
Vol.:(0123456789)1 3

Ethics and Information Technology (2022) 24:43
https://doi.org/10.1007/s10676-022-09665-8

ORIGINAL PAPER

Enforcing ethical goals over reinforcement‑learning policies

Emery A. Neufeld1  · Ezio Bartocci1 · Agata Ciabattoni1 · Guido Governatori2

Accepted: 24 August 2022
© The Author(s) 2022

Abstract
Recent years have yielded many discussions on how to endow autonomous agents with the ability to make ethical decisions,
and the need for explicit ethical reasoning and transparency is a persistent theme in this literature. We present a modular and
transparent approach to equip autonomous agents with the ability to comply with ethical prescriptions, while still enacting
pre-learned optimal behaviour. Our approach relies on a normative supervisor module, that integrates a theorem prover for
defeasible deontic logic within the control loop of a reinforcement learning agent. The supervisor operates as both an event
recorder and an on-the-fly compliance checker w.r.t. an external norm base. We successfully evaluated our approach with
several tests using variations of the game Pac-Man, subject to a variety of “ethical” constraints.

Keywords  Deontic defeasible logic · Reinforcement learning · Normative reasoning · Ethical artificial intelligence

Introduction

From self-driving cars to unmanned aerial vehicles, autono-
mous agents are becoming increasingly ubiquitous in many
facets of contemporary life. Participation in activities for-
merly reserved for human operators requires such agents to
adapt to (potentially unpredictable) changes in their environ-
ment; reinforcement learning (RL) has been demonstrated to
be an effective tool for teaching agents such behaviour (e.g.
Levine et al., 2016; Silver et al., 2017).

Contributing to human activities, however, elicits the
further requirement that agents constrain their behaviour
according to the ethical standards their human counterparts
are subject to. This introduces the additional challenge of
establishing boundaries for the behaviour of autonomous
agents—and in some cases, making some form of ethi-
cal reasoning available to these agents. RL agents can be

trained—via the assignment of rewards/penalties by an ethi-
cal utility function—to avoid unethical behaviour and pursue
ethical compliance, see e.g. Noothigattu et al. (2019), Abel
et al. (2016), Wu and Lin (2018), and Rodriguez-Soto et al.
(2021). However, in many cases, this approach offers limited
guarantees of the desired behaviour. Furthermore, such tech-
niques can be cumbersome when dealing with the complex-
ity of ethical reasoning; the presence of conflicting norms
with different priorities, exceptions to norms, or contrary-to-
duty obligations (i.e., obligations which are only applicable
in case of violations), introduce subtleties not easily captured
by learned policies. An additional challenge arises when we
embed ethical principles in the learning process; doing so
requires us to retrain the policy from scratch each time we
wish to modify the adopted norms.

Similar to other black-box machine learning methods,
RL lacks transparency in explaining why certain policies
are compliant or not. Meanwhile, transparency is frequently
adopted as a key requirement in work on machine ethics
(e.g. in Dignum, 2017); the works (Aler Tubella & Dignum,
2019; Aler Tubella et al., 2019), for instance, deliberately
address the problem of transparency. Despite the thorough-
ness of their approach, it has not been implemented and
tested yet.

 *	 Emery A. Neufeld
	 emery.a.neufeld@gmail.com

	 Ezio Bartocci
	 ezio.bartocci@tuwien.ac.at

	 Agata Ciabattoni
	 agata@logic.at

	 Guido Governatori
	 gvdgdo@gmail.com

1	 TU Wien, Vienna, Austria
2	 Data61, CSIRO, Brisbane, Australia

http://orcid.org/0000-0001-5998-3273
http://crossmark.crossref.org/dialog/?doi=10.1007/s10676-022-09665-8&domain=pdf

	 E. A. Neufeld et al.

1 3

 43   Page 2 of 19

Our approach

We aim to integrate ethical reasoning into learning agents
to accommodate changing values, cope with apparent con-
tradictions in ethical requirements, handle situations where
no compliance is possible, and facilitate the transparent
justification of judgments made—without sacrificing the
optimal behaviour the agent has learned. Our approach
integrates RL with Deontic Logic, the branch of logic con-
cerned with the formal specification of normative state-
ments. Ethical norms can be modeled using Deontic Logic
(von Wright, 1968; Nowell-Smith & Lemmon, 1960); the
difference between ethical and legal norms is found in how
they originate, not in what normative consequences they
imply.

We introduce a logic-based normative supervisor mod-
ule which we integrate into an RL agent. The supervi-
sor advises the agent on courses of action that comply
with the normative (e.g., ethical) requirements in force
in a given situation. The supervisor can function as both
an on-the-fly compliance checker and an event recorder;
it will correct the action selected by the agent’s policy
only when it violates a norm, and as an event logger, it
will identify the specifics of these violations and record
the conditions under which they occur (thereby informing
further analysis and possible modifications to the agent or
the norms it is subject to). The supervisor addresses what
we see as important challenges in implementing ethical
AI, especially the accommodation of changing values, the
explicit justification of actions, and the selection of the
‘lesser evil’ when no compliant action is possible.

Among the various alternative formalisms proposed
within the field of Normative Multi-Agent Systems (Nor-
MAS) (Andrighetto et al., 2013), we have chosen defeasi-
ble deontic logic (Governatori et al., 2013; Governatori &
Rotolo, 2008) to implement our normative supervisor. This
is a simple and computationally feasible, yet expressive
logic which allows for defeasible reasoning, handles con-
trary-to-duty norms, and can easily accommodate changes
to the norm base. Moreover, the constructive nature of this
logic allows us to determine how a given conclusion has
been reached (Governatori, 2018).

Ethical Pac‑Man

We demonstrate the functionalities of our approach on
an RL agent that plays variations of the game Pac-Man.
This game is a closed environment with clearly defined
game mechanics and parameters which are easy to iso-
late, manipulate, and extend with variably intricate rule
sets that can simulate normative conflicts and dilemmas.

Pac-Man has already been used as a case study in Noothi-
gattu et al. (2019) and Hasanbeig et al. (2019), both using
a bottom-up approach to learn to act according to implicit
behavioral constraints on the RL agent borne out in the
environment, as opposed to top-down approaches that
explicitly enforce imperatives on the agent’s actions. The
work in Noothigattu et al. (2019) employs multi-objec-
tive RL with policy orchestration to impose constraints
on a version of Pac-Man for which it is unethical to eat
ghosts (“vegan” Pac-Man). It seamlessly combines ethi-
cally compliant behaviour and learned optimal behav-
iour; however, the ethical reasoning performed is still to a
degree implicit, and it does not provide justifications for
the choices made, nor is it clear how the approach would
remain effectively transparent with more complex norm
sets. Hasanbeig et al. (2019) integrates more complex con-
straints in a RL agent, but seeing as they are are embedded
in the learned policy, it still lacks the transparency of a
logic-based implementation.

We successfully demonstrated the effectiveness of our
approach with a series of tests subject to a “vegan” norm
base (Noothigattu et al., 2019), a “vegetarian” norm base
(where Pac-Man is allowed to eat only one of the ghosts),
and two norm bases that compromise Pac-Man’s ability to
win the game. We then expanded the vegan norm base by
adding permissive norms, leading to two new variants of
the game; furthermore, we have experimented with a con-
trary-to-duty obligation that regulates the agent’s behaviour
when it violates its norm base. Our framework facilitates
such revisions to the norm base; records of violations that
occur allowed us to confirm the nature of each violation
as necessary, and were used to formulate additional norms
for preventing violations. These tests allowed us to evaluate
both the strengths and limitations of our approach.

Related work

The field of NorMAS studies the use of norms and norma-
tive systems to regulate the behavior of agents and to deter-
mine if the agent’s behavior complies with a set of norms
(Andrighetto et al., 2013). Among the different proposals
for NorMAS are non-monotonic approaches that extend the
BDI (belief-desire-intention) architecture with a normative
component to ensure that an agent’s plans comply with a set
of norms or, alternatively, to select plans that do not violate
the given norms, see e.g. Broersen et al. (2001) and Gov-
ernatori and Rotolo (2008).

Our approach can be seen as an extension of Lam and
Governatori (2013), with our plans being limited to single
actions that do not result in a violation. Here, however, the
agent is equipped with a RL module to learn the behaviours
involved in pursuing non-ethical goals, in which our logical
framework intervenes only if necessary. In addition, based

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 3 of 19  43

on the log of the events (and the relevant normative states)
we progressively expand the norm base to reduce the inci-
dence of negative effects.

More formalisms and tools have been proposed to regu-
late the normative behavior of agents; these include logic
programming (e.g. Sergot et al., 1986; Pereira & Saptawi-
jaya, 2009; Berreby et al., 2017), argumentation (e.g. Prak-
ken & Sartor, 2015), Input/Output logic (Makinson & Van
Der Torre, 2007), and the agent model in Sadri et al. (2006),
but to the best of our knowledge they have not yet been used
in combination with RL.

Our work complements other approaches that equip an
RL agent with potentially unsafe behaviour with a safe wrap-
per component limiting its actions. Shielding (Alshiekh
et al., 2018; Jansen et al., 2020), for example, employs a lin-
ear temporal logic (LTL) (Pnueli, 1977) constraint for defin-
ing safe behaviour for the agent. Starting from this specifi-
cation, they automatically synthesize a ‘shield’ component
to prevent the agent from moving into unsafe states; this
shield is computed before the RL agent begins operation.
Our approach differs in that we compute the compliance of
actions dynamically (allowing for changes in regulation dur-
ing operation), and employ defeasible deontic logic, which
is tailored to normative reasoning. In contrast with LTL,
defeasible deontic logic is capable, for instance, of properly
handling obligations and permissions in force after another
obligation has been violated; a violation is represented by
the conjunction Op ∧ ¬p (where O is the deontic obligation
operator) and LTL cannot accommodate a contrary-to-duty
obligation Oq logically depending (as compensation) on a
violation (Governatori, 2015).

This paper expands extensively upon the results pre-
sented in our preliminary work (Neufeld et al., 2021), which
introduces the normative supervisor we use to regulate the
agent’s behaviour in this work. In comparison to Neufeld
et al. (2021), we delve into some of the supervisor’s inter-
nal mechanisms with more depth, and more expansively
test its capabilities; we work through a thorough analysis of
violations that occur in the “vegan” and “vegetarian” norm
bases, and introduce norm bases that compromise Pac-Man’s
ability to win the game, as well as norm bases that include
reasoning about permissions and contrary-to-duty obliga-
tions. This extended battery of tests allows us a much more
thorough discussion of the normative supervisor’s strengths
and weaknesses in imposing ethical behaviour on an agent.

Paper organization

Section "Background" introduces some of the background
concepts needed to discuss our work, including defeasible
deontic logic. Section "The normative supervisor" provides a
thorough breakdown of our normative supervisor’s architec-
ture in the context of our case study, while Sect. "Variations

and experimental results" presents the variants of the game
and the corresponding tests. In Sect. "Conclusion and future
work" we draw our conclusions and discuss future research
directions.

Background

Below, we briefly contextualize our work in the field of
machine ethics, introduce the necessary background on nor-
mative reasoning and defeasible deontic logic, review the
topic of reinforcement learning, and describe (vegan) Pac-
Man—the agent and environment utilized in our case study.

Machine ethics

Our work arises in the greater context of the field of machine
ethics. Machine ethics, it might be argued, centres on the
project of creating Artificial Moral Agents (AMAs). Autono-
mous systems may never be capable of moral agency in the
same sense that humans are, but many believe that making
them behave like moral agents remains a feasible challenge
(Wallach & Allen, 2008). Autonomous agents that can shape
their behaviour in response to the (ethical) norms humans
impose on society may become an important part of the
smooth integration of new technologies in everyday life. In
particular, they may prove useful in the avoidance of harms
(both direct and indirect) arising from this integration, and
augment our ability to enforce ethical or legal standards on
the design and use of these technologies. It should be noted
that research into AMAs should not preclude the urgent need
for responsible regulation and oversight of technologies old
and new; instead, AMAs can and should complement these
efforts. However, the development of (useful) AMAs comes
with substantial difficulties.

In Moor (2006), a taxonomy of ethical agents is pro-
vided, with specific focus on explicit ethical agents, which
are autonomous agents that reason explicitly about ethical
values and/or norms (as opposed to having their actions con-
strained to avoid unethical outcomes, or functioning as full
ethical agents, as a human might). Even these limited ethical
agents come with serious challenges that must be bridged.
Explicit representation of ethics requires ethical notions to
be represented and reasoned about precisely and effectively;
this must involve some kind of formalization of ethical prin-
ciples. And once we are able to do that, there are a plethora
of ethical principles to choose from, support for which varies
with application domain or cultural context. How should we
choose what kind of ethics we implement? Do machine ethi-
cists and engineers have the right to make any such design
decisions? Additionally, social and ethical norms change
over time (IEEE, 2019), introducing a need for mechanisms
for updating the AMA’s understanding of what is moral in

	 E. A. Neufeld et al.

1 3

 43   Page 4 of 19

the current context. More issues arise when we consider how
to assign moral accountability for the actions of an AMA;
this is part of the more general pursuit of imbuing autono-
mous agents with transparent and understandable reasoning
skills, which becomes all the more important when ethical
decisions must be justified.

In this paper we discuss a framework for integrating
explicitly represented norms into the behaviour of certain
learning agents. The normative supervisor we introduce does
not serve as an architecture for an AMA; however, it enables
us to modify the behaviour of artificial amoral agents, forc-
ing them to act in such a way that matches how an AMA
might in certain contexts. This framework was designed to
introduce a high degree of configurability; the decoupling of
the learning agent and the supervisor allows us to seamlessly
switch between the normative systems we wish to enforce
(whether these are ethical, legal, or social norms), accom-
modating the natural evolution of such systems. Moreover,
it includes as a feature event recording, which allows us
to retain records of the agent’s knowledge and the norms
it is compelled to obey when, for example, a violation is
incurred. At the core of this framework is a logic for nor-
mative reasoning (after all, ethical norms are unique only
in how they emerge, not what normative consequences are
entailed by them) which we introduce in the next subsection.

Normative reasoning and defeasible deontic logic

Normative reasoning diverges from the reasoning captured
by classical logic in that it must deal with not only state-
ments that are true or false, but also the imposition of norms
on to such statements. This demands the use of deontic logic
(a class of logics that deal with obligations, permissions and
related notions), sometimes with the additional feature of
defeasibility, which is the capability to weaken or overturn
inferences in light of additional information (see, e.g., Prak-
ken & Sartor, 2015).

To develop our logic-based normative supervisor we
employed defeasible deontic (propositional) logic (DDPL
for short) (Governatori et al., 2013) and its theorem prover
SPINdle.

With this logic we can represent literals—atomic propo-
sitions and their negations—and modal literals (that is,
literals subject to a modal operator), as well as rules built
from them. For the purposes of this paper we only consider
explicitly one deontic modality (obligation, O ) and use the
standard equivalences to define prohibition and (weak) per-
mission, namely: F(p) ≡ O(¬p) (that is, p is forbidden) and
P(p) ≡ ¬O(¬p) (p is weakly permitted) respectively. DDPL
also gives us the option to define strong permissions, with
rules that explicitly state that something is permitted as an
exception to a prohibition (or obligation to the contrary)

(Governatori et al., 2013); strong permissions will be used
in Sect. "Introducing permissive norms".

In this paper we handle two types of norms: constitu-
tive and regulative norms (see e.g. Boella et al. (2004) for
the terminology). Regulative norms consist of obligations,
prohibitions and permissions. On the other hand, constitu-
tive norms regulate instead the creation of institutional facts
as well as the modification of the normative system itself;
their content is a relation between two conceptual entities,
and they will typically take the form “concept x counts as
concept y”, where x refers to a more concrete concept (e.g.,
walking) and y to a more abstract one (e.g., moving). We say
that concept x is at a lower level of abstraction than concept
y if there is a constitutive norm asserting that x counts as y
(which will be denoted as C(x, y) ). Below we give the formal
definition for rules (constitutive or regulative) in DDPL:

Definition 1  (Rules (Governatori et al., 2013)) Let r be a
label that designates a rule:

where A(r) = {a1, ..., an} is the antecedent, N(r) is the con-
sequent, ↪∗∈ {→∗,⇒∗,⇝∗} is a generic rule symbol, and
∗∈ {C,O} designates the mode of each rule.

Rules labelled by C are constitutive rules and rules
labelled by O are regulative rules, where the consequent
of the rule is derived in the scope of a deontic operator.
Strict rules ( →∗ ) are rules where the consequent strictly
follows from the antecedent without exception. Defeasible
rules ( ⇒∗ ) are rules where the consequent typically follows
from the antecedent, unless there is evidence to the con-
trary. Defeaters ( ⇝∗ ) are rules that only prevent a conclusion
from being reached by a defeasible rule; regulative defeaters
are used to encode permissive rules (see Governatori et al.,
2013). DDPL is furthermore equipped with a superiority
relation > to resolve conflicts between rules.

Example 1  Consider the rule r0 ∶ a ⇒O ¬c that forbids c
when a holds. In case a does not hold, then (assuming there
are no other rules forbidding c), we have no way to con-
clude that c is forbidden, and hence we can say that c is
weakly permitted. Assume we have in addition the defeater
r1 ∶ b ⇝O c . When b holds, the defeater prevents the pro-
hibition of c to hold making thus c (strongly) permitted.
If r0 was a strict rule, c would remain forbidden. If we
want to oblige c instead, we could define a defeasible rule
r2 ∶ b ⇒O c along with the superiority relation r2 > r0.

The central concept of DDPL is the defeasible theory
(Governatori et al., 2013).

r ∶ A(r) ↪∗ N(r)

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 5 of 19  43

Definition 2  (Defeasible Theory (Governatori et al., 2013))
A defeasible theory D is a tuple ⟨F,RO,RC,>⟩ , where F is
a set of literals (facts), RO and RC are sets of regulative and
constitutive rules respectively, and > is a superiority rela-
tion over rules.

We will typically want to work with defeasible theories
that are consistent.

Definition 3  (Consistent Defeasible Theory (Governatori
et al., 2013)) A Defeasible Theory is consistent iff it does
not prove any pair of literals of the form O(l) and ¬O(l) , or
l and ¬l . D is O-consistent iff the theory does not prove any
of the pairs O(l) and O(¬l).

A defeasible theory is consistent (or O-consistent) if (1)
the superiority relation is acyclic and (2) the sub-theory
consisting of the set of facts and strict rules is consistent (or
O-consistent).

From such defeasible theories we can derive conclusions.
Conclusions in DDPL are established over proofs and can be
classified as defeasible or definite, and positive or negative.
A positive conclusion indicates that the referenced literal
holds, while a negative indicates that this literal has been
refuted. A definite conclusion is obtained by using only strict
rules and facts using forward chaining of rules. A conclusion
holds defeasibly (denoted by +�C for a factual conclusion
and +�O for a regulative conclusion) if there is an applicable
rule for it and the rules for the opposite cannot be applied
or are defeated.

Over the course of a proof, each rule will be classified as
either applicable (i.e., the antecedent holds and the conse-
quent follows), discarded (i.e., the rule is not applied because
the antecedent does not hold), or defeated by a defeater or
higher priority rule. The definition of provability for defeasi-
ble obligations (Governatori et al., 2013) is (for a set of rules
R, R[p] denotes the set of rules with p in the consequent, RO
is the set of regulative rules in R, an d Rsd is the set of strict
or defeasible rule in R):

Definition 4  (Defeasible Provability (Governatori et al.,
2013)) Given a defeasible theory D, if D ⊢ +𝜕O p , then:

1.	 ∃r ∈ Rsd
O
[p] that is applicable defeasible, and

2.	 ∀s ∈ RO[¬p] either:
3.	 s is discarded, or
4.	 s ∈ Rsd and ∃t ∈ RO[p] which is applicable s.t. t > s , or
5.	 s is a defeater, ∃t ∈ Rsd

O
[p] which is applicable s.t. t > s

A derivation in DDPL has an argumentation structure
and consists of three phases. In the first phase we need an
argument for the conclusion we want to prove. In the second
phase, we analyse all possible counter-arguments, and in the

third and final phase, we rebut the counter-arguments. An
argument is simply an applicable rule. There are two ways
to rebut an argument: undercut it, meaning that the argu-
ment is not applicable; or defeat the argument by proposing
a stronger applicable argument. If we exclude the undercut
case, in every phase the arguments attack the arguments in
the previous phase. A rule attacks another rule if the conclu-
sions of the two rules are contradictory. The pairs “ O(q) and
O(¬q) ”, and “ O(q) and P(¬q) ” are deontic contradictions but
P(q) and P(¬q) are not contradictory. Accordingly, any regu-
lative rule for q attacks a strict or defeasible regulative rule
for ¬q . However, a regulative defeater for q is not attacked
by a regulative defeater for ¬q (condition 2(c) above), since
regulative defeaters are rules to conclude permissions.

Reinforcement learning

Reinforcement Learning (RL) is a subfield of machine learn-
ing that investigates efficient and effective algorithms for
learning how an agent should behave in specific environ-
ments to maximize its expected cumulative reward. RL
algorithms leverage utility functions that assign rewards/
costs to each state-action pair to learn an optimal policy
that prescribes to each state an action, thereby governing
the agent’s behaviour in such a way that maximizes rewards
earned over time.

In our case study, we use Q-learning (Watkins, 1989)
with linear function approximation as our RL algorithm.
This technique learns a function Q(s, a) to predict the
expected cumulative reward (Q-value) for the agent in a
state s if it takes action a. The function Q is approximated
as a linear function which is the weighted sum of features
describing some elements of the environment (e.g., the dis-
tance between the agent and object X); the features which
are most relevant to predicting the agent’s success are
weighted most heavily. The learned policy selects the action
argmaxa∈possible Q(s, a) with the highest Q-value over a list
of possible actions possible.

Vegan Pac‑Man

The arcade game Pac-Man is played by controlling an epon-
ymous agent located in a maze. Pac-Man must navigate the
maze with the goal of entering cells containing a ‘food pel-
let’, so it can eat them for 10 points. The game is won when
Pac-Man has eaten all the food pellets in the maze, receiving
500 points. The goal is to win the game while collecting
the maximum number of points and minimizing time taken;
each move of Pac-Man costs a time penalty of −1 point.
There are also two ghosts wandering around the maze. In
order to avoid being eaten by ghosts, Pac-Man must avoid
collisions with the ghosts—unless they enter a ‘scared’ state,
which is triggered when Pac-Man eats a special “power”

	 E. A. Neufeld et al.

1 3

 43   Page 6 of 19

pellet. When the ghosts are scared, Pac-Man can eat them,
and is rewarded with 200 points if it does so.

Similar to Noothigattu et al. (2019), we consider a varia-
tion of the UC Berkeley AI Pac-Man implementation (DeN-
ero & Klein, 2014), where Pac-Man is ethically forbidden
from eating ghosts. We call this variation “Vegan Pac-Man”;
we also experiment with “Vegetarian Pac-Man”, where only
blue ghosts are off-limits.

Our Pac-Man agent utilizes a Q-learning policy that
selects the argmax of an approximated Q-function (as
described above); as the utility function we use the game’s
score, and game states are taken to be states. We use a game
layout identical to that in Noothigattu et al. (2019); this is a
20 × 11 maze populated with 97 food pellets and two ghosts
(blue and orange) which move randomly. The highest score
that can be achieved is in general 2170. When eating ghosts
is forbidden the maximum score is 1370.

The normative supervisor

We introduce a normative supervisor that functions as an
on-the-fly compliance checker with the ability to identify
courses of action that are compliant with an externally sup-
plied norm base; when no such action exists, the supervisor
determines which action will result in the least number of
violations with respect to this norm base. Our architecture
is highly modular, which contributes to the ease with which
we can independently adjust the agent, the reasoner at the
core of the normative supervisor, and the applicable norm
base consisting of regulative norms and any relevant con-
stitutive norms.

Architecture

The centerpiece of our approach is the normative supervi-
sor whose main architecture is illustrated in Fig. 1. This
module consists of a normative reasoning engine (we use
the SPINdle theorem prover for defeasible deontic logic
(Lam & Governatori, 2009)), and additional components
that encode applicable norms and environmental data into
a defeasible deontic logic theory, and translate the conclu-
sions of the reasoning engine into instructions the agent
can interpret.

We integrate the normative supervisor into the agent’s
control loop between the localization and policy modules,
as is depicted in Fig. 1. The localization module identifies
the current agent’s state with respect to its environment
and passes the current state and a list of possible actions
to the normative supervisor. In simple environments (like
the one we will deal with in this paper), the state repre-
sentation passed to the normative supervisor will closely
resemble the state the agent observes. In our case study,
for example, the normative supervisor only receives infor-
mation on (1) the agent’s position, (2) the other agents’
(ghosts’) positions, (3) the other agents’ state (whether
or not the ghosts are scared), and (4) what actions are
available to the agent. However, in more complex appli-
cations, the normative supervisor’s ability to accurately
reason about a set of norms will depend on the accuracy
with which the agent can approximate the relevant features
of its environment.

The normative supervisor module filters out any action
that is not compliant with the norm base. The policy will

Fig. 1   (Bottom) A high-level diagram of the Pac-Man agent control loop. (Top) Main components of the Normative Supervisor

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 7 of 19  43

then identify from the remaining compliant actions the
action optimal for generating the best outcome. If there are
no available compliant actions then the normative supervisor
will provide a list of ‘lesser evil’ actions. This module also
enables us to log all the conclusions of the reasoning engine
during the game for later scrutiny.

Configuring the norm base

We start with a simple norm base, consisting only of the
behavioral constraint proposed in Noothigattu et al. (2019)
that “Pac-Man must not eat ghosts”1, represented as:

If this norm base is to constrain our agent’s actions, it needs
to reference concepts processed by the agent, which is lim-
ited to the locations of game entities and the actions that
Pac-Man can perform, which are North, South, East, West,
and Stop. How do we get from the comparably abstract norm
above to these lower-level state and action descriptions? We
need to fill in the gaps, exercising our knowledge of the
game mechanics to do so.

The only way eat(pacman, ghost) can be done is if (a)
the ghost is in a ‘scared’ state, and (b) Pac-Man and the
ghost move into the same cell. We can express these con-
cepts as predicates over game objects, specifically as (a)
scared(ghost) and (b) inRange(pacman, ghost). Pac-Man
does not know which direction the ghost will move in, but
we will assume a “cautious” model of action where Pac-
Man should not perform any action that could constitute
eating a ghost; that is, if Pac-Man takes an action that could
reasonably lead to him violating a norm, we will consider
that norm violated. Since Pac-Man’s next action determines
what is in range, we in fact need five entities to express
inRange(pacman, ghost), one corresponding to each action.
These conceptual entities are used to construct a constitutive
norm, or a kind of strategy, regarding the action of eating.
For example:

w h i c h a p p l i e s i n t h e c o n t e x t
{scared(ghost), inNorthRange(pacman, ghost)}.

To define in North Range (pacman, ghost), we note that
we have access to the positions of Pac-Man and the ghosts,
so we can create another set of constitutive norms which are
applicable in the context {pacman(i, j)}:

F(eat(pacman, ghost)), where F stands for prohibition.

C(North, eat(pacman, ghost))

C(ghost(k, l), inNorthRange(pacman, ghost))

where (k, l) has a Manhattan distance of 1 from (i, j + 1).

Automating translation

We now must amalgamate our informal representation of
the norm base and the input and output to the agent into
the formal language of the reasoner (DDPL and its theorem
prover SPINdle (Lam & Governatori, 2009)). If we frame
the reasoner as a central reasoning facility, the agent as a
front-end, and the norm base as a back-end, we can imple-
ment this dynamic as a translator with two faces, one front-
facing and one back-facing, feeding information into the
reasoner from the agent and the norm base respectively. On
both ends, the translations will be performed dynamically;
the current state of the game will change at every time step,
and in order to minimize the amount of data passed to the
reasoner, there are elements of the norm base—namely con-
stitutive norms—that will be generated only for the current
context.

Front end translation

The front-end translator is in perpetual use, processing new
data and proposed actions as the environment changes. It
amounts to an algorithm that transforms input data from the
agent into propositions which assert facts about the agent or
the environment. Every cell of the Pac-Man grid contains
characters (Pac-Man or one of the ghosts), an object (a wall
or a food pellet), or nothing at all. Walls are accounted for
during the localization stage of Pac-Man’s algorithm and
norms regarding food pellets are not found in the norm base,
so we will need to reason only about the characters. Hence
we have two sets of variables in each game: pacmani,j and
ghosti,j for each coordinate (i, j) on the grid, asserting the
locations of Pac-Man and each ghost. These variables can be
generated as SPINdle literals at the beginning of the game,
and then used to generate a set of facts, Facts, for a defea-
sible theory:

where the set Facts of facts contains literals representing
the locations of Pac-Man and the ghosts. It may also contain
other facts about the game; e.g., if there is a scared ghost,
both its location and scared(ghost) will be included in Facts.

Actions will be represented as literals, in the set

Summarily, a query from Pac-Man to the reasoner will be
accompanied by a representation of the current game state,
along with a list of possible actions possible, which will be
translated to the corresponding literals in Actions.

GameState = ⟨Facts,RC,RO,>⟩,

Actions = {North, South,East,West, Stop}

1  For simplicity, we will not differentiate between the blue and the
orange ghost for the time being.

	 E. A. Neufeld et al.

1 3

 43   Page 8 of 19

Back end translation

In this crucial task we must ensure that norms dictate the
same behaviour once translated into to the language of the
reasoner; that is, that each component of the norm base is
represented by the language.

We represent the regulative norm of Vegan Pac-Man as:

where defeasibility is given as a precautionary measure, just
in case we want to add (potentially conflicting) norms later,
as it gives us the option of leveraging the superiority rela-
tion or defeaters.

Some additional reasoning has to be performed to trans-
late constitutive norms; we will in general translate the
constitutive norms (over states) discussed in Sect. "Con-
figuring the norm base" in the following way. If we have a
constitutive norm C(x, y) that applies in context {a, b} , this
is expressed in DDPL as

We have found that it is more time-efficient to generate these
constitutive norms anew whenever the fact set changes,
instead of generating every possible constitutive norm ahead
of time, and having SPINdle deal with them all at once;
we will define these norms dynamically, and only norms
whose applicable context currently holds will be added
to RC in GameState. Thus, these norms will be generated
w.r.t. the input from the agent; for example, if the context
is {pacman2,3} , the rule(s) defining inNorthRangepacman,ghost
will include:

The translation of constitutive norms over actions will
be a more complex matter. Firstly, since DDPL is a lan-
guage with a single variable type, we chose to distin-
guish actions and states by applying deontic modali-
ties to actions at all times, and never to states. So we can
reformulate the relation C(North, eat(pacman, ghost)) as
C(O(North),O(eat(pacman, ghost))) , assuming the same
context. Note that if moving North counts as eating a ghost,
a prohibition to eat a ghost implies a prohibition to move
North. So we can rewrite the above norm as

or with the applicable context in DDPL as:

Note that though this a constitutive rule, in DDPL it will
be in RO . This will work for all of the constitutive norms

vegan ∶⇒O ¬eatpacman,ghost ∈ RO

a, b, x →C y

pacman2,3, ghost2,5 →C inNorthRangepacman,ghost ∈ RC

C(O(¬eat(pacman, ghost)),O(¬North))

scaredghost, inNorthRangepacman,ghost,

O(¬eatpacman,ghost) ⇒O ¬North ∈ RO

attached to a prohibited action, where we place the con-
text and the prohibition in question in the antecedent, and
the prohibition of the concrete action in the strategy is the
consequent.

We can be assured that this formalization yields a con-
sistent theory.

Lemma 1  The defeasible theory GameState is consistent and
O-consistent.

Proof  Since Facts contains only the locations of Pac-Man
and the two ghosts, as well as scared(ghost) if a ghost is
scared, there can be no pairs of complementary literals.
There are no rules in RC with conflicting consequents, so the
superiority relation is empty, and trivially acyclic. Moreo-
ver, since GameState only contains prohibitions, RO likewise
does not contain any rules with complementary consequents,
and the superiority relation is again trivially acyclic. So
GameState is both consistent and O-consistent. 	� ◻

Parsing conclusions

The last task that remains is the transformation the reason-
er’s output into indicators communicating which actions
in the agent’s arsenal are compliant and which are not. If
no compliant action is available, we will need to provide
a criterion to identify the “lesser evil” action.

Compliant solutions

We consider a compliant solution to be a possible course
of action for the agent that does not violate any norms. If
possible, this is what we would like to extract from the
reasoner.

Definition 5  A set of compliant solutions is: (a) non-empty,
and consisting only of (b) solutions composed of possible
actions, (c) solutions that do not violate any norms, and (d)
solutions that are internally consistent.

Our method for constructing such a set is heavily influ-
enced by the output (conclusions) yielded by SPINdle.
Recall from Definition 3 and the surrounding discussion
that we can prove certain conclusions from a defeasible
theory; each type of conclusion corresponds to an asser-
tion we can make about the GameState. We are specifically
interested in defeasible conclusions, because in our for-
malization regulative norms were expressed as defeasible
rules. Thus for a ∈ Actions , if we have a conclusion +�Oa ,
a is obligatory; if we have a conclusion +�O¬a , a is forbid-
den. When we have a negative conclusion −�Oa or −�O¬a

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 9 of 19  43

we can assume that a is neither obliged nor forbidden,
and is therefore weakly permitted. Finally, if for some a
we can prove both +�O a and +�O¬a , we can assume that
GameState is not internally consistent and no defeasible
mechanism has been employed to resolve the internal con-
flicts (Governatori et al., 2013).

We parse out a solution set by implementing the follow-
ing steps:

1.	 if we do not receive a full set of conclusions from SPIN-
dle, we return an empty set;

2.	 we remove all conclusions that do not reference a literal
in possible;

3.	 any action corresponding to a defeasibly proved positive
literal occurs in every solution;

4.	 any action corresponding to a defeasibly proved negative
literal is discarded from every solution.

Proposition 1  The procedure yields either an empty set or
a compliant solution.

Proof  If our solution is not internally consistent, we can
prove both +�O a and +�O¬a for some action a. In this case
SPINdle will return neither, and the above procedure yields
an empty set in step (1); this will rule out any solutions that
violate condition (d) in Definition 5. Only possible actions
will occur in a solution as per step (2), so condition (b) from
Definition 5 is met. As for condition (c): step (3) mandates
that any obligatory actions are present in each solution, and
step (4) excludes any forbidden actions. Thus, if the solution
set is not empty, it is a set of compliant solutions. 	� ◻

The fact that Pac-Man can only execute one action at a
time allowed us to simplify the above procedure when we
implemented a conclusion parser for our normative supervi-
sor. This simplified algorithm is given below.

Algorithm 1  ParseCompliant

	 E. A. Neufeld et al.

1 3

 43   Page 10 of 19

‘Lesser of two Evils’ solutions

If there are no compliant solutions (i.e., the procedure
defined in Sect. "Compliant solutions" results in an empty
solution set), we want to identify which non-compliant
actions constitute a “lesser of two evils” choice. This
requires us to specify criteria for identifying degrees of non-
compliance and a metric for expressing them. Beyond the
conclusions yielded by SPINdle, the theorem prover also has
an inference logger that classifies every rule in the theory
as discarded, applicable, or defeated; we employ SPINdle
in an unconventional way, and use these logs to construct
such a metric.

Inspired by the economy principle2, postulated by an
ancient Indian philosophical school, the criterion chosen
for our Pac-Man agent is a score derived from the norms
that have been applied versus those that have been defeated
(discarded norms are ignored). As described in Algo-
rithm 2 below, this score is computed through the theory

GameStateact , which is constructed by adding a fact O(act)
to GameState. Recall that a rule will be defeated when its
defeasible theory includes a fact that conflicts with the
head of this rule. So when adding O(act) to GameState,
all non-discarded norms that prescribed F(act) = O(¬act)
for GameState are defeated and any prescribing O(act) is
applied. To compute the score, we ignore the conclusions
yielded by SPINdle and check the inference log to count
which rules have been applied during reasoning ( #applied )
and which were defeated ( #defeated ) and set

This procedure is completed for every action in possible,
and we select the action(s) with the highest score. If there
are multiple actions with a highest score, we send multiple
solutions to the agent and it will pick the best action accord-
ing to its policy.

Algorithm 2  LesserEvil

score = #applied − #defeated.

2  This principle was discussed by the Mīmāṃsā author Kumārila
(7th c. CE), in the context of solving potential conflicts among the
commands in the Vedas—the Indian sacred texts. The principle says
that a norm that conflicts with the minimum number possible of other
norms should be preferred.

Since Pac-Man will only have up to 5 possible actions
available to him in any given state, Algorithm 2 can be com-
puted in polynomial time.

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 11 of 19  43

Proposition 2  Selecting a best action according to the pro-
cedure above can be completed in polynomial time with
respect to the size of the theory.

Proof sketch: As shown in Governatori et al. (2013),
conclusions in DDPL can be computed in linear time with
respect to the size of the theory, which is the number of lit-
eral occurrences plus the number of the rules in the theory.
The claim holds since every action in possible is a literal,
and the above procedure is completed |possible| times.

Variations and experimental results

We performed several tests that demonstrated the capabili-
ties of our normative supervisor’s design and its efficacy as
an event recorder, without hampering our agent’s ability to
perform the behaviour it has learned.

As case study we use the “vegan” version of the game
Pac-Man, and variations of it obtained by adding/removing
norms from its norm base. We ran several tests3 as batches
of 1000 games, played by an agent trained on 250 episodes;
initially, we trained the agent on 100 episodes and measured
the agent’s performance over 100 games, before increasing
the number of training episodes to optimize the RL policy
w.r.t. average score and games won, and the number of test
games in order to better understand the agent’s behaviour.

To compare the RL agent’s performance of the game with
and without the normative supervisor, we ran three base-
line tests using a random agent and two different (ethically
agnostic) RL policies. The results of these baseline tests are
given below. We refer to the first RL policy as safe because
the algorithm used to train it does not differentiate between
regular ghosts and scared ghosts, causing the agent to avoid
ghosts altogether. We refer to the other RL policy as hungry

because the corresponding algorithm differentiates between
regular ghosts and scared ghosts, and the agent learns to
optimize its score by eating the scared ghosts.

Norm base Policy % Games Game score Avg ghosts eaten
Won (Avg[Max]) (Blue / Orange)

N/A random 0 − 445.44 [−
111]

0.008 / 0.006

N/A safe 90.5 1208.11 [1544] 0.007 / 0.06
N/A hungry 90.9 1607.6 [2141] 0.87/ 0.87

We will use similar tables to represent all of our test
results, indicating: the norm base in force, the policy run by
the agent, the percentage of games which the agent won over
all played (that is, where Pac-Man ate all the food pellets),
the average and maximum score over all games, and the
average number of blue and orange ghosts eaten per game.
When not explicitly indicated, it should be assumed that the
agent was trained on 250 games and tested with 1000.

In the below sections, we experiment with eight norm
bases: the vegan and vegetarian norm bases (and a variation
of the vegetarian norm base with an added rule avoid), the
cautious and over-cautious norm bases (which compromise
Pac-Man’s ability to win the game), the all-or-nothing and
switch norm bases (which introduce permissive norms),
and a norm base that contains a contrary-to-duty obligation
(referred to as passive vegan).

Vegan Pac‑Man

The Vegan Pac-Man is subject to a single regulative norm,
vegan, stating that “Pac-Man must not eat ghosts”; the con-
figuration and implementation of this norm base is discussed
in detail in Sects. "Configuring the norm base", "Automating
translation", and "Parsing conclusions".

We ran three sets of tests on Vegan Pac-Man, on a random
agent, one with the safe policy, and one with the hungry
policy. The results are given below. 3  We use a laptop with Intel i5-8250U CPU (4 cores, 1.60 GHz) and

8GB RAM, running Ubuntu 18.04, Java Ver. 8, Python Ver. 2.7. An
implementation of the normative supervisor and the Pac-Man game
can be found at https://​github.​com/​lexer​ee/​norma​tive-​player-​chara​
cters.

(a) (b)

Fig. 2   Pac-Man trapped between two ghosts (a) or in a corner (b)

https://github.com/lexeree/normative-player-characters
https://github.com/lexeree/normative-player-characters

	 E. A. Neufeld et al.

1 3

 43   Page 12 of 19

Norm base Policy % Games Game score Avg ghosts
eaten

Won (Avg[Max]) (Blue/Orange)

Vegan random 0 − 449.13 [−
166]

0 / 0.003

Vegan safe 91.4 1216.67
[1547]

0.005 / 0.015

Vegan hungry 90.7 1209.86
[1708]

0.023 / 0.02

The results of the tests with RL agents are comparable
to Noothigattu et al. (2019), where Pac-Man was trained to
behave in compliance with the vegan norm; in that paper
the authors ran 100 games, obtaining an average of 0.03
ghosts eaten per game, while our approach averaged at 0.02
or 0.043 depending on the policy; similarly, their score aver-
aged at 1268.5, while ours averaged 1216.67 and 1209.86.
With respect to our baseline tests, the performance of Pac-
Man—with respect to % games won and score—did not suf-
fer; there was of course a decrease in score for the hungry
policy Pac-Man, since the up to 800 points it could win by
eating ghosts are no long available to it The score for the safe
policy with and without the normative supervisor did not
meaningfully change, and % games won actually increased
by nearly an entire percentage point.

Remark 1  Due to the low complexity of the logic used and
the modest size of our GameState theory—which rarely
exceeded 50 rules—SPINdle took on average 1.1 ms (max
97 ms) in generating conclusions during the Vegan Pac-Man
tests. The evaluation of non-compliant solutions, in the rare
cases where it was required, took 45.6 ms on average (min
15 ms, max 114 ms). For a detailed analysis on the perfor-
mance of SPINdle, see Lam and Governatori (2009).

Analysing violations

Inherent to Pac-Man’s environment is the possibility of
encountering a state where no compliant action is possible;
if Pac-Man encounters such a state, it is forced to violate the
norm base. When the normative supervisor identifies these
situations—that is, Algorithm 1 returns an empty solution
set—we have configured it to store a description of them.
Included in this description is a list of possible actions and
the positions of all agents in the game; from this informa-
tion we can reconstruct the circumstances in which Pac-
Man took a non-compliant action. For vegan Pac-Man in
particular, our examination of these records made it clear
that the vast majority of violations took the form described
in Fig. 2a below,

where every direction Pac-Man is able to move in is in
the trajectory of a nearby scared ghost. The only exception

we saw is depicted in Fig. 2b; this situation was rare, only
occurring once in two thousand games. We can, in fact,
prove that these two types of scenario are the only cases
where Pac-Man will be forced to violate vegan.

Proposition 3  The cases depicted in Fig. 2 are the only cases
in the Vegan Pac-Man game where no compliant solution is
possible.

Proof  From Definition 5, we know that if there are no com-
pliant solutions, either: the solution set (a) is empty, (b)
contains only impossible actions, (c) contains solutions that
violate at least one norm, or (d) contains solutions that are
inconsistent. From Lemma 1, and Propositions 13 and 14
from Governatori et al. (2013), we know (d) is not a possi-
bility; likewise, we will not encounter (b), because we con-
struct a solution set only from possible actions. With respect
to (c), prohibitions are identified as positive conclusions of
negative rules, which are removed as in Algorithm 1, and
since there are no positive obligations in GameState, Pac-
Man will not fail to act in compliance with one; that is, the
yielded solution will not violate any norms. This leaves only
one possibility: (a), where the solution set is empty. This
can only occur if every possible action is removed in Algo-
rithm 1 because it is subject to a prohibition.

Note that Pac-Man always has the action Stop avail-
able to it, but there are no game states in which its set
of possible actions is [Stop]—this would imply that
Pac-Man is closed in on all sides by walls. However, we
can have the set of possible actions [Stop, Dir] where
Dir ∈ {North, South,East,West} . This would imply that
there are walls on all sides of Pac-Man, aside from the cell
it can move to in taking action Dir. This is the exact scenario
depicted in Fig. 2b.

A second possibility is that the set of possible actions is
[Stop, Dir1, Dir2]; Dir1 and Dir2 can be any pair of direc-
tions. This can describe corners in the maze (of which there
are 16), or the the “tunnel”-like portions on of the maze. In
all of these cases, it is possible for one ghost to occupy one
of the two spaces Pac-Man is free to move into, which is
described in Fig. 2a.

Fig. 3   Pac-Man about to enter the same space as the blue ghost

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 13 of 19  43

For the remaining two possibilities, where Pac-Man has a
list of possible actions of the form [Stop, Dir1, Dir2, Dir3]
or [Stop, Dir1, Dir2, Dir3, Dir4], at least one direction in
which it is possible to move will not be blocked by a ghost,
since there are only 2 ghosts. As Pac-Man will be permitted
to move in this direction, we cannot have a case where no
compliance is possible. 	� ◻

Revising the norm base: vegetarian Pac‑Man

Until now, we have not been differentiating between ghosts in
our discussion; in reality, the rule vegan is actually two rules
( X ∈ {blue, orange}):

We can contract the norm base by removing veganorange ,
leaving veganblue as our only regulative norm. We called the
Pac-Man that adheres to this norm base vegetarian. Our pre-
liminary results—based on 100 games and trained over 100
episodes—are given below.

Norm base Policy % Games Game score Avg ghosts
eaten

Won (Avg[Max]) (Blue / Orange)

Vegetarian
(100 games)

hungry 94 1413.8 [1742] 0.01 / 0.79

For Vegetarian Pac-Man, the scenario in Fig. 2a cannot
occur, but one blue ghost was still eaten. Proposition 3 tells
us that there is exactly one other case where Pac-Man can
be forced into non-compliance, but our investigation of the
records capturing the above test yielded a second way in
which Vegetarian Pac-Man can end up eating a blue ghost—
without directly or knowingly violating its norm base. That
is, Pac-Man (see Fig. 3) is put in a situation where there is
at least one available action that will not result in it eating
the blue ghost, but taking the action that results in eating
the ghost does not, strictly speaking, violate any norms in
Pac-Man’s norm base.

When both Pac-Man and the blue ghost move into the
power pellet’s cell at the same time, Pac-Man ends up eating
it. The result is a quirk in the game implementation; when
generating the next state, the game changes the ghost’s state
to ‘scared’ immediately after Pac-Man moves, but before it
is determined whether Pac-Man eats the ghost or the ghost
eats Pac-Man. This is roughly analogous to an agent com-
mitting to an action it believes is ethically compliant, which
nevertheless ends up having morally negative consequences
because the agent’s circumstances changed after they had
already committed to the action.

veganX ∶⇒O ¬eatpacman,XGhost

For Vegetarian Pac-Man, the cases depicted in Figs. 2b
and 3 represent the scenarios where it ends up eating blue
ghosts. If we want avoid such cases, however, we can
expand our norm base to prevent Pac-Man from entering
such “dangerous” situations. To do that we introduce a
number of constitutive rules defining the concept of “dan-
ger” for each coordinate (x, y) within range of a hazardous
area, for example:

We will also need to indicate whether there is a ghost within
range of this “danger zone”, as avoiding them is only neces-
sary if there is a ghost nearby:

The regulative norm we impose on Pac-Man prevents it from
“entering danger”:

What does it mean to “enter danger”? As we did previously,
we can define strategies (constitutive norms) that describe
what constitutes entering danger. Namely, for context
{inNorthRangepacman,danger, inRangeghost,danger} , the follow-
ing constitutive norm holds: C(North, enterpacman,danger) . So
we can define the rule:

We designate the version of Pac-Man subjected to these
additional norms with the tag “avoid”. A summary of the
performance of vegan Pac-Man during preliminary tests
with this addition is given below; notice that the additional
norms led to full compliance.

Norm base Policy % Games Game score Avg ghosts
eaten

Won (Avg [Max]) (Blue / Orange)
Vegetarian—

avoid (100
games)

hungry 87 1336.2 [1747] 0.00 / 0.88

Remark 2  Governatori and Rotolo (2008) discusses situa-
tions where the combination of the (ethical) norms and a
particular factual situation results in breaches even for agents
designed to comply with the norms at the cost of giving up
their goals. There it is proved that sometimes the only way to
comply with the norms is to prevent a situation from happen-
ing, and the agents have to modify their plans accordingly.
The solution adopted in the current paper is to introduce new
norms that render a position in the game, that unavoidably

dangerpacman ∶ pacmanx,y →C inNorthRangepacman,danger

dangerghost ∶ ghostx,y →C inRangeghost,danger

avoid ∶⇒O ¬enterpacman,danger

inNorthRangepacman,danger, inRangeghost,danger,

O(¬enterpacman,danger) ⇒O ¬North

	 E. A. Neufeld et al.

1 3

 43   Page 14 of 19

results in a violation, forbidden. This is not a comprehensive
solution; we might not always be able to design coherent
or feasible rules that can avoid such dangerous situations;
for this reason, an additional mechanism for planning ahead
to avoid violations would be desirable—albeit outside the
scope of this paper.

When we moved on to running our batches of 1000
games, we found that neither the scenarios in Fig. 2 nor
the one in Fig. 3 occur, and we have full compliance even
without implementing the avoid rules:

Norm base Policy % Games Game score Avg ghosts
eaten

Won (Avg [Max]) (Blue/Orange)

Vegetarian random 0 − 446.96
[− 111]

0.00 / 0.008

vegetarian hungry 89.3 1343.8 [1750] 0.00 / 0.79
Vegetarian—

avoid
hungry 90.1 1361.06

[1751]
0.00 / 0.81

These relatively identical results are likely due to Pac-
Man’s additional training for these tests; for example, the
region of the maze depicted in Fig. 2b contains no food pel-
lets, and it is not necessary to enter it in order to win the
game. We therefore found running preliminary tests with a
more poorly performing agent a useful tool for better under-
standing how the norm base, the agent, and its environment
interact.

Nevertheless, the additional rule avoid does not hamper
performance and supplies an additional degree of security,
and in certain applications of ethical AI, we might be inter-
ested in having a guarantee that a “negative” scenario, how-
ever rare, will not be allowed to occur.

Revising the norm base: cautious and over‑cautious
Pac‑Man

Returning to the Vegan norm base, we can use the avoid rule
(see Sect. "Revising the norm base: vegetarian Pac-Man") to
help Pac-Man avoid eating ghosts altogether: by not eating
the power pellet which makes the ghosts scared in the first
place. For this norm base, we will have the avoid rule:

along with the constitutive norms:

where (x, y) is one step away from the area defined as dan-
gerous, and

avoid ∶⇒O ¬enterpacman,danger

dangerpacman ∶ pacmanx,y →C inNorthRangepacman,danger

inNorthRangepacman,danger,O(¬enterpacman,danger) ⇒O ¬North

for all actions ∈ Actions.
We designed two different norm bases; in one (denoted

as cautious in the below table of results), we define the cells
holding the power pellets as dangerous. In the other, we take
a deliberately over-cautious approach, and define entering
a dangerous area as entering an entire region of the maze;
in particular, we define as dangerous certain 3 × 4 regions
of the maze in which Pac-Man can find the power pellets.
However, this makes the food pellets in these regions also
inaccessible, and as a result, Pac-Man cannot win the game
if it obeys avoid. The results of testing the vegan norm base
with these cautious and over-cautious modifications of the
avoid rule are given below.

Norm base Policy % Games Game score Avg ghosts
eaten

Won (Avg[Max]) (Blue / Orange)

Vegan—over-
cautious

hungry 0% − 174.95
[176]

0.00 / 0.00

Vegan—cau-
tious

hungry 13.9% 28.36 [1340] 0.00 / 0.00

As we might expect from the over-cautious norm base,
Pac-Man is compelled to obey the norm base at the expense
of winning the game, and loses every game it plays. The
fact that the normative supervisor will not allow an agent
non-compliant actions (unless they cannot be avoided) even
at the expense of failing to fulfil its primary function will be
desirable quality in some cases, but this might not always
be the case.

In the case of the cautious norm base, Pac-Man can, in
theory, win the game (the power pellets—which are not
technically food pellets—do not need to be eaten to win the
game), but fails to do so in most cases. There are two reasons
for this: the first is that this creates four additional places in
the maze where a scenario like that depicted in Fig. 2b can
occur. This leads to additional opportunities for Pac-Man to
become trapped by the ghosts, and since obeying the norm
base takes precedence over the policy, Pac-Man will choose
not to eat the power pellet even if it will lose the game as a
result. The second reason why Pac-Man’s success rate is so
low is due to a shortcoming of our decoupled approach; Pac-
Man’s policy does not take into account the fact that Pac-
Man cannot continue moving in that direction. In this case,
the supervisor filters out the best choice available, and Pac-
Man has to go with the second best action—which, in some
cases, might be Stop. In this case, Pac-Man will remain stuck
in place until conditions in the game change enough for the
policy to start recommending another action, and this may
never get the chance to happen, if Pac-Man is trapped and
eaten first. This particular scenario represents a good argu-
ment for combining the normative supervisor with additional

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 15 of 19  43

methods for synthesizing goal-directed behaviour and ethi-
cal behaviour, for example by learning both simultaneously.

Introducing permissive norms

Thus far, we have only dealt with an implicit (weak) idea
of permission; compliant solutions as defined in Definition
3 are permissible courses of action in this sense. However,
we can also define a notion of strong permission, which
gives an agent explicit permission to perform an otherwise
forbidden action.

In this phase of our case study, we introduce two new
norm bases. The first uses an “all-or-nothing” heuristic;
Pac-Man attempts to adhere to the norm vegan, but as soon
as it violates the norm by eating a ghost, it gives up and
is permitted to eat any ghost therefrom. For the second
we “merge” the vegetarian and the vegan norm bases, by
implementing the following norm: if Pac-Man violates the
norm vegan, it is therefrom permitted to eat another ghost,
so long as the ghost is of the same colour of the one it just
ate. In other words, this Pac-Man will attempt to adhere to
the Vegan norm base, but if it fails to do so, it will switch
to the Vegetarian norm base instead.

To implement these norm bases, we introduce two new
components: persistent facts (facts that persist throughout
the game despite state changes) and exceptions.

In order to comply with this norm base, Pac-Man needs
to know if it has violated any norms over the course of the
game, and which one it has violated. Hence it needs to
have access to information about its hitherto performance.
In building the translators, we constructed a programmatic
representation of the agent’s current state; instead of over-
writing this completely with each new time step, we can
maintain attributes that record facts that persist over time.

We implement the above caveat to the vegan norm base
by adding to GameState a fact violatedblue ( violatedorange
resp.) if the supervisor has recorded Pac-Man eating a blue
(orange resp.) ghost. We can add a third fact defined as
violated ≡ violatedblue ∨ violatedorange.

In order to implement the above norm bases, we make
use of defeaters to define an exception to the rule vegan.
For the all-or-nothing norm base, these rules can be
expressed as ( X ∈ {blue, orange}):

And for the second norm base, where we switch from
Vegan to Vegetarian, these rules can be expressed as
( X ∈ {blue, orange}):

If we include these defeater rules in the norm base, Pac-Man
will attempt to avoid eating ghosts, but as soon as it eats a
XGhost, the fact violatedX begins to persistently appear in
GameState, and the defeater will be triggered and void the
prohibition from veganX . The results of testing these norm
bases are given in the table below.

Norm
base

Policy % Games Game Score Avg
ghosts
eaten

Tot.#
Violat.

Won (Avg[Max]) (Blue /
Orange)

1000
Games

Vegan hungry 91.4 1231.7
[1937]

0.048 /
0.049

55

(all-or-
noth-
ing)

nothingX ∶ violated ⇝ eatpacman,XGhost

switchX ∶ violatedX ⇝ eatpacman,XGhost

Fig. 4   The state that was passed from the agent to the supervisor when a violation of the Vegan norm base was incurred. Note that ‘p’, ‘sc_b’,
and ‘sc_o’ designate the corresponding positions as the location of Pac-Man, the scared blue ghost, and the scared orange ghost respectively

	 E. A. Neufeld et al.

1 3

 43   Page 16 of 19

Norm
base

Policy % Games Game Score Avg
ghosts
eaten

Tot.#
Violat.

Won (Avg[Max]) (Blue /
Orange)

1000
Games

Vegan
(switch)

hungry 90.6 1215.83
[1733]

0.025 /
0.043

57

We have added a column supplying the number of viola-
tions incurred over 1000 games; since eating a ghost after
Pac-Man has already eaten one does not necessarily violate
the norm base, we cannot know from the number of ghosts
eaten how many times Pac-Man violated its norm base. For
the all-or-nothing Pac-Man, there can be at most one viola-
tion per game, after which Pac-Man may eat between 0 and
3 more ghosts. As we can see from the results, Pac-Man
violated the norm base 55 times, but consumed 97 ghosts.
For the Vegan/Vegetarian switch norm base, Pac-Man can
violate the norm base at most twice, and if there is one viola-
tion, only one other ghost can be eaten. Here, Pac-Man vio-
lated the norm base 57 times but ate 68 ghosts. We checked
the logs and confirmed that in every game there was at most
one violation. Hence, in 11 of the 57 games in which there
was a violation, Pac-Man ate a ghost twice, exploiting the
permission triggered by the violation of the vegan norm.
There were no cases of two violations per game, since it is
unlikely to encounter situations like that depicted in Fig. 2b.

These tests yielded several further insights. Pac-Man vio-
lated the norm base at a significantly higher rate than we saw
in the hungry policy Vegan Pac-Man test. Why was this? In
the previous tests Pac-Man’s violations of the norm base
(and therefore eating of ghosts it was forbidden from eating)
were very infrequent, and the rare in-game reward it received
from such a violation had little impact on the learning mod-
ule. However, when Pac-Man was allowed to continue eating
ghosts (incurring more rewards) after violating the norm
base a first time, the learner was more affected by this higher
reception of rewards; as a result, Pac-Man was placed in
more and more situations where eating a ghost was una-
voidable. This is a strong indication that when implement-
ing more complex normative reasoning, we should consider

integrating the reasoner not just into the real-time control
facilities, but also into the learner—for example, preventing
the agent from collecting rewards for outcomes resulting
from a violation of the norm base.

Contrary‑to‑duty obligations: passive vegan
Pac‑Man

We explore one final norm base for Pac-Man, which utilizes
a specific type of obligation called a contrary-to-duty obli-
gation (CTD). An obligation is considered contrary-to-duty
if it comes into force when another obligation is violated.
A classic example of CTD is known as Forrester’s paradox
(Forrester, 1984):

1.	 It is obligatory that Smith not murder Jones.
2.	 It is obligatory that, if Smith murders Jones, Smith mur-

der Jones gently.
3.	 Smith murders Jones.

The desired conclusion from the above propositions is that
Smith murders Jones gently; though he is not supposed to
murder Jones in the first place, since it is a fact that he does,
he ought to do it in a certain way.

We will address a similar line of reasoning in this sec-
tion; that is, we modify the norm base of Vegan Pac-Man by
adding the following rule (we will call this Passive Vegan
Pac-Man): “If Pac-Man does eat a ghost, it must do so while
standing still.” The intricacies of this dynamic are not easy
to demonstrate with the kinds of test results with which we
have hitherto summarized Pac-Man’s behaviour. Thus, we
will here walk through a kind of case-study-within-a-case-
study, illustrating how the addition of this rule changes the
results output by Algorithm 3 in a non-compliant scenario.
In particular, we take a real example of a non-compliant
scenario from a violation report from one of the Vegan Pac-
Man tests (depicted in Fig. 4).

In this scenario, there is one ghost directly to the east of
Pac-Man, and one just around the corner to the northwest. The
output of Algorithm 3 for the scenario outlined in Fig. 4, under
the Vegan norm base, is shown in Fig. 5:

Fig. 5   Result passed back to agent according to the Vegan norm base

Fig. 6   Result passed back to agent after the addition of the rule ctd 

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 17 of 19  43

As for the construction of the Passive Vegan norm base,
recall that we interpreted C(North, eat(pacman, ghost)) as
C(O(¬eat(pacman, ghost)),O(¬North)) ; this was conveni-
ent because earlier, we were dealing specifically with pro-
hibitions. However, we are now interested in representing a
different dynamic, and we will interpret this relation between
the action of moving North to a new cell and eating a ghost
as C(O(North),O(eat(pacman, ghost))) . What we want to
express here is that an obligation to move North will consti-
tute eating the ghost in Pac-Man’s next turn (if Pac-Man is
within range of a scared ghost to the north, of course). We can
formalize this in DDPL as:

Note also that for these constitutive norms, we will need to
add a superiority relation ract > vegan for all act ∈ Actions .
This is so that in the case of a violation, vegan is defeated by
assuming O(North) (note that the superiority relation remain
acyclic, so Lemma 1 still holds).

Finally, we can add our new contrary-to-duty obligation:

After the addition of the rule ctd, the output of Algorithm 3
changes, as shown in Fig. 6.

Now, the only action recommended is Stop—in compli-
ance with the contrary to duty obligation ctd. This change
occurs because now, in addition to violating vegan, the
choices of West and East violate ctd as well. Thus, while
the scenario is still non-compliant (and therefore a violation
report would be generated), the agent receives an instruction
in line with its contrary-to-duty obligation.

Conclusion and future work

We have presented a modular and transparent approach for
enabling autonomous agents to operate within the bounds
of ethical compliance, while still following RL policies that
allow them to effectively pursue other goals. This approach,
while designed with ethics in mind, is grounded more gen-
erally in the logic of normative reasoning, and could be
applied to a much broader range of requirements, such as
legality or safety.

The normative supervisor consists of modules that
dynamically translate environmental data from the agent
and norms from an extraneous norm base into a formal lan-
guage, and a central reasoner—a theorem prover for defea-
sible deontic logic. From the translated data and the norms,
the theorem prover extracts compliant actions and, in the
absence of them, actions meant to minimize violations of

rNorth ∶ scaredghost, inNorthRangepacman,ghost,

O(North) ⇒O eatpacman,ghost

ctd ∶ eatpacman,ghost ⇒O Stop

the norm base. Our supervisor has the additional advantage
of providing event recording facilities to log actions taken
by the agent and their compliance to the norm base, while
running in parallel with the agent.

We explored the functionalities of this normative super-
visor and its interactions with an RL agent through a case
study which demonstrated the module’s ability to transpar-
ently enforce norms on the agent’s behaviour, its facilitation
of revisions to the ethical values the agent is subject to, and
its ability to provide useful explanations of any violations
that occurred during operation, informing our revisions of
the norm base. Additionally, in our experiments we observed
that the agent’s performance did not suffer with the introduc-
tion of the module into its architecture; while the average
score dropped—a necessary result of the restrictions on its
behaviour—the number of games won did not.

This case study also demonstrated possible shortcomings
of our approach; the absence of faculties for planning and
the complete decoupling of the agent’s policy from its ethi-
cal reasoning prevented it from thinking ahead and taking
steps to avoid undesirable situations.

The fact that the supervisor’s performance was impacted
by the policy used and the number of episodes upon which
the RL agent was trained also introduces the question of
how, from the RL side, we can maximize the supervisor’s
effectiveness; a larger number of episodes led indeed to
better performances by the agent, while a smaller number
allowed us to detect an edge case.

Additionally, even though the introduced computational
overhead was not prohibitive, it was still substantive, and
will be a more prominent factor in larger environments or
norm bases. The agent queries the normative supervisor
each time it takes an action, and in agents with more time-
sensitive functions, this may be problematic. We were able
to alleviate the cost of these queries somewhat by choos-
ing a very computationally feasible logic and dynamically
translating norms and adding them to the theory as they
became relevant (cutting down on the size of the theory
and therefore computation time). Nonetheless, the scal-
ability to applications that must process large amounts of
data extremely quickly will be limited. We aim to develop
techniques to mitigate and predict such overhead, but our
approach certainly prioritizes transparency and oversight
over time-efficiency, and will likely remain most effective
for applications that do the same.

As future work4 we plan to experiment with alternative
reasoning engines, more complex norm bases, and possibly
more sophisticated games. For example, the use of norm

4  An implementation of the normative supervisor is under active
development at: https://​github.​com/​lexer​ee/​norma​tive-​player-​chara​
cters.

https://github.com/lexeree/normative-player-characters
https://github.com/lexeree/normative-player-characters

	 E. A. Neufeld et al.

1 3

 43   Page 18 of 19

bases that require more elaborate conflict resolution mecha-
nisms would allow us to explore the pursuit of multiple (and
at times opposing) ethical goals.

Additionally, as we saw in Sect. "Introducing permissive
norms", more investigation on how normative reasoning can
be integrated into an agent’s learning process is warranted;
the ‘lesser evil’ module gives us a framework for evaluat-
ing and measuring the moral worth (or rather, detriment) of
actions, which could prove a useful tool for an agent trying
to learn ethical behaviour. Another motivation for pursu-
ing this integration is the matter of policy optimization; the
normative supervisor sometimes dictates that the agent stray
from its optimal policy, and it might be the case that a bet-
ter, compliant policy could be discovered if the normative
reasoning was incorporated into training.

Moving forward, we also hope to explore the use of the
supervisor in conjunction with other approaches to eliciting
ethical compliance; we could, for example, use the event
recorder capabilities with the agent in Noothigattu et al.
(2019), or as a last minute compliance checker for an agent
with an ethical planner as described in Bremner et al. (2019).

We are interested in extending our approach with methods
for determining which norms govern an agent’s behaviour
from logs of its actions and the environment in which these
actions were performed (for first steps see, e.g., Savarimuthu
and Cranefield (2011) and Haynes et al. (2017).

In our case study, we manually identified and integrated
revisions to our norm base meant to minimize violations,
and automating this process would be a challenging, but
potentially rewarding research direction.

Acknowledgements  This work was partially supported by WWTF
project MA16-28 and the DC-RES run by the TU Wien’s Faculty of
Informatics and the FH-Technikum Wien.

Funding  Open access funding provided by TU Wien (TUW).

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abel, D., MacGlashan, J., & Littman, M. L. (2016). Reinforcement
learning as a framework for ethical decision making. In AAAI
workshop: AI, ethics, and society (Vol. 16, p. 02). http://​www.​aaai.​
org/​ocs/​index.​php/​WS/​AAAIW​16/​paper/​view/​12582

Aler Tubella, A., & Dignum, V. (2019). The glass box approach:
Verifying contextual adherence to values. In Proceedings of the
AISafety@IJCAI 2019, CEUR workshop proceedings (Vol. 2419).
http://​ceur-​ws.​org/​Vol-​2419/​paper_​18.​pdf

Aler Tubella, A., Theodorou, A., Dignum, F., & Dignum, V. (2019).
Governance by glass-box: Implementing transparent moral bounds
for AI behaviour. In Proc. of IJCAI: The twenty-eighth interna-
tional joint conference on artificial intelligence (pp. 5787–5793).
ijcai.org. https://​doi.​org/​10.​24963/​ijcai.​2019/​802

Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., &
Topcu, U (2018) Safe reinforcement learning via shielding. In
Proceedings of the thirty-second AAAI conference on artificial
intelligence (pp. 2669–2678). https://​www.​aaai.​org/​ocs/​index.​php/​
AAAI/​AAAI18/​paper/​view/​17211

Andrighetto, G., Governatori, G., Noriega, P., & van der Torre, L.
W. N. (eds.) (2013). Normative multi-agent systems, Dagstuhl
follow-ups (Vol. 4). Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik. http://​drops.​dagst​uhl.​de/​opus/​porta​ls/​dfu/​index.​php?​
semnr=​13003

Berreby, F., Bourgne, G., & Ganascia, J. G. (2017). A declarative mod-
ular framework for representing and applying ethical principles.
In Proc. of AAMAS 2017: The 16th conference on autonomous
agents and multiagent systems (pp. 96–104). ACM. http://​dl.​acm.​
org/​citat​ion.​cfm?​id=​30911​25

Boella, G., & van der Torre, L. (2004). Regulative and constitutive
norms in normative multiagent systems. In Proc. of KR 2004: The
9th intern. conf. on principles of knowledge representation and
reasoning (pp. 255–266). AAAI Press. http://​www.​aaai.​org/​Libra​
ry/​KR/​2004/​kr04-​028.​php

Bremner, P., Dennis, L., Fisher, M., & Winfield, A. (2019). On proac-
tive, transparent, and verifiable ethical reasoning for robots. Pro-
ceedings of the IEEE, 107(3), 541–561. https://​doi.​org/​10.​1109/​
JPROC.​2019.​28982​67

Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., & van der Torre, L.
(2001). The boid architecture: Conflicts between beliefs, obliga-
tions, intentions and desires. In Proc. of AGENTS 2001: The fifth
international conference on Autonomous agents (pp. 9–16). ACM.
https://​doi.​org/​10.​1145/​375735

DeNero, J., & Klein, D. (2014). UC Berkeley CS188 intro to AI—
Course materials

Dignum, V (2017) Responsible autonomy. In Proc. of IJCAI 2017:
The twenty-sixth international joint conference on artificial intel-
ligence (pp. 4698–4704). ijcai.org. https://​doi.​org/​10.​24963/​ijcai.​
2017/​655

Forrester, J. W. (1984). Gentle murder, or the adverbial samaritan.
The Journal of Philosophy, 81(4), 193–197. https://​doi.​org/​10.​
2307/​20261​20

Governatori, G. (2015). Thou shalt is not you will. In K. Atkinson
(Ed.), Proceedings of the fifteenth international conference on
artificial intelligence and law (pp. 63–68). ACM https://​doi.​org/​
10.​1145/​27460​90.​27461​05

Governatori, G. (2018). Practical normative reasoning with defeasible
deontic logic. In Reasoning web international summer school,
Lecture notes in computer science (Vol. 11078, pp. 1–25).
Springer. https://​doi.​org/​10.​1007/​978-3-​030-​00338-8_1

Governatori, G., Olivieri, F., Rotolo, A., & Scannapieco, S. (2013).
Computing strong and weak permissions in defeasible logic. Jour-
nal of Philosophical Logic, 42(6), 799–829. https://​doi.​org/​10.​
1007/​s10992-​013-​9295-1

http://creativecommons.org/licenses/by/4.0/
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12582
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12582
http://ceur-ws.org/Vol-2419/paper_18.pdf
https://doi.org/10.24963/ijcai.2019/802
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
http://drops.dagstuhl.de/opus/portals/dfu/index.php?semnr=13003
http://drops.dagstuhl.de/opus/portals/dfu/index.php?semnr=13003
http://dl.acm.org/citation.cfm?id=3091125
http://dl.acm.org/citation.cfm?id=3091125
http://www.aaai.org/Library/KR/2004/kr04-028.php
http://www.aaai.org/Library/KR/2004/kr04-028.php
https://doi.org/10.1109/JPROC.2019.2898267
https://doi.org/10.1109/JPROC.2019.2898267
https://doi.org/10.1145/375735
https://doi.org/10.24963/ijcai.2017/655
https://doi.org/10.24963/ijcai.2017/655
https://doi.org/10.2307/2026120
https://doi.org/10.2307/2026120
https://doi.org/10.1145/2746090.2746105
https://doi.org/10.1145/2746090.2746105
https://doi.org/10.1007/978-3-030-00338-8_1
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/s10992-013-9295-1

Enforcing ethical goals over reinforcement‑learning policies﻿	

1 3

Page 19 of 19  43

Governatori, G., & Rotolo, A. (2008). BIO logical agents: Norms,
beliefs, intentions in defeasible logic. Journal of Autonomous
Agents and Multi Agent Systems, 17(1), 36–69. https://​doi.​org/​
10.​1007/​s10458-​008-​9030-4

Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G. J., &
Lee, I. (2019). Reinforcement learning for temporal logic control
synthesis with probabilistic satisfaction guarantees. In Proc. of
CDC 2019: The IEEE 58th conference on decision and control
(pp. 5338–5343). IEEE . https://​doi.​org/​10.​1109/​CDC40​024.​2019.​
90289​19

Haynes, C., Luck, M., McBurney, P., Mahmoud, S., Vítek, T., & Miles,
S. (2017). Engineering the emergence of norms: A review. Knowl-
edge Engineering Review, 32, e18. https://​doi.​org/​10.​1017/​S0269​
88891​70001​69

Jansen, N., Könighofer, B., Junges, S., Serban, A., & Bloem, R. (2020).
Safe reinforcement learning using probabilistic shields (invited
paper). In Proc. of CONCUR 2020: The 31st international confer-
ence on concurrency theory, Leibniz international proceedings in
informatics (LIPIcs) (Vol. 171, pp. 3:1–3:16). https://​doi.​org/​10.​
4230/​LIPIcs.​CONCUR.​2020.3

Lam, H. P., & Governatori, G. (2009). The making of SPINdle. In
Proc. of RuleML 2009: The international symposium of rule
interchange and applications, LNCS (Vol. 5858, pp. 315–322).
Springer. https://​doi.​org/​10.​1007/​978-3-​642-​04985-9

Lam, H. P., & Governatori, G. (2013). Towards a model of UAVs
navigation in urban canyon through defeasible logic. Journal
of Logic and Computation, 23(2), 373–395. https://​doi.​org/​10.​
1007/​978-3-​642-​04985-9_​29

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end
training of deep visuomotor policies. The Journal of Machine
Learning Research, 17, 39:1–39:40

Makinson, D., & Van Der Torre, L. (2007). What is input/output
logic? Input/output logic, constraints, permissions. In Dagstuhl
seminar proceedings (Vol. 07122). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany. http://​drops.​dagst​uhl.​de/​opus/​vollt​exte/​2007/​928

Moor, J. (2006). The nature, importance, and difficulty of machine
ethics. IEEE Intelligent Systems, 21, 18–21. https://​doi.​org/​10.​
1109/​MIS.​2006.​80

Neufeld, E., Bartocci, E., Ciabattoni, A., & Governatori, G. (2021).
A normative supervisor for reinforcement learning agents. In
A. Platzer, & G. Sutcliffe (Eds.), Proc. of CADE 28: The 28th
international conference on automated deduction, LNCS (Vol.
12699, pp. 565–576). Springer. https://​doi.​org/​10.​1007/​978-3-​
030-​72019-3_​18

Noothigattu, R., Bouneffouf, D., Mattei, N., Chandra, R., Madan, P.,
Varshney, K. R., Campbell, M., Singh, M., & Rossi, F. (2019).
Teaching AI agents ethical values using reinforcement learning
and policy orchestration. In Proc. of IJCAI 2019: The twenty-
eighth international joint conference on artificial intelligence
(pp. 6377–6381). https://​doi.​org/​10.​24963/​ijcai.​2019/​891

Nowell-Smith, P. H., & Lemmon, E. J. (1960). Escapism: The logical
basis of ethics. Mind, 69(275), 289–300.

Pereira, L. M., & Saptawijaya, A. (2009). Modelling morality with
prospective logic. International Journal of Reasoning-based
Intelligent Systems, 1(3/4), 209–221. https://​doi.​org/​10.​1504/​
IJRIS.​2009.​028020

Pnueli, A. (1977). The temporal logic of programs. In Proc. of the
18th annual symposium on foundations of computer science
(pp. 46–57). IEEE Computer Society. https://​doi.​org/​10.​1109/​
SFCS.​1977.​32

Prakken, H., & Sartor, G. (2015). Law and logic: A review from an
argumentation perspective. Artificial Intelligence, 227, 214–
245. https://​doi.​org/​10.​1016/j.​artint.​2015.​06.​005

Rodriguez-Soto, M., López-Sánchez, M., & Rodríguez-Aguilar, J.
A. (2021). Multi-objective reinforcement learning for design-
ing ethical environments. In Proc. of IJCAI 2021: The thirtieth
international joint conference on artificial intelligence (pp.
545–551). https://​doi.​org/​10.​24963/​ijcai.​2021/​76

Sadri, F., Stathis, K., & Toni, F. (2006). Normative KGP agents.
Computational and Mathematical Organization Theory, 12(2–
3), 101–126. https://​doi.​org/​10.​1007/​s10588-​006-​9539-5

Savarimuthu, B. T. R., & Cranefield, S. (2011). Norm creation,
spreading and emergence: A survey of simulation models of
norms in multi-agent systems. Multiagent and Grid Systems,
7(1), 21–54. https://​doi.​org/​10.​3233/​MGS-​2011-​0167

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond,
P., & Cory, H. T. (1986). The british nationality act as a logic
program. Communications of the ACM, 29(5), 370–386. https://​
doi.​org/​10.​1145/​5689.​5920

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen,
Y., Lillicrap, T. P., Hui, F., Sifre, L., van den Driessche, G.,
Graepel, T., & Hassabis, D. (2017). Mastering the game of go
without human knowledge. Nature, 550(7676), 354–359. https://​
doi.​org/​10.​1038/​natur​e24270

The IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems: IEEE standard review—Ethically aligned design: A
vision for prioritizing human wellbeing with artificial intelli-
gence and autonomous systems (1st ed.). IEEE (2019)

von Wright, G. H. (1968). An essay in deontic logic and the general
theory of action: With a bibliography of deontic and imperative
logic. Co: North-Holland Pub.

Wallach, W., & Allen, C. (2008). Moral machines: Teaching robots
right from wrong. Oxford University Press. https://​doi.​org/​10.​
1093/​acprof:​oso/​97801​95374​049.​001.​0001

Watkins, C. J. C. H.: Learning from delayed rewards. Ph.D. thesis,
King’s College, Cambridge, UK (1989). http://​www.​cs.​rhul.​ac.​
uk/​~chrisw/​new_​thesis.​pdf

Wu, Y. H., & Lin, S. D. (2018). A low-cost ethics shaping approach
for designing reinforcement learning agents. In Proc. AAAI 2018:
The thirty-second AAAI conference on artificial intelligence (pp.
1687–1694). AAAI Press. https://​www.​aaai.​org/​ocs/​index.​php/​
AAAI/​AAAI18/​paper/​view/​16195

https://doi.org/10.1007/s10458-008-9030-4
https://doi.org/10.1007/s10458-008-9030-4
https://doi.org/10.1109/CDC40024.2019.9028919
https://doi.org/10.1109/CDC40024.2019.9028919
https://doi.org/10.1017/S0269888917000169
https://doi.org/10.1017/S0269888917000169
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.1007/978-3-642-04985-9
https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.1007/978-3-642-04985-9_29
http://drops.dagstuhl.de/opus/volltexte/2007/928
https://doi.org/10.1109/MIS.2006.80
https://doi.org/10.1109/MIS.2006.80
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.24963/ijcai.2019/891
https://doi.org/10.1504/IJRIS.2009.028020
https://doi.org/10.1504/IJRIS.2009.028020
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/j.artint.2015.06.005
https://doi.org/10.24963/ijcai.2021/76
https://doi.org/10.1007/s10588-006-9539-5
https://doi.org/10.3233/MGS-2011-0167
https://doi.org/10.1145/5689.5920
https://doi.org/10.1145/5689.5920
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1093/acprof:oso/9780195374049.001.0001
https://doi.org/10.1093/acprof:oso/9780195374049.001.0001
http://www.cs.rhul.ac.uk/%7echrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/%7echrisw/new_thesis.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16195
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16195

	Enforcing ethical goals over reinforcement-learning policies
	Abstract
	Introduction
	Our approach
	Ethical Pac-Man
	Related work
	Paper organization

	Background
	Machine ethics
	Normative reasoning and defeasible deontic logic
	Reinforcement learning
	Vegan Pac-Man

	The normative supervisor
	Architecture
	Configuring the norm base
	Automating translation
	Front end translation
	Back end translation

	Parsing conclusions
	Compliant solutions
	‘Lesser of two Evils’ solutions

	Variations and experimental results
	Vegan Pac-Man
	Analysing violations

	Revising the norm base: vegetarian Pac-Man
	Revising the norm base: cautious and over-cautious Pac-Man
	Introducing permissive norms
	Contrary-to-duty obligations: passive vegan Pac-Man

	Conclusion and future work
	Acknowledgements
	References

