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Deutsche Kurzfassung

Eine der grundlegensten physikalischen Untersuchungsmethoden ist die Spek-
troskopie. Hochauflosende Laserspektroskopie ermdoglicht heutzutage
Prizissionsstudien an feinsten Details der Spektren. Eine ganz andere Art der
Spektroskopie ist hingegen erst vor wenigen Jahren durch die experimentelle
Realisierung einzelner Femto- und Attosekunden Laserpulse moglich gewor-
den. Diese Pulse erlaubten erstmals die direkte Beobachtung von
Molekiilbewegungen und der Bewegung von Elektronen in Atomen. Die ras-
ante Entwicklung in den letzten Jahren im Bereich der experimentellen Laser-
physik brachte auch neue Herausforderungen fiir die Theorie. Es stellte sich
heraus, dass schon in scheinbar einfachen atomaren Systemen mit wenigen
Freiheitsgraden, wie zum Beispiel in dem von uns untersuchten Fall einer
Fano Resonanz, interessante und vielschichtige Effekte auftreten konnen,
deren theoretische Beschreibung alles andere als einfach ist.

In dieser Dissertation wird zuerst am Beispiel der Ionization von Argon
mit Femtosekunden Laserpulsen von hoher Intensitit die ab-initio Losung
der zeitabhangigen Schrodinger Gleichung mit einer approximativen Losung
verglichen. Das Naherungsmodell beruht auf der hiaufig verwendeten Meth-
ode der 'Strong Field Approximation (SFA)’, welche den Ionizationsprozess
anschaulich and qualitativ erfolgreich beschreibt. Wir erzielten eine uner-
wartet gute Ubereinstimmung beider Rechnungen, aus welcher interessante
physikalische Konsequenzen iiber die Relevanz des Coulomb Potentials wahrend
der Ionization folgen. Unsere Rechnungen sind auch in guter Ubereinstimmung
mit einem kiirzlich durchgefithrtem Experiment. Weiters untersuchten wir
die zeitliche Entwicklung einer Fano Resonanz welche mit einem attosekun-
den Puls angeregt wurde. Wahrend die zeitintegralen Eigenschaften einer
Fano Resonanz spatestens seit den sechziger Jahren im Detail verstanden sind
berechneten wir zum ersten Mal die zeitabhingige lonizationswahrschein-
lichkeit fiir eine solche Resonanz. Um Informationen iiber den Zerfallsprozess
zu erhalten, wird neben dem anregenden attosekunden Puls ein zweiter Abfrage
Laser verwendet. Die im ersten Teil der Dissertation bewiesene, gute Uberein-
stimmung der SFA mit der ab-initio Rechnung, erlaubte es uns, die Fano
Resonanz im Feld des Lasers, was ein Mehr-Elektronen Problem mit starker
Korrelation der beteiligten Elektronen darstellt, mit Hilfe der SFA zu berech-
nen. Experimente in diese Richtung sind geplant.
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Abstract

One of the most fundamental experimental techniques in physics is spec-
troscopy. High-precision measurements of atomic transition energies in atomic
systems provide today detailed information about the atomic-structure. How-
ever, a new way of doing spectroscopy became possible with the recent pro-
duction of isolated femto- and attosecond laser pulses. With these pulses
chemical reactions and the 'movement’ of electrons inside atoms can be stud-
ied directly in the time domain. It became obvious, that even simple atomic
systems with only a few degrees of freedom, as for example the case of a
Fano resonance in the field of a short pulse, suddenly show an interesting
and complex behavior.

In the first chapters of this thesis we compare an ab-initio solution of the
time-dependent Schrodinger equation with an approximative solution, for
the case of ionization of argon with intense, short laser pulses. The approxi-
mative method is based on the strong-field approximation (SFA) which is one
of the most popular methods in this field. In the SFA model the influence of
the core potential on the ionized electrons is neglected and all bound states
except the ground state are neglected as well. Nevertheless, we obtained
a surprisingly good agreement between the two calculations, which lead to
interesting consequences concerning the relevance of the Coulomb potential
in the ionization process. Our calculations are in good agreement with a
recently performed experiment. Furthermore, we have studied the temporal
evolution of a Fano resonance excited by an attosecond laser pulse. While
the time-integral properties of a Fano resonance are well known since the six-
ties, we have been among the first to calculate the time-dependent ionization
probability of such a resonance. To gain information about the time evolu-
tion of the decaying resonance, a second probe laser pulse has to be applied
in addition to the attosecond pulse. Since in the first part of this thesis we
could show the reliability of the SFA model, we applied this approximation
to calculate the Fano resonance in the external laser field. Experiments in
this direction are planned.
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Chapter 1

Introduction

Recent progress in ultrafast optics has allowed the generation of intense light
pulses of only a few cycles duration (Steinmeyer et al. [1], Baltuska et al.
[2], Nisoli et al. [3], Morgner et al. [4], Sutter et al. [5], Shirakawa et al. [6]).
Due to this extreme temporal confinement of light, moderate pulse ener-
gies of the order of one microjoule can result in peak intensities higher than
10" W/cm? (Brabec and Krausz [7]). These field strengths exceed that of
the Coulomb field experienced by outer-shell electrons in atoms. As a con-
sequence the laser field is strong enough to suppress the binding Coulomb
potential and to trigger optical field ionization in a highly nonlinear pro-
cess (Keldysh [8]). In contrast to longer laser pulses comprising of many field
oscillations, in a few-cycle pulse high intensities can be switched on within
a few optical periods lasting merely a few femtoseconds. Thus, detachment
of the first electron is completed at substantially higher field strengths and
a substantial fraction of the atoms is ionized during one laser oscillation pe-
riod. The sine-like variation of the laser field produces pronounced peaks in
the ionization signal at times near maximum field strength. The resulting
short electron wave packets can be accelerated by the laser field and directed
back to the parent ion. Rescattering with the parent ion after roughly one
half-cycle of the laser field creates a broadband radiation with energies that
are proportional to the frequency of the laser field. By applying a spectral
filter and compensating chirp one can generate single bursts of XUV radia-
tion with durations as short as 250 as (Hentschel et al. [9]).

With the availability of such pulses previously inaccessible regimes of

1



§ 1. INTRODUCTION 2

nonlinear optics are now being entered. Rather than accumulating an effect
over many optical periods, as in conventional optics, the electric field can
take direct control of the electronic motion and imprint its time structure on
electron momentum and position. The direct observation of the motion of
electrons inside atoms occurring on an attosecond time scale becomes now
feasible.

Energy in eV

-8 -4 ] <4 2 12
Time delay in femtoseconds

Figure 1.1: Figure taken from E. Goulielmakis et al., SCIENCE 305 (2004).
Experimental results for a series of kinetic energy spectra of electrons de-
tached from neon atoms in the presence of an intense < 5 fs laser field with
a wavelength of 750 nm in false-color representation. The delay of the at-
tosecond probe pulse was varied in steps of 200 as. The detected electrons
were ejected along the direction of the laser polarization with a mean initial
kinetic energy of 71.5 eV.

Fig. 1.1 taken from E. Goulielmakis et al., SCIENCE 305 (2004) (Gouliel-
makis et al. [10]), shows experimental spectra obtained in a photoionization
process, where the ionizing pulse lasts only 250 as. A second, optical laser
pulse is present during the ionization process. A series of spectra with vary-
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ing time-delay between the attosecond and the optical pulse are shown in
Fig. 1.1. The energy shift of the electrons versus the timing of the attosec-
ond pulse directly presents the vector potential A(t) of the optical laser field.
Thus the generation of single attosecond pulses together with a well syn-
chronized optical laser pulse made it possible to directly probe the light field
oscillations in a few-cycle pulse. This same technique can also be applied
to study electronic motion deep inside atoms in the time-domain, as has
been done in a proof-of principle experiment for an Auger decay in Kryp-
ton (Drescher et al. [11], Smirnova et al. [12]). However, the future evolution
of time-resolved atomic physics critically depends on the progress in theory
and the understanding of the dynamics of strong-fields and attosecond pulses
interacting with atomic targets.

We therefore investigate in this thesis the detailed ionization dynamics
of atoms subject to femto- and attosecond pulses. In the first chapters we
present results of a comparison between an ab-initio solution of the time-
dependent Schrédinger equation (TDSE) and an approximate solution based
on the strong-field approximation (SFA) (Lewenstein et al. [13], Wicken-
hauser et al. [14, 15]). Because of its simplicity, both in the numerical imple-
mentation as well as in the physical interpretation, the SFA approximation
is one of the most popular models used in this field. The time-dependent
Schrodinger equation is solved with a generalized pseudospectral method in
the energy representation (Tong and Chu [16, 17]). We compare the energy
spectra as well as the angle-resolved momentum distributions obtained with
the SFA and the TDSE calculation for the case of above-threshold ionization
(ATI) of a rare gas with an optical laser pulse. Since it has been shown
that the process of above-threshold ionization in a laser pulse with intensity
of about 10'* W/cm? can be successfully described within an effective one-
electron model (Wiehle et al. [18]) this process is a good testing case for the
applicability of the SFA model.

In contrast to a longer laser pulse, the intensity and frequency of a few-
cycle pulse are not well defined. In chapter three we discuss the subpeaks
in the spectra caused by the changing intensity in the short pulse (Wick-
enhauser et al. [14], Bardsley et al. [19]). Since the energy positions of the
levels shift in the laser field, the effective ionization potential an electron
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experiences in the ionization process depends on the intensity at the time of
ionization. Thus, electrons ionized during different cycles of the laser field
do not add up coherently which causes the ATI peaks to split up into sev-
eral subpeaks. We show that positions of these peaks shift with the intensity,
where we see that within one ATI peak this shift is not constant. In the angle-
resolved momentum spectra these subpeaks have the same parity within one
ATT peak. The detailed analysis of the angle-resolved momentum spectra is
presented in chapter four. We found a surprisingly good agreement between
the SFA and the full numerical TDSE calculation. Despite the fact that the
SFA calculation severely underestimates the total ionization probability, it
obviously still contains detailed information about the 2D momentum distri-
butions. We show that all ATT peaks with their corresponding subpeaks can
be understood with the simple SFA model. Also the parity and the domi-
nant angular momentum can be reproduced in most cases within the SFA
approximation. However, since the SFA model neglects the intermediate res-
onances in the ionization process and the effect of the Coulomb potential on
the ionized electrons, it is impossible to predict the momentum distribution
exactly. We present a detailed discussion of the limitations of the SFA model.
In addition, all our calculations are relevant for recent experiments (Rudenko
et al. [20], Maharjan et al. [21]).

Starting with chapter five we discuss the ionization dynamics of an at-
tosecond pulse exciting a Fano resonance. While the time-integral features
of a Fano resonance are well understood since the sixties, we study the time
dependent aspects of an autoionizing decay (Fano [22, 23], Lambropoulos
and Zoller [24], Wickenhauser et al. [25], Zhao and Lin [26]). This study
is motivated by the recent availability of single attosecond pulses. While
it is already well known (Jones [27], Reinhold et al. [28], Ahn et al. [29])
that with nano-and picosecond pulses the wave packet dynamics of Rydberg
atoms can be resolved in the time domain, attosecond pulses now allow the
time-resolved study of inner-shell processes occurring on an atto- and fem-
tosecond time scale. In a first experiment (Drescher et al. [11]) the lifetime of
an Auger decay lasting 8 fs was measured using a pump-probe technique. In
this experiment the attosecond pulse excites the resonant state and a second
probe laser is applied with a well controlled delay time between pump and
probe pulse. A series of energy spectra are recorded for different pump-probe
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delays. From these spectra the lifetime of the Auger decay can be finally ex-
tracted (Smirnova et al. [12]). We simulated in this thesis such a pump-probe
experiment for the case of the excitation of a Fano resonance. In contrast to
the Auger decay, in which only one ionization channel is involved, the typical
asymmetric Fano line shape is caused by the interference of two ionization
channels. An electron is either directly ionized or it is emitted during the
decay of the resonant state. From the spectral line shape of a Fano resonance
it is possible to obtain information about the lifetime of the resonant state
and the relative ratio of the population of the two channels. However, we
can show that due to the different time scales involved in the two channels, a
fast direct ionization and a delayed resonant ionization, these two ionization
channels can be distinguished in the pump-probe spectra. All simulations of
the pump-probe experiment have been performed within the SFA approxi-
mation, justified by the detailed study of chapters three and four.

In the last chapter we have generalized our study to the excitation of two
(overlapping) resonances (Zhao and Lin [26], Wickenhauser et al. [30]). We
find that in this case a beating signal can be found in the energy spectra
of ionized electrons, where the beating frequency is proportional to the en-
ergy spacing between the two resonances. We show that this signal is almost
identical to the time-differential ionization probability which proves that non-
trivial information about the ionization process happening on a femtosecond
time scale can be directly extracted from the pump-probe spectra.



Chapter 2

Theoretical Methods for
Single-Electron Systems

In this chapter the basic theoretical concepts of laser-atom interaction rel-
evant for this thesis will be presented. The interaction of an atom with
an external electromagnetic field is most easily described by treating the
field classically and inserting the corresponding potentials as functions in the
Hamiltonian. This procedure, however, cannot account for the observed phe-
nomenon of spontaneous emission, in which an excited atom emits a photon
in the absence of an external field. For a consistent description of the electro-
magnetic transition including this effect, the field must be treated quantum
mechanically. However, in this thesis we use a classical description of the
electromagnetic field.

The scalar potential ®(r,t) and the vector potential A(r,t) together define
the electric field E(r, t) and the magnetic field B(r, ¢). For the intensities rel-
evant here (I < 10> W/cm?) the magnetic field can be neglected (Friedrich
[31], Diels and Rudolph [32]).

2.1 Hamiltonian

The Hamiltonian for an atom with a single active electron interacting with
a laser field is then

(P + A(r,¢))?
2

H= +®(r, 1) + V(r), (2.1)
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where ¢ is the speed of light and V (r) is the effective atomic potential.

For most purposes, the interaction with the field can be described in the
dipole approximation, i.e. one can neglect spatial variations of the field.
This approximation is valid because the spatial extension of the interacting
system, in this case an atom, is in general much smaller than the wave-
length of the laser. Typically, femtosecond laser pulses are generated with
a Ti:sapphire laser with a carrier wavelength of about 800 nm. The short-
est wavelength considered in this thesis corresponds to an attosecond pulse
with a wavelength of 12.4 nm. However, compared to the Bohr radius of
0.05 nm this is still large. Thus, in dipole approximation the field E(r, ) can
be written as E(t).

2.2 Gauge Freedom

The electric field remains unchanged when the potentials ® and A are re-
placed by new potentials ®' and A’ which are related to the original potentials
by the following transformation (Jackson [33]):

A' = A+ VA, (2.2)
10A

= - -—
c Ot

Since the Hamiltonian (2.1) contains the potentials A and ® and not
the physical fields, it depends on the particular choice of gauge. Observ-
able quantities, such as energy differences and transition probabilities are,
however, independent of this choice. The most commonly used gauges for
laser-atom interaction calculations are the length- and the velocity gauge.
The Hamiltonian in length gauge is:

H= p; +rE(t) + V(r). (2.3)

The velocity gauge form is familiar as the minimal coupling from field
theory. The scalar field is zero in this gauge and the Hamiltonian takes on
the form:

(p+  A(t))”
2

H= + V(r). (2.4)
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Although equivalent up to a unitary transformation, the two gauges be-
have differently when approximations are made.

An important consequence of external fields is that the Hamiltonian is in
general no longer rotationally invariant. However, for spatially homogeneous
fields the Hamiltonian does remain invariant under rotations around the po-
larization axis, so that the component of the total angular momentum in the
field direction remains a constant of motion.

2.3 Free electron in a laser field: Volkov states

The problem of a charged particle in a laser field is one of the few quantum
mechanical problems with an analytical solution. We start with the time-
dependent Schrodinger equation in the length gauge:

U(r,t A
ia (x, ) = (——= 4+ rE(t))¥Y(r,t). (2.5)
ot 2
It is straightforward to verify that the following Volkov states are solutions

of the time-dependent Schrodinger equation (2.4).

; - [t ’ ’
\I’\/(I', t) _ 6zp(t)r—z f_oo dat'p?(t')/2 (26)

with
p(t) =k + A(t). (2.7)

k is the electron momentum in the absence of the electric field and A(t) =
— [* JE(#)dt". The Volkov states look like ordinary plane waves with a time
dependent wave vector p(¢). The integral in the exponent provides a term
which is constant in time and space and act like an energy shift. This term
depends quadratically on the amplitude of the field and is inverse propor-
tional to the wavelength squared. This term is called the ponderomotive
energy U, and given by

1
The ponderomotive energy is the cycle-averaged kinetic energy which an

electron gains because of the laser field.
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2.4 Keldysh parameter

When an atom is placed in an intense laser field, an electron can be ionized
either through a multiphoton or a tunneling mechanism. The distinction is
based on the so-called Keldysh parameter

7=/ (2Up), (2.9)

where I, is the ionization energy and U, is the ponderomotive potential.
In the multiphoton regime, which is characterized by v > 1, the result-
ing photoelectron spectra show the characteristic ATI peaks separated by
the photon energy (DiMauro and Agostini [34], Agostini et al. [35]). With
increasing laser intensity and wavelength the Keldysh parameter decreases.
When 7 is less than one, tunneling ionization dominates. In this regime the
laser electric field distorts the atomic potential so that the electron can tunnel
through the barrier. The corresponding electron spectra exhibit a continuous
distribution (Mevel et al. [36], DiMauro and Agostini [37], Ammosov et al.
[38], Bisgaard and Madsen [39], Perelomov et al. [40], Delone and Krainov
[41]).

2.5 Strong Field Approximation

Solving the time-dependent Schrodinger equation numerically is straightfor-
ward, however, a time consuming task. For practical reasons it is therefore
beneficial to have a simple model at hand. I have used in this thesis a model
based on the strong-field approximation and only for the cases where it was
possible we have compared our model results with a solution of the time-
dependent Schrodinger equation. We find that many features of the ab-initio
solutions can be understood within the strong-field approximation.

There is no general analytical solution to the Schrédinger equation for a
charged particle with both the field of an attractive Coulomb potential and
an electromagnetic field. The most common approximative analytical model
is the Keldysh-Faisal-Reiss model (KFR) (Keldysh [8], Faisal [42], Reiss [43])
which has been extensively applied in atomic physics. Standard perturba-
tion techniques are known to fail in the case of multiphoton ionization of
atoms in a strong laser field. In particular, above-threshold ionization (ATT)
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photoelectron peaks, produced when an atom has absorbed more photons
than required to overcome the binding potential, cannot be explained by
perturbation theory. Keldysh (Keldysh [8]) was the first one to formulate a
nonperturbative approach to this problem on the assumption that the atomic
potential can be neglected in the final state if the field is sufficiently strong.
The final state can then be taken to be that of a free electron moving in a
time- dependent classical field. Faisal and Reiss (Faisal [42], Reiss [43]) have
carried Keldysh’s approach further by applying time-dependent scattering
theory. The Hamiltonian in length gauge,

2

H % +rE(t) + V(r), (2.10)

can be split up into three parts: the kinetic energy of the electron %2, the
atomic core potential V(r) and the atom-field interaction rE(¢). The wave
function at time ¢t can be written as

[W(t)) = U(t, t)|0), (2.11)

where |0) is the initial atomic bound state. The propagator U (¢, ) contains
the full Hamiltonian. Its equation of motion can be written in terms of the
integral equation

t
Ult,to) = Ud(t,to) — 1 | dt"Ut, t"TE(")U(t", to), (2.12)

to
with
U (t,#) = e~ JuHorV (e, (2.13)

where Hy = %2. The amplitude for ionization with final momentum k is

given by

(k[T (1)) = —i /_ °; dtUy (1, " rEE")U.(t", t5)|0). (2.14)

We have substituted the full propagator U(t,t') in the last equation by the
propagator of Volkov states, defined by

Uy (t,4) = ¢ Jo (HotrE@E)at" (2.15)
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This approach is similar to the distorted-wave Born approximation. Normally
in the perturbative expansion the time evolution operator U, is substituted
for U in the integral of Eq. (2.12). This approximation accounts only for a
first-order process which in this case is a single photon absorption. In the
distorted wave approximation, as shown above, the operator Uy is substi-
tuted instead in order to represent the distorted final state in the strong field
regime, 7.e. Volkov state. Since this is not exactly the first order perturbative
expansion, this distorted wave partially includes the higher order processes.
Therefore, as will be shown later, this SFA approximation can also present a
multiphoton absorption. Thus the SFA model is a modified distorted-wave
Born approximation and explicitly includes the fact that the ground state
is only weakly perturbed by the laser field, so that the term rE(¢) can be
neglected before the ionization, however, once the electron is ionized the elec-
tron moves in the field of the laser and the core potential is neglected. Unlike
ordinary perturbation theory for a weak laser field, the SFA improves as the
field becomes stronger.

Central to the idea of the strong-field approximation (SFA) (Keldysh
[8], Faisal [42], Reiss [43]) is the distinction between a region ’inside’ the atom
where atomic forces dominate and ’outside’ where the laser forces dominate.
Basically, the influence of the laser field is neglected, as long as the electron is
bound, and once it is ionized, the atomic potential is neglected. With a few
more approximations, an almost analytical solution of the atom in a strong
laser field can be obtained.

The main approximations of the SFA model are:

1. The contribution to the evolution of the system of all bound states
except the ground state can be neglected.

2. The depletion of the ground state can be neglected as well.

3. In the continuum, the electron can be treated as a free particle moving
in the electric field, with no effect of the atomic potential.

Assumption (2) is valid only for intensities smaller than the saturation in-
tensity. Otherwise, the depletion of the ground state has to be taken into
account. Assumption (3) is non-questionable for negative ions, but is also
valid for atoms, provided the field strength is large enough. It is important to
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be aware of the regime of validity of these approximations. In general, they
hold when the contribution of intermediate resonances is small and when the
Keldysh parameter is smaller than one, i.e in the tunneling regime. How-
ever, I will present results in this thesis, which prove that even for a Keldysh
parameter larger than one the SFA model is able to produce reliable results.

Since the SFA model is an important part of this thesis we will give an
alternative derivation (Lewenstein et al. [13]). With the assumptions (1-3)
the time-dependent wave function can be expanded as:

m@pw%%amm+/fm&@m», (2.16)

where a(?) is the ground state amplitude and b(k, ) are the amplitudes of
the corresponding continuum states, I, > 0 is the ionization potential. The
free oscillations of the ground state with the frequency I, have been factored
out. Inserting this expansion in the time-dependent Schrédinger equation
leads to the following differential equation for the amplitudes b(k,¢) (Lewen-
stein et al. [13]):

th:4(§+4JMhn-ﬂﬂ%$?+¢mmum. (2.17)

Here d,(k) = (k|z|0) denotes the atomic dipole matrix element of the
bound-free transition. In writing equation (2.17) we have neglected the de-
pletion of the ground state, setting a(tf) = 1 on the right-hand side. The
entire information about the atom is thus contained only in the dipole ma-
trix element and the ionization potential I,,. The equation 2.17 can be solved
exactly and b(k,t) can be written in the closed form,

b(k, 1) :if(ﬁﬂﬁ@&+A@—AWD (2.18)

ot o A A (H1Y))2
se~i Jy " (et AB=AWE")? /24T,

where ;
A@:—A dE() (2.19)
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is up to a factor of ¢ the vector potential of the laser field. The value of
b(k,t) is then the amplitude for the ionization of an electron with the final
momentum k. Equation (2.18) has a nice physical interpretation. The first
factor in the integral is the probability amplitude for an electron to make a
transition to the continuum at time ¢’ with the canonical momentum k. The
electronic wave function is then propagated until the time ¢ and acquires a
phase equal to exp(—iS(k,t,t')), where S(k, t,t') is the quasi-classical action.
The effects of the atomic potential are assumed to be small between t' and ¢,
so that S(k,t,t') actually describes the motion of an electron freely moving
in the laser field. However, S(k,t,t') does incorporate some effects of the
binding potential through its dependence on I,,.

The SFA has been applied in both length and velocity gauge with quanti-
tatively conflicting answers (Bauer et al. [44]). However, it has been shown
that the length-gauge form matches the exact numerical solution for the
case of of a short-range binding potential, where the SFA is expected to be
most accurate (Bauer et al. [45]). Additionally, in (Wiehle et al. [18]) is was
reported, that for the case of negative fluorine ions exposed to a circularly
polarized infrared pulse also the length gauge is the appropriate gauge to use,
to obtain agreement with experimental data. From equation (2.18) it can be
seen that the length gauge Hamiltonian puts emphasis on large distances
from the atom, where the Volkov wave function is a good approximation.
We go along this line and apply the SFA in the length gauge form as well.

2.6 Generalized Pseudospectral Method

In this section a numerical procedure to obtain a solution of the time-
dependent Schrodinger equation is described (Tong and Chu [16, 17], Wang
et al. [46], Telnov and Chu [47]). This method is applicable for atomic sys-
tems in intense, short laser fields with one active electron. We write the
time-dependent Schrédinger equation in the following form:

.0

Zaql(r’ t) = (HO + V;nt) \IJ(I‘, t)a (2'20)
where we separate the unperturbed atomic Hamiltonian Hy and the time-
dependent atom-field interaction V;,; = E(¢) - r.

For the time-propagation we apply the split-operator technique:
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U(r,t+ At) ~ exp(—iHoAt/2)
X exp (—iVi(r, 0,t + At/2) At) (2.21)
x exp (—iHoAt/2) ¥(r,t) + O(At)

This expression is different from the traditional split-operator techniques,
where Hj is chosen to be the radial kinetic energy operator and Vj,; the
remaining Hamiltonian depending on the spatial coordinates only. Equation
(2.21) shows that the time propagation of the wave function from ¢ to t+ At is
achieved by three steps: First the wave function is propagated for a half-time
step At/2 in the energy space spanned by Hy:

exp (—iHyAL/2) U(r, 1) = U, (r, 1). (2.22)

Then the wave function ¥q(r,t) is transformed back to coordinate space
and propagated for a time step At under the influence of the atom-field
coupling:

exp (—iVine(r, 0,1 + At/2) At) Uy (r, 1) = YUy(r, 1) (2.23)
Finally, the wave function Wy(r,t) is transformed back to the energy space
spanned by Hy and propagated for another half-time step At/2:
exp (—iHoAt/2) Uy(r,t) = U(r,t + At). (2.24)
To pursue the time-propagation, it is helpful to expand the total wave func-
tion in Legendre polynomials.

lma:z;

U(r,6,1) Z g1(r)Py(cos §), (2.25)

where P, stands for the Legendre polynomial of order [. The propagation in
energy space (first step) can now be expressed as

lma:c

(r,0,t) Z exp ( iHlOAt/Q) gi(r, t) P(cos(8), (2.26)

with
1d>  I(l+1)
+

2 dr? 272

+V(r). (2.27)
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Note that in equation (2.26) each partial wave function component g; is
propagated independently under H?. The key step in the time propagation
is to construct the operator

exp (—iH At/2), (2.28)

through an accurate representation of HY. First we need an appropriate grid
discretization method for the eigenvalue problem:

HY(r)xi(r) = exa(r). (2.29)

For atomic structure calculations involving the Coulomb potential, one
typical problem associated with equal-spacing grid-methods is the Coulomb
singularity at » = 0 and the long-range nature of the Coulomb potential.
Generally, one truncates the semi-infinite domain (0, c0) into the finite do-
main [Tmin, "'maez] to avoid the Coulomb singularity at the origin and the
infinite domain. For this purpose, r,,;, must be chosen sufficiently small and
Tmae Sufficiently large. This results in the need of a large number of grid
points. Next, the domain [r,in, F'maz] is mapped on to the interval [—1, 1] us-
ing a nonlinear mapping r = r(z), followed by the Legendre pseudospectral
discretization. This procedure allows for a denser grid near the origin. We
use the mapping function

1+=z
r(z) = Km (2.30)
where K and o = 2 X K/r;,q, are mapping parameters. The introduction
of nonlinear mapping usually leads to an non-symmetric eigenvalue problem
and thus one has to deal with non-hermitian matrixes. Such undesirable
features may be removed by the use of a symmetrization procedure. Thus
by defining

O(z) = /7' (2)xa(r(x)), (2.31)

one finds the transformed Hamiltonian possesses the following form:

HY2) = —2 2L V() (2.32)

where V, = 1(1+1)/(2r%) + V(r).
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The central part of the pseudospectral method is to approximate the
exact solution ®;(z) by a polynomial of order N. The polynomial cannot
solve the differential equation for all x within the interval [—1,1]. However,
one can request that equation (2.29) is satisfied at the collocation points z;.
The approximate function @' (x) can now be written as

N
O (x) =D (x:)gi(w) (2.33)
i=0
where g;(x) are the cardinal functions given by

1 (1—2*)Py(z)
N(N +1)Py(z;)) z—ux;

gi(z) = — (2.34)
which satisfy the property g;(z;) = ¢;;. In the Legendre pseudospectral
method the collocation points are determined by the roots of the first deriva-
tive of the Legendre polynomial Py (z).

Discretizing the Hamiltonian operator leads to the following set of coupled
linear equations:

Yo

> (=5 D2y + 65V (r(a)) ) 4; = BA (23)
=0

The coefficients A; are related to the wave function values at the collocation

points as
1

Py ()

The matrix (D,);;, representing the second derivative with respect to r is

Aj = ()W (r(z;)) (2.36)

given by
1 1

r'(x:) (da)ij’
where (dy);; is the second derivative of the cardinal function g;(z) with re-

spect to x.
(Ds)i; has the following explicit form:

(Do)ij =

(2.37)

_ 1 (N+D(N42) 1
P = ey s@-ah vy O

1 1 1 .
I e e e o A
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The eigenvalues and eigenfunctions of H} will be denoted by € () and xz;i(1),
respectively. The propagation of a given partial-wave function g¢;(r,t) under
H} can now be expressed as

(exp (—z’HlOAt/Q) gl(r))i = 2—21 Sii (D) gi(r;); (2.39)
where
Zx,” xki (1) exp (—iep (1) At/2) . (2.40)

In this thesis the pseudospectral method will be used to calculate energy
spectra and angle-resolved momentum distributions for single ionization in
a linearly polarized few-cycle pulse. The energy spectrum is obtained by
projecting the wave function on a Coulomb wave with a certain energy. The
final wave function can be expanded in atomic eigenstates:

8 =3 Gntm ()i (r) + 3 / dEbym (E, )i (r, E), (2.41)

where 1, (r) and ¥y, (r, E) are the exact bound and scattering eigenfunc-
tions. Since the magnetic quantum number m is conserved in a linearly
polarized pulse, there is no need to sum over m. Now the probability dis-
tribution of an electron in the continuum can be written as a sum over the
partial-wave contributions:

dPE

Z by (E, 1)) (2.42)

For the computation of the angular distribution we project the electronic
state on an outgoing Coulomb scattering wave function. Then the probability
distribution of emission of an electron of energy F = k?/2 at the time ¢
propagating in direction k is given by

dPEkt

T |Z ) e Yy (k)b (B, 1) |°. (2.43)



Chapter 3

Energy Spectra for Single
Ionization

In this chapter above-threshold-ionization (ATT) spectra for low-energy elec-
trons will be presented. In recent years, the phenomenon of above-threshold
ionization has been extensively studied with femtosecond laser pulses (Wiehle
et al. [18], Nandor et al. [48], Cormier et al. [49], Assion et al. [50], Paulus
et al. [51]). Above-threshold-ionization is a strong field phenomenon in which
an atom absorbs more photons than necessary for ionization. The resulting
photoelectron spectra exhibit features which can be described in terms of con-
tributions of direct and rescattered electrons. The former reach the detector
without recolliding with its parent ion, whereas the latter are driven back by
the field and rescatter. From a simple classical analysis the maximum ener-
gies of the direct and rescattered electrons are 2U, and 10U, respectively.
We mainly focus on the low energy part of the spectrum, i.e. the direct
electrons. The overall characteristics of ATI spectra are peaks separated
by the photon energy and shifted by the ponderomotive potential. In 1987
it was observed (Freeman et al. [52]) that the individual ATI peaks break
up into a narrow fine structure, due to resonance enhancement in the ion-
ization process produced by into resonance shifted bound states. Recently,
in (Rodriguez et al. [53]) secondary peaks in the ATI spectrum have been
reported and explained by the population of resonances in the ionization
process, although the intensity is too low to induce any ponderomotive shift.
In this case the broadband nature of the laser spectrum is responsible for

18
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the excitation of the intermediate states. which are excited because of the
broadband spectrum of the laser while the intensity is too low to induce any
ponderomotive shift.

However, not only the wavelength also the intensity is not a well defined
quantity for a short laser pulse. Therefore the concept of the ponderomotive
potential, which is the cycle averaged kinetic energy of an electron in an
oscillating field, is questionable in the few-cycle regime (Lindner et al. [54]).
Since the field rises from zero to its peak value within a few femtoseconds each
cycle has a correspondingly different ponderomotive potential. The question
arises thus as to how well ATI spectra originating from intense few-cycle
pulses resemble the well-known ATI structure by the longer pulses.

The electric field of the laser pulse can be written in the form E(¢) =
Fyéa(t) cos(wt + ¢), with € the polarization vector, w the carrier frequency
and ¢ the carrier-envelope phase. The envelope function a(¢) is chosen to be
w(t+71/2) T T

- ) —§<t<§ (3.1)

and zero elsewhere. Choosing an envelope function with a longer tail, for
example a Gaussian, would be more realistic, however, because of computa-

sin?(

tional reasons we chose the above envelope function.

To calculate the photoelectron energy spectra within the SFA approxi-
mation, we need to evaluate equation (2.18) for ¢ — oco. This leads to the
following ionization amplitude:

bp) = i[dt P p—A()|Hy(0)lg): (3:2)
where the Volkov phase ¢y can be written as

ov(pt)=— [ dt'(p_Qﬂ.

We have calculated the dipole matrix element (p— A(t)|z|g) using the en-
ergy scaled hydrogenic wave function. The corresponding matrix element for

(3.3)

argon is

—24a? (—1 + 90ap? — 81a*p*(—p? + 6p?))
(1 + 9a?p?)? ’

(p|2[3p) o (3.4)
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‘ H al ‘ a2 ‘ a3 ‘ a4 ‘ ad ‘ ab ‘
| Argon [ 16.03862 | 2.007423 | -25.54278 | 4.524663 | 0.9613848 | 0.4426447 |

Table 3.1: Parameters used for the model potential in equation (3.5).

where ionization happens from the 3p orbital. We only need to calculate
the contribution for m = 0 since m = 41 have a much smaller ionization
probability. The parameter a = 1/Z is scaled according to 2E,n* = Z2.
Although we use a scaled hydrogenic wave function to calculate the dipole
matrix element we obtain, as shown in this and the next chapter, a good
agreement with the TDSE calculation in the energy and angle-resolved mo-
mentum spectra. However, for sure a better agreement between TDSE and
SFA will be found by including the exact dipole matrix element in the SFA
calculation.

3.1 Effective model potential

For the numerical solution of the TDSE we have to specify the effective
potential. We use a model potential of the following form (Tong and Lin

[55])

1 —aam —a4qr —aeT
V(r) = — + a,e + asre + ase (3.5)
T

The parameters a; are given in table (3.1).

The ajs are obtained by fitting the numerical potential calculated from
the self-interaction free density functional theory. Furthermore the parameter
ag is fine-tuned to make the ionization potential from the model potential
in good agreement with the measured one. For large r, the argon and neon
potential show the —1/r Coulomb tail. For small r the effective potential
exhibits a —Z/r behavior, where Z is the nuclear charge.

3.2 Electron spectra for 400 nm

In the following we will compare the results from the numerical solution of the
time-dependent Schrédinger equation, with the results obtained from the SFA
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model. This comparison allows us to estimate the importance of the Coulomb
potential and of intermediate resonances in the ionization process. However,
the main motivation that lead to the results presented in this chapter was
a certain substructure which we found in the ATI spectra (Wickenhauser
et al. [14], Bardsley et al. [19]). We found that this substructure is caused
by the shifting ponderomotive potential in the laser pulse and is typical for
ionization with a short pulse.

" TDSE
1.75 SFA 1

1.5

1.25

P (arb. units)

0.75

0.25 .

0 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9

Energy (eV)

Figure 3.1: Photoelectron spectra of argon calculated by solving the TDSE
and by using the SFA model. We have added a constant to the upper curve to
distinguish the two lines more clearly. Furthermore, the SFA result has been
normalized to the same peak height as the TDSE result, for better compari-
son. Each of the three ATI peaks is separated into a number of smaller peaks
with varying amplitudes. Laser parameters are: w = 400 nm, [ = 1.7 x 104
W/cm?. The pulse length (FWHM) is 10 fs. Inset: Photoelectron spectra
in the region of the first ATI peak for three different intensities, 1.7,1.75
and 1.8 x 10"*W/cm?, respectively, obtained by solving TDSE. These three
intensities correspond to a ponderomotive shift of 2.55,2.62 and 2.70 eV, re-
spectively. The peak positions shift closer to the threshold with increasing
intensities.

We focus in this section on a wavelength of 400 nm which was relevant for
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recent experiments at Kansas State University at the time when this research
was performed. However, in the following sections we will also discuss the
energy and momentum spectra for a wavelength of 800 nm which is the
typical wavelength available for short-pulse experiments.

In Fig. 3.1 we present the photoelectron spectra obtained by the ab-
initio solution of the TDSE (lower curve) and for comparison by using the
SFA model (upper curve). Both spectra are normalized to the same peak
amplitude. We simulate a 10 fs laser pulse with a carrier-wavelength of 400
nm and an intensity of 1.7 x 10 W/cm?. In general we observe a good
agreement between the two calculations, as seen in Fig. 3.1. Three ATI
peaks which are spaced by the photon energy w = 3.1 eV are visible in both
spectra. On the right side each ATI peak breaks up into a number of smaller
sub-peaks with varying amplitudes.

Although these sub-peaks in the ATI spectra look, at first, similar to
Freeman resonances (Freeman et al. [52]), we prove that they are of a different
nature. The inset in Fig. 3.1 shows the spectra in the neighborhood of
the first ATI peak for three increasing intensities, 1.7,1.75 and 1.8 x 104
W /cm?, respectively, obtained by solving the TDSE. The overall structure of
the spectra is identical for all three intensities, however, the peak positions
differ. Apart from ionizing the atom, the laser field also induces an ac Stark
shift to the atomic level. This shift increases the ionization potential by the
ponderomotive energy, U,. Because of energy conservation the energy of an
ATTI peak originating from ionization with absorbing n photons is given by

E =nw— (I, + Up), (3.6)

where I, is the ionization potential of the unperturbed atom and U, is cal-
culated from the peak laser intensity. According to this equation we can
identify (I, + U,) as the field-dressed ionization potential. Thus the fraction
of an ATI peak originating from ionization at the peak intensity is shifted
most to the left, since it observes the largest field-dressed ionization poten-
tial. Since the energy positions of all the sub-peaks in the ATI spectra move
with changing intensity, they do not show the typical behavior of a Freeman
resonance, where the energy position stays fixed (Freeman et al. [52], Gillen
and VanWoerkom [56]) when the laser intensity is varied. Another proof of
the non-resonant character of the small peaks is provided by a comparison
of the TDSE calculation with the results obtained from the SFA model. All
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main features from the numerical calculation, including ATT peaks, as well as
sub-peaks, can be reproduced within the SFA model. In this model, besides
the ground state, only the continuum states are included, therefore the small
peaks can not originate from any intermediate resonances. Furthermore the
similarity in the results between the two different calculations indicates that
the effect of the long-range Coulomb force, which is not included in the SFA
model, has only negligible influence on the substructure in the ATI spectrum
for the laser parameters used in this calculation. Furthermore, we want to
note that the presented spectra do not depend on the carrier envelope phase,
as can be expected for a 10 fs laser pulse.

3.3 Role of the ponderomotive potential in
the ionization process

In the following we show that the substructure in the ATI peaks is caused by
the changing field-dressed ionization potential during the ionization process.
It is significant for short, intense laser pulses and therefore a general feature
which does not depend on the atomic target.

As seen from equation (3.6) the ponderomotive energy shifts the position
of an ATT peak. Since in a few-cycle laser pulse the intensity changes rapidly
in a relatively short time period, the contributions to ionization from different
cycles of the pulse observe each a different ponderomotive potential and are
thus not centered at the same energy. Therefore the ionization amplitudes
from different cycles do not add up fully coherently while forming an ATI
peak. The contribution coming from the region around the peak laser field is
shifted most to the lower energy side compared to ionization from regions of
the pulse with smaller intensity. These are shifted to the higher energy side.
Since a laser with peak intensity of 1.7 x 10'* W /cm?, as we have used for our
simulations and which is a typical experimental value, has a ponderomotive
energy of 2.55 eV at 400 nm compared to a spacing between the ATT peaks
of 3.1 eV, this shift can not be neglected. For a better understanding we
have a closer look at the SFA model. The term A(£)?/2 in the Volkov phase
averaged over one cycle equals the ponderomotive potential and acts as a
time dependent energy shift. To prove the assumption that the small peaks
are caused by this time dependent shift we subtract the corresponding term
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from the Volkov phase so that
2

dv(p,t) == [ at(% —pAW)) (37)

remains. Fig. 3.2 shows the results obtained with the SFA model when using
g?)v as the phase factor in equation (2.18). All other parameters are the
same as in Fig. 3.2. Obviously, all the substructure in the ATI spectrum
disappears. The ATI peaks are shifted with respect to Fig. 3.2 since the
ponderomotive shift is missing.
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Figure 3.2: Photoelectron spectrum calculated using the same parameters
as in Fig. 3.1 obtained with the SFA model, but with the redefined Volkov
phase ¢y which does not include the ponderomotive energy shift. All sub-
peaks disappear from the spectrum. The peaks are shifted compared to 3.1
as a result of the missing ponderomotive energy.

In Fig. 3.3 we present the spectrum originating from ionization from only
one optical cycle at three different positions in the laser pulse. This calcu-
lation was performed with the SFA model since in this model we can easily
distinguish between ionization, which is described by the dipole matrix ele-
ment, and the propagation of the ionized electrons which is represented by
the Volkov phase factor. The three curves in Fig. 3.3a originate from ioniza-
tion only during the intervals [0, T], [T, 2T] and [2T, 3T], respectively, where
T = 1.33 fs is the laser period. (At time ¢ = 0 in our simulation the laser
pulse has reached its peak intensity.) After ionization we propagate each
time until the pulse is over.
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Figure 3.3: a) Spectra originating from ionization from one single optical
cycle at three different periods of the laser pulse, [0, T], [T, 2T] and [2T, 3T],
respectively. In contrast to Fig. 3.1 we have used here a logarithmic scale so
that the smaller substructures are better visible. The contributions from the
different cycles are shifted relatively to each other according to the differ-
ent ponderomotive potential at the time of ionization. b) Spectra resulting
from ionization through one, and two optical cycles, respectively, starting at
the peak laser field. ¢) Spectra resulting from ionization through three and
four optical cycles, respectively. The number of peaks in the ATI spectra
increases with the number of laser cycles relevant for the ionization process.
Calculations carried out within the SFA model.
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Obviously, ionization from one optical cycle Fig. 3.3a is already enough
to observe the typical ATI structure in the spectrum, though the peaks are
broader than they will become after ionization from the whole pulse. The
peak positions from the contributions of the different cycles are shifted ac-
cording to the instantaneous field-dressed ionization potential at the time of
release of an electron. Also visible is the decreasing probability for ionization
from the different cycles. Fig. 3.3b and Fig. 3.3c show the spectrum from
ionization of ¢ = 1,2, 3 and 4 optical cycles, respectively. While the absolute
position and number of peaks obviously depends strongly on the phase with
which the ionization amplitudes from the different cycles interfere, we note a
general trend: the number of peaks increases with the number of cycles rele-
vant for ionization and is therefore an indicator for the pulse length. Another
interesting property of these peaks is presented in Fig. 3.4. In this figure we
compare the energy positions of the different sub-peaks as a function of in-
tensity. The peak positions have been determined from numerical solutions
of the TDSE for the corresponding intensities. While the shift of the main
peak agrees well with the ponderomotive potential calculated at the peak
laser field, the shift of the smaller peaks is getting less, as clearly seen from
their decreasing slopes.

The energy shift is a measure of the average intensity which is present
during the ionization process which contributes most to a certain peak. Thus
the decreasing shift follows approximately the envelope function of the laser
pulse.

We have performed simulations for longer pulse durations. In both the
numerical as well as the SFA model calculation we see an increase in the
number of sub-peaks with the pulse duration. In the SFA model all sub-peaks
remain separately visible, however, in the numerical calculation we observe a
different trend. As the spacing between the various peaks becomes narrower
with increasing pulse length, the intermediate regions begin to fill up. Since
the main difference between the SFA model and the numerical calculation
is the absence of the Coulomb potential in the former we suspect that the
Coulomb force, which leads to a phase correction (Chirild and Potvliege [57])
in equation (2.18), is responsible for this behavior.



§ 3. ENERGY SPECTRA FOR SINGLE IONIZATION 27

oL first peak ——— |
I second peak
< i third peak —
3 15} E\B\D\D\pﬂ\m ]
) L ]
= 1+ .
[5) L
c L
L 0.5 - .
0 -_ | | | | | _-

14 15 16 17 18 19 2 21
Intensity (1014 W/cmz)

Figure 3.4: Energy positions of the three leftmost peaks in Fig. 3.2 as a
function of peak laser intensity. The shift of the leftmost peak (lowest line)
agrees well with the ponderomotive energy calculated with the peak laser
intensity. The shifts of the following sub-peaks are smaller due to the smaller
intensity the electrons experiences during the ionization process.

3.4 Electron spectra for 800 nm

In Fig. 3.5 the ATI spectrum for a 10 fs, 800 nm pulse is presented. Again we
compare the TDSE calculation with the SFA model, though this time we do
not observe a good agreement. The difference between the two calculations
can be probably attributed to Freeman resonances which are not included in
the SFA model calculation.

There are two reasons why this effect is more pronounced for 800 nm com-
pared to the 400 nm case: Because of the smaller photon energy the number
of photons participating in the ionization process is doubled and therefore
the chance of hitting a resonance increases. Secondly, the ponderomotive
potential at the same intensity is larger by a factor of four which makes it
easier to shift an atomic state into resonance. Additionally, the ATI peaks
are more closely spaced so that even within the SFA model calculation, the
substructure is not so clearly visible in the 800 nm spectrum since the small
peaks from one ATI peak could appear at the position of the next ATI peak.
Therefore we can follow that the discussed substructure is also expected in
the 800 nm case, however, it is almost impossible to separate it from Freeman
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Figure 3.5: Photoelectron spectra of argon calculated by solving the TDSE
and by using SFA model for a 10 fs, 800 nm pulse with 2 x 10** W /cm? peak
intensity. Compared to the 400 nm case in Fig. 3.1, the characteristic ATI
peaks are still visible, but the spectrum shows a more complex structure.
Differences between TDSE and the SFA calculation may originate from the
presence of Freeman resonances in the former.

resonance contributions.

In this chapter, we have investigated the ATI spectra for argon by short
laser pulses, both by solving the time-dependent Schrodinger equation and
with the SFA model. We have observed and analyzed a certain class of sub-
peaks in the ATI spectra which is caused by the rapidly changing envelope
of the laser field in a short pulse. The field-dressed ionization potential of
the atom follows the rise and fall of the pulse envelope, and thus ionization
at different optical cycles is mapped onto correspondingly different energies.
A similar time to energy mapping in the laser field has been observed in
experiments by the group of F. Krausz. In their case, an XUV attosec-
ond pulse ionized the electron and a femtosecond laser pulse was used as a
probe (Goulielmakis et al. [10], Drescher et al. [11]). In both experiments the
intensity of the laser was about two orders of magnitude lower than the one
used here so that the change in the ponderomotive potential was negligible.
The change in the electron spectra in their experiments originates mainly
from the factor pA(t) in the Volkov phase. In contrast, we have reported on
the influence of the time dependent ponderomotive potential on the ioniza-
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tion process. The time to energy mapping occurs by shifting the field-dressed
ionization potential of the atomic system itself on a femtosecond time scale.



Chapter 4

Angle-Resolved Momentum
Distributions

In this chapter angle-resolved electron-momentum spectra will be presented.
At the end of the chapter we address the issue of the double peak that was
observed in the projection on the momentum parallel to the polarization
direction (Rudenko et al. [20], Moshammer et al. [58]).

We focus in this chapter on laser parameters in the transition regime from
tunneling to multiphoton ionization and analyze the change in the qualita-
tive features of the 2D-momentum spectra with varying laser parameters.
The electron spectra as well as their angular distributions are now consid-
ered to be well understood in the multiphoton regime for longer pulses, for
example, see Ref. (Wiehle et al. [18]). However, recent measurements at
higher laser intensities in the tunneling ionization regime revealed surprising
results (Moshammer et al. [58]). In these experiments, the momentum dis-
tributions along the laser polarization direction were measured. According
to the tunneling ionization theory one expects smooth spectra which peak at
zero momentum. Instead, resonant-like peaks were found and a double-hump
structure centered around pj; = 0 was observed (Moshammer et al. [58]).

We have performed quantum calculations of angle-resolved momentum
distributions to get a more complete understanding of the ionization mech-
anism. Additionally, our calculations were motivated by recent experiments
performed for a wavelength range from 400 nm to 800 nm (Maharjan et al.

21]).

30
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Similar to the previous chapter, we obtained our results by solving the
time-dependent Schrodinger equation numerically and by using the standard
SFA, i.e., without introducing any corrections to account for the Coulomb
potential. In the momentum spectra, we find "resonance-like” structures
that can be attributed to multiphoton ionization on top of a smooth ”back-
ground” due to tunneling ionization. However, sharp structures can also
come from Freeman resonances for longer pulses and from incomplete con-
structive interferences for few-cycle pulses, as addressed in a recent paper
(Wickenhauser et al. [14], Bardsley et al. [19]). Structures from the former
are insensitive to the laser intensity, while caused by the latter change rapidly
with the intensity. We illustrate the relative importance of tunneling vs mul-
tiphoton ionization features as the Keldysh parameter is varied. For the laser
parameters used in our calculations we find that with the SFA model we can
reproduce most features of the angle-resolved momentum distributions that
appear in the TDSE calculation. However, we also point out which structures
cannot be reproduced within the SFA approach.

We simulate a 10 fs (FWHM) laser pulse with a wavelength from 400 and
800 nm and a peak intensity in the range of 1.65 to 3.9 x 10** W/cm?. These
laser parameters lie in the transition regime from multiphoton to tunneling
ionization, with Keldysh parameters between 1.76 and 0.85.

4.1 Intensity dependence of the 2D momen-
tum spectra

In Fig. 4.1 we present the angle-resolved momentum distributions for four
different intensities, 1.7,2.4,3.2 and 3.9 x 104 W/cm?, respectively, obtained
by numerically solving the TDSE. The carrier wavelength is 400 nm, and the
Keldysh parameters for the four intensities are 1.76, 1.48, 1.27 and 1.13. The
carrier-envelope phase was set to zero. The horizontal axis in the plot is
the momentum parallel to the laser field polarization and the vertical axis is
the perpendicular momentum defined by p, = |/p2 + p3. ATI peaks appear
as circles of increased ionization probability in the momentum distribution.
It can be seen that the ionization probability is not constant on a given
circle, but has maxima and minima. This structure reflects the parity and
the dominant angular momentum of the emitted electrons at that particular
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energy (Wiehle et al. [18], Arbo et al. [59]).

For the intensity of 1.7 x 10'* W/cm?, Fig. 4.1a, three ATI peaks with
alternating parity (seen from the node or antinode at p; = 0) are visible.
In the upper left and right corner of Fig. 4.1a a fraction of the fourth ATI
peak is seen. Each ATI peak further breaks up into several sub-peaks with
identical parities. For the first ATI peak three such sub-peaks can be seen.
These sub-peaks have been explained by the shifting ponderomotive potential
during the ionization process in the short pulse, which causes ionization at
different times in the pulse not to add up fully coherently (Wickenhauser
et al. [14], Bardsley et al. [19]).

For the first ATI peak in Fig. 4.1a we find [ = 1 as the dominant angular
momentum, as reflected by a central minimum flanked by two maxima in
the angle-resolved spectrum. The second and third ATT peak have [ = 4 and
[ = 5 as dominant angular momenta, respectively. Understanding the parity
of the ATI peaks is straightforward. For the intensity 1.7 x 10W/cm?, six
photons are sufficient to ionize. However, at the intensity 2.4 x 10*W /cm?
Fig. 4.1b an additional photon is already needed for ionization. It can be
seen that the first ATI peak starts to disappear below the threshold. The
fraction which is still visible is attributed to the finite width of the ATI peak
caused by the short pulse. For the intensity 3.2 x 10"*W /cm? the originally
first ATI peak is hardly visible anymore and finally for I = 3.9 x 10*W /cm?
the original second ATI peak has taken over the first position. This process
is called channel switching. Since the valence orbital for argon is a p-orbital
which has odd parity we can follow that the first ATI peak has also odd parity
when an even number of photons is needed for ionization, e.g. see Fig. 4.1a,
and even parity otherwise. The change in parity for two consecutive ATI
peaks is clearly visible in Fig. 4.1. Thus the main features in Fig. 4.1 can be
understood in terms of multiphoton ionization.

In Fig. 4.2 we present the results for the angle-resolved momentum dis-
tributions obtained from the SFA model for the same laser parameters as in
Fig. 4.1, respectively. We observe a surprisingly good agreement with the
full numerical result in Fig. 4.1. All ATI peaks with their corresponding
substructures in the energy domain can be understood within the SFA. We
see that the dominant angular momentum changes from one ATI peak to
the next by an amount of 1, corresponding to the absorption of an addi-
tional photon. Additionally, the dominant angular momentum at a certain
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Figure 4.1: Photoelectron momentum distributions for argon calculated by
solving the TDSE for four intensities, 1.7,2.4,3.2 and 3.9 x 10** W/cm?,
respectively, for a wavelength of 400 nm.
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Figure 4.2: Photoelectron momentum distributions for argon calculated us-
ing the SFA model for four intensities, 1.7,2.4,3.2 and 3.9 x 10* W/cm?,
respectively, for a wavelength of 400 nm.
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ATTI peak can be reproduced in most cases within the SFA model. However,
the angular momentum distribution may be affected by intermediate excited
states in the ionization process as well as by the effect of the long-range
Coulomb potential and is therefore impossible to predict exactly within the
SFA approach. It is interesting to note the difference between the results
from the two calculations. In the TDSE result the nodal lines in the momen-
tum distribution of an ATI peak always fan out radially, while in the SFA
model they are vertical. This leads to a sharper structure in the momentum
projection in the SFA result as compared to the TDSE. This behavior of
the SFA model can be understood straightforwardly. For a pulse of constant
field strength Fj acting from 0 < ¢ < 7, the momentum dependent ionization
amplitude b(p) is proportional to the following sum

> fulp)) /0 dte!®* /2ol Ut (- A (t)[2]g). (4.1)
n=0

The function f,(py) is given by

Be= Y IR, (4.9

m+2j=—n=1

w2

where the two sums run over all —oco < m,j < oco. J,, is a Bessel function
of order m. Each term in the sum in Eq. (2) corresponds to a single ATI
peak originating from the absorption of n photons which is located at the
energy p?/2 = nw — I, — U,. The integral part of each term alone would
result in a smooth momentum distribution. The nodal structure is caused
by the prefactor f,(p)). Since f,(p) depends only on p; and not on p, all
nodal lines in the SFA calculation are vertical. While the difference between
radial and vertical nodal lines is clearly seen in the ATI peak near threshold,
it becomes smaller for higher ATI peaks.

4.2 Momentum distributions for 800 nm

In Fig. 4.3 we present the angle-resolved momentum spectra for a wavelength
of 800 nm and two slightly different intensities of 1.65 and 1.8 x 10* W/cm?,
corresponding to v = 0.89 and 0.85, respectively. First we note the back-
ground continuum is much larger, as compared to Fig. 4.2. This is consistent



§ 4. ANGLE-RESOLVED MOMENTUM DISTRIBUTIONS 36

06 éig
Y 04
o o 0.0

0.0
06 éig
Y 04
o o 0.0

0.0

0.6 %)38(3)
B 398
8 04 0.26
o o 0.00

0.0

0.6 583
= 0.65
o 02 '

0.0

-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8
P (a.u.)

Figure 4.3: (a) and (b): Photoelectron momentum distributions for argon
calculated using the TDSE for the intensities, 1.65 and 1.8 x 10* W/cm?,
respectively, for a wavelength of 800 nm. (c) and (d): Photoelectron mo-
mentum distributions for argon calculated using the SFA model for the same
parameters as (a) and (b), respectively.
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with the smaller Keldysh parameter which means that tunneling ionization
becomes more dominant. However, even in this regime the ATT peaks are vis-
ible, but the different peaks become now hard to distinguish. Figs. 4.3(a,b)
are obtained with the full numerical solution of the TDSE, while Figs. 4.3(c,d)
were calculated with the SFA model. Again it is visible that only the TDSE
result shows the radial nodal lines in the momentum spectra, whereas in the
SFA calculation the nodal lines are vertical. In Fig. 4.3a the first ATT peak
is a photon energy away from threshold. For Fig. 4.3b the intensity was
increased by an amount so that the first ATT peak is now close to threshold.
Since for 800 nm the spacing between two ATI peaks is only ~ 1.55 eV, com-
pared to 3.1 eV for 400 nm, a small increase in intensity, here it is less than
10%), is sufficient to move the position of an ATI peak by one unit of photon
energy. At the end of this chapter we will show how the position of an ATI
peak shapes the structure of the momentum projection on the polarization
direction.

4.3 Wavelength dependence of the 2D mo-
mentum spectra

In Fig. 4.4 angle-resolved momentum spectra for four different wavelengths,
450, 500, 540 and 580 nm, respectively, are presented. The increase in wave-
length was chosen so that each time an additional photon is needed for ion-
ization. Therefore the parity of the ATI peaks alternates with the increase
in wavelength. Together with the 400 nm case from Fig. 4.1a we observe
that the dominant angular momentum for the first ATI peak changes with
the increase of the wavelength from 1 to 4, 5, 2 and again 5. In the SFA
model we see a more monotonic change in the dominant angular momentum,
which indicates that the angular-momentum distribution obtained with the
TDSE is influenced by contributions from resonances in a non-trivial way.
However even with the TDSE calculation we see that, on average, the dom-
inant angular momentum increases with the number of photons needed for
ionization. The Keldysh parameters for Fig. 4.4 are 1.56, 1.41, 1.30 and 1.21,
respectively.
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Figure 4.4: Photoelectron momentum distributions for argon calculated using
the TDSE for the wavelengths 440,500, 540 and 580 nm, respectively for a
peak intensity of 1.7 x 10** W/cm?.
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4.4 Projection on the momentum parallel to
the polarization direction

In recent experiments (Rudenko et al. [20], Moshammer et al. [58]) a double-
hump structure was found in the momentum projection on the polarization
direction. This double-hump structure was first attributed to a rescattering
process, based on an earlier quasi-classical calculation (Chen and Nam [60]).
Subsequently, based on another semi classical calculation, it was attributed
to the effect of the Coulomb potential on the outgoing electron (Dimitriou
et al. [61]). Experimentally, these structures were explained by Freeman
resonances (Rudenko et al. [20]). In Ref. (Faisal and Schlegel [62]) they were
considered to be evidences of multiphoton features in the tunneling regime.
It was emphasized that the Coulomb interaction between the electron and the
ion core is essential, and that Coulomb-Volkov states should be implemented
in the SFA model. We have analyzed this structure and find that for the laser
parameter used in our simulation the Coulomb potential is not relevant for
the formation of the double-peak structure. The double-peak structure seems
to be determined by the parity and the position of the first ATI peak (Faisal
and Schlegel [62]).

In Figs. 4.5(a,b) we present the projection on the momentum parallel to
the polarization direction for the SFA as well as from solving the TDSE for
a wavelength 400 nm. The result from the SFA calculation is normalized
to the same maximum peak as the TDSE result. We note that it has been
stated in (Chirild and Potvliege [57]) that the total ionization probability of
a model based on SFA is too small and can be improved by multiplying the
Volkov state with a correction factor which accounts for tunneling (Krainov
and Shokri [63]). However, we do not include this factor since we intend
to compare our TDSE calculation with a model which does not include any
effect of the Coulomb potential. In Fig. 4.2¢, we clearly see a dip in both
calculations. This allows us to conclude that for these laser parameters the
dip in the momentum projection is not caused by the effect of the Coulomb
force. Additionally, from the good agreement we can estimate that the effects
of the Coulomb potential and of intermediate resonances are small, at least
in affecting the shape of the projected momentum distributions. For longer
pulses, however, we expect the electron spectra and the momentum distribu-
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tions are strongly influenced by Freeman resonances (Wiehle et al. [18]). In
comparing Fig. 4.2c to Fig. 4.2d, we note that the latter has a larger smooth
background. We can attribute this background to tunneling ionization which
increases rapidly with higher laser intensity, or with smaller +.

The 2D momentum distribution clarifies the behavior of the momentum
projection in Figs. 4.5(a,b). In Fig. 4.5a, the first ATI peak has the highest
amplitude and has odd parity, thus the momentum projection shows a dip
in the middle with a maximum on either side. On the contrary, for the
intensity 3.9 x 10'* W/cm?, the momentum projection has a clear peak at
p| = 0, reflecting the even parity nature for the first ATI peak, since one
more photon is needed for ionization.
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Figure 4.5: Comparison of the parallel momentum distributions between the
TDSE result and the SFA calculation for the intensities, 1.7 and 3.9 x 104
W /cm? and a wavelength of 400 nm, respectively.

For 800 nm we observe a different behavior. We see both a dip and a peak
in Figs. 4.6(a,b) for even parity of the first ATT peak. Thus the projection on
the parallel momentum is not dominated by the parity of the first ATI peak
anymore. Moreover, the dip in the projected spectra changes to a central
peak with a less than 10 percent increase in intensity. For Fig. 4.6b, the
first ATI peak is close to threshold, for Fig. 4.6a it is about a photon energy
away. Therefore we conclude that in the tunneling regime the position of the
first ATI determines whether a peak or a dip is observed at the center of the
momentum projection in agreement with (Faisal and Schlegel [62]).
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Figure 4.6: Comparison of the parallel momentum distributions between the
TDSE result and the SFA model for the intensities, 1.65 and 1.8 x10'* W /cm?
and a wavelength of 800 nm, respectively.

4.5 Comparison with experiment

How to use the present theoretical results to explain existing experimen-
tal data? To begin with, most of the experimental data were taken with
longer pulses, about 25-50 fs, and the finite size of the focal volume must
be considered in a comparison. For 400 nm, general agreement between our
calculation and experimental data (Maharjan et al. [21]) has been found,
both in the projected momentum distribution and the main features in the
2D spectra. Since each ATI peak is 3.1 eV apart, it appears that the volume
effect does not wash out the sharp features. For 800 nm, each ATI peak is
separated only by 1.55 eV, and the sharp structures predicted in the theory
are not expected to be observed after the volume integration. The position
of a Freeman resonance, on the other hand, is rather insensitive to the laser
intensity and thus can survive the volume effect. Therefore we agree that
the structures observed in (Rudenko et al. [20], Moshammer et al. [58]) are
likely coming from Freeman resonances. Whether the projected momentum
spectra have a peak or a dip at p| = 0 depends on whether a dominant
resonance peak is close to the threshold or not.

In this chapter, we have investigated the 2D momentum spectra for above
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threshold ionization of argon with a few-cycle laser pulse. Because of the
absence of the smooth background in the multiphoton regime the parity
and the dominant angular momentum of the first ATI peak determine the
shape of the momentum projection. We have presented an example in the
multiphoton regime where the dip in the momentum projection is caused by
an odd parity of the first ATI peak. In the tunneling regime we support the
results from (Faisal and Schlegel [62]) that the position of the first ATI peak
determines whether a peak or a dip is seen in the momentum projection.



Chapter 5

Theoretical Description of a
Fano Resonance

In this chapter the theoretical background for laser-dressed autoionization
will be developed (Lambropoulos and Zoller [24], Agarwal et al. [64], Za-
krzewski [65], Armstrong et al. [66], Alber and Zoller [67], Zhao and Lin
[68]). We study a pump-probe scheme, where an attosecond pump pulse is
used to excite a resonant state and an additional optical probe laser pulse
samples the ionization process. In contrast to the previous chapters, where we
have treated the ionization process with one-active electron, we will consider
now the case that the laser pulse excites a resonant state which then decays
due to electron-electron interaction. We focus on the case of an autoionizing
decay, were an electron can be ionized via two paths leading to the same final
kinetic energy. These two paths interfere and cause the characteristic asym-
metric spectral profile. This profile is called a Fano resonance (Fano [22]).
Since ab-initio solutions of the time-dependent Schrodinger equation are too
tedious for this problem, we start from an effective one-electron problem and
solv this within the strong field approximation. The atomic model that we
consider consists of a ground state |g) and a resonant state |r) embedded in a
structureless continuum |E), Fig. 5.1. The resonant state lies above the ion-
ization threshold of the field-free Hamiltonian. We study its time evolution
under the influence of an attosecond high-frequency low intensity pump pulse
which initiates the autoionization process and a low-frequency high intensity
probe pulse. The total Hamiltonian of the system therefore consists of the

43
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following terms
H(t) = Ho+ Hor + Hxuv (t) + Hprobe(t), (5.1)

with the atomic Hamiltonian Hy + H¢y, where Hj is the single configuration
Hamiltonian and H¢; is the residual configuration interaction. Hxyy and
Hope describe the interaction of the atom with the XUV (extreme ultravi-
olet) pump pulse and the probe pulse in dipole approximation, respectively.

L
Tr
|E] — )
3
TL
Probe Pulse ||
1 2

pump pulse

Figure 5.1: Schematic representation of the time-resolved autoionization pro-
cess. Excitation with the pump pulse opens two interfering paths from the
ground state to the continuum (compare Fig. 6.2). Arrival in the continuum
is monitored by the probe pulse.

The resonant state |r) and the near-degenerate continuum |E) are coupled
by the configuration interaction H¢s;. Because of this interaction neither the
continuum nor the resonant state are exact eigenstates of the atomic Hamil-
tonian. The diagonalization of the Hamiltonian is the cornerstone of Fano’s
treatment of the autoionization process within the framework of stationary
states suitable for time-integral observations (Fano [22]).

These Fano states |Ug) can be written as

o) = D o) — cosam) ), 652



§ 5. THEORETICAL DESCRIPTION OF A FANO RESONANCE 45

with
Vi

E-F
The coupling matrix element between continuum and resonance is denoted
by Vg = (E|H¢y|r) and PP denotes the principal part of the integral.

98) = Ir) + PP [ dE' E). (5.3)

Unlike to Fano’s treatment we are interested in the time dependence of
autoionization. Therefore we solve the time dependent Schrodinger equation
for which a formal solution can be written as

() = Te MO |t = _o0)) = U(t,—c0)lg).  (5.4)

We solve Eq. (5.4) under the simplifying assumptions:

a) The weak XUV pulse is treated in first order perturbation theory and
we neglect the influence of the pump pulse on the autoionization after the
excitation process. This is justified because of the low intensity of this pulse
compared to the probe pulse (Ixyv/Iprobe ~ 1072).

b) We neglect the influence of the probe pulse on the resonant and the ground
states, which would primarily lead to an energy shift of both the resonance
and the ground state energies. The photon energy of the probe pulse is about
1.6 eV and therefore too small to cause any one-photon transition. More-
over, at moderate intensities (Iprope ~ 102 W/cm?) ATT contributions can
be neglected. The ponderomotive potential of the probe laser is 0.06 eV.

c¢) The emitted electron propagates in the continuum as a free particle thereby
neglecting the core potential contained in H,. This assumption is valid be-
cause the resonance energy lies tens of e}/ above the threshold.

Under the assumption a) Eq. (5.2) can be reduced to

i) =i [ a0 oy @)lg)e 65.5)

The propagator U(t,#') contains now only Hy, the probe pulse Hpyope, and
the configuration interaction H¢y, but not Hxyy. Its equation of motion can
be written in terms of the integral equation

t -
O, ) = Uprope(t, ) — i / A" Uppone (£, ") HorU (2, 1), (5.6)
t,
with

Uprobe(t, t,) = C_i j:; (H0+Hp7“obe (t"))at’
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which provides a convenient starting point incorporating the additional ap-
proximations (b and c). Defining the propagator of Fano states as

Up(t, ) = et foHorticnd” (5.7)
the approximation b) allows to express Eq. (5.6) in terms of Up as
- ¢
T(t,) ~ Uprope(t, ') — i / A" Uppope(t, ") HorUp (', 8) . (5.8)
tl

The time-dependent amplitude for ionization (E|W¥(t)) follows from Eq. (5.5)
when we take into account the coherent excitation by the XUV pulse,

Hxov(t)|g)e = / dE ax(t")|E) + a,(t')|r) (5.9)

with ag(t') and a,(¢') being the time-dependent dipole transition amplitude
to the continuum and the resonant states, respectively. Inserting Egs. (5.8)
and (5.9) into (5.5) yields

t - ~
ER@E) = =i [ dt [ dB(EUpmlt, )| B)ag(t) (5.10)

t t - ~

- / dt’ / dt" / AE(E|Uppape (t, ") HerUp (8, )| EYa ()
-0 t
i t

- / dt' [ dt"(E|Uppope (t, ") HerUp (8, )7} ar (£).
—00 t

Eq. (5.10) can be further simplified by making use of assumption ¢) which
implies the replacement,

Uprote (8, )| E) = eV PO E(t, 1)), (5.11)
where ®p(t,t') is the Volkov phase, v (p,,1') = [hdt"E({#", 1), with E(#",t') =
(p+A(t”)2 A(t')?

We thus arrive at
t , )
(E|lp(t)) = _i/ e Ol D g, o (1) (5.12)

/ dt’ dt" dEe'®v @t t)VE vy (r|Up(t", t")|EYa ()

_/ dt dt" i@y (p,t", t)VE(t,,’t)e—g(t"_t’)—iEr(t”ft’)ar(t/).
tl
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The three terms in Eq. (5.12) represent different coherent pathways to the
continuum final state |E) (see Fig. 6.2): the first two terms of Eq. (5.12) de-
scribe the direct excitation consisting of the transition from the ground state
to the Volkov continuum (Fedorov [69]) in the absence of the resonance (first
term) modified by a correction term due to interactions with the resonance
(second term). The latter signifies virtual transitions from the continuum to
the resonance and back to the continuum. The third term describes indirect
transitions to the continuum via the resonant state |r).



Chapter 6

Excitation of an isolated Fano
Resonance

In this chapter the time-evolution of an autoionizing decay initiated by an
attosecond pulse will be studied. We note that a similar study has been
done in (Zhao and Lin [68]). A prototype case for the coherent dynamics
in a non-stationary system is the excitation of a Fano resonance. Fano line
shapes are a ubiquitous feature of resonance scattering when the continuum
can be accessed both directly and indirectly by way of a quasi-bound state
embedded in the continuum (autoionization). Fano line shapes have been
observed in the spectrum of time-integral measurements in a variety of phe-
nomena including photo absorption in quantum well structures (Faist et al.
[70]), scanning tunnel microscopy (Madhaven et al. [71]), and ballistic trans-
port through quantum dots (“artificial atoms”) (Gores et al. [72]). Interest
in observing and analyzing Fano profiles is stimulated by their high sensi-
tivity to the details of the scattering process, in particular the degree of
transient coherence in the scattering system. Observing the non-stationary
coherent dynamics by exciting a Fano resonance using an ultrashort pulse
has, so far, not yet been attempted, most likely because of the challenging
time scales involved. Interferences between different coherently excited au-
toionizing resonances have, however, been observed indirectly in ion-atom
collisions where the decay can be monitored via the velocity dependence of
the energy-shifted spectrum of the autoionizing electron due to the Coulomb
field of the receding ion (Burgdorfer and Morgenstern [73]). With the avail-

48
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ability of sub-fs XUV pulses with 7x &~ 250 as and the attosecond streak
camera technique (Drescher et al. [11], Itatani et al. [74], et al. [75]) obser-
vation of coherent excitation of inner-shell processes appears to be within
reach. In the following we present first results of our exploratory study for
a generic model system tailored with potential atomic systems such as the
lanthanides (Dzionk et al. [76]) in mind.

We first look at the time-integral profile. Near the resonance energy the
emission spectrum can be parameterized by (Fano [22])

(¢ +¢)?

Pl =15 (6.1)
with E—E —G6E
€ = F—/Q, (62)

where I' = 1/7, is the inverse lifetime of the resonance. The quantity JF is
a shift of the resonance position and depends quadratically on Vg. If this
matrix element is only weakly energy dependent, this shift is small and can
be neglected (Eichmann et al. [77]).

The Fano asymmetry parameter g is given by

(®5,|Tlg)

- _\onlllg) 6.3
1= Ve B IT)g) 6.3)

where T is the transition operator for the excitation. This parameter is a
measure for the relative importance of the direct transition from the ground
state to the continuum as compared to the transition via the resonant state.

In Fig. 6.1 the spectral line shapes near the resonance energy for different
Fano parameters ¢ are presented. For negative ¢ the scale of the abscissae
has to be reversed. This figure was taken from (Fano [22]). The interference
of the discrete autoionizing state with the continuum gives rise to the char-
acteristically asymmetric peaks in the excitation spectra. Only for the two
special cases of ¢ = 0 and for ¢ = oo is the spectrum symmetric around the
resonance energy.

The central quantities in the following are the time-differential ionization
probabilities

P(E,t) = [(E[¥(t)) (6.4)
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10/’

Figure 6.1: Spectral line shape near the resonance energy for different Fano
parameters gq. For negative g the scale of the abscissae has to be reversed.
This figure was taken from (Fano [22]). The line shape for ¢ = 0 is called a
window resonance. For all other Fano parameters 0 < ¢ < oo the line shape
is asymmetric.

as well as time-integral probabilities
P(E) = tli)m P(E,t). (6.5)

The latter represents a standard emission spectrum of a Fano resonance in
the limit that the influence of the probe pulse can be neglected. The time-
resolved probability P(E, t) is not directly accessible experimentally. Instead,
the spectrum P(E) can be recorded. In the next chapter we will analyze how
the spectrum is changed by the probe laser pulse.

Fig. 6.2 shows P(E) in the absence of the probe laser pulse for the differ-
ent ionization channels. Fig. 6.2a represents the ionization spectrum in the
absence of the resonance. The width of the spectrum is given by the inverse
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Figure 6.2: Emission spectra P(E) for (a) direct ionization in the absence of
the resonance (path 1 in Fig. 5.1), (b) indirect ionization via the resonance
with the direct channel blocked (¢ = oo, path 2 in Fig. 5.1 ), (c¢) direct
ionization in the presence of a resonance with the resonant channel blocked
(¢ =0, path 1 plus 3 in Fig. 5.1) (curve (a) shown for comparison as dashed
line), and (d) Fano profile when both paths are open for ¢ = 1.

temporal pulse width of the XUV pulse. By contrast, the width in Fig. 6.2b,
representing the indirect ionization via the resonance, is determined by the
inverse lifetime of the resonance I'. This case corresponds to the Auger de-
cay. New features appear when coherences are taken into account. If we
consider direct ionization exclusively to the continuum while the transition
(lg) = |r)) is blocked (corresponding to ¢ = 0) configuration mixing between
|E) and |r) (first two terms in Eq. (5.12)) leads to drastic modification of
the spectrum with a hole at the resonance energy E, (“window resonance”),
Fig. 6.2c. Finally, when both pathways to the continuum |g) — |r) and
lg) — |E) are open a typical asymmetric Fano profile emerges, Fig. 6.2d.

The temporal evolution of the autoionization probability P(F,t) is dis-
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Figure 6.3: Time-dependent ionization probability P(F,t) as a function of
energy and time. Inset 1: spectral distribution at short times ¢ < 7., inset 2:
spectral distribution in the limit ¢ — oo for ¢ = 1.

played in Fig. 6.3 for the typical case of an asymmetric Fano profile in the
absence of the probe laser pulse (¢ = 1). In view of anticipated experimental
investigations of Super Coster Kronig transitions in the 4d giant resonances
of the lanthanides (Dzionk et al. [76]), we chose a lifetime of the autoionizing
resonance 7, = (27|Vg|?) ™' = 400 as, an XUV pulse of duration 7x ~ 250 as
and excitation energy of Aiwyxy = 150 eV. For ¢t < 7, the broad spectral distri-
bution reflects the width of the XUV pump pulse ~ 75" (inset 1). For t > 7,
the wave packet representing this spectral distribution acquires an internal
structure due to the coupling to the quasi-bound level |r). As a result, the
destructive interference due to the transient coupling to the resonance starts
to "burn a hole” into the energy distribution at times ¢/7, > 1. Finally, in
the limit ¢ — oo the spectral distribution converges to that of an asymmetric
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Fano resonance (inset 2).

For a better understanding of Fig. 6.3 we present the time-dependent
ionization amplitude for the case that the exciting pulse is a delta-kick:

Ex(t) = E6(t). (6.6)
In this case an analytic expression can be found for the time-dependent
ionization amplitude:

. Vg .o e iE—E=il/2)t _ ]
bp(t) = e Plap+ag—e P T (6.7)
2 Er —F— 25
_ar gy e BB/t
2Vg E.—E—if

where ar and ag are the excitation matrix elements from the ground state
to the continuum |E) and the resonant state |r), respectively. To obtain the
time-dependent ionization probability, we have to evaluate |bg(¢)|?. In order
to get a more transparent expression we perform the calculation for the case
of a window resonance (¢ = 0) i.e. we set a, = 0. Then we obtain:

(E, — E — e T2sin((E, — B)t)? + L e cos((E, — E)t)?

b (t)]* = >
(E—-E)?2+1
(6.8)
For t — oo the expression (6.8) simplifies to
(Er — E)
o) = G (69

which is the Fano profile for ¢ = 0. Thus for large times ¢ the Fano line shape
equals the well known profile. However, what happens for finite times ¢ 7
From equation (6.8) we see that terms with cos((E, — F)t) and sin((E, — E)t)
exist. These terms are responsible for the small oscillations which are visible
in Fig. 6.3 on each side of the resonance. The amplitude of these oscillations

/2t 5o that they are not visible anymore

decreases exponentially at least as e™
in the asymptotic spectrum.

While we have studied in this chapter the time-evolution of an autoioniz-
ing decay initiated by an attosecond laser pulse, we will add the probe laser

pulse in the next chapter.



Chapter 7

Simulation of a Pump-Probe
Experiment

The atomic rearrangement process described in the previous chapter hap-
pens on a sub-femtosecond time scale and is therefore not possible to observe
directly in real time. However, pump-probe experiments provide the key to
retrieve real-time information about such fast processes by correlating the
ionized electron wave packet with a probing light field. Time-resolved spec-
troscopy based upon this pump-probe approach is now routinely used for
tracking atomic motion in molecules with femtosecond laser pulses (Dan-
tus et al. [78]). The time resolution suffices to map out the vibronic mo-
tion of molecules (Dantus et al. [78]), the phonon dynamics in solids (Hase
et al. [79]), and the electronic dynamics in Rydberg states (Yeazell and
C. R. Stroud [80], Raman et al. [81]). Resolving the dynamics of electrons
in atoms near the ground states or in inner shells has remained, however,
a major challenge. Only very recently, XUV pulses with durations of a few
hundred attoseconds have become available (Hentschel et al. [9]). The time
structure is comparable to the time scale of electronic processes in inner shells
of atoms and opens up the perspective to perform time-resolved measure-
ments of the electronic dynamics in atoms (Nicolaides et al. [82], Mercouris
et al. [83]). In a first proof of principle experiment, a 900 as XUV pulse was
used to induce a non-resonant core hole excitation in Krypton which relaxes
by Auger decay. Its lifetime of about 8 fs was measured in the time domain
by probing the “arrival time” of the Auger electron in the continuum with

o4
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the envelope of a synchronized fs laser probe-pulse and was found to be in
accord with the spectroscopic data (Drescher et al. [11]). More recently, the
time evolution of primary electron emission could be measured with a res-
olution of 100 as by using the controlled oscillation of the electric field of
few-cycle probe laser light (Kienberger et al. [84]). The technique has been
dubbed attosecond streak camera (Itatani et al. [74]).

In this chapter we study how more complex coherent dynamics proceed-
ing on a time scale comparable to that of the duration of the sub-fs XUV
excitation can be probed by this novel technique and to what extent novel
information may be obtained from such time-domain studies as compared to
conventional time-integral measurements.

Figure 7.1: Schematic picture of the two color sampling technique for probing
electron emission from atoms. The XUV-pulse excites and/or ionizes the
atomic target. The delayed probe pulse transfers a momentum shift Ap to
the ejected electron after its release. The transfered momentum sensitively
depends on the phase and amplitude of the probe laser light at the instant
of release of the electron. This results in a time-to-energy mapping on an
attosecond time scale. (Figure taken from (Drescher et al. [11]))
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Figure 7.2: Schematic illustration of the laser phase dependence of the mo-
mentum transfered to the emitted electron by the probe laser pulse. For
ionization at the maximum field strength the momentum shift Ap is zero,
whereas ionization near the minimum field strength leads to a maximum
momentum shift.

Fig. 7.1 is a schematic illustration of the pump-probe technique. The
pump pulse excites or ionizes an electron which then moves in the combined
field of the laser and the XUV-pulse. The red and blue curves represent the
evolutions of the electric field of the laser and the XUV-pulse, respectively.
Both pulses are focused simultaneously into the gas target with a well con-
trolled delay time At. The XUV pulse excites the atom which then emits an
electron. The electrons ejected in the polarization direction of the laser are
detected. They undergo, depending on the time of their emission a change
of momentum Ap, as seen in Fig. 7.1. The total momentum and thus the
momentum shift is finally measured with a time-of-flight spectrometer. The
momentum shift of the ionized electrons due to the laser pulse is given by:

Ap = /too EL(thdt' = A(t;), (7.1)

where t; is the time of ionization. Obviously, the momentum shift Ap is
proportional to the vector potential at the time of ionization.

Two limiting cases can be distinguished. For ionization processes lasting
less than the light field cycles 7. < T}, the oscillating light field constitutes
a sub-femtosecond probe. The energy spectrum fluctuates due to the oscilla-
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tions of the vector potential A(t) entering the canonical momentum and thus
resembles the behavior of a classical particle in an oscillating electric field. In
the opposite limit of long lifetime compared to the period of the probe pulse,
7. > T}, the quantized nature of the interaction of the electron with the
radiation field is retained and energy shifts occur in multiples of the photon
energy hwy giving rise to spectral sidebands. These processes are sampled
by the amplitude envelope of the laser pulse. In both cases a sequence of
light-affected electron spectra are recorded at different delays At, from which
the time evolution of electron emission can be reconstructed. The resulting
signal depends on three different time scales: the lifetime of the resonance,
Tr, the duration of the pump pulse, 7x, and the period, 717, of the probe
pulse.

7.1 Pump-probe spectra for photoionization

The intensity which we have used for the probe laser pulse is 5x 10" W /cm?,
which is small enough so that ionization by the probe laser pulse can be
neglected. Additionally, the intensity of the pump pulse is about three orders
of magnitude smaller than the intensity of the probe laser so that the pump-
pulse Fx(t) = Fx cos(Q2t) fx(t) does not influence the motion of the ionized
electron. We assume both envelope functions fx and f; to be Gaussians
where the duration of the probe pulse is long compared to that of the pump
71, > Tx (in current experiments 77, > 5 fs). These are typical experimental
parameters as have been used e.g. in (Goulielmakis et al. [10], Drescher et al.
11)).

In the following we present results for two different lifetimes of the reso-
nant state, 7, = 250 as and for comparison, a significantly larger lifetime of
T, = 2.5 fs. A rich variety of spectral features as a function of pump-probe
delay time can be observed. The key point is that these intricate features in
PAy(F) appear only when all three time scales 7x, 7, and T, are comparable
to each other.

Fig. 7.3 shows the simulated spectra as a function of pump-probe delay
for the case of photoionization in the absence of the resonance. For a constant
delay time the spectral line shape is a Gaussian due to the Gaussian envelope
of the ionizing pulse. It is visible from Fig. 7.3 that the center of the line
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Figure 7.3: Simulated electron spectra for direct ionization as a function
of time-delay between pump and probe pulse observed in the direction of
the polarization direction of the probe laser pulse. The spectra follow the
oscillations of the probe laser pulse. We use a 500 as XUV-pulse with a
photon energy of 100 eV and a 10 fs (FWHM) probe pulse with a period of
2.5 fs and a photon energy of 1.55 eV.

shape follows the oscillations of the probe laser pulse. For this simulation we
have used a 500 as XUV-pulse with a photon energy of 100 eV and a 10 fs
(FWHM) probe pulse with a cycle period of 2.5 fs which corresponds to a
photon energy of 1.55 eV.

7.2 Pump-probe spectra for a single resonance

In Fig. 7.4 the pump-probe spectra for (a) an Auger-decay and (b) for an
autoionizing decay with a Fano parameter of ¢ = 0.5 are presented. We note
that the case of the time-resolved Auger decay, which has been experimentally
realized (Drescher et al. [11]), has already been theoretically investigated. In
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Figure 7.4: Simulated electron spectra for (a) resonant ionization (Auger
decay) and (b) excitation of a Fano resonance with ¢ = 0.5 as a function of
time-delay between pump and probe pulse observed in the direction of the
polarization direction of the probe laser pulse. The lifetime of the resonant
state was chosen to be 250 as. The spectra follow the oscillations of the probe
laser pulse. We use a 500 as XUV-pulse with a photon energy of 100 eV and
a 10 fs (FWHM) probe pulse with a period of 2.5 fs and a photon energy of
1.55 eV.

(Drescher et al. [11], Smirnova et al. [12]) the transitions from a quasi-classical
energy shift of the spectrum to the formation of sidebands was explained. The
lifetime of the resonance was chosen to be 250 as. Since the lifetime of the
resonance is so short, the spectra look similar to the case of photoionization
without a resonance present. Fig. 7.4b looks more complicated because of
the two interfering pathways, however, the asymmetric Fano profile is still
recognizable.

In Figs. 7.5(a,b) we present the pump-probe spectra for the same pa-
rameters as in Figs. 7.4(a,b), however we chose a lifetime of 2.5 fs for the
resonance. Fig. 7.5a shows the well-known sidebands spaced by the photon
energy. The first and second order sideband which correspond to the ab-
sorption of one and two photons, respectively, are visible in the figure. In
Fig. 7.5b the sideband structure is still visible, however on top of this struc-
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Figure 7.5: Simulated electron spectra for (a) resonant ionization (Auger
decay) and (b) excitation of a Fano resonance with ¢ = 0.5 as a function of
time-delay between pump and probe pulse observed in the direction of the
polarization direction of the probe laser pulse. The lifetime of the resonant
state was chosen to be 2.5 fs. The spectra follow the oscillations of the probe
laser pulse. We use a 500 as XUV-pulse with a photon energy of 100 eV and
a 10 fs (FWHM) probe pulse with a period of 2.5 fs and a photon energy of
1.55 eV.

ture an oscillatory behavior can be see. These oscillations are caused by
the direct ionization channel. The population of the sidebands is caused by
the resonant channel. Thus, time-resolved spectroscopy allows to separate
the two interfering ionization channels because of their different temporal
behavior.

7.3 Breaking of time-reversal symmetry:
Complex Fano parameter

One extension of this approach is the investigation of a complex Fano param-
eters. In the original work of Fano (Fano [22]) and most subsequent studies
based on this theory, the asymmetric parameter ¢ has been implicitly treated
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as a real number. However, this is only valid when the system has the time-
reversal symmetry, and thus the matrix elements defining ¢ can be taken as
real. A system is said to exhibit symmetry under time reversal if, at least in
principle, its time-evolution may be reversed and all physical processes run
backwards, with initial and final states interchanged. In (Kobayashi et al.
[85, 86|, Clerk et al. [87]) it was reported that in the presence of a magnetic
field or decoherence, both which break the time-reversal symmetry, a com-
plex Fano parameter could be observed. In these experiments the Fano line
shape was observed in the conductance of a quantum dot where the interfer-
ence of direct and resonant trajectories connecting source and drain lead to
the typical Fano profile. The specific Fano line shape is thus sensitive to the
phase coherence between the resonant and the non resonant pathways. The
magnetic field systematically affects the phase difference between the two
paths so that a complex Fano parameter can be tuned. The decoherence,
which can be e.g. controlled by the increase of temperature, leads to a loss of
phase information between the interfering pathways, so that the contribution
from the different pathways add up incoherently which gradually leads to a
symmetric line shape. In case of an atom in a laser field there is no magnetic
field and also decoherence with respect to collisions with other gas atoms is
assumed to be negligible. However, the laser probe field itself influences the
ionization process and can cause depopulation of the resonant state. This
system has to be treated now like an open quantum system which can be
described with an effective complex Fano parameter. The resonant state is
assumed to be only weakly perturbed by the probe laser field which can be
taken into account by a complex dynamical Stark shift AEg(¢) that includes
both a real energy shift AFg as well as a damping due to coupling to other
states outside the subspace of the Fano resonance. However, we will not
include the Stark shift directly into our formalism but discuss only the issue
of an effective complex Fano parameter.

The line shape for a resonance with a complex Fano parameter ¢ can
be parameterized near the resonance energy by the same simple formula as
(6.1),

g+ €|
P =

(7.2)
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with
_E-E, — OF

€ =
r/2
The issue of a complex Fano parameter is of special interest to us, since we

have found that time-resolved measurements are extremely phase sensitive
and can provide us with more information than conventional time-integral

(7.3)

measurements. One remarkable feature of the time-integral spectral distri-
bution P(F) is that it is invariant under complex conjugation ¢ — ¢* as seen
from equation (7.2), i.e. the phase angle of the Fano parameter cannot be
uniquely determined. The time-resolved spectrum, instead, Pas(E), is found
to be sensitive to this phase angle.

q=1
g=(1+i)/2
q==ti

probability

Energy

Figure 7.6: Fano profiles for complex Fano parameters, ¢ = 1, (1 +1)/v/2
and +1, respectively. All five g-parameters satisfy |¢|? = 1. With increasing
imaginary part the spectra become more symmetric. The spectral line shape
is identical for ¢ and the complex conjugate Fano parameter ¢*.

Fig. 7.6 shows the line shapes for different complex Fano parameters. All
q parameters in this figure fulfill |[g|> = 1. They only differ in a complex
phase. Obviously, with increasing imaginary part of the Fano parameter, the
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profiles become more symmetric. For ¢ = 4 a totally symmetric line shape
is observed. As is visible in Fig. 7.6, the spectral line shapes are identical for
g and the complex conjugate Fano parameter ¢*.

This motivated us to study this symmetry in more detail. In Fig. 7.7 we
compare the time evolution of the ionization probability for the two Fano
parameters ¢ = +i¢. Although, asymptotically both ¢ parameters lead to
the same line shape, as is visible in Fig. 7.7, the time-evolution differs. In
the case of ¢ = 7 the time-evolution of the ionization signal exhibits a very
smooth pattern compared to the case of ¢ = —¢ where several interference
structures can be seen in the figure.

Figure 7.7: Time dependent ionization probability for ¢ = £i. The asymp-
totic spectrum is shown in the middle. Although the asymptotic spectrum is
identical for both Fano parameters the time dependent ionization probability
differs.

In equation (5.12) it was shown that the total ionization amplitude for
an autoionizing decay can be split up into three parts: First, the direct
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ionization amplitude in the absence of the resonance, second, the correction
to the direct ionization channel due to coupling with the resonant state and
third, the resonant ionization amplitude. We use the following notation for
the different ionization amplitudes:

Atotal = Adirect + Acorrection + Aresonant (74)
With the help of the relation

Energy (a.u.)
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time delay A/z time delay A/

Figure 7.8: Simulated pump-probe spectra for (a) ¢ =i and for (b) ¢ = —i.
The spectral line shapes of these two Fano parameters are identical, how-
ever the pump probe spectra reflect the different time-dependent ionization
probabilities and thus clearly differ.

(r|Up(#", )| E) = sin(A(E) NG) (e—i(ET—iI‘/Q)(t”—t’) _ e—iE(t”—t’)) (7.5)
7TVE

the energy integral in equation (5.12) can be solved analytically. Under the

assumption that the matrix elements Vg and (E|z|g) are energy indepen-

dent, which is near the resonant energy a reasonable approximation, and the

relation
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/ AE(r|Us(t, )| EYag(t') = —ie~ 3¢ =B 0= g0 N aVr, (7.6)
it follows from equation (5.12) that

Aresonant = ’LC] Acorrection (77)

From equation (7.7) we see now that the total ionization amplitude for the
case of a Fano parameter of ¢ = ¢ simplifies to

Atotal = Adirect (78)
and in the case of ¢ = —i the total ionization amplitude equals
Atotal = Adirect + 2f4resonant- (79)

Asymptotically, both spectra are identical, but from the equations (7.9)
and (7.8) it can be seen that the ionization amplitudes are not the same. For
the case of ¢ = —i the ionization amplitude contains the resonant ionization
channel. The time structure of this channel is dominated by the mean life
time of the resonant state. On the contrary, the ionization amplitude for the
case of ¢ = 7 is identical to the direct ionization in the absence of the resonant
state and therefore the time structure of this channel is only influenced by
the duration of the pump-pulse. Thus is it possible to distinguish these two
Fano parameters with the pump-probe technique.

In Fig. 7.7 we present the simulated pump-probe spectra for ¢ = =+i.
The spectra reflect the different time-dependent ionization probabilities and
therefore clearly differ. Fig. 7.7a shows the case for ¢ = i. As seen from
equation (7.8) the amplitudes interacting with the resonant state destruc-
tively interfere and only the direct ionization channel remains. This figure
is therefore identical to Fig. 7.3. In Fig. 7.7b the resonant character of the
ionization amplitude with the longer lifetime of 500 as becomes visible. Al-
though only for the special case of ¢ = 47 total destructive or constructive
interference occurs, it is in general possible to distinguish the two Fano pa-
rameters ¢ and ¢* from the pump-probe spectra.

In this chapter we have presented simulated spectra for a pump-probe
experiment for the case of an autoionizing state. We have shown that the
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different ionization channels, the direct and the resonant one, can be distin-
guished in a pump-probe experiment because of their different time-structure.
In the last section we have shown that in the case of a complex Fano param-
eter, time-resolved spectroscopy is able to provide more information than
conventional time-integral measurements.



Chapter 8

Excitation of Two Nearby
Resonances

A future goal for time-resolved studies will be to probe and control the elec-
tron dynamics in a many-electron system which cannot be fully resolved
by conventional spectroscopy. The analysis in the previous chapter was re-
stricted to a single isolated resonance. In view of the broad spectral width
of the attosecond XUV pulse, excitation of an isolated resonance will be the
exception rather than the rule. Instead, several near-by Fano resonances
will be simultaneously and coherently excited. Coherent excitation of several
resonances by an ultrashort pulse has been studied e.g. in (Zhao and Lin
[68]). Additionally, similar excitation processes in ion-atom collisions have
been investigated quite some time ago (von den Straten and Morgenstern
[88]). The post-collision interaction (PCI) energy shift was, in fact, used
as an effective “streaking” technique. The excitation of a collective dipole
oscillation and vibronic motion of the two-electron doubly excited states in
He could be mapped out (Burgdorfer and Morgenstern [73], von den Straten
and Morgenstern [88]).

In this chapter, which is a more complete version of (Wickenhauser et al.
[30]) we will discuss the attosecond streaking for coherent excitation of closely
spaced resonances. We focus for simplicity on two nearby resonances. A cen-
tral issue to be addressed is the information that possibly can be extracted
from such more complex streaking images. In principle, information on both

67
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the atomic structure parameters (position and width of the resonances), and
the excitation amplitudes or, more generally, the excitation density matrix
should become available. In view of the rich and complicated structure of
streaking images, one can only expect in simple cases to completely disen-
tangle and extract this information.

8.1 Line Shapes and Energies

The atomic model system that we consider in this chapter consists of a ground
state |g) and two resonant states |a) and |b) embedded in a structureless
continuum |F) (Fig. 8.1).

Ty

TL
probe pulse

pump pulse

Figure 8.1: Schematic picture of the autoionization process for two nearby
resonances. The ultrashort pump pulse coherently excites both resonances
which are assumed to be in the same angular momentum sector. Addition-
ally, photoelectrons can be directly ionized by the XUV-pulse which leads to
three interfering paths from the ground state to the one-electron continuum.
Arrival in the continuum is monitored by the probe laser pulse with period
T;, = 27 /wy, and length 7.

The resonant states lie above the ionization threshold of the field-free
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Hamiltonian. We study the time evolution of this system under the influ-
ence of a sub-fs high-frequency low-intensity pump pulse which initializes the
autoionization process and a low-frequency, moderate-intensity probe pulse.
The Hamiltonian

H(t) = Hy+V + Hx(t) + Hy(t) (8.1)

consists of the atomic Hamiltonian H, = Hy+ V, + V3, where Hj is the single
configuration Hamiltonian and Vi (k = a, b)

V= [ dBIB)Vir(k| + hc. (8.2)

describe the interaction between the resonances and the continuum. All de-
pendences on angular momentum and emission angles are suppressed and the
emission direction is assumed to be along the direction of the polarization of
the laser field. In the absence of the coupling between the resonant states
and continuum, |a) and |b) would be bound eigenstates of Hy.

The simple expression from the previous chapter (Equation (6.1)) to pa-
rameterize a resonance becomes more complicated in the presence of a second
resonance. Interferences cause a much more complex behavior. The time-
independent approach of this problem is well understood (Fano [22], Magunov
and Strakhova [89]). Time-resolved studies provide however an alternative
approach. They can, for example, facilitate the disentangling of overlapping
resonances that cannot be resolved spectroscopically.

We will analyze first streaking images of two overlapping Lorentz reso-
nances. Related problems have been studied in detail in many different sub-
fields, among others for dressed states in laser fields (Coleman and Knight
[90], Coleman et al. [91]) and in quantum chaos, to name just a few. Lorentz
resonances correspond to the limit that the direct pathway to the contin-
uum is blocked (see Fig. 8.1), i.e. the direct ionization channel is absent or
equivalently, that |q,|,|gs| — oo. In the limit of two separated resonances
each resonance is characterized by an energy position and a width. How-
ever, if the energy spacing between the two resonances becomes comparable
to the width, the two resonances interact via the continuum and the energy
positions Ej and widths 'y change according to (see, e.g., (Magunov and
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Strakhova [89], Coleman and Knight [90], Coleman et al. [91]))

. T E,+E, (T, T
Ek—z?k - Tb—z<z+zb)i (8.3)
E,—E)? (T,+10,)? i 12
=+ (( y b) _( y b) q:Z(Ea_Eb)(Pa_Pb)>

with Ty, = 27 |V, |2
The coupling of two resonances leads to “avoided crossings” in the com-
plex energy plane (Magunov and Strakhova [89], Yang et al. [92]). In the
special case that the direct coupling between resonances is suppressed and
only indirect coupling via the continuum is present, the coupling results in
level attraction along the real axis and repulsion along the imaginary axis
(splitting of the widths). The latter leads to a pair of long-lived and short-
lived resonances which can even lead to a bound state (with infinite lifetime)
in the continuum. The appearance of two disparate time scales may be di-
rectly observable in the time-resolved emission. For example two near-by
resonances with spacing AE = E, — E, and identical width I'; =T, =T in
the absence of continuum coupling. Introducing the parameter k = AE/T,

Eq. (8.3) can be rewritten as
- T, E+E T 1

o L A e e Y L
LA 2 5" or

(K2 —1)12. (8.4)

For k > 1, corresponding to the case of two weakly interacting resonances,
both resonances have still the same lifetime, but are located at different
energies. For x < 1 different time scales appear. One resonance becomes
long lived while the other one becomes short lived. This corresponds to a
repulsion on the imaginary axis accompanied by attraction of the levels on
the real axis.

Fig. 8.2 shows the time-integral spectra for two Lorentz resonances with
width 'y, = I', = 0.05. The energy spacing AFE is four, two and 0.2 times
the width of the resonances in Figs. 8.2 (a), (b) and (c), respectively. As
long as the energy spacing is larger than the width both resonances have
still the same width (in the case of ', = T';) and are located at different
energies. As the control parameter k falls below unity, i.e. the width becomes
larger than the spacing between the two resonances, the resulting energy
positions E,, become equal while the lifetimes split into one long-lived and one
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Figure 8.2: Spectra for two Lorentz resonances with half widths ', = I, =
0.05. The parameter  is 4, 2 and 0.2 in (a), (b) and (c), respectively. In (a)
and (b) still both resonances have the same width but are located at different
energies. By contrast, in (c) two resonances are located at the same energy
position but feature different lifetimes.

short-lived resonances. Time-resolved measurements open up the possibility
to directly observe the emerging disparate time scale. As will be shown
below the method of streaking provides a novel avenue to study time-resolved
dynamics of resonances.

8.2 Time-dependent analysis

Our starting point for treating time-dependent autoionization with two res-
onances coherently excited by an ultrashort pulse is the solution of the time-
dependent rather than the stationary Schrodinger equation, i.e.,

() = T~ o HO gy (8.5)

where T denotes the time-ordering operation (see (5.4)).

The goal is to calculate the time-and energy-differential ionization prob-
ability P(E,t) = [(EJ)(t))|>. We solve Eq. (8.5) under a number of simpli-
fying assumptions (Wickenhauser et al. [25]) similar to the previous chapter.
The weak XUV pulse is treated in first-order perturbation theory and we
neglect all other couplings except those involving the ground state. Addi-
tionally, the action of the probe laser on the ground state is neglected.
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Thus the propagator of Fano states (compare 5.6) takes on the form
t
Ur(t,t') = T exp[—i / dt"(Hy + Vo + V). (8.6)

With these approximations, the time-energy differential ionization amplitude
becomes

(El(t)) = —2/ dt' P D g (1) (8.7)
/ dt' dt" dEe™ ED (Vg palal + Vi (b)) Ur (", t')| E)as(t')
_/ dt’ [ dt" e D (Ve yalal + Ve op(0)Ur (", 1) |a)aq(t')
_/ dat’ dtn VLD (Vi nalal + Vim0 Ur (", 1) [b)as(t)

with ag(t) = (E|Hx(t)|g): and ax(t) = (k|Hx(t)|g); . Here and in the fol-
lowing is the time derivative of a function denoted by a dot. Under the
assumption of energy-independent matrix elements for the configuration in-
teraction Vg, = V,, Vg, =V}, and the direct dipole coupling to the continuum
(E|d|g) = (c|d|g), the integration over energy in Eq. (8.7) can be performed
analytically leading to time-energy differential ionization amplitude:

0, / dt' v (B0 (8.8)
.
¢ ( iteoms 'R, ")+ 1+ ) [ dt"R t’,t")
( t 5 sy [Cahe
with (kldlg)
G = (8.9)
mVi{c|d|g)
and
Re(t',t") = (Vola|Ug (t', ") k) + Vi (b|Up (', ") | k) )y (") (8.10)

In Egs. (8.8) and (8.9) we have neglected small energy shifts due to the
off-shell coupling between resonances involving the principal part integrals
(see the discussion in Ref. (Fano [22])) in line with the assumption of energy-
independent couplings V.
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Figure 8.3: Time dependent ionization probability for three different times
for the resonance parameters F, = 1.495, £, = 1,505,1", = I', = 0.05 corre-
sponding to E, = E, = 1.5 and ', = 0.05,7 = 0.4 fs I, = 0.0005, 7, = 40 fs
and k = 0.2, and a, = ay.

The three terms in equation (8.8) represent different coherent pathways to
the continuum final state: the first term describe the direct ionization from
the ground state to the Volkov continuum in the absence of a resonance.
The second and third terms contain a correction to the direct ionization
coming from interactions with the resonant states as well as the resonant
decay channels. Eq. (8.8) has the apparent structure of two independent Fano
resonances. However, each function Ry, (¢',t") contains the couplings between
the two resonances and depends on the parameters of both resonances.

8.3 Pump-probe spectra

As a first example of the resolution in the time domain of the confluence of
interacting Lorentz resonances, we present in Fig. 8.3 the time-differential
emission spectrum [(E|t(t))|? for the system parameters of Fig. 8.2c. Note
that the effect of the probe pulse is not yet included in Fig. 8.3 (see below).
After a time of 1.5 fs only the broad resonance corresponding to a lifetime of
7o = 0.4 fs is visible. The presence of a much longer lived resonance at the
same spectrum position (E’ = 1.5 a.u. or 40.8 ¢V) manifests itself only much
later at times of the order of the life time 7, ~ 40 fs. It results in a pronounced
dip by interference between the channels at the common position of the two
resonances when the two partial amplitudes have the same sign, a,(t) = a,(t)

(Fig. 8.3a). In the limit ¢ — oo the spectral distribution of Fig. 8.2c is
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recovered. Note that the asymptotic spectral distribution resembles that of
a single window resonance (¢ = 0) even though in the present case g, = ¢, —
oo. The snapshots at short to intermediate times are, however, different. In
particular, the spectral distribution at short times (7 < 10 fs) is independent
of the spectral width of the exciting XUV attosecond pulse contrary to the
case of a time-resolved window resonance (Wickenhauser et al. [25]) but is
Lorentzian with the intrinsic width of the broader of the two resonances.

The destructive interference between the two Lorentz resonances is con-
trolled by the relative phase between the excitation amplitudes a,(t). More
generally, the time-differential ionization probability will depend (in the ab-
sence of the direct channel) on the bilinear form

t t

Pkk ™~ Z (1 + Z/Qk) (1 - Z./(]k’) / dt” / dt’ Rk (t’ t,) R;:’ (t’ t”) ’ (8'11)

kk! —00 —00

which, is proportional to py s ~ (apaj ), i.e. the excitation density matrix
for the subspace of resonances. Observation of the time-differential ioniza-
tion probability can, therefore, give access to the elements of the excitation
density matrix and thus information of the excitation process, generally not
extractable from time-integral measurements.

Fig. 8.4 represents the streaking camera image pertaining to the coales-
cent Lorentz resonances of Fig. 8.3a. The existence of two resonances with
disparate lifetimes manifests itself by the simultaneous presence of the quiver
oscillation of the light field and the presence of sidebands. While the former
is characteristic for a fast decay process with #, < T}, the latter is a hall-
mark of a long-lived state with #, > T which interacts with the light field
via photon absorption and emissions.

As a second example we consider the case of well-separated resonances, i.e.
where the energy spacing AFE is much larger than the width of the resonances.
We employ a parameter set modeled after the N = 5 double-excitation Ry-
dberg series of He (Domke et al. [93]). We choose two window resonances
(ga = q» = 0) at the energies E, = 76.32 ¢V and E, = 76.46 eV with widths
I, = 25.2 meV and T'y, = 14.2 meV corresponding to lifetimes of about 27
fs and 47 fs respectively. A cut through the streaking image along the first
sideband at (E,+ E,)/2+wy, (Fig. 8.5) displays several characteristic features
of the coherent excitation of two nearby resonances. The beat frequency is
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Figure 8.4: Streaking image corresponding to the excitation of two strongly
overlapping Lorentz resonances as a function of the time delay between pump
and probe pulse observed in the polarization direction of the probe laser
pulse. The arrows indicate the positions of the first-order sidebands (same
parameters as in Fig. 8.3).

given by the energy spacing AE between the resonances. The envelope of the
decaying beat signal is given by an exponential factor exp (—(T'; + ') t/2)
and thus depends on the arithmetic mean of the inverse lifetimes. Finally,
the underlying constant background is due to the fast direct (non-resonant)
ionization.

Fig. 8.6 shows the pump-probe spectra for the same parameters as in
Fig. 8.5, however, for the case of two Lorentz resonances (g — 00). The
characteristic beating signal in the sidebands, similar to the one in Fig. 8.5
is clearly visible.

In order to illustrate the dependence on the phases of the resonant ampli-
tudes, we present in Fig. 8.7 the intensities, integrated over the width of the
sideband, for a relative phase 0 (Fig. 8.7a) or 7 (Fig. 8.7b) between the res-
onant amplitudes a;. The beat pattern is noticeably different, in particular
the phase of the beat signal is shifted by approximately 7. This observation
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Figure 8.5: First-order sideband intensity at £ = (E, + E,)/2 + wr, as a
function of pump-probe delay for two window resonances with parameters:
E, =76.32 ¢V and E, = 76.46 eV with the widths I', = 25.2 meV and I') =
14.2 meV corresponding to lifetimes of about 27fs and 47 fs, respectively.
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Figure 8.6: Pump-probe spectra for the same parameters as Fig. 8.5, however
Lorentz resonances (g, — oo) instead of window resonances. The sidebands
show the characteristic beating signal.
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indicates that information on the excitation amplitudes can be extracted
from streaking images.
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Figure 8.7: First order sideband population integrated over the width of
the sideband. Same parameters as Fig. 8.6. (a) Relative phase between
amplitudes ax: ¢ =0; (b) ¢ = 7.

Under the simplifying assumption of a cw-laser as probe pulse, the ion-

ization probability at the energy of the first order sideband can be written
as
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P=-|1

4 o2 ) /_o:o (Va(aldlg) fo + Vi(bldlg) ) dt]*. (8.12)

Jy is the Bessel function of order 1 and f; is the convolution of a Gaussian
and an exponentially decaying function,

. t , )
Folt) = / dt/fX(tl)e(—Fk/Q:I:zAE/Q)(t—t) (8.13)

For the amplitude corresponding to the resonance |a) a plus has to be used
in the exponent in the integral, and a minus is used for the resonance |b).
The plus and minus signs result from the symmetry of the problem. The
energy of the resonant state a is AE/2 below the excitation energy F, + w,,
and the energy of the resonant state b is AE/2 above the excitation energy.
Eq. (8.12) can be derived by evaluating Eq. (8.7) at the energy of the first
order sideband E, + w;. We expand the exponential term with the Volkov
phase in a series of Bessel functions. Since the first order sideband originates
from the absorption of one photon, only the first term in the sum of Bessel
functions, which is proportional to J; (p‘;#), contributes. From equation
(8.12) the time-differential ionization probability at the energy E, + wy can
be easily extracted:

2 o | (Valaldlg) Fu + Vidbldlg) ) I (8.14)

Fig. 8.8 shows the time-differential ionization probability for the same
parameters as in Fig. 8.7 except that the probe pulse is a cw-laser. From the
remarkable agreement of Fig. 8.8 with Fig. 8.7 we can conclude that non-
trivial information about the ionization process happening on a femtosecond
time scale can be extracted directly from the pump-probe spectra.

In this chapter we have presented attosecond streaking images of Fano
resonances including coherent excitation of nearby resonances. We could
show that these spectra contain information that is only partially accessi-
ble by other, time-integral spectroscopic techniques. We have discussed that
near-degenerate resonances with significantly different lifetimes can be re-
solved through their different appearance in the streaking image. Moreover,
off-diagonal elements of the excitation density matrix influence the streaking
image and are thus accessible.
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Figure 8.8: Time-differential ionization probability. (a) Relative phase be-
tween the amplitudes: ¢ = 0; (b) ¢ = 7.



Chapter 9

Conclusions and Summary

Motivated by the rapid progress in laser technology, we have investigated in
this thesis the ionization dynamics of atoms in femto- and attosecond laser
pulses. We have especially focused on the few-cycle aspects of the pulses
in the ionization process. In contrast to longer pulses, it is not possible to
specify a certain wavelength or intensity for a few-cycle pulse. The intensity
changes with each cycle, so that within a few cycles the field strength rises
from zero to its maximum value and the width in the frequency domain of
the few-cycle pulse is inversely proportional to the pulse length. These as-
pects of ionization in a short pulse are analyzed in chapters three and four
for the case of above-threshold ionization, where we have focused on the for
experiment important case of argon. The main feature of above-threshold
ionization (ATT) spectra are ATI peaks separated by the photon energy. The
position of an ATI peak is determined by the photon energy, the number of
the absorbed photons and the ionization potential. However, the energy po-
sition of the levels shift in the field. This shift is near the threshold equal to
the ponderomotive potential. Thus the effective ionization potential, given
by the sum of the ionization potential of the atom and the ponderomotive
potential, depends quadratically on the laser field. We analyze in chapter
three this shifting ponderomotive potential, which leads to subpeaks within
an ATI peak in the energy spectrum (Wickenhauser et al. [14], Bardsley et al.
[19]). These peaks are sensitive to the pulse duration and the pulse enve-
lope and are a general feature of ionization spectra originating from a short,
intense laser pulse. The finite width of the pulse in the frequency domain
manifests itself in the width of the ATI peaks and the missing of isolated
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Freeman resonances in the spectrum, as would be observed with a longer
pulse having a well defined frequency.

At first sight, the interplay of atomic and laser forces seems to cause a

rather complex behavior in the ionization process. Fortunately, for many
problems in atto- and femtosecond physics, one can separate the dynamics
into a domain ’inside’ the atom, where atomic forces dominate, and ’out-
side’, where the laser force dominates. Therefore a main part of this thesis
is dedicated to the investigation of the accuracy of the so called ’strong field
approximation (SFA)’ model, which is one of the most popular models used
in the field of laser-atom interaction. The SFA model is based on two main
approximations. First, the influence of the core potential on the ionized
electrons is neglected and second, all intermediate bound states except the
ground state are neglected. In chapters three and four we compare the re-
sults of the SFA model with the ab initio solution of the TDSE for the energy
spectra and the angle-resolved momentum distributions for several laser pa-
rameters. This comparison is on the one hand important to understand for
which problems the SFA model provides reliable results. On the other hand
the comparison itself is a powerful tool to analyze the results obtained with
the numerical solution of the TDSE.
In our study we found that many aspects of the low-energy spectra as well
as of the angle-resolved momentum spectra can be explained with the sim-
ple SFA model. Discrepancies between the two calculations are caused by
the action of the core potential on the ionized electrons or/and the effect of
intermediate bound states in the ionization process.

The in chapter four performed study on angle-resolved electron momen-
tum spectra was motivated by recent experiments (Rudenko et al. [20], Ma-
harjan et al. [21]). We have investigated the dominant structures in the
momentum spectra. The angle-resolved spectra give information about the
position, parity and dominant angular momentum of the ATI peaks. We ob-
serve that the laser-induced subpeaks within one ATI peak all have the same
parity. Thus, by the parity it is straightforward to distinguish the subpeaks
belonging to one ATI peak from the next ones in the angle-resolved momen-
tum spectra. Additionally, in this chapter we have addressed the question
whether a dip or a peak is observed in the projection on the momentum
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parallel to the polarization direction. In recent experiments (Rudenko et al.
[20], Moshammer et al. [58, 94]) it was found that the spectra for helium and
neon show a pronounced dip in the parallel-momentum distribution, while
for argon a peak was observed. Since this dip has a striking similarity to the
momentum-spectra observed for non-sequential double ionization the first
interpretation of this dip was rescattering of the ionized electron. In a sub-
sequent study the influence of the Coulomb potential on the ionized electron
was investigated in a semiclassical model (Dimitriou et al. [61]) and it was
shown that the Coulomb potential leads to a similar structure in the parallel
momentum distribution. In (Arbo et al. [59]) structures in the momentum
spectra were attributed to a Ramsauer-Townsend Diffraction pattern. In
a recent improved experiment (Rudenko et al. [20]) it was however shown
that not only a dip is observed in the momentum spectra but also a series of
sharp structures which positions do not change with the intensity. This latter
observation leads to the conclusion that Freeman resonances are most prob-
ably responsible for the observed structures in the angle-resolved momentum
spectra in experiment. However, recent measurements for argon (Maharjan
et al. [21]) which showed a deep dip for 400 nm questioned the origin of this
dip again. In this thesis we could give an alternative explanation for the
observed dip. We prove the influence of the parity of the low-energy elec-
trons on the observed structures in the momentum spectra. Our calculations
agree well with experiment for argon and neon for 400 nm which proves the
reliability of the theoretical as well as the experimental results. Addition-
ally, our detailed study covering a wide range of laser parameters helped to
solve the confusion caused by the various explanations of the dip in literature.

In the following chapters we discuss the ionization dynamics with an
attosecond pulse in the presence of a femtosecond, probe laser pulse. Pump-
probe experiments are the most direct approach to tracing fast dynamics
in the time domain. The extension of time-resolved (pump-probe) spec-
troscopy to ultrafast electronic processes taking place deep inside atoms has
so far been frustrated by simultaneous requirements of short wavelengths (i.e.
high photon energy) and sub-femtosecond pulse duration. Additionally, for
a straightforward interpretation of spectroscopic data, isolated pulses were
needed. With single attosecond pulses and a precisely timed laser pulse at
hand, the streak-camera concept (Drescher et al. [11]) could be extended
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to study the ionization dynamics of core electrons. In a recent experiment
on a krypton gas target the lifetime of an Auger transition was measured
to be 8 femtoseconds. The attosecond pulse excites a core electron and the
probe laser pulse is used to obtain information about the ionization process.
Two limiting regimes can be distinguished. For short lifetimes of the reso-
nant state the resulting spectrum shifts periodically up and down, following
the oscillation of the probe laser field. In the limit of long lifetimes of the
resonance, the pulse envelope samples the ionization process. We have in-
vestigated in this thesis the more complex behavior of the excitation of a
Fano resonance. We found that in the pump-probe spectra it is possible to
separate the two ionization channels for an autoionizing decay, the resonant
and the direct ionization channel. E.g. in the case of a long lifetime of the
resonance, the resonant channel leads to sidebands in the spectrum while the
direct channel is responsible for the up and down shifted part of the spec-
tra. We have generalized our description to the case of two (overlapping)
resonances. We find that in the case of the coherent excitation of two Fano
resonances a beating in the signal of ionized electrons can be seen, where
the beating frequency is proportional to the energy spacing between the two
resonances. We show that this beating signal is sensitive to the relative sign
of the excitation matrix elements for the two resonances. Thus information
about the off-diagonal elements of the density matrix can be obtained. In the
last figure of this thesis we show that the time-differential ionization prob-
ability for the two resonances is almost identical to the signal seen in the
pump-probe spectra. This clearly proves that non trivial information about
the ionization process happening on a femtosecond time scale can be directly
extracted from the pump-probe spectra.
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