
D I P L O M A R B E I T

Pivy - Embedding a Dynamic
Scripting Language into a Scene

Graph Library

ausgeführt am Institut für
Interaktive Mediensysteme

der Technischen Universität Wien

unter Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

und

Mag. Dr.techn. Hannes Kaufmann

als verantwortlich mitwirkendem Universitätsassistenten,

sowie unter Mitbetreuung von

Dipl.-Ing. Dr.techn. Gerhard Reitmayr,

durch

Tamer Fahmy

Urbarialgasse 1
A-2422 Pama

Matrikelnummer: 9526976

Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

This thesis presents the design and implementation of “Pivy”: a Python language binding for
the Coin scene graph library. Pivy allows for development of Coin applications in Python,
interactive modification of Coin programs from within the Python interpreter at runtime and
incorporation of Scripting Nodes – capable of executing Python code and callback functions
– into the scene graph. Coin is a high-level 3D graphics toolkit for developing cross-platform
real-time 3D visualization and visual simulation software; Coin’s properties and features are
e.g. suitable for application development in the Augmented Reality (AR) domain.

We differentiate between extending and embedding the Python interpreter. To create a Python
extension, a C wrapper needs to be written and built as a shared library; Python then imports
and makes use of this shared library at runtime. Different Python wrapping techniques and
approaches – from manual wrapping to automatic wrapper generators such as SWIG – with a
special focus upon large C++ libraries/frameworks applicable for Python are compared. The
opposite direction is called embedding, where already existing Coin applications or libraries
(written in C++) are given direct access to the Python interpreter.

Both use cases are showcased and their distinction explained through Python applications
using Pivy and the special SoPyScript scene graph node which has been created to allow
Python code to be embedded into a regular scene graph and executed during traversal of
the same. The SoPyScript scene graph node is making use of both extending and embedding
techniques; it is based upon ideas of the VRML JavaScript node and can be used from either
Python or C++ applications.

Furthermore, the suitability and benefits of dynamically typed “scripting” languages over
statically typed “system programming” languages such as C++ for Rapid Application Devel-
opment (RAD) and Rapid Application Prototyping (RAP) are analyzed and demonstrated.

Keywords: 3D Graphics, Augmented Reality, Scripting Language, C++, Python, Coin,
Open Inventor, Rapid Application Development, Rapid Application Prototyping

I

Kurzfassung

Die vorliegende Arbeit stellt das Design und die Implementierung von Pivy vor, einer Python-
Anbindung für die Szenengraph-Bibliothek Coin.

Coin ist eine plattformunabhängige 3D-Graphik-Bibliothek, deren hoher Abstraktionsgrad
die Entwicklung von Echtzeit-Visualisierungssoftware, z.B. im Bereich von Augmented Re-
ality (AR), erleichtert. Pivy erlaubt die Entwicklung von Coin-Applikationen in Python
und macht es möglich, Coin-Programme aus dem Python-Interpreter zur Laufzeit interaktiv
zu modifizieren sowie Skript-Knoten, die Python-Code und Callback-Funktionen ausführen
können, in den Szenengraph einzufügen.

Grundsätzlich sind zwei verschiedene Arten der Anbindung zu unterscheiden: die Erweiterung
(“extension”) des Python-Interpreters und seine direkte Einbindung (“embedding”). Eine
Python-Erweiterung benötigt einen C-Wrapper in Form einer gemeinsam genutzten Biblio-
thek, die von Python zur Laufzeit geladen und verwendet wird. Verschiedene Techniken
und Ansätze – von der manuellen Generierung bis zur automatischen Erstellung durch Gen-
eratoren wie SWIG – werden vorgestellt und verglichen. Das Hauptaugenmerk liegt dabei
auf der Erweiterung von Python durch grosse C++-Bibliotheken. Umgekehrt ist es auch
möglich, bestehenden Coin-Applikationen oder -Bibliotheken, die in C++ geschrieben sind,
durch Einbindung des Python-Interpreters direkt Zugang zu diesem zu geben.

Beide Anwendungsfälle werden beschrieben und die Unterschiede zwischen ihnen erläutert.
Dies geschieht anhand von Python-Applikationen, die Pivy verwenden, sowie insbesondere am
Beispiel des SoPyScript-Knoten, der es erlaubt, Python-Code in einen regulären Szenengraph
einzubetten und bei der Traversierung auszuführen. Der SoPyScript-Knoten verwendet beide
Techniken (Erweiterung und Einbindung); er basiert auf der Idee und dem Design des VRML
JavaScript-Knoten und kann wie dieser sowohl von Python- wie auch C++-Applikationen
verwendet werden.

Des weiteren enthält die Arbeit auch eine Betrachtung der grundlegenden Einsatzmöglichkeit
von dynamisch typisierten Skriptsprachen zur schnellen Entwicklung von Applikationen und/oder
Prototypen – Rapid Application Development (RAD), Rapid Application Prototyping (RAP)
– und den Vorteilen von Skriptsprachen gegenueber statisch typisierten “Systemprogram-
mierungssprachen” wie C++.

II

Acknowledgements

I am full of love, so here is whom I’d like to thank:

Mervat and Mohamed, my parents, for all their support and love in all those years and
without whom I could have never achieved anything.

Dalia and Rascha, my two sisters, who always assisted me in difficult times and greatly
enriched my life.

Prof. Dieter Schmalstieg, my supervisor, for giving me the opportunity to work as an
undergraduate research assistant in his group at Vienna University of Technology ; there I had
the unique chance to learn the fundamentals of scientific work and research in the exciting
field of Augmented Reality and was allowed to work on the creation of Pivy.

Gerhard Reitmayr, guru and supervisor, for his invaluable help, suggestions for improve-
ments, many insightful discussions which greatly influenced the design of Pivy, memorable
and very enjoyable coding sessions and in general for allowing me to watch and learn from a
brilliant researcher at work.

The former VRGroup at Vienna University of Technology, namely István Barakonyi,
Hannes Kaufmann, Florian Ledermann, Joseph Newman, Thomas Pintaric, Thomas
Psik, Daniel Wagner for making our group an interesting and enjoyable workplace.

Systems in Motion for all the support over all those years, without Pivy would not have
been what it is today; especially Lars J. Aas, Peder Blekken, Morten Eriksen and
Marius Kintel.

Michael Kalkusch, who apart from being a marvelous friend over all those years, introduced
me to computer graphics, making it accessible to me through his unique skill of explaining
even the most complex topic in a very simple and graspable fashion (sometimes by abusing
my cigarette packet and Zippo lighter to enhance his 3D explanations. . .).

Karin Kosina, for being such a lovely friend during all those years, making my life interesting
and exciting again and who showed me that there seems to be vivid life and still sunlight on
this planet outside the sphere of computer screens by opening the jalousie of my window (and
forcing me to look out of my then monitor-lit room. . .).

Omar Medani, for dragging me with him through our study, making it so much more
enjoyable and for sharing some of the most memorable and unforgettable moments in my
life (from killing ourselves side by side in hopeless and lost soccer matches to taking part in
mission impossible exams ;)) and being the splendid friend he was and is for so many years.

III

Andreas Pongratz, who helped me through troubled times in life, making math accessible
to me (and showing me that there is a whole universe full of “exact definition” pitfalls hiding
behind unsuspiciously simple equations such as a + b = c,∀a,b, c ∈ C) and for being such
a wonderful, reliable, altruistic friend always willing to help (and never minding to plainly
name things the way they are).

Very special thanks to Oyvind Rideng for his enduring patience, providing me with all the
time and support I needed to finish this thesis and pushing me into the right direction when
my motivation was wearing off.

I’d like to thank P̊al-Robert Engnæs, who read my thesis while it was in progress and
provided me with printouts containing valuable comments, feedback, suggestions for improve-
ments and most importantly very constructive criticism.

Of course, I cannot leave this section without at least mentioning Herbert and Gerhard
Aguinaga, Maresa Dormann, Robert Fuchs, Elham Hedayati Rad, Karyn Laudisi,
Barbara Langmüller, Herbert Schneeweiß, Terje Wiesener and all of my other friends
and supporters (who got not mentioned here, because of my supervisors impatiently waiting
for me to finish this thesis. . . *shrug*).

Anyways, you know who you are!
Thanks so much to all of you!

IV

Pivy - Embedding a Dynamic
Scripting Language into a Scene
Graph Library

Contents

1 Introduction 1
1.1 System programming and dynamic scripting languages 1

1.1.1 Contribution . 4
1.2 Deficiencies of system programming languages 5

1.2.1 RAP/RAD and interpreted environments for interactive 3D applications 6
1.2.2 The benefits of a Python binding . 6

1.3 Development history . 8

2 Related work 9
2.1 Existing 3D graphics APIs . 9

2.1.1 Immediate vs. retained mode APIs . 9
2.2 Open Inventor/Coin - a high-level 3D graphics toolkit 12

2.2.1 Overview of the Open Inventor/Coin API 12
2.2.2 Scripting in Open Inventor/Coin . 17

2.3 Python - a dynamic general purpose programming language 20
2.3.1 Overview of the Python C API . 21

2.4 Wrappers and available approaches for Python 27
2.4.1 Manual wrapping . 28
2.4.2 Automatic and semi-automatic wrapper generators 29
2.4.3 Other alternatives and approaches . 31

2.5 3D graphics in Python . 32
2.5.1 Existing Python tools and bindings . 32

3 Creating Pivy 37
3.1 Why SWIG? . 38
3.2 The SWIG interface and glue code . 42

3.2.1 SWIG typemaps and type conversion/typechecks 42
3.2.2 SbName typemap example . 43
3.2.3 SWIG’s shadow classes . 45
3.2.4 Autocasting . 45
3.2.5 Autorefcounting . 49
3.2.6 Method/operator overloading . 51
3.2.7 Python field assignment operator handling 52
3.2.8 Callback handling . 54
3.2.9 Mapping C++ data types to Python 56
3.2.10 Special treatment for unsigned char * 57

i

3.3 Bridging to the SoGui bindings . 57
3.3.1 SoGui modules . 58
3.3.2 PyQt bridging . 58
3.3.3 Decoupling the main loop for interactive sessions 60

4 Programming with Pivy 62
4.1 Pivy differences reg. the C++ API . 62
4.2 Converting a simple example from C++ to Python 64
4.3 Rapid Application Development (RAD) and Prototyping (RAP) with Pivy . 69

4.3.1 Interactive scene graph introspection 70
4.3.2 Pivy as a debug and testing tool . 73

4.4 Extending Pivy with new Inventor nodes or nodekits 74
4.5 When not to use Pivy? . 78

5 Embedding Pivy 80
5.1 Design and implementation of the SoPyScript node 81
5.2 Embedding scripts in Inventor files . 88
5.3 Using SoPyScript as a Coin node extension mechanism 93

6 Results 100
6.1 Use Case 1: TU Munich/Vienna - “Ubiquitous Tracking Simulation Environ-

ment” . 100
6.2 Use Case 2: Fraunhofer IDMT - “Wave Field Synthesis” 102
6.3 Use Case 3: Systems in Motion - “ConocoPhillips Onshore Operations Center

for Ekofisk” . 102
6.4 Use Case 4: D-Level - “Devil Framework” . 106

7 Conclusions 108
7.1 Future work . 109

A The Pivy file system layout 112

B The Pivy build system 114
B.1 Distutils . 114
B.2 The setup function in setup.py . 114
B.3 Platform specific compiler and linker flags . 116
B.4 Module mapping and build flexibility . 117
B.5 Dealing with the Coin header files . 117
B.6 The fake headers and -includeall approach . 118
B.7 Importance of build system output and tests 120
B.8 SCons usage . 120

Bibliography 122

Contents ii

List of Figures

1.1 Comparison of various programming languages 2
1.2 In-game Quake 3 Arena game console . 4
1.3 Development cycle with compiled languages 6
1.4 Development cycle with interpreted languages 6

2.1 Open Inventor scene graph . 10
2.2 Flipping the position of the SoTransform and SoCone nodes 14
2.3 The path to a node in a scene graph . 15
2.4 Examiner viewer executing the dolphin script 19
2.5 Python extension module structure common to all C modules 22
2.6 Wrapper structure and tasks . 24

4.1 Examiner viewer showing a VRML caffeine molecule 65
4.2 The result of the interactive session . 73

5.1 The file system hierarchy of the SoPyScript node 81
5.2 The results of the first and second SoPyScript invocation 91
5.3 Examiner viewer executing glow and textscroller script 99

6.1 The Ubitrack Pivy based viewer running on Mac OS X 101
6.2 Exocentric and egocentric setups for sound source manipulation 103
6.3 User View for the egocentric setup for sound source manipulation 103
6.4 The Ekofisk application - North Sea overview 104
6.5 The Ekofisk application - closeups . 105
6.6 The Devil Framework . 107

A.1 The top-level file system hierarchy of the Pivy source code distribution 113

B.1 Build failure reported by a Pivy user . 119

iii

List of Tables

2.1 Reference counting rules . 16
2.2 Common Format specifiers for PyArg ParseTuple() and Py BuildValue() . . . 25
2.3 Python reference counting macros . 27

3.1 Snippet 1: 113258 function calls in 1.450 CPU seconds 53
3.2 Snippet 2: 913251 function calls in 24.970 CPU seconds 54
3.3 Some examples of Python mapped Inventor basic types 56

iv

Listings

2.1 The sample scene graph as a standard Inventor file 15
2.2 Rotating dolphins script . 17
2.3 gcd.py - Python implementation of the gcd() function 21
2.4 Invocation of the gcd.py module from the command line 22
2.5 gcd.c - C implementation of the of the gcd() function 22
2.6 gcd module.c - Python C module implementation of the gcd() function 23
2.7 setup.py - a distutils build script for the Python C module 26
2.8 Invocation of the gcdmodule from the command line 26
2.9 Example listings for input output parameters 28
3.1 SbName global input typemap . 43
3.2 SbName global freearg typemap . 44
3.3 The SWIG generated wrapper code for SoNode::getByName() 44
3.4 The SWIG generated Python proxy SoNode.getByName() 45
3.5 Output typemap invoking the autocast base function 46
3.6 The autocast base() helper function . 46
3.7 Exposing the cast() function to SWIG . 47
3.8 The cast() helper function . 48
3.9 Reference Counting and Python scoping rules 50
3.10 Reference Counting and . 50
3.11 SoBase %extended with a destructor . 51
3.12 Overloaded operators handling through %extend 51
3.13 Python attributes special methods for assignment operator overloading 52
3.14 Profiling assignment operator overhead . 53
3.15 Invoking the Python profiler ordered by internal time 53
3.16 Extending the SoCallback::setCallback method 54
3.17 The proxy function callback handler . 55
3.18 The proxy function callback handler . 55
3.19 Importing the pivy main interface in soqt.i 58
3.20 The SWIG module declaration in soqt.i . 58
3.21 The QEvent * input typemap . 59
3.22 The extended SoQt mainLoop() . 60
3.23 The Pivy PythonInteractiveLoop() helper function 61
4.1 Field value assignment in an interactive session 62
4.2 A Python method as a callback in an interactive session 63
4.3 SoFieldContainer::getFieldName() C++ signature 63
4.4 SoFieldContainer::getFieldName() Python signature 63
4.5 SoFieldContainer::getFieldName() invocation in Python 63

v

4.6 SoSFImage::getValue() C++ signature . 64
4.7 SoSFImage::getValue() Python usage . 64
4.8 The readfile.cpp.in header includes . 64
4.9 Invocation of the soqt-config shell script . 66
4.10 The readFile() function . 66
4.11 Initializing Coin . 67
4.12 Invoking the readFile() function . 67
4.13 Creation of the Examiner viewer . 67
4.14 The converted Python readfile application . 68
4.15 An interactive Python interpreter session . 70
4.16 Telling the Python interpreter to put the scene into the global namespace . . 70
4.17 Interactive scene graph introspection . 71
4.18 Interactive scene graph introspection cont. - adding a new object 72
4.19 Interactive scene graph introspection cont. - saving the results 72
4.20 Tracking node and field changes . 74
4.21 The ShapeScale interface file shapescale.i . 76
4.22 The SConstruct build description for the ShapeScale extension module 77
4.23 The Python import statements for the new extension module 77
4.24 The Python extension module node initialization 78
5.1 SWIG invocation to create the external runtime header file 82
5.2 The PYTHON URLLIB URLOPEN macro 82
5.3 Executing the PYTHON URLLIB URLOPEN macro 83
5.4 The GlobalLock class . 83
5.5 The SoPyScriptP private class constructor . 84
5.6 The static SoPyScript::initClass() class method 85
5.7 The overridden SoPyScript::GLRender() method 85
5.8 SoPyScript file format example . 87
5.9 The SoPyScript::readInstance() method . 87
5.10 C++ SoQt Examiner viewer that reads in a file specified in its first parameter 89
5.11 The header file of the Glow property extension node 93
5.12 The implementation file of the Glow property extension node - part I 94
5.13 The implementation file of the Glow property extension node - part II 95
5.14 The implementation file of the Glow property extension node in Python . . . 96
5.15 Python Glow property extension node script usage out of an Inventor file . . 97
5.16 The usage of the textscroller script out of an Inventor file 97
5.17 The implementation file of the textscroller script 98
B.1 The distutils setup() function for Pivy in setup.py 115
B.2 Special Windows treatment . 116
B.3 MODULES dictionary used for mapping the configure scripts 117
B.5 Building the SoPyScript node . 120

Listings vi

Chapter 1

Introduction

Different computer programming languages have been created for a variety of purposes and
tasks. They range from the lowest level human-readable notation for a specific computer
architecture: assembly languages; higher level languages following the procedural, functional
and object oriented paradigm: C, C++, Java, Haskell, Lisp, OCaml; to so-called dynamic
scripting programming languages: Lua, Python, Ruby, Scheme, Tcl.

1.1 System programming and dynamic scripting languages

The introduction of higher level languages – most notably C[1], which was developed in the
early 1970s by Dennis Ritchie for use on the Unix[2, 3] operating system – has brought a
fundamental change in how programmers write computer programs and allowed applications
to be developed in much lesser time. Higher level languages are less efficient than assembly
languages as the former generally need more machine instructions. Nevertheless, they allow
programmers to achieve the same or greater functionality in lesser time by providing simple
keywords such as if and while for control structures, by handling register allocation and
generating procedure calling sequences automatically[4]. In a study of numerous languages
Capers Jones observes that for a given task, assembly languages require about 3-6 times as
many lines of code as system programming languages[5].

Certainly, the efficiency impact of higher level languages compared to assembly languages is
not an issue and negligible on modern computing systems and architectures; one reason is that
the design of modern computing architectures are heavily influenced by the attributes of higher
level languages and vice versa higher level languages compilers generate highly optimized
code through the provided specialized instructions and architecture specific mechanisms and
extensions in charge[6].

So how does this relate to dynamic scripting languages and what makes them different?

To quote John K. Ousterhout – creator of Tcl/Tk[7] – in his paper “Scripting: Higher Level
Programming for the 21st Century”[4]:

Modern computers are fundamentally typeless: any word in memory can hold

1

1.1. System programming and dynamic scripting languages

any kind of value, such as an integer, a floating-point number, a pointer, or an
instruction. The meaning of a value is determined by how it is used: if the program
counter points at a word of memory then it is treated as an instruction; if a word
is referenced by an integer add instruction then it is treated as an integer; and so
on. The same word can be used in different ways at different times.

Figure 1.1: A comparison of various programming languages based on their level (higher level
languages execute more machine instructions for each language statement) and their degree
of typing. System programming languages like C tend to be strongly typed and medium level
(5-10 instructions/statement). Scripting languages like Tcl tend to be weakly typed and very
high level (100-1000 instructions/statement).

He claims that because of system programming languages are strongly typed and each variable
must be declared with a particular type, it becomes difficult to impossible to develop new
code quickly as data and codes is segregated. Furthermore, the required strict type checking
mechanisms in place do not allow to make use of an object of one type where an object of a
different type is expected. However, strong typing has the advantage, that compilers can use
type information for error detection and improving performance, where compilers are able to
generate specialized and optimized code.

He follows this dissection by stating that scripting languages are particularly suited to “glue
together” components created in system programming languages; he argues that the key
factor for this capability can be accredited to the general type-lessness of dynamic scripting
languages and that there are no a priori restrictions on how components can be used. As any

Chapter 1. Introduction 2

1.1. System programming and dynamic scripting languages

component or value can be used in any situation; components designed for one purpose can
be used for totally different purposes never foreseen by the designer.

Figure 1.1[4] compares various programming languages and puts their degree of typing in
relation to the instructions/statement needed for these. Python can be assigned to the same
area as Tcl/Perl as it shares similar properties and an equally dynamically typed approach.

System programming languages such as C/C++ usually make use of a compiler that trans-
lates each statement in the source program into a sequence of binary instructions. Compilers
also exist for dynamic languages and are usually provided in the form of Just in Time com-
pilers1. They tend to not optimize code as well as the ones available for system programming
languages.

The typeless nature of dynamic languages, especially with those that are dynamically typed,
does not make it easily possible to deduce the involved and correct types (some dynamic
languages allow to “hint” and specify allowed types to the compiler for optimization purposes,
though). Therefore, they defer type decisions until runtime, where once the involved variables
are encountered, their current type can then be determined. This requires (Just in Time)
compilers to implement runtime type deduction and interference mechanisms in order to
operate efficiently.

A good summarization on the different types of scripting languages can be found in the
Wikipedia, The Free Encyclopedia, article on scripting languages[8]:

Application-specific languages Many large application programs include an
idiomatic scripting language tailored to the needs of the application user.
Likewise, many computer game systems use a custom scripting language to
express the programmed actions of non-player characters and the game en-
vironment. Languages of this sort are designed for a single application and,
while they may superficially resemble a specific general-purpose language (e.g.
QuakeC, modeled after C, Figure 1.2) they have custom features which dis-
tinguish them.

Text processing languages The processing of text-based records is one of the
oldest uses of scripting languages. Many, such as Unix’s awk and, later, Perl,
were originally designed to aid system administrators in automating tasks that
involved Unix text-based configuration and log files. Perl is a special case –
originally intended as a report-generation language, it has grown into a full-
fledged applications language in its own right. PHP was originally developed
as a specialized language for creating dynamic web content, but is now used
by some for general system administration tasks as well.

Job control languages and shells Another class of scripting languages has grown
out of the automation of job control – starting and controlling the behavior of
system programs. Many of these languages’ interpreters double as command-
line interfaces, such as the Unix shell or the MS-DOS COMMAND.COM.
Others, such as AppleScript, add scripting capability to computing environ-
ments lacking a command-line interface.

1compilers that translate code to machine code at runtime

Chapter 1. Introduction 3

1.1. System programming and dynamic scripting languages

Figure 1.2: In-game Quake 3 Arena game console

General-purpose dynamic languages Some languages, such as Perl, have be-
gun as scripting languages but developed into programming languages suit-
able for broader purposes. Other similar languages – frequently interpreted,
memory-managed, dynamic – have been described as ”scripting languages”
for these similarities, even if they are more commonly used for applications
programming.

Extension/embeddable languages A small number of languages have been de-
signed for the purpose of replacing application-specific scripting languages,
by being embeddable in application programs. The application programmer
(working in C or another systems language) includes ”hooks” where the
scripting language can control the application. These languages serve the
same purpose as application-specific extension languages, but with the ad-
vantage of allowing some transfer of skills from application to application.

1.1.1 Contribution

The thesis statement is as follows:

Dynamic scripting languages can provide efficient Rapid Application Development envi-
ronments for existing low level 3D graphics systems. The application and integration of
dynamic scripting languages in such systems combines the computational efficiency of
a 3D graphics implementation in a system programming language and the development
flexibility of dynamic scripting languages.

Chapter 1. Introduction 4

1.2. Deficiencies of system programming languages

Python, the programming language used and presented in this thesis, can be characterized as
a general-purpose dynamic languages with a special suitability as an extension/embeddable
language. The reasoning for this characterization will be presented in the next section of this
thesis.

1.2 Deficiencies of system programming languages

Some of the general issues that accompany higher level statically typed languages such as
C++ and which the author experienced during development, were:

Compile-time related issues such as simple typos in the code; to forget to provide corre-
sponding definitions and declarations in the header file; correct application of pointer
arithmetic; to overlook a const declaration in the API documentation or header file; to
forcibly use explicit casts to help the compiler – which has to conduct strict type safety
checks – decide which data type, structure or class is in command at a given context
and time, etc.

So-called Integrated Development Environments (IDE’s) such as XEmacs’ c++-mode
tend to help and remedy some of the problems above and therefore ease the development
cycle. However, neither are they able to solve all of the aforementioned problems, nor
do they solve the fundamental problem with system programming languages: system
programming languages are statically and strongly typed[4, Scripting languages], which
is one of the reasons why the development time needed to design, write and test a
program in those languages is very high[9].

Link-time related issues such as unresolved symbols by missing libraries; to have to pro-
vide and determine the correct and right libraries and dependencies to link with; plat-
form specific linker issues and idiosyncrasies: among those ABI (Application Binary
Interface) issues due to the way of how C++ mechanisms such as name mangling are
implemented on different systems and compilers; to have to deal with intermixing dif-
ferent libraries accidentally compiled with different compilers and last but not least to
have to provide the correct magical linker flags (a not well documented science by itself).

Run-time related issues such as not being able to introspect and manipulate the current
scene graph that help to immediately see and gain experience from the effects of the
applied modifications.

Obviously, to use a dynamic general purpose language such as Python – which is interpreted
– solves the compile- and link-time related problems. Furthermore, to utilize the provided
introspection features of the Python interpreter and Open Inventor/Coin library makes it
possible to inspect and manipulate the scene graph within the Python interpreter at runtime.
This is very helpful and beneficial for the developer’s learning experience and allows to solely
focus, place the emphasis and spent effort on the Open Inventor/Coin related tasks.

Chapter 1. Introduction 5

1.2. Deficiencies of system programming languages

Figure 1.3: Development cycle with compiled languages

Figure 1.4: Development cycle with interpreted languages

1.2.1 RAP/RAD and interpreted environments for interactive 3D appli-
cations

The main intention to create Pivy is to provide a tool that allows Open Inventor/Coin new-
comers to quickly learn, grasp and explore Coin and for experienced programmers to use it for
Rapid Application Development (RAD) and Prototyping (RAP). The write-compile/link-run
cycle (Figure 1.2) needs to be replaced with a much faster write-run cycle (Figure 1.4) and
at the same time allows to develop in a language with a much easier to use syntax, which has
less to no declaration and memory handling overhead.

The developer is now able to increase productivity and turn around cycle; he is able to skip
the compile/link step, where he solely needs to focus on the actual development process of
his application. The tradeoff of this flexibility is very often decreased execution speed and
higher memory consumption of the application. This is due to the interpretative nature of
such solutions and because of many decisions, which compilers optimize away at compile time,
have to be deferred until runtime.

1.2.2 The benefits of a Python binding

The scripting language targeted and chosen and treated in this thesis is Python, a popular
dynamic programming language. Alternatives such as Ruby, Tcl/Tk, Perl or Lisp (dialects)
lack popularity, versatility and flexibility in the way they allow to be extended or embedded

Chapter 1. Introduction 6

1.2. Deficiencies of system programming languages

or are syntactically very different to C++, which makes it hard to achieve the goals of:

1. transforming existing programs and applications easily forth and back between the
source (C++) and target language (in our case Python)

2. reusing the existing documentation available for the C++ library.

Some of Python’s main benefits are:

Extensive Standard Library Python comes bundled with a large and extensive collection
of modules commonly referred to as the standard library. The Standard library provides
a wide range of easy to use services and functionality, which ranges from various tools
and modules useful for Operating System interaction, Internet protocols, tools for Web
service applications, support for XML parsing and generation, string and regular ex-
pression processing to modules useful for the construction of Graphical User Interfaces.

Portability and Extensibility Python is available for a variety of platforms, which ranges
from embedded systems to special-purpose processors. Python code runs unmodified,
wherever the Python interpreter is available.

Furthermore, Python exposes its well designed C API which makes it easy to extend
the interpreter or embed the interpreter into existing applications.

Elegant, Simple and Well Designed Syntax Python possesses a very elegant, clear and
simple syntax designed with readability in mind. This fact helps to make existing code
easy to understand, design, modify and maintain.

Easy-to-use High-level Data Structures Python features very powerful built-in data struc-
tures such as lists and tuples, dictionaries and sets. They allow the Python programmer
to use them as building blocks for other more complex data structures.

Dynamic Typing and Binding Python uses dynamical typing and binding, which frees
the programmer from the necessity to declare the type of every variable and makes the
code less verbose and error-prone. Python checks and allows to inquire the type of every
variable at runtime which makes it actually a strongly typed language.

Introspection Python allows to introspect and access any type, class, method or even the in-
line documentation at runtime which comes handy during experiments and is commonly
used by an IDE to display the documentation of modules, classes or methods.

The Open Inventor/Coin design incorporates a runtime type system in order to gain intro-
spection facilities and the required flexibility to hande the basic types. In fact, the design of
Open Inventor/Coin relies and heavily makes use of the runtime type system which makes it
overall dynamic in nature.

However, a dynamically typed language such as Python provides a more natural and fitting
interface. Consequently, to have a Python binding available, which interfaces with Open
Inventor/Coin, preserves the performance advantage of C++ and simultaneously allows to
greatly improve development time and speed.

Chapter 1. Introduction 7

1.3. Development history

1.3 Development history

The development of Pivy started out as a project conducted as part of the authors computer
science studies at Vienna University of Technology in 2002. The main intention to start the
creation of Pivy back then was to allow scripting in Python from within Studierstube[10]
applications through the addition of a scripting node facility with Pivy as its foundation.

Pivy was presented in a talk at the PyCon 2004 (a main Python community conference) in
Washington D.C.

The first official stable Pivy release (version 0.3.0) in August 2005 marked the end of Pivy’s
existence as a development tool for early adopters and opened the doors for an interested
wider public audience.

Since then, Pivy got used and incorporated in a variety of different applications and projects.
Those make either use of the scripting node facility, in order to manipulate the scene graph
through Python in an embedded fashion, or rather even write complete new Coin based
applications from scratch.

Chapter 1. Introduction 8

Chapter 2

Related work

2.1 Existing 3D graphics APIs

Currently OpenGL is the primary choice for cross platform 3D graphics application devel-
opment. OpenGL provides so-called immediate mode access to the frame buffer where the
application itself has to maintain the data that describes the model.

OpenGL, designed as a low-level API, therefore provides no out of the box facilities for
user interaction such as to move objects to a different location or to select them for further
manipulations. Additional complicated code needs to be implemented by the programmer to
fulfill these tasks.

2.1.1 Immediate vs. retained mode APIs

Higher-level libraries such as Open Inventor, Coin or Performer built on top of OpenGL have
been developed to facilitate and speed up the development process. They allow the creation
of complex 3D graphics applications.

Unlike OpenGL these libraries focus on the creation of 3D objects. Object information such
as shape, size, location in 3D space, is stored in a scene database. In contrast to OpenGL
they provide the necessary functionality to interact with objects and to change the objects in
the scene.

Those libraries are referred to as operating in retained mode where all the data that describe
a model needs to be specified in advance through the usage of predefined data structures.
They internally organize the data in a hierarchical database, as can be seen in Figure 2.1.

Application- and data-driven scene graph APIs

Another important distinction is made in this context between application- and data-driven
scene graph APIs. Data-driven toolkits only re-render when something changes in the scene,
for example if the user changes the viewpoint of the scene. Application-driven toolkits re-

9

2.1. Existing 3D graphics APIs

Figure 2.1: Open Inventor scene graph layout diagram from the Inventor Mentor robot ex-
ample where the thick line represents the so-called path to a node

render the scene continuously in an application loop, which uses up all CPU resources avail-
able. The latter case is used for games and simulation software such as flight simulators where
high and constant frame rates are desirable. In general a data-driven approach fits better for
a general purpose 3D API where constant frame rate is not the main concern. More impor-
tantly resources should be available for other computational tasks. Typical examples that
benefit from this approach are applications that visualize results of numerical simulations or
3D editors (level editor for games). Examples of application-driven APIs are Performer or
OpenSG, whereas Open Inventor or Coin offer a data-driven API.

Performance considerations

Performance is a key problem, hence these libraries are usually implemented in a compiled
language such as C++. However, the use of C++, a statically typed language with a heavy
and complicated syntax, tends to be error-prone and cumbersome. A dynamically typed and
bound language with an intuitive syntax like Python provides a more natural interface.

Examples for the first category of libraries that operate in immediate mode are OpenGL,
DirectX, Panda3D, Ogre3D, whereas Open Inventor, Coin, Performer, OpenSG, OpenScene-
graph, Java3D offer retained mode APIs.

For Python bindings this differentiation and classification is crucial due to the overall calling
overhead on the Python side. Dr. Roman Geus in his talk Python Wrapper Tools: A Per-
formance Study [11] at the EuroPython2004 finds that the interpretative and dynamic nature
of Python induces a natural performance bottleneck. For example, a function call in Python

Chapter 2. Related work 10

2.1. Existing 3D graphics APIs

takes ∼90 times longer than in C/C++. Furthermore, through the necessity to create wrap-
pers for the type checking and conversion around the actual C/C++ functions and methods
the calling overhead is increased again with various penalties due to the different approaches
and tradeoffs chosen for the available wrapper generators such as SWIG, SIP, Boost.Python.

Suitability of retained mode libraries for dynamic languages

This makes retained mode libraries a perfect fit for interpreted and dynamic languages such
as Python. When one has to deal with a retained mode scene graph library such as Coin, the
calling overhead, which occurs during the creation of the scene graph in Python, is not really
the most important issue, as the construction of such happens usually once at startup time
and scene graph changes tend to be only a few instructions later on. Once the scene graph
is constructed and the application reaches the main loop, all further scene graph handling is
conducted on the C++ side.

The common use case with retained mode libraries is to use the provided facilities for serializa-
tion in order to load a scene graph description from a file through a couple of calls. Therefore,
to optimize the calling overhead does not really gain much apart from an improvement in the
startup time of the application.

When it comes to callback handlers, the execution of Python code, it is indeed beneficial to
have those evaluated as fast as possible. Still, the typical use case in retained mode libraries is
to change a couple of the involved data structures such as the fields of a scene graph node. This
allows one of Python’s most significant properties and main purposes, namely as a controlling
language, to be used. One of the reasons is that the relevant CPU bound calculations and
operations, such as action scene graph traversals or matrix calculations, are always performed
on the C++ side. Therefore, the calling overhead, implicitly caused by dictionary lookups
through variable references by the interpreter and through type conversions/checks induced
by the wrapper, gets negligible as those CPU bound operations take significantly longer.

Suitability of immediate mode libraries for dynamic languages

If in comparison we look at immediate mode libraries, we find that Python code has to be
constantly and repeatedly evaluated and invoked in a tight main loop of the application, where
most of the execution time is then spent in the Python interpreter. We can easily deduct how
this has a negative effect on the performance and how the calling overhead quickly becomes
a significant bottleneck1

Another observation is that scalability is in favor towards retained mode libraries. It does not
make a difference on the Python side if the application has to deal with 100 or 10000 nodes in
the scene graph. On the other hand, it can be observed that overall application performance
with libraries, that operate in immediate mode, linearly decreases with increasing lines of
code. The reason is that significantly more time has to be spent on the Python side, where the
calling overhead and available execution speed become severe limiting factors and restrictions.

1This can be easily seen, when the frame rates of typical PyOpenGL applications are compared to natively
written C OpenGL applications.

Chapter 2. Related work 11

2.2. Open Inventor/Coin - a high-level 3D graphics toolkit

2.2 Open Inventor/Coin - a high-level 3D graphics toolkit

Open Inventor was originally developed by Silicon Graphics, Inc. as the IRIS Inventor library.
It has long since become the de facto standard graphics library for 3D visualization and visual
simulation software in the scientific and engineering community. It has proved its value over
a period of more than 10 years, its maturity, which contributed to its success as a major
building block in thousands of large-scale engineering applications around the world.

Open Inventor is an object-oriented 3D toolkit that offers a comprehensive solution to in-
teractive graphics programming problems. It presents a programming model based on a 3D
scene database that dramatically simplifies graphics programming. It includes a rich set of
objects such as polygons, text, materials, cameras, lights, track balls and handle boxes.

Open Inventor also defines a standard 3D file format (ASCII and binary) for scene data
interchange. This allows the construction of scene graphs in ASCII files without the need
to program. Those ASCII files can then be viewed through the provided viewers from Open
Inventor or any common modeling tool.

The significant characteristics of Open Inventor:

• built on top of OpenGL

• defines a standard file format for 3D data interchange

• introduces a simple event model for 3D interaction

• provides portable animation objects called Engines

• is window system and platform independent

• is a cross platform 3D graphics development system

• encourages programmers to create new customized objects

Pivy is bound against Coin, which implements the SGI Open Inventor 2.1 API. Coin is
portable over a wide range of platforms (any UNIX/Linux/*BSD platform, all Microsoft
Windows operating systems, and Mac OS X) and adds additional features missing in the
original SGI Open Inventor API such as VRML97 support, 3D Sound, 3D Textures, multi-
threading and parallel rendering. Additionally GUI bindings implementing viewer widgets
for several GUI toolkits (Qt, GTK+, Xt, Cocoa, Win32) are available. Coin is Open Source
and has an active and growing community.

2.2.1 Overview of the Open Inventor/Coin API

As mentioned in the previous section the Open Inventor/Coin programming model is based
on a 3D scene database (SoDB), which allows to define so-called “scene graphs” in order
to provide the information that represents one or more 3D scenes. A scene graph itself
contains one or more nodes of different types and varying functionality. Predefined nodes
exist for grouping, that specify the property (to manipulate the appearance and the qualitative

Chapter 2. Related work 12

2.2. Open Inventor/Coin - a high-level 3D graphics toolkit

characteristics of a scene) or geometry (to define the shape) of objects. A hierarchical scene
graph is constructed through the addition of nodes to group nodes such as SoSeparator or
SoGroup; those hierarchies are directed acyclic graphs. Additionally so-called engines are
provided to allow the animation of parts of the scene and in order to be able to constrain one
part of a scene in relation to some other part of the scene.

Fields in Open Inventor/Coin

Each node contains a set of so-called fields that allow to manipulate the parameters of and
state information in a node. Fields themselves are again containers for predefined basic types
such as SbVec3f, which represent a 3 dimensional vector, or regular C/C++ data types such
as float; they provide a consistent interface to set and access those contained basic types,
allow Open Inventor/Coin to detect changes to the database and let fields to be connected
to fields contained in another node. Two types of fields exist: (a) single-value fields such
as SoSFVec3f, which contain exactly one basic type, and (b) multi-value fields such as
SoMFVec3f, which contain arrays of the basic types and provide the necessary functionality
to specify for example coordinate points or normal vectors. The contained basic types can be
manipulated through the use of the setValue() and getValue() methods found in the C++
API regarding fields; correspondingly setValues() or getValues() are used to manipulate
and access multi-value fields.

Scene graph traversals through actions

The scene graph is traversed by so-called actions from left to right in depth-first search or-
der. The actions are implemented through the use of the visitor pattern, where each node
implements its own action handler, such as SoNodeName::GLRender for a SoGLRen-
derAction, which gets invoked when the action reaches the node during a traversal. For
example shape nodes, such as SoCone, implement and issue OpenGL calls to draw their ge-
ometry, whereas property nodes such as SoMaterial manipulate the collected traversal state
in an action and set its corresponding elements such as the emissiveColor to the requested
values.

Therefore, the order of the nodes in the scene graph is important. The upper graph of Figure
2.2 shows a basic scene graph of four nodes. The traversal starts at the SoSeparator node,
then traverses the SoTransform node, which manipulates the position of the objects in the
scene. The next encountered node is the SoMaterial property node, which for example sets
the drawing color diffuseColor for consecutive nodes to the color blue. Finally, the SoCone
shape node gets traversed. The output is a blue cone positioned in the 3D scene according to
the values specified in the SoTransform node.

If we now flip the positions of the SoTransform and SoCone nodes, as shown in the lower
graph of Figure 2.2, the result is different behavior. The cone is rendered in the default color
of the SoCone as the SoMaterial node has not been traversed yet and cannot influence its
appearance. Furthermore, the position of the cone is not influenced by the SoTransform
node as the SoTransform node appears to the right of the SoCone node in the lower scene
graph.

Chapter 2. Related work 13

2.2. Open Inventor/Coin - a high-level 3D graphics toolkit

Figure 2.2: Flipping the position of the SoTransform and SoCone nodes

Subgraphs and paths in a scene graph

Another important notion is the one of a path. A path contains references to a chain of nodes,
each of which is a child of the previous node, that represents a subgraph of a scene graph.
They allow to isolate particular objects in the scene graph and can be either constructed by
the developer or are returned by actions, such as a SoSearchAction or SoRayPickAction.
Further actions can not only be applied on nodes but also on paths and allow for example
to calculate the bounding box of an object in a 3D scene. Figure 2.3 shows the path to the
SoCone node in our sample scene graph denoted as a thick line.

Chapter 2. Related work 14

2.2. Open Inventor/Coin - a high-level 3D graphics toolkit

Figure 2.3: The path to a node in a scene graph

The Open Inventor/Coin file format

Open Inventor/Coin defines its own standard 3D (ASCII and binary) file format, that allows
to serialize/store the scene graph contained in the scene database to for example a file or a
memory buffer and vice versa allows a scene graph to be loaded from one. Listing 2.1 shows
the Inventor file of our sample scene graph:

1 #Inventor V2.1 a s c i i
2
3 Separator {
4 Transform {}
5 Material {}
6 Cone {}
7 }

Listing 2.1: The sample scene graph as a standard Inventor file

Note that for the built-in nodes the “So” prefix can be left out in the Inventor file. The
provision of an own standard file format has an additional benefit: it allows for scripting.
Applications can be rapidly developed through the construction of the scene graph solely out
of Inventor files and the use of its elaborate syntax, which is fairly well described in chapter
11 of the “The Inventor Mentor”[12].

Reference counting in Open Inventor/Coin

Open Inventor/Coin uses reference counting for the memory management of the nodes, where
each node keeps track of the number of references made to it. Once a node is added to a
grouping node or referenced through a path its reference count gets incremented. Once nodes

Chapter 2. Related work 15

2.2. Open Inventor/Coin - a high-level 3D graphics toolkit

are removed from a grouping node or a path its reference count will be decreased and if
the reference count drops to 0 the destructor of this node invoked. Reference counts can be
manually increased through the ref() and decreased through the unref() method. Special
care has to be taken when an action gets applied on a node as the action creates a path which
references the node and increments its reference count. Once the action finished the traversal
and the path is removed the reference count decreases, which is a problem for nodes that had
originally a reference count of 0 when the action got applied as they will now be deallocated.
Therefore, the reference counts of nodes, that an action will create a path on, should always
be at least 1 in order to avoid memory errors. Open Inventor/Coin further provides a method
for special cases to decrease the reference count, which does not trigger the nodes destructor:
unrefNoDelete().

Table 2.1 lists all reference and deletion cases as found in the according table in the “The
Inventor Mentor”.

Increments Reference Count by 1 Decrements Reference Count by 1
Adding a node as a child of another node
increments child’s reference count

Removing a node as a child of another node

Adding a node to a path Removing a node from a path
Applying an action to a node or path in-
crements reference count of all nodes that
are traversed

When traversal for the action finishes, all
nodes that were traversed are unreferenced

Adding a node to an SoNodeList node Removing a node from an SoNodeList
Setting an SoSFNode or SoMFNode value
to point to a node

Changing an SoSFNode or SoMFNode
value to point to a different node or to
NULL, or deleting the value

Connecting an output of an engine to a
field in a node or engine increments the
engine’s reference count

Disconnecting an engine’s output from
the field decrements the engine’s reference
count

Table 2.1: Reference counting rules

Directly referring to nodes in a scene graph

Finally, Open Inventor/Coin allows to specify names for nodes through the setName()
method in order to retrieve the desired nodes by their name through the corresponding
getName() method later on; it also provides an extensive runtime type system that can
be used for example to gather the type of a node (SoType::getTypeId()). Furthermore,
the Open Inventor/Coin API allows to query the parent class (SoType::getParent(), check
if it is inherited from a type (isOfType or SoType::derivedFrom()) or to create a new
instance of a known type (SoType::createInstance()). This runtime type system is a very
powerful (introspection) mechanism, which we will use to our advantage for the creation of
our binding.

Chapter 2. Related work 16

2.2. Open Inventor/Coin - a high-level 3D graphics toolkit

2.2.2 Scripting in Open Inventor/Coin

As mentioned before, Open Inventor/Coin provides its own extensible text-based file format.
The combined usage of engines, fields and its domain-specific syntax can be used for scene
graph scripting and rapid construction of new scenes.

The Open Inventor syntax allows to describe what the scene graph should look like. This can
be achieved by specifying the nodes and relationships of their fields, where the values of
fields can again be constrained by engines with regard to the contents of one or more other
fields in the scene graph. Additionally, engines can be used to animate parts of the scene
graph.

Listing 2.2 demonstrates, how the combination of engines and field connections can yield
interesting results. The purpose of this script is to load a model from an external file source
(line 21-23) and rotate this model around the 3 main axis: X, Y, Z. The axis, which the model
is rotated around, is changed in a specified frequency over time (line 8). The current axis
is displayed in its vector form on the screen as a debugging aid, where for example (1, 0, 0)
represents the X axis (line 17-19).

1 #Inventor V2.1 a s c i i
2
3 Separator {
4 Transform {
5 r o t a t i on = ComposeRotation{
6 ax i s = DEF c a l c Ca l cu la to r {
7 a = TimeCounter {
8 min 0 max 2 step 1 f requency 0 .1
9 } . output

10 exp r e s s i on ”oA = (a==0) ? vec3 f (1 , 0 , 0) :
11 ((a==1) ? vec3 f (0 , 1 , 0) : vec3 f (0 , 0 , 1)) ”
12 } . oA
13 ang le = ElapsedTime {} . timeOut
14 } . r o t a t i on
15 }
16
17 # debug output
18 Font { name ” Ar ia l ” s i z e 20 }
19 SoText2 { s t r i n g = USE c a l c . oA }
20
21 F i l e {
22 name ” do lph ins . wrl . gz”
23 }
24 }

Listing 2.2: Rotating dolphins script

Chapter 2. Related work 17

2.2. Open Inventor/Coin - a high-level 3D graphics toolkit

The interesting part of the script2 is the usage of the engines in the SoTransform node (line
4-15). There we manipulate the rotation field of this transformation node in order to set the
desired axis. To set the frequency in which the axis changes should trigger and in order to set
the current axis, we make use of the SoTimeCounter engine, which allows us to stepwise
update the output field. The SoTimeCounter output field is again connected to another
engine: a SoCalculator.

This engine offers the functionality of a general purpose calculator for float values and 3D float
vectors. It allows to evaluate simple expressions, has a variety of input and output fields. It
features a single control flow statement in the form of a ternary operator (expression ? true
: false;), which we make use of to determine which axis should be returned. Furthermore,
we make use of the provided vec3f() function in order to convert our result into a suitable
3-dimensional vector.

We connect the output field oA of the SoCalculator engine to the axis field of the SoCom-
poseRotation object. The SoComposeRotation serves the purpose of an adaptor that
creates the necessary rotation field, that can be connected to the rotation field of the SoTrans-
form node. The angle field of the SoComposeRotation is connected to the ElapsedTime
engine’s timeOut field, which is a controllable time source engine and which will update the
angle field so that the model will be actually able to spin around its axis.

Figure 2.4 shows various states in the dolphin animation; the axis vector text string in the
middle of the window indicates the axis the dolphins rotate around.

This style of programming is commonly referred to as declarative programming, where the
main purpose of this paradigm is to describe what and not how something should be created.
However, domain-specific declarative languages, such as HTML, SQL, regular expressions or
in our case the Open Inventor/Coin file format, are not Turing-complete. In order to be able
to make use of control structures, implement algorithms or write programs that have access to
the object oriented Open Inventor/Coin API, we need to make use of imperative programming
languages such as C, C++, Python or functional programming languages such as Scheme that
again are used in an imperative procedural fashion[13][14]. Through the combination of both
models, which is referred to as embedding, we are able to unite the benefits of both paradigms
and create a very effective mechanism for a variety of previously not easily solvable tasks.

We will discuss embedding of an imperative language and its implications in chapter 5.

2which can be loaded by Open Inventor/Coin programs as we will see later

Chapter 2. Related work 18

2.2.
O

pen
Inventor/C

oin
-

a
high-level

3D
graphics

toolkit

Figure 2.4: Examiner viewer executing the dolphin script

C
hapter

2.
R

elated
w

ork
19

2.3. Python - a dynamic general purpose programming language

2.3 Python - a dynamic general purpose programming lan-
guage

Guido van Rossum has begun the development of Python in 1990 at Stichting Mathematisch
Centrum (CWI) in the Netherlands as a successor of the ABC programming language. Python
– designed to be a highly readable language – is a dynamically typed interpreted programming
language available on many different platforms and operating systems, that gained a lot of
popularity in the recent years.

Alongside conventional integer and floating point arithmetic, it transparently supports arbi-
trarily large integers and complex numbers. Sequential types such as lists, sets, strings, tuples
and dictionaries3 serve as the data structure foundation. The combined usage of the data
structures allow to express otherwise complicated problems in a few lines of code.

In Python everything is an object and Python has comprehensive support for object ori-
entation: from polymorphism, meta classes to multiple inheritance and mix-ins. However,
different to other programming languages information hiding (e.g. through mechanisms such
as protected or private) is done by convention and not enforced. Furthermore, a mechanism
for exception handling is provided, which is extensively used throughout the language and
library modules to test for error conditions and other exceptional events in a program.

The following 6 major reasons can be accredited for Python’s continued and ever increasing
popularity:

1. Python is developed as an open source project with a big and friendly community and
uses a completely unrestricted and truly free license (different from the GPL). This
allows to embed the Python interpreter for any purpose (even for commercial use).

2. Python combines remarkable power and scalability with a very simple, elegant easy and
quickly to learn syntax; Python provides facilities for runtime introspection at the same
time.

3. Python’s rich collection of standard modules (from ready to use modules to create web
servers to Inter Process Communication modules.

4. Python bindings are available for nearly every popular library or framework that can
be used immediately with a much steeper learning curve of the same API (written in
another language)

5. Python is a multi-paradigm language; it permits several styles of coding paradigms or
techniques, rather than to enforce one particular. Object orientation, structured pro-
gramming, functional programming, aspect-oriented programming or design by contract
are all supported.

6. Python’s well designed and easy to understand straight forward C API allows to embed
and extend Python or the application in any way one may desire.

3a mapping data structure, that makes use of a hash function

Chapter 2. Related work 20

2.3. Python - a dynamic general purpose programming language

2.3.1 Overview of the Python C API

Most of the time it is sufficient to solely use functionality provided by the standard Python
language as Python is a general purpose programming language, which comes with a broad
range of useful modules in its standard distribution. However, if new functionality is required,
that does not perform sufficiently through solely using the Python interpreter, then Python
allows for the creation of new modules through its extension API and library. The same
extension API allows to interface to existing libraries written in another language or integrate
Python in mixed-language systems.

There are different implementations of the Python interpreter, that target different purposes
and platforms that are in use today:

The first and most widely used Python interpreter is implemented in the C programming
language, which is commonly referred to as CPython4. Other implementations of the Python
interpreter exist for Java, .NET and Python5.

We will discuss the Python C API through different implementations that solve the Greatest
Common Divisor and compare the different approaches regarding their implications.

The mathematical definition for the Greatest Common Divisor reads as follows:

Definition 1 Let a, b ∈ Z. If a 6= 0 or b 6= 0, we define gcd(a, b) to be the largest integer d
such that d|a and d|b. We define gcd(0, 0) = 0.

To compute gcd(a, b) we need an appropriate algorithm: The Euclidean Algorithm.

We will now quickly present 2 Lemmas for the The Euclidean Algorithm.

Lemma 1 If a > 0, then gcd(a, 0) = a.

Lemma 2 Let a > b > 0. If a = bq + r, then gcd(a, b) = gcd(b, r).

Greatest Common Divisor in Python

An elegant Python implementation of the Euclidean algorithm is shown in Listing 2.3 and is
saved in a file named gcd.py :

1 def gcd (a , b) :
2 while b :
3 a , b = b , a % b
4 return a

Listing 2.3: gcd.py - Python implementation of the gcd() function

4and which is the one we use and focus upon in this thesis
5a Python implementation written in Python itself

Chapter 2. Related work 21

2.3. Python - a dynamic general purpose programming language

We can invoke the python interpreter from the command line as follows in order to compute
a result for gcd(15, 3) (line 2 shows the result):

1 $ python −c ” from gcd import gcd ; p r i n t gcd (15 ,3) ”
2 => 3

Listing 2.4: Invocation of the gcd.py module from the command line

Greatest Common Divisor as a Python extension

We will now have a look in how to create the same functionality exposed as a C module
through usage of the Python C API.

Figure 2.5: Python extension module structure common to all C modules

First, Listing 2.5 presents the C implementation of the same gcd() function:

1 #include <s t d i o . h>
2
3 int
4 gcd (int a , int b)
5 {
6 int tmp = b ;
7 while (b) {
8 tmp = b ;
9 b = a % b ;

10 a = tmp ;
11 }
12 return tmp ;
13 }

Chapter 2. Related work 22

2.3. Python - a dynamic general purpose programming language

14
15 int
16 main (int argc , char ∗ argv [])
17 {
18 p r i n t f (”%d\n” , gcd (15 , 3)) ;
19 return 0 ;
20 }

Listing 2.5: gcd.c - C implementation of the of the gcd() function

We need to extend the current code in order to create a manual so-called wrapper around the
gcd() function so that it can be invoked from Python.

1 #include <Python . h>
2
3 extern int gcd (int a , int b) ;
4
5 stat ic PyObject ∗
6 gcd wrapper (PyObject ∗ s e l f , PyObject ∗ args)
7 {
8 int a , b , r e s u l t ;
9

10 /∗ ge t Python arguments ∗/
11 i f (! PyArg ParseTuple (args , ” i i ” , &a , &b)) {
12 return NULL;
13 }
14
15 /∗ c a l l the gcd () C func t i on ∗/
16 r e s u l t = gcd (a , b) ;
17
18 return Py BuildValue (” i ” , r e s u l t) ;
19 }
20
21
22 stat ic struct PyMethodDef gcdmodule methods [] = {
23 {”gcd” , gcd wrapper , METHVARARGS} ,
24 {NULL, NULL}
25 } ;
26
27
28 void
29 in i tgcdmodule () {
30 Py InitModule (”gcdmodule” , gcdmodule methods) ;
31 }

Listing 2.6: gcd module.c - Python C module implementation of the gcd() function

The basic structure of every extension module is outlined in Figure 2.5.

Chapter 2. Related work 23

2.3. Python - a dynamic general purpose programming language

We include the Python.h header file in line 1, which gives access to all Python definitions and
declarations of the Python C API.

1 #include <Python . h>

Line 3 provides the extern declaration for the gcd() function which is contained in the gcd.c
file.

3 extern int gcd (int a , int b) ;

From line 5 our actual Python wrapper for the gcd() function starts. The wrapper function,
where one wrapper function has to be declared and implemented for each single C function
that one desires to expose.

The wrapper function itself requires either 2 arguments (self and args) or 3 arguments (self
and args and kwargs). All the involved types are of the generic PyObject type which is the
base type of the Python C API. This function should further return a PyObject. To signal
an error (e.g. when a type conversion fails because of wrongly passed arguments) it has to
return NULL. If it does not return a value and no error has occured a special type Py None
has to be returned instead.

5 stat ic PyObject ∗
6 gcd wrapper (PyObject ∗ s e l f , PyObject ∗ args)

Tasks of a wrapper

A wrapper has to solve and deal with the following 3 tasks (Figure 2.6):

Figure 2.6: Wrapper structure and tasks

Chapter 2. Related work 24

2.3. Python - a dynamic general purpose programming language

1. The wrapper has to translate/convert the Python types to corresponding C ones. The
Python C API provides convenience functions for this common data conversion oper-
ation: PyArg ParseTuple() or PyArg ParseTupleAndKeywords(). Those func-
tions take the passed argument tuple (usually args) as their first parameter and provide
a variable-length argument facility in the form of a format string, that contains conver-
sion specifications and specifies how subsequent arguments should be converted. The
results from such conversions, if any, are stored in the locations pointed to by the pointer
arguments that follow the format. Each pointer argument must be of a type that is
appropriate for the value returned by the corresponding conversion specification.

10 /∗ ge t Python arguments ∗/
11 i f (! PyArg ParseTuple (args , ” i i ” , &a , &b)) {
12 return NULL;
13 }

2. The wrapper has to invoke the actual function or code that was meant to be wrapped
and executed.

15 /∗ c a l l the gcd () C func t i on ∗/
16 r e s u l t = gcd (a , b) ;

3. The wrapper has to translate/convert the results of the function invocation back from
C types to corresponding Python ones. The Py BuildValue() functions takes similar
conversion specifications as in Table 2.2.

Format string Python Type C Type
“s” String const char *
“s#” String const char *, int
“i” Integer int
“l” Integer long int
“c” String of length 1 char
“f” Float float
“d” Float double
“O” Object PyObject *
“O&” Object converter, anything
“(items)” (tuple) matching-items

Table 2.2: Common Format specifiers for PyArg ParseTuple() and Py BuildValue()

18 return Py BuildValue (” i ” , r e s u l t) ;

The self parameter is used when the wrapper function implements a built-in method to
be applied to an instance of some object. In this case, the instance is placed in the self
parameter; otherwise, self is set to NULL. args is a Python tuple that contains the function
arguments passed by the interpreter. kwargs is a Python dictionary that contains keyword
arguments.

Chapter 2. Related work 25

2.3. Python - a dynamic general purpose programming language

Building the extension

In order to build the module Python provides the distutils package which provides support
to build and install additional modules into a Python installation.

Listing 2.7 presents the setup.py build program for our example module. Distutils will invoke
the right compiler and linker installed on the system with the correct platform specific flags
provided without any further user intervention or specification needed.

1 from d i s t u t i l s . core import setup , Extension
2
3 m = Extension (’ gcdmodule ’ ,
4 sour c e s = [’ gcd module . c ’ , ’ gcd . c ’])
5
6 setup (name = ’ gcdmodule ’ , v e r s i on = ’ 0 .1 ’ ,
7 d e s c r i p t i o n = ’ Greatest Common Div i so r ’ ,
8 ext modules = [m])

Listing 2.7: setup.py - a distutils build script for the Python C module

We can now similarly invoke the python interpreter from the command line as follows in order
to compute a result for gcd(15, 3) (line 2 shows the result):

1 $ python −c ” from gcdmodule import ∗ ; p r i n t gcd (15 ,3) ”
2 => 3

Listing 2.8: Invocation of the gcdmodule from the command line

The Python C API further provides functions for each of the basic Python objects. This
allows to use them directly with much finer control than offered through PyArg ParseTuple
and Py BuildValue, which are sufficient for most of the use cases. The functions for each of
the basic Python objects are especially useful for the required flexibility and control, when
the Python interpreter is to be embedded.

Reference counting in Python

The Python interpreter uses reference counting to manage memory (and in order to implement
garbage collection). Each Python object has a reference count associated with, which tracks
the number of places other objects reference to it. When the reference count reaches zero,
Python reclaims the object’s memory space automatically. This is no concern when pure
Python programs are written as reference counting is handled automatically. However, the
developer of such an extension is responsible for handling the reference counts manually, if
he extends or embeds through the Python C API, as otherwise memory leaks or crashes will
occur.

The Py BuildValue() increases the reference count automatically and therefore the reference
count must not be increased manually as wrapper functions are expected to return either an
object with an incremented reference count or NULL to signal an error.

Chapter 2. Related work 26

2.4. Wrappers and available approaches for Python

Python macro Description
Py INCREF(obj) increments the reference count
Py DECREF(obj) decrements the reference count
Py XINCREF(obj) increments the reference count, but ig-

nores a NULL object
Py XDECREF(obj) decrements the reference count, but ig-

nores a NULL object

Table 2.3: Python reference counting macros

Table 2.3 lists the Python C API macros that allow to manipulate the reference count of
Python objects.

Error handling

The last topic, regarding the Python C API, are the mechanisms in place for Error Han-
dling. Errors can occur at multiple places and on both sides of the languages involved.
Python uses exception handling for error detection and resolution. As mentioned above a
wrapper functions should return NULL to signal an error, which is exactly what all the
Python functions do with a couple of exceptions such as PyArg ParseTuple(). Prior to
returning NULL, an exception should be raised or cleared using the PyErr SetString()
and PyErr Clear() functions. An example for raising an index out of bounds exception is:
PyErr SetString(PyExc IndexError, “index out of bounds”);

2.4 Wrappers and available approaches for Python

We have seen the basic tasks of a wrapper in section 2.3.1 “Overview of the Python C API”.
A more general description of a wrapper reads as follows: “A wrapper is a piece of code that
allow different pieces of code to work together that normally cannot because of incompatible
interfaces”. Therefore, a wrapper acts as an interface between its caller and the wrapped
code. There are different purposes that a wrapper can fulfill:

Compatibility: When the wrapped code is in a different programming language or uses
different calling conventions, as is the case with our Pivy Python binding for the Coin
C++ library.

Emulation: For example, the OpenGL API which hides the functions of the video card
driver or Chromium, which provides a wrapper around the OpenGL API in order to
intercept OpenGL calls. The implication is that the wrapped code can only be accessed
via the wrapper.

Security: Where the wrapped code and exposed interface prevents the calling program to
execute certain functions or exposes them depending on the authorization level.

Chapter 2. Related work 27

2.4. Wrappers and available approaches for Python

The key problems with wrapping a source language such as C++, which is to be used out
of another target language such as Python, are that language features might be different. In
the worst case no equivalent or similar feature exists in the target language, which can make
it difficult or impossible to map certain functionality to an equivalent one. For example, pro-
tected class members do not exist in Python and private class members were just introduced
a couple of versions ago. Python has no notion of true access restrictions for attributes, where
every member and each method is public and attribute hiding is a matter of convention.

Another key problem is argument handling where a C/C++ function/method might interpret
an argument as an output value or even input/output value. Examples for functions, where
the wrapper has to take care about the arguments and handle them specially, are presented
in the next listing:

1 /∗ re turns r e s u l t in the doub le ∗ c argument ∗/
2 void add (double a , double b , double ∗ c) {
3 ∗c = a+b ;
4 }
5
6 /∗ doub le ∗ x i s as an input / output argument ∗/
7 void negate (double ∗ x) {
8 ∗x = −(∗x) ;
9 }

Listing 2.9: Example listings for input output parameters

The last and most important key problem that such wrappers have to deal with are type
conversions which are responsible to map and translate data types from the source language
to corresponding ones in the target language.

Various different and interesting approaches in order to create a Python wrapper are in exis-
tence. They range from manual wrapping, runtime system based wrapping, foreign function
interfaces to semi- and automatic wrapper generators. The next sections will present some
of the available approaches and provide a comparison of some wrapper generators and the
reasoning for the approach that has been chosen for our Coin binding.

2.4.1 Manual wrapping

We have presented the manual wrapping approach in our discussion in section 2.3.1 “Overview
of the Python C API”. To create a wrapper manually has the benefit of the finest control and
allows for the generation of a very tight and optimized wrapper.

Unfortunately, this approach quickly becomes unfeasible and quickly cumbersome for larger
interfaces as a lot of boilerplate code for the different interfaces we deal with has to be written.
Even worse, every single function, class, method and data type in such an interface has to be
registered and wrapped, which is a very tedious and error prone task.

Furthermore, if the library changes or adds new interfaces in future versions the wrapper code
has to be adapted and extended accordingly manually again, which makes maintenance of
such a solution very difficult if not impossible to achieve efficiently. This is especially true

Chapter 2. Related work 28

2.4. Wrappers and available approaches for Python

for C++, which offers language features such as function overloading, virtual inheritance,
const interfaces, static members, templates. . . , where it becomes very difficult to provide a
complete manual wrapper and which makes the manual wrapper code that has to be written
very involved and complicated.

Manual wrapping through runtime system usage

On the other hand, if the source library or language offers an extensive runtime system -
such as Objective C - a manual wrapper becomes actually feasible again. The introspective
mechanisms offered by the target language’s runtime system allow to create a manual wrapper
with minimal lines of code. This code then has to deal with data type conversion, whereas
calling methods or creating instances of objects can be achieved through a very generic code
layer which makes heavy usage of the runtime system. Furthermore, if the API has been
very consistently designed the problem of determining the input, output or input/output
arguments of a method becomes less involved and can be handled by a self-written special
wrapper generator in order to cover the whole API.

In fact this approach was considered for our binding and where the author is quite sure now
that this approach will have worked very well. A problem is that certain parts of Coin are
not covered by the runtime system6. However, those can be made accessible by extending
the Coin runtime type system on the C++ side respectively. The alternative is to wrap
them manually or again through the usage of an automatic wrapper generator. It is also
unclear how a solely Coin runtime system based approach will affect performance; it can
be expected that more Python code than in the wrapped case will have to be evaluated by
making more intense access of the runtime system for type deduction and checking. Again
this can be optimized by identifying and factoring common calling idioms out to the C++
side or optimizing the type system for such usage. The performance of such a solution also
depends heavily on the performance of the Coin runtime system implementation, which again
might not be fast enough for certain cases. Furthermore, the SoGui toolkits are not runtime
based and have anyways to be wrapped in a regular approach.

The main reason why the author decided not to go this route back then, was the lack of good
and deep understanding of the Coin internals. This makes it necessary to spend a lot of time
in order to gain a better understanding of the limits of such an approach, which was deemed
as a too risky and dangerous route to take. Additionally, not many projects were at hand
using such an approach from which one could have learned. On the other hand, the use of
automatic wrapper generators was proven and safe and which many projects make use of.

2.4.2 Automatic and semi-automatic wrapper generators

Due to the aforementioned shortcomings of the manual wrapping approach several wrapper
generators have been developed. Wrapper generators create the necessary wrapper and boil-
erplate code automatically by inspecting the existing sources (typically the header files in
case of C/C++). Furthermore, they allow to specify which functions/methods/classes should
get wrapped and how this has to be done. A special so-called interface file is used from those

6for example the sensor nodes

Chapter 2. Related work 29

2.4. Wrappers and available approaches for Python

specifications. Wrapper generators provide a specially designed syntax for type conversion,
interface extension, error, input/output argument and ownership handling.

Another very important task of a wrapper generator is to conduct and help with correct
memory management. Here the question of ownership, i.e. if it is the responsibility of the
generated Python wrapper or the C++ side to delete the underlying C++ object. Most of the
time memory management issues remain sufficiently hidden by wrapper generators but there
are special situations, where the question of ownership is not clear7 and manual intervention
is required to resolve this question.

We distinguish between automatic and semi-automatic wrapper generators. Automatic wrap-
per generators allow to solely provide the header files of the library that has to be wrapped.
Those header files get parsed by the automatic wrapper generator to generate the wrapper
and through a flexible, general and versatile wrapper generator syntax any part of the gen-
erated wrapper output can be controlled. In contrast, semi-automatic wrapper generators
require the developer to create an interface file for each structure and class that needs to be
wrapped. They need to be specified in a header file alike declaration syntax or used with a
special wrapper generator syntax out of which the wrapper code is generated.

The difference in those approaches range from the amount of language features covered for the
source language(s), focus on a tighter integration with a specific target language or library,
wrapper size to overall flexibility and maintainability of those solutions.

Here is a short presentation and description of the currently available Python automatic/semi-
automatic wrapper generators:

Boost.Python 8 is an open source C++ library which enables seamless interoperability
between C++ and the Python programming language and provides a concise IDL-
like interface in order to bind C++ classes and functions to Python. Boost.Python’s
rich set of features and high-level interface make it possible to engineer packages from
the ground up as hybrid systems, that give programmers easy and coherent access to
both the efficient compile-time polymorphism of C++ and the extremely convenient
run-time polymorphism of Python. This is achieved entirely in pure C++ through
leveraging the full power of C++ compile-time introspection and of recently developed
meta-programming techniques without the introduction of a new syntax. Because it
leverages template meta-programming to introspect about types and functions, the user
never has to learn a third syntax: the interface definitions are written in concise and
maintainable C++.

Boost.Python can be classified as a semi-automatic wrappers as an interface file in
an IDL-like language has to be written for every method and class. However, a code
generator named Pyste9 has been developed that allows Boost.Python to be used as
an automatic wrapper generator. Pyste uses GCC XML10, an XML output extension
to the GNU compiler collection, to parse all the headers and extract the necessary
information to automatically generate C++ code.

7such as when transferring the ownership of an object wrapped in one wrapper generator to another structure
wrapped by another wrapper generator, as is the case with bridging

8http://www.boost.org/libs/python/
9http://www.boost.org/libs/python/pyste/

10http://www.gccxml.org/

Chapter 2. Related work 30

http://www.boost.org/libs/python/
http://www.boost.org/libs/python/pyste/
http://www.gccxml.org/

2.4. Wrappers and available approaches for Python

SIP 11 SIP is a semi-automatic wrapper generator that has been originally developed to
create a Python binding for the Qt GUI toolkit but can in the mean time be used for
wrapping other C++ libraries as well.

SIP comprises a code generator and a Python module. The code generator processes a
set of specification files and generates C or C++ code which is then compiled to create
the bindings extension module. The SIP Python module provides support functions to
the generated code.

The specification files contains a description of the interface of the C or C++ library,
i.e. the classes, methods, functions and variables. The format of a specification file is
almost identical to a C or C++ header file.

SWIG 12 (Simplified Wrapper and Interface Generator) is an automatic wrapper generator
that connects programs written in C and C++ with a variety of high-level programming
languages.

SWIG is used with different types of languages including common scripting languages
such as Lua, Perl, PHP, Python, Ruby and Tcl. The list of supported languages also
includes non-scripting languages such as C#, Common Lisp (CLISP, Allegro CL, CFFI,
UFFI), Java, Modula-3 and OCAML. Also several interpreted and compiled Scheme
implementations (Guile, MzScheme, Chicken) are supported.

SWIG is most commonly used to create high-level interpreted or compiled programming
environments, user interfaces, and as a tool to test and prototype C/C++ software.
SWIG can also export its parse tree in the form of XML and Lisp s-expressions. SWIG
may be freely used, distributed, and modified for commercial and non-commercial use.

2.4.3 Other alternatives and approaches

Additional interesting alternatives exist in order to create extension modules or embedding
Python. Their usage can be combined with existing wrapper generators in order to improve
performance or further ease usage.

Pyrex 13 is a programming language developed to aid in the creation of Python extension
modules and features a Python-like syntax. The Pyrex compiler will convert the Pyrex
code into C code. Code, which manipulates Python values and C values, can be freely
intermixed and where conversions occur automatically wherever possible.

Reference count maintenance and error checking of Python operations is also automatic,
and the full power of Python’s exception handling facilities, including the try-except and
try-finally statements, are available to the developer – even in the midst of manipulating
C data. This allows different to wrapper generators, whose main focus is to wrap
existing libraries, for rapid development of new Python types without the need to know
nor create them manually through the Python C API.

11http://www.riverbankcomputing.co.uk/sip/
12http://www.swig.org/
13http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

Chapter 2. Related work 31

http://www.riverbankcomputing.co.uk/sip/
http://www.swig.org/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

2.5. 3D graphics in Python

ctypes 14 is an advanced ffi (Foreign Function Interface) package for Python. ctypes allows
to call functions exposed from dlls/shared libraries and has extensive facilities to create,
access and manipulate simple and complicated C data types in Python - in other words:
wrap libraries in pure Python. It is even possible to implement C callback functions in
pure Python.

The benefit of the ctypes approach is that the calling overhead for functions is heavily
minimized as it operates directly on the dynamic link library. Still, in/inout/out argu-
ment handling has to be handled manually and due to name mangling (and different
name mangling schemes for different compilers) and various other language features in
C++ this approach is most only feasible for libraries written exclusively in C.

Elmer 15 is a tool which embeds a Python module into a C, C++, or Tcl application. The
embedded Python module is used just as if it was written in the same language as the
application itself. Therefore, it does not require any knowledge of the Python/C API.

Elmer generates “glue” code that embeds an interpreter for one type of language into an
extension for another. Elmer allows function calls and various data types, both native
and custom, to pass transparently between the two languages.

2.5 3D graphics in Python

A broad range of 3D modeling tools and 3D graphics libraries exist that take advantage of
the power of Python. This section presents some from the sheer number of available and
interesting Python based 3D projects.

Many of the presented projects can be used and combined with our binding as they are exposed
to the same language, which allows them to be easily integrated. For example, PyOpenGL
can be used unmodified with our binding and allows the Pivy developer to issue OpenGL
commands. Blender allows to create 3D models and export them to VRML or Inventor files
through ready to use Python export scripts for later reuse in scenes created in Pivy. Others,
such as VTK or Open Scene Graph, are a similar or the same domain, where it is interesting to
learn which wrapping strategies and approaches those projects have chosen in order to create
a binding for a large C++ library. Then again others are listed for completeness and to show
the versatility of available and readily usable 3D related projects that can be combined with
Pivy, such as SciPy or the cgKit.

2.5.1 Existing Python tools and bindings

PyOpenGL is a Python binding for OpenGL developed by Mike C. Fletcher.

PyOpenGL includes support for OpenGL v1.0, OpenGL v1.1, GLU, GLUT v3.7, GLE
3, WGL 4, and Togl (Tk OpenGL widget). It also includes supports for dozens of
extensions (where supported in the underlying implementation).

14http://starship.python.net/crew/theller/ctypes/
15http://elmer.sourceforge.net/

Chapter 2. Related work 32

http://starship.python.net/crew/theller/ctypes/
http://elmer.sourceforge.net/

2.5. 3D graphics in Python

Additionally, it offers a retained mode library called OpenGLContext which features a
partial implementation of VRML97.

PyOpenGL is perfectly suited for Rapid Application Development of OpenGL appli-
cations in Python. Apart from that it is used by a variety of Python projects to add
OpenGL support.

As mentioned before, this mature binding can be made use of directly in Pivy, as all that
is needed for the integration is an OpenGL context. The OpenGL context can be either
created in Pivy or PyOpenGL. The converted “Inventor Mentor” contain examples that
demonstrate PyOpenGL’s usage in the Pivy.

PyOpenGL uses SWIG to create the binding. Currently, the use of ctypes, a Foreign
Function Interface package for Python, is investigated for the creation of the binding.

URL: http://pyopengl.sourceforge.net/

PyFX is an interesting Python framework which makes it easy to use graphics effects based
on Cg shaders.

PyFX[15] is implemented on top of OpenGL and allows to write shader code in Python
that gets executed on graphics processors (GPUs).

The PyFX framework is written in pure Python, uses SWIG to wrap additional required
C libraries and similarly to PyOpenGL can be used together with Pivy.

URL: http://graphics.cs.lth.se/pyfx/

cgKit (the Python Computer Graphics Kit) is a generic 3D package that can be useful
in any domain where you have to deal with 3D data of any kind, be it for visualization,
creating photorealistic images, Virtual Reality or even games.

It is a collection of Python modules that contain the basic types and functions to be able
to create 3D computer graphics images. The kit mainly focuses on Pixar’s RenderMan
interface, but some modules can also be used for OpenGL programs or non-RenderMan
compliant renderers such as POV-Ray.

Again this mature project can be combined with Pivy. In fact it provides very broad
and rich functionality and can be used to import various file formats through its plugins
such as X3D, that Coin does not offer support for, yet. This is achieved, because cgKit
wraps various C/C++ libraries, which provide for example the aforementioned X3D
support. As a variety of libraries are wrapped, the cgKit further provides support for
spezialized input devices, such as data gloves.

URL: http://cgkit.sourceforge.net/

Blender is a very mature and professional cross platform 3D modeller which has a very long
feature list comprising a fully featured gaming engine. Blender exposes all its internals
through a Python API which allows Python to be used as a scripting facility.

Blender can natively export and import DXF, Inventor and VRML files but additional
exporters and importers already exist as Python scripts or can easily be written in
Python and called from within Blender.

URL: http://www.blender3d.org/

Chapter 2. Related work 33

http://pyopengl.sourceforge.net/
http://graphics.cs.lth.se/pyfx/
http://cgkit.sourceforge.net/
http://www.blender3d.org/

2.5. 3D graphics in Python

Chromium is a system for interactive rendering on clusters of graphics workstations. Var-
ious parallel rendering techniques such as sort-first and sort-last may be implemented
with Chromium. Furthermore, Chromium allows filtering and manipulation of OpenGL
command streams for non-invasive rendering algorithms.

The configs are created through Python scripts which allows to specify different SPUs
(stream processing unit). A SPU is the part of a node that intercepts OpenGL calls
and performs actions on the OpenGL stream.

Chromium can be used for clustering solutions and connecting multiple displays to a big
one. Most importantly it allows to intercept OpenGL calls which can be used together
with PyOpenGL and lets one further exploit its capabilities from within Python.

URL: http://chromium.sourceforge.net/

Open Scene Graph is a open source high performance 3D graphics toolkit, used by ap-
plication developers in fields such as visual simulation, games, virtual reality, scientific
visualization and modeling.

Open Scene Graph has a Python binding, called PyOSG16. PyOSG uses the Boost.Python
library, is in alpha state and appears to be unmaintained now.

URL: http://www.openscenegraph.org/

SGI OpenGL Performer is a an application-driven library used in real-time visual sim-
ulation and other performance-oriented 3D graphics applications for which a Python
binding exists: pyper17. The pyper binding makes use of SWIG to create the wrapper.

Performer simplifies development of applications used for visual simulation, manufac-
turing, simulation-based design, virtual reality, scientific visualization, interactive en-
tertainment, broadcast video, architectural walk-through, and computer aided design.

URL: http://www.sgi.com/products/software/performer/

The Visualization ToolKit (VTK) is a software system for 3D computer graphics, image
processing, and visualization used for scientific purposes. It also features a variety of
visualization algorithms. In contrast to the scene-graph based APIs VTK uses a pipeline
approach.

The Python binding has been created using GCC XML, CableSwig18 and CSWIG, a
modified version of SWIG.

ITK makes heavy use of C++ features, where SWIG was not able to cope with all of
them. Therefore, CableSwig is used to create wrappers to interpreted languages such
as Tcl and Python. It was created to produce wrappers for ITK because the toolkit
uses C++ structures that SWIG cannot parse (deeply nested template instantiations).
CableSwig is a combination tool that uses GCC XML as the C++ parser. The input
files are Cable style input files. The XML produced from the Cable/GCC XML input
files are then parsed and feed into CSWIG.

16http://sourceforge.net/projects/pyosg/
17http://oss.sgi.com/cgi-bin/cvsweb.cgi/performer/src/pyper/
18http://www.itk.org/HTML/CableSwig.html

Chapter 2. Related work 34

http://chromium.sourceforge.net/
http://www.openscenegraph.org/
http://www.sgi.com/products/software/performer/
http://sourceforge.net/projects/pyosg/
http://oss.sgi.com/cgi-bin/cvsweb.cgi/performer/src/pyper/
http://www.itk.org/HTML/CableSwig.html

2.5. 3D graphics in Python

Furthermore, a scientific data visualizer, called MayaVi19 for VTK and which is imple-
mented in Python, exists.

URL: http://www.vtk.org/

OGRE (Object-Oriented Graphics Rendering Engine) is a scene-oriented, flexible 3D engine
written in C++ designed to make it easier and more intuitive for developers to produce
games and demos utilizing 3D hardware. The class library abstracts all the details
of using the underlying system libraries like Direct3D and OpenGL and provides an
interface based on world objects and other intuitive classes.

OGRE comes with Python bindings, named PyOgre20 and is focused on game develop-
ment. PyOgre is currently undergoing a rewrite using SWIG.

URL: http://www.ogre3d.org/

Panda3D (Platform Agnostic Networked Display Architecture) was developed by Disney VR
Studio for its massively multiplayer online game Toontown Online. The engine contains
a strong networking architecture that allows to create shared experiences quickly and
easily. The studio then released the engine as open source and began to coordinate with
universities in order to prepare it for the open source community. In 2003, Panda3D
made its debut through Carnegie Mellon University.

Panda3D is an application-driven library, which makes it very well suited for games and
simulations.

Panda3D operates and has been created with a combination of C++ and Python.
Developers may script in Python, and Panda3D’s special interrogate system converts
the C++ code to Python.

To quote Panda3D’s Introduction to Scenegraph Design[16] on how the interrogate sys-
tem works:

Interrogate works like a compiler, scanning and parsing C++ code. Instead
of creating object libraries, it creates an “interrogate database” of objects,
methods, global variables, etc. that are contained in the corresponding C++
library. This database may be queried to discover these functional elements
and their interfaces.
To make use of this database, one creates an automatic code generator in the
scripting language that scans the interrogate database and generates scripting
language wrapper calls that execute the C library calls, via the scripting lan-
guage’s foreign function interface. A benefit of this system is that interrogate
imposes no restrictions on exactly how a scripting language interfaces with
the C libraries, allowing them to interface in whatever way best “fits in” with
the natural environment of a particular language.

Panda3D makes heavy usage of C++ and where SWIG was not found to cope with
templates, nested classes and function overloading[17]. Further, Panda3D was originally

19http://mayavi.sourceforge.net/
20http://www.ogre3d.org/wiki/index.php/PyOgre/

Chapter 2. Related work 35

http://www.vtk.org/
http://www.ogre3d.org/
http://mayavi.sourceforge.net/
http://www.ogre3d.org/wiki/index.php/PyOgre/

2.5. 3D graphics in Python

designed to work with Squeak21, an open source implementation of Smalltalk, where
the Interrogate system was already in place.

URL: http://www.panda3d.org/

Jython3D Rob Smallshire has put up a page providing examples and descriptions in how
to make use of Java3D22 from Jython23. Java3D is a low level 3D scene-graph based
graphics programming API for the Java language.

Jython is an implementation of the high-level, dynamic, object-oriented language Python
written in Java, and seamlessly integrated with the Java platform. It thus allows you
to run Python on any Java platform.

URL: http://www.smallshire.org.uk/jython3d.htm

Crystal Space is a portable 3D Game Development Kit written in C++ using OpenGL.
It offers a large set of features; among them shader support (CG, vertex programs,
fragment programs, . . .), 3D sprites (frame based or with skeletal animation using
Cal3d24 animation library), procedural textures, scripting (using Python) and physics
plug-in based on ODE25.

The Crystal Space 3D Engine uses Python for scripting through a plug-in mechanism.
Python scripts can be dynamically invoked from within the engine depending on game
specific actions. Python can also be used to program the main game core. It has full
access to the C++ Crystal Space API.

Crystal Space uses SWIG as the basis of its language bindings. The technology has
been generalized enough that the supported languages share a common SWIG inter-
face definition. Each language also has its own specific definition files. Because the
binding definitions are generalized, it should be possible to create additional language
bindings for Crystal Space (any supported by SWIG) with a minimal amount of effort,
as compared to creating new bindings from scratch.

URL: http://www.crystalspace3d.org/

SciPy is a library of scientific tools for Python. SciPy supplements the popular Numeric and
numarray modules, gathering a variety of high level science and engineering modules
together as a single package.

SciPy includes modules for graphics and plotting, optimization, integration, special
functions, signal and image processing, genetic algorithms, ODE solvers, and others.

SciPy is not 3D related in itself, but because 3D graphics programming typically involves
a lot of mathemathical manipulation, SciPy is often a useful tool.

URL: http://www.scipy.org/

21http://www.squeak.org/
22https://java3d.dev.java.net/
23http://www.jython.org/
24http://cal3d.sourceforge.net/
25http://www.ode.org/

Chapter 2. Related work 36

http://www.panda3d.org/
http://www.smallshire.org.uk/jython3d.htm
http://www.crystalspace3d.org/
http://www.scipy.org/
http://www.squeak.org/
https://java3d.dev.java.net/
http://www.jython.org/
http://cal3d.sourceforge.net/
http://www.ode.org/

Chapter 3

Creating Pivy

In order to create a Python wrapper for Coin through SWIG the following tasks had to be
tackled:

Build system The creation of a suitable cross-platform build system is crucial in order to
assist with the compilation of the generated wrapper code into a dynamic link library
that can then be imported by the Python interpreter at runtime.

The build system allows for an easy, convenient, consistent and correct creation of
the aforementioned dynamic link library by a developer or user. It gathers available
information from the operating system, support libraries and Python installation on
the system in order to provide the compiler and linker with the correct flags and runs
a couple of checks to ensure and assert a correctly setup development system.

A good build system helps the developer with maintenance tasks such as packaging,
deployment and by further handling installation on the user’s system. By sticking
to common expectations, conventions and standards in how the build system should
behave, eases the experience from the user’s point of view and aids in the reuse of
proven existing mechanisms and tools.

Therefore, the decision has been made to use the distutils[18] package found in the
default Python installation for the creation of the Python extension. Other tools such
as SCons[19], which do not introduce any further dependencies, were brought in where
distutils was felt to be not appropriate or not designed to handle the task at hand well.

SWIG typemaps for type conversions As we have mentioned in the previous chapter
one of the wrapper’s responsibilities is to convert and translate data types from one
language to the other. A good mapping is one of the decisive criteria that make bindings
either integrate well with common expectations found in the usage of a target language
or makes the bindings overall feeling alien more oriented towards the source language
which might follow totally different design principles and patterns. Furthermore, a
clear and well chosen mapping aids to smoothen the learning curve and makes the
binding more convenient to use. The keywords regarding type conversions for Python
are coherency, consistency and pythonic.

A lot of thought went into how to map the Coin basic types to corresponding Python

37

3.1. Why SWIG?

representatives in order to create a good, easy to learn and convenient binding. Some
choices were natural and obvious (for example, the standard types such as integer, string,
float) others were tricky and at times limited to the target language options available
at hand such as the inconspicuous “unsigned char *”. Furthermore, the overall design
was kept as similar as possible to the one found in C++ to (a) allow easier translation
of code from one language to the other and to (b) allow the reuse of existing extensive
documentation, where the small differences are pointed out.

Conversion of existing C++ code to Python In order to test the functionality of the
binding and in order to determine what are the most important aspects of the binding
that need to be tackled, already existing examples in the source language need to be
converted to the target language. They serve for testing purposes and additionally
demonstrate how to use the binding.

“The Inventor Mentor” comes with a lot of C++ examples, which were converted to
Python. The book serves as a guide to new users and covers a large part of the library.
This helped to identify the most important functionality and the missing coverage of
the wrapper very quickly. A desired side effect of the conversion of the examples is that
they serve as a self-documenting entry and reference point for new Pivy users. Apart
from teaching how to convert C++ programs to Python, the examples showcase certain
aspects of the Coin API in Python.

Integrate unit tests to verify correctness and help with maintenance Unit tests serve
the purpose to assure and verify the proper and correct operation of a binding. Cov-
ering a large part or most of the API through unit tests allows to identify problems
early. Furthermore, through the modification of parts in the binding or addition of new
functionality, unit tests indicate breakage of originally working functionality very early
in the development cycle. They serve as a quality insurance mechanism and allow to
test for working operation on different platforms very easily and quickly. Unit tests
can be applied effectively through the addition of a test case for a bug, that has been
identified and fixed. This ensures that the same bug cannot “sneak back” into the tree
unnoticed at any later time after larger modifications have take place. A nice side effect
of an extensive collection of scripts, that touch various parts of the binding, is, that they
can be used for profiling purposes in order to fine tune certain facets of the wrapper.

The unit tests turned out to be an absolutely crucial and very helpful feature. During
upgrades of the SWIG wrapper generator to newer versions they ensure that already
existing functionality continued to work and they help to identify problematic areas,
which have to be examined and addressed from the very start.

3.1 Why SWIG?

Before the creation of the binding started, an evaluation of the available existing wrapper
generator solutions, namely Boost.Python, SIP, SWIG, has been conducted. In order to find
the most suitable for the task, a list of goals and properties, the desired wrapper generator
should be able to offer, has been compiled:

Chapter 3. Creating Pivy 38

3.1. Why SWIG?

Cross-platform Coin is available for a multitude of platforms, therefore the wrapper gen-
erator should be available on all platforms Coin supports. Furthermore, the actual
generated wrapper should be usable without any modifications on all platforms for
easier deployment management.

SWIG and Boost.Python are cross-platform, available natively on all Unix platforms,
Mac OS X and Windows. SIP was not; it lacked Mac OS X and build system support
for a variety of Unix platforms and moreover a SIP Windows binary was only available
under a commercial license.

Free unrestricted license The wrapper generator should not put any restrictions or dictate
the license choice (as is the case with the GPL or commercial licenses) on the outputted
wrapper or its usage in order to be able to use it for any non-commercial and commercial
usage. SWIG and Boost.Python have free BSD-like licenses, whereas SIP Windows
usage was restricted1.

Python version support If possible no specific Python version should be enforced in order
to be able to use the wrapper with. SWIG works with older Python versions and
can make use of newer features (esp. new style classes) found in the Python interpreter
through optional flags, Boost.Python works with Python 2.2 upwards (new style classes)
where an older version is available to work with older Python versions. An older SIP
version works with older versions through the use of Python’s classic classes to wrap
C++ classes; new style classes are supported in the newer SIP versions.

Proven, wide-spread, good documentation The wrapper generator should be proven,
well understood and in wide-spread usage. Furthermore, having a community, mailing
lists and good documentation in order to be able to get support if any questions or
problems arise is a big advantage.

SWIG is the longest standing project of the compared wrapper generators and has
been publicly available since February 1996. It is in wide-spread usage today and many
projects that created a Python binding for their own purposes such as Subversion,
PyOgre, wxPython, Performer, PyOpenGL use SWIG to create wrappers. Among
other companies and research institutes Google and NASA make use of SWIG. SWIG
has extensive documentation. Boost.Python was still quite new, when first encountered
and SIP had a rather small community which was anyways mainly focused on the Qt
GUI toolkit. Apart from that there was little to no SIP documentation available.

Easy to use, extend, maintain, integrate/bridge The interface code that needs to be
written should be easy to write, extend and maintain. Furthermore, it should be possible
to integrate and bridge the generated wrapper with/to other Python bindings.

Boost.Python is a C++ library, which makes extensive usage of C++ templates. C++
templates tend to be hard to read and error messages are generated at link time, when
all types are resolved, which makes it a bit hard to maintain and develop with. It was
prefered to develop directly in the clear Python C API instead of having to use involved
C++ mechanisms, which results in an additional level of complexity and compiler issues
regarding the varying grade of C++ support.

1this seems to have changed now and it is licensed under the Python BSD-like license

Chapter 3. Creating Pivy 39

3.1. Why SWIG?

SWIG and SIP allow to directly access the actual C++ pointers of the wrapped struc-
tures and classes, which allows for integration with different bindings. However, the
well structured wrapper code generated by SWIG was found to be easier to read and
clearer, which helps a lot in debugging problems. Furthermore, the SWIG generated
wrapper code is kept very general and allows for a lot of flexibility in tweaking, which
is achieved by providing several layers, such as a Python proxy module; any part in the
type conversion code of any function or method can be overridden by self written code.

Moreover, the type conversions can be specified outside of the actual classes through
a flexible naming scheme for any type in the overall main interface, in contrast to SIP
where it has to be specified in the class after the method itself. This is a very helpful
feature when it comes to maintenance and minimizes the overall lines of code that are
necessary. The interface for a class itself can be extended and any method signature can
be redefined into a more “pythonic”2 interface. SIP ’s lack of such flexibility typically
results in a binding with a more C++ like API.

Additionally, SWIG is able to directly parse the C++ header files and therefore makes it
sufficient to just specify them in a main interface. The developer can focus on the actual
type conversion code and only create special interface files if more control is desired.
SIP more or less requires to create an interface for each and every single class. SIP tries
to solve the problem of drifting header files for different versions through the addition
of additional conditional syntax for versioning. This works for single self-contained li-
braries such as Qt, but is not efficiently manageable with different development models
or libraries, such as Coin. The reason is that apart from a couple of different devel-
opment branches, various support libraries, such as the different SoGui libraries and
additional visualization libraries, based on Coin, exist.

It is cumbersome to add new classes with SIP as again complete tweaked header files
have to be added for new classes, whereas with SWIG and a well laid out interface
structure and foundation, new classes are simply added through specifying header files
again.

And last but not least, the wrapper generator should have a stable API. The SIP
interface and internals tend to drastically change from release to release, driven by
the desire and requirements to provide a better wrapper for the Qt GUI toolkit. It is
unmaintainable to have to rewrite major parts of the interface files in order to be able
to make use of newer SIP versions. SWIG changes too with newer versions, especially
the C++ side, but backwards compatibility is prioritized. This is a necessity, as many
Python bindings in existence depend on SWIG.

Additional language bindings Another big advantage of SWIG is that different to Boost.Python
and SIP the wrapper generator allows to create bindings for various supported languages
such as C#, Java, Ruby, Perl, Tcl, etc. out of the same code base. SWIG is also able to
create a wrapper for C libraries and not only C++ as is again the case with Boost.Python
and SIP.

Covers all C++ features in Coin The wrapper generator should be able to handle all
encountered C++ features in Coin, which does not make heavy usage of them to be

2a term coined in the Python community to refer to certain syntactic idioms expected by Python program-
mers

Chapter 3. Creating Pivy 40

3.1. Why SWIG?

able to stay cross-platform and work with a large variety of different compilers.

SWIG was quite lacking, when it came to C++ support at the time it was first eval-
uated. However, support for C++ improved over the last years as wrapping C++
libraries with SWIG was requested in the SWIG community. As Coin does not make
use of advanced C++ features such as templates, exceptions and follows an “has-a”
relationship rather than an “is-a” model, this did not pose a big problem. The lack
of operator and function overloading handling back then was handled through writing
our own dispatch mechanism which checked for argument length and types in order to
differentiate between and call the right methods.

Acceptable performance As we have seen in the previous sections the calling overhead
for Python is already high. However, when wrapping a retained mode library this
is not a big concern. Both Boost.Python and SIP have an advantage over SWIG in
their generated wrapper performance. For example, SWIG uses a proxy class written
in Python for additional gains in flexibility and more suitable target language API
exposure, but the trade off is additional calling overhead. However, SWIG’s flexibility
always offers the possibility to optimize for certain parts in the wrapper, which makes
this issue not a serious restriction and concern again. We need to especially optimize
the basic types in Coin, as their code is the one that is invoked most frequently.

No additional dependencies The wrapper generator should not add additional library or
module dependencies.

SIP requires a sip module and therefore can only be installed on the system if the
wrapper is generated for the same SIP version. Boost.Python provides shared libraries,
which either need to be linked with the Python interpreter or alternatively the runtime
linker needs to be instructed where to find the libraries, if they are not supposed to
be installed on the system. SWIG creates a simple self contained Python extension
without further additional library dependencies, which allows the straightforward usage
of different SWIG versions on the same system.

Modularization As mentioned before, Coin has different support libraries. Each of them
should be independently wrapped into a Python module in order to minimize resource
usage.

SWIG provides an extensive runtime mechanism for type queries and the creation or
conversion of new types at runtime. SWIG allows external access to this runtime
mechanism, which provides the necessary means to allow the various parts to be split
and placed into separate modules as the modules have shared access to the same type
information.

As we have seen, SWIG turned out to be our best option and its few shortcomings can be
easily dealt with. Most importantly, as Coin does not make heavy usage of C++ features and
its extensions are created through usage of macros and not through an overriding inheritance
model, it was not required to use Boost.Python, which had better support for advanced C++
features. Furthermore, SWIG provides the necessary infrastructure and foundation for future
support of additional target languages without having redetermine the parts of the API that
need to be handled specially and relearn a new syntax for the wrapper generator.

Chapter 3. Creating Pivy 41

3.2. The SWIG interface and glue code

3.2 The SWIG interface and glue code

This section will cover some of the so-called SWIG typemaps that have been used for the
creation of Pivy. It will provide a discussion about the most important SWIG constructs
applied in Pivy, namely:

• how to apply the typemaps for type conversions,

• how to tweak the provided API to make it more pythonic and let SWIG handle C++
operators,

• and how to handle the Coin callbacks.

3.2.1 SWIG typemaps and type conversion/typechecks

What are typemaps and what are they used for? To answer that question we quote the
introduction paragraph of section 10.1.1 in the Typemaps chapter of the SWIG manual[20]:

One of the most important problems in wrapper code generation is the conversion
of datatypes between programming languages. Specifically, for every C/C++ decla-
ration, SWIG must somehow generate wrapper code that allows values to be passed
back and forth between languages. Since every programming language represents
data differently, this is not a simple of matter of simply linking code together with
the C linker. Instead, SWIG has to know something about how data is represented
in each language and how it can be manipulated.

The basic idea of the typemap handling mechanism in SWIG is to allow the SWIG user to
change any part or let him specify parts differently for any generated wrapper function.

Typemaps allows to handle argument, handle return values, assign and read a global variable,
assign member variables and the creation of constants.

Once defined, a typemap remains in effect for all of the declarations that follow. A typemap
may be redefined for different sections of an SWIG interface file. Typemaps have scoping
rules that allow to tie a typemaps to a specific class or define them globally.

One exception to the typemap scoping rules pertains to the %extend declaration. %extend is
used to attach new declarations to a class or structure definition. Because of this, all of the
declarations in an %extend block are subject to the typemap rules that are in effect at the
point where the class itself is defined.

Furthermore, typemaps come with an extensive pattern matching mechanism, which allows
the user to define general typemaps that will be applied for the method signatures matching
the specified arguments pattern. Those patterns matches allow for argument type matches
or argument type and argument name matches, which makes them incredibly powerful and
is extremely well suited for APIs that follow the same design pattern as through a couple of
global typemap specifications a wide range of the API can be covered.

Chapter 3. Creating Pivy 42

3.2. The SWIG interface and glue code

3.2.2 SbName typemap example

For example, in the interfaces/pivy common typemaps.i SWIG interface file, we define typemaps
with global scope that should be applied to any matching signature:

287 %typemap (in) SbName & {
288 i f (PyString Check ($input)) {
289 $1 = new SbName(PyStr ing AsStr ing ($input)) ;
290 } else {
291 SbName ∗ tmp = NULL;
292 $1 = new SbName ;
293 SWIG ConvertPtr ($input , (void ∗∗)&tmp , SWIGTYPE p SbName , 1) ;
294 ∗$1 = ∗tmp ;
295 }
296 }

Listing 3.1: SbName global input typemap

In fact this is a very interesting input typemap, which allows any method accepting an Sb-
Name argument to optionally be provided by a regular Python string from Python. After
the typemap declaration, where we tell SWIG what kind of typemap we are dealing with, we
specify the datatype this typemap should be applied to when encountered. In our case this is
SbName & (line 287). Note the ampersand (&) at the end. This typemap is not going to be
applied for any signature that does not take a SbName & reference as an argument but for
example a plain SbName instead. However, it is going to get applied for pointer arguments,
such as SbName *, as SWIG treats C++ references as pointers internally.

What this typemap then does is to check if the provided input argument $input is a Python
string (line 288) upon which it will create a new SbName class and assign it to $1 (line 289),
where $n which is the general substitute or a special variable referring to a local C/C++
variable corresponding to type n in the typemap pattern. In our case we only have a single
SbName & variable, so it is the first an only one and therefore $1.

If the input argument turns out not to be a Python string, then in the else branch of the
conditional we extract the contained SbName class through the provided SWIG runtime
system function SWIG ConvertPtr() (line 293).

Why do we create a tmp variable (line 291) and copy over the contents from the object (line
294) to a newly allocated SbName instance (line 292) instead of simply assigning $1 directly
in the SWIG ConvertPtr() function, which is perfectly legitimate? The reason for that is,
that we create a problem with freeing the SbName instance later on as we cannot free the
instance contained in $1. The ownership of the object might be assigned to the Python side
and therefore we are then not allowed to free it. Furthermore, checking the ownership is not
an option in this particular case, as the freearg typemap, which allows to add typemap code
for freeing arguments, only passes the C/C++ values and not the SWIG wrapped Python
object anymore. If we decide not to free it we create a memory leak. Therefore, we copy it
and can be sure that the code can be safely freed for both cases as we always create a new
SbName instance.

Chapter 3. Creating Pivy 43

3.2. The SWIG interface and glue code

298 %typemap (f r e e a r g) SbName & {
299 i f ($1) { de l e t e $1 ; }
300 }

Listing 3.2: SbName global freearg typemap

Listing 3.3 presents the generated wrapper code for

1 stat ic SoNode ∗ getByName(const SbName &name) ;

which takes an SbName & input argument and where we can see our typemaps getting
applied (line 9-16, 24-26 and 31-33).

1 stat ic PyObject ∗ wrap SoNode getByName SWIG 0 (PyObject ∗ ,
PyObject ∗ args) {

2 PyObject ∗ r e s u l t o b j = NULL;
3 SbName ∗ arg1 = 0 ;
4 SoNode ∗ r e s u l t ;
5 PyObject ∗ obj0 = 0 ;
6
7 i f (! PyArg ParseTuple (args , (char ∗) ”O: SoNode getByName”,&obj0))

goto f a i l ;
8 {
9 i f (PyString Check (obj0)) {

10 arg1 = new SbName(PyStr ing AsStr ing (obj0)) ;
11 } else {
12 SbName ∗ tmp = NULL;
13 arg1 = new SbName ;
14 SWIG ConvertPtr (obj0 , (void ∗∗)&tmp , SWIGTYPE p SbName ,

1) ;
15 ∗ arg1 = ∗tmp ;
16 }
17 }
18 r e s u l t = (SoNode ∗) SoNode : : getByName ((SbName const &)∗ arg1) ;
19
20 {
21 r e s u l t o b j = autoca s t ba s e (r e s u l t) ;
22 }
23 {
24 i f (arg1) {
25 delete arg1 ;
26 }
27 }
28 return r e s u l t o b j ;
29 f a i l :
30 {
31 i f (arg1) {

Chapter 3. Creating Pivy 44

3.2. The SWIG interface and glue code

32 delete arg1 ;
33 }
34 }
35 return NULL;
36 }

Listing 3.3: The SWIG generated wrapper code for SoNode::getByName()

3.2.3 SWIG’s shadow classes

In addition to the C module extension wrapper code, SWIG creates an accompanying Python
proxy module (also known as shadow modules) in order to provide a more natural API. These
proxy classes are typically implemented in the target language itself.

Proxy classes are used to keep track of the ownership in the thisown flag; they contain and
expose the C++ pointer to the actual wrapped C++ object in a special this instance in each
class. The “shadow” class is implemented in the target language, which allows to attach new
Python methods to the class and allows to further inherit from it. Again any part in the
proxy class can be overridden or extended through a %feature(“shadow”) directive.

In order for SWIG to provide a flexible and very general mechanism, the “shadow” class meth-
ods takes an variable number of arguments *args by default. When the Python interpreter
is used in interactive mode the method signature of such methods are not very descriptive
to the developer as it cannot be seen what kind of parameters are allowed. To remedy that
SWIG provides an autodoc feature. The autodoc feature can be enabled in order to create
according Python docstrings which provide the necessary information as can be seen in the
next Listing 3.3 for the generated proxy code of the SoNode.getByName() method:

1 class SoNode (SoFie ldConta iner) :
2 ”””Proxy o f C++ SoNode c l a s s ”””
3 . . .
4 def getByName(∗ args) :
5 ”””
6 getByName(SbName name) −> SoNode
7 getByName(SbName name , SoNodeList l) −> i n t
8 ”””
9 return c o i n . SoNode getByName (∗ args)

10
11 getByName = stat icmethod (getByName)

Listing 3.4: The SWIG generated Python proxy SoNode.getByName()

3.2.4 Autocasting

In Listing 3.3 of the SWIG generated wrapper code for SoNode::getByName() we can see
another interesting function call in line 21:

Chapter 3. Creating Pivy 45

3.2. The SWIG interface and glue code

r e s u l t o b j = autoca s t ba s e (r e s u l t) ;

Pivy features a mechanism to automatically cast pointers to their right type. This is done
through the combined usage of the dynamic runtime introspection mechanisms found in the
OpenInventor API and the SWIG runtime features.

In order to “autocast” for example Coin nodes inherited from SoBase, we create the following
output typemap. It will invoke the specified code before the wrapper returns its argument:

209 %typemap (out) SoBase ∗ {
210 $ r e s u l t = autoca s t ba s e ($1) ;
211 }

Listing 3.5: Output typemap invoking the autocast base function

The SWIG variable $result contains the Python return value. We pass the $1 input argument
of type SoBase * to our own autocast base function, that will conduct the “autocasting”.

In Listing 3.6 we first make sure, through Coin runtime system usage, if the base object
passed to our function is actually inherited from SoFieldContainer through the method
isOfType() (line 78). We then gather the real type of the node through the invocation
of the getTypeId() method on the passed instance (line 81). Afterwards we create a new
SWIG object of type SoBase (line 85) and create an Python argument object, that contains
the new SWIG object in the first item and the typename of the object, which we gathered
from the Inventor runtime system, as a string in the second item (line 86). This cast args
argument is then passed to our cast function with the first self instance that contains NULL
(line 88). The reason we factor the actual cast out to another function is twofold:

1. The cast function gets exposed to Python, where it allows the Pivy user to initiate
manual casts if that should be found necessary. This also explains why we have to
create a Python argument first in order to be able pass it to the cast function.

2. autocast base() is not the only function that is used for “autocasting”. We further need
to provide “autocasting” functions for paths, fields and events. In order to collect all
common code in one function to make the code-base more readable and maintainable,
we simply reuse the common part through the cast function.

The code is embedded in a while loop (line 84) that serves the purpose to cast back to the first
built-in node that is known to the Coin runtime system in order to be able to “autocast” and
therefore make use of unknown and unwrapped nodes in Pivy. The loop either terminates if
no such node can be found or a result has been acquired. We ask the Coin runtime system
to provide the parent type of the inheritance hierarchy if the cast function was failing so far
(line 93).

71 /∗ au toca s t i n g he l p e r func t i on f o r SoBase ∗/
72 SWIGEXPORT PyObject ∗
73 autoca s t ba s e (SoBase ∗ base)
74 {

Chapter 3. Creating Pivy 46

3.2. The SWIG interface and glue code

75 PyObject ∗ r e s u l t = NULL;
76
77 /∗ au tocas t the r e s u l t to the corresponding type ∗/
78 i f (base && base−>isOfType (SoFie ldConta iner : : getClassTypeId ())) {
79 PyObject ∗ c a s t a r g s = NULL;
80 PyObject ∗ obj = NULL;
81 SoType type = base−>getTypeId () ;
82
83 /∗ in case o f a non b u i l t−in type ge t the c l o s e s t b u i l t−in

parent ∗/
84 while (! (type . isBad () | | r e s u l t)) {
85 obj = SWIG NewPointerObj ((void ∗) base , SWIGTYPE p SoBase , 0) ;
86 c a s t a r g s = Py BuildValue (” (Os) ” , obj , type . getName () .

g e tS t r i ng ()) ;
87
88 r e s u l t = cas t (NULL, c a s t a r g s) ;
89
90 Py DECREF(c a s t a r g s) ;
91 Py DECREF(obj) ;
92
93 i f (! r e s u l t) { type = type . getParent () ; }
94 }
95 }
96
97 i f (! r e s u l t) {
98 Py INCREF(Py None) ;
99 r e s u l t = Py None ;

100 }
101
102 return r e s u l t ;
103 }

Listing 3.6: The autocast base() helper function

The cast function is found in the pivy common typemaps.i interface file as well. In order to
tell SWIG that it should include it into the generated wrapper we make use of the %native
directive:

237 %nat ive (ca s t) PyObject ∗ ca s t (PyObject ∗ s e l f , PyObject ∗ args) ;

Listing 3.7: Exposing the cast() function to SWIG

As mentioned above the cast function is implemented as a C Python function. After
the variable declaration block, where we also declare the SWIG runtime structure of type
swig type info (line 25), we extract the passed arguments (line 31). The SWIG runtime type
system maps the Coin types to strings which contains their name with a pointer sign at the
end. So a “SoSeparator” should be provided as “SoSeparator *” to let the SWIG’s run-
time SWIG TypeQuery() work. In order to at least provide a more natural interface to the

Chapter 3. Creating Pivy 47

3.2. The SWIG interface and glue code

Python developer for the “unpythonic” cast function, we only require the class name itself
without a pointer and insert it in the function automatically (line 40-44). We try to query
the type in the swig type system information (line 46), should this invocation fail, we prefix
the typename with So and try again (line 48-58). This is necessary as the OpenInventor API
allows the built-in types to be referred to without the So prefix. We then extract the C++
pointer of our Coin instance out of our original SWIG object through SWIG ConvertPtr()
(line 63) and proceed then with the actual cast-a-like through the creation of a new SWIG
object with the SWIG type information gathered previously from the type system (line 66).

21 /∗ a ca s t i n g he l p e r func t i on ∗/
22 SWIGEXPORT PyObject ∗
23 ca s t (PyObject ∗ s e l f , PyObject ∗ args)
24 {
25 sw i g t yp e i n f o ∗ swig type = 0 ;
26 void ∗ c a s t ob j = 0 ;
27 char ∗ type name , ∗ pt r type ;
28 int t ype l en ;
29 PyObject ∗ obj = 0 ;
30
31 i f (! PyArg ParseTuple (args , ”Os#: ca s t ” , &obj , &type name , &

type l en)) {
32 SWIG fail ;
33 }
34
35 /∗
36 ∗ add a po in t e r s i gn to the s t r i n g coming from the i n t e r p r e t e r
37 ∗ e . g . ”SoSeparator ” becomes ”SoSeparator ∗” − so t ha t

SWIG TypeQuery ()
38 ∗ can do i t s j ob .
39 ∗/
40 i f (! (p t r type = (char∗) mal loc (type l en +3))) { SWIG fail ; }
41
42 memset (ptr type , 0 , t ype l en +3) ;
43 strncpy (ptr type , type name , type l en) ;
44 s t r c a t (ptr type , ” ∗”) ;
45
46 i f (! (swig type = SWIG TypeQuery(pt r type))) {
47 /∗ the b r i t n e y maneuver : ” baby one more time” by p r e f i x i n g ’So ’

∗/
48 char ∗ cast name = (char∗) mal loc (type l en + 5) ;
49 memset (cast name , 0 , t ype l en + 5) ;
50 cast name [0] = ’S ’ ; cast name [1] = ’ o ’ ;
51 strncpy (cast name+2, ptr type , t ype l en +2) ;
52
53 i f (! (swig type = SWIG TypeQuery(cast name))) {
54 f r e e (cast name) ; f r e e (p t r type) ;
55 SWIG fail ;

Chapter 3. Creating Pivy 48

3.2. The SWIG interface and glue code

56 }
57
58 f r e e (cast name) ;
59 }
60
61 f r e e (p t r type) ;
62
63 SWIG ConvertPtr (obj , (void ∗∗)&cas t ob j , NULL,

SWIG POINTER EXCEPTION | 0) ;
64 i f (SWIG arg fa i l (1)) { SWIG fail ; }
65
66 return SWIG NewPointerObj ((void ∗) ca s t ob j , swig type , 0) ;
67 f a i l :
68 return NULL;
69 }

Listing 3.8: The cast() helper function

3.2.5 Autorefcounting

As we have seen in the previous chapter Coin uses reference counting for memory management.
It is quite cumbersome if we have to deal with and think about memory management on the
Python side as one of the strengths of a dynamic language is that the developer does not have
to worry about low-level memory management required.

So can we automatize the reference counting process and couple it to the Python allocation
and deallocation routines that use reference counting themselves?

If we have a look again at the reference counting rules presented in the previous chapter in
table 2.1 (page 16) we see that if a node is added to a node as a child of another node this
increments the child’s reference count.

We need to ensure the correct handling of the following two situation:

1. The reference count should never drop to zero as long as a Python instance “owning”
the Coin node is allocated as the SWIG structure otherwise points to a deallocated
memory area and will either cause memory corruption or a segmentation fault.

2. Should a Python object fall out of scope and therefore get deallocated, but a reference
to the Coin node is still needed, the reference count should not drop to zero again. In
this case the ownership additionally needs to be transferred to the C++ side.

An example for the second case is the following:

Chapter 3. Creating Pivy 49

3.2. The SWIG interface and glue code

1 def addCone (sep) :
2 sep . addChild (SoCone ())
3
4 addCone (SoSeparator ())

Listing 3.9: Reference Counting and Python scoping rules

The addCone() function is invoked with a newly instantiated SoSeparator as its argument.
A newly instantiated SoCone instance is added to the SoSeparator. Now the instantiated
SoCone object gets out of scope and therefore deallocated; unref()’ing the object now
causes the reference count drop to zero with the undesired side effect, that the C++ node
gets deallocated too.

The answer to all those considerations is surprisingly simple. Every Python object will always
increase the Coin node’s reference count on allocation through the invocation of ref(). Upon
deallocation it will invoke an unref() causing the reference count to drop to zero. If the
Coin node has been added as a child to a grouping node its reference count will be two and
therefore drop to one, which at the same time solves the ownership question very elegantly:
the Python object has been deallocated and apart from the reference count being correct on
the C++ side, the Coin C++ instance is correctly deallocated once it is removed from the
grouping node.

SWIG offers a ready to use feature for the reference count handling as it is commonly en-
countered in various projects.

1 /∗ l e t SWIG handle r e f e r ence count ing f o r a l l SoBase der i v ed
c l a s s e s ∗/

2 %f e a tu r e (” r e f ”) SoBase ” $th i s−>r e f () ; ”
3 %f e a tu r e (” unre f ”) SoBase ” $th i s−>unre f () ; ”

Listing 3.10: Reference Counting and

Through usage of the %feature(“ref”) and accordingly %feature(“unref”), we are able to
tell SWIG to call the ref() and unref() methods for all SoBase derived nodes. This works
well for the allocation of Python objects. Unfortunately, this causes a memory leak. The
reason for that is that by default the destructors of the nodes are declared in the protected
section to prohibit exposure of the destructors as the reference counting mechanism should
be used. This leads to:

1. SWIG not creating wrapper code for destructors and therefore the %feature(“unref”)
directive will never be able to add the unref() invocation to any node inherited from
SoBase.

2. a memory leak.

Again the solution for this problem is simple: We %extend the SoBase SWIG interface
file with a destructor that invokes unref(). This causes SWIG to generate a wrapper for a
destructor for every SoBase derived node, which then calls unref() on deallocation of the
Python object.

Chapter 3. Creating Pivy 50

3.2. The SWIG interface and glue code

1 %extend SoBase {
2 /∗ add a pu b l i c d e s t r u c t o r − o therw i s e r e f coun t o f new SoBase
3 ∗ der i v ed ins tances , r a i s ed by the au t o r e f f ea ture , never g e t s
4 ∗ decreased ∗/
5 ˜SoBase () { s e l f −>unre f () ; }
6 }

Listing 3.11: SoBase %extended with a destructor

3.2.6 Method/operator overloading

The Coin C++ API heavily uses method and operator overloading. Method overloading is
handled through SWIG where it implements its own dispatching mechanism to determine
which method needs to be invoked based on the following two rules3:

1. Number of required arguments, where methods are sorted by an increasing number of
required arguments.

2. Argument type precedence, where all C++ datatypes are assigned a numeric type prece-
dence value.

The dispatch mechanism can always be manually refined in case of border cases. The SWIG
%rename directive, which allows to rename certain functions, and %ignore directive is used
to achieve that.

In order to wrap overloaded operators a combination of the SWIG %extend and Python’s
special methods can be used. The following listing shows the overloaded operator handling
for the SbVec3f basic type class, where self is a pointer to the SbVec3f instance:

1 %extend SbVec3f {
2 SbVec3f
3 add (const SbVec3f &u) { return ∗ s e l f + u ; }
4 SbVec3f
5 s u b (const SbVec3f &u) { return ∗ s e l f − u ; }
6 SbVec3f
7 mu l (const f loat d) { return ∗ s e l f ∗ d ; }
8 SbVec3f
9 rmu l (const f loat d) { return ∗ s e l f ∗ d ; }

10 SbVec3f
11 d i v (const f loat d) { return ∗ s e l f / d ; }
12 int
13 e q (const SbVec3f &u) { return ∗ s e l f == u ; }
14 int
15 nq (const SbVec3f &u) { return ∗ s e l f != u ; }

3The exact rules are found in chapter 6 “SWIG and C++” of the SWIG manual

Chapter 3. Creating Pivy 51

3.2. The SWIG interface and glue code

16 // add a method f o r wrapping c++ opera tor [] acces s
17 f loat
18 g e t i t em (int i) { return (s e l f −>getValue ()) [i] ; }
19 void
20 s e t i t em (int i , f loat value) { (∗ s e l f) [i] = value ; }
21 }

Listing 3.12: Overloaded operators handling through %extend

3.2.7 Python field assignment operator handling

However, operator= cannot be handled in this fashion as there is no direct synonym for
that in Python. In order to still provide a similar syntax and to provide similar functionality
to overloading the assignment operator, which are specially useful for field assignments, we
can make use the getattr and setattr special Python methods dealing with attribute
access.

The current implementation in Python is shown in the next listing which is found in the
fields/SoFieldContainer.i SWIG interface file:

1 %pythoncode %{
2 def g e t a t t r (s e l f , name) :
3 try :
4 return SoBase . g e t a t t r i b u t e (s e l f , name)
5 except Attr ibuteError , e :
6 f i e l d = s e l f . g e tF i e l d (name)
7 i f f i e l d i s None :
8 raise e
9 return f i e l d

10
11 def s e t a t t r (s e l f , name , va lue) :
12 i f name == ’ t h i s ’ :
13 return SoBase . s e t a t t r (s e l f , name , va lue)
14 f i e l d = s e l f . g e tF i e l d (name)
15 i f f i e l d i s None :
16 return SoBase . s e t a t t r (s e l f , name , va lue)
17 f i e l d . setValue (va lue)
18 return f i e l d
19 %}

Listing 3.13: Python attributes special methods for assignment operator overloading

This solution has however one major drawback: it is currently very slow! This code needs to
be run for every single field access invocation and Python itself adds calling overhead.

We can profile the code snippets in the next listings through usage of the standard Python
profiler. The first code snippet is using the direct setValue() interface and the second snippet
the field assignment operator.

Chapter 3. Creating Pivy 52

3.2. The SWIG interface and glue code

1 ## Fi r s t code sn i ppe t us ing se tVa lue ()
2 from pivy . co in import SoMater ia l
3
4 s = SoMater ia l ()
5 d = s . d i f f u s eCo l o r
6 for i in range (100000) :
7 d . setValue (0 . 1 , 0 . 2 , 0 . 3)
8
9 ## Second code sn i ppe t us ing f i e l d assignment

10 from pivy . co in import SoMater ia l
11
12 s = SoMater ia l ()
13 for i in range (100000) :
14 s . d i f f u s eCo l o r = (0 . 1 , 0 . 2 , 0 . 3)

Listing 3.14: Profiling assignment operator overhead

Listing 3.15 shows how we invoke the Python profiler for both code snippets:

1 $ for sn ippet in sn ippet {1 ,2} . py ; do
2 > python −m p r o f i l e −s time $sn ippet
3 > done

Listing 3.15: Invoking the Python profiler ordered by internal time

As we can see in Table 3.1 and 3.2, the second code snippet, which uses our assignment
operator overload, takes ∼25 seconds with most of the time spent in the concerningly slow
getField() method invocation, compared to the one that uses the direct setValue() invo-
cations which needs ∼1.5 seconds. Therefore heavy usage of the field assignment operator
is currently discouraged unless used for interactive sessions or performance uncritical parts
such as the construction of the scene graph at startup time.

The current solution for the assignment operator overload handling needs to be optimized as
the current getField() implementation takes too much time. This also exemplifies the type
of main problems we need to deal with, if we had chosen a fully runtime based approach as
discussed in the “Manual wrapping through runtime system usage” section on page 29.

ncalls tottime percall cumtime percall filename:lineno(function)
100000 0.800 0.000 0.800 0.000 coin.py:33555(setValue)

1 0.360 0.360 1.450 1.450 snippet1.py:2(?)
1 0.150 0.150 0.210 0.210 coin.py:10(?)
1 0.060 0.060 0.280 0.280 init .py:17(?)

Table 3.1: Snippet 1: 113258 function calls in 1.450 CPU seconds

Chapter 3. Creating Pivy 53

3.2. The SWIG interface and glue code

ncalls tottime percall cumtime percall filename:lineno(function)
100006 18.570 0.000 21.000 0.000 coin.py:3659(getField)
100000 1.470 0.000 1.470 0.000 coin.py:33555(setValue)
100006 0.970 0.000 23.440 0.000 coin.py:3777(setattr)

1 0.940 0.940 24.970 24.970 snippet2.py:2(?)

Table 3.2: Snippet 2: 913251 function calls in 24.970 CPU seconds

3.2.8 Callback handling

A very important part of the OpenInventor API is callback handling. It should be possible
to create callback handlers in Python and tell Coin to invoke those. In order to make that
work, we need a kind of proxy function that gets registered on the C++ side and which takes
care to forward invocation requests to the right callable Python object.

To solve that problem we make use of SWIG typemaps, the %extend directive and a proxy
function, which acts as our callback handler.

We will demonstrate how to handle callbacks considering the SoCallback case as example.
The SoCallback class defines a method named setCallback that has the following signature:

1 void SoCallback : : s e tCa l lback (SoCallbackCB ∗ funct ion ,
2 void ∗ userdata = NULL) ;

The SoCallback::setCallback() methods sets up the function to call at traversal of this
node. userdata will be passed back as the first argument of the callback function.

The callback function should have the following signature:

1 void mycallback (void ∗ userdata , SoAction ∗ ac t i on) ;

We extend the SoCallback interface with our own setCallback() method. This one will
provide the original Coin setCallback() methods with our proxy function callback handler
(line 38) and construct an argument tuple that contains the actual Python callable object
pyfunc and userdata arguments (line 39-41) that the user provided. This will be looped
through the userdata argument of our original Coin setCallback() method to our proxy
function callback handler.

36 %extend SoCallback {
37 void s e tCa l lback (PyObject ∗pyfunc , PyObject ∗ userdata = NULL) {
38 s e l f −>s e tCa l lback (SoPythonCallBack ,
39 (void ∗) Py BuildValue (” (OO)” ,
40 pyfunc ,
41 userdata ? userdata : Py None)) ;
42 }
43 }

Listing 3.16: Extending the SoCallback::setCallback method

Chapter 3. Creating Pivy 54

3.2. The SWIG interface and glue code

The proxy function callback handler, named SoPythonCallback, will convert the action
argument passed to a new SWIG structure through usage of the SWIG NewPointerObj()
function (line 8). It extracts the Python callable object (line 10) out of our previously created
tuple that we looped through and are now provided with in the userdata argument. It
constructs the argument list for the Python callable object (line 11) that will follow the same
signature as in the C++ mycallback callback handler case above. We pass the userdata as
the first argument, gathered from the original setCallback() invocation in Python, and pass
the recently converted original action object as the second argument. We then evaluate our
Python callable object (line 13) at which point our Python callback handler gets invoked.

2 stat ic void
3 SoPythonCallBack (void ∗ userdata , SoAction ∗ ac t i on)
4 {
5 PyObject ∗ func , ∗ a r g l i s t ;
6 PyObject ∗ r e su l t , ∗acCB ;
7
8 acCB = SWIG NewPointerObj ((void ∗) act ion , SWIGTYPE p SoAction , 0)

;
9

10 func = PyTuple GetItem ((PyObject ∗) userdata , 0) ;
11 a r g l i s t = Py BuildValue (” (OO)” , PyTuple GetItem ((PyObject ∗)

userdata , 1) , acCB) ;
12
13 i f ((r e s u l t = PyEval Cal lObject (func , a r g l i s t)) == NULL) {
14 PyErr Print () ;
15 }
16
17 Py DECREF(a r g l i s t) ;
18 Py DECREF(acCB) ;
19 Py XDECREF(r e s u l t) ;
20 }

Listing 3.17: The proxy function callback handler

It is now very important to make sure that no memory leaks occur in this process by proper
and correct deallocation (line 17-19) as callback handlers are likely to be invoked many times
in the lifetime of a Coin application and leaking can render an application useless.

23 %typemap (in) PyObject ∗pyfunc {
24 i f (! PyCallable Check ($input)) {
25 PyErr SetStr ing (PyExc TypeError , ”need a c a l l a b l e ob j e c t ! ”) ;
26 return NULL;
27 }
28 $1 = $input ;
29 }

Listing 3.18: The proxy function callback handler

Chapter 3. Creating Pivy 55

3.2. The SWIG interface and glue code

The last task that remains to be done is to specify a typemap (Listing 3.18) which checks if
the user provided an callable object and raises an corresponding exception in the case it was
not.

As the Sensors are not SoBase derived classes and therefore do not provide the required
SoBase::getTypeId() to query the type from the Coin runtime type system, casts through
the provided cast() function have to be provided still manually in the callback handlers.
A simple solution that has been implemented, is to provide a third item, which represents
the type string (e.g. SoNodeSensor, SoAlarmSensor etc.) in the Python tuple that gets
passed in the “void * data” argument of the callback handlers. This allows the callback
handlers to register and invoke the casting function with the right type as we always know
where the actual invocation came from. At the same time this permits to implement a generic
solution, which works for all Sensor nodes.

3.2.9 Mapping C++ data types to Python

As stated in the introduction of this chapter data type conversions are a very important part
of the binding. However, in order to make a binding more suitable, certain data types or
classes found in the Coin C++ API should be mapped on to Python datatypes. Especially
when they allow programs written in the target language to integrate better with the overall
syntax.

The decision has been made to keep the original classes with their C++ API exposed in order
to allow easier conversion of Python programs to C++. This is helpful for usage of Pivy as
a prototyping tool or for use cases where performance is a concern, as those additional type
conversions require additional memory copies, which have an impact on overall execution
performance.

Table 3.3 shows some of the mapped basic types. As we have seen in the “SbName typemap
example” section global checks are available, which allow those type conversions to take place
transparently without changing the API. Extending the API in such a non-intrusive way
offers further flexibility and choice on the user side through providing an explicit and simple
pattern to follow. Most importantly: the original documentation for C++ stays valid, which
smoothes the learning curve.

C++ basic type Python
SbColor (fff) tuple
SbMatrix ((ffff)(ffff)(ffff)(ffff)) tuple
SbName String

SbRotation (ffff) tuple
SbString String
SbTime float tuple
SbVec2d (ii) tuple
SbVec3f (fff) tuple

Table 3.3: Some examples of Python mapped Inventor basic types

Chapter 3. Creating Pivy 56

3.3. Bridging to the SoGui bindings

3.2.10 Special treatment for unsigned char *

The “unsigned char *” data type deserves special mentioning as at first sight it might be
assumed that it can be simply handled as a C character string. This particular datatype gets
for example used in the SbImage basic type which is an abstract datatype for 2D and 3D
images. To handle “unsigned char *” as a string and therefore using the Python String
functions PyString FromString and PyString AsString to process them will not work
as they can contain ’\0’ characters4. The memory areas pointed to by “unsigned char *”
pointers contain rather C arrays with a certain length.

Python lacks a designated Array data type in the Python C API. However, various efficient
numerical array implementations exist, such as NumPy5 and numarray6 exist but have not
yet been integrated into the standard Python distribution and it remains uncertain when and
if that will happen. They provide their own Python data types and C APIs that can be used
but create additional library dependencies.

As data still is required to be copied in memory forth and back from the C++ side to the
Python side, even if their respective C APIs are used7, the decision was therefore made to
use the PyString AsStringAndSize() function of the Python C API. The PyString -
AsStringAndSize() function allows to treat a memory region as a string but copies the
region specified by the size argument disregarding any ’\0’ characters. Additional usage
of SWIG typemaps and the Coin API allow to extract and gather the length for their
transformation. The numerical extensions can be still made use of from the Python side8

and no additional library dependencies are created. This helps in deployment and allows
Pivy to stay general and to integrate with a wider variety of use cases. Should an array
implementation get part of the standard Python distribution the typemaps can be quickly
adjusted to make use of this new array facility. If it is required for special purposes9, the
involved typemaps can always be adjusted to interface to one of the currently existing array
implementations.

3.3 Bridging to the SoGui bindings

The final section of this chapter demonstrates how the different toolkit bindings, among other
tasks responsible for OpenGL context setup, have been wrapped. Furthermore, the approach
of creating a bridge to existing Python toolkit bindings, such as PyQt10, will be discussed.
The examples will focus on the SoQt integration as a bridge to the aforementioned PyQt
Python binding has been developed.

4which are interpreted as string terminators in C
5http://numeric.scipy.org/
6http://www.stsci.edu/resources/software_hardware/numarray
7which is a big performance concern for very large arrays
8as they still appear as strings on the Python side
9in fact it has been considered to be done for the SIM Voleon Python module

10a Python binding for the Qt GUI toolkit

Chapter 3. Creating Pivy 57

http://numeric.scipy.org/
http://www.stsci.edu/resources/software_hardware/numarray

3.3. Bridging to the SoGui bindings

3.3.1 SoGui modules

To allow for modularization and better resource usage all satellite libraries such as the SoGui
libraries are contained in their own extension module. The SWIG runtime support allows ex-
ternal access to the runtime and allows to gather the type information through the %import
directive, which will not create any wrapper code but instead provide the SWIG type system
with the necessary type information.

74 %import (module=”pivy ”) co in . i

Listing 3.19: Importing the pivy main interface in soqt.i

The main SWIG interface file for the SoQt toolkit is located in interfaces/soqt.i. Apart
from the necessary SWIG specification it contains additional typemaps that deal with the
conversion and routines for the bridge of the Qt classes to structures suitable for PyQt.

The next listing shows the line that specifies the name of the module and which package it
should be located in; in our case: pivy.gui.

24 %module (package=”pivy . gui ”) soqt

Listing 3.20: The SWIG module declaration in soqt.i

3.3.2 PyQt bridging

To allow Pivy users to make use of the native wrapped Qt classes such as QWidget or
QEvent for further manipulation through the PyQt Python binding, we need to create a
bridge that translates our SWIG structures to SIP11 structure.

The bridge to PyQt really just deals with two aspects:

1. Direct access to and extraction of the C++ Qt pointer contained in PyQt.

2. Forth and back wrapping of the encapsulated pointers into corresponding SWIG or SIP
structures.

Fortunately, both wrapper generators provide functions for direct access to the wrapped C++
pointers, which point to the actual memory locations of the actual Qt instances and allow
the creation of new wrapper structures at runtime.

As SIP can be used as a Python module, which we import into our namespace to look up the
necessary SIP unwrapinstance(obj) and wrapinstance(addr, type) functions. Through
this manner we avoid the creation of an additional library dependency to the SIP library.
Should the SIP import fail, we assume it has not been installed and PyQt support is not
desired. We then simply continue to use our own SoQt SWIG structures.

The next listing shows the input typemap for the Qevent class, where we can see the import
attempt of the sip module (line 175), where we first check if it can be been found in the

11as SIP is the wrapper generator that has been used to create the PyQt binding

Chapter 3. Creating Pivy 58

3.3. Bridging to the SoGui bindings

global namespace (line 174). Should the import work we continue and try to get hold of the
unwrapinstance() function (line 181) and check if it is a callable Python object (line 183).
We then invoke it with our $input argument, which is then a SIP structure created by PyQt
in order to get hold of the actual pointer address to the wrapped C++ instance (line 186).
This address contained in a Python long object, we forcibly cast to a QEvent * (line 226)
and the result of this operation is our QEvent class instance that we can pass to SoQt in $1
for further processing.

Should the import fail, it will raise an PyExc ImportError exception in which case we
know that no sip module can be imported and that $input is a SWIG and not a PyQt
SIP structure. We therefore proceed normally, clear the exception (line 235) and extract the
pointer to the QEvent * instance through SWIG ConvertPtr() (line 236).

169 %typemap (in) QEvent ∗ {
170 {
171 PyObject ∗ s i p ;
172
173 /∗ check i f the s i p module i s a v a i l a b l e and import i t ∗/
174 i f (! (s i p = PyDict GetItemString (PyModule GetDict (

PyImport AddModule (” ma in ”)) , ” s i p ”))) {
175 s i p = PyImport ImportModule (” s i p ”) ;
176 }
177
178 i f (s i p && PyModule Check (s i p)) {
179 /∗ grab the unwrapinstance (ob j) f unc t i on ∗/
180 PyObject ∗ s i p unwrap in s t func ;
181 s ip unwrap in s t func = PyDict GetItemString (PyModule GetDict (

s i p) , ” unwrapinstance ”) ;
182
183 i f (PyCal lable Check (s ip unwrap in s t func)) {
184 PyObject ∗ a r g l i s t , ∗ address ;
185 a r g l i s t = Py BuildValue (” (O) ” , $ input) ;
186 i f (! (address = PyEval Cal lObject (s ip unwrap ins t func ,

a r g l i s t))) {
187 PyErr Print () ;
188 } else i f (PyNumber Check (address)) {
189 $1 = (QEvent∗)PyLong AsLong (address) ;
190 }
191
192 Py DECREF(a r g l i s t) ;
193 }
194 }
195 }
196
197 i f (PyErr ExceptionMatches (PyExc ImportError) | | ! $1) {
198 PyErr Clear () ;

Chapter 3. Creating Pivy 59

3.3. Bridging to the SoGui bindings

199 i f ((SWIG ConvertPtr ($input , (void ∗∗)(&$1) , SWIGTYPE p QEvent ,
SWIG POINTER EXCEPTION | 0)) == −1) SWIG fail ;

200 }
201 }

Listing 3.21: The QEvent * input typemap

3.3.3 Decoupling the main loop for interactive sessions

We need to “decouple” the main loop of the SoQt binding in order to allow interactive usage
out of the Python interpreter, when the SoQt::mainLoop() is invoked as it otherwise will
not allow the user to type in any commands for further evaluation.

We do that through the creation of our own mainLoop() which overrides the original one.
We then check if the Python interpreter is an interactive one by inspecting the value con-
tained in sys.argv[0] which is then be empty (line 6). We spawn a new thread through
the Coin thread abstraction function cc thread construct, which will invoke our Pivy -
PythonInteractiveLoop() helper function (line 7). Right after that we start the real
SoQt::mainLoop() (line 8) and once this exits stops and destructs the allocated thread
(line 9-11) and exits the Python interactive loop (line 12) at which point we return to our
original Python interactive loop in the main thread. In the other case where a Pivy program
has been regularly invoked from the command line, i.e. non interactively, we just call the
SoQt::mainLoop() as usual.

1 %extend SoQt {
2 stat ic void mainLoop () {
3 PyRun SimpleString (” import sys ”) ;
4 PyObject ∗d = PyModule GetDict (PyImport AddModule (” ma in ”)) ;
5 PyObject ∗ r e s u l t = PyRun String (” sys . argv [0] ” , Py eva l input , d

, d) ;
6 i f (! strcmp (PyStr ing AsStr ing (r e s u l t) , ””)) {
7 cc thread ∗py thread = cc th r e ad con s t ru c t (

Pivy PythonInteract iveLoop , NULL) ;
8 SoQt : : mainLoop () ;
9 void ∗ r e t v a l = NULL;

10 c c t h r e a d j o i n (py thread , &r e t v a l) ;
11 c c t h r e ad de s t r u c t (py thread) ;
12 Py Exit (0) ;
13 } else {
14 SoQt : : mainLoop () ;
15 }
16 }
17 }

Listing 3.22: The extended SoQt mainLoop()

Chapter 3. Creating Pivy 60

3.3. Bridging to the SoGui bindings

As we mentioned above, we need to provide a helper function instead of directly invok-
ing the PyRun InteractiveLoop() function provided by the Python C API. The reason
for that is that the function signature does not match with the one needed for the Coin
cc thread construct() thread handler signature.

63 stat ic void ∗
64 Pivy PythonInteract iveLoop (void ∗data) {
65 PyRun InteractiveLoop (std in , ”<s td in>”) ;
66 return NULL;
67 }

Listing 3.23: The Pivy PythonInteractiveLoop() helper function

This solution has however a major pitfall: thread safety. As neither Qt nor Coin is thread
safe without further adoing, certain invocations in the Python interpreter can corrupt data
structures and lead to crashes. Therefore, a better solution needs to be implemented, where
the Python interactive loop is invoked in the same thread as the SoQt application. This can
be done through waiting for and reading the next interactive input line from the Pivy user
in a thread. Once the line is complete and the Python code can be evaluated a flag is raised
and SoQt asynchronously notified that it should execute the ready Python code in its own
thread.

Chapter 3. Creating Pivy 61

Chapter 4

Programming with Pivy

This chapter explains how to write Coin programs with Pivy, names some of the syntactical
differences to the C++ API, shows how Pivy can be used for debugging and Rapid Application
Development and how new Coin extensions nodes can be integrated and made use of.

4.1 Pivy differences reg. the C++ API

Apart from the obvious syntactic differences between Python and C++ the differences re-
garding the API are rather small. The only differences usually are in the way arguments are
passed and values are returned, where the generated wrapper was tweaked in a way to provide
a more “pythonic” approach and API.

As we have seen in the previous chapter, the basic types found in Coin have been mapped to
corresponding suitable ones in Python. The ::setValue() methods accept mapped Python
types as input arguments, such as a Python list containing 3 items. Furthermore, mapped
Python types can also be assigned to the Coin fields as demonstrated in the next listing for
the SoMaterial.diffuseColor field:

1 >>> m = SoMater ia l ()
2 >>> m. d i f f u s eCo l o r . setValue ((0 , 0 , 1))
3 >>> m. d i f f u s eCo l o r
4 <pivy . co in . SoMFColor ; proxy o f C++ SoMFColor i n s t anc e at

a4bd0908 p SoMFColor>
5 >>> m. d i f f u s eCo l o r . getValues ()
6 [<pivy . co in . SbColor ; proxy o f C++ SbColor i n s t anc e at

a8be0908 p SbColor >]
7 >>> m. d i f f u s eCo l o r . getValues () [0] . getValue ()
8 (0 . 0 , 0 . 0 , 1 . 0)
9 >>> m. d i f f u s eCo l o r = (1 , 0 , 1)

10 >>> m. d i f f u s eCo l o r . getValues () [0] . getValue ()
11 (1 . 0 , 0 . 0 , 1 . 0)

Listing 4.1: Field value assignment in an interactive session

62

4.1. Pivy differences reg. the C++ API

Callback handlers for classes such as SoTimerSensor do not need to be functions. In fact
they can be any Python object that is callable, such as methods or lambda expressions.

1 >>> from pivy . co in import ∗
2 >>> class Handler :
3 . . . def c a l l b a ck hand l e r (s e l f , node , s enso r) :
4 . . . print ” ca l l b a ck hand l e r c a l l e d ! ”
5 . . .
6 >>> handler = Handler ()
7 >>> t s = SoTimerSensor (handler . c a l l back hand l e r , None)
8 >>> t s . s e t I n t e r v a l (1 . 0)
9 >>> t s . s chedu le ()

Listing 4.2: A Python method as a callback in an interactive session

Methods, where the arguments are either treated as output or input/output arguments, are
returned as result tuples. Method signatures, which require the length of data types contained
in an argument to be specified, have been changed when the length can be deducted from
the passed Python type itself. Methods, that return a SbBool to signal failure or success
after the execution of a method and further return results in the case of success, will return
a result tuple containing the output parameters or a Python None object. Example of such
methods are discussed in the following listings:

The SoFieldContainer::getFieldName() in C++ reads as follows:

1 SbBool getFieldName (const SoFie ld ∗const f i e l d , SbName &name) const

Listing 4.3: SoFieldContainer::getFieldName() C++ signature

SoFieldContainer::getFieldName() finds the name of the given field and returns the value
in the name argument, it returns TRUE if the field is contained within this instance, and
FALSE otherwise.

In order to make this invocation more pythonic the signature of this method has been changed
to the following for Pivy:

1 PyObject ∗ getFieldName (SoFie ld ∗ f i e l d) ;

Listing 4.4: SoFieldContainer::getFieldName() Python signature

The method returns the name argument directly as a Python string, in order to avoid the
second indirection and additional namespace lookup caused by returning it as an SbName,
and signals the error case through returning the Python None type, resulting in the following
usage:

1 >>> cone = SoCone ()
2 >>> cone . getFieldName (cone . he ight)
3 ’ he ight ’

Listing 4.5: SoFieldContainer::getFieldName() invocation in Python

Chapter 4. Programming with Pivy 63

4.2. Converting a simple example from C++ to Python

Another example where multiple output arguments are returned as a Python tuple can be
found with SoSFImage::getValue().

1 const unsigned char ∗ SoSFImage : : getValue (SbVec2s & s i z e , int & nc)
const ;

Listing 4.6: SoSFImage::getValue() C++ signature

SoSFImage::getValue() returns a pixel buffer and sets the size argument to contain the
image dimensions and nc to the number of components in the image.

1 >>> s = SoSFImage ()
2 >>> s . setValue (SbVec2s (1 , 1) , 3 , ”abc”)
3 >>> s . getValue ()
4 (’ abc ’ , <pivy . co in . SbVec2s ; proxy o f C++ SbVec2s in s t anc e at

f0e10908 p SbVec2s >, 3)

Listing 4.7: SoSFImage::getValue() Python usage

As we can see in the above listing, Pivy returns the result arguments in a 3-item tuple, starting
with the original output parameter, which is followed by the size and nc output arguments.

Another notable difference is that types in Pivy get automatically casted to the right type; a
special cast(object, ’castname’) function is exposed to handle bordercases.

4.2 Converting a simple example from C++ to Python

This section demonstrates, how an existing C++ source file can be converted to Python with
very minimal effort as the syntax of both languages is sufficiently similar. The example source
is an examiner viewer that loads a scene showing a caffeine molecule from a gzip compressed
VRML file (Figure 4.1).

The following section will explain the C++ sources for this example by dissection.

In lines 1-6 we include the necessary C++ header files for the nodes and C++ classes, that
we are going to use.

1 #include <Inventor /SoDB. h>
2 #include <Inventor /SoInput . h>
3 #include <Inventor /nodes / SoSeparator . h>
4 #include <Inventor /@Gui@/So@Gui@ . h>
5 #include <Inventor /@Gui@/ v iewers /So@Gui@ExaminerViewer . h>

Listing 4.8: The readfile.cpp.in header includes

The @Gui@ are substitution macros for the Coin sogui-config shell script, which allows to
write generic code for usage with the different SoGui bindings provided by Coin. They free the
developer from having to adapt the code for each GUI toolkit. The substitution is handled
automatically during the build procedure in the sogui-config script as shown in the next
listing.

Chapter 4. Programming with Pivy 64

4.2. Converting a simple example from C++ to Python

Figure 4.1: Examiner viewer showing a VRML caffeine molecule

Chapter 4. Programming with Pivy 65

4.2. Converting a simple example from C++ to Python

1 $ soqt−c on f i g −−bu i ld r e a d f i l e r e a d f i l e . cpp . in
2 soqt−c on f i g −−ac−subst r e a d f i l e . cpp . in
3 g++ −I / usr / l o c a l / inc lude / Inventor /annex −D REENTRANT −I / usr /qt /3/

inc lude \
4 −g −O2 −c r e a d f i l e . cpp −o r e a d f i l e . o
5 g++ −I / usr / l o c a l / inc lude / Inventor /annex −D REENTRANT −I / usr /qt /3/

inc lude \
6 −g −O2 −L/usr / l o c a l / l i b −L/usr /qt /3/ l i b −o r e a d f i l e r e a d f i l e . o −

lSoQt \
7 −l q t−mt −lXmu −lX i −lCoin −lGL −lXext −lSM −lICE −lX11 − l d l −

lp thread \
8 −lm

Listing 4.9: Invocation of the soqt-config shell script

The next lines define a function readFile() which takes a filename to a Coin supported file for-
mat such as an Inventor or VRML file. The readFile() function creates an SoInput() instance
on the stack and tries to open a file provided in filename through the SoInput::openFile()
method. In line 16 the SoDB::readAll() method reads all graphs from the SoInput in-
stance and returns them under an SoSeparator node. If the file contains only a single graph
under an SoSeparator node1, no extra SoSeparator root node will be made, but the re-
turned root node will be the top-most node from the file. The file is closed2 (line 22) and the
function returns the allocated scene graph.

7 SoSeparator ∗
8 r eadF i l e (const char ∗ f i l ename)
9 {

10 SoInput mySceneInput ;
11 i f (! mySceneInput . openFi l e (f i l ename)) {
12 f p r i n t f (s tde r r , ”Cannot open f i l e %s \n” , f i l ename) ;
13 return NULL;
14 }
15
16 SoSeparator ∗ myGraph = SoDB : : r eadAl l (&mySceneInput) ;
17 i f (myGraph == NULL) {
18 f p r i n t f (s tde r r , ”Problem read ing f i l e \n”) ;
19 return NULL;
20 }
21
22 mySceneInput . c l o s e F i l e () ;
23 return myGraph ;
24 }

Listing 4.10: The readFile() function

1which is the most common way to construct and export scene graphs
2this could be left out, as this method will be triggered automatically by the SoInput destructor when the

SoInput instance falls out of scope

Chapter 4. Programming with Pivy 66

4.2. Converting a simple example from C++ to Python

In the main function of the program we initialize the SoGui binding and implicitly the Coin
System at line 29.

29 @WIDGET@ myWindow = So@Gui@ : : i n i t (argv [0]) ;

Listing 4.11: Initializing Coin

Note again the usage of the substitution macros that allow for a generic piece of code regarding
the different SoGui libraries.

The next line invokes the readFile function and passes the gzip compressed VRML filename,
which denotes the file that contains the caffeine molecule.

31 SoSeparator ∗ scene = readF i l e (” c a f f e i n e . wrl . gz”) ;

Listing 4.12: Invoking the readFile() function

The rest of the program creates a so-called “Examiner viewer” and passes the parent window
of the toolkit as the first parameter (line 33). Line 35 specifies the root of the scene graph
that Coin should traverse, adds a title for the window in the next line and instructs it to show
the widget as well as the parent widget in the next line (line 37-39). We finalize the setup
by invoking the application’s mainLoop(), which allows the user to begin interaction with the
application.

33 So@Gui@ExaminerViewer ∗ myViewer = new So@Gui@ExaminerViewer (
myWindow) ;

34
35 myViewer−>setSceneGraph (scene) ;
36 myViewer−>s e tT i t l e (” Ca f f e i n e molecule ”) ;
37 myViewer−>show () ;
38
39 So@Gui@ : : show (myWindow) ;
40 So@Gui@ : : mainLoop () ;

Listing 4.13: Creation of the Examiner viewer

To convert this example to Python, we need to carry out some syntactical adjustments.
Python uses the semicolon (;) to separate statements in one single line of code, but does not
require it for the termination of a single statement in a line. A simple search and replace”
operation allows to remove all semicolons within the source file. The next step is to replace
all → C pointer dereferenciations symbols with the namespace delimiting dot (.), as Python
does not make use of pointers in its syntax. The same is done for any static class member
function, where the double colon (::) is equally replaced by a namespace delimiting dot (.).

So for example the line:

29 @WIDGET@ myWindow = So@Gui@ : : i n i t (argv [0]) ;

is translated to:

22 myWindow = SoGui . i n i t (sys . argv [0])

Chapter 4. Programming with Pivy 67

4.2. Converting a simple example from C++ to Python

in Python and the line:

33 So@Gui@ExaminerViewer ∗ myViewer = new So@Gui@ExaminerViewer (
myWindow) ;

gets:

26 myViewer = SoGuiExaminerViewer (myWindow)

Python is a dynamically bound language and therefore does not require any type declarations
for variables. Variables are simply introduced in the code through assignment, whenever they
occur and are needed. For example, in the previous listing, the @WIDGET@ type declaration
is left out. Pivy features an SoGui abstraction layer, which is implemented as a proxy. The
proxy uses runtime introspection to map the corresponding calls down to the native binding.
Substitution macros are not required and Pivy code can be written irrespectively of the
underlying installed GUI toolkit binding on the system, which allows the code to be run
without modification or adaption to a specific toolkit.

Finally, the header file section is replaced by Python import statements, that will load the
Pivy coin core and the sogui proxy modules.

4 from pivy . co in import ∗
5 from pivy . sogu i import ∗

Listing 4.14 shows the whole C++ source code fully converted to Python. The separation
into a main function is not really required and the following lines

34 i f name == ” main ” :
35 main ()

show a very typical and common practice Python idiom. Line 34 checks if name equals
main ; the name variable contains the name of a module, class, function/method in

Python and if invoked “standalone” from the python interpreter - name is set to main
in the global namespace rather than its module name. This allows to differentiate between
“standalone” execution and the code imported as a module, where this line evaluates to false
and where the main function does not get executed.

The remaining task is to remove (or comment out) all curly braces, that are used to delimit
blocks in C/C++ as Python uses indentation for block delimiting. Optionally, a Python
“shebang” (line 1) can be provided, which allows direct invocation of the script, when the
execution bit is set, without the need to prepend it with the python interpreter on POSIX
compliant systems.

1 #!/ usr / b in /env python
2
3 import sys
4 from pivy . co in import ∗
5 from pivy . sogu i import ∗
6

Chapter 4. Programming with Pivy 68

4.3. Rapid Application Development (RAD) and Prototyping (RAP) with Pivy

7 def r e adF i l e (f i l ename) :
8 mySceneInput = SoInput ()
9 i f not mySceneInput . openFi l e (f i l ename) :

10 print >>sys . s tde r r , ”Cannot open f i l e %s ” % (f i l ename)
11 return None
12
13 myGraph = SoDB. readAl l (mySceneInput)
14 i f myGraph == None :
15 print >>sys . s tde r r , ”Problem read ing f i l e ”
16 return None
17
18 mySceneInput . c l o s e F i l e ()
19 return myGraph
20
21 def main () :
22 myWindow = SoGui . i n i t (sys . argv [0])
23
24 scene = readF i l e (” c a f f e i n e . wrl . gz”)
25
26 myViewer = SoGuiExaminerViewer (myWindow)
27 myViewer . setSceneGraph (scene)
28 myViewer . s e tT i t l e (” Ca f f e i n e molecule ”)
29 myViewer . show ()
30
31 SoGui . show (myWindow)
32 SoGui . mainLoop ()
33
34 i f name == ” main ” :
35 main ()

Listing 4.14: The converted Python readfile application

As can be clearly seen, the conversion and translation process is really straightforward, un-
complicated and inexpensive. The whole process can be reversed and therefore encourages
the use of Python for Rapid Application Prototyping, even if the final application has to be
developed and deployed in C++.

4.3 Rapid Application Development (RAD) and Prototyping
(RAP) with Pivy

All too often during the development of an application it is necessary to quickly test out an
idea or explore a solution through experimentation. Rapid Application Development (RAD)
and Prototyping (RAP) is greatly hindered if immediate turnaround is not possible - as
having to compile and restart the whole application after each modification forms a very time
consuming obstacle that greatly reduces productivity.

Chapter 4. Programming with Pivy 69

4.3. Rapid Application Development (RAD) and Prototyping (RAP) with Pivy

This section will show how to make use of one of Python’s most important and highly valued
features: the interactive interpreter facility.

When the Python interpreter is started without passing any arguments, such as a file con-
taining Python source code, the interpreter starts in “interactive mode”. Commands are read
from a tty and it prompts for the next command with the primary prompt, usually three
greater-than signs (“>>> “); for continuation lines it prompts with the secondary prompt,
by default three dots (“. . . “). The interpreter prints a welcome message stating its version
number and a copyright notice before printing the first prompt:

1 $ python
2 Python 2 . 4 . 2 (#1 , Dec 16 2005 , 1 9 : 2 6 : 3 5)
3 [GCC 3 . 4 . 4 (Gentoo 3.4.4− r1 , ssp −3.4.4−1.0 , pie −8 .7 .8)
4] on l inux2
5 Type ” help ” , ” copyr ight ” , ” c r e d i t s ” or ” l i c e n s e ” f o r
6 more in fo rmat ion .
7 >>>

Listing 4.15: An interactive Python interpreter session

The interpreter can be exited by pressing the Ctrl-D key combination and features readline3

support for convenient line editing on most platforms.

All lines, that are typed into an editor to form a Python program, can be run out of the
interpreter without modification. Even more so, Python code can be organized into modules,
which can be imported into the running interactive Python interpreter.

4.3.1 Interactive scene graph introspection

We can modify the program from the previous section to make it more suitable as a module
and in order to allow the inspection and manipulation of the scene graph through its exposure.
The easiest approach to get the scene graph exposed, is to change the scope of the scene
variable, which references the root node, from local scope in the main function to a global
scope in the readfile module. Through usage of the global keyword we let the Python
interpreter know, that the variable encountered after the global keyword should be put into
the global namespace. (Listing 4.16).

21 def main () :
22 global scene
23
24 myWindow = SoGui . i n i t (sys . argv [0])
25 scene = readF i l e (” c a f f e i n e . wrl . gz”)

Listing 4.16: Telling the Python interpreter to put the scene into the global namespace

Now that everything is in place, we can proceed with the interactive session. We import
Pivy’s coin core module (line 1) into the global namespace in order to be able to make use of

3a free and unencumbered BSD-licensed readline replacement, named libedit, with readline emulation is
available from the NetBSD (http://www.netbsd.org/) project.

Chapter 4. Programming with Pivy 70

http://www.netbsd.org/

4.3. Rapid Application Development (RAD) and Prototyping (RAP) with Pivy

the Coin nodes. This is followed by the import of the readfile module, which we keep in its
own namespace (line 2). We call the main() function of the readfile module, which will let the
window from Figure 4.1 pop up (line 3). Special measurements in Pivy’s SoGui bindings have
been added - as described in the previous chapter - in order to avoid blocking the Python
interactive mode when the application enters the mainLoop. We then get hold of the root
node, which we previously exposed globally in the readfile module namespace (line 4). After
verifying that we got hold of the right node (line 5), we wish to dump and introspect the
current scene graph. To achieve this, Coin provides a special action: the SoWriteAction.
After instantiating an SoWriteAction (line 7) we apply the action on the scene graph’s root
node (line 8), which results in the current scene graph to be written out.

1 >>> from pivy . co in import ∗
2 >>> import r e a d f i l e
3 >>> r e a d f i l e . main ()
4 >>> scene = r e a d f i l e . scene
5 >>> scene
6 <pivy . co in . SoSeparator ; proxy o f C++ SoSeparator i n s t anc e at

e0a23e08 p SoSeparator>
7 >>> wa = SoWriteAction ()
8 >>> wa . apply (scene)
9 #Inventor V2.1 a s c i i

10
11
12 Separator {
13
14 Separator {
15
16 Mater ia l {
17 ambientColor 0 .2 0 .2 0 .2
18 d i f f u s eCo l o r 0 1 0 .1875
19 specu la rCo lo r 0 0 0
20 s h i n i n e s s 0 . 2
21 transparency 0
22
23 }
24 Separator {
25 . . .

Listing 4.17: Interactive scene graph introspection

In order to demonstrate the powerful capabilities, we continue the interactive session and add
another object into the scene, that gets loaded from another file without the need to leave
the interpreter or to re-edit existing code.

The next listing starts by the instatiation of an SoInput class, where we instruct it in the next
line to open another gzip compressed VRML file in the same fashion as we did in the readfile
module example from the previous section (line 1-2). However, the major difference is that we
do it interactively by typing it into the running interactive session and are able to experience

Chapter 4. Programming with Pivy 71

4.3. Rapid Application Development (RAD) and Prototyping (RAP) with Pivy

the effects of our actions immediately. We load the file through the SoDB.readall() invocation
(line 3) and can reuse the already instantiated SoWriteAction to inspect the contents of
this new object.

1 >>> i = SoInput ()
2 >>> i . openFi l e (”mug . wrl . gz”)
3 >>> mug = SoDB. readAl l (i)
4 >>> wa . apply (mug)
5
6 Separator {
7
8 Separator {
9

10 In f o {
11 s t r i n g ”Object Creator : unknown”
12
13 }
14 ShapeHints {
15 vertexOrder ing COUNTERCLOCKWISE
16 shapeType SOLID
17
18 }
19 Coordinate3 {
20 po int [−0.0300752 −0.0125313 −3.7593999e−09,
21 −0.0294179 −0.0125313 −0.0062529799 ,
22 −0.0274751 −0.0125313 −0.0122327 ,
23 . . .
24 }
25 }
26 }

Listing 4.18: Interactive scene graph introspection cont. - adding a new object

We then add the new mug node to the existing scene graph (line 1) and notice that the object
is too small, which causes the instantiation of an SoScale node (line 2) to remedy that. We
insert it as the first node into the new object (line 3) and experiment with the scaleFactor
field until we like the result (line 4-6). The final result is shown in Figure 4.2.

In order to save the result persistently, we write it to a new Inventor file by using an SoOutput
class, where we set the filename the output should saved to (line 7-8). Finally, we apply an
SoWriteAction on the entire scene again, but this time by specifying an output object the
SoWriteAction should write its results to. We close the file of the SoOutput instance in
order to flush the buffers and the result is a new scene, which we just created interactively.

1 >>> scene . addChild (mug)
2 >>> s c a l e = SoScale ()
3 >>> mug . i n s e r tCh i l d (s ca l e , 0)
4 >>> s c a l e . s c a l eFac to r = (10 ,10 ,10)
5 >>> s c a l e . s c a l eFac to r = (30 ,30 ,30)

Chapter 4. Programming with Pivy 72

4.3. Rapid Application Development (RAD) and Prototyping (RAP) with Pivy

6 >>> s c a l e . s c a l eFac to r = (40 ,40 ,40)
7 >>> o = SoOutput ()
8 >>> o . openFi l e (” coffemug . i v ”)
9 1

10 >>> SoWriteAction (o) . apply (scene)
11 >>> o . c l o s e F i l e ()

Listing 4.19: Interactive scene graph introspection cont. - saving the results

Figure 4.2: The result of the interactive session

4.3.2 Pivy as a debug and testing tool

The previous section outlined Pivy’s usage as an interactive scene graph introspection and
modification tool. In the same lines the whole available repertoire of the Coin library can be
used to debug problems in the application itself.

A simple way to accomplish this, is presented in the next listing. The usage of the SoN-
odeSensor sensor node allows to track field and state changes in the nodes, that we are

Chapter 4. Programming with Pivy 73

4.4. Extending Pivy with new Inventor nodes or nodekits

interested in. Their state can be written to the standard output or dumped into a logfile.
This allows for a lot of additional flexibility, as filters or other behavior can be easily imple-
mented in the callback handler; behaviors, such as interactive debugging of the application
through the combination of various available actions, for example the SoRayPickAction.

1 def rootChangedCB (void , mySensor) :
2 changedNode = mySensor . getTriggerNode ()
3 changedFie ld = mySensor . g e tTr i gg e rF i e l d ()
4
5 i f changedNode :
6 print ”The node named ’%s ’ changed” % (changedNode . getName () .

g e tS t r i ng ())
7
8 i f changedFie ld :
9 f ie ldName = changedNode . getFieldName (changedFie ld)

10 print ” (f i e l d %s) ” % (fie ldName)
11 else :
12 print ” (no f i e l d s changed) ”
13
14 senso r = SoNodeSensor (rootChangedCB , None)
15 senso r . s e tP r i o r i t y (0)
16 senso r . attach (scene)

Listing 4.20: Tracking node and field changes

Another interesting Pivy use case, is the creation of black-box- and white-box- testing
frameworks for Coin applications. The test cases can be written in a similar fashion as the
Pivy unit tests and where they test out different code execution paths of the application and
verify the results. Through the availability of immediate turnaround, the simple syntax and
flexibility of a dynamic language, the tedious task of writing test cases becomes much easier
compared to the same task in a statically typed system programming language.

4.4 Extending Pivy with new Inventor nodes or nodekits

Sometimes, the functionality offered through the available and provided nodes is simply not
sufficient and new specialized functionality needs to be implemented. Coin has an extension
architecture built around convenience macros and the runtime type system, which allows for
the creation of new nodes in C++.

There are two ways to gain access to the new functionality of this new Coin extension nodes
in Pivy:

1. Gaining access to and control the new nodes through the fields, which can be gathered
and queried through Coin’s runtime type system.

2. Creating SWIG interface files in order to create a wrapper contained in a separated
module for them.

Chapter 4. Programming with Pivy 74

4.4. Extending Pivy with new Inventor nodes or nodekits

The simplest way to make use of new extension nodes that have been designed to expose
and control their functionality through their fields is to use the information provided by the
runtime type system. The nodes can then be linked in or loaded dynamically4 where node
instances will then be autocasted/typed to the first class that is known (wrapped) in the
inheritance hierarchy through Pivy’s autocasting mechanism. For example, if we have to
access a new shape node, named SoMouse, which inherits from SoCone, then once en-
countered, Pivy will autocast it automatically to an SoCone(). Through the methods in
SoFieldContainer introspection/querying/manipulation of the nodes fields through the In-
ventor runtime type system is possible. Should the node SoMouse be inherited as follows:
SoMouse→SoHemiSphere→SoCone then Pivy takes care again to make sure that So-
Mouse will be casted to SoCone(). If a SWIG wrapper has been created for SoHemiSphere
and imported before the SoMouse shape node is encountered, then the SoMouse node will
be autocasted to a SoHemiSphere node instead.

If new functionality needs to be accessed through methods in the extension node classes and
field access on its own is not sufficient, then it becomes necessary to create a complete wrapper
for these kind of basic types, fields, nodes, nodekits or libraries. This is especially true, when
new field and basic types have been developed or when it is a Coin based library altogether
for which access is desired.

In order to create a wrapper - the same principles apply and similar measurements have to
be undertaken as has been outlined in the previous chapter with the important distinction
that the wrapper interface file will be much simpler and quite minimalistic, as it can reuse a
lot of the already available SWIG typemaps for the basic types and fields.

We demonstrate the creation of a new type on the basis of the provided example from the
Pivy source distribution, which can be found in the examples/extend/ directory.

The extension node kit consists of a header file and source file of which both need to be
available as the extension node needs to be compiled into the wrapper in order for the linker
to be able to resolve the symbols from the extension node.

The shapescale.i interface file starts with a global module docstring definition, which is then
used in the %module directive which tells SWIG about the module name and passes the
docstring definition as an parameter (line 7). We include the header files required to compile
the wrapper and can reuse the coin header includes.h header file from Pivy’s interfaces/
directory. Furthermore, some platform specific tweaks have to be applied for the proprietary
Windows platform in order to allow the wrapper to compile there as well.

We then %include the pivy common typemaps.i SWIG interface file, which collects typemaps
that are common to and should be present in every Pivy interface file (line 24). The next line
%import ’s (note: do not use %include SWIG directive here) (line 27) the Pivy coin module
in order to get access to all Coin types. The difference between the %import and %include
SWIG directive is that %import does not generate actual wrapper code but rather collects
information about the involved types and inheritance hierarchy of the classes. If we make use
of %include instead, it will generate a full Coin wrapper again, which is not what we want
and will result in a very large wrapper module.

4Dynamic Loading of Extension Nodes - http://doc.coin3d.org/Coin/dynload_overview.html

Chapter 4. Programming with Pivy 75

http://doc.coin3d.org/Coin/dynload_overview.html

4.4. Extending Pivy with new Inventor nodes or nodekits

The last line %include’s the ShapeScale.h header file (line 29) which contains all the dec-
larations for the ShapeScale node out of which the wrapper generator will create the auto-
generated wrapper code.

1 %de f i n e SHAPESCALE MODULE DOCSTRING
2 ”The ShapeScale c l a s s i s used f o r s c a l i n g a shape
3 based on pro j e c t ed s i z e .
4 . . . ”
5 %enddef
6
7 %module (doc s t r i ng=SHAPESCALE MODULE DOCSTRING) shape s ca l e
8
9 %{

10 #i f de f ined (WIN32) | | de f ined (WIN32)
11 #include <windows . h>
12 #undef max
13 #undef ERROR
14 #undef DELETE
15 #endif
16
17 #undef ANY
18
19 #include ”ShapeScale . h”
20 #include ” c o i n h e ad e r i n c l ud e s . h”
21 %}
22
23 /∗ i n c l ude the typemaps common to a l l p i vy modules ∗/
24 %inc lude pivy common typemaps . i
25
26 /∗ import the p ivy main i n t e r f a c e f i l e ∗/
27 %import co in . i
28
29 %inc lude ShapeScale . h

Listing 4.21: The ShapeScale interface file shapescale.i

In order to build it, some kind of build system has to be used. The decision was made to use
the cross-platform SCons build system for these purposes. The build description of SCons is
written in Python, which is why we can easily query the compiler and linker flags necessary
to build the Python extension module out of distutils.sysconfig. The build system should
then invoke SWIG with the required SWIG flags5 and compile then the wrapper. Listing
4.22 shows the most relevant parts of the SConstruct build description file, which has to be
written by the developer and where this one can be used as a template.

5it is important to keep them in sync with the SWIG flags found in the main distutils-based setup.py build
script

Chapter 4. Programming with Pivy 76

4.4. Extending Pivy with new Inventor nodes or nodekits

53 PIVY ROOT = ’ . . / . . ’
54
55 env . Append(CPPPATH = [’ . ’ , PIVY ROOT + ’ / i n t e r f a c e s ’ , d i s t u t i l s .

s y s c on f i g . g e t python inc ()])
56 env . Append(LIBPATH = [PIVY ROOT, d i s t u t i l s . s y s c on f i g . g e t py thon l i b

()])
57 env . Append(LINKFLAGS = d i s t u t i l s . s y s c on f i g . g e t c o n f i g v a r s () . get (’

LINKFORSHARED’ , ’ ’) . s p l i t ())
58
59 SWIG SUPPRESS WARNINGS = ’−w302

,306 ,307 ,312 ,389 ,361 ,362 ,467 ,503 ,509 ,510 ’
60 env . Append(SWIGFLAGS = ’−c++ −python − i n c l u d e a l l −modern −D PIVY

’ +
61 ’−I . −I%s / i n t e r f a c e s −I%s / f ake heade r s −I / usr / l o c a l /

in c lude −I%s %s ’ %
62 (PIVY ROOT, PIVY ROOT, INCLUDE DIR,

SWIG SUPPRESS WARNINGS))
63
64 l i b = env . SharedLibrary (’ s hape s c a l e ’ , S p l i t (’ shape s ca l e . i

ShapeScale . cpp ’) ,
65 SHLIBPREFIX = ’ ’ ,
66 SHLIBSUFFIX = d i s t u t i l s . s y s c on f i g .

g e t c o n f i g v a r s () [’SO ’] ,
67 SWIGCXXFILESUFFIX = ’ wrap . cpp ’)

Listing 4.22: The SConstruct build description for the ShapeScale extension module

The first part of the build description deals with adding the correct compiler and linker
flags (line 53-57). The next part creates the option list that should be passed in the SWIG
invocation (line 59-62). The final part tells SCons to create a shared library, which represents
our Python extension (line 64-67). SCons features direct support for SWIG, where it is
sufficient to provide the name of the SWIG interface file and any additional SWIG options that
the SWIG binary should be invoked with. In our case SCons will invoke SWIG to generate
the wrapper file called shapescale wrap.cpp first and then will link the result of the compilation
of shapescale wrap.cpp and ShapeScale.cpp into a shared library, called shapescale, with the
platform specific suffix, that has been gathered from the distutils.sysconfig package.

Once the Python extension module is built, it can be imported as shown in the next listing:

4 from pivy . co in import ∗
5 from pivy . sogu i import ∗
6 from shape s ca l e import ∗

Listing 4.23: The Python import statements for the new extension module

Different to the regular Pivy core modules, but similar to Coin extension nodes, the node has
to be initialized (for registration with the Coin runtime type system) through the invocation

Chapter 4. Programming with Pivy 77

4.5. When not to use Pivy?

of its ShapeScale.initClass method. The ShapeScale.initClass is best conducted right
after the SoGui.init()invocation.

82 window = SoGui . i n i t (sys . argv [0])
83 ShapeScale . i n i tC l a s s () # i n i t our ex t ens ion nodek i t

Listing 4.24: The Python extension module node initialization

After this has been successfully done the extension node can be used in the same fashion as
with the other wrapped Coin nodes.

4.5 When not to use Pivy?

We conclude this chapter by naming some domains, where Pivy might not be the best choice
to use as some of those tasks may be outside of Pivy’s scope.

Python is a dynamic interpreted language; therefore like all other dynamic languages the
execution speed can be an issue. As we have reasoned in chapter 2 due to the properties of a
retained mode library Python matches such a paradigm quite well.

For most applications Python’s execution performance will be more than sufficient, especially
when it is used as a controlling language for application logic, where intensive computations
are conducted on the C++ side.

Still, for applications where the biggest part of the execution time is spent in for example
the callback handlers and large amount of data has to be processed in tight loops, Pivy and
Python might be too slow. Furthermore, to factor out most of the parts to C/C++ Python
extensions might be too much work and too time-consuming.

Another problem could arise, if the startup time of an application takes up most of the time
in an applications life time. In this case the time saved by the lack of the recompilation
step, is lost again through lengthy startup times and overall development time is negatively
impacted in addition to the loss of immediate turnaround. Sometimes, this can be remedied by
redesigning the platform to a more runtime based system featuring a component framework,
where each component can be independently reloaded or restarted at runtime. Still, such a
framework takes a lot of planning and time to develop and could not be feasible at all due
to new constraints in regard to execution speed; a runtime system will have the tendency to
execute more introspection related code that could significantly raise the amount of executed
Python code.

If an application depends on threading for the necessary performance on multi-core or multi-
processor systems or the need for asynchronous event handling, then Pivy currently does
not offer proper thread support, Python further uses a Global Interpreter Lock, which limits
threads to the execution on one CPU. This can be worked around through the implemen-
tion of the thread related parts on the C/C++ side or through usage of a forking process
model combined with IPC (Inter Process Communication) facilities for synchronization and
execution of the code out of multiple interpreters. The problem with this solution is that a
forking process model works great on Unix systems, but due to the process creating overhead
on other platforms, such as Windows, this approach might not be an option again because of

Chapter 4. Programming with Pivy 78

4.5. When not to use Pivy?

cross-platform constraints. However, threading is a tricky business and if not really necessary
should be avoided at best. For example, most of the involved libraries are not thread safe by
themselves and locking/unlocking for the critical sections can become a very error-prone and
tedious task by itself, very hard to debug without the necessary defensive coding techniques
in place and could end up in dramatic performance losses and slower execution of the code
altogether, when locking/unlocking is overdone or applied unwisely and incorrectly.

As we have seen, all of the problems mentioned above have the same problem in common:
execution speed. Still, Python can be used for application prototyping or in an embedded
fashion in the scene graph, as we will see in the next chapter. This allows developers to
benefit from an overall improvement in development time through the provision of immediate
turnaround. After the prototype has been implemented and the application deemed to slow
or hard to optimize, the application can always be rewritten in C/C++, where the difficult
and time consuming parts of the application logic and design have already been solved.

Chapter 4. Programming with Pivy 79

Chapter 5

Embedding Pivy

In the previous chapters we explained, how to make use of Pivy in applications solely written
in Python. But what if we have an already existing application written in C++ and still desire
to quickly test out an idea or extend the current application with code written in Python?
Here is, where another prominent feature of Pivy comes in handy: SoPyScript - the Python
scripting node.

Through the combination of the extension mechanisms of Coin, that allow us to create a
new scene graph node or node kit, and usage of both extending and embedding techniques of
Python, we find the necessary foundation ready for the creation of a very flexible and powerful
special purpose Coin node. The whole process is further simplified through the additional
availability of introspection facilities, both in the Coin and Python libraries.

A few ideas and examples of what can be achieved through such a node in the scene graph,
that just indicate the wide range of possible usage scenarios, are:

• embedding a web server, that outputs the current state of fields and nodes in a scene
graph.

• use of remote procedure calls for the purpose of synchronization or feeding the scene
graph state from external sources.

• writing parts of the scene graph, logging state changes or action traversals to a file for
debugging or profiling purposes.

Additionally, nodes with new functionality can be created through the simple addition of
the SoPyScript node into the scene graph. Furthermore, this can be achieved without the
declaration of any macros, the creation of a corresponding header file or a compilation and
linking step, which is unavoidable for newly created nodes in the C++ case.

Furthermore, scripts contained in the SoPyScript node can be reloaded in the application at
runtime and override previous declared classes, methods, functions or variables, due to its
interpretative nature, which provides a very flexible and powerful prototyping environment
with immediate turnaround times.

80

5.1. Design and implementation of the SoPyScript node

Figure 5.1: The file system hierarchy of the SoPyScript node

5.1 Design and implementation of the SoPyScript node

The design and implementation of the SoPyScript node is based on ideas found in the VRML
Script node of the VRML97 specification. However, there are some fundamental differences
between the VRML Scripting and the SoPyScript node implementation regarding the ap-
proach and intended usage, which led to a couple of overall different design decisions:

The first and most obvious difference is that JavaScript - a special purpose embedding lan-
guage - has been chosen as the VRML Scripting node language. This comes as no big surprise
as VRML was also targeted to be used for the Web, which makes the decision to use JavaScript
a natural one - as JavaScript was and is a popular and a readily available language in the
domain of the World Wide Web.

Secondly, JavaScript is used in the VRML Scripting node to allow the definition and creation
of simple application logic in order to allow for example event handling.

Finally, VRML does by itself not feature an API and was not intended to be exposed as a
library. This is reflected in the design in how the scene graph can be modified, where the
fields of a node are the single most important notion. Furthermore, nodes are added through
accessing arrays which makes it a bit cumbersome to work with.

In contrast, Pivy uses Python - a fully fledged general purpose language. This allows to use
the node for more than just simple event handling logic, as we:

1. have full access to the Coin and now additionally to a VRML API - as Coin is a library
that provides and exposes an API for VRML,

2. can specify and override handlers for actions,

3. can use the Python interpreter module namespace to store state information,

4. are able to make full use of the other available Python modules installed.

Figure 5.1 shows the file system hierarchy of the SoPyScript node implementation, which
consists of the following components:

Chapter 5. Embedding Pivy 81

5.1. Design and implementation of the SoPyScript node

SConstruct is the cross-platform SCons build description that allows to build the SoPyScript
as a dynamic link library on any of the supported platforms.

SoPyScript.h and SoPyScript.cpp are the files containing the actual implementation of
the SoPyScript node in the form of a regular Coin extension node. This node makes
use of the Python C API to embed Python. The Coin extension code is heavily based
on the Coin template of the VRML Scripting Node implementation.

swigpyrun.h is a header file containing the “SWIG runtime” code and declarations for
required functions such as SWIG TypeQuery() or SWIG NewPointerObj() that
allows to query and therefore make use of the Pivy SWIG types.

swigpyrun.h is SWIG version dependent, as it heavily relies upon the internal SWIG
runtime code, that gets constantly improved and changed. This requires this header file
to be regenerated for newer or different SWIG versions.

The external runtime mechanism was introduced after several iterations of SWIG run-
time code improvements in SWIG version 1.3.25, where it was previously required to
use tricks such as linking against a so-called “libpivy runtime” dynamic link library,
generated and built through an empty SWIG interface file, to get the linker resolve the
symbols of the involved “SWIG runtime” functions.

The SWIG runtime code, which is automatically generated for SWIG wrapper code,
can be created through the following invocation:

1 $ swig −python −exte rna l−runtime swigpyrun . h

Listing 5.1: SWIG invocation to create the external runtime header file

This discussion will now be followed with a dissection of the most important source code
parts found in the SoPyScript.cpp Coin extension node implementation1 and which explains
the reasoning of their existence.

After we have included all the required Python, Coin and swigpyrun.h header files we will
encounter a PYTHON URLLIB URLOPEN C processor macro definition (Listing 5.2). This
Python code snippet is responsible for loading in a file through a given URL as the VRML
specification allows.

41 // Python code sn i ppe t to load in a URL through the u r l l i b module
42 #define PYTHON URLLIB URLOPEN ”\
43 import u r l l i b \n\
44 try :\n\
45 fd = u r l l i b . ur lopen (u r l . s p l i t () [0]) \n\
46 s c r i p t = fd . read () \n\
47 fd . c l o s e () \n\
48 except :\n\
49 s c r i p t = None\n\
50 de l u r l ”

Listing 5.2: The PYTHON URLLIB URLOPEN macro

1the complete listing can be found in the Pivy source distribution. . .

Chapter 5. Embedding Pivy 82

5.1. Design and implementation of the SoPyScript node

The way it works is to inject the requested URL into an url variable into the global Python dic-
tionary of the SoPyScript node when the script gets invoked in SoPyScript::executePyScript()
(Listing 5.3).

557
558 // add the u r l to the g l o b a l d i c t
559 PyDict SetI temStr ing (PRIVATE(this)−>l o c a l modu l e d i c t , ” u r l ” , u r l) ;
560
561 PyObject ∗ r e s u l t ;
562 r e s u l t = PyRun String (PYTHON URLLIB URLOPEN,
563 Py f i l e i npu t ,
564 PRIVATE(this)−>l o c a l modu l e d i c t ,

Listing 5.3: Executing the PYTHON URLLIB URLOPEN macro

A different solution is to write an URL parser and open a socket in C/C++ or to use an exter-
nal library such as libcurl2 for these purposes. However, apart from considerably complicating
the code or adding another library dependency3, we simply reuse functionality contained and
provided in the standard Python implementation to our advantage. This is a very nice ex-
ample, that demonstrates how an embedded Python interpreter allows to unleash Python’s
rich facilities for our own purposes and permits for the creation of advanced functionality in
no time through the simple execution of Python scripts on the C++ side.

The next lines we encounter, are a GlobalLock class declaration (Listing 5.4). The GlobalLock
class deals with Python’s Global Interpreter Lock (GIL), which needs to be acquired and
released appropriately when Python code is to be executed. If this is not done, segmentation
faults are likely to occur as the critical sections are not protected, especially when multiple
Scripting nodes are in the scene graph or threads are used.

52 class GlobalLock {
53 public :
54 GlobalLock (void) : s t a t e (PyGILState Ensure ()) {}
55 ˜GlobalLock () { PyGILState Release (s t a t e) ; }
56 private :
57 PyGILState STATE s t a t e ;
58 } ;

Listing 5.4: The GlobalLock class

This refactors the functionality into its own class and uses the implicit C++ scoping rules.
Through the creation of a GlobalLock instance on the stack at the beginning of a block,
the GlobalLock constructor will be executed and therefore retains the GIL. After the desired
Python code is executed and the GlobalLock falls out of scope, the destructor gets invoked
and releases the GIL again, which means that we cannot forget to release it. At the same
time, it lessens the verbosity of the code and makes the code easier to maintain.

2http://curl.haxx.se/
3creating maintenance and deployment issues again

Chapter 5. Embedding Pivy 83

http://curl.haxx.se/

5.1. Design and implementation of the SoPyScript node

Next we implement the constructor of our private class SoPyScriptP (Listing 5.5) which fol-
lows Coin’s Cheshire Cat/Bridge pattern technique in order to avoid problems in a library
with a public API where binary compatibility (i.e. a stable ABI (Application Binary Inter-
face)) between releases are important – as is the case with the Coin library. The pattern
allows to hide all the private implementation details and data within an internal class, only
visible to the C++ implementation file of the “real” class.

60 class SoPyScriptP {
61 public :
62 SoPyScriptP (SoPyScript ∗ master) :
63 i sReading (FALSE) ,
64 oneshotSensor (new SoOneShotSensor (SoPyScript : : eva l cb , master

)) ,
65 h a n d l e r r e g i s t r y d i c t (PyDict New ()) ,
66 l o c a l modu l e d i c t (PyDict New ())
67 {
68 i f (! g l oba l modu l e d i c t) {
69 Py SetProgramName (”SoPyScript ”) ;
70 P y I n i t i a l i z e () ;
71 g l oba l modu l e d i c t = PyModule GetDict (PyImport AddModule (”

ma in ”)) ;
72
73 i f (PyRun SimpleString (” from pivy . co in import ∗”)) {

Listing 5.5: The SoPyScriptP private class constructor

In the SoPyScriptP constructor we initalize the Python C library (line 70) and get hold of
Python’s global dictionary (line 71) where we then import the main Pivy Coin module into
our scripting node namespace (line 73). We initialize our SoOneShotSensor instance (line 64)
and schedule a call for the execution of the SoPyScript::eval cb() SoOneShotSensor call-
back handler through PRIVATE(this)->oneshotSensor->schedule();, which executes
our Python scripts whenever SoPyScript::notify() notifies us about any field changes, so
that the Python field handlers get evaluated. A second place, where our SoOneShotSen-
sor gets scheduled and where we want our handlers to be invoked, is at the end of SoPy-
Script::readInstance(), which is responsible for parsing and initializing the Coin extension
node once it is encountered when an Inventor file gets loaded in.

Another instance, which is worth mentioning, gets allocated and instantiated in the SoPy-
ScriptP constructor: handler registry dict. For additional flexibility and in order to put no
artificial restrictions regarding the mapping of the Coin field names to Python functions the
handler registry dict, a regular Python dictionary, lets the user override the default field name
mapping to any function name the developer desires4. The default field name mapping tries
to find a Python function by the same name of the field, which is prepended with a handle
prefix, such as handle color in order to avoid namespace problems.

We skip the rest of the private SoPyScriptP class implementation and mention the SoPy-
ScriptP::createPySwigType() method, which works similar to the cast() function found

4an example in how this can be applied will be demonstrated in the next section

Chapter 5. Embedding Pivy 84

5.1. Design and implementation of the SoPyScript node

in Pivy. It is responsible for the conversion of the encountered C++ types into SWIG types
usable by Pivy.

In Listing 5.6 we find the static SoPyScript::initClass() method which is responsible for
registering the SoPyScript Coin type in the Coin runtime type system.

121 void
122 SoPyScript : : i n i tC l a s s (void)
123 {
124 i f (SoType : : fromName(”SoPyScript ”) . isBad ()) {
125 SoPyScript : : c lassTypeId =
126 SoType : : createType (SoNode : : getClassTypeId () ,
127 SbName(”SoPyScript ”) ,
128 SoPyScript : : c r ea t e In s tance ,
129 SoNode : : nextActionMethodIndex++) ;

Listing 5.6: The static SoPyScript::initClass() class method

An additional line has to be manually invoked in order to allow the AudioRenderAction to be
handled in the SoPyScript implementation as it is not initialized and registered automatically
by the default Coin type system creation method (reason: it is part of the VRML and not
the original Open Inventor specification).

136 SoAudioRenderAction : : addMethod (SoPyScript : : getClassTypeId () ,
SoNode : : audioRenderS) ;

In order to allow Python handlers during action scene graph traverals to get invoked, we
have to provide our own dispatch mechanism and routine, which is done and handled in the
SoPyScript::doAction() method, which all virtual action handler methods will invoke.

It takes two arguments: action (of type SoAction) and funcname (an ordinary C character
string).

183 SoPyScript : : doAction (SoAction ∗ act ion , const char ∗ funcname)

Whenever an action now traverses the scene graph and invokes its virtual handler method
according to the visitor pattern, our overridden handler method will then invoke our SoPy-
Script::doAction() method by providing the actual action instance and the name of the
overridden method as shown in Listing 5.7, followed by the invocation of the original virtual
method of the parent class5.

233 void
234 SoPyScript : : GLRender (SoGLRenderAction ∗ ac t i on)
235 {
236 SoPyScript : : doAction (act ion , ”GLRender”) ;
237 i nh e r i t e d : : GLRender (ac t i on) ;
238 }

Listing 5.7: The overridden SoPyScript::GLRender() method

5in our case the one found in SoNode

Chapter 5. Embedding Pivy 85

5.1. Design and implementation of the SoPyScript node

In SoPyScript::doAction() we introspect our Python interpreter dictionary and check if a
corresponding funcname is found and has been specified by the user.

188 PyObject ∗ func = PyDict GetItemString (PRIVATE(this)−>
l o c a l modu l e d i c t , funcname) ;

If this is the case we convert the provided action from C++ to a SWIG Python object.

197 SbStr ing typeVal (act ion−>getTypeId () . getName () . g e tS t r i ng ()) ;
198
199 PyObject ∗ pyAction ;
200 i f (! (pyAction = PRIVATE(this)−>createPySwigType (typeVal , a c t i on)))

{

After we check that the found funcname is actually a callable Python instance, i.e. either a
method or function, we construct the Python arguments (line 212) and invoke the function
(line 214).

207 i f (! PyCallable Check (func)) {
208 SbStr ing errMsg (funcname) ;
209 errMsg += ” i s not a c a l l a b l e ob j e c t ! ” ;
210 PyErr SetStr ing (PyExc TypeError , errMsg . g e tS t r i ng ()) ;
211 } else {
212 PyObject ∗ arg tup l e = Py BuildValue (” (O) ” , pyAction) ;
213 PyObject ∗ r e s u l t ;
214 i f (! (r e s u l t = PyEval Cal lObject (func , a rg tup l e))) {
215 PyErr Print () ;
216 }
217 Py XDECREF(r e s u l t) ;
218 Py DECREF(arg tup l e) ;
219 Py DECREF(pyAction) ;
220 }

We finalize that by invoking the parents node SoNode::doAction() method and are done.

229 i nh e r i t e d : : doAction (ac t i on) ;

We then have to implement SoPyScript::copyContents(), SoPyScript::notify(), SoPy-
Script::createInstance(), SoPyScript::getFieldData() and SoPyScript::initFieldData()
(where the “static” fields are initialized) methods as required for standard Coin node exten-
sions.

The only exception is that in SoPyScript::notify() we are checking if the script field, which
exposes our embedded Python script, has changed. This can occur whenever the developer
decides to load a different script or modifies the embedded script at runtime. We then
instruct the SoPyScript to re-evalute the whole script again, so that those requested changes
take effect.

382 else i f (f == &this−>s c r i p t) { this−>executePyScr ipt () ; }

Chapter 5. Embedding Pivy 86

5.1. Design and implementation of the SoPyScript node

So how do we declare and allow new fields in Inventor files to be created dynamically at
runtime when the SoPyScript is encountered and its format read, as fields typically have to
be known and declared in advance at compile time through the provided Coin macros?

We make use of the SoPyScript::readInstance(SoInput * in, unsigned short flags)
method which reads a definition of an instance from the input stream in. The input stream
state points to the start of a serialized/persistant representation of an instance of this class
type.

This exposure makes it basically possible to define and extend the Inventor file format for a
node in any way we desire and allows to implement our own special parser. The decision was
made to stick to the file format for unknown Coin nodes, which was an important decision.
Those provide all the information (fields) we require and when saved in a standard format
and later encountered in another application, lacking the SoPyScript node, the Coin library
will still be able to parse it through the standard parser. Furthermore, external parsers such
as the ones in syntax highlighters and Coin/VRML modeling tools will also be able to use
the provided Coin file without having to do anything special.

1 SoPyScript {
2 f i e l d s [SoSFColor c o l o r]
3 c o l o r 1 0 0
4 s c r i p t ” p r in t ’ c o l o r va lue : ’ , c o l o r . getValue () . getValue () ”
5 }

Listing 5.8: SoPyScript file format example

As demonstrated in Listing 5.8, we can specify our fields in fields section and can initialize
and refer to them regularly afterwards.

422 // check f o r a comma at the end and s t r i p i t o f f
423 const SbStr ing f i e ldname =
424 (name [name . getLength () −1] == ’ , ’) ?
425 name . getSubStr ing (0 , name . getLength ()−2) : name ;
426
427 // s k i p the s t a t i c f i e l d s
428 i f (f i e ldname == ” s c r i p t ” | | f i e ldname == ”mustEvaluate”) {

continue ; }
429
430 /∗ i n s t a n t i a t e the f i e l d and conduct s im i l a r ac t i on s as the
431 SO NODE ADD FIELD macro ∗/
432 SoFie ld ∗ f i e l d = (SoFie ld ∗) type . c r e a t e In s t anc e () ;
433 f i e l d −>s e tConta iner (this) ;

Listing 5.9: The SoPyScript::readInstance() method

The most important part of our overridden SoPyScript::readInstance() implementation
is shown in Listing 5.9. First, we get hold of the fieldname (lines 422-425) and then check if
the fieldname is one of the static fields we encountered, where we then just proceed in the
SoPyScript::readInstance() and therefore skip them as they will be read in by the following

Chapter 5. Embedding Pivy 87

5.2. Embedding scripts in Inventor files

SoNode::readInstance() base class invocation at the end of our overridden method (line
441).

440 // and f i n a l l y l e t the r e gu l a r readIns tance () method parse the r e s t
441 SbBool ok = inh e r i t e d : : r eadIns tance (in , f l a g s) ;

Finally, we dynamically create the fields and add them to the SoPyScript node (lines 432-433).

5.2 Embedding scripts in Inventor files

In the previous section we have seen a dissection of the code for the SoPyScript node. But
how does one actually use it? This section will demonstrate along a simple example script
what is possible and how the functionality provided can be used.

Listing 5.8 has already shown a simple script. In order to turn it into a valid Inventor file,
we need to provide an Inventor header. We also extend it a little bit:

1 #Inventor V2.0 a s c i i
2
3 DEF root SoSeparator {
4 SoPyScript {
5 f i e l d s [SoSFColor c o l o r]
6 c o l o r 1 0 0
7 s c r i p t ”
8 root = SoNode . getByName (’ root ’)
9 cone = SoCone ()

10 root . addChild (cone)
11
12 p r in t ’== s c r i p t loaded ==’
13 ”
14 }
15 }

In line 3 we specify an SoSeparator group node and give it a name in order to be able to refer to
it later in the script. This is followed by an SoPyScript node declaration, where we again add
a color field and initialize it to red. The script field contains our actual Python script, where
we retrieve the root SoSeparator node through the invocation of SoNode.getByName().
We instantiate a cone shape node instance and append it as the second node to the root
SoSeparator node (line 9).

In order to load and run this example, we need to create our own viewer and provide the
SoPyScript dynamic link library in the search path for the “dynamic loading of extension
nodes” mechanism6. We could create this viewer in Pivy, but the more common use case is
to embed the SoPyScript in already existing C++ applications.

6http://doc.coin3d.org/Coin/dynload_overview.html

Chapter 5. Embedding Pivy 88

http://doc.coin3d.org/Coin/dynload_overview.html

5.2. Embedding scripts in Inventor files

Listing 5.10 shows an implementation of such an ordinary Examiner viewer in C++, that
expects an Inventor file to be passed as its first parameter.

1 #include <Inventor /SoInput . h>
2 #include <Inventor /nodes / SoSeparator . h>
3 #include <Inventor /nodes /SoTransform . h>
4
5 #include <Inventor /Qt/SoQt . h>
6 #include <Inventor /Qt/ v iewers /SoQtExaminerViewer . h>
7
8 #include ”SoPyScript . h”
9

10 int
11 main (int argc , char ∗argv [])
12 {
13 i f (argc != 2) {
14 p r i n t f (”Usage : %s f i l e . i v \n” , argv [0]) ;
15 e x i t (1) ;
16 }
17
18 // i n i t i a l i z e Inventor and Qt
19 QWidget ∗ window = SoQt : : i n i t (argv [0]) ;
20
21 SoPyScript : : i n i tC l a s s () ;
22
23 SoInput ∗ input = new SoInput () ;
24 input−>openFi l e (argv [1]) ;
25
26 SoSeparator ∗ root = new SoSeparator ;
27 root−>r e f () ;
28
29 root−>addChild (SoDB : : r eadAl l (input)) ;
30
31 // i n i t i a l i z e an Examiner Viewer
32 SoQtExaminerViewer ∗ examinerViewer = new SoQtExaminerViewer (

window) ;
33 examinerViewer−>setSceneGraph (root) ;
34 examinerViewer−>show () ;
35
36 SoQt : : show (window) ;
37 SoQt : : mainLoop () ;
38
39 return 0 ;
40 }

Listing 5.10: C++ SoQt Examiner viewer that reads in a file specified in its first parameter

It is statically linked with the SoPyScript node implementation, which makes it necessary to

Chapter 5. Embedding Pivy 89

5.2. Embedding scripts in Inventor files

include the SoPyScript.h header file and invoke SoPyScript::initClass() manually.

21 SoPyScript : : i n i tC l a s s () ;

Line 23-24 load in the Inventor file:

23 SoInput ∗ input = new SoInput () ;
24 input−>openFi l e (argv [1]) ;

We add the resulting scene graph to our root node (line 29). As we already declared an
encapsulating SoSeparator in the Inventor file, we could have chosen to leave out the instan-
tatiation of the additional SoSeparator in the viewer and directly assigned the results of the
SoDB::readAll() invocation to the SoSeparator in the Examiner viewer. Another option is
to skip the declaration in the Inventor file and to make use of a root->setName(“root”);
invocation to give our root node a name, in order to be able to refer to it later. For our simple
example this refinement does not matter and it is a bit safer to construct the scene graph this
way.

23 SoInput ∗ input = new SoInput () ;
24 input−>openFi l e (argv [1]) ;

After successfully compiling and linking our Examiner viewer, where we in addition to the
Coin and SoQt include path and compiler/linker flags have to provide the include path to the
Python.h header file and the Python compiler/linker flags7, we can finally invoke our script:

1 $. /examin s c r i p t . i v
2 == s c r i p t loaded ==

The result of the invocation in the form of an Examiner viewer containing our added Cone
is shown in the left picture of Figure 5.2.

Now this is actually still quite boring and we did not make use of the color field yet. So in
oder to color the cone red, we prepend a SoMaterial node and feed its diffuseColor value
with our color field. We then apply a SoWriteAction on the root node that will write out the
current representation of our scene graph. This exemplifies the border-case for the autoref’ing
mechanism in Pivy and the reason why it was decided against hiding the ref() and unref()
methods of the SoNode in the wrapper, therefore keeping them exposed to the Pivy users. As
the SoWriteAction() gets applied on a node that has been specified in the Inventor file and
not created in Python, its reference count will be 0. We therefore have to ref() it manually
as the root Separator will otherwise get deallocated after the Action traversal.

7both can be acquired through Python’s distutils.sysconfig module

Chapter 5. Embedding Pivy 90

5.2.
E

m
bedding

scripts
in

Inventor
files

Figure 5.2: The results of the first and second SoPyScript invocation

C
hapter

5.
E

m
bedding

P
ivy

91

5.2. Embedding scripts in Inventor files

1 #Inventor V2.0 a s c i i
2
3 DEF root SoSeparator {
4 SoPyScript {
5 f i e l d s [SoSFColor c o l o r]
6 c o l o r 1 0 0
7 s c r i p t ”
8 root = SoNode . getByName (’ root ’)
9 cone = SoCone ()

10 root . addChild (cone)
11
12 mat = SoMater ia l ()
13 mat . d i f f u s eCo l o r = co l o r . getValue ()
14 root . i n s e r tCh i l d (mat , 0)
15
16 root . r e f ()
17 wa = SoWriteAction ()
18 wa . apply (root)
19
20 p r in t ’== s c r i p t loaded ==’
21 ”
22 }
23 }

The following listing shows the console output from the invocation of our second run of the
modified script and the right picture in Figure 5.2 shows the result on the screen: a red
cone. In the console output we can see, that there is no mention whatsoever yet about the
SoPyScript() node as the execution of the script happens during the construction of the
SoPyScript().

1 $. /examin s c r i p t . i v
2 #Inventor V2 . 1 a s c i i
3
4 DEF root Separator {
5 Mater ia l {
6 d i f f u s eCo l o r 1 0 0
7 }
8 Cone {
9 }

10 }
11 == s c r i p t loaded ==

Python uses indentation for delimiting blocks of code. This not an issue at all in the SoPy-
Script node as the script containing multiple lines can be written from the beginning of the
line.

Chapter 5. Embedding Pivy 92

5.3. Using SoPyScript as a Coin node extension mechanism

Another noteworthy fact is that the script can be factored out to its own file and referred to
by an URL, which can be of any form the Python urllib module supports. For example:

1 # f i l e r e f e r e n c e back to the s c r i p t
2 s c r i p t ” . . / SoPyScript / s c r i p t . py”
3
4 # f i l e r e f e r e n c e us ing URL notat ion
5 s c r i p t ” f i l e : . / s c r i p t . py”
6
7 # URL r e f e r e n c e to a l o c a l l y running web s e r v e r
8 s c r i p t ” http :// l o c a l h o s t / s c r i p t . py”

The SoPyScript node checks if it can open the contents of the script through urllib.urlopen()
in SoPyScript::executePyScript() before it proceeds and assumes it is a regular embedded
Python script.

To factor out the actual script implementation has the benefit of enabling the usage of all
features, such as syntax highlighting, offered in a Python IDE, while the scripts are developed.
At the same time, this mechanism also makes the Inventor file less crowded, which improves
readability. Moreover, the developer is able to create his own library of useful scripts for reuse
in various nodes.

5.3 Using SoPyScript as a Coin node extension mechanism

We conclude the discussion about the SoPyScript node and this chapter by demonstrating
another use case. The SoPyScript can be used to create new functionality, which can cur-
rently only be achieved through usage of the Coin extension mechanism in C++. The Coin
C++ extension mechanism is unnecessarily involved, when everything we desire is just the
manipulation of some element states in the scene graph during traversal. The author likes to
refer to this desire as: the creation of the essence of functionality of a complete Inventor
Node by solely using the SoPyScript node.

The following presentation will focus on the SoPyScript Pivy example, that can be found in
the examples/SoPyScript/ directory of the Pivy source distribution and is a direct adaption
of the Glow example extension property node found in “The Inventor Toolmaker”[21].

The Glow property node modifies the emissive color of the current material in order to make
objects appear to glow. A vector field called color represents the color of the glow; a float field
called brightness, ranging from 0 to 1, indicates how much the object should glow. The actions
that deal with materials need to be implemented: GLRender() and callback(). Since the
actions perform the same operation the common code gets refactored into a doAction()
method. The doAction() method updates the emissive color element based on the values of
the color and brightness fields of the node.

In order to create this node we have to define a header file for the declarations and a source
file for the implementation. In Listing 5.11 we see the header file for this node (with the
original comments stripped out).

Chapter 5. Embedding Pivy 93

5.3. Using SoPyScript as a Coin node extension mechanism

1 #include <Inventor /SbColor . h>
2 #include <Inventor / f i e l d s /SoSFColor . h>
3 #include <Inventor / f i e l d s /SoSFFloat . h>
4 #include <Inventor /nodes /SoSubNode . h>
5
6 class SoColorPacker ;
7
8 class Glow : public SoNode {
9 SO NODE HEADER(Glow) ;

10 public :
11 SoSFColor c o l o r ;
12 SoSFFloat b r i gh tne s s ;
13 SoSFFloat transparency ;
14 stat ic void i n i tC l a s s () ;
15 Glow () ;
16 protected :
17 virtual void GLRender (SoGLRenderAction ∗ ac t i on) ;
18 virtual void c a l l ba ck (SoCal lbackAction ∗ ac t i on) ;
19 virtual void doAction (SoAction ∗ ac t i on) ;
20 virtual ˜Glow () ;
21 private :
22 SoColorPacker ∗ co lorPacker ;
23 f loat transpValue ;
24 } ;

Listing 5.11: The header file of the Glow property extension node

The header file starts out by including the required header files for the referenced classes. In
line 9 we see the use of the required SO NODE HEADER(Glow); convenience macro that
fills out declarations such as methods dealing with the Coin type system, static class mem-
ber methods such as Glow::createInstance() or methods dealing with field access. This
is followed in line 11-13 by declarations for the public fields that should be used. Then the
obligatory static Glow::initClass() and constructor are declared. In the protected section
the Action handlers that should be overridden are specified. The header file ends by declaring
the protected destructor8, the private colorPacker class and a helper variable transpValue
for setting the transparency value.

1 #include <Inventor / a c t i on s / SoCal lbackAction . h>
2 #include <Inventor / a c t i on s /SoGLRenderAction . h>
3 #include <Inventor / e lements /SoLazyElement . h>
4 #include <Inventor / e lements /SoOverrideElement . h>
5
6 #include ”Glow . h”

8the destructor should never be directly invoked; instead the reference counting mechanism will take care
of invoking the destructor after an unref() invocation results in a Node’s reference count to drop to 0

Chapter 5. Embedding Pivy 94

5.3. Using SoPyScript as a Coin node extension mechanism

7
8 SO NODE SOURCE(Glow) ;
9

10 void
11 Glow : : i n i tC l a s s ()
12 {
13 SO NODE INIT CLASS(Glow , SoNode , ”Node”) ;
14 }
15
16 Glow : : Glow ()
17 {
18 SO NODE CONSTRUCTOR(Glow) ;
19 SO NODE ADD FIELD(co lo r , (1 . 0 , 1 . 0 , 1 . 0)) ;
20 SO NODE ADD FIELD(br ightnes s , (0 . 0)) ;
21 SO NODE ADD FIELD(transparency , (0 . 0)) ;
22 co lorPacker = new SoColorPacker ;
23 }
24
25 Glow : : ˜ Glow () { delete co lorPacker ; }

Listing 5.12: The implementation file of the Glow property extension node - part I

The C++ implementation of this extension node is shown in Listing 5.12 and 5.13. Again
we have to make use of a convenience macro, this time named SO NODE SOURCE-
(Glow); which fills out the implementation for the methods that got declared through the
SO NODE HEADER(Glow); macro in the header file. The Glow::initClass() and con-
structor of the Glow class further utilizes macros to initialize and register the class and fields
with the Coin run time type system. The destructor just frees up the heap instantiated color-
Packer instance; the actual functionality of the node is implemented in Glow::doAction().

The emissiveColor color is defined as the product of the brightness and color fields which
gets computed in line 44. The emissive color state of the SoLazyElement is then set to the
one contained in the computed emissiveColor SbColor value. Similarly, the transparency
state is set through the transparency field.

The colorPacker has to be provided when the transparency is set, so that the transparency
will be merged with the current diffuse color in the state.

27 void
28 Glow : : GLRender (SoGLRenderAction ∗ ac t i on)
29 {
30 Glow : : doAction (ac t i on) ;
31 }
32
33 void
34 Glow : : c a l l b a ck (SoCal lbackAction ∗ ac t i on)
35 {
36 Glow : : doAction (ac t i on) ;
37 }

Chapter 5. Embedding Pivy 95

5.3. Using SoPyScript as a Coin node extension mechanism

38
39 void
40 Glow : : doAction (SoAction ∗ ac t i on)
41 {
42 i f (! b r i gh tne s s . i s I gno r ed () &&
43 ! SoOverrideElement : : getEmiss iveColorOverr ide (act ion−>ge tSta t e

())) {
44 SbColor emi s s iveCo lo r = co l o r . getValue () ∗ br i gh tne s s . getValue

() ;
45 SoLazyElement : : s e tEmis s ive (act ion−>ge tSta t e () , &emis s iveCo lo r) ;
46 }
47
48 i f (! t ransparency . i s I gno r ed () &&
49 ! SoOverrideElement : : getTransparencyOverr ide (act ion−>ge tSta t e

())) {
50 transpValue = transparency . getValue () ;
51 SoLazyElement : : setTransparency (act ion−>ge tSta t e () ,
52 this , 1 ,
53 &transpValue ,
54 co lo rPacker) ;
55 }
56 }

Listing 5.13: The implementation file of the Glow property extension node - part II

This example needs then to be compiled and statically linked into the application that uses
it or alternatively dynamically loaded through the dynamic loading mechanism of Coin.

Listing 5.14 presents the exact same functionality implemented as a Python script. Line
2 uses floatp, a conversion utility provided by SWIG, in order to allow the creation and
the passing of pointer values to methods that require it - as is the case with SoLazyEle-
ment.setTransparency() method.

1 co lorPacker = SoColorPacker ()
2 transpValue = f l o a t p ()
3
4 def doAction (ac t i on) :
5 global transpValue
6
7 i f not br i gh tne s s . i s I gno r ed () and not SoOverrideElement .

getEmiss iveColorOverr ide (ac t i on . ge tSta t e ()) :
8 emi s s iveCo lo r = co l o r . getValue () ∗ br i gh tne s s . getValue ()
9 SoLazyElement . s e tEmis s ive (ac t i on . ge tS ta t e () , emi s s iveCo lo r)

10 i f not t ransparency . i s I gno r ed () and not SoOverrideElement .
getTransparencyOverr ide (ac t i on . ge tSta t e ()) :

11 transpValue . a s s i gn (transparency . getValue ())
12 SoLazyElement . setTransparency (ac t i on . ge tS ta t e () , s e l f , 1 ,

transpValue , co lo rPacker)

Chapter 5. Embedding Pivy 96

5.3. Using SoPyScript as a Coin node extension mechanism

13
14 def GLRender (ac t i on) :
15 ac t i on . setTransparencyType (SoGLRenderAction .SORTED OBJECT BLEND

)
16 doAction (ac t i on)
17
18 def c a l l ba ck (ac t i on) :
19 doAction (ac t i on)

Listing 5.14: The implementation file of the Glow property extension node in Python

Listing 5.15 shows how we declare all the involved fields color, brightness and trans-
parency. We initialize those values where the color field gets connected to the output of
the translation field of an SoShuttle (line 11). We specify our script “glow.py”. . .done!

9 DEF Glow SoPyScript {
10 f i e l d s [SoSFColor co lo r , SoSFFloat br ightnes s , SoSFFloat

transparency]
11 c o l o r 1 0 0 = USE s hu t t l e . t r a n s l a t i o n
12 b r i gh tne s s 0 .5
13 transparency 0 .3
14 s c r i p t ” . / glow . py”
15 }

Listing 5.15: Python Glow property extension node script usage out of an Inventor file

No need to specify header includes, macros and implement initialization routines. Further-
more, the exactly same functionality is provided in 19 lines of code instead of 80 lines of
code as is the case with the C++ implementation.

Most importantly, we did not have to go through iterative recompile and link
cycles, which gave us immediate turnaround in developing and testing out our
new extension functionality!

The time saved in implementing this extension in Python through the use of the SoPyScript
node and therefore allowed to just focus on the implementation of the actual functionality,
allows to quickly enhance the Python example even further. An additional textscroller script
has been implementing, which demonstrates the usage of embedding an SoTimerSensor()
sensor, that invokes our embedded changeStringSensorCallback() function (Listing 5.16 and
5.17). Figure 5.3 shows various states of the glow and textscroller animation.

24 DEF TextSc ro l l e r SoPyScript {
25 f i e l d s [SoSFString s t r i ng , SoSFColor c o l o r]
26 s t r i n g ” I am Pivy powered ! ”
27 c o l o r 0 1 0
28 s c r i p t ” . / t e x t s c r o l l . py”
29 }

Listing 5.16: The usage of the textscroller script out of an Inventor file

Chapter 5. Embedding Pivy 97

5.3. Using SoPyScript as a Coin node extension mechanism

1 idx = 0
2 text = s t r i n g . getValue () . g e tS t r i ng ()
3 t e x t l e n g th = len (t ext)
4
5 i n t e r v a l = 0 .15
6
7 def changeStr ingSensorCal lback (data , s enso r) :
8 global idx
9 s t r i n g . setValue (t ex t [: idx])

10
11 i f idx == tex t l e ng th :
12 senso r . s e t I n t e r v a l (5 . 0)
13 else :
14 s enso r . s e t I n t e r v a l (i n t e r v a l)
15
16 idx %= tex t l e ng th
17 idx += 1
18
19 t imer s enso r = SoTimerSensor (changeStr ingSensorCal lback , None)
20 t imer s enso r . s e t I n t e r v a l (i n t e r v a l)
21 t imer s enso r . s chedu le ()
22
23 s t r i n g . setValue (t ex t [: idx])
24
25 print ’== Tex tSc r o l l e r s c r i p t loaded ==’

Listing 5.17: The implementation file of the textscroller script

Chapter 5. Embedding Pivy 98

5.3.
U

sing
SoP

yScript
as

a
C

oin
node

extension
m

echanism

Figure 5.3: Examiner viewer executing glow and textscroller script

C
hapter

5.
E

m
bedding

P
ivy

99

Chapter 6

Results

This chapter presents some of the projects and applications that have been accomplished
through the use of Pivy. Four use cases will be presented, that show the versatility and
variety of usage scenarios, that Pivy can be applied for:

1. The first use case presents the creation of a viewer for an “Ubiquitous Tracking Simu-
lation Environment”, developed in collaboration by the VRGroup’s of the University of
Technology Munich, Germany, and Vienna, Austria.

2. The second use case demonstrates, how the SoPyScript got used for “Authoring and
User Interaction for the Production of Wave Field Synthesis Content in an Augmented
Reality System” at the Fraunhofer Institute for Digital Media Technology IDMT in
Ilmenau, Germany.

3. The third use case describes, how Pivy was made use of at Systems in Motion, Norway,
to create a fully-fledged Python application for the Oil & Gas industry, while using
PyQt for the GUI and Pivy for the 3D visualization part.

4. The fourth use case highlights, how D-Level, Italy, makes use of Pivy in their process
control and technology integration platform in order to create custom visualization
widget-plugins.

6.1 Use Case 1: TU Munich/Vienna - “Ubiquitous Tracking
Simulation Environment”

During their collaborative research in the field of “Ubiquitous Tracking for Augmented Reality”[22]
the VRGroup’s of the University of Technology Munich, Germany, and Vienna, Austria
needed to develop an simulation environment for ubiquitous tracking.

The program is called “pyubitracksim.py” and features the following components:

100

6.1. Use Case 1: TU Munich/Vienna - “Ubiquitous Tracking Simulation Environment”

Figure 6.1: The Ubitrack Pivy based viewer running on Mac OS X

Chapter 6. Results 101

6.2. Use Case 2: Fraunhofer IDMT - “Wave Field Synthesis”

• Parsing of a BAUML1 geometry file

• 2D Qt view of floor geometry (rather than walls, ceilings and other structures)

• Control points can be dropped onto the plan to define the path of a figure following a
spline

• The splines are implemented using the SciPy library of scientific tools for Python

• A 3D view from the point of view of the figure in the plan implemented in Pivy

The BAUML specification represents a XML schema describing a XML language to build a
world model used for Augmented Reality and Ubiquitous Computing research projects at the
Vienna University of Technology. It provides the structures to describe geometry and spatial
relations between buildings and rooms contained within building. in addition to that it allows
to store locations of markers used for optical tracking within the building.

This project uses Pivy for visualizing the institute floor and the attached ARToolkit paper
markers, that allow optical tracking to be used in Mobile Augmented Reality settings (Figure
6.1).

Thanks to Joseph Newman for providing the screenshots and information.

6.2 Use Case 2: Fraunhofer IDMT - “Wave Field Synthesis”

The Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau2 makes use of the
SoPyScript facility in Pivy for “Authoring and User interaction for the production of Wave
Field Synthesis Content in an Augmented Reality System”[23]. (Figure 6.2, and 6.3)

The Fraunhofer IDMT understands itself as technological and economic motor for the region
Thuringia. With its innovation power our institute gives impulses for the economy and science
in Germany and worldwide.

Fraunhofer IDMT uses the SoPyScript node in a Studierstube application in order to proto-
type the sending of UDP Open Sound Control3 commands in order to control a “Wave Field
Synthesis“ audio system through a newly developed Augmented Reality GUI.

Thanks to Frank Melchior for providing the screenshots and information.

6.3 Use Case 3: Systems in Motion - “ConocoPhillips Onshore
Operations Center for Ekofisk”

Systems in Motion AS4, a Norwegian software development house for 3D visualization libraries
and applications and who developed Coin3D which Pivy provides a binding for, is helping

1BAUML http://www.studierstube.org/projects/mobile/ocar/baumldoc.html
2http://www.idmt.fraunhofer.de/
3http://www.cnmat.berkeley.edu/OpenSoundControl/
4http://www.sim.no/

Chapter 6. Results 102

http://www.studierstube.org/projects/mobile/ocar/baumldoc.html
http://www.idmt.fraunhofer.de/
http://www.cnmat.berkeley.edu/OpenSoundControl/
http://www.sim.no/

6.3. Use Case 3: Systems in Motion - “ConocoPhillips Onshore Operations Center for
Ekofisk”

Figure 6.2: Exocentric and egocentric setups for sound source manipulation

Figure 6.3: User View for the egocentric setup for sound source manipulation

Chapter 6. Results 103

6.3. Use Case 3: Systems in Motion - “ConocoPhillips Onshore Operations Center for
Ekofisk”

Figure 6.4: The Ekofisk application - North Sea overview

ConocoPhillips move personnel from offshore oil rigs to the Onshore Operations Center (OOC)
in Stavanger, Norway, by visualizing installations, vessels, weather and related production
data in real time.

The application is integrated with radar systems, weather stations and production databases.
(Figure 6.4 and 6.5) In the project Systems in Motion has capitalized on 10 years of experience
with real-time graphics, including the Coin3D scene graph toolkit and the SIM Scenery5

terrain engine.

Application code has been written almost exclusively in Python, a dynamic programming
language ideally suited for rapid application development (RAD) and Rapid Application
Prototyping (RAP). Use of Python was made possible by the Pivy Coin3D binding.

Thanks to P̊al-Robert Engnæs for providing the screenshots and information.
5http://www.sim.no/products/Scenery/

Chapter 6. Results 104

http://www.sim.no/products/Scenery/

6.3. Use Case 3: Systems in Motion - “ConocoPhillips Onshore Operations Center for
Ekofisk”

Figure 6.5: The Ekofisk application - closeups

Chapter 6. Results 105

6.4. Use Case 4: D-Level - “Devil Framework”

6.4 Use Case 4: D-Level - “Devil Framework”

D-Level6 is a privately held company that develops and provides custom and general purpose
advanced software systems for data acquisition, process control and systems automation.
Founded in 2000, D-Level is headquartered in Rivignano (UD) - Italy, where they are devel-
oping the Devil Framework7.

The Devil Framework is a system developed to fulfill the growing need to collect, integrate,
correlate, control and visualize all information produced and consumed by the various hard-
ware and software technologies involved in modern working processes. The framework is
designed from the ground-up to be scalable, extendible, configurable and easily deployable
but at the same time secure and reliable. Furthermore, the Devil Framework is conceived to
inter-operate with as many devices as possible and to run on all major computer operating
systems available today and is developed using open standards and open technologies, giving
users total control on systems and data, and to developers a powerful open environment.

The Devil Framework screenshot in Figure 6.6 is showing the following components:

• the views manager/editor in edit mode (center-background),

• the main toolbox (top-right),

• the interactive distributed python console (bottom-right),

• the components browser (bottom-left) and

• the configs browser (top-left-back).

D-Level uses and integrates Pivy for custom visualization widget plugins and are also planning
in integrating Pivy with their product’s Integrated Development Environment.

Thanks to Alessandro Iob for providing the screenshot and information.

6http://www.dlevel.com/
7http://www.dlevel.com/products/devil

Chapter 6. Results 106

http://www.dlevel.com/
http://www.dlevel.com/products/devil

6.4.
U

se
C

ase
4:

D
-L

evel
-

“D
evil

Fram
ew

ork”

Figure 6.6: The Devil Framework

C
hapter

6.
R

esults
107

Chapter 7

Conclusions

The presented thesis showcased how we can benefit from the usage of a dynamically typed
and bound language such as Python in a scene graph library as Coin which has been designed
and implemented in a statically typed system programming language. Furthermore, we have
demonstrated how the existence of a runtime system in the aforementioned scene graph library,
implemented for the required and necessary flexibility, can be used to our advantage.

Through the possibility of interactive modification of Coin programs from within the Python
interpreter at runtime and incorporation of scripting nodes into the scene graph, the usefulness
as a debugging and Rapid Application Development and Prototyping tool is greatly expanded.

A very important decision, that needs to be made before the actual implementation starts, is
whether to make usage of an automatic wrapper generator such as SWIG or not. Apart from
gaining a quick and efficient mechanism to create a complete wrapper, which serves as a solid
foundation for a variety of use cases, the usage of an automatic wrapper generator allows
to extend our current binding quickly and easily. This permits the incorporation of newly
created nodes and libraries, that have been developed in the system programming language.
In order to reduce redundancy in newly developed extension modules and improve re-usability
of the already existing wrapper interfaces, common typemaps and generic functionality has
been factored out into a single wrapper interface file.

Through the usage of the available runtime mechanisms, that the wrapper generator provides,
we can create independent modules. Therefore, special purpose facilities, such as the SoPy-
Script scripting facility, do not have to load all the involved and otherwise unused C/C++
dynamic link libraries and huge Python extension modules. This improves the maintainability,
extensibility and the overall actual resource usage.

We have seen and argued, that due to the distinct properties of retained mode operated
libraries, they present a better fit for usage out of interpreted languages. Libraries, that oper-
ate in immediate mode, are penalized through the calling overhead of interpreted languages.
Moreover, one of the main benefits of dynamically interpreted languages, namely their use as a
controlling language, can be exploited in this domain to its fullest. CPU intensive calculations
continue to be conducted in the lower end system language.

The distinction between extending and embedding the Python interpreter has been explained

108

7.1. Future work

and its close relationship witnessed. It can be observed, that once the time has been taken
to fully wrap a library and the involved application interfaces, the effort quickly pays off. It
provides an extension architecture, such as a plug-in system, which can be extended quickly in
unexpected interesting new ways. Furthermore, the embedding part reveals itself afterwards
just as a matter of combining and reusing the existing foundations, while writing few lines of
integration “glue code” around the interfaces.

Finally, we have proven that it is nowadays possible to efficiently wrap libraries and interfaces
written in C++, which is considered to be a complex and difficult language and task. Through
the organization and modularization of the wrapper code base for reuse, where the focus lies
upon the automation of as much as possible through the wrapper generator, we find ourselves
in a position to tackle big to huge C++ libraries quite effortlessly. The provision of a good
foundation, which fully wraps the base classes of the C++ library, additionally helps in this
process.

An important benefit of the usage of a multi-lingual wrapper generator, such as SWIG, is,
that once the organizational and core foundation aspects have been solved, we solely need
to revisit all the type conversion and glue code in place and rewrite them for the new target
language, as we make use of the same wrapper generator. All the required changes and code
parts, that need to be tackled, are then already identified and neither the organization of
the wrapper interfaces nor the SWIG type code definitions have to be changed. In contrast,
a manual wrapping approach or the use of wrapper generators for a single target language
requires the rediscovery and recreation of the same effort for each additional language.

7.1 Future work

Pivy has come a long way and proven to be a very stable and ready to use Coin binding.
Pivy provides a suitable platform for advanced usage scenarios, which is viable for commercial
production quality applications today. The usage scenarios of Pivy range from prototyping,
Rapid Application Development to usage as a convenient, advanced and readily available
debugging facility. Clearly, users and developers will come up with novel and interesting new
ideas in how Pivy can be exploited through the combination and integration of the already
provided facilities at hand.

Still, there is always something that can and needs to be improved. We close this thesis by
naming some of the current ideas:

• Provide appropriate documentation and tutorials to give new and advanced Coin de-
velopers a quick and easy start and allow them to quickly see what Pivy offers and how
to make use of these offerings and facilities.

• Adapt Pivy for newer SWIG and Python versions to make improvements such as better
performance and additional language features available.

• Improve the performance through minimizing the calling overhead for the crucial Coin
basic types by for example manually wrapping them. This will implicitly benefit all the
additional bindings for the existing Coin based libraries.

Chapter 7. Conclusions 109

7.1. Future work

• Make Pivy optionally fully thread-safe. Initial support through the -threads option has
been introduced in SWIG version 1.3.28. An audit throughout the type conversion
wrapper code base needs to conducted in order to identify the locations where Python’s
global interpreter lock needs to be acquired or released for the sections where Python
code is executed. The usage of this feature currently results in a decrease of the overall
wrapper performance by around 60%, which unfortunately constitutes a very signif-
icant impact. However, SWIG provides the necessary facilities to allow fine grained
specification in which parts the thread handling should be enabled.

• Provide additional wrappers for Coin based classes and integrate Pivy into the Coin
source code base and build system. To have Pivy integrated in the Coin source code
base, allows the user to create the binding in one pass without the need to hop through
several stages. Moreover, it further ensures that the binding stays updated with every
consecutive release of the Coin library. The way Pivy’s build system work is flexible
enough to achieve such a goal quite easily. A autotools1 m4 macro needs to be written,
which tests for an installed Python base, and the given Python setup.py build, clean,
install targets need to be issued accordingly in the Coin build system. However, what
remains to be discussed is whether the Pivy interfaces should be merged into the Coin
header files or kept in a separate subdirectory using the current approach of copying
the required header files over to the build directory in order to prepend the required
%include interface.i directives.

Aside from that, the interface files and build system will need to be split up and tweaked
accordingly for each Coin and support library to allow an independent Pivy code base
for each submodule.

Finally, wrappers and interfaces should be created for and integrated with the additional
Coin support libraries in existence such as NutsnBolts or SIM Scenery.

• Allow the creation of extension actions, engines, fields, nodes and node kits in Pivy.
SoPyScript allows the creation of new functionality, which solves most of the problems.
When it comes to extending the Coin type-system itself with new nodes and node kits
solely written in Python, Pivy does not offer a simple solution for that yet. It should
be possible by closely mimicking the functionality of the macros contained in the So-
SubAction/Node/Field/Engine header files to create this highly requested functionality.
There are 2 possibilities and approaches to achieve that:

1. Through the combined usage of the wrapped SoType::createType(), SoType::-
overrideType() and SoType::createInstance() methods, which are provided through
the Inventor type system, and a small and convenient Python utility module.

2. Through the creation of the required functionality in C++, which allows to create
those new types. This functionality is then exposed through inclusion in the main
Coin Pivy SWIG interface.

• Integrate with SciPy, a library of scientific tools for Python. As mentioned in chapter
2, SciPy includes among others modules for graphics and plotting, optimization, inte-
gration, special functions, signal and image processing, genetic algorithms and ODE

1http://www.gnu.org/software/autoconf/

Chapter 7. Conclusions 110

http://www.gnu.org/software/autoconf/

7.1. Future work

solvers. However, SciPy currently lacks a 3D viewer component, where both Pivy and
SciPy could mutually benefit from integrating with each other.

• A runtime based development system: One of the ideas that have been discussed in
the past, was to create a runtime based development system and framework. This does
not make it necessary anymore to restart the application, but rather just reload its
components (using a provided component API) at runtime. This permits to improve
the turnaround times drastically for applications that have a lengthy startup time.

Apart from that, it allows to deploy and upgrade such a system without requiring a
restart, which improves and allows for new maintenance procedures and models. How-
ever, this tends to be a rather tricky process, where special languages such as Erlang
have been created to tackle exactly this problem domain. The problems range from
fundamental questions such as “What needs to be done if the underlying fundamental
libraries written in C/C++ change?” to “How does one provide updates for Python
modules efficiently to track things like variable/class removals and changes from and
in the namespace etc.?”. A solid and well-designed framework, which takes those and
similar questions into account, appears to be a feasible and workable solution.

Further ideas, such as the integration with existing IDE’s or to embed a web server into
such a system, which provides remote introspection and permits to update components
at runtime, promises to quickly yield even more gains in productivity and maintenance.

• Provide and integrate bindings for other languages such as Ruby, Lua, Java and C#.
The most straight forward binding to create, should be a Ruby binding, due to the
similarities found in the Python and Ruby languages. Once tackled and finished, the
code base will be adapted and abstracted well enough in order to serve as a generic plat-
form for the more involved languages, such as Java and C#. It remains to be discussed
and seen if a fully fledged binding for Lua, which is a special purpose language and
popular in the gaming industry2, should be created or rather be used as an alternative
to JavaScript in an embedded fashion in the VRML scripting nodes. The latter option
seems to be the better solution for a Lua binding.

• And last but not least, advertising Pivy to make it better known in the Python com-
munity as a viable platform for 3D applications.

2due to its lower memory overhead and easy to use C API for embedding purposes

Chapter 7. Conclusions 111

Appendix A

The Pivy file system layout

Pivy’s file system layout had to be refined during the development process a couple of times
whenever the need for more flexibility arose or when the requirements for a more flexible,
practical and suitable build process changed. Figure A.1 shows the top-level root directory
of the Pivy source distribution. The file system layout should be simple, practical (for both
command line and GUI-driven purposes), very clean, obvious and as much as possible flat
and direct (i.e. not crowded or hidden in an endless and intrusive subdirectory structure).
Furthermore, it should adhere and comply to common open source community practices
regarding the location and naming conventions of certain files, such as README or distutils’
setup.py.

Inventor: contains the SWIG interface files (.i suffix). It contains a subdirectory hierarchy
matching the one found in Coin for the header files.

SoPyScript: contains the sources and SCons based build script for the SoPyScript scripting
node.

VolumeViz: similar to the Inventor directory above, VolumeViz contains the SWIG in-
terface files for the SIM Voleon1 volume rendering library that is based on and to be
used together with Coin.

docs: contains older ChangeLogs and Pivy related documentation.

examples: contains various examples, demonstrating usage of various aspects found in Pivy.

fake headers: contains empty “fake” header files in a subdirectory hierarchy they occur in
in order to prohibit SWIG to generated wrappers for these header files.

interfaces: contains the main SWIG interface files for Coin and each Coin based library.
Furthermore, it contains pivy common typemaps.i, which collects typemaps and support
functions that are required in all extension modules, and coin header includes.h, which
lists all Coin header #include statements and represent the Coin header files that should
be inspected and wrapped.

1http://www.sim.no/products/SIM_Voleon/

112

http://www.sim.no/products/SIM_Voleon/

Figure A.1: The top-level file system hierarchy of the Pivy source code distribution

packaging: contains package file descriptions for various package managers and installers.
(currently contains only a package description for the Mac OS X installer)

pivy: contains the Python package structure for the pivy package. Furthermore, sogui.py
contains the sogui proxy mechanism and the SWIG generated wrapper source files and
SWIG proxy classes will be located here as well during the build step.

scons: contains a local copy of the SCons build system to allow users to compile the SCons
based parts of Pivy such as the SoPyScript scripting node, the extension and SoPyScript
examples and in an earlier Pivy version the SWIG runtime library.

tests: contains the Pivy unit tests in pivy tests.py.

Another top-level directory is created during the build step used by Python’s distutils build
mechanism: build/. However, distutils allows to specify a different location for this direc-
tory.

Appendix A. The Pivy file system layout 113

Appendix B

The Pivy build system

As mentioned, for the build system requirements a combination of two tools are made use of:

distutils is a suite of standard Distribution Utilities for Python with the goal to make build-
ing, distributing, and installing Python modules, extensions, and applications painless
and standardized.

SCons is an open source next-generation software construction build tool. It can be thought
of an improved, cross-platform substitute for the classic make utility with integrated
functionality similar to autoconf/automake1 and compiler caches such as ccache2.

B.1 Distutils

Distutils is used to gather information about the compiler and linker flags the Python in-
terpreter expects its extensions to be compiled with. Additionally, we make use of distutils’
build framework and override certain behavior in order to gather system information and
keep a log of activities to assist in user support or in order to gather additional compiler and
linker flags required to link against the wrapped Coin C++ libraries.

Furthermore, distutils provides the possibility to register the Python project at the Python
Cheese Shop3 and to create source or binary package distributions where a description of
what to package in addition to the extensions and Python modules (such as examples or
documentation) can be provided in a separate file: typically MANIFEST.in.

B.2 The setup function in setup.py

Listing B.1 shows the distutils setup function for Pivy, which is contained in the setup.py
build description file in the root of the Pivy source distribution. The name specifier in the

1http://www.gnu.org/software/autoconf/
2http://ccache.samba.org/
3http://cheeseshop.python.org/

114

http://www.gnu.org/software/autoconf/
http://ccache.samba.org/
http://cheeseshop.python.org/

B.2. The setup function in setup.py

function tells distutils the name of the whole package. This will be taken into account once
setup.py is asked to create a .tar.gz or .zip source archive, where additional files apart from
the actual extension and module that should be put into the package can be specified in a
MANIFEST.in as mentioned above; MANIFEST.in provides its own simple syntax to express
what to include and what not.

436 setup (name = ”Pivy” ,
437 ve r s i on = PIVY VERSION,
438 d e s c r i p t i o n = ”A Python binding f o r Coin” ,
439 l o n g d e s c r i p t i o n = doc ,
440 author = ”Tamer Fahmy” ,
441 author emai l = ”tamer@tammura . at ” ,
442 download url=”http ://www. tammura . at /download/” ,
443 u r l = ”http :// pivy . tammura . at /” ,
444 cmdclass = { ’ bu i ld ’ : p ivy bu i ld ,
445 ’ c l ean ’ : p i vy c l e an } ,
446 ext package = ’ pivy ’ ,
447 ext modules = p ivy bu i l d . ext modules ,
448 py modules = p ivy bu i l d . py modules ,
449 packages = [’ pivy ’ , ’ pivy . gui ’] ,
450 c l a s s i f i e r s = f i l t e r (None , PIVY CLASSIFIERS . s p l i t (”\n”)) ,
451 l i c e n s e = ”BSD License ” ,
452 p lat fo rms = [’Any ’]
453)

Listing B.1: The distutils setup() function for Pivy in setup.py

The version, description, long description, author, author email, download url, url,
classifiers, license and platforms specifiers contain and provide meta information regard-
ing the project. This meta information is for example used by distutils to provide the Python
Cheese Shop with the required information in the project description listing. The classi-
fiers contain additional meta information regarding the intended audience, related topics
and operating system support.

The cmdclass specifier expects a dictionary that permits to override the built-in build rules.
In this case, we are overriding the distutils default build (to use our own customized build
instructions) and clean (to remove any additional files such as the wrapper sources generated
by SWIG) we created during the build process) methods. In the build method, we are
invoking the external SWIG processes and providing the Extension() directives that contain
the information about the extension modules that should be built.

The ext package specifier tells distutils which Python package the extensions live in; the
ext modules specifies the name of the C/C++ extension module list that should get built.
This list is filled in the pivy build class in the swig generate() method, which is also responsible
to invoke the SWIG executable with the right flags.

The same is done for the Python modules that should be installed and byte compiled in
py modules. To precompile the Python modules to Python bytecode is a very important
step. If they are not precompiled, the rather large Python proxy modules, that are generated

Appendix B. The Pivy build system 115

B.3. Platform specific compiler and linker flags

by SWIG, take a long time to import into the Python interpreter. The reason is that the
Python interpreter will have to parse the whole Python file itself every time the module is
imported the first time.

The packages specifier lists the Python packages that should be installed. In our case, we
advise distutils to pick them up from pivy/pivy and pivy/pivy/gui.

B.3 Platform specific compiler and linker flags

In order to gather the compiler and linker flags necessary for Coin and the SoGui support
libraries such as SoQt, we make use of the coin-config and sogui-config configuration helper
shell scripts. The exception is Microsoft Windows, which currently has a big user-base and is
a very differently and strangely designed platform in comparison with systems that are Unix
based, such as Linux, Solaris, *BSD or Mac OS X; the coin-config configuration scripts are not
provided for that platform and therefore required special treatment in the build specification
by having to specify the compiler and linker flags ourselves. In the Windows case, we can
however rely on the COINDIR environment variable being set and gather the information
manually. For example:

352 i f sys . p lat form == ”win32” :
353 INCLUDE DIR = os . getenv (”COINDIR”) + ”\\ i n c lude ”
354 CPP FLAGS = ”−I ” + ’ ” ’ + INCLUDE DIR + ’ ” ’ + ” ” + \
355 ”−I ” + ’ ” ’ + os . getenv (”COINDIR”) + ”\\ i n c lude \\

Inventor \\annex” + ’ ” ’ + \
356 ” /DCOIN DLL /wd4244 /wd4049”
357 LDFLAGS LIBS = ’ ” ’ + os . getenv (”COINDIR”) + ”\\ l i b \\ co in2 . l i b \” ”
358 i f module == ”sowin” :
359 CPP FLAGS += ” /DSOWIN DLL”
360 LDFLAGS LIBS += ’ ” ’ + os . getenv (”COINDIR”) + ”\\ l i b \\ sowin1 . l i b

” + ’ ” ’
361 e l i f module == ” soqt ” :
362 CPP FLAGS += ” −I ” + ’ ” ’ + os . getenv (”QTDIR”) + ”\\ i n c lude \” /

DSOQT DLL”
363 LDFLAGS LIBS += ’ ” ’ + os . getenv (”COINDIR”) + ”\\ l i b \\ soqt1 . l i b

\” ”
364 else :
365 INCLUDE DIR = s e l f . do os popen (” coin−c on f i g −−i n c l ud ed i r ”)
366 CPP FLAGS = s e l f . do os popen (”%s −−cpp f l a g s ” % conf ig cmd)
367 LDFLAGS LIBS = s e l f . do os popen (”%s −− l d f l a g s −− l i b s ” %

conf ig cmd)

Listing B.2: Special Windows treatment

The build script uses a dictionary mapping, named MODULES, which lists the modules
that should be built. Furthermore, the SOGUI list is used to specify the available SoGUI
bindings that should be probed and looked for in the build system. If the bindings are not
found, they will be removed from the MODULES dictionary.

Appendix B. The Pivy build system 116

B.4. Module mapping and build flexibility

B.4 Module mapping and build flexibility

124 SOGUI = [’ soqt ’ , ’ soxt ’ , ’ sogtk ’ , ’ sowin ’]
125 MODULES = {
126 ’ co in ’ : (’ c o i n ’ , ’ coin−c on f i g ’ , ’ pivy . ’) ,
127 ’ s imvoleon ’ : (’ s imvoleon ’ , ’ s imvoleon−c on f i g ’ , ’ pivy . ’) ,
128 ’ soqt ’ : (’ gu i . s oq t ’ , ’ soqt−c on f i g ’ , ’ pivy . gu i . ’) ,
129 ’ soxt ’ : (’ gu i . s ox t ’ , ’ soxt−c on f i g ’ , ’ pivy . gu i . ’) ,
130 ’ sogtk ’ : (’ gu i . s og tk ’ , ’ sogtk−c on f i g ’ , ’ pivy . gui . ’) ,
131 ’ sowin ’ : (’ gu i . sowin ’ , ’ sowin−c on f i g ’ , ’ pivy . gui . ’)
132 }

Listing B.3: MODULES dictionary used for mapping the configure scripts

The mapping reads as follows:

1 ’modulename ’ : (’ name o f the extens i on without s u f f i x ’ ,
2 ’name o f the c on f i g u r a t i on s c r i p t ’ ,
3 ’ l o c a t i o n in the package h ierarchy ’)

If a new Coin based library should be added and it features its own configuration script, it is
sufficient for the extension to be wrapped and built as a Python extension to create an entry
in the MODULES table as the rest will be handled and taken care of by the generic build
system mechanisms we created.

B.5 Dealing with the Coin header files

The last method we mention (as a complete discussion of the build system is way beyond the
scope of this thesis), is the copy and swigify headers().

We need to tweak the Coin headers, partly because earlier SWIG versions had problems to
parse them, partly because certain header files need refinements in order to produce a more
pythonic interface and in order to add the type conversions. A constraint was that the Coin
headers themselves could be only modified out of their repository. In earlier Pivy development
this was handled by copying the current Coin headers manuall into the Pivy repository and
extending them inline by adding the necessary SWIG directives and using them as SWIG
interface files. This turned out to be quite cumbersome for four reasons:

1. Quite unsurprisingly the Coin header files had a tendency change by their developers
over time (corrections, additions, refinements) and the SWIG changes needed to be
reintegrated into the newer header files, which was a really tedious and error-prone
task.

2. Apart from having to track the changes by keeping an eye on the commit messages
such a solution made it also dependent on specific Coin releases and therefore quite
unflexible. E.g., if some user decided to use the Coin development branch rather than a

Appendix B. The Pivy build system 117

B.6. The fake headers and -includeall approach

release, he needs to take the new headers, which might have added new methods, take
out the SWIG declarations from the Pivy provided Coin headers, merge them back into
the Coin headers again and place them back into the Pivy directory hierarchy.

3. The header files got crowded and were hard to read and maintain, where the SWIG
declarations and typemaps were not easily spottable.

4. Licensing considerations, as header files restricted by the GPL got incorporated. To
avoid the arise of any unforeseen licensing issues4 and in order to stay under control
regarding any licensing decisions of Pivy5, this problem needed to be solved.

So in order to keep the declarations away from the header files, stay Coin version agnostic,
make the involved procedures more maintainable and in order to avoid any licensing issues,
the refined and much better approach copy the header files, that need to be equipped with
SWIG interface declarations, out of the Coin include path location on the system. After the
copy process, a SWIG interface include is added after the copyright section and before the
include block as shown in the next listing.

1 #ifndef COIN SBVEC3F H
2 #define COIN SBVEC3F H
3
4 /∗ Copyright (C) par t ∗/
5
6 /∗ Pivy preproces sor p ro t e c t i on ∗/
7 #ifde f PIVY
8 /∗ SWIG in t e r f a c e f i l e i n c l u s i on d i r e c t i v e ∗/
9 %inc lude Inventor /SbVec3f . i

10 #endif
11
12 /∗ f i r s t header f i l e ∗/
13 #include <s t d i o . h>

Listing B.4: Preprocessor macro protected SWIG %include directive in a Coin header file

B.6 The fake headers and -includeall approach

The Pivy build system invokes SWIG with the -includeall option, which instructs SWIG
to not ignore any encountered #include statements in the header file and works as if the
%include SWIG directive is specified at the same location, which includes another file to be
inspected by SWIG and therefore lets the header file be treated as if it were an additional
SWIG interface file.

This is done for one practical reason: not having to specify any header files in the right order.
Were we required to specify the header files in the right order, we repeatedly need to spend a

4by for example using Pivy together with a commercial Coin license
5the GPL requires any software that makes use of GPL licensed code to be put under the same GPL license

Appendix B. The Pivy build system 118

B.6. The fake headers and -includeall approach

large amount of time in determining the correct order. Furthermore, it is quite cumbersome
to add additional Coin support libraries as the same effort needs to be reiterated.

However, the -includeall approach causes another problem: SWIG will also wrap standard
include system header files such as stdio.h, which are not relevant for the Coin wrapper,
and which is going to unnecessarily enlarge the wrapper and possibly include other system
files themselves, that again are unnecessarily wrapped. To remedy that, the fake headers
directory is in place, which contains empty header files with the names of any external header
files that Coin #include’s. If we now put the fake headers directory as the first entry in the
include search path for SWIG, SWIG will consult and look into the fake headers directory
first and if no header file has been found there, only then proceeds to consult the rest of the
include search path.

This solves the problem very elegantly as SWIG will produce no wrapper code for the empty
header files in the fake headers directory and we therefore can provide the header files in
any order we like as the whole and complete type information will be collected as the Coin
header themselves had already to worry about specifying the right #include’s for proper type
declarations, which we now can take advantage of. Furthermore, to wrap all Coin classes,
we just have to specify all header files, which can be nicely automatized by a simple shell or
Python script again.

Figure B.1: Build failure reported by a Pivy user

Appendix B. The Pivy build system 119

B.7. Importance of build system output and tests

B.7 Importance of build system output and tests

The build system has to address platform specific idiosyncrasies and deal with various user
setups that cannot be always anticipated or foreseen. It is therefore crucial to write out or
log relevant info that could help in spotting and resolving a problem easily to the screen or a
logfile. Furthermore, it is important to test the system for a proper build environment before
we proceed in order to verify that the minimal system and dependency requirements for a
successful build are met.

In Figure B.1 the build a stops as the required SWIG executable has not been found. If
the Pivy build system is silent about the conducted steps, it will be many times harder and
involve significantly more communication overhead in order to determine the cause of a failed
build on a different user setup.

B.8 SCons usage

When it comes to building C++ shared libraries which are not to be used as Python extension
modules as is the case with the SoPyScript scripting node or with Pivy wrapped extension
nodes that involve a simple SWIG invocation and are not required to be distributed or
installed into the Python system installation, distutils is not the most suitable tool for such
tasks as it is tailored to building and distributing Python extensions.

As mentioned in the file system layout discussion, a local copy of the SCons build tool is
provided as a convenience in the Pivy tree, not requiring users to get hold of it in order to
build the parts of Pivy that require it.

Earlier SWIG versions required the creation of a SWIG runtime library, named libpivy -
runtime back then; for example to allow modules to be used independently or allow the
scripting node to query the SWIG type system information contained in Pivy’s pivy. coin
core extension module. This led to a couple of complications as distutils was not very suited for
the creation of a shared library6 and where SCons was discovered in the process of researching
a solution and actually used to create this library and handle the involved platform issues.
Fortunately, later SWIG versions reworked the SWIG runtime mechanism and where this
library was not needed anymore.

The following listing demonstrates the usage of SCons in order to build the SoPyScript
scripting node:

1 . . . / pivy /SoPyScript $ scons
2 scons : Reading SConscr ipt f i l e s . . .
3 scons : done read ing SConscr ipt f i l e s .
4 scons : Bui ld ing t a r g e t s . . .
5 g++ −O2 −Wall −D REENTRANT −fPIC −I / usr / local / inc lude / Inventor /

annex −I . −I / usr / inc lude /python2 . 4 −c −o SoPyScript . os

6due to some cross-platform limitations regarding the linker flags, namely -rpath, which was needed to set
the runtime library search path to include our SWIG runtime library, which could not be installed into the
system

Appendix B. The Pivy build system 120

B.8. SCons usage

SoPyScript . cpp
6 g++ −Xl inker −export−dynamic −L . −lpython2 . 4 −shared −o

l ibSoPyScr ip t . so SoPyScript . os −L/usr / local / l i b −L/home/tamer/
p r o j e c t s / p i v y r e l e a s e −L/usr / l i b /python2 .4/ s i t e−packages −lCoin
−lGL −lXext −lSM −lICE −lX11 − l d l −lp thread −lm

7 scons : done bu i l d ing t a r g e t s .
8 . . . / pivy /SoPyScript $ l s −1
9 l ibSoPyScr ip t . so

10 SConstruct
11 SoPyScript . cpp
12 SoPyScript . h
13 SoPyScript . os
14 swigpyrun . h

Listing B.5: Building the SoPyScript node

Listing 4.22 on page 77 shows an SConstruct SCons build description for a Coin extension
node.

What’s left to be said is that SCons is very versatile and flexible tool that can be used for a
variety of purposes, using Python as its only dependency and its language to write the build
system description in; SCons is used as a fully-fledged build system7 for various projects,
such as Blender or Doom 3.

7In fact this thesis has been built with SCons by making use of its LATEX support

Appendix B. The Pivy build system 121

Bibliography

[1] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice Hall, 1978.

[2] K. Thompson, “Unix time-sharing system: Unix Implementation,” Bell Sys. Tech. J.,
vol. 57, no. 6, pp. 1931–1946, 1978.

[3] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and
Implementation of the 4.3BSD UNIX operating system. Addison-Wesley, 1989.

[4] J. K. Ousterhout, “Scripting: Higher-Level Programming for the 21st century,” IEEE
Computer, vol. 31, no. 3, pp. 23–30, 1998.

[5] C. Jones, “Programming languages table,” Release 8.2, 1996.

[6] D. A. Patterson and J. L. Hennessy, Computer Organization & Design: The Hardware/-
Software Interface. Morgan Kaufmann, 1994.

[7] J. K. Ousterhout, Tcl and the Tk Toolkit. Addison Wesley, 1994.

[8] Wikipedia, “Scripting language — wikipedia, the free encyclopedia,” 2005. [Online;
accessed 30-November-2005].

[9] L. Prechelt, “An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl
for a search/string-processing program.”

[10] D. Schmalstieg, “Studierstube augmented reality project,” 1996.

[11] Dr. Roman Geus, “Python Wrapper Tools: A Performance Study.” EuroPython2004
conference, Götheborg, Sweden, 7 June 2004.

[12] J. Wernecke, The Inventor Mentor. Reading, Massachusetts: Addison Wesley, 1994.

[13] Henrik Tramberend, Avocado: A Distributed Virtual Environment Framework. PhD
thesis, University of Bielefeld, 2003.

[14] Henrik Tramberend and Bernd Fröhlich, “On Scripting in Distributed Virtual Environ-
ments,” in 4th International Immersive Projection Technology Workshop, 2000.

[15] Calle Lejdfors and Lennart Ohlsson, “PyFX: A framework for real-time graphics effects,”
tech. rep., Lund University, 2005.

[16] Cary Sandvig and Jesse Schell, “Panda3D - Introduction Scenegraph Design,” tech. rep.,
Disney, 2000.

122

Bibliography

[17] S. Shodhan, “Panda3D - The Panda3D Engine - Python Scripting for Game and Simu-
lation Development,” in Pycon Python conference, 2004.

[18] G. Ward, Distributing Python modules. Python Software Foundation.

[19] S. Knight, SCons User Guide. Python Software Foundation.

[20] D. M. Beazley, SWIG Users Manual. The SWIG project.

[21] J. Wernecke, The Inventor Toolmaker. Reading, Massachusetts: Addison Wesley, 5 ed.,
1995.

[22] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Pintaric, D. Beyer, D. Pustka,
F. Strasser, D. Schmalstieg, and G. Klinker, “Ubiquitous tracking for augmented reality.,”
in ISMAR, pp. 192–201, 2004.

[23] F. Melchior, T. Laubach, and D. de Vries, “Authoring and user interaction for the pro-
duction of wave field synthesis content in an augmented reality system.,” in ISMAR,
pp. 48–51, 2005.

[24] G. van Rossum, Extending and Embedding the Python Interpreter. Python Software
Foundation.

[25] D. M. Beazley, “Automated scientific software scripting with SWIG,” Future Gener.
Comput. Syst., vol. 19, no. 5, pp. 599–609, 2003.

[26] I. Pulleyn, “Embedding Python in Multi-Threaded C/C++ Applications,” Linux J.,
vol. 2000, no. 73es, p. 3, 2000.

[27] G. Ward, Installing Python modules. Python Software Foundation.

[28] G. van Rossum and F. L. Drake, Jr., Python/C API Reference manual. Python Software
Foundation.

[29] T. Fahmy and D. Schmalstieg, “High level 3D graphics programming in Python,” in
Pycon Python conference, 2004.

[30] T. L. Cottom, “Using SWIG to Bind C++ to Python,” Computing in Science and Engg.,
vol. 5, no. 2, pp. 88–96, c3, 2003.

[31] G. van Rossum, Python Tutorial. Python Software Foundation.

[32] M. Pilgrim, Dive into Python. APress, 2004.

[33] D. Reed, “Rapid application development with Python and glade,” Linux J., vol. 2004,
no. 123, p. 1, 2004.

[34] D. M. Beazley, “Interfacing C/C++ and Python with SWIG,” in 7th International
Python Conference, SWIG Tutorial, 1998.

[35] M. Lutz, Programming Python. O’Reilly & Associates, Inc., 1996.

[36] D. M. Beazley and G. V. Rossum, Python Essential Reference. New Riders Publishing,
1999.

Bibliography 123

Bibliography

[37] J. Petrone, “3D programming with Python,” Linux J., vol. 2002, no. 94, p. 4, 2002.

[38] G. van Rossum, Python Library Reference. Python Software Foundation.

[39] M. Lutz, Programming Python (2nd edn). O’Reilly & Associates, Inc., March 2001.

[40] A. Koenig and B. E. Moo, Accelerated C++: practical programming by example. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[41] K. McDonald, The Quick Python Book. Greenwich, CT, USA: Manning Publications
Co., 1999.

[42] T. Moller and E. Haines, Real-Time Rendering. A. K. Peters Limited, 2002. In press.

[43] S. B. Lippman and J. Lajoie, C++ Primer: 3rd edition. Reading, Mass.: Addison-Wesley
Publishing Co., 1991.

[44] M. Woo et al., OpenGL programming guide: the official guide to learning OpenGL,
version 1.2. Reading, MA, USA: Addison-Wesley, third ed., 1999.

[45] T. Fahmy, “3D graphics in Python,” PyZine, vol. 2004, no. 6, p. 1, 2004.

[46] E. S. Raymond, The Cathedral and the Bazaar. Sebastapol, CA: O’Reilly, 2 ed., 2001.
Forward by Bob Young. Full text available online.

[47] Calle Lejdfors, “Techniques for implementing embedded domainspecific languages in dy-
namic languages,” Master’s thesis, Lund, Feb. 2006.

Bibliography 124

	Introduction
	System programming and dynamic scripting languages
	Contribution

	Deficiencies of system programming languages
	RAP/RAD and interpreted environments for interactive 3D applications
	The benefits of a Python binding

	Development history

	Related work
	Existing 3D graphics APIs
	Immediate vs. retained mode APIs

	Open Inventor/Coin - a high-level 3D graphics toolkit
	Overview of the Open Inventor/Coin API
	Scripting in Open Inventor/Coin

	Python - a dynamic general purpose programming language
	Overview of the Python C API

	Wrappers and available approaches for Python
	Manual wrapping
	Automatic and semi-automatic wrapper generators
	Other alternatives and approaches

	3D graphics in Python
	Existing Python tools and bindings

	Creating Pivy
	Why SWIG?
	The SWIG interface and glue code
	SWIG typemaps and type conversion/typechecks
	SbName typemap example
	SWIG's shadow classes
	Autocasting
	Autorefcounting
	Method/operator overloading
	Python field assignment operator handling
	Callback handling
	Mapping C++ data types to Python
	Special treatment for unsigned char *

	Bridging to the SoGui bindings
	SoGui modules
	PyQt bridging
	Decoupling the main loop for interactive sessions

	Programming with Pivy
	Pivy differences reg. the C++ API
	Converting a simple example from C++ to Python
	Rapid Application Development (RAD) and Prototyping (RAP) with Pivy
	Interactive scene graph introspection
	Pivy as a debug and testing tool

	Extending Pivy with new Inventor nodes or nodekits
	When not to use Pivy?

	Embedding Pivy
	Design and implementation of the SoPyScript node
	Embedding scripts in Inventor files
	Using SoPyScript as a Coin node extension mechanism

	Results
	Use Case 1: TU Munich/Vienna - ``Ubiquitous Tracking Simulation Environment''
	Use Case 2: Fraunhofer IDMT - ``Wave Field Synthesis''
	Use Case 3: Systems in Motion - ``ConocoPhillips Onshore Operations Center for Ekofisk''
	Use Case 4: D-Level - ``Devil Framework''

	Conclusions
	Future work

	The Pivy file system layout
	The Pivy build system
	Distutils
	The setup function in setup.py
	Platform specific compiler and linker flags
	Module mapping and build flexibility
	Dealing with the Coin header files
	The fake_headers and -includeall approach
	Importance of build system output and tests
	SCons usage

	Bibliography

