
M A G I S T E R A R B E I T

Fault-Tolerant Distributed Clock

Generation in VLSI Systems-on-Chip

ausgeführt am Institut für

Technische Informatik, Embedded Computing Systems Group

Technische Universität Wien

unter der Anleitung von

Univ. Prof. Dr. Ulrich Schmid

durch

Matthias Függer

Friedenshöhegasse 36

1130 Wien

Austria

European Union

Wien, 21. März 2006

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

to Michaela, Reinhold, Barbara and Hanna

Zusammenfassung

Zurzeit bewirken konzeptuelle Probleme im synchronen Design-Paradigma

gravierenden Zusatzaufwand. Dieser ist erforderlich um die für das synchro-

ne Design notwendige Abstraktion einer diskreten globalen Zeit über einen

ganzen Chip hinweg zu gewährleisten.

In dieser Magisterarbeit wird die zentrale Grundlage für eine Alternative zu

synchronen Designs vorgestellt, die im Rahmen des DARTS Projektes (einer

Kooperation zwischen der Technischen Universität Wien und Austrian Aero-

space) näher untersucht wird. Dabei wird der Chip in lose verbundene funk-

tionale Einheiten gegliedert, die ein “System-on-Chip” (SoC) bilden. In der

Arbeit wird gezeigt, wie der bekannte Uhren-synchronisations-algorithmus

von Srikanth und Toueg für die direkte Implementierung in digitaler Hard-

ware adaptiert und somit dazu verwendet werden kann einen fehlertoleranten

verteilten Takt für die funktionalen Einheiten zu generieren. Danach wird for-

mal bewiesen, dass die solcher Art erzeugten Taktsignale nicht unabhängig

sind, sondern gewissen Synchronisationsbedingungen (maximale/minimale

Frequenz, maximale Phasenabweichung zwischen zwei beliebigen Taktsigna-

len) genügen. Auf diese Weise wird eine für die Interaktionen zwischen den

funktionalen Einheiten wesentliche globale SoC Zeit über dem gesamten Chip

geschaffen. Schlussendlich wird gezeigt, dass der präsentierte Algorithmus

auch wirklich in Hardware implementierbar ist, indem erste vielversprechen-

de Resultate einer FPGA Implementierung vorgestellt werden.

Abstract

Due to conceptual problems of synchronous design methodologies, consid-

erable effort must currently be spent on maintaining the abstraction of a

discrete global time on the entire chip.

This master’s thesis presents the pivotal basis of an alternative design prin-

ciple, which is currently investigated in the DARTS project (a cooperation

between the Vienna University of Technology and Austrian Aerospace): A

chip is partitioned into loosely coupled functional units, that, together, form

a System-on-Chip (SoC). It is shown how the well-known clock synchroniza-

tion algorithm by Srikanth and Toueg can be adopted to the peculiarities

of digital hardware design and hence be used for generating a fault-tolerant

distributed clock signal for each functional unit. It is formally proved that

the different clock signals are not independent of each other, but satisfy

certain synchronization properties (frequency bounds, bounds on maximum

phase differences between different clock signals). Consequently a global SoC

time can be generated from the local clock signals, which facilitates inter-

functional unit communication.

Finally, the feasibility of implementing the proposed algorithm directly in

hardware is demonstrated via first promising results of an FPGA implemen-

tation.

Acknowledgement

I would like to thank my advisor Prof. Ulrich Schmid, who made me conscious

of the field of distributed algorithms and who sparked my interest on their

analysis. I would, further, like to thank him for being a great help when

writing the proofs and for many interesting discussions.

I am grateful to Prof. Andreas Steininger for his great lectures on digital de-

sign, which finally encouraged me to combine digital design with distributed

algorithms.

Many thanks go to Gottfried Fuchs and Josef Widder for spending hours

discussing the topics of this master’s thesis and to Martin Biely, for founding

the RGDD (together with Josef Widder) and helping with LATEX.

The contributions of Gottfried Fuchs (hardware schematics and implementa-

tion), Johann Vilanek (Diff-Gate, preliminary simulations and experiments),

Markus Ferringer (FPGA implementation) and Thomas Handl (tools and

library setup) are gratefully acknowledged.

This master’s thesis was funded by the bm:vit FIT-IT project DARTS (proj.

no. 809456-SCK/SAI, http://www.ecs.tuwien.ac.at/projects/DARTS), which

is a collaboration between the Vienna University of Technology (at the time

of writing represented by: Prof. Ulrich Schmid, Prof. Andreas Steininger,

Gottfried Fuchs, Thomas Handl, Josef Widder, Matthias Függer, Markus

Ferringer) and Austrian Aerospace (Manfred Sust, Gerald Kempf, Christian

Tögel, Georg Grabmayr, Franz Zangerl).

Many thanks go to Josef Widder, Martin Biely, Daniel Albeseder, Gottfried

Fuchs, Wilfried Elmenreich and Peter Tummeltshammer for helpful sugges-

tions for the presentation of this master’s thesis.

Finally I would like to thank my family and my friends for their graceful

support in all aspects!

CONTENTS vi

Contents

1 Introduction 1

1.1 Related work . 3

2 Distributed Clock Generation 5

2.1 The Original Algorithm . 5

2.2 First Modifications . 6

3 The Algorithm 9

3.1 Signals and Zero-bit Message Channels 9

3.2 TS-Alg Architectural Design 11

4 Correctness Proofs 16

4.1 System and Failure Model . 16

4.2 Concept of Direct Causality 17

4.3 Interlocking . 19

4.4 Local and Global Performance Metrics 21

4.5 Design Directives . 28

5 Hardware Implementation 30

5.1 Common Building Blocks . 30

5.2 TS-Alg Component Implementations 31

5.3 Experimental Evaluation . 35

6 Outlook 36

6.1 Alternative Implementation of Threshold Gates 36

6.2 Removing Transient Faults . 37

6.3 Booting . 38

6.4 Predictability . 38

7 Conclusions 39

LIST OF FIGURES vii

List of Figures

1 Replacing synchronous clocking with a fault-tolerant distributed

tick synchronization algorithm TS-Alg. 2

2 Simple algorithm for generating approximately simultaneous

messages taken from [33, 35], based on a simplified version of

consistent broadcast. 6

3 Basic architecture of the TS-Alg. 8

4 Schematic of a TS-Alg, demonstrating the points of observa-

tion bp(t), r
rem
p,q (t) and rselfp,q (t) used in the algorithm’s analysis. 11

5 TS-Alg tick generation algorithm for process p after being

adopted for VLSI implementation. 15

6 A possible implementation of a Muller C-Element at gate-level. 31

7 Elastic pipeline for up to four transitions, consisting of Muller

C-Elements and inverters. 31

8 TS-Alg hardware implementation for a single node p. 32

9 Diff-Gate in combination with remote and local pipeline inter-

faces. 34

10 DARTS approach with 5 TS-Alg units running on an FPGA. . 35

1

1 Introduction

The integration of synchronous digital designs, consisting of several billions

of transistors [1] in VLSI chips with decreasing feature size and increasing

clock speed is facing more and more problems. In todays designs, aiming at

clock speeds in the GHz range, routing delays dominate gate delays by far

and lead to ever more complexity in the already intricate design phase. These

problems can only be solved by a conceptually new approach, because of the

impossibility of bypassing physical laws, like the speed of electromagnetic

waves. Assuming a speed of 2/3 · c0 ≈ 20 [cm/ns] (c0 denotes the speed

of light in vacuum), a 10 GHz clock signal needs a complete clock period

to travel 2 cm, a length that lies in the range of common die sizes. In

other words, the designer has to cope with up to 100% clock skew1. As can

be seen from this example, the main advantage of the synchronous design

paradigm—developing hardware that performs state transitions at discrete

points in time only, at the entire chip—has already vanished. Hence, the

effort of designing a clock tree for a monolithic synchronous chip is not a

neglectable task anymore. Skew-minimization techniques include: X-Trees,

H-Trees and programmable clock delays [12].

But not only the design process is affected. Due to the higher clock frequen-

cies Φ, the chip has to operate at a lower voltage level V to compensate the

power dissipation given by P ∝ V 2 ·Φ [16]. A reduction of the voltage level,

however, increases the risk of bit errors— for example by single-event effects

due to cosmic radiation and crosstalk [27]. A classification of possible faults

that have to be handled in near-future VLSI designs is given in [7].

To avoid the problems resulting from monolithic synchronous designs, chips

are partitioned into loosely coupled functional subsystems— forming a so

called System-on-Chip (SoC). Due to the high cohesion and reasonably loose

coupling of typical SoC modules, this approach is very well suited to be

1The clock skew is the proportion of the difference in time that a clock signal needs to
travel to two different places on the chip to the duration of a complete clock cycle.

2

C
lo

ck
T

re
e

Oscillator

Fu1
Data Bus Fu3

Fu2

TS-Algs

Fu1 Data Bus

Fu3

Fu2
TS-Net

Figure 1: Replacing synchronous clocking with a fault-tolerant distributed
tick synchronization algorithm TS-Alg.

modeled as a distributed system and to be analyzed by established methods

from the distributed algorithms community.

In this thesis it is investigated whether some of the work on fault-tolerant

clock synchronization can be adapted for usage in VLSI SoCs. The thesis is

based on a joint project, named DARTS (Distributed Algorithms for Robust

Tick Synchronization), between the Vienna University of Technology and

Austrian Aerospace. A short overview on the project can be found in [8]. A

more thorough description on the project is available as a patent [30] and a

technical report [13].

The alternative approach to synchronous clocking proposed in this thesis

(and also published in [13]) tries to overcome the problem of designing a

global clock tree, but still maintains a reasonably synchronous view. This

is achieved by not driving the complete SoC by a single clock generated by

a quartz oscillator, but letting the SoC units generate their clocks by them-

selves, using asynchronous logic. As sketched in Fig. 1, the SoC comprises

several functional units Fui, each of which is provided with a local clock

signal generated by a small additional TS-Alg unit attached to it. The n

TS-Algs communicate via the TS-Net (consisting of n broadcast channels)

and are responsible for generating the distributed clock signals.

Our approach targets the following properties:

Fault-Tolerance: In contrast to synchronous designs which face the risk

1.1 Related work 3

of a total breakdown when the clock/oscillator fails, the TS-Algs can

tolerate up to f arbitrary faulty TS-Algs, if n ≥ 3f + 2.

Synchronity: In contrast to the GALS (globally asynchronous, locally syn-

chronous) approach [6], bounds on the maximum phase-difference of

clock signals can be given. By dividing the generated clock by the

maximum phase-difference, the Fui can also communicate with each

other (at a reduced clock speed), using a synchronous interface, without

facing metastability problems resulting from violated setup and hold

constraints.

Graceful Degradation: The clock always runs at the maximum possible

speed according to temperature, physical layout and other conditions,

allowing graceful-degradation. This is in contrast to synchronous de-

signs which fail completely if improper overclocking occurs.

Reduced EM Radiation: The small variation in the TS-Alg’s local clock

frequencies leads to a smoother frequency spectrum and avoids peaks

at multiples of the common clock period, thus lowering the maximum

power spectral density. As the clock signals are not perfectly aligned

in phase, the effect of ground bouncing [22] can be reduced, too.

1.1 Related work

There exist numerous papers both on SoC design and on fault-tolerant clock

synchronization, but nearly no research addressing both fields.

A good overview of asynchronous design principles, including transition logic,

is given in [26]. However, these designs cannot cope with failures. Fault-

tolerance is typically achieved at gate-level by using radiation hard gate li-

braries, adopted factoring processes and cell designs using checksums [25].

Examples for application-independent fault-tolerance implemented in hard-

ware are MAFT [17], SAFEBUS [15], GUARDS [28] and TTP [18]. However,

1.1 Related work 4

these systems are designed for large-scale applications, like networks of con-

trollers, and are not suitable for small-scale SoC networks.

In the distributed algorithms community, only few existing works targeted

the implementation of algorithms in hardware. An exception is [2], where it

has been proved that consensus can be solved with 1-bit messages.

Instead of using quartz oscillators in (partially) synchronous designs, some

approaches [23, 11, 10] generate the clock signal by inverting feedback loops.

This enables an adoption of clock speed to current environmental conditions

and hence allows graceful degradation. However, none of theses solutions

provides a fault-tolerant clock signal.

5

2 Distributed Clock Generation

This section presents an adapted version [33, 35] of the well-known consistent

broadcast algorithm by Srikanth and Toueg [31, 29, 20] which can also be

used for clock generation. Furthermore, we adapt this algorithm to the pe-

culiarities of VLSI design, which leads to the basic architecture of a TS-Alg

(Tick Synchronization Algorithm) unit.

2.1 The Original Algorithm

While Srikanth and Toueg’s algorithm [31] needs an init(k) (where k ∈ N)

and an echo(k) message, the adapted version [33, 35] does only need a single

type of message, called tick(k). The algorithm is listed in Fig. 2. A system

consists of n ≥ 3f + 1 distributed processes, where f processes may fail

arbitrarily. Assume that end-to-end message delays are bounded by [τ−, τ+],

with the bounds possibly unknown.

The algorithm works as follows: At reset time all correct processes p send

tick(0). On the reception of f + 1 tick(`) messages by p (line 5), process p

can be sure that at least one of the messages was sent by a correct process.

Hence, p can safely send the messages tick(k), . . . , tick(`). On the reception

of 2f +1 tick(k) messages by p (line 7), it can be sure that at least f +1 of

those have been sent by correct processes and will therefore be received by

all other correct processes, which then execute line 5 within ε = τ+ − τ−

and thus send tick(k) to all other processes. Hence, every other correct

process q 6= p receives 2f + 1 tick(k) messages within another τ+. It follows

that if p emits tick(k) at time t every other correct process q emits tick(k)

no later than t + ε + τ+. This eventually guarantees a precision bound

π ≥ max |kp(t) − kq(t)| for all correct processes p and q, where kp(t) is the

number of the last tick received by process p by time t. Note that the

algorithm automatically adapts to the instantaneous timing characteristics

of all involved computations and message transmissions.

2.2 First Modifications 6

0: VAR k : integer := 0;
1:

2: /* Initialization */
3: send tick(0) to all [once];
4:

5: if received tick(`) from at least f + 1 distinct processes with ` ≥ k

6: send tick(k), . . . , tick(`) to all [once]; k := `;
7: if received tick(k) from at least 2f + 1 distinct processes
8: send tick(k + 1) to all [once]; k := k + 1;

Figure 2: Simple algorithm for generating approximately simultaneous mes-
sages taken from [33, 35], based on a simplified version of consistent broad-
cast.

2.2 First Modifications

The algorithm presented in Section 2.1 looks deceptively simple, as it com-

prises two simple rules only. Note, however, that at the second glance, the

code elements used are well-suited for description of algorithms in software

but less for algorithms in hardware. Thus a number of modifications must

be undertaken before it is applicable for usage in VLSI SoCs:

Bounded space messages: The algorithm shown in Fig. 2 communicates

by sending tick(`) messages, where ` ∈ N. This would require the

processes to store the arbitrary large tick numbers locally which is of

course not feasible in hardware. It will be shown that communicating

via two types of 0-bit messages is sufficient to generate a distributed

clock. We denote the 0-bit messages by tick-↑ /tick-↓, corresponding

to the rising and falling clock signal transitions. Thus the TS-Net can

be implemented by n signal lines, each driven by our TS-Alg unit and

read by all others.

Atomic execution of rules: In comparison to an algorithm implemented

in software, which is executed line by line and can assume serialized

2.2 First Modifications 7

execution of local actions, atomicity must be explicitly ensured in hard-

ware, where all computations run in parallel. In our case this means

that the hardware must guarantee that the message representing tick(k)

is not sent twice. Since messages are only numbered modulo 2 (↑ / ↓)

and thus provide at-least-once semantics only modulo 2, sending a

tick-↓ message twice has no effect unless a tick-↑ message was sent

in between.

A schematic of a single unit executing the algorithm incorporating the modi-

fications listed above is shown in Fig. 3. The TS-Alg consists of the following

components:

+/− counter: For each process there exists a +/− counter per (remote and

local) TS-Alg. The +/− counter counts the number of tick messages

seen so far from every process and compares this with the number of lo-

cally generated tick messages. Thus, only the relative differences have

to be stored. It is shown later that the maximum number of tick mes-

sages a +/− counter has to store can be bounded. Additionally it pro-

vides GR and GEQ signals, where GR is true (becomes active/enabled)

if and only if (denoted as “iff” further on) the the number of remote

ticks seen so far is greater than the number of local ticks seen so far.

Analogously, GEQ is true iff the number of remote ticks is greater or

equal than the number of local tick messages.

Threshold: The GR and GEQ signals are fed into two Threshold gates,

which produce a new tick-↑ /tick-↓ message if at least f + 1 GR or

2f +1 GEQ signals are true (active), thus realizing line 5 and line 7

of the original algorithm (Fig. 2).

Again, the above architecture is deceptively simple. The major problem when

trying to implement Fig. 3 in hardware is the lack of a common clock signal

that could be used for a synchronous logic design. Rather, a (quasi) delay

insensitive asynchronous implementation [14] must be devised. The major

2.2 First Modifications 8

–

+ –

2f+1

f+1

TS-Alg i

Clock
output i

+Clocks from
n-1 other
TS-Algs

GR GEQ

GR GEQ

+/� Counter

+/� Counter

Figure 3: Basic architecture of the TS-Alg.

problem here is to distinguish old GR and GEQ signals that contributed

to previously generated tick(k) messages from new GR and GEQ signals

contributing to the next (yet to be generated) tick k + 1 message. The

solution described here exploits the fact that the transitions of a binary-

valued signal must strictly alternate between low-to-high and high-to-low:

The GR and GEQ signals are split up into signals for tick-↓ (GRe, GEQe)

and tick-↑ (GRo, GEQo) messages and fed into different threshold circuits for

generating odd (k ∈ Nodd := 2N + 1) and even clock ticks (k ∈ Neven := 2N).

9

3 The Algorithm

It has been highlighted in the previous section that even the simple algorithm

presented in Fig. 2 makes use of design elements that are not available or too

costly at the hardware design level. In addition, one has to account for the

fact that even the simplest (i.e., sequential) control flow comes with some

delay since it actually involves sending a signal over a wire, i.e., a zero-bit

FIFO message channel (a term that will be defined precisely in Section 3.1).

In this section the final TS-Alg obtained by refining the considerations made

in Section 2.2 is provided.

3.1 Signals and Zero-bit Message Channels

At the level of abstraction chosen for design and proving correctness, all

components of the TS-Algs are digital logic blocks and therefore deal with

binary signals only. Given such a signal SIG (or an arbitrary boolean pred-

icate), with possible values ⊥ (logical 0, false, inactive) and > (logical 1,

true, active), we say that the event (i.e., state transition) SIG−↑ (t∗) resp.

SIG−↓ (t∗) occurs when SIG changes state from ⊥ to > resp. from > to ⊥

at time t∗. The status SIG(t) of SIG at time t ≥ t∗ is SIG(t) = ⊥ resp.

SIG(t) = > iff the last event at or before t was SIG−↓ (t∗) resp. SIG−↑ (t∗).

This at-least-once semantics of similar events, automatically provided by the

physical signals, will be helpful later when proving correctness. The name

“zero-bit” originates from the fact that events at SIG have to occur strictly

alternating. Therefore no information can be transported by a single signal

SIG except the time of occurrence.

In the following analysis we will reason about events and status of binary

signals [and predicates]. In order not to clutter notation the following con-

ventions will be employed: Depending on the context of usage SIG(t) will

denote either

• SIG’s status SIG(t) ∈ {⊥,>}, where t denotes the observation time,

3.1 Signals and Zero-bit Message Channels 10

or

• the event SIG−↑ (t), where t denotes the time of the last transition to

the active state > (or reset time).

Note also that the time t sometimes will be dropped from events and status

if it is clear from the context.

All system components are interconnected by signal wires, which are modeled

as reliable FIFO channels with finite delays that carry zero-bit messages.

The semantics of a zero-bit message channel X is as follows: Let X s be the

channel’s input signal, which is controlled by a single sender component. It

generates the events (i.e., messages) Xs−↑ (t) and Xs−↓ (t), where t denotes

the sending time. The associated input state Xs(t) can be viewed as the

information content of the last message sent into X. Channel X’s output

is fed to the receiver, which perceives the event (i.e., message) X r−↑ (t′)

resp. Xr−↓ (t′) for every send event Xs−↑ (t) resp. Xs−↓ (t) within finite

time t′ ≥ t. For analysis purposes, we assume that there is a lower and an

upper bound on the channel delay t′ − t, but those bounds are unknown to

the algorithm. The receiving state Xr(t) at time t can again be viewed as

the information content of the last received message. At reset time t0, the

channel states Xr(t0) and Xs(t0) are initialized to ⊥.

Obviously, a zero-bit message channel can only convey messages with strictly

alternating content. Nevertheless, this type of communication is compatible

with Lamport’s happened-before “;” relation [19]: For matching send and

receive events, it holds that Xs− ↑ (t) ; Xr− ↑ (t′) and Xs− ↓ (t) ;

Xr−↓ (t′). To simplify the notation when using a channel X, we employ the

convention that X−↑ (t) and X−↓ (t) abbreviate the send events X s−↑ (t)

and Xs−↓ (t), respectively, whereas X(t) abbreviates the state X r(t) at the

receiving end.

3.2 TS-Alg Architectural Design 11

D
iff

rself
p,q1

, sp,q1

remote pipe n− 1

remote pipe 1

local pipe

process q process p

bp(t)

D
iff

local pipe n− 1

local pipe 1

rself
p,qn−1

, sp,qn−1

rrem
p,q1

(t)

rrem
p,qn−1

(t) PCSGsrrem
q,p(t)

Thresholds

Figure 4: Schematic of a TS-Alg, demonstrating the points of observation
bp(t), r

rem
p,q (t) and rselfp,q (t) used in the algorithm’s analysis.

3.2 TS-Alg Architectural Design

Fig. 4 shows a schematic of a TS-Alg executed by process p at the level

of digital components. It has been obtained by adopting and refining the

components presented in Fig. 3 to the peculiarities of digital hardware design.

Note that the core part of the high-level description of the original TS-Alg,

the +/− counter, comprises the first three items listed below.

Pairs of elastic pipes: Every TS-Alg/process p incorporates n−1 pairs of

elastic pipelines. An elastic pipeline is a shift register/FIFO for signal

transitions [32], see Section 5.1 for a short description. Each pair of

pipelines corresponds to a single remote TS-Alg/process q 6= p. Every

pair consists of a remote pipeline that can store up to S tick-↑/ tick-↓

messages sent by q, and a local pipeline that can hold up to S tick-↑/

tick-↓ messages sent by p locally. The number S is an implementation

parameter that has to be chosen in accordance with Theorem 4.17.

For description and analysis purposes some more notation is intro-

duced: rremp,q (t) resp. rselfp,q (t) denotes the number of messages that ar-

3.2 TS-Alg Architectural Design 12

rived at the end of the remote, resp., local pipe by time t. Moreover,

sp,q(t) denotes the number of tick messages stored in the local pipeline

at time t. Note carefully that those quantities are not available to the

algorithm. Rather, the algorithm uses only the binary status signals

rremp,q (t) ≥ rselfp,q (t) and rremp,q (t) > rselfp,q (t) in conjunction with sp,q(t) = 1.

Upon reset, all pipelines are initialized to contain a single even tick-↓

message. This can be formalized by assuming rremp,q (t0,p) = rselfp,q (t0,p) = 0

and sp,q(t0,p) = 1 at reset time t0,p.

Diff-Gate: To avoid the need for infinite space, which would be conceptually

required in the algorithm listed in Fig. 2 in Section 2.1 as k is ever

increasing, each pair of pipelines is equipped with a special circuit that

removes tick messages contained in both pipes. The behavior of a

Diff-Gate is as follows: If [rremp,q (t) ≥ rselfp,q (t)] ∧ [sp,q(t) > 1], there is

some t′ ∈ t + [τDiff
−, τDiff

+] such that sp,q(t
′) = sp,q(t

′ − dt) − 1, for

some infinitesimally small dt > 0. Note that the TS-Alg is not losing

information due to this removal of “common” tick messages, since the

algorithm is only interested in the difference of the number of messages

received in a pair of pipes.

Pipe Compare Signal Generators (PCSGs): There exists a dedicated

detection circuit for each pair of pipes which generates the status signals

GEQ
o/e
p,q (t) and GR

o/e
p,q (t). In particular, GEQo

p,q(t
′) becomes active (i.e.,

GEQo
p,q(t

′) = >, thereby generating the event GEQo
p,q−↑ at t′, if the

previous state was ⊥) at some time t′ ∈ t+ [τGEQ
−; τGEQ

+] when

(i) rselfp,q (t) ∈ Nodd and

(ii) [rremp,q (t) ≥ rselfp,q (t)] ∧ [sp,q(t) = 1]

Similarly, GRo
p,q(t

′) becomes active at time t′ ∈ t+ [τGR
−; τGR

+] when

(i) rselfp,q (t) ∈ Nodd and

3.2 TS-Alg Architectural Design 13

(ii) [rremp,q (t) > rselfp,q (t)] ∧ [sp,q(t) = 1].

The signals GEQe
p,q(t) and GRe

p,q(t) have the same definition, except

that (i) reads rselfp,q (t) ∈ Neven here. Note that a PCSG may become

active only if sp,q(t) = 1. The reason for this restriction is the ease

of implementation in hardware. The additional term in the premise

circumvents the need for large and slow comparators which would oth-

erwise have to consider all possible states of both the remote and the

local pipe.

Threshold: If the number of active GEQ
o/e
p,q (t) resp. GR

o/e
p,q (t) signals ex-

ceeds the 2f + 1 resp. f + 1 threshold at time t, the correspond-

ing threshold signal TH
o/e
GEQ(t

′) resp. TH
o/e
GR(t

′) becomes active at time

t′ ∈ t+ [τTH
−; τTH

+].

Tick Broadcast: The next tick message is sent when

(i) both threshold signals for the previously generated tick, say, THo
GEQ

and THo
GR, are inactive again and

(ii) at least one threshold signal, THe
GEQ or THe

GR, for the current tick

becomes active.

In the following analysis, bp(t) denotes the number of tick messages

generated (broadcast) by process p by time t, with bp(t0) = 0 at reset

time t0. The value of bp(t) at the time of sending a tick is defined as:

Definition 3.1. If tk denotes the time when process p generates tick k,

it is defined that bp(tk) = bp(tk − dt) + 1 for an infinitesimally small

dt > 0, i.e., bp(tk) gives the number of ticks including the new tick k.

The detailed description of the TS-Alg based on the architectural model is

given in Fig. 5. Note that the algorithm’s if-clauses are only evaluated when

the validity of the if-clause’s premise changes, i.e., upon a state transition

3.2 TS-Alg Architectural Design 14

of the enabling condition [which also happens, by convention, upon reset].

This restriction has no effect on the validity of the algorithm, because of

the idempodence in sending messages of the same type and is only due to

proof-technical reasons. In case of the threshold gates (line 17 to line 26)

it is assumed w.l.o.g. that a (possibly idempotent) output event is sent upon

any change of the state of any input.

3.2 TS-Alg Architectural Design 15

0: /* Initialization */
1: ∀q : rrem

p,q (t0,p) = rself
p,q (t0,p) = 0; sp,q(t0,p) = 1

2: ∀channelsX : Xr(t0,p) = Xs(t0,p) = ⊥

3: /* code for PCSGs at process p for remote process q */
4: if [rrem

p,q (t) ≥ rself
p,q (t)] ∧ [rself

p,q (t) ∈ Nodd] ∧ [sp,q(t) = 1]
5: send GEQo

p,qi
(t)−↑

6: else send GEQo
p,qi

(t)−↓
7: if [rrem

p,q (t) > rself
p,q (t)] ∧ [rself

p,q (t) ∈ Nodd] ∧ [sp,q(t) = 1]
8: send GRo

p,qi
(t)−↑

9: else send GRo
p,qi

(t)−↓

10: if [rrem
p,q (t) ≥ rself

p,q (t)] ∧ [rself
p,q (t) ∈ Neven] ∧ [sp,q(t) = 1]

11: send GEQe
p,qi

(t)−↑
12: else send GEQe

p,qi
(t)−↓

13: if [rrem
p,q (t) > rself

p,q (t)] ∧ [rself
p,q (t) ∈ Neven] ∧ [sp,q(t) = 1]

14: send GRe
p,qi

(t)−↑
15: else send GRe

p,qi
(t)−↓

16: /* code for thresholds at process p */
17: if GEQo

p,qi
(t) for at least 2f + 1 remote processes qi

18: send THo
GEQ−↑

19: else send THo
GEQ−↓

20: if GRo
p,qi

(t) for at least f + 1 remote processes qi

21: send THo
GR−↑

22: else send THo
GR−↓

23: if GEQe
p,qi

(t) for at least 2f + 1 remote processes qi

24: send THe
GEQ−↑

25: else send THe
GEQ−↓

26: if GRe
p,qi

(t) for at least f + 1 remote processes qi

27: send THe
GR−↑

28: else send THe
GR−↓

29: /* code for sending tick messages at process p */
30: if [THo

GR(t) ∨ THo
GEQ(t)] ∧ ¬[THe

GR(t) ∨ THe
GEQ(t)]

31: send tick-↓
32: if [THe

GR(t) ∨ THe
GEQ(t)] ∧ ¬[THo

GR(t) ∨ THo
GEQ(t)]

33: send tick-↑

Figure 5: TS-Alg tick generation algorithm for process p after being adopted
for VLSI implementation.

16

4 Correctness Proofs

In this section we define an appropriate system and failure model. We specify

the level of abstraction necessary for the analysis by defining the components

and the possibilities of their correct and incorrect interaction. After that we

will proceed with detailed correctness proofs of both global and local prop-

erties of the considered system. The resulting properties can then be used

as design guidelines and guaranteed performance metrics for any particular

hardware implementation.

4.1 System and Failure Model

For the correctness proof and performance analysis, the following system and

failure model is employed: Let P be a set of n distributed processes, executing

TS-Algs, which communicate via simulated broadcasting (multiple point-to-

point sends) over a fully connected network of reliable zero-bit FIFO message

passing links. Every link carries strictly alternating tick-↑ and tick-↓messages

only. The transmission delay satisfies some upper and lower bounds, which

are unknown to the algorithm, i.e., introduced solely for analysis purposes:

The time of a locally generated tick message to reach the end of any local

pipeline is bounded by [τloc
−; τloc

+], whereas the time to reach the end of any

remote pipeline, at any remote process, is bounded by [τrem
−; τrem

+]. Note

that this assumption has some impact on initialization as well:

Every process p can be initialized to bp(t0,p) = rremp,q (t0,p) = rselfp,q (t0,p) = 0 and

sp,q(t0,p) = 1 even at (slightly) different reset times t0,p ∈ [0; τrem
−): The lower

delay bound τrem
− ensures that no tick message can be lost during reset. The

latencies [τGEQ
−; τGEQ

+], [τGR
−; τGR

+], [τDiff
−; τDiff

+] and [τTH
−; τTH

+] have

already been introduced in Section 3.2.

The TS-Alg will allow up to f processes to fail arbitrarily (so called Byzan-

tine failures, i.e., no assumption can be made for process failures), provided

that n ≥ 3f + 2. This is slightly more than the required lower bound of

4.2 Concept of Direct Causality 17

n ≥ 3f + 1 for clock synchronization [9], but ensures better precision and

accuracy. In the context of TS-Algs, the adverse power of arbitrary failures

lies in the ability of a process to generate wrong (early or even spurious) clock

ticks, which are perceived inconsistently at different receiver processes. Such

failures may be the consequence of particle hits or electromagnetic interfer-

ence, which can very well affect different receivers differently, depending upon

wire length and signal detection sensitivity. Less severe faults comprise crash

failures which can occur due to stuck-at faults in hardware, for example.

4.2 Concept of Direct Causality

The formal treatment of the TS-Alg will be started with Definition 4.1, which

will be employed frequently in the following proofs.

Definition 4.1. (Direct Causality). Let I(t′) and O(t) be two events of some

specific signal input and output, respectively, of a correct component C. Then

I(t′) and O(t) are directly causally related, denoted by I(t′)→ O(t), if

(i) they are causally related, i.e. I(t′) ; O(t), and

(ii) there is neither an ↑- nor a ↓-event I ′(t′′) on the same input in between,

i.e., @I ′(t′′) : I(t′) ; I ′(t′′) ; O(t).

If the input and output events I(t′) and O(t) of a correct component C with

latency ∈ [τ−C , τ+C] are directly causally related, then τ−C ≤ t− t′ ≤ τ+C .

An instrumental part in the correctness proof of the tick generation algorithm

TS-Alg in Fig. 5 is to make sure that a process generates tick k+1 messages

“based on” tick k messages only. The notion of “based on” is precisely

defined in Definition 4.2 and 4.3. Informally it means that a process p does

not incorporate stale information from earlier ticks ` < k when sending tick

number k + 1. Lemma 4.4 below will deduce some simple properties from

these definitions.

4.2 Concept of Direct Causality 18

Definition 4.2. (Notion of Basis on remote process q’s tick `). Abbreviate

PCGEQ,`
p,q (t) = [rremp,q (t) ≥ rselfp,q (t) = `] ∧ [sp,q(t) = 1] and

PCGR,`
p,q (t) = [rremp,q (t) > rselfp,q (t) = `] ∧ [sp,q(t) = 1]. (1)

Then a correct process p’s tick k + 1 is based on correct process q’s tick `, if

there exists at least one of the following chains of direct causal dependencies:

For k + 1 ∈ Neven,

PCGEQ,`
p,q (t′′) → GEQo

p,q(t
′)→ THo

GEQ(t
′
k+1)→ [bp(tk+1) = k + 1] (2)

PCGR,`
p,q (t′′) → GRo

p,q(t
′)→ THo

GR(t
′
k+1)→ [bp(tk+1) = k + 1] (3)

(and analogous for k + 1 ∈ Nodd).

Definition 4.3. (Notion of Basis on tick `). A correct process p’s tick k+ 1

is said to be based on tick `, if, for all correct processes q, it is based on q’s

tick `q with `q ≥ ` and ∃qi : `qi
= `, i.e. ` = min(`qi

).

Lemma 4.4. The time instants t′k+1 and t′′ in the direct causal chains (2) and

(3) of Definition 4.3 satisfy τTH
− +min(τGR

−, τGEQ
−) ≤ t′k+1 − t′′ ≤ τTH

+ +

max(τGR
+, τGEQ

+). Moreover, the predicate PCGEQ,`
p,q (t) resp. PCGR,`

p,q (t) holds

true for every t ∈ [t′′, tk+1− τTH
+− τGEQ

+] resp. t ∈ [t′′, tk+1− τTH
+− τGR

+],

provided those time intervals are non-empty.

Proof. The first statement of Lemma 4.4 is a trivial consequence of Defini-

tion 4.1. Now we will prove that the predicates continue to hold true during

the given intervals. We will first show the proof for k ∈ Nodd.

Recall from the algorithm in Fig. 5 that tick k + 1 is sent at time tk+1,

i.e., bp(tk+1) = k + 1, iff [THo
GR(tk+1) ∨ THo

GEQ(tk+1)] ∧ ¬[TH
e
GR(tk+1) ∨

THe
GEQ(tk+1)] ∧ bp(tk+1 − dt) = k ∈ Nodd according to Definition 3.1 where

dt > 0 is infinitesimally small: At least one of the threshold gates responsi-

ble for the even tick k+1 must be active, while both threshold gates for the

4.3 Interlocking 19

previous odd tick k must be inactive. Furthermore, bp(tk+1 − dt) = k ∈ Nodd

must obviously hold for generating tick k + 1.

Since bp(tk+1) = k + 1 occurs at tk+1, all enabling conditions are met. In

particular, THo
GEQ resp. THo

GR cannot have further changed state within

the time interval (t′k+1, tk+1] by delimitation of direct causality. It is now

shown, that the predicates (1) must also maintain the same state for some

time. Suppose, by way of contradiction, that e.g. PCGEQ,`
p,q (t) reverted to

false at some time t with t′′ < t ≤ tk+1 − τTH
+ − τGEQ

+. Then, the GEQo

threshold gate must have generated another event THo
GEQ(t

′′
k+1) (maybe an

idempotent one) at time t′′k+1 = t + τGEQ
+ + τTH

+ ≤ tk+1 at latest, and

clearly THo
GEQ(t

′′
k+1)→ bp(tk+1) = k+ 1. This contradicts direct causality of

THo
GEQ(t

′
k+1)→ bp(tk+1) = k + 1, however.

The proof for k ∈ Nodd is analogous.

4.3 Interlocking

Now the major Lemma 4.6 can be proved, stating that every correct process

p’s tick k+1 is based on tick k only, provided that the following Constraint 4.5

is satisfied. If this is the case, there is no danger of mixing up new and old

instances of the signals GRo, GEQo, etc.

Constraint 4.5. (Interlocking Constraint). With the abbreviations

D+ = τTH
+ +max(τGR

+, τGEQ
+) + τloc

+ and

D− = τTH
− +min(τGR

−, τGEQ
−) + τloc

− + τDiff
− (4)

it must hold that D+ ≤ D− +D−
dis, where D−

dis = D− − τDiff
−.

Lemma 4.6. (Interlocking). Provided that Constraint 4.5 holds, every cor-

rect process p’s tick k + 1 is based on tick k.

Proof. The proof is by induction on the number of tick messages sent by a

correct process p.

4.3 Interlocking 20

Induction basis: Tick 1 is based on tick 0 [established upon reset] only. Tick 2

can be based on tick 1 only, since even ticks are solely generated from GRo

and GEQo—and hence from odd ticks—in the algorithm of Fig. 5.

Induction step: Suppose that all ticks m up to tick k ≥ 2 are based on

tick m − 1, but that tick k + 1 generated by process p is not based on

tick k but rather on some tick ` ∈ {k − 2, k − 4, . . . }. Assuming w.l.o.g.

k ∈ Nodd, there must be some correct process qi satisfying (2) and/or (3), say,

PCGEQ,`
p,qi

(t′′qi
)→ GEQo

p,qi
(t′qi

)→ THo
GEQ(t

′
k+1)→ bp(tk+1) = k+1 according to

Definition 4.3. Lemma 4.4 reveals that PCGEQ,`
p,qi

(t′) = [rremp,qi
(t′) ≥ rselfp,qi

(t′) =

`] ∧ [sp,qi
(t′) = 1] must evaluate to true also at time t′ with tk+1 − t′ ≤

τTH
+ + τGEQ

+ ≤ τTH
+ +max(τGR

+, τGEQ
+).

Since PCGEQ,`
p,qi

(t′) and thus rselfp,qi
(t′) = `, tick k − 1 must have been received

at process p’s local pipe corresponding to qi at time t′′ > t′ and it must have

been sent by process p at some time tk−1 ≥ t′′ − τloc
+. It follows that

tk−1 > tk+1 − τTH
+ −max(τGR

+, τGEQ
+)− τloc

+ = tk+1 −D+. (5)

Since tick k−1 arrives at any local pipe at t̃ ≥ tk−1+τloc
− earliest, [rselfp,q (t̃) =

k−1]∧ [sp,q(t̃) = 1] is obtained not before t̃+τDiff
−, as the previous tick k−2

must be removed from the local pipe before sp,q(·) = 1 can become true. Due

to the induction hypothesis, tick k is based on tick k − 1 only. Lemma 4.4

hence implies that tick k cannot be sent before

tk ≥ t̃+ τDiff
− +min(τGR

−, τGEQ
−) + τTH

− ≥ tk−1 +D−. (6)

Recall that p can only send tick k+1 at tk+1 if ¬[TH
e
GR(tk+1)∨TH

e
GEQ(tk+1)]

is true, i.e., when all threshold gates that generated the previous tick k are

inactive at tk+1. Process p generates tick k when sufficiently many correct

processes qj satisfy (2) and/or (3), i.e., contribute to THo
GEQ and/or THo

GR.

The latter signals can only be disabled at tk+1 if there exists at least one

4.4 Local and Global Performance Metrics 21

correct process q among those, for which

¬PCGEQ,k−1
p,q (t̂q) =

¬{[rremp,q (t̂q) ≥ rselfp,q (t̂q)] ∧ [rselfp,q (t̂q) = k − 1] ∧ [sp,q(t̂q) = 1]} →

¬GEQe
p,q(t

′)→ ¬THe
GEQ(tk+1)

¬PCGR,k−1
p,q (t̂q) =

¬{[rremp,q (t̂q) > rselfp,q (t̂q)] ∧ [rselfp,q (t̂q) = k − 1] ∧ [sp,q(t̂q) = 1]} →

¬GRe
p,q(t

′)→ ¬THe
GR(tk+1)

holds at some time t̂q, with tk < t̂q and t̂q+min(τGR
−, τGEQ

−)+ τTH
− ≤ tk+1.

PCGEQ,k−1
p,q (·) can only become false if tick k has arrived at the local queue

corresponding to q. Thus, tk + τloc
− ≤ t̂q and hence

tk+1 ≥ tk +min(τGR
−, τGEQ

−) + τTH
− + τloc

− = tk +D−
dis. (7)

Combining the results on tk+1 and tk given in (6) and (7), we obtain tk+1 ≥

tk−1 + D− + D−
dis. Substituting the result for tk−1 from (5), gives tk+1 >

tk+1 − D+ + D− + D−
dis and hence D+ > D− + D−

dis, which contradicts

Constraint 4.5. Therefore, tick k + 1 cannot be based on ` < k, which was

to be shown.

4.4 Local and Global Performance Metrics

In this section a sequence of simple lemmas which are needed for establish-

ing the major results Theorem 4.13 (precision) and Theorem 4.14 (accuracy)

will be provided. These results will lead to the most important measures

about local system properties: The terms accuracy and precision have been

coined in the context of clock synchronization where accuracy establishes

the deviation of a clock w.r.t. Newtonian real-time and precision determines

the mutual difference of any two correct clocks at a given point in real-time.

4.4 Local and Global Performance Metrics 22

Translated into our problem, accuracy determines the maximum and mini-

mum local clock frequency and precision gives the maximum phase difference

between any two local clocks.

Lemma 4.7. (Maximum Frequency). No correct process can send alternat-

ing tick messages with a higher frequency than 1/D−.

Proof. Assume that a correct process p sends tick k + 1 ∈ Nodd at time

tk+1. Because of Lemma 4.6, tick k + 1 can only be based on tick number

k. This means that PCGEQ,k
p,qi

(t′qi
) must have been true by time tk+1− τTH

−−

min(τGR
−, τGEQ

−) simultaneously for at least f + 1 resp. 2f + 1 processes

qi. Thus p must have sent tick k by time tk ≤ tk+1 − τTH
− − τDiff

− −

min(τGR
−, τGEQ

−)−τloc
− ≤ tk+1−D−, where τloc

− accounts for the minimum

delay to reach the end of a local pipe and τDiff
− is the minimal time for

removing the previous tick k− 1 to achieve sp,qi
(t′qi

) = 1. Hence, tk+1 − tk ≥

D− as asserted.

Lemma 4.8. The first correct process that sends tick k + 1 ≥ 1 by time t

must do so via THo
GEQ if k ∈ Nodd and THe

GEQ if k ∈ Neven.

Proof. Let k ∈ Nodd and assume, by contradiction, that the first correct

process p does not send tick k+1 via THo
GEQ(tk+1). The only other possibility

to send tick number k + 1 is via THo
GR(tk+1). By Lemma 4.6, there exists

a time t′qi
< tk+1 where PCGR,k

p,qi
(t′qi

) holds simultaneously for at least f +

1 remote processes qi ∈ Q ⊆ P \ {p}, i.e., for at least one correct remote

process q 6= p. For q, bq(t
′
q) > k must hold, too, because there cannot be

more messages received by p than there were sent by q, contradicting that p

is the first correct process that sends tick k. The proof for k + 1 ∈ Nodd is

analogous.

Theorem 4.9 and its proof are a generalization of the well-known consistent

broadcasting results of [31, 33, 29]. The theorem will be used later on, to

derive bounds on the accuracy and precision.

4.4 Local and Global Performance Metrics 23

Theorem 4.9. (Synchronization Properties). The algorithm satisfies the

synchronization properties Progress (P), Unforgeability (U) and Simultaneity

(S) if Constraint 4.5 is satisfied and n ≥ 3f + 2.

(P) Progress: If all correct processes send tick k by time t, then every

correct process sends at least tick k + 1 by time t + T+, with T+ =

τDiff
+ +max(τrem

+, τloc
+) + τGEQ

+ + τTH
+.

(U) Unforgeability: If no correct process sends tick k by time t, then no

correct process sends tick k+1 by time t+ T−first, with T−first = τrem
−+

τGEQ
− + τTH

− + τDiff
−.

(S) Simultaneity: If some correct process sends tick k by time t, then every

correct process sends at least tick k by time t+ Tsim, with Tsim = T+ +

(τTH
+− τTH

−)+ (τDiff
+− τDiff

−)+ (τGR
+− τGEQ

−)+ εrem, where εrem =

τrem
+ − τrem

−.

Proof. The properties Progress (P), Unforgeability (U) and Simultaneity (S)

will be shown one after the other:

Progress (P):Assume that all correct processes (at least 2f+2) sent tick k ∈

Nodd by time t. Now focus on a correct process p: If p has already sent

tick k + 1 by time t, we are done. If it has not, bp(t) = k must hold at

p. Furthermore, bqi
(t) ≥ k must hold for at least 2f + 1 correct remote

processes qi ∈ Q ⊆ P \ {p}. By time t′ ≤ t + max(τrem
+, τloc

+) all remote

and local tick messages with number k must have been received at p, resulting

in rremp,qi
(t′) ≥ bqi

(t) ≥ k and rselfp,qi
(t′) ≥ bp(t). Now assume that rselfp,qi

(t′) > k.

Because there cannot be more messages received by p than there were sent

by p, process p must have sent tick k + 1 by time t′ and we are done. So

assume that rselfp,qi
(t′) = k. Then, rremp,qi

(t′) ≥ rselfp,qi
(t′) = k must hold for at

least 2f + 1 correct processes qi. Therefore, PCGEQ,k
p,qi

(t′′) must hold at time

t′′ ≤ t′ + τDiff
+ if still rselfp,qi

(t′′) = k (otherwise, p must have sent tick k + 1

by t′′ and we are done). This causes at least 2f + 1 GEQo
p,qi
−↑ messages

4.4 Local and Global Performance Metrics 24

to be sent by time t′′ + τGEQ
+. Thus p will send tick k + 1 by time t′′′ ≤

t′ + τDiff
+ + τGEQ

+ + τTH
+ ≤ t+ T+. The proof for k ∈ Neven is analogous.

Unforgeability (U): Let k ∈ Nodd and assume that a correct process p

has sent tick k + 1 at time tk+1, which can only happen if THo
GEQ(tk+1) or

THo
GR(tk+1) is active.

1. Assume that tick k + 1 was sent by process p because THo
GEQ(tk+1)

was active. Thus THo
GEQ−↑ must have been sent at time t′ ≤ tk+1 −

τTH
−. Furthermore, Lemma 4.6 (Interlocking) states that rremp,qi

(t′′qi
) ≥

rselfp,qi
(t′′qi

) = k∧sp,qi
(t′′qi

) = 1 must have been true at time t′′qi
≤ t′−τGEQ

−

for at least 2f + 1 remote processes qi. Among those, there must have

been at least f + 1 remote correct processes qj ∈ Q ⊆ P \ {p}, all of

which must have sent tick k by time t′′′ ≤ tk+1−τTH
−−τGEQ

−−τDiff
−−

τrem
−.

2. Assume tick k+1 was sent by process p because THo
GR(tk+1) was active.

By similar arguments as above, PCGR,k
p,qi

(t′′qi
) must have been true by

time t′′qi
≤ tk+1 − τTH

− − τGR
− for at least f + 1 remote processes qi,

which include at least for one correct remote process q. Process q must

have sent tick k + 1 at time t′′′ ≤ tk+1 − τTH
− − τGR

− − τDiff
− − τrem

−.

Thus the Lemma can be applied again for q.

The proof for k ∈ Neven is similar. To summarize: If no correct remote process

q 6= p has sent tick k by time t, no correct process p will send tick k + 1 by

time t+ τrem
− + τDiff

− + τGEQ
− + τTH

−. Since “no correct remote” process is

implied by “no correct” process, we are done.

Simultaneity (S): Let p be the first correct process to send tick k ∈ Nodd

at time tk. By Lemma 4.8 it must do so via THo
GEQ. Because of Lemma 4.6

(Interlocking), PCGEQ,k−1
p,qi

(t′qi
) must have held at time t′qi

≤ tk−τTH
−−τGEQ

−

for at least 2f+1 remote processes, and hence for at least f+1 correct remote

processes q̄i ∈ Q ⊆ P \ {p}. Every process q̄i must have sent tick k − 1 at

time t
(1)
q̄i
≤ tk − τTH

− − τGEQ
− − τDiff

− − τrem
−. This, however, means that

4.4 Local and Global Performance Metrics 25

tick k− 1 from at least f + 1 correct remote processes q̄i will arrive at every

correct process qj by time t
(2)
qj ≤ tk − τTH

− − τGEQ
− − τDiff

− + εrem. Thus,

at all correct processes qj, r
rem
qj ,q̄i

(t
(2)
qj) ≥ k − 1 must be true for at least f + 1

processes and all qj will send tick k − 1 by time t(3) ≤ tk − τTH
− − τGEQ

− −

τDiff
− + εrem + τDiff

+ + τGR
+ + τTH

+ if they have not already done so.

Assume that p is not the first correct process that sends tick number k ∈ Nodd.

Then there must be some other correct process which already sent tick k at

time t− ≤ tk. Now the same arguments can be applied for this process

and all correct processes will send tick k − 1 by time t(3),− ≤ t− − τTH
− −

τGEQ
− − τDiff

− + εrem + τDiff
+ + τGR

+ + τTH
+. Finally, Progress (P) can be

applied once, stating that all correct processes must send tick k by time

t(4) ≤ tk − τTH
− − τGEQ

− − τDiff
− + εrem + τDiff

+ + τGR
+ + τTH

+ + T+.

Lemma 4.10. (Fastest Progress). Assume that p is the first correct process

that sends tick number k at time t. Then no correct process can send tick k ′ >

k before time t+ (k′ − k)T−first.

Proof. The proof is by induction on k′. For k′ = k + 1, the first correct

process q ∈ P that sends tick k + 1 must do so after time t + (k′ − k)T−first
because of Unforgeability (U). Now assume that p is the first correct process

that sends tick k′. It does this not before t+ (k′ − k)T−first by the induction

hypothesis. Because of (U), no other correct process can send tick k ′ + 1 by

time t+ (k′ − k)T−first + T−first = t+ (k′ + 1− k)T−first.

The following Lemma 4.11 relates the system’s progress of ticks generated

by the all processes to progress in real-time.

Lemma 4.11. (Maximum Increase of bmax). Let bmax(t) be the maximum

of bp(t) over all correct processes p, and tfirstk be the time when bmax was

increased to k, i.e. when the first process sent tick k. Define the indicator

function Iusync(t) = It/∈{tfirst
0 ,tfirst

1 ,tfirst
2 ,... } to be 1 if t /∈ {tfirst0 , tfirst1 , tfirst2 , . . . }

and 0 otherwise. Then, for any t1 ≤ t2, it holds that bmax(t2) − bmax(t1) ≤
⌊

t2−t1
T−

first

⌋

+ Iusync(t1).

4.4 Local and Global Performance Metrics 26

Proof. For t1 ∈ {t
first
0 , tfirst1 , tfirst2 , . . . }, Lemma 4.10 (Fastest Progress) can

be applied, which reveals that bmax(t2)− bmax(t1) ≤

⌊

t2−t1
T−

first

⌋

as needed. For

t1 /∈ {tfirst0 , tfirst1 , tfirst2 , . . . }, it must hold that tfirstk−1 < t1 < tfirstk , for some

k. Thus bmax(t2)− bmax(t1) ≤

⌊

t2−tk
T−

first

⌋

+ 1 ≤

⌊

t2−t1
T−

first

⌋

+ 1 by monotonicity of

bxc.

Lemma 4.12. (Slowest Progress). Assume that some process p sends tick k

at time t. Then all correct processes must send tick k′ > k by time t+ (k′ −

k)T+ + Tsim.

Proof. The proof is by applying Simultaneity (S) once and Progress (P) it-

eratively.

The following major Theorem 4.13 gives the algorithm’s precision π which

guarantees ∀t : |bq(t)− bp(t)| ≤ π for every pair of correct processes p and q.

Theorem 4.13. (Precision). The precision π ≥ |bq(t) − bp(t)| of our algo-

rithm is bounded by π ≤

⌊

Tsim

T−
first

⌋

+ 1.

Proof. First of all bounds on the difference of bmax(t′) and bp(t
′) will be

established for any t′ in between p’s instants of sending tick number k and

k + 1, i.e., tpk ≤ t′ < tpk+1.

bmax(t′) ≤ bp(t
′) + π and bmax(tpk+1) ≤ bp(t

p
k+1) + π − 1 (8)

Assume that process p sends tick k + 1 at time tpk+1. Because of (S), tpk+1 ≤

tfirstk+1 + Tsim must hold, and because of monotonicity, bmax(tpk+1 − Tsim) ≤

bmax(tfirstk+1) = k + 1 must hold. According to Lemma 4.11, bmax(tpk+1) ≤
⌊

Tsim

T−
first

⌋

+ Iusync(t
p
k+1 − Tsim) + bmax(tpk+1 − Tsim). The two possible cases

tpk+1− Tsim = tfirstk+1 and tpk+1− Tsim < tfirstk+1 both lead to Iusync(t
p
k+1− Tsim) +

bmax(tpk+1 − Tsim) = k + 1. Thus the former inequality can be refined to

4.4 Local and Global Performance Metrics 27

bmax(tpk+1) ≤

⌊

Tsim

T−
first

⌋

+k+1. Now, for tpk ≤ t′ < tpk+1, bp(t
′) = k and bmax(t′) ≤

bmax(tpk+1) is obtained and hence bmax(t′)−bp(t
′) ≤

⌊

Tsim

T−
first

⌋

+1 = π. For tpk+1,

obviously bp(t
p
k+1) = k+1 and hence bmax(tpk+1)−bp(t

p
k+1) ≤

⌊

Tsim

T−
first

⌋

= π−1.

The inequalities (8) can be generalized to hold at any time t, by finding an

appropriate k for which tpk ≤ t < tpk+1, or t = tpk+1 holds at p and applying (8)

within these bounds. Since obviously ∀t : bp(t) ≤ bmax(t), any two correct

processes p and q must fulfill ∀t : |bq(t)− bp(t)| ≤ π.

The following Theorem 4.14 (accuracy) can be used to bound the number of

tick messages generated locally at a correct process p during some real-time

interval ∆, i.e., allows to make statements about the local frequency. For

example, it reveals that the long-term frequency (f∞ := lim∆→∞
bp(∆)

∆
) is

within [1/T+, 1/T−first].

Theorem 4.14. (Accuracy). Given ∆ = t2 − t1, the accuracy |bp(t2) −

bp(t1)| of any correct process p is bounded by max
{

0, ∆−Tsim−T+

T+

}

≤ |bp(t2)−

bp(t1)| ≤

⌈

∆
T−

first

⌉

+min

{

π + 1,

⌈

∆
D−
− ∆

T−
first

⌉}

.

Proof. The upper bound for accuracy will be shown first: It is known that

∀t : bp(t) ≥ bmax(t) − π + (1 − Iusync(t)) and ∀t : bp(t) ≤ bmax(t) from

Lemma 4.13 and Lemma 4.11. Thus bp(t2) − bp(t1) ≤ bmax(t2) − bmax(t1) +

π − (1 − Iusync(t1)). By applying Lemma 4.11, bp(t2) − bp(t1) ≤

⌊

t2−t1
T−

first

⌋

+

2Iusync(t1) − 1 + π ≤

⌊

t2−t1
T−

first

⌋

+ π + 1 ≤

⌈

t2−t1
T−

first

⌉

+ π + 1. Moreover, from

Lemma 4.7 it follows that bp(t2)− bp(t1) ≤
⌈

t2−t1
D−

⌉

. Hence, bp(t2)− bp(t1) ≤

min

{⌈

∆
T−

first

⌉

+ π + 1,
⌈

∆
D−

⌉

}

≤

⌈

∆
T−

first

⌉

+ min

{

π + 1,
⌈

∆
D−

⌉

−

⌈

∆
T−

first

⌉}

≤
⌈

∆
T−

first

⌉

+min

{

π + 1,

⌈

∆
D−
− ∆

T−
first

⌉}

since dx+ ye ≤ dxe+ dye.

To prove the lower bound, first define b1 = bp(t1), b2 = bp(t2) and tpb1 ≤ t2,

tpb2 ≤ t2 as the points in time when p sends tick b1 and b2. Clearly tpb2+1 > t2,

4.5 Design Directives 28

and by Lemma 4.12 it follows t2 − t1 ≤ tpb2+1 − tpb1 ≤ Tsim + (b2 − b1 + 1)T+.

Hence, max
{

0, ∆−Tsim−T+

T+

}

≤ bp(t2)− bp(t1).

4.5 Design Directives

In Section 4.3, it has been shown that a system of TS-Alg units fulfilling

Constraint 4.5 (Interlocking) provides a correct interlocking of tick messages,

i.e., does not decide to send a tick on stale information. Based on this result,

bounds on accuracy and precision have been shown.

However, it has not been proved until here that a process does not have to

store infinitely many ticks from other processes, i.e., that the size of a pair

of pipes can be bounded without invalidating the algorithm. The theorem

presented in this section establishes that pipeline size is indeed bounded,

provided that the following constraint holds:

Constraint 4.15. (Diff-Gate Constraint). We assume that

τDiff
+ ≤ T−first.

It is first shown that tick k − 1 is completely removed from all pipelines

corresponding to correct processes at most Tsim + max(τrem
+, τloc

+) + τDiff
+

after the first correct process sent tick k.

Lemma 4.16. If Constraint 4.15 holds, every correct process has completely

removed tick k − 1 ≥ 0 from the pair of pipelines corresponding to a correct

process by time tfirstk + Tsim + max(τrem
+, τloc

+) + τDiff
+, where tfirstk is the

time when the first correct process sent tick k.

Proof. Abbreviating tlastk = tfirstk + Tsim and denoting by tpk resp. tqk the time

when p resp. q sends tick k, it follows from Simultaneity (S) that tfirstk ≤

tpk, t
q
k ≤ tlastk . Consequently, tick k arrives in both the local and remote

pipe at process p by time Tk = tlastk + max(τrem
+, τloc

+) = tfirstk + Tsim +

4.5 Design Directives 29

max(τrem
+, τloc

+). It is shown by induction that tick k − 1 is removed at

most τDiff
+ later:

Induction basis: For k = 0, the statement is vacuously true since all processes

“receive” tick 0, at reset time, within [0, τrem
−] [note that τrem

− < T0 =

Tsim +max(τrem
+, τloc

+)] and there is of course no tick k − 1 to be removed

at all.

Induction step: Now assume that tick k − 1 has been removed by time Tk +

τDiff
+ and consider the removal of tick k. Since Tk+1 − Tk = tfirstk+1 − tfirstk ≥

T−first by Lemma 4.11, Tk+1 ≥ Tk + T−first ≥ Tk + τDiff
+ must hold. Due to

the induction hypothesis, the removal of tick k does not face blocking due

to the removal of tick k − 1. Hence, tick k must be successfully removed by

Tk+1 + τDiff
+ as asserted.

Theorem 4.17. (Queuesize). The size S of any pipeline in a pair of pipelines

corresponding to a correct remote process at a correct local process is bounded

by S =

⌊

Tsim+max(τrem+,τloc
+)+τDiff

+

T−
first

⌋

+ 1.

Proof. From Lemma 4.16, we know that tick k − 1 is completely removed

by time T ′k = tfirstk + Tsim +max(τrem
+, τloc

+) + τDiff
+. Hence, the maximum

size of any pipe is determined by the maximum number of ticks any process

can generate in the interval Tsim + max(τrem
+, τloc

+) + τDiff
+. According to

Lemma 4.11, those are at most S =

⌊

Tsim+max(τrem+,τloc
+)+τDiff

+

T−
first

⌋

+ 1.

30

5 Hardware Implementation

The following section summarizes the work primarily conducted by Gottfried

Fuchs in the DARTS project and shows how the TS-Alg developed in the

previous sections is finally mapped to hardware building blocks well-known

in asynchronous digital design. Since the TS-Algs—and the components

they comprise of— interact with alternating transitions over zero-bit message

channels, it is natural to build the hardware with transition signaling logic

[4].

The section starts with a short overview on important design elements in

a bottom up manner and then proceeds with showing how to synthesize a

complete TS-Alg design out of those.

5.1 Common Building Blocks

One of the most important design elements in transition logic is the Muller

C-Element [24]. It can be characterized informally as a logical-AND for

transitions. When the last transitions that occurred at the two inputs both

read ↑ resp. ↓ the Muller C-Element produces a possibly idempotent ↑ resp.

↓ transition at its output.

In state semantics, rather than transition semantics, the behavior can be

formalized as: If both input states read the same value, this value is copied

to the output, otherwise the output is not changed. The description in state

semantics already hints at the existence of a feedback loop to store the old

output value.

A common gate-level implementation of a Muller C-Element can be found in

Fig. 6. From this figure one can see that the output signal has to traverse

the complete feedback loop, lasting τloop, before the next transition in the

opposite direction may occur at any input without invalidating the specified

behavior. This behavior is not specific to this implementation but is a general

property of all implementations known to the author.

5.2 TS-Alg Component Implementations 31

C
a

b

y

loop

b y

a

y

celem

a b
0

1
0

0
1

1
0

1

yold

0

1
yold

Figure 6: A possible implemen-
tation of a Muller C-Element at
gate-level.

ack_in

data_outdata_in

ack_out

C

C

C

C
pipe

pipe

Figure 7: Elastic pipeline for up
to four transitions, consisting of
Muller C-Elements and inverters.

In [32], the concept of asynchronous FIFO storages, called micropipelines or

elastic pipelines, is introduced. An elastic pipeline consists of control logic,

implementing the two-phase bundled data convention protocol [32], and of a

queue of latches, triggered by the control logic and storing the FIFO data.

Since we only need the possibility to store zero-bit ↑ / ↓ transitions, an

elastic pipeline without any latches will suffice. An implementation of such

a minimized elastic pipeline can be found in Fig. 7.

The ↑ / ↓ transitions are simply fed into the pipeline via the data in, and

read out via the data out line. Each pipeline stage comprises a Muller C-

Element and an inverter and can store exactly one ↑ / ↓ transition. The

stages can then be chained forming an elastic pipeline.

Note that correct behavior can only be guaranteed if the signal of a pipeline

stage has propagated through the complete feedback path and has already

stabilized before the next transition occurs at the input. Thus the minimal

time τmin between two consecutive transitions at the pipeline input must

fulfill τmin > max(τpipe, τloop), where τpipe = 2τcelem + τinverter + τwires is the

feedback delay of a single pipeline stage.

5.2 TS-Alg Component Implementations

This section provides a possible implementation of the TS-Alg components

that were given in Section 3.2. A detailed schematic of the complete TS-Alg

5.2 TS-Alg Component Implementations 32

implementation can be found in Fig. 8.

ack_ext ack_int

req_ext req_int

Remote Pipe

__
__

_
G

E
Q

e

G
R

e

G
E

Q
o

__
_

G
R

o

3f+1

1

2f+1 2f+1

f+1 f+1

...
...

...
...

Threshold Logic_____
GEQe

GRe

GEQo

GRo

cl
k_

ou
t

Pipeline 1

Node p

...

...

...

Pipe Compare Signal Generators

C

C

C

C

C

C

C

C

C

Diff-Gate

CC

C

Local Pipe

re
m

ot
e

cl
k_

in

External Pipe

Pipeline 2

Local PipeDiff-
Gate

Pipe Compare Signal Gen.

External
Pipe

Pipeline 3

Local PipeDiff-
Gate

Pipe Compare Signal Gen.

Remote
Pipe

Pipeline 3f+1

Local
Pipe

Diff-
Gate

Pipe Compare Signal Gen.

...

Figure 8: TS-Alg hardware implementation for a single node p.

Pairs of elastic pipes: A pair of elastic pipes simply consists of two elastic

pipelines, with the data in port driven by a remote (remote pipeline)

resp. local clock (local pipeline). The ack out port is left unused since

no feedback for received clock signals is needed by the algorithm. The

consumer interfaces of the elastic pipes are connected to Diff-Gates.

Note, that an implementation using elastic pipelines of size S is correct,

if

(i) the clock signals fed into the remote and local pipelines fulfill:

τmin ≥ D−−2max{(τloc
+−τloc

−), (τrem
+−τrem

−)} > max(τpipe, τloop)

and

(ii) S ≥

⌊

Tsim+max(τrem+,τloc
+)+τDiff

+

T−
first

⌋

+ 1, according to Theorem 4.17.

Note, however, that S is almost technology independent, since

it depends only on the ratio of maximum and minimum delays,

similar to systems adhering to the Θ-Model [20, 34].

5.2 TS-Alg Component Implementations 33

Diff-Gate: The Diff-Gate removes matching ↑ / ↓ transitions in a pair of

elastic pipelines. It does this by implementing the two-phase bundled

data convention protocol and sending acknowledges when detecting cor-

responding tick messages at the consumer interfaces of both pipelines.

An implementation of the Diff-Gate is shown in Fig. 9. Note that the

Diff-Gate is not completely symmetric. The C-Element C4 is equipped

with an inverter at one input. This small difference has the effect that

matching transitions are always deleted first from the remote pipe be-

fore deleting them from the local pipe. This will play an important

role when implementing the PCSG. See [13] for detailed considerations

why the presented implementation does not suffer from violated tim-

ing conditions due to too close opponent transitions at the C-Element

inputs.

Pipe Compare Signal Generators (PCSGs): The PCSG compares the

number of ↑ / ↓ clock transitions in a pair of pipes. Hence, it acts on

states rather than transitions and must be implemented using combi-

natorial logic instead of transition logic.

The PCSG must be completely glitch-free, i.e., it must not activate the

GR
o/e
p,q (t) resp. GEQ

o/e
p,q (t) signals unless [rremp,q (t) > rselfp,q (t) ∈ Nodd/even]∧

[sp,q(t) = 1], as specified by the algorithm in Fig. 5, Section 3.2.

This is made possible only because the Diff-Gate removes matching

transitions from the remote pipe first. If not, the PCSG could en-

able one of its outputs at t′ ∈ (t1, t2), although rremp,q (t1) = rremp,q (t2) <

rselfp,q (t1) = rselfp,q (t2), thus producing a glitch.

Another challenge is to decide whether rremp,q (t) > rselfp,q (t), resp., rremp,q (t) ≥

rselfp,q (t) on all, including unstable, pipeline states. To circumvent this,

which would, even if possible, suffer from combinatorial explosion, the

clause sp,q(t) = 1 has been added. Thus output signals are only ac-

tivated if the local pipe contains exactly one transition. It has been

5.2 TS-Alg Component Implementations 34

ack_ext ack_int

req_ext req_int

C3 C5

Diff-Gate
C4C2

C1

next_ext next_int

re
m

ot
e

pi
pe

lo
ca

l
pi

pe

Figure 9: Diff-Gate in combination with remote and local pipeline interfaces.

shown in Section 4, that the algorithm still maintains correct behavior

under this restriction. The PCSG then turns out to be implementable

glitch-free with a few combinatorial gates only.

Threshold: There are four threshold gates per functional unit FUi, two

operating on the GR
o/e
p,q state signals and two on the GEQ

o/e
p,q state

signals. The threshold gates operating on the odd signals are low-

active (being responsible for generating the ↓ clock transitions), while

the threshold gates operating on the even signals are high-active.

Currently, the threshold gates are implemented as ROMs, with the GR

and GEQ signals forming address bus (bit-width n). Unfortunately this

has certain drawbacks like the large size and slow access. Appropriate

alternatives are still looked for and will be discussed briefly in Section 6.

Tick Broadcast: The two low-active Threshold gates are connected to AND-

gate inputs, producing a ↓ transition at the output if at least one of

the low-active gates has produced a ↓ transition.

Analogously, the two high-active Threshold gates are connected to OR-

gate inputs, producing a ↑ transition at the output if at least one of

the high-active gates has produced a ↑ transition.

The output of the AND and OR gates are then connected to a Muller

C-Element as depicted in Fig. 8.

5.3 Experimental Evaluation 35

Figure 10: DARTS approach with 5 TS-Alg units running on an FPGA.

5.3 Experimental Evaluation

The TS-Algs components described in Section 5.2 have been implemented

in synthesizable VHDL. Additionally a system consisting of n = 5 TS-Alg

units has been composed out of the single units and has been loaded into

an Altera APEX EP20K1000 FPGA. Note that an evaluation at an FPGA

was just used as a “proof of concept”, i.e., to show the general possibility

of synthetisation and will be substituted by an ASIC design later on in the

DARTS project.

The design was evaluated by logging the clock outputs of the 5 units with

a logic analyzer. The result is shown in Fig. 10. The measurements of the

clock frequency stabilized at about 24 MHz with a maximum clock skew of

up to 4 ns (approximately 9.5% of total clock period).

36

6 Outlook

In this section, topics of current and future research addressed in the DARTS

project are pointed at and shortly described.

6.1 Alternative Implementation of Threshold Gates

In Section 5.2 it has been indicated that the current implementation of the

Threshold gates as ROMs is problematic. There exists numerous work on

Threshold gates in literature, especially from the artificial neural network

community. An up-to-date survey can be found in [3]. In the following, a

short overview on alternative Threshold gate designs is given:

Combinatorial: The most apparent alternative is to implement the Thresh-

old gate by combinatorial means. The boolean function of an f +1 out

of n = 3f + 2 Threshold with inputs xi and output o would read in

disjunctive normal form:

o ≡
∨

(x1,...,xn)∈{0,1}n:
∑

xi≥f+1

[

∧

xi=1

xi ∧
∧

xi=0

xi

]

(9)

Unfortunately an implementation like this would consist of

n
∑

a=f+1

(

n

a

)(

n

n− a

)

clauses, if unoptimized. A first optimization would be to substitute
∑

xi ≥ f + 1 with
∑

xi < f + 1 in (9) and afterwards negate the

output o. This reduces the number of sets of clauses significantly.

Adder: Another idea is to use an adder with n single-bit inputs, or a pyra-

midally layered structure of adders with only 2 inputs: dn/2e adders

with 1-bit input at the first layer, dn/4e adders with 2-bit input at the

6.2 Removing Transient Faults 37

second layer, and so on, repeating the process for all dld(n)e layers.

Finally the result must be tested for fulfilling ≥ f +1, resp., ≥ 2f +1.

The propagation delay of this approach is clearly determined by the

propagation delay of ld(n) adders, which can be quite high.

Analog Thresholds: Most of the implementations summarized in [3] make

use of design elements not available in standard digital cell libraries.

The general idea is the usage of analog summing amplifiers succeeded

by analog thresholds. This can be achieved by different means: CMOS

capacitive solutions (like the νMOS transistor [5]) and conductance

based solutions (e.g. output wired inverters [21]), to name only two out

of them.

6.2 Removing Transient Faults

Currently the TS-Alg units cannot distinguish between transient and perma-

nent faults, i.e., transient faults are mapped to permanent ones. The reason

is that the TS-Alg units do not maintain the complete number of tick mes-

sages received and sent so far, but do only measure the difference of received

and sent messages.

A possible solution to detect transient faults would be to halt the complete

system by deactivating the progress rules (line 17 and line 23 of the algo-

rithm shown in Fig. 5 in Section 3.2) long enough, such that all tick messages

can arrive at all pipes and no more messages are in transit. Hence, all TS-

Algs must stop at the same clock tick. By comparing the number of ticks in

a pair of pipes, it can be determined whether transient faults have occurred.

Alternatively, the pipes can simply be reset to 0 by default.

Of course, a periodic reset—as described above—would solve the problem.

Unfortunately, this means that the TS-Algs would produce a clock signal

which becomes inactive for a longer time periodically.

6.3 Booting 38

6.3 Booting

A simple solution to the booting problem has been given in Section 4.1. It

states that, if the reset times t0,p fulfill ∀p, q ∈ P : t0,p − t0,q ∈ [0, τ−), no

messages can be lost and the system behavior is correct.

However, some designs (for example if some TS-Algs reside on different chips)

may impose more relaxed synchronization bounds for resetting. This task is

related to the removal of transient faults and could be solved by analogous

means as described in Section 6.2.

6.4 Predictability

A great advantage of classical synchronous systems is the possibility to give

bounds on the system’s progress of computation. But even predicting the

behavior of synchronous designs seems to approach limits, e.g. when we con-

sider pipelined designs where flushes etc. may occur.

Anyhow it is required to predict the run-time behavior of designs such that we

have to evaluate the performance of our asynchronous design. We have done

so in Section 4.4 where we have derived bounds on the clock frequencies of

our TS-Algs and thus on the progress of the Fui’s computations. Note, that

obtaining such results for completely asynchronous designs is more challeng-

ing. However, there is still need for future work, most notable on frequency

stabilization.

39

7 Conclusions

It has been indicated that synchronous monolithic designs are increasingly

facing problems that cannot be solved satisfactorily by more advanced manu-

facturing processes. A conceptually new solution—currently under research

in the DARTS project—has been presented: The monolithic chip design is

substituted with a set of loosely coupled functional units residing on the same

chip, thereby forming a System-on-Chip. The functional units are extended

by small TS-Alg units, each generating a fault-tolerant clock for the func-

tional unit it is attached to. These local clock signals are not independent of

each other, but rather adhere to certain synchronization properties (bounded

frequency, bounded phase difference) permitting predictability and protect-

ing the inter-functional unit communication from setup/hold violations.

By modeling the TS-Algs as processors which communicate with each other

via a special TS-Net, our SoC clock generation scheme was analyzed formally

with techniques from the distributed algorithms community. By adapting

some of these well established techniques to hardware design, it has been

shown that a SoC comprising of an arbitrary number of functional units will

generate fault-tolerant distributed clock signals fulfilling the synchronization

properties precision and accuracy. Note that a comparably general result

could not have been shown by means of model checking.

Finally an FPGA hardware implementation was presented, proving the prin-

cipal feasibility of synthetisation and already showing promising results for

the forthcoming ASIC implementation currently under development in our

DARTS project.

REFERENCES 40

References

[1] International technology roadmap for semiconductors, 2001.

[2] A. Bar-Noy and D. Dolev. Consensus algorithms with one-bit messages.

Distributed Computing, 4:105–110, 1991.

[3] V. Beiu, J. M. Quintana, and M. J. Avedillo. VLSI Implementations of

Threshold Logic—A Comprehensive Survey. IEEE Transactions on Neural

Networks, 14(5):1217–1243, Sept. 2003.

[4] D. L. Black. On the existince of delay-insensitive fair arbiters: Trace theory

and its limitations. Distributed Computing, 1:205–225, 1986.

[5] J. B. Burns and R. A. Powlus. Threshold Circuit Utilizing Field Effect Tran-

sistors. U.S. Patent 3 260 863, July 1966.

[6] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD

thesis, Stanford University, Oct. 1984.

[7] C. Constantinescu. Impact of deep submicon technology on dependability of

VLSI circuits. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN’02), pages 205–209, June 2002.

[8] DARTS homepage. http://www.ecs.tuwien.ac.at/projects/DARTS .

[9] D. Dolev, J. Y. Halpern, and H. R. Strong. On the possibility and impossi-

bility of achieving clock synchronization. Journal of Computer and System

Sciences, 32:230–250, 1986.

[10] S. Fairbanks. Method and apparatus for a distributed clock generator, 2004.

US patent no. US2004108876.

[11] S. Fairbanks and S. Moore. Self-timed circuitry for global clocking. In Proceed-

ings of the Eleventh International IEEE Symposium on Advanced Research

in Asynchronous Circuits and Systems, pages 86–96, Mar. 2005.

[12] E. G. Friedman. Clock distribution networks in synchronous digital integrated

circuits. Proceedings of the IEEE, 89(5):665–692, May 2001.

[13] M. Függer, U. Schmid, G. Fuchs, and G. Kempf. Fault-Tolerant Distributed

Clock Generation in VLSI Systems-on-Chip. Research Report 12/2006, Tech-

nische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-

3/182-1, 1040 Vienna, Austria, 2006.

REFERENCES 41

[14] S. Hauck. Asynchronous design methodologies: An overview. Proceedings of

the IEEE, 83(1):69–93, Jan. 1995.

[15] K. Hoyme and K. Driscoll. Safebus. In Proceedings IEEE/AIAA 11th Digital

Avionics Systems Conference, pages 68–73, 1992.

[16] S. G. Intel, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed,

Z. Sperber, and R. C. Valentine. The Intel Pentium M processor: Microar-

chitecture and performance. Intel Technology Journal, 7(2), May 2003.

[17] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai. The

MAFT architecture for distributed fault tolerance. IEEE Transactions on

Computers, 37:398–405, Apr. 1988.

[18] H. Kopetz and G. Grünsteidl. TTP-A protocol for fault-tolerant real-time

systems. Computer, 27(1):14–23, 1994.

[19] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, 1978.

[20] G. Le Lann and U. Schmid. How to implement a timer-free perfect fail-

ure detector in partially synchronous systems. Technical Report 183/1-127,

Department of Automation, Technische Universität Wien, January 2003.

[21] J. B. Lerch. Threshold Gate Circuit Employing Field-Effect Transistors. U.S.

Patent 3 715 603, Feb. 1973.

[22] M. S. Maza and M. L. Aranda. Analysis of clock distribution networks in the

presence of crosstalk and groundbounce. In Proceedings International IEEE

Conference on Electronics, Circuits, and Systems (ICECS), pages 773–776,

2001.

[23] M. S. Maza and M. L. Aranda. Interconnected rings and oscillators as giga-

hertz clock distribution nets. In GLSVLSI ’03: Proceedings of the 13th ACM

Great Lakes symposium on VLSI, pages 41–44. ACM Press, 2003.

[24] R. E. Miller. Sequential Circuits and Machines, volume 2 of Switching Theory.

wiley, 1965.

[25] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim. Robust system design

with built-in soft-error resilience. IEEE Computer, 38(5):43–52, Feb. 2005.

[26] C. J. Myers. Asynchronous Circuit Design. Wiley, 2001.

[27] A. K. Palit, V. Meyer, W. Anheier, and J. Schloeffel. Modeling and analysis of

crosstalk coupling effect on the victim interconnect using the ABCD network

REFERENCES 42

model. In Proceedings of the 19th IEEE International Symposium on Defect

and Fault Tolerance in VLSI Systems (DFT’04), pages 174–182, Oct. 2004.

[28] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi,

E. Jenn, C. Rabejac, and A. Wellings. GUARDS: A generic upgradable

architecture for real-time dependable systems. IEEE Transactions on Parallel

and Distributed Systems, 10(6):580–599, June 1999.

[29] U. Schmid. How to model link failures: A perception-based fault model.

In Proceedings of the International Conference on Dependable Systems and

Networks (DSN’01), pages 57–66, Göteborg, Sweden, July 1–4, 2001.

[30] U. Schmid and A. Steininger. Dezentrale Fehlertolerante Taktgenerierung in

VLSI Chips. Research Report 69/2004, Technische Universität Wien, Institut

für Technische Informatik, 2004. (Österr. Patentanmeldung A 1223/2004).

[31] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the

ACM, 34(3):626–645, July 1987.

[32] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, June 1989.

[33] J. Widder. Distributed Computing in the Presence of Bounded Asynchrony.

PhD thesis, Vienna University of Technology, Fakultät für Informatik, May

2004.

[34] J. Widder, G. Le Lann, and U. Schmid. Failure detection with booting in

partially synchronous systems. In Proceedings of the 5th European Depend-

able Computing Conference (EDCC-5), volume 3463 of LNCS, pages 20–37,

Budapest, Hungary, Apr. 2005. Springer Verlag.

[35] J. Widder and U. Schmid. Achieving synchrony without clocks. Research

Report 49/2005, Technische Universität Wien, Institut für Technische Infor-

matik, 2005. (submitted).

