camera provides depth camera information, which is utilized for obstacle detection and
avoidance at 3 Hz. The point cloud processing and trajectory planning is accomplished
by the GCS, which sends setpoints of the collision-free optimal trajectory at a rate of
6 Hz. For development purposes, the open-source simulator Gazebo was set up on the
GCS, which offers an excellent connection to ROS and enables the software-in-the-loop
(SITL) simulation of the PX4 flight stack. This allows a seamless sim-to-real transfer.
During the experiments, an OptiTrack motion capture system is utilized to retrieve a
robust pose information of the drone in a GPS-denied environment.

Chapter 4 gives an insight into the mathematical modelling of the quadcopter. Based
on the derivation of the equations of motion, the differential flatness property of the
system, with the flat output as the position and yaw angle of the drone, was determined.
This serves as a basis for the trajectory planning process proposed in Chapter 5.

Trajectories are planned in the flat output space with obstacles modeled as cuboids,
which are inflated for safety reasons. The optimal Rapidly Exploring Random Tree
(RRT*) algorithm is utilized to find the shortest piecewise linear collision free path from
the start to the target position. The Gilbert-Johnson-Keerthi (GJK) distance algorithm
is employed to compute distances and to check for collisions. The obtained path is
truncated by a line-of-sight (LOS) optimization to straighten the path and to improve the
trajectory optimization performance. Each segment of the path is assigned a polynomial,

69

7 Conclusions 70

which are then all optimized to get a sufficiently smooth trajectory. The trajectory
duration is estimated by the 15-steps near time-optimal trajectory planning. The shape
of the trajectory can be adjusted with user-defined penalizing weights. Two different
approaches are presented to decide whether a specific part of the depth camera point
cloud represents a new obstacle. If an unknown obstacle, which may be detected during
flight, happens to intersect the flight path, the tree structure of RRT* is rerouted and a
replanning of the trajectory is initiated.

Each major module of the trajectory planning process as well as the overall planning
procedures are evaluated in Chapter 6. The influence of the respective parameters on
the RRT*, the trajectory optimization and the methods for detecting new objects based
on the depth camera data were investigated. A test flight in simulation and in real life
verified the functionality of the proposed trajectory planning and obstacle avoidance.

To increase the performance and quality in the future, different aspects may be
improved. First and foremost, including dynamic constraints on the yaw angle in the
estimation of segment times would guarantee sufficient time to align the drone with
the flight path even without aggressive controller parameterization. Also, including the
bending angle between consecutive edges in the cost of the RRT* algorithm would yield
a more linear path from the start to the target position at first hand. An automated
setting of parameters based on flight space dimensions, obstacle sizes and the respective
application would eliminate the need for a skilled operator. Softening the assumption
of convex objects in the flight space and a more precise way of modeling obstacles in
the flight space would also be further directions of research. An attempt to streamline
the algorithms, in particular for obstacle detection, could allow direct online on-board
replanning.

A Minimum Snap Trajectory - Minimum
Principle of Pontryagin

This chapter presents the proof for a minimum snap trajectory for position r(t) of
the quadcopter to be a 7th-order polynomial in time t using the minimum principle of
Pontryagin. Since all variables are time dependent, for the sake of simplicity, we use z
instead of z(t). First, we define the state z of the quadcopter in one dimension and its
time derivative ż as

z =

p
v
a
j

, ż =

v
a
j
s

 (A.1)

with the position p, velocity v, acceleration a, jerk j and snap s of the quadcopter in one
dimension.

In this work, trajectories are considered in the flat output space in the form of (5.9).
Since the inputs u2, u3 and u4 are functions of the fourth derivatives of the position, see
Section 4.2, Section 4.3, we minimize the integral of the square of the snap s

J =
tm=T�
t0=0

s2dt. (A.2)

Next, the co-state λ =
�
λ1 λ2 λ3 λ4

T
is defined. Now (A.2) is rewritten with the

system dynamics ż = f and the co-state in the form

J =
T�

0

s2 + λT (f − ż)dτ. (A.3)

Since
dλT z

dτ
= dλT

dτ
z + λT dz

dτ

−λT dz
dτ

= dλT

dτ
z − dλT z

dτ

−
T�

0

λT żdτ = −
T�

0

dλT z
dτ

dτ +
T�

0

λ̇T zdτ,

71

A Minimum Snap Trajectory - Minimum Principle of Pontryagin 72

(A.3) reads as

J = λT
0 z0 − λT

T zT +
T�

0

(s2 + λT f) − λ̇
T zdτ, (A.4)

with the notation z0 = z(t = 0) and λT
T = λT (t = T). The first term of the integrand

in (A.4) is defined as the Hamiltonian H. The optimal trajectory P ∗(T) (5.9) consists
of the state z∗ and the input u∗. We define the state as z = z∗ + �δz and the input as
u = u∗ + �δu, where � is a small number, so that the variation of z and u is small. This
leads to ∂z

∂� = δz and ∂u
∂� = δu. The minimum condition is defined as

δJ = ∂J

∂�
= 0 (A.5)

δJ = λT
0

∂z0
∂�

− λT
T

∂zT

∂�
+

T�
0

∂H

∂�
+ λ̇

T ∂z
∂�

dτ

= λT
0 δz0 − λT

T δzT +
T�

0

�
∂H

∂z
∂z
∂�

+ ∂H

∂u
∂u
∂�

�
+ λ̇

T
δzdτ

= λT
0 δz0 − λT

T δzT +
T�

0

�
∂H

∂z δz + ∂H

∂u δu
�

+ λ̇
T

δzdτ

= λT
0 δz0 − λT

T δzT +
T�

0

�
∂H

∂z + λ̇
T

�
δz + ∂H

∂u δudτ. (A.6)

Due to initial and final constraints, the first two terms in (A.6) are zero. To fulfill the
minimum condition, each component of the integrand in (A.6) must be zero, leading to

∂H

∂z + λ̇
T = 0 (A.7a)

∂H

∂u = 0. (A.7b)

Using (A.7a), we have

∂H

∂z = ∂
�
s2 + λ1v + λ2a + λ3j + λ4s

�
∂z =

0
λ1
λ2
λ3

 = −λ̇
T =

−λ̇1
−λ̇2
−λ̇3
−λ̇4

. (A.8)

A Minimum Snap Trajectory - Minimum Principle of Pontryagin 73

Thus,

λ1 = −α

λ2 = αt + β (A.9)

λ3 = −α
t2

2 − βt − γ (A.10)

λ4 = α
t3

6 + β
t2

2 + γt + δ, (A.11)

with the polynomial coefficients α, β, γ and δ. Using (A.7b), the optimal input u∗ reads
as

∂H

∂u = ∂
�
s2 + λ1v + λ2a + λ3j + λ4s

�
∂s = 2s + λ4 = 0 (A.12)

u∗ = s∗ = −α
t3

12 − β
t2

4 − γ
t

2 − 1
2δ. (A.13)

Finally, the optimal trajectory z∗ is obtained by integration, resulting in

z∗ =

p∗

v∗

a∗

j∗

 =

t�
0

v∗dt

t�
0

a∗dt

t�
0

j∗dt

t�
0

s∗dt

=

−α t7

10080 − β t6

1440 − γ t5

240 − δ t4

48
−α t6

1440 − β t5

240 − γ t4

48 − δ t3

12
−α t5

240 − β t4

48 − γ t3

12 − δ t2

4
−α t4

48 − β t3

12 − γ t2

4 − δ t
2

. (A.14)

Bibliography
[1] S. Angster, S. Wesnousky, W. Huang, G. Kent, T. Nakata, and H. Goto, “Ap-

plication of uav photography to refining the slip rate on the pyramid lake fault
zone, nevada,” Bulletin of the Seismological Society of America, vol. 106, no. 2,
pp. 785–798, 2016.

[2] T. Wang, K. Umemoto, T. Endo, and F. Matsuno, “Modeling and control of a
quadrotor uav equipped with a flexible arm in vertical plane,” IEEE Access, vol. 9,
pp. 98 476–98 489, 2021.

[3] M. Silvagni, A. Tonoli, E. Zenerino, and ChiabergeMarcello, “Multipurpose uav for
search and rescue operations in mountain avalanche events,” Geomatics, Natural
Hazards and Risk, vol. 8, no. 1, pp. 18–33, 2017.

[4] D. Kang and Y.-J. Cha, “Autonomous uavs for structural health monitoring using
deep learning and an ultrasonic beacon system with geo-tagging,” Computer-Aided
Civil and Infrastructure Engineering, vol. 33, no. 10, pp. 885–902, 2018.

[5] C. Ju and H. I. Son, “Multiple uav systems for agricultural applications: Control,
implementation, and evaluation,” Electronics, vol. 7, no. 9, 2018.

[6] A. S. Saeed, A. B. Younes, S. Islam, J. Dias, L. Seneviratne, and G. Cai, “A
review on the platform design, dynamic modeling and control of hybrid UAVs,” in
International Conference on Unmanned Aircraft Systems, 2015, pp. 806–815.

[7] L. R. Garcia Carrillo, A. Dzul, R. Lozano, and C. Pégard, Quad Rotorcraft Control.
Vision-Based Hovering and Navigation. London: Springer, 2012.

[8] D. Mellinger and V. Kumar, “Minimum Snap Trajectory Generation and Control
for Quadrotors,” in International Conference on Robotics and Automation (ICRA),
2011, pp. 2520–2525.

[9] J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel, “Nonlinear feedback control of
quadrotors exploiting first-order drag effects,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 8189–8195, 2017.

[10] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential Flatness of Quadrotor
Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories,”
IEEE Robotics & Automation Letters, vol. 3, no. 2, pp. 620–626, 2018.

74

Bibliography 75

[11] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Autonomous Navigation
and Exploration of a Quadrotor Helicopter in GPS-Denied Indoor Environments,”
in First Symposium on Indoor Flight, 2009.

[12] K. Schmid, P. Lutz, T. Tomi‘c, E. Mair, and H. Hirschmüller, “Autonomous Vision-
Based Micro Air Vehicle for Indoor and Outdoor Navigation,” Journal of Field
Robotics, vol. 31, no. 4, pp. 537–570, 2014.

[13] S. Shen, “Autonomous navigation in complex indoor and outdoor environments
with micro aerial vehicles,” Ph.D. dissertation, University of Pennsylvania, 2014.

[14] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggres-
sive quadrotor flight in dense indoor environments,” in Robotics Research, Cham:
Springer, 2016, pp. 649–666.

[15] D. W. Mellinger, “Trajectory Generation and Control for Quadrotors,” Ph.D.
dissertation, University of Pennsylvania, 2012.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[18] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces,” IEEE Transactions on
Robotics and Automation, vol. 12, pp. 566–580, 1996.

[19] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The Inter-
national Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[20] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–
894, 2011.

[21] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, and M. M. Saeed,
“RRT*-SMART: A rapid convergence implementation of RRT*,” International
Journal of Advanced Robotic Systems, vol. 10, no. 7, p. 299, 2013.

[22] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt: Optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heuris-
tic,” in International Conference on Intelligent Robots and Systems (IROS), 2014,
pp. 2997–3004.

[23] M. Cutler and J. How, “Actuator Constrained Trajectory Generation and Control
for Variable-Pitch Quadrotors,” Minneapolis, Minnesota: American Institute of
Aeronautics and Astronautics, 2012.

Bibliography 76

[24] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion planning
for quadrotors using linear quadratic minimum time control,” in International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 2872–2879.

[25] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran,
“Continuous-time trajectory optimization for online uav replanning,” in Inter-
national Conference on Intelligent Robots and Systems (IROS), 2016, pp. 5332–
5339.

[26] M. Vu, P. Zips, A. Lobe, F. Beck, W. Kemmetmüller, and A. Kugi, “Fast motion
planning for a laboratory 3d gantry crane in the presence of obstacles,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 9508–9514, 2020.

[27] M. N. Vu, A. Lobe, F. Beck, T. Weingartshofer, C. Hartl-Nesic, and A. Kugi, “Fast
trajectory planning and control of a lab-scale 3d gantry crane for a moving target in
an environment with obstacles,” Control Engineering Practice, vol. 126, p. 105 255,
2022.

[28] M. N. Vu, C. Hartl-Nesic, and A. Kugi, “Fast swing-up trajectory optimization for
a spherical pendulum on a 7-dof collaborative robot,” in International Conference
on Robotics and Automation (ICRA), 2021, pp. 10 114–10 120.

[29] F. Grander, “Dynamisches greifen von 3d-objekten mittels robotischem system,”
M.S. thesis, Automation and Control Institute (ACIN), TU Wien, 2021.

[30] Y. Peng, D. Qu, Y. Zhong, S. Xie, J. Luo, and J. Gu, “The obstacle detection and
obstacle avoidance algorithm based on 2-d lidar,” in International Conference on
Information and Automation (ICIA), 2015, pp. 1648–1653.

[31] J. Azeta, C. Bolu, D. Hinvi, and A. A. Abioye, “Obstacle detection using ultra-
sonic sensor for a mobile robot,” IOP Conference Series: Materials Science and
Engineering, vol. 707, no. 1, 2019.

[32] A. R. Vetrella, A. Savvaris, G. Fasano, and D. Accardo, “Rgb-d camera-based
quadrotor navigation in gps-denied and low light environments using known 3d
markers,” in International Conference on Unmanned Aircraft Systems (ICUAS),
2015, pp. 185–192.

[33] A. Nguyen and B. Le, “3d point cloud segmentation: A survey,” International
Conference on Robotics, Automation and Mechatronics, pp. 225–230, 2013.

[34] H. Chen and P. Lu, “Real-time identification and simultaneous avoidance of static
and dynamic obstacles on point cloud for uavs navigation,” Robotics and Au-
tonomous Systems, vol. 154, 2022.

[35] D. Natter, “Quadrotor Navigation in GPS-Denied Environments using Multi-Sensor
Data Fusion,” M.S. thesis, Automation and Control Institute (ACIN), TU Wien,
2020.

Bibliography 77

[36] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk: A system for
autonomous flight using onboard computer vision,” in International Conference on
Robotics and Automation (ICRA), 2011, pp. 2992–2997.

[37] PX4 User Guide. [Online]. Available: https://docs.px4.io/master/en/ (visited
on 06/09/2022).

[38] A. Allouch, O. Cheikhrouhou, A. Koubâa, M. Khalgui, and T. Abbes, “Mavsec:
Securing the mavlink protocol for ardupilot/px4 unmanned aerial systems,” in 15th
International Wireless Communications & Mobile Computing Conference, 2019,
pp. 621–628.

[39] Introduction MAVLink Developer Guide. [Online]. Available: https://mavlink.
io/en/ (visited on 06/09/2022).

[40] Controller Diagrams | PX4 User Guide. [Online]. Available: https://docs.px4.io/
v1.12/en/flight_stack/controller_diagrams.html (visited on 06/09/2022).

[41] Motion Capture Systems, en. [Online]. Available: http://optitrack.com/index.
html (visited on 06/09/2022).

[42] S. Vemprala, 2D/3D RRT* algorithm. [Online]. Available: https://de.mathworks.
com/matlabcentral/fileexchange/60993-2d-3d-rrt-algorithm (visited on
02/05/2022).

[43] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing the
distance between complex objects in three-dimensional space,” IEEE Journal on
Robotics and Automation, vol. 4, pp. 193–203, 1988.

[44] M. Montanari and N. Petrinic, “OpenGJK for C, C# and Matlab: Reliable solutions
to distance queries between convex bodies in three-dimensional space,” SoftwareX,
vol. 7, pp. 352–355, 2018.

[45] A. Boeuf, “Kinodynamic Motion Planning for Quadrotor-Like Aerial Robots,”
Ph.D. dissertation, Institut National Polytechnique de Toulouse, 2017.

[46] J. Qi, H. Yang, and H. Sun, “MOD-RRT*: A Sampling-Based Algorithm for
Robot Path Planning in Dynamic Environment,” IEEE Transactions on Industrial
Electronics, vol. 68, no. 8, pp. 7244–7251, 2021.

https://docs.px4.io/master/en/
https://mavlink.io/en/
https://mavlink.io/en/
https://docs.px4.io/v1.12/en/flight_stack/controller_diagrams.html
https://docs.px4.io/v1.12/en/flight_stack/controller_diagrams.html
http://optitrack.com/index.html
http://optitrack.com/index.html
https://de.mathworks.com/matlabcentral/fileexchange/60993-2d-3d-rrt-algorithm
https://de.mathworks.com/matlabcentral/fileexchange/60993-2d-3d-rrt-algorithm

Eidesstattliche Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct - Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Vienna, October 2022

Martin Zimmermann

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Literature Review
	2.1 Modeling
	2.2 Autonomous Navigation
	2.2.1 Path and Trajectory Planning
	2.2.2 Obstacle Detection

	3 Setup and Equipment
	3.1 Intel Aero RTF drone
	3.1.1 Intel Aero compute board
	3.1.2 Intel Aero flight controller board
	3.1.3 Sensors

	3.2 Simulation environment
	3.3 Overview of the simulation and experiment setup

	4 Mathematical Modeling
	4.1 Coordinate Frames
	4.2 System Dynamics
	4.3 Differential Flatness

	5 Trajectory (re)planning
	5.1 Overview of simulation and experimental setup
	5.2 RRT/RRT* - Rapidly Exploring Random Tree
	5.3 Line of Sight Optimization
	5.3.1 Yaw angle planning
	5.3.2 Gilbert-Johnson-Keerthi Distance Algorithm

	5.4 Trajectory Generation
	5.5 Obstacle Avoidance and Replanning
	5.5.1 Sense and Process
	5.5.2 Obstacle Detection
	Point Cloud Approach
	Eight-Corner Approach

	5.5.3 Trajectory Validation
	5.5.4 Replanning

	6 Experimental Validation
	6.1 Influence of Parameters on Trajectory Planning
	6.1.1 Variation of RRT* Parameters
	6.1.2 RRT* Rerouting
	6.1.3 Variation of Trajectory Generation Weights

	6.2 Simulation - Comparison Obstacle Detection Approaches
	6.3 Simulation - Replanning
	6.3.1 Environment and Parameters
	6.3.2 Results

	6.4 Experiment - Replanning
	6.4.1 Environment and Parameters
	6.4.2 Results

	7 Conclusions
	A Minimum Snap Trajectory - Minimum Principle of Pontryagin

