

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

A UML Profile and Add-In for
UN/CEFACT’s Modeling Methodology

eingereicht von:

Philipp Liegl
Rainer Schuster

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften
(Mag. rer. soc. oec.)

eingereicht von:

Marco Zapletal

MAGISTERARBEIT

zur Erlangung des akademischen Grades
Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften
(Mag. rer. soc. oec.)

Fakultät für Informatik
Universität Wien

Studienrichtung: Wirtschaftsinformatik

Begutachter:
ao. Univ.-Prof. Dr. Christian Huemer
Univ.-Ass. Dr. Birgit Hofreiter

Wien, im Februar 2006

Acknowledgements

We would like to thank:

Christian Huemer a.k.a. “The professor”
The UMM dinosaur who really taught us modeling.

Birgit Hofreiter a.k.a “Frau Doktor”
She laid the cornerstone with her dissertation.

Special thanks also go to:

Steve Capell
The only one who really believes in XMI interoperability.

Jens Dietrich a.k.a. “uncle Jens”
The “PhD soon” from the North who was very forgiving with our
Austrian dialect.

Harry Moyer
The only business guy who has a clue of modeling - or is it the other
way round?

Gunther Stuhec a.k.a. “the fancy TMG chair”
UN/CEFACT conferences would not be the same without him.

Our parents
who provided us with food, shelter and financial support in the last
five years.

and all the others who are not mentioned here.

i

Table of Contents

1 Reader . 1

2 Motivation . 4

2.1 B2B - a look into the past . 5
2.1.1 Electronic Data Interchange . 5

2.1.2 The transition from EDI to UMM . 7

2.2 The B2B scenario . 8
2.3 The need to define interfaces . 10
2.4 The need for tool support . 11
2.5 The need for a user guide . 12
2.6 The need for business information transformation 13
2.7 The motivation for this thesis . 13

3 Related Work . 15

3.1 UML . 15
3.2 OCL . 16
3.3 Choreography languages . 17
3.4 ebXML . 19
3.5 Registries . 20
3.6 XMI . 21

4 UMM Add-In . 24

4.1 An Add-In for a UML modeling tool . 24
4.2 Enterprise Architect modeling tool . 25
4.3 Software development environment . 26

5 UMM at a glance . 28

5.1 About UN/CEFACT . 28
5.2 Basics of the UMM . 29
5.3 Business Modeling using the UMM . 31

5.3.1 Business Domain View . 32

5.3.2 Business Requirements View . 32

5.3.3 Business Transaction View . 34

6 Worksheets Editor . 37

6.1 The need for worksheets . 37
6.2 The integration of worksheets into a UMM tool 38
6.3 Relationship between worksheets and tagged values 41

ii
6.4 Technical implementation of the worksheet editor 42
6.4.1 The need for a dynamical structure . 44

6.4.2 WDL - Worksheet Definition Language . 46

6.4.3 Saving the worksheet information . 63

6.5 Extensions of WDL input files . 69
6.5.1 Business Domain View package . 69

6.5.2 Business Requirements View package . 70

6.5.3 Business Transaction View package . 72

6.6 Once-and-only once recording of business knowledge 72
6.7 Extended features of the worksheet editor . 74

6.7.1 Generating UMM model elements . 75

6.7.2 Exporting worksheets . 84

7 User Guide . 90

7 Worksheets in the context of the modeling process 90
7.1 Business Domain View . 91
7.2 Business Requirements View . 102

7.2.1 Business Process View . 106

7.2.2 Business Entity View . 112

7.2.3 Collaboration Requirements View . 117

7.2.4 Transaction Requirements View . 124

7.2.5 Collaboration Realization View . 128

7.3 Business Transaction View . 132
7.3.1 Business Choreography View . 135

7.3.2 Business Interaction View . 141

7.3.3 Business Information View . 154

8 UMM Validator . 158

8.1 Motivation for UMM validation . 158
8.2 UML Extensions . 159

8.2.1 Stereotypes . 160

8.2.2 Tagged values . 161

8.2.3 Constraints . 162

8.3 The conceptual UMM meta model . 163
8.3.1 Business Domain View . 164

8.3.2 Business Requirements View . 165

8.3.3 Business Transaction View . 173

8.4 OCL constraints as the base for validation . 178

iii
8.4.1 Validation techniques . 179

8.4.2 Transforming OCL constraints into a validation engine 183

8.5 The UMM validation Add-In . 184
8.5.1 Architecture . 184

8.5.2 Scope vs. overall validation . 186

8.5.3 Validation of a package - a deeper insight 187

8.5.4 Tagged value validator . 191

8.5.5 Difficulties which accompany the validation 193

8.5.6 Presentation of validation results . 194

8.6 The need for a special BPSS validation . 197
8.7 Shortcomings of the Enterprise Architect . 199
8.8 Conclusion and outlook . 200

9 Generating Process Specifications from UMM Models 202

9.1 Deriving BPEL processes from UMM choreographies 203
9.1.1 What is BPEL? . 203

9.2 Implementing a BPEL transformation algorithm 204
9.2.1 Initiation of the transformation process 204

9.2.2 Identification of involved roles . 205

9.2.3 Creating WSDL descriptions . 209

9.2.4 Generating partner link types . 212

9.2.5 Generating BPEL process descriptions . 213

9.3 Conclusion and outlook . 227

10 Mapping Business Information to Document Formats 228

10.1 Introduction to business information modeling 228
10.2 Core Components Technical Specification (CCTS) 229
10.3 Universal Business Language (UBL) . 234
10.4 The need for Naming and Design Rules (NDR) 237
10.5 A reference implementation . 242

10.5.1 CCTS Profile . 242

10.5.2 CCTS modeling in practice . 244

10.5.3 CCTS validation and transformation . 245

10.5.4 CCTS import feature . 247

11 Summary and Outlook . 249

I. Appendix - A UML Profile for UMM . A-1

I.I. Foundation Module . A-2

iv
I.II. Business Domain View . A-5
I.III. Business Requirements View . A-11

I.III.I. Business Process View . A-14
I.III.II. Business Entity View . A-16
I.III.III. Partnership Requirements View . A-18

I.IV. Business Transaction View . A-28
I.IV.I. Business Choreography View . A-29

I.V. Business Interaction View . A-32
I.V.I. Business Information View . A-43

II. Appendix - Business Transaction Patterns A-51

III. Appendix - Bibliography . A-55

v

List of Figures
Fig. 2–1 The components of the UN/EDIFACT standard6
Fig. 2–2 Different views on a choreography..9
Fig. 2–3 A collaboration scenario using UMM ...9
Fig. 3–1 An ebXML scenario ..19
Fig. 3–2 OMG’s 4 level meta model architecture..22
Fig. 4–1 Adding the EA Object Model to Visual Studio .NET 200526
Fig. 5–1 Structure of the UN/CEFACT permanent working group [UNC05].....28
Fig. 5–2 The Open-edi Reference Model...30
Fig. 5–3 Example process flow depicted by means of the BRV..........................33
Fig. 5–4 Capturing the requirements of the register customer collaboration.......33
Fig. 5–5 Activity graph for the business collaboration register customer34
Fig. 5–6 Business transaction register customer ..35
Fig. 5–7 Information structure ...36
Fig. 6–1 Worksheet of a model element stereotyped as business area38
Fig. 6–2 The tasks of an interactive worksheet editor ...39
Fig. 6–3 Well structured representation of the worksheet data............................40
Fig. 6–4 The tagged values of a business area represented in the modeling tool 42
Fig. 6–5 The worksheet editor window of a business area43
Fig. 6–6 The design of the worksheet editor depends on the WDL input file44
Fig. 6–7 Reusing worksheet information from another model element...............46
Fig. 6–8 Using WDL for designing the style of a worksheet editor window47
Fig. 6–9 Editing a worksheet which is not assigned to a stereotype....................48
Fig. 6–10 Specifying three different styles of input fields.....................................52
Fig. 6–11 Structuring worksheet entries ..56
Fig. 6–12 Factors influencing the style of the worksheet editor57
Fig. 6–13 The worksheet editor of a business transaction62
Fig. 6–14 Saving the information into different kind of formats...........................64
Fig. 6–15 Class diagram of the internal structure of the worksheet editor65
Fig. 6–16 UML - Extension Mechanisms [UMa04] ..67
Fig. 6–17 Tagged Values vs. Constraints ..68
Fig. 6–18 Included business collaborations and transactions72
Fig. 6–19 The eight normative categories of the business areas............................77
Fig. 6–20 The ISO Open-edi phases of a business collaboration78
Fig. 6–21 The matrix package generation of the worksheet editor........................81
Fig. 6–22 The result of generating the initial package structure of the BDV82
Fig. 6–23 The user interface of the business transaction generator83
Fig. 6–24 The result of generating a business transaction automatically84
Fig. 6–25 Example of an HTML output of the worksheet editor...........................87
Fig. 7–1 UN/CEFACT’s Common Business Process catalog matrix97
Fig. 7–2 Classification of business processes according to the CBPC99
Fig. 7–3 Defining nested business areas ..100
Fig. 7–4 Composing a classification scheme of nested business categories......100
Fig. 7–5 Use cases of the selling organization’s processes................................101
Fig. 7–6 The purchasing organization participates only in a business process named
get customerID ...102
Fig. 7–7 BRV package structure of the order from quote example105
Fig. 7–8 Purchase process viewed from the buyer’s internal perspective110

vi
Fig. 7–9 Cut-out from the business process model specifying the register customer
process from an interorganizational point of view...112
Fig. 7–10 Order from quote example: business entity view package structure ...115
Fig. 7–11 Order from quote example: the business entity lifecycle of the order busi-
ness entity...117
Fig. 7–12 Business collaboration use case order from quote...............................120
Fig. 7–13 Order from quote example: mapping collaboration roles to transaction
roles and nested collaboration roles ...122
Fig. 7–14 Order from quote example: business transaction use case register custom-
er ...127
Fig. 7–15 Order from quote example: business transaction use case place order127
Fig. 7–16 Business collaboration realization order from quote and the assignment of
business partners to collaboration realization roles ...131
Fig. 7–17 Order from quote example: package structure in the BTV..................134
Fig. 7–18 Relationship between a business choreography (BC) and a business col-
laboration protocol (BCP) ..138
Fig. 7–19 Example business collaboration protocol choreographing the order from
quote collaboration...140
Fig. 7–20 Relationship between a business interaction (BI) and a business transac-
tion (BT) ...149
Fig. 7–21 Order from quote example: business transaction place order..............152
Fig. 7–22 Order from quote example: structure of the quote envelope156
Fig. 8–1 The validator and its context..158
Fig. 8–2 Tagged value definition ...161
Fig. 8–3 Sample from a collaboration requirements view162
Fig. 8–4 A conceptual overview ..164
Fig. 8–5 Composition of the business domain view ..164
Fig. 8–6 Composition of the business requirements view166
Fig. 8–7 The business process view at a glance...167
Fig. 8–8 The business entity view at a glance..169
Fig. 8–9 Overview of the partnership requirements view..................................170
Fig. 8–10 The business transaction view at a glance ...173
Fig. 8–11 Overview of the business choreography view174
Fig. 8–12 Overview of the business interaction view..176
Fig. 8–13 Overview of the business information view ..178
Fig. 8–14 Generic OCL validator ..180
Fig. 8–15 OCL validator Add-In..181
Fig. 8–16 Validation Add-In ..182
Fig. 8–17 Class diagram of the validator ...185
Fig. 8–18 The business transaction view validator ..188
Fig. 8–19 Class diagram of the tagged value validator..192
Fig. 8–20 The EA architecture at a glance...193
Fig. 8–21 The validator user interface ...194
Fig. 8–22 The user interface after a validation run ..195
Fig. 8–23 The automatic error reporter ..196
Fig. 8–24 A sample business collaboration protocol ...198
Fig. 8–25 A part of a collaboration requirements view198
Fig. 9–1 Collaboration role data structure (conceptual).....................................205
Fig. 9–2 Order from quote example: The collaboration role data structure resolves

vii
the mapsTo relationships defined in the collaboration requirements view..........207
Fig. 9–3 The collaboration role data structure in regard to our order from quote ex-
ample collaboration (conceptual) ...208
Fig. 9–4 Example collaboration: Only transition b results in a BPEL link216
Fig. 9–5 Order from quote example: business transaction place order..............222
Fig. 9–6 Order from quote: request for quote transaction..................................226
Fig. 10–1 Core component example ..230
Fig. 10–2 Overview about the core components Technical Specification...........232
Fig. 10–3 Business information entity example...233
Fig. 10–4 UBL eliminates B2B boundaries ...237
Fig. 10–5 The relation between CCs, BIEs and XSD..238
Fig. 10–6 UN/CEFACT’s XSD Schema Modularity Scheme.............................240
Fig. 10–7 UN/CEFACT’s namespace scheme...241
Fig. 10–8 The business information view at a glance..242
Fig. 10–9 A registry binding for core components ..243
Fig. 10–10Aggregate core component ...244
Fig. 10–11Aggregate business information entity ...244
Fig. 10–12A business information example provided by Red Wahoo246
Fig. 10–13The business information transformer interface247
Fig. 10–14An Enterprise Architect - EDIFIX binding...248

viii

List of Tables
Tab. 6–4 The meaning of the variables used in the WDL input file60
Tab. 6–8 Business Process Matrix of the Common Business Process Catalog (CB-
PC)[CBP03] ...80
Tab. 7–1 Order from quote example: worksheet for the business domain view..96
Tab. 7–2 Order from quote example: worksheet for the procurement/sales business
area ...98
Tab. 7–3 Order from quote example: the worksheet for the process area identifica-
tion ...99
Tab. 7–4 Example worksheet for the order business entity116
Tab. 7–5 Example worksheet for order from quote ...120
Tab. 7–6 Order from quote example: worksheet capturing the requirements of the
business transaction use case request for quote ...126
Tab. 7–7 Order from quote example: worksheet for the business transaction use
case place order ..126
Tab. 7–8 Order from quote example: worksheet for the order from quote collabora-
tion realization..130
Tab. 7–9 Worksheet describing the order from quote choreography.................137
Tab. 7–10 Order from quote example: worksheet for the business transaction place
order ...148

ix

List of Listings
Lis. 2–1 A piece of an arbitrary UN/EDIFACT message......................................6
Lis. 4–1 Example for adding a new model element with the EA Object Model .27
Lis. 6–1 The Schema of WDL ...48
Lis. 6–2 Example of a submenu in the worksheet for a business transaction......55
Lis. 6–3 Excerpt of an WDL input file for a business transaction.......................58
Lis. 6–5 The “deployment file” for binding worksheets to stereotypes63
Lis. 6–6 The WDL input file for the business transaction worksheet73
Lis. 6–7 The WDL input file for the business collaboration worksheet..............74
Lis. 6–9 C# code for creating a new Microsoft Word document.........................85
Lis. 6–10 The result of exporting the worksheet using WDL................................88
Lis. 8–1 OCL constraint for collaboration requirements views.........................163
Lis. 8–2 OCL constraint according to the natural language representation.......183
Lis. 8–3 C# code representation of the OCL constraint.....................................183
Lis. 8–4 Invocation of a business information view validation189
Lis. 8–5 Invocation of a business transaction view validation190
Lis. 9–1 Order from quote example: The port type of the buyer and the exchanged
messages ...209
Lis. 9–2 Order from quote example: The port type of the seller and the required
messages ...210
Lis. 9–3 Order from quote example: Partner link type describing the conversational
relationship between buyer and seller ..212
Lis. 9–4 Structure of a BPEL description as generated by the UMM Add-In...213
Lis. 9–5 Order from quote example: partner link for the seller’s process214
Lis. 9–6 Order from quote example: partner link for the buyer’s process.........215
Lis. 9–7 Sequence stubs representing the two business transactions of the order
from quote example collaboration ...218
Lis. 9–8 BPEL snippet which describes the buyer’s part of the place order transac-
tion ...219
Lis. 9–9 Order from quote example: code snippet describing request for quote from
the buyer’s point of view..223
Lis. 9–10 Order from quote example: BPEL snippet describing place order for the
seller ...225
Lis. 9–11 Order from quote example: BPEL snippet describing the seller’s request
for quote activities..226
Lis. 10–1 A sample invalid XML structure ...239
Lis. 10–2 Example for LCC and UCC...239
Lis. 10–3 Sample namespace scheme..241

11 Reader
1 Reader

Motivation - Philipp Liegl

In this chapter the need for a business process modeling methodology is
motivated. Furthermore a short look back into the early days of EDI is
given. The transition from EDI to UMM is shown and the B2B scenario will
be explained. Moreover the different chapters of the thesis are motivated.

Related Work - Rainer Schuster

UMM is based on some other concepts described in this chapter. Related
work gives an overview about the Unified Modeling Language (UML),
choreography languages, the Object Constraint Language (OCL), registries
and the XML Metadata Interchange (XMI) specification.

UMM Add-In - Rainer Schuster

The UMM Add-In is a plug-in for the UML modeling tool Enterprise Archi-
tect. This chapter describes the communication interface between the UMM
Add-In and the modeling tool. Moreover specific characteristics of the soft-
ware development environment for the implementation of the UMM Add-
In are described.

UMM at a glance - Rainer Schuster

UMM is a well accepted methodology for the modeling of interorganiza-
tional business processes. This chapter shortly describes the artifacts and
purposes of the three main views of UMM. Furthermore the tasks of the per-
manent working groups of UN/CEFACT and the organizational structure
are explained.

Worksheets Editor - Rainer Schuster

UMM defines a set of worksheets that are used for the communication
between business domain experts and business process analysts. These
requirement documents are usually created by word processors and are sep-

21 Reader
arated from the UMM model. Most of the information captured in work-
sheets is represented one-to-one in tagged values of the model's stereotypes.
Thus the same information is hold twice. The management of the redundant
information does not only result in expensive efforts, but also results in a
high danger of inconsistency. In order to overcome these limitations, the
worksheets must be integrated to the modeling tool itself. In this chapter we
present the concepts and the implementation of an interactive worksheet
editor. This worksheet editor allows the dynamic binding of worksheet ele-
ments to UMM modeling elements by using a special worksheet definition
language. This definition language also guarantees a flexible adaptation of
worksheets to special business needs and to changes due to the update of the
UMM meta model.

User Guide - Marco Zapletal

This chapter presents a guide for creating UMM compliant process models.
It depicts the complete workflow of creating a business collaboration model
by detailing the modeling tasks of each view and each subview of the
UMM. Furthermore, we discuss how the input from business experts gath-
ered by worksheets results in corresponding UMM model structures. Each
step in this chapter is illustrated via an example describing an ordering sce-
nario.

UMM Validator - Philipp Liegl

The chapter about validation will give an overview about the different
extension mechanisms which are provided by UML and how they are used
within the UMM. The conceptual UMM model is explained and an over-
view about the OCL constraints which are used as the basis for the validator
is given. Furthermore the UMM validator and its architecture will be
explained.

Deriving Process Specifications from UMM Models - Marco Zapletal

In modern service oriented architectures, choreography languages are uti-
lized to specify processes in a machine-executable manner. In order to avoid
writing such process descriptions by hand a model driven approach is
desired. Since UMM business collaboration models capture collaborative
processes, the desire for an automatic generation of corresponding choreog-
raphy descriptions from UMM models is self-evident. In this chapter we
describe a mapping from UMM collaborations to process descriptions writ-
ten in the Business Process Execution Language (BPEL). The mapping is
described on the conceptual and on the implementation level.

31 Reader
Mapping Business Information to Document Formats - Philipp Liegl

This chapter stresses the importance of business information modeling. The
concept of Core Components (CCTS) will be introduced. In the next step
the Universal Business Language (UBL) will be explained, which builds on
the CCTS. Furthermore the need for naming and design rules for XML doc-
uments is be discussed. At the end of the chapter a reference implementa-
tion within the UMM Add-In is shown.

Summary and Outlook - Marco Zapletal

This chapter gives a short conclusion in respect to this thesis as well as in
regard to the implementation of the UMM Add-In.

Appendix - Philipp Liegl, Rainer Schuster, Marco Zapletal

This chapter contains the UMM Profile which has been developed as part of
this thesis. Furthermore the business transaction patterns and the bibliogra-
phy which has been used in this thesis are included.

42 Motivation
2 Motivation

The evolution of business
processes

Fourty years ago the average enterprise was not equipped with IT infra-
structure as we know it today. Business processes were processed between
enterprises by using common postal correspondence or by bilateral agree-
ments between trading partners - basically there was no need to synchronize
or orchestrate any IT processes between the enterprises. A typical scenario
would probably have been the following:

Enterpise A produces good x. Enterprise B buys good x from Enterprise A and uses
it to produce its own good.

The only choreography which took place was the purchasing department of
enterprise B calling the production department of enterprise A, making sure,
that punctual and appropriate delivery of good x takes place. Nevertheless
already note, that both enterprises are stakeholders in the production/deliv-
ery process. Enterprise A wants to produce good x in order to sell them to
Enterprise B and Enterprise B needs good x in order to produce its own
good.

Today such a collaboration takes place between numerous enterprises
in all fields of the economy. As more and more enterprises are using the IT
as a production factor and crucial supporting factor to their internal pro-
cesses a choreography of the collaboration is necessary. Almost every col-
laboration involves software which needs to be developed, customized or
orchestrated. The UN/CEFACT’s Modeling Methodology (UMM) helps to
capture the business knowledge, which is necessary in order to develop low
cost software which can help small and medium size companies to engage
in e-business practices.

This thesis will focus on the UMM standard and its tool based support
by the UMM Add-In. We have developed the UMM Add-In conjointly with
this thesis. The Add-In is a software extension for the UML modeling tool
Enterprise Architect and helps the modeler in achieving a valid UMM
model. Before we start to immerse into the UMM Add-In and its develop-
ment and functionality we will have a look at the development of business
processes between enterprises and the standards and efforts which have
been made. We start with an overview about B2B development in the past.

52.1 B2B - a look into the past
Requirements for the audi-
ence

The reader of this thesis must have a deep understanding of UML 1.4
[UMa04] and must be able to understand meta models denoted as UML
class diagrams. He should be familiar with the UML 1.4 meta model, at
least he must be able to check back with the UML 1.4 meta model. As
UMM [FOU03] is the basis for this thesis, a basic knowledge of the stan-
dard is helpful. Furthermore a basic understanding of Enterprise Architect
from Sparx Systems is advantageous.

2.1 B2B - a look into the past
Going back 30 to 40 years from now only few enterprises had an IT depart-
ment and even fewer had a network connection. B2B processes were rather
unknown or at least IT professionals understood a different thing in regard
to business to business processes. The concept in the field of B2B which has
been developed since the mid-1960s was the Electronic Data Interchange
(EDI). We will now have a look at the historical development of this data
centered approach.

2.1.1 Electronic Data Interchange

The first data centered stan-
dardization approaches

The main aim of Electronic Data Interchange (EDI) is to eliminate paper
documents for the exchange of business data. The first attempts in this
direction were already made at the time of the Berlin Airlift [Sch88].

Yet the history of EDI began when transportation data which was
exchanged between companies of a railroad group in the United States was
lacking the expected quality. Therefore a group was found which should
study the problem and increase the data quality and the feasibility of its
electronic exchange. It was know as the Transportation Data Coordinating
Committee (TDDC). At the same time companies in the automotive sector
addressed a similar issue by developing their own proprietary data exchange
systems. These systems were able to exchange electronic data with the
major trading partners of the automotive industry. However due to a missing
universal standard a potential trading partner was supposed to have a differ-
ent system interface for every trading partner with a different EDI system.

One of the first companies to detect the need for a industry specific
standard was from the grocery industry. The company had to handle large
interorganizational EDI issues and was therefore eager to develop a stan-
dard specific to an industry, namely the grocery industry. Nevertheless an
approach for a universal standard was not pursued because it was consid-
ered to be unnecessary and not practical for the technology levels which
were available back then.

62.1 B2B - a look into the past
In the 1970’s the next step by several industries was sponsoring a
shared EDI system. The idea was turning over the data exchange system to
a third party network. In some cases a third party even developed a shared
system for a group of common companies. However these industry trade
group systems were encountering the same limitations as the first EDI sys-
tems. They were limited in scope and unable to communicate between dif-
ferent sectors of the industry and their respective EDI systems.

Hence in 1973 a set of standards for EDI between companies was
invented. The initiative was coming from the Transportation Data Coordi-
nating Committee which wanted to have a standard that was able to react on
changes in the requirements. Therefore the standard included procedures on
how to change the standard as well. This first inter-industry EDI standard
covered the air, motor, ocean, rail and some banking applications.

The most important step was taken, when in 1985 the work started on
UN/EDIFACT (United Nations/Electronic Data Interchange for Adminis-
tration, Commerce & Transport) supervised by the United Nations.

Fig. 2–1 The components
of the UN/EDIFACT
standard

Figure 2–1 gives an overview about the UN/EDIFACT standard. The syntax
defines the rules for the definition of a message structure. The standard fur-
thermore includes standardized codes and data elements which can be
reused. Groups of data elements which belong together can be aggregated in
so called segments. Messages represent a structured sequence of segments.

Listing 2–1 shows a part of an arbitrary UN/EDIFACT message. As one
can see, the syntax is quite complicated and almost impossible to under-
stand for the humans.

Listing 2–1 A piece of an
arbitrary UN/EDIFACT
message

[1] PDI++C:3+Y::3+F::1’
[2] APD+74C:0:::6++++++1A’
[3] TVL+240493:1740::2030+JFK+MIA+DL+081+C'

UN/EDIFACT itself is a text based exchange format which is platform inde-
pendent. With the rise of the eXtensible Markup Language (XML) which is
another platform independent format with mark-up ability, efforts have
been made to combine XML and EDI. Such an approach has been pursued

Data
elementsSyntax Segments Messages Message

exchange

EDIFACT

EDI

72.1 B2B - a look into the past
by the XML/edi Group. The main aim of the group was not only combining
XML and EDI but widening the standard with additional templates, agents
and repositories. The idea is, that electronic systems should not only
exchange business data but provide templates for the processing of the data
and business rules as well. However the transformation of UN/EDIFACT to
XML has proven to be difficult because the transformation of the semantics
of a UN/EDIFACT message into a XML representation is not unambiguous.

As Listing 2–1 already showed, UN/EDIFACT is a quite complex stan-
dard which consists of numerous data elements, segments etc. Its imple-
mentation and use requires the use of experts. Small and medium sized
enterprises often cannot afford such manpower.

ebXML as a new approach
to EDI

In 1999 an initiative was started by UN/CEFACT and OASIS for the
standardization of an XML specification for electronic business. It was
called ebXML (Electronic Business using eXtensible Markup Language).
Its main aim was the creation of an open technical framework for the
exchange of business data with regard to interoperability and affordability
especially for small and medium enterprises. XML messages should sup-
port businesses by providing a standardized document structure. Further-
more the choreography of business processes should be defined. Another
aim of ebXML is the use of standardized collaboration protocol agreements
between business partners under the use of commercial of the shelf software
(COTS).

The next chapter will show how the transition from EDI to UMM was
accomplished and which problems occurred.

2.1.2 The transition from EDI to UMM

After decades of data centered endeavors with UMM finally a process cen-
tered standard was developed. As already shown in the last paragraph, EDI
concentrates solely on the data which is exchanged between business part-
ners and does not take into account the choreography necessary for the busi-
ness process alignment. With ebXML a substantiated framework was
found, which supports the choreography of the business processes and the
exchange of business messages.

From a data centered to a
process centered approach

However UMM does not provide a standard for the exchange of mes-
sages as it is done by ebXML. UMM is process centered and focuses on the
choreography of collaborative business processes. Nevertheless it is also
possible to specify the information, which is exchanged between business
partners. UMM does not set a specific data model for the information to be
exchanged but leaves this decision open to the implementor. Hence different
standards like UN/EDIFACT, UBL etc. can be used. Therefore the UMM

82.2 The B2B scenario
modeler does not have to know the rather difficult exchange standard as for
example UN/EDIFACT but can exclusively focus on the modeling of the
collaborative business process. Furthermore the business context of the col-
laborative process is captured in a syntax neutral manner.

The business logic and the technology which implements the logic are
separated with UMM. Hence UMM is a model driven approach which
focuses on the business processes that take place between two collaborating
parties. Furthermore it focuses on the business state of business entities and
on the business context of the business process. The current UMM standard
is defined in [FOU03] that provides the basis for this thesis.

We will now examine the B2B scenario which is the basis for a UMM
model. Shortcomings of old approaches and enhancements through the
usage of UMM will be shown.

2.2 The B2B scenario
When talking about business process modeling today, most people will refer
to the modeling of business processes which are internal to an organization.
This so called business process management mainly focuses on the optimi-
zation of business processes and the integration of enterprise applications
within a company.

However because today business processes also take place between
organizations, the focus must change from the intra- to the interorganiza-
tional view. Today most companies have accomplished this step and are
therefore not only centered on their own processes anymore.

In order to allow two companies to collaborate, a choreography has to
be defined which choreographs the business processes between the compa-
nies. Unfortunately if each organization defines its own choreography with
each business partner it is very unlikely that interoperability can be
achieved.

92.2 The B2B scenario
Fig. 2–2 Different views
on a choreography

Figure 2–2 shows a sample collaboration between two parties. In scenario A
buyer has defined his own choreography for the collaboration with seller. In
scenario B seller has defined his choreography for the collaboration with
buyer. A collaboration between seller and buyer is highly unlikely because
each business partner has defined its own choreography. A mechanism
would be necessary, which allows the development of collaborative busi-
ness processes and information models between two business partners in an
easy and protocol independent manner.

At this point UMM is the modeling methodology of choice. It allows to
capture the business knowledge necessary for companies in order to support
collaborative business processes. Figure 2–3 shows a collaborative business
process using UMM.

Fig. 2–3 A collaboration
scenario using UMM

By using UMM a choreography can be found which supports a collabora-
tion between buyer and seller. Furthermore the overall structure for the
information to be exchanged during the business process can be defined as
well. The information modeling and transforming issue will be addresses in
more detail later.

collaboration

collaboration

Buyer

Buyer

Seller

Seller

Szenario A

Szenario B

collaboration

Buyer Seller

102.3 The need to define interfaces
2.3 The need to define interfaces
When talking about a collaborative business process the mentioning of the
term interface is inevitable. Modern business processes typically include IT
systems which have to communicate - for instance they exchange business
documents which are stored in interchange files.

Large companies usually use enterprise software which has been exclu-
sively developed for that specific company. Small and medium sized com-
panies cannot often not afford expensive enterprise software and are there-
fore forced to use low cost commercial of the shelf software (COTS).
Business information is usually exchanged by using commonly known doc-
ument type formats which COTS systems understand as well. However an
additional agreement has to be set between two business partners in order to
customize the standard document type to the partnership specific require-
ments. Therefore the business partners have to customize their import and
export functionalities for the partnership specific requirements. Such an
adaptation is usually no problem for a large enterprise which runs its own
personalized software.

The disadvantage of small
and medium sized compa-
nies

However for small and medium sized enterprises an adaptation of their
software is almost impossible. Therefore for the time being only large com-
panies can perform such B2B processes. Small and medium sized enter-
prises need the business functions and the B2B functionality integrated into
their COTS. To believe, that COTS software vendors will agree on a single
data requirement for a particular document type is unrealistic.

Hence another approach has been proposed. Research was conducted
by UN/CEFACT in order to look for alternatives to the scenario mentioned
above. The development of a well defined business process for each partic-
ular business goal was proposed e.g. order from quote. Such a well defined
business process contains all possible activities which could be part of the
business goal. Because the business processes are collaborative processes
we refer to them as business collaborations. There can be many ways in
which a business collaboration can be executed. However every one is well
defined. It now depends on the trading partner and his internal processes,
which alternative he can execute. One trading partner might be able to exe-
cute all alternatives whereas another trading partner might only be able to
execute a few. However in order to start a collaborative business process,
the two business partners must be able to engage in at least one alternative,
which they have in common.

As that is no problem for the large enterprises, small and medium sized
enterprises rely on software providers who should create applications which
implement business collaborations with their most popular execution sce-
narios. In order to pursue such an approach unambiguous business collabo-

112.4 The need for tool support
ration models in regard to choreography and involved document structures
are required.

Our thesis will show how UMM is able to fulfill the criteria of finding
business collaboration models.

2.4 The need for tool support
Together with this thesis an Add-In for Enterprise Architect was created,
that supports the UMM modeler in creating a valid UMM model. In this
chapter we would like to motivate the need for such a tool.

Enterprise Architect as the
tool of choice

First of all the decision to take Enterprise Architect and not a modeling
tool from another vendor was not an arbitrary one. Enterprise Architect
offers an interface which can be easily accessed by any language which is
able to access Microsoft Windows COM components. Hence Enterprise
Architect together with Microsoft Visual Studio and C# was chosen.

When the modeler starts to create a new UMM model an initial UMM
structure must be created. An automated creation of such an initial model
structure would accelerate the model creation and allow beginners in UMM
to start with a basic settlement.

Capture the requirementsBefore a UMM model is created which describes a collaborative busi-
ness process, the business knowledge has to be collected first. Business
knowledge is usually collected during interviews with business experts and
computer engineers which is then written down in plain text. Before the
UMM Add-In this information collection process was done manually by
using Microsoft Word documents to write down the collected information.
For instance descriptions for business processes were stored in Microsoft
Word documents while the actual business process was modeled in a model-
ing tool. Seen from the point of usability this separation is a disadvantage in
regard to distribution and reuse of a model. Storing the information con-
cerning a specific business process or a specific process all together would
be a great enhancement.

Categorize the business
processes

As later chapters will show, business processes can be categorized by
using business categories, business areas and process areas. The alignment
of these categories and areas follows a certain pattern according to the spe-
cific area of the industry. If the user would be provided with an industry
overview where he could choose his specific area together with an auto-
mated generation of the specific packages within the modeling tool this
would optimize the modeling workflow during the requirements phase.

Validate the created UMM
model

As we will show, the UMM meta model can be quite complicated for an
inexperienced user. Hence one can suppose, that a lot of modelers will be
anxious to use the UMM modeling standard for their business process mod-
eling. A tool support which allows the modeler to check whether the created

122.5 The need for a user guide
model is valid or not would alleviate the modeling process for the inexperi-
enced users and lower the threshold for those unsure to use UMM. However
also experienced UMM modelers could use a validation functionality in
order to scrutinize a created model before further use.

A further use could for instance be the generation of choreography lan-
guages from a UMM model. As already shown in chapter 2.1.2 UMM
focuses on the choreography and orchestration of business processes. For
the time being two significant choreography standard exist namely Business
Process Specification Scheme (BPSS) and Business Process Execution
Language (BPEL). A great benefit to the modeler would be the ability of
automatically generating such choreography standards from a UMM model.

In regard to user interface design Enterprise Architect has some short-
comings, which hamper the modeling workflow. UMM is a standard which
thoroughly uses the concept of stereotypes. Some of the used stereotype
names are quite long as for instance BusinessCollaborationUseCase. If the
user wants to change the stereotype of an arbitrary use case to BusinessCol-
laborationUseCase this is currently not possible with Enterprise Architect.
The tool only allows a certain number of letters for the name of a stereotype.
However if the assignment of the stereotype is done programmatically via
the API of Enterprise Architect (which the UMM Add-In uses) any length is
possible for the name of a stereotype. Hence the implementation of a so
called “Stereotyper” which allows to assign stereotypes of any length would
enhance the modeler’s workflow.

All the stimuli mentioned above have been implemented by the UMM
Add-In and will be explained in more detail throughout this thesis. The next
chapter within the motivation for this thesis is the need for a user guide,
which helps a modeler to create a valid UMM model.

2.5 The need for a user guide
The meta model on its own
is not enough

Even when provided with the UMM meta model and a basic understanding
of UML it has proven to be quite difficult for a modeler to create a UMM
compliant model from scratch. A guide is needed, which takes the modeler
from the beginning to the end of the modeling process and provides addi-
tional information to the specific subviews and subpackages of a UMM
model. The UMM meta model defines the constraints for a valid UMM
model but it does not show the modeler how to build a valid model. This gap
can be closed by a user guide.

It would be helpful for the modeler if every package is described and if
an overview about the packages and their purpose is given. Furthermore the
modeler might ask himself, what the stereotypes exactly mean and which
stereotypes are to be used in a given package. After having explained the

132.6 The need for business information transformation
details for a specific package a step by step modeling guide would help the
modeler to create packages valid in the sense of the UMM meta model.
Together with screenshots a step by step modeling guide would lead the
modeler towards a valid UMM model.

A user guide as described above is included in this thesis.

2.6 The need for business information transformation
As already outlined before, UMM focuses on the modeling of collaborative
business processes between business partners. A business process usually
involves the exchange of information as well. Further chapters will show
that within UMM several B2B document standards can be used in order to
model the information exchanged during a business process.

Reuse of information mod-
eling components

Because UMM is a graphical modeling methodology, the information
which is exchanged will be modeled graphically. Several components of an
information will stay the same for different implementations. An address
will for instance most likely contain a state and a post code. Using such
reusable components for the information modeling would alleviate the
modeling process. As we will see within this thesis, the usage of Core Com-
ponents Technical Specification (CCTS) will enhance the information mod-
eling and facilitate the reuse of information modeling components.

Current research is undertaken in order to directly map the business
information modeled graphically into an exchange format. As a method of
choice we will present the transformation of business information into an
XML schema. The XML schema derived from the information model
serves as a normative reference for all XML document instances. Hence an
unambiguous document format can be guaranteed.

2.7 The motivation for this thesis
As the introduction has already shown, a lot of theoretical work has been
done in the last few years in the field of collaborative business process
research. Different approaches have been evaluated and a lot of paper have
been produced. However there exists no practical solution which supports
the modeler in creating a valid UMM model. A lot of work is currently done
by the working groups of UN/CEFACT in order to accomplish the goal of a
common business process modeling methodology. Without a specific soft-
ware implementation the efforts to create and diffuse a standard are not
likely to succeed.

The UMM Add-In and this thesis support modelers in creating a UMM
compliant model. It serves experienced UMM professionals as a reference,

142.7 The motivation for this thesis
medium skilled UMM modelers as a support and UMM beginners as a first
step towards a correct UMM model. We hope to support the diffusion of
UMM as a basic standard for the modeling of collaborative business pro-
cesses.

153 Related Work
3 Related Work

3.1 UML
The purpose of UMLThe Unified Modeling Language (UML) is a graphical language for visual-

izing, specifying, constructing, and documenting the artifacts of a software-
intensive system [UMa04]. UML offers the possibility for designing and
implementing software models in a normative way under consideration of
object-oriented structures. UML is a standard since 1998 and is maintained
by the Object Management Group (OMG). With this standard a modeler can
create conceptual models including business processes and system func-
tions as well as concrete models such as programming language statements,
database schemes and reusable software components. The modeling lan-
guage was developed by Grady Booch, Ivar Jacobsen and Jim Rumbaugh
[BRJ05] [BRJ04] from Rational Rose Software.

The artifacts of UMLThe specification of UML defines a set of different diagrams [UMb04].
Each diagram provides a different perspective of the system under analysis
or development. The following list shows the primary artifacts of UML rep-
resenting eight different diagrams:

■ Use case diagram
■ Class diagram
■ Behaviour diagram

■ Statechart diagram
■ Activity diagram
■ Interaction diagram

■ Sequence diagram
■ Collaboration diagram

■ Implementation diagram
■ Component diagram
■ Deployment diagram

UMM is a UML profileUML defines a set of notations for creating a specification language for
software development. UML is not a method. For using UML efficiently the
task is to develop a method which is UML compliant. Such a method e.g. is

163.2 OCL
UN/CEFACT’s Modeling Methodology (UMM). UMM is a specific UML
Profile for modeling collaborative business processes [UG03].

The different versions of
UML

Since the UMM meta model uses the UML version 1.4.2, all concepts
described in this thesis are based on the UML version 1.4.2 [UMa04]
[FOU03]. The latest UML version is UML 2.0 [UMb04] and is supported
by most of the current UML tools including Enterprise Architect from
Sparx System.

3.2 OCL
OCL describes constraints
for UML

The Object Constraint Language (OCL) [OCL03] is a formal language for
describing constraints on Unified Modeling Language (UML) models.
UML is using different modeling rules which have to be considered during
the modeling process. Since a modeler can define new profiles basing on
these UML rules, he must be able to put restrictions on this new modeling
method. Such restrictions are described in OCL.

OCL prevents ambiguitiesUsually UML diagrams are not specified enough by adding comments
in a natural language. The semantic of such text-based descriptions could be
understood variably. The OCL supports a possibility for capturing all the
relevant aspects of a specific UML diagram in a normative way. Thus the
modeler can add constraints to any part of the UML profile to ensure, that
the user does not cause any ambiguities.

Filling the gap of semantic
problems

OCL fills the gap of the semantic problems with a so-called formal lan-
guage, which is easy to read and write and has an unambiguous meaning. It
has been developed as a business modeling language within the IBM Insur-
ance division, and has its roots in the Syntropy method during the early
1990s [Ste94]. OCL should not be mixed up with a programming language,
because an OCL expression can not cause side effects. This means after
executing an OCL constraint, only a value with the information about the
validation success of the UML construct is returned. Thus OCL cannot
change anything in the model and can not implement programming logic or
flow control. OCL defines a so-called standard library for a set of supple-
mentary predefined OCL types. Since OCL is a typed language, each OCL
expression has a type. For creating a well formed OCL expression the type
of the expression must conform to the type conformance rules of the lan-
guage. This restriction ensures that you can not compare e.g. an integer with
a string.

Different purposes of OCLOCL can be used for different purposes:
■ As a query language
■ For specifying invariants (special OCL type) in the class model

173.3 Choreography languages
■ For describing pre- and post-conditions on operations and methods
■ For describing guards
■ For specifying target (sets) for messages and actions
■ For specifying constraints on operations
■ For specifying derivation rules for attributes for any expression over a

UML model

In this thesis the Object Constraint Language is used to define the con-
straints on the UMM meta model. These OCL definitions are listed in
appendix I of this thesis.

3.3 Choreography languages
The task of a choreography
language

UN/CEFACT’s Modeling Methodology (UMM) is a methodology for
describing interorganizational collaborative business processes. A UMM
compliant business model concentrates on the business semantics of the
business processes. This concept is called business operational view (BOV)
and is a part of the Open-edi reference model [OER95]. This semantical part
of UMM must be supported by an IT infrastructure of the functional service
view (FSV), which is responsible for the execution of business collabora-
tions. Thus a choreography is used to describe the resulting interorganiza-
tional process from different perspectives. Since the resulting process is car-
ried out by software modules, the definition of choreographies must be
machine-readable. For this reason the formats of such specifications are
usually XML-based.

Choreography vs. Orches-
tration

Talking about the execution of collaborative business processes, we
have to make a distinction between two terms – choreography and orches-
tration. A choreography is the relation between business processes in a
peer-to-peer collaboration trying to reach a common goal. It tracks the busi-
ness document exchanges among multiple parties and sources. Conse-
quently the perspective of a choreography has a collaborative nature with-
out describing internal tasks [Pel03]. The second term describes the
perspective of an orchestration. An orchestration is the sequence in which
one business process invokes other business processes for reaching a goal
[WSG04]. This process is executed within the boundaries of an organiza-
tion. Such interactions are at the message level, including the business logic.
In this thesis both terms are related to the definition of an execution
sequence. Since UMM is used to model collaborative business processes, it
mainly deals with choreography.

Different choreography lan-
guages

As already mentioned the business process model must be transformed
to a machine-readable language. What else is more suitable for this task as

183.3 Choreography languages
XML. Thus the following list shows the most important XML-based chore-
ography languages [Hof05]:

■ ebXML Business Processes Specification Schema (BPSS) [BPS03]
■ Business Process Execution Language (BPEL) [BEA03]
■ Business Process Modeling Language (BPML) [BML02]
■ XLANG [XLA01]
■ Web Services Flow Language (WSFL) [WSL01]
■ Web Services Choreography Interface (WSCI) [CI02]
■ Web Services Conversation Language (WSCL) [CL02]
■ Petri Net Markup Language (PNML) [Kin04]
■ Event-Driven Process Chains Markup Language (EPML) [MN04]
■ Graph eXchange Language (GXL) [WS04]

Due to this large number of different choreography languages there is a
short description of the most commonly used choreographies.

Description of the most
important choreography
languages

The Business Process Specification Schema (BPSS) defines a frame-
work for business process specification. Its goal is to provide the bridge
between e-business process modeling and the specification of e-business
software components. The Business Process Modeling Language (BPML)
is a block-structured meta language. It is based on a logical process model
expressing concurrent, repeating and dynamic tasks and can be directly exe-
cuted via middleware. The viewpoint of a single partner is a main character-
istic of this choreography language.

The Business Process Exe-
cution Language (BPEL)

The Business Process Execution Language (BPEL) is a combination of
the concepts of XLANG and WSFL specifications. BPEL uses so-called
business protocols for sequencing the messages exchanged by business
partners. Since a business protocol is not executable, BPEL refers to it as an
abstract processes. They are meant to couple Web Service interface defini-
tions with behavioral specifications that can be used to both constrain the
implementation of business roles and define in precise terms the behavior
that each party in a business protocol can expect from the others [Jur04]. In
other words this is a process interface from the point of view of the party
exposing this interface. In order to realize a business protocol BPEL uses
the concept of executable processes. Executable processes extend abstract
processes by defining concrete protocol bindings and the exchanged docu-
ment structures.

193.4 ebXML
3.4 ebXML
ebXML - an XML-based
infrastructure for a world-
wide usage of electronic
business processes

The United Nation’s Centre for Trade Facilitation and e-Business
(UN/CEFACT) and the Organization for the Advancement of Structured
Information Standards (OASIS) started an initiative called ebXML. The
goal of ebXML is the provision of an XML-based infrastructure for a world-
wide usage of electronic business processes. The ebXML project was
founded in November 1999, because a global electronic business market
was needed. In this global market businesses can find each other to become
trading partners in a cost-efficient way. This concept bases on the exchange
of XML documents. Primarily small and medium enterprises (SME) should
get advantages out of this new initiative. The software industries will offer
commercial off the shelf software (COTS) to the SMEs for realizing B2B
scenarios.

Fig. 3–1 An ebXML
scenario

Description of an ebXML
scenario

Figure 3–1 depicts a typical ebXML scenario between a large company
(Company A) and an SME (Company B) [ETA01]. There is a central com-
munication interface called ebXML registry. In the first step Company A is
requesting information from the ebXML registry. For submitting their own
business process information Company A has to implement their own
ebXML-compliant application. The third step is registering the implemen-
tation details to the registry and submitting the profile of Company A. This
profile gives information about the company’s ebXML capabilities and con-
straints, and its supported business scenarios. Company B sends a query

id ebXML scenario

ebXML Registry

Business
Scenarios

Business profiles

Company A

Company B

2: Bui ld Local System
Implementation

5: Agree on Business
Arrangement

6: Do Business
Transaction

3: Register Implementation
Detai ls

1: Request Business Detai ls

4: Query about Company
A's Profi le

203.5 Registries
about the profile of Company A (step 4). Having all the required informa-
tion, Company B agrees on the business arrangement in the fifth step. Since
both companies are using an ebXML compliant software interface, they can
directly communicate with each other. Company A accepts the business
agreement as well. Now the e-business process using ebXML is starting in
the sixth step.

3.5 Registries
The task of the ebXML reg-
istry

The idea of a registry is keeping information and methods accessible for
specific participants connected to the Internet. This scenario is useful for
business processes as well. As described in chapter 3.4 ebXML uses this
concept for keeping their business processes in a central communication
interface. Therefore the characteristics of a registry will be explained on the
basis of an ebXML registry.

An informal definition of
the ebXML registry

The ebXML registry builds a repository for registering business pro-
files. An ebXML registry can be compared with a relational database of
enterprise applications. The following informal definition supports this
statement: an ebXML Registry is to the web what relational databases are to
enterprise applications [Naj02].

A more formal definition of
the ebXML registry

Enterprise applications are evolving into web services with the need for
sharing data and metadata. An ebXML registry may be used by web ser-
vices and applications to store and share content and metadata. A more for-
mal definition of the ebXML registry is as follows: An ebXML registry is
an information system that securely manages any content type and the stan-
dardized metadata that describes it [Naj02].

Artifacts managed by the
ebXML registry

Moreover the ebXML registry provides services maintaining the shared
information as objects in a repository. The information stored in the registry
could be collaboration protocol profiles of trading partners, core libraries,
business libraries, business processes or business documents [Hof05]. All
these artifacts are managed by the ebXML registry.

The purpose of UDDITalking about registries we must consider the term UDDI (Universal
Description, Discovery, and Integration). UDDI is a web-based distributed
directory that enables businesses to list themselves on the Internet. It is an
XML-based registry which allows businesses worldwide to discover each
other. Its ultimate goal is to streamline online transactions by enabling com-
panies to find each other on the Web and make their systems interoperable
for e-commerce. In order to find the right process for your company UDDI
can be compared with telephone books for different purposes - white pages,
yellow pages, and green pages. Furthermore the information in the UDDI
registry provides a mechanism that allows others to discover what technical
programming interfaces are provided for interacting with a business.

213.6 XMI
The data in UDDI deter-
mines the questions “who,
what, where, and how”

The information that a business can register includes several kinds of
simple data that help others determine the questions “who, what, where and
how”. The question “Who?” is answered by the information about the busi-
ness such as name, business identifiers and contact information. “What?”
involves classification information that includes industry codes and product
classifications, as well as descriptive information about the services that
business makes available. The question “Where” involves registering the
information about the URL or email address (or other address) through
which each type of service is accessed. Finally the question “How?” is
answered by registering references to information about interfaces and
other properties of a given service. These service properties describe how a
particular software package or technical interface functions [UDD02].

3.6 XMI
The task of XML Metadata
Interchange (XMI)

The XML Metadata Interchange (XMI) is the combination of two
major buzzwords: UML and XML. Although UML is a normative lan-
guage, the portability between different UML tools is a problem. There are
a lot of UML tools on the market. Bringing the same information out of a
UML tool requires a normative description of UML diagrams in a formal
language. Since different UML tools are recording different information,
this was the major reason for inventing an XML-based exchange format for
UML models [Ste01]. Thus XMI is a way to save UML models in XML.
The XML Metadata Interchange is an OMG standard. The latest version of
XMI is 2.1 and is specified in the MOF (Meta Object Facility) 2.0/XMI
Mapping Specification v2.1 [MOF05]. UML is a MOF-based meta model
and therefore XMI should be specified in a more general definition
[MO102]. XMI shows how to save any MOF-based meta model in XML.

The Meta Object Facility
(MOF)

Before going on with the description of XMI, the Meta Object Facility
(MOF) must be described in more detail. The MOF is an Object Modeling
Group (OMG) standard such as XMI. MOF is a simple language for defin-
ing further languages, such as UML. The OMG specifies a 4 level meta
model architecture for defining MOF. These different layers are depicted in
Figure 3–2. The architecture consists of 4 different meta model layers. The
M3 meta level is the meta-meta model. The MOF model itself is an example
of this layer. The M2 layer keeps the meta model. An instance of this layer
is the UML meta model defining the abstract syntax for the relationships
between any kinds of UML model elements. The model itself is at the M1
level. Every UML model can be used as an example of this layer. The M0
level keeps the data of a modelled system. An important fact of this 4 level
architecture is that MOF must not be mixed up with UML. It is just provid-
ing an “open-ended information modeling capability”.

223.6 XMI
Fig. 3–2 OMG’s 4 level
meta model architecture

XMI is an exchange format
for UML models

As we can see UML models can be transformed to XML-based formats
using the rules of XMI. The XMI format is geared to the UML meta model
(M2). The framework of the tags in the XMI refers to the structure of the
UML meta model. The data within the tags reflects the UML model. Thus
XMI is an exchange format for UML models. Since the UML meta model is
integrated in every UML tool, the XMI format must be compliant to each
UML tool.

Unfortunately the majority of UML tools do not implement the UML
meta model itself correctly. Hence these UML tools export their UML mod-
els in different ways using different output flavors. Furthermore some UML
tools do not implement specific information of UML models which may be
required by other UML tools. Thus the interoperability of XMI between
UML tools is a major issue.

The advantages for UML
using XMI

Although these problems may show a lot of disadvantages of XMI,
there are some helpful aspects of this exchange format. Since XMI is XML
based a broad range of tools are available to manipulate models persisted in
XMI. Furthermore a developer can write code for extracting information
out of an XMI file in order to transform it into the input format of another
UML tool.

Why does the UMM Add-In
not use XMI?

If there were no problems concerning the interoperability of XMI for-
mats between different UML tools, we would have considered using the
concepts of XMI for the UMM Add-In. The UMM Add-In includes a fea-
ture for validating a UMM model against the constraints defined in the
UMM meta model. In the beginning of the development phase it was
planned to use XMI version 1.2 for validating the exported XMI file of a

id OMG's 4 level meta model architecture

Meta level MOF terms Examples

M3

M2

M1

M0

meta-meta model

meta model

model

data

"MOF Model"

UML meta
model

UML models

Modelled
systems

233.6 XMI
UMM model. The UMM Add-In is a plug-in for Enterprise Architect,
which supports a multifunctional application integration interface. Using
the interface for the validation is more comfortable than using XMI. Since
these XMI files cannot be used in other UML tools anyway, for interopera-
bility reasons the application integration interface is used instead. Further-
more it saves a lot of program code, because the information of the UMM
diagrams does not need to be extracted to an XML-based format. Thus the
idea of using XMI was rejected.

244 UMM Add-In
4 UMM Add-In

4.1 An Add-In for a UML modeling tool
An overview about UML
modeling tools

Since UMM is based on the concepts of the Unified Modeling Language
(UML), a tool is needed for modeling a UMM business collaboration
model. There are a lot of UML tools on the software market. The most
known tools are Rational Rose from IBM, Enterprise Architect from Sparx
Systems, Magic Draw from NoMagic Inc., and Poseidon from Gentleware.
The modeling tools provide UML model elements defined in the UML meta
model. Furthermore these software tools can be usually used to load a UML
Profile - e.g. as it is defined for the UMM. A stereotype is a capability to
create new kind of modeling elements based on elements that are part of the
UML meta model. A stereotype can be customized by defining attributes
called tagged values. UMM stereotypes are defined in the UMM meta
model which is UML compliant as well.

The purpose of the UMM
tool

For supporting the modeler in building a UMM model, a tool which
guides through the modeling process is needed. The main tasks of this
UMM tool are:

■ Increasing usability of the modeling process
■ Providing UMM compliant stereotypes
■ Documentation of the model
■ Validation of the model
■ Transformation of the model into choreography languages
■ Mapping business information to specific XML based document for-

mats

The Enterprise Architect
supports an interface for
integrating the UMM Add-
In

The best way to fulfill these tasks is an integration of the UMM tool into a
UML modeling tool. Thus we chose the UML tool Enterprise Architect
(EA) from Sparx System for creating a plug-in called UMM Add-In. Enter-
prise Architect provides an API for using predefined features and methods
of the modeling tool.

254.2 Enterprise Architect modeling tool
4.2 Enterprise Architect modeling tool
Properties of the Enterprise
Architect UML tool

The UML modeling tool Enterprise Architect (EA) was developed and
released by the Australian company Sparx Systems. It is a CASE (Computer
Aided Software Engineering) tool for designing and constructing software
systems. The modeling tool supports all UML features defined in the UML
2.0 specification [UMb04]. The modeler can create all the 13 UML 2.0 dia-
grams by dragging and dropping predefined model elements onto a canvas
in the program window. By switching to the UML 1.4 meta model, the mod-
eler can use the stereotypes defined in this version as well. Furthermore
Enterprise Architect offers a lot of useful functions for modeling with
UML:

■ Creating UML model elements for a wide range of purpose
■ Placing those elements in diagrams and packages
■ Creating connectors between elements
■ Documenting these elements
■ Generating code for software development
■ Reverse engineering of existing code in different languages

Enterprise Architect is suit-
able for adding the UMM
Add-In

We chose Enterprise Architect as the UML environment for the UMM
Add-In because the software is inexpensive and a popular tool for modeling
business models. It is used by a lot of small and medium-sized enterprises
(SMEs) representing most of the present and future UMM users.

The Automation Interface
of the Enterprise Architect

A further reason is the communication interface for adding software
modules to the Enterprise Architect. The Automation Interface provides a
way for accessing internal elements of the Enterprise Architect model. Fur-
thermore the interface makes it easy to manipulate the contents of Enter-
prise Architect program components. Using methods of the interface, val-
ues of model elements in the UML model can be processed. In the UMM
Add-In the Automation Interface was used for:

■ Editing tagged values, diagrams and model elements
■ Creating tagged values, diagrams and model elements
■ Deleting tagged values and model elements

Using Microsoft C# for the
UMM Add-In

ActiveX COM compliant programming languages are able to connect
to the Enterprise Architect Automation Interface. Programing languages
satisfying these requirements are Microsoft Visual Basic 6.0, Borland Del-
phi 7.0 and the .NET Framework. The UMM Add-In is developed in C#
using the Microsoft .Net Framework 2.0.

264.3 Software development environment
4.3 Software development environment
Extending the COM library
of Microsoft Visual Studio

As mentioned before the UMM Add-In is developed in C#. Microsoft Vis-
ual Studio .Net 2005 has been our tool of choice for the implementation.
Using this development environment the automation interface needs to be
integrated to the Common Object Model (COM) library of Microsoft Visual
Studio. With this step all classes provided by the Enterprise Architect are
imported to the environment. This guarantees full access to the methods and
variables the UML tool uses for displaying and processing UML model ele-
ments.

Setting the reference to the
EA Object Model

For registering the COM objects of the Enterprise Architect the application
needs to be registered in the Windows Registry. Once this step is done a
properties window in the Microsoft .NET environment enables setting the
references to other COM libraries. This properties window is depicted in
Figure 4–1. The Common Object Model for the Enterprise Architect is
called Enterprise Architect Object Model 2.10 and needs to be imported
before implementing plug-ins for Enterprise Architect.

Fig. 4–1 Adding the EA
Object Model to Visual
Studio .NET 2005

Using different methods of
the EA Object Model

The following code listing shows an example of using methods of the
Enterprise Architect Object Model. The example localizes a specific pack-
age in the UMM model and adds a new model element to this package. In
codeline 4 a new package is instanced by retrieving the model by a specific
ID. The next line adds a new subordinated model element to this package.
This element is of type use case and is named register customer. In codeline

274.3 Software development environment
6 the UMM stereotype business process is assigned to this element. The
Update() method in codeline 7 confirms the creation of the new element.

Listing 4–1 Example for
adding a new model
element with the EA
Object Model

[4] EA.Package Package = Repository.GetPackageByID(2);
[5] EA.Element Element

= (EA.Element)Package.Elements.AddNew("Register Customer", "UseCase");
[6] Element.Stereotype = "BusinessProcess";
[7] Element.Update();

As we can see, the components of an Enterprise Architect model can be
accessed and altered very easily. Although other tools like Rational Rose
offer similar APIs in order to access program components, the one provided
by Enterprise Architect was better tailored to our requirements. The crea-
tion of the UMM Add-In are greatly enhanced, because the features of the
Automation Interface was thoroughly documented. Finally we would like
say, that the support provided by Sparx Systems is fast and state of the art.

285 UMM at a glance
5 UMM at a glance

5.1 About UN/CEFACT
The task of UN/CEFACTThe United Nations Economic Commission for Europe (UN/ECE) founded

the Centre for Trade Facilitation and Electronic Business (UN/CEFACT)
for improving the worldwide coordination of trade. UN/CEFACT is a long-
existing B2B standards body, which became famous by developing and
maintaining the UN/EDIFACT standards. In particular UN/CEFACT
improves the ability of business, trade and administrative organizations,
from developed, developing and transitional economies, to exchange prod-
ucts and relevant services effectively. The organization focuses on facilitat-
ing national and international transactions, through the simplification and
harmonisation of processes, procedures and information flows.
UN/CEFACT argues for the growth of global commerce [UNC05].

The organizational chart in Figure 5–1 shows the structure of the
UN/CEFACT permanent working groups.

Fig. 5–1 Structure of the
UN/CEFACT permanent
working group [UNC05]

id UN/CEFACT Organizations

UN/ECE

UN/CEFACT Plenary

Forum Management Group

UN/CEFACT Forum

TBG - International Trade &
Business Process Group

ICG - Information Content
Management Group

ATG - Applied Technologies
Group

TMG - Techniques and Methodologies Group

LG - Legal Group

United Nations Centre for Trade Facilitation and Electronic Business

United Nations Economic Commission for Europe

Plenary Bureau UNECE Secretariat
representative

295.2 Basics of the UMM
The five UN/CEFACT
Groups

UN/CEFACT consists of five UN/CEFACT groups depicted in the bot-
tom of Figure 5–1 are established to form the UN/CEFACT development
structure. While TBG (International Trade and Business Processes Group),
ICG (Information Content Management Group) and ATG (Applied Tech-
nologies Group) are the operational groups, the TMG (Techniques and
Methodologies Group) and LG (Legal Group) are serving essentially as
support groups [CSO02].

The tasks of the five Perma-
nent Working Groups

The TBG is responsible for business and governmental process analysis
and international trade procedures using the UN/CEFACT Modeling Meth-
odology. Thus it supports the development of appropriate trade facilitation
and electronic business solutions, including the development and mainte-
nance of UN and UN/ECE recommendations. The ICG is responsible for
the management and definition of reusable information blocks retained in a
series of libraries. The ATG is responsible for the creation of the trade, busi-
ness and administration document structures that will be deployed by a spe-
cific technology or standard such as UN/EDIFACT or XML. The TMG is
responsible for providing all UN/CEFACT groups with base ICT (Informa-
tion and Communications Technology) specifications and recommenda-
tions. Furthermore the TMG is an ICT research group. This group is devel-
oping the next generation of EDI (Electronic Data Interchange) and is also
responsible for the development of UN/CEFACT’s Modeling Methodology
(UMM). The Legal Group (LG) is responsible for publishing and presenting
analysis and recommendations regarding legal matters related to
UN/CEFACT.

UN/CEFACT and UMM
The TMG developed the
UN/CEFACT Modeling
Methodology (UMM)

As we can see all these five permanent working groups have their own
purposes and tasks. The TMG (Techniques and Methodologies Group)
develops the UN/CEFACT Modeling Methodology (UMM) continuing the
work of the former TMWG (Techniques and Methodology Working
Group). The TMG produces trade facilitation, electronic business recom-
mendations and technical specifications to advance global commerce. Thus
an important task of the TMG is to provide a clear specification of UMM to
familiarize business domain experts with this new modeling methodology.
We joined several meetings of UN/CEFACT to contribute to the work of the
TMG. We worked together with other TMG members on the definition and
the documentation of the UMM meta model.

5.2 Basics of the UMM
What is UMM?Sometimes a business environment is large and complex. In order to under-

stand the basics of this environment, we have to begin with collecting infor-

305.2 Basics of the UMM
mation and documenting the business domain knowledge. The UMM is an
incremental methodology for modeling business processes. It provides dif-
ferent views on interorganizational business processes suitable for commu-
nicating the model to business practitioners, business application integra-
tors, and network application solution provider. Furthermore the UMM
provides the conceptual framework to communicate common concepts.
UN/CEFACT’s Modeling Methodology sits on top of the Unified Modeling
Language (UML).

What are the base concepts
of UMM?

UN/CEFACT has developed UMM for providing a methodology to
capture business process knowledge, independent on the underlying imple-
mented technology. UMM is based on the Open-edi reference model which
concentrates on the business semantics of a B2B partnership. Open-edi
describes two views – the business operational view (BOV) and the func-
tional service view (FSV) [OER95]. The BOV describes the business pro-
cesses in a format that is independent from any programming language.
UN/CEFACT proposes UMM for modeling the BOV. The FSV describes
the technical framework used to discover and transport the business infor-
mation. Figure 5–2 shows these two views as the basic concept of the ISO
Open-edi reference model. The goal of Open-edi is capturing the commit-
ments made by business partners, which are reflected in the resulting chore-
ography of the business collaboration. UMM is the formal methodology for
describing an Open-edi scenario as defined in the Open-edi reference
model. Moreover it is providing methods for specifying collaborative busi-
ness processes involving information exchange in a technology-neutral and
implementation-independent way.

Fig. 5–2 The Open-edi
Reference Model

315.3 Business Modeling using the UMM
UMM vs. UML
UMM uses UML for repre-
senting the model

UMM is based on the concepts of the Unified Modeling Language
(UML). All the UMM artifacts are documented in UML. More precisely
UMM is defined as a UML Profile. The modeling methodology is based on
a meta model, which is specified using the extension mechanisms of the
UML. The UMM meta model defines a coherent set of stereotypes, con-
straints, and tagged values, i.e. a UML Profile for the purpose of modeling
interorganizational business processes. The UMM meta model defines three
different views represented as packages in the UMM model. In order to
describe UMM compliant business collaboration models each view has its
own semantics and stereotypes. These main views are listed as follows.

■ Business Domain View (BDV)
■ Business Requirements View (BRV)
■ Business Transaction View (BTV)

5.3 Business Modeling using the UMM
Top-down approach vs. bot-
tom-up approach

Building a UMM compliant business model requires a top-down modeling
approach. It has to begin with a clear understanding of the business domain
and the business activities therein. This approach requires the definition of
business entities, their state management, and state life cycle identification
to produce a model that can evolve as a new business requirements emerge.
On the other side the bottom-up approach can be used as a starting point to
incorporate existing and well-known business documents and transactions.
Moreover this approach helps identifying some model elements and must be
applied in order to produce evolvable and maintainable models that support
reusing business processes between trading partners on the Internet [UG03].

Business information dependencies, not document exchange
UMM is not a document
exchange methodology

The task of UMM is to formalize dependencies between business partners
for a business domain. Old approaches focused only on the document struc-
ture of documents exchanged. UMM instead focuses on business actions
and objects that interact with business information.

Model production approach
Worksheets are capturing
the business domain knowl-
edge

The UMM uses worksheets to capture the business domain knowledge.
These worksheets are simple tools to collect and organize the information
needed to produce the minimum UMM models for each work area. There is
an iterative process of gathering the information for the various work areas.
The information collected in interviews with business stakeholders needs to
be captured in the worksheets of the BDV, BRV and BTV.

325.3 Business Modeling using the UMM
5.3.1 Business Domain View

The task of the business
domain view

The approach taken in the business domain view (BDV) is an interview
process between the modeler and the business domain expert. The purpose
of this interview is to discover internal or interorganizational business proc-
esses. Furthermore the task of this view is to capture these business proc-
esses and to find business partners participating in these processes. These
artifacts are represented as use case diagrams in the UMM model. The
result of the business domain view should not be the construction of new
business processes but discovering business processes and capturing their
knowledge within worksheets. This view determines the business context of
the process for finding reusable, previously defined, process descriptions or
terminology in the UMM libraries.

Using predefined classifica-
tion schemes

Furthermore the BDV is using existing knowledge. The business pro-
cesses are classified according to a classification scheme. Candidate
schemes are:

■ Porter’s Value Chain
■ SCOR (Supply Chain Operations Reference Model)
■ UN/CEFACT’s Common Business Processes Catalog

5.3.2 Business Requirements View

The BRV captures business
scenarios of possible busi-
ness collaborations

The business requirements view (BRV) builds up on the business domain
view. This view captures the business scenarios, inputs, outputs, constraints
and boundaries for business processes. It describes scenarios where the
business partners in the domain under consideration can collaborate. The
result of this view is a description how the business domain expert sees and
describes the collaboration to be modelled. The BDV is expressed in the
language and concepts of the business domain expert.

The definition of a business
collaboration

The definition of a business process is an organized group of related
activities that together create customer value [HC93]. The business collabo-
ration has a similar definition. It is a special kind of a business process,
where the activities are executed by two or more business partners. The col-
laboration is called a binary collaboration in case of two business partners
and multi-party collaboration in case of more than two business partners.

The first step in the BRV is to get a common overview of potential busi-
ness collaborations. Activity graphs are utilized to informally specify the
flow of these collaborations. Figure 5–3 depicts steps of a collaboration
dealing with a registration process between a customer and a registrar. Each
business partner is represented by his own partition. The shared business
entity state between the partitions denotes a need of an interaction between
both partners’ e-business systems.

335.3 Business Modeling using the UMM
Fig. 5–3 Example process
flow depicted by means of
the BRV

Requirements and participating roles of a collaboration are formally
specified using business collaboration use cases. Figure 5–4 shows the
business collaboration use case register customer capturing the require-
ments for the process shown in Figure 5–3. The interaction between the two
systems is manifested by the business transaction use case. Customer and
registrar are specified as roles participating in the register customer pro-
cess.

Fig. 5–4 Capturing the
requirements of the
register customer
collaboration

345.3 Business Modeling using the UMM
5.3.3 Business Transaction View

The task of the BTVThe business transaction view (BTV) captures the semantics of busi-
ness information entities and their flow of exchange between roles as they
perform business activities. The task of this view is to transform the require-
ments from the BRV into an analysis model. Thus the BTV uses the lan-
guage and the concepts of the business analyst and describes how the busi-
ness analyst sees the process to be modeled. There are three important
artifacts of the business transaction view:

■ Activity graph for a business collaboration
■ Activity graph for a business transaction
■ Class diagram describing the data exchange

Distinction between busi-
ness collaboration and
business transaction

Taking a look at this list, we have to make a distinction between a busi-
ness collaboration and a business transaction. A business transaction is the
basic concept for defining a choreography of a collaboration between busi-
ness partners. Communication in a business collaboration means that all rel-
evant business objects are in the same state in each information system. If
this state is changing for any reason, a business transaction is initiated to
synchronize the states in both information systems.

Activity graph for a busi-
ness collaboration

The first bullet describes the activity graph for a business collaboration.
This activity graph specifies the choreography of activities among two or
more business partners. Furthermore the business collaboration is modeled
according to the requirements defined in the BRV. Figure 5–5 depicts our
example register customer collaboration. This activity graph is composed
of one business transaction activity denoting the only required interaction
between the two partners’s systems.

Fig. 5–5 Activity graph
for the business
collaboration register
customer

ad Register Customer

«BusinessTransactionActivi ty»
Register Customer

Success

Fai lure

[Registration.rejected]

[Registration.accepted]

355.3 Business Modeling using the UMM
Activity graph for a busi-
ness transaction

The second type of activity graph describes a business transaction in more
detail. There are two different types of business transactions. The first type
is called one-way business transaction and describes the following scenario:
the requesting business partner reports a state change that the reacting busi-
ness partner has to accept. In this case information is changed in only one
direction. The responding business partner is receiving the request from the
requesting business partner, but there is no channel for returning informa-
tion to the initiating business partner. The second type of a business transac-
tion is called two-way transaction. In this case the requesting business part-
ner sets the information to an interim state. The requesting partner changes
this state. Since there is a bidirectional connection between the two business
partners the reacting business partner can define this state he already
changed as the final state. There is an important relationship between busi-
ness transaction use cases in the BRV and the business transactions in the
BTV. The requirements (e.g. the participants) for modeling a transaction are
defined in the BRV. Figure 5–6 shows a business transaction called register
customer. This business transaction is the detailed description of the equally
named business transaction activity which is part of the collaboration
depicted in Figure 5–5. In this case the business transaction is a two-way
transaction. Each partition in the activity graph is executed by a role of the
corresponding use case in the BRV.

Fig. 5–6 Business
transaction register
customer

ad Register Customer

:Registrar

«BusinessTransactionSw imlane»

:Customer

«BusinessTransactionSw imlane»

«RequestingBusinessActivi ty»
ask for Registration

«RespondingBusinessActivi ty»
respond on Registration Request

«RequestingInformationEnvelope»
:RegistrationRequestEnv elope

«RespondingInformationEnvelope»
:RegistrationEnv elope

Ini tial State

Success

Fai lure

[Fai lure]

[Success]

365.3 Business Modeling using the UMM
Class diagram for describ-
ing the data exchange

The third artifact of this view is the class diagram for describing the
data exchange. In UMM it is also important to know everything about the
information structure. This structure is composed of the business informa-
tion entities included in each single business transaction. The business enti-
ties are described by the information needed to change its business states.
Figure 5–7 depicts the structure of the quote envelope. Please note that this
cutout has been taken from a different example. In UMM an information
envelope is associated with one information entity defined as header and
with at least one information entity defined as body. An information entity
represents the actual business document.

Fig. 5–7 Information
structurecd Quote Information

«InformationEnvelope»
QuoteEnvelope

«InformationEntity»
StandardBusinessDocumentHeader

«InformationEntity»
Quote_Document

+ Identification: identifier
+ Creation: Date

«InformationEntity»
Quote_Document_LineItem

+ Identification: identification

«InformationEntity»
ProductService

+ Identification: identifier
+ Description: Text [0..1]

«InformationEntity»
Unit_ChargePrice

+ Amount: Amount

1..*

+body
+header

376 Worksheets Editor
6 Worksheets Editor

6.1 The need for worksheets
Before to start modeling
with UMM

Before the modeler is going to design a business model, he needs to get
an overview about the business domain knowledge. In UMM the business
process analyst gathers information that is important for the modeling pro-
cess. Thus the modeler is able to redesign or refine business processes. In
UMM a set of worksheets helps him to capture this information. The UMM
worksheets are a set of documents capturing the business domain knowl-
edge. These documents have their fixed predefined structure and have orig-
inally been defined in Microsoft Word format. In order to keep them consis-
tent and readable for different people the documenting design-rules must
not change.

Worksheets provide a
means of communication
between the modeler and
the businessmen

Worksheets do not only help the designer to keep his own notes, but
provide a means of communicating the business model in natural language
to business people. In most cases business domain experts do not under-
stand the meaning of modeling artifacts represented in a UMM diagram. It
is easier to understand, if there is a plain text, where almost the whole model
is described. Furthermore this is exactly the way of communication between
the businessman and the modeler. The use of modeling tools on the mod-
eler’s side and the use of text-based forms in another software on the busi-
ness man’s side makes the scenario of refining the model over time more
complicated. It follows that modeling the business collaboration and docu-
menting business knowledge in worksheets should be provided by the same
software. Thus we integrated the worksheets into the modeling tool.

Figure 6–1 shows an example of documenting a business area. This
model element represents a package in the business domain view to circum-
scribe the business areas. It is used to document, which kind of business
processes and artifacts are defined in the package named procurement/sales.

386.2 The integration of worksheets into a UMM tool
Fig. 6–1 Worksheet of a
model element
stereotyped as business
area

6.2 The integration of worksheets into a UMM tool
Workflow while using no
integration of the work-
sheets to a tool

The usual workflow using worksheets for documentation is as follows.
The business analyst works together with the business domain expert in
order to gather the business information that is of interest for creating a B2B
collaboration model while going from one worksheet to another. After the
business analyst has enough information, he is going to design the UMM
model with an UML Tool. A big disadvantage of this workflow is that the
modeler cannot check any eventual flaws in the model during the meeting
with the business domain expert. These flaws can eventually force an ineffi-
cient model. Furthermore the approach requires additional meetings and
communication-effort.

Workflow with interactive
worksheets integrated to
the modeling tool

In order to improve the workflow, it is important to integrate the work-
sheets into the modeling tool. In this case the modeler can immediately
enter the business domain knowledge into a user-friendly windows-form of
the modeling tool. While entering this information he can use interactive
functions of the worksheet editor. As shown in Figure 6–2 the worksheet
editor has four main tasks:

■ Representation of the business domain knowledge

Form: BusinessArea

General

Business Area Procurement/Sales

Description In this business area, business processes are described where a
purchasing organisation can find potential suppliers for required
products, can establish an account with the selling organisation,
request for a quotation of required products and eventually place
a purchase order with the selling organisation if the quote
provided by the selling organisation meets the purchasing
organisation's business objectives.

Objective The objective of this business area allows a purchasing
organisation to find an appropriate supplier (selling
organisation), to establish an account, to request a quote for
required products, and finally to purchase these products.

Scope - Identify potential customer/ vendor
- Request quote for price and availability
- Request purchase order

Business Opportunity The business opportunity of this business area is to allow
purchasing organisations to purchase required products from
selling organisations.

Business Library Information

Base URN http://www.untmg.org/UserGuide2005/BDV/Procurement

Version 0.1

Status approved

Business Term Purchase Order, Order, RFQ, Quote, Quotation, Sales Order,
Price Request

Owner UN/CEFACT

Copyright UN/CEFACT

Reference(s)

396.2 The integration of worksheets into a UMM tool
■ Pattern generation
■ Persisting information
■ Exporting information

Fig. 6–2 The tasks of an
interactive worksheet
editor

The representation of the
worksheet data

The first task is to represent the business domain knowledge in a user-
friendly manner to the modeler. In UMM different kind of worksheets have
been designed. It follows that we also need different kind of windows
forms. In other words each stereotype has its own distinct representation.
Instead of having the business knowledge documented in a Microsoft Word
document, an interactive data representation is more user-friendly and
keeps the model consistent. Figure 6–3 shows an example of a windows
form. The worksheet information displayed in this window represents the
same information as the worksheet document in Figure 6–1. The worksheet
of the stereotype business area is separated into different kinds of catego-
ries—General, Business Library Information, Process Area(s), Business
Area(s). In the paper based worksheet in Figure 6–1 these categories are
represented as sub-headings. In the user interface of the Figure 6–3 we use
tabs to represent the categorization. Since there is a possibility to navigate
through the structured information, the worksheet editor shows the data in a
more customized and user-friendly way.

ud The task of the w orksheet editor

BackupDocuments

Modeler

Business Domain
Expert Worksheet

Editor

Representing Business Domain
Know ledge

Generating UMM Model

Filling Tagged Values

Documenting UMM Model

MS Word HTML XML

refining UMM Model

exporting to backing up
worksheets

Business
knowledge

Col lecting
artefacts

Exporting
information

Persisting
information

Pattern
generation

Representation

406.2 The integration of worksheets into a UMM tool
Fig. 6–3 Well structured
representation of the
worksheet data

Generating UMM diagrams
automatically with the
worksheet editor

Some UMM diagrams follow predefined patterns. Worksheets carry all
the information needed to apply a pattern for generating a diagram. In this
case we are able to automatically generate diagrams based on the business
knowledge captured in the worksheet editor (e.g. generating business trans-
actions). This saves a lot of time by relieving the modeler from the routine
task of generating the same type of diagram over and over again. More
details about this tasks are described in chapter 6.7.1.

Persisting business infor-
mation

The next task is persisting the business domain knowledge. This feature
is fully integrated to the tool as well, because the information of the busi-
ness knowledge is directly stored in the model. So-called tagged values
defined in the UML meta model are used to capture the worksheet informa-
tion. The concept of the integration of the tagged values into the worksheet
editor is described in chapter 6.4.3.

Exporting worksheets to
Microsoft Word, HTML or
XML

Furthermore these forms can be exported to the following output for-
mats Microsoft Word, XML (WDL - Worksheet Definition Language) and
HTML. This last task is the communication interface between the business
domain expert and the modeler. With the documents generated out of these
output files, the UMM model is documented in a natural language, which is
readable for everyone. The way of defining the requirements through inter-
active worksheets makes this workflow more efficient and intuitive. More
details about the use of tagged values are described in the next chapter.

Unique evaluation of work-
sheet entries

The next major advantage of the integration into a tool is the unique
evaluation. If the modeler designs a UMM model, some worksheet informa-
tion may be required at different parts of the model. The business domain
knowledge captured in the beginning of the modeling process is required in

416.3 Relationship between worksheets and tagged values
the end of the modeling process. For example a business transaction in the
business transaction view is based on the business transaction use case in
the business requirements view. If the modeler filled out the worksheet
entries of the stereotype business transaction use case, this information is
required in the assigned business transaction as well. Therefore the interac-
tive worksheets will help him to keep the model consistent. Thus the mod-
eler does not need to enter the same information twice.

6.3 Relationship between worksheets and tagged values
Storing the information of
the worksheets

The worksheet information has to be stored somewhere. There are two
alternatives to do this. The first one is to create a data file (e.g. in XML-for-
mat). Keeping the documentation - in our case the worksheet input - sepa-
rated from the model itself can lead to inconsistencies.

Using tagged values to save
worksheet entries

Therefore the information needs to be saved in the model itself. The
second alternative is the integration of the information into tagged values.
The UMM meta model assigns tagged values to some significant model ele-
ments, which are comparable to attributes for storing further properties of
this element. This is exactly the task of the worksheet editor – describing
model elements. This step uses two advantages. On the one hand we inte-
grated the worksheets into the model and on the other hand we can capture
the mandatory tagged values specified by the UMM meta model.

The tagged values pre-
defined in the UMM meta
model are filled out by the
worksheets

The second advantage needs to be inspected in more detail. The UMM
meta model defines some tagged values which are assigned to specific
model elements. If the modeler creates a clear and efficient model, these
tagged values must be provided. Furthermore the modeler can add any
amount of new tagged values to the predefined set. The worksheet editor
integrates all tagged values predefined in the UMM meta model.

Figure 6–4 shows the representation of the tagged values in the model-
ing tool Enterprise Architect. The UMM meta model defines the following
tagged values for the stereotype business area.

■ objective
■ scope
■ businessOpportunity
■ baseURN
■ owner
■ copyright
■ reference
■ version
■ status
■ businessTerm

426.4 Technical implementation of the worksheet editor
The worksheet editor cre-
ates new tagged values, if
they do not exist

As seen in the Figure 6–4 all tagged values are represented. Even if
these tagged values are not predefined in the UMM profile, the worksheet
editor creates a new tagged value, if the corresponding text field has been
filled out. In other words, if the worksheet finds an entry, which has the
same tagged value name, it will overwrite the value of this tagged value.
Otherwise a new value will be created to store the new information. These
tagged values should be empty at the beginning of the modeling process and
should not be used for other purposes. Furthermore the names of the tagged
values must be unique, to avoid inconsistency.

Fig. 6–4 The tagged
values of a business area
represented in the
modeling tool

Worksheet editor is also a
tagged values editor’

In addition to the predefined tagged values the modeler can add further
ones. If he adds new tagged values, the worksheet editor is able to distin-
guish between customized tagged values and predefined tagged values.
Such customized tagged values should also be editable via the worksheet
editor. In this case, the worksheet editor also serves as a “tagged value edi-
tor”. Such special tagged values are listed in a separate category.

Storing constraints and fur-
ther information to the
internal structure of the
modeling tool

The worksheet editor does not only store the business knowledge in
tagged values. Some information is stored in UML constraints or internal
variables of the modeling tool. Starting with the first option, we know, that
UML offers predefined constraints. For example the information about the
pre- and post-condition of an element are such constraints as already
defined by the UML. The other option are internal variables of the modeling
tool. For example the notes field that may be added to any UML element
represents such a variable. More detailed information about these special
ways of saving the information is provided in chapter 6.4.3.

6.4 Technical implementation of the worksheet editor
Requirements of the work-
sheet editor

One of the requirements was to design user-friendly windows forms
which guide the modeler step by step to an efficient model. For this reason

436.4 Technical implementation of the worksheet editor
the worksheet editor provides input form windows with structured informa-
tion on it. The text fields are separated by categories classifying the differ-
ent types of business knowledge.

Fig. 6–5 The worksheet
editor window of a
business area

The user interface of the
worksheet editor

Figure 6–5 shows a screenshot of a worksheet editor window for a
model element stereotyped as business area. The input fields represent the
worksheet entries and each different tab separates the information into cate-
gories. The information shown in this figure is equivalent to the general part
of the worksheet document in Figure 6–1. Furthermore a click on the mag-
nifying glass will pop up a window with a larger text area allowing more
comfortable editing. This is especially useful for long texts. The two extra
tabs called Business Area(s) and Process Area(s), which are not shown in
Figure 6–1, are extensions of the worksheet editor. They give information
about the included business areas and process areas. The purpose of these
extensions is explained in the chapter 6.7. The buttons at the bottom of the
worksheet editor window have the following functions.

■ Export button
Pressing this button executes the export functionality to export the
worksheet information into different formats.

■ Apply button
Saves the worksheet information to the tagged values of the assigned
model element without closing the window. After pressing this button,
editing of the worksheet may be continued.

446.4 Technical implementation of the worksheet editor
■ OK button
Saves the worksheet information to the tagged value of the assigned
model element and closes the window. The editing session of this work-
sheet is finished after pressing the OK button.

■ Cancel button
Pressing this button aborts the editing session without saving any infor-
mation to the tagged values.

6.4.1 The need for a dynamical structure

Using a dynamical struc-
ture for an easier mainte-
nance

Large scope projects spanning over a lot of business processes lead to
many required artifacts before designing a model. This results in a large
number of different worksheets for all different stereotypes. As a conse-
quence we need to be able to maintain the worksheets quickly and easily.
Thus it is not efficient to hard-code the worksheet layout in the C# code.
Instead we define the layout of worksheets in special XML encoded data
files. The UMM Add-In dynamically loads these data files and renders the
worksheet according to its layout definition. This means that the mainte-
nance of the worksheets does not require to change the code of the UMM
Add-In. It is simply realized by updating the XML data file.

The diagram in Figure 6–6 shows the scenario of rendering of the win-
dows form, based on the XML data files. Each stereotype which has an
attached worksheet, needs its own XML data file. These XML files are
described in Worksheet Definition Language (WDL) and describe the lay-
out information of the specific worksheet. A WDL file for example defines
the layout of each input field, the access state (read-only, write-protected)
and the functionality of the input fields (drop-down box or text-area). WDL
is described in more detail in the next sub-chapter.

Fig. 6–6 The design of the
worksheet editor depends
on the WDL input file

ud Dynamical Structure of Worksheet Editor

Stereotype WDL (XML input
files)

Layout of the
Worksheet Editor

XML Parser

UMM meta model

layout information

user extensions

draw
editor

defined by

456.4 Technical implementation of the worksheet editor
If the UMM meta model
changes, newly shaped
worksheets are required

As we mentioned above, the maintenance plays a major role in the
UMM Add-In. Since the modeling language is in a rather early stage and
not yet mature, the meta model may change and improve over time. As seen
in Figure 6–6 the stereotypes and their tagged values are defined in the
UMM meta model. Since the worksheets must reflect the tagged values, the
UMM meta model has a great impact on WDL. In case of a change in the
meta model, the structure of the worksheets will change, too. Changing the
code of the UMM Add-In every time is inefficient. So whenever the meta
model is changing, the modeler just adds some tags to the WDL file and the
worksheet window is adjusted accordingly. Furthermore the modeler may
customize the worksheet editor while adding information to the input files.
For example if he wants to have some additional fields, he can extend the
functionality of the worksheets. This scenario is visualized as user exten-
sions in the figure above.

Reusing the WDL output
files as input files

The worksheet editor provides a feature to export the worksheets to dif-
ferent formats. One of these formats is WDL. Using this feature the modeler
can create his own input file for the worksheet editor, because the file he
exported is valid against the same WDL schema used from the standard
input files. For example if he is working on the worksheet for the stereotype
business process and he is going to create an WDL export file, including all
entries he already made, he can reuse it as an WDL input file for another
business process, which may be quite similar to the last one. In this case he
saves time by not entering almost the same information twice. This scenario
is visualized in Figure 6–7. The worksheet editor uses the WDL input file to
receive instructions for the style of each text field in the editor. This WDL
file is the definition file for the style of any model element stereotyped as
business process. After the modeler added the worksheet information for
the business process provide product list, he wants to edit another business
process called update product list. These processes are similar and thus their
worksheets are similar as well. Therefore the modeler can export the work-
sheet of the first business process into the WDL format while using the
export functionality of the worksheet editor. When the modeler begins the
worksheet editing session for the next business process he can reuse the
exported WDL file from the business process provide product list. Since the
data has been exported as well, the worksheet of the business process
update product list, is initialized with the exported data.

466.4 Technical implementation of the worksheet editor
Fig. 6–7 Reusing
worksheet information
from another model
element

6.4.2 WDL - Worksheet Definition Language

WDL defines the style of the
worksheets

In order to provide high flexibility, WDL is used to define the style of any
worksheet editor window. Figure 6–8 depicts the technical implementation
of displaying a worksheet form for the stereotype business area. As men-
tioned before, different types of stereotypes need different types of work-
sheets. Consequently stereotypes build the basis for the selection of the
worksheets. For example, if the modeler chooses a model element in Enter-
prise Architect stereotyped as business area with the intention to edit this
worksheet, there is a WDL file telling the UMM Add-In to use the business
area input file. This “deployment file” is called DefaultWorkSheets.xml. So
whenever the name of a stereotype is changing (e.g. as the consequence of a
change or an extension of the UMM meta model) it needs to be documented
in this file.

From WDL to worksheetsAfter the corresponding stereotype was identified and assigned to a
WDL input file, a method checks if the input file exists. If the file Busines-
sArea.xml was found, its content is parsed. The XML parser processes the
XML instance and displays the worksheet as it was defined in the file.
Eventually some extensions for displaying singularities of specific stereo-
types may be added. The stereotype business area for example needs such
an extension for displaying all subordinated packages stereotyped as busi-
ness areas and process areas. Since the WDL input file offers only static
facts predefined by the UMM meta model and extensions defined by the

id Reusing exported WDL files

WDL - input fi le WDL - exported
file

<XML>
<XML>

Worksheet Editor

«BusinessProcess»

Provide Product
List

«BusinessProcess»

Update Product
List

export

reusing the exported file with the data from 'Providing Product List'

input information

476.4 Technical implementation of the worksheet editor
modeler himself, worksheet extensions integrate dynamical information
depending on the model. As shown in Figure 6–5 the worksheet has two
additional tabs for editing the business areas and the process areas.

Fig. 6–8 Using WDL for
designing the style of a
worksheet editor window

Some worksheets are not
assigned to a stereotype

In some cases there are stereotypes, which are not assigned to a work-
sheet. This could happen, if it is not necessary to document properties about
the specific model element. However the modeler should be able to edit the
tagged values of the stereotype. Thus there is a possibility to manage only
the tagged values with the use of the WDL input file EmptyWorksheet.xml.
This input file gives the instructions, that there are only two tabs shown in
the editor window. One of them shows information about the model element
and the other offers the input forms for editing the tagged values. If the
deployment file binds the stereotype to the right WDL input file and for any
reason the specific input file is not found, the EmptyWorksheet.xml file is
used instead. Figure 6–9 shows the editor window of this scenario. The ster-
eotype business partner does not require his own worksheet, but there is a
tagged value specified by the UMM meta model called interest. Thus the
editor provides a feature for editing such a non-categorized tagged value.

486.4 Technical implementation of the worksheet editor
Fig. 6–9 Editing a
worksheet which is not
assigned to a stereotype

6.4.2.1 The W3C schema of WDL

WDL validation with the
before displaying the work-
sheet editor window

The schema of the input files is designed to be easy to understand,
because modelers should be able to create their own worksheet definition
files. The following code shows an excerpt of the XML schema definition
of WDL. Before a new worksheet is loaded, the UMM Add-In checks if the
WDL file for this worksheet is wellformed and valid against this schema. In
case of an invalid WDL document, an error message appears. This prevents
the application crashing due to malfunctioned worksheet definitions.

Listing 6–1 The Schema
of WDL

[8] <?xml version="1.0" encoding="UTF-8"?>
[9] <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
[10] <!-- === ROOT element === -->
[11] <xs:element name="WORKSHEET" type="worksheetType"/>
[12] <!-- === Element definitions === -->
[13] <xs:element name="CATEGORY" type="categoryType"/>
[14] <xs:element name="CHOICEBOX" type="choiceboxType"/>
[15] <xs:element name="DEFAULT" type="xs:string"/>
[16] <xs:element name="DEFINITION" type="xs:string"/>
[17] <xs:element name="ENTRY" type="entryType"/>
[18] <xs:element name="ITEM" type="xs:string"/>
[19] <xs:element name="NAME" type="xs:string"/>
[20] <xs:element name="SUBMENU" type="submenuType"/>
[21] <xs:element name="TOOLTIP" type="xs:string"/>
[22] <!-- === Attribute definitions === -->
[23] <xs:attribute name="id" type="xs:ID"/>

496.4 Technical implementation of the worksheet editor
[24] <xs:attribute name="lines" type="linesType"/>
[25] <xs:attribute name="name" type="xs:string"/>
[26] <xs:attribute name="protected" type="xs:boolean"/>
[27] <xs:attribute name="selected" type="xs:boolean"/>
[28] <xs:attribute name="submenu" type="xs:IDREF"/>
[29] <xs:attribute name="taggedValueName" type="xs:string"/>
[30] <xs:attribute name="taggedValueType" type="taggedValueTypeType"/>
[31] <xs:attribute name="type" type="typeType"/>
[32] <!-- === Simple Types === -->
[33] <xs:simpleType name="linesType">
[34] <xs:restriction base="xs:integer">
[35] <xs:minInclusive value="1"/>
[36] </xs:restriction>
[37] </xs:simpleType>
[38] <xs:simpleType name="taggedValueTypeType">
[39] <xs:restriction base="xs:string">
[40] <xs:enumeration value="name"/>
[41] <xs:enumeration value="notes"/>
[42] <xs:enumeration value="constraint"/>
[43] <xs:enumeration value="standard"/>
[44] <xs:enumeration value="BusinessTransactionUseCase"/>
[45] <xs:enumeration value="RequestingRole"/>
[46] <xs:enumeration value="RequestingBusinessActivity"/>
[47] <xs:enumeration value="RespondingRole"/>
[48] <xs:enumeration value="RespondingBusinessActivity"/>
[49] <xs:enumeration value="RequestingInformationEnvelope"/>
[50] <xs:enumeration value="RespondingInformationEnvelope"/>
[51] </xs:restriction>
[52] </xs:simpleType>
[53] <xs:simpleType name="typeType">
[54] <xs:restriction base="xs:string">
[55] <xs:enumeration value="text"/>
[56] <xs:enumeration value="choice"/>
[57] <xs:enumeration value="time"/>
[58] </xs:restriction>
[59] </xs:simpleType>
[60] <!-- === Complex Types === -->
[61] <xs:complexType name="categoryType">
[62] <xs:sequence>
[63] <xs:element ref="ENTRY" maxOccurs="unbounded"/>
[64] <xs:element ref="SUBMENU" minOccurs="0"

maxOccurs="unbounded"/>
[65] </xs:sequence>
[66] <xs:attribute ref="name" use="required"/>
[67] </xs:complexType>
[68] <xs:complexType name="choiceboxType">
[69] <xs:sequence>
[70] <xs:element ref="ITEM" maxOccurs="unbounded"/>
[71] </xs:sequence>

506.4 Technical implementation of the worksheet editor
[72] <xs:attribute ref="selected" use="optional"/>
[73] </xs:complexType>
[74] <xs:complexType name="entryType">
[75] <xs:sequence>
[76] <xs:element ref="NAME"/>
[77] <xs:element ref="DEFAULT" minOccurs="0"/>
[78] <xs:element ref="TOOLTIP"/>
[79] <xs:element ref="CHOICEBOX" minOccurs="0"/>
[80] </xs:sequence>
[81] <xs:attribute ref="type" use="required"/>
[82] <xs:attribute ref="lines" use="required"/>
[83] <xs:attribute ref="protected" use="required"/>
[84] <xs:attribute ref="taggedValueName" use="required"/>
[85] <xs:attribute ref="taggedValueType" use="required"/>
[86] <xs:attribute ref="submenu" use="optional"/>
[87] </xs:complexType>
[88] <xs:complexType name="submenuType">
[89] <xs:simpleContent>
[90] <xs:extension base="xs:string">
[91] <xs:attribute ref="id"/>
[92] </xs:extension>
[93] </xs:simpleContent>
[94] </xs:complexType>
[95] <xs:complexType name="worksheetType">
[96] <xs:sequence>
[97] <xs:element ref="DEFINITION"/>
[98] <xs:element ref="CATEGORY" maxOccurs="unbounded"/>
[99] </xs:sequence>
[100] </xs:complexType>
[101] </xs:schema>

The logical parts of the
schema

The schema is separated into five logical parts. Between line 10 and
line 12 is the definition of the root element, between line 12 and line 22 the
elements are defined, between line 22 and line 32 is the definition of the
attributes, between line 32 and line 60 is the definition of the simple types
and between line 60 and line 101 the complex types are described.

The root element - WORKSHEET
The WORKSHEET elementThe element described in line 11 is called WORKSHEET which must be the

root element in every WDL instance. The type of this element is called
worksheetType and is defined in line 95. This complex type has at least two
child elements. The sequence defines, that there must be exactly one ele-
ment called DEFINITION followed by at least one element called CATE-
GORY under the root element.

CATEGORY
The CATEGORY elementThis element is defined in line 13 and is typed as categoryType. Instances of

this type structure the worksheet information into logical parts. They must

516.4 Technical implementation of the worksheet editor
have at least one element called ENTRY and an optional number of elements
called SUBMENU. These corresponding multiplicities are defined in the
sequence between line 62 and line 65.

ENTRY
Setting the properties of the
worksheet input field

The element definition in line 17 sets the type of an entry element. The
entryType is specified in line 74 and is the most important element type. It
defines the style and content of any worksheet input field. Between line 75
and line 80 the child elements of ENTRY are defined. There must be exactly
one NAME element, an optional element called DEFAULT, exactly one ele-
ment called TOOLTIP and an optional number of CHOICEBOX elements.

The ENTRY element defines the following attributes: the attribute type
specifies the type of the worksheet entry and is defined in line 81. This
attribute is mandatory and specifies the type of the worksheet entry. The
simple type specification is between line 53 and line 59. There is a set of
allowed values defined. The following list describes the meanings of the
possible values.

■ text
If the attribute is specified by this value, the type of the entry value is a
string. In this case the input form for this worksheet entry is a simple
text box.

■ choice
If the attribute is specified by this value, the input form of this work-
sheet entry is represented as a drop-down box. This value is used, if
there is a predefined set of values. The modeler can choose a value of
the drop-down list. The list of values represented in this drop-down box
is defined by the element CHOICEBOX. Within this element, each list-
item is marked by the element ITEM, which is defined in the schema in
line 18.

■ time
Many characteristics of a business process relate to timing constraints,
e.g. maximum time to perform. The representation of days, hours, min-
utes and seconds is combined in a single string, where all this informa-
tion is encoded. If the attribute is specified by the value time, the input
form of this worksheet entry is represented as 4 text boxes. Each text
box is requesting either a number for the amount of days or a number for
the amount of hours or a number for the amount of minutes or a number
for the amount of seconds. When stored into the tagged value in Enter-
prise Architect the encoded String could for example be “PT3H2M1S”,
which means 3 hours, 2 minutes and 1 second.

526.4 Technical implementation of the worksheet editor
Figure 6–10 shows three input fields each using a different type.
Fig. 6–10 Specifying
three different styles of
input fields

Defining the size of the
input field

The attribute in line 82 is called line and sets the number of lines of an
input form. The attribute is mandatory as well. The next obligatory attribute
is described in line 83 and is called protected. The definition of this attribute
is specified in line 27 and is of type boolean. Thus this element can only be
set to true or false. If this attribute is set to true the input field is in a write-
protected state and cannot be edited by the modeler. In line 84 a further
attribute of the ENTRY element is specified. It is called taggedValueName
and defines the name of the tagged value. The value defined by this attribute
is the unique key for a specific worksheet entry in the list of all tagged val-
ues. This attribute is obligatory as well.

The attribute taggedValue-
Type specifies the type of
the tagged value

The following attribute called taggedValueType is an important
attribute. It is responsible for specifying the right type of the tagged value.
Since there are different possibilities to save the value of a worksheet entry,
this attribute specifies the location where to save the information. Thus this
attribute is obligatory. Between line 38 and line 52 the simple type defini-
tion of this attribute defines a set of values the attribute can have. In the fol-
lowing list the meaning of these predefined values is explained. 1.) to 4.)
give information about the way of saving the value of the worksheet entry.
5.) to 11.) give information about the location of the model elements where
to store the values.

1. taggedValueType=”name”
2. taggedValueType=”notes”
3. taggedValueType=”constraint”
4. taggedValueType=”standard”
5. taggedValueType=”BusinessTransactionUseCase”
6. taggedValueType=”RequestingRoles”

536.4 Technical implementation of the worksheet editor
7. taggedValueType=”RequestingBusinessActivity”
8. taggedValueType=”RespondingRole”
9. taggedValueType=”RespondingBusinessActivity”
10. taggedValueType=”RequestingInformationEnvelope”
11. taggedValueType=”RespondingInformationEnvelope”

■ name
If the attribute is set to name, the value of the input field will not be
stored as a tagged value. The meaning of this value is that the input field
displays the name of the model element. The name of an element needs
not to be saved in a tagged value.

■ notes
If the attribute is set to notes, the value of the input field is stored into
the notes field of the model element. This field is represented as a text
area and is provided by the modeling tool.

■ constraint
If the attribute is set to constraint, the value of a tagged value is stored
into the UML constraints. Such constraints are represented in their own
modeling tool windows. For further information about constraints see
chapter 6.5.

■ standard
This means that the value of the input field is a standard entry, which
has to be saved as a tagged value.

■ BusinessTransactionUseCase
If the selected model element links to another model element, which is
stereotyped as a business transaction use case, the worksheet editor
retrieves all the information of the related model element and displays
its values. This scenario e.g. takes effect in storing and representing
worksheet information of the business transaction. The worksheet of the
business transaction gets information of the corresponding model ele-
ment stereotyped as business transaction use case. After editing the
worksheet, the new information will be stored in the model element
where the information originally came from.

■ RequestingRole
This attribute indicates that the information relates to the requesting role

546.4 Technical implementation of the worksheet editor
in the worksheet for the business transaction. If this value is set, the
worksheet entry will be stored as a tagged value in the requesting busi-
ness transaction swimlane of the business transaction.

■ RequestingBusinessActivity
If the attribute in a business transaction is specified by this value, the
worksheet information will be stored in the corresponding model ele-
ment stereotyped as a requesting business activity.

■ RespondingRole
This attribute indicates that the information relates to the responding
role in the worksheet for the business transaction. If this value is set, the
worksheet entry will be stored as a tagged value in the corresponding
model elements of the responding business transaction swimlane.

■ RespondingBusinessActivity
If the attribute in a business transaction is specified by this value, the
worksheet information will be stored in the corresponding model ele-
ment stereotyped as a responding business activity.

■ RequestingInformationEnvelope
If this value is set in a business transaction, the worksheet information
will be stored in as a tagged value in the corresponding model element
stereotyped as requesting information envelope.

■ RespondingInformationEnvelope
If this value is set in a business transaction, the worksheet information
will be stored as a tagged value in the corresponding model element
stereotyped as requesting information envelope.

Creating a subordinated
box by using the element
SUBMENU

The last possible attribute of the element ENTRY is called submenu. This
attribute is defined in line 86 and can be used optionally. If it is included in
the corresponding element, the worksheet editor structures all worksheet
entries having the same attribute value within a subordinated box. As we
can see in line 28 the attribute is typed as IDREF. This means that the value
of this attribute is a reference to the definition of the header of the subordi-
nated box. This definition is specified by using the element SUBMENU.
The complex type of this element is defined in line 88 and captures an
attribute called ref which is typed as IDREF. This attribute is the key for the
name of the subordinated box. The following code lines show an example of
a submenu.

556.4 Technical implementation of the worksheet editor
Listing 6–2 Example of a
submenu in the worksheet
for a business transaction

[102] <CATEGORY name="Business Information Envelopes">
[103] <ENTRY type="text" lines="2" submenu="sub1"

protected="true" taggedValueName="InformationName"
taggedValueType="RequestingInformationEnvelope">

[104] <NAME>Information Name</NAME>
[105] <TOOLTIP>Information Type</TOOLTIP>
[106] </ENTRY>
[107] <ENTRY type="text" lines="2" submenu="sub1"

protected="false" taggedValueName="InformationState"
taggedValueType="RequestingInformationEnvelope">

[108] <NAME>Information State</NAME>
[109] <TOOLTIP></TOOLTIP>
[110] </ENTRY>
[111] <ENTRY type="text" lines="2" submenu="sub2"

protected="true" taggedValueName="InformationName"
taggedValueType="RespondingInformationEnvelope">

[112] <NAME>Information Name</NAME>
[113] <TOOLTIP>Information Type</TOOLTIP>
[114] </ENTRY>
[115] <ENTRY type="text" lines="2" submenu="sub2"

protected="false" taggedValueName="InformationState"
taggedValueType="RespondingInformationEnvelope">

[116] <NAME>Information State</NAME>
[117] <TOOLTIP></TOOLTIP>
[118] </ENTRY>
[119] <SUBMENU id="sub1">Information Envelope from Requesting

Business Activity</SUBMENU>
[120] <SUBMENU id="sub2">Information Envelope from Responding

Business Activity</SUBMENU>
[121] </CATEGORY>

Explanation of the example
for creating subordinated
boxes in the worksheet edi-
tor

Line 102 specifies a new category named business information envelopes,
which is represented as a new tab. This category has 2 different sections.
The first one is called Information Envelope from Requesting Business
Activity and the second one is called Information Envelope from Respond-
ing Business Activity. These two sub-menus are defined in line 119 and line
120. Both SUBMENU elements are defining their own keys. In total there
are 4 worksheet entries displayed in this tab. Two of them are shown in the
first box and two of them are shown in the second box. E.g. the attribute
called submenu, which is set to sub1 in line 103 specifies, that the first
worksheet entry should be displayed in the first box. The same attribute
specified in line 111 e.g. references the second SUBMENU element. Thus
this worksheet entry is displayed in the second box. Figure 6–11 shows the
representation of the WDL code in the worksheet editor.

566.4 Technical implementation of the worksheet editor
The need for a deployment
file for binding stereotypes
to WDL input files

The schema file has to be in the XML folder of the UMM Add-In and
has a write-protected status. Moreover a file is needed with the information
which WDL file should be assigned to which stereotype. As mentioned
before, different types of stereotypes need different types of worksheets.
This is an important proposition, because the stereotypes form the basis for
the selection of the worksheets. For example, if the modeler clicks a model
element in the Enterprise Architect stereotyped as business transaction use
case with the intention to edit the worksheet, this XML file tells the UMM
Add-In to take the business transaction use case input file.

Fig. 6–11 Structuring
worksheet entries

6.4.2.1 The WDL instances

The structure of the WDL
input files is similar to the
structure of worksheet doc-
uments

Every stereotype, which is assigned to a worksheet by the UMM meta
model has its own WDL instance. The final product of the worksheet editor
is a set of documents with the information about the business domain
knowledge captured in a UMM model. The structure of such a document is
shown in Figure 6–1. As we can see, different sections may be displayed
grouping entries logically belonging together. Furthermore the modeler is
able to add subcategories. All these requirements of the output file are con-
sidered in the WDL instances. Therefore the structure of the input files is
quite similar to the structure of the Microsoft Word output files or the HTML
file generated after editing a worksheet.

Requirements for the design
of the worksheet editor

Before explaining all attributes and tags, we summarize the require-
ments for the design of the worksheet editor. Figure 6–12 shows all the fac-
tors influencing the design of the worksheet editor window. The bubbles
around the rectangle represent these factors. They define how every single

576.4 Technical implementation of the worksheet editor
worksheet has to look like and which special features the worksheet
requires.

Providing categories to
increase usability

The factor named categories visualizes the possibility to separate the
worksheet form into different logical parts. This feature increases the
usability on the modeler’s side and the readability on the business domain
expert’s side after exporting the worksheet. Each category captures issues
belonging together. In the worksheet of Figure 6–1 there are two different
categories. The first category is named General and the second one is
named Business Library Information. Thus it is easy to read this structured
content within the document and even more easy to distinguish logical parts
of the worksheet editor while entering the business domain knowledge.

Fig. 6–12 Factors
influencing the style of the
worksheet editor

Customizing the style of the
input fields

The next significant factor is the style of the input fields. This require-
ment has the most attributes, because there are different ways and settings
for adjusting the style of the input fields of the worksheet editor. For exam-
ple the size of the input field is an important property. Sometimes business
information is short and in many cases just one word, but sometimes busi-
ness artifacts are described in a couple of paragraphs using a lot of space for
its text. Thus a feature is required to calibrate the size (number of lines) of
an input field.

ud Requirements of the worksheet editor

Design of the
worksheet editor

categories

type of input field

write protected

prov iding help
functions

sav ing mode

style of input field

default values

depending on

depending on

depending on

depending on

depending on

depending on

depending on

586.4 Technical implementation of the worksheet editor
The attribute type is respon-
sible for the style of the
input fields

Furthermore the functionality of an input field depends on the settings
of an attribute named type. In some cases the worksheet editor should offer
the modeler predefined values of a specific worksheet entry. These values
are represented in a drop-down box. If free text is required, the attribute type
must be set to text. Any input field may be initialized with a predefined
default value. It does not matter if it is a text field or a drop-down box.
Sometimes it is required to deny editing an entry value. This case occurs
when the specific entry references values of another stereotype. If the pro-
tected attribute is set to true the modeler is not able to change the state of the
input field. Thus the value is write protected and cannot be changed.

Help functions to support
the modeler

Because there are a lot of different worksheets, the modeler must be
supported by help functions during the evaluation workflow. A help text can
be added to any worksheet entry in form of a tooltip-helpbox. After setting
the TOOLTIP tag to a specific text, a box representing this text will appear
if the modeler moves the mouse pointer over the text field.

The saving mode defines how the business domain knowledge is stored.
Since there are different types of business information, there are also differ-
ent ways of saving this information.

The attribute taggedValue-
Type specifies the type of a
tagged value

The attribute taggedValueType specifies the type of the tagged value.
All allowed values of this attribute are in the schema definition for the
worksheet input files between line 39 and line 51. These specific values ini-
tiate specific saving methods. For example, if the attribute is set to standard,
the value of the input field is saved as a tagged value. If the attribute is set to
constraint, the value will be saved as a UML constraint. In order to use the
notes window in the modeling tool, the attribute’s value must be notes.
Another alternative is the name of another stereotype. In this case, the value
of this attribute serves as a reference to a specific stereotype. This refer-
enced stereotype provides the business information of the corresponding
model element for initializing the input field. Thus this feature builds a
bridge between different worksheets, because business information of other
worksheets can be used by setting such references.

The following code shows an excerpt of an instance of a model element
stereotyped as business transaction.

Listing 6–3 Excerpt of an
WDL input file for a
business transaction

[122] <WORKSHEET xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../worksheetSchema.xsd">

[123] <DEFINITION>Name_of_EA_Stereotype</DEFINITION>
[124] <CATEGORY name="General">
[125] <ENTRY type="text" lines="1" protected="true"

taggedValueName="Name" taggedValueType="name">
[126] <NAME>Business Transaction Name</NAME>
[127] <DEFAULT>Name_Of_EA_Element</DEFAULT>

596.4 Technical implementation of the worksheet editor
[128] <TOOLTIP>Provide a name for the business
transaction</TOOLTIP>

[129] </ENTRY>
[130] <ENTRY type="text" lines="2" protected="true"

taggedValueName="definition"
taggedValueType="BusinessTransactionUseCase">

[131] <NAME>Definition</NAME>
[132] <TOOLTIP></TOOLTIP>
[133] </ENTRY>
[134] <ENTRY type="text" lines="2" protected="true"

taggedValueName="purpose"
taggedValueType="BusinessTransactionUseCase">

[135] <NAME>Purpose</NAME>
[136] <TOOLTIP></TOOLTIP>
[137] </ENTRY>
[138] <ENTRY type="text" lines="4" protected="true"

taggedValueName="notes"
taggedValueType="BusinessTransactionUseCase">

[139] <NAME>Description</NAME>
[140] <TOOLTIP>A plain text explination of the purpose and

behavior of the Business Transaction.</TOOLTIP>
[141] </ENTRY>
[142] <ENTRY type="choice" lines="1" protected="false"

taggedValueName="BusinessTransactionPattern"
taggedValueType="standard">

[143] <NAME>Select Business Transaction Pattern</NAME>
[144] <TOOLTIP>Select one of</TOOLTIP>
[145] <CHOICEBOX>
[146] <ITEM selected=“true“>Commercial Transaction</ITEM>
[147] <ITEM>Request Confirm</ITEM>
[148] <ITEM>Request Response</ITEM>
[149] <ITEM>Query Response</ITEM>
[150] <ITEM>Information Distribution</ITEM>
[151] <ITEM>Notification</ITEM>
[152] </CHOICEBOX>
[153] </ENTRY>
[154] <ENTRY type="choice" lines="1" protected="false"

taggedValueName="isSecureTransportRequired"
taggedValueType="standard">

[155] <NAME>Secure Transport</NAME>
[156] <TOOLTIP>Select one of</TOOLTIP>
[157] <CHOICEBOX>
[158] <ITEM selected=”true”>true</ITEM>
[159] <ITEM>false</ITEM>
[160] </CHOICEBOX>
[161] </ENTRY>
[162] </CATEGORY>
[163] <!-- [...] -->

606.4 Technical implementation of the worksheet editor
[164] </WORKSHEET>

Using variables for display-
ing properties of the model
element

The root element in line 122 is called WORKSHEET and defines the
location of the schema file. The root element has two child elements. The
first one is called DEFINITION and keeps the header information for the
worksheet. The content of this element is shown in the title bar of the work-
sheet editor. The expression in line 123 shows a special case of defining this
header. The UMM Add-In provides predefined variables. Whenever these
placeholders occur in the WDL input file, a parser is replacing them with
the requested information of the model element. The variables used in the
WDL input files are listed and explained in Table 6–4. This concept allows
the modeler to add some specific information dynamically - e.g. the name of
the element. In the WDL example above we use the variable
Name_of_EA_Stereotype. This variable displays the stereotype of the model
element. The same principle is used in line 127 where the variable
Name_of_EA_Element is used for initializing the worksheet entry with the
name of the modeling element.

Tab. 6–4The meaning of
the variables used in the
WDL input file

The element CATEGORYThe element CATEGORY in line 124 specifies a new worksheet cate-
gory. The realization of this concept is represented as a new tab in the work-
sheet editor. The only attribute of this element is called name and specifies
the name of this category, which is displayed in the header of the tab.

The ENTRY element and its
attributes

Each definition of categories must have at least one ENTRY element
defining the style of each input form of the worksheet editor. The element in
line 125 includes a couple of attributes setting the properties of the work-
sheet entries. Since the attribute type is specified by the value text, the mod-
eler may only add a simple String. Furthermore the attribute lines define the
size of the input form. Different entries have a different character length.
Thus the height of the input box is defined by this integer value. Since the

N a m e o f t h e v a r ia b le D e s c r ip t io n

N a m e _ o f_ E A _ E le m e n t R e tu r n s th e n a m e o f t h e m o d e l
e le m e n t , w h ic h i s s e le c te d in t h e
m o d e l in g to o l .

N a m e _ o f_ E A _ T y p e R e tu r n s th e t y p e o f th e m o d e l
e le m e n t , w h ic h i s s e le c te d in t h e
m o d e l in g to o l .

N a m e _ o f_ E A _ S te r e o ty p e R e tu r n s t h e s te r e o ty p e o f th e m o d e l
e le m e n t , w h ic h i s s e le c te d in t h e
m o d e l in g to o l .

616.4 Technical implementation of the worksheet editor
name of the model element does not require so much space the size is 1.
Thus the input form offers only one line for entering the text. Line 125 spec-
ifies another attribute called protected. This attribute is set to true which
means that the input field is write-protected. In this special case the work-
sheet entry is initialized by the name of the model element. Since this infor-
mation is supported by the modeling tool and this worksheet entry does not
need to be stored elsewhere, the modeler is prohibited of editing this entry.
The attribute taggedValueName specifies the name of the tagged value. The
value of this attribute will be added to the list of tagged values in the model-
ing tool, after the modeler gave the instructions for storing this worksheet
entry. Furthermore the attribute taggedValueType is specified by the value
name. In principal this attribute sets the type of the saving mode. The value
name signalizes that this worksheet information does not need to be stored
as a tagged value.

Initializing the worksheet
entry with a specific value -
the DEFAULT element.

The element in line 126 is called NAME and defines the label of the
worksheet entry. This label is displayed in the worksheet editor in the left
column next to the input form. The following element in line 127 is called
DEFAULT and initializes the input box with the value specified within this
tag. As said before, the business transaction requests the information of the
modeling element by variables. The content of the element called TOOLTIP
is a helpful feature for supporting the modeler with help text. The content of
this tag appears as a tooltip-feature, while moving the mouse over the spe-
cific input field or label. Thereby the modeler gets some instructions to
complete the input fields. This help text is displayed in a yellow box, which
disappears after a few seconds. This feature is implemented in line 128.

Getting worksheet informa-
tion from other model ele-
ments

In total, there are 6 worksheet entries described for this category in the
WDL input file. The second one is specified in line 130 and has a write-pro-
tected state. The reason is the reference to another model element specified
in the attribute taggedValueType. The business transaction is the implemen-
tation of a business transaction use case. Thus information is required from
this use case. To create a relation between these two model elements, the
taggedValueType must be specified by the value business transaction use
case. This means that the initial value of this worksheet entry refers to a
value of the corresponding business transaction use case. The only restric-
tion is that the name of the tagged value of the worksheet entry must be the
same as the tagged value of the related model element. E.g. in line 134 the
tagged value called purpose of the corresponding business transaction use
case is required. Therefore the input box is requesting the content of this
tagged value with the same name to initialize the input field.

Using a drop-down list for
offering a list of patterns

Line 142 outlines a special case. The attribute type is of value choice.
This means that the worksheet editor displays a drop-down box instead of a
simple text box. Since the business transaction can be described by 6 differ-

626.4 Technical implementation of the worksheet editor
ent types of business transaction patterns, these patterns must be offered in
a list. In line 145 the element called CHOICEBOX captures the list of items
offered in the input form. Each item is marked by the element called ITEM.
In line 146 there is an attribute called selected. Since this attribute is speci-
fied by the value true, this input field is initialized by the first business
transaction pattern.

Figure 6–13 shows the result of the code described above. The tab
called General as defined in the WDL input file displays the six worksheet
entries. As we can see the first entries are write protected and their style is
customized according to the attribute values.

Fig. 6–13 The worksheet
editor of a business
transaction

The task of the file Default-
Worksheets.xml

As explained before, there is another XML-File for the binding of the
stereotypes to the WDL instances. This file is called DefaultWorksheets.xml
and is stored in the XML folder of the UMM Add-In. The following code
represents the concept of this file. The code is logically divided into the
three views BDV, BRV and BTV. The standalone-tag STEREOTYPE in line
173 contains the attributes name, file and folder. The attribute name defines
the name of the stereotype, the attribute file gives the information about the
filename and the attribute folder references to the FOLDER element inline
168 where the correct path is specified as an attribute. E.g. if the modeler
wants to edit the worksheet for the package stereotyped as business area,
the element in line 174 gives the instructions about the location of the cor-
rect WDL input file. In this case the name of the file specified by the
attribute file is BusinessArea.xml and is stored in the folder called BDV.

636.4 Technical implementation of the worksheet editor
Listing 6–5 The
“deployment file” for
binding worksheets to
stereotypes

[165] <?xml version="1.0" encoding="utf-8" ?>
[166] <DEFAULT_WORKSHEET>
[167]
[168] <FOLDER path="BDV" id="BDV"/>
[169] <FOLDER path="BRV" id="BRV"/>
[170] <FOLDER path="BTV" id="BTV"/>
[171]
[172] <!--Stereotypes of the BDV -->
[173] <STEREOTYPE name="BusinessDomainView"

file="BusinessDomainView.xml" folder="BDV"/>
[174] <STEREOTYPE name="BusinessArea"

file="BusinessArea.xml" folder="BDV"/>
[175] <STEREOTYPE name="ProcessArea"

file="ProcessArea.xml" folder="BDV"/>
[176] <STEREOTYPE name="BusinessProcess"

file="BusinessProcess.xml" folder="BDV"/>
[177] <!--Stereotypes of the BRV -->
[178] <STEREOTYPE name="BusinessRequirementsView"

file="BusinessRequirementsView.xml" folder="BRV"/>
[179] <STEREOTYPE name="BusinessProcessView"

file="BusinessProcessView.xml" folder="BRV"/>
[180] <!-- [...] -->
[181] <!--Stereotypes of the BTV -->
[182] <STEREOTYPE name="BusinessInteraction"

file="BusinessTransaction.xml" folder="BTV"/>
[183] <STEREOTYPE name="BusinessChoreography"

file="BusinessCollaboration.xml" folder="BTV"/>
[184] </DEFAULT_WORKSHEET>

6.4.3 Saving the worksheet information

Different ways of saving the
worksheet information

In order to support consistency between the UMM model and the work-
sheets, worksheet information is saved as tagged values within the model.
Later on, the modeler can use the export functionality for creating a docu-
mentation of the business domain knowledge. During a modeling session
the modeler can use this export feature without saving the information to the
tagged values. Thus there must be an internal way of handling this informa-
tion already entered to the worksheet editor. Figure 6–14 shows the different
ways of saving the information.

646.4 Technical implementation of the worksheet editor
Fig. 6–14 Saving the
information into different
kind of formats

This figure represents the workflow of saving the information into dif-
ferent kind of formats. First the modeler uses the WDL file for the represen-
tation of the initial worksheet data. While the modeler enters the business
domain knowledge and uses extension features of the worksheet editor (e.g.
export functionality) the data should not get lost. Thus the next step visual-
izes the internal storage format. The last step in this workflow saves the
worksheet entries as tagged values.

6.4.3.1 WDL (XML) format

Saving and reusing work-
sheet information with the
help of the external WDL
input files

When the modeler uses the worksheets in order to capture the business
knowledge, he can decide between two ways of loading the WDL input file.
The first one is to use the default input files for the stereotypes defined in the
deployment file (see chapter 6.4.2). These files are not loaded with any ini-
tial values. But there is also a second alternative for loading the initial ren-
dering of the worksheet editor. By specifying the correct path and filename
of the WDL file, the modeler can use his own input files. These input files
can contain the information about initial values of stereotypes. Since the
modeler may use the export functionality to export worksheets into WDL
files, he is able to save information to an external format. This external for-
mat could serve as a backup of the worksheet he was editing or as a utility to
reuse this worksheet for other stereotypes. The first box in Figure 6–14
shows the scenario of saving and using the external WDL file.

6.4.3.2 Internal format

Worksheet objects represent
the worksheet editor data
structure

After the modeler has loaded the input file successfully, the worksheet
editor displays all initial values of the worksheet entries correctly. Now he
can start entering the information about the stereotype. Once he has fin-
ished, he can use several features of the worksheet editor. For example he
can export all entries to an external format like Microsoft Word or he can
generate UMM diagrams or elements out of the actual worksheet. While
using these functions the worksheet information should not get lost. Thus

ud Sav ing_Information

Tagged v aluesWorksheet obj ectsInput file

Modeler

for editing w orksheet for exporting w orksheet for sav ing w orksheet

WDL (XML) format internal format model l ing tool format

information is stored in

used formats

656.4 Technical implementation of the worksheet editor
there is an internal structure representing all worksheets of the UMM
model. Figure 6–15 shows the class diagram of the internal structure of the
whole worksheet editor information.

Fig. 6–15 Class diagram
of the internal structure of
the worksheet editor

The Documentation classThe Documentation class is the root-class. It keeps all the information
about the worksheets. This class only takes effect, if the modeler generates
a documentation of the whole model. In this case a method is parsing the
whole UMM model to find every stereotype which is represented by a
worksheet. These worksheets are stored as an array in the class variable
named worksheets.

The WorkSheet classThe WorkSheet class is the most important class. This class represents a
worksheet of exactly one stereotype. In the modeling tool Enterprise Archi-
tect, the stereotype provides methods (e.g. there is a method for returning all
tagged values of a model element or displaying all links to other model ele-
ments). Thus this class implements all these methods. The function for
returning all tagged values of the stereotype or the model elements repre-
senting instances of this stereotype is called getTaggedValues(). Further-

id Worksheet Class Diagram

WorkSheet

+ getName() : String
+ getCategory() : WorkSheetCategory[]
+ getDefinition() : String
+ getStereotype() : String
+ getElement() : EA.Element
+ getDiagram() : EA.Diagram
+ getPackage() : EA.Package
+ getTaggedValues() : EA.Collection

WorkSheetCategory

+ getName() : String
+ getWorksheetentries() : WorkSheetEntry[]
+ getSubmenu() : Submenu

WorkSheetEntry

+ getName() : String
+ getLines() : int
+ getTooltip() : String
+ getItem() : String[]
+ getId() : String
+ getWriteProtected() : bool
+ getEntryValue() : String
+ getTaggedValueName() : String
+ getTaggedValueType() : String
+ getFromNotes() : bool

Submenu

+ getName() : String
+ getWorksheetentries() : WorkSheetEntry[]
+ getId() : String

Documentation

+ getWorksheet() : WorkSheet[]

1..*

+workshetentries

0..*+submenu
1..*

-worksheetentries

1..*

-category

1..*-worksheet

666.4 Technical implementation of the worksheet editor
more information about the type of the model element could be explored by
using the method getElement(). The main task of this class is to store the
content of the worksheets and of the design attributes for displaying the
worksheet editor. As shown in the class diagram the WorkSheet class keeps
the set of categories. This relation is represented as an association between
the WorkSheet class and the WorkSheetCategory class. Furthermore there
must be at least one category.

The WorkSheetCategory
class and the Submenu
class

The WorkSheetCategory class stores the information about the different
categories of a worksheet. In addition to the name of the category the Sub-
menu objects and the WorkSheetEntry objects are stored in the instances of
this class as well. Whereas the occurrence of the submenu is not mandatory,
there must be at least one worksheet entry under each category. A submenu
is visualized as a separated canvas in the worksheet editor representing spe-
cific input fields.

The WorkSheetEntry classThe WorkSheetEntry class has the most attributes and methods. Every
factor influencing the style of an entry is stored this class. Compared to the
WDL schema file, the tags and attributes of the ENTRY element have the
same meaning and task like the methods implemented by the WorkSheetEn-
try class. They instruct the worksheet editor, how each input field should
look like. Furthermore this class keeps the information about the protection
state of the input field, the number of lines, the type, the help functions and
additional methods which influence the design of the input fields.

6.4.3.1 Tagged values

Saving the worksheet con-
tent into tagged values

After the modeler has added the business information he needs to store
the data captured in the worksheet editor. In order to provide an efficient and
UMM compliant model there are mandatory tagged values which have to be
filled out. For reasons of increased usability, the worksheet editor does this
job for the modeler. Since the tagged values have to be filled out anyway,
the worksheet editor uses this stack to store the business domain knowledge
the modeler entered.

The UML Extension Mech-
anisms provide a set of
extensions for specific pur-
poses

In order to understand the power of tagged values, the usage and the
advantages of this mechanism will be described. Since UML provides the
extension mechanisms package, a coherent set of extensions for specific
purposes is defined. Figure 6–16 shows this subpackage of UML that man-
dates how specific UML model elements are customized and extended
according to specific semantics by using stereotypes, constraints, tag defini-
tions, and tagged values. The UML provides a rich set of modeling concepts
and notations that have been designed to meet the needs of typical software
modeling projects. Users may sometimes require additional features beyond
those defined in the UML standard. These needs are met in UML by its

676.4 Technical implementation of the worksheet editor
built-in extension mechanisms that enables the customization of modeling
elements.

Tag Definitions and Tagged
Values

Tag definitions specify new kinds of properties that may be attached to
model elements. The actual properties of individual model elements are
specified using tagged values. They may either be simple datatype values or
references to other model elements. Tag definitions can be compared to
meta attribute definitions while tagged values correspond to values attached
to model elements. They may be used to represent properties such as busi-
ness process information (beginsWhen, endsWhen, participants,...).

Fig. 6–16 UML -
Extension Mechanisms
[UMa04]

If the modeler saves the information from the worksheet editor by click-
ing the OK button, the UMM Add-In retrieves all the existing tagged values.
If there exists a tagged value with exactly the same name as the name of an
input field, the value of the tagged value will be replaced by the value of the
input field. If the tagged value does not exist yet, a new tagged value will be
created. Now the whole information of the worksheet is stored directly into
the UMM model. After saving the UMM project in the modeling tool, the
modeler can open this information the next time he wants to edit this work-
sheet again.

More extensions
Using UML constraints for
saving worksheet content

As shown in the figure above there exists a class called Constraint. The
worksheet editor takes advantage of this extension. In UML a constraint

686.4 Technical implementation of the worksheet editor
may be attached to any model element to describe its semantics. A con-
straint which is attached to a stereotype must be observed by all model ele-
ments branded by that stereotype. Such constraints could be conditions like
a post-condition or a pre-condition. If the WDL input file for a specific ste-
reotype marks an input field as a constraint, the information will not be
stored as a tagged value but as a UML constraint. Enterprise Architect dis-
plays both concepts in different windows representing the worksheet infor-
mation. Figure 6–17 shows these two different information windows of the
modeling tool.

Fig. 6–17 Tagged Values
vs. Constraints

Using internal storage
fields provided by the mod-
eling tool

Another alternative to store the information of a worksheet is to use
internal storage fields of the Enterprise Architect. The modeling tool pro-
vides a lot of text areas where the modeler could store information about the
model. These note fields are suitable for storing descriptions of worksheets.
Thus if the type of an input field is marked as notes, the content of this input
field is stored into this text area provided by the modeling tool.

696.5 Extensions of WDL input files
6.5 Extensions of WDL input files
Some stereotypes require
distinctive treatment

As described in the last chapters the design of the worksheets is speci-
fied by the WDL input files. But in some specific cases there are stereotypes
requiring distinctive treatment. These extensions are needed if the informa-
tion is calculated rather than such exceptions are not kept in the worksheet
definition language files. E.g. displaying information about included pack-
ages of a model element is not specified by the WDL input file. This infor-
mation is required in the business domain view. An extension is a hard
coded way for showing dynamical content of a model element required dur-
ing runtime. In this chapter the special stereotypes are listed and these
extensions for displaying all kind of worksheets with their different charac-
teristics will be described.

6.5.1 Business Domain View package

Displaying the business areas
Special characteristics of
the BusinessDomainView
package

The purpose of the main view business domain view package is classi-
fying the business processes. The UMM meta model defines a couple of
packages beneath the business domain view. One of these packages is the
stereotype business area. Business areas usually follows the recommenda-
tions of the Common Business Process Catalog (CBPC). They give infor-
mation about the business sections the processes are relating to [CBP03]. It
is important to have information about the occurrences of such business
areas in the worksheets. The eight normative categories of such business
areas are listed as follows.

■ Procurement/Sales
■ Design
■ Manufacture
■ Logistics
■ Recruitment/Training
■ Financial Services
■ Regulation
■ Health Care

Displaying the list of all
business areas and the pos-
sibility to generate new
packages with the business
matrix

If the modeler wants to edit the worksheet of the package stereotyped as
business domain view he will get information about the different types of
business areas as well. There is tab which displays a list of the names of all
included business areas. The text fields are write protected and can not be
changed within the worksheet editor. Furthermore the modeler has the pos-
sibility to add new packages for creating new business areas. Thus there is

706.5 Extensions of WDL input files
another tab for displaying a method to add new packages. This method is
called “business matrix generation” and offers a couple of check boxes dis-
played as a matrix. The vertical check boxes represent the business areas
and the horizontal ones represent the process areas. The process areas are
subpackages of the business areas. A more detailed description about the
business matrix, the purpose of the business areas and the task of the Com-
mon Business Process Catalog (CBPC) can be found in chapter 6.7.1. After
selecting the business areas and process areas the modeler wants to add, the
package structure will be created within the business domain view by click-
ing the Generate button. Thereby the modeler saves a lot of time, because
he does not need to create each package manually. Furthermore the correct
stereotype is added automatically to the generated packages.

Displaying the process areas
The business area package
shows the list of all
included process areas

As described in the last paragraph, the business area contains other sub-
packages stereotyped as process areas. These subpackages represent the
five successive phases of business collaboration defined by the ISO Open-
edi model [OER95]. The following classification in regard to process areas
is described in the Common Business Process Catalog (CBPC).

■ Planning
■ Identification
■ Negotiation
■ Actualization
■ Post-Actualization

At least one of these phases has to be a subpackage of a business area.
Thus there is an additional tab in the worksheet editor for showing a list of
included packages stereotyped as process area.

6.5.2 Business Requirements View package

6.5.2.1 Displaying the subpackages of the BRV

Displaying the subpackages
of the business require-
ments view

The second package is the business requirements view package. This
package identifies possible business collaborations and details the require-
ments of these collaborations [Hof05]. The UMM meta model defines five
subpackages in order to capture the requirements. These packages are sub-
packages of the business requirements view and have the following stereo-
types.

■ Business Process View

716.5 Extensions of WDL input files
■ Business Entity View
■ Collaboration Requirements View
■ Transaction Requirements View
■ Collaboration Realization View

Every subpackage can occur several times. In order to provide a well-
structured overview for the modeler, there is a tab in the worksheet editor
called Included Packages. This tab displays the names of the subpackages
grouped by their stereotypes.

6.5.2.2 Displaying extensions of the business collaboration use case

Documenting the partici-
pating roles and the
included use cases of a
business collaboration use
case

The worksheets for business collaborations in the collaboration
requirements view display the information about relations between use
cases as well as relations between use cases and their participating roles. It
is important to know which use cases include other use cases and which
authorized roles participate in these use cases. This information must be
documented in the worksheets. Since we know that a business collaboration
use case can include other use cases from the same stereotype or other busi-
ness transaction use cases, there is an extra tab within the worksheet editor
called Actions for representing this information. The tab includes an input
field for a short description. Below there is a list of all included collabora-
tions and transactions grouped by the name of the included use cases. The
roles participating in these included use cases are listed within each group
box. Furthermore the mapping between roles - as described in chapter 7.2.3
- is visualized using mapsTo relations. This scenario is represented in Figure
6–18.

Adding a role to the busi-
ness collaboration use case

There is also one more extra tab called Participating Roles. All roles
which are participating in the corresponding business collaboration use case
are listed in this category. By clicking the Add Role button the UMM Add-
In generates a further authorized role, which participates in this use case.
The new role is directly added to the use case diagram, so the modeler saves
time by being released from the burden of creating the roles manually.

726.6 Once-and-only once recording of business knowledge
Fig. 6–18 Included
business collaborations
and transactions

6.5.3 Business Transaction View package

Generating a business transaction automatically
Generating an activity
graph out of the worksheet
editor

The BusinessTransaction activity graph is located in the business inter-
action view package. Since diagrams cannot be stereotyped by the modeling
tool Enterprise Architect, the worksheet of a business transaction is
assigned to the business interaction class which is the parent element of the
business transaction. The speciality of this worksheet is the extra tab for
generating the business transaction. This form should help the modeler to
draw an activity graph out of the existing artifacts. Since the business trans-
action depends on actors and information envelopes already added to the
UMM model, the UMM Add-In provides this information in form of drop
down boxes. This method helps the modeler to create a UMM compliant
business transaction in a few steps. More details about the automatic gener-
ation of diagrams are described in chapter 6.7.1.

6.6 Once-and-only once recording of business knowledge
Unique evaluation to pro-
vide a persistent data model
for UMM worksheet entries

An advantage of binding the worksheet editor to the modeling tool is
the once-and-only once recording of business knowledge. To provide a per-
sistent UMM model, the same information must not occur more than one
time. Although a UMM model is separated into 3 different views, a logical
thread is starting in the business domain view and is ending in the business
transaction view. Thus the worksheet information of an efficient UMM
model is required in the business domain view as well as in the business

736.6 Once-and-only once recording of business knowledge
transaction view. The solution of this problem is linking the modeling ele-
ments with each other specifying the required information only once. This
method provides a persistent data model of the UMM worksheets.

The transaction and the
collaboration takes advan-
tage of this concept

This method is required in two stereotypes. The first one is the business
transaction and the second one is the business collaboration. Both activity
graphs are part of the business transaction view.

6.6.0.1 Business transaction

The business transaction
references the business
transaction use case

The use cases describing a business transaction are specified in the
business requirements view and stereotyped as business transction use
cases. Once the modeler has added the worksheet information to such a use
case in the BRV, he does not need to add the same information about the
transaction in the BTV. If we take a look at the following code of the corre-
sponding WDL input file, there are references to these model elements. In
line 187 the attribute taggedValueType is set to the name of the stereotype
providing the information. In this case, the stereotype business transaction
needs to align information captured in the stereotype requesting business
activity. In order to get the correct value of the referenced model element,
the attribute taggedValueName must have exactly the same name as the
name of the tagged value of the required information. This concept requires
that the specified model element must have a link between the selected
worksheet element and the other model element offering the required data.
This link can be an internal link, specified by the modeling tool Enterprise
Architect or a hard coded link defined in the description field of the model
element. The following listing instructs the worksheet editor to display
business knowledge of the corresponding model element stereotyped as
requesting business activity.

Listing 6–6 The WDL
input file for the business
transaction worksheet

[185] <CATEGORY name="General">
[186] <!-------- [...]-------->
[187] <ENTRY type="text" lines="2" protected="true"

taggedValueName="RequestingBusinessActivityName"
taggedValueType="RequestingBusinessActivity">

[188] <NAME>Requesting Business Activity Name</NAME>
[189] <TOOLTIP></TOOLTIP>
[190] </ENTRY>
[191] <ENTRY type="time" lines="2" protected="false"

taggedValueName="timeToRespond"
taggedValueType="RequestingBusinessActivity">

[192] <NAME>Time to Respond</NAME>
[193] <TOOLTIP>Specify the time period that this transaction

must be completed within.</TOOLTIP>
[194] </ENTRY>

746.7 Extended features of the worksheet editor
[195] <!-------- [...]-------->
[196] </CATEGORY>

6.6.0.1 Business collaboration

The business collaboration
references the business col-
laboration use case

The business collaboration references the business collaboration use
case. The activity graph in the business transaction view needs information
of the business requirements view. In this case, the tagged values for the
definition, the purpose and the description references the tagged values of
the business collaboration use case. The following code lines visualize the
same principle as described for the business transaction. As we can see in
line 199 the attribute taggedValueType references the business collabora-
tion use case.

Listing 6–7 The WDL
input file for the business
collaboration worksheet

[197] <CATEGORY name="General">
[198] <!-------- [...]-------->
[199] <ENTRY type="text" lines="2" protected="true"

taggedValueName="definition"
taggedValueType="BusinessCollaborationUseCase">

[200] <NAME>Definition</NAME>
[201] <TOOLTIP></TOOLTIP>
[202] </ENTRY>
[203] <ENTRY type="text" lines="2" protected="true"

taggedValueName="purpose"
taggedValueType="BusinessCollaborationUseCase">

[204] <NAME>Purpose</NAME>
[205] <TOOLTIP></TOOLTIP>
[206] </ENTRY>
[207] <ENTRY type="text" lines="4" protected="true"

taggedValueName="notes"
taggedValueType="BusinessCollaborationUseCase">

[208] <NAME>Description</NAME>
[209] <TOOLTIP></TOOLTIP>
[210] </ENTRY>
[211] <!-------- [...]-------->
[212] </CATEGORY>

6.7 Extended features of the worksheet editor
Supporting the modeler by
generating model elements

The main task of the worksheet editor is keeping the business domain
knowledge in the UMM model. Before the modeler enters the documenta-
tion, he needs to add the model elements themselves. The process of draw-
ing diagrams and adding stereotypes to the right packages requires a lot of
steps. Instead of moving every single stereotype either to the drawing can-
vas of the modeling tool or to the tree view of the model element manage-

756.7 Extended features of the worksheet editor
ment, the creation of model elements should be supported by a few clicks in
the worksheet editor.

Thus the worksheet editor has another purpose. In order to provide a
UMM compliant model the modeler must ensure, that the structure of the
model complies to the rules of the meta model. Therefore a model genera-
tion feature integrated to the worksheet editor supports the modeler in the
initial phase of modeling phase. The Matrix Package Generation and the
Pattern Generator provide such features. The former creates a classification
structure by adding packages to the business domain view. These packages
are business and process areas as defined in the Common Business Process
Catalog (CBPC).

Generating diagrams by
drawing different kinds of
patterns

The second feature supports the modeler in creating business transac-
tions. We know, that there are different kinds of patterns for business trans-
actions. This means that the activity graph for all business transactions look
the same. They only differ in the names of the activities and the information
envelopes. This information is captured in the worksheets. Thus we are able
to automatically generate the activity graphs from the worksheet informa-
tion.

Exporting documents to
word processing formats

Another additional feature of the worksheet editor is the export func-
tionality. As outlined in the beginning of this chapter, the communication
between the modeler and the business domain expert is based on tables in a
word processing format. Therefore the modeler must be able to export the
worksheet information to such tables.

6.7.1 Generating UMM model elements

Automatically generating UMM diagrams and structures increases the usa-
bility of the modeling process. Creating diagrams takes time. If diagrams
may be computed from worksheet information, the creation of the diagrams
degrades to a routine task. Inasmuch it is a wise idea to save the modeler’s
time by automatically generating these diagrams.

6.7.1.1 Matrix package generation

Creating the initial UMM
structure while defining the
business areas in the BDV

One of the first issues in the modeling process is to create a classification
structure within the BDV. While collecting the artifacts, it is important to
know which business process belongs to which business category. The busi-
ness categories used in UMM are business areas and process areas. They are
presented as stereotyped packages. The combination of business areas and
process areas is called a business matrix. The packages for the business
areas are direct children of the business domain view package. The pack-
ages for the process areas are subpackages of the business areas. Each busi-

766.7 Extended features of the worksheet editor
ness area can contain more than one process area. Business processes are
assigned to process areas.

The Common Business Pro-
cess Catalog (CBPC)

The Common Business Process Catalog (CBPC) defines a set of busi-
ness and process areas with specific names. A common business process is
a business process independent of any industry specific context and that
may be used by a variety of companies or organizations to achieve a similar
business result. The generic nature of a common business process enables
one to reuse that process across different vertical industries when industry
specific context and business rules are defined for a variety of e-business
application integrations. The industry specific rules will be reflected in the
modified attributes of the common business processes.

Thus the Common Business Process Catalog (CBPC) provides a frame-
work for the analysis and reuse of common business processes [CBP03].
Furthermore it is:

■ a business library containing all details of commonly used business
processes and related information,

■ a knowledge base for publishing and finding all business processes for
registered trading partners and

■ a business service with functions and features of UN/CEFACT core
vision of doing e-Business.

The classification of business processes is inevitable in order to enable
potential users to readily identify and reuse processes that might meet their
business needs. UN/CEFACT recommends using the CBPC to classify
business processes. The categorization schema of the CBPC is constructed
within the BDV using combinations of business and process areas.

Business areas are represented as normative categories, which are
reflecting the business processes at its most general level. The eight norma-
tive categories are visualized as packages in Figure 6–19.

776.7 Extended features of the worksheet editor
Fig. 6–19 The eight
normative categories of
the business areas

Second-level classification
into five successive phases
of business collaboration

After dividing the BDV into these eight high-level business areas, it is
possible to decompose each one of those areas further into process areas.
There is a second-level classification in the CBPC, which defines the five
successive phases of business collaboration specified by the ISO Open-edi
model. Figure 6–20 illustrates these phases represented as packages stereo-
typed as process areas.

pd Normativ e Categories

«BusinessArea»
Procurement/Sales

«BusinessArea»
Design

«BusinessArea»
Manufacture

«BusinessArea»
Logistics

«BusinessArea»
Recruitment/Training

«BusinessArea»
Financial Serv ices

«BusinessArea»
Regulation

«BusinessArea»
Health Care

786.7 Extended features of the worksheet editor
Fig. 6–20 The ISO Open-
edi phases of a business
collaboration

To have a better understanding of these ISO phases of a business collab-
oration there is a description of each package in the following paragraphs
[OPE01]:

Planning phase■ Planning: In the planning phase, both the buyer and seller are engaged
in activities to decide what action to take for acquiring or selling a good,
service, and/or right.

Identification phase■ Identification: The identification phase pertains to all those actions or
events whereby data is interchanged among potential buyers and sellers
in order to establish a one-to-one linkage.

Negotiation phase■ Negotiation: The negotiation phase pertains to all those actions and
events involving the exchange of information following the Identifica-
tion Phase where a potential buyer and seller have (1) identified the
nature of good(s) and/or service(s) to be provided; and, (2) identified
each other at a level of certainty. The process of negotiation is directed
at achieving an explicit, mutually understood, and agreed upon goal of
business collaboration and associated terms and conditions. This may

pd Normativ e Sub-Category

«ProcessArea»
Planning

«ProcessArea»
Identification

«ProcessArea»
Negotiation

«ProcessArea»
Actualization

«ProcessArea»
Post-Actualization

796.7 Extended features of the worksheet editor
include such things as the detailed specification of the good, service,
and/or right, quantity, pricing, after sales servicing, delivery require-
ments, financing, use of agents and/or third parties, etc.

Actualization phase■ Actualization: The actualization phase pertains to all activities or
events necessary for the execution of the results of the negotiation for an
actual business transaction. Normally the seller produces or assembles
the goods, starts providing the services, prepares and completes the
delivery of good, service, and/or right, etc., to the buyer as agreed
according to the terms and conditions agreed upon at the termination of
the Negotiation Phase. Likewise, the buyer begins the transfer of
acceptable equivalent value, usually in money, to the seller providing
the good, service, and/or right.

Post-actualization phase■ Post-Actualization: The post-actualization phase includes all of the
activities or events and associated exchanges of information that occur
between the buyer and the seller after the agreed upon good, service,
and/or right is deemed to have been delivered. These can be activities
pertaining to warranty coverage, service after sales, post-sales financing
such as monthly payments or other financial arrangements, consumer
complaint handling and redress or some general post-actualization rela-
tionships between buyer and seller.

The 40 different examples
of process areas

With this two-level categorization scheme through the eight business areas
of a value chain and the five process phases of ISO Open-edi each business
process can be assigned into 40 different examples of business classifica-
tion. Thus large UMM models with a lot of different business areas would
lead to a huge amount of packages to add. The business matrix generation
of the worksheet editor generates these business and process areas automat-
ically. In order to understand why this classification is comparable to a
matrix, in Table 6–8 every constellation of packages is visualized in the for-
mat of a business matrix. Business process areas are named by concatenat-
ing the business areas names in the left column with the process area names
in the top row, thus giving business process area names like procure-
ment/sales.negotiation or logistic.actualization. Modelers may identify
their initial entry points by finding the group of cells that most closely
resembles the set of business processes they wish to accomplish in their pro-
posed collaborations.

806.7 Extended features of the worksheet editor
Tab. 6–8Business Process
Matrix of the Common
Business Process Catalog
(CBPC)[CBP03]

The matrix in the worksheet
editor represents the matrix
of the CBPC

Exactly the same matrix as in Table 6–8 is represented in the matrix
package generator of the worksheet editor. The screenshot in Figure 6–21
shows an example of a business process classification. The order from quote

PROCESS AREA

BUSINESS
AREA

Planning Identification Negotiation Actualization Post-
Actualization

Procurement /
Sales (Goods)

- Plan
procurement
and supply of
raw materials
or finished
product

-Identify potential
customer/
vendor
- Provide catalog
- Request pricing
- Request
availability

- Negotiate
contract
- Provide
purchase order
- Agree on
delivery
schedule

- Acknowledge
delivery notice
- Query delivery
status
- Receive goods
- Obtain payment
authorization
- Make/Receive
payment

- Discover delivery
discrepancy
- Return shipment
- Negotiate/
Receive allowance
or payment from
vendor

Design - Plan design
service
offering and
use of design
services

-Identify vendor
who can supply
product design
work
-Identify potential
customer
- Request
examples of
prior design work

- Submit bid
- Negotiate
Contract
- Make counter-
offers
- Send design
contract

- Receive designs
- Inspect for
conformance
- Make payment
- Receive payment

-Discover
discrepancy in
agreed upon
designs
- Negotiate /
receive allowance
or payment from
vendor

Recruitment -
and-Training

- Identify
places in
company
where new
staff or
contract labor
is needed.
- Plan agency
offerings
- Plan student
intake

-Identify
personnel
services provider
 -Identify training
provider
- Identify
students
- Request pricing
- Request
availability
- Request/
Provide course
details

- Negotiate
contract for
worker
recruitment or
training.
-Agree on start
dates

- Register for
course
- Provide training
materials
- Interview
candidates
- Make / Receive
payment

- Discover
discrepancy in
agreed upon
personnel
characteristics or
training
components
- Receive
allowance or
payment from
vendor.
- Revise training
material

Logistics -Plan
provision and
use of
transport
resources

- Identify
vendors (like
Fedex or UPS)
- Identify
potential
customers
- Request pricing
- Request
availability

- Negotiate
contract for
logistics service

- Receive logistics
services
-Provide shipping
notice
-Provide dangerous
goods notice
- Make / Receive
payment

-Discover
discrepancy in
agreed upon
service and
performance
- Negotiate logistics
allowances with
carrier
- Receive
allowance or
payment

Manufacturing - Plan
manufacturing
requirements
- Research
market for
outsourced
manufacturing

- Identify
Provider of
manufacturing
services
- Provide catalog
- Request pricing
- Request
availability

- Negotiate
contract for
manufacturing
- Agree on
production
schedule
- Agree on
quality standard

- Send outsourced
manufacturing
inputs
- Receive
outsourced
manufacturing
outputs
- Make / Receive
payment

Discover
discrepancy in
agreed upon
quality levels
- Negotiate
allowance with
vendor
- Periodic
evaluation

Financial
Services

- Research
market needs
- Plan the
provision of
financial
services
(Insurance,
Credit,
Investments)

- Identify
possible debt
sources (banks,
credit unions,
etc.)
- Identify
financial
institution with
whom to
purchase debt or
equity financing
- Identify
insurance
providers
- Identify
potential
investors

- Negotiate
terms of debt or
terms of equity
offering with
capital provider
- Agree
insurance terms

- Accept transfer of
debt instrument
- Make transfers of
stock certificate
- Authorize and
make payments &
loans
-Transfer funds
- Pay Insurance
Claims

- Review offerings
& compliance

- Receive monetary
adjustments

Regulation - Plan and - Identify - Agree time and - Accept notice of - Make adjustments

816.7 Extended features of the worksheet editor
example uses two different business areas. The first one is the procure-
ment/sales package and the second one is the financial services package.
Within these packages, the second level classification are the identification
and negotiation phase in the procurement/sales business area and the actu-
alization phase in the financial services business area.

Fig. 6–21 The matrix
package generation of the
worksheet editor

After the modeler clicks the button for executing the matrix package
generator, the packages will be added to the UMM model according to the
structure as defined in the matrix. Figure 6–22 shows the generated package
structure of the business domain view.

826.7 Extended features of the worksheet editor
Fig. 6–22 The result of
generating the initial
package structure of the
BDV

6.7.1.1 Generating business transaction patterns

Business transactions denote an information exchange between two
partners. The structure of a business transaction follows always the same
pattern (see Figure 6–24 for an example). However, instances of business
transactions differ from each other in regard to the exchanged information,
the names of their activities and the participating roles. Therefore only a few
components of the business transaction have to be altered to get a valid busi-
ness transaction. It follows, that business transactions are candidate for a
semi-automatic generation.

A business transaction use case captures the requirements and the par-
ticipants of a business transaction. Hence, we decided to activate the busi-
ness transaction generation wizard via the particular business transaction
use case. Figure 6–23 shows the user interface of the business transaction
generator.

pd Business Domain View - Package Structure

«ProcessArea»
Identification

«ProcessArea»
Negotiation

«BusinessArea»
Procurement/Sales

«BusinessArea»
Financial Services

«ProcessArea»
Actualization

(from Financial Services)

836.7 Extended features of the worksheet editor
Fig. 6–23 The user
interface of the business
transaction generator

The functionality of the user
interface for generating a
business transaction

All use cases stereotyped as business transaction use case are listed in
this input form. The next entry is the role of the requestor. After selecting a
specific business transaction use case, the worksheet editor retrieves the
participating roles of this use case and offers it to the modeler. Since we
know that a business transaction use case can only have two participating
actors, the other actor, which was not assigned to the requestor is assigned
to the responder. The following two input fields specify the names of the
requesting and responding business activity. The next attribute is the
requesting information envelope. All classes stereotyped as information
envelope of the UMM model are listed in this drop-down box. A check box
is used to distinguish between one-way and two-way transactions. If it is not
checked, the transaction is bi-directional. In this case, the input field for the
responding information envelope is enabled and specifies the information
envelope created on the responder’s side. The last two input forms define
the names for the final states. The modeler must specify a state, if the trans-
action succeeds and another state, if the transaction fails. After starting the
business transaction generator, the activity graph appears as a new diagram.
Figure 6–24 shows the result of generating the transaction register customer
described in Figure 6–23.

846.7 Extended features of the worksheet editor
Fig. 6–24 The result of
generating a business
transaction automatically

6.7.2 Exporting worksheets

The advantages of the
exporting function

The export of worksheets to different formats is an important feature of the
worksheet editor. It is necessary to communicate the information kept in the
worksheets to the business domain experts. Business domain experts usu-
ally do not use modeling tools. They expect plain text descriptions. Hence
the business knowledge kept in the worksheets of the modeling tool must be
exported to a table in a word processing format. Furthermore the export to
an XML-based format stores the information outside of the model, which
allows the modeler to transport the worksheet data to other models. The out-
put formats of the worksheet editor are:

Different output formats■ Microsoft Word – MS Office 2003
■ HTML - Hypertext Markup Language
■ WDL - Worksheet Definition Language (XML-based)

Thus the export function of the worksheet editor serves as:
■ A Text-Generator for creating documents in a natural language
■ A Backup-System for saving the worksheets into external files
■ A Publisher for representing the worksheets on a Website in the Internet

856.7 Extended features of the worksheet editor
■ A Tool enabling Re-use by importing the exported data into other work-
sheets

6.7.2.1 Export to Microsoft Word

Technical implementation
of the export functionality
for Microsoft Word.

The export function for Microsoft Word is implemented as follows:
after the modeler added all the information, the input fields must be stored
somewhere. Therefore the data is represented as objects of the classes
shown in Figure 6–15. After these objects are filled with the worksheet
information, a window appears where the modeler can specify the output
format. If the radio button for Microsoft Word is enabled, the class Select-
ExportFormatWindow executes the following code lines and creates an MS
Word file. In line 213 a new object for a Microsoft Word application is gen-
erated. This object is used in line 215 for instancing a new Microsoft Word
document. The method CreateTable(myWordDoc) builds the table for dis-
playing the worksheet information and adds it to the Microsoft Word docu-
ment. Furthermore the modeler can specify the destination and the name of
the output file while executing the method in line 220.

Listing 6–9 C# code for
creating a new Microsoft
Word document

[213] Word.ApplicationClass myWordApp = new Word.ApplicationClass();
[214] object missing = System.Reflection.Missing.Value;
[215] Word.Document myWordDoc = myWordApp.Documents.Add(ref missing,
[216] ref missing,ref missing, ref missing);
[217] this.CreateTable(myWordDoc);
[218] myWordDoc.Activate();
[219] try {
[220] myWordDoc.Save();
[221] } catch (Exception ex){}

Solving the problem to com-
municate with the Microsoft
COM (Component Object
Model) technology

An important issue while implementing the Microsoft Word export
functionality was the deployment of this feature. Different users have
installed different versions of Microsoft Word. Thus it is difficult to com-
municate with the correct objects for generating the MS Word file. These
objects are provided by COM (Component Object Model) technology.
COM is used for the communication between applications on Microsoft
platforms.

Using Primary Interop
Assemblies (PIAs) for a bet-
ter deployment

A solution to this problem is introduced by the .NET Framework using
the concept of Primary Interop Assemblies (PIAs). In order to interoperate
with existing COM types, the common language runtime requires a descrip-
tion of those types in a format that it can understand. The form of type infor-
mation understood by the common language runtime is called metadata, and
is contained within a managed assembly. Before an application can interop-
erate with COM types, it requires a metadata description of the types being
used. Like any other managed assembly, an interop assembly is a collection

866.7 Extended features of the worksheet editor
of types that are deployed, versioned, and configured as a single unit.
Unlike other managed assemblies, an interop assembly contains type defini-
tions of types that have already been defined in COM. These type defini-
tions allow managed applications to bind to the COM types at compile time
and provide information to the Common Language Runtime (CLR) about
how the types should be marshaled at run time. While any number of
interop assemblies may exist that describe a given COM type, only one
interop assembly is labeled the Primary Interop Assembly (PIA). The Pri-
mary Interop Assembly (PIA) for Microsoft Office 2003 is included in the
UMM Add-In installation package.

6.7.2.1 Exporting to HTML

HTML makes each work-
sheet readable for everyone

As a second option the UMM Add-In provides an export interface for the
widespread format HTML (Hypertext Markup Language). Since almost
every operating system has an integrated browser, each worksheet can be
viewed as a web page. The following table in Figure 6–25 shows a cutout of
the exported HTML output file of a business transaction.

876.7 Extended features of the worksheet editor
Fig. 6–25 Example of an
HTML output of the
worksheet editor

886.7 Extended features of the worksheet editor
6.7.2.1 Export to Worksheet Definition Language (WDL)

Using the exported WDL
file as an input file for the
worksheet editor style

Another opportunity to export worksheets is to use our self defined
WDL formats. As mentioned in chapter 6.4.1 the worksheet editor requires
an XML file for displaying the layout of the worksheet editor. Yet this file
does not only define the style of the editor window, it also serves as another
alternative to store worksheet information. There are specific tags in the
XML structure of WDL for saving the content of the worksheet entries. At
the beginning of every worksheet editing session, the UMM Add-In asks the
modeler, if he wants to use the default worksheet input file, which is pre-
defined for a specific stereotype or if he wants to use his own worksheet
definition file. In case of using a customized input file, the modeler may use
a previously exported XML file in order to reuse worksheet information.

Example of an exported
WDL file

The following listing shows an excerpt of the exported WDL file for a
business transaction. The business transaction worksheet has an field called
Select Business Transaction Pattern which defines the pattern for this trans-
action. The tag CHOICEBOX in line 225 defines a drop-down box for spec-
ifying this pattern. The attribute selected in line 229 sets the default value of
this drop-down box to the pattern the modeler specified before exporting the
worksheet. Thus, when the modeler reuses this WDL input file for opening
another worksheet editor window, the request/response pattern is selected
automatically. The second entry in the code example stores the information
about the responding business activity. This input field is a simple input
form and has no drop down functionality. Thus the DEFAULT tag keeps the
data of this worksheet entry.

Listing 6–10 The result of
exporting the worksheet
using WDL

[222] <ENTRY type="choice" lines="1" protected="false"
taggedValueName="BusinessTransactionPattern"
taggedValueType="standard">

[223] <NAME>Select Business Transaction Pattern</NAME>
[224] <TOOLTIP>Select one of</TOOLTIP>
[225] <CHOICEBOX>
[226] <ITEM>CommercialTransaction</ITEM>
[227] <ITEM>RequestConfirm</ITEM>
[228] <ITEM>QueryResponse</ITEM>
[229] <ITEM selected="true">RequestResponse</ITEM>
[230] <ITEM>Notification</ITEM>
[231] <ITEM>InformationDistribution</ITEM>
[232] </CHOICEBOX>
[233]</ENTRY>
[234] <ENTRY type="text" lines="2" protected="true"

taggedValueName="RespondingBusinessActivityName"
taggedValueType="RespondingBusinessActivity">

[235] <NAME>Responding Business Activity Name</NAME>
[236] <DEFAULT>respond on Registration Request</DEFAULT>

896.7 Extended features of the worksheet editor
[237] <TOOLTIP />
[238] </ENTRY>

The output of the exported file in Listing 6–10 has the same structure as
the WDL input file for a business transaction. The only difference is that the
exported WDL file is initialized by the data of the worksheet editor. Thus
the WDL export functionality serves as a backup system for saving the
worksheet information to an external file.

907 User Guide
7 User Guide

Worksheets in the context of the modeling process
Constructing B2B information systems requires collecting business as well
as technical information concerning the target business domain. This infor-
mation is the base for defining the scope of the system, its requirements as
well as its specifications in further steps of our methodology. In order to
facilitate this knowledge gathering process, UMM uses the concept of
worksheets. Worksheets help to guide the interview process with business
experts and computer engineers and grasp their know-how. Hence, in our
methodology worksheets are the bridge between business experts and busi-
ness analysts.

Each view and each subview requires a tailored set of worksheets in
order to collect relevant information. It is noteworthy that UN/CEFACT
does not standardize worksheets, but advises which information to collect.
We detail these issues in own subsections pertaining to the particular
(sub)view sections.

The expertise captured using worksheets is the starting point for
describing collaborations and their requirements. In other words, worksheet
input is transferred into model elements or assigned to tagged values. How-
ever, some information is only captured for documentation purpose and to
effectuate a common standard of knowledge. This ensures that all partici-
pants have a common view on the same business domain.

As outlined above, we detail the information that should be grasped in
each stage of the methodology as part of the particular (sub)view sections.
General information that is applicable to a multiplicity of worksheets is only
described once below and then referenced in the appropriate worksheet sec-
tion.

Common Information

■ Name: The name of a particular element
■ Description: Free text information describing an element in more detail

917.1 Business Domain View
Business library information

■ BaseURN: The namespace of a business library that is subject to a reg-
istry. The base URN is both the unique identifier for the business library
itself and the namespace for the elements contained in the business
library. The unique identifier of elements contained in a business
library results from the base URN of the container and the local name of
the element. The base URN should be assigned by the modeler under
semantical considerations. The base URN should not be changed after
the library has been registered.

■ Version: Holds the current version of a registered business library. Ver-
sion information should not be assigned by the user, but it should be
managed by a registry. It follows, that an unregistered library should not
have version information assigned.

■ Status: Holds the current status of a registered business library. Status
information should not be assigned by the user, but it should be man-
aged by a registry. It follows, that an unregistered library should not
have status information assigned.

■ Business term: A business term is a synonym, by which a business
entity is commonly known.

■ Owner: The owner of the business library. This might be an organiza-
tion, an institution or an individual.

■ Copyright: Holds copyright information about the business library.
■ Reference: Holds location information about continuative documenta-

tion about a particular business library.

7.1 Business Domain View

7.1.0.1 Overview and purpose

The business domain view
discovers, but does not con-
struct collaborative busi-
ness processes

The business domain view (BDV) is the starting point for modeling
business collaborations. At this early stage of our modeling methodology
the characteristics, requirements and procedures of a target business domain
are determined. Thus, the BDV is utilized to gather existing knowledge
from stakeholders and business experts regarding business processes they
participate in or just have an interest in. Discovery and identification of
inter- and intraorganizational business processes on a high level is the pur-
pose of this stage. No new collaborative business processes are constructed.
The goal is to identify possible areas for business interactions between two
or more business partners. A business collaboration constructed in later
steps of our modeling methodology must respect the characteristics of the

927.1 Business Domain View
business processes identified in the BDV and must not be in conflict with
them.

BDV captures intra- and
interorganizational pro-
cesses

Although UMM focuses on defining and describing B2B processes,
intraorganizational processes are also documented in the BDV work steps.
Usually domain experts describe business processes from a partner specific
view. The interface of such a business process could include communica-
tion with a partner and consequently the intraorganizational process would
be a candidate for an entry point of an interorganizational collaboration.

Knowledge is captured
through interviews with
business experts

The requirements gathering process to capture the domain knowledge is
primarily accomplished through interviews with business experts and stake-
holders. Predefined and standardized worksheets guide the business process
analyst through the interview and help capturing the knowledge of the busi-
ness participants. Despite using these worksheets in the interview process
for guidance, the interviewer has to make sure not to influence the respon-
dent. It is important that the dialog between the stakeholder and the inter-
viewer is in the language of the stakeholder, technical and modeling terms
should be avoided [Hof05]. The interrogation of the stakeholders results in
an overview of the business processes and the participants of a specific busi-
ness domain.

The identified processes should then be classified according to pre-
defined and adopted classification schemes in order to enable easy and
semantically correct reuse. This step is intended to reuse existing knowl-
edge in future projects in order to save time and money. Therefore it is
advisable to apply the classification process also for artifacts that are con-
structed later in the business requirements view (BRV) and in the business
transaction view (BTV). It is recommended to utilize UN/CEFACT’s Cata-
log of Common Business Processes (CBPC) as a classification scheme.
Other candidates for the classification scheme are - but are not limited to -
the Supply Chain Operations Reference Model (SCOR) or Porter’s Value
Chain (PVC).

7.1.0.2 Stereotypes

■ BusinessProcess (UseCase): According to Hammer and Champy a
business process is defined as a flow of related activities that together
create a customer value [HC93]. Business processes might be either
performed by one partner (intraorganizational business) or by two or
more partners (interorganizational).

■ BusinessCategory (Package): Business categories are used to catego-
rize business processes. Either one or more business categories or a
combination of business and process areas can be utilized for classifica-

937.1 Business Domain View
tion. A business category, as well as their specializations business area
and process area, might be structured recursively.

■ BusinessArea (Package): A business area is a specialization of a busi-
ness category and roughly corresponds to a division of an enterprise.

■ ProcessArea (Package): A process area is a specialization of a business
category and corresponds to a set of common operations within a busi-
ness area.

■ Stakeholder (Actor): A stakeholder is interested in a business process,
but does not take an active part in its execution.

■ BusinessPartner (Actor): A business partner plays a role in the execu-
tion of a business process. Thereby he has a natural interest in this proc-
ess.

7.1.0.3 Worksheets

Business domain view worksheet

■ Common Information
■ Business library information
■ Included business areas: A listing of business areas that are part of the

business domain view. A business area is a categorization mechanism.
Hence we only capture business areas that are needful to classify identi-
fied business processes. A business area is further described by a busi-
ness area worksheet.

Business area worksheet

■ Common Information
■ Business library information
■ Objective: The purpose and value to be achieved by the business proc-

ess within the business area under consideration
■ Scope: Defines the boundaries of the business area
■ Business opportunity: The strategic interest in the particular business

area
■ Included process areas: A listing of process areas that are contained in

a business area. Each process area in this list is further detailed by its
own process area worksheet.

Process area worksheet

■ Common Information
■ Business library information

947.1 Business Domain View
■ Objective: The purpose and value to be achieved by the business proc-
ess within the process area under consideration

■ Scope: Defines the boundaries of the process area
■ Business opportunity: The strategic interest in the particular process

area
■ Included business processes: Lists identified business processes that

take place in a process area. A business process is further described in
detail by a business process worksheet.

Business process worksheet

■ Common Information
■ Business library information
■ Definition: Describes the customer value that is created by the business

process. If multiple parties collaborate in the execution of a business
process the overall value is identified.

■ Participants: Identifies all parties that play an active role in the execu-
tion of a business process. Each identified participant is modeled as a
business partner in a further step and connected to the process via a par-
ticipates association.

■ Stakeholder: Holds information about the stakeholders of a business
process. A stakeholder has interest in a process but plays no active role
in its execution. Each identified party is modeled as a stakeholder and
connected to the process via a is of interest to association.

■ Reference: Holds location information of further information that is rel-
evant to the process.

■ Pre-conditions: Describes requirements that have to be fulfilled in order
to execute a business process (e.g. a customer has to be registered to
issue an order).

■ Post-conditions: Identifies conditions that have to be satisfied just after
the execution of a business process (e.g. an order is confirmed).

■ Begins when: Specifies semantic conditions (business events) for the
initiation of the business process. It may be used to specify a semantic
state, that has to be reached in order to start the process (e.g. the seller’s
ordering process is started when the order is received).

■ Ends when: Specifies business events that indicate the finalization of a
business process (e.g. the seller’s ordering process is finished when the
confirmation is sent).

■ Actions: Describes one or more activities that are performed in the exe-
cution of a business process (e.g. the seller checks the buyer’s account
and the stock of the ordered goods prior he sends a confirmation).

957.1 Business Domain View
■ Exceptions: Identifies errors that may occur during the execution of a
business process (e.g. the seller has the ordered goods not in stock)

■ Included business processes: A business process may require the execu-
tion of other business processes as a part of its own workflow. Each
included business process results in an additional modeled business
process connected via an include association.

■ Affected business entities: Identifies business entities that are affected
by the execution of the business process. A business entity is a real-
world thing having business significance (e.g. an order). Business enti-
ties identified in this step are input to the workflow in the business entity
view (See “Business Entity View” on page 112).

7.1.0.4 Step by step modeling guide

The BDV involves two main steps:

1. Define a classification schema
2. Identify relevant business processes, their participants and stake-

holders

Define a classification schema

Define an appropriate clas-
sification for the identified
business processes

The goal of the business domain view is to gather knowledge about an
existing business domain. In a first step it is necessary to subdivide the busi-
ness domain into groups of related business processes. In other words, we
first need a categorization schema which is later used to classify the busi-
ness processes. UMM offers the concept of business areas and process
areas to classify business processes.

967.1 Business Domain View
Tab. 7–1Order from quote
example: worksheet for
the business domain view

Add business areas to the
business domain view

A business area usually corresponds to a division of an enterprise. In
order to develop a categorization schema it is necessary to identify all busi-
ness areas of a business domain. This modeling step is supported by the
business area worksheet (Table 7–2), which must be completed for each
identified business area. It is also possible to identify business areas that are
nested in another business area. In other words, business areas may be
nested recursively and build a tree structure. A business area on the lowest
level of such a tree is called a leaf business area.

predefined business areas
of the CBPC

The UMM does not mandate a predefined classification of business
areas. However, UN/CEFACT’s Common Business Process Catalog
(CBPC) recommends a list of eight categories: procurement/sales, design,
manufacture, logistics, recruitment/training, financial services, regulation
and health care. This list of business areas is considered as non exhaustive.
The recommendation in the CBPC does not use any recursive nesting, i.e. a
flat list of business areas.

The next step is to identify the relevant process areas within each leaf
business area, where a process area corresponds to a set of common opera-
tions within that business area. Process areas might also be modeled recur-
sively to represent an appropriate categorization for business processes. A
leaf process area is on the lowest level of the resulting tree structure. A leaf
process area is a category of one or more common business processes,
which will be identified in the second main step of the BDV. Thus, a process
area contains either other process areas or business processes.

Form: BusinessDomainView

General

Business Domain View Order From Quote

Description This business domain describes a horizontal business process
scenario where a purchasing organisation purchases from a
selling organisation. It this scenario, the purchasing organisation
may or may not have an existing account with the selling
organisation and therefore an the establishment of this account
may be required. This scenario assumes that the purchasing
organisation does not have contract prices for any of the selling
organisation goods or services and therefore the purchasing
organisation must obtain a quote from the selling organisation
prior to placing an order.

Business Library Information

Base URN http://www.untmg.org/UserGuide2005/BDV/OrderFromQuote

Version 0.1

Status approved

Business Term Purchase Order, Request for Quote, RFQ, Order, Sales Order

Owner UN/CEFACT

Copyright UN/CEFACT

Reference(s) - Purchasing Organization
- Selling Organization

977.1 Business Domain View
Fig. 7–1 UN/CEFACT’s
Common Business
Process catalog matrix

Again, UN/CEFACT does not dictate a predefined classification for
process areas. Nevertheless, it is recommended to use the list of process
areas identified in the CBPC: planning, identification, negotiation, actual-
ization, post-actualization. This list corresponds to the five successive
phases defined in the Open-edi reference model [OER95].

In a first example (Figure 7–2) we use the CBPC classification in order
to categorize the business domain of our order from quote example. Figure
7–1 shows the full CBPC matrix.

Not all combinations of business and process areas are relevant in our
example. Our example spans over three business areas: financial services,
logistics and procurement/sales. Each of these business areas is described
by its own business area worksheet. Table 7–2 shows the business area
worksheet for procurement/sales of our example.

987.1 Business Domain View
Tab. 7–2Order from quote
example: worksheet for
the procurement/sales
business area

Within procurement/sales the process areas of identification, negotia-
tion and actualization are relevant. Each process area is again detailed
using its own process area worksheet. Table 7–3 shows the worksheet for
the identification process area of the procurement/sales business area.
Regarding the other business areas of our example, negotiation and actual-
ization are pertinent to financial services. For logistics the planning, identi-
fication and negotiation process areas are considered as relevant. The
resulting combinations are marked by in the matrix of Figure 7–1. In
UML packages must be ordered hierarchically. Thus the matrix must be
represented as a tree structure as depicted in Figure 7–2. The three business
area packages logistics, procurement/sales and financial services are
beneath the business domain view package. Each of these packages includes
the corresponding process areas.

Form: BusinessArea

General

Business Area Procurement/Sales

Description In this business area, business processes are described where a
purchasing organisation can find potential suppliers for required
products, can establish an account with the selling organisation,
request for a quotation of required products and eventually place
a purchase order with the selling organisation if the quote
provided by the selling organisation meets the purchasing
organisation's business objectives.

Objective The objective of this business area allows a purchasing
organisation to find an appropriate supplier (selling
organisation), to establish an account, to request a quote for
required products, and finally to purchase these products.

Scope - Identify potential customer/ vendor
- Request quote for price and availability
- Request purchase order

Business Opportunity The business opportunity of this business area is to allow
purchasing organisations to purchase required products from
selling organisations.

Business Library Information

Base URN http://www.untmg.org/UserGuide2005/BDV/Procurement

Version 0.1

Status approved

Business Term Purchase Order, Order, RFQ, Quote, Quotation, Sales Order,
Price Request

Owner UN/CEFACT

Copyright UN/CEFACT

Reference(s)

997.1 Business Domain View
Tab. 7–3Order from quote
example: the worksheet
for the process area
identification

Fig. 7–2 Classification of
business processes
according to the CBPC

Nesting business areasIn order to demonstrate the recursive nesting of business areas (and
process areas) we use an additional example (Figure 7–3). Consider a busi-
ness domain that covers the business areas telephone services and internet
services. The telephone service is further restructured into fixed network,
mobile services and voice over IP - each of which are nested business areas.
Similarly the internet services business area is composed of the nested busi-
ness areas private and business solutions. Only these second level business

Form: ProcessArea

General

Process Area Identification

Description The Identification Phase pertains to all those actions or events
whereby data is interchanged among potential buyers and sellers
in order to establish a one-to-one linkage

Objective

Scope - Identify potential customer/ vendor
- Provide catalog
- Request pricing
- Request availability

Business Opportunity

Business Library Information

Base URN http://www.untmg.org/UserGuide2005/BDV/Procurement/Identif
ication

Version 0.1

Status approved

Business Term Purchase Order, Order, RFQ, Quote, Quotation, Sales Order,
Price Request

Owner UN/CEFACT

Copyright UN/CEFACT

Reference(s)

1007.1 Business Domain View
areas - which are the leaf business areas in our example - contain process
areas.

Fig. 7–3 Defining nested
business areas

Business categories may be
used instead of business
area/process area combina-
tions.

If such a precise classification using business areas and process areas is
not essential, you may use the more general classification type business cat-
egory. Business categories may also be nested to obtain a hierarchical clas-
sification. In a UMM model either business categories or combinations of
business areas and process areas are allowed to classify business processes.

Figure 7–4 shows a classification scheme built of only business catego-
ries. The example model deals with processes occurring within the area of
operations of waste management. The business category on the first level is
named cross border waste shipment. Beneath we defined two other business
categories named waste management notification and waste management
transport. All identified business processes would go in one of these two
leaf business categories.

Fig. 7–4 Composing a
classification scheme of
nested business
categories

If no classification schema is known or the modeling project is rather
narrow in scope, it may be sufficient to have only one business category
package beneath the business domain view. All business processes identi-
fied in the next step will then go into this single package. It should be noted
that UMM is an iterative process. This means the package structure is not
fixed all the time. It might be changed due to new insights during the identi-
fication of business processes in the next step.

Identify relevant business processes, their participants and stakeholders

Model the identified busi-
ness processes

In this stage a partner’s business processes are identified on a high-level
and modeled in the appropriate process area or business category. A busi-
ness process may include the execution of one or more other processes.
Such a relationship is collected in the business process worksheet and mod-
eled using an UML include relation.

1017.1 Business Domain View
Describe the relationship
between business processes
and related parties

The business process worksheet captures the related parties of a busi-
ness process. A related party might be either a business partner or a stake-
holder. A business partners takes up a role in the execution of a business
process and is denoted as a participant in the worksheet. The relationship
between a business partner and a business process is modeled via a partici-
pates association. A stakeholder has interest in a business process, but does
not take an active part in its execution. In order to indicate that a business
process is of interest to a stakeholder, connect them via an is of interest to
association. If business partners and stakeholders are related to business
processes in more than one process area, model them in the corresponding
parent business or process area.

You utilize use case diagrams in order to facilitate the modeling of
business processes and their relationship with other processes and related
parties. You may use only one use case diagram per process area (or busi-
ness category) showing all its business processes. However, you may also
use multiple use case diagrams per process area (or business category), e.g.
showing only the business processes of a particular partner in each use case
diagram.

Regarding our order from quote example, the following business pro-
cesses and business partners are identified in the procurement/sales busi-
ness area during the negotiation phase: Figure 7–5 shows the business pro-
cesses of the selling organization. The selling organization itself is denoted
as business partner and connected with each business process (register cus-
tomer and request credit check) it takes part in via a participates associa-
tion.

Fig. 7–5 Use cases of the
selling organization’s
processes

Similarly, the following diagram (Figure 7–6) shows the purchasing
organization as well as its business process within the process area identifi-
cation (get customerID). The purchasing organization is again modeled as a
business partner and connected with the process via a participates associa-
tion.

ud Identification - Selling Organization Processes

«BusinessProcess»
Register Customer

«BusinessProcess»
Request Credit

Check

Selling Organization

(from Order From Quote)

«participates»

«participates»

1027.2 Business Requirements View
Fig. 7–6 The purchasing
organization participates
only in a business process
named get customerID

7.1.0.1 Artifacts

Results of the business domain view are use case descriptions of the tar-
get business domain consisting of its occurring business processes and
related business partners and stakeholders. Business processes and their
worksheets should be described as detailed as possible by the knowledge
gathered through the interview process.

7.2 Business Requirements View

7.2.0.1 Overview and purpose

The goal of the business requirements view (BRV) is to identify and
describe the requirements of business processes involving two or more par-
ticipants. Business processes with two or more participating roles are called
business collaborations in the UMM. A business collaboration is further
characterized by the fact that it is built up by several business processes.

Identify business processes
that are candidates to be
part of a business collabo-
ration

In order to specify possible business collaborations, the first step is to
consider the identified business processes from the BDV and to look for
complementary processes of other partners. Business processes of different
partners having complementary interfaces are strong candidates for being
part of a business collaboration.

Relevant business processes
and business entities are
described in detail

Business processes that are considered as relevant in a possible collabo-
ration should be refined in the business process view. In this step a process
of interest is decomposed into a flow of activities. Executing a business pro-
cess affects business entities and thus changes their state. The business pro-
cess view describes the flow of activities in a business process and the
resulting business state changes. Business entities that are manipulated in
relevant business processes as well as their behavior are modeled in busi-
ness entity views. Since the business process view uses states of business
entities defined in a business entity view, modeling of both views is tightly
coupled.

ud Identification - Purchasing Organization Processes

«BusinessProcess»
Get CustomerID

Purchasing
Organization(from Order From Quote)

«participates»

1037.2 Business Requirements View
Identifying the roles partici-
pating in a process is one of
the major BRV tasks

The business requirements view covers the identification of the roles
involved in a certain collaboration. Business collaborations are later speci-
fied in the business transaction view by means of business collaboration
protocols. In the business requirements view, requirements of a collabora-
tion are specified in a subview called collaboration requirements view.

A business collaboration spans over several atomic interactions, called
business transactions in the UMM, and other collaborations. A business
transaction is an interaction on the lowest level of granularity and thus
always performed by two roles. Each transaction role as well as each nested
collaboration role needs to be mapped to exactly one role of the including
collaboration. Requirements of a transaction are described in a transaction
requirements view.

Different sets of business
partners might execute the
same collaboration

A collaboration may be performed by different sets of business part-
ners. Thus there may be multiple business collaboration realizations of a
business collaboration. In order to obtain concrete business collaboration
descriptions, business partners taking part in a collaboration are mapped to
collaboration roles in the collaboration realization view.

7.2.0.2 Stereotypes

■ BusinessProcessView (Package): In a business process view a business
process that is relevant for a collaboration is decomposed into a flow of
activities. The decomposed process may either be an internal process or
a process that connects internal processes of business partners. The
workflow of a business process might change the states of business enti-
tites. Such state changes are also captured in this view.

■ BusinessEntityView (Package): The business entity view describes busi-
ness entities that are affected by a process including their lifecycle and
state changes.

■ CollaborationRequirementsView (Package): The collaboration require-
ments view contains all elements that describe the requirements of a
business collaboration as well as its participating roles.

■ TransactionRequirementsView (Package): The transaction require-
ments view contains all elements that describe the requirements of a
business transaction as well as its participating roles.

■ CollaborationRealizationView (Package): The collaboration realiza-
tion view contains all elements specifying the concrete realization of an
abstract business collaboration. In this stage business partners are
mapped to abstract collaboration roles.

1047.2 Business Requirements View
7.2.0.3 Worksheets

The worksheets of the business requirements view are described in the con-
tinuative sections of the particular subviews of which they are part of. How-
ever, we use one worksheet to gather common information about the busi-
ness requirements view package.

Business requirements view worksheet

■ Common Information
■ Business library information

7.2.0.4 Step by step modeling guide

1. Model the existing and/or desired process workflow(s)
2. Identify relevant business entities
3. Describe requirements on business collaboration protocols
4. Describe requirements on business transactions
5. Define concrete realizations of business collaborations

Model the existing and/or desired process workflow(s)

Decompose business pro-
cesses in the business pro-
cess view

Modeling the business requirements view is straightforward, because it
just acts as a container for its subviews. The first step refines business pro-
cesses from the BDV that are of relevance for a desired collaboration. You
may either refine all relevant business processes in one business process
view or you may create one business process view per each process.
Although modeling the business process view is strongly recommended,
you may omit this modeling step. Thus zero to many business process views
are allowed in the business requirements view.

Identify relevant business entities

Business entities and their
life cycle are described in
business entity views

After the decomposition of pertinent business processes, business enti-
ties that may be of relevance to a collaboration are further described. One
business entity view may be the container for all identified business entities
or each business entity may be modeled in its own business entity view.
UN/CEFACT recommends, but does not mandate, to gather business enti-
ties having business significance.

1057.2 Business Requirements View
Describe requirements on business collaboration protocols

Collaboration require-
ments are described in col-
laboration requirements
views

The next step in the BRV workflow is describing requirements and par-
ticipating roles of a business collaboration. Each business collaboration
must be described in its own collaboration requirements view.

Describe requirements on business transactions

Requirements of transac-
tions are specified in trans-
action requirements views

Similar as for business collaborations, each business transaction and its
participating roles must be specified in their own transaction requirements
view. Hence a UMM model exists of one collaboration requirements view
per collaboration and one transaction requirements view per transaction.

Define concrete realizations of business collaborations

Finally, each collaboration needs to be realized by at least one concrete
collaboration realization. Each realization has to be specified in its own col-
laboration realization view. No other model elements except the five sub-
views described above are allowed in the business requirements view.

Fig. 7–7 BRV package
structure of the order
from quote example

Figure 7–7 shows the package structure in the business requirements view
concerning the order from quote example. Process flows are described in
four business process views. Each identified business entity is kept in its
own business entity view (but modeling all business entities in one business
entity view is also possible). Furthermore, there exist two collaboration
requirements views - one for the register customer and one for the order
from quote collaboration - that specify the requirements on the particular
collaboration. The same applies for the transaction requirements views,
which captures the specifications of business transactions. Finally, we have

1067.2 Business Requirements View
two collaboration realization views in our example - one for the order from
quote and one for the register customer collaboration.

A business collaboration may have an unlimited number of concrete
realizations. Each different set of business partners that performs the same
collaboration entails another concrete realization of an abstract collabora-
tion. In other words, each occurrence of the same collaboration with a dif-
ferent set of participants must be manifested in its own collaboration real-
ization view.

7.2.0.1 Artifacts

The business requirements view facilitates identifying collaborations
and collecting requirements on them. In order to get an overlook of the
workflow of business processes that are relevant for a collaboration, these
business processes are decomposed into a flow of activities. The internal
flow of activities of a business process is modeled in business process
activity models.

Furthermore, relevant business entities are identified and their life
cycles are specified using business process entity life cycles.

Business collaboration use cases describe identified collaborations
and their relationships to included business transaction use cases and other
business collaboration use cases. A use case is described by its correspond-
ing worksheet, associations to its participating roles and roles mappings to
included use cases. Business collaboration realizations specify realizations
between a specific set of business partners of the rather abstract business
collaboration use cases. Business partners participating in a business col-
laboration realization must be mapped to the authorized roles of a business
collaboration use case.

7.2.1 Business Process View

7.2.1.1 Overview and purpose

The business process view covers business processes that may be candi-
date for business collaborations. It is the purpose of this step to get a deep
understanding of relevant business processes.

A business process is
decomposed into a flow of
activities

Business processes may either be adopted from the BDV or newly con-
structed. Constructing processes is required if a desired collaboration needs
additional work units which were not described in the BDV. In order to ana-
lyze the activities and the participants of a process, a business process is
decomposed into a business process activity model. If a business process is
decomposed or not depends on its relevance and complexity.

1077.2 Business Requirements View
Business processes are
examined to discover
required interactions
between partners

A business process activity model may either describe an internal pro-
cess of a partner or a collaborative process between partners. In the case of
an internal process, the process flow is considered to discover interfaces
requiring interaction with a business partner. These interfaces of the internal
processes have to be minded in future collaborative processes.

Modeling collaborative processes helps understanding the workflow of
a process and the interaction between business partners in this process.
Besides the activity flow, business process activity models describe how the
workflow of a process affects the states of business entities. Business entity
states are the output of business process activities and input to following
activities. The state of a business entity is dependent on its preceding activ-
ities and influences in turn the further workflow.

We distinguish internal and shared business entity states. Internal busi-
ness entity states occur just in the internal workflow of a business partner.
Shared business entity states denote interfaces between two partners that
require a state change in the systems of both partners. It follows, that shared
business entity states should be considered as candidates for interactions
between partners in further modeling stages.

Using business process activity models in the BRV facilitates the con-
struction of collaborations and transactions in a later design step.

7.2.1.2 Stereotypes

■ Business Process (UseCase): A business process is a flow of related
activities that together create a customer value. Business processes
might be either performed by one partner (interorganizational business)
or by two or more partners (intraorganizational).

■ BusinessProcessActivityModel (ActivityGraph): A business process
activity model represents a flow of a business process. They are means
to describe and understand (collaborative) processes and help to dis-
cover interfaces for connecting processes of different partners.

■ BusinessProcessActivity (State): A business process activity is a step in
the workflow of a business process. A business process activity might
be refined by another business process activity model.

■ InternalBusinessEntityState (ObjectFlowState): An internal business
entity state is a state of a business entity that is just of relevance to a sin-
gle business partner.

■ SharedBusinessEntityState (ObjectFlowState): A shared business entity
state is a state of a business entity that is of relevance to two ore more
business partners. Shared business entity states require interactions

1087.2 Business Requirements View
between the involved partners, to synchronize the states of the affected
business entities. Hence, they indicate the need for an interaction
between those partners.

7.2.1.3 Worksheets

Business process view worksheet

■ Common Information
■ Business library information

7.2.1.4 Step by step modeling guide

1. Decide on the structure of the business process descriptions
2. Model partitions when describing an interorganizational process
3. Describe the flow of activities
4. Identify business entities and their shared and internal states

The business process view does not have strict modeling guidelines. There
exist several ways for describing business processes of interest and analyz-
ing their flow of activities. Describing the process flow is not supported by
worksheets. The business analyst rather works along with the business
expert in the business process view, because it is easier to describe a process
by graph than by words.

Decide on the structure of the business process descriptions

The business process view
may be structured in differ-
ent ways

As first step you have to decide how to structure the business process
view. You may either model each business process in its own business pro-
cess view or you may refine several business processes together in one busi-
ness process view. Processes that are described in one view, should in some
way relate to each other. Anyway, information about the business process
view package and its contents is gathered through the business process view
worksheet. The business process view worksheet corresponds to the work-
sheet of any other business library. An example worksheet for a business
library is given by the worksheet of the business domain view package
(Table 7–1).

Model the business process
that is going to be refined

Relevant business processes are subsequently described in detail. If a
business process is constructed from scratch in the BRV, add a business pro-
cess to the model and optionally refine it with a business process activity
model. If a process identified in the BDV is described, you may choose one
of the following two alternatives: you may either drag the business process
from the BDV to your business process view (and illustrate it with a busi-
ness process activity model) or add only the refining business process activ-

1097.2 Business Requirements View
ity model to the business process view. Independent of the two alternatives,
UN/CEFACT encourages using business process activity models to gain a
deep understanding of pertinent business processes.

Model partitions when describing an interorganizational process

Use partitions to assign
activities of a business pro-
cess to a certain partner

In the next step a business process is decomposed in a business process
activity model. If the refined process is a collaborative process, UML parti-
tions should be used to collate business processes to business partners. In
order to show that activities in a certain partition are performed by a busi-
ness partner, the business partner has to be assigned as a classifier to the
partition. For each business partner participating in the process, a partition
must be added to the business process activity model. If an internal process
is refined, you may add a partition or not. Anyway, if a partition is added
for an internal process, the corresponding business partner must be added as
the classifier of the partition.

Describe the flow of activities

Denote a workflow step by
a business process activity

Regardless if partitions are used or not, the sequence of the business
processes has to be decomposed into business process activities and busi-
ness entity states. For each step in a business process a business process
activity has to be added. If a business process activity is decomposed into
further activities, refine it by another business process activity model.

Figure 7–8 shows an example business process activity model describ-
ing the purchase process (from the order from quote example) seen from the
buyer’s internal perspective. Hence, an intraorganizational process is illus-
trated and no partitions are required. Furthermore, the business process
activity model contains only a flow of business process activities describing
the buyer’s purchase process in detail.

1107.2 Business Requirements View
Fig. 7–8 Purchase
process viewed from the
buyer’s internal
perspective

Identify business entities and their shared and internal states

Describe changes of a busi-
ness entity state

A business process activity may affect the state of a business entity.
Indicate this by modeling a business entity state as the successor of a busi-
ness process activity. If a business entity state is just meaningful for one
partner, add an internal business entity state to the partition (or directly to
the business process activity model if no partitions are used). Business
entity states that require an interaction between two partners are denoted as
shared business entity states and placed between the partitions of the inter-
acting partners.

Switching between busi-
ness process view and busi-
ness entity view may be
required in the modeling
workflow

Internal and shared business entity states are instances of business enti-
ties in a certain object state. At this stage, business entities are not modeled
yet, hence it is advised to switch between business process view and busi-
ness entity view during the modeling process. Start with the business pro-
cess view and describe internal and shared business entity states initially

ad Purchase Product

«BusinessProcessActivity»
Request Price Quote

«BusinessProcessActivity»
Evaluate Price

Quote

«BusinessProcessActivity»
Place Purchase

Order

Failure

«BusinessProcessActivity»
Process Order

Response

Success

[Price Quote not acceptable]

[Price Quote acceptable]

1117.2 Business Requirements View
without a classifier. Then you should continue with the business entity view
(see next section) and describe business entities together with their life
cycles. Finally, switch back to the business process view and set the classi-
fier and state of each object using business entities and their lifecycle
descriptions.

Identifying business entity
states is recommended, but
not mandatory

However, in the business process view it is not mandatory to identify
and model business entities and their state changes. As Figure 7–8 depicts,
business process activity models can be used in an early modeling stage to
get an understanding of a business process workflow. In such early elabora-
tion steps, business entities may have not been identified yet. Nevertheless
designing a desired collaborative process workflow should involve the
identification of business entities and how they interact with atomic busi-
ness process activities.

The register customer pro-
cess (Figure 7–9) explained
in detail

Taking a look at our order from quote example, Figure 7–9 shows an
extract of the business process activity model describing the register cus-
tomer process. Compared to the internal view on the purchase process (Fig-
ure 7–8), this diagram shows an inter-organization process workflow.
Hence, we use two partitions in this extract - one for the purchasing and one
for the selling organization. Furthermore, classifiers of partitions refer to
business partners who execute the business activities in the particular parti-
tion. In the example, the purchasing organization performs the get customer
ID activity and the selling organization executes act on registration request
and request credit check. Between the two partitions a shared business
entity state is located. It denotes that a business entity of type registration is
in state requested after the get customer ID activity has finished. This object
is in turn input to the act on registration request activity of the selling orga-
nization.

The shared business entity state denotes that the registration business
entity in state requested is of relevance to both parties. After the act on reg-
istration request action there is a decision if a credit check is required or not.
If the check is necessary, the registration object is now in state pending
credit check denoted as internal business entity state. It is still the same
business entity instance (as denoted by the shared business entity state
before), even though it is now in another state and only of relevance to the
selling organization. It follows, that shared business entity states depict
business entity states that are of relevance to two partners, in contrary to
internal business entity states identifying business entity states that are just
of relevance to a partner’s internal process.

Depending on certain conditions, there may be more than one successor
of a business entity state or a business process activity. Decisions in the
business process activity model are modeled by common UML means using
decision nodes and condition guards on transitions. Concurrences in a pro-

1127.2 Business Requirements View
cess description are denoted by UML forks and joins (’synchronization
bars’).

Fig. 7–9 Cut-out from the
business process model
specifying the register
customer process from an
interorganizational point
of view.

7.2.1.1 Artifacts

The results of the business process view are business process activity
models that refine the workflow of relevant business processes.
UN/CEFACT recommends to refine every business process that might be of
interest to further collaborations by a business process activity model. By
using the means of the business process view, complexity in further model-
ing work steps is reduced.

7.2.2 Business Entity View

7.2.2.1 Overview and purpose

The business entity view describes relevant business entities that are
affected by the execution of a business process. A business entity is a real-
world thing that is of relevance to one or more business partners in a busi-
ness process (e.g. “order”, “account”, etc.). Affecting a business entity usu-
ally implies changing its internal state. Business entity life cycles describe
the flow of possible states of a business entity.

1137.2 Business Requirements View
The business process view
describes in detail real-
world things having busi-
ness significance

It is the goal of the business entity view to gather knowledge of items
with business significance including the states they might adopt. Similar to
the business process view, the business entity view is not a mandatory part of
the business requirements view. However, UN/CEFACT suggests to capture
all relevant business entities together with their lifecycle.

A business entity states are
relevant to the business
process view and to the
business choreography
view

Business entity states are of further relevance to the business process
view and the business choreography view. The business process view shows
how business entities are affected by the execution of a business process. In
other words, we detail how several steps in a process trigger changes of
business entity states (See “Business Process View” on page 106). In the
context of the business choreography view, we use business entity states to
specify transition guards in business collaboration protocols. Guarding a
transition by a business entity state implies that a transition is only effective
if the respective business entity is in the corresponding state (See “Business
Choreography View” on page 135).

7.2.2.2 Stereotypes

■ BusinessEntity (Class): A business entity is a real-world thing having
business significance for one or more business partners in a business
process (e.g. “order”, “account”, etc.).

■ BusinessEntityState (State): A business entity state is a certain state that
a business entity obtains in its lifecycle (e.g. an order is submitted, can-
celled, accepted, etc.).

■ BusinessEntityLifecycle (StateMachine): A business entity lifecycle
describes the flow in which business entity states occur.

7.2.2.3 Worksheets

Business entity view worksheet

■ Common Information
■ Business library information

Business entity worksheet

■ Common Information
■ Definition: A high-level definition describing the type of a business

entity as well as its purpose.
■ Pre-conditions: Describes requirements that have to be fulfilled in order

to execute a business entity lifecycle

1147.2 Business Requirements View
■ Post-conditions: Identifies conditions that have to be satisfied just after
the end of a business entity lifecycle (e.g. an order is confirmed).

■ Begins when: Specifies an event that initiates the lifecycle of a business
entity - usually it creates the object (e.g. the buyer creates an order as
soon as he has received a quote)

■ Ends when: Specifies an event that indicates the end of the business
entity lifecycle in the context of the considered collaboration. This is
mostly the last state in the lifecycle (e.g. an order is confirmed).

■ Exceptions: Identifies errors that may occur in the flow of a business
entity lifecycle

■ Identify each state in the lifecycle of a business entity and describe it
using the information defined beneath.

– Common Information
– Definition: A high-level definition describing the business entity

state in detail
– Predecessing states: Identifies one or more predecessors of this

state
– Valid actions: If a business entity reaches a certain state a set of

business actions can be taken (e.g. once an order is in state
accepted the notification of shipment of the order is a valid busi-
ness action).

7.2.2.4 Step by step modeling guide

1. Identify business entities
2. Describe the lifecycle of each business entity

Identify business entities

The business entity view is one of the simplest and fastest steps in the
UMM workflow. You may either describe all business entities in one busi-
ness entity view or you split them up in multiple packages.

Relevant business entities
are identified in the busi-
ness process view

Business entities are usually identified in the business process view. In
the business entity view each identified business entity is then described in
detail by its own worksheet. Table 7–4 shows the worksheet for the business
entity order that is part of the order from quote example.

Furthermore in our example, we define each business entity in its own
business entity view (Figure 7–10). A business entity lifecycle describes in
turn the states of a business entity. The business entity lifecycle is a stereo-
typed state machine and modeled as a child of the respective business entity.
Regarding the order from quote example, Figure 7–10 shows the contents of
the registration and the credit check business entity lifecycle.

1157.2 Business Requirements View
Fig. 7–10 Order from
quote example: business
entity view package
structure

Describe the lifecycle of each business entity

Use business entity states to
describe the business entity
lifecycle

A business process entity lifecycle contains a flow of states of a busi-
ness entity. Define the sequence in which the states occur by connecting
them via transitions. You may use UML pseudo states to denote concur-
rences and decisions.

Describing a business entity’s lifecycle is again based on the input cap-
tured by the corresponding worksheet. Regarding the order from quote
example we derive the business entity lifecycle as shown in Figure 7–11
from the order business entity worksheet (Table 7–4). As the first one in the
order lifecycle, the business entity state submitted is identified. Submitted is
in turn the predecessing state for the business entity states accepted and
rejected. In other words, after an order is submitted it may either be
accepted or rejected. After an order is either accepted or rejected the end of
the business entity lifecycle is reached.

1167.2 Business Requirements View
Tab. 7–4Example
worksheet for the order
business entityForm: BusinessEntity

General
Business Entity Name Order
Definition An order captures the goods or services that party A wants to buy

from party B.
Description An order is mostly a document that contains information about

goods and services a business partner wants to order from
another party. The respective goods and services that are
demanded are itemized using line items.
The acceptance of an order results in a residual obligation
between the two parties (buyer and seller) to fulfil the terms of a
contract.

Lifecycle
Pre-condition a quote is required
Post-condition none
Begins When an order is created by the buyer as soon as he receives a quote

that is acceptable for him
Ends When the order is confirmed (and filed correspondingly)
Exceptions none

Lifecycle State (submitted)
Name submitted
Definition The order is sent from the buying party to the selling party
Description The buyer created the order and transmitted it to selling party.

The selling party has then to decide about the acceptance of the
order

Predecessing State None (first state in the lifecycle)
Valid Actions None identified

Lifecycle State (accepted)
Name accepted
Definition The order is processed by the seller and he accepted the

fulfilment of the order
Description The seller accepts the order when he wants and is able to deliver

the demanded goods/services. As soon as the seller accepts the
order, an agreement is concluded between the two parties

Predecessing State submitted
Valid Actions Sending a notification of shipment

Lifecycle State (rejected)
Name rejected
Definition An order is rejected if the seller refuses to fulfil the purchase

order request issued by the buyer
Description The seller is allowed to refuse an order request without assigning

a reason for it. An order might be rejected if the seller is not able
to meet the demands of the buyer due to various reasons.(e.g. the
demanded goods are out of stock, requested allowances are
unacceptable,…)

Predecessing State submitted
Valid Actions The seller might send a counter offer

1177.2 Business Requirements View
Fig. 7–11 Order from
quote example: the
business entity lifecycle of
the order business entity

7.2.2.1 Artifacts

Results from the business entity view are business entities that are of
relevance to further collaborations. For each business entity its business
entity lifecycle is described by a flow of business entity states.

7.2.3 Collaboration Requirements View

7.2.3.1 Overview and purpose

The preceding work steps determine the need for possible collabora-
tions. In the collaboration requirements view we detail the requirements of
each identified collaboration. Requirements are again gathered by corre-
sponding worksheets and depicted through use case descriptions. The
requirements we capture include a rough list of performed actions, start and
end characteristics (e.g. begins when, ends when, etc.) and the participants
of the respective collaboration.

In the collaboration
requirements view the par-
ticipants of a collaboration
are determined

A collaborative process is called a binary collaboration if exactly two
roles participate. If more roles are involved it is called a multiparty collabo-
ration. The execution of a collaborative process includes several interac-
tions between its participants. In other words, a business collaboration is
built up by one or more interactions between its participating roles. An
interaction may either be a business transaction or a nested business collab-

sm Order

«BusinessEntityState»
submitted

«BusinessEntityState»
accepted

«BusinessEntityState»
rejected

1187.2 Business Requirements View
oration. The high-level actions list captured in the process’ requirements
serves as a starting point to identify required interactions.

Collaboration roles are
mapped to transaction roles

Furthermore the collaboration requirements view is used to map roles
participating in a collaboration to the corresponding transaction roles or
nested collaboration roles. In other words, this mapping defines which role
of a collaboration performs a certain role in a transaction or in a nested col-
laboration. Business collaborations that are later constructed in the business
choreography view rely on this mapping in order to collate actions to partic-
ipating parties.

7.2.3.2 Stereotypes

■ BusinessCollaborationUseCase (UseCase): A business collaboration
use case captures the requirements on a specific business collaboration
between two or more involved partners. Business partners participate in
a collaboration by playing an authorized role. A business collaboration
use case is composed of business transaction use cases and other busi-
ness collaboration use cases.

■ AuthorizedRole (Actor): An authorized role takes an active part in a col-
laboration or transaction. An authorized role is not a business partner,
but an abstract concept. In the collaboration realization view concrete
business partners are mapped to abstract authorized roles.

■ participates (Association): A participates association denotes that a cer-
tain authorized role takes part in the execution of a transaction or col-
laboration.

■ mapsTo (Dependency): Authorized roles of a business collaboration use
case are mapped to authorized roles of included business collaboration
uses cases or business transaction use cases via a mapsTo dependency.

7.2.3.3 Worksheets

Collaboration requirements view worksheet

Common Information
Business library information

Business collaboration use case worksheet

■ Common Information
■ Definition: Describes the overall customer value that is created by the

business collaboration for all participants.

1197.2 Business Requirements View
■ Participating roles: Identifies all roles participating in the business col-
laboration. Each identified participant is modeled as an authorized role
in a further step and connected with the business collaboration use case
via a participates association.

■ Affected business entities: Identifies business entities, which are
affected by the execution of the business collaboration. In other words,
this covers business entities whose states are changed during the execu-
tion of the business collaboration.

■ Pre-conditions: Describes requirements that have to be fulfilled in order
to execute the business collaboration (e.g. a customer has to be regis-
tered to request a quote or to order something).

■ Post-conditions: Identifies conditions that have to be satisfied just after
the execution of the business collaboration (e.g. an order is confirmed).

■ Begins when: Specifies business events that are required to initiate the
business collaboration. (e.g. the order collaboration is started as soon as
the buyer sends a quote request).

■ Ends when: Specifies business events that indicate the termination of a
business collaboration (e.g. the order collaboration is finished when the
contract between buyer and seller is established).

■ Exceptions: Identifies errors that may occur during the execution of a
business collaboration. This listing covers errors that are not considered
in the described collaboration flow.

■ Actions: Identifies all actions that are part of this business collaboration.

7.2.3.4 Step by step modeling guide

1. Describe the business collaboration use case
2. Identify the participants and denote them as authorized roles
3. Map collaboration roles to transaction roles or nested collaboration

roles

The need for each identified collaboration is manifested by its own business
collaboration use case. Each business collaboration use case has in turn to
be modeled in its own collaboration requirements view together with its
participating roles.

Describe the business collaboration use case

We start by modeling the business collaboration use case according to
the corresponding worksheet information. The business collaboration use
case worksheet captures the purpose and a listing of high-level actions of a
business collaboration use case.

1207.2 Business Requirements View
Example: order from quoteConsidering the order from quote example, Table 7–5 shows the work-
sheet for the order from quote business collaboration. Based on this work-
sheet we model a corresponding business collaboration use case (Figure 7–
12).

Fig. 7–12 Business
collaboration use case
order from quote

Identify the participants and denote them as authorized roles

Model the participating
roles

The worksheet further identifies the participants of the collaborative
business process. We add one authorized role for each participant to the col-
laboration requirements view. Then, each authorized role has to be con-
nected with the business collaboration use case via a participates associa-
tion. Depending if the collaboration is binary or multiparty, two or more
authorized roles are involved.

Tab. 7–5Example
worksheet for order from
quote

ud Order From Quote - collaboration only

«BusinessCollaborationUseCase»
Order From Quote

Buyer Seller

«participates»«participates»

Form: BusinessCollaborationUseCase

General

Business Collaboration Name Order From Quote

Definition The purpose of this business collaboration is provide a means for
a buyer to request a quote for required items from a seller and to
provide a means for a seller to provide the buyer with a formal
quote or quote rejection.

Description Once the buyer has received the quote, the buyer may chose to
purchase the items from the seller. If so, this business
collaboration provides a means for the buyer to send to the seller
a list of items that the buyer desires to purchase, and to provide a
means for the seller to send to the buyer a formal accecptance or
rejection of the buyer's order.

Start/End Characteristics

Affected Business Entities - Quote
- Order

Pre-condition Registration.registered

Post-condition Order.accepted or Order.rejected

Begins When Quote Requestor send to Quote Responder a list of items for
quotation

Ends When Buyer receives from a seller a formal acceptance or rejection of
an order placed with the seller

Exceptions None identifed

Actions

Description - The buyer sends to the seller a list of items that the buyer
requests the seller to quote.
- The seller sends to the buyer a formal quote or quote rejection
- If the buyer chooses to purchase from the seller, the buyer will
send an order to the seller.
- The seller will send to the buyer a formal acceptance or
rejection of the buyer's order.

1217.2 Business Requirements View
A collaboration require-
ments view is a namespace
for the elements it contains

An authorized role taking part in a certain collaboration must be
defined in the same collaboration requirements view as the corresponding
business collaboration use case. If an authorized role with the same name
(e.g. buyer, payer, etc.) participates in multiple collaborations a different
authorized role has to be defined for each business collaboration use case
(thus in each collaboration requirements view). The collaboration require-
ments view represents a namespace, hence two equally named authorized
roles that are modeled in different collaboration requirements views are not
identical. It follows, that two authorized roles in the same collaboration
requirements view must not have an identical name. The transaction
requirements view and the collaboration realization view use the same
mechanism to handle authorized roles.

Order from quote example:
add authorized roles for
buyer and seller

In our example we add one authorized role named buyer and one named
seller to the corresponding collaboration requirements view. Then connect
both with the business collaboration use case order from quote using a par-
ticipates relation (Figure 7–12).

Map collaboration roles to transaction roles or nested collaboration roles

Switching between collabo-
ration requirements view
and transaction require-
ments view is required

In the last stage of the collaboration requirements view we have to
determine which collaboration participant plays which role in an included
business transaction or nested business collaboration. Similar to business
collaboration use cases, business transaction use cases involve participat-
ing roles. However, the number of participating roles is limited to exactly
two roles. Business transaction use cases are further detailed in chapter
7.2.4.

Mapping collaboration
roles to transaction roles
and inner collaboration
roles

Once all included use cases and their participating roles are fixed, a
mapping of roles to the outer collaboration must take place. Each role of an
included transaction or nested collaboration has to be connected to exactly
one role of the outer collaboration. We denote this relationship via a mapsTo
dependency leading from the authorized role of the outer business collabo-
ration use case to the authorized role of the business transaction use case or
nested business collaboration use case.

Some constraints on rela-
tionships between partici-
pants

These mapping definitions have some logical constraints: only one role
of a business collaboration use case must have a mapsTo dependency to a
certain role of an included business transaction use case or business collab-
oration use case. It follows, that each role of an included business transac-
tion use case or business collaboration use case must be connected to
exactly one role of the including business collaboration use case.

Order from quote: map-
ping roles of the order from
quote collaboration

We demonstrate this modeling step again with our order from quote
example. Figure 7–13 shows the mapping between roles participating in the
order from quote collaboration and the particular roles of the request for
quote and place order transaction.

1227.2 Business Requirements View
Fig. 7–13 Order from
quote example: mapping
collaboration roles to
transaction roles and
nested collaboration roles

Diagrams lie!It is important that the business collaboration use case and the two par-
ticipating roles buyer and seller are the same as those shown in Figure 7–12.
It is just another diagram which exposes a different view on the same model
elements. In other words, the relationships that are defined in Figure 7–13
apply also to the business collaboration use case in Figure 7–12 after they
have been defined in some other diagram (in our example Figure 7–13).
However, if we look again at Figure 7–12, we would not see these relation-
ships until we drag the associated elements (e.g. the business transaction
use case place order) onto this diagram. Thus, we see that diagrams just
expose different views on the same model.

Considering the order from
quote collaboration

In our example we have two participants - buyer and seller - in the
order from quote collaboration. These participants are denoted as autho-
rized roles and linked with the business collaboration use case via a partic-
ipates relationship. The order from quote collaboration comprises two
transactions - request for quote and place order, which are denoted by busi-
ness transaction use cases. In order to indicate that the business transactions
are executed within the order from quote collaboration we connect them via
an include relation. Such an include relation leads from the business collab-
oration use case to the business transaction use cases.

Examining request for
quote

A business transaction is always conducted between exactly two roles.
Thus, a business transaction use case must always be connected with two
authorized roles. The business transaction use case request for quote is

ud Order From Quote

(from Request for Quote)

«BusinessTransactionUseCase»
Request for Quote

QuoteResponder

(from Request for Quote)

«BusinessCollaborationUseCase»
Order From Quote

QuoteRequestor

(from Request for Quote)

Buyer

(from Place Order)

Seller

(from Place Order)
(from Place Order)

«BusinessTransactionUseCase»
Place Order

Buyer Seller

«mapsTo»«mapsTo»

«include» «include» «mapsTo»
«mapsTo»

«participates»«participates»

«participates»«participates»

«participates»«participates»

1237.2 Business Requirements View
associated with the authorized roles quote requestor and quote responder.
All three model elements are annotated with from request for quote. This
means that these elements are part of a different package (but visualized on
this diagram that is located in the order from quote collaboration require-
ments view) and hence appear in a different namespace.

The two buyers are not
identical - the place order
transaction and its partici-
pants

Considering the business transaction use case place order we have
again two associated authorized roles - buyer and seller. Again the
namespace annotation from place order points out that the business transac-
tion use case and the two authorized roles are part of a different package.
Furthermore the namespace clarifies that the authorized roles connected
with the business collaboration use case are not the same as the two associ-
ated with the business transaction use case, although they are named identi-
cally.

The buyer of the collabora-
tion maps to the quote
requestor of the place order
transaction etc....

In the last step we determine which authorized role participating in the
order from quote collaboration plays which role of the two included busi-
ness transaction use cases. We indicate that the buyer of the order from
quote collaboration takes up the role of the quote requestor in the request
quote transaction using a mapsTo association. Similarly, in order to specify
that the seller (of the order from quote collaboration) plays the role of the
quote responder, we drag a mapsTo from the seller to the quote responder. It
follows, that a mapsTo leads always from the role participating in the collab-
oration to the respective role of the transaction or nested collaboration. Con-
sidering the place order transaction we want to define that the buying role is
fulfilled by the buyer of the order from quote collaboration. Thus, the seller
of the collaboration is specified to be the seller in the place order interac-
tion. In order to manifest this mapping we connect the buyer of the order
from quote collaboration with the buyer of the place order transaction and
similarly the seller of the collaboration with the seller of the transaction.

It is not necessary to depict mapsTo relationships in use case diagrams.
You might also specify these relationship directly to the model elements
without visualizing them on diagrams. Towards a straightforward mapping
of roles, adopting use case diagrams is recommended though.

7.2.3.1 Artifacts

The collaboration requirements view results in a business collabora-
tion use case capturing the requirements on a collaboration. Participants of
a collaboration are identified and described as authorized roles. Further-
more, relations to authorized roles participating in included transactions or
collaborations are specified.

1247.2 Business Requirements View
7.2.4 Transaction Requirements View

7.2.4.1 Overview and purpose

The purpose of the transaction requirements view is quite similar to the
collaboration requirements view. However, this step focuses on atomic
interactions between partners in the workflow of a collaboration, so called
transactions. Transactions describe an information exchange between roles,
consisting of a request and an optional response.

Transaction describe an
information exchange
between two roles

Interactions are performed between exactly two participants. Thus,
exactly two authorized roles take part in a business transaction use case. It
is a task of this view to describe the two authorized roles participating in the
transaction.

7.2.4.2 Stereotypes

■ BusinessTransactionUseCase (UseCase): A business transaction use
case describes the requirements of a business transaction. A business
transaction describes an atomic one-way or two-way message exchange
between exactly two participants.

■ AuthorizedRole (Actor): An authorized role takes an active part in a col-
laboration or transaction. An authorized role is not a business partner,
but an abstract concept. Later concrete business partners are mapped to
collaboration roles which in turn map to transaction roles.

■ participates (Association): A participates association denotes that a cer-
tain authorized role takes part in the execution of a transaction or col-
laboration.

7.2.4.3 Worksheets

Transaction requirements view worksheet

■ Common Information
■ Business library information

Business transaction use case worksheet

■ Common Information
■ Definition: Describes the overall customer value that is created by the

business transaction for all participants.
■ Requesting role: Identifies the role that initiates the business transac-

tion. The identified participant is then modeled as an authorized role

1257.2 Business Requirements View
and connected with the business transaction use case via a participates
association.

■ Responding role: Identifies the role that is the reactor of the business
transaction. Using this information a new authorized role is modeled
and connected with the business transaction use case via a participates
association.

■ Requesting activity: Specifies the name of the activity performed by the
requesting role in the business transaction

■ Responding activity: Specifies the name of the activity performed by the
responding role in the business transaction.

■ Affected business entities: Identifies business entities, which are
affected by the execution of the business transaction. In other words,
this information covers business entities whose state is changed by exe-
cuting the business transaction.

■ Pre-conditions: Describes requirements that have to be fulfilled in order
to execute the business transaction (e.g. a quote has to be requested
prior to an order submission).

■ Post-conditions: Identifies conditions that hold after the execution of
the business transaction (e.g. a quote is issued).

■ Begins when: Specifies business events for the initiation of the business
transaction. It may be used to specify a semantic state, that has to be
reached in order to start the process (e.g. the place order transaction
starts when the buyer identifies the need to fill up stock).

■ Ends when: Specifies business events that indicate the termination of a
business transaction (e.g. the place order transaction is finished when
the buyer receives the order confirmation from the seller).

■ Exceptions: Identifies errors that may occur during the execution of a
business transaction.

7.2.4.4 Step by step modeling guide

1. Describe the business transaction use case
2. Identify participating roles

One business transaction
use case per transaction
requirements view

Similar to business collaboration use cases, a business transaction use case
captures the requirements of exactly one business transaction. Hence,
model each business transaction use case in its own transaction require-
ments view.

1267.2 Business Requirements View
Tab. 7–6Order from quote
example: worksheet
capturing the
requirements of the
business transaction use
case request for quote

Tab. 7–7Order from quote
example: worksheet for
the business transaction
use case place order

Describe the business transaction use case

Modeling the transaction requirements view starts with the business
transaction use case. Information detailing its requirements and its desired
behavior is captured in the appropriate worksheet for a business transaction

Form: BusinessTransactionUseCase

General

Business Transaction Name Request for Quote

Definition The purpose of this business transaction is to allow a means for a
quote requestor to send a list of items to a quote responder for
quotation, and to provide a means for the quote responder to send
to the quote requestor either a formal quote or a quote rejection.

Requesting Role QuoteRequestor

Responding Role QuoteResponder

Requesting Activity obtain quote

Responding Activity calculate quote

Start/End Characteristics

Affected Business Entities Quote

Pre-condition Registration.registered

Post-condition Quote.provided or Quote.refused

Begins When quote requestor sends quote to quote responder

Actions obtain quote; calculate quote

Ends When quote requestor receives from quote responder a quote or quote
rejection

Exceptions none identified

Form: BusinessTransactionUseCase

General

Business Transaction Name Place Order

Definition The purpose of this business transaction is to provide a means for
a buyer to send to the seller a list of items that they wish to
purchase, and to provide a means for a seller to send to the buyer
a formal acceptance or rejection of the buyer's order.

Requesting Role Buyer

Responding Role Seller

Requesting Activity submit order

Responding Activity process order

Start/End Characteristics

Affected Business Entities Order

Pre-condition Quote.provided

Post-condition Order.accepted or Order.rejected

Begins When buyer sends order to seller

Actions submit order; process order

Ends When buyer receives from seller a formal acceptance or rejection of the
order placed with the seller

Exceptions none identified

1277.2 Business Requirements View
use case. In our order from quote example we derive a business transaction
use case called request for quote (Figure 7–14) from the corresponding
worksheet shown in Table 7–6. Similarly, we model a business transaction
use case named place order (Figure 7–15) based on the respective work-
sheet input shown in Table 7–7.

Identify participating roles

Derive the participating
roles from the business
transaction use case work-
sheet

As described above, exactly two authorized roles take an active part in
a transaction. Thus, we add two authorized roles to the transaction require-
ments view and connect each of them with the business transaction use case
via a participates association. We derive the names for the participating
authorized roles from the corresponding worksheet fields (requesting and
responding role). In our request for quote transaction (Figure 7–14) there is
one role called quote requestor and one quote responder.

Fig. 7–14 Order from
quote example: business
transaction use case
register customer

In a similar way, we derive the roles buyer and seller taking part in the
place order business transaction use case (Figure 7–15). Again we indicate
that both authorized roles take part in the business transaction use case by
connecting them with the business transaction use case via a participates
association.

Fig. 7–15 Order from
quote example: business
transaction use case
place order

Similar to the collaboration requirements view, each role participating
in a transaction must be defined in the particular transaction requirements
view. If the same role (e.g. payer, seller, etc.) takes part in more than one
transaction, add one authorized role with the same name to each transaction
requirements view.

ud Request for Quote

«BusinessTransactionUseCase»
Request for Quote

QuoteRequestor QuoteResponder

«participates»«participates»

ud Place Order

Buyer Seller

«BusinessTransactionUseCase»
Place Order «participates»«participates»

1287.2 Business Requirements View
7.2.4.1 Artifacts

Results from the transaction requirements view are the requirements of
identified business transactions described by business transaction use
cases. We create use case diagrams containing the business transaction use
case and its two participating authorized roles. Furthermore, the business
transaction use case worksheet captures a set of requirements of the corre-
sponding business transaction.

7.2.5 Collaboration Realization View

7.2.5.1 Overview and purpose

A business collaboration
realization realizes a busi-
ness collaboration with a
specific set of business
partners

The collaboration realization view is a concept to assign business part-
ners to authorized roles participating in a collaboration. In the UMM a
direct association of business partners with collaboration or transaction
roles is not allowed. Collaboration realization views allow that different
sets of business partners perform the same collaboration.

Business partners take up
roles of a collaboration
realization

The roles participating in a business collaboration realization corre-
spond to the roles of the business collaboration use case that is realized.
Business partners are mapped to collaboration realization roles in order to
define which role a business partner plays in a certain collaboration. A busi-
ness collaboration realization captures no additional requirements, but the
requirements of the realized collaboration apply also for the collaboration
realization.

The collaboration realiza-
tion view enhances scal-
ability

The collaboration realization view is a highly scalable concept that
allows that the same collaboration is performed by an unlimited set of busi-
ness partners. Thus, it boosts reusability of identified business collabora-
tions with no increase in complexity.

7.2.5.2 Stereotypes

■ BusinessCollaborationRealization (UseCase): A business collabora-
tion realization realizes an abstract collaboration between a set of busi-
ness partners. Business collaboration realizations capture no additional
requirements, but the requirements of a realized collaboration also
apply for the collaboration realization.

■ AuthorizedRole (Actor): An authorized role takes an active part in a col-
laboration or transaction. Authorized roles of a business collaboration
realization correspond to the authorized roles of the realized business
collaboration use case. Thus no additional semantic is added. Business

1297.2 Business Requirements View
partners are mapped to authorized roles, to indicate which role a partner
performs in a certain collaboration.

■ participates (Association): A participates association denotes that a cer-
tain authorized role takes part in a collaboration realization.

■ mapsTo (Dependency): Authorized roles of a collaboration realization
are mapped to their corresponding collaboration roles. Finally, the
mapsTo relation is used to indicate which authorized role of a business
collaboration realization a business partner has.

■ BusinessPartner (Actor): A business partner is a certain type of party
taking up a role in the execution of a collaboration. Business partners
are not defined in the collaboration realization view, but used during the
modeling workflow in order to indicate which role is performed by a
certain partner in a collaboration.

7.2.5.3 Worksheets

Collaboration realization view worksheet

■ Common Information
■ Business library information

Business collaboration realization worksheet

■ Common Information
■ Business collaboration specification: Identifies the business collabora-

tion, which is realized by this business collaboration realization.
■ Participating roles: Denotes the authorized roles that participate in the

business collaboration realization. Usually, these roles correspond to
the roles of the business collaboration.

■ Partner roles: Identifies business partners that participate in the collab-
oration. Furthermore, it is specified which role is played by which busi-
ness partner.

7.2.5.4 Step by step modeling guide

1. Describe the business collaboration realization and identify the re-
alized business collaboration

2. Map business partners to authorized roles

1307.2 Business Requirements View
Describe each business col-
laboration realization in its
own collaboration realiza-
tion view

Modeling collaboration realization views is the last step in the BRV. Each
business collaboration realization is described in its own collaboration
realization view. Thus, model exactly one business collaboration realiza-
tion use case in one collaboration realization view. In order to facilitate
modeling in this view using a use case diagram is recommended. Model
elements that are not part of the collaboration realization view, but used in
this view (e.g. business collaboration use case, business partners) may be
dragged on the use case diagram.

Tab. 7–8Order from quote
example: worksheet for
the order from quote
collaboration realization

Describe the business collaboration realization and identify the realized business
collaboration

Add a business collaboration realization to the collaboration realiza-
tion view. It is suggested, that you name the collaboration and its realization
equally. In order to indicate that a business collaboration realization real-
izes a certain business collaboration use case connect them with a realize
dependency. The realize dependency leads from the business collaboration
realization to the business collaboration use case.

Order from quote exampleIn our order from quote example we specify a business collaboration
realization named order from quote (see Figure 7–16) based on the work-
sheet input of Table 7–8. Then we drag a realize association from the busi-
ness collaboration realization to the business collaboration use case. We
facilitate this by dragging the already existing business collaboration use
case onto the use case diagram.

Each role of a collabora-
tion realization corresponds
to one role of a business
collaboration use case

Add one authorized role to the collaboration realization view for each
participating authorized role of the realized business collaboration use
case. Connect the authorized roles of the business collaboration realization
use case with their corresponding authorized roles of the business collabo-
ration use case via a mapsTo dependency. The mapsTo dependency leads
from the collaboration realization roles to the business collaboration roles.
Exactly one authorized role of the business collaboration realization use
case must be connected with exactly one authorized role of the business
collaboration use case. In order to reduce complexity we suggest to use the
same names for the authorized roles of the collaboration requirements view
and the collaboration realization view.

Form: BusinessCollaborationRealization

General

Realization Name Order From Quote

Business Collaboration Specification Order From Quote

Participants Buyer, Seller

Partner roles Purchasing Organization (Buyer), Selling Organization (Seller)

1317.2 Business Requirements View
Considering Figure 7–16 we add two new authorized roles to the col-
laboration realization view - one called buyer and one called seller. As rec-
ommended we name these roles identically to the participants of the busi-
ness collaboration use case. Subsequently, we denote the relationship
between the buyer of the business collaboration realization and the buyer of
the business collaboration use case using a mapsTo association. The seller-
to-seller relationship is similarly constituted via a mapsTo.

Fig. 7–16 Business
collaboration realization
order from quote and the
assignment of business
partners to collaboration
realization roles

Map business partners to authorized roles

Define the business partner
that plays a certain role

In a last step, define which business partner takes up a certain role in a
collaboration realization. Therefore, connect a business partner with the
corresponding authorized role of the business collaboration realization via
a mapsTo dependency leading from the business partner to the authorized
role.

Order from quote example:
the purchasing organization
plays the buyer role...

Two business partners - a purchasing organization and a selling orga-
nization - are taking up an active part in our order from quote example. The
purchasing organization plays the role of the buyer in the order from quote
collaboration. Hence, we indicate this participation via mapsTo association
leading from the purchasing organization - the business partner - to the
buyer - the authorized role. We do the same for the business partner named

ud Order From Quote

«BusinessCollaborationRealization»
Order From Quote

Buyer

Buyer

(from Order From Quote)

Seller

(from Order From Quote)
(from Order From Quote)

«BusinessCollaborationUseCase»
Order From Quote

Seller

Purchasing
Organization

(from Order From Quote)

Selling Organization

(from Order From Quote)

«realize»

«mapsTo»«mapsTo»

«mapsTo»«mapsTo»

«participates»«participates»

«participates»«participates»

1327.3 Business Transaction View
selling organization in order to specify its commitment to fulfill the selling
part in the order from quote collaboration.

Each business partner performs at most one role in one collaboration
realization view, but the same business partner may play different autho-
rized roles in different collaboration realization views.

7.2.5.1 Artifacts

The collaboration realization view results in a formal use case descrip-
tion. Amongst other things it denotes which business partner plays which
role in the collaboration under consideration. Each different set of business
partners performing a collaboration results in one business collaboration
realization of that collaboration, hence also in one collaboration realization
view.

7.3 Business Transaction View

7.3.0.1 Overview and purpose

Business collaborations are
constructed in the business
transaction view

The business transaction view is the last of the three main views in the
UMM workflow. In this stage business collaborations are constructed in
accordance to the requirements collected in previous work steps. Artifacts
in this view are modeled from the business analyst’s point of view, based
upon the knowledge and artifacts gained from the business requirements
view.

Business collaborations are
composed of interactions
(transactions) between
roles

A business collaboration is composed of interactions between its partic-
ipating partners. It is the purpose of the business transaction view to
describe the choreography of interactions and the information that is
exchanged in these interactions.

Modeling the business transaction view is divided in three subviews
that together describe the overall choreography of information exchanges
[FOU03]. The business choreography view defines the flow of business col-
laborations which may be composed of several interactions. Business col-
laborations are described by means of business collaboration protocols and
implement the requirements gathered from the corresponding collaboration
requirements views.

Interactions are described
by business transactions,
their requirements are cap-
tured in transaction
requirements views

Interactions between business partners result in an information
exchange that consists of a request and an optional response. The concept of
a business transaction is used in UMM to capture an interaction between
participants. Business transactions are described in business interaction
views, the requirements on business transactions are captured in the corre-
sponding transaction requirements views.

1337.3 Business Transaction View
Exchanged information is
modeled in business infor-
mation views

The information that is exchanged in a business transaction is captured
in the third subview of the business transaction view. Business information
views are used as containers to model the structure of exchanged informa-
tion.

The business transaction view covers all aspects to construct executable
B2B collaborations between the information systems of business partners.
Business collaboration models developed in this stage may be transformed
to machine-interpretable process descriptions in a further step. Chapter 9
explains how a BPEL process description is derived from a UMM business
collaboration.

7.3.0.2 Stereotypes

■ BusinessChoreographyView (Package): A business choreography view
is a container to capture all artifacts describing the flow of a business
collaboration.

■ BusinessInteractionView (Package): A business interaction view is a
container to capture all artifacts describing an interaction between two
business partners.

■ BusinessInformationView (Package): A business information view is a
container to capture the structure of information that is exchanged in an
interaction.

7.3.0.3 Worksheets

The worksheets of the business transaction view are described in the contin-
uative sections of the particular subviews of which they are part of. How-
ever, we utilize the business library worksheet to gather common informa-
tion about the business transaction view package.

Business transaction view worksheet

■ Common Information
■ Business library information

7.3.0.4 Step by step modeling guide

1. Choreograph business collaborations by means of business collabo-
ration protocols

2. Describe information exchanges using business transactions
3. Specify information that is exchanged in business transactions

1347.3 Business Transaction View
The business transaction view is a container for the three subviews: busi-
ness choreography view, business interaction view and business informa-
tion view. It must not contain any other modeling elements.

Choreograph business collaborations by means of business collaboration
protocols

Each business collabora-
tion protocol must be speci-
fied in its own business
choreography view

Modeling the business transaction view should be started with describ-
ing the flow of business collaborations. A business collaboration is
described by a business collaboration protocol. Each business collabora-
tion protocol needs to be placed in its own business choreography view.
Thus add a business choreography view for every business collaboration
that has to be defined.

Describe information exchanges using business transactions

Place each business trans-
action in its own business
interaction view

A business collaboration is composed of one to many information
exchanges between its participants. In this version of the UMM, business
transactions are the only concept to describe these interactions. Each busi-
ness transaction has to be modeled in its own business interaction view.

Specify information that is exchanged in business transactions

Describe business informa-
tion in business information
views

In order to model the structure of the business information that is
exchanged in business transactions you may use one or more business
information views. UMM makes no restriction here: you may utilize multi-
ple business information views to gain a semantical separation or you may
use only one business information view.

Fig. 7–17 Order from
quote example: package
structure in the BTV

Explaining the BTV pack-
age structure of the order
from quote example

Modeling the business transaction view in our order from quote exam-
ple results in the package structure shown in Figure 7–17. We choreograph
two business collaborations - register customer and order from quote - each
in its own business choreography view.

1357.3 Business Transaction View
The business collaboration protocols include a set of business transac-
tions. Each business transaction - register customer, request for quote and
place order - is specified in detail in a business interaction view.

Finally, we describe the information that is exchanged in business
transactions. In our example, each information envelope is modeled in its
own business information view. This results in three business information
views. In general, it is up to the modeler to decide upon the number of busi-
ness information views.

7.3.0.1 Artifacts

Modeling the business transaction view results in business collaboration
protocols. Defining a choreography, the interactions that build up a collabo-
ration are specified by business transactions. The business information
that is exchanged in business transactions is captured using class descrip-
tions. Artifacts that are derived in the business transaction view may be
used in further steps to generate machine-executable process specifications.

7.3.1 Business Choreography View

7.3.1.1 Overview and purpose

The business choreography
view focuses on the flow of
complex business collabo-
rations

In a business choreography view the workflow of a business collaboration is
described. Business collaborations cover one or more interactions between
their participating partners. The order of occurrence of these interactions
might be complex including concurrences and decision nodes that influence
the execution order. Choreographies are used to indicate possible flows in
the execution order of interactions that are part of a collaboration. In order
to query or reference the state of a business collaboration, the concept of
persistent representations are used to capture the currently performed step in
the execution workflow.

In UMM choreographies are defined by the abstract concept of a busi-
ness choreography behavior. A business choreography is a persistent repre-
sentation of a business choreography behavior that captures the current
state of its execution. In this version of the UMM business collaboration
protocols are the only valid specialization of a business choreography
behavior to describe the flow of a collaboration. In future versions other
concepts may be developed to describe the flow of collaborative processes.

Business transaction activi-
ties are refined by business
transactions

An interaction in a business collaboration protocol may be either
denoted as a business transaction activity or a business collaboration activ-
ity. Business transaction activities reference to an underlying business
transaction.

1367.3 Business Transaction View
Business collaboration pro-
tocols may be nested using
business collaboration
activities

A Business collaboration activity is refined by another business collab-
oration protocol. Thus, business collaboration protocols may be nested to
model complex collaborations in more detail. Business collaboration proto-
cols are reusable artifacts, hence one business collaboration protocol may
refine more than one business collaboration activity.

Roles that participate in a
business collaboration are
specified in the collabora-
tion requirements view

A business collaboration protocol complies to the requirements speci-
fied in a corresponding business collaboration use case. This includes the
definition of roles that participate in a certain collaboration. In order to indi-
cate which role of a business transaction or nested business collaboration
protocol is played by which role of the (outer) business collaboration proto-
col, a well-defined role mapping mechanism is applied in the workflow of
the collaboration requirements view (see 7.2.3). Two or more roles may be
actively involved in a collaboration. If exactly two roles participate, a col-
laboration is called a binary collaboration, otherwise if more than two roles
participate, it is called a multiparty collaboration.

7.3.1.2 Stereotypes

■ BusinessChoreography (Class): A business choreography is a persistent
representation of the current state of execution of a business collabora-
tion. In this version of the UMM, the behavior of a business choreogra-
phy must be described by a business collaboration protocol.

■ BusinessCollaborationProtocol (ActivityGraph): A business collabora-
tion protocol choreographs the flow of activities of a business collabora-
tion. Activities of a business collaboration protocol may either be busi-
ness transaction activities or business collaboration activities.

■ BusinessTransactionActivity (ActionState): A business transaction
activity is an activity within a business collaboration protocol and indi-
cates an information exchange between exactly two roles. A business
transaction activity is refined by a business transaction.

■ BusinessCollaborationActivity (ActionState): A business collaboration
activity is an activity within a business collaboration protocol and indi-
cates a complex interaction between two or more collaboration roles. A
business collaboration activity is refined by a business collaboration
protocol. Thus, business collaboration protocols may be nested recur-
sively.

■ mapsTo (Dependency): A mapsTo dependency is used in the business
choreography view to specify the refining business transaction of a
business transaction activity or the refining business collaboration pro-
tocol of a business collaboration activity. In both cases the mapsTo
leads from the activity to the activity graph. Furthermore a mapsTo
dependency is needed to depict which business collaboration use case

1377.3 Business Transaction View
holds the requirements of a business collaboration protocol. In order to
indicate this relation add a mapsTo leading from the business collabora-
tion protocol to the business collaboration use case.

7.3.1.3 Worksheets

Business collaboration view worksheet

■ Common Information
■ Business library information

Business collaboration worksheet

■ Common Information
■ Definition: Describes the overall customer value that is created by the

business collaboration for all participants.

7.3.1.4 Step by step modeling guide

1. Model the business choreography and the business collaboration
protocol

2. Associate the business collaboration protocol with the correspond-
ing business collaboration use case

3. Describe the choreography of the business collaboration protocol

Constructing business collaborations is the major goal of the UMM. This
stage is one of the most important in the modeling workflow. In this version
of the UMM, a business collaboration protocol is the only valid concept to
choreograph the flow of a business collaboration. Each business collabora-
tion protocol must be described in its own business collaboration view.

Tab. 7–9Worksheet
describing the order from
quote choreography

Form: BusinessChoreography

General

Name Order From Quote

Definition The purpose of this business collaboration is provide a means for
a buyer to request a quote for required items from a seller and to
provide a means for a seller to provide the buyer with a formal
quote or quote rejection.

Description Once the buyer has received the quote, the buyer may chose to
purchase the items from the seller. If so, this business
collaboration provides a means for the buyer to send to the seller
a list of items that the buyer desires to purchase, and to provide a
means for the seller to send to the buyer a formal accecptance or
rejection of the buyer's order.

1387.3 Business Transaction View
Model the business choreography and the business collaboration protocol

Specify the business chore-
ography that captures the
current state in the execu-
tion of a business collabo-
ration protocol

At first, the persistent representation of a business collaboration proto-
col needs to be described by a business choreography. Thus add one busi-
ness choreography class to the business choreography view. A business col-
laboration protocol specifies the behavior of a business choreography.
Hence, add the business collaboration protocol as a child of the business
choreography. This indicates that the business choreography always cap-
tures the current state of the business collaboration protocol execution.
Considering Figure 7–18 we explain this structure again by the order from
quote collaboration. A business choreography (BC) named order from
quote is added to a business choreography view (also called order from
quote). The business choreography captures the state of the order from
quote business collaboration protocol (BCP), which is modeled as a child
of the business choreography.

Fig. 7–18 Relationship
between a business
choreography (BC) and a
business collaboration
protocol (BCP)

Associate the business collaboration protocol with the corresponding business
collaboration use case

A business collaboration
protocol maps to a business
collaboration use case

Afterwards, associate the business collaboration protocol with the cor-
responding business collaboration use case that captures its requirements.
In order to indicate this relation a mapsTo dependency is used, leading from
the business collaboration protocol to the business collaboration use case.

Describe the choreography of the business collaboration protocol

The choreography of a
business collaboration pro-
tocol is constructed using
the worksheet input from
the corresponding business
collaboration use case

Table 7–9 shows the example worksheet for the order from quote busi-
ness choreography. The choreography worksheet captures only basic input
for the upcoming collaboration (e.g. name, definition,...). The main task -
describing a business collaboration protocol as a flow of interactions
between its participants - is accomplished by the business analyst using the
worksheet input from the corresponding business collaboration use case.
The business collaboration use case worksheet further references the
actions (transactions and nested collaborations) that are performed during

1397.3 Business Transaction View
its execution. The business analyst constructs the choreography of the col-
laboration, using the start and end characteristics of these actions, which are
described again in their particular worksheets.

Business transaction activi-
ties denote a simple infor-
mation exchange between
two authorized roles

The main task of the business choreography view describes the chore-
ography of the collaboration by an activity graph showing activities as well
as UML pseudo and final states. Activities used in a business collaboration
protocol may be business transaction activities and business collaboration
activities. A business transaction activity indicates a simple interaction
between two partners that result in an information exchange. This informa-
tion exchange is further described by a business transaction. Connect the
business transaction activity with its refining business transaction via a
mapsTo dependency, leading from the business transaction activity to the
business transaction. In this step of the modeling workflow, business trans-
actions have not been described yet. Thus you may define the mapsTo map-
ping after you have described all business transactions in the business inter-
action view. Another alternative is switching between business
choreography view and business interaction view and modeling a refining
business transaction immediately after the business transaction activity.

A business transaction activity might be executed more than once at the
same time in order to serve collaborations with different partners. Further-
more, a business transaction activity must be finished within a given time-
frame. These features are specified via the is concurrent and the time to per-
form properties.

Use business collaboration
activities to nest business
collaboration protocols

Business collaboration activities indicate a complex interaction
between two or more roles, hence a business collaboration activity is further
described by another business collaboration protocol. Nested business
transactions or business collaboration protocols may be reused to refine
multiple business transaction activities or business collaboration activities.
Modeling the relationship between a business collaboration activity and a
refining business collaboration protocol is done via a mapsTo dependency.
Similar to the relationship between business transaction activity and busi-
ness transaction, the mapsTo leads from the business collaboration activity
to the nested business collaboration protocol.

Use transitions, pseudo and
final states to choreograph
the flow of execution

In order to describe a complex control flow common UML pseudo and
final states may be used. Pseudo states may include initial states, decisions,
forks and joins. Initial States denote the start of a business collaboration
protocol. The successor of an initial state should be a business transaction
activity or a business collaboration activity, it is not recommended to use a
pseudo state in this place. Furthermore, the transition between the initial
state and the first action state should not have a transition guard. A decision
indicates a choice between two or more possibilities using condition guards.
Concurrences in a flow of activities are indicated via forks and joins. Final

1407.3 Business Transaction View
states signalize the end of a business collaboration protocol. UN/CEFACT
suggests, but does not mandate, to use at least one final state to indicate a
failure and one to indicate a successful execution. Similar as for initial
states, only action states should be predecessors of final states. As in com-
mon UML activity graphs, transitions are used to denote the flow between
action states of a business collaboration protocol.

Fig. 7–19 Example
business collaboration
protocol choreographing
the order from quote
collaboration

Specifying transition
guards

If an action state - either a business transaction activity or a business
collaboration activity - or a pseudo state has more than two outgoing tran-
sitions, transition guards must be used. UN/CEFACT suggests to use busi-
ness entity states - from the business entity view in the BRV - to guard tran-
sitions. This indicates that a business entity has to be in a certain state in
order to execute the transition (e.g. an order must be submitted). Another
alternative denoting transition guards are BPSS condition expressions
[BPS03]. Anyway, there is no strict schema that defines the notation of tran-
sition guards, but it is strongly suggested to use business entity states or
other semantically meaningful notations.

Example: examining the
order from quote collabora-
tion in detail

The order from quote collaboration results in the business collaboration
protocol shown in Figure 7–19. Starting from the initial state the first inter-
action is the business transaction activity named request for quote. This
business transaction activity is refined by an identically named business
transaction that details an information exchange. As the guard on the tran-

ad Order Product

«BusinessTransactionActivity»
Request for Quote

«BusinessTransactionActivity»
Place Order

Success

Failure

[Registration.registered]

[Order.rejected]

[Order.accepted]

[Quote.refused]

[Quote.provided]

1417.3 Business Transaction View
sition leading to request for quote indicates, the business entity registration
must be in state registered in order to execute the transition. If the request
for quote is refused the left transition leading to a final state is executed. In
this case the collaboration failed on the business level. But if the request for
quote succeeds - in other words if a quote is provided - we get to the next
interaction called place order. This business transaction activity is again
refined by a business transaction that deals with the submission of an order.
If the order is successfully placed the corresponding business entity captur-
ing the order status switches to state accepted. The transition that requires
the order to be accepted is executed and we reach the final state called suc-
cess. However, if the order placement fails in the respective transaction the
order business entity gets in a state rejected. According to its flow, the col-
laboration consequently fails.

7.3.1.1 Artifacts

Modeling the business choreography view results in collaborative pro-
cesses specified by business collaboration protocols. Business collabora-
tion protocols contain a flow of business transactions and nested business
collaboration protocols that describe the modeled process in detail.

7.3.2 Business Interaction View

7.3.2.1 Overview and purpose

The business interaction view captures the sequence of an interaction on the
lowest level of granularity. Such interactions cover an information
exchange between exactly two roles, consisting of a request from the initiat-
ing role and an optional response from the reacting role.

Business transactions
describe an information
exchange

In the UMM interactions are defined by the abstract concept business
interaction behavior. A business interaction is a persistent representation of
a business interaction behavior that allows to capture the current state of its
execution. In this version of the UMM, a business transaction is the only
specialization of a business interaction behavior choreographing an infor-
mation exchange. Other approaches of a business interaction behavior may
be developed in a future version.

Requirements are captured
by business transaction use
cases

The requirements on a business transaction are captured by a corre-
sponding business transaction use case located in a transaction require-
ments view in the BRV. The business transaction use case defines the two
participating roles and identifies the purpose of the business transaction as
well as the actions performed.

1427.3 Business Transaction View
Choreography of a business
transaction

A business transaction refines a business transaction activity that is
part of a business collaboration protocol. In order to execute a business
transaction activity, the sequence of the refining business transaction is
started. The first step in a business transaction is a requesting business
activity performed by the initiating role. The requesting business activity
outputs an envelope that is transmitted to the corresponding partner. When
the reacting role receives the envelope an activity is started. This respond-
ing business activity processes the received envelope. If required by the
workflow, a response envelope is created by the responding business activ-
ity and sent to the initiating role. The initiating role receives the envelope
and processes it. In case of a response the business transaction terminates
when the initiating role receives and finishes processing the response enve-
lope. Otherwise the business transaction is completed when the reacting
role receives and finalizes processing the requesting envelope.

Synchronizing the states of
business entities between
business partners

The exchange of information performed by a business transaction is
needed to synchronize the states of affected business entities. If a business
entity state is of common interest, the partner that recognizes the state
change initiates the business transaction. The execution of a business trans-
action leads to synchronized states in both partners’ systems. If the initiat-
ing partner informs its counterpart about an irreversible state (e.g. a dunning
letter, an order was shipped, etc.) a one-way transaction is performed. The
corresponding partner has to accept the state change of a business entity.
Otherwise, if an action of the other partner is required (e.g. price request,
order submission, etc.) a two-way transaction is used. In case of a two-way
transaction, the state of a business entity is set to an interim state when the
requesting envelope is transmitted and set to a final state by the reacting
partner. In this case the reacting partner decides about the final state. After a
business transaction is completed the state of affected business entities is
irreversible. If the previous states of business entities need to be reestab-
lished, another compensating business transaction is needed. A simple roll-
back, as common in a database environment, is not possible in the interac-
tion of e-business systems.

Tagged values specify dif-
ferent requirements on busi-
ness transactions

Each one-way and two-way business transaction follows the corre-
sponding workflow schema described above. But real-world business trans-
actions differ in their purpose of information exchange (e.g. price query,
order submission, etc.). This results in a different level of importance that in
turn results in different requirements regarding security and legal aspects. In
order to cover these requirements tagged values are used to parametrize
security facets and legal aspects.

UMM defines six, two one-way and four two-way, business transaction
patterns that are suitable for every real-world transaction purpose (e.g. com-
mercial transaction, notification, etc.). These patterns differentiate from

1437.3 Business Transaction View
each other in different tagged value settings resulting in different legal and
security constraints. If required, a business transaction pattern can be further
customized by altering certain tagged value settings. The six business trans-
action patterns are further detailed in Appendix - Business Transaction Pat-
terns.

7.3.2.2 Stereotypes

■ BusinessInteraction (Class): A business interaction is a persistent rep-
resentation of the execution of a business interaction behavior. In this
version of the UMM, business transactions are the only valid concept to
describe a business interaction behavior.

■ BusinessTransaction (ActivityGraph): A business transaction describes
an information exchange between exactly two participants including a
request from the initiating role and an optional response from the react-
ing role. Business transactions are used to synchronize the states of
business entities between two partners. If the initiating partner informs
its counterpart about an irreversible state (e.g. notification of shipment),
a one-way transaction is used. Then the corresponding partner has to
accept the state of a business entity. Otherwise, if an action of the other
partner is required (e.g. price request, order submission, etc.) a two-way
transaction is used. The state of a business entity is set to an interim
state when the requesting envelope is transmitted. As soon as the react-
ing partner communicates its response, the business entity’s final state is
set. A business transaction is an atomic interaction. If a previous state
of a business entity must be recovered, another compensating business
transaction is needed.

■ BusinessTransactionSwimlane (Partition): A business transaction
swimlane defines an area of responsibility. The contents of a business
transaction swimlane are performed by a certain authorized role. The
authorized role is assigned as a classifier to the business transaction
swimlane.

■ RequestingBusinessActivity (ActionState): A requesting business activ-
ity is performed by the authorized role that initiates a business transac-
tion. A requesting business activity outputs a requesting information
envelope to the reacting role. In case of a two-way transaction the
requesting business activity consumes the responding information enve-
lope communicated by the reacting party.

■ RespondingBusinessActivity (ActionState): A responding business
activity is performed by the authorized role that reacts in a business

1447.3 Business Transaction View
transaction. The responding business activity consumes the requesting
information envelope sent by the initiating party. In a two-way transac-
tion the responding business activity outputs a responding information
envelope to the initiating party.

■ RequestingInformationEnvelope (ObjectFlowState): A requesting
information envelope contains business information sent from the initi-
ating role to the reacting role. The information contained in an informa-
tion envelope leads to a change of one or more business entities. The
term requesting information envelope does not mean that the business
information refers to a request in a business sense. The term requesting
information envelope indicates that the execution of a transaction is
requested from the requesting role to the responding role - no matter
whether this is an information distribution, a notification, a request, or
the offer in a commercial transaction.

■ RespondingInformationEnvelope (ObjectFlowState): A responding
information envelope is sent back from the reacting role to the initiating
role in the case of a two-way transaction. The information contained in
the responding information envelope sets one or more business entities
from an interim state to their final state

7.3.2.3 Worksheets

Business interaction view worksheet

■ Common Information
■ Business library information

Business transaction worksheet

■ Common Information
■ Definition: Describes the overall customer value that is created by the

business transaction for both participants.
■ Business transaction pattern: Specifies the business transaction pattern

used in the particular business transaction. UN/CEFACT mandates the
use of one of the following six patterns (Appendix - Business Transac-
tion Patterns) that have been defined in the RosettaNet framework:

– Commercial transaction
– Request/Confirm
– Request/Response
– Query/Response
– Information Distribution

1457.3 Business Transaction View
– Notification
■ Secure transport: Indicates whether the message exchange has to be

executed via a secured channel or not. The secure channel ensures that
the content of a document is protected against unauthorized disclosure
and modification. This security facet applies only to the time of trans-
mission of a document. Once a document is transmitted, it has no longer
an impact. A secure transport channel has to fulfill the following
requirements:

– Authenticate sending role identity
– Authenticate receiving role identity
– Verify content integrity
– Maintain content confidentiality

■ Information that captures the requirements of the requesting business
activity (note: the role name and the activity name are already gathered
by the corresponding business transaction use case)

– Time to respond: Specifies the time period that this transaction
must be completed within. In other words, it defines the time
frame by which the responding party has to return the request
document. In case of a one-way transaction, this value must be
null. Otherwise, time to respond should be specified as XML
schema duration type.

– Number of retries: Specifies how often the requesting role has to
re-initiate the transaction if a time out exception occurs. Exceed-
ing the time to acknowledge receipt, the time to acknowledge
processing or the time to respond causes a time out exception.
However, this retry count does not cover exceptions due to erro-
neous document content or to a bad message sequence. Moreover
it is noteworthy, that the number of retries does not include the
first, regular transmission attempt.

– Time to acknowledge receipt: Specifies the time period within
the responding role has to acknowledge receiving the requestor’s
document. If no acknowledgement of receipt is required this value
must be set to null. Otherwise the proper time value should be
specified as XML schema duration type.

– Time to acknowledge processing: Specifies the time period
within the responding role has to acknowledge processing of the
requestor’s document. The acknowledgement of processing is
sent, when the document passes a validation against a set of busi-
ness rules and is handed over to the application for processing. If
no acknowledgement of processing is required this value must be

1467.3 Business Transaction View
set to null. Otherwise the proper time value should be specified as
XML schema duration type.

– Authorization required: Specifies whether the responding role
must authorize itself or not. If so, the responding role must sign
the business document and the requesting role must validate the
response document’s signature and approve the sender.

– Non repudiation required: True if the responding party must not
be able to repudiate its business action as well as the business
documents sent.

– Non repudiation of receipt required: True if the responding role
has to sign the acknowledgement of receipt. This must only be
considered if an acknowledgement of receipt is required. The non
repudiation of a receipt ensures that the responding party is not
able to deny sending the receipt.

– Intelligible check required: True if the responding role has to
check if the received document is readable before returning an
acknowledgement of receipt. In other words, the receiver has to
check if the document structure and its content has not been gar-
bled during transmission.

■ Information that captures the requirements of the responding business
activity (note: the role name and the activity name are already gathered
by the corresponding business transaction use case)

– Time to acknowledge receipt: Specifies the time period within
the requesting role has to acknowledge receiving the responder’s
document. If no acknowledgement of receipt is required this value
must be set null. Otherwise the proper time value should be spec-
ified as XML schema duration type.

– Time to acknowledge processing: Specifies the time period
within the requesting role has to acknowledge processing the
responder’s document. The acknowledgement of processing for a
business document is sent, when the document passes a valida-
tion against a set of business rules and is handed over to the appli-
cation for processing. If no acknowledgement of processing is
required this value must be set null. Otherwise the proper time
value should be specified as XML schema duration type.

– Authorization required: True if the requesting role must author-
ize itself. If so, the requesting role must sign the business docu-
ment and the responding role must validate the request docu-
ment’s signature and approve the sender.

– Non repudiation required: True if the requesting party must not
be able to repudiate its business action as well as the exchanged
business documents.

1477.3 Business Transaction View
– Non repudiation of receipt required: True if the requesting role
has to sign the acknowledgement of receipt. This information is
only considered if an acknowledgement of receipt is required. The
non repudiation of a receipt ensures that the requesting party is
not able to deny sending the receipt.

– Intelligible check required: True if the requesting role has to
check if the received document is readable before returning an
acknowledgement of receipt. In other words, the requesting role
has to check if the document structure and its content has not
been garbled during transmission.

■ The following information describes security requirements concerning
the exchanged business documents. This information is relevant for
each business document exchanged in the business transaction. Thus,
the information below has to be gathered twice in case of a two-way
transaction, but only once for a one-way transaction.

– Information type: Denotes the business document’s type.
– Information state: Denotes the state a corresponding business

entity is set to as a result of the business transaction’s execution.
– Are contents confidential: Defines if the message has to be

encrypted in order to secure the information from unauthorized
access.

– Is the envelope tamper proof: Specifies if the sender must digit-
ally sign the business document. A digital signature is a signed
message digest that allows to check if the document has been
tampered with.

– Authentication required: Specifies if the sender’s digitial certifi-
cate has to be associated with the transmitted document in order
to proof it’s identity.

7.3.2.4 Step by step modeling guide

1. Model the business transaction and its persistent representation
2. Determine the business transaction pattern
3. Model the business transaction swimlanes for both participants
4. Describe the requestor’s part
5. Describe the responder’s part

The choreography of a business transaction follows always the same struc-
ture. A minor difference results from the fact that the information exchange
is two-way or just one-way. Thus describing a business transaction follows
always the same modeling steps.

1487.3 Business Transaction View
Tab. 7–10Order from
quote example: worksheet
for the business
transaction place order

Start by adding a business interaction view to the business transaction
view. One business interaction view describes exactly one business transac-
tion, hence one business interaction view is needed for each business trans-
action.

Model the business transaction and its persistent representation

A business interaction cap-
tures the state of a business
transaction

Similar as for business collaboration protocols, the state of execution
of a business transaction is captured by a persistent representation. The per-
sistent representation of a business transaction is described by a business
interaction. Hence, we add a business interaction to the business interaction
view. Then model the business transaction as a child of the business interac-

Form: BusinessInteraction

General

Business Transaction Name Place Order
Definition The purpose of this business transaction is to provide a means for

a buyer to send to the seller a list of items that they wish to
purchase, and to provide a means for a seller to send to the buyer
a formal accecptance or rejection of the buyer's order.

Select Business Transaction Pattern CommercialTransaction
Secure Transport true

Requestor's Side

Requesting Role Buyer
Requesting Business Activity Name submit Order
Time to Respond PT24H
Time to Acknowledge Receipt PT2H
Time to Acknowledge Processing PT6H
Authorization Required true
Non Repudiation Required true
Non Repudiation of Receipt Required true
Intelligible Check Required true
Number of Retries 3

Responder's Side

Responding Role Seller
Responding Business Activity Name process Order
Time to Acknowledge Receipt PT2H
Time to Acknowledge Processing PT6H
Authorization Required true
Non Repudiation Required true
Non Repudiation of Receipt Required true
Intelligible Check Required true

Business Information Envelopes

Information Envelope from Requesting Business Activity
 Information Name PurchaseOrder
 Information State
 Are Contents Confidential? true
 Is the Envelope Tamperproof? true
 Authentication Required? true

Information Envelope from Responding Business Activity
 Information Name PurchaseOrderResponse
 Information State
 Are Contents Confidential? true
 Is the Envelope Tamperproof? true
 Authentication Required? true

1497.3 Business Transaction View
tion denoting that the business transaction specifies the behavior of the
business interaction.

We demonstrate modeling of business transactions by the example of
the place order business transaction (of the order from quote example).
Modeling all other business transactions follows the same procedure as the
place order transaction. As shown in Figure 7–20, we add a business inter-
action view called place order to the business transaction view. Within this
business interaction view we add a business interaction (BI), which acts as
the persistent representation. The actual place order business transaction
(BT) is then modeled as a child of the business interaction (BI). This parent-
child relationship indicates that the business interaction (BI) always refers
to the current state of the business transaction (BT).

Fig. 7–20 Relationship
between a business
interaction (BI) and a
business transaction (BT)

Determine the business transaction pattern

UMM provides six business
transaction patterns

In UMM a business transaction follows one of six business transaction
patterns. These patterns cover every real-world business case which results
in a legally binding interaction between two decision making applications
as defined in Open-edi [OER95]). UN/CEFACT mandates to classify each
UMM business transaction according to these patterns, which have proven
to be useful in RosettaNet [ROS02] [Bir05]. Within these six business trans-
action patterns we differentiate between two one-way and four two-way
patterns.

One-way: information dis-
tribution and notification

We first concentrate on one-way transactions. If the business informa-
tion sent is formal non-repudiable it is called notification. Otherwise if just
informal information is transmitted we are talking about an information dis-
tribution transaction.

Two-way: request/response,
query/response,
request/confirm, commer-
cial transaction

In a two-way transaction the initiating side might request (static) infor-
mation that the corresponding site has already available. In this case the
transaction is called query/response. Otherwise, if response information is
required that needs to be dynamically assembled or which is not available at
the time of request, the transaction follows the request/response pattern. A
request/confirm transaction differs from request/response in requiring a
confirmation by the responder to the request of the initiator. Finally, a com-
mercial transaction results in a residual obligation between both parties to
fulfill the terms of a contract. This pattern represents the common „offer and
acceptance“ interaction.

1507.3 Business Transaction View
The appropriate pattern has to be specified in the tagged value business
transaction type. Further information to business transaction patterns is
available in the annex (Appendix - Business Transaction Patterns)

Model the business transaction swimlanes for both participants

Add a business transaction
swimlane for each of the
two roles

Each business transaction has exactly two business transaction swim-
lanes, one for the initiating role and one for the reacting role. These two
partitions contain all activities and exchanged envelopes modeled in subse-
quent steps. Each business transaction swimlane must have a classifier
assigned that corresponds to the role performing the activities located in the
specific partition. The role must be one of two authorized roles participat-
ing in the corresponding business transaction use case (that captures the
requirements of the business transaction). Thus each authorized role of the
business transaction use case is assigned as a classifier to one of the two
business transaction swimlanes. Of course, a business transaction swimlane
has just one classifier. You should conform to the convention to model the
business transaction swimlanes vertically, whereas the left partition
belongs to the initiating role and the right partition describes the actions of
the reacting role. You may also optionally assign a name to the business
transaction swimlanes (e.g. initiator, reactor, etc.). This naming has no fur-
ther implications, but facilitates its understanding.

The place order transaction
of the order from quote
example

The worksheet shown in Table 7–10 provides the necessary input to
construct the corresponding place order business transaction (Figure 7–21).
Since a business transaction is always performed between two participants,
we add two business transaction swimlanes to the business transaction.
Considering the worksheet shown by Table 7–10, the buyer is the requesting
role in the business transaction and the seller is the responder. Both roles
(buyer and seller) are already defined as participants of the corresponding
business transaction use case (see Figure 7–15). In order to denote that the
buyer performs the requesting part of the transaction, we define the autho-
rized role buyer as classifier of the left business transaction swimlane. Sim-
ilarly we specify the seller - being the corresponding authorized role - as
classifier of the right business transaction swimlane. This structure denotes
that actions of the left business transaction swimlane are performed by the
buyer and similarly actions of the right business transaction swimlane are
conducted by the seller.

Describe the requestor’s part

Describe the action of the
initiating role

Now model the contents of the initiating role’s partition. Place an initial
state and a requesting business activity somewhere in the upper region of
the partition and connect them via a transition leading from the initial state

1517.3 Business Transaction View
to the action state. Then place a requesting information envelope in the
lower region of the business transaction swimlane. A requesting informa-
tion envelope represents an instance of an information envelope. Thus
assign the information envelope that is sent in this step as a classifier to the
requesting information envelope. This implicates that a message of the
information envelope type is transmitted by the initiating role. Assigning a
name to the requesting information envelope has no further relevance for
the description, so you may skip it. Connect the requesting business activity
and the requesting information envelope using a transition, leading from the
activity to the envelope.

Modeling the buyer’s part
of the place order business
transaction

Considering the requestor’s side of the place order business transaction
we start with modeling the initial state followed by the requesting business
activity. As captured by the corresponding worksheet (Table 7–10) we
denote the activity submit order. The initial state is connected to the submit
order activity via a transition leading from the initial state to the activity.

The buyer submits a pur-
chase order envelope

Now we model the information that is submitted from the requestor
(buyer) to the responder (seller) by placing a requesting information enve-
lope object flow state in the buyer’s business transaction swimlane. Accord-
ing to the information gathered by the business transaction worksheet, the
buyer transmits a purchase order envelope. In order to indicate this, the
information envelope called purchase order envelope (denoted after the
colon in the requesting information envelope) has to be defined as the clas-
sifier of the requesting information envelope. However, modeling informa-
tion envelopes is done in the business information view, hence there are no
information envelopes described in this step. You might stay in the business
interaction view and classify the objects in the swimlanes with the appropri-
ate information envelopes after completing the business information view.
The other alternative is switching for every required information envelope
to the business information view.

Finalizing the buyer’s part
of the place order transac-
tion

Furthermore we need to draw a transition from the requesting business
activity (submit order) to the requesting information envelope. This means,
that the submit order activity outputs a document which is of type purchase
order envelope. This document is transmitted to the seller.

1527.3 Business Transaction View
Fig. 7–21 Order from
quote example: business
transaction place order

Describe the responder’s part

Model the reactor’s actionModeling the business transaction swimlane of the initiating role is
completed so far, hence switch to the business transaction swimlane of the
responding partition. Describe the reacting activity by placing a responding
business activity in the lower region of the reacting role’s partition. Add a
transition leading from the requesting information envelope to the respond-
ing business activity. This constellation indicates that the requesting busi-
ness activity sends a requesting information envelope to the responding
business activity.

One-way information
exchange

Further modeling steps of a business transaction depend on the busi-
ness transaction’s type. If the business transaction is a one-way transaction,
add a transition leading from the responding business activity to the
requesting business activity. Modeling this transition is not mandatory, it is
recommended to facilitate understanding of the transaction flow.

Two-way information
exchange

If it is a two-way business transaction an envelope is transmitted back
to the initiator. Therefore add a responding information envelope to the
upper region of the reactor’s partition. Followed by a transition leading
from the responding business activity to the responding information enve-
lope and one from the responding information envelope to the requesting

ad Place Order

:Seller

«BusinessTransactionSwimlane»

:Buyer

«BusinessTransactionSwimlane»

«RequestingBusinessActivity»
submit Order

«RespondingBusinessActivity»
process Order

«RequestingInformationEnvelope»
:PurchaseOrderEnv elope

«RespondingInformationEnvelope»
:PurchaseOrderResponseEnv elope

Initial State

Success

ControlFailure

BusinessFailure

[ControlFailure]

[Success]
[BusinessFailure]

1537.3 Business Transaction View
business activity. The modeled flow indicates the transmission of a response
from the reacting role to the initiating role.

Add at least two final statesRegardless of one-way or two-way transactions a business transaction
must have at least two final states. Each final state must be located in the
initiator’s partition and be the target of a transition starting from the
requesting business activity.

The place order example
follows the commercial
transaction pattern

In our place order example we have a two-way transaction because the
responder (seller) answers the order submission with a purchase order
response envelope. Furthermore, our example transaction follows the com-
mercial transaction pattern. It covers the typical offer/acceptance process
that results in an residual obligation between two parties fulfilling the terms
of a contract.

Describing the responding
business activity of the
place order transaction

In our place order example (Figure 7–21) we finally construct the
responder’s part which is carried out by the selling role. Regarding the
worksheet (Table 7–10) the seller executes an activity called process order.
Hence, we add a responding business activity called process order to the
seller’s business transaction swimlane. Then we connect the requesting
information envelope sent by the requestor (buyer) with the seller’s process
order activity. This indicates that the requesting information envelope is
input to the seller’s process order activity.

The seller returns an pur-
chase order response enve-
lope

Since it is a two-way transaction the seller’s process order activity also
outputs a responding information envelope that is transmitted back to the
buying role. According to the worksheet information the response docu-
ment is of type purchase order response envelope. This requires that we add
the purchase order response envelope (which is itself an information enve-
lope and in the example figure denoted after the colon in the response infor-
mation envelope) as classifier to the response information envelope object.
Similarly to the requestor’s side, information envelopes are not defined yet.
Thus, this might be accomplished after finishing the business information
view or switching between defining transactions and modeling exchanged
information is required.

Finalizing the place order
example

In order to finish our example, we connect the process order activity
with the purchase order response envelope via a transition leading from the
activity to the envelope. Then we add a transition from the purchase order
response envelope to the buyer’s submit order activity. Finally, we add three
final states to the requestor’s side - one for the case of a success, one for a
control failure and one for a business failure.

7.3.2.1 Artifacts

The business interaction view delivers a detailed description of interactions
between exactly two authorized roles. Interactions are specified by the con-
cept of business transactions.

1547.3 Business Transaction View
7.3.3 Business Information View

7.3.3.1 Overview and purpose

The business information
view describes the informa-
tion exchanged within busi-
ness transactions

The business information view covers the information that is exchanged in
business transactions. In a business transaction, instances of information
envelopes are transmitted between business partners that are either specified
as requesting or responding information envelopes. An information enve-
lope encapsulates information that is needed to synchronize the states of
business entities. The UMM encourages to exchange only the minimal
information needed to change business entity states. UMM also supports
traditional document-centric approaches, but it is not recommended to use
them.

There are no restrictions on methods and rules for modeling the con-
tents of an information envelope, but UN/CEFACT recommends to use the
UMM specialization module for modeling Core Components (CCTS). This
specialization module is currently under development and describes how
Core Components have to be modeled in UML. Chapter 10 of our thesis dis-
cusses information modeling in UMM and describes this upcoming special-
ization module in more detail.

7.3.3.2 Stereotypes

■ InformationEntity (Class): An information entity describes a semantical
unit of information that is transmitted between two partners in a busi-
ness transaction. Information entities may be associated with other
information entities describing more complex information structures.

■ InformationEnvelope (Class): An information envelope is a container
for information entities that are exchanged in a business transaction.
Information envelopes are composed only of information entities.
Exactly one information entity takes on the role header and one or more
information entities take on the role body. The information exchanged in
a business transaction is always of type information envelope.

7.3.3.3 Step by step modeling guide

1. Describe the information envelope
2. Identify and specify required header information
3. Describe the business information

In this last step of the modeling workflow, specify the structure of messages
that are exchanged in an interaction between business partners. Artifacts
that describe a message are modeled in a business information view. UMM

1557.3 Business Transaction View
makes no restrictions if one or more business information views are used to
structure the information modeling. However, a business information view
must not contain any other model elements than information envelopes and
information entities, but you may use class diagrams to ease the informa-
tion modeling.

The business information
view is not supported by
worksheets

Going through the business information view and describing the infor-
mation that is exchanged in business transactions is not guided by work-
sheets. This results from the fact that worksheets capture only the type of
information that is needed and the relationships between pieces of informa-
tion. However, in this respect worksheets provide no additional or support-
ive value. We think relevant information should be described directly in the
business information view without using worksheets. Information modeling
and supportive means therefor are relevant to further research (See “Map-
ping Business Information to Document Formats” on page 228).

An information envelope
consists of one header and
one to many body parts

Modeling a business document starts with defining an information
envelope. An information envelope is a container for the actual business
information and corresponds to the envelope of the business message. Secu-
rity requirements on information envelopes may be specified by its proper-
ties is authenticated, is confidential and is tamper proof. The business infor-
mation contained in an information envelope is described by information
entities. Thus an information envelope is composed of information entities
that may be also structured recursively.

An information envelope requires to have some header information
associated within. This header information does not relate to the technical
transmission level, but to business semantics as defined by UN/CEFACT’S
Standard Business Document Header [SBD04]. The header of an informa-
tion envelope is specified by exactly one information entity. Thus add one
information entity and define the required header information by its proper-
ties. For each property define its name and its type. After describing the
header information entity, connect it with the information envelope via an
aggregation association. Finally, assign the role header to the information
entity in order to define it as the envelope header.

The actual business infor-
mation is denoted as the
body of an information
envelope

As next step the actual business information is modeled using informa-
tion entities. An information entity corresponds to a semantical unit of infor-
mation and may define a set of properties to describe the business informa-
tion. Model information entities recursively in order to describe more
complex information structures. Finally, connect top-level information enti-
ties with their enclosing information envelope via an aggregation associa-
tion. Assign the role name body to these information entities in order to
define them as the actual business information.

1567.3 Business Transaction View
Fig. 7–22 Order from
quote example: structure
of the quote envelope

.

Figure 7–22 shows the structure of the quote envelope, which is exchanged
in the request for quote transaction of our order from quote example. UMM
requires that an information envelope is associated with exactly one infor-
mation entity defined as header and with at least one information entity
defined as body. In our quote envelope example, the header block is speci-
fied by an information entity named standard business document header. It
is aligned to UN/CEFACT’s Standard Business Document Header, which is
not described in detail in this thesis. The body of the quote envelope is spec-
ified by an information entity named quote document. It represents the
actual business document. A quote document contains one to many quoted
line items. Each line item is uniquely identified by its identification
attribute. Furthermore a line item has the actual product service and its unit
price associated. A product service includes an identifier and an optional
free text description. The unit charge price includes an amount attribute.

cd Quote Information

«InformationEnvelope»
QuoteEnv elope

«InformationEntity»
StandardBusinessDocumentHeader

«InformationEntity»
Quote_Document

+ Creation: Date
+ Identification: identifier

«InformationEntity»
Quote_Document_LineItem

+ Identification: identification

«InformationEntity»
ProductServ ice

+ Description: Text [0..1]
+ Identification: identifier

«InformationEntity»
Unit_ChargePrice

+ Amount: Amount

1..*

+body+header

1577.3 Business Transaction View
7.3.3.1 Artifacts

The business information view describes the information that is exchanged
in business transactions. Class descriptions are utilized, whereby informa-
tion envelopes are used as containers for the actual business information.

1588 UMM Validator
8 UMM Validator

Model validity is a key issueOne of the most important issues an UMM modeler is facing, is the chance
to determine if a model is valid or not. Although the UMM meta model,
which is based on a UML Profile, and the UMM business transaction pat-
terns are helping the modeler to create a valid model, a final overall valida-
tion of the model is required.
A model which has been validated by a validator guarantees that applica-
tions which are using the model, are operating properly. Figure 8–1 shows
the UMM validator and its context within the model creation workflow.
With the help of the UML Profile for UMM the user creates an UMM
model, following the guidelines of the UMM meta model. After having fin-
ished the model, the user validates it with the help of the validator. If the val-
idator does not return any error messages, the model can be used by further
applications such as a BPSS or a BPEL transformer.

Fig. 8–1 The validator
and its context

The following paragraphs will explain the motivation and the details as well
as the problems which occurred during the realization of the UMM valida-
tor.

8.1 Motivation for UMM validation
The diffusion of UMM knowledge is not as high as the diffusion of UML
knowledge. Often even a keen UML modeler is facing problems when cre-
ating an UMM compliant model. Equipped with the UMM meta model, the
UML Profile for UMM and the UMM patterns as well as the UMM specifi-

ud Use Case Model

Modeler

Modeling Tool

UMM meta model

UMM patterns UML Profi le for UMM

UMM Model

Val idator

BPSS, BPEL
Transformation

[val id]

[inval id]

1598.2 UML Extensions
cation, the modeler creates an UMM compliant model. Whether the model
is correct or not depends on the experience of the modeler. Nevertheless
even the most experienced modeler can overlook a fault in the model.
Exactly at this point the chance for validating the created model would bring
relief to a modeler who is not entirely familiar with UMM.
However the validator itself does not only target at beginners and people not
that familiar with UMM. Even UMM professionals sometimes oversee
interdependencies between modeling elements during the validation proc-
ess. Especially connectors between model elements are often invalid in a
given model, but because they are invisible, the modeler does not perceive
the apparent, but invisible error. In particular in Enterprise Architect the
deletion of connectors can set them just on invisible instead of removing
them. Although not particularly crucial in a model which is just intended to
be a graphical representation perceivable for humans, invisible connectors
are problematic, if the model is used by automatic processing such as a
BPSS transformer.
The main aim of the UMM Validator can be divided into two significant
points.

Top down vs. bottom up val-
idation

First the modeler should be guided towards a valid model. This means,
that for instance after finishing a business area package within the business
domain view, there should be the alternative to check, if the created business
area is valid. Seen from the point of software/design engineering this is
known as a bottom up approach. By gradually validating the different sub-
packages, the modeler finally has a valid model.

The second main issue of the UMM validator is the overall validation of
a given model. After having finished a model the user should have the
chance to check the overall validity of the model. This approach is known as
top down approach.

Both validation approaches are implemented by the validator. By
applying the top down and the bottom up approach the modeler finally has a
valid model, which is ready for further use. Moreover the creation of further
applications which are using the created UMM model is extensively facili-
tated because a valid model can be anticipated.

Before we proceed to the details of the validator a short overview on
extension mechanisms in UML will be given. UMM itself thoroughly uses
the extensions mechanisms provided by the UML meta model.

8.2 UML Extensions
The Unified Modeling Language (UML) has certain extension mechanisms,
which are widely used by UMM. Via stereotypes the different packages and
elements are uniquely identified and tagged values help refining object

1608.2 UML Extensions
properties. Finally constraints defined in the Object Constraint Language
(OCL) restrict the users ability to model within a certain package. The fol-
lowing three paragraphs will give a brief survey of the three extension
mechanisms mentioned above.

8.2.1 Stereotypes

Stereotypes are fundamen-
tal for UMM

The first extension mechanism to be examined are stereotypes. A stereotype
represents a subclass of an element of the existing meta model. The stereo-
type has the same form, relationship and attributes as the existing meta
model element, but the intent of the stereotype is a different one. By using a
stereotype, one can indicate a distinction of usage within the model. Addi-
tionally the stereotype can have further constraints and tagged values in
order to add information. A deeper insight into the concept of stereotypes
and their usage is given by the UML specification [UMa04].

Within the UMM stereotypes play a very important role. Via stereo-
types the different packages like the business domain view or the business
transaction view are differentiated in the model. Without the help of stereo-
types, it would not be possible for a modeler to indicate unambiguously,
which package refers to which view.

To indicate, which element or package uses a stereotype, the modeler
places the name of the stereotype surrounded by guillemets before the name
of the element.

Example package structure■ «BusinessTransactionView» OrderFromQuote

• «BusinessInteractionView» PlaceOrder
• «BusinessInformationView» OrderInformation

The example above shows a business transaction view named order from
quote with two subpackages named place order and order information and
their dedicated stereotypes business interaction view and business informa-
tion view.

If neither the package place order nor the package order information
would have an associated stereotype, it would not be possible to evaluate,
which package is the business interaction view and which package is the
business information view.

As we will see in the following chapters, the validator thoroughly uses
stereotypes to determine which view is meant and which subroutine within
the validator should be called. The second extension mechanism also exten-
sively used within the UMM are tagged values.

1618.2 UML Extensions
8.2.2 Tagged values

Tagged values can be compared to regular attributes as used in class ele-
ments. However attributes are defined in the M1 layer whereas tagged val-
ues are defined in the M2 layer of the Meta Object Facility (MOF). A deeper
insight into the Meta Object Facility is given by [MO102]. The attributes in
a class are giving a certain meaning to the objects derived from the class.
They add information to the class and are visible to the user.

However often the modeler wants to add information via using
attributes to other UML elements like packages and activity partitions too.
These elements do not have attributes like the class elements have and
therefore ancillary information would normally not be possible. Yet due to
the tagged value mechanism users can add information to any element.

Although similar to attributes in class elements, tagged values are not
the same. A tagged value is represented by a keyword-value pair which can
be attached to an arbitrary element within the model - because it is defined
in the M2 layer. In UMM the usage of tagged values is limited because the
used stereotypes restrict the tagged values which may be used.

Figure 8–2 on the left hand side shows the definition of the two stereo-
types stakeholder and business partner and their corresponding tagged val-
ues. In stakeholder one tagged value interest is defined. Because business
partner is a subclass of stakeholder, it inherits the tagged values of the
superclass. Furthermore (and not shown in this example) the subclass could
define additional tagged values. The element stakeholder is of type actor.
By definition it would normally not be possible to add additive information
to the stakeholder. However with the tagged value mechanism it is possible
to add additional information to the element. On the right hand side an actor
customs is shown. It has the stereotype stakeholder and therefore the tagged
value interest as well.

Fig. 8–2 Tagged value
definitioncd BusinessDomainView example

BusinessPartner

Actor

Stakeholder

+ interest: String

<<Stakeholder>>
Tax agency

{ interest=xyz }

1628.2 UML Extensions
Because tagged values are central to the UMM, a special sub-validator has
been developed, which exclusively validates the tagged values. We will
have a deeper insight into that issue in chapter 8.5.4.

8.2.3 Constraints

As third and final extension mechanism of UML we discuss constraints and
their use within the UMM. The UML meta model is related to a formal lan-
guage called Object Constraint Language (OCL) which is used to express
constraints. Constraints specify rules, which are called invariants. These
invariants hold for a given model. If no rule is violated, the model is valid.

Motivation for OCL

Often a UML model element, such as an action state is not refined enough
to meet all the requirements of a given specification. In this chapter the
UMM specification is taken as an example.

Within the UMM specification additional requirements, which are not
covered by the meta model are denoted in natural language. These require-
ments define additional constraints about the objects in the model. So far the
additional constraints in natural language are a valid approach, as every
modeler can understand them and apply them while modeling. Nevertheless
practice has shown that natural language constraints often fail as they lead
to ambiguities. With the use of a technical and unambiguous language this
problem can be avoided. This is the point, where the OCL comes in. By cap-
turing the constraints in OCL every modeler has the same and unambiguous
base of understanding about the UMM.

Fig. 8–3 Sample from a
collaboration
requirements view

ud Register Customer

«BusinessCollaborationUseCase»
Register Customer

Customer Registrar

Customer

(from Register Customer)

Registrar

(from Register Customer)
(from Register Customer)

«BusinessTransactionUseCase»
Register Customer

«include» «mapsT o»«mapsTo»

«participates»«participates»

«participates»«participates»

1638.3 The conceptual UMM meta model
Figure 8–3 shows an example from a collaboration requirements view. One
restriction on this view, expressed in natural language is the following:

Natural language con-
straint for collaboration
requirements views

A source business collaboration use case includes target business transaction use
cases and/or business collaboration use cases. Each role of the source use case must
be mapped maximal once to a role of the same target use case (but it may be mapped
to different authorized roles of different target use cases). Each role of the target use
case is the supplier of a mapsTo dependency from a role of the source use case.

It is apparent, that the restriction is quite complicated and not unambiguous.
Therefore an OCL constraint is defined, which represents the constraint
mentioned in natural language above.

Listing 8–1 OCL
constraint for
collaboration
requirements views

[239] package Behavioral_Elements::Use_Cases
[240] context UseCase
[241]
[242] inv AuthorizedRoleofBTUCisSupplierOfOnlyOneAuthorizedRoleOfBCUC:
[243] (self.isBusinessTransactionUseCase() or
[244] self.isBusinessCollaborationUseCase()) implies
[245] self.include->select(a | a.base <> self)->collect(base)->
[246] collect(x | x.associations)->collect(y | y.allConnections)->
[247] select(isAuthorizedRole)->forAll(x | self.associations->
[248] collect(allConnections)->select(isAuthorizedRole)->
[249] collect(supplierDependency)->collect(client)->isUnique(x))

Line 242 indicates the name of the so called invariant. The different invari-
ants hold for the system which is being modeled. The sub-methods like
isBusinessTransactionUseCase() are defined globally and are not quoted in
the example above. By defining the constraints with OCL, the modeler is
given a formal and unambiguous way for model restriction. For the time
being only very few modeling tools support the direct validation of a model
using constraints defined in OCL. Hence for the development of the UMM
Validator a different though similar approach has been chosen.

Chapter 8.4 will give a deeper insight into UMM and OCL. Meanwhile the
next chapter will focus on the UMM meta model, which is the base for the
UMM validator.

8.3 The conceptual UMM meta model
A brief overview over UMM was already given in chapter 5. We will now
focus on the conceptual UMM meta model, which is the base for the UMM

1648.3 The conceptual UMM meta model
validator. This chapter is based on the UMM meta model foundation mod-
ule, published by UN/CEFACT [FOU03].

Within the conceptual model, the interdependencies between the differ-
ent stereotypes and modules are defined. Figure 8–4 shows the composition
of a business collaboration model.

Fig. 8–4 A conceptual
overview

A project which is UMM compliant is stereotyped as business collaboration
model. A business collaboration model consists of zero or one business
domain view, one business requirements view and one business transaction
view.

The first view to be analyzed in detail will be the business domain view.

8.3.1 Business Domain View

Discover and identify pro-
cesses

The business domain view is used to discover and identify the processes,
which are relevant for the business collaboration model. Figure 8–5 shows
the business domain view at a glance.

As we can see, a business partner participates in zero or more business
processes. A business process itself is performed by one or more business
partners.

Fig. 8–5 Composition of
the business domain view

cd Foundation - Conceptual

BusinessDomainView BusinessRequirementsView BusinessTransactionView

BusinessCollaborationModel

+ justi fication: String

110..1

cd BusinessDomainView - Conceptual

BusinessArea ProcessArea

BusinessPartner

BusinessProcess

BusinessCategory

Stakeholder

BusinessDomainView
0..*

0..1
1..*

0..*

0..1

0..*

1..*

participates

0..*

0..*

0..*

0..1

0..*0..1

0..*

0..1

0..* isOfInterestTo

0..*

1658.3 The conceptual UMM meta model
A business partner is a specialization of a stakeholder (not shown in
this diagram). A stakeholder has an interest in multiple business processes
and business processes might be of interest to multiple stakeholders. In a
UMM compliant model this fact is denoted by an is of interest to depen-
dency between the business process and the stakeholder. A stakeholder
must not necessarily participate in the business process.

A business process can consist of sub-processes, which are associated
with the super-process via include and extends associations.

In order to facilitate the identification of business processes, the pro-
cesses are categorized using business categories. As denoted in Figure 8–5,
a business domain view is composed of one or more business categories. A
business category itself can be composed of other business categories,
which allows the user to build a hierarchy.

A business process is assigned to exactly one business category. A busi-
ness category on the lowest level of a business category hierarchy includes
one or more business processes whereas a business category on a higher
level does not include any business process.

The specializations of a business category are business area and busi-
ness process. UN/CEFACT suggests their use, although it is not mandatory.
A division within an organization corresponds to a business area. Common
operations within a business area are aggregated in a process area. Like the
business category, business areas and process areas can form a hierarchy.

Business areas may include only business areas. The only exception is
the business area on the lowest level of the hierarchy, which is composed of
one ore more process areas. Business areas must not include business pro-
cesses.

The stereotype business category and the combination of the stereotype
business area and process area are considered as alternatives. A UMM
compliant model must not use both alternatives.

Subsequent to the business domain view is the business requirements
view, which will be the topic of the next chapter.

8.3.2 Business Requirements View

Identification of collabora-
tive business processes

The goal of the business requirements view is the identification of collabo-
rative business processes between different business partners. Furthermore
it describes the requirements of the identified business processes. As shown
in Figure 8–6, the business requirements view consists of three different
artifacts, which help to evaluate the requirements of a collaborative busi-
ness processes. Namely the three artifacts are the business process view, the
business entity view and the partnership requirements view. This chapter
will give a short overview about the business requirements view as a whole.

1668.3 The conceptual UMM meta model
The following chapters will then focus on the three mentioned artifacts in
detail.

Fig. 8–6 Composition of
the business requirements
view

The flow of activities and states of business processes, which have been
discovered in the business domain view is described in the business process
view. The view itself is optional. Nevertheless there can be more than one
business process view within a business requirements view.

The life cycles of business entities that are manipulated in a collabora-
tive business process are described in the so called business entity view.
Like the business process view, the business entity view is not mandatory
and can occur more than once within a business requirements view.

The requirements on a partnership between business partners are cov-
ered by the partnership requirements view. On the lowest level of granular-
ity, a partnership is a business transaction. Business collaborations are part-
nerships, which consist of business transactions and/or other business
collaborations.

Requirements concerning a business transaction are covered by the
transaction requirements view, those requirements concerning a business
collaboration are covered by the collaboration requirements view.

The realization of a business collaboration can be executed between
multiple sets of different business partners. The requirements concerning a
realization of a business collaboration use case are covered by the collabo-
ration realization view. A collaboration realization is specific for a set of
business partners. As shown in the preceding illustration, the partnership
requirements view is an abstract concept, which is either realized by the col-
laboration requirements view, the transaction requirements view or the col-
laboration realization view.

cd BusinessRequirementsView - Conceptual

BusinessRequirementsView

BusinessProcessView BusinessEntityView PartnershipRequirementsView

CollaborationRequirementsView TransactionRequirementsView CollaborationRealizationView

1..*1..*1..*

0..*0..*

1678.3 The conceptual UMM meta model
Within a model at least one business collaboration, containing a busi-
ness transaction should be described. One of the business collaborations
must then be executed by a set of business partners.

The business requirements view must contain at least one collaboration
requirements, one transaction requirements and one collaboration realiza-
tion view. The three mentioned views can occur multiple times within a
business requirements view.

The first view to be analyzed in detail will be the business process view.

Business Process View

Figure 8–7 gives an overview about the business process view and the par-
ticipating stereotypes.

Fig. 8–7 The business
process view at a glance

Overview about business
processes, activities and
business partners

The business process view gives an overview about the business processes,
the activities the processes consist of and the participating business part-
ners, which execute the activities. The business process view consists of one
or more business processes. In case that more than one business process is
included, the business processes should be related. Business processes
might include or extend other business processes. This fact is denoted by the
unary composition assigned to the business process.

The dynamic behavior of business processes is described by the busi-
ness process activity model. A business process is composed of zero or one
business process activity models. Whether the flow of a business process is
described by a business process activity model or not depends on the rele-
vance of the business process. The business process activity model
describes a flow of activities, which are performed by one or more partici-
pants. In case two or more business partners collaborate, the business pro-

cd BusinessProcessView - Conceptual

BusinessProcess

BusinessProcessActiv ity

BusinessProcessActiv ityModel

InternalBusinessEntityState

SharedBusinessEntityState
Partition

{XOR}

BusinessPartner

{XOR}

BusinessProcessView

0..*

0..1

0..1

0..1+behavior

0..1+context

0..*

1

0..*1..* 1..*

1..*

0..*

0..1

0..*

1

0..*

1688.3 The conceptual UMM meta model
cess activity model is divided into partitions where each partition is for one
business partner. In case the business process is an internal business pro-
cess, which is executed by one business partner, the partition for the partner
is optional. Thus the business process activity model is composed of zero or
more partitions. A partition is a UML standard element.

Partitions and their corre-
sponding business partners

A partition is assigned to one business partner and a business partner is
assigned to one partition in one business process activity model. Though, a
business partner can be assigned to multiple partitions with the restriction,
that each partition is in a different business process activity model.

A business process activity model is denoted by a flow of business pro-
cess activities. In case no partition is used, the business process activities
are directly included in the business process activity model. If partitions are
used, the business process activity is assigned to the partition of the busi-
ness partner who is executing the business process activity. In 8–7 this is
shown by the XOR constraint on the left hand side. Whenever a transition
connecting two business processes activities crosses the border between
partitions, a collaborative business process is found. A business process
activity model is composed of one or more business process activities, or a
partition is composed of one or more business process activities. A business
process activity can be refined by another business process activity model.
Therefore a business process activity is composed of zero or one business
process activity models, which then are a composite of zero or one business
process activities.

Describing important busi-
ness entity states

Important states of business entities may also be described by a busi-
ness process activity model. These states are manipulated during the execu-
tion of a business process. One can regard a business entity state as the out-
put from one business process activity and the input to another business
process activity. A transition from a business process activity to a business
entity state indicates an output. Similarly a transition from a business entity
state to a business process activity indicates an input. Business entity states
which are meaningful to one business partner only are the so called internal
business entity states. Business entity states, which must be communicated
to a business partner are so called shared business entity states. Both kind
of business entity states may be included in a business process activity
model. Therefore a business process activity model may be composed of
zero to many internal business entity states and shared business entity
states. If partitions are used, the two business process activities which are
creating and consuming an internal business entity state are in the same par-
tition. Contrary the two business process activities which are creating and
consuming a shared business entity state are in different partitions. A
shared business entity state indicates the need for a collaborative business
process.

1698.3 The conceptual UMM meta model
The next view focuses on the life cycles of business entities which are
manipulated in a collaborative business process. It is the so called business
entity view.

Business Entity View

Figure 8–8 gives an overview about the business entity view and its partici-
pating stereotypes.

Fig. 8–8 The business
entity view at a glance

Defining a business entityA real world representation which has business significance and is shared
among two or more business partners in a collaborative business process is
called a business entity. A collaborative business process can for instance be
purchase product, register customer etc. Within a business requirements
view multiple business entity views can occur, however there must be at
least one.

The business entity view itself is composed of one to many business
entities. Whether a business entity lifecycle is included in the business entity
view or not depends on the importance of the business entity lifecycle. A
business entity is therefore composed of zero to one business entity lifecy-
cles. The different business entity states a business entity can have are
described by a business entity lifecycle. Within a business entity lifecycle
there must be at least one business entity state. Therefore a business entity
lifecycle is composed of one or more business entity states. Because a busi-
ness entity lifecycle is a UML state machine it can include events and tran-
sitions together with optional guards, which lead from one business entity
state to another.

After having examined the constraints which apply to business entities we
proceed to the partnership requirements view which handles the require-
ments on a partnership between business partners.

ad BusinessEntityView - Conceptual

BusinessEntityLifecycleBusinessEntityState

BusinessEntityView BusinessEntity

1..*

0..1
+behavior

+context

1..*

1708.3 The conceptual UMM meta model
Partnership requirements view

Figure 8–9 gives an overview of the stereotypes in a partnership require-
ments view and their interdependencies.

Fig. 8–9 Overview of the
partnership requirements
view

The business entity view and the business process view which were
explained in the last two chapters help to identify the need for a collobora-
tion.

Requirements of a collabo-
ration between business
partners

The partnership requirements view denotes the requirements of an
identified collaboration between business partners. These requirements are
described by use cases. We distinguish between three stereotypes of use
cases: business transaction use case, business collaboration use case and
business collaboration realization. A business transaction use case
describes the requirements of a business transaction. A business transac-
tion is a special interaction between two roles. The interaction focuses on
the initiating information exchange and an optional response. The require-
ments of a business collaboration that is executed between two or more
roles is described by a business collaboration use case. A business collabo-
ration is composed of one or more business transactions or nested business
collaborations. A set of business partners is required for the execution of a
business collaboration use case. A business collaboration use case may be
realized by different sets of business partners. The realization of a business

cd PartnershipRequirementsView - Conceptual

BusinessCollaborationUseCase

BusinessTransactionUseCase

BusinessDomainView ::
BusinessPartner

AuthorizedRole

TransactionRequirementsView

CollaborationRequirementsView

PartnershipRequirementsView

CollaborationRealizationView

BusinessCollaborationRealization

2...*

1 1

+participates

2..*

0..*

includes

0..*

1

0..*

includes

1..*

1

+participates2

1

1..*

mapsTo

1..*

0..*

real izes

1

2

2...*

1

0..1

mapsT o

0..*

1718.3 The conceptual UMM meta model
collaboration by a specific set of business partners is described by a busi-
ness collaboration realization.

As Figure 8–9 shows, the partnership requirements view is an abstract
concept, which can either be a collaboration requirements view, a transac-
tion requirements view or a collaboration realization view. A collaboration
requirements view captures the requirements of a business collaboration
and a transaction requirements view captures the requirements of a business
transaction. Finally a collaboration realization view captures the require-
ments of a business collaboration realization.

Define business collabora-
tion use cases in the collab-
oration requirements view

In each collaboration requirements view exactly one business collabo-
ration use case is defined. The participants of a business collaboration use
case are two or more authorized roles. In the collaboration requirements
view package where the business collaboration use case is defined, the two
corresponding authorized roles must be defined as well. Therefore a collab-
oration requirements view is composed of two or more authorized roles. If
an authorized role participates in multiple business collaboration use cases,
different authorized roles must be defined. That means, that each authorized
role of the same role is in a different namespace of a corresponding collab-
oration requirements view. Accordingly an authorized role participates in
only one business collaboration use case - it is the one in the same collabo-
ration requirements view. The relation between the business collaboration
use case and its authorized roles is 1 to (2..n), as shown in the figure above.
No authorized role must be associated more than once to the same business
collaboration use case.

Define business transac-
tion use cases in the trans-
action requirements view

The transaction requirements view describes the requirements of a
business transaction. In each transaction requirements view exactly one
business transaction is described by a business transaction use case.
Exactly two authorized roles participate in the business transaction use
case. The authorized roles must be defined in the same package as the
transaction requirements use case in which they participate in. Therefore a
transaction requirements view is composed of exactly two authorized roles.
That means, that each authorized role of the same role is in a different
namespace of a corresponding transaction requirements view. Accordingly
an authorized role participates in exactly one business transaction use case
- it is the one in the same transaction requirements view. The relation
between the business transaction use case and authorized roles is 1 to 2 as
shown in the figure above. No authorized role is associated twice to the
same business transaction use case.

Use cases can be nestedA business collaboration use case may include nested business collab-
oration use cases. Optionally a business collaboration use case can be
nested in multiple parent business collaboration use cases. This fact is rep-
resented by the unary (0..n) to (0..n) include composition in the figure

1728.3 The conceptual UMM meta model
above. Multiple business transaction use cases may be included in a busi-
ness collaboration use case. A business transaction use case must be
included in at least one business collaboration use case. In the figure above
this can be seen in the (1..n) to (0..n) aggregation between the business col-
laboration use case and the business transaction use case. A business col-
laboration use case includes at least one use case - no matter whether the
use case is a nested business collaboration use case or a business transac-
tion use case. No cycles must be included by a hierarchy of business collab-
oration use cases built by include compositions. A business transaction use
case cannot be further disassembled by an include association. No extend
associations between business collaboration/transaction use cases are used
in UMM.

Mapping of authorized
roles

For every include relationship between a business collaboration use
case and a business transaction use case as well as for a relationship
between two business collaboration use cases, a mapping of the authorized
role of the source use case to the authorized roles of the target use case is
necessary. Therefore the authorized role has a (1..n) to (1..n) mapsTo rela-
tionship. Every role of the source use case may be mapped at maximum
once to a role of the same target use case. Nevertheless a role may be
mapped to different authorized roles of different target use cases.

The business partners which have been identified in the previous UMM
steps must not directly be associated with the business collaboration use
cases and the business transaction use cases.

Define specific collabora-
tion sets in the collabora-
tion realization view

In order to indicate, that a specific set of business partners collaborate,
the concept of a business collaboration realization is used. Every business
collaboration realization view defines exactly one business collaboration
realization. A business collaboration realization realizes exactly one busi-
ness collaboration use case. A business collaboration use case can be real-
ized by multiple business collaboration realizations. It is not necessary, that
each business collaboration use case has a corresponding business collabo-
ration realization. Therefore the realize association between a business col-
laboration use case and a business collaboration realization is 1 to (0..n).

Two or more authorized roles participate in a business collaboration
realization. It is necessary, that these authorized roles are defined in the
same package as the business collaboration realization. Therefore a collab-
oration realization view is composed of two or more authorized roles. Nor-
mally the names of the authorized roles which participate in the business
collaboration use case are the same as the names of the authorized roles in
the business collaboration realization, realizing it. Nevertheless the autho-
rized roles, which participate in the business collaboration use case and in
the business collaboration realization will be defined in different
namespaces - each in the corresponding view. The business collaboration

1738.3 The conceptual UMM meta model
realization and the authorized roles are related by an 1 to (2..n) association.
The number of actors which participate in the business collaboration real-
ization must be the same as the number of actors participating in the busi-
ness collaboration use case, which is realized by the business collaboration
realization.

A business collaboration realization is associated with the business
partners executing it by mapping the business partners to the authorized
roles participating in the business collaboration realization. Each autho-
rized role of a business collaboration realization is target of exactly one
mapsTo association from a business partner. A business partner may only
map to one authorized role in a business collaboration realization, but it
may map to several authorized roles, as long as they are in different busi-
ness collaboration realizations. In the figure above this is shown by the
(0..1) to (0..n) mapsTo association between business partner and authorized
role.

With this view the conceptual description of the business requirements
view is finished, and we continue with the business transaction view.

8.3.3 Business Transaction View

The business analysts view
on the process

The business transaction view shows how the business analyst sees the
process to be modeled. It is an elaboration of the business requirements view
by the business analyst. The business transaction view shows the choreog-
raphy of information exchanges according to the requirements of the busi-
ness requirements view. Within the business transaction view there are three
artifacts, which together describe the overall choreography of information
exchanges. As shown in Figure 8–10 these three artifacts are business cho-
reography view, business interaction view and business information view.

Fig. 8–10 The business
transaction view at a
glance

The business choreography view contains artifacts, which describe the flow
of complex business collaborations between business partners, that may
involve many steps. In detail the business choreography view contains arti-

cd BusinessTransactionView - Conceptual

BusinessTransactionView

BusinessChoreographyView BusinessInteractionView BusinessInformationView

1..*1..*1..*

1748.3 The conceptual UMM meta model
facts which define a flow according to the requirements which have been
evaluated in the corresponding collaboration requirements view of the busi-
ness requirements view.

The business interaction view contains artifacts, which define a chore-
ography which in turn leads to synchronized states of business entities on
both sides of the interaction. In detail the business interaction view contains
artifacts, which capture a flow according to the requirements of the corre-
sponding transaction requirements view of the business requirements view.

The business information view contains artifacts, which describe the
information exchanged in an interaction. Dynamic aspects of a collabora-
tion are described by artifacts in the business choreography view and in the
business interaction view. The business information view contains artifacts
which describe the structural aspects of a collaboration. A business transac-
tion view must contain at least one business choreography view, one busi-
ness interaction view and one business information view. However, the three
mentioned views can also occur multiple times.

The first subview of the business transaction view to be examined in
detail is the business choreography view.

Business Choreography View

Define the choreography of
a business collaboration

The main purpose of this view is to define the business choreography of
exactly one business collaboration. Therefore the business choreography
view is composed of exactly one business choreography, which is a persist-
ent representation of the execution of a business collaboration. As shown in
Figure 8–11 the execution order of a business collaboration is defined by
the business choreography behavior.

Fig. 8–11 Overview of the
business choreography
view

cd BusinessChoreographyView - Conceptual

BusinessCollaborationActiv ity

BusinessCollaborationProtocol

BusinessTransactionActiv ity

BusinessChoreographyBehavior

BusinessChoreography

BusinessCollaborationUseCase

BusinessChoreographyView

BusinessTransaction

1

0..*
0..* 0..*

1

1..*

1

1+behavior

1+context

11

+maps to

1758.3 The conceptual UMM meta model
A business choreography is composed of exactly one business choreogra-
phy behavior. The business choreography behavior follows exactly the
requirements, which are defined in the corresponding business collabora-
tion use case of the business requirements view. Furthermore each business
collaboration use case of the business requirements view is mapped to
exactly one business choreography behavior. In the figure above this is
shown by the 1 to 1 mapsTo relationship between the business collaboration
use case and the business collaboration behavior.

The business collaboration behavior itself is an abstract concept. It is
planned, that in future versions of UMM there might exist different
approaches to describe the choreography of a business collaboration. Nev-
ertheless in this version the only valid specialization is a business collabo-
ration protocol. Therefore a business choreography is currently always
defined by a business collaboration protocol. A business collaboration pro-
tocol itself is composed of zero to many business collaboration activities
and of zero to many business transaction activities. At least one business
collaboration activity or one business transaction activity must be present
in a business collaboration protocol. The transitions which define the flow
among the business collaboration activities and the business transaction
activities can be guarded by the states of business entities.

A business collaboration activity is refined by another business collab-
oration protocol. Only the nested business collaboration protocols are
refined business collaboration activities. Furthermore it is possible, that a
business collaboration protocol is nested in different business collaboration
activities. In the figure above this is represented by the (0..n) to 1 aggrega-
tion relationship between business collaboration activity and business col-
laboration protocol.

Finally a business transaction activity is refined by a business transac-
tion. Because the business transaction is a concept which belongs to the
business interaction view, it will be described in more detail in the next
chapter. A business transaction must at least once be used to refine a busi-
ness transaction activity. A business transaction can be nested in different
business transaction activities. Therefore the aggregation relationship
between business transaction activity and business transaction is (1..n) to 1.

The next view defines a choreography which leads to synchronized
states of business entities on both sides of the interaction. It is the so called
business interaction view.

Business Interaction View

Reaching a synchronized
business state

This view contains exactly one business interaction, which leads to a syn-
chronized business state between the two authorized roles, executing the

1768.3 The conceptual UMM meta model
business interaction. Figure 8–12 shows the business interaction view at a
glance.

Fig. 8–12 Overview of the
business interaction view

Furthermore a business interaction is a persistent representation of a syn-
chronization of business states between authorized roles. The business
interaction behavior describes the choreography of the synchronization and
the required information exchanges. A business interaction is composed of
exactly one business interaction behavior. The business interaction behav-
ior is based on the requirements which have been defined in the correspond-
ing business transaction use case of the business requirements view. Each
business transaction use case is mapped to one business interaction behav-
ior and each business interaction behavior is mapped to exactly one busi-
ness transaction use case.

The stereotype business interaction behavior is an abstract concept. In
a future version of UMM there may exist different approaches to describe
the choreography and information exchanges in a business interaction.
Nevertheless in this version the only specialization which is valid is the
business transaction. The business transaction is an atomic business pro-
cess which takes place between two roles. It involves sending business
information from one role to the other. A reply is optional.

Business transactions and
the use of swimlanes

A business transaction is split up into partitions - each role has a parti-
tion. Hence a business transaction is composed of exactly two business
transaction swimlanes, where each swimlane relates to one authorized role.
Nevertheless an authorized role may be assigned to multiple business trans-
action swimlanes in different business transactions but to only one business
transaction swimlane within a specific business transaction. This means,
that the two swimlanes of a business transaction must be assigned to differ-
ent roles.

cd BusinessInteractionView - Conceptual

RespondingInformationEnv elope

BusinessTransaction

PartnershipRequirementsView ::
AuthorizedRole

RequestingBusinessActiv ity RespondingBusinessActiv ity

RequestingInformationEnv elope

BusinessTransactionSw imlane

PartnershipRequirementsView ::
BusinessTransactionUseCase

BusinessInformation::
InformationEnv elope

BusinessAction

BusinessInteractionBehaviorBusinessInteractionBusinessInteractionView

1

outputs

1

1

mapsTo

1
+behaviour

1

+context

1
1

0..1

+type

1..*

mapsTo

1..*

+parti tion 2

1

receives as input

0..1

11

outputs

0..1

+type

1

1

receives as input

1

*

1
1

1 1

1778.3 The conceptual UMM meta model
Within a business transaction each role performs one business action.
The requesting role performs the requesting business activity, the respond-
ing role performs the responding business activity. Each business action is
assigned to a swimlane and each swimlane contains exactly one business
action. Each role can perform multiple business actions but only in different
business transactions. A business transaction is composed of exactly one
requesting business activity and exactly one responding business activity.
Both business activities are specializations of a business action.

RequestorThe output of a requesting business activity is a requesting information
envelope. The requesting information envelope serves as an input for the
responding information activity. The responding information envelope,
which is the output of a responding business activity and the input of a
requesting business activity is optional. Therefore a business transaction is
composed of exactly one requesting information envelope and zero or one
responding information envelopes. The requesting information envelope as
well as the responding information envelope are instances of the type infor-
mation envelope. A requesting business activity outputs exactly one
requesting information envelope and a requesting information envelope is
created by exactly one requesting business activity. A requesting business
activity can receive zero or one responding information envelopes as input
and a responding information envelope is input to exactly one requesting
business activity.

ResponderThe output of a responding business activity are zero or one responding
information envelopes and a responding information envelope is created by
exactly one responding business activity. The input of a responding business
activity is exactly one requesting information envelope and a requesting
information envelope is input to exactly one responding business activity.

Both the requesting information envelope and the responding informa-
tion envelope are stereotypes of the base class object flow state. The type of
the object flow state is defined by the information envelope that is a stereo-
type of base class.. Multiple object flow states can be instances of the same
class. For the business transaction view this means, that different requesting
information envelopes or responding information envelopes might be
instances of the same information envelope. An information envelope can
therefore be reused in different business transactions.

The last subview within the business transaction view to be analyzed is
the business information view.

Business Information View

Describing the exchanged
information

The artifacts within the business information view describe the information
which is exchanged in a business interaction. As already explained in the
last paragraph, the requesting information envelope as well as the respond-

1788.4 OCL constraints as the base for validation
ing information envelope are of type information envelope. The information
envelope serves as a cover for all the information exchanged between
requesting business activities and responding business activities and vice
versa. As Figure 8–13 shows, the information included in the envelope is
structured by classes which are stereotyped as information entity.

Fig. 8–13 Overview of the
business information view

Information entities can be nested as the unary composition in the figure
above shows. An information envelope contains a header and one ore more
bodies. The header as well as the body are information entities themselves.
Therefore an information envelope is composed of exactly one information
entity with the role name header and one or more information entities with
the role name body. The third generalization connector in the figure above
shows, that an information envelope is a specialization of an information
entity, which fulfills all the rules for the information envelope as well.

Not included in the current UMM foundation module are rules, which
define how to build information entities. However current effort focuses on
the modeling of information entities using the Core Component Technical
Specification (CCTS) approach, which is discussed in more detail in chap-
ter 10.

Following the description of the conceptual UMM meta model the next
chapter will focus on the OCL constraints, which restrict the modeling in
order to ensure a valid UMM model.

8.4 OCL constraints as the base for validation
As already mentioned in chapter 8.2.3, the base for the UMM validation are
OCL constraints. The OCL constraints have been derived from the UMM
meta model and are split up into four significant parts with additional sub
parts.

cd BusinessInformation - Conceptual

InformationEntity

InformationEnv elope

0..*
1..*+body1

+header

1798.4 OCL constraints as the base for validation
The structure of the OCL
constraints

■ Business collaboration model
■ Business domain view
■ Business requirements view

• Business process view
• Business entity view
• Partnership requirements view

■ Business transaction view
• Business choreography view
• Business interaction view
• Business information view

As one can see, the structure of the OCL constraints follows the UMM meta
model. This is not arbitrary but organized by UN/CEFACT in order to facil-
itate maintenance and usage of the constraints. The OCL constraints within
the business collaboration model part are applicable for the whole model.
They ensure, that the model itself has a valid UMM structure. The following
three main bullets indicate the constraints according to the three different
main packages within the UMM. Furthermore the constraints within the
business requirements view and the business transaction view are finer
grained according to the subviews of the packages.

By using OCL constraints as the base for a validation engine errors can
arise. The next chapter will focus on the process of transforming the OCL
constraints into a validation engine and the problems, which might occur.

8.4.1 Validation techniques

After having specified the constraints on UMM in natural language in the
specification they are transformed into OCL. OCL provides a common
understandable base which guarantees, that no ambiguities occur. These
OCL constraints must now be transformed into a validation engine which
consists of three significant parts:

• a model to be validated
• a set of OCL constraints, which apply to the model
• a validation engine, which can validate the model against the OCL

constraints

From the software engineers perspective three design approaches are possi-
ble. The next three paragraphs will give an overview of the three approaches
and evaluate the pros and cons of each approach. Finally our method of
choice will be presented.

1808.4 OCL constraints as the base for validation
Generic OCL validator

This approach can be considered as the most flexible one. The validator is
implemented as stand-alone application or as a service. Figure 8–14 shows
the architecture of a generic OCL validator. The input model which should
be validated must be an XML Metadata Interchange (XMI) representation.
Users can submit their models in the form of an XMI file to a stand-alone
application or the XMI representation e.g. via Simple Object Access Proto-
col (SOAP) to a web service, which implements the validator service. Fur-
thermore the validator requires the OCL constraints and the meta model as
an input. The validator then checks the XMI document against the meta
model and the OCL constraints.

Fig. 8–14 Generic OCL
validator

Although this approach is the most flexible one, in practice it has some
shortcomings. It is difficult to represent a complicated UMM model in an
unambiguous way in XMI. Especially the different modeling tools like
Enterprise Architect, Poseidon or Rational Rose, just to name a few, do not
export XMI in a congruent way - they use different XMI flavors.

The next shortcoming is the lack of usability for the modeler. When a
UMM model is built from scratch, the modeler starts with the business
domain view. After having finished this view, the user continues with
designing the business requirements view. From the point of usability, it
would be a great enhancement for the user, if he could validate the business
domain view alone. When the business domain view is valid, the user then
continues designing the business requirements view and so on. This bottom
up validation approach requires a lot of validator invocations. Considering
the fact, that for every modeling invocation the model has to be exported to
XMI first and then transferred to a standalone application or a service, we
argue, that the lack of efficiency makes this validation approach ineligible
for UMM validation.

Another shortcoming of this approach is the presentation of error mes-
sages to the user. Clear and meaningful error messages help the modeler to
correct the mistakes found by the validator. By using the generic approach,
detailed error messages are not possible, which is a significant decrease in

cd Use Case View

Generic OCL v alidator

Meta model
e.g. UML 1.4

UMM model as
XMI representation

OCL
constraints

UMM compl iant model

inval id

val id

1818.4 OCL constraints as the base for validation
usability. Currently no mechanism in OCL is known, which could combine
the constraints and personalized error messages.

However the chance to submit OCL constraints, a UML meta model
and an arbitrary UMM model to a validation engine sounds tempting with
regard to a generic, reusable validation engine. Nevertheless from the soft-
ware engineer’s perspective this approach is difficult in terms of feasibility.
The difficulty in implementation and the enormous effort were the reasons,
why this approach was not chosen.

OCL validator as an Add-In for a modeling tool

The OCL validator Add-In is implemented similarly to the generic OCL
validator. While the generic validator is implemented as a stand-alone appli-
cation or service this validation approach is realized as an Add-In for a mod-
eling tool. In this example Enterprise Architect (EA) is chosen. As an input,
the OCL interpreter requires the OCL constraints and a meta model. The
user creates a UMM model with the modeling tool. Via a button inside the
tool, the user starts a validation. Via the OCL interpreter the validation Add-
In uses the OCL constraints and the meta model to validate the created
model. Figure 8–15 shows the OCL interpreter Add-In at a glance.

Fig. 8–15 OCL validator
Add-In

The advantage the OCL validator Add-In has over the generic OCL val-
idator is the missing XMI representation. Because the XMI is missing, the
ambiguities can be avoided and the performance yield allows bottom up
validation runs. Enterprise Architect offers a well designed interface which
can be used to access the elements of a model. The model representation
which is offered by the interface is unambiguous.

Add-Ins for the Enterprise Architect are written in Delphi, C# or any
other supported programming language. This means, that the software
architect has to implement the OCL interpreter in one of the programming
languages mentioned above. The disadvantage over the generic approach is
apparent. A model which has been created e.g. with Rational Rose, can not
be validated with this validation approach, as it is exclusively for Enterprise

cd OCLv alidatorasAddIn

Enterprise
Architect

OCL interpreter

OCL constraints

UMM compl iant modelValidation AddIn

Meta model
e.g. UML 1.4

val id

inval id

1828.4 OCL constraints as the base for validation
Architect. Furthermore the implementation of an OCL interpreter as an
Enterprise Architect Add-In is linked up with high development costs simi-
lar to the generic validator approach.

Validation Add-In for a modeling tool

The third approach for a validation engine is an Add-In for a modeling tool,
where the OCL constraints are hard coded within the program code. Figure
8–16 gives an overview of this approach, which was the method of choice
for this thesis. The validation Add-In represents the logic of the OCL con-
straints. Every constraint is taken and hard coded in C# code. The user starts
the validation by pressing a button inside the EA. A major advantage over
the first approach is the fact, that the user can validate sub models (e.g. only
the business transaction view) as well. By providing this bottom up
approach the user can step by step be guided towards a valid model.

Fig. 8–16 Validation Add-
In

The first two methods were using an OCL interpreter, which parses the
OCL constraints and validates a given model against them. The effort to
write an OCL interpreter is quite high and the implementation e.g. via a web
service often complicated or inefficient. Furthermore the performance of an
OCL interpreter is slow and the error messages concerning the validated
model are not fine grained.

Although the implementation cost for a validation Add-In must not be
underestimated, it has one main advantage over the first two approaches.
After implemented once, the validation Add-In has a very fast performance
and provides the user with helpful error messages concerning the created
model. Therefore this approach was our method of choice when we imple-
mented the UMM validator. The design of our Add-In allows an easy exten-
sion and maintenance of the validation procedure, which helps adapting the
validator to changes in the UMM standard.

Chapter 8.5 will focus on the Add-In in detail and analyze its advan-
tages and disadvantages. Before we continue with the validator in detail we
will analyze the transformation of an OCL constraint into the validator.

cd Add-In

Enterprise
Architect

Validation Add-In UMM compl iant model

inval id

val id

1838.4 OCL constraints as the base for validation
8.4.2 Transforming OCL constraints into a validation engine

In order to implement the correct logic in the validator, the OCL constraints
have to be transformed into C# code. As an example for a transformation we
will use a constraint which applies to the business collaboration model.
Expressed in natural language the constraint states the following:

Natural language represen-
tation

A BusinessCollaborationModel MUST NOT contain more than one
BusinessDomainView package (but it MAY contain no BusinessDomainView
package at all)

Accordingly the OCL constraint is:

Listing 8–2 OCL
constraint according to
the natural language
representation

[250] package Model_Management
[251] context Model
[252] inv zeroToOneBusinessDomainView:
[253] self.isBusinessCollaborationModel() implies
[254] self.ownedElement->select(isBusinessDomainView())->size()<=1

Our goal is now transforming the OCL constraint into a C# code, which is
then part of the validator. Every constraint is validated by using a method,
which has the same name as the invariant of the OCL constraint. The name
of the invariant in our example is zeroToOneBusinessDomainView.

The code representation of the OCL constraint zeroToOneBusinessDo-
mainView is:

Listing 8–3 C# code
representation of the OCL
constraint

[255] private bool checkOCL_zeroToOneBusinessDomainView() {
[256] bool rv = false;
[257] int c = 0;
[258] EA.Package package = (EA.Package)repository.Models.GetAt(0);
[259] foreach (EA.Package p in package.Packages) {
[260] if(p.Element.Stereotype==
[261] UMM_Stereotype.BusinessDomainView.ToString())
[262] c++;
[263] }
[264] if (!(c == 0 || c == 1)) {
[265] this.validatorMessages.Error("Invalid number of
[266] BusinessDomainView(s) detected.", new Constraint("A
[267] BusinessCollaborationModel must not contain more than
[268] one BusinessDomainView package (but it may contain
[269] no BusinessDomainView package at all).",this,
[270] new StackFrame()));
[271] rv = true;
[272] }
[273] return rv;
[274] }

As one can see, the name of the C# method equals the name of the OCL
invariant with an additional checkOCL_ prefix. By applying this conven-

1848.5 The UMM validation Add-In
tion the maintenance of the constraints is facilitated, as the according
method can easily be found within the code.

Every validation method for an OCL constraint returns a boolean value.
In case one constraint is violated, the processing of the validation stops, and
the user is presented the error message. The reason for doing this is because
a lot of OCL constraints interrelate. For instance constraint B checks the
actors within an use case diagram and constraint A checks if the use case
diagram exists. If constraint A fails (because there is no appropriate use case
diagram), it makes no sense to check constraint B. If no use case diagram is
present, it makes no sense any more to check if actors are present.

Line 260-263 checks the occurrence of business domain views within
the model. If the number is neither 0 nor 1, an error is raised. In line 265 an
error is added to a collection of error messages. As we will see later, the col-
lection of error messages is presented to the user after a validation run. We
now continue with the validation engine.

8.5 The UMM validation Add-In
In this chapter we would like to explain the validation engine we imple-
mented. As mentioned before, the validator among other features like the
worksheet editor or a BPEL transformer is implemented as an Add-In
within the Enterprise Architect.

The first issue to be discussed is the architecture of the validator. In the
last chapter we already saw, how OCL constraints are transformed into C#
methods. We now would like to examine how the validator is organized.

8.5.1 Architecture

The validator itself is split up into four major parts. Every major part of the
UMM model namely business domain view, business requirements view and
business transaction view as well as the business collaboration model
(which is the model per se) has its own validator.
Figure 8–17 shows the UMM validator’s class structure. For the sake of
clarity within the class diagram less important attributes and operations
have been left out.

1858.5 The UMM validation Add-In
Fig. 8–17 Class diagram
of the validator

The class ValidatorForm represents the graphical user interface (GUI). Val-
idation results are presented within the GUI and validation specific informa-
tion is presented to the user. A validation specific information for instance is
the scope, which the validator currently operates on or a progress bar, which
shows the user the overall progress of a validation run. When talking about
a scope within the validator, a specific subview within the model is meant,
on which the validator operates. Scope can for instance be the business
domain view or the business information view or the entire model just to
name a few.

The class Validator holds the messages, which are generated by the dif-
ferent sub validation classes. Its method getValidatorMessages() is used by
the class ValidatorForm to access the messages, which a validation run has
generated. Furthermore it invokes the right sub validation routine depend-
ing on the current scope of the validator. The attribute repository is a refer-
ence to the current model which is opened in the Enterprise Architect. Via
this reference every model element within the current model can be
accessed.

The class IValidator is defined abstract with exactly one abstract
method named validate(). Every subclass inherits the attributes of IValida-
tor and must implement the abstract method validate(). The attribute repos-
itory as already mentioned holds a reference to the current model. The

cd Validator

BCMValidator

~ val idate() : bool

BDVValidator

~ val idate() : bool

BRVValidator

~ val idate() : bool

BTVValidator

~ val idate() : bool

IValidator

~ reposi tory: EA.Reposi tory
~ scope: String
~ stereotype: String
~ val idator: Val idator
~ val idatorMessages: Logger

~ val idate() : bool

TaggedValueValidator

- cal ler: Object
- reposi tory: EA.Reposi tory
- val idatorMessages: Logger

Validator

- mode: String
- reposi tory: EA.Reposi tory
- val idatorForm: Val idatorForm
- val idatorMessages: Logger

+ getVal idatorMessages() : Logger
+ val idate() : bool

ValidatorForm

~val idator

-val idatorForm

-val idator

1868.5 The UMM validation Add-In
attribute validatorMessages contains the messages, generated by the sub
validation routines. Scope as already mentioned defines the current scope of
the validator. In scope the package identification of the clicked package is
stored as an integer. The attribute stereotype holds the stereotype of the
scope. The attribute validator holds a reference to the class Validator. This
is necessary, because via that variable changes in the user interface can be
invoked. The most important change in the user interface during a valida-
tion run is the change of the progress bar and the change of the text in the
status bar.

The subclasses of the abstract class IValidator are responsible for vali-
dating the corresponding view in the UMM model whereas the first three
letters of the class name refer to the abbreviation of the according view. The
class TaggedValueValidator validates the tagged values within the current
scope of the validator.

Special tagged value vali-
dator

The second issue to be discussed is the granularity of a validation. The
validator can operate in two different modes. The so called scope validation
(bottom up validation) validates a subview of the model e.g. the business
transaction view, whereas the overall (top down) validation validates the
whole model.

8.5.2 Scope vs. overall validation

While designing a UMM model the user finishes one view after the other.
Normally one starts with the business domain view and its subviews, contin-
ues with the business requirements view and then finishes the business
transaction view and the corresponding subviews. After having for instance
finished the business domain view, the user wants to check, whether the cre-
ated view is valid or not, before continuing with the business requirements
view. At this point the scope validation can be used.

A bottom up approachThe user is able to right click on any package in the tree view of the
Enterprise Architect. The tree view in the EA is the package tree on the right
hand side, which gives an overview about all created packages and their
hierarchical order. After having clicked on a package in the tree view, the
validator determines the stereotype of the clicked package and opens the
validator form. The scope of the validator is automatically set to the scope
of the package. Hence the user can start a validation run, which exclusively
validates the selected package. This leads to a great improvement in valida-
tor performance, as the user does not need to validate the whole model. Fur-
thermore it enhances the usability, as only error messages, specific to the
selected package are presented.

A top down approachIn contrast to the scope specific validation, the overall validation vali-
dates the UMM model as a whole. This feature is used, after the user has fin-

1878.5 The UMM validation Add-In
ished an UMM model and wants to check its overall validity. Nevertheless
the user can always initiate an overall validation during the design process
of a model. However seen from the point of usability and performance an
overall validation does only make sense, when the entire UMM model with
its according subview is finished. Furthermore the overall validation func-
tionality is used by the BPSS and BPEL transformer as well. Before a trans-
formation is invoked, the transformer starts an overall validation to ensure a
valid model. If the validator does not return any error messages, the trans-
former starts the transformation. Hence the transformer can anticipate a
valid model.

We will now examine the validation of a specific package in detail.

8.5.3 Validation of a package - a deeper insight

As already mentioned at the beginning of chapter 8.4 the OCL constraints in
the UMM specification are split up into four significant parts with addi-
tional sub parts. When leading over the OCL constraints into a validation
engine, a programmer is facing certain problems, which we will try to ana-
lyse in this chapter.

At first, the structure, in which the OCL constraints are organized
within the UMM specification is not suitable for direct transformation. As
we saw in the last chapter, the chance to validate a specific subpackage must
also be given in order to allow a scope specific validation. In scope specific
validation, the user must have the chance to validate the following pack-
ages:

Common packages within a
UMM model

■ Business collaboration model
■ Business domain view

• Business area
• Process area
• Business category

■ Business requirements view
• Business entity view
• Business process view
• Collaboration realization view
• Collaboration requirements view
• Transaction requirements view

■ Business transaction view
• Business choreography view
• Business interaction view
• Business information view

1888.5 The UMM validation Add-In
From the structure above two interesting facts can be derived. As first ele-
ment the business collaboration model is mentioned. The business collabo-
ration model represents the whole model. If the user initiates scope specific
validation by clicking on the very top package in the tree view (which is the
whole model), an overall validation is started. That means, that the scope of
the validator is the whole model - therefore the validator operates as if it
would be in overall mode.

Difference between OCL
and UMM package struc-
ture granularity

Furthermore we can see, that the structure for scope validation is finer
grained then the structure in which the OCL constraints are available from
the documentation. E.g. in the UMM specification the OCL constraints of
the collaboration realization view, collaboration requirements view and
transaction requirements view are combined into the partnership require-
ments view.

The first exercise is to split up the OCL constraints and assign them to
the correct subview as mentioned above. We then create a class for every
view (as we saw in Figure 8–17) and furthermore create a method for every
subview and a method for every OCL constraint. Figure 8–18 shows a class
diagram for the business transaction view validator. In the upper right cor-
ner we can see the abstract class IValidator from which the BTVValidator
inherits.

Fig. 8–18 The business
transaction view validatorcd Validator

IVal idator
BTVValidator

~ BTVVal idator(Logger, EA.Reposi tory, String, String, Val idator)
- check_BusinessChoreographyView() : bool
- check_BusinessInformationView() : bool
- check_BusinessInteractionView() : bool
- check_BusinessTransactionView() : bool
- checkGeneralConstraintsOnBusinessInteractionView() : bool
- checkOCL_AllowedElementsInBusinessInformationView() : bool
- checkOCL_AllowedModelElementsInBCP() : bool
- checkOCL_BCArefinedByExactlyOneBCP() : bool
- checkOCL_BCdescribedByOneBusinessChoreographyBehaviour() : bool
- checkOCL_BCPmapsToBCUseCase() : bool
- checkOCL_BCVcontainsExcactlyOneBC() : bool
- checkOCL_BehaviorOfBIdescribedByExactlyOneBusinessInteractionBehavior() : bool
- checkOCL_BIBmapsT oExactlyOneBusinessTransactionUseCase() : bool
- checkOCL_BIVcontainsExactlyOneBI() : bool
- checkOCL_BTArefinedByExcactlyOneBT () : bool
- checkOCL_BusinessTransactionHasExactlyTwoBTSwimlanes() : bool
- checkOCL_BusinessTransactionSwim laneClassifier() : bool
- checkOCL_contentsOfInformationEnti ty() : bool
- checkOCL_ContentsOfRequestingParti tion() : bool
- checkOCL_ContentsOfResponderParti tion() : bool
- checkOCL_InformationEnvelopeHasBodies() : bool
- checkOCL_InformationEnvelopeHasHeader() : bool
- checkOCL_ObjectFlowStateHasClassi fier() : bool
- checkOCL_packagesAl lowedInBTV(String) : bool
- checkOCL_T rIni tialState2RequestingBusinessActivi ty() : bool
- checkOCL_T rPossibleRespondingInformationEnvelope2RequestingBusinessActivi ty() : bool
- checkOCL_T rRequestingBusinessActivity2FinalState() : bool
- checkOCL_T rRequestingBusinessActivity2ReqInfEnvelope() : bool
- checkOCL_T rRequestingInformationEnvelope2RespondingBusinessActivi ty() : bool
- checkOCL_T rRespondingBusinessActivi ty2RespondingInformationEnvelope() : bool
- checkOCL_T rRespondingInformationEnvelope2RequestingBusinessActivi ty() : bool
~ val idate() : bool

1898.5 The UMM validation Add-In
The first method of the class is the constructor which receives five parame-
ters which initialize the BTVValidator. The last method validate() is inher-
ited from the superclass Validator. By using the scope information, the
method validate() invokes the correct method for the required subview.
Four methods are responsible for validating the correct subview:

One sub-routine for every
subview

• check_BusinessTransactionView()
• check_BusinessChoreographyView()
• check_BusinessInteractionView()
• check_BusinessInformationView()

The method check_BusinessTransactionView() validates the whole business
transaction view. This is done by one after the other invoking the three other
methods check_BusinessChoreographyView(),
check_BusinessInteractionView() and check_BusinessInformationView().

As an example we now take the check_BusinessInformationView() and
examine how the correct OCL constraints are validated within this method.
The method is implemented as following:

Listing 8–4 Invocation of
a business information
view validation

[275] private bool check_BusinessInformationView() {
[276]
[277] validator.incrementValidatorProgress();
[278]
[279] bool error = checkOCL_AllowedElementsInBusinessInformationView();
[280] if (!error)
[281] checkOCL_InformationEnvelopeHasHeader();
[282] if (!error)
[283] error = checkOCL_InformationEnvelopeHasBodies();
[284] if (!error)
[285] error = checkOCL_contentsOfInformationEntity();
[286]
[287] validator.incrementValidatorProgress();
[288]
[289] //Validate the TaggedValues
[290] if (!error)
[291] new TaggedValueValidator(this.validatorMessages,
[292] this.repository,this).validatePackageAndContentTV(this.scope);
[293] return error;
[294] }

For the business information view four OCL constraints are relevant, which
are validated in the lines 279, 281, 283 and 285. The validation of a specific
OCL constraint is done by invoking the correct sub method e.g.
checkOCL_AllowedElementsInBusinessInformationView(). Every method
which validates an OCL constraints returns true in case an error occurred or
false instead. In case one method returns an error, the validation stops and

1908.5 The UMM validation Add-In
the user is presented the error message. This is due to the fact, that the OCL
constraints and therefore the methods validating the according constraints
interrelate. If for instance the method in line 283 returns true because an
error occurred while checking if the information envelope has message bod-
ies, it does not make sense to invoke the next method in line 285. If the
information envelope is missing the message bodies it is useless to check
the contents of the message bodies.

Line 291 invokes the validator, which validates the tagged values of the
business information view. Line 277 and 287 increment the progress bar in
the user interface.

In the example above we saw how a specific subview validation for the
business information view is implemented. We now want to look at the way,
the BTVValidator invokes the methods for the validation for the correspond-
ing subviews. The following example shows the method
check_BusinessTransactionView(), which invokes the methods, which vali-
dates the whole business transaction view. For the sake of clearness some
parts have been shortened. Three dots indicate, that parts have been omitted.

Listing 8–5 Invocation of
a business transaction
view validation

[295] private bool check_BusinessTransactionView() {
[296] EA.Package p = this.repository.GetPackageByID(Int32.Parse(scope));
[297] bool error = false;
[298] ArrayList packages = new CustomPackage(...).getPackages();
[299] foreach (CustomPackage cp in packages) {
[300] EA.Package pa = cp.Package;
[301] this.scope = pa.PackageID.ToString();
[302] String stereotype = pa.Element.Stereotype;
[303] if (stereotype == ...BusinessChoreographyView.ToString())
[304] error = check_BusinessChoreographyView();
[305] else if (stereotype == ...BusinessInteractionView.ToString())
[306] error = check_BusinessInteractionView();
[307] else if (stereotype == ...BusinessInformationView.ToString())
[308] error = check_BusinessInformationView();
[309] else {
[310] error = true;
[311] this.validatorMessages.Error(...);
[312] }
[313] if (error)
[314] break;
[315] }
[316] if (!error)
[317] new TaggedValueValidator(...);
[318] return error;
[319] }

In line 296 the package is retrieved using the current scope. In this case the
package is the business transaction view. Line 298 retrieves the packages
within the business transaction view and puts them in the correct order.

1918.5 The UMM validation Add-In
Why a sort is necessary is explained in the next paragraph. In line 299 to
315 the method iterates over the found packages and invokes depending on
the stereotype of the package the correct subvalidation routine. In case one
of the subpackages is not valid the error flag is set to true and the validation
stops. If no error occurred, the tagged value validator is invoked in line 317.

The method check_BusinessTransactionView() itself returns a boolean
value as well. The purpose is, that if the whole model has to be validated one
after the other the business domain view, the business requirements view and
the business transaction view validators are invoked. If an error occurs
within the business domain view, the BDVValidator returns true and the val-
idators for the business requirements view and the business transaction view
are not invoked.

The other sub validators, BCMValidator, BDVValidator and BRVVali-
dator are implemented analogously. By using the approach above both, the
scope validation and the overall validation can be executed by the same val-
idator. In case of an overall validation the BCMValidator is invoked, which
then invokes BDVValidator, BRVValidator and the BTVValidator. Hence,
the whole model is validated.

We will now have a deeper insight into the mechanism which is respon-
sible for the validation of the tagged values.

8.5.4 Tagged value validator

As already mentioned at the beginning of this chapter, tagged values play an
important role within the UMM standard. The presence of tagged values
and their correct values are crucial for applications using the UMM model.
The tagged value validator is invoked once for every subview of the UMM
model. In case we would for instance validate the business transaction view,
the validator would be called for every subview namely:

■ Business transaction view
• Business choreography view
• Business interaction view
• Business information view

Listing 8–5 shows the C# code for the validation of a business transaction
view. In line 317 the tagged value validator for the tagged values of the busi-
ness transaction view is invoked. Please note, that the invocation in line 317
only validates the tagged values of the business transaction view itself. The
tagged values of the subpackages are validated in the according subroutines
which are invoked in the lines 304, 306 and 308. This mechanism is neces-
sary in order to allow a package specific validation as needed for the bottom
up validation approach.

1928.5 The UMM validation Add-In
Figure 8–19 shows an overview of the tagged value validator. Every sub
routine of the validator invokes the tagged value validator by calling the val-
idatePackageAndContentTV() method and passing the scope variable to it.
Within the scope variable the information is stored, on which package the
tagged value validator is supposed to operate. The method validatePackag-
eAndContentTV() then in turn determines the correct package from EA’s
package collection and validates its elements.

Fig. 8–19 Class diagram
of the tagged value
validator

For every specific subpackage a method is provided, which checks the
occurrence and validity of the corresponding tagged values. In general we
distinguish between four different data types which a tagged value can have,
namely string, boolean, duration and integer. The tagged value validator
not only checks if a specific tagged value is present but also if the tagged
value has an appropriate data type. In case either the tagged value is missing
or its data type is wrong, an error is raised and added to the collection of
error messages.

In contrast to the regular validator, which validates the UMM model,
the tagged value validator does not stop the validation if an invalid or miss-
ing tagged value is detected. This is only possible because we do not have
an interrelation between the tagged values as we have between the con-
straints which apply to the UMM model.

cd Validator

TaggedValueValidator

- cal ler: Object
+ reposi tory: EA.Repository
+ scope: String = ""
- val idatorMessages: Logger

- determ ineVal idationSubMethod(EA.Element) : void
- isBoolean(EA.TaggedValue) : bool
- isDuration(EA.TaggedValue) : bool
- isInteger(EA.TaggedValue) : bool
- logErrorFalseValueType(String, String, EA.TaggedValue, String) : void
- logErrorNoTaggedValue(String, String, String) : void
- logOtherTaggedValueFound(String, String, EA.TaggedValue) : void
- logStringTaggedValueHasNoLength(String, String, EA.TaggedValue) : void
- logWarnNoTaggedValue(String, String, String) : void
~ resetTaggedValues() : void
~ TaggedValueVal idator(Logger, EA.Repository, object)
- val idateBusinessAction(EA.Element) : void
- val idateBusinessCol laborationUseCase(EA.Element) : void
- val idateBusinessInteraction(EA.Element) : void
- val idateBusinessLibrary(EA.Package) : void
- val idateBusinessProcess(EA.Element) : void
- val idateBusinessT ransactionActivi ty(EA.Element) : void
- val idateBusinessT ransactionUseCase(EA.Element) : void
- val idateInformationEnti ty(EA.Element) : void
- val idateInformationEnvelope(EA.Element) : void
~ val idatePackageAndContentTV(String) : void
- val idateRequestingBusinessActivi ty(EA.Element) : void
- val idateRequestingInformationEnvelope(EA.Element) : void
- val idateRespondingBusinessActivi ty(EA.Element) : void
- val idateRespondingInformationEnvelope(EA.Element) : void
~ val idateTV(EA.Element) : void
~ val idateTV(EA.Col lection) : void
~ val idateTV(EA.Package) : void

1938.5 The UMM validation Add-In
8.5.5 Difficulties which accompany the validation

One major problem which a programmer is facing is due to the implementa-
tion of the interface which is provided by Enterprise Architect. Internally in
Enterprise Architect packages are identified using a unique ID. As we have
seen in the chapter about scope vs. overall validation, packages are essential
to the validator. Therefore also internally in the validation Add-In packages
are identified using the Enterprise Architect internal ID. When validating
for instance the business transaction view (as shown above), the order in
which the subpackages are validated is important.

EA does not store packages
in correct order

First the business choreography views must be validated followed by
the business interaction views and the business information views. For the
validation per se the order is not that crucial as for the usability. Errors
occurring in the business choreography view should be presented first, then
the errors of the business interaction view and so on. Unfortunately the
Enterprise Architect internal IDs are not necessarily ordered as the underly-
ing data structure is a relational database. When validating the business
transaction view, the programmer has to first extract all subpackages of the
view and sort them - first business choreography views, then business inter-
action views and then business information views. For a beginner to the
Add-In programming with Enterprise Architect this is a major stumbling
block, because the implementation anomaly in the Enterprise Architect is
not immediately apparent.

The second issue is more an exception than a difficulty. The business
domain view has a special behavior as its elements can be nested recur-
sively. Therefore the programmer first has to extract all relevant views
recursively, check their consistency and then invoke the validation.

Another issue which a programmer is facing is a performance problem
which can occur especially when a UMM model gets very large. Figure 8–
20 shows the UMM Add-In and its context within Enterprise Architect.
Because Enterprise Architect is build on a relational database, namely
Microsoft Access every access to a data collection of the EA interface
requires a select query on the database.

Fig. 8–20 The EA
architecture at a glancecd EA Architecture

Enterprise Architect

UMM Add-In

EA Interface

Relational
database

1948.5 The UMM validation Add-In
If the validator is for instance performing a validation of the whole model,
every package and its elements have to be retrieved from the database. This
can take a while and reduces the overall performance of the validator. One
could argue, that a one-time transformation of the model into a C# specific
data structure would ease the performance as a C# specific data structure
would be very fast especially for searching and evaluating elements. How-
ever we must not forget, that the validation is performed several times while
modeling and therefore we would have to transform the model into the C#
specific data structure for every validation run. Hence the performance gain
is lost. However for specific appliances like a BPSS transformation the con-
version of the model into a C# specific data structure does make sense. A
transformation is a one-time action and therefore a performance gain would
be possible.

In the next chapter we will have a brief look on the way, validation
results are presented to the user. We will see, that meaningful error mes-
sages are a key issue to a good usability of the validator.

8.5.6 Presentation of validation results

We will now focus on the presentation of the validation results to the user. A
clear and easy conceivable user interface together with meaningful error
messages help the user to model a valid UMM model. Whenever a valida-
tion is invoked, a new validator window will pop up and present the user the
validator user interface. Figure 8–21 shows the interface before a validation
run.

Fig. 8–21 The validator
user interface

The field Validation scope indicates the current scope of the validator. In the
example shown above the validator currently operates on a business entity

1958.5 The UMM validation Add-In
view named registration. The stereotype of the selected package is shown
between the guillemets. By clicking the Start Validation button the user
commences a validation run - in this case a validation on the package
denoted in the validation scope field. The messages which are generated by
the validator will be presented to the user in the messages pane. The
progress of the validation is shown by the progress bar under the validation
scope. In Figure 8–22 we can see the validator user interface after a valida-
tion run on the entire model.

Fig. 8–22 The user
interface after a
validation run

The status text in the lower left corner and the finished progress bar indi-
cate, that the validation run is complete. The generated messages are shown
to the user in the messages pane. Within the validator we distinguish
between four different error levels. The error levels ascending correspond-
ing to their severity are: INFO, WARN, ERROR and FATAL.

Error message distinctionINFO messages are used to inform the user about incidents in the model
which are not wrong in the sense of the meta model and the OCL con-
straints. If for instance no business entity view is present within the business
requirements view an error message with the level INFO is generated.
Although not wrong according to the meta model, the user can just have
simply forgotten to create a business entity view. The INFO message
reminds him of the missing business entity view. Within the message pane
INFO messages have a white background.

WARN messages are used to inform the user about incidents in the
model which are not mandatory but strongly recommended. If for instance a
tagged value is present but its value is missing, an error message with the

1968.5 The UMM validation Add-In
level WARN is generated. Within the message pane WARN messages have a
yellow background.

ERROR messages are used to inform the user about incidents in the
model which are wrong in regard to the OCL constraints and hence to the
meta model. In Figure 8–22 three ERROR messages are shown with a red
background. The color distinction helps the user to easily differentiate
between the error levels.

FATAL messages only occur, when a crucial validator internal exception
is thrown. Although coded with greatest carefulness a one hundred percent
correctness can not be guaranteed. Hence if a FATAL message occurs the
user is automatically presented a small dialog which is shown in Figure 8–
23.

Fig. 8–23 The automatic
error reporter

“E.T. phone home” func-
tionality

Similar to the system implemented by Microsoft Windows, the user is given
the facility to send an error report to the UMM Add-In development team in
case an unexpected error occurs. The error report includes the stack trace
and the version numbers of the .NET Framework, the operating system, the
UMM Add-In and the Enterprise Architects version number. Insofar the
development team is able to quickly respond to reported errors and include
a bug fix in the next release.

By using the choice box shown in Figure 8–22, the user can select the
level of the error messages to be shown in the message pane. The user is
given the room to choose between three different levels namely All, Warn-
ing and Error. If All is choosen, the user is presented all error messages. In
case Warning is choosen, the user is presented only messages with WARN,
ERROR and FATAL level. If Error is choosen, the user is presented only
ERROR and FATAL messages. Most modelers will presumably be interested
in the WARN, ERROR and FATAL messages. Therefore these messages are
presented by default.

If a user double clicks on a message within the message pane, the win-
dow extends and a detail section is shown. Within the detail section further
information concerning the error message is given. If for instance a package
like the business domain view contains invalid elements, the names of these

1978.6 The need for a special BPSS validation
elements are presented in the detail section. Furthermore the view and the
specific package is shown as well. This allows the modeler to quickly navi-
gate to the mistake within the model. As we can see in Figure 8–22, the user
has clicked on an ERROR message which indicates a missing connector
between a responding business activity and a requesting information enve-
lope. The detail section gives the user a more specific description of the
error and helps him to fix the mistake. Furthermore the package and view of
the error occurrence is shown as well. In our case the missing connector can
be found in the business transaction view’s package request for quote which
is of type business interaction view. For a future version a new feature
within the validator is planned, which allows the user to quickly navigate to
the error in the model just by clicking a button in the validators user inter-
face.

Error messages which occur because of a missing or wrong tagged
value are presented to the user in an italic font. This facilitates the distinc-
tion between an error message caused by for instance a misplaced modeling
element and a missing tagged value.

In the next chapter we will look at the requirements of a BPSS validation
which are a slightly tighter than the regular UMM requirements. Hence the
validator routine has to be stricter as well.

8.6 The need for a special BPSS validation
One significant feature of the UMM Add-In is the BPSS/BPEL transformer,
which allows the user to generate a Business Process Specification Scheme
(BPSS) instance from the UMM model. Furthermore a Business Process
Execution Language (BPEL) file can be generated as well.

Additional constraints
apply for BPSS and BPEL
transformations

If one wants to generate a BPSS from a UMM model, two additional
constraints must apply to the UMM model in order to guarantee a faultless
functionality of the BPSS transformer. By passing a boolean variable to the
constructor of the validator, a BPSS specific validation run can be invoked.
We will now examine the additional requirements which apply to a BPSS
validator. Figure 8–24 shows a sample business collaboration protocol
which consists of an initial state, two final states and a business transaction-
activity. The example is valid against the UMM meta model. However for
BPSS additional restrictions apply. In order to guarantee a faultless BPSS
transformation, one final state must be named failure and the other one suc-
cess. The BPSS validator takes into account the additional constraints. If the
business collaboration protocol in Figure 8–24 would be validated, two
errors would occur. Namely the two falsely named final states.

1988.6 The need for a special BPSS validation
Fig. 8–24 A sample
business collaboration
protocol

Whereas the last constraint applied to the business transaction view the next
one can be found in the business requirements view. Figure 8–25 shows a
part of a collaboration requirements view. It depicts a business collabora-
tion use case named order product with three parties participating in it. A
collaboration with two participating authorized roles is called a binary col-
laboration. A collaboration with more than two participating authorized
roles is called a multiparty collaboration - like the one we can see in Figure
8–25. In UMM a business collaboration use case must have at least two
authorized roles which participate in the collaboration - nevertheless more
participants are possible. However for the transformation into BPSS we
have to consider additional constraints.

Fig. 8–25 A part of a
collaboration
requirements view

The BPSS transformer of the current UMM Add-In supports the BPSS 1.10
standard. This BPSS standard does only support binary collaborations, mul-
tiparty collaborations are considered as deprecated. Hence before a BPSS
transformation the model is checked for multiparty collaborations. In case
collaborations with more than two participants are found, an error is raised.

ad Register Customer

«BusinessTransactionActivi ty»
Register Customer

Successful

Fai led

[Registration.rejected]

[Registration.accepted]

ud Order Product

«BusinessCollaborationUseCase»
Order Product

Buyer

Seller

Bank
«participates»

«participates»

«participates»

1998.7 Shortcomings of the Enterprise Architect
Future releases of the UMM Add-In will support the generation of
BPSS 2.0 as well. The BPSS 2.0 schema has an additional complex type
called MultiPartyCollaborationType which allows the representation of a
multiparty collaboration. Further information on the topic of multiparty col-
laborations and BPSS can be found at [EBB05].

After having worked with Enterprise Architect Add-In development for
nearly one year, some shortcomings have became apparent. Either these
shortcomings were or are due to missing implementations in EA or due to
an ineptly implemented interface. In the next chapter we will center on the
shortcomings of Enterprise Architect and focus on their implications on the
modeling and validation procedure.

8.7 Shortcomings of the Enterprise Architect
Although the Enterprise Architect has proven to be a powerful and efficient
modeling tool for UMM we have encountered some shortcomings as well.

Minor failures occur when
using partitions

Within the UMM standard UML partitions are widely used. In the busi-
ness process view for instance, partitions denote the different business part-
ners which participate in a shared business process. As we already know
from chapter 8.3.2 the business process activity model may also denote
important states of business entities that are manipulated during the execu-
tion of a business process. Business entity states which are communicated to
a business partner are so called shared business entity states. The modeler
therefore places the shared business entity state between the two partitions
in a way that the left and right side of the shared business entity element
touches the two partitions between which the shared business entity state is
exchanged. Meanwhile the modeler can see the partitions and its elements
underneath in the treeview of the Enterprise Architect. If an element is
placed between two partitions is must not be arranged underneath a specific
partition element in the treeview but on the same level as the partition ele-
ments. However Enterprise Architect often places elements which are
exactly between two partitions under one of these partitions. This is wrong
however the flaw is not immediately apparent to the modeler. After running
a validation, the validator reports the error. The user then has to correct the
position of the misplaced element in the treeview of Enterprise Architect.
This issue can be regarded as an unhandily implemented function of EA
because the program does not react properly on the actions the user takes in
the drawing canvas.

Pattern implementation is
not flawless

Another shortcoming also involving partitions occurs when the mod-
eler uses patterns. The UMM Add-In offers six different patterns which rep-
resent the most common business interactions. Namely these patterns are
commercial transaction, information distribution, notification,

2008.8 Conclusion and outlook
query/response, request/confirm, request/response. The workflow for creat-
ing a business interaction view includes the creation of a package and a
activity graph. The modeler then drag and drops the chosen UMM pattern
onto the activity graph, where the business transaction is created. All UMM
patterns for a business transaction use partitions in order to distinguish
between the requesting and the responding business partner. The elements
of the different partitions are arranged in the treeview of the Enterprise
Architect. However after dragging and dropping a business transaction pat-
tern the elements of the different partitions are not shown underneath the
according partition but all on the same level. This is apparently wrong and a
validation run returns the flaw accordingly. However after a manual reload
of the model, the elements of the partitions appear under the correct parti-
tion. This shortcoming can be considered as a rather minor one, however it
restrains the usability.

UMM and UML 2.0
together show their foibles

Another problem which comes with Enterprise Architect is its support
for UML 2.0. The UMM specification is build on the UML 1.4 standard and
therefore requires UML 1.4 compliant models. With the introduction of
UML 2.0 some diagram types and elements have encountered major and
minor revision. The State machine was extended by a protocol state
machine and also the specification for the state machine itself was renewed.
Significant changes were also made in the activity diagram (activity graph)
specification. Nevertheless the main problem is not the introduction of a
new UML 2.0 standard but the users ability to use new features within
Enterprise Architect. Although correct in regard to the 2.0 specification,
some elements are simply wrong or not known within the 1.4 standard. The
validator still guides the user towards a valid UMM model, however on his
way to a valid model the user has the chance to use UML 2.0 features and
therefore he is seduced to make mistakes. For a detailed distinction between
the UML 1.4 [UMa04] and UML 2.0 [UMb04] standard we would like to
refer the interested reader to the respective standards. Future version of the
UMM standard will presumably also support UML 2.0 features and the
shortcoming mentioned above will vanish.

Even though the shortcomings mentioned in the last paragraphs have
proven to be bothersome for the development and modeling process, Enter-
prise Architect as a whole can be regarded as sophisticated and efficient
modeling tool which serves the purpose of a UMM compliant modeling tool
very well.

8.8 Conclusion and outlook
The last chapters have shown, that the UMM validator is a great enhance-
ment to the modeler as it facilitates the creation of UMM compliant models.

2018.8 Conclusion and outlook
Furthermore it lowers the threshold for inexperienced modelers to start with
UMM modeling. However improvements of the validator are still possible.

Future versions could allow OCL constraints to be directly submitted to
the validator, not for every validation run but only once and then be valid
until new OCL constraints are submitted. The same holds for a dynamic
meta model. As already mentioned in the chapter about validator architec-
ture these approaches would require a great effort in regard to human
resources. However such a generic approach would make the adaptation of
the validator to changes in the UMM standard more flexible.

Furthermore an AI based system could provide the user with intelligent
correction recommendations in case an error is reported by the validator.
One could even go further and state, that an AI based system could autono-
mously correct minor mistakes. In order to help the UMM standard become
more common in the business process modeling world an easy accessible
and efficient validation should be established. Future implementations of
the validator could be implemented as a web service and be accessible free
of charge for interested modelers. Models would then be submitted by using
XMI representations. In order to make this approach feasible, a commonly
used XMI standard would be necessary. It is now up to the vendors of UML
modeling software to comply with the XMI standards as at the moment to
many specific flavors of XMI exist. This makes a generic, web service
based UMM validation impossible.

2029 Generating Process Specifications from UMM Models
9 Generating Process Specifications
from UMM Models

Modern software development approaches tend to apply service oriented
architectures. In a service oriented environment functionality and business
logic is distributed over a network. Unlike monolithic software systems
service oriented architectures provide lightweight information systems by
reusing already available functionality. In this respect functionality is
exposed as a service in a networked environment, but not bound to a spe-
cific information system. Hence, state of the art software systems follow the
thoughts of software reuse by composing new services on top of already
existing ones. However, a composite service requires to choreograph com-
ponent services in order to realize the desired functionality.

Electronic business
requires choreographing
B2B systems

Similar to general modern software systems, B2B information systems
expose interfaces to their business logic to the outside world. An interface
of a B2B system corresponds usually to one or more services allowing to
conduct public business process. The service oriented approach provides
potential business partners a facile and apace way to conduct business with
each other. However, real world business processes are complex. Inasmuch
they typically consist of more than one (request/response based) interaction
between two partners. Thus, in order to execute real-world business pro-
cesses we need to choreograph interactions between such business services
interfaces.

Mapping UMM to machine-
executable process specifi-
cations is desired

We have already outlined in this paper, that UMM is a well-accepted
method to define B2B choreographies. UMM specifies business choreogra-
phies on a conceptual, model-based level, but not in a system-interpretable
manner. Recently, several XML-based choreography languages have
emerged in the field of service oriented architectures. They provide means
for describing a process in order to configure compatible information sys-
tems. The specified processes are in turn executed and monitored by the
information systems. Hence, there is a need to derive such machine-execut-
able process specifications from graphical UMM choreographies. This
closes the gap between business process models and their machine-execut-

2039.1 Deriving BPEL processes from UMM choreographies
able process descriptions. Inasmuch this potentiates UMM to be the corner-
stone of a model driven approach for B2B.

In the remainder of this section we illustrate the derivation of process
specifications from UMM to the Business Process Execution Language
(BPEL) [BEA03]. Furthermore we discuss the implementation of the deri-
vation process as part of the UMM Add-In.

The Business Process Specification Schema (BPSS) [BPS03] has been
developed as system-executable subset of the UMM. Hence, in our UMM
Add-In we have additionally implemented a transformation engine that gen-
erates BPSS artifacts. Our implementation follows the approach described
in [Mic06]. However, in order to avoid describing the same approach twice,
we will only detail the mapping from UMM models to BPEL in this thesis.

9.1 Deriving BPEL processes from UMM choreographies

9.1.1 What is BPEL?

The Business Process Execution Language (BPEL) seems to be the
most adopted amongst the several service choreography languages. It super-
sedes XLANG [XLA01] and the Web Service Flow Language (WSFL)
[WSL01] by combining these two, formerly competitive standards. BPEL is
considered as part of the web service stack. It choreographs web services
defined by the means of the Web Service Description Languages (WSDL)
[WSD01] in exchanging messages via the Simple Object Access Protocol
(SOAP) [SOA03].

BPEL describes a process
from a partner’s view

BPEL provides means to choreograph the behavior of a B2B business
process. A business process is (most likely) a long running transaction span-
ning over several interactions between its participants. Business partners
who participate in a business process might provide services to the process
and consume other partner’s services. BPEL specifies the execution order of
such service calls, maps service calls to concrete web services and collates
service providing and service consuming to participants according to the
process semantic. Hence, every business partner knows the process inter-
faces of his partners as well as the flow of service calls. However, BPEL
describes a business process from a particular partner’s point of view. Let’s
consider a complex B2B scenario: if each participant specifies the same
process just from his own point of view, the resulting process specifications
describing the same process will most likely not match. Hence, we require
an approach that specifies a process from a global view in order to derive
matching process specifications for each participating business partner.

2049.2 Implementing a BPEL transformation algorithm
UMM in conjunction with a set of transformation rules for BPEL (e.g. as
proposed by [HH04]) conforms to such an approach.

abstract vs. executable
BPEL processes

BPEL describes two types of processes - executable processes and
abstract processes. Executable processes are expected to be executed and
monitored within a workflow system. When defining such process descrip-
tions we must specify the structure of exchanged documents as well as
branching conditions, which are evaluated at runtime. In addition, BPEL
defines the execution flow of a business process using the concept of an
abstract process. Such an abstract process - also called business protocol -
is described by a subset of BPEL and might be used by collaborating part-
ners to get a common, simple overview about the same process. Business
protocols abstract details that are not necessary to comprehend the process
workflow. Such details include the structure of exchanged messages, busi-
ness rules determining branch selection or complex data manipulation steps.
Business protocols are not expected to be executable and deterministic.
However, abstract processes might be easily extended to gain executable
process specifications.

UMM currently supports
the generation of abstract
BPEL processes only

UMM defines no service binding layer in its current version. This
means, that we currently have no chance to define concrete bindings to pro-
tocols and endpoints. Furthermore, describing business information in a
reusable way by means of Core Components and generating document
schemes thereof is currently under development. As a result of this develop-
ment a UMM specialization module for Core Components will be released
soon. Chapter 10 of this thesis deals with the mapping of business informa-
tion to certain document formats. At the moment, the generation of BPEL
descriptions based on UMM models is limited to abstract processes.

9.2 Implementing a BPEL transformation algorithm
A derivation of BPEL process descriptions from UMM compliant busi-

ness collaboration models has already been defined on a conceptual level in
[HH04]. The BPEL transformation engine implemented as part of the
UMM Add-In is mostly based on mapping rules proposed in this paper.

9.2.1 Initiation of the transformation process

In order to initiate the generation we need to input at least one business
collaboration protocol represented by an API object as outlined in chapter
4. One business collaboration protocol corresponds to exactly one BPEL
process.

2059.2 Implementing a BPEL transformation algorithm
9.2.2 Identification of involved roles

In order to create partner-specific BPEL descriptions we foremost need
to determine the participants of a business collaboration. In order to identify
process roles, we retrieve the business collaboration use case that is associ-
ated with the corresponding business collaboration protocol. According to
the UMM meta model, the business collaboration use case determines the
roles participating in a collaboration.

In order to avoid operating on the generic Enterprise Architect API
built for accessing arbitrary UML diagrams and model elements (as intro-
duced in chapter 4), we first of all create a supportive data structure consist-
ing of elements that are relevant to the transformation process. Figure 9–1
gives a conceptual overview of this data structure. By using the data struc-
ture - further called collaboration role data structure - we resolve complex
UMM relationships once at the beginning of the transformation process. In
other words, during the following transformation stages we have convenient
access on the particular elements.

Fig. 9–1 Collaboration
role data structure
(conceptual)

The collaboration role class is the core element of the supportive col-
laboration role data structure (see Figure 9–1). A collaboration role repre-
sents an authorized role participating in a business collaboration. Since
there is no need in the further transformation to access the authorized role
API element directly, the data structure interface provides no reference to it.

cd CollaborationRoleDataStructure - Conceptual

CollaborationRole

+ NamespaceURI: String

BPEL WSDL

PartnerLinkType

TransactionRole

+ isInitiatorOfTransaction: boolean

«EA.Element»
BusinessAction

«EA.Diagram»
BusinessTransaction

«EA.Diagram»
BusinessCollaborationProtocol

«EA.Element»
BusinessDocument

+receiving
0..1

+sending
0..1

+takesPartIn

1

+takesPartIn
1 +performs

1

1

+transactionPartnerRole 1

+playedBy1

+plays 1..*

1..*

11

2069.2 Implementing a BPEL transformation algorithm
However, the authorized role API element is used for the internal process-
ing of roles.

Artifacts for each collabo-
ration role

Three types of artifacts - BPEL processes, WSDL descriptions and part-
ner link types are created for each collaboration role. For each party a par-
ticular role is collaborating with, a partner link type is specified. Consider-
ing a multiparty collaboration, one partner link type is created for each
binary conversational relationship. If only two roles collaborate, each col-
laboration role has exactly one partner link type associated. Otherwise we
need more than one partner link type: one for each pair of business partners
interacting in the multiparty collaboration.

Relationship between BPEL
and WSDL

A partner’s services are specified by the means of WSDL. In other
words, we use one WSDL instance to capture the operations a collaboration
role must provide as well as the messages that are exchanged as input or
output of these operations. Moreover, we use exactly one BPEL instance to
describe the flow of a partner’s business process. BPEL choreographs activ-
ities within a business process by referencing to WSDL descriptions. In
UMM we specify the choreography of a collaborative business process by
means of a business collaboration protocol. It follows, that the choreogra-
phy of a business collaboration protocol maps to a BPEL process. A collab-
oration role is associated with exactly one API element representing the
business collaboration protocol. The API element provides the required
information to construct the BPEL process.

XML data binding supports
the constructing of BPEL
and WSDL artifacts

In the UMM Add-In implementation we facilitated XML data binding
mechanisms in order to construct BPEL and WSDL artifacts. In the case of
BPEL we created a corresponding object structure using the xsd tool pro-
vided by the .NET framework. The xsd tool takes a W3C XML Schema
[XSD04] file as input and constructs an adequate object structure. Further-
more, it provides serialization and deserialization functionality along with
the object structure. Concerning WSDL we utilized the service description
class of the .NET framework. A service description instance corresponds to
a WSDL instance and is serializable as well. In addition the service descrip-
tion class provides means to extend a WSDL description as defined by the
specification. By means of the extension class we add partner link types to
WSDL descriptions as described by the BPEL specification.

In order to specify namespace declarations within BPEL and WSDL
artifacts each collaboration role has an associated namespace URI. This
URI should be defined by the user before the transformation is started.

2079.2 Implementing a BPEL transformation algorithm
Fig. 9–2 Order from
quote example: The
collaboration role data
structure resolves the
mapsTo relationships
defined in the
collaboration
requirements view

The data structure collates
transaction roles to collab-
oration roles

Another functionality of the collaboration role data structure is the
handling of roles. At the beginning we once identify which collaboration
role plays which role in a business transaction. As already outlined in chap-
ter 7.2.3, the UMM collaboration requirements view is used to collate roles
participating in a business transaction to roles of a business collaboration
protocol (see Figure 9–2 for the order from quote example). We define such
a relationship via a mapsTo dependency. With respect to the construction of
the data structure, we resolve these relationships once at the beginning for
every collaboration role. For every mapsTo leading from a particular collab-
oration role to a role participating in a transaction, we construct a corre-
sponding transaction role object. A transaction role is double linked with
its belonging collaboration role. In other words, with help of the data struc-
ture we can resolve the collaboration role that plays a certain transaction
role as well as vice versa.

A transaction role takes
part in a business transac-
tion

A transaction role is further associated with the business transaction it
takes part in. The activity graph representing the business transaction is
again an API element of Enterprise Architect’s Automation Interface. For
convenience we determine if the particular role is the initiator of the busi-
ness transaction or not. This is done by checking if a requesting or respond-
ing business activity is located in the partition that belongs to the role.
Moreover, we retrieve the particular requesting or responding business
activity as well as the business documents that are sent and received. This
avoids resolving the same relationships multiple times again later on.

ud Order From Quote

(from Request for Quote)

«BusinessTransactionUseCase»
Request for Quote

QuoteResponder

(from Request for Quote)

«BusinessCollaborationUseCase»
Order From Quote

QuoteRequestor

(from Request for Quote)

Buyer

(from Place Order)

Seller

(from Place Order)
(from Place Order)

«BusinessTransactionUseCase»
Place Order

Buyer Seller

«mapsTo»«mapsTo»

«include» «include» «mapsTo»
«mapsTo»

«participates»«participates»

«participates»«participates»

«participates»«participates»

2089.2 Implementing a BPEL transformation algorithm
Linking between interacting
transaction roles

Another useful feature provided by the data structure is the bi-direc-
tional association of roles, which interact in a transaction. By means of part-
ner role interconnection in conjunction with the double link between a
transaction role and its collaboration role, we determine which participants
in a collaboration finally interact in a business transaction.

Fig. 9–3 The
collaboration role data
structure in regard to our
order from quote example
collaboration
(conceptual)

By initiating the transformation process with the order from quote col-
laboration, the algorithm outputs the following object structure (depicted in
Figure 9–3): two collaboration role objects are instantiated - one represent-
ing the buyer and one representing the seller (depicted with grey back-
ground). Both roles participate in a business collaboration use case called
order from quote (Figure 9–2). Following the relationship between a busi-
ness collaboration use case and a business collaboration protocol, we asso-
ciate both collaboration roles with the business collaboration protocol
describing order from quote. With respect to the mapsTo relationships
shown in Figure 9–2 we create two transaction role objects for the buyer
collaboration role: one transaction role for the quote requestor participat-
ing in request for quote and one transaction role for the buyer role partici-
pating in the place order transaction. In regard to the seller collaboration
role we instantiate again two transaction role objects: one for the quote
responder taking part in the request for quote transaction and one for the
seller participating in the place order transaction. In addition, the algorithm
associates each of the transaction roles with the respective business trans-

cd CollaborationRoleDataStrucutureOfBuyer

«EA.Diagram»
OrderProduct :

BusinessCollaborationProtocol

«EA.Diagram»
PlaceOrder :

BusinessTransaction

«EA.Diagram»
RequestForQuote :

BusinessTransaction

«EA.Element»
OrderRequestEnvelope

:InformationEnv elope

«EA.Element»
OrderEnv elope :

InformationEnvelope

Buyer :
CollaborationRole

Seller :
CollaborationRole

Buyer :TransactionRole

QuoteRequestor :
TransactionRole

Seller :TransactionRole

QuoteResponder :
TransactionRole

«EA.Element»
QuoteEnv elope :

InformationEnvelope

«EA.Element»
QuoteRequestEnvelope

:InformationEnv elope

«EA.Element»
calculateQuote :
BusinessAction

«EA.Element»
processOrder :
BusinessAction

«EA.Element»
obtainQuote :

BusinessAction

«EA.Element»
submitOrder :

BusinessAction
+receives

+playedBy
+plays

+takesPartIn +takesPartIn

+takesPartIn

+takesPartIn

+takesPartIn

+plays
+playedBy

+receives

+partnerRole +partnerRole

+sends

+receives

+sends +receives

+sends

+playedBy

+plays

+playedBy

+plays

+partnerRole +partnerRole

+sends

+performs

+performs +performs

+performs

+takesPartIn

2099.2 Implementing a BPEL transformation algorithm
action, the sent and received information envelope and the business action
(requesting or responding business activity) it performs as shown in Figure
9–3.

9.2.3 Creating WSDL descriptions

We create the WSDL instances capturing a partner’s web service oper-
ations. In UMM business transactions, requesting and responding business
activities depict the operations a role consumes and provides. Each business
action (either a requesting or responding business activity) results in a
WSDL operation. Input and potential output of a WSDL operation are
determined by the flow of information envelopes between the two business
actions. Operations provided by the same collaboration role in multiple
business transactions are merged into one port type. Thus, each collabora-
tion role results in exactly one port type. In our order from quote example
we have a buyer port type and a seller port type conducting a collaborative
order process. The interfaces of both collaboration roles - buyer (Listing 9–
1) and seller (Listing 9–2) - are described in their own WSDL instances,
containing the assembled port type and the exchanged messages.

Listing 9–1 Order from
quote example: The port
type of the buyer and the
exchanged messages

[320] <wsdl:message name="PurchaseOrderResponseEnvelope" />
[321] <wsdl:message name="BusinessSignalAckReceipt" />
[322] <wsdl:message name="BusinessSignalAckProcessing" />
[323] <wsdl:message name="BusinessSignalControlFailure" />
[324] <wsdl:portType name="BuyerPortType">
[325] <wsdl:operation name="ReceiveResponseFor_submitOrder">
[326] <wsdl:input message="tns:PurchaseOrderResponseEnvelope" />
[327] </wsdl:operation>
[328] <wsdl:operation name="AckReceipt">
[329] <wsdl:input message="tns:BusinessSignalAckReceipt" />
[330] </wsdl:operation>
[331] <wsdl:operation name="AckProcessing">
[332] <wsdl:input message="tns:BusinessSignalAckProcessing" />
[333] </wsdl:operation>
[334] <wsdl:operation name="ControlFailure">
[335] <wsdl:input message="tns:BusinessSignalControlFailure" />
[336] </wsdl:operation>
[337] </wsdl:portType>
[338] </wsdl:definitions>

Generating WSDL descriptions follows the approach defined by
[HH04]. Since participants in a transaction interact via their business
actions (either a requesting or a responding business activity), each business
action provides a corresponding service. It follows, that each business
action results in its own operation within the respective partner’s port type.

2109.2 Implementing a BPEL transformation algorithm
In case of a requesting business activity we are compliant to [HH04] and
add a ReceiveResponse to the operation name. If a business transaction is
synchronously executed, only the responding business activity results in an
operation. In this case, the operation specifies an output message in addi-
tion to the input message. Finally, since a business transaction might
require the transmission of business signals, we add operations to commu-
nicate an acknowledgement of receipt, an acknowledgement of processing
and a control failure signal to each port type.

Listing 9–2 Order from
quote example: The port
type of the seller and the
required messages

[339] <wsdl:message name="PurchaseOrderEnvelope" />
[340] <wsdl:message name="QuoteRequestEnvelope" />
[341] <wsdl:message name="QuoteEnvelope" />
[342] <wsdl:message name="BusinessSignalAckReceipt" />
[343] <wsdl:message name="BusinessSignalAckProcessing" />
[344] <wsdl:message name="BusinessSignalControlFailure" />
[345] <wsdl:portType name="SellerPortType">
[346] <wsdl:operation name="processOrder">
[347] <wsdl:input message="tns:PurchaseOrderEnvelope" />
[348] </wsdl:operation>
[349] <wsdl:operation name="calculateQuote">
[350] <wsdl:input message="tns:QuoteRequestEnvelope" />
[351] <wsdl:output message="tns:QuoteEnvelope" />
[352] </wsdl:operation>
[353] <wsdl:operation name="AckReceipt">
[354] <wsdl:input message="tns:BusinessSignalAckReceipt" />
[355] </wsdl:operation>
[356] <wsdl:operation name="AckProcessing">
[357] <wsdl:input message="tns:BusinessSignalAckProcessing" />
[358] </wsdl:operation>
[359] <wsdl:operation name="ControlFailure">
[360] <wsdl:input message="tns:BusinessSignalControlFailure" />
[361] </wsdl:operation>
[362] </wsdl:portType>

As introduced before, we use the WSDL data binding features provided
by the .NET framework in our implementation. The namespace Sys-
tem.Web.Services.Description contains the required classes to construct a
WSDL instance. The service description class corresponds to the root ele-
ment (definitions) of a WSDL description. It defines references to every
other object representing a WSDL element.

Creating service descrip-
tions for the order from
quote example

In the order from quote example we create two service descriptions -
one for the buyer collaboration role and one for the seller role. Next, we set
the WSDL namespace to the corresponding namespace of the particular col-
laboration role defined by its namespace URI property. Next step is to add a
port type object to each service description. The port type object comprises
the operation objects.

2119.2 Implementing a BPEL transformation algorithm
Processing request for
quote

Firstly, we have a look at the request for quote transaction, which fol-
lows the query/response pattern. The query/response pattern indicates that
the responder has the requested information available prior to the request.
Hence, the response is transmitted synchronously back, because no further
processing is needed. In regard to the seller’s port type the synchronous exe-
cution results in an operation object called calculate quote (line 349). Cal-
culate quote takes a quote request envelope as input (line 350) and outputs a
quote envelope (line 351). Calculate quote requires message objects - one
named quote request envelope (line 340) and one named quote envelope
(line 341). As we outlined before, synchronous transactions result only in an
operation on the responder’s side. Thus, we add nothing for the request for
quote transaction to the buyer’s port type.

Deriving a WSDL descrip-
tion for the place order
transaction

The second business transaction - place order - is specifed as commer-
cial transaction. This mandates that the transaction is executed asynchro-
nously. Furthermore the partners exchange business signals in order to
acknowledge receipt and processing of received information. Concerning
the seller’s side (Listing 9–2), its responding business activity results in an
operation object called process order (line 346). Process order expects a
purchase order envelope as input. This results in a message purchase order
envelope (line 339), which is referenced as input message by the process
order operation (line 347). In regard to the other role, the buyer provides an
operation to receive the response for the purchase order. According to the
convention introduced above, we name the operation object receive
response for submit order (line 325). Receive response for submit order
takes a purchase order response envelope as input. Thus, we add a purchase
order response envelope message object (line 320) to the buyer’s service
description and refer to it from the corresponding operation (line 326).
Moreover, according to the business transaction pattern both parties provide
operations to get an acknowledgement of receipt (lines 328 and 353) and an
acknowledgement of acceptance (lines 331 and 353) for the envelopes they
send. An additional operation needs to be provided by both parties to
receive failure notifications (lines 334 and 359). The respective business
signals are again specified by corresponding message objects (lines 321 to
323 and 342 to 344) and added to both port types.

Synchronous and asynchro-
nous execution of business
transactions

As outlined above, a business transaction might be executed synchro-
nous or asynchronous. Since UMM defines currently no service binding
layer, we make some assumptions to fill this gap in the mapping process. A
business transaction might be synchronous if the information is available
prior to the exchange and creating the response requires no extensive further
processing. Following this definition, the request/confirm and the
query/response pattern are qualified to be processed synchronously. In our
UMM Add-In implementation the modeler has two choices: business trans-

2129.2 Implementing a BPEL transformation algorithm
actions might be transformed following the approach described above or
asynchronously independent of their pattern.

9.2.4 Generating partner link types

Partner link types specify
conversational relation-
ships between two services

The next transformation step creates partner link types for each collabora-
tion role. BPEL uses the concept of partner link types to specify a binary
communication relationship between two services. The two interacting
services are described by their roles and their port types. The role of service
is determined by the context of the business collaboration (e.g. buyer, seller,
financial institution,...). The port type contains the operations that are rele-
vant to the respective binary interaction. If a BPEL process specifies a mul-
tiparty collaboration, one partner link type is defined for each binary rela-
tionship within the multiparty collaboration.

Partner link type definitions might either be placed within the WSDL
description or within a seperate artifact. The extensibility mechanism of
WSDL 1.1 allows us to define a partner link type as a direct child of the
WSDL root element (definitions). Defining partner link types within the
WSDL artifact enables reusing the WSDL target namespace definition.

For constructing partner link types with the UMM Add-In we utilize
again the collaboration role data structure. We identify binary conversa-
tional relationships by iterating over transaction roles. Each unique combi-
nation between two collaboration roles results in its own partner link type.

Our order from quote example collaboration is composed of two busi-
ness transactions. Since it is a binary collaboration, there is only one unique
combination of collaboration roles. Hence, the order from quote collabora-
tion results in exactly one partner link type named buyer seller link type
(Listing 9–3).

Listing 9–3 Order from
quote example: Partner
link type describing the
conversational
relationship between
buyer and seller

[363] <PartnerLinkType name="BuyerSellerLinkType">
[364] <role name="Buyer">
[365] <portType name="BuyerPortType" />
[366] </role>
[367] <role name="Seller">
[368] <portType name="SellerPortType" />
[369] </role>
[370] </PartnerLinkType>

The roles - buyer and seller - are specified by the name attribute in the
corresponding role elements. Within each role element the role’s port type is
referenced.

The UMM Add-In implementation puts partner link types directly into
WSDL artifacts. The .NET framework allows the definition of additional

2139.2 Implementing a BPEL transformation algorithm
WSDL elements via a class called extension. The partner link type is encap-
sulated within an extension instance and appended to the service description
of both partners. Moreover, in order to facilitate access to the partner link
type in the following steps, we add the partner link type object to our collab-
oration role data structure as well.

9.2.5 Generating BPEL process descriptions

BPEL describes a business process from a particular partner’s point of
view. In contrast, UMM specifies a collaborative process from a common
point of view neutral to any participant. Hence, we need to derive a BPEL
description for each participant in the collaborative process. The resulting
BPEL processes must be complementary to each other.

A process description that is derived via our UMM to BPEL transfor-
mation engine follows the structure given in Listing 9–4. A BPEL process
description starts with the definition of relationships between business part-
ners by means of partner links (Line 372 to 374). Subsequently, it captures
variables (Line 375 to 377) that are used within the process. Variables are
utilized to reference documents, which further point to document structures
in a WSDL, or for managing retries in case of message exchange failures.
The actual choreography of a business collaboration protocol is defined
within a flow container (Line 378 to 386). Business transactions are speci-
fied in sequences (Line 383 to 385) within the flow container. Each business
transaction is thereby described in its own scope of a sequence activity.
BPEL links (Line 380 to 382) choreograph the execution order of the trans-
actions within the flow. Moreover, additional constructs like switches, forks
and joins might be introduced within a flow in order to map more complex
choreographies.

Listing 9–4 Structure of a
BPEL description as
generated by the UMM
Add-In

[371] <bpws:process>
[372] <bpws:partnerLinks>
[373] <!-- Partner links defining interactions with partners -->
[374] </bpws:partnerLinks>
[375] <bpws:variables>
[376] <!-- Variables; mainly used for exchanged documents -->
[377] </bpws:variables>
[378] <bpws:flow>
[379] <!-- a business collaboration protocol is mapped to a flow -->
[380] <bpws:links>
[381] <!-- links map to transitions of a business collaboration protocol -->
[382] </bpws:links>
[383] <bpws:sequence>
[384] <!-- A sequence maps to a business transaction -->
[385] </bpws:sequence>

2149.2 Implementing a BPEL transformation algorithm
[386] </bpws:flow>
[387] </bpws:process>

Following the algorithm of our implementation, in the next section we
describe relationships between the process participants via partner links.
Then we focus on the choreography defined by a business collaboration
protocol and identify the flow of business transactions. The most complex
step - the transformation of business transactions - follows afterwards.

Specifying partner links

Partner links specify the conversational relationship between the pro-
cess owner and the partners he collaborates with. Partner links are compa-
rable to instances of partner link types. A partner link type determines
which role is played by the process owner and which role is taken up by a
partner. Similar to a partner link type, a partner link refers to exactly two
roles. A partner link references the roles defined within the partner link
type and assigns them to the participating partners.

Generating partner links in
the transformation engine

The UMM Add-In implementation identifies partner links by means of
the collaboration role data structure. The algorithm iterates over each col-
laboration role object and retrieves its set of partner link types. One partner
link object is created for each partner link type. Naming of the newly cre-
ated partner links follows the convention „LinkTo{OtherRole}“, whereby
{OtherRole} is replaced by the name of the partner role. The attribute my
role refers to the process owner’s role and the partner role attribute is set to
the name of the collaborating partner role. In addition, the partner link
refers to the corresponding partner link type via the attribute partner link
type.

Considering our order from quote example we gather two partner links.
Listing 9–5 shows the partner link for the seller’s process, whereas the part-
ner link within the buyer’s process is given in Listing 9–6. According to the
convention introduced before, the seller’s partner link is named link to
buyer (Line 389). Line 390 references the corresponding partner link type.
Since the seller is the process owner the myRole attribute (Line 391) refers
to his role. It follows, that the buying role is performed by its partner (Line
391).

Listing 9–5 Order from
quote example: partner
link for the seller’s
process

[388] <bpws:partnerLinks>
[389] <bpws:partnerLink name="LinkToBuyer"
[390] partnerLinkType="SellerBuyerLinkType"
[391] myRole="Seller" partnerRole="Buyer" />
[392] </bpws:partnerLinks>

2159.2 Implementing a BPEL transformation algorithm
In the buyer’s BPEL process the partner link is named link to seller
(Line 394). Since the two partner link definitions must be compliant, the
partner link type attribute refers to the same seller buyer link type (Line
395). Now the buyer owns the process, hence the roles specified by the
myRole and the partnerRole attribute are permuted (Line 396).

Listing 9–6 Order from
quote example: partner
link for the buyer’s
process

[393] <bpws:partnerLinks>
[394] <bpws:partnerLinkname="LinkToSeller“
[395] partnerLinkType="SellerBuyerLinkType"
[396] myRole="Buyer" partnerRole="Seller" />
[397] </bpws:partnerLinks>

Transforming transitions into links

BPEL provides the concept of links to choreograph activities within a flow.
A link connects exactly two activities. A condition may guard the execution
of a link. As soon as the condition evaluates true, the link is activated. Activ-
ities that are target of multiple links might define join conditions. Such a
join condition has to evaluate true in order to execute the activity. If no join
condition is defined, there is an implicit join condition applied that requires
at least one link to be positive.

Links in a BPEL process
correspond to UML transi-
tions

The choreography of a business collaboration protocol is mapped to a
BPEL flow construct. The execution order of a business collaboration pro-
tocol is specified by means of UML transitions. In BPEL, links choreograph
a flow of activities. It follows, that UML transitions within a business col-
laboration protocol map to links in a BPEL flow.

Describing the implementa-
tion

In our implementation, deriving links starts with querying over all col-
laboration roles. For each collaboration role we retrieve the business col-
laboration protocol the role takes part in. By iterating over all transitions
that are part of a business collaboration protocol we determine candidates
for BPEL links. Since BPEL defines no constructs for capturing start and
end states of a process we omit transitions that are either connected to initial
or final states in a business collaboration protocol. Hence, only transitions
that are connected on both ends to either activities, decisions, forks or joins
are transferred into links.

After its creation, a BPEL link is additionally wrapped into an object
structure (called link wrapper) capturing the name of both its source and
target activity. We do this due to the fact, that a link is just a semantic con-
struct with an arbitrary name. An activity includes a child element source
for each link that starts from this activity. Similarly, an activity includes a
child element target for each link that leads to this activity. The link name
attribute of a source or target element refers to the corresponding link.

2169.2 Implementing a BPEL transformation algorithm
A link itself provides no possibility to retrieve its source or target activ-
ity. However, in further processing steps we need to identify a link’s source
and target activity for defining a choreography.

After relevant transitions are transformed into BPEL links we add them
to the process specification as depicted in Listing 9–4. Furthermore, we per-
sist the link wrapper objects in the scope of the particular collaboration
role.

Fig. 9–4 Example
collaboration: Only
transition b results in a
BPEL link

The business collaboration protocol order from quote (Figure 9–4) con-
tains five UML transitions. However, all transitions (a, c, d, e) except one
(b) - which leads from request for quote to place order - are connected to an
initial or final state. Hence, we discard them. The remaining transition (b) is
transformed to a corresponding BPEL link. As the example in line 398
shows, our implementation follows the convention {SourceName}_to_{Tar-
getName} for naming links between activities in a BPEL process.

[398] <bpws:link name="RequestforQuote_to_PlaceOrder" />

ad Order From Quote

«BusinessTransactionActivity»
Request for Quote

«BusinessTransactionActivity»
Place Order

Success

Failure

[Order.rejected]

[Quote.refused]

[Order.accepted]

[Registration.registered]

[Quote.provided]

a

d

bc

2179.2 Implementing a BPEL transformation algorithm
Transforming business transactions in general

Deriving BPEL descriptions of business transactions is the most complex
stage within the transformation engine. In BPEL, a UMM business transac-
tion is represented by a sequence built of a set of basic activities denoting
the information exchange.

Invoke activities are utilized to signalize a service invocation. Invoke
activities correspond to sending an information envelope. Receiving a doc-
ument from a partner via one’s own web service interface is specified by a
receive activity. In case of a synchronous interaction, we depict a partner’s
response via a reply activity. By their nature reply activities must always fol-
low receive activities.

The scope of a business
transaction is mapped to a
sequence. Information
exchange is depicted via
invoke, receive and reply
activities

In order to group activities that are performed within the scope of a
business transaction we use the concept of a sequence in BPEL. A sequence
mandates that contained activities are executed serially. A business transac-
tion is specified by either a one-way or two-way information exchange
which might additionally include the transmission of business signals. Busi-
ness documents (i.e. information envelopes) and possible business signals
are exchanged in a predefined and sequential execution order. Thus, the
concept of a business transaction matches the requirements of a BPEL
sequence. Converting a business transaction to BPEL requires the transfor-
mation of exchanged information envelopes - the actual business informa-
tion - as well as business signals. Each business signal results in its own
message as well as in its own operation.

Within a sequence we specify preceding and succeeding activities by
referring to links. Links have already been identified in stage Transforming
transitions into links. Now we profit from the link wrapper objects, which
persist the link itself as well as its source and target activity. By looping over
the set of link wrappers we compare the business transaction to the source
and target activity specifications of each link wrapper. If the transaction
equals the source of the link we create a corresponding source object with
reference to the link. If the transaction is target to the link, we add a corre-
sponding target object that refers to the link.

Determining the choreogra-
phy of the order from quote
example collaboration

Considering order from quote, the algorithm results in two sequence
stubs as shown in Listing 9–7. Both business transactions - request for
quote and place order - result in their own sequence (lines 399 to 403 and
404 to 407). The sequence name is specified according to the one of the cor-
responding transaction. Further we specify the incoming and outgoing con-
nections of both sequences. Request for quote refers to the link request for
quote to place order via a source element (line 400). Place order references
to the same link via a target element (line 405). It follows, that request for
quote directly precedes place order in the execution order. In addition, a
transition condition is assigned to the link (line 401) between the two

2189.2 Implementing a BPEL transformation algorithm
sequences. The condition postulates that a quote is provided in order to eval-
uate true. Hence, a quote must be issued prior to an order submission.

Listing 9–7 Sequence
stubs representing the two
business transactions of
the order from quote
example collaboration

[399] <bpws:sequence name="RequestforQuote">
[400] <bpws:source linkName="RequestforQuote_to_PlaceOrder"
[401] transitionCondition="Quote.provided" />
[402] <!-- activities specifying message exchange -->
[403] </bpws:sequence>
[404] <bpws:sequence name="PlaceOrder">
[405] <bpws:target linkName="RequestforQuote_to_PlaceOrder" />
[406] <!-- activities specifying message exchange -->
[407] </bpws:sequence>

So far, we generated sequence stubs representing the scope of a busi-
ness transaction as well as the relationships between business transactions
in the context of a choreography. Furthermore, we have outlined which
basic BPEL activities might be utilized to map the choreography of a busi-
ness transaction.

The following two subchapters discuss how a business transaction is
described in the language of BPEL. We start discussing the implementation
by means of the requesting side and afterwards we look at the responding
side.

The generated code
depends if a role is the initi-
ator or the responder of a
business transaction

As other stages in the BPEL generation, transforming business transac-
tions is tightly bound to roles. By iterating over collaboration roles and their
roles in business transactions, the algorithm identifies and transforms busi-
ness transactions that are of relevance to a particular collaboration role.
Since BPEL describes a process from a partner’s point of view, the code for
the requestor differs from the one of the responder.

Transforming the requestor’s part of a business transaction

The requesting role of a business transaction initiates the information
exchange. In case of a failure the requestor usually reinitiates the informa-
tion exchange. The number of retries is specified by the retry count of the
requesting business activity. If the retry count equals zero - this means no
retries are required - the algorithm continues with generating the invoke
statement that transmits the request envelope.

Generating code that
allows to reinitiate a busi-
ness transaction

If a retry count greater than zero is specified we create a BPEL structure
that allows the retransmission of the requesting information envelope. We
basically create a loop that decrements a variable holding the available
retries each time a failure occurs. If the retries are exhausted, we exit the
loop. The variable that represents the retry count is created outside of the
sequence at the same location where the document variables are specified
(line 375 to 377 in Listing 9–4). In the sequence the variable is initialized

2199.2 Implementing a BPEL transformation algorithm
with the corresponding retry count using an assign activity. The assign
activity allows to copy an expression - i.e. the number of retries - to the retry
count variable. Next, the algorithm creates a loop using a while activity. The
execution of the while loop is guarded by a condition. The condition expres-
sion is specified by the retry count variable and the variable representing
the received business document. The condition evaluates true, if the retry
count variable has a value greater than zero and if the variable representing
the last expected response document is not null. It is null until the document
is received. The last expected document might either be the responding
information envelope in case of a two-way transaction or an acknowledge-
ment in case of an one-way transaction. In case of a timeout exception
within the business transaction, the retry count is decremented. We leave
the while loop, if the retry count variable holds zero or if the last expected
document has been received. The transaction is considered to be successful
if the document is received and unsuccessful if no retry is left. In order to
determine success, the algorithm checks after the while loop if the retry
count equals zero. The check is implemented via a nested case clause in a
switch activity. The query of the retry count variable is assigned to the case
condition. If the condition evaluates true - i.e. there are no more available
retries - a fault is actuated via a throw statement.

Listing 9–8 BPEL snippet
which describes the
buyer’s part of the place
order transaction

[408] <bpws:assign>
[409] <bpws:copy>
[410] <bpws:from expression="3" />
[411] <bpws:to variable="processOrderRetryCount" />
[412] </bpws:copy>
[413] </bpws:assign>
[414] <bpws:while name="CheckprocessOrderRetries"
[415] condition="getVariableData('processOrderRetryCount') > 0 AND
[416] getVariableData('PurchaseOrderResponseEnvelope')= NULL">
[417] <bpws:sequence>
[418] <bpws:invoke partnerLink="LinkToSeller" portType="SellerPortType"
[419] operation="processOrder" inputVariable="PurchaseOrderEnvelope" />
[420] <bpws:pick>
[421] <bpws:onMessage partnerLink="LinkToSeller"
[422] portType="BuyerPortType" operation="AckReceipt">
[423] <bpws:empty />
[424] </bpws:onMessage>
[425] <bpws:onAlarm for="PT2H">
[426] <!-- decrement process order retry count -->
[427] </bpws:onAlarm>
[428] </bpws:pick>
[429] <bpws:pick>
[430] <bpws:onMessage partnerLink="LinkToSeller"
[431] portType="BuyerPortType" operation="AckProcessing">
[432] <bpws:empty />

2209.2 Implementing a BPEL transformation algorithm
[433] </bpws:onMessage>
[434] <bpws:onAlarm for="PT6H">
[435] <!-- decrement process order retry count -->
[436] </bpws:onAlarm>
[437] </bpws:pick>
[438] <bpws:pick>
[439] <bpws:onMessage partnerLink="LinkToSeller"
[440] portType="BuyerPortType"
[441] operation="ReceiveResponseForSubmitOrder"
[442] variable="PurchaseOrderResponseEnvelope">
[443] </bpws:empty>
[444] </bpws:onMessage>
[445] <bpws:onAlarm for="PT24H">
[446] <!-- decrement process order retry count -->
[447] </bpws:onAlarm>
[448] </bpws:pick>
[449] <bpws:sequence>
[450] <bpws:invoke partnerLink="LinkToSeller"
[451] portType="SellerPortType"
[452] operation="AckReceipt" />
[453] <bpws:invoke partnerLink="LinkToSeller"
[454] portType="SellerPortType"
[455] operation="AckProcessing" />
[456] </bpws:sequence>
[457] </bpws:sequence>
[458] </bpws:while>
[459] <bpws:switch>
[460] <bpws:case
[461] condition="bpws:getVariableData('processOrderRetryCount') == 0">
[462] <bpws:throw faultName="bpws:processOrderControlFailure" />
[463] </bpws:case>
[464] </bpws:switch>

Listing 9–8 shows the BPEL code describing the buyer’s part of the
place order transaction. In order to create a complete BPEL specification of
the order from quote collaboration, the code in line 408 to 464 replaces line
406 in Listing 9–4. In line 408 to 413 we assign a value of three to the cor-
responding retry count variable. The while loop spanning from line 414 to
458 contains the activities describing the buyer’s part of a transaction. The
while loop continues as long as the retry count variable holds a value greater
than zero and no purchase order response envelope has been received. In
case of a time out exception during the information exchange the retry count
variable is decremented. When we exit the loop we check the value of the
retry count variable using a switch activity (lines 459 to 464). If the condi-
tion (line 461) equals true, a fault is raised (line 462).

2219.2 Implementing a BPEL transformation algorithm
Using invoke to send the
requesting information
envelope

The requestor of a transaction initiates the interaction by invoking the
appropriate partner’s service. This is denoted by an invoke activity. The
invoke activity requires the name of the operation, the partner’s port type
that contains the operation description, the partner link, and possible input
and output variables. The requesting information envelope sent to the
responder’s service is denoted using the input variable. In case of a syn-
chronously executed two-way transaction the information envelope sent
back to the requestor is specified by the output variable. No output variable
is needed in case of an asynchronous two-way transaction or a one-way
transaction.

Processing the response
using pick activities

Depending on the business transaction pattern the requestor might
require acknowledgements of receipt and processing. If the transaction fol-
lows a two-way pattern the requestor expects a response information enve-
lope. For each type of response - no matter whether it is a business signal or
a business document - we add a corresponding pick structure after the
invoke statement. A pick activity allows the definition of multiple events.
Only the first occurring event and its associated activities are executed.
Within the pick activity we use onMessage elements to specify messages the
buyer might be receiving in this stage. Via the attributes of onMessage, the
requestor’s own port type is specified in conjunction with the operation that
is called by the responder. If the onMessage element specifies the receipt of
a responding information envelope (i.e business information) we addition-
ally define a variable to persist the message. Otherwise, if a business signal
is received we omit persisting it and hence no variable is specified. More-
over, the algorithm specifies an onAlarm event within the pick activity.
After a given time period, an onAlarm event executes if no onMessage
event happened. We specify the duration to wait for business signals or
information envelopes using the onAlarm’s for attribute. Within the
onAlarm element, the algorithm creates an assign activity in order to decre-
ment the retry count variable. We add a pick construct for each message that
might be received according to the business transaction flow. It follows, that
we add at most three pick elements - one for the acknowledgement of
receipt, one for the acknowledgement of processing and one for the response
information envelope - in a sequential order.

Considering the place order transaction (Figure 9–5 and Listing 9–8)
from the buyer’s point of view the information exchange takes place as fol-
lows:

2229.2 Implementing a BPEL transformation algorithm
Fig. 9–5 Order from
quote example: business
transaction place order

Describing place order
from the buyer’s point of
view in BPEL

According to the choreography of the business transaction the buyer
invokes the seller’s process order operation (lines 418 and 419). The opera-
tion as well as the seller’s port type are referenced within the invoke activity.
Furthermore, a purchase order envelope is required as input to the process
order operation (line 419). After the purchase order envelope is sent to the
seller’s service, the buyer expects an acknowledgement of receipt. This
results in a pick activity (line 420 to 428) with a nested onMessage (line 421
to 424) element. OnMessage refers to an operation of the buyer’s port type
(line 422), because the buyer waits for an incoming call of its service. If a
corresponding acknowledgement is received we actually do nothing -
denoted by the empty activity in line 423. This ends the pick activity and we
proceed to the next pick. However, if the buyer receives no acknowledge-
ment of receipt within a duration of 2 hours, the onAlarm construct executes
(line 425 to 427). Within the onAlarm construct (line 435) we decrement the
retry count variable.

If an acknowledgement of receipt has been properly picked up, the
buyer claims an acknowledgement of processing. We denote waiting for an
acknowledgement of processing (line 429 to 437) similarly to that of the
acknowledgement of receipt. However, the seller has now a timeframe of 6
hours (line 434) in order to respond with an appropriate acknowledgement.

ad Place Order

:Seller

«BusinessTransactionSwimlane»

:Buyer

«BusinessTransactionSwimlane»

«RequestingBusinessActivity»
submit Order

«RespondingBusinessActivi ty»
process Order

«RequestingInformationEnvelope»
:PurchaseOrderEnvelope

«RespondingInformationEnvelope»
:PurchaseOrderResponseEnvelope

Initial State

Success

ControlFai lure

BusinessFailure

Tags:
timeToRespond = PT24H
timeToAcknowledgeReceipt = PT2H
timeToAcknowledgeProcessing = PT6H
retryCount = 3
isNonRepudiationRequired = true
isNonRepudiationReceiptRequired = true
isIntell igibleCheckRequired = true
isAuthorizationRequired = true

Tags:
timeToAcknowledgeReceipt = PT2H
timeToAcknowledgeProcessing = PT6H
isNonRepudiationRequired = true
isNonRepudiationReceiptRequired = true
isIntell igibleCheckRequired = true
isAuthorizationRequired = true

businessTransactionType =
CommercialTransaction

[ControlFailure]

[Success]
[BusinessFailure]

2239.2 Implementing a BPEL transformation algorithm
Waiting for the response
information envelope is
depicted by a pick activity

After the seller has processed the purchase order envelope he responds
with a purchase order response envelope. Since the receipt of the response
message is also time-critical we utilize again a pick activity (line 438 to
448).

The structure of the pick activity for response messages is again similar
to that for picking up acknowledgements. However, the purchase order
response envelope must be persisted in a corresponding variable. The buyer
waits 24 hours for the purchase order response envelope (line 445) as spec-
ified by the time to respond of the requesting business activity. In case no
purchase order response envelope is communicated by the seller within the
24 hours timeframe, the retry count variable is again decremented (line
446).

As specified by the responding business activity, the seller requires the
buyer to acknowledge receipt of the purchase order response envelope. The
buyer acknowledges the receipt of the purchase order response envelope via
the invoke activity in line 450 to 452. Afterwards, when the purchase order
response envelope is handed over to the business application, the buyer
communicates an acknowledgement of processing (line 453 to 455). Since
the buyer transmits business signals to the seller, the buyer invokes opera-
tions provided by the seller’s service. Thus, the seller’s port type and its
operations to receive business signals are referenced within both invoke
activities.

The code in Listing 9–9 describes the buyer’s process with respect to
request for quote (Figure 9–6). Listing 9–9 replaces line 402 of Listing 9–4.
Request for quote requires the buyer to reinitiate the transaction in case of
timeout exceptions. Hence, we use again a variable to represent the retry
count. Obtain quote specifies a retry count of three, which is assigned to a
corresponding variable (lines 465 to 470). In addition, we use a while loop
(line 471 to 479) and a switch activity (line 480 to 485) similar as for place
order to check the yet available retries .

Listing 9–9 Order from
quote example: code
snippet describing request
for quote from the buyer’s
point of view

[465] <bpws:assign>
[466] <bpws:copy>
[467] <bpws:from expression="3" />
[468] <bpws:to variable="calculateQuoteRetryCount" />
[469] </bpws:copy>
[470] </bpws:assign>
[471] <bpws:while name="CheckcalculateQuoteRetries"
[472] condition="bpws:getVariableData('calculateQuoteRetryCount') > 0
[473] AND bpws:getVariableData('QuoteEnvelope') == NULL">
[474] <bpws:sequence>
[475] <bpws:invoke partnerLink="LinkToSeller" portType="SellerPortType"
[476] operation="calculateQuote" inputVariable="QuoteRequestEnvelope"
[477] outputVariable="QuoteEnvelope" />

2249.2 Implementing a BPEL transformation algorithm
[478] </bpws:sequence>
[479] </bpws:while>
[480] <bpws:switch>
[481] <bpws:case
[482] condition="bpws:getVariableData('calculateQuoteRetryCount') == 0">
[483] <bpws:throw faultName="bpws:calculateQuoteControlFailure" />
[484] </bpws:case>
[485] </bpws:switch>

However, sending and receiving messages in request for quote differs
from place order in two ways. At first, the invocation of the seller’s calcu-
late quote operation is executed synchronously. This is signalized by the
presence of the output variable attribute (line 477). The attribute value
denotes that the response of the synchronous interaction is assigned to a
variable named quote envelope.

No pick and nested onMessage elements are required as for receiving an
asynchronous response. Furthermore, request for quote requires no trans-
mission of business signals. Neither the buyer nor the seller requires an
acknowledgement of receipt or processing from the other partner. Thus, we
specify no picks to wait for acknowledgements and no invoke statements for
calling the seller’s business signal operations.

Transforming the responder’s part of a business transaction

The semantics of a business transaction requires that a responder’s first task
is receiving an envelope from the initiator. In BPEL, we denote the receipt
of a message by a receive activity. The service interface that receives the
message is specified via the operation and portType attribute. The variable
attribute is again used to persist the incoming message. The partnerLink
attribute refers the respective conversational relationship.

If the responder is required to acknowledge receipt or processing of a
requesting information envelope, our transformation engine adds the corre-
sponding invoke activities.

The responding information
envelope might be transmit-
ted synchronously or asyn-
chronously

In case of a two-way business transaction pattern the responder trans-
mits business information back to the requestor. In case of a synchronous
response, we use a reply activity. A reply activity references the same port
type and the same operation as its preceding receive activity. Hence, both
activities refer to the responder’s port type and to the operation that receives
the requesting information envelope. If the transaction is executed asyn-
chronously an invoke activity is used to send the response message. The
invoke activity refers to the requestor’s port type and to the corresponding
operation provided by the requesting business activity in order to receive
the response.

2259.2 Implementing a BPEL transformation algorithm
If the responder requires business signals from the requestor, we create
pick structures that allows the process to wait for an acknowledgement. If a
certain duration is exceeded, a timeout exception is thrown. The structure
and semantics of such pick structures are introduced in detail in Transform-
ing the requestor’s part of a business transaction. However, the semantics
of a business transaction defines no retry count on the responders side. If no
acknowledgement is received in the scheduled duration, the responder
resends the message. Resending the message is carried out until the proper
acknowledgement is received or the transaction’s time limit is exceeded.

Listing 9–10 Order from
quote example: BPEL
snippet describing place
order for the seller

[486] <bpws:receive partnerLink="LinkToBuyer" portType="SellerPortType"
[487] operation="processOrder" variable="PurchaseOrderEnvelope" />
[488] <bpws:sequence>
[489] <bpws:invoke partnerLink="LinkToBuyer"
[490] portType="BuyerPortType" operation="AckReceipt" />
[491] <bpws:invoke partnerLink="LinkToBuyer"
[492] portType="BuyerPortType" operation="AckProcessing" />
[493] </bpws:sequence>
[494] <bpws:invoke partnerLink="LinkToBuyer"
[495] portType="BuyerPortType"
[496] operation="ReceiveResponseForSubmitOrder"
[497] inputVariable="PurchaseOrderResponseEnvelope" />
[498] <bpws:pick>
[499] <bpws:onMessage partnerLink="LinkToBuyer"
[500] portType="SellerPortType" operation="AckReceipt">
[501] <bpws:empty />
[502] </bpws:onMessage>
[503] <bpws:onAlarm for="PT2H">
[504] <!-- re-send message -->
[505] </bpws:onAlarm>
[506] </bpws:pick>
[507] <bpws:pick>
[508] <bpws:onMessage partnerLink="LinkToBuyer"
[509] portType="SellerPortType" operation="AckProcessing">
[510] <bpws:empty />
[511] </bpws:onMessage>
[512] <bpws:onAlarm for="PT6H">
[513] <!-- re-send message -->
[514] </bpws:onAlarm>
[515] </bpws:pick>

Listing 9–10 shows the seller’s process of the place order transaction
(see Figure 9–5). The seller receives a purchase order envelope via an oper-
ation called process order (line 486 and 487). The seller confirms the
receipt by sending an acknowledgement of receipt (line 489 to 490). In addi-
tion, when the message is handed over to the business application he com-

2269.2 Implementing a BPEL transformation algorithm
municates an acknowledgement of processing (line 491 to 492). When the
purchase order is processed accordingly, the seller sends a purchase order
response envelope back to the buyer’s service (line 494 to 497). The seller
requires the buyer again to acknowledge receipt and processing of the pur-
chase order response envelope. The corresponding picks are denoted in line
498 to 515).

Fig. 9–6 Order from
quote: request for quote
transaction

Listing 9–11 Order from
quote example: BPEL
snippet describing the
seller’s request for quote
activities

[516] <bpws:receive partnerLink="LinkToBuyer" portType="SellerPortType"
[517] operation="calculateQuote" variable="QuoteRequestEnvelope" />
[518] <bpws:reply partnerLink="LinkToBuyer" portType="SellerPortType"
[519] operation="calculateQuote" variable="QuoteEnvelope" />

Considering request for quote (Figure) from the seller’s point of view
(Listing 9–11), we add only two activities. The seller receives the quote
request envelope via the calculate quote operation (line 516 to 517). Since
request for quote is executed synchronously, the quote envelope is sent back
via a reply activity (line 518 to 519). As outlined before, since a reply activ-
ity denotes a response to an operation call, it must refer to the same opera-
tion and port type as the preceding receive activity.

ad Request For Quote

:QuoteResponder

«BusinessTransactionSwimlane»

:QuoteRequestor

«BusinessTransactionSwimlane»

«RequestingBusinessActivity»
obtain Quote

«RespondingBusinessActivity»
calculate Quote

«RequestingInformationEnvelope»
:QuoteRequestEnv elope

«RespondingInformationEnvelope»
:QuoteEnv elope

Initial State

Success

Failure

Tags:
timeToRespond = PT4H
timeToAcknowledgeReceipt = null
timeToAcknowledgeProcessing = null
retryCount = 3
isNonRepudiationRequired = false
isNonRepudiationReceiptRequired = false
isIntel l igibleCheckRequired = true
isAuthorizationRequired = false

Tags:
timeToAcknowledgeReceipt = null
timeToAcknowledgeProcessing = nul l
isNonRepudiationRequired = false
isNonRepudiationReceiptRequired = false
isIntell igibleCheckRequired = true
isAuthorizationRequired = false

[Success]

[Failure]

2279.3 Conclusion and outlook
9.3 Conclusion and outlook
In this chapter we introduced a technical implementation to transform
UMM collaborations to BPEL process descriptions. We discussed concep-
tual mapping rules as well as implementation details specific to our engine.

The current version of our transformation engine outputs only abstract
processes, which are also called business protocols in BPEL. Hence, we
create process description on a rather conceptual level. Since UMM
includes currently no service binding definitions, implementation layer
details with respect to protocol bindings and service endpoints are currently
not considered. A service binding layer for UMM will provide the missing
link creating executable BPEL processes directly from UMM business col-
laboration models. As soon as such a specialization module is defined for
the UMM foundation, we will incorporate it into the UMM Add-In.

22810 Mapping Business Information to Document Formats
10 Mapping Business Information to
Document Formats

Modeling and mapping
business data

In chapter 2 we have already seen, that UMM is a process centered
approach. Nevertheless UMM also endeavors to consider the data which is
exchanged during the business process. In this chapter we will see which
different approaches are possible in order to model the data which is
exchanged between the business partners. An introduction into the concepts
of Core Components (CCTS) and Universal Business Language (UBL) will
be given. Furthermore an example will be presented, where an XML
schema is generated which serves as a specification for the data to be
exchanged during the process.

For the time being the mapping of business information to document
formats is still in an early alpha stage of development. Therefore a major
part of this chapter is a theoretical approach which has not been imple-
mented yet. However current effort is invested in the completion of the
business information mapping feature and future releases of the UMM Add-
In will contain the full functionality.

10.1 Introduction to business information modeling
Process oriented standards like ebXML and UMM offer methods to
describe the profiles, processes and procedures of business processes. How-
ever what is often missing is a commonly accepted standard to describe the
business information which is exchanged during a business process. What
one cannot find in the standards mentioned above is for example a specifi-
cation of an invoice or a purchase order.

New competition for the old
bull UN/EDIFACT

However in the past UN/EDIFACT has presumably been the most
important standard in the field of business information. In recent years other
standards have evolved as well and proven to be a serious competitor to
UN/EDIFACT. Although thoroughly developed and maintained over the
years UN/EDIFACT has some shortcomings which new exchange stan-
dards try to overcome. The following paragraphs will introduce two well
known standards namely the Universal Business Language (UBL) which is

22910.2 Core Components Technical Specification (CCTS)
based on XML and the Core Components Technical Specification (CCTS).
Furthermore the particular advantages of the XML based standards will be
shown. CCTS will be the first standard to be explained because UBL is
build upon CCTS.

10.2 Core Components Technical Specification (CCTS)
In this subchapter we would like to give a short introduction to the concept
of Core Components and how they interrelate with the concept of business
information entities which are used to model information within
UN/CEFACT’s Modeling Methodology. CCTS itself forms the basis for
another well known standard namely the Universal Business Language
(UBL) which we will treat in the next chapter. As this chapter is supposed to
be an introduction and does only give a superficial insight into the CCTS
standard we would like to redirect the interested reader to the Core Compo-
nents Technical Specification [CC03] for further and more detailed infor-
mation about Core Components.

Considering the business
semantics

Applications in the field of e-business are often lacking an interopera-
bility in regard to the information which is exchanged. Prior approaches of
information standardization were often focused on the static definition of
messages. What is needed is a new approach which allows a flexible and
interoperable way of standardizing business semantics.

The CCTS describes a way to identify, capture and maximize the way
of business information reuse in a syntax neutral manner. It will ensure that
two trading partners which are using different syntaxes (e.g. UN/EDIFACT
and XML) use business semantics in the same way. This requires, that both
partners use a syntax which is based on the same Core Components. Hence
a clear mapping between different messages is feasible with no regard to
syntaxes, regional or industry boundaries.

As a central building block for the standard serves the concept of a Core
Component. A Core Component is a building block for an information
exchange package which contains all information pieces that are necessary
to describe a specific concept.

Different core componentsWe distinguish between four different types of core components:

■ Basic Core Component (BCC)
■ Core Component Type (CCT)
■ Aggregate Core Component (ACC)
■ Association Core Component (ASCC)

Basic core componentA basic core component represents a single characteristic of a specific
aggregate core component. Its business semantic definition is unique. In

23010.2 Core Components Technical Specification (CCTS)
Figure 10–1 the aggregate core component Person.Details has two
basic core components, namely Name and Text. These basic core compo-
nents are the so called properties of the aggregate core component. There-
fore in this context a basic core component is often also referred to as a
basic core component property. However both definitions imply the same.
A basic core component property has an associated data type. The basic
core component Name is of type text and the basic core component Birth
Date is of type date.

One can also regard a basic core component as an attribute of an aggre-
gate core component. Those familiar with the object oriented approach will
find the comparison with a class helpful. An aggregate core component can
be regarded as a class and its basic core component properties as the
attributes of the class. However please note, that the object oriented concept
has nothing to do with the CCTS specification. The comparison is only sup-
posed to encourage the principles of CCTS.

In Figure 10–1 Name and Birth Date are the basic core components
of the aggregate core component Person.Details.

Fig. 10–1 Core
component example

Aggregate core componentA collection of related pieces of business information which together form a
distinct business meaning is called an aggregate core component. In Figure
10–1 Person.Details and Address.Details are aggregate core
components.

Association core compo-
nent

A core component which represents a complex characteristic of an
aggregate core component is called an association core component. It has a
business semantic meaning which is unique. The association core compo-
nent is represented by a property and associated to an aggregate core com-
ponent which describes its structure. In Figure 10–1 we can see two associ-
ation core components namely Residence and Official Address.
Both are properties of the aggregate core component Person.Details
and both are associated with the aggregate core component
Address.Details.

Person.Details

Name (Text)
Birth Date (Date)

Address.Details

Street (Text)
Post Code (Text)
Town (Text)
Country (Identifier)

Official Address

Residence

23110.2 Core Components Technical Specification (CCTS)
Core component typeA core component containing only one content component which car-
ries the content plus optional supplementary components is called a core
component type. Supplementary components give an extra definition to the
content component. A core component type does not have any business
semantics.
The core component Type Amount.Type for instance has a content com-
ponent which carries the value 12. The value per se has no meaning on its
own. By adding a supplementary component with the value Euro we are
giving a meaning to the content component.

Data typesThe properties of core components are defined by data types which rep-
resent a full range of values that can be used for the representation of a par-
ticular property. A data type must be based on a core component type. The
data type is defined by specifying restrictions which limit the use of the core
component type’s values which is the base of the data type.

Introducing the business
context

As we saw until now, core components define an abstract concept
which helps to model business information. By introducing the business
context, we can qualify and refine core components according to their use
within particular business circumstances.

The Core Components Technical Specification covers two significant
areas, the core components and the business information entities, which are
depicted in Figure 10–2.

23210.2 Core Components Technical Specification (CCTS)
Fig. 10–2 Overview about
the core components
Technical Specification

As we can see, a basic core component becomes the basis of a basic busi-
ness information entity when it is used in a real business circumstance.
Therefore a business information entity is the outcome of a core component
being used in a specific business context. The same holds for the associa-
tion core component and for the aggregate core component. data types
which are used in the business context are data types taken from the core
components and restricted to the needs of the business modeler. As already
mentioned above the data type used for the core components is a restricted
core component type.

Basic business information entities and aggregate business information
entities are aggregated in a message assembly. In order to add additional

Basic Business Information
EntityBasic Core Component

Data Type Data Type

Core Component Type (CCT)

Aggregate Core Component Aggregate Business
Information Entity

Association Core
Component

Association
Business

Information Entity

Assembly
Component

Message Assembly

Specifies restrictions on

Defines set of values of Defines set of values of

Further
restricts

Is based
on

Is based
on

Qualifies the
Object Class

of

Aggregated
in

Aggregated
in

Adds
extra information

As property
aggregated in

As property
aggregated in

Core Business

Core Component Library

23310.2 Core Components Technical Specification (CCTS)
information to the stored information entities, assembly components are
used.

Different business informa-
tion entities

As with core components, we can also distinguish different business
information entities:

■ Basic Business Information Entity (BBIE)
■ Association Business Information Entity (ASBIE)
■ Aggregate Business Information Entity (ABIE)

Basis business information
entity

A basic business information entity represents a basic business information
entity property and is linked to a specific data type. A basic core component
is the basis of a basic business information entity. One can regard a basic
business information entity as a property of an aggregate business informa-
tion entity. In Figure 10–2 Name and Birth Date are basic business
information entity. They are properties of the aggregate business informa-
tion entity US_Person.Details.

Fig. 10–3 Business
information entity
example

Aggregate business infor-
mation entity

A collection of business information pieces which are related and together
form a business meaning in a specific business context is called an aggre-
gate business information entity. In Figure 10–3 US_Address.Details
and US_Person.Details are aggregate business information entities.

Association business infor-
mation entity

A business information entity which represents a complex characteris-
tic of an aggregate business information entity is called an association busi-
ness information entity. It has a business semantic meaning which is unique.
The association business information entity is represented by a property and
associated with an aggregate business information entity which describes
its structure. In Figure 10–3 the two attributes US_Official Address
and US_Residence are association business information entities. They
are properties of the aggregate business information entity
US_Person.Details.

US_Person.Details

Name (Text)
Birth Date (Date)

US_Address.Details

Street (Text)
ZIP_Post Code (Text)
Town (Text)

US_Official Address

US_Residence

23410.3 Universal Business Language (UBL)
The concept of CCTS as it has been described above is an abstract one
which cannot be used in practice directly. An concrete implementation of
the standard has to be found in order to integrate the concept into a business
data modeling process. In the next chapter we will introduce the concept of
the Universal Business Language which builds on the standards defined by
the Core Components Technical Specification. The upcoming chapters will
then focus on naming an design criteria and on a specific reference imple-
mentation for Enterprise Architect.

10.3 Universal Business Language (UBL)
A first implementation of
the abstract CCTS concept

UBL was found by the Organisation for the Advancement of Structured
Information Standards (OASIS) with the aim to define business information
exchanged in an arbitrary business process. During the year 1999 efforts
were made within OASIS in order to create a set of standard XML docu-
ments. At the end of the year UN/CEFACT and OASIS began their collabo-
ration on ebXML. The ebXML standard was released without specifying, in
which format the business data has to be exchanged between the two busi-
ness partners. Hence the working group which came to be known as UBL
started its work, focusing on an XML based business document standard.

UBL 1.0 was released as an OASIS standard and is available free of
charge from the organization’s homepage. Just like ebXML the newly intro-
duced standard is based on the XML Schema Definition Language
[XSD04]. The core of the standard is a set of XML schemes for the descrip-
tion of business documents. Within UBL no messaging standard for the
exchange of the business information is defined. It is up to the implementor
to choose an exchange form which could for instance be ebXML, SMTP or
SOAP.

The UBL standard is divided into various categories containing reoc-
curring components which facilitate their reuse. In addition eight document
types are predefined. The eight document types are:

■ Despatch Advice
■ Invoice
■ Order
■ Order Acknowledgement
■ Order Cancellation
■ Order Response (Complex)
■ Order Response (Simple)
■ Receipt Advice

Furthermore code lists e.g. for currency abbreviations or country codes are
included. In UBL recurring text components are named basic information

23510.3 Universal Business Language (UBL)
entities (BIEs). They consist of atomic (common base components) and
aggregated components (common aggregate components).

The specification of UBL very much considers efforts already made in
the field of EDI. From the technical point of view the basic information
entities are based on the Core Components Technical Specification, which
we examined in the last chapter. However CCTS is an abstract concept
which is not implemented in a specific language like UBL.

Reasons for taking xCBL as
the basis for UBL

Furthermore UBL is build on the xCBL - XML Common Business
Library [xCB03]. The main aim of xCBL was the representation of
UN/EDIFACT messages with an XML vocabulary. The xCBL initiative has
announced that with UBL 1.0 being released, the xCBL standard will merge
with UBL.

OASIS itself mentions several reasons, why the standard was initially
build on xCBL and not developed from scratch. First of all, xCBL already
was a widespread and commonly accepted standard which was in use in a
number of enterprises. SAP and CommerceOne for instance were already
using xCBL. Furthermore xCBL was based on a library concept which
guaranteed a better alignment of the document types derived from the
library in contrary to a standard, where the documents are developed iden-
pendently. A third argument was the fact, that xCBL was developed on a
kind of open source basis, which allowed the easy extension of the standard.

Relationship of UBL to
CCTS

As we already saw in the last chapter, the CCTS standard only provides an
abstract definition. UBL is a true implementation of the standards defined
by CCTS. The UBL library uses the business information entities which are
defined in CCTS. Current effort is taken by the UBL working group in order
to map UBL to the standard Core Component Library. Furthermore research
is undertaken together with UN/CEFACT Applied Technology Group
(ATG) and Open Applications Group (OAGI) in order to develop a single
XML standard for the representation of core component types and unquali-
fied data types.

Relationship of UBL to
UN/CEFACT

UN/CEFACT and OASIS already collaborated during the creation of the
ebXML standard. It has been stated by UN/CEFACT that

“UN/CEFACT will support only one document-centric approach to XML content,
and its desire is that UBL will be the foundation for that approach”

Current negotiations are also about the transfer of UBL from OASIS to
UN/CEFACT.

UBL vs. UN/EDIFACTNevertheless one could now scrutinize, where the specific advantage of
UBL is compared to practiced and well known standards like UN/EDI-
FACT. Whereas UN/EDIFACT is mainly used by large companies which
can afford parsers and software specifically designed for the use of
UN/EDIFACT, small and medium sized enterprises are not having such
resources at their disposal. UN/EDIFACT parsers are difficult and complex

23610.3 Universal Business Language (UBL)
to implement whereas a XML based format can be easily managed using
DOM-parsers available in almost every programing language. In addition
all along industry specific dialects of UN/EDIFACT have evolved which
are not compatible to each other e.g. VDA [Ver] and ODETTE [Ode].
Hence the necessity of a new standard which is eligible for an industry no
matter what size gets apparent.

Extension made easyAnother very important argument is the need for an extension mecha-
nism. XSD offers extensibility through its inheritance mechanism. It allows
to define specific components based on basic components. Country and
industry specific changes can therefore be easily inferred from standardized
base types.

If for example a japanese company delivering supply for a US IT-indus-
try wants to extend the UBL basic component <address> by an addi-
tional attribute without obstructing the collaboration process with the US
company the process would be the following:

– create a new type <addressJapanese> which is inferred
from the basic type

– in all new documents used by the japanese company a reference
to he newly created type <addressJapanese> is made

The software of the US company will still operate properly because it is
working with the generic address type. The additional attribute is only used
by the japanese company. Therefore the US company does not need to
implement any changes in their IT systems. However if the US company
wants to access the newly created attribute of the japanese company
changes in the software of the US company are required as well. Such an
extension mechanism would not be possible in such an easy manner if the
two companies were using UN/EDIFACT.

In UN/EDIFACT one can distinguish between two cases which might
occur during an extension. In the first case, the additional field which the
trading partners want to use is already part of the standard. In this case the
message implementation guide has to be modified accordingly. In the sec-
ond case, the additional field is not part of the standard. In this case a request
to change the standard has to be initiated. It will last at least 6 months until
the change in the UN/EDIFACT standard is proceeded.

Another important factor is the fact, that XML uses Unicode messages.
Hence the depiction of other languages like asian ones is feasible as well.

UBL as a chance for small
and medium sized enter-
prises

As mentioned before, UBL wants to eliminate the boundaries between
the enterprises’ ability to perform B2B messaging. Especially for small and
medium sized companies an appropriate software in order to participate in a
B2B process is the first threshold. One of the most diffused commercial of
the shelf software (COTS) is Microsoft Office 2003 which contains an

23710.4 The need for Naming and Design Rules (NDR)
XML compliant tool named Infopath. Figure 10–4 depicts a typical B2B
document exchange between two companies.

Fig. 10–4 UBL eliminates
B2B boundaries

On the left hand side we can see the small enterprise of partner A, who can
not afford an enterprise system and is therefore using Microsoft Infopath in
order to submit an UBL Invoice to the large enterprise of partner B. Partner
A uses Microsoft Infopath and the UBL invoice XML schema and creates a
form. Infopath is capable of storing the created XML document but it can
also submit it using e-mail or a web service. The ERP system of partner B
can then automatically process the invoice of partner A. This is only one of
numerous examples, how UBL could be used between two business
exchanging information.

In the next chapter we will focus on the need of naming and design
rules. Without applying strict rules to business documents an uncontrolled
growth of custom naming and design patterns would occur.

10.4 The need for Naming and Design Rules (NDR)
Naming and design rules
are essential for business
information mapping

In order to guarantee a standardized naming and design convention for
XML documents, UN/CEFACT Applied Technology Group (ATG) has
specified a set of naming and design rules. These rules serve as an allegation
for XML documents generated from business information modeled in
Enterprise Architect. In this chapter we would like to stress the significance
of such rules and explain the most important ones in detail. For the inter-
ested reader we would like to refer to the XML Naming and Design Rules
[ATG05] published by ATG2.

Before we start to immerse into the naming and design rules we are
going to examine the relationship between core components, business infor-
mation entities and XSD artifacts. The naming and design rules are closely
coupled to the concept of core components and business information enti-
ties. Figure 10–5 shows the relationship between the concept of core com-
ponents, business information entities and XSD artifacts at a glance. The
relationship between the context neutral and the context specific part has
already been thoroughly explained in the chapter about Core Components.

ud InfoPath

<<Small and Medium
Enterprise>>

Partner A

Enterprise
system of
Partner B

Microsoft
Office's Infopath

UBL Invoice
XML Schema

UBL Invoice

23810.4 The need for Naming and Design Rules (NDR)
We will therefore focus on the relationship of the syntax specific part to the
context neutral and context specific part.

Fig. 10–5 The relation
between CCs, BIEs and
XSD

The message assembly in which the aggregate business information entities
are aggregated is realized as a xsd:complexType definition and global
element in the UN/CEFACT XSD Schema. The type of the global element
declaration is based on the xsd:complexType which represents the doc-
ument level aggregate business information entity. The global element is
the root element of any XML instances conformant to the XSD Schema.

An aggregate business information entity is defined as a xsd:com-
plexType as well. We already saw in the chapter about Core Components,
that association business information entities are references to other aggre-
gate business information entities. Furthermore an association business
information entity is an attribute of an aggregate business information
entity. Within an XSD Schema this concept is realized by a local element
which is declared within a xsd:complexType. The local element repre-
sents the associating aggregate business information entity. Hence the con-
tent model of the associated aggregate business information entity is
included in the content model of the associating aggregate business infor-
mation entity.

Basic Business Information
EntityBasic Core Component

Data Type Data Type

Core Component Type (CCT)

Aggregate Core Component Aggregate Business
Information Entity

Association Core
Component

Association
Business

Information Entity

Assembly
Component

Message Assembly

Specifies restrictions on

Defines set of values of Defines set of values of

Further
restricts

Is based
on

Is based
on

Qualifies the
Object Class

of

Aggregated
in

Aggregated
in

Adds
extra information

As property
aggregated in

As property
aggregated in

Context Neutral

Core Component Type (CCT)

xsd:complexType
or

xsd:simpleType

xsd:element

xsd:element

xsd(root)element

is Based On

Qualified and
Unqualified
Data Types

xsd:complexType

Context Specific Syntax Specific

23910.4 The need for Naming and Design Rules (NDR)
Like an association business information entity a basic business infor-
mation entity is defined as a local element within a xsd:complexType.
The type of the xsd:complexType refers to the aggregate business
information entity, which contains the basic business information entity.

Data types can be defined as xsd:complexType or as xsd:sim-
pleType. As described in the upper right corner of Figure 10–5 data types
are based on core component type xsd:complexType from the CCT
schema module.

The core component types are aggregated in the core component type
schema module. This schema module is the normative XSD expression of
CCTS core component type.

Concerning the naming rules the XML standard implicitly imposes
rules, which naturally apply to any XML document. As an example Listing
10–1 shows a sample XML file. Although it might appear valid for those
not so familiar with XML it apparently is not. An XML element name must
not begin with a numeric character.

Listing 10–1 A sample
invalid XML structure

[520] <?xml version="1.0" encoding="UTF-8"?>
[521] <schema>
[522] <23></23>
[523] </schema>

This is just one example for a rule which is already specified by the XML
standard itself. For those not so familiar with the XML standard we would
like to refer to [XML04]. The naming and design rules specified by ATG2
are build upon the XML standard by applying restrictions on it.

Naming elements and
attributes

For the naming of elements and attributes, the ATG2 rules follow the
ebXML Architecture Specification’s best practice. For attributes lower
camel case (LCC) is used and for elements upper camel case (UCC) is used.
Listing 10–2 gives an example for both design requirements.

Listing 10–2 Example for
LCC and UCC

[524] <xsd:attribute name="unitCode"/>
[525] <xsd:element name="LanguageCode"/>

Line 524 shows an example for an attribute which is named after the lower
camel case convention. In line 525 we can see an example for an element
which is named after the upper camel case convention. It is a common prac-
tice especially in the field of programming to write compound nouns joined
without spaces and each word capitalized. The name ’camel’ comes from
the association of the alternating up and down of the capital letters with a
camel’s back.

Ensuring the reusabilityIn order to allow a reusability of the schema components a modular
model has been chosen by ATG. Modules are choosen because they are

24010.4 The need for Naming and Design Rules (NDR)
unique in their functionality or because they represent a part of a bigger
schema in order to enhance manageability and performance. Figure 10–6
shows an overview of UN/CEFACT’s XSD Schema Modularity Scheme.

Fig. 10–6 UN/CEFACT’s
XSD Schema Modularity
Scheme

Message AssemblyThe scheme is divided into two significant parts namely the message assem-
bly and the external schema modules. Within the message assembly the root
schema module is defined. A root schema module can include several inter-
nal schema modules which have to be in the same namespace as the root
schema. Furthermore the root schema module itself can import other root
schemas from different namespaces. Other standards body ABIE modules
can be imported into the root schema module as well.

External schema modulesThe external schema modules on the other hand are from another
namespace than the root schema. The external schema module consists of a
set of reusable ABIE modules, qualified data types, unqualified data types
and modules containing code lists and identifier lists. Please note, that each
module within the external schema module resides in its own namespace.
The root schema module always imports the qualified data type module, the
unqualified data type module and the reusable ABIE module. The other
associations within Figure 10–6 are to be read accordingly.

Root Schema Module

Reusable ABIE
Module

Unqualified Data
Type Module

Qualified Data
Type Module

Internal Schema
Module

Core Component
Type Module Code List Module

Identifier List
Module

0..*

- imported
- imported- imported- imported- included

- imported
- included

0..* - imported - imported

- imported

0..1 1

10..11

- imported1

110..1

- imported - imported- imported- imported

1..* 0..*

0..*0..*

Based On

- imported - imported

Message Assembly

External Schema
Modules

Other Standards
Body ABIE
Module(s)

0..*

24110.4 The need for Naming and Design Rules (NDR)
The significance of XML
namespaces

Another important issue concerning the creation of XML documents is the
usage of namespaces. Namespaces provide a simple method which allows
qualifying elements and attributes by associating them with namespaces.
Namespaces are identified by URI references and enable the interoperabil-
ity and consistency of XML artifacts for the use in a library of reusable
schema modules and types. As already proved in the last paragraph, the
namespace concept is essential in order to guarantee the correct relationship
between the different schema modules. Figure 10–7 gives an overview
about the namespace scheme as it is used by UN/CEFACT. The scheme pro-
vides a flexible and robust approach which allows the definition of
UN/CEFACT specific namespaces.

Fig. 10–7 UN/CEFACT’s
namespace scheme

Listing 10–3 shows an example namespace URI derived from the schema in
the figure above. Line 526 shows the building pattern for a namespace. Line
527 gives an example for a UN/CEFACT namespace. The schematype in
line 527 is data and the name of the module is Modulexyz. The major ver-
sion is 0, the minor version 3 and its revision is 6.

Listing 10–3 Sample
namespace scheme

[526] urn:un:unece:uncefact:<schematype>:draft:<name>:<major>.[<minor>].[<revi
sion>]
[527] urn:un:unece:uncefact:data:draft:Modulexyz:0.3.6

UN

UN/ECE

Other UN

Other UN/ECE

Other UN/ECE

UN/CEFACT

Process Schema

Code List Schema

Identification List
Schema

Document Schema

Data Schema

Schema Status
Qualifier - Standard

Schema Status
Qualifier - Draft

Schema Status
Qualifier - Draft

Schema Status
Qualifier - Standard

Root Schemas

Unqualified
Datatype Schema

Module

Qualified Datatype
Schema Module

ABIE Reusable
Schema Module

Root Schemas

Unqualified
Datatype Schema

Module

Qualified Datatype
Schema Module

ABIE Reusable
Schema Module

Schema Versions

Core Component
Type Schema

Schema Status
Qualifier - Standard

Schema Status
Qualifier - Draft

Schema Status
Qualifier - Standard

Schema Status
Qualifier - Draft

Schema Status
Qualifier - Standard

Schema Status
Qualifier - Draft

First Level Domain –
NID of UN

Second Level Domain –
UN Hierarchy

Third Level Domain –
UN Hierarchy

Fourth Level Domain –
Schema Type

Fifth Level Domain -
Status

Sixth Level Domain –
Schema Name

Seventh Level Domain –
Schema Versions

24210.5 A reference implementation
With the namespace description the short introduction into the XML nam-
ing and design rules finishes. The next chapter will show a reference imple-
mentation within the UMM Add-In which merges the concepts of CCTS,
UBL and the XML naming and design rules.

10.5 A reference implementation
Business information and
UMM

Normally the last artifact which is finished by the modeler is the business
information view, which represents the information that is exchanged during
the business process. UMM itself does only define a very loose structure for
the information itself and leaves it up to the modeler, which standard is
implemented. Figure 10–8 shows the business information structure as it is
provided by the UMM meta model. As we can see, the information entity
serves as the superstructure for all business information exchanged during a
business process. The information which is included in an information
envelope is composed of exactly one information entity which serves as a
header. Furthermore there can be one or more information entities, which
serve as the body of the message. information entities can be nested recu-
sively. Please note, that the information envelope is an information entity as
well.

Fig. 10–8 The business
information view at a
glance

We will now examine, how business information can be modeled by using
UN/CEFACT’s Core Components Technical Specification. Furthermore we
will focus on how the CCTS specification is integrated into Enterprise
Architect.

10.5.1 CCTS Profile

Using CCTS within Enter-
prise Architect

As we saw in chapter 10.2, CCTS is a concept on an abstract basis. It is up
to the user how he implements the CCTS standard. An implementation can

cd BusinessInformation - Conceptual

InformationEntity

InformationEnv elope

0..*
+body 1..*

+header
1

24310.5 A reference implementation
be done by using spread sheets or regular documents. Nevertheless in order
to efficiently implement the CCTS standard into the UMM Add-In a
method must be found which allows an integration into Enterprise Archi-
tect. Enterprise Architect itself admits the definition of UML Profiles. Such
profiles allow to tailor the modeling language to specific areas - in this case
to Core Components.

A major issue is the integration of UN/CEFACT’s Core Component
Library (CCL) into enterprise architect. Because the Core Component
Library will be stored in an UN/CEFACT repository and identified by an
ebXML compliant registry current efforts focus on a registry binding as
well. For the time being the standard procedure is importing the Core Com-
ponent Library which is stored in an XMI format into Enterprise Architect.
The according aggregate core components and data types are then available
via the tree view in Enterprise Architect. Although convenient in regard to
complexity, the disadvantage of a Core Component Library in the form of a
simple import into Enterprise Architect gets apparent. Changes in the Core
Component Library are not incorporated in Enterprise Architect directly.
An architecture with a service binding to the library which is stored in a
repository and identified by a registry would guarantee up to date core com-
ponents. Figure 10–9 shows the idea of a registry binding. For the sake of
lucidity the repository has been omitted.

Fig. 10–9 A registry
binding for core
components

The workflow for the modeler would be the following. First the modeler
creates the process model with the according views. As a last artifact the
user creates the business information view which holds the information to
be exchanged during the business process. Before the user starts to model
the information he retrieves the current core components from the CCTS
library. Enterprise Architect connects to the registry and retrieves the infor-
mation about the core components. Within Enterprise Architect the infor-
mation from the registry is transformed into modeling elements which
allows utilizing the CCTS for modeling. Hence the modeler always has core
components which are up to date. The whole process could be implemented
automatically as well. If for instance the user starts Enterprise Architect or
marks a specific model as UMM model, the tool could automatically load
the CCTS information required from the registry.

dd CCTS

Enterprise Architect

UMM Add-In
UN/CEFACT Registry

CCTS Library CCTS
retrieve CCTS from

24410.5 A reference implementation
That of course takes a permanent internet connection as granted, which
however can be anticipated nowadays.

10.5.2 CCTS modeling in practice

After the CCTS profile has successfully been imported into Enterprise
Architect, the modeler is given every feature needed in order to depict busi-
ness information in Enterprise Architect. The import of the CCTS profile is
done automatically when the user marks the model as UMM model. The
workflow which is described in the following paragraph currently has to be
done manually. However a programmatic support by the UMM Add-In is in
development.

Modeling the business
information

During the modeling procedure, the user drag and drops the specific aggre-
gate core components from the Core Components Library into the model
and specifies their parameters. By implementing the aggregate core compo-
nent into a business context, the aggregate core component becomes an
aggregate business information entity.

Fig. 10–10 Aggregate
core component

Figure 10–10 shows a sample aggregate core component with the
according basic core components. In the next step the modeler deletes the
basic business information entities of the aggregate business information
entities, which are not needed. Then the modeler adds qualifier terms to
both the aggregate and the basic core components to create aggregate busi-
ness information entities and basic business information entities.

Fig. 10–11 Aggregate
business information
entity

Figure 10–11 shows the aggregate business information entity which has
been derived from the aggregate core component shown in Figure 10–10.

cd test

«ACC»
Core Component Library::Contact

BCC
+ Department Name: T ext [0..1]
+ Identi fication: Identi fier [0..unbounded]
+ Job T i tle: Text [0..1]
+ Person Name: T ext [0..1]
+ Responsibi l i ty: Text [0..1]
+ Type: Code [0..1]

cd test

«ABIE»
Core Component Library::Contact

BBIE
+ Department Name: Text [0..1]
+ Identi fication: Identi fier [0..unbounded]
+ Job T itle: T ext [0..1]
+ Person Name: T ext [0..1]

24510.5 A reference implementation
At this step it can happen, that some basic core components will be com-
pletely removed from the corresponding aggregate business information
entity whereas other could become multiple basic business information
entities. If the latter occurs, each must have a different qualifier term.

In the next step the modeler decides, whether he needs any qualified
data types (QDT) or not. In order to create a qualified data type the modeler
restricts a core data type (CDT) to his needs.

Following the data definition, the modeler updates each basic business
information entity as necessary which means he changes core data types to
qualified data types.

The final step towards a business information model is done when the
modeler aggregates the aggregate business information entities into an
assembly document. Given the finished business information model, the
user is ready to transform the information model into a data structure of
choice which will presumably be an XML schema. The next paragraph will
focus on the issue of transforming a business information model into an
XML schema representation.

10.5.3 CCTS validation and transformation

As already shown in the chapter about the validator, a valid model is a pre-
requisite for a transformation. Just like a UMM model which has to be valid
in order to generate a BPSS or a BPEL out of it, a business information
model must be valid as well, before a transformation procedure can be
invoked.

Figure 10–12 shows an example for a business information view, which
has been modeled with UBL business information entities. Before we can
start to transform the business information view, we have to make sure, that
the overall structure of the view is correct. The transformation engine antic-
ipates a valid business information model and would throw an exception if
an invalid model is passed to it.

24610.5 A reference implementation
Fig. 10–12 A business
information example
provided by Red Wahoo

The user clicks on the business information view which he wants to tran-
form. The validator then first checks the information envelope and the cor-
responding header and body information. As one can see, the header and
body of the information envelope are nested elements. Hence the algorithm
iterates through the graph recursively. Any errors which occur during the
validation are presented to the user in the well known interface which we
already saw in chapter 8. If no error occurs, a new window pops up, which
allows the modeler to specify additional information for the transformation
procedure. Figure 10–13 shows the business information transformer inter-
face at a glance.

cd Purchase Order

«ABIE»
Context Qualified UBL SBS ABIE's::Order

Line

BBIE
+ Note: Text [0..1]

«InformationEnvelope»
Purchase Order

tags
isAuthenticated = true
isConfidential = true
isTamperProof = true

«ABIE»
Business Documents::Order

BBIE
+ Buyers_ Identi fication: Identi fier [0..1]
+ Copy: Indicator [0..1]
+ Global ly Unique_ Identi fier: Identi fier [0..1]
+ Issue Date: Date
+ Line_ Extension Total : UBL_ Amount [0..1]
+ Note: T ext [0..1]
+ Sel lers_ Identi fication: Identi fier [0..1]

+Body 1+Header 1

«ASBIE»

+Order Line

1..*

Name:
Package:
Version:
Author:

Purchase Order
«BusinessInformationView» Purchase Order Information Enti ty
1.0
Red Wahoo

24710.5 A reference implementation
Fig. 10–13 The business
information transformer
interface

In the upper left corner the selected business information view is shown.
Underneath the user can specify the root element for the generated XSD
schema. In the settings box, the user has the chance to apply additional pref-
erences to the generated schema e.g. which name and design rules the gen-
erated schema must follow. By clicking Generate Schema the generation
process is invoked and any messages are presented to the user in the status
box. If no error occurred during the transformation the user is presented a
dialog window where he must choose where to save the generated schema.

The only setting which is currently supported is the generation of a
schema which follows the naming and design rules specified by ATG2.
Future releases will include more settings.

10.5.4 CCTS import feature

Getting the business infor-
mation in Enterprise Archi-
tect

In general it can be said, that Enterprise Architect is an efficient tool for
modeling business processes. However in order to model business informa-
tion it is lacking some features which are better implemented in other tools.
These features are for example the advanced derivation of business infor-
mation entities from core components as well as their storage and retrieval.

A lot of third party tools which are currently on the market allow the
modeling of EDI specific information. In order to reach interoperability
with these tools, current effort is spend on an import interface. The idea is,
that information which has been modeled in a third party tool can be
imported into Enterprise Architect and used in order to model the business
information. The reference implementation which is currently in an early
alpha phase targets at the integration of data exported from EDIFIX into
Enterprise Architect. Figure 10–14 shows the deployment diagram of a ref-
erence implementation.

24810.5 A reference implementation
Fig. 10–14 An Enterprise
Architect - EDIFIX
binding

The business data modeler creates core component data within EDIFIX and
then exports the data into an XMI format using the export interface of EDI-
FIX. In the next step the user imports the XMI based EDIFIX data into
Enterprise Architect using the import interface of the UMM Add-In. During
the import process the core components which have been modeled within
EDIFIX are transformed into an Enterprise Architect modeling elements.
Hence the user can use the freshly imported core components to model the
business information needed.

Data export featureAnother attempt focuses on the export of core component data from
Enterprise Architect into EDIFIX. However current research has shown,
that this approach might not be feasible as the information which is pro-
vided by Enterprise Architect is less than the one required by EDIFIX.

As we have seen, the modeling of business information plays a very impor-
tant role in the business process modeling. Without the specification of an
exchange format which is agreed upon by the business partners an informa-
tion exchange cannot take place. The UMM Add-In focuses on the support
of the modeler in his ability to model business information. Furthermore the
mapping of business information into exchange formats is pursued.

dd EDIFIX binding

Enterprise Architect

UMM Add-In

CCTS

EDIFIX

Import InterfaceExport Interface

«arti fact»
XMI

24911 Summary and Outlook
11 Summary and Outlook

In this thesis a thorough description of UN/CEFACT’s Modeling Methodol-
ogy (UMM) was given. We started with identifying problems and needs in
real-world B2B scenarios. Based on these needs we depicted the require-
ments for a methodology like UMM in order to denote cross-enterprise
business processes. Participating in such an interorganizational process
requires a partner to agree on a certain choreography. Furthermore, a partic-
ipant must provide compliant interfaces to his information systems accord-
ing to the agreed choreography. However, if each participant describes the
same process just from its own view, the resulting process descriptions
would not match. Thus, we require an approach - like UMM - in order to
specify a process from a global point of view.

Moreover, we depicted the need for an adequate tool support in order to
endorse modelers in producing UMM compliant models. Afterwards, we
presented some technical details in respect to our implementation called
UMM Add-In. The UMM Add-In is an extension to the UML tool Enter-
prise Architect written in .NET.

After giving some general information about UMM’s history and the
responsible standardization body - the United Nations Centre for Trade
Facilitation and Electronic Business (UN/CEFACT) - we introduced work-
sheets and their role in UMM to capture business knowledge. In addition,
we described the integration of a worksheet editor into the UMM Add-In as
well as the benefits thereof.

The next chapter comprises a guide supporting the creation of a UMM
compliant model based on the know-how gathered by worksheets. The
guide explains step by step the modeling of each view in the UMM. Further-
more, the required steps to draw up a UMM model are illustrated using an
example about an ordering process.

However, giving only a guide for modeling UMM might result in mod-
els, which are not compliant to the UMM meta model defined by the UML
Profile for UMM. This is not the modeler’s failure, but a presumable result
when applying a formal notation like UMM without a computational verifi-
cation. Hence, we illustrated the need for validating UMM models and gave
an introduction into the UML Profile for UMM. Furthermore, we presented

25011 Summary and Outlook
the implementation of a validation engine as part of the UMM Add-In based
on the constraints defined in the UML Profile for UMM.

In a service-oriented architecture, XML-based process descriptions are
utilized to configure information systems according to a particular process.
In our case, we have already modeled collaborative processes by means of
UMM. It follows, that an automatic generation of process descriptions is
required in order to support the deployment of B2B information systems. In
the UMM Add-In we implemented a transformation engine for generating
BPEL compliant artifacts. BPEL seems to be the winner amongst the set of
lately emerged choreography languages.

Modeling exchanged business information and deriving document
schemes thereof is the last building block to gain a complete set of artifacts
that together describe a collaborative process. Describing the derivation of
schemes as well as a reference implementation thereof according to rules
standardized by UN/CEFACT is subject to the following chapter.

Finally, in the appendix we included the UML Profile for UMM, denot-
ing the UMM meta model. During the writings of our thesis we attended the
UN/CEFACT conferences and were responsible for the development of this
profile.

However, we think that with our thesis a cornerstone has been laid,
which allows the development of additional features. This might include the
development of a registry connector in order to support the registration and
retrieval of business collaboration models or parts thereof.

We hope, that the UMM Add-In and this thesis will help to increase the
diffusion of UMM within the business process modeling world. Further-
more, our work should be a step forward to achieve the transition from a
data-centric business modeling to a process-centric modeling of interorgan-
isational business processes.

A-1
I. Appendix - A UML Profile for UMM

During the development of the UMM Add-In and the creation of this thesis
we actively participated in UN/CEFACT meetings and conferences in order
to support the development of the UMM standard. The output is the UMM
Meta Model - Foundation Module Candidate for 1.0, which severed as the
basis for this thesis. The following chapters give an overview about the ster-
eotypes and OCL constraints as they are used troughout the different views
of UMM. For further informations about the current UMM standard we
would like to redirect the interested user to [FOU03].

A-2
I.I. Foundation Module

Stereotypes

Stereotype BusinessCollaborationModel

Base Class Model

Parent BusinessLibrary (from Base Module)

Description
A business collaboration model is a model that is compliant to the UMM meta model. It MUST be
compliant to the base and foundation module, and it MAY be compliant to one or more specialisation
and/or extension modules.

Tag Definition

justification

Type String

Multiplicity 1

Description Explains the reason from a business perspective why the given business
collaboration is considered for possible business collaborations.

Inherited tagged values:

 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm

Stereotype BusinessDomainView

Base Class Package

Parent BusinessLibrary (from Base Module)

Description
A business domain is a framework for identification and understanding of business processes as well as
categorizing them according to a classification schema. The business domain view is a container capturing
the categorization scheme and categorized business processes.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm

Stereotype BusinessRequirementsView

Base Class Package

Parent BusinessLibrary (from Base Module)

Description The business requirements view is a container for all elements needed to identify and describe the
requirements on a collaboration between business partners.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm

A-3
OCL Constraints

Stereotype BusinessTransactionView

Base Class Package

Parent BusinessLibrary (from Base Module)

Description The business transaction view is a container for all elements needed to describe the choreography of a
business collaboration at various levels and the information exchanged in each step of the choreography.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm

A BusinessCollaborationModel MUST NOT contain more than one BusinessDomainView package (but it MAY contain no
BusinessDomainView package at all)

package Model_Management
context Model

inv zeroToOneBusinessDomainView:
 self.isBusinessCollaborationModel() implies
 self.ownedElement->select(isBusinessDomainView())->size()<=1

A BusinessCollaborationModel MUST contain exactly one BusinessRequirementsView package.

package Model_Management
context Model

inv oneBusinessRequirementsView:
 self.isBusinessCollaborationModel() implies
 self.ownedElement->one(isBusinessRequirementsView())

A BusinessCollaborationModel MUST contain exactly one BusinessTransactionView package

package Model_Management
context Model

inv oneBusinessTransactionView:
 self.isBusinessCollaborationModel() implies
 self.ownedElement->one(isBusinessTransactionView())

A-4
OCL Methods for the Foundation Module

package Foundation::Core
context ModelElement

--Predefined method which evaluates, if the given Modelelement
--has a stereotype equal to the passed name
def:
let hasStereotype (st : String) : Boolean =

self.stereotype->select(cst | cst.name = st)->notEmpty()

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessCollaborationModel'
def:
let isBusinessCollaborationModel() : Boolean =

self.oclIsKindOf(Model) and
self.hasStereotype('BusinessCollaborationModel')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessDomainView'
def :
let isBusinessDomainView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('BusinessDomainView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessRequirementsView'
def :
let isBusinessRequirementsView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('BusinessRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessTransactionView'
def :
let isBusinessTransactionView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('BusinessTransactionView')

A BusinessDomainView, the BusinessRequirementsView, and the BusinessTransactionView MUST be directly located under
the root of the BusinessCollaborationModel.

package Model_Management
context Package

inv rootLevelPackages
 (self.isBusinessDomainView() or self.isBusinessRequirementsView() or
 self.isBusinessTransactionView()) implies
 self.namespace.isBusinessCollaborationModel()

A-5
I.II. Business Domain View

Stereotypes

Stereotype BusinessCategory

Base Class Package

Parent BusinessLibrary (from Base Module)

Description

Business categories are used to classify the business processes in the Business Domain View. The prime
purpose of classifying the business processes is to enable potential users to readily identify processes that
have been defined in the business category under consideration.
Consequently a business category is used to group either other business categories or business processes
that belong to the respective business category. The Business Domain View is structured either by this
stereotype BusinessCategory or by its specializations BusinessArea and Process Area (see below for these
stereotype definitions).

Tag Definition

objective

Type String

Multiplicity 1

Description The purpose to be achieved by the business process within the business category
under consideration.

scope

Type String

Multiplicity 1

Description Defines the boundaries of the business category under consideration.

businessOpportunity

Type String

Multiplicity 1

Description The strategic interest from a business perspective in order to address the business
category under consideration.

Inherited tagged values:

 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm

A-6
Stereotype BusinessArea

Base Class Package

Parent BusinessCategory

Description

A business area usually corresponds to a division of an enterprise. Business areas might be structured
recursively. A business area (in case of a recursive structure only a business area on the lowest level) is a
category of decomposable business process areas. This means a business area collates either other business
areas or process areas.
The UMM does not mandate a specific classification schema. A classification schema that might be used is
the Porter Value Chain. Based on the Porter Value Chain the UN/CEFACT Common Business Process
Catalog recommends a list of eight flat (i.e. non-recursive) categories: Procurement/Sales, Design,
Manufacture, Logistics, Recruitment/Training, Financial Services, Regulation, Health Care. This list of
business areas is considered as non exhaustive.

Tag Definition

Inherited tagged values:
 objective
 scope
 businessOpportunity
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm

Stereotype ProcessArea

Base Class Package

Parent BusinessCategory

Description

A process area corresponds to a set of common operations within a business area. Process areas might be
structured recursively. A process area (in case of a recursive structure only a process area on the lowest
level) is a category of common business processes. This means a process area collates either other process
areas or business processes.
The UMM does not mandate a specific classification schema. The UN/CEFACT Common Business
Process Catalog recommends a list of five flat (i.e. non-recursive) categories that correspond to the five
successive phases of business collaborations as defined by the ISO Open-edi model: Planning,
Identification, Negotiation, Actualization, Post-Actualization.

Tag Definition

Inherited tagged values:
 objective
 scope
 businessOpportunity
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm

Stereotype Stakeholder

Base Class Actor

Parent N/A

Description
A stakeholder is a person or representative of an organization who has a stake – a vested interest – in a
certain business category or in the outcome of a business process. A stakeholder does not necessarily
participate in the execution of a business process.

Tag Definition

interest

Type String

Multiplicity 1

Description Describes the vested interest of the stakeholder in the business category she or he is
defined within or a business process linked to her or him.

A-7
Stereotype BusinessPartner

Base Class Actor

Parent Stakeholder

Description

A business partner is an organization type, an organizational unit type or a person type that participates in a
business process. Business partners typically provide input to and/or receive output from a business
process. Due to the fact that a business partner participates in a business process she or he has by default a
vested interest in the business process. It follows that a business partner is a special kind of stakeholder.

Tag Definition
Inherited tagged values:
- interest

Stereotype BusinessProcess

Base Class UseCase

Parent N/A

Description

A business process is a set of related activities that together create customer value. A business process
might be performed by a single business partner or by multiple business partners crossing organizational
boundaries. In case organizations collaborate in a business process, the business process should create
value for all its participants. A business process can be decomposed into sub-processes using the «include»
and «extends» association stereotypes defined in UML.

Tag Definition

purpose

Type String

Multiplicity 1

Description Describes the customer value to be created by the business process. In case of a
business process executed by multiple parties it describes the value to be created to
all participants.

actions

Type String

Multiplicity 1..*

Description Lists the tasks that together make up a business process. In case of a business
process executed by multiple parties a special emphasis on interface tasks is needed.
An interface task is a business process step that requires communication with
another business partner.

Note: In order to specify preconditions, beginsWhen, definition, endsWhen, exceptions, postConditions
UMM does not provide tag definitions. Instead we use the corresponding stereotypes of the UML 1.4 base
class Constraint that might be associated to the use case of a business process.

Stereotype participates

Base Class Association

Parent N/A

Description Describes the association between a business partner and a business process. This stereotype defines that
the business partner provides input to and/or output from the associated business process.

Tag Definition No Tagged Values

Stereotype isOfInterestTo

Base Class Dependency

Parent N/A

Description Describes a dependency from a business process to a stakeholder. This stereotype defines that a business
process depends on the interest of the connected stakeholder.

Tag Definition No Tagged Values

A-8
OCL Constraints

The BusinessDomainView package MUST include at least one BusinessCategory package or at least one BusinessArea
package. Furthermore the BusinessDomainView may contain Stakeholders and BusinessPartners. The BusinessDomainView
MUST NOT include a combination of BusinessCategory and BusinessArea packages.

package Model_Management
context Package

inv isBusinessDomainViewPackage:
 self.isBusinessDomainView() implies
 self.contents->notEmpty() and (
 self.contents->forAll(isJustBusinessCategory() or
 isStakeholderOrBusinessPartner()) or
 self.contents->forAll(isBusinessArea() or
 isStakeholderOrBusinessPartner()))

A BusinessArea package MUST include one or more BusinessArea packages or one or more ProcessArea packages. It MUST
NOT include combinations of BusinessArea and ProcessArea packages. It may contain BusinessPartners and Stakeholders.

package Model_Management
context Package

inv contentsOfBusinessArea:
 self.isBusinessArea() implies
 self.contents->notEmpty() and (
 self.contents->forAll(isProcessArea() or isStakeholderOrBusinessPartner())
 or self.contents->forAll(isBusinessArea() or
 isStakeholderOrBusinessPartner()))

Either a ProcessArea contains one or more other ProcessAreas and zero or more BusinessPartners and Stakeholders or it
MUST contain at least one BusinessProcess and MAY include BusinessPartners, Stakeholders and well as stereotyped
associations participates and stereotyped dependencies isOfInterestTo.

package Model_Management
context Package

inv contentsOfProcessArea:
 self.isProcessArea() implies
 self.contents->notEmpty and
 (self.contents->forAll(isProcessArea() or
 isStakeholderOrBusinessPartner()) or
 (self.contents->forAll(isBusinessProcess() or isBusinessPartner() or
 isStakeholder() or isParticipates() or isIsOfInterestTo()) and
 self.contents->select(isBusinessProcess())->size()>= 1))

A-9
OCL Methods of the Business Domain View

package Foundation::Core
context ModelElement

-- checks if a model element has a certain stereotype
def:
let hasStereotype (st : String) : Boolean =

self.stereotype->select(self.name = st)->notEmpty()

-- checks if a Package is stereotyped as
-- BusinessDomainView
def:
let isBusinessDomainView() : Boolean =

self.oclIsKindOf(Package) and

Either a BusinessCategory contains one or more BusinessCategories and zero or more BusinessPartners and Stakeholders or
it MUST contain at least one BusinessProcess and MAY include BusinessPartners, Stakeholders as well as stereotyped
associations participates and stereotyped dependencies isOfInterestTo.

package Model_Management
context Package

inv contentsOfBusinessCategory:
 self.isBusinessCategory() implies
 self.contents->notEmpty and
 (self.contents->forAll(isBusinessCategory() or
 isStakeholderOrBusinessPartner()) or
 (self.contents->forAll(isBusinessProcess() or isBusinessPartner() or
 isStakeholder() or isParticipates() or isIsOfInterestTo()) and
 self.contents->select(isBusinessProcess())->size()>= 1))

A participates association that is part of a BusinessCategory (or its specialization ProcessArea) MUST always connect a
BusinessPartner and a BusinessProcess.

package Foundation::Core
context Association

inv isParticipatesConnector:
 (self.isParticipates() and self.namespace.isBusinessCategory())implies
 self.allConnections->size() = 2 and
 self.allConnections->one(isBusinessProcess()) and
 self.allConnections->one(isBusinessPartner())

An isOfInterestTo dependency MUST always be established from a BusinessProcess to a Stakeholder.

package Foundation::Core
context Dependency

inv isIsOfInterestTo:
 self.isIsOfInterestTo() implies
 self.client->one(isBusinessProcess()) and
 self.supplier->one(isStakeholder()) and
 self.client->size() = 1 and
 self.supplier->size() = 1

A-10
self.hasStereotype('BusinessDomainView')

-- checks if a Package is a BusinessCategory. This includes
-- also BusinessAreas and ProcessAreas due to the inheritance
hierachy
-- in the metamodel
def :
let isBusinessCategory() : Boolean =

self.oclIsKindOf(Package) and (
self.hasStereotype('BusinessCategory') or
isBusinessArea() or
isProcessArea()
)

-- checks if an Association is stereotyped as participates
def:
let isParticipates() : Boolean =

self.oclIsKindOf(Association) and
self.hasStereotype('participates')

-- checks if an Association is stereotyped as isInterestOf
def:
let isIsOfInterestTo() : Boolean =

self.oclIsKindOf(Dependency) and
self.hasStereotype('isOfInterestTo')

-- checks if a package is a ProcessArea
def:
let isProcessArea() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('ProcessArea')

-- checks if a package is a BusinessArea
def:
let isBusinessArea() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('BusinessArea')

-- checks if an Actor is a BusinessPartner
def :
let isBusinessPartner() : Boolean =

self.oclIsTypeOf(Actor) and
self.hasStereotype('BusinessPartner')

-- checks if an Actor is a Stakeholder
def :
let isStakeholder() : Boolean =

self.oclIsTypeOf(Actor) and (
self.hasStereotype('Stakeholder') or
isBusinessPartner()

)

--checks if an Actor is a BusinessPartner or a Stakeholder
def :

A-11
let isStakeholderOrBusinessPartner() : Boolean =
self.isStakeholder() or self.isBusinessPartner()

-- checks if a UseCase is stereotyped as BusinessProcess
def :
let isBusinessProcess() : Boolean =

self.oclIsTypeOf(UseCase) and
self.hasStereotype('BusinessProcess')

I.III. Business Requirements View

Stereotypes

Stereotype BusinessProcessView

Base Class Package

Parent BusinessLibrary (from Base Module)

Description
The business process view is a container for elements describing the behavior of an internal business
process of a business partner or the behavior of a business process that connects the internal processes of
business partners.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

Stereotype BusinessEntityView

Base Class Package

Parent BusinessLibrary (from Base Module)

Description The business entity view is a container to describe a business entity having business significance in the
modelled domain including its business entity lifecycle and business entity states.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

A-12
Stereotype PartnershipRequirementsView (abstract)

Base Class Package

Parent BusinessLibrary (from Base Module)

Description

The partnership requirements view is a container for all elements describing the requirements on a
partnership between business partners. These requirements do either apply to a business collaboration, a
business transaction or the realization of a business collaboration. Due to this fact the partnership
requirements view is spit into three specializations the collaboration requirements view, the transaction
requirements view, and the collaboration realization view. Since the partnership requirements view is an
abstract stereotype one of its specializations must be used.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

Stereotype CollaborationRequirementsView

Base Class Package

Parent PartnershipRequirementsView

Description The collaboration requirements view is a container for all elements describing the requirements on a
business collaboration between authorized roles.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

Stereotype TransactionRequirementsView

Base Class Package

Parent PartnershipRequirementsView

Description The transaction requirements view is a container for all elements describing the requirements on a business
transaction between authorized roles.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

A-13
Stereotype CollaborationRealizationView

Base Class Package

Parent PartnershipRequirementsView

Description The collaboration realization view is a container for all elements describing the requirements on a
realization of a business collaboration use case by business partners.

Tag Definition

Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

A-14
OCL Constraints

I.III.I. Business Process View

Stereotypes

A BusinessRequirementsView MUST contain at least one CollaborationRequirementsView package. It MUST contain at least
one TransactionRequirementsView package. It MUST contain at least one CollaborationRealizationView. It MAY contain
BusinessProcessView packages and BusinessEntityView packages. It MUST NOT contain any other elements.

package Model_Management
context Package

inv packagesAllowedInBRV:
 self.isBusinessRequirementsView() implies
 self.contents->forAll(isBusinessProcessView() or
 isBusinessEntityView() or
 isCollaborationRequirementsView() or
 isTransactionRequirementsView() or
 isCollaborationRealizationView()) and
 self.contents->exists(isCollaborationRequirementsView) and
 self.contents->exists(isTransactionRequirementsView) and
 self.contents->exists(isCollaborationRealizationView)

Stereotype BusinessProcessActivityModel

Base Class ActivityGraph

Parent N/A

Description

The BusinessProcessActivityModel describes the behavior of the business processes of the involved
BusinessPartners. It is a tool to identify requirements to collaborate between two or more BusinessPartners.
A BusinessProcessActivityModel is linked to a BusinessProcess identified in the BusinessDomainView
and describes the dynamic behavior of that BusinessProcess.

Tag Definition No tagged values.

Stereotype BusinessProcessActivity

Base Class State

Parent N/A

Description

A business process activity corresponds to a step in the execution of a business process activity model. A
business activity might be refined by another business process activity model. Thus, the UML base class of
business process activity is not an atomic action state, but a state – which is a generalization of action state
and composite state.

Tag Definition No tagged values.

Stereotype InternalBusinessEntityState

Base Class ObjectFlowState

Parent N/A

Description The InternalBusinessEntityState represents a state of a BusinessEntity that is internal to the business
process of a certain BusinessPartner.

Tag Definition No tagged values.

A-15
OCL Constraints

Stereotype SharedBusinessEntityState

Base Class ObjectFlowState

Parent N/A

Description The SharedlBusinessEntityState represents a state of a BusinessEntity that is shared between the business
processes of two involved BusinessPartners.

Tag Definition No tagged values.

The BusinessProcessView MUST contain nothing else, but BusinessProcessActivityModels, BusinessPartners and
BusinessProcesses and it must be empty

package Model_Management
context Package

inv AllowedElementsInBusinessProcessView:
 self.isBusinessProcessView() implies
 self.contents->forAll(isBusinessProcessActivityModel() or
 isBusinessPartner() or
 isBusinessProcess()) and
 self.contents->notEmpty()

A BusinessProcessActivityModel, which has no partitions, MUST contain one or more BusinessProcessActivities and MAY
contain InternalBusinessEntityStates, SharedBusinessEntityStates, pseudo states, final states and transitions

package Behavioral_Elements::State_Machines
context CompositeState

inv AllowedElementsInBusinessProcessActivityModelWithoutPartition:
 (self.stateMachine.isBusinessProcessActivityModel() and
 self.stateMachine.oclAsType(ActivityGraph).partition->isEmpty()) implies
 self.subvertex->notEmpty() and
 self.subvertex->exists(isBusinessProcessActivity()) and
 self.subvertex->forAll(isBusinessProcessActivity() or
 isInternalBusinessEntityState() or
 isSharedBusinessEntityState() or
 isPseudoStateOrFinalStateOrTransition())

A partition in a BusinessProcessActivityModel MUST contain one or more BusinessProcessActivities and MAY contain
InternalBusinessEntityStates, PseudoStates, FinalStates and Transitions

package Behavioral_Elements::Activity_Graphs
context Partition

inv AllowedModelElementsInBusinessProcessActivityModelPartition:
self.isPartition() implies
 self.contents->forAll(isBusinessProcessActivity()
 or isInternalBusinessEntityState()
 or isPseudoStateOrFinalStateOrTransition()
) and
 self.contents->exists(isBusinessProcessActivity())

A-16
I.III.II. Business Entity View

Stereotypes

Stereotype BusinessEntity

Base Class Class

Parent N/A

Description A business entity is a real-world thing having business significance that is shared among two or more
business partners in a collaborative business process (e.g. order, account, etc.).

Tag Definition No tagged values.

Stereotype BusinessEntityLifecycle

Base Class StateMachine

Parent N/A

Description
A business entity lifecycle represents the different business entity states a business entity can exist in and
the events and transitions that lead from one business entity state to another business entity state of the
same business entity.

Tag Definition No tagged values.

Stereotype BusinessEntityState

Base Class State

Parent N/A

Description A business entity state represents a certain state a business entity can exists in during its lifecycle (an
“order” can exist in the states “issued”, “rejected”, “confirmed”, etc.)

Tag Definition No tagged values.

A-17
OCL Constraints

The BusinessEntityView MUST contain nothing else than BusinessEntities

package Model_Management
context Package

inv AllowedElementsInBusinessEntityView:
 self.isBusinessEntityView() implies
 self.contents->notEmpty() and
 self.contents->forAll(isBusinessEntity())

A BusinessEntity has zero or one BusinessEntityLifecycle that expresses its behavior

package Foundation::Core
context Class

inv LifecyclesOfBusinessEntity:
 self.isBusinessEntity() implies
 self.behavior->select(isBusinessEntityLifecycle())->size()<=1

A BusinessEntityLifecycle MUST only contain BusinessEntityStates, PseudoStates, FinalStates or Transitions

package Behavioral_Elements::State_Machines
context CompositeState

inv ContainsOnlyBusinessEntityStates:
 self.stateMachine.isBusinessEntityLifecycle() implies
 self.subvertex->forAll(isBusinessEntityState() or
 isPseudoStateOrFinalStateOrTransition())
 and self.subvertex->exists(isBusinessEntityState())

A-18
I.III.III. Partnership Requirements View

Stereotypes

Stereotype BusinessCollaborationUseCase

Base Class UseCase

Parent BusinessProcess

Description

A business collaboration use case describes in detail the requirements on a collaboration between two or
more involved partners. Business partners take part in a business collaboration use case by playing a role
(authorized role) in it. A business collaboration use case can be broken down into further business
collaboration use cases and business transaction use cases.

Tag Definition

Inherited tagged values:
- preCondition
- beginsWhen
- endsWhens
- postCondition
- purpose
- actions

Stereotype BusinessTransactionUseCase

Base Class UseCase

Parent BusinessProcess

Description

A business transaction use case describes in detail the requirements on a collaboration between exactly two
involved partners. A business transaction use case can not be further refined and describes the
requirements on a one-way or two-way information exchange. Business partners take part in a business
transaction use case by playing a role (authorized role) in it.

Tag Definition

Inherited tagged values:
- preCondition
- beginsWhen
- endsWhens
- postCondition
- purpose
- actions

Stereotype BusinessCollaborationRealization

Base Class UseCase

Parent N/A

Description

A business collaboration realization realizes a business collaboration use case between a specific set of
business partners. The requirements of the business collaboration realization are the ones defined in the
tags of the corresponding business collaboration use case. Thus, the business collaboration realization does
not include any tag definitions for capturing requirements.

Tag Definition No tagged values

Stereotype AuthorizedRole

Base Class Actor

Parent N/A

Description

An authorized role (e.g. a “buyer”) is a concept which is more generic than a business partner (e.g. a
“broker”) and allows the reuse of collaborations by mapping an AuthorizedRole to a business partner
within a given scenario. Since business collaboration use case and business transaction use case are defined
as occurring between authorized roles, they might be reused by different business partners (a “broker” or a
“custodian”) in different scenarios of the same domain or even in different domains.

Tag Definition No tagged values.

A-19
OCL Constraints

Stereotype mapsTo

Base Class Dependency

Parent N/A

Description

A maps to dependency represents (1) the fact, that a business partner plays a certain authorized role in a
business collaboration realization and (2) the fact, that an authorized role of a source business collaboration
use case takes on a certain authorized role in a target business transaction use case or business
collaboration use case.

Tag Definition No tagged values.

The CollaborationRequirementsView MUST contain exactly one BusinessCollaborationUseCase, at least two
AuthorizedRoles, and at least two participates associations.

package Model_Management
context Package

inv AllowedElementsInCollaborationRequirementsView:
 self.isCollaborationRequirementsView() implies
 self.contents->notEmpty() and
 self.contents->select(isAuthorizedRole())->size()>=2 and
 self.contents->one(isBusinessCollaborationUseCase()) and
 self.contents->select(isParticipates())->size()>=2 and
 self.contents->forAll(isAuthorizedRole() or
 isBusinessCollaborationUseCase()
 or isParticipates())

The TransactionRequirementsView MUST contain exactly one BusinessTransactionUseCase , exactly two AuthorizedRoles,
and exactly two participates associations

package Model_Management
context Package

inv AllowedElementsInTransactionRequirementsView:
 self.isTransactionRequirementsView() implies
 self.contents->notEmpty() and
 self.contents->select(isAuthorizedRole())->size()=2 and
 self.contents->one(isBusinessTransactionUseCase()) and
 self.contents->select(isParticipates())->size()=2 and
 self.contents->forAll(isAuthorizedRole() or
 isBusinessTransactionUseCase()
 or isParticipates())

A-20
The CollaborationRealizationView MUST contain exactly one BusinessCollaborationRealization, at least two
AuthorizedRoles, and at least two participates associations

package Model_Management
context Package

inv AllowedElementsInRealizationView:
 self.isCollaborationRealizationView() implies
 self.contents->notEmpty() and
 self.contents->select(isAuthorizedRole())->size()>=2 and
 self.contents->one(isBusinessCollaborationRealization()) and
 self.contents->select(isParticipates())->size()>=2 and
 self.contents->forAll(isBusinessCollaborationRealization() or
 isParticipates() or isAuthorizedRole())

A BusinessCollaborationUseCase MUST be associated with two or more AuthorizedRoles via stereotyped binary participate
associations

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationUCAssociatedWith2AuthorizedRoles:
 self.isBusinessCollaborationUseCase() implies
 self.associations->size() >= 2 and
 self.associations->forAll(a | a.isParticipates() and
 a.allConnections->exists(isAuthorizedRole())
 and a.connection->size=2)

A BusinessTransactionUseCase MUST be associated with exactly two AuthorizedRoles via stereotyped binary participate
associations

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessTransactionUCAssociatedWith2AuthorizedRoles:
 self.isBusinessTransactionUseCase() implies
 self.associations->size() = 2 and
 self.associations->forAll(a | a.isParticipates() and
 a.allConnections->exists(isAuthorizedRole())
 and a.connection->size=2)

A BusinessCollaborationRealization MUST be associated with two or more AuthorizedRoles via stereotyped binary
participate associations

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationRealizationAssociatedWith2AuthorizedRoles:
 self.isBusinessCollaborationRealization() implies
 self.associations->size() >= 2 and
 self.associations->forAll(a | a.isParticipates() and
 a.allConnections->exists(isAuthorizedRole())
 and a.connection->size=2)

A-21
A BusinessCollaborationRealization MUST be the client of exactly one realization dependency to a
BusinessCollaborationUseCase

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationRealizationRealizesOneBusinessCollaborationUseCase:
 self.isBusinessCollaborationRealization() implies
 self.clientDependency->size()=1 and
 self.clientDependency->forAll(d | d.isRealization() and
 d.supplier->size()=1 and
 d.supplier->forAll(isBusinessCollaborationUseCase()))

A BusinessCollaborationUseCase MUST include one or more other BusinessCollaborationUseCases or one or more
BusinessTransactionUseCases, but at least one of them.

package Behavioral_Elements::Use_Cases
context UseCase

inv AllowedIncludesOfBCUC:
 self.isBusinessCollaborationUseCase() implies
 self.include->notEmpty() and
 self.include->forAll(i | i.addition.isBusinessCollaborationUseCase() or
 i.addition.isBusinessTransactionUseCase())

A BusinessTransactionUseCase MUST not include further UseCases.

package Behavioral_Elements::Use_Cases
context UseCase

inv NoIncludesOfBTUC:
 self.isBusinessTransactionUseCase() implies
 self.include->collect(addition)->isEmpty()

A BusinessTransactionUseCase MUST be included in at least one BusinessCollaborationUseCase

package Behavioral_Elements::Use_Cases
context UseCase

inv BTUCIncludedAtLeastOnce:
 self.isBusinessTransactionUseCase() implies
 self.include->forAll(base.isBusinessCollaborationUseCase()) and
 self.include->collect(base)->notEmpty()

A-22
A BusinessCollaborationUseCase and a BusinessTransactionUseCase MUST not be source or target of an extend association

package Behavioral_Elements::Use_Cases
context UseCase

inv BTUC_BCUC_IsNoExtendTarget:
 (self.isBusinessTransactionUseCase() or
 self.isBusinessCollaborationUseCase()) implies
 self.extend->isEmpty()

A BusinessCollaborationRealization MUST not be source or target of an include or extends association

package Behavioral_Elements::Use_Cases
context UseCase

inv BusinessCollaborationRealizationNoIncludesAndExtends:
 self.isBusinessCollaborationRealization() implies
 self.extend->isEmpty() and
 self.include->isEmpty()

All dependencies from/to an AuthorizedRole must be mapsTo dependencies.

package Behavioral_Elements::Use_Cases
context Actor

inv AllDependenciesToAndFromAuthorizedRoleMustBeMapsTo:
 self.isAuthorizedRole() implies
 self.clientDependency->forAll(d | d.isMapsToDependency()) and
 self.supplierDependency->forAll(s | s.isMapsToDependency())

An AuthorizedRole, which participates in a BusinessCollaborationRealization, must be the supplier of exactly one mapsTo
dependency to a BusinessPartner. Furthermore the AuthorizedRole, which participates in the
BusinessCollaborationRealization must be the client of exactly one mapsTo dependency to an AuthorizedRole participating in
a BusinessCollaborationUseCase.

package Behavioral_Elements::Use_Cases
context Actor

inv BCRAuthorizedRoleIsMappedByOnlyOneBusinessPartner:
 (self.isAuthorizedRole() and
 self.namespace.isCollaborationRealizationView()) implies
 self.supplierDependency->size()=1 and (
 self.supplierDependency->forAll(c | c.client->size()=1 and
 self.supplierDependency->forAll(c.client->forAll(isBusinessPartner()))))
 and self.clientDependency->size()=1 and (
 self.clientDependency->forAll(s | s.supplier->size()=1 and
 self.clientDependency->forAll(s | s.supplier->forAll(isAuthorizedRole()
 and s.namespace.isCollaborationRequirementsView))))

A-23
OCL Methods of the Business Requirements View

package Foundation::Core
context ModelElement

--Predefined method which evaluates, if the given Modelelement
--has a stereotype equal to the passed name
def:
let hasStereotype (st : String) : Boolean =

self.stereotype->select(cst | cst.name = st)->notEmpty()

A source BusinessCollaborationUseCase includes target BusinessTransactionUseCases and/or
BusinessCollaborationUseCases. Each role of the source use case must be mapped maximal once to a role of the same target
use case (but it may be mapped to different AuthorizedRoles of different target use cases). Each role of the target use case is
the supplier of a mapsTo dependency from a role of the source use case.

package Behavioral_Elements::Use_Cases
context UseCase

inv AuthorizedRoleofBTUCisSupplierOfOnlyOneAuthorizedRoleOfBCUC:
 (self.isBusinessTransactionUseCase() or
 self.isBusinessCollaborationUseCase()) implies
 self.include->select(a | a.base <> self)->collect(base)->collect(x |
 x.associations)->
 collect(y | y.allConnections)->select(isAuthorizedRole)->forAll(x |
 self.associations->collect(allConnections)->
 select(isAuthorizedRole)->collect(supplierDependency)->collect(client)
 ->isUnique(x))

A BusinessCollaborationUseCase MUST have the same count of participating AuthorizedRoles, as each
BusinessCollaborationRealization, realizing it.

package Behavioral_Elements::Use_Cases
context UseCase

inv AuthorizedRoleCountSameForBCUCandRealizingBCR:
 self.isBusinessCollaborationRealization() implies
 self.associations->collect(allConnections)->select(isAuthorizedRole)
 ->size() =
 (self.clientDependency->collect(supplier)->collect(associations)
 ->collect(allConnections)->
 select(isAuthorizedRole)->size())

AuthorizedRoles in a TransactionRequirementsView, CollaborationRequirementsView or CollaborationRealizationView must
have a unique name within the scope of the package, they are located in.

package Model_Management
context Package

inv AuthorizedRolesMustHaveUniqueName:
 self.isTransactionRequirementsView() or
 self.isCollaborationRequirementsView() or
 self.isCollaborationRealizationView() implies
 self.contents->select(isAuthorizedRole())
 ->isUnique(element | element.name)

A-24
--Predefined method which evaluates, if the given element
--has the stereotype 'InternalBusinessEntityState'
def:
let isInternalBusinessEntityState() : Boolean =

self.oclIsKindOf(ObjectFlowState) and
self.hasStereotype('InternalBusinessEntityState')

--Predefined method which evaluates, if the given element
--has the stereotype 'ShardedBusinessEntityState'
def:
let isSharedBusinessEntityState() : Boolean =

self.oclIsKindOf(ObjectFlowState) and
self.hasStereotype('SharedBusinessEntityState')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessProcessActivity'
def:
let isBusinessProcessActivity() : Boolean =

self.oclIsKindOf(ObjectFlowState) and
self.hasStereotype('BusinessProcessActivity')

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is initial
def:
let isInitialState() : Boolean =

self.oclAsType(Pseudostate).kind = PseudostateKind::initial
and

self.oclIsKindOf(Pseudostate)

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is choice
def:
let isChoice() : Boolean =

self.oclAsType(Pseudostate).kind = PseudostateKind::choice
and

self.oclIsKindOf(Pseudostate)

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is fork
def:
let isFork() : Boolean =

self.oclAsType(Pseudostate).kind = PseudostateKind::fork and
self.oclIsKindOf(Pseudostate)

-- Returns true if the type of the element or one of the
-- supertypes is 'PseudoKindState' and its Pseudostatekind
-- is join
def:
let isJoin() : Boolean =

self.oclAsType(Pseudostate).kind = PseudostateKind::join and
self.oclIsKindOf(Pseudostate)

A-25
-- Returns true if the type of the element or is 'FinalState'
def:
let isFinalState() : Boolean =

self.oclIsKindOf(FinalState)

-- Returns true if the type of the element 'Transition'
def:
let isTransition() : Boolean =

self.oclIsKindOf(Transition)

--Returns true if the element is a standard-element of an
--ActivityGraph
def:
let isPseudoStateOrFinalStateOrTransition() : Boolean =

isInitialState() or isChoice() or isFork() or isJoin() or
isTransition()

or isFinalState()

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessProcessView'
def :
let isBusinessProcessView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('BusinessProcessView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessEntityView'
def :
let isBusinessEntityView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('BusinessEntityView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessRequirementsView'
def :
let isBusinessRequirementsView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('BusinessRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessProcessActivityModel'
def:
let isBusinessProcessActivityModel() : Boolean =

self.oclIsKindOf(ActivityGraph) and
self.hasStereotype('BusinessProcessActivityModel')

--return true if the given element is a partition
def:
let isPartition() : Boolean =

self.oclIsKindOf(Partition)

--Predefined method which evaluates, if the given element

A-26
--has the stereotype 'BusinessEntity'
def :
let isBusinessEntity() : Boolean =

self.oclIsKindOf(Class) and
self.hasStereotype('BusinessEntity')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessEntityState'
def :
let isBusinessEntityState() : Boolean =

self.oclIsKindOf(State) and
self.hasStereotype('BusinessEntityState')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessEntityLifecycle'
def :
let isBusinessEntityLifecycle() : Boolean =

self.oclIsKindOf(StateMachine) and
self.hasStereotype('BusinessEntityLifecycle')

--return true if the given element is a package
def :
let isPackage() : Boolean =

self.oclIsKindOf(Package)

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessCollaborationUseCase'
def :
let isBusinessCollaborationUseCase() : Boolean =

self.oclIsKindOf(UseCase) and
self.hasStereotype('BusinessCollaborationUseCase')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessTransactionUseCase'
def :
let isBusinessTransactionUseCase() : Boolean =

self.oclIsKindOf(UseCase) and
self.hasStereotype('BusinessTransactionUseCase')

--Predefined method wich evaluates, if the given element
--has the stereotype 'BusinesCollaborationRealization'
def:
let isBusinessCollaborationRealization() : Boolean =

self.oclIsKindOf(UseCase) and
self.hasStereotype('BusinessCollaborationRealization')

--Predefined method which evaluates, if the given element
--has the stereotype 'AuthorizedRole'
def :
let isAuthorizedRole() : Boolean =

self.oclIsKindOf(Actor) and
self.hasStereotype('AuthorizedRole')

--Predefined method which evaluates, if the given element

A-27
--has the stereotype 'BusinessPartner'
def :
let isBusinessPartner() : Boolean =

self.oclIsKindOf(Actor) and
self.hasStereotype('BusinessPartner')

--Predefined method which evaluates, if the given element
--has the stereotype 'mapsTo'
def :
let isMapsToDependency() : Boolean =

self.oclIsKindOf(Dependency) and
self.hasStereotype('mapsTo')

--Predefined method which evaluates, if the given element
--is a Realization dependency
def :
let isRealization() : Boolean =

self.oclIsKindOf(Abstraction) and
self.hasStereotype('realize')

-- checks if an Association is stereotyped as participates
def:
let isParticipates() : Boolean =

self.oclIsKindOf(Association) and
self.hasStereotype('participates')

--Predefined method which evaluates, if the given element
--is an Association
def:
let isAssociation() : Boolean =

self.oclIsKindOf(Association)

--Predefined method which evaluates, if the given element
--has the stereotype 'CollaborationRequirementsView'
def :
let isCollaborationRequirementsView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('CollaborationRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'TransactionRequirementsView'
def :
let isTransactionRequirementsView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('TransactionRequirementsView')

--Predefined method which evaluates, if the given element
--has the stereotype 'CollaborationRealizationView'
def :
let isCollaborationRealizationView() : Boolean =

self.oclIsKindOf(Package) and
self.hasStereotype('CollaborationRealizationView')

A-28
-- checks if a UseCase is stereotyped a BusinessProcess
def :
let isBusinessProcess() : Boolean =

self.oclIsTypeOf(UseCase) and
self.hasStereotype('BusinessProcess')

I.IV. Business Transaction View

Stereotypes

Stereotype BusinessChoreographyView

Base Class Package

Parent BusinessLibrary (from BaseModule)

Description The business choreography view is a container for artifacts describing the flow of a complex business
collaboration between business partners that may involve many steps.

Tag Definition

 Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

Stereotype BusinessInteractionView

Base Class Package

Parent BusinessLibrary (from BaseModule)

Description A business interaction view is a container for artifacts that define a choreography leading to synchronized
states of business entities at both sides of the interaction.

Tag Definition

 Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

Stereotype BusinessInformationView

Base Class Package

Parent BusinessLibrary (from BaseModule)

Description A business information view is a container of artifacts that describe the information exchanged in an
interaction.

Tag Definition

 Inherited tagged values:
 baseURN
 owner
 copyright
 reference
 version
 status
 businessTerm.

A-29
OCL Constraints

I.IV.I. Business Choreography View

Stereotypes

A BusinessTransactionView MUST contain at least one BusinessChoreographyView package, at least one
BusinessInteractionView package, and at least one BusinessInformationView package. .

package Model_Management
context Package

inv packagesAllowedInBTV:
 self.isBusinessTransactionView() implies
 self.contents->exists(isBusinessChoreographyView()) and
 self.contents->exists(isBusinessInteractionView()) and
 self.contents->exists(isBusinessInformationView())

Stereotype BusinessChoreography

Base Class Class

Parent N/A

Description A business choreography is a persistent representation of the execution of a business collaboration.

Tag Definition No Tagged Values

Stereotype BusinessChoreographyBehavior (abstract)

Base Class ActivityGraph

Parent N/A

Description The business choreography behavior defines the dynamic behavior of a business collaboration, i.e. the
choreography of a business collaboration.

Tag Definition No Tagged Values

Tag Definition

isIntelligibleCheckRequired

Type Boolean

Multiplicity 1

Description In order to define the isIntelligibleCheckRequired semantics, we use again the terms
sender and affirmant as introduced for the last two tag definitions.
Both partners may agree that an affirmant must check that business information is
not garbled (unreadable, unintelligible) before verification of proper receipt is
returned to the sender (of the business information). Verification of receipt must be
returned when a document is “accessible” but it is preferable to also check for
garbled transmissions at the same time in a point-to-point synchronous business
network where partners interact without going through an asynchronous service
provider.

A-30
Stereotype BusinessCollaborationProtocol

Base Class ActivityGraph

Parent BusinessChoreographyBehavior

Description

A business collaboration protocol is a specialization of a business choreography behaviour. It choreographs
business transaction activities and/or business collaboration activities. At least one activity of either one
must be present. A business collaboration protocol is a long running transaction that does not meet the
atomic principle of transactions. It should be used in cases where transaction rollback is inappropriate.

Tag Definition No Tagged Values

Stereotype BusinessTransactionActivity

Base Class ActionState

Parent N/A

Description

A business transaction activity is an activity within a business collaboration protocol. It is an action state
which is refined by a nested business transaction. The business transaction activity executes the nested
business transaction. The business transaction activity can be executed more than once if the
“isConcurrent” property is true.

Tag Definition

timeToPerform

Type TimeExpression

Multiplicity 1

Description A business transaction activity has to be executed within a specific duration. The initiating
partner must send a failure notification to a responding partner on timeout. A responding
partner simple terminates its activity. The time to perform is the maximum duration
between the moment the requesting role initiates the business transaction activity, i.e.
sending the requesting business information, and the moment the requesting role receives
a substantive response. The substantive response is the responding business information if
there is any. In case not, it is the acknowledgement of processing, if any. If not it is the
acknowledgement of receipt, if any.

isConcurrent

Type Boolean

Multiplicity 1

Description If the business transaction activity is concurrent then more than one business transaction
activity of the same underlying business transaction can be open at one time in executing
the same business collaboration with the same business partner. If the business transaction
activity is not concurrent then only one business transaction activity of the same
underlying business transaction can be open at one time.

Stereotype BusinessCollaborationActivity

Base Class ActionState

Parent N/A

Description

A business collaboration activity is an activity within a business collaboration protocol. It is an action-state
which is refined by the activity graph of a nested business collaboration protocol. It follows, that business
collaboration protocols might be recursively nested. The business collaboration activity executes the nested
business collaboration protocol exactly once.

Tag Definition No Tagged Values

A-31
OCL Constraints

A BusinessChorographyBehavior MUST be the client of exactly one mapsTo dependency to a BusinessCollaborationUseCase

package Behavioral_Elements::Activity_Graphs
context ActivityGraph

inv BCBmapsToBCUseCase:
 self.isBusinessChoreographyBehavior() implies
 self.clientDependency->size()=1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessCollaborationUseCase()) and
 d.supplier->size=1)

A BusinessChoreographyView package MUST contain exactly one BusinessChoreography and no other elements.

package Model_Management
context Package

inv BCVcontainsExactlyOneBC:
 self.isBusinessChoreographyView() implies
 self.contents->one(isBusinessChoreography()) and
 self.contents->size()=1

The behavior of a BusinessChoreography MUST be described by exactly one BusinessChoreographyBehaviour

package Foundation::Core
context Class

inv BCdescribedByOneBusinessChoreographyBehavior:
 self.isBusinessChoreography() implies
 self.behavior->one(isBusinessChoreographyBehavior()) and
 self.behavior->size()=1

A BusinessCollaborationProtocol MUST contain at least one BusinessTransactionActivity or BusinessCollaborationActivity
and MAY contain PseudoStates, FinalStates and Transitions.

package Behavioral_Elements::State_Machines
context CompositeState

inv AllowedModelElementsInBCP:
 self.stateMachine.isBusinessCollaborationProtocol() implies
 self.subvertex->forAll(isBusinessTransactionActivity()
 or isBusinessCollaborationActivity()
 or isPseudoStateOrFinalStateOrTransition()
 or isTransition()
)
 and (self.subvertex->exists(isBusinessTransactionActivity()) or
 self.subvertex->exists(isBusinessCollaborationActivity()))

A-32
I.V. Business Interaction View

Stereotypes

A BusinessCollaborationActivity MUST be refined by exactly one BusinessCollaborationProtocol via a dependency with the
stereotype mapsTo.

package Behavioral_Elements::Activity_Graphs
context ActionState

inv BCArefinedByExactlyOneBCP:
 self.isBusinessCollaborationActivity() implies
 self.clientDependency->size() = 1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessCollaborationProtocol()) and
 d.supplier->size=1)

A BusinessTransactionActivity MUST be refined by exactly one BusinessTransaction via a dependency with the stereotype
mapsTo.

package Behavioral_Elements::Activity_Graphs
context ActionState

inv BTArefinedByExactlyOneBT:
 self.isBusinessTransactionActivity() implies
 self.clientDependency->size() = 1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessTransaction()) and d.supplier->size=1)

Stereotype BusinessInteraction

Base Class Class

Parent N/A

Description A business interaction is a persistent representation of a synchronization of business states between
authorized roles. It is a unit of work that allows roll-back.

Tag Definition No Tagged Values

Stereotype BusinessInteractionBehavior (abstract)

Base Class ActivityGraph

Parent N/A

Description
A business interaction behavior defines the choreography of actions as well as involved business
information and business signal exchanges that lead to synchronized business states between two
authorized roles executing it.

Tag Definition No Tagged Values

A-33
Stereotype BusinessTransaction

Base Class Activity Graph

Parent BusinessInteractionBehavior

Description

A business transaction is the basic building block to define choreography between business partners
appointed to authorized roles. If a business partner recognizes an event that changes the state of a business
object, it initiates a business transaction to synchronize with the collaborating business partner. It follows
that a business transaction is an atomic unit that leads to a synchronized state in both information systems.
We distinguish one-way and two-way business transaction: In the former case, the initiating business
partner reports an already effective and irreversible state change that the reacting business partner has to
accept. Examples are the notification of shipment or the update of a product in a catalog. It is a one-way
business transaction, because business information (not including business signals for acknowledgments)
flows only from the initiating to the reacting business partner. In the other case, the initiating partner sets
the business object(s) into an interim state and the final state is decided by the reacting business partner.
Examples include request for registration, search for products, etc. It is a two-way transaction, because
business information flows from the initiator to the responder to set the interim state and backwards to set
the final and irreversible state change. In a business context irreversible means that returning to an original
state requires another business transaction. E.g., once a purchase order is agreed upon in a business
transaction a rollback is not allowed anymore, but requires the execution of a cancel order business
transaction. We distinguish 2 one-way business transactions and four two-way business transactions. The
type of transaction is indicated in the tagged value of business transaction type.

Tag Definition

businessTransactionType

Type String
Enumeration: “Commercial Transaction” “Request/Confirm” “Query/Response”
“Request/Response” “Notification” “Information Distribution”

Multiplicity 1

Description The business transaction type determines a corresponding business transaction
pattern. A business transaction pattern provides a language and grammar for
constructing business transactions. The business transaction type follows one of the
following six property-value conventions:
(1) Commercial Transaction - used to model the “offer and acceptance” business
transaction process that results in a residual obligation between both parties to fulfill
the terms of the contract
(2) Query/Response – used to query for information that a responding partner
already has e.g. against a fixed data set that resides in a database
(3) Request/Response - used for business contracts when an initiating partner
requests information that a responding partner already has and when the request for
business information requires a complex interdependent set of results
(4) Request/Confirm - used for business contracts where an initiating partner
requests confirmation about their status with respect to previously established
contracts or with respect to a responding partner’s business rules
(5) Information Distribution - used to model an informal information exchange
business transaction that therefore has no non-repudiation requirements
(6) Notification - used to model a formal information exchange business transaction
that therefore has non-repudiation requirements

A-34
Tag Definition

isSecureTransportRequired

Type Boolean

Multiplicity 1

Description Both partners must agree to exchange business information using a secure transport
channel. The following security controls ensure that business document content is
protected against unauthorized disclosure or modification and that business services
are protected against unauthorized access. This is a point-to-point security
requirement. Note that this requirement does not protect business information once it
is off the network and inside an enterprise. The following are requirements for
secure transport channels.
Authenticate sending role identity – Verify the identity of the sending role
(employee or organization) that is initiating the role interaction (authenticate). For
example, a driver’s license or passport document with a picture is used to verify an
individual’s identity by comparing the individual against the picture.
Authenticate receiving role identity – Verify the identity of the receiving role
(employee or organization) that is receiving the role interaction.
Verify content integrity – Verify the integrity of the content exchanged during the
role interaction i.e. check that the content has not been altered by a 3rd party.
Maintain content confidentiality – Confidentiality ensures that only the intended,
receiving role can read the content of the role interaction. Information exchanged
during role interaction must be encrypted when sent and decrypted when received.
For example, you seal envelopes so that only the recipient can read the content.

Stereotype BusinessTransactionSwimlane

Base Class Partition

Parent N/A

Description
A business transaction swimlane is used to define an area of responsibility. An authorized role is appointed
to the partition of a business transaction swimlane. This role takes on the responsibility for the business
action that is allocated within that area of responsibility.

Tag Definition No Tagged Values

A-35
Stereotype BusinessAction (abstract)

Base Class ActionState

Parent N/A

Description
The business action is executed by an authorized role during a business transaction. Business action is an
abstract stereotype. This means a business action is either a requesting business activity or a responding
business activity.

Tag Definition

IsAuthorizationRequired

Type Boolean

Multiplicity 1

Description If a partner role needs authorization to request a business action or to respond to a
business action then the sending partner role must sign the business document
exchanged and the receiving partner role must validate this business control and
approve the authorizer. A responding partner must signal an authorization exception
if the sending partner role is not authorized to perform the business activity. A
sending partner must send notification of failed authorization if a responding partner
is not authorized to perform the responding business activity.

isNonRepudiationRequired

Type Boolean

Multiplicity 1

Description The isNonRepudiationRequired tag is used to indicate that an involved party must
not be able to repudiate the execution of the business action that input/outputs
business information.

isNonRepudiationReceiptRequired

Type Boolean

Multiplicity 1

Description The isNonRepudiationOfReceiptRequired tag requires the receiver of an information
envelope to send a signed receipt. The isNonRepudiationOfReceiptRequired tag
indicates that an involved party must not be able to repudiate the execution of
sending the signed receipt.

A-36
Tag Definition

timeToAcknowledge Receipt

Type TimeExpression

Multiplicity 1

Description Both partners may agree to mutually verify receipt of business information within a
specific time duration. Acknowledgements of receipt may be sent for both the
requesting business information and the responding business information. This
means the sender of the business information may be the requesting authorized role
as well as the responding authorized role – it depends on whether a requesting or a
responding business information is acknowledged. Similarly, the affirmant may be
the requesting authorized role as well as the responding authorized role – again
depending of which business information is acknowledged. Inasmuch we use the
terms sender and affirmant in the explanation of acknowledgement of receipt
semantics.
An affirmant must exit the transaction if they are not able to verify the proper receipt
of a business information within the agree timeout period. A sender must retry a
business transaction if necessary or must send notification of failed business control
(possibly revoking a contractual offer) if an affirmant does not verify properly
receipt of a business information within the agreed time period. The time to
acknowledge receipt is the maximum duration from the time a business information
is sent by a sender until the time a verification of receipt is “properly received” by
the sender (of the business information). This verification of receipt is an audit-able
business signal and is instrumental in contractual obligation transfer during a
contract formation process (e.g. offer/accept).

timeToAcknowledgeProcessing

Type TimeExpression

Multiplicity 1

Description Similarly to the timeToAcknowledgeReceipt, the sender of a business information
might be the requesting authorized role as well as the responding authorized role –
depending whether a requesting or a responding business information is
acknowledged. Also the affirmant may be one of the two authorized roles. Thus, we
use again the terms sender and affirmant in the explanation of the acknowledgment
of processing semantics.
Both partners may agree to the need for an acknowledgment of processing to be
returned by a responding partner after the requesting business information passes a
set of business rules and is handed over to the application for processing. The time
to acknowledge processing of a business information is the duration from the time a
sender sends a business information until the time an acknowledgement of
processing is “properly received” by the sender (of the business information). An
affirmant must exit the transaction if they are not able to acknowledge processing of
business information within the maximum timeout period. A sender must retry a
business transaction if necessary or must send notification of failed business control
(possibly revoking a contractual offer) if an affirmant does not acknowledge
processing of business information within the agreed time period.

A-37
Stereotype RequestingBusinessActivity

Base Class ActionState

Parent BusinessAction

Description A requesting business activity is a business action that is performed by an authorized role requesting
business service from another authorized role.

Tag Definition

timeToRespond

Type TimeExpression

Multiplicity 1

Description Both partners may agree in case of a two-way business transaction that the
responding authorized role must return the responding information business
information within a specific duration.
A responding authorized role must exit the transaction if they are not able to return
the responding business information within the agreed timeout period. A requesting
authorized role must retry a business transaction if necessary or must send
notification of failed business control (possibly revoking a contractual offer) if a
responding authorized role does not deliver the responding business information
within the agreed time period. The time to perform is the maximum duration from
the time a requesting business information is sent by a requesting authorized role
until the time a responding business information is “properly received” by the
requesting authorized role in return.

retryCount

Type Integer

Multiplicity 1

Description The requesting authorized role must re-initiate the business transaction so many
times as specified by the retry count in case that a time-out-exception – by
exceeding the time to acknowledge receipt, or the time to acknowledge processing,
or the time to respond – is signaled. This parameter only applies to time-out signals
and not document content exceptions or sequence validation exceptions.

 Inherited tagged values:
- isAuthorizationRequired
- isNonRepudiationRequired
- isNonRepudiationReceiptRequired
- timeToAcknowledgeReceipt
- timeToAcknowledgeAcceptance
- isIntelligibleCheckRequired

Stereotype RespondingBusinessActivity

Base Class ActionState

Parent Business Action

Description A responding business activity is a business action that is performed by an authorized role responding to
another business partner role’s request for business service.

Tag Definition

Inherited tagged values:
- isAuthorizationRequired
- isNonRepudiationRequired
- isNonRepudiationReceiptRequired
- timeToAcknowledgeReceipt
- timeToAcknowledgeAcceptance
- isIntelligibleCheckRequired

A-38
OCL Constraints

Stereotype RequestingInformationEnvelope

Base Class ObjectFlowState

Parent N/A

Description

The requesting information envelope is a container of business information that is sent from the requesting
authorized role to the responding authorized role to indicate a state change in one or more business entities.
This business state change might be irreversible in the case of a one-way business transaction or an interim
state of a two-way business transaction. It is important to note that the term requesting information
envelope does not mean that the business information refers to a request in a business sense. The term
requesting information envelope indicates that the execution of a transaction is requested from the
requesting role to the responding role – no matter whether this is an information distribution, a notification,
a request, or the offer in a commercial transaction.

Tag Definition No Tagged Values

Stereotype RespondingInformationEnvelope

Base Class ObjectFlowState

Parent N/A

Description
The responding information envelope is a container of business information that is sent in case of a two-
way business transaction from the responding authorized role to the requesting authorized role in order to
set one or more business entities in a final state (which were in an interim state before).

Tag Definition No Tagged Values

A BusinessInteractionView package MUST contain exactly one BusinessInteraction and no other elements

package Model_Management
context Package

inv BIVcontainsExactlyOneBI:
 self.isBusinessInteractionView() implies
 self.contents->one(isBusinessInteraction())
 and self.contents->size()=1

A BusinessInteractionBehavior MUST be connected with exactly one BusinessTransactionUseCase via a dependency with
the stereotype mapsTo

package Behavioral_Elements::Activity_Graphs
context ActivityGraph

inv BIBmapsToExactlyOneBusinessTransactionUseCase:
 self.isBusinessInteractionBehavior() implies
 self.clientDependency->size() = 1 and
 self.clientDependency->forAll(d | d.isMapsToDependency() and
 d.supplier->forAll(isBusinessTransactionUseCase()) and
 d.supplier->size=1)

A-39
The behaviour of a BusinessInteraction must be described by exactly one BusinessInteractionBehavior.

package Foundation::Core
context Class

inv BehaviorOfBIdescribedByExactlyOneBusinessInteractionBehavior:
 self.isBusinessInteraction() implies
 self.behavior->one(isBusinessInteractionBehavior()) and
 self.behavior->size()=1

A BusinessTransaction MUST have exactly two partitions, which MUST be stereotyped as BusinessTransactionSwimlanes.
One partition MUST contain the RequestingBusinessActivity and one MUST contain the RespondingBusinessActivity

package Behavioral_Elements::Activity_Graphs
context ActivityGraph

inv BusinessTransactionHasExactlyTwoBTSwimlanes:
 self.isBusinessTransaction() implies
 self.oclAsType(ActivityGraph).partition->size() = 2
 and self.oclAsType(ActivityGraph).partition->forAll(part |
 part.isUMMTransactionSwimlane()
 and (part.contents->one(isRequestingBusinessActivity()) xor part.contents
 ->one(isRespondingBusinessActivity())))
 and self.oclAsType(ActivityGraph).partition->collect(part |
 part.contents)->one(isRequestingBusinessActivity())
 and self.oclAsType(ActivityGraph).partition->collect(part |
 part.contents)->one(isRespondingBusinessActivity())

A BusinessTransactionSwimlane MUST have a classifier, which MUST be one of the associated AuthorizedRoles of the
corresponding BusinessTransactionUseCase

package Behavioral_Elements::Activity_Graphs
context Partition

inv BusinessTransactionSwimlaneClassifier:
 self.isUMMTransactionSwimlane() implies
 self.classifierRole.base->size()=1 and
 self.activityGraph.clientDependency->
 collect(s | s.supplier)->collect(a | a.oclAsType(UseCase).associations)->
 collect(allConnections)
 ->select(isAuthorizedRole())->one(x | x = (self.classifierRole.base->
 asSequence->first()))

A-40
The partition of the requesting role must contain exactly one RequestingBusinessActivity, one
RequestingInformationEnveleope and one InitialState. Furthermore there MUST be at least two FinalStates in this
BusinessTransactionSwimlane

package Behavioral_Elements::Activity_Graphs
context Partition

inv ContentsOfRequestingPartition:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->forAll(isRequestingBusinessActivity()
 or isRequestingInformationEnvelope()
 or isInitialState()
 or isFinalState()
 or isTransition()
)
 and
 self.contents->one(isRequestingInformationEnvelope()) and
 self.contents->select(isFinalState())->size()>1 and
 self.contents->one(isInitialState())

The partition of the responding role MUST exactly contain one RespondingBusinessActivity. Furthermore if the transaction is
a two way business transaction, then the partition must contain a RespondingInformationEnvelope as well. If the transaction
is a one way business transaction, then the responder partition must not contain a RespondingInformationEnvelope.

package Behavioral_Elements::Activity_Graphs
context Partition

inv ContentsOfResponderPartition :
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->forAll(isRespondingBusinessActivity()
 or isRespondingInformationEnvelope()
 or isTransition()
)
 and if
 self.activityGraph.isTwoWayTransaction()
 then
 self.contents->one(isRespondingInformationEnvelope())
 else
 not self.contents->exists(isRespondingInformationEnvelope())
 endif

Exactly one Transition MUST lead from the InitialState to the RequestingBusinessActivity

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrInitialState2RequestingBusinessActivity:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isInitialState())->
 forAll(oclAsType(Pseudostate).outgoing->size()=1 and
 oclAsType(Pseudostate).outgoing->asSequence()
 ->first().target.isRequestingBusinessActivity())

A-41
Exactly one Transition MUST lead from a RequestingBusinessActivity to the RequestingInformationEnvelope

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRequestingBusinessActivity2RequInfEnvelope:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isRequestingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 oclAsType(ActionState).outgoing->asSequence()
 ->first().target.isRequestingInformationEnvelope())

Exactly one Transition MUST lead from the RequestingInformationEnvelope to the RespondingBusinessActivity

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRequestingInformationEnvelope2RespondingBusinessActivity:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isRequestingInformationEnvelope())->
 forAll(oclAsType(ObjectFlowState).outgoing->size()=1 and
 oclAsType(ObjectFlowState).outgoing->asSequence
 ->first().target.isRespondingBusinessActivity())

Exactly one Transition MUST lead from the RespondingBusinessActivity to the RespondingInformationEnvelope (only two
way business transactions)

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRespondingBusinessActivity2RespondingInformationEnvelope:
 self.activityGraph.isTwoWayTransaction() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->select(isRespondingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 oclAsType(ActionState).outgoing->asSequence
 ->first().target.isRespondingInformationEnvelope())

Exactly one Transition MUST lead from the RespondingInformationEnvelope to the RequestingBusinessActivity
(only two way business transactions)

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRespondingInformationEnvelope2RequestingBusinessActivity:
 self.activityGraph.isTwoWayTransaction() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->select(isRespondingInformationEnvelope())->
 forAll(oclAsType(ObjectFlowState).outgoing->size()=1 and
 oclAsType(ObjectFlowState).outgoing->asSequence
 ->first().target.isRequestingBusinessActivity())

A-42
There MAY be a Transition from RespondingBusinessActivity to RequestingBusinessActivity (only for one way business
transactions)

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrPossibleRespondingInformationEnvelope2RequestingBusinessActivity:
 self.activityGraph.isOneWayTransaction() implies
 self.contents->one(isRespondingBusinessActivity()) implies
 self.contents->select(isRespondingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 (oclAsType(ActionState).outgoing->asSequence
 ->first().target.isRequestingBusinessActivity() or
 oclAsType(ActionState).outgoing->isEmpty()))

One Transition MUST lead from the RequestingBusinessActivity to each FinalState.

package Behavioral_Elements::Activity_Graphs
context Partition

inv TrRequestingBusinessActivity2FinalState:
 self.isUMMTransactionSwimlane() implies
 self.contents->one(isRequestingBusinessActivity()) implies
 self.contents->select(isRequestingBusinessActivity())->
 forAll(oclAsType(ActionState).outgoing->size()=1 and
 oclAsType(ActionState).outgoing->asSequence
 ->first().target.isFinalState())

Each RequestingInformationEnvelope and each RespondingInformationEnvelope MUST have a classifier, which MUST itself
be a class and stereotyped as InformationEnvelope

package Behavioral_Elements::Activity_Graphs
context ObjectFlowState

inv ObjectFlowStateHasClassifier:
 (self.isRequestingInformationEnvelope() or
 self.isRespondingInformationEnvelope()) implies
 self.type.oclAsType(ClassifierInState).type.isInformationEnvelope()

A-43
I.V.I. Business Information View

Stereotypes

Stereotype InformationEntity

Base Class Class

Parent N/A

Description
An information entity realizes structured business information that is exchanged by partner roles
performing activities in a business transaction. Information entities include or reference other information
entities through associations.

Tag Definition

isConfidential

Type Boolean

Multiplicity 1

Description If the flag is set, the information entity is encrypted so that unauthorized parties
cannot view the information.

isTamperProof

Type Boolean

Multiplicity 1

Description If the flag is set, the information entity has an encrypted message digest that can be
used to check if the message has been tampered with. This requires a digital
signature (sender’s digital certificate and encrypted message digest) associated with
the document entity.

isAuthenticated

Type Boolean

Multiplicity 1

Description If the flag is set, there is a digital certificate associated with the document entity.
This provides proof of the signer’s identity.

Stereotype InformationEnvelope

Base Class Class

Parent InformationEntity

Description

An information envelope is a container for information entities. The information envelope is a
specizalization of the information entity. It extends the concept of the information entity by the fact that it
includes exactly one information entity that takes on the role of a header and at least one information entity
that takes on the role of a body. Furthermore the information exchanged in a business transaction, i.e. a
requesting business information and a responding business information is always of type information
envelope.

Tag Definition

Inherited tagged values:
- isConfidential
- isTamperProof
- isAuthenticated

A-44
OCL Constraints

OCL Methods of the Business Transaction View

package Foundation::Core
context ModelElement

--Predefined method whichs evaluates, if the given Modelelement
--has a stereotype equal to the passed name

A BusinessInformationView package must contain only InformationEntities and InformationEnvelopes and no other elements.

package Foundation::Core
context Class

inv AllowedElementsInBusinessInformationView:
 self.isBusinessInformationView() implies
 self.contents->forAll(a | a.isInformationEntity() or
 a.isInformationEnvelope())

An InformationEnvelope MUST have one association to an InformationEntity with role name header

package Foundation::Core
context Class

inv InformationEnvelopeHasHeader:
 self.isInformationEnvelope() implies
 self.associations->forAll(a | a.connection->size() = 2 and
 a.allConnections->one(participant.isInformationEntity() and
 AssociationEndRole.name = 'header'))

An InformationEnvelope MUST have at least one associated InformationEntity with role name body

package Foundation::Core
context Class

inv InformationEnvelopeHasBodies:
 self.isInformationEnvelope() implies
 self.associations->forAll(a | a.connection->size() = 2 and
 a.allConnections->exists(participant.isInformationEntity() and
 AssociationEndRole.name = 'body'))

An InformationEntity MAY be composed of other InformationEntities

package Foundation::Core
context Class

inv contentsOfInformationEntitiy:
 self.isInformationEntity() implies
 self.associations->
 forAll(a | a.allConnections->exists(isAggregate()) and
 a.allConnections->exists(participant.isInformationEntity()))

A-45
def :
let hasStereotype (st : String) : Boolean =

self.stereotype->select(self.name = st)->notEmpty()

--Predefined method whichs evaluates, if the given element
--has the stereotype 'BusinessTransaction'
def :
let isBusinessTransaction() : Boolean =

self.oclIsKindOf(ActivityGraph) and
self.hasStereotype('BusinessTransaction')

--Predefined method whichs evalutes, if the given element
--has the stereotype 'BusinessInteraction'
def :
let isBusinessInteraction() : Boolean =

self.oclIsKindOf(Class) and
self.hasStereotype('BusinessInteraction')

--Predefined method whichs evaluates, if the given element
--is a subtype of 'BusinessInteractionBehavior'
def :
let isBusinessInteractionBehavior() : Boolean =

self.oclIsKindOf(ActivityGraph) and
self.hasStereotype('BusinessTransaction')

--Predefined method whichs evaluates, if the given element
--is a 'BusinessChoreography'
def :
let isBusinessChoreography() : Boolean =

self.oclIsKindOf(Class) and
self.hasStereotype('BusinessChoreography')

--Predefined method which evaluates, if the
--ActivityGraph is a BusinessCollaborationProtocol
def:
let isBusinessCollaborationProtocol() : Boolean =

self.oclIsKindOf(ActivityGraph) and
self.hasStereotype('BusinessCollaborationProtocol')

--Predefined method which evaluates, if the
--ActivityGraph is a subtype of
--BusinessChoreographyBehavior
def:
let isBusinessChoreographyBehavior() : Boolean =

self.oclIsKindOf(ActivityGraph) and
self.hasStereotype('BusinessCollaborationProtocol')

--Predefined method which evaluates, if the given element
--has the stereotype 'RequestingBusinessActivity' and
--if its type is ActionState
def :
let isRequestingBusinessActivity() : Boolean =

self.oclIsKindOf(ActionState) and
self.hasStereotype('RequestingBusinessActivity')

A-46
--Predefined method which evaluates, if the given element
--has the stereotype 'RespondingBusinessActivity' and
--if its type is ActionState
def :
let isRespondingBusinessActivity() : Boolean =

self.oclIsKindOf(ActionState) and
self.hasStereotype('RespondingBusinessActivity')

-- Returns true if the element is located in a partition and
-- its stereotype is 'BusinessTransactionSwimlane'
def :
let isBusinessTransactionSwimlane() : Boolean =

self.hasStereotype('BusinessTransactionSwimlane')
and self.oclIsKindOf(Partition)

-- Returns true if the type of the element
-- is 'PseudoKindState' and its Pseudostatekind is pk_initial
def :
let isInitialState() : Boolean =

self.oclIsKindOf(Pseudostate) and
self.oclAsType(Pseudostate).kind = PseudostateKind::initial

-- Returns true if the type of the element is 'FinalState'
def:
let isFinalState() : Boolean =

self.oclIsKindOf(FinalState)

-- Returns true if the type of the element
-- is 'PseudoKindState' and its Pseudostatekind
-- is pk_choice
def:
let isChoice() : Boolean =

self.oclIsKindOf(Pseudostate) and
self.oclAsType(Pseudostate).kind = PseudostateKind::choice

-- Returns true if the type of the element
-- is 'PseudoState' and its Pseudostatekind
-- is pk_fork
def:
let isFork() : Boolean =

self.oclIsKindOf(Pseudostate) and
self.oclAsType(Pseudostate).kind = PseudostateKind::fork

-- Returns true if the type of the element
-- is 'PseudokindState' and its Pseudostatekind
-- is pk_choice
def:
let isJoin() : Boolean =

self.oclIsKindOf(Pseudostate) and
self.oclAsType(Pseudostate).kind = PseudostateKind::join

--Returns true if the given element has a tagged value
--named 'tag' with a value 'value'

A-47
def :
let hasTaggedValue (tag : String, value : String) : Boolean =

self.taggedValue->select(name = tag)->select(dataValue =
value)->notEmpty()

--Returns true if the element has a tagged value named
--'BusinessTransaction'
--with a value 'NotificationActivity' or
--'InformationDistributionActivity'
def :
let isOneWayTransaction() : Boolean =

self.hasTaggedValue('BusinessTransactionType','NotificationAc-
tivity')

or
self.hasTaggedValue('BusinessTransactionType','InformationDis-

tributionActivity')

--Returns true if the element has a tagged value name
--'BusinessTransaction'
--with a value 'QueryResponseActivity' or
--'RequestResponseActivity' or
--'CommercialTransactionActivity' or
--'RequestConfirmActivity'
def :
let isTwoWayTransaction() : Boolean =

self.hasTaggedValue('BusinessTransactionType','QueryRespon-
seActivity')

or
self.hasTaggedValue('BusinessTransactionType','RequestRespon-

seActivity')
or
self.hasTaggedValue('BusinessTransactionType','Commercial-

TransactionActivity')
or
self.hasTaggedValue('BusinessTransactionType','RequestConfir-

mActivity')

-- Returns true if the stereotype of the given element is
--'BusinessCollaborationActivity'
-- and if the type of the element is ActionState
def:
let isBusinessCollaborationActivity() : Boolean =

self.hasStereotype('BusinessCollaborationActivity') and
self.oclIsKindOf(ActionState)

-- Returns true if the stereotype of the given element is
--'BusinessTransactionActivity'
-- and if the type of the element is ActionState
def:
let isBusinessTransactionActivity() : Boolean =

self.hasStereotype('BusinessTransactionActivity') and
self.oclIsKindOf(ActionState)

-- Returns true if the type of the element is Transition

A-48
def:
let isTransition() : Boolean =

self.oclIsKindOf(Transition)

-- Returns true if the given element is an element of an
--Acitivity Graph
-- (InitialState, Choice, Fork, Join, Transition or FinalState)
def:
let isPseudoStateOrFinalStateOrTransition() : Boolean =

isInitialState() or
isChoice() or
isFork() or
isJoin() or
isFinalState()

--Returns true if a package is stereotyped as
--BusinessTransactionView
def:
let isBusinessTransactionView() : Boolean =

self.hasStereotype('BusinessTransactionView') and
oclIsKindOf(Package)

--Returns true if a package is stereotyped as
--BusinessChoroeographyView
def:
let isBusinessChoreographyView() : Boolean =

self.hasStereotype('BusinessChoreographyView') and
oclIsKindOf(Package)

-- Returns true if the stereotype of the given element is
--'BusinessInformationView'
-- and if the type of the element is Package
def :
let isBusinessInformationView() : Boolean =

self.hasStereotype('BusinessInformationView') and
self.oclIsKindOf(Package)

-- Returns true if the stereotype of the given element is
--'BusinessInteractionView'
-- and if the type of the element is Package
def :
let isBusinessInteractionView() : Boolean =

self.hasStereotype('BusinessInteractionView') and
self.oclIsKindOf(Package)

-- Returns true if the stereotype of the given element is
--'InformationEntitiy'
-- and if the type of the element is Class
def :
let isInformationEntity() : Boolean =

self.hasStereotype('InformationEntity') and
self.oclIsKindOf(Class)

-- Returns true if the association type of an association

A-49
--end is composite
def:
let isComposition() : Boolean =

self.oclIsKindOf(AssociationEnd) and
self.oclAsType(AssociationEnd).aggregation = AggregationK-

ind::composite

-- Returns true if the association type of an association end
--is aggregation
def:
let isAggregate() : Boolean =

self.oclIsKindOf(AssociationEnd) and
self.oclAsType(AssociationEnd).aggregation = AggregationK-

ind::aggregate

-- Returns true if the element is a partition
--and stereotyped as BusinessTransactionSwimlane
def :
let isUMMTransactionSwimlane() : Boolean =

self.oclIsKindOf(Partition) and
self.hasStereotype('BusinessTransactionSwimlane')

--Returns true if the stereotype of the element is
--'InformationEnvelope' and its type is Class
def :
let isInformationEnvelope() : Boolean =

self.hasStereotype('InformationEnvelope') and
oclIsKindOf(Class)

--Returns true if the stereotype of the element
-- is 'RequestingInformationEnvelope'
def :
let isRequestingInformationEnvelope() : Boolean =

self.hasStereotype('RequestingInformationEnvelope') and
oclIsKindOf(ObjectFlowState)

--Returns true if the stereotype of the element
-- is 'RespondingInformationEnvelope'
def :
let isRespondingInformationEnvelope() : Boolean =

self.hasStereotype('RespondingInformationEnvelope') and
oclIsKindOf(ObjectFlowState)

--Predefined method which evaluates, if the given element
--has the stereotype 'mapsTo'
def :
let isMapsToDependency() : Boolean =

self.oclIsKindOf(Dependency) and
self.hasStereotype('mapsTo')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessCollaborationUseCase'
def :

A-50
let isBusinessCollaborationUseCase() : Boolean =
self.oclIsKindOf(UseCase) and
self.hasStereotype('BusinessCollaborationUseCase')

--Predefined method which evaluates, if the given element
--has the stereotype 'BusinessTransactionUseCase'
def :
let isBusinessTransactionUseCase() : Boolean =

self.oclIsKindOf(UseCase) and
self.hasStereotype('BusinessTransactionUseCase')

--Predefined method which evaluates, if the given element
--has the stereotype 'AuthorizedRole'
def :
let isAuthorizedRole() : Boolean =

self.oclIsKindOf(Actor) and
self.hasStereotype('AuthorizedRole')

A-51
II. Appendix - Business Transaction
Patterns

UN/CEFACT mandates the use of one of the six business transaction pat-
terns that are already standardized by RosettaNet [ROS02]. These business
transaction patterns cover every real-world business case. The list below
describes each pattern in detail:

■ Commercial transaction (two-way): Represents the typical „offer and
acceptance“ business interaction. A commercial transaction results in a
residual obligation between two parties to fulfill the terms of a contract.
In other words both parties enter into a commitment to fulfill their part
of the contract. An example would be the submission of an order and
receipt of a purchase order response.
The commercial transaction pattern constitutes that the responding
party has to return an acknowledgement of receipt when receiving the
requesting information envelope. The time frame within the acknowl-
edgement of receipt has to be sent is specified by time to acknowledge
receipt (of the requesting business activity). If the document passes a set
of business rules and is handed over to the business application the
responder has to send an acknowledgement of processing. The corre-
sponding timeframe is specified by the time to acknowledge processing
(of the requesting business activity). Furthermore, the responding party
has to return the responding information envelope within the period
defined by time to respond (of the requesting business activity). The
requesting party has to re-initiate the business transaction in case the
time to acknowledge receipt, time to acknowledge processing or time to
respond is exceeded. The number of attempts is defined by the retry
count. When the responding party answers with the responding infor-
mation envelope the requestor has to issue an acknowledgement of
receipt within the time to acknowledge receipt (specified in the respond-
ing business activity). If the responding information envelope passes
again the business rules (e.g. grammar validation, sequence valida-
tion...) the requestor has to transmit an acknowledgement of processing

A-52
to the responder. The allowed period is set by the time to acknowledge
processing of the responding business activity. Both parties are required
to authorize themselves (authorization is required by both business
actions) and have to the sign their envelopes and business signals (as
defined by non repudiation required and non repudiation of receipt
required of both business actions).

■ Query/Response (two-way): This pattern describes the request of infor-
mation that is available to the responder prior to the request. This might
be a fixed data set inside a database or any kind of static information
(e.g. a catalog).
The requestor initiates the transaction by submitting the request within a
requesting information envelope to the responder. The responder has to
provide the information within the period specified by time to respond.
The requestor has to re-initiate the transaction as defined by the retry
count if the responder is not answering within the given time to respond.
No business signals and no non-repudiation requirements are necessary
in the query/response pattern.

■ Request/Response (two-way): A transaction follows the
request/response pattern if the requestor asks for information that
requires some business processing on the responder’s side. This
includes information that needs to be dynamically assembled and hence
cannot be returned immediately (i.e. non-static information). An exam-
ple would be the request for a product quote. The request/response pat-
tern results in no residual obligation between the two parties to fulfill
the terms of a contract. Concerning the request for quote example, this
inquiry leads to no commitment of the requestor to buy the quoted prod-
uct. Similarly the responder does not pledge himself to have the quoted
product available in case of a further order.
The request/response pattern specifies the exchange of a requesting and
a responding information envelope. Non-Repudiation requirements as
well as requiring business signals are optional, but not recommended
using the request/response pattern. If either business signals or non-
repudiation are required, they follow the same semantics as specified
for the commercial transaction pattern.

■ Request/Confirm (two-way): This pattern should be used if the request-
ing partner asks for information that requires only confirmation in
respect to previously agreed business contracts. An example might be
the request of status information.
The requestor initiates the transaction by submitting the request docu-
ment to confirm to the responder. Business signals or non-repudiation
are not required by the responder. Anyway, the requestor re-initiates the
transaction as defined by the retry count if the responder misses answer-

A-53
ing within the time to respond. Regarding the responding information
envelope, the responder might require that the requestor sends an
acknowledgement of receipt when he receives the confirmation
response (within the timeframe specified by time to acknowledge
receipt). Furthermore, the responder might require the requestor to
authenticate himself and to guarantee the non-repudiation of the
acknowledgement of receipt.

■ Information distribution (one-way): Represents an informal, unidirec-
tional information transmission. An example would be an information
about price discounts to customers.
Neither business signals nor non-repudiation or authorization require-
ments are allowed in the information distribution pattern. Since the
receipt of the distributed information is not guaranteed no retry count
must be claimed.

■ Notification (one-way): A formal, unidirectional sending of informa-
tion. This pattern is applied if the requesting side has to inform the
responding side about an irreversible business state. An example is the
notification of a product shipment.
Since the notification transmittal is a formal action the requestor has to
claim for an acknowledgement of receipt with the specified time to
acknowledge receipt. Furthermore, the non-repudiation of a receipt is
required. If the reacting party is not sending the business signal within
the agreed time to acknowledge receipt the requesting party has to re-
initiate the transaction as specified by the retry count.

Furthermore each business document has to be checked for readability by
the receiver as defined by the value of is intelligible check required which is
by default set to true for every document. Table shows the requirements on
the responding party within the different transaction patterns. These
requirements are specified in the requesting business activity (because the
requestor demands the responder to fulfill these requirements). Similarly
Table shows the requirements posed by the responding party to the request-
ing party. We specify them using the tagged values of the responding busi-
ness activity, because the responder demands them to be fulfilled by the
requestor.

Default assignment of tagged values for a requesting business activity

The following table (Table) shows the default assignment of tagged values
for a requesting business activity. They denote the requirements on the
responder in context of the six business transaction patterns.

A-54
Default tagged values for a
requesting business activity

Default assignment of tagged values for a responding business activity

The following table (Table) shows the default assignment of tagged values
for a responding business activity. They denote the requirements on the
requestor in context of the six business transaction patterns.

Default tagged values for a
responding business activ-
ity

Tim
e to Acknow

ledge R
eceipt

Tim
e to A

cknow
ledge Processing

Tim
e to R

espond

Authorization R
equired

N
on repudiation required

N
on repudiaton of receipt

R
etry count

is IntelligibleC
heckR

equired

Commercial Transaction 2hr 6hr 24hr TRUE TRUE TRUE 3 TRUE
Request/Confirm null null 24hr FALSE FALSE FALSE 3 TRUE
Request/Response null null 4hr FALSE FALSE FALSE 3 TRUE
Query/Response null null 4hr FALSE FALSE FALSE 3 TRUE
Notification 24hr null null FALSE FALSE TRUE 3 TRUE
Information Distribution null null null FALSE FALSE FALSE 0 TRUE

Requesting Business Activity

Tim
e Acknow

ledge R
eceipt

Tim
e to acknow

ledge processing

Authorization R
equired

N
on repudiation required

is IntelligibleC
heck required

N
on requpdiation of receipt

Commercial Transaction 2hr 6hr TRUE TRUE TRUE TRUE
Request/Confirm 2hr null TRUE FALSE TRUE TRUE
Request/Response null null FALSE FALSE TRUE FALSE
Query/Response null null FALSE FALSE TRUE FALSE
Notification null null FALSE FALSE TRUE FALSE
Information Distribution null null FALSE FALSE TRUE FALSE

Responding Business Activity

A-55
III. Appendix - Bibliography

[ATG05] UN/CEFACT Applied Technology Group (ATG). XML
Naming and Design Rules, February 2005. Draft 1.1a.

[BEA03] BEA, IBM, Microsoft, SAP AG and Siebel Systems.
Business Process Execution Language for Web Services,
May 2003. Version 1.1.

[Bir05] Birgit Hofreiter and Christian Huemer and Ja-Hee Kim.
Choreography of ebXML Business Collaborations. Infor-
mation Systems and e-Business Management (ISeB),
2005.

[BML02] Assaf Arkin. Business Process Modeling Language,
November 2002. Version 1.0.

[BPS03] UN/CEFACT TMG. UN/CEFACT - ebXML Business Pro-
cess Specification Schema, 2003.

[BRJ04] Grady Booch, James Rumbaugh, and Ivar Jacobson. The
Unified Modeling Language Reference Manual. Addison-
Wesley Professional, 2004.

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. Uni-
fied Modeling Language User Guide. Addison-Wesley
Professional, 2005.

[CBP03] UN/CEFACT TBG 14. UN/CEFACT - Common Business
Process Catalog, November 2003. Version 0.95 (Candi-
date for Version 2.0).

[CC03] UN/CEFACT TMG. Core Components Technical Specifi-
cation - Part 8 of the ebXML Framework, November
2003. v2.01.

[CI02] World Wide Web Consortium (W3C). Web Service Cho-
reography Interface, August 2002. Version 1.0.

[CL02] World Wide Web Consortium (W3C). Web Service Con-
versation Language, March 2002. Version 1.0.

A-56
[CSO02] UN/CEFACT. Structure and Organization of the
UN/CEFACT Permanent Working Group, June 2002.
TRADE/CEFACT/2002/8/Rev.1.

[EBB05] OASIS. ebXML Business Process Specification Schema
TS, 2005.

[ETA01] OASIS, UN/CEFACT. ebXML - Technical Architecture
Specification, February 2001. Version 1.4.

[FOU03] UN/CEFACT TMG. UN/CEFACT Modeling Methodol-
ogy (UMM) Foundation Module Specification, 2003.
Candidate for 1.0, First Working Draft.

[HC93] Michael Hammer and James Champy. Reengineering the
corporation: A manifesto for business revolution. Busi-
ness Horizons, 36(5):90–91, 1993.

[HH04] Birgit Hofreiter and Christian Huemer. Transforming
UMM Business Collaboration Models to BPEL. In OTM
Workshops, pages 507–519, 2004.

[Hof05] Birgit Hofreiter. The Impact of Business Context on Busi-
ness Collaboration Models, Choreography Languages,
and Business Documents. PhD thesis, University of
Vienna, 2005.

[Jur04] Matjaz Juric. Business Process Execution Language for
Web Services - BPEL4WS. PACKT-Publishing, 2004.

[Kin04] Ekkart Kindler. Using the Petri Net Markup Language for
Exchanging Business Processes? Potential and Limita-
tions. In Jan Mendling and Markus Nuettgens, editors,
XML4BPM 2004, Proceedings of the 1st GI Workshop
XML4BPM - XML Interchange Formats for Business Pro-
cess Management,Marburg (Germany), pages 43–60,
March 2004.

[Mic06] Michael Ilger and Marco Zapletal. An Implementation to
Transform Business Collaboration Models to Executable
Process Specifications. accepted at Multikonferenz
Wirtschaftsinformatik 2006 (MKWI06), Passau, Ger-
many; will be published in GI LNI, 2006.

A-57
[MN04] Jan Mendling and Markus Nuettgens. Exchanging EPC
Business Process Models with EPML. In Jan Mendling
and Markus Nuettgens, editors, XML4BPM 2004, Pro-
ceedings of the 1st GI Workshop XML4BPM - XML Inter-
change Formats for Business Process Management at 7th
GI Conference Modellierung 2004,Marburg (Germany),
pages 61–80, March 2004.

[MO102] OMG Object Management Group. Meta-Object Facility,
2002. Version 1.4 Specification.

[MOF05] OMG Object Management Group. MOF 2.0/XMI Map-
ping Specification, 2005. Version 2.1.

[Naj02] Farrukh Najmi. Web Content Management using the
OASIS ebXML Registry Standard. Technical report, Sun
Microsystems, February 2002.

[OCL03] Object Management Group (OMG). OCL 2.0 - OMG
Final Adopted Specification, October 2003.

[Ode] Odette. Achieving Supply Chain Excellence in the Auto-
motive Industry.

[OER95] ISO. Open-edi Reference Model, 1995. ISO/IEC JTC
1/SC30 ISO Standard 14662.

[OPE01] ISO/IEC. Business agreement semantic descriptive tech-
niques - Part 1: Operational aspects of Open-edi for
implementation, August 2001. ISO/IEC FDIS 15944-1.

[Pel03] Chris Peltz. Web Services Orchestration and Choreogra-
phy. IEEE Computer, 28(10):46–52, 2003.

[ROS02] RosettaNet. RosettaNet Implementation Framework:
Core Specification, December 2002. V02.00.01.

[SBD04] UN/CEFACT Applied Technologies Group. Standard
Business Document Header, June 2004. Technical Speci-
fication Version 1.3.

[Sch88] Willie Schatz. EDI: Putting the muscle in commerce and
industry. Technical Report Vol. 34, Datamation, March
1988.

[SOA03] World Wide Web Consortium (W3C). Simple Object
Access Protocol (SOAP), June 2003. Version 1.2.

A-58
[Ste94] Steve Cook and John Daniels. Designing Object Systems:
Object-oriented modeling with Syntropy. Prentice-Hall,
1994.

[Ste01] Perdita Stevens. Small-Scale XMI Programming: A Rev-
olution in UML Tool Use? Technical report, University of
Edinburgh, August 2001.

[UDD02] OASIS. UDDI Version 2.04 API Specification, July 2002.
UDDI Committee Specification.

[UG03] UN/CEFACT TMG. UN/CEFACT Modeling Methodol-
ogy (UMM) User Guide, 2003. CEFACT/TMG/N093 -
V20030922.

[UMa04] Object Management Group (OMG). Unified Modeling
Language Specification, Version 1.4.2, 2004.

[UMb04] Object Management Group (OMG). Unified Modeling
Language Specification, Version 2.0, 2004.

[UNC05] United Nations. Mandate, Terms of Reference and Proce-
dures for UN/CEFACT, April 2005.
TRADE/R.650/Rev.4.

[Ver] Verband der Automobilindustrie. VDA - Verband der
Automobilindustrie.

[WS04] Andreas Winter and Carlo Simon. Exchanging Business
Process Models with GXL. In XML4BPM 2004, Proceed-
ings of the 1st GI Workshop XML4BPM - XML Inter-
change Formats for Business Process Management,
Marburg (Germany), pages 103–122, March 2004.

[WSD01] World Wide Web Consortium (W3C). Web Services
Description Language (WSDL), March 2001. Version 1.1.

[WSG04] W3C - World Wide Web Consortium. Web Services Glos-
sary, February 2004.

[WSL01] IBM Software Group. Web Services Language, May
2001. Version 1.0.

[xCB03] xCBL. xCBL Version 4.0 Documentation, 2003.

[XLA01] Microsoft Corporation. XLANG - Web Services for Busi-
ness Process Design, 2001.

[XML04] World Wide Web Consortium (W3C). Extensible Markup
Language (XML), 2004. Version 1.0

A-59
[XSD04] World Wide Web Consortium (W3C). XML Schema,
2004. Version 1.0.

	A UML Profile and Add-In for UN/CEFACT’s Modeling Methodology
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Reader
	2 Motivation
	2.1 B2B - a look into the past
	2.1.1 Electronic Data Interchange
	2.1.2 The transition from EDI to UMM

	2.2 The B2B scenario
	2.3 The need to define interfaces
	2.4 The need for tool support
	2.5 The need for a user guide
	2.6 The need for business information transformation
	2.7 The motivation for this thesis

	3 Related Work
	3.1 UML
	3.2 OCL
	3.3 Choreography languages
	3.4 ebXML
	3.5 Registries
	3.6 XMI

	4 UMM Add-In
	4.1 An Add-In for a UML modeling tool
	4.2 Enterprise Architect modeling tool
	4.3 Software development environment

	5 UMM at a glance
	5.1 About UN/CEFACT
	5.2 Basics of the UMM
	5.3 Business Modeling using the UMM
	5.3.1 Business Domain View
	5.3.2 Business Requirements View
	5.3.3 Business Transaction View

	6 Worksheets Editor
	6.1 The need for worksheets
	6.2 The integration of worksheets into a UMM tool
	6.3 Relationship between worksheets and tagged values
	6.4 Technical implementation of the worksheet editor
	6.4.1 The need for a dynamical structure
	6.4.2 WDL - Worksheet Definition Language
	6.4.3 Saving the worksheet information

	6.5 Extensions of WDL input files
	6.5.1 Business Domain View package
	6.5.2 Business Requirements View package
	6.5.3 Business Transaction View package

	6.6 Once-and-only once recording of business knowledge
	6.7 Extended features of the worksheet editor
	6.7.1 Generating UMM model elements
	6.7.2 Exporting worksheets

	7 User Guide
	Worksheets in the context of the modeling process
	7.1 Business Domain View
	7.2 Business Requirements View
	7.2.1 Business Process View
	7.2.2 Business Entity View
	7.2.3 Collaboration Requirements View
	7.2.4 Transaction Requirements View
	7.2.5 Collaboration Realization View

	7.3 Business Transaction View
	7.3.1 Business Choreography View
	7.3.2 Business Interaction View
	7.3.3 Business Information View

	8 UMM Validator
	8.1 Motivation for UMM validation
	8.2 UML Extensions
	8.2.1 Stereotypes
	8.2.2 Tagged values
	8.2.3 Constraints

	8.3 The conceptual UMM meta model
	8.3.1 Business Domain View
	8.3.2 Business Requirements View
	8.3.3 Business Transaction View

	8.4 OCL constraints as the base for validation
	8.4.1 Validation techniques
	8.4.2 Transforming OCL constraints into a validation engine

	8.5 The UMM validation Add-In
	8.5.1 Architecture
	8.5.2 Scope vs. overall validation
	8.5.3 Validation of a package - a deeper insight
	8.5.4 Tagged value validator
	8.5.5 Difficulties which accompany the validation
	8.5.6 Presentation of validation results

	8.6 The need for a special BPSS validation
	8.7 Shortcomings of the Enterprise Architect
	8.8 Conclusion and outlook

	9 Generating Process Specifications from UMM Models
	9.1 Deriving BPEL processes from UMM choreographies
	9.1.1 What is BPEL?

	9.2 Implementing a BPEL transformation algorithm
	9.2.1 Initiation of the transformation process
	9.2.2 Identification of involved roles
	9.2.3 Creating WSDL descriptions
	9.2.4 Generating partner link types
	9.2.5 Generating BPEL process descriptions

	9.3 Conclusion and outlook

	10 Mapping Business Information to Document Formats
	10.1 Introduction to business information modeling
	10.2 Core Components Technical Specification (CCTS)
	10.3 Universal Business Language (UBL)
	10.4 The need for Naming and Design Rules (NDR)
	10.5 A reference implementation
	10.5.1 CCTS Profile
	10.5.2 CCTS modeling in practice
	10.5.3 CCTS validation and transformation
	10.5.4 CCTS import feature

	11 Summary and Outlook
	I. Appendix - A UML Profile for UMM
	II. Appendix - Business Transaction Patterns
	III. Appendix - Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

