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1 Materials and Methods

Detailed information about the scCO2 flow device is summarized in the experimental part of 

the main manuscript.

Unless otherwise noted, chemicals were purchased from several chemical suppliers and used 

without further purification. Limonene dioxide 7b was kindly provided by Nitrochemie Aschau 

GmbH. 1-Methylimidazole was distilled prior to use (80 °C, 13 mbar). Dichloromethane, used 

for reactions which required anhydrous conditions, were pre-distilled and dried over Al2O3 

columns (PURESOLV, Innovative Technology). TLC analysis was performed on silica gel 60 F254 

aluminium plates from Merck containing a fluorescent indicator using solvent mixtures of 

ethyl acetate in liquid petroleum. Spots were visualized using ultraviolet light (254 nm) or were 

stained with cer ammonium molybdate (0.5 g Ce(NH4)4(SO4)4 · 2H2O, 12.0 g (NH4)6Mo7O24· 4 

H2O, 235 mL H2O, 15 mL conc. H2SO4) followed by heating. 

GC measurements were performed with a Thermo Scientific Trace 1310 gas chromatograph 

containing two capillary columns from Restek Rtx-5 (Rtx-5, 15 m x 0.25 mm x 1.00 µm) and a 

flame ionization detector (FID). A Thermo Trace 1300 / ISQ LT (single quadrupole MS (EI)) 

containing a standard capillary column from Restek (Rxi-5sil MS, 30 m x 0,25 mm x 0,25 µm) 

was used for GC/MS measurements (initial temperature: 100 °C (holding time 2 min); rate: 35 

°C/min to 300 °C (holding time: 4 min). 

1H-NMR and 13C-NMR spectra were recorded from CDCl3 solutions on a Bruker Avance 

UltraShield 400/600 (1H: 400, 600 MHz, 13C: 101 MHz) spectrometer. 

FTIR spectra (transmission mode) were recorded on a PerkinElmer Spectrum 65 FTIR 

spectrometer. Resolution was set to 4 cm-1, 8 scans were used. Spectra were recorded from 

4000 - 500 cm-1. Raw data were processed with the PerkinElmer Spectrum Software.

DRIFT spectra (result spectra: Kubelka Munk) were recorded on a Bruker Vertex 80 FTIR 

spectrometer using a narrow band MCT detector. Resolution was set to 4 cm-1, 256 scans were 

used. Spectra were recorded from 4000 – 800 cm-1 and raw data were processed with 

MestreNova and OPUS. Samples (40 mg / 400 mg KBr) were diluted with KBr from Sigma 

Aldrich (99%, FTIR grade) and dried for 4 days under high vacuum.
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The physisorption measurements were carried out on an ASAP 2010 by Micromeritics GmbH. 

The degassing procedure was set to 120 °C for 6 hours and the isotherms were obtained using 

nitrogen at 77 K. BET (Brunauer-Emmett-Teller) specific surface areas were calculated based 

on BET equation, pore volumes were calculated based on BJH (Barret-Joyner-Halenda) 

equation from the desorption branch and average pore diameters were calculated based on 

desorption branch.

 For thermogravimetric analysis (TGA), a Netzsch STA 449 F1 system was used. Temperature 

was increased from 25 °C to 450 °C with a rate of 5 °C/min. 
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2 Ionic Liquids 

2.1 Synthesis of [C2mim]Br 5 and [C2mim]I 6

Tetrabutylammonium halides TBAX 1-3 and 1-ethyl-3-methylimidazolium chloride [C2mim]Cl 

4 were purchased from several suppliers and dried under high vacuum prior to use. 

1-Ethyl-3-methylimidazolium bromide [C2mim]Br 5 and 1-ethyl-3-methylimidazolium iodide 

[C2mim]I 6 were synthesized according to modified literature protocols1, 2

Bromoethane or iodoethane (134 mmol, 1.10 equiv.) was added dropwise to freshly distilled 

1-methylimidazole (10.00 g, 122 mmol, 1.00 equiv.) under argon atmosphere. For [C2mim]Br 

5, the reaction mixture was heated up to 40 °C for 4.5 h, respectively to 80 °C for 30 min for 

[C2mim]I 6. Complete conversion was confirmed via 1H-NMR spectroscopy. The reaction 

mixture was cooled with an ice bath whereby the product precipitated. The solid material was 

recrystallized (minimum amount of ACN for dissolving, ethyl acetate for precipitation). The 

solid material was washed with ethyl acetate (3 x 30 mL), volatiles were removed in vacuo. 

The ionic liquids 5 and 6 were dried for three days at room temperature under high vacuum. 

[C2mim]Br 5: 96% (22.35 g, 117 mmol, colorless crystals) 1H NMR (400 MHz, CDCl3, CH4Si) δ = 

10.28 (s, 1H, -N=CH-N-), 7.61 – 7.53 (m, 2H, -N-CH-CH-N-), 4.36 (q, J = 7.4 Hz, 2H, -N-CH2-CH3), 

4.06 (s, 3H, -N-CH3), 1.55 (t, J = 7.4 Hz, 3H, -N-CH2-CH3) ppm. 13C NMR (101 MHz, CDCl3, CH4Si) 

δ = 137.04 (d, C2), 123.70 (d, C4), 121.97 (d, C5), 45.29 (t, CH2-CH3), 36.70 (q, N-CH3), 15.71 (q, 

CH2-CH3) ppm. [C2mim]I 6: quant. (28.90 g, 121 mmol, pale yellow crystals) 1H NMR (400 MHz, 

CDCl3, CH4Si) δ = 10.47 – 9.63 (m, 1H, -N=CH-N-), 7.50 (d, J = 1.7 Hz, 2H, -N-CH-CH-N-), 4.51 – 

4.34 (m, 2H, -N-CH2-CH3), 4.11 (d, J = 0.6 Hz, 3H, -N-CH3), 1.61 (t, J = 7.4 Hz, 3H, -N-CH2-CH3) 

ppm. 13C NMR (101 MHz, CDCl3, CH4Si) δ = 136.76 (d, C2), 123.74 (d, C4), 121.99 (d, C5), 45.61 

(t, CH2-CH3), 37.22 (q, N-CH3), 15.75 (q, CH2-CH3) ppm.
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2.2 NMR Spectra: 1-Ethyl-3-methylimidazolium Bromide [C2mim]Br 5
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Figure S1: 1H-NMR spectrum of 1-ethyl-3-methylimidazolium bromide [C2mim]Br 5.

30405060708090100110120130140150160170180190200210220
f1 (ppm)

Br
-

CH3

CH3
N N

+

Figure S2: 13C-NMR spectrum of 1-ethyl-3-methylimidazolium bromide [C2mim]Br 5.

Spectral data are in accordance with literature3.
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2.3 NMR Spectra: 1-Ethyl-3-methylimidazolium Iodide [C2mim]I 6

0123456789101112131415
f1 (ppm)

3.
05

3.
00

2.
03

1.
95

0.
96

-N=CH-N- (m)
10.02

N-CH=CH-N- (d)
7.50

J(1.7)

N-CH3 (d)
4.11

J(0.6)

-N-CH2-CH3 (t)
1.61

J(7.4)

-N-CH2-CH3 (m)
4.39

N
+

N
CH3

CH3

I
-

Figure S3: 1H-NMR spectrum of 1-ethyl-3-methylimidazolium iodide [C2mim]I 6.
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Figure S4: 13C-NMR spectrum of 1-ethyl-3-methylimidazolium iodide [C2mim]I 6.

Spectral data are in accordance with literature4. 
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3 Supported Ionic Liquid Phases (SILPs)

3.1 Thermogravimetric Analysis (TGA) 
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Figure S5: Catalyst loadings of SILP 1 measured via TGA.

Range: 25 °C – 450 °C (rate: 5 °C/min) 
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Figure S6: Thermal stability of SILP 1 (20 wt% TBAC 1) determined via TGA.

Range: 25 °C – 100 °C (rate: 5 °C/min); 100 °C – 250 °C (rate: 1 °C/min) 
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Figure S7: Catalyst loading of SILP 2 (20 wt% TBAB 2) measured via TGA.

Range: 25 °C – 500 °C (rate: 5 °C/min) 
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3.2 Diffuse Reflectance Infrared Fourier Transform Spectra (DRIFTS)
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Figure S8: DRIFTS spectra of SILP 1 compared to supporting material silica gel 60
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Figure S9: DRIFTS spectra of SILP 2 compared to supporting material silica gel 60
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Figure S10: DRIFTS spectra of SILP 1 compared to supporting material calcined silica gel 60
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3.3 Nitrogen Physisorption Measurements (BET, BJH) 

Table S1: Characterization of SILP 1 (15 wt% catalyst loading) via N2 physisorption

sample
BET surface 

areaa

[m2/g]

pore 
volumeb

[cm³/g]

average pore 
diameterc

[Å]

silica gel 60 (reference) 634.37 0.91 55.38

SILP 1 (15 wt% TBAC 1 - freshly prepared) 450.93 0.57 49.07

SILP 1 (15 wt% TBAC 1 – after 48 h reaction time) 231.01 0.34 45.40

a calculated based on BET equation; b calculated based on BJH equation; determined based on desorption 

branch

Figure S11: N2 adsorption – desorption isotherms of silica gel 60 (reference material, black), freshly prepared 

SILP 1 catalyst (blue) and SILP 1 catalyst after 48 h reaction time (orange)
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4 Conversion of Bioderived Limonene Oxide 7a

4.1 Determination of NMR Conversions and NMR Yields

On the Example of a Batch Reaction Running for 20 h

For the determination of yields and conversions, an NMR spectrum of the reaction mixture 

before (t=0) and after (t=20) the reaction was recorded (see Figure S11). The NMR conversions 

and NMR yields were determined according to formulas S1-S6 given below by comparison of 

the integrals of the same hydrogens of the starting material before the reaction and the 

product after the reaction. The integrals are always referenced to the same amount of internal 

standard (naphthalene, δ = 7.82 and 7.45 ppm, integral set to 1.00). 

In case of the continuous flow experiments, no conversions were determined, incorrect values 

were determined due to partial evaporation of the volatile starting material while CO2 was 

released via the back-pressure regulator.
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Figure S12: Limonene oxide 7a: Calculation of NMR yields via the comparison of the integrals of recorded 1H-

NMR spectra before and after the reaction.
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conversion 7a (cis) (%) =
I7a (𝑐𝑖𝑠)t = 0 ―  I7a (𝑐𝑖𝑠)t = 20 

I7a (𝑐𝑖𝑠)𝑡 = 0
∙ 100

Formula S1

conversion 7a (trans) (%) =
I7a (𝑡𝑟𝑎𝑛𝑠)t = 0 ―  I7a (𝑡𝑟𝑎𝑛𝑠)t = 20 

I7a (𝑡𝑟𝑎𝑛𝑠)𝑡 = 0
∙ 100

Formula S2

conversion 7a (%) =
(I7a (𝑐𝑖𝑠) t = 0 +  I7a (𝑡𝑟𝑎𝑛𝑠)t = 0 ) ― (I7a (𝑐𝑖𝑠) t = 20 

+  I7a (𝑡𝑟𝑎𝑛𝑠)t = 20 )

I7a (𝑐𝑖𝑠)𝑡 = 0 +  I7a (𝑡𝑟𝑎𝑛𝑠)𝑡 = 0
∙ 100

Formula S3

yield 8a (cis) (%) =
I8a (cis)t = 20 

I8a (cis)𝑡 = 0 + I8a (cis)t = 0
∙ 100

Formula S4

yield 𝟖𝐚 (𝑡𝑟𝑎𝑛𝑠) (%) =
 I8a (t𝑟𝑎𝑛𝑠)t = 20 

I7a (𝑐𝑖𝑠)𝑡 = 0 + I7a (𝑡𝑟𝑎𝑛𝑠)t = 0
∙ 100

Formula S5

yield 𝟖𝐚 (%) =
I8a (𝑐𝑖𝑠)t = 20 +  I8a (𝑡𝑟𝑎𝑛𝑠)t = 20 

I7a (𝑐𝑖𝑠)𝑡 = 0 + I7a (𝑡𝑟𝑎𝑛𝑠)t = 0
∙ 100

Formula S6

conversion (7a) conversion of cis and trans limonene oxide 7a

yield (8a) yield of cis and trans limonene carbonate 8a

integral of cis or trans limonene oxide 7a at t= 0 h or 20 hI7a (xxx)t = yy 

integral of cis or trans limonene carbonate 8a after the reaction (t=20)I8a (xxx)t = 20 
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4.2 Batch Conditions: Optimization Studies with SILP 1 as Catalyst

Table S2: Limonene oxide 7a: Summary of optimization studies with SILP 1. a

entry solvent temperature catalyst loading
supporting

material b
yield of 8a (NMR) 

[%]

S1 neat 62

S2 + 10 wt% H2O
31

(+20% limonene diolc)

S3 heptane

100 °C 20 wt% silica

41

S4 80 °C 42

S5 100 °C 62

S6

neat

120 °C

20 wt% silica

60

S7 10 wt% 26

S8 15 wt% 30

S9 20 wt% 62

S10

neat 100 °C

40 wt%

silica

68

S11 silica 62

S12
neat 100 °C 20 wt%

calcined silica 45

a conditions: 5 MPa CO2 (gaseous, initial pressure), 5 mmol limonene oxide 7a (cis/trans=43/57), 10 mol% TBAC 

1 immobilized as SILP 1, 13 mg naphthalene (internal standard), 100 °C, 20 h; Further information about the 

calculations of NMR yields are summarized in the supplementary information (ESI Figure S12 and Formula S1-

S6); b supporting materials were dried in a vacuum oven (50 mbar, 50 °C, 24 h) prior to use; calcination of silica 

was performed at 400 °C for 3 days; c according to GC/MS.
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4.3 Batch Conditions: Recycling Studies of SILP 1 and SILP 2

Table S3: Limonene oxide 7a: Recycling of SILPs in batch mode

yield

(NMR) [%] acycle catalyst

sum

cycle 1 62

cycle 2 50

cycle 3 30

cycle 4

SILP 1 (20 wt% TBAC 1)

25

cycle 1 31

cycle 2 31

cycle 3 29

cycle 4

SILP 2 (20 wt% TBAB 2)

23

a Conditions: 5 MPa CO2 (gaseous, initial pressure), 5 mmol limonene oxide 7a (cis/trans=43/57), 10 mol% 
catalyst 1-6, 13 mg naphthalene (internal standard), 100 °C, 20 h; work-up: separation of SILP material via suck 
filtration, washing with heptane and evaporation of volatiles; Conversions were not determined due to partial 
removal of volatile starting material during evaporation of heptane. Further information about the calculations 

of NMR yields are summarized in the supplementary information (ESI Figure S12 and Formula S1-S6).
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4.4 Continuous Flow: Optimization of Flow Rates

Table S4: Limonene oxide 7a: Influence of flow rates of CO2 and substrate in continuous flow using SILP 1 as 

heterogeneous catalyst. a

flow rates 
[mL/min] yield (NMR) b [%]

entry
CO2 substrate

residence time
[s] maximum overall 

(12 h)
leaching c

S13 0.99 250 s 44 19 < 1%
S14 1.49 166 s 28 18 < 1%
S15 1.99 125 s 22 15 n. o.
S16 2.49 100 s 22 16 n. o.
S17 3.99 

0.01

62 s 17 12 n. o.

S18 1.98 0.02 125 s 20 14 < 1%

a Conditions: SILP 1 (2.222 g, 250 mm column), 15 MPa, 120 °C, 12 h; b Yields are given as sum of cis and trans 

isomer.  internal standard: naphthalene; Further information about the calculations of NMR yields are 

summarized in the supplementary information (ESI Figure S12 and Formula S1-S6); c for determination of 

leaching, the integral of the signal at δ = 3.35 ppm of TBAC 1 was used.
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Figure S13: Limonene oxide 7a: Impact of flow rates of CO2 in continuous flow.
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4.5 Continuous Flow: Long-term Stability (96 h)
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Figure S14: Limonene oxide 7a: Long-term stability of SILP 1 over 96 h. Final optimized conditions: SILP 1 

(2.22 g, 30 wt% loading), 1.99 mL/min CO2, 0.01 mL/min limonene oxide 7a, 15 MPa, 120 °C, 96 h, 250 mm 

catalyst cartridge
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4.6 NMR Spectra: Limonene Carbonate 8a (Mixture of cis and trans Isomer)
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Figure S15: 1H-NMR spectrum of the diastereomeric mixture of limonene carbonate 8a.
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Figure S16: 13C-NMR spectrum of the diastereomeric mixture of limonene carbonate 8a.

Spectral data are in accordance with literature.5
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5 Conversion of Bioderived Limonene Dioxide 7b

5.1 Determination of GC Yields: Calibration Curves and GC Chromatogram

For the calibration curves, epoxycarbonate 8b and biscarbonate 8c were purified via column 

chromatography and a dilution series of each compound in ethyl acetate (1, 0.5, 0.25, 0.125, 

0.0625 mg/mL) was prepared using octane as internal standard (0.4 mg/mL sample).
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Figure S17: GC calibration curves for epoxycarbonate 8b and biscarbonate 8c.
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Figure S18: Limonene dioxide 7b: A typical gas chromatogram for the calculation of GC-yields.
 The sum of isomers of epoxycarbonate 8b (EC 1-4) and biscarbonate 8c (BC 1-2) was used for calculations of 

GC yields.
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5.2 Continuous Flow: Long-term Stability (48 h)
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Figure S19: Limonene dioxide 7b: Long-term stability of SILP 1 using catalyst loadings of 15 wt% and 30 wt%. 

Conditions: SILP 1 (2.22 g), 1.99 mL/min CO2, 0.01 mL/min limonene dioxide 7b, 20 MPa, 120 °C, 48 h; leaching 

of immobilized catalyst TBAC 1 was quantified via 1H-NMR spectroscopy (signal at 3.35 ppm) using 

naphthalene as internal standard.
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5.3 NMR and GC Spectra: Epoxycarbonate 8b (Mixture of 4 Diastereomers) 
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Figure S20: 1H-NMR spectrum of the diastereomeric mixture of epoxycarbonate 8b.
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Figure S21: 13C-NMR spectrum of the diastereomeric mixture of epoxycarbonate 8b.
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Figure S22: Gas chromatogram of the diastereomeric mixture of epoxycarbonate 8b.
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5.4 NMR and GC Spectra: Biscarbonate 8c (Mixture of 2 Diasteriomers)
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Figure S23: 1H-NMR spectrum of the diastereomeric mixture of biscarbonate 8c.
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Figure S24: 13C-NMR spectrum of the diastereomeric mixture of biscarbonate 8c.
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Figure S25: Gas chromatogram of the diastereomeric mixture of biscarbonate 8c.
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6 List of Abbreviations

[C2mim]Br 1-ethyl-3-methylimidazolium bromide
[C2mim]Cl 1-ethyl-3-methylimidazolium chloride
[C2mim]I 1-ethyl-3-methylimidazolium iodide 
approx. approximately
aqu. aqueous
BC (isomer of) biscarbonate 8c
BET Brunauer-Emmett-Teller
BJH Barret-Joyner-Halenda
br broad (NMR)
cat. catalytically / catalyst / catalysis
d doublet (NMR)
DCM dichloromethane
dd doublet of doublets (NMR)
dt doublet of triplets (NMR)
EC (isomer of) epoxycarbonate 8b
equiv. equivalent
EtOAc ethyl acetate
GC/MS gas chromatography - mass spectrometry hyphenation
J coupling constant (NMR)
LC limonene carbonate
LO limonene oxide
LP light petroleum (boiling point 40 - 60 °C)
m multiplet (NMR)
m/z ratio of mass to charge (GC/MS)
M+ molecular ion (GC/MS)
Me methyl
NMR nuclear magnetic resonance
ppm parts per million
Rf retention factor (TLC)
rt room temperature
s singlet (NMR)
satd. saturated
scCO2 supercritical CO2

SILP supported ionic liquid phase
TBAB tetrabutylammonium bromide
TBAC tetrabutylammonium chloride
TBAI tetrabutylammonium iodide
TGA thermogravimetric analysis
TLC thin layer chromatography
UV ultraviolet
UV-Vis ultraviolet-visible
wt% weight percent
δ chemical shift (NMR)
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