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Abstract
Recent years have yielded many discussions on how to endow autonomous agents with the ability to make ethical decisions, 
and the need for explicit ethical reasoning and transparency is a persistent theme in this literature. We present a modular and 
transparent approach to equip autonomous agents with the ability to comply with ethical prescriptions, while still enacting 
pre-learned optimal behaviour. Our approach relies on a normative supervisor module, that integrates a theorem prover for 
defeasible deontic logic within the control loop of a reinforcement learning agent. The supervisor operates as both an event 
recorder and an on-the-fly compliance checker w.r.t. an external norm base. We successfully evaluated our approach with 
several tests using variations of the game Pac-Man, subject to a variety of “ethical” constraints.

Keywords  Deontic defeasible logic · Reinforcement learning · Normative reasoning · Ethical artificial intelligence

Introduction

From self-driving cars to unmanned aerial vehicles, autono-
mous agents are becoming increasingly ubiquitous in many 
facets of contemporary life. Participation in activities for-
merly reserved for human operators requires such agents to 
adapt to (potentially unpredictable) changes in their environ-
ment; reinforcement learning (RL) has been demonstrated to 
be an effective tool for teaching agents such behaviour (e.g. 
Levine et al., 2016; Silver et al., 2017).

Contributing to human activities, however, elicits the 
further requirement that agents constrain their behaviour 
according to the ethical standards their human counterparts 
are subject to. This introduces the additional challenge of 
establishing boundaries for the behaviour of autonomous 
agents—and in some cases, making some form of ethi-
cal reasoning available to these agents. RL agents can be 

trained—via the assignment of rewards/penalties by an ethi-
cal utility function—to avoid unethical behaviour and pursue 
ethical compliance, see e.g. Noothigattu et al. (2019), Abel 
et al. (2016), Wu and Lin (2018), and Rodriguez-Soto et al. 
(2021). However, in many cases, this approach offers limited 
guarantees of the desired behaviour. Furthermore, such tech-
niques can be cumbersome when dealing with the complex-
ity of ethical reasoning; the presence of conflicting norms 
with different priorities, exceptions to norms, or contrary-to-
duty obligations (i.e., obligations which are only applicable 
in case of violations), introduce subtleties not easily captured 
by learned policies. An additional challenge arises when we 
embed ethical principles in the learning process; doing so 
requires us to retrain the policy from scratch each time we 
wish to modify the adopted norms.

Similar to other black-box machine learning methods, 
RL lacks transparency in explaining why certain policies 
are compliant or not. Meanwhile, transparency is frequently 
adopted as a key requirement in work on machine ethics 
(e.g. in Dignum, 2017); the works (Aler Tubella & Dignum, 
2019; Aler Tubella et al., 2019), for instance, deliberately 
address the problem of transparency. Despite the thorough-
ness of their approach, it has not been implemented and 
tested yet.
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Our approach

We aim to integrate ethical reasoning into learning agents 
to accommodate changing values, cope with apparent con-
tradictions in ethical requirements, handle situations where 
no compliance is possible, and facilitate the transparent 
justification of judgments made—without sacrificing the 
optimal behaviour the agent has learned. Our approach 
integrates RL with Deontic Logic, the branch of logic con-
cerned with the formal specification of normative state-
ments. Ethical norms can be modeled using Deontic Logic 
(von Wright, 1968; Nowell-Smith & Lemmon, 1960); the 
difference between ethical and legal norms is found in how 
they originate, not in what normative consequences they 
imply.

We introduce a logic-based normative supervisor mod-
ule which we integrate into an RL agent. The supervi-
sor advises the agent on courses of action that comply 
with the normative (e.g., ethical) requirements in force 
in a given situation. The supervisor can function as both 
an on-the-fly compliance checker and an event recorder; 
it will correct the action selected by the agent’s policy 
only when it violates a norm, and as an event logger, it 
will identify the specifics of these violations and record 
the conditions under which they occur (thereby informing 
further analysis and possible modifications to the agent or 
the norms it is subject to). The supervisor addresses what 
we see as important challenges in implementing ethical 
AI, especially the accommodation of changing values, the 
explicit justification of actions, and the selection of the 
‘lesser evil’ when no compliant action is possible.

Among the various alternative formalisms proposed 
within the field of Normative Multi-Agent Systems (Nor-
MAS) (Andrighetto et al., 2013), we have chosen defeasi-
ble deontic logic (Governatori et al., 2013; Governatori & 
Rotolo, 2008) to implement our normative supervisor. This 
is a simple and computationally feasible, yet expressive 
logic which allows for defeasible reasoning, handles con-
trary-to-duty norms, and can easily accommodate changes 
to the norm base. Moreover, the constructive nature of this 
logic allows us to determine how a given conclusion has 
been reached (Governatori, 2018).

Ethical Pac‑Man

We demonstrate the functionalities of our approach on 
an RL agent that plays variations of the game Pac-Man. 
This game is a closed environment with clearly defined 
game mechanics and parameters which are easy to iso-
late, manipulate, and extend with variably intricate rule 
sets that can simulate normative conflicts and dilemmas. 

Pac-Man has already been used as a case study in Noothi-
gattu et al. (2019) and Hasanbeig et al. (2019), both using 
a bottom-up approach to learn to act according to implicit 
behavioral constraints on the RL agent borne out in the 
environment, as opposed to top-down approaches that 
explicitly enforce imperatives on the agent’s actions. The 
work in Noothigattu et al. (2019) employs multi-objec-
tive RL with policy orchestration to impose constraints 
on a version of Pac-Man for which it is unethical to eat 
ghosts (“vegan” Pac-Man). It seamlessly combines ethi-
cally compliant behaviour and learned optimal behav-
iour; however, the ethical reasoning performed is still to a 
degree implicit, and it does not provide justifications for 
the choices made, nor is it clear how the approach would 
remain effectively transparent with more complex norm 
sets. Hasanbeig et al. (2019) integrates more complex con-
straints in a RL agent, but seeing as they are are embedded 
in the learned policy, it still lacks the transparency of a 
logic-based implementation.

We successfully demonstrated the effectiveness of our 
approach with a series of tests subject to a “vegan” norm 
base (Noothigattu et al., 2019), a “vegetarian” norm base 
(where Pac-Man is allowed to eat only one of the ghosts), 
and two norm bases that compromise Pac-Man’s ability to 
win the game. We then expanded the vegan norm base by 
adding permissive norms, leading to two new variants of 
the game; furthermore, we have experimented with a con-
trary-to-duty obligation that regulates the agent’s behaviour 
when it violates its norm base. Our framework facilitates 
such revisions to the norm base; records of violations that 
occur allowed us to confirm the nature of each violation 
as necessary, and were used to formulate additional norms 
for preventing violations. These tests allowed us to evaluate 
both the strengths and limitations of our approach.

Related work

The field of NorMAS studies the use of norms and norma-
tive systems to regulate the behavior of agents and to deter-
mine if the agent’s behavior complies with a set of norms 
(Andrighetto et al., 2013). Among the different proposals 
for NorMAS are non-monotonic approaches that extend the 
BDI (belief-desire-intention) architecture with a normative 
component to ensure that an agent’s plans comply with a set 
of norms or, alternatively, to select plans that do not violate 
the given norms, see e.g. Broersen et al. (2001) and Gov-
ernatori and Rotolo (2008).

Our approach can be seen as an extension of Lam and 
Governatori (2013), with our plans being limited to single 
actions that do not result in a violation. Here, however, the 
agent is equipped with a RL module to learn the behaviours 
involved in pursuing non-ethical goals, in which our logical 
framework intervenes only if necessary. In addition, based 
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on the log of the events (and the relevant normative states) 
we progressively expand the norm base to reduce the inci-
dence of negative effects.

More formalisms and tools have been proposed to regu-
late the normative behavior of agents; these include logic 
programming (e.g. Sergot et al., 1986; Pereira & Saptawi-
jaya, 2009; Berreby et al., 2017), argumentation (e.g. Prak-
ken & Sartor, 2015), Input/Output logic (Makinson & Van 
Der Torre, 2007), and the agent model in Sadri et al. (2006), 
but to the best of our knowledge they have not yet been used 
in combination with RL.

Our work complements other approaches that equip an 
RL agent with potentially unsafe behaviour with a safe wrap-
per component limiting its actions. Shielding (Alshiekh 
et al., 2018; Jansen et al., 2020), for example, employs a lin-
ear temporal logic (LTL) (Pnueli, 1977) constraint for defin-
ing safe behaviour for the agent. Starting from this specifi-
cation, they automatically synthesize a ‘shield’ component 
to prevent the agent from moving into unsafe states; this 
shield is computed before the RL agent begins operation. 
Our approach differs in that we compute the compliance of 
actions dynamically (allowing for changes in regulation dur-
ing operation), and employ defeasible deontic logic, which 
is tailored to normative reasoning. In contrast with LTL, 
defeasible deontic logic is capable, for instance, of properly 
handling obligations and permissions in force after another 
obligation has been violated; a violation is represented by 
the conjunction Op ∧ ¬p (where O is the deontic obligation 
operator) and LTL cannot accommodate a contrary-to-duty 
obligation Oq logically depending (as compensation) on a 
violation (Governatori, 2015).

This paper expands extensively upon the results pre-
sented in our preliminary work (Neufeld et al., 2021), which 
introduces the normative supervisor we use to regulate the 
agent’s behaviour in this work. In comparison to Neufeld 
et al. (2021), we delve into some of the supervisor’s inter-
nal mechanisms with more depth, and more expansively 
test its capabilities; we work through a thorough analysis of 
violations that occur in the “vegan” and “vegetarian” norm 
bases, and introduce norm bases that compromise Pac-Man’s 
ability to win the game, as well as norm bases that include 
reasoning about permissions and contrary-to-duty obliga-
tions. This extended battery of tests allows us a much more 
thorough discussion of the normative supervisor’s strengths 
and weaknesses in imposing ethical behaviour on an agent.

Paper organization

Section "Background" introduces some of the background 
concepts needed to discuss our work, including defeasible 
deontic logic. Section "The normative supervisor" provides a 
thorough breakdown of our normative supervisor’s architec-
ture in the context of our case study, while Sect. "Variations 

and experimental results" presents the variants of the game 
and the corresponding tests. In Sect. "Conclusion and future 
work" we draw our conclusions and discuss future research 
directions.

Background

Below, we briefly contextualize our work in the field of 
machine ethics, introduce the necessary background on nor-
mative reasoning and defeasible deontic logic, review the 
topic of reinforcement learning, and describe (vegan) Pac-
Man—the agent and environment utilized in our case study.

Machine ethics

Our work arises in the greater context of the field of machine 
ethics. Machine ethics, it might be argued, centres on the 
project of creating Artificial Moral Agents (AMAs). Autono-
mous systems may never be capable of moral agency in the 
same sense that humans are, but many believe that making 
them behave like moral agents remains a feasible challenge 
(Wallach & Allen, 2008). Autonomous agents that can shape 
their behaviour in response to the (ethical) norms humans 
impose on society may become an important part of the 
smooth integration of new technologies in everyday life. In 
particular, they may prove useful in the avoidance of harms 
(both direct and indirect) arising from this integration, and 
augment our ability to enforce ethical or legal standards on 
the design and use of these technologies. It should be noted 
that research into AMAs should not preclude the urgent need 
for responsible regulation and oversight of technologies old 
and new; instead, AMAs can and should complement these 
efforts. However, the development of (useful) AMAs comes 
with substantial difficulties.

In Moor (2006), a taxonomy of ethical agents is pro-
vided, with specific focus on explicit ethical agents, which 
are autonomous agents that reason explicitly about ethical 
values and/or norms (as opposed to having their actions con-
strained to avoid unethical outcomes, or functioning as full 
ethical agents, as a human might). Even these limited ethical 
agents come with serious challenges that must be bridged. 
Explicit representation of ethics requires ethical notions to 
be represented and reasoned about precisely and effectively; 
this must involve some kind of formalization of ethical prin-
ciples. And once we are able to do that, there are a plethora 
of ethical principles to choose from, support for which varies 
with application domain or cultural context. How should we 
choose what kind of ethics we implement? Do machine ethi-
cists and engineers have the right to make any such design 
decisions? Additionally, social and ethical norms change 
over time (IEEE, 2019), introducing a need for mechanisms 
for updating the AMA’s understanding of what is moral in 
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the current context. More issues arise when we consider how 
to assign moral accountability for the actions of an AMA; 
this is part of the more general pursuit of imbuing autono-
mous agents with transparent and understandable reasoning 
skills, which becomes all the more important when ethical 
decisions must be justified.

In this paper we discuss a framework for integrating 
explicitly represented norms into the behaviour of certain 
learning agents. The normative supervisor we introduce does 
not serve as an architecture for an AMA; however, it enables 
us to modify the behaviour of artificial amoral agents, forc-
ing them to act in such a way that matches how an AMA 
might in certain contexts. This framework was designed to 
introduce a high degree of configurability; the decoupling of 
the learning agent and the supervisor allows us to seamlessly 
switch between the normative systems we wish to enforce 
(whether these are ethical, legal, or social norms), accom-
modating the natural evolution of such systems. Moreover, 
it includes as a feature event recording, which allows us 
to retain records of the agent’s knowledge and the norms 
it is compelled to obey when, for example, a violation is 
incurred. At the core of this framework is a logic for nor-
mative reasoning (after all, ethical norms are unique only 
in how they emerge, not what normative consequences are 
entailed by them) which we introduce in the next subsection.

Normative reasoning and defeasible deontic logic

Normative reasoning diverges from the reasoning captured 
by classical logic in that it must deal with not only state-
ments that are true or false, but also the imposition of norms 
on to such statements. This demands the use of deontic logic 
(a class of logics that deal with obligations, permissions and 
related notions), sometimes with the additional feature of 
defeasibility, which is the capability to weaken or overturn 
inferences in light of additional information (see, e.g., Prak-
ken & Sartor, 2015).

To develop our logic-based normative supervisor we 
employed defeasible deontic (propositional) logic (DDPL 
for short) (Governatori et al., 2013) and its theorem prover 
SPINdle.

With this logic we can represent literals—atomic propo-
sitions and their negations—and modal literals (that is, 
literals subject to a modal operator), as well as rules built 
from them. For the purposes of this paper we only consider 
explicitly one deontic modality (obligation, O ) and use the 
standard equivalences to define prohibition and (weak) per-
mission, namely: F(p) ≡ O(¬p) (that is, p is forbidden) and 
P(p) ≡ ¬O(¬p) (p is weakly permitted) respectively. DDPL 
also gives us the option to define strong permissions, with 
rules that explicitly state that something is permitted as an 
exception to a prohibition (or obligation to the contrary) 

(Governatori et al., 2013); strong permissions will be used 
in Sect. "Introducing permissive norms".

In this paper we handle two types of norms: constitu-
tive and regulative norms (see e.g. Boella et al. (2004) for 
the terminology). Regulative norms consist of obligations, 
prohibitions and permissions. On the other hand, constitu-
tive norms regulate instead the creation of institutional facts 
as well as the modification of the normative system itself; 
their content is a relation between two conceptual entities, 
and they will typically take the form “concept x counts as 
concept y”, where x refers to a more concrete concept (e.g., 
walking) and y to a more abstract one (e.g., moving). We say 
that concept x is at a lower level of abstraction than concept 
y if there is a constitutive norm asserting that x counts as y 
(which will be denoted as C(x, y) ). Below we give the formal 
definition for rules (constitutive or regulative) in DDPL:

Definition 1  (Rules (Governatori et al., 2013)) Let r be a 
label that designates a rule:

where A(r) = {a1, ..., an} is the antecedent, N(r) is the con-
sequent, ↪∗∈ {→∗,⇒∗,⇝∗} is a generic rule symbol, and 
∗∈ {C,O} designates the mode of each rule.

Rules labelled by C are constitutive rules and rules 
labelled by O are regulative rules, where the consequent 
of the rule is derived in the scope of a deontic operator. 
Strict rules ( →∗ ) are rules where the consequent strictly 
follows from the antecedent without exception. Defeasible 
rules ( ⇒∗ ) are rules where the consequent typically follows 
from the antecedent, unless there is evidence to the con-
trary. Defeaters ( ⇝∗ ) are rules that only prevent a conclusion 
from being reached by a defeasible rule; regulative defeaters 
are used to encode permissive rules (see Governatori et al., 
2013). DDPL is furthermore equipped with a superiority 
relation > to resolve conflicts between rules.

Example 1  Consider the rule r0 ∶ a ⇒O ¬c that forbids c 
when a holds. In case a does not hold, then (assuming there 
are no other rules forbidding c), we have no way to con-
clude that c is forbidden, and hence we can say that c is 
weakly permitted. Assume we have in addition the defeater 
r1 ∶ b ⇝O c . When b holds, the defeater prevents the pro-
hibition of c to hold making thus c (strongly) permitted. 
If r0 was a strict rule, c would remain forbidden. If we 
want to oblige c instead, we could define a defeasible rule 
r2 ∶ b ⇒O c along with the superiority relation r2 > r0.

The central concept of DDPL is the defeasible theory 
(Governatori et al., 2013).

r ∶ A(r) ↪∗ N(r)
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Definition 2  (Defeasible Theory (Governatori et al., 2013)) 
A defeasible theory D is a tuple ⟨F,RO,RC,>⟩ , where F is 
a set of literals (facts), RO and RC are sets of regulative and 
constitutive rules respectively, and > is a superiority rela-
tion over rules.

We will typically want to work with defeasible theories 
that are consistent.

Definition 3  (Consistent Defeasible Theory (Governatori 
et al., 2013)) A Defeasible Theory is consistent iff it does 
not prove any pair of literals of the form O(l) and ¬O(l) , or 
l and ¬l . D is O-consistent iff the theory does not prove any 
of the pairs O(l) and O(¬l).

A defeasible theory is consistent (or O-consistent) if (1) 
the superiority relation is acyclic and (2) the sub-theory 
consisting of the set of facts and strict rules is consistent (or 
O-consistent).

From such defeasible theories we can derive conclusions. 
Conclusions in DDPL are established over proofs and can be 
classified as defeasible or definite, and positive or negative. 
A positive conclusion indicates that the referenced literal 
holds, while a negative indicates that this literal has been 
refuted. A definite conclusion is obtained by using only strict 
rules and facts using forward chaining of rules. A conclusion 
holds defeasibly (denoted by +�C for a factual conclusion 
and +�O for a regulative conclusion) if there is an applicable 
rule for it and the rules for the opposite cannot be applied 
or are defeated.

Over the course of a proof, each rule will be classified as 
either applicable (i.e., the antecedent holds and the conse-
quent follows), discarded (i.e., the rule is not applied because 
the antecedent does not hold), or defeated by a defeater or 
higher priority rule. The definition of provability for defeasi-
ble obligations (Governatori et al., 2013) is (for a set of rules 
R, R[p] denotes the set of rules with p in the consequent, RO 
is the set of regulative rules in R, an d Rsd is the set of strict 
or defeasible rule in R):

Definition 4  (Defeasible Provability (Governatori et al., 
2013)) Given a defeasible theory D, if D ⊢ +𝜕O p , then: 

1.	 ∃r ∈ Rsd
O
[p] that is applicable defeasible, and

2.	 ∀s ∈ RO[¬p] either:
3.	 s is discarded, or
4.	 s ∈ Rsd and ∃t ∈ RO[p] which is applicable s.t. t > s , or
5.	 s is a defeater, ∃t ∈ Rsd

O
[p] which is applicable s.t. t > s

A derivation in DDPL has an argumentation structure 
and consists of three phases. In the first phase we need an 
argument for the conclusion we want to prove. In the second 
phase, we analyse all possible counter-arguments, and in the 

third and final phase, we rebut the counter-arguments. An 
argument is simply an applicable rule. There are two ways 
to rebut an argument: undercut it, meaning that the argu-
ment is not applicable; or defeat the argument by proposing 
a stronger applicable argument. If we exclude the undercut 
case, in every phase the arguments attack the arguments in 
the previous phase. A rule attacks another rule if the conclu-
sions of the two rules are contradictory. The pairs “ O(q) and 
O(¬q) ”, and “ O(q) and P(¬q) ” are deontic contradictions but 
P(q) and P(¬q) are not contradictory. Accordingly, any regu-
lative rule for q attacks a strict or defeasible regulative rule 
for ¬q . However, a regulative defeater for q is not attacked 
by a regulative defeater for ¬q (condition 2(c) above), since 
regulative defeaters are rules to conclude permissions.

Reinforcement learning

Reinforcement Learning (RL) is a subfield of machine learn-
ing that investigates efficient and effective algorithms for 
learning how an agent should behave in specific environ-
ments to maximize its expected cumulative reward. RL 
algorithms leverage utility functions that assign rewards/
costs to each state-action pair to learn an optimal policy 
that prescribes to each state an action, thereby governing 
the agent’s behaviour in such a way that maximizes rewards 
earned over time.

In our case study, we use Q-learning (Watkins, 1989) 
with linear function approximation as our RL algorithm. 
This technique learns a function Q(s,  a) to predict the 
expected cumulative reward (Q-value) for the agent in a 
state s if it takes action a. The function Q is approximated 
as a linear function which is the weighted sum of features 
describing some elements of the environment (e.g., the dis-
tance between the agent and object X); the features which 
are most relevant to predicting the agent’s success are 
weighted most heavily. The learned policy selects the action 
argmaxa∈possible Q(s, a) with the highest Q-value over a list 
of possible actions possible.

Vegan Pac‑Man

The arcade game Pac-Man is played by controlling an epon-
ymous agent located in a maze. Pac-Man must navigate the 
maze with the goal of entering cells containing a ‘food pel-
let’, so it can eat them for 10 points. The game is won when 
Pac-Man has eaten all the food pellets in the maze, receiving 
500 points. The goal is to win the game while collecting 
the maximum number of points and minimizing time taken; 
each move of Pac-Man costs a time penalty of −1 point. 
There are also two ghosts wandering around the maze. In 
order to avoid being eaten by ghosts, Pac-Man must avoid 
collisions with the ghosts—unless they enter a ‘scared’ state, 
which is triggered when Pac-Man eats a special “power” 
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pellet. When the ghosts are scared, Pac-Man can eat them, 
and is rewarded with 200 points if it does so.

Similar to Noothigattu et al. (2019), we consider a varia-
tion of the UC Berkeley AI Pac-Man implementation (DeN-
ero & Klein, 2014), where Pac-Man is ethically forbidden 
from eating ghosts. We call this variation “Vegan Pac-Man”; 
we also experiment with “Vegetarian Pac-Man”, where only 
blue ghosts are off-limits.

Our Pac-Man agent utilizes a Q-learning policy that 
selects the argmax of an approximated Q-function (as 
described above); as the utility function we use the game’s 
score, and game states are taken to be states. We use a game 
layout identical to that in Noothigattu et al. (2019); this is a 
20 × 11 maze populated with 97 food pellets and two ghosts 
(blue and orange) which move randomly. The highest score 
that can be achieved is in general 2170. When eating ghosts 
is forbidden the maximum score is 1370.

The normative supervisor

We introduce a normative supervisor that functions as an 
on-the-fly compliance checker with the ability to identify 
courses of action that are compliant with an externally sup-
plied norm base; when no such action exists, the supervisor 
determines which action will result in the least number of 
violations with respect to this norm base. Our architecture 
is highly modular, which contributes to the ease with which 
we can independently adjust the agent, the reasoner at the 
core of the normative supervisor, and the applicable norm 
base consisting of regulative norms and any relevant con-
stitutive norms.

Architecture

The centerpiece of our approach is the normative supervi-
sor whose main architecture is illustrated in Fig. 1. This 
module consists of a normative reasoning engine (we use 
the SPINdle theorem prover for defeasible deontic logic 
(Lam & Governatori, 2009)), and additional components 
that encode applicable norms and environmental data into 
a defeasible deontic logic theory, and translate the conclu-
sions of the reasoning engine into instructions the agent 
can interpret.

We integrate the normative supervisor into the agent’s 
control loop between the localization and policy modules, 
as is depicted in Fig. 1. The localization module identifies 
the current agent’s state with respect to its environment 
and passes the current state and a list of possible actions 
to the normative supervisor. In simple environments (like 
the one we will deal with in this paper), the state repre-
sentation passed to the normative supervisor will closely 
resemble the state the agent observes. In our case study, 
for example, the normative supervisor only receives infor-
mation on (1) the agent’s position, (2) the other agents’ 
(ghosts’) positions, (3) the other agents’ state (whether 
or not the ghosts are scared), and (4) what actions are 
available to the agent. However, in more complex appli-
cations, the normative supervisor’s ability to accurately 
reason about a set of norms will depend on the accuracy 
with which the agent can approximate the relevant features 
of its environment.

The normative supervisor module filters out any action 
that is not compliant with the norm base. The policy will 

Fig. 1   (Bottom) A high-level diagram of the Pac-Man agent control loop. (Top) Main components of the Normative Supervisor
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then identify from the remaining compliant actions the 
action optimal for generating the best outcome. If there are 
no available compliant actions then the normative supervisor 
will provide a list of ‘lesser evil’ actions. This module also 
enables us to log all the conclusions of the reasoning engine 
during the game for later scrutiny.

Configuring the norm base

We start with a simple norm base, consisting only of the 
behavioral constraint proposed in Noothigattu et al. (2019) 
that “Pac-Man must not eat ghosts”1, represented as:

If this norm base is to constrain our agent’s actions, it needs 
to reference concepts processed by the agent, which is lim-
ited to the locations of game entities and the actions that 
Pac-Man can perform, which are North, South, East, West, 
and Stop. How do we get from the comparably abstract norm 
above to these lower-level state and action descriptions? We 
need to fill in the gaps, exercising our knowledge of the 
game mechanics to do so.

The only way eat(pacman, ghost) can be done is if (a) 
the ghost is in a ‘scared’ state, and (b) Pac-Man and the 
ghost move into the same cell. We can express these con-
cepts as predicates over game objects, specifically as (a) 
scared(ghost) and (b) inRange(pacman, ghost). Pac-Man 
does not know which direction the ghost will move in, but 
we will assume a “cautious” model of action where Pac-
Man should not perform any action that could constitute 
eating a ghost; that is, if Pac-Man takes an action that could 
reasonably lead to him violating a norm, we will consider 
that norm violated. Since Pac-Man’s next action determines 
what is in range, we in fact need five entities to express 
inRange(pacman, ghost), one corresponding to each action. 
These conceptual entities are used to construct a constitutive 
norm, or a kind of strategy, regarding the action of eating. 
For example:

w h i c h  a p p l i e s  i n  t h e  c o n t e x t 
{scared(ghost), inNorthRange(pacman, ghost)}.

To define in North Range (pacman, ghost), we note that 
we have access to the positions of Pac-Man and the ghosts, 
so we can create another set of constitutive norms which are 
applicable in the context {pacman(i, j)}:

F(eat(pacman, ghost)), where F stands for prohibition.

C(North, eat(pacman, ghost))

C(ghost(k, l), inNorthRange(pacman, ghost))

where (k, l) has a Manhattan distance of 1 from (i, j + 1).

Automating translation

We now must amalgamate our informal representation of 
the norm base and the input and output to the agent into 
the formal language of the reasoner (DDPL and its theorem 
prover SPINdle (Lam & Governatori, 2009)). If we frame 
the reasoner as a central reasoning facility, the agent as a 
front-end, and the norm base as a back-end, we can imple-
ment this dynamic as a translator with two faces, one front-
facing and one back-facing, feeding information into the 
reasoner from the agent and the norm base respectively. On 
both ends, the translations will be performed dynamically; 
the current state of the game will change at every time step, 
and in order to minimize the amount of data passed to the 
reasoner, there are elements of the norm base—namely con-
stitutive norms—that will be generated only for the current 
context.

Front end translation

The front-end translator is in perpetual use, processing new 
data and proposed actions as the environment changes. It 
amounts to an algorithm that transforms input data from the 
agent into propositions which assert facts about the agent or 
the environment. Every cell of the Pac-Man grid contains 
characters (Pac-Man or one of the ghosts), an object (a wall 
or a food pellet), or nothing at all. Walls are accounted for 
during the localization stage of Pac-Man’s algorithm and 
norms regarding food pellets are not found in the norm base, 
so we will need to reason only about the characters. Hence 
we have two sets of variables in each game: pacmani,j and 
ghosti,j for each coordinate (i, j) on the grid, asserting the 
locations of Pac-Man and each ghost. These variables can be 
generated as SPINdle literals at the beginning of the game, 
and then used to generate a set of facts, Facts, for a defea-
sible theory:

where the set Facts of facts contains literals representing 
the locations of Pac-Man and the ghosts. It may also contain 
other facts about the game; e.g., if there is a scared ghost, 
both its location and scared(ghost) will be included in Facts.

Actions will be represented as literals, in the set

Summarily, a query from Pac-Man to the reasoner will be 
accompanied by a representation of the current game state, 
along with a list of possible actions possible, which will be 
translated to the corresponding literals in Actions.

GameState = ⟨Facts,RC,RO,>⟩,

Actions = {North, South,East,West, Stop}

1  For simplicity, we will not differentiate between the blue and the 
orange ghost for the time being.
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Back end translation

In this crucial task we must ensure that norms dictate the 
same behaviour once translated into to the language of the 
reasoner; that is, that each component of the norm base is 
represented by the language.

We represent the regulative norm of Vegan Pac-Man as:

where defeasibility is given as a precautionary measure, just 
in case we want to add (potentially conflicting) norms later, 
as it gives us the option of leveraging the superiority rela-
tion or defeaters.

Some additional reasoning has to be performed to trans-
late constitutive norms; we will in general translate the 
constitutive norms (over states) discussed in Sect.  "Con-
figuring the norm base" in the following way. If we have a 
constitutive norm C(x, y) that applies in context {a, b} , this 
is expressed in DDPL as

We have found that it is more time-efficient to generate these 
constitutive norms anew whenever the fact set changes, 
instead of generating every possible constitutive norm ahead 
of time, and having SPINdle deal with them all at once; 
we will define these norms dynamically, and only norms 
whose applicable context currently holds will be added 
to RC in GameState. Thus, these norms will be generated 
w.r.t. the input from the agent; for example, if the context 
is {pacman2,3} , the rule(s) defining inNorthRangepacman,ghost 
will include:

The translation of constitutive norms over actions will 
be a more complex matter. Firstly, since DDPL is a lan-
guage with a single variable type, we chose to distin-
guish actions and states by applying deontic modali-
ties to actions at all times, and never to states. So we can 
reformulate the relation C(North, eat(pacman, ghost)) as 
C(O(North),O(eat(pacman, ghost))) , assuming the same 
context. Note that if moving North counts as eating a ghost, 
a prohibition to eat a ghost implies a prohibition to move 
North. So we can rewrite the above norm as

or with the applicable context in DDPL as:

Note that though this a constitutive rule, in DDPL it will 
be in RO . This will work for all of the constitutive norms 

vegan ∶⇒O ¬eatpacman,ghost ∈ RO

a, b, x →C y

pacman2,3, ghost2,5 →C inNorthRangepacman,ghost ∈ RC

C(O(¬eat(pacman, ghost)),O(¬North))

scaredghost, inNorthRangepacman,ghost,

O(¬eatpacman,ghost) ⇒O ¬North ∈ RO

attached to a prohibited action, where we place the con-
text and the prohibition in question in the antecedent, and 
the prohibition of the concrete action in the strategy is the 
consequent.

We can be assured that this formalization yields a con-
sistent theory.

Lemma 1  The defeasible theory GameState is consistent and 
O-consistent.

Proof  Since Facts contains only the locations of Pac-Man 
and the two ghosts, as well as scared(ghost) if a ghost is 
scared, there can be no pairs of complementary literals. 
There are no rules in RC with conflicting consequents, so the 
superiority relation is empty, and trivially acyclic. Moreo-
ver, since GameState only contains prohibitions, RO likewise 
does not contain any rules with complementary consequents, 
and the superiority relation is again trivially acyclic. So 
GameState is both consistent and O-consistent. 	�  ◻

Parsing conclusions

The last task that remains is the transformation the reason-
er’s output into indicators communicating which actions 
in the agent’s arsenal are compliant and which are not. If 
no compliant action is available, we will need to provide 
a criterion to identify the “lesser evil” action.

Compliant solutions

We consider a compliant solution to be a possible course 
of action for the agent that does not violate any norms. If 
possible, this is what we would like to extract from the 
reasoner.

Definition 5  A set of compliant solutions is: (a) non-empty, 
and consisting only of (b) solutions composed of possible 
actions, (c) solutions that do not violate any norms, and (d) 
solutions that are internally consistent.

Our method for constructing such a set is heavily influ-
enced by the output (conclusions) yielded by SPINdle. 
Recall from Definition 3 and the surrounding discussion 
that we can prove certain conclusions from a defeasible 
theory; each type of conclusion corresponds to an asser-
tion we can make about the GameState. We are specifically 
interested in defeasible conclusions, because in our for-
malization regulative norms were expressed as defeasible 
rules. Thus for a ∈ Actions , if we have a conclusion +�Oa , 
a is obligatory; if we have a conclusion +�O¬a , a is forbid-
den. When we have a negative conclusion −�Oa or −�O¬a 
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we can assume that a is neither obliged nor forbidden, 
and is therefore weakly permitted. Finally, if for some a 
we can prove both +�O a and +�O¬a , we can assume that 
GameState is not internally consistent and no defeasible 
mechanism has been employed to resolve the internal con-
flicts (Governatori et al., 2013).

We parse out a solution set by implementing the follow-
ing steps: 

1.	 if we do not receive a full set of conclusions from SPIN-
dle, we return an empty set;

2.	 we remove all conclusions that do not reference a literal 
in possible;

3.	 any action corresponding to a defeasibly proved positive 
literal occurs in every solution;

4.	 any action corresponding to a defeasibly proved negative 
literal is discarded from every solution.

Proposition 1  The procedure yields either an empty set or 
a compliant solution.

Proof  If our solution is not internally consistent, we can 
prove both +�O a and +�O¬a for some action a. In this case 
SPINdle will return neither, and the above procedure yields 
an empty set in step (1); this will rule out any solutions that 
violate condition (d) in Definition 5. Only possible actions 
will occur in a solution as per step (2), so condition (b) from 
Definition 5 is met. As for condition (c): step (3) mandates 
that any obligatory actions are present in each solution, and 
step (4) excludes any forbidden actions. Thus, if the solution 
set is not empty, it is a set of compliant solutions. 	�  ◻

The fact that Pac-Man can only execute one action at a 
time allowed us to simplify the above procedure when we 
implemented a conclusion parser for our normative supervi-
sor. This simplified algorithm is given below.

Algorithm 1  ParseCompliant
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‘Lesser of two Evils’ solutions

If there are no compliant solutions (i.e., the procedure 
defined in Sect. "Compliant solutions" results in an empty 
solution set), we want to identify which non-compliant 
actions constitute a “lesser of two evils” choice. This 
requires us to specify criteria for identifying degrees of non-
compliance and a metric for expressing them. Beyond the 
conclusions yielded by SPINdle, the theorem prover also has 
an inference logger that classifies every rule in the theory 
as discarded, applicable, or defeated; we employ SPINdle 
in an unconventional way, and use these logs to construct 
such a metric.

Inspired by the economy principle2, postulated by an 
ancient Indian philosophical school, the criterion chosen 
for our Pac-Man agent is a score derived from the norms 
that have been applied versus those that have been defeated 
(discarded norms are ignored). As described in Algo-
rithm 2 below, this score is computed through the theory 

GameStateact , which is constructed by adding a fact O(act) 
to GameState. Recall that a rule will be defeated when its 
defeasible theory includes a fact that conflicts with the 
head of this rule. So when adding O(act) to GameState, 
all non-discarded norms that prescribed F(act) = O(¬act) 
for GameState are defeated and any prescribing O(act) is 
applied. To compute the score, we ignore the conclusions 
yielded by SPINdle and check the inference log to count 
which rules have been applied during reasoning ( #applied ) 
and which were defeated ( #defeated ) and set

This procedure is completed for every action in possible, 
and we select the action(s) with the highest score. If there 
are multiple actions with a highest score, we send multiple 
solutions to the agent and it will pick the best action accord-
ing to its policy.

Algorithm 2  LesserEvil

score = #applied − #defeated.

2  This principle was discussed by the Mīmāṃsā author Kumārila 
(7th c. CE), in the context of solving potential conflicts among the 
commands in the Vedas—the Indian sacred texts. The principle says 
that a norm that conflicts with the minimum number possible of other 
norms should be preferred.

Since Pac-Man will only have up to 5 possible actions 
available to him in any given state, Algorithm 2 can be com-
puted in polynomial time.
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Proposition 2  Selecting a best action according to the pro-
cedure above can be completed in polynomial time with 
respect to the size of the theory.

Proof sketch: As shown in Governatori et al. (2013), 
conclusions in DDPL can be computed in linear time with 
respect to the size of the theory, which is the number of lit-
eral occurrences plus the number of the rules in the theory. 
The claim holds since every action in possible is a literal, 
and the above procedure is completed |possible| times.

Variations and experimental results

We performed several tests that demonstrated the capabili-
ties of our normative supervisor’s design and its efficacy as 
an event recorder, without hampering our agent’s ability to 
perform the behaviour it has learned.

As case study we use the “vegan” version of the game 
Pac-Man, and variations of it obtained by adding/removing 
norms from its norm base. We ran several tests3 as batches 
of 1000 games, played by an agent trained on 250 episodes; 
initially, we trained the agent on 100 episodes and measured 
the agent’s performance over 100 games, before increasing 
the number of training episodes to optimize the RL policy 
w.r.t. average score and games won, and the number of test 
games in order to better understand the agent’s behaviour.

To compare the RL agent’s performance of the game with 
and without the normative supervisor, we ran three base-
line tests using a random agent and two different (ethically 
agnostic) RL policies. The results of these baseline tests are 
given below. We refer to the first RL policy as safe because 
the algorithm used to train it does not differentiate between 
regular ghosts and scared ghosts, causing the agent to avoid 
ghosts altogether. We refer to the other RL policy as hungry 

because the corresponding algorithm differentiates between 
regular ghosts and scared ghosts, and the agent learns to 
optimize its score by eating the scared ghosts. 

Norm base Policy % Games Game score Avg ghosts eaten
Won (Avg[Max]) (Blue / Orange)

N/A random 0 − 445.44 [− 
111]

0.008 / 0.006

N/A safe 90.5 1208.11 [1544] 0.007 / 0.06
N/A hungry 90.9 1607.6 [2141] 0.87/ 0.87

We will use similar tables to represent all of our test 
results, indicating: the norm base in force, the policy run by 
the agent, the percentage of games which the agent won over 
all played (that is, where Pac-Man ate all the food pellets), 
the average and maximum score over all games, and the 
average number of blue and orange ghosts eaten per game. 
When not explicitly indicated, it should be assumed that the 
agent was trained on 250 games and tested with 1000.

In the below sections, we experiment with eight norm 
bases: the vegan and vegetarian norm bases (and a variation 
of the vegetarian norm base with an added rule avoid), the 
cautious and over-cautious norm bases (which compromise 
Pac-Man’s ability to win the game), the all-or-nothing and 
switch norm bases (which introduce permissive norms), 
and a norm base that contains a contrary-to-duty obligation 
(referred to as passive vegan).

Vegan Pac‑Man

The Vegan Pac-Man is subject to a single regulative norm, 
vegan, stating that “Pac-Man must not eat ghosts”; the con-
figuration and implementation of this norm base is discussed 
in detail in Sects. "Configuring the norm base", "Automating 
translation", and "Parsing conclusions".

We ran three sets of tests on Vegan Pac-Man, on a random 
agent, one with the safe policy, and one with the hungry 
policy. The results are given below. 3  We use a laptop with Intel i5-8250U CPU (4 cores, 1.60 GHz) and 

8GB RAM, running Ubuntu 18.04, Java Ver. 8, Python Ver. 2.7. An 
implementation of the normative supervisor and the Pac-Man game 
can be found at https://​github.​com/​lexer​ee/​norma​tive-​player-​chara​
cters.

(a) (b)

Fig. 2   Pac-Man trapped between two ghosts (a) or in a corner (b)

https://github.com/lexeree/normative-player-characters
https://github.com/lexeree/normative-player-characters
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Norm base Policy % Games Game score Avg ghosts 
eaten

Won (Avg[Max]) (Blue/Orange)

Vegan random 0 − 449.13 [− 
166]

0 / 0.003

Vegan safe 91.4 1216.67 
[1547]

0.005 / 0.015

Vegan hungry 90.7 1209.86 
[1708]

0.023 / 0.02

The results of the tests with RL agents are comparable 
to Noothigattu et al. (2019), where Pac-Man was trained to 
behave in compliance with the vegan norm; in that paper 
the authors ran 100 games, obtaining an average of 0.03 
ghosts eaten per game, while our approach averaged at 0.02 
or 0.043 depending on the policy; similarly, their score aver-
aged at 1268.5, while ours averaged 1216.67 and 1209.86. 
With respect to our baseline tests, the performance of Pac-
Man—with respect to % games won and score—did not suf-
fer; there was of course a decrease in score for the hungry 
policy Pac-Man, since the up to 800 points it could win by 
eating ghosts are no long available to it The score for the safe 
policy with and without the normative supervisor did not 
meaningfully change, and % games won actually increased 
by nearly an entire percentage point.

Remark 1  Due to the low complexity of the logic used and 
the modest size of our GameState theory—which rarely 
exceeded 50 rules—SPINdle took on average 1.1 ms (max 
97 ms) in generating conclusions during the Vegan Pac-Man 
tests. The evaluation of non-compliant solutions, in the rare 
cases where it was required, took 45.6 ms on average (min 
15 ms, max 114 ms). For a detailed analysis on the perfor-
mance of SPINdle, see Lam and Governatori (2009).

Analysing violations

Inherent to Pac-Man’s environment is the possibility of 
encountering a state where no compliant action is possible; 
if Pac-Man encounters such a state, it is forced to violate the 
norm base. When the normative supervisor identifies these 
situations—that is, Algorithm 1 returns an empty solution 
set—we have configured it to store a description of them. 
Included in this description is a list of possible actions and 
the positions of all agents in the game; from this informa-
tion we can reconstruct the circumstances in which Pac-
Man took a non-compliant action. For vegan Pac-Man in 
particular, our examination of these records made it clear 
that the vast majority of violations took the form described 
in Fig. 2a below,

where every direction Pac-Man is able to move in is in 
the trajectory of a nearby scared ghost. The only exception 

we saw is depicted in Fig. 2b; this situation was rare, only 
occurring once in two thousand games. We can, in fact, 
prove that these two types of scenario are the only cases 
where Pac-Man will be forced to violate vegan.

Proposition 3  The cases depicted in Fig. 2 are the only cases 
in the Vegan Pac-Man game where no compliant solution is 
possible.

Proof  From Definition 5, we know that if there are no com-
pliant solutions, either: the solution set (a) is empty, (b) 
contains only impossible actions, (c) contains solutions that 
violate at least one norm, or (d) contains solutions that are 
inconsistent. From Lemma 1, and Propositions 13 and 14 
from Governatori et al. (2013), we know (d) is not a possi-
bility; likewise, we will not encounter (b), because we con-
struct a solution set only from possible actions. With respect 
to (c), prohibitions are identified as positive conclusions of 
negative rules, which are removed as in Algorithm 1, and 
since there are no positive obligations in GameState, Pac-
Man will not fail to act in compliance with one; that is, the 
yielded solution will not violate any norms. This leaves only 
one possibility: (a), where the solution set is empty. This 
can only occur if every possible action is removed in Algo-
rithm 1 because it is subject to a prohibition.

Note that Pac-Man always has the action Stop avail-
able to it, but there are no game states in which its set 
of possible actions is [Stop]—this would imply that 
Pac-Man is closed in on all sides by walls. However, we 
can have the set of possible actions [Stop, Dir] where 
Dir ∈ {North, South,East,West} . This would imply that 
there are walls on all sides of Pac-Man, aside from the cell 
it can move to in taking action Dir. This is the exact scenario 
depicted in Fig. 2b.

A second possibility is that the set of possible actions is 
[Stop, Dir1, Dir2]; Dir1 and Dir2 can be any pair of direc-
tions. This can describe corners in the maze (of which there 
are 16), or the the “tunnel”-like portions on of the maze. In 
all of these cases, it is possible for one ghost to occupy one 
of the two spaces Pac-Man is free to move into, which is 
described in Fig. 2a.

Fig. 3   Pac-Man about to enter the same space as the blue ghost
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For the remaining two possibilities, where Pac-Man has a 
list of possible actions of the form [Stop, Dir1, Dir2, Dir3] 
or [Stop, Dir1, Dir2, Dir3, Dir4], at least one direction in 
which it is possible to move will not be blocked by a ghost, 
since there are only 2 ghosts. As Pac-Man will be permitted 
to move in this direction, we cannot have a case where no 
compliance is possible. 	�  ◻

Revising the norm base: vegetarian Pac‑Man

Until now, we have not been differentiating between ghosts in 
our discussion; in reality, the rule vegan is actually two rules 
( X ∈ {blue, orange}):

We can contract the norm base by removing veganorange , 
leaving veganblue as our only regulative norm. We called the 
Pac-Man that adheres to this norm base vegetarian. Our pre-
liminary results—based on 100 games and trained over 100 
episodes—are given below. 

Norm base Policy % Games Game score Avg ghosts 
eaten

Won (Avg[Max]) (Blue / Orange)

Vegetarian 
(100 games)

hungry 94 1413.8 [1742] 0.01 / 0.79

For Vegetarian Pac-Man, the scenario in Fig. 2a cannot 
occur, but one blue ghost was still eaten. Proposition 3 tells 
us that there is exactly one other case where Pac-Man can 
be forced into non-compliance, but our investigation of the 
records capturing the above test yielded a second way in 
which Vegetarian Pac-Man can end up eating a blue ghost—
without directly or knowingly violating its norm base. That 
is, Pac-Man (see Fig. 3) is put in a situation where there is 
at least one available action that will not result in it eating 
the blue ghost, but taking the action that results in eating 
the ghost does not, strictly speaking, violate any norms in 
Pac-Man’s norm base.

When both Pac-Man and the blue ghost move into the 
power pellet’s cell at the same time, Pac-Man ends up eating 
it. The result is a quirk in the game implementation; when 
generating the next state, the game changes the ghost’s state 
to ‘scared’ immediately after Pac-Man moves, but before it 
is determined whether Pac-Man eats the ghost or the ghost 
eats Pac-Man. This is roughly analogous to an agent com-
mitting to an action it believes is ethically compliant, which 
nevertheless ends up having morally negative consequences 
because the agent’s circumstances changed after they had 
already committed to the action.

veganX ∶⇒O ¬eatpacman,XGhost

For Vegetarian Pac-Man, the cases depicted in Figs. 2b 
and 3 represent the scenarios where it ends up eating blue 
ghosts. If we want avoid such cases, however, we can 
expand our norm base to prevent Pac-Man from entering 
such “dangerous” situations. To do that we introduce a 
number of constitutive rules defining the concept of “dan-
ger” for each coordinate (x, y) within range of a hazardous 
area, for example:

We will also need to indicate whether there is a ghost within 
range of this “danger zone”, as avoiding them is only neces-
sary if there is a ghost nearby:

The regulative norm we impose on Pac-Man prevents it from 
“entering danger”:

What does it mean to “enter danger”? As we did previously, 
we can define strategies (constitutive norms) that describe 
what constitutes entering danger. Namely, for context 
{inNorthRangepacman,danger, inRangeghost,danger} , the follow-
ing constitutive norm holds: C(North, enterpacman,danger) . So 
we can define the rule:

We designate the version of Pac-Man subjected to these 
additional norms with the tag “avoid”. A summary of the 
performance of vegan Pac-Man during preliminary tests 
with this addition is given below; notice that the additional 
norms led to full compliance. 

Norm base Policy % Games Game score Avg ghosts 
eaten

Won (Avg [Max]) (Blue / Orange)
Vegetarian—

avoid (100 
games)

hungry 87 1336.2 [1747] 0.00 / 0.88

Remark 2  Governatori and Rotolo (2008) discusses situa-
tions where the combination of the (ethical) norms and a 
particular factual situation results in breaches even for agents 
designed to comply with the norms at the cost of giving up 
their goals. There it is proved that sometimes the only way to 
comply with the norms is to prevent a situation from happen-
ing, and the agents have to modify their plans accordingly. 
The solution adopted in the current paper is to introduce new 
norms that render a position in the game, that unavoidably 

dangerpacman ∶ pacmanx,y →C inNorthRangepacman,danger

dangerghost ∶ ghostx,y →C inRangeghost,danger

avoid ∶⇒O ¬enterpacman,danger

inNorthRangepacman,danger, inRangeghost,danger,

O(¬enterpacman,danger) ⇒O ¬North
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results in a violation, forbidden. This is not a comprehensive 
solution; we might not always be able to design coherent 
or feasible rules that can avoid such dangerous situations; 
for this reason, an additional mechanism for planning ahead 
to avoid violations would be desirable—albeit outside the 
scope of this paper.

When we moved on to running our batches of 1000 
games, we found that neither the scenarios in Fig. 2 nor 
the one in Fig. 3 occur, and we have full compliance even 
without implementing the avoid rules: 

Norm base Policy % Games Game score Avg ghosts 
eaten

Won (Avg [Max]) (Blue/Orange)

Vegetarian random 0 − 446.96  
[− 111]

0.00 / 0.008

vegetarian hungry 89.3 1343.8 [1750] 0.00 / 0.79
Vegetarian—

avoid
hungry 90.1 1361.06 

[1751]
0.00 / 0.81

These relatively identical results are likely due to Pac-
Man’s additional training for these tests; for example, the 
region of the maze depicted in Fig. 2b contains no food pel-
lets, and it is not necessary to enter it in order to win the 
game. We therefore found running preliminary tests with a 
more poorly performing agent a useful tool for better under-
standing how the norm base, the agent, and its environment 
interact.

Nevertheless, the additional rule avoid does not hamper 
performance and supplies an additional degree of security, 
and in certain applications of ethical AI, we might be inter-
ested in having a guarantee that a “negative” scenario, how-
ever rare, will not be allowed to occur.

Revising the norm base: cautious and over‑cautious 
Pac‑Man

Returning to the Vegan norm base, we can use the avoid rule 
(see Sect. "Revising the norm base: vegetarian Pac-Man") to 
help Pac-Man avoid eating ghosts altogether: by not eating 
the power pellet which makes the ghosts scared in the first 
place. For this norm base, we will have the avoid rule:

along with the constitutive norms:

where (x, y) is one step away from the area defined as dan-
gerous, and

avoid ∶⇒O ¬enterpacman,danger

dangerpacman ∶ pacmanx,y →C inNorthRangepacman,danger

inNorthRangepacman,danger,O(¬enterpacman,danger) ⇒O ¬North

for all actions ∈ Actions.
We designed two different norm bases; in one (denoted 

as cautious in the below table of results), we define the cells 
holding the power pellets as dangerous. In the other, we take 
a deliberately over-cautious approach, and define entering 
a dangerous area as entering an entire region of the maze; 
in particular, we define as dangerous certain 3 × 4 regions 
of the maze in which Pac-Man can find the power pellets. 
However, this makes the food pellets in these regions also 
inaccessible, and as a result, Pac-Man cannot win the game 
if it obeys avoid. The results of testing the vegan norm base 
with these cautious and over-cautious modifications of the 
avoid rule are given below. 

Norm base Policy % Games Game score Avg ghosts 
eaten

Won (Avg[Max]) (Blue / Orange)

Vegan—over-
cautious

hungry 0% − 174.95 
[176]

0.00 / 0.00

Vegan—cau-
tious

hungry 13.9% 28.36 [1340] 0.00 / 0.00

As we might expect from the over-cautious norm base, 
Pac-Man is compelled to obey the norm base at the expense 
of winning the game, and loses every game it plays. The 
fact that the normative supervisor will not allow an agent 
non-compliant actions (unless they cannot be avoided) even 
at the expense of failing to fulfil its primary function will be 
desirable quality in some cases, but this might not always 
be the case.

In the case of the cautious norm base, Pac-Man can, in 
theory, win the game (the power pellets—which are not 
technically food pellets—do not need to be eaten to win the 
game), but fails to do so in most cases. There are two reasons 
for this: the first is that this creates four additional places in 
the maze where a scenario like that depicted in Fig. 2b can 
occur. This leads to additional opportunities for Pac-Man to 
become trapped by the ghosts, and since obeying the norm 
base takes precedence over the policy, Pac-Man will choose 
not to eat the power pellet even if it will lose the game as a 
result. The second reason why Pac-Man’s success rate is so 
low is due to a shortcoming of our decoupled approach; Pac-
Man’s policy does not take into account the fact that Pac-
Man cannot continue moving in that direction. In this case, 
the supervisor filters out the best choice available, and Pac-
Man has to go with the second best action—which, in some 
cases, might be Stop. In this case, Pac-Man will remain stuck 
in place until conditions in the game change enough for the 
policy to start recommending another action, and this may 
never get the chance to happen, if Pac-Man is trapped and 
eaten first. This particular scenario represents a good argu-
ment for combining the normative supervisor with additional 
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methods for synthesizing goal-directed behaviour and ethi-
cal behaviour, for example by learning both simultaneously.

Introducing permissive norms

Thus far, we have only dealt with an implicit (weak) idea 
of permission; compliant solutions as defined in Definition 
3 are permissible courses of action in this sense. However, 
we can also define a notion of strong permission, which 
gives an agent explicit permission to perform an otherwise 
forbidden action.

In this phase of our case study, we introduce two new 
norm bases. The first uses an “all-or-nothing” heuristic; 
Pac-Man attempts to adhere to the norm vegan, but as soon 
as it violates the norm by eating a ghost, it gives up and 
is permitted to eat any ghost therefrom. For the second 
we “merge” the vegetarian and the vegan norm bases, by 
implementing the following norm: if Pac-Man violates the 
norm vegan, it is therefrom permitted to eat another ghost, 
so long as the ghost is of the same colour of the one it just 
ate. In other words, this Pac-Man will attempt to adhere to 
the Vegan norm base, but if it fails to do so, it will switch 
to the Vegetarian norm base instead.

To implement these norm bases, we introduce two new 
components: persistent facts (facts that persist throughout 
the game despite state changes) and exceptions.

In order to comply with this norm base, Pac-Man needs 
to know if it has violated any norms over the course of the 
game, and which one it has violated. Hence it needs to 
have access to information about its hitherto performance. 
In building the translators, we constructed a programmatic 
representation of the agent’s current state; instead of over-
writing this completely with each new time step, we can 
maintain attributes that record facts that persist over time. 

We implement the above caveat to the vegan norm base 
by adding to GameState a fact violatedblue ( violatedorange 
resp.) if the supervisor has recorded Pac-Man eating a blue 
(orange resp.) ghost. We can add a third fact defined as 
violated ≡ violatedblue ∨ violatedorange.

In order to implement the above norm bases, we make 
use of defeaters to define an exception to the rule vegan. 
For the all-or-nothing norm base, these rules can be 
expressed as ( X ∈ {blue, orange}):

And for the second norm base, where we switch from 
Vegan to Vegetarian, these rules can be expressed as 
( X ∈ {blue, orange}):

If we include these defeater rules in the norm base, Pac-Man 
will attempt to avoid eating ghosts, but as soon as it eats a 
XGhost, the fact violatedX begins to persistently appear in 
GameState, and the defeater will be triggered and void the 
prohibition from veganX . The results of testing these norm 
bases are given in the table below. 

Norm 
base

Policy % Games Game Score Avg 
ghosts 
eaten

Tot.# 
Violat.

Won (Avg[Max]) (Blue / 
Orange)

1000 
Games

Vegan hungry 91.4 1231.7 
[1937]

0.048 / 
0.049

55

(all-or-
noth-
ing)

nothingX ∶ violated ⇝ eatpacman,XGhost

switchX ∶ violatedX ⇝ eatpacman,XGhost

Fig. 4   The state that was passed from the agent to the supervisor when a violation of the Vegan norm base was incurred. Note that ‘p’, ‘sc_b’, 
and ‘sc_o’ designate the corresponding positions as the location of Pac-Man, the scared blue ghost, and the scared orange ghost respectively
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Norm 
base

Policy % Games Game Score Avg 
ghosts 
eaten

Tot.# 
Violat.

Won (Avg[Max]) (Blue / 
Orange)

1000 
Games

Vegan 
(switch)

hungry 90.6 1215.83 
[1733]

0.025 / 
0.043

57

We have added a column supplying the number of viola-
tions incurred over 1000 games; since eating a ghost after 
Pac-Man has already eaten one does not necessarily violate 
the norm base, we cannot know from the number of ghosts 
eaten how many times Pac-Man violated its norm base. For 
the all-or-nothing Pac-Man, there can be at most one viola-
tion per game, after which Pac-Man may eat between 0 and 
3 more ghosts. As we can see from the results, Pac-Man 
violated the norm base 55 times, but consumed 97 ghosts. 
For the Vegan/Vegetarian switch norm base, Pac-Man can 
violate the norm base at most twice, and if there is one viola-
tion, only one other ghost can be eaten. Here, Pac-Man vio-
lated the norm base 57 times but ate 68 ghosts. We checked 
the logs and confirmed that in every game there was at most 
one violation. Hence, in 11 of the 57 games in which there 
was a violation, Pac-Man ate a ghost twice, exploiting the 
permission triggered by the violation of the vegan norm. 
There were no cases of two violations per game, since it is 
unlikely to encounter situations like that depicted in Fig. 2b.

These tests yielded several further insights. Pac-Man vio-
lated the norm base at a significantly higher rate than we saw 
in the hungry policy Vegan Pac-Man test. Why was this? In 
the previous tests Pac-Man’s violations of the norm base 
(and therefore eating of ghosts it was forbidden from eating) 
were very infrequent, and the rare in-game reward it received 
from such a violation had little impact on the learning mod-
ule. However, when Pac-Man was allowed to continue eating 
ghosts (incurring more rewards) after violating the norm 
base a first time, the learner was more affected by this higher 
reception of rewards; as a result, Pac-Man was placed in 
more and more situations where eating a ghost was una-
voidable. This is a strong indication that when implement-
ing more complex normative reasoning, we should consider 

integrating the reasoner not just into the real-time control 
facilities, but also into the learner—for example, preventing 
the agent from collecting rewards for outcomes resulting 
from a violation of the norm base.

Contrary‑to‑duty obligations: passive vegan 
Pac‑Man

We explore one final norm base for Pac-Man, which utilizes 
a specific type of obligation called a contrary-to-duty obli-
gation (CTD). An obligation is considered contrary-to-duty 
if it comes into force when another obligation is violated. 
A classic example of CTD is known as Forrester’s paradox 
(Forrester, 1984): 

1.	 It is obligatory that Smith not murder Jones.
2.	 It is obligatory that, if Smith murders Jones, Smith mur-

der Jones gently.
3.	 Smith murders Jones.

The desired conclusion from the above propositions is that 
Smith murders Jones gently; though he is not supposed to 
murder Jones in the first place, since it is a fact that he does, 
he ought to do it in a certain way.

We will address a similar line of reasoning in this sec-
tion; that is, we modify the norm base of Vegan Pac-Man by 
adding the following rule (we will call this Passive Vegan 
Pac-Man): “If Pac-Man does eat a ghost, it must do so while 
standing still.” The intricacies of this dynamic are not easy 
to demonstrate with the kinds of test results with which we 
have hitherto summarized Pac-Man’s behaviour. Thus, we 
will here walk through a kind of case-study-within-a-case-
study, illustrating how the addition of this rule changes the 
results output by Algorithm 3 in a non-compliant scenario. 
In particular, we take a real example of a non-compliant 
scenario from a violation report from one of the Vegan Pac-
Man tests (depicted in Fig. 4).

In this scenario, there is one ghost directly to the east of 
Pac-Man, and one just around the corner to the northwest. The 
output of Algorithm 3 for the scenario outlined in Fig. 4, under 
the Vegan norm base, is shown in Fig. 5:

Fig. 5   Result passed back to agent according to the Vegan norm base

Fig. 6   Result passed back to agent after the addition of the rule ctd 
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As for the construction of the Passive Vegan norm base, 
recall that we interpreted C(North, eat(pacman, ghost)) as 
C(O(¬eat(pacman, ghost)),O(¬North)) ; this was conveni-
ent because earlier, we were dealing specifically with pro-
hibitions. However, we are now interested in representing a 
different dynamic, and we will interpret this relation between 
the action of moving North to a new cell and eating a ghost 
as C(O(North),O(eat(pacman, ghost))) . What we want to 
express here is that an obligation to move North will consti-
tute eating the ghost in Pac-Man’s next turn (if Pac-Man is 
within range of a scared ghost to the north, of course). We can 
formalize this in DDPL as:

Note also that for these constitutive norms, we will need to 
add a superiority relation ract > vegan for all act ∈ Actions . 
This is so that in the case of a violation, vegan is defeated by 
assuming O(North) (note that the superiority relation remain 
acyclic, so Lemma 1 still holds).

Finally, we can add our new contrary-to-duty obligation:

After the addition of the rule ctd, the output of Algorithm 3 
changes, as shown in Fig. 6.

Now, the only action recommended is Stop—in compli-
ance with the contrary to duty obligation ctd. This change 
occurs because now, in addition to violating vegan, the 
choices of West and East violate ctd as well. Thus, while 
the scenario is still non-compliant (and therefore a violation 
report would be generated), the agent receives an instruction 
in line with its contrary-to-duty obligation.

Conclusion and future work

We have presented a modular and transparent approach for 
enabling autonomous agents to operate within the bounds 
of ethical compliance, while still following RL policies that 
allow them to effectively pursue other goals. This approach, 
while designed with ethics in mind, is grounded more gen-
erally in the logic of normative reasoning, and could be 
applied to a much broader range of requirements, such as 
legality or safety.

The normative supervisor consists of modules that 
dynamically translate environmental data from the agent 
and norms from an extraneous norm base into a formal lan-
guage, and a central reasoner—a theorem prover for defea-
sible deontic logic. From the translated data and the norms, 
the theorem prover extracts compliant actions and, in the 
absence of them, actions meant to minimize violations of 

rNorth ∶ scaredghost, inNorthRangepacman,ghost,

O(North) ⇒O eatpacman,ghost

ctd ∶ eatpacman,ghost ⇒O Stop

the norm base. Our supervisor has the additional advantage 
of providing event recording facilities to log actions taken 
by the agent and their compliance to the norm base, while 
running in parallel with the agent.

We explored the functionalities of this normative super-
visor and its interactions with an RL agent through a case 
study which demonstrated the module’s ability to transpar-
ently enforce norms on the agent’s behaviour, its facilitation 
of revisions to the ethical values the agent is subject to, and 
its ability to provide useful explanations of any violations 
that occurred during operation, informing our revisions of 
the norm base. Additionally, in our experiments we observed 
that the agent’s performance did not suffer with the introduc-
tion of the module into its architecture; while the average 
score dropped—a necessary result of the restrictions on its 
behaviour—the number of games won did not.

This case study also demonstrated possible shortcomings 
of our approach; the absence of faculties for planning and 
the complete decoupling of the agent’s policy from its ethi-
cal reasoning prevented it from thinking ahead and taking 
steps to avoid undesirable situations.

The fact that the supervisor’s performance was impacted 
by the policy used and the number of episodes upon which 
the RL agent was trained also introduces the question of 
how, from the RL side, we can maximize the supervisor’s 
effectiveness; a larger number of episodes led indeed to 
better performances by the agent, while a smaller number 
allowed us to detect an edge case.

Additionally, even though the introduced computational 
overhead was not prohibitive, it was still substantive, and 
will be a more prominent factor in larger environments or 
norm bases. The agent queries the normative supervisor 
each time it takes an action, and in agents with more time-
sensitive functions, this may be problematic. We were able 
to alleviate the cost of these queries somewhat by choos-
ing a very computationally feasible logic and dynamically 
translating norms and adding them to the theory as they 
became relevant (cutting down on the size of the theory 
and therefore computation time). Nonetheless, the scal-
ability to applications that must process large amounts of 
data extremely quickly will be limited. We aim to develop 
techniques to mitigate and predict such overhead, but our 
approach certainly prioritizes transparency and oversight 
over time-efficiency, and will likely remain most effective 
for applications that do the same.

As future work4 we plan to experiment with alternative 
reasoning engines, more complex norm bases, and possibly 
more sophisticated games. For example, the use of norm 

4  An implementation of the normative supervisor is under active 
development at: https://​github.​com/​lexer​ee/​norma​tive-​player-​chara​
cters.

https://github.com/lexeree/normative-player-characters
https://github.com/lexeree/normative-player-characters
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bases that require more elaborate conflict resolution mecha-
nisms would allow us to explore the pursuit of multiple (and 
at times opposing) ethical goals.

Additionally, as we saw in Sect. "Introducing permissive 
norms", more investigation on how normative reasoning can 
be integrated into an agent’s learning process is warranted; 
the ‘lesser evil’ module gives us a framework for evaluat-
ing and measuring the moral worth (or rather, detriment) of 
actions, which could prove a useful tool for an agent trying 
to learn ethical behaviour. Another motivation for pursu-
ing this integration is the matter of policy optimization; the 
normative supervisor sometimes dictates that the agent stray 
from its optimal policy, and it might be the case that a bet-
ter, compliant policy could be discovered if the normative 
reasoning was incorporated into training.

Moving forward, we also hope to explore the use of the 
supervisor in conjunction with other approaches to eliciting 
ethical compliance; we could, for example, use the event 
recorder capabilities with the agent in Noothigattu et al. 
(2019), or as a last minute compliance checker for an agent 
with an ethical planner as described in Bremner et al. (2019).

We are interested in extending our approach with methods 
for determining which norms govern an agent’s behaviour 
from logs of its actions and the environment in which these 
actions were performed (for first steps see, e.g., Savarimuthu 
and Cranefield (2011) and Haynes et al. (2017).

In our case study, we manually identified and integrated 
revisions to our norm base meant to minimize violations, 
and automating this process would be a challenging, but 
potentially rewarding research direction.
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