
Dissertation

FFT Specific Compilation

on IBM Blue Gene

ausgefuhrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

Ao. Univ.-Prof. Dip1.-Ing. Dr. techn. Christoph W. ~ b e r h u b e r
El01 - Institut fur Analysis und Scientific Computing

eingereicht an der Technischen Universitat Wien
Fakultat fur Informatik

von

Dip1.-Ing. Stefan Kral

Matrikelnummer 9625239
Anzengrubergasse 611 116

2380 Perchtoldsdorf

Perchtoldsdorf, am 22. Mai 2006

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Vorwort

Algorithmen zur digitalen Transformation von Signalen sind im Scientific Compu-
ting von grofiter Bedeutung und werden in zahlreichen Gebieten angewendet-von
der Echtzeit-Signalverarbeitung in eingebetteten Systemen bis zur numerischen
Losung partieller Differentialgleichungen im Rahmen komplexer Simulationen auf
Supercomputern.

Die Entwicklung und Publikation der schnellen Fourier-Transformation (FFT)
durch Cooley und Tukey leitete die Entwicklung einer neuen Klasse schneller Si-
gnalverarbeitungsalgorithmen ein, die - im Gegensatz zur direkten Auswertung
des entsprechenden Matrix-Vektor-Produktes - nicht eine Berechnungskomple-
xitat von O(N2), sondern nur von O (N log N) haben. Fur eine bestimmte Trans-
formation gibt es aber nicht nur einen eindeutig bestimmten schnellen Algorith-
mus, sondern eine ganze Vielzahl aquivalenter Algorithmen. Diese Algorithmen
unterscheiden sich nur unwesentlich im Hinblick auf ihren Rechenaufwand, umso
mehr aber in ihrem Speicherzugriffsverhalten, was auf modernen Computersyste-
men mit ihren mehrstufigen Speicherhierarchien zu enormen Laufzeitunterschie-
den fiihren kann.

Automatische Performance-Tuning-Systeme, wie zum Beispiel die den State-
of-the-art verkorpernden Signalverarbeitungs-Programmbibliotheken FFTW und
SPIRAL, fiihren auf einem gegebenen Computersystem eine Suche nach dem op-
timalen Algorithmus im Raum aller aquivalenten Algorithmen und Implementie-
rungen durch. Da der Output von Performance-Tuning-Systemen aber in Form
von C-Code erfolgt, ist deren Leistung durch die Qualitat der verfiigbaren Com-
piler beschrankt .

Die vorliegende Arbeit stellt einen neu entwickelten Special-Purpose-Compiler
vor, der fur die ~ b e r s e t z u n ~ laufzeitkritischer Codes existierende C Compiler er-
setzt. Dieser Compiler, die Vienna MAP compiler tool-chain, besteht aus den
folgenden Komponenten, die speziell den Bedurfnisse von Signalverarbeitungsco-
des angepasst sind: (i) Der MAP Vectorizer extrahiert 2-weg SIMD-Parallelismus
in numerischen Straight-Line-Codes. (ii) Der MAP Optimizer fuhrt lokale Code-
verbesserungen durch, wie sie von versierten Assembler-Programmierern manuell
ausgefuhrt werden. (iii) Zuletzt erzeugt das MAP Backend Assemblercode fur
die Zielarchit ektur.

Die wichtigste Ziel-Architektur des MAP-Compilers ist der IBM PowerPC 440
FP2 Prozessor, der in IBM Blue-Gene-Systemen - den derzeit schnellsten Super-
computern der Welt - eingesetzt wird. FFTW-Grundroutinen, die mit Hilfe der
Blue-Gene-Version des MAP-Compilers ubersetzt werden, erreichen eine Effizienz
von bis zu 80% und damit die dreifache Leistung jener Objekt-Codes, die von der
aktuellsten Version des optimierenden IBM XL C Compilers erzeugt werden.

Preface

Digital signal transforms are core algorithms in computational science and en-
gineering, ranging from real-time signal processing in small-scale problems with
stringent time constraints up to large-scale simulations based on partial differen-
tial equation solvers running on the world's largest supercomputers.

Starting with Cooley and Tukey's work on the fast Fourier transform (FFT),
a vast class of fast signal transform algorithms has been developed, pushing the
computational complexity down from O(N2) to O (N log N). In practice, however,
there is not just one unique algorithm, but a large number of fast algorithms for
computing one specific transform. These diverse algorithms are equivalent, but
may differ significantly with regard to their memory access behavior, which causes
tremendous runtime differences on all common-place machines with deep memory
hierarchies.

Automatic performance tuning systems-like the state-of-the-art signal trans-
form libraries FFTW and SPIRAL-search the space of suitable algorithms and
implementations, automatically generating a large number of promising codes. To
obtain the best performing code on a given target hardware, the search process
is guided by empirical runtime measurements. However, as the program gener-
ators used in automatic performance tuning systems produce high-level C code,
the performance of these systems is clearly limited by the quality of available
compilers.

The thesis a t hand presents a newly developed special-purpose compiler-the
Vienna MAP compiler tool chain-as a replacement for general purpose high-level
compilers in the context of automatic performance tuning systems. The MAP
tool chain is composed of several generic components, consecutively focusing on
specific properties of signal transform codes. (i) The MAP vectorizer extracts
2-way SIMD-style parallelism out of numerical straight line code. (ii) The MAP
optimizer performs local code improvements similar to the ones that experienced
programmers would achieve by hand. (iii) Finally, the MAP backend produces
assembly code for the specific target architecture.

The primary target architecture of the MAP compiler is IBM's PowerPC 440 FP2
processor used in all Blue Gene systems, currently being the fastest supercom-
puters worldwide. FFTW'S core routines were compiled by the Blue Gene version
of the MAP compiler. The resulting assembly code boasts an unprecedented
performance-reaching a level of 80% efficiency. That way, MAP compiled codes
are up to three times as fast as object codes obtained with the latest version of
IBM's optimizing XL C compiler.

Acknowledgement S

I want to thank everybody who supported me in writing this thesis.

First, and most importantly, I want to thank my family-my mother Anna, my
father Alfred, and my sister Maria. You probably don't know how much strength
I get out of our family ties.

Next, I want to thank my advisor, Christoph Ueberhuber, for his encouragement,
his patience, and for the enormous amount of feedback and support.

Also, I want to thank all members of AURORA group 5, in particular Franz
Franchetti for motivating me to work on Blue Gene and for his ideas regarding
code optimization on Blue Gene, Juergen Lorenz for his experiments and hints
on compilers, Andreas Bonelli for his patience in explaining tensor products to
me, and the late Herbert Karner for guiding my first steps in the field of applied
mat hemat ics.

I want to thank the authors of FFTW, Matteo Frigo and Steven Johnson, for their
cooperation and their encouragement.

Also, I want to thank the following people at IBM-for their advice, organisa-
tional skills, and for helping me carry out experiments on pre-release Blue Gene
hardware: Gheoghe Almasi, Jose Brunheroto, John Gunnels, Manish Gupta, Jose
Moreira, and Ramendra Sahoo.

Finally, I want to thank the US Department of Energy a t Lawrence Livermore Na-
tional Laboratory (LLNL) and the Austrian Science f i n d (FWF, SFB AURORA)
for their financial support.

Contents

. l Introduction
. 1.1 Parts of a Computer System

. 1.2 Maximizing Peak Performance
. 1.3 Maximizing Efficiency

. 1.4 Optimizing Signal Transform Performance
. 1.5 The Vienna MAP Compiler Tool Chain

. 2 Fast Algorithms for Linear Transforms
. 2.1 Discrete Linear Transforms
. 2.2 The Fast Fourier Transform

. 3 Software and Hardware Architecture
. 3.1 Automatic Performance Tuning Software

. 3.2 Short Vector SIMD Extensions
. 3.3 2-Way SIMD Basics

. 3.4 The Blue Gene Processor

. 4 The MAP 2-way SIMD Vectorizer
. 4.1 Basic Properties

. 4.2 Implementation Basics

. 4.3 Implementation Details

. 5 The MAP Optimizer
. 5.1 Scalar Rules

. 5.2 Generic SIMD Rules
. 5.3 Target Architecture Specific SIMD Rules

. 5.4 Substitution Rules

. 6 The MAP Backend for Blue Gene
. 6.1 Resource Allocation

. 6.2 Scheduling

. 7 Compilation Examples
. 7.1 Input Code Representation

. 7.2 Intermediate Code Representation
. 7.3 FFT Example Codes

. 8 Results

. A MAP Backend Source Codes 126

. A.l Generic Auxiliary Modules 126
. A.2 Input and Output of Prolog Terms 136

. A.3 Instruction Definitions 145

. A.4 List-based Scheduling 146
. A.5 Register Allocation 153

. Bibliography 159

. Curriculum Vitae 167

Chapter 1

Introduction

Digital signal transforms are core algorithms in computational science and en-
gineering, ranging from real-time signal processing in small-scale problems with
stringent time constraints up to large-scale simulations based on partial differen-
tial equation solvers running on the world's largest supercomputers.

This wide range of applications-each having its particular requirements with
regard t o type of transformation (linear vs. non-linear), data types (fixed-point
vs. floating-point arithmetic), data formats (real, interleaved complex, split com-
plex), one or multi-dimensional data-is covered by a large class of digital signal
transform algorithms, packaged into libraries providing application programmers
with well-tested, well-documented tools fitting a vast area of problems.

In the field of compute-intensive scientific numerical software, speed is a highly
relevant demand on digital signal transform codes. Minimizing the runtime re-
quired for transforming data allows dealing with ever more complex problems and
ever larger data sets. Thus, time is a major driving force in the development of
software for computational science and engineering applications.

By transforming the power equation of physics, i.e., power = workltime, it fol-
lows that

Work
Time =

Peak-Performance X Efficiency '

This equation shows that there are basically three ways for minimizing the run-
time required for solving a particular problem. Firstly, the work that needs to be
done could be reduced, i. e., the algorithms' complexity could be minimized. Sec-
ondly, the peak performance of the computer system might be increased. Finally,
the efficiency is to be maximized, i.e., the percentage of the peak performance
actually achieved by the algorithm implemented on a given computer system has
to be made as large as possible.

The three factors of runtime equation (1.1) are certainly not independent of
each other. For example, new hardware features that help to increase the peak
performance of a computer system may decrease the efficiency of certain programs
and may often require new types of algorithms to achieve a proportional runtime
reduction.

CHAPTER 1. INTRODUCTION

1.1 Parts of a Computer System

In the context of minimizing the time required for transforming digital signal
data, the components of a general purpose computer system take different roles.
Fig. 1.1 shows a hierarchy of the relevant parts of a computer system-comprising
hardware and software-and symbolizes their impact on actual performance.

r - - w . * . - - - - - - - " -F

i Applications
L ... - -- .

- - ----
Algorithms ..
"m - , ~ o r n ~ i ~ e - r g -

~ icro~rocessor Design
' -U- - -,W.."--

 system -"- -. Architecture

Figure 1.1: Hardware and Software Components of a Computer System. Any com-
ponent of a computer system (depicted on the left) has an individual influence on the three
factors of equation (1.1), i.e., work, efficiency, and peak performance. The peak performance
of a system is determined by the hardware alone, work (complexity) is solely a software issue,
while efficiency depends on both hardware and software.

1.1.1 Hardware Components

Hardware development-among other goals-aims a t (2) pushing the aggregated
peak performance of a computer system and at (ii) promoting high efficiency, i. e.,
making available a satisfactory percentage of the theoretical peak performance to
many applications.

Semiconductor Technology provides the engineering processes required for
producing highly integrated microprocessors as well as memory and logic chips.

In 1965 Intel co-founder Gordon E. Moore predicted that it would be techni-
cally feasible to regularly double the number of circuit elements integrated into a
single chip, provided the market demand grew constantly to finance the required
research and development.

Moore's prediction-commonly referred to as "Moore's Law" (see Fig. 1.2)-
has held true for the past 40 years. It turned out to be an important factor
in achieving the unbroken exponential growth of performance, as miniaturiza-
tion progress allows increasing clock frequencies and t o integrate more and more
complex features.

CHAPTER 1. INTRODUCTION

Doubling time: 18 months. /

1970 1980 1990 2000

Year

Figure 1.2: Moore's Law. The illustration shows the number of feature elements integrated
into a selection of Intel microprocessors, ranging from the 4 bit 740 kHz "4004" to the 64 bit
1.6 GHz "Itanium 2 9M". The discussion of hardware development will focus on the widely
used IA-32 (x86) processor family (8086, 286, 386, 486, and Pentium).

The semiconductor industry expects Moore's law to remain valid for the next
10 to 15 years, as reflected in the international technology roadmap for semicon-
ductors (ITRS) [44].

System Architecture defines the large-scale structure and configuration of a
computer system. A single system usually comprises several microprocessors,
variable amounts of shared or distributed memory organized in a memory hierar-
chy, as well as peripherals like permanent storage devices, networking infrastruc-
ture, and audio/video hardware-typically linked by a high-speed interconnect
optimized for high throughput and low access time.

Microprocessor Design produces processor models that can be mapped onto
silicon utilizing the available process technology, defining both details directly
visible to an assembly programmer-like the instruction set architecture (ISA)
and the application binary interface (AB1)-as well as micro-architectural details
about how instruction sequences are processed internally.

CHAPTER 1. INTRODUCTION 4

System architecture and microprocessor design turn the exponential growth of
the number of circuits on a chip-made possible by advances in semiconduc-
tor technology-into a tantamount performance growth of cost-efficient computer
systems, suitable for scientific, commercial, and particularly for personal com-
puting, and, to an increasing extent, for the consumer electronics mass-markets,
represented, for instance, by video game consoles.

While microprocessor design directly focuses on maximizing the performance of
individual processing components, system architecture tries to aggregate the re-
spective components in a way that leads to an optimal overall performance.

1.1.2 Software Components

Software development, as opposed to hardware development, aims at (i) mini-
mizing the workload and a t (i i) maximizing efficiency.

Algorithms are responsible for carrying out the workload of applications. For
many problems in science and engineering, there are large sets of algorithms
available to choose from for solving well-defined parts of a given problem or for
combining solutions of subproblems. Individual algorithms may differ in many
respects, including memory footprint, arithmetic complexity, best-case vs. worst-
case number of operations, memory access patterns, size, steadfastness, generality,
maintainability, and, quite likely, many more.

On a high-level, any particular algorithm requires a specific amount of work
to solve a given problem, which is quite often characterized by abstract measures
like asymptotic complexity classes.

On the actual implementation level, algorithms expressed by means of a pro-
gramming language often have a profound impact on the efficiency of the code
output by the compiler.

Libraries comprise a collection of algorithms in form of computer code, needed
for solving a class of problems in some specific domain, conveniently offered
through a documented library-application interface. Low-level libraries shield
applications from specific target processor details. For instance, PAP1 [66] pro-
vides an abstract interface to performance counters for enabling accurate runtime
measurements.

Applications in computational science and engineering often utilize optimized
libraries to solve specific subproblems efficiently.

Compilers transform a wide range of codes written in some high-level language
into assembly code, aiming at good utilization of the target hardware and its
specific features.

Optimizing compilers for general purpose microprocessors usually focus on
maximizing speed or on minimizing code size. Special purpose compilers like

CHAPTER 1. INTRODUCTION 5

optimizing compilers for digital signal processors (DSPs) may additionally focus
on special issues like minimizing energy consumption [58].

For at least two reasons, compilers have significantly pushed back assembly
hand coding efforts in almost any domain. Firstly, high-level languages allow
programmers to focus on the software and to ignore hardware-specific features,
which improves portability and maintainability of the codes and raises human
productivity. Secondly, programmers gradually gained well-earned trust in the
ability of the compilers to produce high-quality assembly code-one of the main
reasons for the success of one of the earliest wide-spread high-level programming
languages, Fortran [6].

System Software. The operating system has been deliberately left out of the
following considerations, because its influence on the focus of this thesis-single-
threaded codes working on data present in memory-is of minor importance.

1.2 Maximizing Peak Performance

Apart from raising the clock frequency, several techniques have proven successful
for increasing the peak performance of a single chip and have found their way
into the mainstream of general purpose computing during the past years. All
these techniques directly aim at increasing parallelism, for instance, by raising
the number of functional units available.

Dedicated Hardware Support for basic scalar data types is a necessary pre-
requisite for achieving competitive performance. For instance, starting with the
Intel 486, the IA-32 family includes dedicated on-chip hardware for the support
of floating-point arithmetic, which is more than ten times faster than emulating
floating-point operations in software.

The amount of hardware features supplying basic floating-point operations
differs considerably between various processor families, a fact reflected in the size
of the instruction set. For instance, PowerPC processors offer a fused multiply-add
(FMA) instruction, i. e., a floating-point instruction that combines a multiplica-
tion with a dependent addition, thus providing a means for effectively doubling
the theoretical peak performance.

Instruction Pipelining can improve the instruction throughput by subdividing
instructions into different stages, overlapping the execution of different instruc-
tions a t different stages.

Because of the cost of mispredicted branches and because of dependencies
between instructions, pipeline lengths cannot be arbitrarily increased without
degrading the performance of the majority of codes. Such efficiency related issues
are the reason why various hardware techniques like branch optimization and
out-of-order execution, presented in the next section, have found their way into
modern processor design.

CHAPTER 1. INTRODUCTION 6

Pipelining was a novel feature of the RISC design of the SPARC and the
MIPS processor families [67], introduced in 1985. These processors have been
highly successful on the workstation market, and set the stage for all modern
processors featuring a RISC-style core. Eventually, this technology entered the
desktop sector, with the Intel 486 in 1989.

Over the past twenty years, the number of instruction pipeline stages in gen-
eral purpose processors has risen more than previously considered [67]. While the
classic RISC pipeline had only five stages-instruction fetch, instruction decode,
execute, memory access, and writeback-pipelines in contemporary processors
have around 15 stages, the Intel Pentium 4 being a noticable exception with
more than 30 pipeline stages. With their new architecture introduced in 2006,
Intel made a considerable step back and reduced the pipeline length to 14.

Instruction Level Parallelism. Executing multiple instructions in parallel
can be accomplished by either super-scalar execution or by explicitly parallel
instruction computing (EPIC).

With super-scalar execution, the processor hardware is responsible for extract-
ing parallelism out of a sequence of instructions. With EPIC, this responsibility
is transferred to the compiler, thus allowing for a simpler design of the hardware.

All current mass-market processors are based on super-scalar execution, usu-
ally allowing to execute up to a handful instructions of different types (memory,
integer, and floating-point) in parallel.

SIMD Style Parallelism. Starting with the mid-1990s, many processors in-
cluded single-instruction rnultzple-data (SIMD) style instruction set extensions
for efficiently dealing with relatively short vectors of fixed-lengths, which consist
of scalar integer, floating-point, or pixel data.

Hardware support for SIMD style parallelism is still gaining momentum, with
the latest example being Intel's Core Duo processor, introduced in 2006. Core
Duo signifantly improves upon previous designs with regard to the throughput of
SIMD instructions.

Multi-core Computing. Since the end of the 1990s, the continual combined
increase of clock frequencies and pipeline depths has slowed down significantly.
To further increase the peak performance, chip manufacturers started integrating
multiple independent processor cores onto a single chip.

The first multi-core processors had two cores and targeted servers and work-
stations: IBM Power 4 (2000), HP PA-8800 (2003), Sun UltraSPARC IV (2004),
AMD Opteron (2005), and Intel Xeon DP (2005).

In 2005, AMD and Intel introduced two new dual-core processors for desktop
computers: the Athlon 64 X2 and the Intel Pentium 4D.

Multi-core technology entered the video game console market in late 2005,
when Microsoft's Xbox 360-featuring the triple-core PowerPC-based IBM Xenon
processor-became available.

CHAPTER 1. INTRODUCTION 7

As of mid-2006, another two important milestones were reached. First, Intel
introduced Core Duo, the first dual-core processor for notebook computers. Then,
Sun released the eight-core UltraSPARC T1 processor, which specifically targets
multi-threaded web-servers, offering both multiple cores and chip-level multi-
threading with up to four logical threads per core.

Ongoing and Future Development. Future processor development of general
purpose processors will most likely see only marginal increases in pipeline depths
and in the amount of super-scalar execution supported.

SIMD support is very likely to be improved (i) by adding useful new instruc-
tions that are currently still missing in most SIMD instruction set extensions and
(ii) by adding more functional units available for use by SIMD instructions.

The number of cores integrated into one chip will steadily rise. The IBM
cell processor, which comprises one main PowerPC core and eight synergistic

c' processor units (SPU), will become available in late 2006 with the release of
Sony's Playstation 3 game console. General purpose quadruple-core processors
for both servers and desktop computers are anticipated for 2007. Also for 2007,
Sun plans to release the UltraSPARC T2 that executes up to eight logical threads
per core.

Maximizing Efficiency

In the past thirty years, development in process technology, general purpose com-
puter hardware, and computer software has been influenced more and more by
the demands of the mass market, particularly by personal computers.

Multi-level Memory Hierarchies. The need for cost-effective, highly-inte-
grated random access memory (RAM) with moderate power consumption, put
dynamic RA M (DRAM) ahead of static RA M (SRAM) . As DRAM is significantly
slower than SRAM, with the performance gap widening year by year, multiple
levels of caches, varying in speed and size, were added as a buffer between the
processor(s) and main memory.

While caches are usually fully transparent to the programmer, they may be-
come a severe performance obstacle if an application does not exhibit high tem-
poral and spatial locality of reference (see Fig. 1.3).

Modern processor hardware automatically prefetches data that are likely to be
needed in the near future, and additionally supports software-directed prefetch-
ing. Both prefetching methods may contribute to increased performance, but
may also deteriorate performance, if the data being prefetched are not used in
time.

To reduce latencies, caches are often integrated into the processor leading to a
mixed Harvardlvon-Neumann architecture with unified level 2 and level 3 caches,
a unified address space, but with the level l caches being split for instructions
and data.

CHAPTER 1. INTRODUCTION 8

Processor Micro-Architecture Improvements aim a t a high execution effi-
ciency of processor cores.

Branch optimization-static or dynamic branch prediction and speculative
execution-aims at minimizing branch related pipeline stalls.

Out-of-order execution enables the processor core to execute instructions in an
order that is different from the one present in the machine code, i. e., instructions
may be delayed until all required operands are available. Out-of-order execution
has proven useful for increasing efficiency in the presence of long instruction
pipelines and high memory latencies.

Chip-Level Multit hreading. Based on the assumption that most threads are
not utilizing all available multiple execution units a t the same time, simultaneous
multithreading allows the issuing of multiple instructions from multiple threads
in one cycle, with multiple "logical" threads of execution competing for the very

CI same computational resources.
While this technique may also be used for error detection and recovery, the

main focus lies on increasing the throughput of a system running multiple threads.

Progress in Compiler Development. To produce high quality output for a
wide range of input codes, modern compilers include sophisticated optimization
mechanisms, addressing scalar, vector and parallel codes. Some optimizing com-
pilers allow their decisions to be guided by data gained from dynamic profiling.
The level of efficiency reached by a compiler depends on how well an input code
in high-level language can be mapped to assembly code that exploits hardware
specific features to a satisfactory degree.

1.4 Optimizing Signal Transform Performance

State-of-the-art signal transform software to be run on general purpose computers
achieves high performance by explicitly addressing two issues that are not handled

(1 by existing general purpose compilers. Firstly, they aim a t a minimization of
the work required for any particular transform. And secondly, they focus on
optimizing the order of memory access operations.

1.4.1 Minimizing Work

An important and often very successful way of minimizing the time required
to solve a particular problem is to minimize the algorithm's complexity, i. e., to
reduce the algorithmic workload that needs to be done. In some areas, like solving
special linear systems, complexity reduction of algorithms was as successful as
progress in hardware development reflected by Moore's law.

Fast Signal Transforms. In the case of linear digital signal transforms, the
development of a revolutionary new class of algorithms with reduced arithmetic

CHAPTER 1. INTRODUCTION 9

complexity has been initiated by the (re-)discovery of the fast Fourier transform
(FFT) by Cooley and Tukey in 1965. The FFT is based on a factorization of the
discrete Fourier transform (DFT) matrix into a product of sparse matrices, done
in a recursive fashion.

Similar decompositions were derived for many other linear signal trans-
forms, like the Walsh-Hadamard transform (WHT), various discrete cosine trans-
forms (DCT), or certain wavelet transforms-and all are based on the same prin-
ciples as Cooley and Tukey's approach.

Because of its great influence on "the development and practice of science and
engineering", the FFT has been named one of the "Top Ten Algorithms of the
20th Century", the result of an international voting compiled by Dongarra and
Sullivan [H].

Reduced Arithmetic Complexity. The divide-and-conquer style decompo-
sition of the transform matrix pushes the problem complexity of the respective
transform from O(N2), i. e., the complexity of general matrix-vector products,
down to O (N log N). This kind of complexity reduction is particularly valuable
because its speed-up effect gets bigger and bigger with increasing problem size.

For example, on general purpose sequential computers, well-written FFT
codes always outperform straight-forward DFT codes implementing a full matrix-
vector product, even for the smallest problem sizes. This performance advantage
of the FFT over the DFT even increases as the problem size gets larger.

1.4.2 Efficiency Issues

The advent of deep memory hierarchies made clear that "making the common
case fast in an economical way" may work well for many codes, but had a severe
impact on the efficiency of digital signal transform codes.

Locality of Reference. While the formulation of many fast algorithms in
Cooley-Tukey style naturally leads to a recursive implementation, considerable
effort has been put into the design of FFT codes in iterative style, assuming
that iterative constructs like loops have significantly lower overhead than recur-
sive subroutine calls. Loop nested signal transformation algorithms, however, do
not exhibit high locality of reference, which inevitably leads to a performance
deterioration, in particular if the access speed of main memory is low.

To compare the locality of reference of iterative vs. recursive algorithms, Fig. 1.3
illustrates two in-place 16-point radix-2 Cooley-Tukey style algorithms calculat-
ing the Walsh-Hadamard transform (WHT). The illustration on the left shows
the behavior of an iterative algorithm, the one on the right the behavior of an
equivalent recursive version.

The different memory access patterns illustrated by Fig. 1.3 are responsible
for several problems. Firstly, the iterative access pattern is more prone to cache
capacity misses, as the algorithm's storage access operations linearly progress

CHAPTER 1. INTRODUCTION

Iterative Calculation Recursive Calculation

memory memory

time time

Figure 1.3: Comparison of Memory Access Patterns of Two WHTIG Implementa-
tions. In both address-spaceltime diagrams, a consecutive part of memory holding the signal
data being transformed is presented on the y-axis, while the x-axis marks advances in time. A
dot at position (i, j) tells that the algorithm accesses the ith element of some data vector at the
jth time-step of the calculation.

r'
over the entire data several times, while the recursive algorithm splits the original
transform into two, solves them separately and combines the respective results.
Secondly, common-place systems with 2"way set associative caches, may have a
lot more cache conflict misses running an iterative algorithm than by running an
equivalent recursive version, especially if the vector size is a power of two, like in
the chosen example.

Problems Arising from Cache Associativity. As Cooley-Tukey style algo-
rithms have a lower arithmetic operation count for power-of-two than for non-
power-of-two vector lengths, a bizarre situation occurs on systems with ak-way
set associative caches: Algorithms with the lowest operation count are the ones
that are hit the hardest by cache conflict misses due to the order of memory
access operations.

Choice of an Efficient Algorithm. Iterative signal transform algorithms have
low control-flow related overhead. Recursive algorithms have better locality of
reference. To get the best of both worlds, iterative and recursive algorithms may
be combined.

For a given transform type, there is, in general, an exponentially growing num-
ber of different iterativelrecursive Cooley-Tukey style algorithms. All these differ-
ent algorithm versions perform a comparable number of arithmetic operations-
often within a very narrow range of a few percent-and still, their performance
varies significantly, mostly because of different orders of memory accesses.

1.4.3 Automatic Performance Tuning

The step from programming one fixed algorithm for solving a given problem
towards searching the space of possible algorithmic implementations marks the
appearance of a new paradigm in high-performance computing, automatic per-
formance tuning.

CHAPTER 1. INTRODUCTION 11

Based upon empiric runtime measurement instead of explicit performance
modeling, automatic performance tuning allows creating portable software that
covers all performance critical aspects of a target machine, including those that
cannot be modeled easily, like memory access behavior. Taking runtime as the
objective function of the planning process does not only focus on hardware related
issues, but also on the software side, i. e., algorithms and compilers.

runtime [ns]

Figure 1.4: Runtime Comparison of 15,778 Implementations of a DCT:~. This
diagram from [71] shows a histogram of runtimes for 15,778 straight-line codes computing the
type IV discrete cosine transform for vectors of length 16, DCT:~. All codes were automatically
generated by SPIRAL, compiled using GCC 2.95, and measured on an Intel Pentium 4 with
1.8 GHz. While the number of arithmetic operations performed by these codes differs only by a
few percent-the number of additions ranges from 96 to 104 and the number of multiplications
from 48 to 56-their runtime spans from 430 to 900 nanoseconds, more than a factor of 2. Only
1.5% of the codes are within a 10% range of the fastest code found.

One of the motivations for automatic performance tuning is to overcome the
limitations of existing general purpose compilers. Fig. 1.4 shows that general

r' purpose compilers may exhibit paradox behavior when applied to comparatively
long sequences of straight line code. To obtain satisfactory performance, the
following options are available, each having its own advantages and shortcomings.

(i) SPIRAL puts the compiler into the optimization loop, which guards against
compiler idiosyncrasies, as a large number of codes are actually generated and
evaluated. However, the size of this optimization loop significantly contributes
to long adaptation times.

(ii) FFTW has a somewhat smaller optimization loop, which speeds up the
automatic adaptation process, but also necessitates an adaptation of the domain-
specific code generator to the peculiarities of the compilers used [28].

(iii) The work presented in this thesis aims at overcoming all the compiler-
related problems by replacing the general purpose compiler by a domain-specific
compiler, the MAP tool chain. By focusing on straight line code, the design and
implementation of the MAP compiler is kept as simple as possible. Although this

CHAPTER 1. INTRODUCTION 12

approach is considerably less portable than the other ones, it is a successful way
to higher performance.

Automatic performance tuning has been introduced as an algorithmic method for
achieving high efficiency of code operating on large data sets, relieving compilers
of the responsibility to optimize the order of data access operations acting on deep
memory hierarchies. This paradigm has been particularly successful for libraries
in the field of digital signal transforms [69, 301 and in linear algebra [16].

FFTW - The Fastest Fourier Transform in the West

In 1997, Matteo Frigo and Steven G. Johnson presented FFTW [29, 301, the
"Fastest Fourier Transform in the West", a portable, high-performance library
for computing complex and real discrete Fourier transforms in one or many di-
mensions. In the meantime, FFTW has become the de-facto standard in FFT
software.

Planning. Unlike other FFT libraries, FFTW does not rely on one fixed algo-
rithm to perform a requested transform, but uses a separate stage of planning to
determine how to efficiently solve a specific problem on some given target ma-
chine using a fixed set of DFT kernel routines called codelets. As planning is
guided by empirical measurement, it is quite likely that-for non-trivial problem
sizes-FFTW actually executes two different algorithms when run on two suffi-
ciently different machines. The knowledge gained in the planning stage, called
"wisdom", may be stored for later reuse. When performing a transformation,
FFTW traverses plans, calling the specified kernel routines as requested.

Automatic FFT Code Generation. FFTW'S kernel routines are generated au-
tomatically by a special purpose FFT code generator called genf f t. Apart from
many others, genfft is a remarkable piece of software because of two reasons.
Firstly, it was able to automatically derive new algorithms previously unknown
in the signal processing community. And secondly, genfft demonstrated how
high-level code can profit both from domain specific optimization techniques like
FFT-graph based high-level scheduling and compiler specific tricks like providing
tight life-spans for temporary variables to the C compiler.

Acceptance and Recognition. FFTW is the well-established de-facto standard
for computing the DFT, ranging from desktop computers-where it has been in-
tegrated into the MATLAB system-up to the largest supercomputers like IBM's
Blue Gene systems. It offers portable high performance on a wide range of ma-
chines, often beating other available free and commercial libraries, especially in
cases that require the processing of large amounts of data. In recognition of their
efforts, the authors of FFTW were awarded the prestigious James H. Wilkinson
Prize for Numerical Software in 1999. Current development of FFTW is presented
in [30].

CHAPTER 1. INTRODUCTION 13

SPIRAL - Signal Processing Algorithms Implementation Research for
Adaptive Libraries

SPIRAL [61] is a generator system for DSP transform software and hardware, pri-
marily developed by a group of researchers a t Carnegie-Mellon University. SPIRAL
operates on its own special-purpose high-level language-the signal processing
language (SPL)-that allows describing linear signal transformations concisely
in a special mathematical notation and to explicitly express relevant semantic
information.

Similar to FFTW, SPIRAL performs a search for the best-suited implementa-
tion of a given transform. Unlike FFTW, SPIRAL is not packaged as a stand-alone
library including a number of widely used codes, but rather as a library generator.
The current status and ongoing development in SPIRAL is presented in [69].

1.4.4 Utilizing SIMD Extensions

High-level compilers have long shielded the application programmer from the
complexity of many internal features of orthogonal processor architectures.

This situation changed considerably when special purpose SIMD instruction
set extensions were added to general purpose processors to push the performance
of multimedia applications.

Compiler Support for SIMD Instructions may be provided by general pur-
pose compilers in two different ways.

Firstly, a compiler may completely hide the complexity of these features, by
offering automatic SIMD vectorization of loops or basic blocks, possibly aided by
user-supplied directives ("pragmas") .

Secondly, the compiler may take the easy way out and expose the complexity of
the extensions, supplying special vector types and ISA specific intrinsic functions
operating on values of these types. This does not only push the responsibility for
the utilization from the compiler to its users, but also results in non-portable code
because of the inherent differences of existing SIMD instruction set extensions.

Compiler Inadequacies. Several experiments have shown disappointing re-
sults of general purpose compilers when handling digital signal transform codes
(see Fig. 1.4). This has the following reasons.

Firstly, most codes to be compiled in the context of performance tuning sys-
tems are automatically generated by a program generator and can be very large,
pushing some compilers to their limit.

Secondly, the code may not profit from loop-level vectorization, which tries
to identify multiple independent iterations of a loop that can be executed simu-
latenously using vector instructions, simply because it does have any.

Thirdly, there may be more than one way to map a scalar code to short vector
SIMD hardware. Unless a vectorizer performs a tremendous amount of search, it
is very likely to produce SIMD code with poor performance.

CHAPTER 1. INTRODUCTION 14

Finally, linear transform code has a rich internal structure that cannot be seen
directly in the code. Knowledge about this particular structure can be utilized
to guide the vectorization process, and thus allows producing satisfactory output
in reasonable time.

High-Level Vectorization. Due to the limitations of existing compilers, ex-
isting successful approaches for automatically creating high-performance SIMD
enabled digital signal transform code address vectorization on the algorithmic
(or the library) level, performing algebraic manipulations of high-level domain
specific language constructs, utilizing rich semantic information. The resulting
code is then transformed to non-portable high-level code with intrinsics.

1.5 The Vienna MAP Compiler Tool Chain
r\ SIMD extensions led to a revival of hand coding and hand tuning of non-portable

code, especially in a number of performance critical applications.

This thesis presents special compilation techniques for creating single-threaded
high-performance digital signal transforms codes, closing the performance gap
between code generated by general purpose compilers and assembly code written
by skilled hand-coders.

The Vienna MAP compiler has been developed to focus on compute inten-
sive straight line codes as generated automatically by special purpose program
generators like FFTW'S genf f t.

Structure of the Compiler. The Vienna MAP compiler comprises a set of rel-
atively generic components, arranged in the form of a flexible tool chain, that al-
lows for easy experimentation with different arrangements of compilation phases,
including feedback driven optimization loops.

Unlike other program generators, MAP does not produce C code, but covers

i-' the entire range of compilation, from domain-specific high-level code to target
specific assembly code.

Human-readable Representations. All input, output, and intermediate pro-
gram representations are fully human-readable. The compiler does not only allow
introspection a t any given point, but also the injection of code into the compiler.

The injection of code helps with the development and maintenance of the
compiler and aids the understanding of details of the compilation process, which
can get quite complex, due to interactions between tool chain components.

The intermediate representation supports the annotation of instructions to
preserve high-level information (e. g., about variable aliasing, variable types, etc.)
throughout the compilation.

Optimizations performed by the MAP compiler include newly developed tech-
niques for utilizing advanced hardware features like 2-way SIMD-style functional

CHAPTER 1. INTRODUCTION

Complex 1D FFT on an IBM PowerPC 440 FP2

I I I I I I I I I I I I I I I I
map-vect ~c

xlcmapvect - -n - -
xlcscalar+...-

xlc-vect -1-
-

-

I

P(Figure 1.5: Performance Comparison for Power-of-two 1D FFTs. This plot shows
the performance of FFT routines compiled by the following compilers and settings. xlc-scalar
uses the IBM XL C compiler without automatic vectorization. xlc-vect uses IBM XL C with
automatic vectorization. xlc-mapvect uses the MAP vectorizer and optimizer, producing C code
with SIMD intrinsics compiled by IBM XL C. map-vect uses the MAP vectorizer, optimizer,
and backend.

units and FMA operations, as well as established compiler backend techniques,
like optimal register allocation and list-based instruction scheduling for super-
scalar architectures.

Maintainability and Portability. Many components of the MAP tool chain
(e. g., vectorizer, register allocator, and instruction scheduler) can easily be
adapted to any current target architecture by using parameter files that describe
relevant parts of the target architecture.

Implementation on IBM's Blue Gene Systems. The newly developed tech-
niques have been integrated into a special version of the MAP tool chain aiming

r\ at the Blue Gene systems' IBM PowerPC 440 FP2 processors.
To assess the performance gain obtained with the presented techniques, code

produced by the MAP compiler was integrated into the automatic performance
tuning library FFTW to create a state-of-the-art high-performance PowerPC spe-
cific version of FFTW targeting at IBM's Blue Gene supercomputer series, i.e.,
FFTW-GEL for Blue Gene.

Fig. 1.5 compares the performance of FFT routines on a single processor of an
IBM Blue Gene system, clearly demonstrating that all parts of the MAP compiler
significantly improve the floating-point performance. In the best case, MAP
reaches as much as 80% of the optimum performance, thus beating the latest
version of IBM's optimizing XL C compiler by up to a factor of three.

FFTW-GEL for Blue Gene has been used in a number of applications, including
the runner-up of the 2005 Gordon Bell Award, the large-scale molecular dy-

CHAPTER 1. INTRODUCTION 16

namics simulation code QBOX [39], which achieved a sustained floating-point
performance of 60 Tflop/s. Recent developments of application codes utilizing
FFTW-GEL reach an even more outstanding performance level.

Synopsis

This thesis consists of three main parts: (i) Foundations, (ii) the Vienna MAP
compiler, and (iii) experimental results.

Foundations

Chapter 2 provides the mathematical foundations of discrete linear transforms
and in particular of the fast Fourier transform.

Chapter 3 presents the software architecture of automatic performance tuning
software and the SIMD instruction set extensions available on modern micropro-
cessors, particularly focusing on the peculiarities of the Blue Gene processor.

The Vienna MAP Compiler

The main part of thesis presents the newly developed special-purpose Vienna
MAP compiler for IBM Blue Gene in detail.

Chapter 4 describes a new method for the automatic 2-way SIMD vectorization
of numerical straight line code, which produces globally optimal code in a large
number of cases, including complex FFT kernels of arbitrary lengths and real
FFT kernels of even lengths.

Chapter 5 illustrates domain-specific peephole optimization techniques aiming a t
a good utilization of target specific hardware features like SIMD FMAs.

Chapter 6 describes domain-specific backend optimization techniques and their
implementation in a backend specifically designed for the IBM PowerPC 440 FP2
processor.

Chapter 7 illustrates the functioning of the Vienna MAP compiler as a whole,
describing its input, its output, its ways of intermediate program representation,
as well as its compilation process by tracking a selection of example codes through
all relevant stages.

Experimental Results

Chapter 8 presents and discusses performance data of code generated by the
Vienna MAP compiler, which have been measured recently on state-of-the-art
Blue Gene systems that are currently the fastest computers worldwide.

Chapter 2

Fast Algorithms for Linear Transforms

Discrete linear transforms are important tools used in a wide range of real-life
applications, ranging from spectal analysis of signals, to the lossy compression of
video and audio data, to voice recognition, to the multiplication of large integers
or polynomials, to solving partial differential equations.

This chapter defines and discusses discrete linear transforms and fast algo-
rithms for such transforms, following the methodology introduced by the SPI-

rt RAL team [61]. The approach is based on Kronecker product factorizations of
transform matrices and on recursive factorization rules.

Discrete Linear Transforms

This section defines discrete linear transforms as a foundation for the specific
discussion of fast Fourier transform algorithms in the next section. In this thesis,
the main focus is on the discrete Fourier transform and its fast algorithms based
on the Cooley-Tukey recursion.

Discrete linear transforms are represented by real or complex valued matrices and
their application means to calculate a matrix-vector product. Thus, they express
a base change in the vector space of sampled data.

Definition 2.1.1 (Real Discrete Linear Transform) Let X E R", y E R",
and M E Rmxn. The real linear transform of X is obtained by the matrix-vector
multiplication

y = M x .

Examples of real discrete linear transforms include the Walsh-Hadamard trans-
form as well as all sine and cosine transforms.

Definition 2.1.2 (Complex Discrete Linear Transform) Let X E C", M E
~ m x n , and y E Cm. The complex linear transform of X is given by the matrix-
vector multiplication

y = M x .

A particularly important example of complex discrete linear transforms and the
main focus in this thesis is the discrete Fourier transform (DFT), which, for size
N, is given by the following two definitions.

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS 18

Definition 2.1.3 (Discrete Fourier Transform Matrix) The matrix DFTN
is defined for any N E N with i = fl by

DFTN = (e 2 ~ i k l l N l k , l = o , l , . . . , N - l) .

The values w 2 = e2Tike/N are called twiddle factors.

Example (DFT Matrices) The first five DFT matrices are

1
DFT, = (l), DFT2 = (: -) , DFTj = 1 e-2xi/3 e-4~i/3

1 e-4xi/3 e-2~i/3

DFT4 is the largest DFT matrix having only trivial twiddle-factors, i.e., l,i,-1,and -i.

Definition 2.1.4 (Discrete Fourier Transform) The discrete Fourier trans-
form y E (CN of a data vector X E (CN is given by the matrix-vector product

2.1.1 Fast Algorithms

Many discrete linear transforms can be calculated by using fast algorithms, which
reduce the algorithmic complexity from O(N2)-as required by the direct evalu-
ation of a matrix-vector product-down to O (N log N). This complexity reduc-
tion, and the resulting runtime reduction, makes these transforms suitable for the
processing for large amounts of data.

Example (FFT) The complexity reduction factor obtained by using an FFT algorithm in-
stead of plain matrix-vector multiplication is approximately 2N2/(5Nlog2 N). For N = 2'O
this complexity reduction is equivalent to the progress of 20 years in hardware development.

Mathematically, any fast algorithm for a discrete linear transform can be viewed
as a factorization of the transform matrix into a product of sparse matrices. It
is a specific property of discrete linear transforms that these factorizations are
highly structured and can be written in a very concise way using the formalism
of Kronecker (tensor) products [82].

Two particularly important classes of sparse matrices arising in FFT factoriza-
tions are stride permutation matrices and twiddle factor matrices. The product
of an input vector with these sparse matrices can be performed with O (N) cost.

The permutation operator L:n sorts the components of X according to their index
modulo n . Thus, components with indices equal t o 0 modn come first, followed
by the components with indices equal to 1 modn, and so on.

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS 19

Definition 2.1.5 (Stride Permutation) For a vector X E Cm" with

mn-l

s = xkepn with eTn = e l @ ey , and zk E C,
k=O

the stride permutation LPn is defined by its action on the tensor basis of (Cmn:

Twiddle factor matrices are certain diagonal matrices, whose elements are roots
of unity.

Definition 2.1.6 (Twiddle Factor Matrix) Let WN = e2"ilN denote the N t h
root of unity. The twiddle factor matrix, denoted by T T , is a diagonal matrix
defined by

. .
T r (e T @ e;) = wgn(eT 8 ey), i = O l l , . . . l m - l, j = O , l l . . . , n - ll

m-l n-l m-l

where Rn,k(a) = diag(1, a, . . . , $-l)".

Example (DFT4) Consider a sparse factorization, i.e., a fast algorithm, for DFT4. Using
the mathematical notation from 1821 it follows that

(2.1)

O O O i

T: denotes the twiddle matrix diag(1, 1,1,i). L; denotes a stride permutation that swaps the
two middle elements XI and x2 of four-dimensional vectors, i. e.,

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS

2.1.2 Automatic Derivation of Fast Algorithms

In [22] a method has been introduced that automatically derives fast algorithms
for a given transform and size. This method is based on algebraic symmetries of
the transformation matrices utilized by the software package AREP [21], a library
for the computer algebra system GAP 1371 used in SPIRAL. AREP is able to
factorize transform matrices and to find fast algorithms automatically. In [68] an
algebraic derivation of fast sine and cosine transform algorithms is described.

2.1.3 Recursive Rules

One key element in factorizing a discrete linear transform matrix into sparse
factor matrices is the application of breakdown rules.

A breakdown rule describes the factorization of a given transform matrix into
into several transforms of smaller sizes. These smaller transforms, which may
be of a different type, can be further expanded. Thus, rules can be applied
recursively to reduce a large linear transform to a number of smaller discrete
linear transforms.

The applicability of breakdown rules depends on the transform size, implicitly
encoded into the left-hand side of a rule. For instance, in the following definitions,
the rule for breaking down a WHT may only be used for transform lengths being
a power-of-two. Variables occuring on the left-hand side of a rule are used as
parameters of the expression on the right-hand side.

In the following examples P,, P;, and P: denote permutation matrices, S, de-
notes a bidiagonal matrix and D, a diagonal matrix [85].

Example (Walsh-Hadamard Transform) The WHTN for N = 2k is given by

k times

A particular example of a breakdown rule for this transform is

Example (Discrete Cosine Transform) The matrix DCTN for arbitrary N is given by

DCTN = (COS ((C + 1 / 2) k ~ / N) I k,C = 0,1 , . . . , N - 1)

A corresponding breakdown rule is

DCT2n = P2n (DCTn CDS2n DCTn D2n) Pin (In @ DFT2) P;:,

Example (Discrete Fourier Transform) A rule for the DFTN matrix is given by

DFTmn = (DFT, @ In) T r n (Im @ DFTn) LEn . (2.3)

(2.3) is the Cooley-Tukey FFT written in Kronecker product notation 1451. This particular rule
will be discussed in more detail in Section 2.2.

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS 2 1

Transforms of higher dimension are captured in the framework of breakdown
rules in a natural way. For example, if M is the matrix of an N X N transform,
then the corresponding two-dimensional transform is given by M 8 M. Using the
respective property of the tensor product, the breakdown rule

is obtained.

2.1.4 Formulas and Base Cases

Eventually a mathematical fomnula is obtained when all transforms are expanded
into base cases.

P'
Example (Fully Expanded Formula for WHTs) According to rule (2.2), WHTs can
fully be expanded into

with DFT2 being the base case.

2.1.5 Trees and Recursion

The recursive decomposition of a discrete linear transform into smaller ones using
recursion rules can be expressed by trees. The authors of FFTW call these trees
plans while the SPIRAL team calls them rule trees. In these trees the essence of
the recursion-the type and sizes of the child transforms-is specified.

As an illustrative example, rule trees for a recursion rule that breaks down a
transform of size N into two smaller transforms is discussed. Fig. 2.1 shows a tree
of a discrete linear transform of size N = mn that is decomposed into two smaller
transforms of the same type of size m and n. The node marked with mn is the
parent node of the child nodes lying directly below, which indicate transforms of

n size m and n.

Figure 2.1: Tree representation of a discrete linear transform of size N = mn with one
recursion step applied.

Analogously, Fig. 2.2 shows a tree of a discrete linear transform of size N = lcmn
where in a first step the transform is decomposed into discrete linear transforms
of size lc and mn. In a second step the transform of size mn is further decomposed
into transforms of size m and n.

In general, the splitting rules are not commutative with respect to m and n.
Thus, the trees are generally not symmetric. Left and right child nodes have to

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS

h
Figure 2.2: Right-expanded tree, two recursive steps.

be distinguished, which is done simply by left and right branches. Every tree has
one root node, i.e., a node having no parent nodes. Nodes without children are
called leaf nodes. All remaining nodes are intermediate nodes.

The upmost recursive decomposition in a tree, the one of the root node, is
called the top level decomposition. If its two branches are equivalent the tree
is called balanced, if they are nearly equivalent it is said to be "somewhat bal-

I? anced." But there also exist trees that are not balanced at all. They may be even
extremely unsymmetrical. A tree with just leafs as left children is formed strictly
to the right. Such a tree is called right-expanded, its contrary left-expanded.

2.1.6 The Search Space

By selecting different breakdown rules, a given discrete linear transform expands
to a large number of formulas that correspond to different fast algorithms. For
example, for N = 2" there are k - l ways to apply rule (2.3) to DFTN. A similar
degree of freedom recursively applies to the smaller DFTs obtained, which leads
to 0(5k/k3/2) different formulas for DFT2k. In the case of the DFT, allowing
breakdown rules other than (2.3) further extends the formula space.

The problem of finding an efficient formula for a given transform translates
into a search problem in the space of formulas for that specific transform. The
size of the search space depends on the rules and transforms actually used.

The conventional approach to solving the search problem is to make an educated
(1 guess (using some machine characteristics as hints) which formula might lead to

an efficient implementation and then to continue by optimizing this formula.

The automatic performance tuning systems SPIRAL and FFTW use a radically dif-
ferent approach. Instead of explicitly modeling machine characteristics and their
impact on performance, both systems use intelligent search, guided by empirical
runtime measurements, to find implementations well-adapted to some particular
target. SPIRAL uses various search strategies and fully expands the formulas.
FFTW uses dynamic programming and restricts its search to the coarse grain
structure of the algorithm [30]. The rules are hardcoded into the executor while
the fine grain structure is fixed by the codelet generator genf f t at compile time.

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS

2.2 The Fast Fourier Transform

In the last section, discrete linear transforms and the discrete Fourier transform
were briefly introduced using a special mathematical notation, which made clear
that such transforms feature an intrinsic recursive structure.

In this section, different types of the Cooley-Tukey recursion are presented.
The difference between conventional iterative algorithms and the recursive ap-
proach used by SPIRAL and FFTW is discussed. Conventional iterative algorithms
and vector computer algorithms are summarized.

2.2.1 The Cooley-Tukey Recursion

In 1965 Cooley and Tukey [l31 published the fast Fourier transform for problem
sizes being powers of two. Other authors extended the idea from powers of two

fn to arbitrarily composed numbers. A summary of the historic development of the
FFT, whose origins date back to Car1 Friedrich Gauss, can be found in [82].

In the decades following Cooley and Tukey's publication, FFT algorithms
were obtained by applying breakdown rules recursively and then manipulating
the resulting formulas to obtain the respective iterative algorithms. However,
in the context of this thesis, the recursive rules are more important than the
iterative algorithms. Section 2.2.2 discusses the difference between the iterative
and the recursive approach.

There are four equivalent formulations of the Cooley-Tukey recursion rule, shown
in Theorem 2.2.1. These versions can be transformed into each other by exploiting
algebraic identities of tensor products, effectively choosing whether the identity
matrix is the left or the right factor of the first and the second tensor product
occuring in the rule.

Theorem 2.2.1 (Cooley-Tukey Breakdown Rules) For mn 2 2

0
DFT,, = (DFT, 8 I,) T T (I, 8 DFT,) L T P I T)

= L T (I, 8 DFT,) T T (DFT, 8 I,) (DIF)
= (DFT, Q9 I,) Tzn L T (DFT, 8 I,) (Vector)
= LKn (I, 8 DFT,) L r n T T (I, 8 DFT,) L P . (Parallel)

With decimation in time (DIT), the initial step is a permutation, which allows to
perform the transform out-of-place without any additional copying overhead. The
vector (or four-step) and the parallel (or six-step) FFT rules aim a t a formulation
exhibiting terms that are inherently well-suited for expressing vector or parallel
operations. Vector and parallel rules are usually applied only once on top-level.

The parallel rule of Theorem 2.2.1 was developed by Bailey [7]. A second recur-
sive application of this rule is the prerequisite for parallel one-dimensional FFT
algorithms which overlap communication and computation [25, 471.

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS

2.2.2 Iterative vs. Recursive FFT Algorithms

This section outlines the two basic strategies in organizing FFT programs. For the
implementation of an FFT algorithm there are two radically different strategies
for successively applying one of Cooley-Tukey breakdown rules.

In recursive FFT algorithms, the multiplication by the DFT matrix is per-
formed by calling program modules that compute the subproblems according to
the chosen rule. The child problems are further decomposed by recursively call-
ing the same program again and again until the DFTs are small enough to be
executed directly by optimized leaf routines. This approach is used by SPIRAL
and FFTW.

Iterative FFT code contains the entire matrix decomposition explicitly and
manages all tasks directly. Thus, all recursive decomposition steps are flatted
and the computation is done stagewise leading to conventional triple loop FFT
implementations [82] that perform the DFT computation stagewise. Each stage
requires an additional pass through the data vector.

Recursive FFTs

While divide-and-conquer descriptions of the FFT are standard in introductory
texts, almost all non-adaptive high performance FFTs use an iterative implemen-
tation. This is due to the widespread opinion that recursive implementations of
divide-and-conquer algorithms are too expensive. This belief is based on the fact
that the required function calls were among the computationally most expensive
instructions for a long time.

However, an intriguing feature of divide-and-conquer algorithms is that they
should run well on computers with deep memory hierarchies without the need
for blocking or tiling. Each successive divide step in the divide-and-conquer
process generates subproblems that touch successively smaller portions of data,
thus increasing locality of reference. For any level of the memory hierarchy,

f l there is a level of division below which all the data touched by the subproblem
will fit into that level of the memory hierarchy. Therefore, a divide-and-conquer
algorithm can be viewed as an algorithm that is blocked for all levels of the
memory hierarchy.

This idea of achieving optimal use of caches on all levels of a memory hierarchy
without knowledge of their sizes is refered to as cache-obliviousness [32].

In the recent development of computer systems, memory access operations
became more and more expensive when compared to function calls. Several years
ago FFTW [29] broke with the tradition of iterative FFTs and implemented a
recursive hardware adaptive FFT computation.

SPIRAL [61, 691 extended this recursive approach to all kinds of discrete linear
transforms. For each transform and problem size SPIRAL generates intrinsically
recursive code, that is partially unrolled for even higher performance.

CHAPTER 2. FAST ALGORITHMS FOR LINEAR TRANSFORMS

Iterative FFTs

All conventional non-adaptive FFT algorithms and their implementation have an
iterative structure. The first FFT algorithm published by Cooley and Tukey was
a right-expanded radix-2 factorized FFT, whose decomposition strategy was clear
and explicitly implemented. For decades the execution of an FFT was seen as a
sequence of computational stages; each stage corresponding to one factor of the
products that define algorithms in the modern notation.

Typically, Cooley-Tukey type FFT algorithms for dealing with data vectors
of length N = 2" are implemented in form of a triple-loop [82].

While the design and programming of such implementations is rather easy [82],
their performance is often not optimal because vector lengths vary from stage to
stage and therefore the cache usage far from being optimal. Yet, as long as the
input vector fits into the cache memory entirely the iterative strategy was supe-
rior because there is no overhead due to additional program organization, which
was expensive on earlier computer generations. On current computer systems,
however, such a clear statement is not possible any more.

Vector Computer FFT Algorithms and Short Vector Extensions

The two Stockham FFT algorithms [80, 821 and the 4-step FFT algorithm have
been designed specifically for conventional vector computers. In principle, these
algorithms could be used also on current processors featuring short vector SIMD
extensions, but they have several drawbacks there.

Complex Arithmetic. Vector computer FFT algorithms are formulated using
complex matrices. Thus, it is necessary to reformulate complex transforms using
real matrices and formulas to capture the level of details required for implemen-
tations successfully utilizing short vector SIMD extensions.

Vector Length and Stride. All three algorithms mentioned above are opti-

P+ mized for long vectors. The Stockham algorithms are optimized for fixed stride
but not for unit stride memory access. Accordingly, these algorithms do not
produce good performance when running on short vector SIMD extensions.

Iterative Algorithms. The very nature of the two Stockham FFT algorithms
and the 4-step FFT algorithm is an iterative one, which conflicts with the re-
quirements of SPIRAL and FFTW to support adaptivity.

Thus, algorithms specifically designed for conventional vector computers are not
suitable for the short vector SIMD extensions of modern processors. To har-
ness the performance potential offered by SIMD extensions, methods specifically
adressing the specific features and limitations of the respective SIMD instruction
set extensions are required.

Chapter 3

Software and Hardware Architecture

In the context of producing efficient digital signal transform codes, a number of
software and hardware features need to be taken in account.

Section 3.1 is devoted to current software architecture in scientific computing and
presents the state-of-the-art in architecture adaptive numerical software used in
the field of linear algebra and digital signal transforms [62]. The following three
sections are devoted to modern hardware architecture. Section 3.2 describes short
vector SIMD ISA extensions, focusing on their basic properties, their utilization,
as well as similarities to vector supercomputers. A basic discussion of 2-way
SIMD instructions follows in Section 3.3. Finally, Section 3.4 introduces the IBM
PowerPC 440 FP2, the processor used in IBM's Blue Gene supercomputers, and
describes its most important features, characteristics, and limitations.

3.1 Automatic Performance Tuning Software

Automatic performance tuning goes a step beyond standard compiler optimiza-
tion. It is a problem specific approach and thus is able to achieve much more
than general purpose compilers are capable of. For instance, ATLAS' search for
the correct loop tiling for carrying out a matrix-matrix product is a loop trans-
formation a compiler could do in principle (and some compilers actually try to
do), if the compiler had an accurate machine model to deduce the correct tiling.
But compilers do not reach ATLAS' performance by far. The same phenomenon
occurs with the source code scheduling done by SPIRAL and FFTW for their au-
tomatically generated straight line code, which should be done satisfactorily by
the target compiler. Again, available general purpose compilers fail to produce
well-performing object code.

3.1.1 Compiler Optimization Methodology

Modern compilers make extensive use of optimization techniques to improve the
object code's performance. Most advanced optimization techniques depend on
static program analyses based on simplified machine models. These optimization
techniques include high-level loop transformations, such as loop unrolling and
tiling. These methods have been extensively studied for over 30 years and have
produced, in many cases, satisfactory results. However, the underlying machine
models are inherently inaccurate, and transformations are not independent from

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE 27

each other in their effect on performance. Thus, the compiler's task of deciding
the best sequence of transformations is a very difficult one [2].

Typically, compilers use heuristics that are based on averaging observed be-
havior for a small set of benchmarks. Furthermore, while processors and memory
hierarchies are typically modeled by static analysis, this does not account for the
behavior of the entire system. For instance, the register allocation policy and
strategy for introducing spill code in the backend of the compiler may have a sig-
nificant impact on the resulting performance. Thus, static analysis is a means to
improving program performance, which is limited by compile-time decidability.

3.1.2 The Program Generator Approach

One of the foundations of source code adaptation at compile-time is automatic
code generation. In this approach, a code generator, i.e., a program that pro-
duces other programs, is used. The code generator takes as parameters certain
information concerning the source code adaptations to be made, e.g., instruc-
tion cache size, choice of combined or separate multiply and add instructions,
lengths of floating-point and fetch pipelines, and so on. Depending on these pa-
rameters, the code generator produces source code hopefully having the desired
characteristics.

3.1.3 Compile Time Adaptive Algorithms
Using Feedback Information

Not any important architectural variable can be handled by parameterized com-
pile-time adaptation. Adaptation to some architectural variables would require a
modification of the underlying source code. This brings in the need for the second
method of software adaptation, compile-time adaptation by feedback directed code
generation, which involves actually generating different implementations of the

P', very same algorithm and selecting the best performing one.

There are at least two different ways to proceed:

(i) The simplest approach is to get the programmer to supply various hand-tuned
implementations, and then to choose a suitable one.

(ii) The second method is based on automatic code generation. In this ap-
proach, parameterized code generators are used. Performance optimization with
respect to a particular hardware platform is achieved by searching, i. e., varying
the generator's parameters, benchmarking the resulting routines, and selecting
the fastest implementation. This approach is also known as automated empirical
optimization of software (A E O S) [88].

In the remainder of this section, existing performance tuning software is described
briefly.

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE

PHiPAC

Portable high-performance ANSI C (PH~PAC) was the first system that imple-
mented the "generate and search" methodology [g]. PH~PAC'S code generator
produces matrix-matrix multiply implementations with various loop unrolling
depths, varying register and L1- and L2-cache tile sizes, different software pipelin-
ing strategies, and enables other options. The output of the generator is C code,
both to make the system portable and to shift responsibility to the compiler for
performing the final register allocation and instruction scheduling. The search
phase benchmarks code produced by the generator under various options to select
the best performing implementation.

ATLAS

The automatically tuned linear algebra software (ATLAS) project is an ongoing
research effort of Jack Dongarra's group at the University of Tennessee, Knoxville,
focusing on empirical techniques in order to produce software having portable
performance. Initially, the goal of the ATLAS project was to provide a portably
efficient implementation of the basic linear algebra subroutines (BLAs). Now
ATLAS provides at least some level of support for all of the BLAS, and first
tentative extensions beyond this level have been taken.

While originally the ATLAS project's principle objective was to develop an
efficient library, today the field of investigation has been extended. Within a
couple of years new methodologies to develop self-adapting programs have become
established, the AEOS approach has been established, thus forming a new sector
in software evolution. ATLAS' adaptation approaches are typical AEOS methods;
even the concept of AEOS-automated empirical optimization of software-was
coined by ATLAS' developers [88]. In this manner, the second main goal of the
ATLAS project is a general investigation in program adaptation using AEOS
methodology.

ATLAS uses automatic code generators in order to provide different imple-
mentations of a given linear algebra operation, and involves sophisticated search
scripts and robust timing mechanisms in order to find the best performing way of
carrying out this operation on a given architecture. More information on ATLAS
can be found in [16].

FFTW

The fastest Fourier t rans form in the west (FFTW) was the first effort to automat-
ically generate FFT code using a special purpose compiler and using measured
runtime as optimization criterion [29, 301. On many architectures, FFTW per-
forms better than publicly available FFT codes and as least as good as hand
optimized vendor-supplied libraries across different machines. Several extensions
to FFTW exist, including the AC FFTW [33] package and the UHFFT library [59].

CHAPTER 3. SOFTWARE AND HARDWARE ARCHITECTURE

Currently, FFTW is the most widely used portable high performance FFT library
that is publicly available.

FFTW provides a recursive implementation of the Cooley-Tukey FFT algo-
rithm. The actual computation is done by automatically generated routines
called codelets which form the base case of the Cooley-Tukey recursion. For a
given problem size there are many different ways of solving the problem with
strongly differing runtimes. FFTW uses dynamic programming which takes the
actual runtime as cost function to find a performance optimized code for calcu-
lating a given DFTN on a particular machine. FFTW consists of the following
fundamental parts.

The Planner. At runtime but as a one time operation during the initialization
phase, the planner uses dynamic programming t o find a good decomposition
of the problem size into a tree of computations according to the Cooley-Tukey

r: recursion called plan.

The Executor. When solving a problem, the executor interprets the plan as
generated by the planner and calls the appropriate codelets with the respective
parameters as required by the plan. This leads to data access patterns which
respect memory access locality.

The Codelets. The actual computation of the FFT subproblems is done within
the codelets. These small routines come in two flavors, (i) twiddle codelets which
are used for the left subproblems and additionally handle the twiddle matrix,
and (ii) no-twiddle codelets which are used in the leaf of the recursion and which
additionally handle the stride permutations. Within a larger variety of FFT algo-
rithms is used, including the Cooley-Tukey algorithm, the split-radix algorithm,
the prime factor algorithm, and the Rader algorithm [82].

The Codelet Generator genfft. At install time, all codelets are generated
by a special purpose compiler called the codelet generator genf f t [31, 281. As an
alternative the preponderated codelet library can be downloaded as well. In the

r" standard distribution, codelets of sizes up to 64 (not restricted to powers of two)
are included. But if special transform sizes are required, the required codelets
can be generated.

Details about FFTW can be found in 1291.

SPIRAL

SPIRAL (signal processing algorithms implementation research for adaptive li-
braries) is a generator for high performance code for discrete linear trans-
forms [61] being developed by a group of researchers at Carnegie-Mellon Uni-
versity (CMU). SPIRAL uses a mathematical approach that translates the imple-
mentation problem of discrete linear transforms, like the DFT, the discrete cosine
transforms (DCTs), and many others, into a search in the space of structurally

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE 30

different algorithms and their possible implementations, to generate code that is
adapted to a given computing platform. SPIRAL'S approach is to represent the
many different algorithms for a transform as formulas in a concise mathematical
language, the signal processing language SPL. These formulas are automatically
generated and automatically translated into code, thus enabling an automated
search. More specifically, SPIRAL is based on the following observations.

For every discrete linear transform transform there exists a v e y large num-
ber of different fast algorithms. These algorithms differ in dataflow but are
essentially equal in the number of arithmetic operations.

A fast algorithm for a discrete linear transform can be represented as a
formula in a concise mathematical notation using a small number of math-
ematical constructs and primitives.

m It is easy to automatically generate alternative formulas, i.e., algorithms,
for a given discrete linear transform.

m A formula representing a fast discrete linear transform algorithm can be
mapped automatically onto a program in a high-level language like C or
Fortran.

DSP transform (user specified)

platform-adapted
implementation

controls
algorithm generation

Formula Generator

fast algorithm
as SPL formula

controls
implementation options

Figure 3.1: General view of SPIRAL'S architecture.

-
E .-
F
LU

c
2
0
2

The architecture of SPIRAL is schematically depicted in Fig. 3.1. The user speci-
fies a digital signal processing (DSP) transform to be implemented, e. g., a discrete
Fourier transform of size 1024. The formula generator expands the transform

CIFortranlSIMD
code runtime on given platform

v

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE 3 1

into one or several formulas, i.e., algorithms, represented in the SPIRAL propri-
etary signal processing language SPL. The formula translator-also called SPL
compiler-translates a formula into C or Fortran code. The runtime of the gener-
ated code is fed back into a search engine that controls the generation of the next
formula and makes possible implementation choices, such as the degree of loop
unrolling. Iteration of this process finally yields a platform-adapted implementa-
tion of the desired transform. Search methods in SPIRAL include dynamic pro-
gramming and evolutionary algorithms. By including the mathematics of signal
transforms into the system, SPIRAL can optimize, akin to a human expert pro-
grammer, on the implementation level and the algorithmic level to find the best
match to the given platform. Details about SPIRAL can be found in [70, 74, 901.

Short Vector SIMD Extensions
F.

One of the most important hardware features with respect to performance opti-
mization in scientific computing single-instruction multiple-data (SIMD) instruc-
tions. Major vendors of general purpose microprocessors have included SIMD ex-
tensions to their instruction set architectures (ISA) to improve the performance
of multi-media applications by exploiting the subword level parallelism available
in most multi-media kernels.

All current SIMD extensions are based on the packing of large registers with
smaller data-types (usually of 8, 16, 32, or 64 bits). Once packed into larger
registers, operations are performed in parallel on the separate data items within
the vector register.

While the first SIMD extensions only operated on vectors of integers, newer
extensions provide floating-point support, making them useful in the context of
scientific computing. Table 3.1 gives an overview over the SIMD floating-point
capabilities found in current microprocessors. Section 3.3 provides an elaborate
presentation of the basics of 2-way SIMD ISA extensions.

n
Table 3.1: Floating-Point SIMD Instruction Set Extensions. For each SIMD ISA, the
vector length, the calculation precision, and the list of supporting processors is provided.

SIMD ISA Name

3DNow!
Ext. 3DNow!
SSE
SSE2
SSE3

Common short vector SIMD extensions increase the arithmetic operation
throughput by a factor two, as shown in Table 3.2.

Type
2 X single
2 X single
4 X single
2 X double
2 X double I Intel Pentiurn 4e, AMD opteron

IA64

Processor(s)

AMD KG-11+
AMD KG-II+, Athlon, Opteron

Intel Pentium 111, AMD Opteron
Intel Pentium 4, AMD Opteron

Altivec (VMX) 1 1 4 X single

FP2 1 1 2 X sineleldouble I IBM PowerPC 440 FP2
2 X single

Motorola PowerPC G4
Intel Itanium

CHAPTER 3. SOFTWARE AND HARDWARE ARCHITECTURE 32

Table 3.2: Scalar and 2-way SIMD Arithmetic Operation Throughput. The Pow-
erPC 440 FP2 can execute 2 additions/subtractions per cycle or alternatively 2 multiplications
per cycle, or 2 multiplications with 2 dependent additions/subtractions in an FMA.

Processor (S)

Intel Pentium 4
IBM PowerPC 440
AMD Athlon/Opteron
Intel Pentium 4

I I I I I

IBM PowerPC 440 I FP2 2 I 2 1 2 (4) 1

IS A

scalar

AMD Opteron I SSE2/SSE3 1 1 1 I l l 2

Because of the increases in operation throughput, the addition of a SIMD exten-
sion to a target processor renders existing legacy scalar codes obsolete, as such
codes utilize only a small fraction of the potential peak performance.

scalar
scalar
SSE2/SSE3

AMD Athlon I SDNow!

Data Streaming Support. One of the key features needed in fast multi-media
applications is the efficient streaming of data into and out of the processor. Multi-
media programs such as video decompression codes stress the memory system in
ways that multi-level cache hierarchies cannot handle efficiently, operating on
volumes of data much larger than first-level caches. Streaming memory systems
and the respective compiler optimizations aim a t reducing memory latency (for
example, via prefetching) and have the potential to improve these applications'
performance, by (i) prefetching data before it is actually used and by (ii) con-
troling the cacheability of data, thereby minimizing cache pollution.

Add/Sub

1

2 1 2 1 4

3.2.1 SIMD Restrictions

1
1
1

Utilizing SIMD extensions efficiently is by no means an easy or straightforward
task, as the SIMD extensions impose strong restrictions on algorithms.

Mu1

1

Data Alignment. Common-place SIMD extensions can only access naturally
aligned vectors efficiently. Although some extensions (e. g., AMD 3DNow!) sup-
port loading sub-vectors or accessing unaligned vectors, these operations are more
costly than aligned vector accesses. With SSE2 and FP2, accessing non-naturally
aligned data causes an internal processor exception, requiring costly operating
system intervention to align the data and to restart the application.

Total

1
1
1
1

Mixing Scalar and SIMD Code. SIMD extensions found in general purpose
microprocessors usually do not allow the efficient mixing of SIMD and scalar
instructions operating on the same data set. AMD 3DNow! does not support
scalar operations on vector data a t all, while Intel SSE2 and IBM FP2 allow
scalar computation on the lower half of 2-way SIMD vector registers. Still, even
on SSE2 and FP2, mixing scalar and SIMD requires expensive auxiliary data
reordering operations.

1 (2)
2
2

CHAPTER 3. SOFTWARE AND HARDWARE ARCHITECTURE 33

Restricted Instruction Level Parallelism. Short vector SIMD extensions
specify parallelism on the level of single instructions, which makes them similar
to multiple instruction issue techniques like super-scalar execution or explicit
parallel instruction computing. However, as the definition of the particular SIMD
instruction set usually imposes severe restrictions on the supported data layouts
and SIMD operations, their utilization is not only a scheduling problem, but also
an instruction selection problem.

3.2.2 SIMD Software Support

Currently, application developers have three common methods for accessing
the SIMD instructions of a general-purpose microprocessor: (i) They can in-
voke vendor-supplied libraries that utilize the new instructions, (ii) rewrite key
portions of the application in assembly language using SIMD instructions, or
(iii) code in a high-level language and use vendor-supplied macros that make
available the extended functionality through a simple function-call-like interface.

System Libraries. The simplest approach to improving application perfor-
mance is to rewrite the system libraries to employ the SIMD hardware features.
The clear advantage of this approach is that existing applications can imme-
diately take advantage of the new hardware without recompilation. However,
the restriction of SIMD instruction utilization to the system libraries also limits
potential performance benefits. An application's performance will not improve
unless it invokes the appropriate system libraries, and the overheads inherent
in the general interfaces associated with system functions will limit application
performance improvements. Even so, this is the easiest approach for a system
vendor, and vendors have announced or plan to provide such enhanced libraries.

Assembly Language. At the other end of the programming spectrum, an ap-
plication developer can benefit from SIMD instructions by rewriting key portions
of an application in assembly language. Though this approach gives a developer
great flexibility, it is generally tedious and error prone. In addition, it does not
guarantee a performance improvement over code produced by optimizing compil-
ers, given the complexity of today's microarchitectures.

Programming Language Abstract ions. Recognizing the tedious and difficult
nature of assembly coding, most hardware vendors, who have introduced multi-
media extensions, provide programming-language abstractions. These give an
application developer access to the newly introduced hardware features without
having to actually write assembly language code. Typically, this approach results
in a function-call-like abstraction that represents one-to-one mapping between a
function call and a SIMD instruction.

There are several benefits of this approach. First, the compiler-and not
the developer-is responsible for machine-specific optimizations such as regis-
ter allocation and instruction scheduling. Second, this method integrates SIMD

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE

operations directly into the surrounding high-level code without an expensive
procedure call to a separate assembly language routine. Third, it provides a high
degree of portability by isolating the application from the specifics of the under-
lying hardware implementation. If the SIMD primitives do not exist in hardware
on the particular target machine, the compiler can replace the SIMD macro by a
set of equivalent operations.

The most common language extension supplying SIMD primitives is the en-
hancement of the C programming language by function-call like intrinsics (or
built-in) functions and new data types to mirror the instructions and vector reg-
isters. For most SIMD extensions, a t least one compiler featuring such language
extensions exists. Examples include C compilers for HP'S MAX-2, Intel's MMX,
SSE, and SSE 2, Motorola's AltiVec, and Sun's VIS architecture as well as the
GNU C compiler that supports a broad range of short vector SIMD extensions.

Each intrinsic directly translates into a single SIMD instruction, and the com-
piler allocates registers and schedules instructions. This approach would be even
more attractive to application developers if the industry agreed upon a common
set of macros, rather than having a different set from each vendor.

Vectorizing Compilers. While macros may be an acceptably efficient solution
for invoking SIMD instructions within a high-level language, subword parallelism
could be further exploited with automatic compilation from high-level languages
to object code utilizing these instructions. Some vectorizing compilers for short
vector SIMD extensions exist, including the Intel C++ compiler, the PG1 Fortran
compiler and the CodePlay Vector C compiler.

3.2.3 Vector Computers vs. Short Vector SIMD

Vector computers are supercomputers used for large problems in computational
science and engineering, as many numerical algorithms allow those parts which
consume the majority of computation time to be expressed as vector operations.

r\ This holds especially for almost all linear algebra algorithms [35, 191. It is there-
fore a straightforward strategy to improve the performance of processors used for
numerical data processing by providing an instruction set tailor-made for vector
operations as well as suitable hardware.

This idea materialized in vector architectures comprising specific vector in-
structions, which allow for componentwise addition, multiplication and/or divi-
sion of vectors as well as the multiplication of a vector's components by a scalar.
Moreover, there are specific load and store instructions enabling the processor to
move all components of a vector to or from main memory.

The hardware counterparts of vector instructions are the respective vector
registers and vector units. Vector registers are memory elements which are able
to hold vectors of a given maximum length. Vector units performing vector
operations, as mentioned above, usually require the operands to be stored in
vector registers.

CHAPTER 3. SOFTWARE AND HARDWARE ARCHITECTURE 35

Vector computers are specialized machines not comparable to general purpose
processors featuring short vector SIMD extensions. The most obvious differences
on the vector extension level are the larger vector lengths, the support for oper-
ating on smaller portions of vectors, and non-unit stride memory access. In vec-
tor computers actually multiple processing elements are processing vector data,
while in short vector SIMD extensions only a very short fixed vector length is
supported. Also, an increasing number of SIMD extensions-like Intel SSE3 and
AMD 3DNow!-do not only offer the inter-vector parallelism style instructions
found in vector supercomputers, but also intra-vector parallelism style instruc-
tions, which are particularly useful for reducing the overhead associated with data
reordering within vector registers.

Example (Vector Computers) The Cray T90 multiprocessor uses Cray Research Inc. cus-
tom silicon CPUs with a clock speed of 440 MHz, where each processor has a peak performance
of 1.7 Gflopls. On any processor there are 8 vector registers with 128 words (vector elements)
of eight bytes (64 bits) each.

Current vector computers provided by NEC range from deskside systems (the NEC SX-
6i featuring one CPU and a peak performance of 8 Gflopls) up to one of the most powerful
computers in the world: the Earth Simulator featuring 5120 vector CPUs running at 500 MHz,
thus reaching a theoretical peak performance of 41 Tflop/s.

The high performance of floating-point operations in vector units is mainly due
to the concurrent execution of operations (as in a very deep pipeline).

There are further advantages of vector processors as compared with other
processors capable of executing overlayed floating-point operations.

As vector components are usually stored contiguously in memory, the access
pattern to the data storage is known to be linear. Vector processors exploit
this fact using a very fast vector data fetch from a massively interleaved
main memory space.

There are no, memory delays for a vector operand that fits completely into
a vector register.

There are no delays due to branch conditions as they might occur if the
vector operation were implemented in a loop.

In addition, vector processors may utilize the super-scalar principle by executing
several vector operations per time unit [20].

Parallel Vector Computers

Most of the vector supercomputer manufacturers produce multiprocessor systems
based on their vector processors. Since a single node is so expensive and so finely
tuned to memory bandwidth and other architectural parameters, the multipro-
cessor configurations have only a few vector processing nodes.

CHAPTER 3. SOFTWARE AND HARDWARE ARCHITECTURE

Example (Parallel Vector Computers) A NEC SX-5 multi node configuration can include
up to 32 SX-5 single node systems for the SX-6A configuration.

However, the latest vector processors fit onto single chips. For instance, NEC's SX-6 nodes
can be combined to form much larger systems in multiframe configuration where up to 1024
CPUs are combined. In the Earth Simulator, even 5120 CPUs are integrated into a single
system, comprising 640 shared memory processor nodes, connected by a 640-by-640 single-stage
non-blocking crossbar switch.

Vectorizing Compilers

Vectorizing compilers were developed for the vector computers described
above [91, 891. Using vectorizing compilers to produce short vector SIMD code for
discrete linear transforms in the context of adaptive algorithms is not straightfor-
ward. As the vectorizing compiler technology originates from completely different
machines and in the short vector SIMD extensions other and new restrictions are
found, the capabilities of these compilers are limited. Especially automatic per-
formance tuning poses additional challenges to vectorizing compilers as the codes
are generated automatically and intelligent search is used which conflicts with
some compiler optimization. Thus compiler vectorization and automatic perfor-
mance tuning cannot be combined easily. The two leading adaptive software
systems for discrete linear transforms cannot directly use compiler vectorization
in their code generation and adaptation process.

FFTW. Due to the recursive structure of FFTW and the fact that memory access
patterns are not known in advance, vectorizing compilers cannot prove alignment
and unit stride properties required for vectorization. Thus FFTW cannot be
vectorized automatically using compiler vectorization.

SPIRAL. The structure of code generated by SPIRAL implies that such code
cannot be vectorized directly by using vectorizing compilers without some hints
and changes in the generated code. A further difficulty is introduced by opti-
mization~ carried out by SPIRAL. Vectorizing compilers only vectorize rather
large loops, as in the general case the additional cost for prologue and epilogue
has to be amortized by the vectorized loop. Vectorizing compilers require hints
about which loop to vectorize and to prove loop carried data dependencies. It is
required to guarantee the proper alignment. The requirement of a large number
of loop iterations conflicts with the optimal code structure, as in discrete linear
transforms a small number-sometimes as small as the vector length of the SIMD
extension-turns out to be most efficient. In addition, straight line codes cannot
be vectorized satisfactorily by available compilers.

Vector Computer Libraries

Traditional vector processors have typically vector lengths of 64 and more ele-
ments. They are able to load vectors at non-unit stride but feature a rather high
startup cost for vector operations [45]. Codes developed for such machines do

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE 3 7

not match the requirements of modern short vector SIMD extensions. Highly
efficient implementations for DFT computation that are portable across different
conventional vector computers are not available. For instance, high-performance
implementations for Cray machines were optimized using assembly language [46].
An example for such a library is Cray's proprietary SCILIB [53].

3.3 2-Way SIMD Basics

This section presents 2-way SIMD arithmetic and data reordering operations.

3.3.1 Arithmetic SIMD Operations

Traditionally, SIMD ISAs only supported the classical "vertical" SIMD style,
defining vector operations as a number of parallel point-wise scalar operations.

However, with short vector SIMD, it also makes sense to support other styles,
like "horizontal" style SIMD, which allows reducing (parts of) vectors to scalars
packed into a vector. Horizontal SIMD style code can be optimized more easily,
as reordering operations like "Swap" can often be folded easily into horizontal
SIMD instructions, particularly if-the basic scalar operation is commutative.

Fig. 3.2 depicts the two SIMD styles. While all SIMD ISAs offer vertical SIMD,
only a few of them (AMD 3DNow! and Intel SSE3) also support a horizontal
SIMD style.

i- . - . - . * a ,'. ,'.. --
Inter-operand SIMD . . [-: Jntra-operand .-m . SIMD .- .. .

Figure 3.2: 2-way Binary SIMD Operation Layouts. Both common layouts for binary
2-way SIMD operations are shown. On the left, there is a classical inter-operand ("vertical")
SIMD style operation that performs two parallel point-wise scalar operations. On the right,
there is an intra-operand ("horizontal") SIMD style operation that reduces two vectors to two
scalar values, packed into a SIMD vector.

SIMD sign change operations (shown in Fig. 3.3) toggle the sign of one or both
parts of a vector. These operations are often needed as auxiliary instructions, par-

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE 38

ticularly for "mixed" SIMD arithmetic instructions performing scalar operations
with different signs, combining, for instance, one addition and one subtraction.

Figure 3.3: 2-way SIMD Sign Change Operations.

(‘t Sign change support greatly varies among different SIMD instruction sets. AMD
3DNow! allows performing sign change operations either by doing a multiplication
or by using the bitwise integer exclusive-or operator to toggle the sign bit. Intel
SSE3 offers mixed parallel SIMD add/sub instructions, which implicitly perform
a sign change on one half of the input vector. IBM FP2 offers special SIMD FMA
instructions that toggle some particular part of an input vector.

3.3.2 Data Reordering SIMD Operations

Depending on the concrete data formats supported by the actual SIMD arithmetic
instructions available on some target architecture, the layout of data residing in
vectors may need to be rearranged. Data may be shuffled in memory-using a
sequence of partial vector stores followed by vector loads-or in registers. Gen-
erally, the in-register method is to be preferred whenever possible.

Fig. 3.4 shows some basic 2-way SIMD reordering operations.
A

Figure 3.4: Basic 2-way SIMD Reordering Operations. On the left, four unary oper-
ations (Copy, Swap, DupL, DupH) are shown. On the right, the binary reordering operation
"Unpack" is depicted, which has four different forms. "UnpackLL" packs the lower parts of two
vectors, "UnpackHH" the higher part of two vectors, "UnpackLH" and "UnpackHLn the lower
part of one vector and the higher part of the other one.

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE

Arbitrary reordering two SIMD vectors of length 2 can be done by using the
binary 2-way SIMD instruction "Unpack". Common SIMD ISA extensions like
SSE21SSE3 and 3DNow! directly support "UnpackLL" and "UnpackHH" , easing
the efficient in-register transposition of auxiliary 2 X 2 matrices. IBM FP2, on
the other hand, offers extensive support for implicitly performed SIMD reordering
operations by supplying a large variety of SIMD FMA instructions, but lacks
efficient support for these operations in the general case.

"UnpackLHV and "UnpackHL" mix the lower part of one vector register with
the higher part of another, combining a "Swap" operation with a dependent
"UnpackLL" or "UnpackHH" instruction. Currently, only the Itanium SIMD
ISA offers a reordering instruction of this kind.

3.4 The Blue Gene Processor

Blue Gene Servers. Top-performing supercomputers are usually based on
the fastest processors available. However, IBM went a radically different way
in their latest hardware development, building Blue Gene servers [60] on a rela-
tively slow embedded-systems processor with low-power consumption, the IBM
PowerPC 440.

To efficiently support scientific computing applications, IBM added a func-
tional unit for double-precision scalar and 2-way SIMD floating-point (FP) arith-
metic, extending the existing processor design by an auxiliary processor unit,
yielding the PowerPC 440 FP2 [10].

One node of a Blue Gene server comprises two PowerPC 440 FP2 processors
on one chip (one processor dedicated to computation, the other one to commu-
nication), shared memory, and high-speed network interconnect hardware. The
biggest installation built to date-BlueGeneIL-is made up of the unprecedented
number of 65,536 nodes integrated into a single distributed memory system, con-
nected by a 3D torus network. The BlueGeneIL system has a theoretical peak
performance of 360 Tflop/s, one order of magnitude larger than the Earth Simu-
lator's performance, the previous leader of the the TOP 500 list, which provided
40 Tflop/s peak performance. As of November 2005, Blue Gene servers take
three out of the ten top positions on the Top500 supercomputing list, including
the number one and two.

This section presents the IBM PowerPC 440 FP2 processor, focusing on the
differences between this particular processor and common-place microprocessors
used in desktop computers like the Intel Pentium 4 and the AMD Athlon64.

Short Profile. IBM's Blue Gene processor, the PowerPC 440 FP2, is a low-
frequency (700 MHz) 32 bit processor with 32 integer registers, 32 SIMD F P
registers, a short (7-stage) pipeline, large split L1 caches (32 kB for instructions,

CHAPTER 3. SOFTWARE AND HARDWARE ARCHITECTURE 40

32 kB for data), a fast non-pipelined multiplier, and support for 2-way super-
scalar out-of-order execution.

Table 3.3: Integer Instruction Support. As Intel's x86 is a 2-operand architecture, most
integer instructions are destructive, mandating that some particular source register must also
be used for storing the output. Thus, instructions like subtraction or shift require additional
copying of one of their source operands if the respective operand is to be referenced again.

1 1 x86/AMD64 I PowerPC I
I General T v ~ e 1 1 2-o~erand 1 3-o~erand l " A I Shift costs

I I l

Integer Support. In digital signal transform codes that operate on floating-
point data, integer instructions are solely used for performing auxiliary tasks like
fulfilling the calling convention or calculating effective addresses.

Regarding the integer instruction set, the PowerPC ISA is generally more flex-
ible than the one of the Intel x86, as shown in Table 3.3. On the other hand, the
PowerPC ISA does not offer a combined shzB by a constant and add instruction,
which is particularly useful for calculating effective addresses of variably-strided
array elements.

2
Sub costs
Negate costs
Shift and add instruction

Table 3.4: PowerPC 440 FP2 Super-scalar Execution. On the PowerPC 440 FP2, both
arithmetic and SIMD data-reordering instructions are assigned to the same functional unit, and
cannot be executed in parallel. At most one instruction per cycle may access naturally aligned
memory.

1
2
2

J (lea)

Execution Limitations. Although the PowerPC 440 FP2 is a dual-issue design,
not all conceivable pairs of instructions may be executed in parallel (Table 3.4).
Accordingly, this processor is significantly less powerful than full-blown processors
available in desktop machines, all of which allow the parallel execution of SIMD
arithmetic and SIMD reordering instructions.

1
1
-

OP/OP
Load/Store
Int Arith.
SIMD Arith.
SIMD Reorder

Arithmetic Support. The PowerPC 440 FP2 supports scalar [73] and 2-way
SIMD [l71 floating point arithmetic, both operating on the same 2-way SIMD
register file, with scalar instructions working on the lower half of SIMD reg-
isters. Support for single-precision floating-point data is offered only for data
loads/stores and explicit rounding operations, but not for most pipelined arith-
metic operations. Both for the scalar and the SIMD case, FMAs are available,

Load/Store
-

J
J
d

Int Arith.

d
J
J
J

SIMD Arith.

d
J
-
-

SIMD Reorder

d
J
-
-

CHAPTER 3. SOFTWARE AND HARDWARE ARCHITECTURE 41

Table 3.5: Comparison of SIMD ISA Extensions. Among different SIMD ISAs there are
considerable differences with regard to (2) the number of available logical vector registers, (ii)
partial vector memory access support, (iii) addressing mode support, (iv) vector swap costs,
and (v) FMA support. SSE2 and SSE3 offer 8 logical registers when used in legacy 32 bit
mode, and 16 registers when operated in 64 bit mode. Explicit copying, i.e., non-destructive,
SIMD swap instructions are only available with AMD 3DNow! and IBM FP2, but not with
Intel SSE21SSE3. IBM FP2 additionally offers a large number of SIMD FMAs that implicitly
swap one particular input operand.

I] SDNow! I Ext. 3DNow! I SSE2 I SSE3 I FP2 I

which doubles the theoretical peak performance and improves the accuracy of
the results by avoiding intermediate rounding. Table 3.5 compares a selection of
SIMD instruction sets with the FP2 SIMD ISA.

Table 3.6: Comparison of Addressing Modes. Intel x86 and AMD64 (used with 3DNow!
and SSE2/SSE3) are CISC-style instruction sets offering many different addressing modes.
The PowerPC is an enhanced RISC-style architecture and offers "update" addressing modes,
which are particularly useful for accessing continuous memory locations. It is notable that the
PowerPC 440 FP2 offers a lot less addressing modes operating on SIMD vectors than on scalars.

Addressing Modes. The PowerPC 440 FP2 offers quite different addressing
modes than other general purpose microprocessors, particularly when operating
on SIMD vectors. Table 3.6 compares the addressing modes offered by Intel x86
compatible machines with the IBM FP2.

The IBM PowerPC 440 FP2 processor has DSP-like addressing mode lim-
itations for SIMD loads/stores, and may thus require considerable amount of
additional integer instructions for address calculation. Minimizing the number of
these extra instructions poses a challenge, not to be encountered when generating
code for general purpose processors. These limitations particularly affect both
constant accesses and stack accesses, which would normally use the "reg+constfl
addressing mode.

FP2

J
J
J

Mode

reg
reg+reg
reg+reg update

I reg+const update

3DNow!

J
J
-

-

SSE2lSSE3

J
J
-

-

PowerPC

J
J
J

J -

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE 42

Experiments have shown that the code needed for effective addresses calcu-
lation often has a significant negative performance impact, in particular in cases
with a high ratio of the memory access count compared to the number of arith-
metic operations. All fast linear signal transform algorithms have this property.

Procedure Calling Convention. The application binary interface (ABI) used
in the Blue Gene environment [40] defines approximately half the registers as
callee-saved, which can be a considerable disadvantage for small leaf procedures.

r-- , - -.-- "-" ..-.-- -. .. -..-A.. ---.-. . . -- P -.- ."" ,. "L"....-

1
t

Symmetric FMA j g Asymmetric FMA Cross-Complex FMA ! - -

Figure 3.5: 2-way SIMD FMA Instructions on Blue Gene Systems.

Vertical SIMD. Unlike other SIMD ISAs, FP2 offers a huge collection of vertical
SIMD FMAs (Fig. 3.5). IBM has coined the term SIMOMD (single-instruction
multiple-operations multiple-data) to describe the FP2 instruction set, stressing
that some of these instructions allow performing different operations, e.g., one
addition and one subtraction, on different parts of the SIMD vector registers.

In total, the PowerPC 440 FP2 'offers 24 different SIMD FMA instructions.
16 symmetric FMAs are strictly parallel for operands B and C, but allow any of
the unary SIMD reordering operations ("Copy", "Swap", "DupL" , or "DupH")
of Fig. 3.4 to be performed on input A. Symmetric FMAs offer all four FMA
variants, i. e., mult iply-add, mult iply-sub, negative multiply-add, and negative
multiply-sub. All symmetric FMAs perform two scalar multiplications and two
additions, or two multiplications and two subtractions. Four asymmetric FMAs
allow performing one addition and one subtraction within the FMA. Four cross-
complex FMAs additionally swap the input operand B.

Other SIMD ISAs, like Intel's SSE21SSE3 or AMD's 3DNow!, do not support
SIMD FMAs at all. The Intel Itanium supports four symmetric FMAs.

Horizontal SIMD. Native support for horizontal SIMD is completely missing
in IBM FP2. Emulating horizontal SIMD operations with a sequence of vertical

CHAPTER 3. SOFTWARE AND HARD WARE ARCHITECTURE 43

operations and data reordering operations is considerably more expensive than
on other SIMD ISAs (Tables 3.7 and 3.8).

Table 3.7: Instruction Count for Horizontal (H) and Vertical (V) SIMD Addition
and Subtraction Operations. Uniform instructions perform two additions or two subtrac-
tions, while mixed instructions perform an addition and a subtraction.

Arithmetic Costs of SIMD Instructions. The costs for horizontal and
vertical SIMD instructions differs considerably among different SIMD instruction
sets. While all SIMD ISAs satisfactorily support the classical vertical SIMD style,
horizontal SIMD style support greatly varies. FP2 completely lacks horizontal
style SIMD instructions. AMD 3DNow!, AMD extended SDNow!, and Intel SSE3
offer different sets of horizontal SIMD instructions. Table 3.7 lists the SIMD
operation costs for different SIMD instruction sets.

OP
H / uniform
H / mixed
V / uniform
V / mixed

Table 3.8: Instruction Count for SIMD Reordering Operations. Uniform unpacks
("UnpackLL" and "UnpackHH") combine the lower parts of two registers, while mixed unpacks
("UnpackLH" and "UnpackHL") combine the lower part of one register with the upper part of
another one.

SIMD Reordering Support. With all its feature wealth, FP2 has a startling
lack of support for common SIMD reordering instructions (Table 3.8). Also, as the
actually supported reordering instructions offered by FP2 cannot be executed in
parallel with any computation, the costs of SIMD reordering are a main challenge
with FP2.

3DNow!

1
2
1
2

OP
UnpackLL, UnpackHH
UnpackLH, UnpackHL

SSE3

1
2
1
1

Ext. 3DNow!

1
1
1
2

FP2
5
5
1
1

SDNow!

1
2

SSE2

3
4
1
2

Ext. 3DNow!

1
2

SSE2

1
2

SSE3

1
2

FP2
2
2

Chapter 4

The MAP 2-way SIMD Vectorizer

In the past twenty years, hardware development produced many different tech-
niques for improving the peak performance of general purpose processors. Be-
cause of the multifaceted relations between hardware and software with regard
to achieving a satisfactory degree of efficiency, hardware development has had
increasingly strong implications for (i) the development of application software,
(ii) the evolution of compilation tools and libraries, and (iii) the maintenance
and adaptation of existing legacy software.

Many processor hardware techniques introduced in the 1980s and the 1990s-
like instruction pipelining, reduced instruction set computing (RISC), and out-
of-order (000) execution-reasonably compromise between raising peak perfor-
mance and holding high efficiency, which is especially important for existing soft-
ware. These hardware features are handled satisfactorily by all modern high-level
compilers, by applying techniques like list-based instruction scheduling and opti-
mal instruction selection for expression trees.

However, there are other performance-related hardware features, like multi-
level caches, which are not handled well by high-level general purpose compilers.
As a result dramatic efficiency losses are to be observed with many existing codes.
Thus, in the development of performance critical software, the responsibility of
tuning programs to fit the peculiar properties of the memory hierarchy was left
to application and library programmers. While producing good results in some
cases, this manual tuning process was both tedious and error-prone, which-in
the field of numerical libraries-eventually led to the rising of the new paradigm
of automatic performance tuning.

Efficiency issues got even more critical than they already were since the intro-
duction of multi-level caches in the late 1990s when single-instruction multiple-
data (SIMD) extensions entered the mass market. The first SIMD extensions ex-
clusively worked with integer vectors, but soon newer extensions emerged that also
supported SIMD floating-point operations-finally making short vector SIMD
suitable for numerical computation. Nowadays, SIMD extensions are common-
place on general purpose processors, used from embedded computing, to desktop
machines, to supercomputers.

SIMD extensions feature instructions operating on vectors instead of scalar
values, offering a much more restricted form of instruction-level parallelism than
explicitly parallel instruction computing (EPIC) processors. Unlike the original
vector instructions provided by vector supercomputers, short vector SIMD ex-
tensions in contemporary general purpose processors operate on relatively small

CHAPTER 4. THE MAP 2-WAY SIMD VECTORIZER 45

fixed-length vectors. SIMD extensions allow for a larger number of SIMD lay-
outs, not just the "classical" vertical (parallel point-wise) SIMD style, but also a
horizontal (reduction) SIMD style.

SIMD extensions have the potential for significant performance improvements.
However, when left unused, efficiency drops by 50% with 2-way SIMD, and even
by 75% with 4-way SIMD. Therefore, SIMD vectorization is an important pre-
requisite for achieving high efficiency on modern processors (see Section 3.2).

Currently available methods for producing programs that are able to utilize short
vector SIMD instructions can be categorized according to the following criteria.

Interfaces for Using SIMD Extensions. Three kinds of interfaces provid-
ing programmers with an access to SIMD features have become wide-spread.
(i) Portable programs written in some high-level language in tandem with vector-
izing compilers, possibly requiring hints (pragmas) on how to vectorize, (ii) pro-
prietary, non-portable language extensions providing explicit access to short vec-
tor SIMD extensions on source-code level, and (iii) inherently non-portable pro-
grams written in assembly language.

Responsibility for Vectorization. The actual vectorization process can be
done explicitly by application or library programmers. Contrary to this approach
is the use of vectorizing compilers (which may or may not be hinted by program-
mers) to extract parallelism from portable programs. As a third option, program
generators may generate innately vectorized codes.

Focus of Vectorization. Vectorization methods extract a restricted form of
parallelism-suitable for the respective SIMD instruction set extension-either
from independent loop iterations (loop level vectorization), or straight line code
(basic block vectorization). Depending on the code to be vectorized, one method
or the other may be more suitable. In some cases, it may be even advantageous
to use a combination of both methods.

Well-established vectorization methods developed for classical vector comput-
ers [91] operate on the loop level. In short, these methods (i) assert that the
data is properly aligned and that there are no side-effects in the loop considered
for vectorization, (ii) analyze data dependencies to identify data parallelism of
loop iterations, (iii) join a fixed number of loop iterations to one equivalent piece
of code utilizing SIMD vector instructions, (iv) emit the vectorized loop and a
scalar loop used to handle any remaining iterations.

Loop-based vectorization ignores any kind of parallelism already present in
basic blocks, i. e., single entry, single exit sequences of primitive instructions.
Unlike SIMD-style vector computers, SIMD floating-point instruction-set exten-
sions on general purpose processors operate on very short vectors. As this al-
lows expressing parallelism on a very low level, not only loop-based vectorization
techniques, but also more fine-grained ones, that extract the parallelism already
present within a basic block, can be utilized. Basic block based vectorization

CHAPTER 4. THE MAP 2- WAY SIMD VECTORIZER 46

tries to extract the parallelism already present within a block, trying to max-
imally cover a scalar DAG with SIMD instructions natively supported by the
target machine [54, 551.

Generality of Approach. Some vectorization approaches are general purpose
by their nature, for instance, as they are applicable to any program that features
loops or to any basic block. Other methods depend on the particular internal
structure of some class of algorithms, for instance, fast signal transform algo-
rithms like complex FFTs.

Any of these approaches involves tradeoffs between portability and generality
on the one hand and achievable performance on the other one.

To produce high-quality numerical code to be used in signal transform libraries,
the Vienna MAP vectorizer [51, 52, 561 has been developed. This vectorizer au-
tomatically extracts Zway SIMD parallelism out of given numerical straight-line
code, and has been applied successfully to straight-line code produced by FFTW,
SPIRAL, and ATLAS-automatically vectorizing a large variety of numerical codes
ranging from FFTs and other DSP transforms to BLAS kernels.

This chapter introduces the most recent version of the MAP vectorizer, its
features, its limitations, as well its novelties and modifications in comparison to
previous work.

Related Work

The three major ways of utilizing SIMD extensions for accelerating signal process-
ing codes-(2) hand-coding, (ii) the use of general purpose vectorizing compilers,
and (iii) the adaptation of domain-specific code generators-are reflected by sev-
eral publications.

Hand-coding. There are well-known hand-coded vector FFT algorithms like
Stockham's FFT algorithm [80, 451 as well as vector computer libraries like the
SCIPORT library [53]. However, without further adaptation to the requirements
of deep memory hierarchies, these algorithms lead to disappointingly low perfor-
mance on SIMD architectures present in common-place processors.

A general purpose hand-coding method utilizing instruction-level parallelism
is to implement a given algorithm by using the complex arithmetic of C99 [4] and
let an appropriate compiler map the complex operations to sequences of 2-way
SIMD vector instructions. However, code generators like FFTW'S genf f t and
SPIRAL'S code generator usually map signal transform code to real arithmetic,
as this allows further reducing the instruction count, by performing sophisticated
optimization on real arithmetic [29].

A standard approach to exploiting an algorithm's intrinsic parallelism is to
use a blended mixture of the ad-hoc utilization of the instruction-level paral-
lelism inherent in a given program and the hand-vectorization of loops. In this

CHAPTER 4. THE MAP 2- WAY SIMD VECTORIZER 47

approach, the programmer formulates the parallelism within the algorithm by
using proprietary language extensions. As a negative result, the produced codes
are incompatible across different SIMD extensions.

In the field of DSP transforms, these hand-coding approaches are used in
SIMD-enabled vendor libraries (examples include Intel's MKL and IPP [43], Ap-
ple's vDSP [5] and vBigDSP [14], as well as AMD's core math library ACML [l]),
application notes (Intel's split radix FFT [41]), and free implementations like the
NEC V80R FFT [64] or the Linux SIMD library libSIMD [65]. SIMD-vectorized
wavelet transforms are presented in [l11 and a SIMD-vectorized FFT library is
presented in 1721.

The automatic performance tuning system ATLAS allows for the insertion
of hand-coded kernels featuring SIMD instructions into its optimization cycle.
ATLAS depends on programmers contributing such hand-coded kernels for new

r\
architectures [87]. To get the maximum performance, the respective kernel rou-
tines are typically coded in assembly language.

Vectorizing Compilers. There are many research and production-quality com-
pilers for SIMD extensions, including Intel's C++ compiler 1421, IBM's XL C
compiler for Blue Gene [3], a vectorizing extension to the SUIF compiler [77],
Codeplay's VECTORC compiler [12], and the SWAR compiler scc [23, 241.

Automatic general-purpose loop-vectorizing compiler technology originates
from vector computer research and is included in most vectorizing compilers [89].
These algorithms were designed for long vector lengths and other characteristics
of conventional vector computers, like constant non-unit stride memory access.
Some of these implicit assumptions simply do not hold on machines having short
vector SIMD extensions. In addition, vectorization- and locality-enhancing loop
transformations often have conflicting goals. Compilers therefore require user-
supplied hints-for instance, by compiler directives called pragmas-in order to
successfully vectorize loops [27].

Automatic general purpose methods based on the extraction of instruction-
c level parallelism in basic blocks are used in many compilers (e. g., Intel C, Code-

play VectorC, and IBM XL C compilers). These projects originate from EPIC re-
search [54, 231, and their vectorization algorithms search for code sub-blocks that
feature parallelism. In order to map the full computation, these parallel blocks
have to be connected, either by scalar operations or by data shuffling operations,
which can introduce considerable vectorization overhead. Due to an exploding
search space and to a lack of knowledge about the code's intrinsic structure, these
algorithms fail on large basic blocks having complicated structure. Experiments
show that for signal transform codes, these vectorization approaches produce only
negligible speed-up, and in most cases even slow down the code.

A graph-based code selection technique for DSPs with SIMD support has been
introduced in [55]. Techniques for SIMD utilization in the context of energy-aware
compilation for DSPs are presented in [58].

CHAPTER 4. THE MAP 2- WAY SIMD VECTORIZER 48

Methods Used in Domain-Specific Code Generators. The latest versions
of SPIRAL include generic SIMD vectorization facilities [26], implemented by the
addition of new SIMD-specific rules t o SPIRAL'S formula manipulation system.
These new rules [69] exploit specific algebraic identities of tensor products to
transform into a form suitable for extracting SIMD-style parallelism. Focusing
on the extraction of vertical-style SIMD operations, this extension of SPIRAL
uniformly supports (2) all currently available classical 2-way and 4-way SIMD
floating-point instruction sets, and also (ii) 8-way 16-bit fixed-point and 16-way
8-bit fixed-point SIMD integer instruction sets.

The code generator of FFTW 3, the most recent version of FFTW, includes
instruction-level vectorization for 2-way SIMD vector extensions that is based on
properties of complex FFTs and utilizes C language extensions. For 4-way SIMD
vector extensions, FFTW 3 applies complex FFT specific methods in combination

r\
with 2-way loop vectorization. For AMD Athlon processors, which feature the
2-way 3DNow! floating-point SIMD instruction-set extension, FFTW 3 includes
a predecessor of the MAP tool-chain, the code generator of FFTW-GEL [50],
developed in the course of 2001. FFTW-GEL'S code generator has been tightly
integrated with FFTW'S genf f t code generator, and is part of the main distribu-
tion of FFTW 3.

Direct Comparison

The approach taken by the MAP vectorizer bears some similarity with previously
existing work for vectorizing DSP compilers [54, 55, 231. The MAP vectorizer is
strongly biased towards different assumptions-both about the class of input
codes and about particular properties of the target hardware.

(2) As linear transform codes are highly structured, any divide-and-conquer
based vectorization approach incurs high costs when connecting vectorized sub-
graphs.

f? (ii) Unlike SIMD instruction-sets of some DSPs, SIMD instruction set ex-
tensions of general purpose processors do not allow scalar operations and SIMD
operations working on the same data sets to be mixed efficiently. Therefore,
MAP'S vectorization mandates that all computation is performed by SIMD in-
structions, while attempting to keep the SIMD reordering overhead reasonably
small.

(iii) Numerical kernels used in automatic performance tuning systems can be
very large, thus finding a compromise between vectorization runtime and code
quality is a key issue.

(iv) The interleaved complex array data layout used with most complex FFT
kernels massively constrains the size of the search space to be traversed by vector-
ization. For the vectorization of certain categories of codes, e. g., real FFT kernels,
the vectorizer cannot prune the search space in a similar way, as it possibly has
to consider all possible pairs of inputs and outputs.

CHAPTER 4. THE MAP 2- WAY SIMD VECTORIZER 49

The vectorization approaches taken by the SIMD-version of SPIRAL and by the
MAP vectorizer are somewhat orthogonal. SPIRAL operates in a top-down way,
explicitly represents knowledge about the domain in its proprietary signal process-
ing language SPL, and has a relatively narrow set of SIMD instructions. Contrary
to this, the MAP vectorizer operates bottom-up by synthesizing blocks from in-
dividual instructions, implicitly encodes knowledge about the domain within the
vectorization algorithm, and uses as many SIMD instructions as are available on
the particular target architecture.

An experimental comparison of these two approaches [27] on AMD Athlon
systems suggested a slight advantage of the bottom-up approach taken by the
MAP vectorizer, due to fact that the MAP vectorizer extracts horizontal-style
SIMD code, which can be improved more easily than the vertical-style SIMD
code that SPIRAL finds. However, MAP'S vectorization technique is restricted to
2-way SIMD, whereas SPIRAL'S is not.

4.1 Basic Properties

The MAP vectorizer extracts 2-way SIMD parallelism out of basic blocks, aiming
at a reduction of the overall instruction count. In the best case, the number of
SIMD instructions output is exactly 50% the number of scalar instructions.

Global Structure. SIMD vectorization is a source-to-source code transforma-
tion that-unlike local approaches like peephole optimization-changes the global
structure of the input code. The vectorizer does not directly deal with any local
optimizations like extracting SIMD fused multiply-add instructions or eliminat-
ing SIMD swap instructions, but relies on the subsequent parts of the tool chain,
most importantly the MAP peephole optimizer, t o perform these tasks.

Data Layout S . All commonly used layouts for data arrays, including interleaved
and split data formats for arrays of complex numbers, are supported.

Supported SIMD Operations. Linear transform codes and many codes in
linear algebra utilize only a small set of basic operations for memory access and
floating-point calculations: (i) Loads from and stores to some array, (ii) loads
of some numerical constants, and (iii) floating-point addition, subtraction, and
multiplication operations. This allowed to restrict the selection of supported
SIMD operations to cover exactly these cases, keeping the vectorizer as simple as
possible.

4.2 Implementation Basics

Aiming at covering scalar DAGs with SIMD instructions actually supported by
the SIMD target architecture, the MAP vectorizer maps (i) scalar variables to

CHAPTER 4. THE MAP 2-WAY SIMD VECTORIZER 50

SIMD variables, (ii) scalar constants to SIMD constants, and (iii) scalar instruc-
tions to SIMD instructions.

To accomplish this goal, the vectorizer alternately performs the following two
steps, either until the scalar DAG is covered, or any attempts have proven fu-
tile. (i) It picks two scalar variables that have not yet been combined to form a
SIMD variable. (ii) It picks two scalar instructions, whose destination operands
have both been already combined earlier into one SIMD variable, and emits the
corresponding SIMD pseudo-instruction.

There are many degrees of freedom in selecting the next scalar variables to be
combined and in choosing how to combine these two scalar instructions. Some
of these possibilities may only represent a local solution that is not part of any
global solution. But one particular local solution may just as well be part of
some global solutions. This type of non-determinism is usually refered to as
don't know non-determinism [79], because not all decisions taken in the course
of action turn out to lead to some global solution, as it is the case with don't
care non-determinism. To explore all possibilities in a systematic way, the search
process handles non-deterministic choice by using depth-first search (DFS) with
chronological backtracking [84, 341, the basic built-in execution mechanism of the
logic programming languages PROLOG and MERCURY.

Extraction of SIMD Variables. The MAP vectorizer represents 2-way SIMD
variables as unordered pairs of two distinct scalar variables. Using unordered
pairs-as opposed to using ordered pairs-for the representation of SIMD vari-
ables eased the implement ation of the vectorizer .

The MAP vectorizer does not insert actual SIMD swap instructions into the
vectorized code, until vectorization has succeeded and committed to one partic-
ular global solution. An auxiliary SIMD swap instruction is required whenever
a pair (X, y) is written by some SIMD instruction and the mirrored pair (y, X)
is read by some other SIMD instruction. Within the MAP tool chain, it is the
responsibility of the peephole optimizer-and not of the vectorizer-to minimize
the number of auxiliary swap instructions.

Whenever the vectorizer attempts to combine two scalar variables to one
SIMD variable, it asserts that the respective scalar variables do not belong to any
other unordered pair representing a SIMD variable. If these two particular scalar
variables were previously unbound, the extraction of a SIMD pseudo-instruction
writing the respective SIMD variable is triggered, which combines the two scalar
instructions producing the respective scalar variables.

Extraction of SIMD Constants. Similar to the case of scalar variables, the
vectorizer combines scalar constants to SIMD constants. However, arbitrary repli-
cation of scalar constants is allowed, i. e., one particular scalar constant may occur
in more than one SIMD constant. As a consequence, vectorization may increase
the number of constants used from n scalar constants to n2 SIMD constants in
the worst case. As this large number of constants may have a negative impact on

CHAPTER 4. THE MAP 2-WAY SIMD VECTORIZER 51

performance, the vectorizer allows (i) imposing a limit on the number of SIMD
constants and (ii) minimizing the number of SIMD constants used.

Figure 4.1: SIMD Binding Types. Two scalar binary instructions, (op l , S1 ,T1 ,D1) and
(op2, S2, T2, D2), can be combined in one of three different ways. Intra-operand SIMD instruc-
tions are supported by the ACC type, whereas the types PAR and CHI are used for inter-
operand SIMD instructions. Because of the features offered by the targeted SIMD instruction
sets, the vectorizer uses horizontal style (ACC) exclusively for additions and subtractions. The
vertical style (PAR or CHI) is used for additions, subtractions, and multiplications.

n
T . Extraction of SIMD Instructions. Not all conceivable pairs of scalar instruc-

tion types can be combined, as some of them are not supported efficiently by
common-place SIMD instruction sets. When two scalar instructions are combined
into one SIMD instruction, the vectorizer asserts that the two scalar instructions
are compatible with each other, i.e., they can be mapped to exactly one SIMD
pseudo-instruction.

Pairs of scalar instructions that may be combined into one SIMD pseudo-
instruction include (i) two load instructions, (ii) two store instructions, (iii) two
additions, (iv) two subtractions, (v) one addition and one subtraction, and
(vi) two multiplications. For load and store instructions, additional constraints
may be imposed, e. g., to enforce the use of consecutive SIMD memory operations
for accessing interleaved complex array data.

Combining two given scalar instructions can often be done in different ways
(see Fig. 4.1), resulting in different SIMD pseudo-instructions being extracted, as
shown in Fig. 4.2.

c' Traversal of the Scalar DAG. The extraction steps mentioned above-
combining scalar variables, scalar constants, and scalar instructions to their SIMD
counterparts-are iterated until either the scalar DAG is fully covered with SIMD
instructions, or failure is recognized.

Domain-Specific Assumptions. Several restrictions were taken into account
in the design of the vectorizer, to allow for an instruction-based "bottom-up"
vectorization approach based on exhaustive search, even for relatively large codes.
(2) A scalar variable is-for all of its uses-part of exactly one SIMD variable.
(ii) All SIMD data reordering occurs either implicitly by using horizontal or
vertical SIMD instructions or explicitly by using SIMD swap instructions.

On one hand these restrictions reduce the class of input codes the vectorizer
can handle, but-more importantly-on the other hand they tremendously reduce
the size of the search space to be traversed during vectorization.

CHAPTER 4. THE MAP 2- WAY SIMD VECTORIZER

Figure 4.2: Vectorization Alternatives. Two scalar instructions, one addition and one
subtraction, are transformed into an equivalent sequence of SIMD instructions in three different
ways. Depending on the features supported by the actual target instruction set, one method may
be preferable to the other ones. On instructions sets supporting both vertical and horizontal
style SIMD instructions like the ones present in AMD SDNow!, the ACC style gives the best
results, as it facilitates the peephole optimization of the resulting code. For Blue Gene systems,
vertical style vectorization (PAR or CHI) is to be preferred, as shown in Table 3.7 on page 43.

4.3 Implementat ion Details

Scalar

While the basic concepts of the vectorizer have remained largely unchanged from
the first working prototypes developed in late 2000 until the present day, the
new version of the MAP vectorizer, developed in the context of this thesis, de-
parts from previous work [51, 521 in a number of ways. Design goals of the new
vectorizer were (i) runtime reductions of the vectorization process, (ii) quality
enhancements of the SIMD vectorized code, and (iii) enhanced adaptability of
the vectorizer to new SIMD target architectures.

PAR ACC

Modes of Vectorization. The vectorizer operates in two different modes.
Full vectorixation tries to find an optimal cover, guaranteeing that 2n scalar in-

structions are mapped to exactly n SIMD pseudo-instructions, which also inhibits
any duplicate calculation due to SIMD vectorization. All input codes exclusively
consisting of complex arithmetic can be handled using this method.

S e m i vectorixation allows for sub-optimal SIMD utilization, thus enabling a
larger class of programs to be handled, e. g., real FFT codes. In semi vectorization
mode, the MAP vectorizer lifts two rigid restrictions, allowing for SIMD pseudo-
instructions having only 50% SIMD utilization. Firstly, it permits to perform
multiplications by constants on one half of a SIMD vector, while leaving the other
half unchanged. Secondly, it supports a selection of SIMD pseudo-instructions
that can only be translated to a sequence of two or more natively supported
SIMD instructions, e. g., performing a combination of one scalar load instruction
and one scalar addition or subtraction.

CHI

CHAPTER 4. THE MAP 2-WAY SIMD VECTORIZER

Clearly, full vectorization is used whenever possible. If all vectorization at-
tempts in that preferred mode fail, the vectorizer falls back to the sub-optimal
vectorization method.

Preparation Passes. Before the actual vectorization process is started, several
preparatory passes are performed to constrain the search space from the very
beginning. This goal is achieved by filtering out pairs of scalar variables that
cannot possibly occur as parts of any solution of the vectorization process.

Effects of Different Graph Traversal Orders. The order in which the nodes
of the scalar DAG are traversed has a profound impact both on the solution order
and on vectorization runtime.

Prior versions of the vectorizer [56] always started at the outputs of the DAG,
i. e., store instructions, traversing the DAG in a bottom-up fashion. This method
worked fine for codes consisting of complex arithmetic only, but it had its short-
comings for codes consisting of real arithmetic.

To improve on this, the current version of the MAP vectorizer adds two new
traversal methods. First, it allows traversal both in bottom-up as well as top-
down style. Secondly, it borrows the idea of domain variables from constraint
programming [81]. Domain variables allow the vectorizer to keep track of all pairs
of scalar variables that may be formed in the future. When traversing the scalar
graph, the scalar variable that occurs in the smallest number of pairs, is picked
as the next point in search space to be visited (first-fail principle).

The combination of these three traversal methods enable the vectorizer to find
the optimal vectorization even for relatively large codes that use real arithmetic
solely-a class of codes notoriously hard to vectorize.

"Look-ahead" Capabilities. The vectorizer tries to detect failure branches as
soon as possible, as this can prune the search tree significantly. That way, the
vectorizer can traverse a part of the search space strongly reduced in size, without
missing any relevant part.

Acceleration of Backtracking. Prior versions of the vectorizer simulated back-
tracking using monads, i. e., algebraic constructs used in functional languages for
the abstraction of control and data flow. While this technique is convenient, it
does not allow for cheap reclaiming of memory upon backtracking, which is a
significant obstacle to fast backtracking. The newly development version of the
MAP vectorizer is implemented in Mercury, a high-performance logic program-
ming language that includes support for efficient backtracking [76].

Selection of the Best Solution. Vectorization may yield more than one so-
lution. All prior versions of the vectorizer immediately committed to the first
solution found, thus keeping the vectorization runtime low. Outdated vectorizers
only relied on a local adaptation of the order in which vectorization alterna-
tives were tried. With regard to code quality, however, picking the best among
all solutions would be the optimal strategy. Clearly, this cannot be done in a

CHAPTER 4. THE MAP 2-WAY SIMD VECTORIZER 54

straightforward way by generating and testing all solution candidates, except for
very small codes. To account for this dilemma, the new version of the MAP
vectorizer uses a branch-and-bound method (together with a restart mechanism)
to get the best solution, while keeping the vectorization runtime reasonably low.

The implemented technique allows interrupting the vectorization process a t
any given point, returning the best solution found so far. This is important for
very large codes, as finding a good or maybe even an optimal solution usually
takes much less time than proving that some solution actually is optimal, which
always is the last step of the vectorization.

Enhanced Adaptability. All older prototypes of the vectorizer have been
specifically adapted to exactly one target architecture. While deriving a new
port out of existing ones was not very complicated, the resulting code bloat led
to increased maintenance effort.

The new version of vectorizer unifies all target architectures by adding support
for a penalty vector, which directly reflects the peculiarities with regard to optimal
choices to be taken by the vectorizer-similar to the data shown in Tables 3.7
and 3.8 on page 43. This enables the vectorizer to adequately support a large
variety of target instruction set architectures, ranging from well-established ones,
like Intel's SSE2 and AMD 3DNow!, to new ones, like Intel's SSE3 and IBM's
"Double FPU" present in the PowerPC 440 FP2.

CHAPTER 4. THE MAP 2-WAY SIMD VECTORIZER 5 5

4.3. P Vectorization Example

Fig. 4.3 gives an example of SIMD vectorization, showing in the left-hand part
the input DAG that represents a 3-point complex FFT produced by genf f t , and
in the right hand part one particular output of 2-way SIMD vectorization.

Figure 4.3: Vectorization of a Scalar FFT of Size 3. The scalar DAG in the left part
of the illustration is computationally equivalent to the SIMD vectorized DAG depicted in the
right part. Note the extra auxiliary SIMD multiplication using the constant (-1, l), that is used
to change the sign of the lower part of one of the SIMD variables. This auxiliary instruction
corresponds to the expansion of a SIMD pseudo-instruction, performing one addition and one
subtraction. Instruction combinations are subsequently improved by MAP'S peephole optimizer.

Chapter 5

The MAP Optimizer

The MAP optimizer is the middle part of the Vienna MAP compiler tool chain,
processing the output of the vectorizer and producing the input of the backend. It
supports both scalar and SIMD codes, adapting the corresponding DAG according
to one or more sets of transformation rules that aim at both a reduction in code
size and at a minimization of runtime.

Input and Output Code. The optimizer operates on input code in static
single assignment (SSA) form representing a directed acyclic graph (DAG). The
optimizer performs a source-to-source transformation, using the same high-level
language for input and output.

Assignment of Responsibilities. The optimizer is implemented as a separate
module, instead of being integrated directly into the vectorizer. This separation
shows several advantages. Firstly, this helps to keep both parts as simple as
possible. Secondly, this allows assigning clear responsibilities with regard to code
quality to the individual components of the tool chain. While the vectorizer is
responsible for the global structure of the code, the optimizer solely cares about
its local structure.

Optimization Focus. The optimizer tries to adequately meet various code
quality criteria. While most rules focus on code size as the optimization criterion,
other rules focus on speed, yet others on properties of the corresponding DAG,
which affect code size or speed only in an indirect way, like path lengths, the
number of different operands used, etc.

Peephole Optimization. The MAP optimizer is based on peephole optimiza-
tion, which is a common-place technique for improving code based on successively
rewriting parts of the code. A window (peephole) slides over several instructions
that are logically connected by direct (producer-consumer) data dependencies,
attempting to match the instructions within the peephole with some predefined
patterns. If a match succeeds, the instructions within the window are rewritten to
a semantically equivalent sequence of instructions. This match-and-replace pro-
cedure is repeated in a loop until all matching attempts fail, i. e., the procedure
terminates as soon as a fixed point is reached.

Locality. As each optimization rule only looks at a peephole of some fixed size,
usually being smaller than a handful of instructions, peephole optimization is a
completely local optimization approach that does not alter the global structure
of the input code significantly. Still, the resulting output code is not likely to

CHAPTER 5. THE MAP OPTlMIZER 5 7

be similar to the original input code, especially if intensive rewriting has taken
place.

Implementation Basics. Implemented as a committed-choice term rewriting
system, the peephole optimizer uses one or more sets of rules, each with a different
priority. Out of all applicable rules, the rewriting engine selects one having the
highest priority and commits to it, i. e., the engine disregards all possible alterna-
tives that could have been, but did not get selected. The chosen rule is then used
to substitute the sequence of instructions within the peephole by a semantically
equivalent but optimized sequence of instructions. This step of looking for an
applicable rule, committing to it, and applying it to the code is iterated until no
further rule is applicable, i. e., until a fixed point is reached.

Precision Aspects. Like all other components of the MAP tool chain, the
optimizer supports numerical data with arbitrary precision to ensure that no
precision is lost during the compilation process. Numerical data is converted
t o the requested target precision (single or double precision) not before the last
compilation step.

Dynamic Reordering. The order in which rules are considered for applica-
tion can have a profound impact on the speed of the rewriting process, which
is particularly important when compiling very large code segments consisting of
thousands of instructions, like the codes automatically produced by the program
generators of FFTW and SPIRAL.

To improve the performance of the peephole optimizer, the MAP optimizer
allows dynamically adapting the order in which rules are tried in a most-recently
used (MRU) fashion, favoring rules that have been applicable in the recent past.

However, while speeding up the rewriting process, dynamic reordering may
also have negative effects. Excessive reordering may impede the development and
debugging of large rule sets, as it obstructs understanding the rewriting process.
To assist the development of larger sets of rules with predictable rewriting behav-
ior, the optimizer allows confining the amount of reordering by partitioning the
rules into classes according to their priority. Dynamic reordering is then limited
to each one of these classes.

Term Rewriting Properties. Even relatively simple term rewriting systems
may exhibit complex behavior. Therefore, it is often advisable to concentrate not
on the arcane details of each individual rewriting step, but rather to shift the
focus on two distinguished properties of the entire rewriting process.

A term rewriting system is said to be confluent if all potential ways of apply-
ing rules leads to the same result. In principle, this is an important and desirable
property, as it allows disregarding the concrete rule selection mechanism when
trying to get an overall understanding of the whole term rewriting system. The
term rewriting system implemented within the MAP optimizer cannot be guar-
anteed to be confluent, but instead operates in a committed-choice style, to ease
the comprehension of the rewriting process.

CHAPTER 5. THE MAP OPTIMIZER

A term rewriting system terminates if it produces an answer after a finite
number of steps. Especially in the context of large rule sets that include rules
pursuing different goals, i. e., "rules that work against each other" , termination
is a critical issue. For instance, some rules might try to move instructions of
some particular type towards the inputs of the DAG, while other rules might
aim at moving the same instructions into the opposite direction. To avoid cycles,
sets of antagonistic rules must be split into several passes that are carried out
sequentially. The optimizer then uses one rule set after the other to rewrite the
DAG until a fixed point is reached and then continues with the next rule set.

Different Kinds of Rewriting Rules. The MAP optimizer uses two kinds of
rules working in synergy: (i) Improving rules and (ii) assisting rules.

Improving rules aim at an immediate improvement in code quality. Examples
include rules for fusing two neighboring instructions into one, or rules handling
horizontal SIMD instructions with neighboring SIMD swaps. Fig. 5.4 illustrates
some improving rules for accumulate instructions with neighboring swaps.

Assisting rules do not immediately improve the code, but adapt the DAG by
changing the position of some instructions relative t o their neighbors, e. g., by
moving SIMD swap instructions or SIMD multiplications by a constant, eventu-
ally allowing to apply some improving rule. In most cases, multiple applications
of assisting rules are needed, before an opportunity t o apply some improving rule
arises. Most optimization rules implemented in the MAP optimizer are assisting
rules. Figs. 5.2 and 5.3 show the working of an assisting rule operating on a SIMD
binary instruction and on one or more neighboring SIMD swap instructions.

Current Implementation Status. Like other components of the MAP tool
chain, the current version of the optimizer is written in OCAML [15], a strict
functional programming language with static typing. The optimizer uses monads
abstracting both control and data flow to implement the backtracking required for
the rule matching in a compact way and provides precise control over rewriting,
e. g., by offering multiple rule selection methods.

Future Work. The most critical point in the current implementation is that the
rule code itself is not well-suited for the purpose of presentation.

To solve that issue, work on a peephole optimizer generator has already begun.
The optimizer generator takes a simple, yet versatile representation of the rules,
and translates the rules to high-level code written in the MERCURY program-
ming language [75], using the high-level built-in language features for efficiently
realizing backtracking.

Because it is operating on a higher level, an optimizer generator significantly
cuts down development time, easing both writing and debugging, as well as the
adaptation to a new target architecture.

Representing rules explicitly as data instead of code offers a number of ad-
vantages: (i) Efficiency can be increased, as the optimizer generator may create
several specialized variants of rule codes. (ii) It is possible to reason about specific

CHAPTER 5. THE MAP OPTIMIZER 5 9

properties of the term rewriting system properties, particularly about termina-
tion. (iii) It allows automatically deriving an equivalent graphical representation
of optimization rules including all relevant information, like preconditions, the
pattern being matched, auxiliary goals, and the optimized code pattern.

5.1 Scalar Rules
The optimizer includes support for scalar floating-point code, performing both
FMA extraction and standard compiler optimization techniques [63] like dead
code elimination, copy propagation, constant folding, as well as the removal of
redundant operations.

As the MAP tool chain primarily targets SIMD vectorized code, earlier pro-
totypes of the optimizer [50, 521 did not even include support for scalar code.
Support has been added to cover the cases when vectorization fails, and for the
purpose of evaluating the backend (with the vectorizer explicitly turned off).

Fig. 5.1 illustrates a non-trivial case of FMA extraction that does not only
produce one FMA instruction, but also creates the opportunity for extracting
a second one. SIMD FMA extraction works analogously to the scalar variant,
because SIMD FMAs are parallel inter-operand instructions.

Figure 5.1: Scalar FMA Extraction. The DAG depicted on the left shows a frequently
occuring code pattern, comprising two multiplications by constants and one dependent addition.
While this pattern could immediately be mapped onto one multiplication and one dependent
FMA, one multiplication may also be propagated towards the consumers of D, as shown in
the right half of the illustration. This method usually gives a better result, as the (temporary)
multiplication can be fused with a dependent addition or multiplication by a constant.

CHAPTER 5. THE MAP OPTIMIZER 60

FMA extraction may also have adverse effects, as it may increase the path lengths
and contribute to a larger number of numerical constants. Still, such negative
effects are usually of minor concern because of the much more important positive
impact of the higher throughput and smaller code size brought about by the usage
of FMA instructions.

5.2 Generic SIMD Rules

While only a modest number of rules-needed for dead code elimination, copy
propagation, constant folding, and the removal of redundant operations-are fully
target architecture independent, still a relatively large number of rules are bene-
ficial for all target architectures, because of general similarities of the respective
2-way SIMD instruction set architecture (ISA) extensions.

Implemented Rules. Whenever possible, two neighboring unary instructions
("multiplication by a constant", swap, and sign-change) are combined into one.
Several subsets of rules cover combinations of binary instructions (addition, sub-
traction, multiplication, and unpack) and neighboring unary instructions (swap
and sign-change) .

Figs. 5.2 and 5.3 illustrate the optimization of a commonly occuring code
pattern consisting of some vertical SIMD binary instruction and a number of
neighboring auxiliary SIMD swap instructions. Similar rewriting is implemented
also for ternary SIMD instructions (FMAs).

7

Two Swaps + Parallel Binary Op j
- . E r a ! e l ? l n y OP +one swap 1

Figure 5.2: SINID Vertical Ins t ruc t ion Optimization. Parallel SIMD instructions with
several neighboring swap instructions can be optimized as shown in the illustration. In the left
half, a parallel SIMD instruction is preceded by two swaps. In the right half, the two swaps
have been replaced by one swap following the binary instruction.

CHAPTER 5. THE MAP OPTIMIZER

One Swaps + Parallel Binary Op 1-..,...- I-.. J

Figure 5.3: SIMD Vertical Instruction Optimization. Another common combination of
"Swap" instructions and parallel binary SIMD instructions allows minimizing the number of
SIMD reordering instructions. In the left picture, both one source and the destination of the
SIMD binary operation are swapped. In the right picture, the other source operand is swapped,
reducing the number of SIMD swap instructions by one.

SIMD auxiliary instructions like swaps or sign changes may be propagated both
towards the output of the DAG or towards the input of the DAG. Fig. 5.2 shows
how a SIMD swap is propagated towards the output of the DAG. In Fig. 5.3 this
SIMD swap is moved towards the input of the DAG.

SIMD Binary Reordering. Although some rules cover sequences containing
unpack instructions, the optimizer typically does not reduce the number of un-
packs significantly, because of the locality of peephole optimization. Within the
MAP compiler tool chain, it is the responsibility of the producer of the input to
the optimizer, i.e., the program generator or the MAP vectorizer, to minimize
the number of unpack instructions in the first place.

5.3 Target Architecture Specific SIMD Rules

One set of target architecture specific rules tries t o discover instruction sequences
that can be rewritten to exactly one target instruction.

To create sequences of this kind, another set of rules tries to move some
instructions (swap instructions, multiplication by a constant) t o some other place
of the DAG, eventually enabling the first set of rules to optimize the respective
sequences.

A third group of rules covers code patterns frequently occuring in FFTs and
other linear signal transforms.

CHAPTER 5. THE MAP OPTIMIZER 62

Accumulate Specific Optimizations. These optimizations are only relevant
for ISA extensions natively supporting intra-operand style (accumulate) SIMD
instructions (AMD 3DNow! and Intel SSE3). Fig. 5.4 illustrates the rewriting of
two code patterns consisting of some horizontal SIMD instruction and neighboring
SIMD swap instructions into their optimized form.

-- . . r swap + ~ c c u m i r] ..- - [Accumulate + ~ w e d ' ~ " - i - Accumulate 1

Figure 5.4: SIMD Accumulate Optimization. SIMD accumulate instructions can be
combined with neighboring "Swap" instruction if the respective basic scalar operation is com-
mutative. This reduces the SIMD reordering instruction count and shortens the path length
from inputs to output. The left two pictures show unoptimized SIMD DAGs, the right one the
optimized variant.

For IBM's Blue Gene Double FPU and other targets including Intel's IA64
and SSE2, accumulate instructions are rewritten to a combination of unpack and
parallel SIMD instructions.

FMA Specific Optimizations. These optimization rules are suitable for all
targets supporting FMA instructions, including the IBM PowerPC 440 FP2 (Blue
Gene) and the Intel Itanium (IA64).

Blue Gene Specific Optimizations. Several rules aim at the utilization of
Blue Gene specific FP2 instructions offering both calculation and data move-
ment (cross, cross copy). This set includes rules for making use of cross copy
(primary/secondary) multiplication instructions for performing complex number
multiplication (without any additional reordering instructions). The majority of
the rules is dedicated to eliminating swaps and sign changes by utilizing variants
of cross FMA instructions.

CHAPTER 5. THE MAP OPTIMIZER

5.4 Substitution Rules

Substitution rules are a special case of peephole optimization with the peephole
size being exactly one. As the substitution rules currently implemented in the
optimizer cannot possibly trigger any further rule application, the optimizer per-
forms a separate substitution pass, as soon as all other rewriting has finished.

In the MAP optimizer, substitution rules are used for the following purposes.

Rewriting Trivial FMAs. Certain SIMD FMA instructions using the specific
constants (+1.0, +1.0) or (-1.0, -1.0) and scalar FMA instructions using the spe-
cific constants +1.0 or -1.0 are rewritten to ordinary additions or subtractions.
This reduces the register pressure slightly, as fewer source operands are needed.
Also, this rewriting contributes to lowering the number of constant loads.

Rewriting Unsupported Pseudo-Instructions. A small number of SIMD
instructions extracted by the MAP vectorizer may not be supported by the par-
ticular target architecture. For instance, t he vectorizer may extract horizontal
SIMD instructions, even though the target offers only vertical SIMD instructions,
if vectorization is not possible otherwise. After optimization has finished, such
pseudo instructions need to be rewritten to a sequence of actually supported in-
structions. For instance, horizontal SIMD instructions are mapped onto binary
SIMD reordering (unpack) instructions as well as vertical SIMD instructions.

Reduction of the Number of SIMD Constants. Vectorized code may use
much more constants than its scalar counterpart, because of two reasons. Firstly,
2-way vectorization might blow up the number of constants from n to n2. Sec-
ondly, the merging of sign-change operations with neighboring multiplications
might increase the total number of constants by up t o a factor of four. Although
these worst-case scenarios hardly ever occur in practice, reducing the number of
constants still is an important issue in producing optimized vector code.

While the vectorizer is responsible for solving the first problem, the opti-
mizer tackles the second problem by rewriting FMAs with some 2-way constant
(-kl, +k2) to FMAs with the constant (+kl, - k z) , thus effectively propagating
the sign-change into the FMA instruction.

Chapter 6

The MAP Backend for Blue Gene

The MAP backend is the final stage of the Vienna MAP compiler tool chain,
compiling the high-level intermediate representation of the source code to target
specific assembly code.

Previous Development. The earliest prototypes of the MAP tool chain date
back t o the fall of the year 2000. At that time, no reasonable C compiler sup-
port for SIMD intrinsics was available for the targeted platform, i.e., the x86
compatible AMD Athlon processor with 3DNow! SIMD ISA. So the backend was
initially developed, not because the code produced by available C compilers was
not satisfactory in quality, but to get SIMD object code produced a t all.

Since 2000, general purpose compilers (like GNU C, Intel C, or IBM XL C)
gradually included support for SIMD intrinsics. Still, having an own backend in
the MAP tool chain is an important advantage, as it allows taking care of the
specific requirements of signal transform codes. The properties of these target
codes have been directly reflected in the design of the backend.

Experiments [30, 49, 271 show that MAP'S x86 backend produces code of
higher quality than available general purpose C compilers (GNU C, Intel C)
when compiling FFTW codelets.

Focus on Straight Line Code. The targeted source codes are automatically
generated signal transform codes that spend most of their runtime executing
straight line code. Accordingly, the MAP backend focuses on this case, which
helped keep the design as simple as possible.

The kernel codes created by the program generators of FFTW and SPIRAL
may be sometimes very large in size, much larger than normal hand-written
codes, which might push compilers t o their limit 1281. To handle such source
codes satisfactorily, the backend's design had to avoid any unnecessary limits
with regard to the size of the input code, the number of variables used, etc.

To deal with less performance critical parts of the code, as well as codes con-
taining control structures for iteration, conditionals, and recursion, the backend
works in tandem with a general purpose C compiler.

Focus on Address Generation. The targeted input codes operate on data
stored in variably-strided arrays, i. e., one-dimensional arrays having strides that
are unknown at compile time. Variably-strided one-dimensional arrays are of-
ten used to access particular parts of multi-dimensional arrays. To account for
the frequent use of this kind of array access, the MAP backend pays particular
attention to optimizing the integer code required for effective address calculation.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 65

Portability. Although any backend has to be target architecture specific, most
parts of the MAP backend are kept very flexible and generic, and thus can be eas-
ily adapted to new hardware architectures, just by using suitable parameter files.
Similarly, within one particular processor family, the backend can be adjusted t o
specific micro-architecture peculiarities by parameter adaptation.

Room for Experimentation. A lean backend is the prerequisite for car-
rying out experiments in ways that would be extremely time-consuming with
full-fledged open-source compilers like GNU C, and impossible with commercial
closed-box compilers like Intel C or IBM XL C.

(i) The MAP backend offers precise control over all kinds of optimization
and over the order of their application, which turned out to be a key factor to
achieving good performance.

(ii) The backend includes several types of optimization done in an ad-hoc
style, similar to the ones done by hand-coders, to effectively deal with some of
the specific limitations of the primary target platforms, i.e., IBM's Blue Gene
systems. In a sense, the development of the MAP compiler tool chain bears some
similarity with the work done by skilled hand-coders. However, the experience
and knowledge gained through extensive experimentation is not lost in the future,
as it is encoded into the compiler.

Parts of the Backend. Unlike other parts of the tool chain, the MAP backend
consists of a number of relatively small components that are dedicated to either
(i) resource allocation or to (ii) the scheduling of code.

Phase Ordering. Register allocation and instruction scheduling have conflicting
goals. While the register allocator tries to minimize the number of memory
transfer operations (register spills, register reloads, and constant data loads), the
instruction scheduler tries to maximally utilize the available execution units by
spreading out instructions according to their respective latencies.

The conflicting goals of these two phases can be harmonized in different ways.
(i) Register allocation and instruction-level scheduling may be combined into one
single complex pass [36]. (ii) Register allocation and scheduling may be applied
in an iterative style, starting with only a few register assignment constraints and
adding more and more constraints with each iteration.

Earlier prototypes of the backend used a fairly complex allocation-scheduling-
reallocation loop, controlled by a runtime estimate produced by the instruction-
level scheduler. The current version proceeds in a simpler, much more intuitive
way that takes maximum advantage of being in the restricted domain of sig-
nal transform codes. First, the domain-specific high-level scheduler of genf f t is
used to produce a topological sort of the DAG, which minimizes register pressure.
Next, a medium-level scheduler adapts the instruction order, taking the instruc-
tion latencies into account, but neglecting the effects of super-scalar execution.
This kind of scheduling tries to avoid all dispensable movement of instructions,
to preserve as much of the domain-specific high-level schedule as possible. Af-

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 66

ter the two scheduling passes, register allocation using the Belady-Min policy [8]
is carried out. Finally, a list-scheduler performs the instruction-level scheduling
of the code, based on a model that is a super-scalar in-order approximation of
the target architecture. All schedulers present in the MAP backend are target-
independent and are configured towards some particular target architecture by
machine description parameter files.

6.1 Resource Allocation
High-level SSA code, as output by the peephole optimizer (see Chapter 5), im-
plicitly assumes that unlimited resources are available. Before SSA code can be
executed on some target machine, all referenced resources need to be mapped to
the finite resources actually available on the target architecture, which comprises
two tasks. (i) All temporary floating-point (SIMD) variables need to be mapped
to a finite set of logical floating-point (SIMD) registers available on the target
architecture. (ii) All floating-point (SIMD) memory access operations need to
be translated to instruction sequences consisting of auxiliary integer instructions
and floating-point (SIMD) memory access instructions (loads/stores).

Hardware Assumptions. For the sake of simplicity, the backend assumes that
(i) all computations are done operating on floating-point scalars or SIMD vectors,
and that (ii) there are at least two distinct register files-one for integers, and
at least one for floating-point data. These assumptions have held true on all
architectures targeted by the different versions of the backend produced so far.

Software Assumptions. The backend requires that all calculations in the code
to be compiled do not operate on data stored in general purpose integer registers.
Thus, all integer instructions are auxiliary instructions, devoted to either effective
address generation or to fulfilling the procedure calling convention.

6.1.1 Register Allocation

Register allocation assigns temporary variables to logical registers, such that vari-
ables holding alive values are not mapped to the same registers. For most codes,
the number of temporary variables alive at some particular time outnumbers the
number of logical registers by far. Accordingly, register allocation has to insert
auxiliary data-transfer instructions between registers and stacks, i. e., spill and
reload instructions.

The backend performs register allocation for all floating-point scalar and
(SIMD) vector register files. It uses the "farthest-first" Belady-Min policy [8]
for choosing a spill victim, which has proven useful for minimizing the number of
auxiliary register transfer operations [38].

The register allocator of the MAP backend can be used in different ways.
(i) Allocation may precede instruction scheduling. (ii) Allocation may follow in-

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 6 7

struction scheduling. (iii) Allocation may follow some previous allocation, trying
to "improve" false dependencies introduced during register allocation by renaming
logical registers using a least-recently-used (LRU) heuristic. Register reallocation
may further reduce the number of spills and reloads.

In the current version of the backend, the code is scheduled on several levels
(domain-specific high-level scheduling, medium-level scheduling) before registers
are allocated. Medium-level scheduling is aware of both register allocation and
instruction scheduling, and tries to avoid unnecessarily constraining the choices
either one has. In practice, this has been a reasonable strategy.

Parameterization of the Register Allocator

The register allocator is adapted to a particular target architecture by using the
following directives shown in Fig. 6.1, which are ground (variable-free) PRO-
LOG terms, as defined by the predicate i s - r ega l locDi rec t ive . The actual
source code of the register allocator accepting these directives is presented in
Appendix A.5.

is~regallocDirective(src~dst~stack(Src,Dst,S)) :-
is-atom(Src) ,
is-atom(Dst) ,
is-atom(S) .

is~regallocDirective(dst~forceReuse~set(Dst,Force,B)) : -
is-atom(Dst) ,
is-bool(Force) ,
is-baseset (B) .

is~regallocDirective(stack~spill~reload~set(S,Spill,Reload,B)) : -
is-atom(S) ,
is-atomOrCompound(Spill) ,
is-atomOrCompound(Reload),
is-baseset (B) .

is~regallocDirective(constantLoads(Cs)) : -
is-constantLoads(Cs).

Figure 6.1: Register Allocation Directives. Four directives control the mapping of source
operands to destination operands, using some stacks as temporary storage. Multiple sets of
source and destination operands may be used. Source operands may or may not be mapped to
the same destination operands, which is useful for architectures that use the same register file
for holding scalar and vector data. Instructions loading constant values can be declared to the
allocator to avoid the spilling of constant data.

The directives shown in Fig. 6.1 have the following meaning.

s rc-ds t -s tack (Src , D s t , S) lets the register allocator map operands of type Src
t o destination operations of type Dst, using the stack S to hold values not fitting
into the destination set.

dst-f orceReuse-set (D, F, B) defines that the destination set D is associated with
with the buffer B. The parameter F controls optional caching.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 68

s t a c k ~ s p i l l ~ r e l o a d ~ s e t (S, S t , Ld,B) links the stack named S with the buffer B,
and declares St and Ld as the access operations for this particular stack.

constantloads (CS) states that all instructions matching any of the patterns in
the list CS load some constants, which allows avoiding spilling constant data.

Buffers are defined by the predicate is-buff e r , as shown in Fig. 6.2.

is-buff er(f irst-then(FirstSet ,Thenset)) :-
is-base~et(FirstSet),
is-baseset (Thenset) .

is~buffer(modestly~fifo~creation(M,FIFO,BaseSet)) : -

is-boo1 (M) ,
is-bool(FIF0) ,
is-baseset (Baseset) .

Figure 6.2: Buffers. Every destination operand used during register allocation is associated
with a buffer, defining the concrete allocation policy to be used.

f i r s t -then (F, T) denotes an uncached buffer comprising two base sets. When-
ever the register allocator needs a fresh destination operand, it first tries to draw
a member from the base set F, or if F has become empty, from the base set T.
Whenever a source operand is no longer alive, the register allocator releases the
corresponding destination operand, putting it back into the second base set, T.

modestly-f i f o-creat ion (M ,F,C) denotes a buffer having an internal cache X.
That buffer draws entries from the cache X or, if this cache is empty, from the
base set C. If M equals true, released entries are put back into the internal cache
X, which minimizes the number of different destination operands used. If M
equals false, released entries are put back into the base set C, which minimizes
the number of false dependencies introduced by register allocation. If F equals
true, the cache X is used in a first-in first-out (FIFO) style. If F equals false, it
is used in a last-in first-out (LIFO) style.

Base sets are defined by the predicate is-baseset , as shown in Fig. 6.3.

is-baseset (inf initeFrom(1)) : -
is-nonNegativeInteger(1).

is-baseSet(finite-from-fifo-modestly(N,I,F,M)) :-
is-nonNegat iveInteger (N) ,
is-nonNegat iveInteger (I) ,
is-boo1 (F) ,
is-boo1 (M) .

Figure 6.3: Base Sets. Base sets may be finite or unlimited in size. Finite base sets are used
for representing logical registers offered by the target architecture, while base sets of unlimited
size are used for representing stacks.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE

f inite-from-f i f o.nodestly(N, I ,F,M) represents a cached finite base set of N
ascending integers, starting at I. Like some buffers, finite base sets have an as-
sociated cache, and act similarly to buffers with regard to the caching behavior
(LIFO or FIFO style, modest or generous allocation).

inf initeFrom(1) represents a base set of unlimited size, comprising ascending
integers starting at the non-negative integer I. Unlike finite base sets, base sets
of unlimited size discard released entries returned to them.

Register Allocation Parameters for Blue Gene Processors

The register allocation directives used to customize the allocator for the IBM
PowerPC 440 FP2 processor are shown in Fig. 6.4.

stack-spill-reload-set (
fpstack, fv-st, fv-ld,

modestly~fifo~creation(false,true,infiniteFrom(O))).
stack-spill-reload-set (

fp2stack, f 2v-st2(p), f 2v_ld2(p),
modestly~fifo~creation(false,true,infiniteFrom(O))).

dst-f orceReuse-set (
f p2r, true,

first~then(finite~from~fifo~modestly(l4,O,false,false),
f inite-f rom-f if o-modestly (l8,14, true ,true))) .

src-dst-stack(fvr, fp2r, fpstack).
src-dst-stack(f 2vr,fp2r,fp2stack).

constantLoads(Ci(f2v-ld2(p), Cc(-)l, [-l , - , i(fv-ld, [c(->l, [-l , -) l> .

Figure 6.4: Register Allocation Directives for the IBM PowerPC 440 FP2. Similar
directives can be used for all common-place NSC-style processors having one shared register
file for scalar and vector floating-point data.

The directives presented in Fig. 6.4 have the following effect.

s tack-spi l l - re load-set , used twice in Fig. 6.4, defines two distinct stacks, both
of which are unlimited in size. The stack fpstack is used exclusively for scalar
data, the stack fp2stack exclusively for vector data. Data transfer operations for
the stack holding scalar data are fv-st and fv-ld, for the stack holding vector data
f2v_st2(p) and f2v_ld2(p).

dst -f orceReuse-set defines that there are 32 distinct destination operands of
the form fp2r, where the first 14 are to be used generously and the remaining 18
are to be used modestly. The reason for this peculiarity is the calling convention
defined by the PowerPC application binary interface, which declares the first 14
floating-point (SIMD vector) registers as caller-saved, and all remaining ones
as callee-saved. Minimizing the number of callee-saved registers used results in

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE

a minimization of the procedure prolog and epilog code, which is particularly
beneficial for small and middle-sized codes.

src-dst-stack, used twice in Fig. 6.4, associates both the scalar and vector
source operands (fur and f2vr) with the same destination operands of type fp2r.
However, when data needs to be spilled from the register file to the stack, scalar
values are spilled to (and reloaded from) the stack fpstack, whereas SIMD values
are spilled to (and reloaded from) a different stack, fp2stack. This helps conserve
stack space, and allows using scalar memory access instructions for scalar val-
ues, which is significantly cheaper than using SIMD memory access instructions,
because of the larger number of supported addressing modes.

constantLoads specifies two instruction patterns (for scalar and SIMD code,
respectively) that load some constant c(-).

r! 6.1.2 Effective Address Generat ion

All integer instructions in any code produced by the MAP compiler are devoted
to either fulfilling the AB1 calling convention or to calculating effective addresses.

While the code for fulfilling the calling convention has a constant size (regard-
less of the actual size of the procedure to be compiled) for procedure prolog and
epilog, the code needed for effective address calculation may grow linearly with
the number of memory access operations in the procedure t o be compiled.

Experiments [49] have shown that the portion of the code needed for the
calculation of effective addresses often has a significant negative performance
impact in case of algorithms having a high ratio of the memory access count
compared to the number of arithmetic operations. All fast algorithms for linear
signal transforms possess this property.

Minimizing the number of integer auxiliary instructions is important for all
target architectures, i. e., Intel x86, AMD64, and IBM PowerPC. However, pro-

11
ducing high quality code for the IBM PowerPC 440 FP2 processor is particularly
challenging, as there is no "register+immediateV addressing mode available for
SIMD instructions accessing memory, i. e., Blue Gene processors have DSP-like
addressing mode limitations for SIMD loads/stores. These limitations do not only
affect accesses to variably-strided arrays, but also access operations to the stack
and to numerical constants, considerably increasing the amount of code needed
for accessing the stack and numerical constants. Minimizing the number of these
extra instructions poses a challenge not present when generating code for general
purpose processors.

To meet the requirements of IBM PowerPC 440 FP2 processors, the address
generation part of the MAP backend had to be redesigned from scratch, which led
to a significant improvement of code quality. The backend now handles all kinds
of memory access operations (to array data, the stack, or constants) uniformly in
one pass, combining integer instruction selection and integer register allocation.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE

Basic Problem. The calculation of effective addresses of elements of variably
strided arrays can be done straightforwardly by using integer multiplication in-
structions. However, these instructions are expensive (low throughput, high la-
tency) on all general purpose processors, including the IBM PowerPC 440 FP2.

Strength Reduction. The commonplace approach to addressing this problem
is strength reduction [63], which aims at replacing complex non-pipelined (low
throughput, high latency) instructions like integer multiplications by sequences
of simpler pipelined (high throughput, low latency) instructions like integer ad-
ditions, subtractions, and arithmetic shifts.

Depending on the contents of integer register file, which holds both procedure
arguments and temporary values calculated earlier, there is a large number of
different ways of doing strength reduction.

Doing strength reduction in a hard-coded fashion implies making instruction
selection decisions without properly considering the temporal context, thereby
missing opportunities to (i) reuse already calculated factors still residing in the
register file and (ii) pick factors that could be beneficial for some proximate
address calculation to be carried out in the near future.

This common hard-coded approach to performing strength reduction is sim-
ple, keeps compilation times low, and works well for many applications-but
unfortunately not for numerical calculations in fast linear transform algorithms.

Implementation Idea. To produce high-quality code, the MAP backend inter-
leaves integer instruction selection and integer register allocation, thus removing
a classical compiler optimization barrier. The backend avoids premature commit-
ment to one particular factorization or reduction, but considers a larger number of
combinations, utilizing a blended mixture of well-established AI search methods,
depth-first iterative deepening [48] (DFID) and dynamic programming (DP).

As exhaustive search for an optimal solution is too time consuming for all
but the smallest codes, the backend (i) looks a t reasonably sized sub-problems,

A (ii) solves these sub-problems optimally, and (iii) combines the respective optima
to a hopefully well-performing solution of the original problem. The quality of
this solution depends on the amount of overlap of the sub-problems considered
and on the their size.

To control the amount of search performed, the backend offers a set of pa-
rameters to directly control the speed and quality of the search, allowing to trade
compilation time for code quality, by specifying the size and the amount of overlap
of the sub-problems.

Implementation. The backend starts out the search with the register file only
holding the procedure arguments, but not holding any temporary values.

One base step of the search algorithm utilizes a bottom-up forward-chaining
approach to find sequences of integer instructions calculating the next n effective
addresses. Depth first iterative deepening is used to find the minimal number
of instructions sufficient for calculating all effective addresses, in the original

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE

order. If some effective address calculation requires more than m auxiliary integer
instructions, the strength of that particular expression is not reduced, but a
multiplication instruction is issued instead to keep the instruction count low. In
practice, m = 3 has turned out to be a good compromise, as the vast majority of
effective addresses can be calculated with three or less simple integer instructions.

The backend commits to the first k instructions of the found sequence, i.e.,
it updates the register file entries accordingly, allowing for future reuse of the
newly calculated temporary values, now present in registers. It then strips off the
effective addresses covered by these k instructions. This procedure is repeated
until code for calculating all requested effective addresses has been generated.

Hand-Coding Stratagems. To accelerate the search process for effective ad-
dress calculation code and to improve the quality of the generated code, the MAP
backend for Blue Gene utilizes some clever hand-coding devices.

When the integer register rO is used as the base of the "register+registern
addressing mode, the processor does not use the content of rO as the base, but
the absolute value of 0 instead. This helps operating system code, as it allows
fast access to data lying in the first (or last) 32kB of the address space, but is
of no practical use for application code. The MAP backend uses rO to hold the
integer constant 16, i.e., the size of a 2-way SIMD vector in double-precision.
That constant is used frequently, e. g., when accessing SIMD constants stored in
double precision, when spilling data to (or reloading it from) the stack, or when
accessing unit-strided arrays of complex numbers.

The IBM PowerPC FP2 efficiently supports consecutive memory accesses by
offering an update form of the "register+registeri' addressing-mode, which calcu-
lates the effective address as the sum of contents of the two given registers, and
updates the base register.

To take maximum advantage of update forms, constants are stored in the
order, in which they are actually used. This guarantees consecutive access for all
constant loads, but may cause some constants to be stored more than once. As it
turned out, this replication of data is not critical with the codes of interest, even
if the number of constants is large.

Similarly, the backend tries to use consecutive accesses for accessing the stack,
by utilizing two stack pointers instead of one. One stack pointer is used solely for
writing t o the stack, while the other stack pointer is solely used for reading from
the stack. Entries are always written consecutively, but are usually read back
non-consecutively. The opposite behavior, i. e., all reads are consecutive while
writes are done non-consecutively, is supported, but not used, as it is somewhat
less cache-friendly. The backend does not reuse stack cells no longer used, which
minimizes instruction scheduling constraints, but increases memory requirements.
Reusing unused stack cells is also supported, but would increase the number of
auxiliary integer instructions, as it causes both reads from and writes to the stack
to be non-consecutive.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 73

Pragmatic Aspect S. Previous implementations of the backend [52] followed a
similar approach, but never looked at more than one effective address calculation
a t a time, i. e., k = n = 1. The current implementation significantly improves
upon this by supporting much larger window sizes (n > 10). Even with a high
amount of overlap (k= l), this compilation step usually requires no more than a
few minutes, even for the largest codes ever occuring in practice.

Interestingly, the search for good effective address code gets easier with a
larger number of logical integer registers being available. This appears to be
counter-intuitive a t first sight, as a larger number of registers results in a larger
search space. However, with a larger number of temporary values being held in
registers, optimal sequences of auxiliary integer instructions tend to be shorter,
which significantly speeds up depth-first iterative deepening search.

Related Work. Techniques similar to the ones presented in this thesis are used
in different contexts, including (i) applications working with arbitrary precision
integers, (ii) DSP compilers, and (iii) special-purpose hardware circuit design.

Optimizing effective address generation code is a very important topic for dig-
ital signal processor (DSP) compilers, as the compute intensive codes executed
often spent a considerable amount of their runtime for effective address genera-
tion. State-of-the-art compilation techniques for DSPs [57, 861 focus on utilizing
special addressing modes offered by modern DSPs but absent on most general
purpose processors. These addressing modes include the update-forms like the
ones offered by the PowerPC 440 FP2, but also other variants useful for accessing
unit-strided arrays, like auto-incrementlauto-decrement forms.

Multiple constant multiplication (MCM), i. e., the multiplication of values by
a series of integer or fixed-point constants, is highly relevant in special-purpose
hardware design [83]. To minimize the total hardware area, the strength of mul-
tiple multiplications is reduced, such that the area required by "cheap" basic
hardware building-blocks (adders and arithmetic shifters) is minimized.

/? Because of hardware properties of the IBM PowerPC 440 FP2 processor on one
hand and characteristics of the codes targeted by the MAP tool chain on the other
hand, these techniques can neither be directly employed nor easily adapted.

Like many DSPs, the IBM PowerPC 440 FP2 has addressing-mode restrictions
and update-form addressing modes. Unlike codes for DSPs, however, the input
codes of the MAP compiler, like the codes produced by the program generator of
FFTW, extensively use memory access operations having a variable stride. Also,
the PowerPC 440 FP2 has a much larger number of integer registers to be used
as address registers than DSPs.

MCM approaches would be usable for optimizing multiple variably strided ac-
cesses. However, it is unclear they can be adapted to (i) utilize DSP-like update-
form addressing modes, (ii) deal with integer register file limits, and (iii) exploit
composite arithmetic instructions (like the shift+add instruction lea present on
x86 and AMD64).

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE

An effective solution for utilizing update-form addressing modes could be
the extensive adaptation of the order of array access operations. However,
this would-while drastically reducing the effective address generation costs-
completely break the high-level schedule produced by genf f t , leading to poor
locality of reference and an increased number of (SIMD) floating-point register
spills and reloads.

6.1.3 Optirnizing Procedure Prolog and Epilog Code

An application binary interface (ABI) describes the object-code level interfaces
between (i) applications and the operating system, (ii) applications and libraries,
and (iii) different modules of an application.

An important part of any AB1 is the calling convention to be employed when
invoking procedures residing in separately-compiled compilation units (program
modules). This calling convention specifies (i) how parameters are passed to
procedures, (ii) how values are returned from procedures, (iii) sets of volatile
(caller-saved) registers, and (iv) sets of non-volatile (callee-saved) registers.

Callee-saved registers may be altered by the invoked procedure, but only if
the called procedure restores their original state before returning control to the
calling procedure. Caller-saved registers are freely available as temporary storage
to the invoked procedure. Procedure prolog code sets up the processor state
(registers and flags), such that the procedure body may execute, which includes
saving the callee-saved registers used within the procedure body. Procedure epilog
code restores the processor state according to the requirements of the calling
convention, which includes restoring all callee-saved registers, whose content has
been altered by some part of the procedure body, to their original content before
returning from the procedure.

The maximum size of the prolog and epilog code required for fulfilling the
procedure calling convention as defined by the application binary interface is
constant. Still, optimizing that code is worth while, because of a number of
reasons. (i) Depending on the application binary interface to be used, the actual
constant may be quite large, particularly decreasing the performance of small
and middle-sized procedures. (ii) The MAP tool chain does not directly support
complex control-flow, and compiles each basic block as a separate procedure,
which raises the total number of procedure calls. (iii) Optimizing prolog/epilog
code both minimizes code size and minimizes runtime.

Existing approaches aiming at a minimization of the procedure calling over-
head are (2) using adapted calling conventions, possibly in combination with
(ii) performing whole-program optimization. Both techniques cannot be applied
in the present context, not because of limitations of the MAP tool chain, but
rather because they would require opening up existing proprietary closed-source
compilers. But even for open-source compilers, these approaches are infeasible in
practice, due to the amount of development and maintenance work required.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 75

The PowerPC AB1 defines approximately one half of the logical registers to be
callee-saved. If some procedure uses all integer and all floating-point (SIMD)
registers, it has to save and restore 19 integer and 18 floating-point registers,
amounting to a total of 74 auxiliary load/store instructions for the procedure
prolog and epilog. As the PowerPC 440 FP2 can execute at most one load or
store instruction per cycle, this task requires up to 74 extra cycles.

For minimizing the code size, using two separate procedures for prolog and epilog,
hand-coded in assembly language, is the method of choice. However, this is not a
good solution with regard to code speed, which is the main objective of the MAP
tool chain. For minimizing the total runtime spent for executing a procedure, it is
better to merge the prolog and epilog load/store instructions with the procedure
body code. This increases code size, but allows the instruction scheduler to hide
a large part of the costs by interleaving prolog/epilog instructions with floating-

c' point instructions of the procedure body.

Minimizing the Floating-Point Prolog/Epilog Size. For floating-point reg-
isters, the register allocator generously assigns caller-saved registers (f 0 to f 13),
but sparingly assigns callee-saved registers (f 14 to f 31). As a result, callee-saved
registers are only used if the maximum register pressure requires them to be used.

Minimizing the Integer Prolog/Epilog Size. Minimizing the number of
integer registers used and minimizing the number of auxiliary integer instructions
for effective address calculation are conflicting goals. The MAP backend performs
search for effective address generation code not only once but several times, and
then picks from all generated codes the one that attains the best compromise
between both optimization criteria.

Elimination of Dead Integer Code. The combined instruction selection and
register allocation for integer code calculating effective addresses has a limited
optimization focus, due to the problem complexity. Because of optimization
boundaries, dead code may be inserted and update-forms for load/store instruc- r' tions may be used unnecessarily, which can impede following compilation stages
like instruction scheduling. Although this situation rarely occurs in practice, the
backend removes the resulting dead code and also simplifies load/store instruc-
tions that unnecessarily use update-forms.

Minimizing Instruct ion Scheduling Constraint S. Choices made by resource
allocation may inadvertently limit the amount of prolog/epilog instructions that
can be hidden. To improve code quality without unnecessarily increasing the
complexity of the other allocation stages, the MAP backend tries to promote the
use of caller-saved registers near the beginning and near the end of procedures.
This increases the likelihood that-after instruction scheduling-prolog/epilog
code is executed in parallel with the inner parts of a procedure, thus effectively
hiding most of the cost associated with the procedure call.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 76

To promote the use of caller-saved registers near the beginning of a procedure,
the register allocator first uses caller-saved registers, before it starts using callee-
saved registers.

Promoting the use of caller-saved registers near the end of a procedure is
achieved by partially reallocating integer and floating-point registers, substituting
callee-saved with caller-saved registers, such that the life-spans of the respective
registers do not overlap. The procedure quickly reaches a fixed point, i.e., it
runs out of caller-saved registers. Thus, it leaves most of the prior allocation
unchanged.

Reallocation of floating-point and integer registers is very similar, with one
noticeable exception. For integer registers, the reallocator assumes that instruc-
tions using the same register as input and as output are load/store instructions
in update-form. The reallocator adds an additional equality constraint, asserting
that these particular instructions have the same form after reallocation has fin-
ished, i. e., their sets of input and output registers still overlap. For floating-point
registers, this assumption is not made.

6.2 Scheduling
The MAP backend implements a set of different schedulers, covering a wide range
from domain-specific high-level scheduling to target-processor specific low-level
code reordering. Within the tool chain, both high-level and the medium-level
scheduler precede register allocation.

6.2.1 High-Level Scheduling

Two high-level schedulers are part of the MAP backend. Both schedulers aim a t
a minimization of register pressure.

Scheduler HL1. The first high-level scheduler is directly derived from the sched-
uler of genf f t , the program generator of FFTW. It is implemented as an FFT
specific topological sort of the computation DAG and uses a "global view" to
enhance locality of access, thereby minimizing variable life-span [28, 311.

Scheduler HL2. The second high-level scheduler realizes a series of bubble-sort
like local code reordering strategies, trying to further reduce register pressure.
This scheduler works particularly well for DAGs exhibiting a non-regular stric-
ture like SIMD-vectorized FFT DAGs.

6.2.2 Medium-Level Scheduling

Both high-level schedulers of the MAP backend do not utilize any information
about instruction latencies, solely aiming at minimizing register pressure, which
may introduce too many instruction scheduling constraints.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 77

Minimally adapting (i.e., staying as close as possible t o the original) code
emitted by high-level schedulers prior to register allocation to take instruction
latencies into account can increase both register pressure and performance. It
is beneficial if the target processor has (i) a small number of logical registers,
(ii) a small number of functional units operating in parallel, (iii) high instruction
latencies, or (iv) no out-of-order execution support.

The actual impact of these criteria on performance depends on various prop-
erties of the input code, like dependency chain lengths, the number of different
constants used, the number of temporary variables used, variable life-span, etc.
Also, these criteria are clearly interdependent, e. g., logical registers can be locked
up for a considerable amount of time if long latency instructions are used or the
number of functional units operating in parallel is small.

The FP2 instruction set operates on a relatively large register file, comprising
32 vector registers. Large SIMD codes, as produced by program generators, op-
erate on several hundreds of temporary variables and on a few hundred numerical
constants. SIMD vectorization can significantly increase the number of constants
and decrease the average number of uses per constant. FMA extraction may
increase the actual amount of work being done and can have an adverse effect
on register pressure, as it (i) increases the number of (SIMD) constants and
(ii) raises the number of instructions requiring three (as opposed to two) input
operands, which contributes to longer life-spans of SIMD constants. Analysis of
the register allocation process shows that, with large SIMD codes, up to 50% of
the register file is used for holding numerical SIMD constants, but is not used for
holding input array elements or temporary values calculated by some preceeding
instruction.

The IBM PowerPC 440 FP2 directly meets criterion (ii), as it is able to
execute at most one (SIMD) floating-point instruction per cycle.

Both the arithmetic SIMD instructions used in signal transform codes for
calculation (addition, subtraction, multiplication, and fused multiply-add) and
SIMD load/store operations are fully pipelined on FP2. These instructions have
relatively short latencies of five and four (assuming a data is present in L1 cache)
cycles, respectively. But, depending on the data dependencies within the code,
even such short latencies may quickly add up to large amounts. For instance,
the multiplication of two complex numbers usually takes 4 multiplications and
2 additions, which can be mapped to 3 general purpose SIMD floating-point
instructions or to 2 Blue Gene specific SIMD fused-multiply add instructions.
Assuming the best case-all data is present in the required layout in registers, all
instructions are issued as soon as possible, and there are no pipeline stalls-these
two dependent Blue Gene SIMD FMAs produce an output after 10 cycles.

The PowerPC 440 FP2 offers -only very limited support for out-of-order ex-
ecution, allowing for instructions dispatching to different functional units to be
reordered, but keeping the execution of instructions executing on the same func-

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 78

tional unit strictly in-order. So the processor can, for instance, dynamically adapt
the order of some load-store instruction with regard to an independent (SIMD)
floating-point (or integer) instruction, but is not able to adapt the order of two
independent (SIMD) floating-point instructions.

Scheduler ML. This scheduler aims at a good compromise between minimizing
register pressure and minimizing instruction scheduling constraints. It reorders
instructions to take instruction latencies into account, increasing the register pres-
sure. Inspired by stable sorting algorithms, this scheduler avoids all dispensable
instruction movement, preserving the instruction order obtained by high-level
(domain-specific) scheduling as far as possible.

6.2.3 Low-Level Scheduling

The backend comprises two low-level schedulers, both of which specifically address
execution properties of the target processor.

Scheduler LL1. The first low-level scheduler implements the list-scheduling al-
gorithm [63, 781, based on an in-order, super-scalar execution model of the target
processor and handles both pipelined and non-pipelined instructions well. The
scheduler provides a runtime estimate, that is can be used to control an optimiza-
tion loop [52] of successive instruction scheduling and register reallocation.

Execution models include information about (i) instruction latencies, (ii) in-
struction throughput, (iii) issuing and decoding constraints, (iv) the mapping of
instructions to functional units, and (v) register forwarding features. The current
version of the compiler includes various machine models for the IBM PowerPC 440
FP2 and the IBM PowerPC 970 (G5) processors.

Execution models may include assumptions about the presence of data in caches,
e. g., specifying that all constants are present in L1 cache, while all input and out-
put arrays reside in L2 cache. Especially in the context of automatic performance
tuning software, this looks like a promising direction of future improvement of the
backend. For the sake of simplicity, however, all currently implemented models
assume that all data accessed by loads and stores reside in L1 cache.

Scheduler LL2. The second low-level scheduler addresses target-processor spe-
cific instruction decoding, issuing, and completion constraints. Depending on the
target architecture to generate code for, LL2 realizes different strategies.

For the IBM PowerPC 440 FP2, the backend does not perform any decoding
or issueing related reordering following the scheduler LLI .

For the IBM PowerPC 970 (G5) processor, LL2 reorders instructions within
a decoding group consisting of up to four instructions to avoid issue queue con-
gestion due to unfavorable clustering within decoding windows.

In an experimental version of the backend for x86 compatible machines [49],
the scheduler tries to deal with address generation interlocks. An address gener-
ation interlock occurs whenever a memory access instruction involving complex

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 79

address calculation immediately precedes a memory access instruction having
simple address calculation. As on x86 all memory accesses occur in-order, the
latter instruction is blocked until the effective address of the prior instruction has
been calculated, even if the two instructions access completely different parts of
the memory, e.g., if the first one accesses data in some array, while the latter
one accesses the stack. The x86 backend tries to avoid address generation inter-
locks of that type by moving memory access instructions having simple address
calculation over immediately neighboring memory instructions having complex
address calculation, after list-based instruction scheduling has been performed.

Parameterization of the Low-Level List Scheduler

The low-level list scheduler LL1 is customized towards some particular archi-
tecture by using the following directives, which are ground PROLOG terms, as
defined by the predicate is~llschedulerDirect ive shown in Fig. 6.5.

is~llschedulerDirective(pickingHeuristics(P)) : - % selection heuristics
is-pickingHeuristics(P).

is~llschedulerDirective(maxInstrsPerCycle(M)) : - % max # of instrs/cycle
is-positiveInteger (M) .

is~llschedulerDirective(resources(Rs)) : - % available resources
is-resources(Rs).

is~llschedulerDirective(favor(Fs)) :- % scheduling bias
is-f avors(Fs).

is~llschedulerDirective(favorReleasers(Rs)) :- % scheduling bias
is-favorReleasers(Rs).

is~llschedulerDirective(scheduling(Cs)) :- % scheduling clauses
is~schedulingClauses(Cs). % for instructions

Figure 6.5: Low-Level List Scheduler Directives. The directives specify the primary
selection heuristics, the number of instructions that can be issued each cycle, the available
resources, various scheduling biases, and scheduling properties of all supported instructions.

The directives shown in Fig. 6.5 have the following meaning.

pickingHeurist i CS (P) sets the used selection heuristic to P, which may be either
original-order or critical-path. If P equals original-order, the scheduler selects
among all instructions ready for issue the instruction that occurs the earliest in
the original program text. If P equals critical-path, the scheduler selects among
all instructions ready for issue the instruction having the longest critical path.

maxInstrsPerCycle(M) specifies the maximum number M of instructions that
can be fetched, decoded, issued, executed, and completed each cycle. Reasonable
values are M = 1 for non-super-scalar execution, M = 2 for dual-issue machines like
the IBM PowerPC 440 FP2, M = 3 for triple-issue machines like the AMD Athlon,
the Intel Pentium 111, and the Intel Pentium 4, and M = 4 for quadruple-issue
machines like most modern super-scalar RISC processors, including the IBM Pow-
erPC 970 (G5).

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 80

resources (Rs) declares that the Rs includes all execution resources available. If
the given list contains duplicates, then multiple resources of that particular type
are assumed to be available. Resources used in the execution model may either
be functional units, or other finite (pseudo) resources, like a limited number of
data-paths present on the target processor.

f avor (Fs) and f avorReleasers (Rs) can be used for fine-tuning the selection of
the next ready instruction to be issued, providing control over situations, where
the primary heuristics for selecting the next instruction to be issued does not
uniquely define any instruction to be chosen. For instance, with the critical-path
heuristics, it is reasonable to favor instructions that mark the last use of some
value, freeing a logical register.

f avor (Fs) with Fs being a list of entries i-howmuch(1, N) adapts the bias for
selecting ready instructions matching the pattern I to the integer N.

f avorReleasers (Rs) with Rs being a list of entries d-howmuch(D, N) further
adapts the bias of all instructions that mark the end of the life-span of some
operand of type D by N.

scheduling (CS) specifies a list of clauses CS describing the execution require-
ments and effects of instructions matching some specific pattern. Individual
clauses satisfy the predicate is-schedul ingclause shown in Fig. 6.6. Auxiliary
predicate definitions are shown in Fig. 6.7.

is~schedulingClause(i~amoreq~lats~xsrcs~xdsts~res(W,A,Ls,XS,XD,R) : -
is-instr0rPair (W) ,
is-annotations (A) ,
is-latencies (Ls) ,
is-resources (XS) ,
is-resources(XD),
is-requiredResources(R).

is-schedulingClause(i-lats-res(W,Ls,R)) : -
is-instr0rPair (W) ,
is-latencies (Ls) ,
is-requiredResources(R).

Figure 6.6: List Scheduling Clauses. A clause defines the latency of some producer (or
alternatively, between some producer and some consumer) and the resources required for execut-
ing the producer. Annotations and pseudo-operands may be used to constrain the scheduling.

i-annoreq-lat S-xsrcs-xdst S-res (I, A, Ls , XS , X , R is a scheduling clause de-
noting that all instructions matching the pattern I and having the annotations A
require the execution resources R to produce some particular output after some
designated time Ls, possibly reading (and writing) some auxiliary extra operands,
specified by XS and XD, respectively. If I is no instruction pattern, but of the
form S-d(S, D), with S and D being instruction patterns, then the clause is ap-
plied whenever pairs of producers and consumers matching the pair (S,D) is

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE 81

encountered, which allows modeling forwarding paths from some functional unit
to another.

As instructions may produce more than one visible output, the list Ls includes,
for each output operand type, entries of the form dst-lat(D,L), denoting that
operands of type D are written after L cycles. A common case of instructions
producing multiple outputs are load instructions with a "update" addressing
mode, which write the respective floating-point (or SIMD) register after a few
(say 5) cycles, but update the input integer register, which was used as the base
register, after one cycle.

The auxiliary extra operands XS and XD allow to preserve parts of the order
of the original input code.

Required execution resources R have the form defined by the predicate
is-requiredResources, shown in Fig. 6.7.

is-instrOrPair(1) : - % From instruction I
is-instr(1) . % to any other

is-instrOrPair(s-d(S,D)) : - % From instruction S
is-instr (S), % to instructionD
is-instr (D) .

is-latency(dst-lat (D,L)) : - % Operand D is written
is-resource(D) , % after L cycles
is-nonNegativeInteger(L1.

is-requiredResources(none). % No resources required
is-requiredResources(and(Rs)) : - % All resources in Rs

is-requiredResourcesList(Rs). % are required
is-requiredResources(or(Rs)) : - % At least one resource

is-requiredResourcesList(Rs). % in Rs is required
is-requiredResources(unit_blocked(R,N)) : - % Resource R is blocked

is-resource(R) , % for N cycles
is-nonNegativeInteger(N1.

Figure 6.7: List Scheduling Clause Auxiliary Predicates. These predicates are used by
definition of scheduling clauses.

For the commonly occuring case that some clause does not use any annotations or
extra operands, a short form i - l a t s - res (I , L s , R) is offered, which is equivalent
to i...annoreq~lats~xsrcs~xdsts~res(I, [l, Ls, [l, [l, R).

Required execution resources are usually terms of the form unit-blocked(U,N),
specifying that the respective instruction blocks the resource U for N cycles. This
allows the scheduler to uniformly model both pipelined (N = l) and non-pipelined
(N > 1) instructions. Execution resources may also be compound resources,
consisting of several alternatives (or) or a selection of multiple resources (and).
If some instruction of some type does not require any resources at all, except for
the decoding and issuing slot, then the constant none is used.

CHAPTER 6. THE MAP BACKEND FOR BLUE GENE

List Scheduling Parameters for Blue Gene Processors

A simple model (shown in Fig. 6.8) is used for scheduling SIMD code that does
not have explicit integer code for effective address generation.

maxInstrsPerCycle(2). % dual-issue
resources (Clsu, f p1) .
scheduling([

i~annoreq~lats~xsrcs~xdsts~res(% SIMD data load
i(f2v_ld2(-), [ae(-,-,- 11 ,-,-I, [l,

[dst_lat(fp2r(-) ,411 , Ememstate1 , Cl ,
unit-blocked(lsu, l)),

i~annoreq~lats~xsrcs~xdsts~res(% SIMD data store
i(f2v_st2(-) ,-, Cae(-,-,-)I , - l , C l ,

Cl, Cl, Cmemstatel ,
unit-blocked(lsu,l)),

i-lats-res (% other SIMD load
i(f2v-ld2L) ,-,-,-)S

[dst-lat (fp2r(-),4)1 , unit-blocked(lsu, l)),
i-lats-res (% SIMD spill

i(f2v_st2(_,-) ,-,-,-),
C] , unit-blocked(lsu, l)) ,

i-lats-res(% SIMD FP op
i(f2v-N(-) ,-,-,-)B

Cdst-lat (fp2r(-) ,5)1, unit-blocked(fp, l)),
i-lats-res(-, [l , none) % (all other)

I).

Figure 6.8: Scheduling Parameters for the IBM PowerPC 440 FP2. This simple
model only covers SIMD load, SIMD store, and SIMD floating-point instructions. Clauses for
SIMD data load and store instructions accessing some array aeL,-,-) are kept in the original
order, by using a pseudo-operand, memstate. Instructions not covered by any of these clauses
are assumed to require no processor resources, except for the decoding and issuing slot.

Once effective address code has been generated, more elaborate parameterizations
than the ones shown in Fig. 6.8 are used, to adequately cover integer and (scalar
and SIMD) floating-point instructions. The actual OCAML source code of the
low-level list scheduler LL1 is listed in Appendix A.4.

Chapter 7

Compilation Examples

Throughout the compilation process, the MAP tool chain represents input and
intermediate code as human-readable ground (variable-free) PROLOG terms, as
defined in the Sections 7.1 and 7.2. Section 7.3 presents several examples of code
processing, keeping track of all relevant stages of compilation.

7.1 Input Code Representation

The input of the MAP tool chain is a scalar computation DAG, corresponding
to a single-entry single-exit block of straight line code in static single assignment
(SSA) form. Input codes are ground PROLOG terms as defined by the predicate
is-procedure (see Fig. 7.1). To produce output in this representation-instead of
C code-the code generator of FFTW had to be adapted slightly. Other program
generators could be adapted in a similar way, requiring only minor effort.

is~procedure(procedure1(~ame,~rrays,Args,Constmts,I~~tr~)) :-

is-string(Name),
is-arraydecls (Arrays) ,
is-arguments (Args) ,
i s ~ c o n s t d e c l s (C o n s t ~ t s) ,
is-instrs(1nstrs).

Figure 7.1: Input Representation of a Procedure.

A procedure input to the MAP tool chain comprises a procedure name, several
declarations and the procedure body. The declarations include information about
(i) all input and output arrays used, (ii) the procedure's arguments, and (iii) all
constants used by instructions of the procedure body. The procedure body is a
list of scalar instructions.

All scalar constants used in the procedure body are declared by a list of terms,
as defined by i s - cons tdec l (see Fig. 7.2). The textual representation of the
constants specified may have arbitrary precision.

Figure 7.2: Constant Declarations.

CHAPTER 7. COMPILATION EXAMPLES 84

Arrays are declared by a list of terms, as defined by is-arraydecl (see Fig. 7.3).
Note that array properties like stride are declared as properties of that particular
array, not of the particular array access.

Figure 7.3: Array Declarations.

The instructions of the procedure body to be compiled are a list of terms, as
defined by is-instr (see Fig. 7.4). All instructions operate on variables of type
fL). Source operands of store instructions and binary instructions are augmented
t(K, V), denoting that the contents of the variable V are multiplied by the K-th
constant before the actual operation. If K equals 0, then the multiplication is
omitted.

is-instr(f-Load(S,D)) : -
is-memoryLocationRW(S) ,
is-variable (D) .

is-instr (f -Store(S,D)) : -
is-augmentedVariable(S),
is-memoryLocationRW(D).

is-instr(f-BinOp(Op,SI,S2,D)) : -

member-of (Op, [add, sub ,mull) ,
is-augmentedvariable (SI) ,
is_augmentedvariable(S2),
is-variable(D).

is-variable(f(1)) : -
is-nonNegativeInteger(1).

is-augmentedVariable(t(K,V)) : -
is-nonNegat iveInteger (K) ,
is-variable(V) .

Figure 7.4: Scalar Instructions.

CHAPTER 7. COMPILATION EXAMPLES

7.2 Intermediate Code Representation
For all internal processing within the tool chain, the MAP compiler uses the
intermediate represent ation defined by the predicate i S-pro cedure IR, shown
in Fig. 7.5.

is~procedureIR(procedure(Name,Arrays,Args,Constmts,Instrs)) : -
is-atom(Name) ,
is-arrayDeclsIR(Arrays) ,
is-atoms(Args) ,
is~constDeclsIR(Constants) ,
is-instrsIR(1nstrs) .

is~array~ecl~~(array~stride~multitude~precision(A,S,M,P)) : -

is-atom(Array) ,
is-strideIR(S) ,
is-positiveInteger (M) ,
is-precision(P) .

is-strideIR(S) :-
is-atom(S) .

is-strideIR(1) : -
is-positiveInteger (I) .

is~constDeclIR(fl~const(Id,P,C)) : -
is-atom(1d) ,
is-precision(P) ,
is-atom(C) .

is~constDeclIR(f2~const(Id,P,C~lo,C~hi)) : -
is-atom(Id),
is-precision(P) ,
is-atom(C-lo) ,
is-atom(C-hi) .

is~instrIR(i(Op,Srcs,Dsts,Annotations)) :-

is-op(0p) ,
is-operands (Srcs) ,
is-operands (Dsts) ,
is-annotations(Annotations).

Figure 7.5: Intermediate Representation of a Procedure.

The part of the definition of intermediate representation shown in Fig. 7.5 is the
same for all target architectures.

Defined operations and pseudo-operations, operands, and supported annota-
tions differ from target to target. For Blue Gene systems, the MAP tool chain
uses the definition shown in Fig. 7.6.

CHAPTER 7. COMPILATION EXAMPLES 86

% store operations

is-op(f2v-ldl). % load operations
is-op(f2v_ldl(LH)) :-

is-loHi(LH).
is_op(f2v_ldl(P,LH)) :-

is-precision(P) , is-loHi(LH) .
is-op(f2v-ldlacc(Op)) :-

is-addSub(0p).
is-op(f 2v_ld2(M)) : -

is-parCross(M).
is_op(f2v_ld2(P,M)) :-

is-precision(P) ,
is-parCross(M).

is-op(f2v_stl(LH)) :-
is-loHi(LH).

is-op(f2v-stl(P,LH)) :-
is-precision(P),
is-loHi(LH).

is-op(f 2v-st2 (M)) : -
is-parCross(M).

is_op(f2v_st2(P,M)) :-
is-precision(P) ,
is-parCross(M).

is-op(f2v-N(SimdOp)) :- % n-ary arithmetic operation
is-simdop(Simd0p).

is-simdop(paddsub(Opl,Op2)) :- % addaddladdsublsubaddIsubsub
is-addSub(Opl),
is-addSub(Op2).

is-simdop(copy). % unary copy
is-simdop(swap). % unary swap (=cross)
is-simdop(chs(LH)) :- % unary sign change

is-loHi(LH).
is-simdop(pmu1). % parallel multiplication
is-simdop(xmu1). % cross multiplication
is-simdop(xpmu1). % cross-copy primary multiplication
is-simdop(xsmu1). % cross-copy secondary multiplication
is-simdop(pmadd). % parallel multiply-add
is-simdop(pmsub). % parallel multiply-sub
is-simdop(pnmadd). % parallel negative multiply-add
is-simdop(pnmsub). % parallel negative multiply-sub
is-simdop(xmadd). % cross multiply-add
is-simdop(xmsub). % cross multiply-sub
is-simdop(xnmadd). % cross negative multiply-add
is-simdop(xnmsub). % cross negative multiply-sub
is-simdop(xcsnmsub). % cross copy-secondary negative multiply-sub
is-simdop(xcxnpma). % cross complex nsub-primary multiply-add
is-simdop(xcxnsma). % cross complex nsub-secondary multiply-add

is-loHi(10). % lower part of 2-way SIMD vector
is-loHi(hi). % higher part of 2-way SIMD vector

is-parCross(p). % unary SIMD copy
is-parCross(x). % unary SIMD swap

is-addSub(add). % scalar addition
is-addSub(sub). % scalar subtraction

is_operand(f2vr(-)). % SIMD FP variable
is-operand(fvr(-)). % Scalar FP variable
is_operand(fp2r(-1). % FP2 SIMD register
is-operand(r(-1). % Integer register
is-operand(ae(-,_,-)). % 1D array element
is-operand(c(-1). % Numerical constant

is-annotation(s(-)). % Uses hidden source
is-annotation(d(-1). % Uses hidden destination

Figure 7.6: Blue Gene Specific Parts of the Intermediate Representation.

CHAPTER 7. COMPILATION EXAMPLES

7.3 FFT Example Codes

This section presents several codes and describes their way through the MAP
tool chain, demonstrating the effect S of the most important compilation stages.

All codes have been automatically generated by an adapted version FFTW'S
program generator genfft that produces output in MAP'S input format instead
of plain C code. In comparison with codes occuring in practice, the presented
codes are all relatively short. However, they differ considerably, and thus illustrate
different aspects of the functioning of the MAP compiler.

7.3.1 3-point Forward Complex FFT (fn-3)

The first code fn-3 is a forward 3-point complex no-twiddle FFT codelet.

Example f n-3: Scalar code produced by genf f t

arrayDecl("input" , variable ("istride") , 2, double),
arrayDecl("outputn , variable("ostride") , 2, double)

1 ,
["input", "output", "istride" , "ostride" l ,
C
constDecll (double, "+0.5"),
constDecll(double, "+0.866025403784438646763723170752936183471402627")

l ,

f-Load(ae("input",O,O), f (l)),
f-Load(ae("input",O,l), f(16)),
f-~oad(ae("input",I,O), f(2)),
f-~oad(ae("input",2,0), f (3)),
f-BinOp(add, t(0,f(2)), t(O,f(3)), f(4)),
f-BinOp(sub, t(O,f(3)), t(O,f(2)), f(14)),
f-~oad(ae("input",l,l), f(8)),
f-~oad(ae("input",Z,I), f(9)),
f-BinOp(sub, t(O,f (8)), t(O,f (g)), f (10)),
f-BinOp(add, t(O,f(8)), t(O,f(g)), f(17)),
f-BinOp(add, t(0,f (l)), t(O,f(4)), f (511,
f_Store(t(O,f(5)), ae("output",O,O)),
f-BinOp(sub, t(o,f(l)), t(l,f(4)), f(7)),
f-BinOp(sub, t(O,f(7)), t(2,f(10)), f(12)),
f-BinOp(add, t(0,f (7)), t(2,f(10)), f(13)),
f-Store(t(0,f (IZ)), ae("output1',2,0)),
f-Store(t(0,f (1311, ae("output",l,O)),
f-BinOp(add, t(0,f (16)), t(O,f(17)), f(22)),
f-Store(t(0,f (22)), ae("output",O,l)),
f-BinOp(sub, t(0,f (16)), t(l,f (IT)), f (Ig)),
f-BinOp(add, t(2,f (14)), t(O,f (19)), f (20)),
f-BinOp(sub, t(O,f(19)), t(2,f(14)), f(21)).
f-Store(t(0,f (20)), ae("output",l,l)),
f-Store(t(0,f (21)), ae("output",2,1))

1
1.

The modified version of genf f t also produces C code, which includes declarations
and possibly stub code calling code compiled by the MAP tool chain.

CHAPTER 7. COMPILATION EXAMPLES

extern void fftw-no-twiddle_3(const fftw-complex *, fftw-complex *, int, int);

fftw-codelet-desc fftw-no-twiddle-3-desc =

"fftw-no-twiddle-3",
(void c*) 0) f ftw-no-twiddle-3,
3,
FFTW-FORWARD,
FFTW-NOTW,
67,
0.
(const int *) 0,

>;

Example f n-3: Vectorization

Vectorization transforms the scalar code into the following SIMD vector code.
Note that the instructions are in no particular order, as the instruction sequence
represents a DAG.

J ,
input, output, istride, ostride I ,

r

CHAPTER 7. COMPILATION EXAMPLES 89

In this code, all addition, subtraction, and multiplication operations are carried
out by SIMD instructions. Still, there are many auxiliary SIMD instructions (chs
and swap), some redundant instructions, and explicit multiplication instructions
(pmul) that could be hidden in SIMD FMAs. Highlighted parts of the above code
fragment show these instructions.

Example f n-3: Peephole Optimization

Peephole optimization performs various local optimizations in this code. For
example, all SIMD swap instructions are eliminated, either directly or by merging
them with neighboring Blue Gene specific SIMD instructions. The instruction
count is further minimized by the extraction of Blue Gene specific SIMD FMA
instructions.

procedure(fftw-no-twiddle-3,
C
array~stride~multitude~precision(input,istride,2,double),
array~stride~multitude~precis~output,ostride,2,double)

l ,
C
input,
output,
istride,
ostride

l ,
C
f2~const('0~,double,'0.5','0.5'),
f2~const('l',double,'O.86602540378443864676372321,

'0.8660254037844386467637232')

l ,
C
i(f2v_st2(p), [f2vr(15)1, [ae(output,l,O)l, [l),
i(f2v_st2(p), Cf2vr(16)1, Cae(output,2,0)1, [l) ,
i (f 2v-ld2 (p) , [ae (input, 0,O) 1 , [f 2vr (5)l , [l) ,
i(f 2v_ld2(p) , [ae(input , l ,0)] , Cf 2vr(4)1 , [l) ,
i (f 2v-ld2 (p) , Cae (input, 2,0)1 , [f 2vr (3) 1 , [l) ,
i(f2v-N(paddsub(sub,sub)), [f2vr(4) ,f2vr(3)1, [f2vr(ll)l, [l),
i (f 2v_N(paddsub(add, add)) , [f 2vr(4) , f 2vr (311 , [f 2vr (1211 , [l) ,
i(f2v_N(paddsub(add,add)), [f2vr(5) ,f2vr(I2)1, [f2v(13)], [l),
i(f 2v_st2(p), [f 2vr(13)1 , Cae(output ,O,0)1 , C1 1,
i(f2v_ld2(p), [c('O'>'l, [f2vr(lI9>1, [l),
i (f 2v-N(xcsnmsub) , [f 2vr (119) ,f 2vr(12) , f 2vx(5) 1 , [f 2vr(14) 1 , [l) ,
i(f2v_ldZ(p), [c('l')], [f2vr(l20)1, [l),
i(f2v_N(xcxnsma), [f2vr(120) ,f2vr(11) ,f2vr(14)], [f2vr(15)1, C]),
i(f2v_N(xcxnpma), Cf2vr(120) ,fZvr(il) ,f2vr(14)1, Cf2vr(16)1, [I)

l
1.

The highlighted parts show Blue Gene specific operations extracted by the peep-
hole optimizer.

CHAPTER 7. COMPILATION EXAMPLES 90

By this stage of compilation, all modules disregarded an existing instruction order
and produces code in no particular order. Beginning with the following stage,
the order of the instructions becomes important.

Example f n-3: High-Level Scheduling

The high-level schedulers HLI and HL2 produce a topological sort of the code, i. e.,
they adapt the order of the instructions occuring in the DAG such that they are
sequent ially executable.

procedure(fftw-no-twiddle-3,

array~stride~multitude~precision(input,istride,2,do~ble)~
array~stride~multitude~precision(output,ostride,2,double)

l ,
L:
input,
output,
istride,
ostride

.l,

f2-const('O',double,'O.5',
'0.5'),

f2~const('l',double,'0.8660254037844386467637232~
'0.8660254037844386467637232;)

1 ,

i(f2vald2(p), [ae(input,2,0)], [f2vr(3)1, [l),
i (f 2v-ld2 (p) , [ae (input, l ,0) 1 , [f 2vr (4) 1 , [l) ,
i(f2v_N(paddsub(add,add)), [f2vr(4) ,f2vr(3)], [f2vr(12)ll [l),
i(f2v-N(paddsub(sub,sub)), [f2vr(4) ,f2vr(3)], [f2vr(l1)1, [l) ,
i(f2v_ld2(p), [COO')], [f2vr(I19)1, [I) ,
i(f2v_ld2(p), [ae(input ,O,O)I, [f2vr(5)1, [l 1,
i(f2~-N(xcsnmsub), [f2vr(119) ,f2vr(12) ,f2vr(5)], [f2vr(14)], [l) ,
i(f2v_N(paddsub(add,add)), [f2vr(5) ,f2vr(12)], [f2vr(l3)1, [l),
i(f2v_st2(p), [f2vr(13)1, [ae(output,O,O)I, [l),
i(f2vmld2(p), [cOl'>l, [f2vr(120>], [l),
i(f2v-N(xcxnprna), [f2vr(120) ,f2vr(Il) ,f2vr(14)], Cf2vr(16)1, [l),
i(f2v_st2(p), [f2vr(16)1, [ae(output ,2,0)1, C1 1,
i(f2v_N(xcxnsma), [f2vr(120) ,f2vr(l1) ,f2vr(I4)1, [f2vr(15)1, [l),
i(f2v_st2(p), [f2vr(15)IJ [ae(output,l,O)l, [l)

7

The input and output array elements have been highlighted.

As these schedulers solely aim at the minimization of variable life-spans, they
push load instructions down and store instructions up, moving them as close as

CHAPTER 7. COMPILATION EXAMPLES 91

possible to their respective consumer or producer. While this technique keeps reg-
ister pressure as small as possible, it completely disregards instruction scheduling
constraints.

Example f n-3: Medium-Level Scheduling

Medium-level scheduling takes instruction latencies into account. As a result,
load instructions are moved up, while store instructions are moved down slightly.

procedure(ff tw~no~twiddI.ee3,
C
array~stride~multitude~precision(input,istride72,double),
array~stride~multitude~precision(output,ostride,2,double~

1 ,

input,
output,
istride,
ostride

J ,
C
f2-const('O',double,'0.5',

'0.5'1,
f2~const('l',double,'0.8660254037844386467637232',

'0.8660254037844386467637232')
l ,
C
i (f 2v_ld2(p), [ae(input, 2 ,Q)] , [f2vr(3)1, [l 1,
i (f 2v_ld2(p) , [ae(input, 1,0)1 , [f 2vr(4)1 , [l) ,
i(f2v_ld2(p), [c('O')], [f2vr(ll9)1, [l),
i(f2v_ld2(p>,[ae(input,O,O)l ,[f2vr(5)],[1),
i(f 2v_ld2(p), [c('l')], [f 2vr(l20>1, [l 1,
i (f 2v-~(~addsub(add, add) 1, [f 2vr (4) , f 2vr (3) 1 , [f 2vr (12) 1 , [l) ,
i(f2v_~(paddsub(sub,~ub)), [f2vr(4) ,f2vr(3)], [f2vr(il)], [l),
i(f2v-N(xcsnmsub), [f2vr(l19) ,f2vr(12) ,f2vr(5)I7 [f2vr(14)I7 [l) ,
i(f2v_N(paddsub(add,add)), [f2vr(5) ,f2vr(12)], [f2vr(13)], [l),
i(f 2v_st2(p), Cf2vr(13)1 , Cae(output ,O,0)1 , [l 1 ,
i(f2v_N(xcxnpma), [f2vr(120) ,f2vr(l1) ,f2vr(14)1, [f2vr(16)1, [l),
i(f2v_N(xcxnsma), [f2vr(120) ,f2vr(11) ,f2vr(14)], [f2vr(l5)1, [l) ,
i(f2v_st2(p), Cf2vr(16)1, [ae(output,2,0)1, [I),
i(f2v_st2(p), [f2vr(15)1, [ae(output,1,0)1, Cl)

Instructions that have been moved significantly have been highlighted.

This code still operates on unlimited sets of SIMD floating-point operands, i. e.,
PROLOG terms of the form f 2vr (-1 . In the next compilation step, SIMD floating-
point register allocation, these terms will be mapped to logical registers, i.e.,
PROLOG terms of the form f p2r (-1.

CHAPTER 7. COMPILATION EXAMPLES

Example f n-3: Floating-Point Register Allocation

Next, SIMD floating-point registers are allocated. In this example, no spill and
reload instructions are required, as all operands fit into the large (32 entry) reg-
ister file assumed to be present.

proceduse(fftw-no-twiddle-3,
C
a~ra~~stride~multitude~~xecision(input,istride,2,double~,
array~stxide~multitude~pxecision(output,ostride,2,double)

1 ,
C
input,
output,
istride,
ostride

1 ,
C
f2-const('O',double,'0.5',

'0.5'),
f2~const('l',double,'0.8660254037844386467637232',

'0.8660254037844386467637232')

l,

i (f 2vWld2(p) , [ae (input, 2,0)1 , [fp2r(O)l , [l 1,
i(f 2v_ld2(p) , [ae(input ,l, 011 , [fp2r(1)1 , [l) ,
i(f2vWld2(p), [c('O')l, [fp2r(2)1 ,[l),
i(f2v_ld2(p) , [aecinput ,O,O)] , [fp2r(3)1 , [l),
i(f2v_ld2(p), [c('I')l, [fp2r(4)1, [l),
i (f 2v-N (paddsub (add, add)) , [f p2r (l) , f p2r (0) 1 , [f p2r (5) 1 , [l) ,
i (f 2v-N (paddsub (sub, sub)) , [f p2r (l) , f p2r (0) 1 , [f ~ 2 r (l) 1 , [l) ,
i(f 2v-N(xcsmsub), [fp2r(2) ,fp2r(5) ,fp2r(3)1 , [fp2r(2)] , [l 1,
i(f2v_N(paddsub(add,add)), [fp2r(3) ,fp2r(5)], [fp2r(3)], [l) ,
i(f2v_st2(p), Cfp2r(3)1, [ae(output ,O,O)I, [l),
i (f 2v_N(xcxnpma), [fp2r(4) ,fp2r(i) ,fp2r(2)] , Cfp2r(6)1, [l 1,
i (f 2v-N (xcxnsrna) , [f p2r (4) , f p2r (I) , f p2r (2) 1 , [f p2r (4) 1 , [l) ,
i (f 2v-st2 (p) , [f p2r (6)] , [ae (output, 2,O) 1 , [l) ,
i(f2v_st2(p), Cfp2r(4)1, [ae(output, 1,0)1, Cl

In the above example, the newly assigned floating point SIMD registers of the
form f p2r (-1 have been highlighted.

In the MAP tool chain, register allocation for SIMD floating-point instructions
precedes integer register allocation and procedure prolog/epilog code generation,
as these steps depend on the outcome of floating-point register allocation.

CHAPTER 7. COMPILATION EXAMPLES

Example fn-3: Effective Address Generation

Now, procedure prolog and epilog code are inserted and code for effective address
calculation is generated.

array~stride~multitude~precision(input,istride,2,double),
array~stride~multitude~precision(output,ostride,2,double)

l,
C
input, output, istride, ostride

7
l ,

C
f2-~onst(O,double,'0.5',~0.5'),
f2~const(l,double,'0.8660254037844386467637232',

'0.8660254037844386467637232')
l ,
C
i(i-copyI(l6),Cl ,Cr(O>l,CI>,
i(i-shiftLeft(41, [r(5)1, [r(5)1, [l),
i(i-shiftLeft (41, Cr(611, Cr(611, [l 1,
i (i-addIS('Consts--f ftw-no-twiddle-3@ha'), [imm(O)l, [r(I2)1, [l 1,
i(i-add~('~onsts--f ftw-no-twiddle-3@lY), [r(12)1, [r(12)1, [l) ,
i(i-add, Cr(5) ,r(5)1, Cr(2)1, [l),
i(f 2v_ld2(double ,p>, [r(3) ,r(2)1 , [fp2r(O)] , [s(ae(input ,2,0))1 1 ,
i(f2v_ld2(double,p), [r(3),r(5)1, [fp2r(l)l, [s(ae(input,l,O))l),
i(f2v_ld2(double ,p), [r(12)1 , [fp2r(2)] , [s(const(O))l ,
i(P2v_ld2(double,p>, [r(3)1, [fp2r(3)1, [s(ae(input,O,O))l),
i(f 2v_ld2(double ,p), [r(i2) ,r(O)] , [fp2r(4)] , [s(const (16))]),
i(f2v_N(paddsub(add,add)), [fp2r(l) ,fp2r(O)], [fp2r(5)Il [l),
i(f2~-N(paddsub(sub,sub)), [fp2r(I) ,fp2r(O)l , [fp2r(l)l, [l),
i(f 2v-N(xcsnmsub), [f p2r (2) ,fp2r(5) ,fp2r (311 , Cfp2r (211 , [l) ,
i(f 2v_N(paddsub(add, add)) , [fp2r(3) ,fp2r(5)] , Efp2r (311 , [l 1 ,
i(f 2v-N (xcxnprna) , Cfp2r (4) ,fp2r (1) ,fp2r(2)1 , lfp2r (611 , [l ,
i (f 2v-N(xcxnsma) , [fp2r (4) ,f p2r (1) ,f p2r (2)l , [f p2r(4)] , [l) ,
i(f2v_st2(double,p), Cfp2r(3) ,r(4)1, [l, [d~ae~output,O,O~~l~,
i(i-add, Cr(6) ,r(6>1, [r(7>1, [l),
i(f2v_st2(double,p), [fp2r(6) ,r(4) ,r(7)1, Cl ~ d ~ a e ~ o u t p u t , 2 , 0 ~ ~ 1 ~ ,
i(f2v-st2(double,p), [fp2r(4) ,r(4) ,r(6)1, [l, [d(ae(output,I,O))l)

l
) .

Highlighted parts are (2) auxiliary integer instructions needed for effective address
calculation and (ii) adapted parts of SIMD load/store instructions.

Load and store instructions now fully operate on logical registers. Aliasing infor-
mation is preserved through the use of annotations. For instance, the annotation
d (ae (output, 2,O) denotes that the second element of array output is written
by that particular instruction.

CHAPTER 7. COMPILATION EXAMPLES

Example f n-3: List-based Instruction Scheduling

After all integer and floating-point instructions have been generated, the code is
scheduled by the list-scheduling algorithm.

procedure(fftw-no-twiddle-3,

C
array~stride~multitude~precision(input,istride,2,double),
array_stride~multitude~precision(output,ostride,2,double)

l ,
C
input,
output,
istride,
ostride

l ,
C
f2-con~t(O,double,~0.5',

'0.5'1,
f2~const(l,double,'0.8660254037844386467637232',

'0.8660254037844386467637232')
l ,

/* 0 */ i(i-shiftLeft(41, Cr(5>1, Cr(5>1, C1 > ,
/* 0 * / i (i ~ a d d I S (y C o n s t s ~ ~ f f t w ~ n o ~ t w i d d l e ~ 3 @ h a ~ ~ O ~ ~ , [r(12)1, [l 1,
/* 1 */ i(i-add,Cr(5>,r(5>I,Cr(2)1,[1),
/* 1 */ i(f2v~ld2(double,p),[r(3),r(5)~,~fp2r(l)~,~s~ae~input,l,O~~~~,
/* 2 */ i(f2v_ld2(double,p), [r(3) ,r(2)1, [fp2r(0)I9 [s(ae(input,2,0))]),
/* 2 */ i(i-addI(yConsts--f ftw-no-twiddle-3@1'), [r(12)1, [r(12)1, [l 1,
/* 3 */ i(f2v_ld2(double,p), [r(3)1 , [fp2r(3)1 , [s(ae(input ,O,O) 11) ,
/* 3 */ i(i_copyI(16), Cl, Cr(O>l, Cl),
/* 4 */ i(f2v_ld2(double,p), [r(12)1 , Cfp2r(2)1 , Cs(const(0))I 1,
/* 4 * / i(i-shiftLeft(41, Cr(611, Cr(611, Cl 1,
/* 5 */ i(f2v_ld2(double,p), Cr(12) ,r(0)1 , Cfp2r(4)1 , Cs(const (l6))I 1 ,
/* 5 * / i(i-add, Cr(6) ,r(6)1, Cr(711, Cl),
/* 6 */ i(f2~-N(paddsub(add,add)),[fp2r(1),fp2r(O)l,[fp2r(5)1,[1),
/* 7 */ i(f2v-N(paddsub(sub,sub)), [fp2r(1) ,fp2r(O)], Cfp2r(1)1, [l) ,

/* l1 */ i (f 2v-N(xcsnmsub) , [fp2r (2) ,f p2r (5) ,fp2r (311 , [fp2r (211 , C]) ,
/* 12 */ i (f 2v_N(paddsub(add,add)) , [fp2r (3) , fp2r (511 , [fp2r (S)] , [l) ,
/* 16 */ i(f 2v_N(xcxnprna), Cfp2r(4) ,fp2r(1) ,fp2r(2)1 , [fp2r(6)1 , C1 1 ,
/* 17 */ i(f 2v_N(xcxnsma), [fp2r(4) ,fp2r(1) ,fp2r(2)] , [fp2r(4)] , [l) ,
/* 17 */ i(f 2v_st2(double,p), [fp2r(3) ,r(4)1 , [l , [d(ae(output ,O,O))]),
/* 21 * / i(f2v_st2(double,p), [fp2r(6) ,r(4) ,r(7)1, [l , [d(ae(output ,2,0))1),
/* 22 */ i(f2v-st2(double,p), [fp2r(4) ,r(4) ,r(6)], [l, [d(ae(output, 1,0))])

l
1.

For this short example code, the main visible effect of instruction scheduling is
the interleaving of integer instructions and SIMD load instructions. Along with
the scheduled sequence of instructions, the list-scheduler also emits the estimated
time t when some particular instructions will execute.

CHAPTER 7. COMPILATION EXAMPLES 95

Internally (within the tool chain), that estimation is represented as PROLOG
terms of the form t-cplen-i (T , Cpl , I) , denoting that the instruction I having
the critical-path length Cpl is assumed to execute in cycle # T. For the purpose
of illustration, however, the estimates have been inserted into the previous code
fragment in the form of C style comments (/* t */).

According to the estimate, the execution of the procedure body takes at least
23 cycles. Quite clearly, this code will spend most of its time waiting for load
instructions to complete. This situation is significantly better wit h larger input
codes.

Example f n-3: Assembly Output

Finally, the intermediate representation is converted to PowerPC assembly code.

. data
.align 3

Consts--fftw-no-twiddle-3:
.double 0.5, 0.5
.double 0.8660254037844386467637232, 0.8660254037844386467637232

.text
.align 3
.glob1 -fftw-no-twiddle-3

-fftw-no-twiddle-3:
slwi r5, r5, 4
addi S 1-12, 0, Consts--fftw-no-twiddle-3@ha
add r2, r5, r5
lf pdx fl, r3, r5
lf pdx fO, r3, r2
addi 1-12, r12, Consts--fftw-no-twiddle-3@1
lf pdx f3, 0, r3
addi rO, 0, 16
lf pdx f2, 0, r12
slwi r6, r6, 4
lf pdx f4, r12, rO
add r7, r6, r6
f padd f5, fl, fO
f psub fl, fl, fO
fxcsnmsub f2, f2, f5, f3
f padd f3, f3, f5
fxcxnpma f6, f4, fl, f2
fxcxnsma f4, f4, fl, f2
stf pdx f3, 0, r4
stfpdx f6, r4, r7
stfpdx f4,r4,r6
blr

CHAPTER 7. COMPILATION EXAMPLES

7.3.2 6-point Forward Real FFT (f rc-6)

The example code frc-6 is a forward 6-point real no-twiddle FFT codelet.

Example f rc-6: Scalar code produced by genf f t
procedure1 (

"f f tw-real2hc-6",
C
arrayDecl("input", variable("istrideW), 1, double),
arrayDecl("rea1-output" , variable("rea1-ostride") , 1, double).
arrayDecl("imag-output" , variable("imag-ostride") , 1, double)

l ,
C "input", "real-output", "imag-output", "istride", "real-astride", "imag-ostride" l ,
C
constDecll(double, "+0.866025403784438646763723170752936183471402627"~,
constDecll(double, "+0.5"),
constDecll(double, ''-0.866025403784438646763723170752936183471402627"~

l ,
ra
f-~oad(ae("input",O,o), f(l)),
f-Load(ae("inputU ,3,0), f (2)),
f-BinOp(sub, t(0,f (l)), t(O,f(2)), f(3)),
f-BinOpCadd, t(O,f(l)), t(O,f(2)), f(20)),
f-~oad(ae("input",2,0), f (4)),
f-Load(ae("input1',5,0), f (5)),
f-BinOp(sub, t(0,f (4)), t(O,f(5)), f(6)),
f-BinOp(add, t(O,f(4)), t(O,f(5)), f(17)),
f-load(ae("input",4,0), f (7)),
f-Load(ae("input",l,O), f(8)).
f-BinOp(sub, t(0,f (7)), t(O,f(8)), f(9)),
f-BinOp(add, t(O,f(7)), t(O,f(8)), f(16)),
f-BinOp(add, t(O,f(6)), t(O,f(9)), f(10)),
f-BinOp(sub, t(O,f(9)), t(O,f(6)), f(14)),
f-BinOp(sub, t(0,f (16)), t(O,f (17)), f (18)),
f-BinOp(add, t(O,f(17)), t(O,f(16)), f(21)),
f-Store(t(1,f (l4)), ae("imag-outputU,l,0)).
f-BinOp(add, t(0,f (20)), t(O,f (21)), f (24)).
f-Store(t (0,f (24)), ae("rea1-output",O.O)),
f-BinOp(sub, t(O,f (20)), t(2,f (21)), f (23)),
f-Store(t(0,f (23)), ae("rea1-output" ,2,0)),
f-Store(t(3,f (18)), ae("imag-outputH,2,0)),
f-BinOpcadd, t(O,f(3)), t(O,f(iO)), f(13)).
f -store(t(O,f (l3)), ae("rea1-output" .3.0)),
f-BinOpcsub, t(0,f (3)), t(2,f (10)), f (12)),
f-Store(t(0,f (l2)), ae("rea1-output". 1.0))
1

).

The modified version of genf f t also produces the following C declarations.
extern void fftw-real2hc_6(const fftw-real *, fftw-real *, fftw-real *, int, int, int);

fftw-codelet-desc fftw-real2hc-6-desc =
"fftw-real2hc-6",
(void (*l()) fftw-real2hc-6,
6,
FFTW-FORWARD,
FFTW_REAL2HC,
134,
0,
(const int *) 0,

1;

CHAPTER 7. COMPILATION EXAMPLES

Example f rc-6: Vectorization

Out of this scalar code, the MAP vectorizer produces the following SIMD code.

L
input,
real-output ,
imag-output,
istride,
real-ostride,
imag-ostride

1 ,
C
f2~const('0',double,'+0.866025403784438646763723170752936183471402627',

'-0.8660254037844386467637231707529361834714O2627'),
f2-const('l',double,'+0.5',

'+0.5')
l ,
C
i(f2v-ldl, Cae(input,O,O),ae(input,3,0)], [f2vr(25)1, [l),
i(f2v_N(swap), Cf2vr(25)Ip [f2vr(22)1, [l),
i(f2v-N(paddsub(add,sub)), [f2vr(22) ,f2vr(23)], Lf2vr(24)1, [l 1,
i(f2v_N(swap), Cf2vr(24)], [f2vr(5)], [l),
i(f 2v_N(swap), [f2vr(22)], [f2vr(23)1, [l),
i(f2v-N(paddsub(add,add)), Cf2vr(16) ,f2vr(20)1, [f2vr(21)1, C]),
i(f2v_N(swap), Cf2vr(21)], [f2vr(6)3, C]),
i(f2v_N(swap), [f2vr(13)], [f2vr(20)1, C]),
i(f2v_N(chs(hi)), Cf2vr(l9)Is Cf2vr(l8)Is [l),
i(f2v_N(paddsub(sub,sub)), Cf2vr(16) ,f2vr(17)1, Cf2vr(19)], [l),
i(f2v_N(swap), [f2vr(18)], [f2vr(2)], [l),
i(f2v_N(swap), Cf2vr(13)1, Cf2vr(l7)1 ,Cl),
i(f2v_N(paddsub(add,sub)), Cf2vr(tl) ,f2vr(l2)1, [f2vr(16)1, U) ,
i(f2v-ldl, [ae(input,2,0) ,ae(input,4,0)1, [f2vr(l5)], L :]) ,
i(f2v~N(swap),~f2vr(l5)~, Cf2vr(ii)l, Cl),
i(f2v-ldl, Cae(input,5,0) ,ae(~nput,i,O)], [f2vr(14)1, Cl),
i(f2v_N(swap), [f2vr(14)], Cf2vr(l2)1, Cl),
i(f2v-N(paddsub(sub,add)), CfZvr(l1) ,f2vr(12)1, Cf2vr(I3)1, [l) ,
i(f2v-M(paddsub(sub,sub)), CfZvr(5) ,f2vr(9)1 , Cf2vr(l0)] , [l 1,
i(f2v_N(swap), Cf2vr(lO)], Cf2vr(O)], [l),
i(f2v_N(pmul), Cf2vr(8) ,f2vr(6)], Cf2vr(9)1, [l),
i(f2v_ldZ(p), Cc('IJ)1, Cf2vr(8)1, Cl),
i(f 2v_N(paddsub(add,add)), [f 2vr(5) ,f 2 v r ([f 2vr(7)1 , Cl),
i(f2v_N(swap), Cf2vr(7)], [f2vr(l)l, [l),
i (f 2x1-st l (hi) , [f 2vr (4) 1 , Cae (imag-output ,2,0) 1 , C1) ,
i(f2v_stl(lo), Cf2vr(t)], Cae(imag_output,l,0)1, [l),
i(f2v_N(pmul), Cf2vr(3) ,f2vr(2)], [f2vr(4)1, Cl),
i(f2v_ld2(p), lc('O')I, [f2vr(3)1, [I),
i(f2v_stl(hi), [f2vr(l)], Cae(real_output,3,0)], [l),
i(f2v_stl(lo), Cf2vr(l)I, Cae(rea1-output,O,O)I, [l),
i(f 2v-stl (hi), [f2vr(O)] , [ae(real-output, 1,0)] , C]) ,
i(f2ir_stl(lo), [f2vr(O)1, lae(rea1-output,2,0)1, Cl)

l

This SIMD code still has a lot of auxiliary SIMD instructions that have been
inserted by the vectorizer.

CHAPTER 7. COMPILATION EXAMPLES

Example f r c -6: Peephole Optimization

Peephole optimization reduces the instruction count by eliminating auxiliary
SIMD instructions and by exploiting special Blue Gene SIMD instructions.

procedure(fftw_real2hc_6,
I
array~stride~multitude~precision(input.istxide,1,double~,
array~stride~multitude~precision(real~output,real~ostride,i,double),
array~stride~multitude_precision(irnag~ou.tput,irnag~ostride,1,double)

l ,

input,
real-output,
irnag-output ,
istride,
raal-ostride,
imag-ostride

l ,
1.
f2-const(~O',double,'S.O',

' l . O)) ,
f2-const('l'.double,'0.5',

' 0 . 5 ' 1 ,
f2~const('2',double,'0.8660254037844386467637232',

'0.8660254037844386467637232')

In this code, the peephole optimizer has moved all but one SIMD multiplications
into neighboring SIMD additions or subtractions, extracting SIMD FMAs.

CHAPTER 7. COMPILATION EXAMPLES

Example f rc-6: High-Level Scheduling

The high-level scheduler uses domain-specific knowledge to produce a topological
sort of the computation DAG.

C
input,
real-output,
imag-output,
istride,
real-ostride,
ixag-ostride

I r

I
i(f2v-ldl, rae(input,O,O) ,ae(input,3,0)1, Cf2vr(25)1, [I),
i(f2v-ldi, [ae(input,2,0),ae(input,4,0)1, Cf2vr(15)1, [l),
i(f2v-ld1, Cae(input.l.0) ,ae(input,5,0)1, [f2vr(S2)1, [l),
i(f2v_ld2(p), Cc('O')I, If2vr(1028)3, Cl),
i(f2v_N(xcxnpma), Cf2vr(1028) ,f2vr(25) ,f2vr(25)], [f2vr(SO5)1, [l) ,
i(f 2v-N(xcxnsma) , [f 2vr(1028) ,f2vr(12) , f 2 v 1 5 , Cf 2vr(20)1 , [l),
i(f2v_N(xcxnpma), [f2-~r(1028) ,f2vr(12) ,f2vr(15)] , [f 2vr(i006)1, C]),
i(f2v_N(xmadd), [f2vt(1006) ,f2vr(1028) , f 2 v r 2 0 [f2vr(21)1, [I),
i(f2v_N(xnmsub), Cf2vr(1006) ,f2vr(1028) ,f2vr(20)1 , [f2vr(19)] , C1) ,
i(f2v_ld2(p), lc('2')3, Cf2vr(i025)3, Cl),
i(f2v-M(pmul.), [f2vr(1025),f2vr(19)1, [12vr(i8)1, [l) ,
i(f2v_stl(lo), Cf2vri18)1, [ae(imag-output ,2,0)1, [l) ,
i(f2v-stI(hi), CfZvr(18)I , [ae(imag-output, 1,0)1 , [l),
i(f2v-ld2(p), [c('l')I, Cf2vr(1030)1, [l),
i (f2v_N(xnmsub), [f2vr(21) ,f2vr(1030) ,f2vr(1.005)1, [E2vr(1007)], [l),
i(f2v-N(xmadd) , [f2vr(i005) ,f2vr(1028) ,f2vr(21)] , [f2vr(1004)1 , C1 1,
i(f 2v_stl(lo) , [f2vr(1007)3, [ae(real-output, 1,013 , C3) ,
i.(f2v-stl.(hi), [fZvr(1007)], [ae(real-output ,2,0)3, [:l) ,
i(f 2v-stl (hi), [f 2vr(i004)1, [ae (real-output ,3,0) 1 , [l) ,
i(f 2v_stl(lo) , Cf 2vr(1004)1, Cae (real-output ,O ,0) 1 ,

l

CHAPTER 7. COMPILATION EXAMPLES

Example f r c -6: Medium-Level Scheduling

The medium-level scheduler tries to relax some of the instruction scheduling con-
straints that the high-level scheduler inserted.

array~stride~multitude~precision(imag~output,imag~ostride,l,double) '
1 ,

input,
real-output ,
irnag-output,
istride,
real-ostride,

J ,

I
i(f2v-ldl, [ae(i.npuit,O,0) ,as(input,3,0)], [f2vr(2S):I, [I),
i(f2v-ldl, [ae(input,2,0) ,ae(input,4,0)1, Cf2vr(15)3, [l) ,
i(f2v-ldl, [ae(input,t,O),ae(i.nput,5.0)3, C:2vr(12)1, [I),
i(f2v_ld2(~), [c('Ot)I, rf2vr(iO28)1, Cl),
i (f2v_ ld2(p) , Cc('2')I , [f2vr(lO25)], [l),
i(f2v-ld2Cp), [~ (' I J)] . ~ f 2 v r (i 0 3 0) 1 , C]) ,
i(f2v-N(xcxnpma) , CfZvr(1028) ,f 2vrC25) ,f2vr(25)1 , [f2vr(1005)1, C]) ,
i (f2v-N(xcxnsma) , [f2vr(1028) ,f 2vr(1.2) ,f2vr(15)], [f2vr(20)], I1 1,
i(42v_N(xcxnpma), Tf2vr(1028) ,f2vr(12) ,f2trr(15)], [f2vr(1006)1, [l 1 ,
i(f2v.-N(xmadd), [f2vr(1006) ,fZvr(t028) ,f%vr(20)] , [f2vr(21)1 , [l) ,
i(f2v-N(xnmsub) , [f2vr(1006) ,f2vr(i028) ,f2vr(20)], [f2vr(l9)], [l 1,
i(f2v_N(pmul), [f2vr(l025) ,f2vr(l9)1 , [f2vr(18)1 , [l) ,
i(f 2v-N(xmsub) , [f2vr(21) ,f 2vr (1030) ,f2vr(1005)1 , [f 2vr(1007)1, [I) ,
i(f2v-N(xmadd) , [f2vr(1005) ,f2vr(1028) ,f2vr(21)] , [f2vr(1004)], [l 1,
i(f2v-stl(lo), Cf2vr(I8)1. Caecimag-output,2,0)3, Cl),
i (f 2 v _ s t I (h i) , Cf2vr(18)1, Cae(imag-output.I,O)I, Cl),
i (f 2v_stl(lo) , [f2vr(1007)3,Cae (real_output, l., 0)l , [l) ,
i (f2v-stl (hi), Cf 2vr(1007)1 , [at? (real-output ,2,0) :l ,) ,
i(12v_stl(hi), [f2vr(1004)], [aecreal-output ,3,0)3 , [l),
i(f 2v_stl(lo) , [f 2vr(1004)1 , Caecreal-output ,O,O)l , Cl)

As a result, the medium-level scheduler tends to push loads upwards and store
downwards.

CHAPTER 7. COMPILATION EXAMPLES

Example f rc-6: Floating-Point Register Allocation

The register allocator maps all temporary floating-point variables f 2vr to logical
floating-point registers f p2r. Also, the allocator splits composite load instructions
f2v-ldl , that load two scalar values into one 2-way SIMD vector register, into
two load instructions f 2v-ldI(1o) and f 2v-ldl (h i) .

procedure(fftv-real2hc-6,
C
array~strid~~rnul.ti.t~ide~~ra~j.sion(input, istride, l ,double),
a~ray~stride~multitude~procision(real~output,real~ostride,l,double),
a r r a y - s t r i d e - m u l t i t 1 1 d e ~ p r ~ i s i o n (i m ~ l ~)

1 ,
L

input,
real,output,
imag-output,
istride,
real-ostride,
imag,-ostride

1 ,

CHAPTER 7. COMPILATION EXAMPLES

Example f rc-6: Effective Address Generation

Effective address generation transforms all array accesses ae(-, -, -) and all con-
stant accesses c (-) to corresponding sequences of auxiliary integer instructions
and uses a suitable addressing mode.

J 3

C input, real-output , hag-output;, istrida , real-ostride , inag-ostri.de 1 ,

In this translation step, annotations are added to the respective SIMD memory
transfer instruction, such that no aliasing information is lost.

CHAPTER 7. COMPILATION EXAMPLES

Example f rc-6: List-based Instruction Scheduling
procedure(fftw-rea12hc-6,

L
input,
real-output ,
imag-output ,
istride,
real-ostride,
imag-ostride

J ,
C
f2-const(O,double,'l.O',

'1.0'),
f 2-cons?, (g . , double, '0.5' ,

'0.5'),
f2-const(2,double,'0.8660254037844386467637232',

'0.8660254037844386467631232?)
J ,
C

/* 0 */ i(i-shiftLeft(3). Cr(6)I. Cr(6)I. C]),
/* 0 */ i(i-add1~(~~onsts--fftw-real2hc-60ha'),~imm(0)],Cr(12)],[]),
/* 1 */ i(i-shiftLeft(2). Cr(6)I. cr(9)l A) ,
/* 1 */ i(i-add, Cr(6) ,r(6)1, Cr(2)1 ,Cl),
/* 7. * / i(i-add1(~~onsts--fftw-real2hc-6~l~), [r(12)], [r(12)] , [l),
/* 2 */ i(i_add,Cr(3) ,r(9)1, Cr(lO)], H),
/* 3 */ i(f2v-ldl(double,lo) , Cr(3) ,r(6)l, Cfp2r(2)I7 b(ae(input, l,o))j),
/* 3 */ i(i-sub, Cr(9) ,r(6)1, Cr(ll)l, [l),
/ * 4 */ i(f2v-ldl(double,lo), Cr(3),r(2)], Kfp2r(1)1, [s(ae(input,2.0))1),
/ * 4 */ i(i-copyI(i6), Cl, Cr(0)I. Cl),
/* 5 */ i(f2v_ld2(double,p), [r(12)] , [fp2r(3)] , [s(const (O))]),
/* 5 */ i(i-shiftLeft(3). [r(7)l, [r(7)1, [l),
/* 6 */ i(f2v-ldl(double,hi),Cfp2r(Z),r(10),r(6)l,~fp2r(2)],[s(ae(input,5,0))l),
/* 6 */ i(i_shiftLeft(3), Cr(8)1, Cr(8)I. C]),
/* 7 */ i(f2v-ldl(double,hl), Cfp2r(l) ,r(3) ,r(9)1, [fp2x(l)], [~(ae(input>4,0))]),
/ * 7 */ i(i-add, Cr(8) ,r(8)1, Cr(211, [l),
/* 8 */ i(f2v~ldl(double,lo),~r(3)],[fp2r(0)],[s(ae(input,~,0))]~,
/* 9 */ i(f2v-ldl(double,hi), Cfp2r(O) ,r(3) ,r(l1)3, [fp2r(O)l, [s(ae(i.nput,3,0))]),
/* 9 */ i(i-add, Cr(7) ,r(7)1, Cr(ll)l, cl),

/+ 10 */ i(f2v_ldZ(double,p), Cr(12) ,r(O)Nfp2r(5) ,r(12)], [s(coust(16))1),
/* 10 */ i(i-add, Cr(1l) ,r(7)1, Cr(9)I. Cl),
/+ 11 */ i(f2v_N(xcxnsma),[fp2r(3),fp2r(2),fp2r(i)],[fp2r(6)~,c'I),
/* 11 */ i(f2v_ld2(double,p), [r(12) ,r(O)] , [fp2r(4)1 , [s(const(32))l) ,
/* 12 c/ i(f2v_N(xcxnpma), CfpZr(3) ,fp2r(2) ,fpar(l)] , Cfpar(2)I , [l) ,
/ * 13 */ i(f2v_N(xcxnpma), [fp2r(3) ,fp2r(O) ,fp2r(o)l, Cfp2r(O)l , [l) ,
/* 3.7 */ i(f2v_N(xmadd), CfpZr(2) ,fp2r(3) ,fp2r(6)1 , [fp2r(7)1 , [l) ,
/* 18 */ i(f2v-~(xnmsub) , cfp2r(2) ,fp2r(3) ,fp2r(6)l , [fp2r(2)1,) ,
/* 22 */ i(f2v_N(xnmsub), Cfp2r(7) ,fp2r(5) ,fp2r(0)3 , Cfp2r(5)1 , [l) ,
/* 23 */ i(f2v_N(xmadd),[fp2c(O),fp2r(3),ip2r(7)1,[fp2r(O)l,[j),
/* 24 */ i(f2~-N(~mul.), [fp2r(4) ,fp2r(2)1 , [ip2r(4)1 , L]) ,
/* 27 */ i(f2v-stl(double,lo), Cfp2r(5) ,r(4) ,r(7)1, [l , Cd(ae(rea1-output, 1,0))l 1,
/+ 28 */ i(f2v-stI.(double,hi), Cfp2r(5) ,r(4) ,r(ll)l , Cl, Cd(ae(rea1-output .2.0))1) ,
/* 29 */ i(f2v-stl(double,hi),~fp2r(O),r(4),r(9)~,,[d(ae(real-output,3,0))1),
/* 30 */ i (f 2 v ~ s t l (d o u b l e , l o) , C ~ p 2 r (O) , r (4) ~ , ~ ~ , ~ d ~ a ~ ~ r e a l ~ ~ ~ ~ p ~ ~ , ~ ~ ~ ~ ~ ~ ~ ,
/* 31 */ i(f2v-stl(double,lo), CfpZr(4) ,r(5) ,r(2)1, [l, Cd(ae(imag-output,2,0))1),
/* 32 */ i(f2v-stl(doubl.e,hi) , [fp2r(4) ,r(5) ,r(8)1, [l, [d(ae(imag-output, l ,O)) I) ,

1
) .

CHAPTER 7. COMPILATION EXAMPLES

Example f rc-6: Assembly Output
. data

.align 3
Consts--fftw-real2hc-6:

.double 1.0, 1.0, 0.5, 0.5, 0.8660254037844386467637232, 0.8660254037844386467637232
.text

. a1 ign 3

.glob1 -fftw-real2hc-6
-fftw-real2hc-6:

slwi r6, r6, 3
addis r12, 0, Consts--fftw-real2hc-6Qha
slwi r9, r6, 2
add r2, r6, r6
addi r12, r12, Consts--fftw-real2hc-6@1
add r10, r3, r9
lf dx f2, r3, r6
sub rll, r9, r6
lf dx fl, r3, r2
addi rO, 0, 16
lf pdx f3, 0, r12
slwi r7, 1-7, 3
lf sdx f2, r10, r6
slwi r8, r8, 3
lf sdx fl, r3, r9
add r2, r8, r8
lf dx fO, 0, r3
lf sdx fO, r3, rll
add rll, r7, r7
lfpdux f5, r12, rO
add r9, rll, r7
fxcxnsma f6, f3, f2, fl
lf pdx f4, r12, rO
fxcxnpma f2, f3, f2, fl
fxcxnpma fO, f3, fO, fO
fxmadd f7, f2, f3, f6
fxmsub f2, f2, f3, f6
fxmsub f5, f7, f5, fO
fxmadd fO, fO, f3, f7
f pmul f4, f4, f2
stfdx f5, r4, r7
stfsdx f5, r4, rll
stfsdx fO,r4,r9
stfdx fO, 0, r4
stfdx f4, r5, r2
stfsdx f4, r5, r8
blr

7.3.3 8-point Backward Real FFT (f cr-8)

This example code is a backward &point real no-twiddle FFT codelet.

Example f cr-8: Scalar code produced by genf f t

genf f t produces the following C stub file, comprising FFTW declarations.

extern void fftw-hc2real-8(const fftw-real *, const fftw-real *, fftw-real *, int, int, int);

fftw-codelet-desc fftw-hc2real-8-desc =

"fftw-hc2real-8".
(void (*l 0) f ftw-hc2real-8,

CHAPTER 7. COMPILATION EXAMPLES

8,
FFTW-BACKWARD ,
FFTW-HCPREAL,
191.
0,
(const int *) 0,

>;

The following scalar code is emitted by genf f t.

arrayDecl("rea1-input", variable("rea1-istride"), 1, double),
arrayDecl("imag-input", variable("imag-istride"), 1, double),
arrayDecl("output" , variable("ostrideU) , 1, double)

1 ,
["real-input", "imag-input", "output", "real-istride", "imag-istride", "ostride1'1,
c
constDecll(double, "+2.0M),
constDecll(double, "+1.414213562373095048801688724209698078569671875")

l ,
C
f -Load(ae("real-input" ,2,0), f (411,
f-load(ae("imag-inputt',2,0), f (14)),
f-load(ae("rea1-inputn,O,O), f (l)),
f -Load(ae("real-input" ,4,0), f (2)),
f-BinOp(add, t(0,f (l)), t(0,f (211, f (3)),
f-BinOp(sub, t(O,f(l)), t(0,f (2)), f (13)),
f-BinOp(add, t(O,f(3)), t(l,f(4)), f(6)),
f-BinOp(sub, t(O,f(3)), t(l,f(4)), f(30)),
f-BinOp(sub, t(O,f(13)), t(l,f(14)), f(16)),
f-BinOpcadd, t(0,f (13)), t(l,f (14)), f (25)),
f-Load(ae("rea1-input" ,l,O), f
f-Load(ae("rea1-input" ,3,0), f (E)) ,
f-BinOp(add, t(O,f(7)), t(O,f(8)), f(9)),
f-BinOp(sub, t(O,f(7)), t(O,f(8)), f(l7)),
f-load(ae("imag-input",3,0), f(18)),
f _load(ae("imag-input", l,O), f (19)),
f-BinOp(add, t(0,f (18)), t(O,f(19)), f(20)),
f-BinOp(sub, t(O,f(19)), t(O,f(18)), f(31)),
f-BinOp(sub, t(0,f (17)), t(O,f(20)), f(21)),
f-BinOpCadd, t(O,f (17)), t(O,f (20)), f (26)).
f-BinOp(sub, t(O,f(6)), t(1,f (g)), f (ll)),
f-Store(t(0,f (ll)), ae("outputn,4,0)),
f-BinOp(add, t(O,f (6)), t(l,f (g)) , f (12)),
f-Store(t(0,f (131, ae("output",O,O)),
f-BinOp(sub, t(O,f(16)), t(2,f(21)), f(23)),
f-BinOp(add, t(0,f (1611, t(2,f (21)), f (2411,
f-Store(t(0,f (23)), ae("output",5,0)),
f-Store(t(O,f(24)), ae("output",I,O)),
f-BinOp(add, t(O,f(30)), t(1,f (31)). f(34)),
f-Store(t(0,f (34)), ae("outputU,6,0)),
f-BinOp(sub, t(0,f (30)), t(l,f (31)), f (33)),
f-Store(t(0,f (33)), ae("output",2,0)),
f-BinOp(sub, t(O,f(25)), t(2,f(26)), f(28)),
f-BinOp(add, t(O,f(25)), t(2,f(26)), f(29)),
f-Store(t(0,f (28)), ae("output",3,0)),
f-Store(t(0,f (29)), ae("output",7,0))

l
1.

CHAPTER 7. COMPILATION EXAMPLES

Example f cr-8: Vectorization

I ,
real-lnput, imag-input, output, real-istride, imag-istride, ostride l,

r

I
i(f2v-ldl,[ae(real-inp~t,O,O),ae(real-inp~t,4,0)~,[f2vr(26)1, [I),
i(f2v_ldl, [ae(real_input, 1,O) ,ae(imag-input,3,0)], [f2vr(35)], [l),
i(f 2v-~(swap) , [f2vr(35)], [f 2vr(32)1, [l),
i(f2v_N(paddsub(sub,add)), [f2vr(34) .f2vr(32)] , [f2vr(20)] , [l 1,
i(f2v_N(swap), [f2vr(31)1, [f2vr(34)Is [l),
i(f2v_N(paddsub(add,sub)), [f2vr(32) ,f2vr(33)1, rf2vr(i5)1, [l),
i(f2v-~(swap) , [f2vr(31)], [f2vr(33)l9 [l 1 ,
i(f2v-ldl, [ae(real-input ,3,0) ,ae(imag_input, l,0)l, f 2 v r 3 [l),
i(f 2v_N(paddsub(sub,add)), [f2vr(30) ,f2vr(28)], [f 2vr(19)1, [l) ,
i (f 2v_N(pmul), [f 2vr(13) ,f 2vr(29)], [f 2vr (3011, [l 1,
i(f2v_N(swap), [f2vr(27)], [f2vr(29)], [l),
i(f2v_N(pmul), [f2vr(10) ,f2vr(27)], [f2vr(28)1, [l),
i(f 2v_ldlacc(add), [ae(real-input ,2,0) ,f2vr(26):1 , [f2vr(27)1 , [l) ,
i(f2v-ldlacc(sub) , Cae(imag_input,2,0) ,f2vr(26)1, [f2vr(9)], [l),
k(f 2v-~?(paddsub(sub,sub)), Cf2vr(l9) ,f2vr(24)] , [f 2vr(25)1, [l),
i(f 2v_N(suap), [f 2vr(25)l, [f 2vr(3)1, [l *
i(f2v_N(pmul), [f2vr(21) .f2vr(20)1, [f2vr(24)], [l),
i(f2v_Ii(paddsub(add,add)), [f2vr(19) ,f 2vr(22)] , Cf 2vr(23)1, [I) ,
i(f2v_N(suap), [f2vr(23)], [f2vr(2)], [l),
i(f2v~N(pmul),[f2vr(21),f2~r(20)],[f2~r(22)1,~1),
i(fzv_ld2(p), Cc('3')], [f2~r(21)1, C]),
i(f2v-N(paddsub(sub,sub)) , [f2vr(4) ,f2vr(17)], [f2vr(18)1, Cl),
i(f2v_N(swap) ,[f2vr(18)], [f2vr(l)], [l),
i(f2v_N(pmul),Cf2vr(6) ,f2vr(5)], [f2vr(17)Is [l),
i(f2v_A(paddsub(add,sub)), [f2vr(15) ,f2vr(16)1, [f2vr(5)1, C]),
i(f2v_N(swap), [f2vr(l5)], [f2vr(I6)lI [l),
i(f2v_N(paddsub(add,sub)), [f2vr(l1) ,f?vr(14)1, [f2vr(4)1, [I),
i(f2v_N(pmul), Cf2vr(13),f2vr(i2)1, [f2vr(14)], [l),
i(fzv_ld2(p), Cc('2')1, [f2vr(13)I,C3),
i(f2v_N(swap), [f2vr(9)], Cf2vr(12)1, [l),
i(f2v_N(pmul), [f2vr(IO),f2vr(9)] ,[f2vr(ll)], [l),
i(f2v_ld2(p), [c('l')], Cf2vr(lO)l, [l),
i(f2v_N(paddsub(add,add)), Cf2vr(4) ,f 2vr(7)1 , Cf2vr(8)1 , [l 1 ,
i(f2v_N(swap), [f2vr(8)1, [f2vr(O)I,H),
i(f2v_N(pmul), Cf2vr(6),f2vr(5)I9 [f2vr(7)], [l),
i(f2v_ld2(p), Cc('OJ)3, Cf2vr(6)1, [l),
i(f2v-stl (hi), rf2vr(3)1, [ae(output ,2,0)1, Cl),
i(f2v-stl(lo), Cf2vr(3)1, Cae(output,4,0)1, Cl),
i(f2v-stl(hi), [f2vr(2)1, Cae(output,6,0)1, Cl),
i(f'Lv_stl(lo), Cf2vr(2)1, Cae(output,O,O)l, Cl),
i(f2v_stl(hi), Cf2vr(l)l, Cae(output,3,0)1, [l) ,
i(f2v-stl(lo), Cf2vr(l)l, [ae(output,5,0)1, [I),
i(f2v_stl(hi), [f2vr(O)1 , Cae(output ,7,0)1, [l) ,
i(f 2v-stl(lo), Cf 2vr(O)1, Cae(output, l. ,0)1, C1

1
) .

CHAPTER 7. COMPILATION EXAMPLES

Example f cr-8: Peephole Optimization
procedure(fftv-hc2real-8,

c
array-stride-rnultitnde-precision(real-input,real-istride,l,double),
array~strj.de~multitude_proci.sion(imaginput,i.mag~istride,l,double),
array~stride~multitude~precision(output,ostride,1,double)

3,
C real-xnput, irnag-input, output, real-istride, imag-istride, ostride 3 ,
C
f2~const(1(0.5,-0.2el)',double,'0.5','-0.2el'),
f2~const('2',double,'0.707106781l8G5475244OO8444','-O.l4l42l3562373O95O4%8Ol689el'~,
f2_const('(0.lel,O.lel)',double,'0.le~','O.lel'),
f2~co~st('(0.lel,-0.5~~,doubl0,~O.lel',~-O.5~~,
f2~const('(O.LeX,-O.lel)',double,'O.lel','-O.lei'),
f2~const('(O.1el,-O.2e3.)',doubl.e,'O.1.el','-O.2elJ),
f2~const('0',double,~O.141421356237309504%8Ol6%9e~',1~.l4i42l35623'73O95~4%8Ol689elJ~,
f2_const('3' ,double, '0.2el', '0.2el')

J ,

i(f2v_stl(hi), Cf 2vr(1008)], [ae(output ,?,C))], C]) ,
i(f2v-stl(lo) , LL%vr(1008)], [ae(output, l,0)1, L]),
i(f2v_ldl, [ae(real-input,O,O) ,ae(real_input,4,O)I, Kf2vr(26)1 , [I),
i(f2v_ldl(lo), Cf2vr(i030) ,ae(real-input ,2,0)1 , [f2vr(27)1, II 1 ,
i(f2v_ldl(lo) , [f2vr(1029) ,ae(imag-inpuc,2,0)] , [f 2vr(9)1, [l 1,
i(f2v_stl(lo), [f2vr(25)3, Cae(autput,2,0)1, Cl),
i(f2v_stl(hi), Cf2vr(25)l, [ae(output,4,0)l, [l) ,
i(f2v_stl(lo), Cf2vr(23)3, Cae(output,6,0)1, Cl),
i(f2v_stl(hi), [f2vr(23)], [ae(output,O,O)], [I) ,
i(f2v-stI(lo), Cf2vr(l8)1, Cae(ou.tput ,3,0)1 , IJ) ,
i (f 2v-stl (hi), [f 2vr(18) l , Cae (output, 0) , C1) ,
i (f 2v-ldl , Cae(imag-input ,3,0) , ae(rea1-input , l ,0)] , f v 3 2 1 , [l) ,
i(f2v-ldl,[ae(imag-input,l,0),ae(rea~-inp~t,3,0)1,[f2v~(3~)1, [l),
i(f2v_N(xmul), [f2vr(l040) ,f2vr(l013)], [f2vr(1.00%)1, [l) ,
i(f2v_N(xrnul), [f2vr(1040) ,f2vr(1009)J , [f2vr(23)] , [l),
i(fZv_ld2(p), [c('O')l, if2vr(1042)1, [l),
i(f2~-N(~rnul.), [f2vr(1042) ,f2vr(l010)1, [f2vr(l8)3 , [I),
i(f2v_ld2(p), Cc('3')1, Cf2vr(1043)1, Cl),
i(f2v_N(pmul), [f2vr(1043) ,f2vr(1011)1 , lf2vr(25)1 , [l) ,
i(f2v_ld2(p), [c('(O.lel,-O.lel)')], [f2vr(1044)], ['I),
i(f 2v-N (pmadd) , [f 2vr(34) ,f 2vr(1044), f 2vr (32)l , [f 2vr is)] , l] ,
i(f2v_ld2(~), [c('(O.lel,-0.5) ')l, [f2vr(1045)1, [l) ,
i(f2v_N(pnmadd), [f2vr(1007) ,f2vr(l045) ,f2vr(20)], [f2vr(lOll)l, [l) ,
j.(f2~-N(pnmsub), [f2vr(32) ,f2vr(1044) ,f2vr(34)], [f2vr(20)] , [l) ,
i(f2v_ld2(p), [c('(O.lel,-0.2el)')l, [f2vr(l040)1, C]),
i(f2v-~(~nmsub), [f2vr(20),f2vr(l04O),f2vr(l007)1, [f2vr(1009)1, [l) ,
i(f2v-M(xcxnsma) , [f2vr(l048) ,f 2vr(15) ,f2vr(15)1 , Cf2vr(5)1, [l 1,
i(f2v-ld2(p),[c(~(0.1el,O.lol)')], [f2vr(104%)1, l]),
i(f2v_N(xmadd), [f2vr(26) ,f2vr(1048) ,f2vr(26)1, [f2vr(1030)1,) ,
i(f2v_ld2(p), [c('2')1, [f2vr(1053)1, [l),
i(f2v-N(xrnsub) , [f2vr(1012) ,f2vr(1053) , f 2 , [f2vr(1010)1, [l) ,
i(f 2v-N(xmsub) , [f 2vr (26) ,f 2vr(1048), f 2vr (26)l , [f 2vr (1029)1, [l) ,
i(f2v_ld2(p), [c('(0.5,-0.2el) ')l, [f2vr(1052)], [l),
i(f2v_N(xnmsub), [f2vr(2?) ,f2vr(iO52) ,f2vr(27)] , [f2vr(i00?)], L]),
i (f2v_N(xnmsub), [i2sr(5) ,f2vr(1053) ,f2vr(l012)] , rf 2vs(l.O13)] , [l) ,
i(f2v_N(xnmsub), [f2vr(9) ,f 2vr(1052) ,f2vr(9)] , ~f2vr(1012)1 , [l)

CHAPTER 7. COMPILATION EXAMPLES

Example f cr -8: High-Level Scheduling
procedure(fftv-hc2rea1-8,

C
array~stride~multitude~precision(real~input,real~istride,l,double),
array-stride-mul.ti.tude-precision(imag-input, imag-j.sCride, 1 ,double),
array-stride-multitude-precision(output,ostride,1,double)

1 ,
[real-input, inag-input, output, real-istride, imag-xstride, ostride 1,

L
i (f 2v-ldl, [ae (imag-input , l ,O) ,ae (real-input ,3,0)1, Cf 2vr(34)1, [l) ,
i(f2v-ldl, [ae(imag-input ,3,0) ,ae(real-input,1,0)], [f2vr(32)], [l),
i(f2v_ld2(p), [c('(O,Iel,-O.isl)')], rf2vr(l.O44)], [: l) ,
i(f2vUN(pmadd), rf2vr(34) ,f2vr(1044) ,fZvr(32)], [f2vr(15)], [l),
i(f Zv_N(pnmsub) , Cf 2vr(32) ,f 2vr(1044) , f 2vr (34)1, [f 2vr(20)l , [l) ,
i(f2v~ld1,[ae(rea1~input,0,0),ae(rea1~input,4,0)1,~f2~r(26)l,~1),
i(f2v_ldZ(p), Sc('(0. tel,O.lel)')I, [f2vr(lO48):l, [l),
i(f2v_N(xcxnsma), Cf2vr(lO48) ,f2vr(15) ,f21vr(15)1, [f2vr(5)12 [l),
i(f2v_N(madd), [f2vr(26) ,f2vr(i048) ,f 2vr(26)1 , [f 2vr(lO30)1 , [l) ,
i(f2v_N(xmsub), [f2vr(26) ,f2vr(i048) ,12vr(26)1, If 2vr(1029)1, [l) ,
i(i2v_ldl(lo), [f 2vr(1030) ,ae(real-input ,2,0)1 , [f2vr(27)l, Cl) ,
i(f2v-ldZ(p), Cc('(0.5,-0.2el)')l, [f2vr(lO52)], [l),
i(f2v_N(xnmsub), [f2vr(27) ,f2vr(1052) ,f2vr(27)], [f2vr(1007)1, [l) ,
i(f2v_ldI(lo), [f2vr(1029) ,ae(imag-input ,2.0)1 , Cf2vr(9)1 , [I),
i(f2v-N(xnmsub), Cf2vr(9) ,f2vr(1052) ,f2vr(9)3, Cf2vr(1012)1, [l),
i(fZv_ld2(p), Cc('(O.lel,-0.5)')~, ~f2vr(l045)1, [l),
i(f2v-N(pumadd) , [f2vr(l007) ,f2vr(1045) ,f2vr(20)] , [f2vr(1013.)], [l) ,
i(f2v_ldZ(p), Cc('(O.lel,-0.2cl)')l, [f2vr(l040)], [l),
i(f 2v_N(pnmsub), [f2vr{20) ,f 2vr(1040) ,f2vr(l007)] , ~f2vr(lOO9)], [l) ,
i(fZv-ldZ(p), [c('3')1, [f2vr(1043)1, c]) ,
i(f2v_N(pmul), [f2vr(1043) ,f2vr(i011)1, [f2vr(25)], [l),
i(f2v-sti(lo), Ci2vr(25)1, [ae(output,2,0)1, [l 1 ,
i(f2v_stl(hi), [f2vr(25)l,~ae(output,4,0)], Cl),
i(f2v-N(xmul) , pf2vr(1040) ,f2vr(l009)1, [f2vr(23)], [l),
i(f2v_stl(lo), Cf2vr(23)1, Cae(output,6.0)1, Cl),
i(f2v_stl(hi), Cf2vr(23)I3 Lae(output,O,O)l, [l),
i(f2v~ld2(p),Cc('2')~f2vr(1053)~,~~),
i(f2v_N(xmsub), Lf2vr(1012) ,f2vr(1053) ,f2vr(5)I3 ~f2vr~lOlO~~ , L]),
i(f2v-N(xnmsub) , [f2vr(5) ,f2vr(1053) ,f2vr(lOl2~~, ~f2vr(l013)1, [l),
i(f2v-N(mul) , [f2vr(1040) ,f 2vr (1013)l , IfZvr(1008)I , [l) ,
i(fZv_ld2(p), [c('0')I, [f2vr(1042)1, [l),
k(f2v_N(pmul), [f2vr(1042) ,f 2vr(1010)1 , Cf2vr(18)1 , [l) ,
i(f2v_stl(lo), [f2vr(l8)1,~ae(output,3,0)1 , c l) ,
i(f2v_stl(hi.), Cf2vr(18)1, Lae(output ,5,0)1, Cl),
i(f2v_stl(hi), [f2vr(1008)I,Cae(output ,7,0)1,) ,
i(E2v_st;l(lo), [f2vr(lO05)1, [ae(output,l,O)], [l)

1

CHAPTER 7. COMPILATION EXAMPLES

Example f cr-8: Medium-Level Scheduling
procedure(fftv-hc2rea1-8,

i ,
[real-input, inq-input, output, real-istride, imag-lstride, ostride 1,
C
f2-const('(O.5,-0.2el)',double,'0.5','-0.2el'),
f2~const('2',doub1e,'0.707106781~865475244008444','-0.1414213562373095048801689e1'),
f2-const('(O.iel,O.iel)' ,double, 'O.lel', 'O.1el1),
f2-const('(O.lel,-O.5)',double,'O.lel','-0,5'),
f2~const('(0.1el,-0.lel)',double,'O.lel','-O.~e1'~~
f2~const('(0.Lel,-0.2el.)',double,'O.l.e1','-0.2el'),
f2~const('0',double,'0.1414213562373095048801689e1~,~0.1414213562373095048801689e1'),
f2~const('3',double,'0.2ei','0.2e11)

1 >

C
i(f2v-ldl, [ae(imag-input,1,0) ,ae(real-input ,3,0)1, Cf2vr(34)1, [l) ,
i(f2v_ldI., [ae(imag_input,3,0), ae(rea1.-input, 3. ,011, Lf 2vr(32)3, C]),
i(f2v-ld2(p),[c('(O.le~,-0.lel)')l,~f2vr1044, [l),
i(f2v-ldl, [ae(real-input ,O,0) ,ae(real-input ,4,0)1, [f 2vr(26)] , [l) ,
i(f2v-ld2(p),[c('(O.le1,0.lel)')l, Cf2vr(1048)1, [l),
i(f2v_ld2(p), Cc('(0.5,-0.2el) ')l, [f2vr(1052)], [l),
i(f2vWld2(p), [c('(O.lel,-0.5)')1, [f2vr(lO45)1, [l),
i(f2v_N(pmadd), If2vr(34) ,f2vr(104/1) ,f2vr(32)1, [f2vr(15)], Cl),
i(f2v-N(pnmsub) , [f2vr(32) ,f2vr(1044) ,f2vr(J4)1 , [f2vr(20)l , [l) ,
i(f'Zv_N(xmadd), tf2vr(26) ,f2vr(1048) ,f 2vr(26)1 , Cf2vr(i030)] , [l),
i(f 2v_N(xmsub), [f 2vr(26) ,f2vr(1048) ,f lvr(26)I , [f2vr(1029)1 , [l),
i(f2v_ld2(p), Cc('(O.lel,-O.2el)')1, Cf2vr(1040)1, [l),
i(f2v_ld2(p), Cc03~)], Cf2vr(l043)1, Cl),
i(f2v_ld2(p),Cc(J2J)l,Cf2vr(1053)1 ,Cl),
i(f2v_N(xcxnsma), [f2vr(1068) ,f2vr(15) ,f2vr(15)1, [f2vr(5)1, [l),
i(f2v_ld2(p), Cc('O3)1, Cf2vr(1042)1 ,Cl),
i(f2v-ld1(10), [f2vr(1030) ,ae(real-input,2,0)1, [f2vr(27)l, [l),
i(f2v-N(xnmsub) , [f2vr(27) ,f2vr(lO52) ,f2vr(27)1, [f2vr(1007)1 , 1 ,
i(f 2v_ldl(lo) , [f 2vr(1029) ,ae(imag-input ,2,0)1 , [f 2vr(9)1 , [l) ,
i(f2v-N(xnmsub) , [f2vr(9) ,f2vr(1052) ,f 2vr(9)l, Cf2vr(1012)1, [l),
i(f2v_N(pnmadd), [f2vr(iOO7) ,E2vr(3045) ,f2vr(20)], [f2vr(lOl1)1, [I),

i(f2v_N(pnmsub), [f2vr(20) ,f2vr(1040) ,f2vr(1007)] , Cf2vr(1009)1 , C!),

i(f2v-N(xmsub), [f2vr(1012) ,f2vr(1053) ,f2vr(5)], [f2vr(1010)1, Cl),
i(f2v-N(xrmsub) , [f2vr(5) ,f2vr(i053) ,f2vr(l012)] , Lf2vr(lOl3)1 , [I 1,
i(f2v_N(pmul), [f2vr(1043) ,f 2vr (1011)l , Cf2vr(25)1 , [l) ,
i(f 2v_N(xmul), [f 2vr(1040) , f 2vr (1009)l , [f 2vr(23)1 , Cl) ,
i(f2v_N(xmul), [f2vr(1040) , f 2vr(1013)1 , Cf2vr(1008)], [l 1 ,
i(f2v_N(pmul), [f2vr(l.042) ,f2vr(1010)l, Cf2vr(18)1, [l),
i(f2v_stl(lo), Cf2vr(25)1 ,Cae(output,2,0)1 ,Cl),
i(f2v_stl(hi), Cf2vr(25)1, Cae(output,4.0)1, Cl),
i(f2v_stl(lo), Cf2vr(23)1 ,Cae(output,6,0)1, Cl),
i(f2v_stl(hi), Cf2vr(23)1 ,Cae(output.O,O)], Cl),
i(f2v-stl(lo), [12vr(18)1, [ae(output,3,0)1, [l),
i(f 2v_stl(hi), [f 2vr(l.8) Mac (output, 5,0)1 , K]) ,
i(f2v_stl(t~i), Tf2vr(1.008)1, [ae(outpuC ,7,0)1, C1) ,
i(f2v_stl(lo), Cf2vr(1008)l, [ae(output, l,O)J, Cl)

CHAPTER 7. COMPILATION EXAMPLES

Example f cr-8: Float ing-Point Register Allocation

-I t

[real-lnput, irnag-input, output, real-istride, imag-istride, ostride I ,
r

CHAPTER 7. COMPILATION EXAMPLES

Example f cr-8: Effective Address Generat ion

array~stride~multitude~procision(output,ostride,l,double)

l ,
[real-input, imag-input, output, real-istride, imag-istride, ostside 1 ,

f2~const(0,double,~0.lel','O.lel'),
f2-const(l,double,'O.lel','-O.lel'),
f2~const(2,doubl.e,'0.5','-0.2el'),
f2-const(3,double,'O.lel','-0.5'),
f2-const(4,double,'O.lel','-0.2el'),
f2~const(5,double,'0.7071067811865475244008444','-0.1414213562373095048801689e1'),
f2-const(6,double,'0.2e1','0.2eI'),
f2~const(7,double,'0.14142135623730950488016S9ei','0.1414213562373095048801689e1')

CHAPTER 7. COMPILATION EXAMPLES

Example f cr -8: List-based Instruction Scheduling

J ,

[rea l - input , imag-input, output, r e a l - i s t r i d e , imag-istr ide, o s t r i d e I ,

CHAPTER 7. COMPILATION EXAMPLES

Example f cr-8: Assembly Output
. data

.align 3
Consts--fftw-hc2real-8:

.double 1.0, 1.0, 1.0, -1.0, 0.5, -2.0, 1.0, -0.5, 1.0, -2.0

.double 0.7071067811865475244008444, -0.1414213562373095048801689el

.double 2.0, 2.0

.double 0.1414213562373095048801689e1, 0.1414213562373095048801689e1
.text

.align 3

.glob1 -fftw-hc2real-8
-fftw-hc2real-8:

slwi r6, r6, 3
addis r12, 0, Consts--f ftw-hc2real-8Gha
slwi r7, r7, 3
addi r12, r12, Consts--fftw-hc2rea1-8@1
slwi r2, r6, 2
lf dx f3, 0, 1-3
lf pdx f4. 0, r12
add r10, r7, r7
lf sdx f3, r3, r2
add rll, r10, r7
addi rO, 0, 16
sub r9, r2, 1-6
lf dx fO, r4, r7
add r2, r6, r6
lf dx fl, r4, rll
slwi r8, r8, 3
lfpdux f2, 1-12, rO
fxmadd f8, f3, f4, f3
lf sdx fO, r3, r9
fxmsub f3, f3, f4, f3
lf sdx fl, r3, r6
slwi r9, r8, 2
lfpdux f5, r12, rO
add r6, r5, r9
lfpdux f6, r12, rO

CHAPTER 7. COMPILATION EXAMPLES

l f dx
add
f pmadd
l f pdux
f pnmsub
l f dx
f xnmsub
l f pdux
f xnmsub
l f pdux
l f pdx
sub
f xcxnsma
f pnmadd
f pnmsub
f xmsub
f xnmsub
f pmul
f xmul
f pmul
f xmul
s t f dx
s t f sdx
s t fdx
s t f sdx
s t fdx
s t f sdx
s t f sdx
s t fdx
b l r

f 8 , r 3 , r 2
r2 , r 8 , r 8
f 7 , fO, f 2 , f l
f 9 , r12, r O
f l , f l , f 2 , fO
f 3 , r 4 , r10
f 8 , f 8 , f 5 , f 8
f l l , 1-12, r O
f 5 , f 3 , f 5 , f 3
f10, 1-12, r O
f12 , r12, r O
r 3 , r 9 , r 8
f 4 , f 4 , f 7 , f 7
f 6 , f 8 , f 6 , f l
f l , f l , f 9 , f 8
f13, f 5 , f l l , f 4
f 4 , f 4 , f l l , f 5
f10, f10 , f 6
f l , f 9 , f l
f12 , f12 , f 1 3
f 9 , f 9 , f 4
f10, r 5 , r 2
f10, r 5 , r 9
f l , r 6 , r 2
f l , 0 , r 5
f12, r 5 , r 3
f12, r 6 , r 8
f 9 , r6 , 1-3
f 9 , r 5 , r 8

CHAPTER 7. COMPILATION EXAMPLES

7.3.4 Complex Backward 4-point FFT (f t w i - 4)

The following example code is another complex FFT code. Unlike fn-3, this
code has not been vectorized directly by the MAP vectorizer. Instead, knowledge
about the structure of this code has been encoded in the form of some hand-coding
tricks into an auxiliary module that aids the vectorizer.

Example f t w i - 4 : Vectorization

1 ,
r
i n o u t ,
l :

i o s t r ide
3 ,
C1 ,

CHAPTER 7. COMPILATION EXAMPLES 116

genf f t produces the following stub code that invokes the procedure compiled by
the MAP compiler ("fftwi-twiddle-4inner") as a sub-procedure within a loop.

void fftwi-twiddle-4(fftw-complex * A, const fftw-complex * W, int iostride, int m, int dist)
C
int i;
fftw-complex *inout = A;

for (i = m; i > 0; i--, inout += dist, W += 3) C fftwi-twiddle-4_inner(inout,W,iostride);)
1

static const int twiddle-order[] = Cl, 2, 3);
fftw-codelet-desc fftwi-twiddle-4-desc =

"fftwi-twiddle-l",
(void (*) C)) fftwi-twiddle-4,
4,
FFTW-BACKWARD,
FFTW-TWIDDLE,
99,
3,
twiddle-order,

3;

Example f t w i - 4 : Peephole Optimization
procedure(fftwi-lwiddle_4_inner,

I
array_stride~aulti.tude~precision(inout,iostride,2,double),
array-stride-multi.tude-precisi.on('W' , 3.,2,doubl.e)
l,
[inout, 'W', iostride 1,
C f2_cons~t('(0.le3.,O.lel)',doubZa,'O.lel','O.lel') 1,
c
i(f2v_ld2(p), Cae(inout ,O,0)1, [f2vr(7)1, C1) ,
i(E2v_l.d2(p), [aecinout; ,2,0)1, [f'2vr(24)1, [l),

i(f2v_l.d2(p), [ae('W',i,O)I, [f2vr(25)], [l),
i(f2v_N(xpmul), CfZvr(26) ,f2vr(24)], [f2vr(26)1, [l) ,
i(f 2v_N(xcxnsma) , if 2vr(25) ,f 2vr(24) ,f 2vr(26)3 , [f 2vr (6)1 , [I) ,
i(f2v_ld2(p), [ae(inout,l,O)], [f2vr(2'?)], [l),
i(f2v_ld2(p), Cae('W',O,O)], Cf2vr(28)1, [S) ,
i(f2v_N(xprnul), Cf2vrc28) ,f2vr(27)], [f2vr(29)], [l),
i(f2v-N(xcxrisna) , [f2vr(28) ,f2vr(27) ,f2vr(29)], Cf2vr(5)1, [I) ,
i(f2v_ld2(~), [ae(inout,3,0)1, [f2vr(30)], [l),
i(f2v_ld2(p), Cae('WJ ,2,0)1, Cf2vr(31)1, [l),
i(f2v-Ncxpmul) , [f2vr(31) ,f2vr(30)], [f2vr(32)1 , [I 1,
i(f 2v_N(xcxnsma), [f2vr(31) ,f2vr(30) ,f Zvr(32)I , [f2vr(4)] , C] 1,
i(f2v_st2(p), Cf2vr(1)1, Tae(inout,l,O)I, [I),
i(f2v_st2(p), [f2vr(0)3, Cae(inout,3,0)1, [l),
i(f2~-N(~addsub(sub,sub)), CfZvr(5) ,f2vr(4)], [f2vr(103)1, [l),
i(f2v_N(~addsub(add,add)), [f2vr(5) ,f2vr(4)1, Cf2vr(104)], [I),
i(f2~_N(~addsub(sub,s11b)), CfZvr(7) ,f 2vr(6)1 , [f 2vr(i05)1 , [l) ,
i (f 2v_N(paddsub(add,add)) , Cf 2vr (7), f 2vr(6)1 , Cf %vr(i06)1 , 11) ,
i(f2v-N (paddsub(add,atfd)) , Cf2vr(lOG) ,f2vr(l04)] , Cf2vr(107)1 , [l) ,
i(f 2v_N(paddsub(sub, sub)) , [f 2vr (106) , f 2vr (104)l , Cf 2vr (108)l , Cl 1,
i(f2v_st2(p), Cf2vr(108)1, Cae(inout ,2,0)1, [l),
i(f2v_st2(p), Cf2vr(107)1 ,Zae(inout,O,O)I, Cl),
i(f2v_ld2(p), [c('(O.lel,O.lel)')l, CfZvr(1034)1, Cl),
i(f2v~~(xcxnsma).~f2vr(1034),f2vr(103),f2vr(105)],[f2vr(0)~,~I),
i(f2v-~(xcxn~ma), [f2vr(1034) ,f2vr(103) ,f2vr(105)1, Kf2vr(l)l, [I)

l
) .

CHAPTER 7. COMPILATION EXAMPLES

Example f t w i - 4 : High-Level Scheduling

proced~re(fftwi_twiddIe~4~inner,
C
array~stride~multitude~precision(inout,iostride,2,double),
array~stride~multitude~precision('W',l,2,double)

l ,
[inout, 'W', iostride] ,
[f2~const('(0.lel,0.lel)',double,'0.lel','O.lel' 1,
I:
i(f2v_ld2(p), [ae(yW',2,0)], [f2vr(31)], [l),
i(f2veld2(p), [ae(inout,3,0)], [f2vr(30)], [l),
i(f 2v_N(xpmul), Cf2vr(31) ,f2vr(30)] , [f 2vr(32)] , [l) ,
i (f 2v-N (xcxnsma) , [f 2vr (31) , f 2vr (30) , f 2vr (32) 1 , [f 2vr (411 , [I) ,
i(f2v_ld2(p), Cae('W2 ,O,O)I, [f2vr(28)1, [l),
i(f2v_ld2(p), Cae(inout,l,O)I, [f2vr(27)], [l),
i (f 2veN(xpmul) , [f 2vr (28) , f 2vr (27) 1 , [f 2vr (29) 1 , [l) ,
i (f 2v-N (xcxnsma) , [f 2vr (28) , f 2vr (27) , f 2vr (29)l , [f 2vr (S) 1 , [l) ,
i(f2v_ld2(p), Cae(yWy,l,O)l, [f2vr(25)], [l),
i(f2v_ld2(p), [ae(inout,2,0)], Cf2vr(24)], C]),
i(f2v_N(xpmul), Cf2vr(25) ,f2vr(24)1, Cf2vr(26)1 , [l),
i (f 2v-N (xcxnsrna) , [f 2vr (25) , f 2vr (24) , f 2vr (26)] , [f 2vr (6) 1 , [l) ,
i(f2v-~(~addsub(add,add)), [f2vr(S) ,f2vr(4)], [f2vr(104)], [l),
i(f2v-M(paddsub(sub,sub)), [f2vr(5) ,f2vr(4)], [f2vr(I03)1, [l),
i (f 2v_ld2(p) , [ae(inout ,O,0)1 , [f 2vr(7)] , [l) ,
i(f 2v_N(paddsub(add,add)), [f 2vr(7) ,f 2vr(6)1 , Cf2vr(106)1 , [l 1,
i(f2~-1'~(~addsub(sub,sub)), [f2vr(7) ,f2vr(6)], [f2vr(105)], [l),
i (f 2v_N(paddsub(add,add)), [f 2vr(106) ,f 2vr(104)1 , [f 2vr(l07)] , [l) ,
i(f 2v_st2(p), Cf 2vrCl07)l , Cae(inout ,O,O)I , Cl),
i (f 2v_N(paddsub(sub, sub)) , [f 2vr (106) ,f 2vr(104)] , [f 2vr(108)] , [l) ,
i(f2v_st2(p), Cf2vr(108)1, [ae(inout,2,0)], [l),
i(f2trvld2(~), [c('(0.lel,0.le1)')], [f2vr(1034)], [l),
i(f2v-~(xcxnsrna), [f2vr(l034) ,f2vr(l03) ,f2vr(105)], [f2vr(O)], [l),
i(f2v_st2(p), [f2vr(O)I , Cae(inout ,3,0)1 , Cl 1,
i(f2v_N(xcxnpma), [f2vr(1034) ,f2vr(l03) ,f2vr(105)], [f2vr(l)l, [l),
i(f2v_st2(p), Cf2vr(l)l, [ae(inout,l,O)I, Cl)

l

CHAPTER 7. COMPILATION EXAMPLES

Example f t w i - 4 : Medium-Level Scheduling

p r o c e d ~ r e (f f t w i - t w i d d l e _ 4 ~ i m e r ,
C
array~stride~multitude~precision(inout,io~tride~2~double),
array~stride~multitude~precision('W1,1,2,doub~e)

1 ,
[
inout,
'W',
iostride

l ,
C
f2~const('(0.le1,0.lel)',double,'0.1el','O.lel')

l ,
C
i(f2v_ld2(p), [ae('W' ,2,0)1, [f2vr(31)Iy [l),
i (f 2vWld2(p) , [ae(inout, 3,0)1 , [f 2vr(30)] , [l) ,
i(f2v_ld2(p), [ae('W' ,O,O)], [f2vr(28)1, [l),
i(f2v_ld2(p), [ae(inout, l ,C))], [f2vr(27)] , [l),
i(f2v_ld2(p), [ae('W' ,1,0)], [f2vr(25)], [l) ,
i (f 2v_N(xpmul), [f 2vr (31.) ,f 2vr(30) 1 , [f 2vr(32)1 , [l) ,
i(f2v_ld2(p), Cae(inoutY2,0)1, [f2vr(24)] [l),
i(f2~-ld2(p),[ae(in0~t,O,0)1,[f2vr(7)]~[1),
i (f 2v_N(xpmul), [f 2vr (28) ,f 2vr (2711 , [f 2vr (2911 , [l ,
i(f2v_ld2(~), [~(~(~.iei,~.iei>~)], [f2vr(1034)1, [l),
i(f 2v4N(xpmul), Ff2vr (25) ,f2vr(24)1, [f 2vr(26)1 , [l) ,
i(f2v-~(xcxnsma), [f2vr(3i) ,f2vr(30) ,f2vr(32)] [f2vr(4)1 Y [l),
i(f2v-N(xcxnsma), Cf2vr(28) ,f2vr(27) ,f2vr(29)I9 [f2vr(5)] [l),
i (f 2v-N(xcxnsma) , [f 2vr (25) ,f 2vr (24) ,f 2vr (2611 , [f 2vr (6) 1 , [I 1 ,
i(f2v-~(~addsub(add,add)), [f2vr(5) ,f2vr(4)1, [f2vr(104)], [l),
i (f 2~-N(~addsub(sub, sub) 1 , [f 2vr (5) , f 2vr (4) 1 , [f 2vr (103) 1 , [l) ,
i (f 2v_N(paddsub(add,add)) , [f 2vr(7) ,f 2vr (611 , [f 2vr (106)l [I) ,
i(f2v-~(~addsub(sub,sub)), [f2vr(7) ,f2vr(6)], [f2vr(105)1, [l),
i(f2v-~(~addsub(add,add)), [f2vr(106) ,f2vr(l04)1, [f2vr(lO7)1, [l),
i (f 2v-N (paddsub (sub, sub) , [f 2vr (106) , f2vr (104) 1 , [f 2vr (108) 1 , [l) ,
i(f2v_N(xcxnsma), [f2vr(1034) ,f2vr(103) ,f2vr(105)], [f2vr(o)], [l),
i (f 2v_N(xcxnpma), [f 2vr(1034) ,f 2vr (103), f 2vr(105)1 , [f 2vr(1)1, [l) ,
i(f2v_st2(p), Cf2vr(i07)1 [ae(inout,O,o)l, [l),
i(f2v_st2(p>, Cf2vr(i08)1, [ae(inouty2,0)1, [l),
i(f2v_st2(p), [f2vr(0)1, [ae(inout,3,0)1, [l),
i(f2v_st2(p), [f2vr(l)l, [ae(inout,l,O)], [l)

1

CHAPTER 7. COMPILATION EXAMPLES

Example f t w i - 4 : Floating-Point Register Allocation

L

array~stride_multitude~precision(inout,iostxide,2,double),
array~stride~multitude~precision('W',I,2,double~

l ,
I:
inout,
'W',
iostride

1 ,

f2~const('(0.lel,0.leP)',double,'0.lel' ,'O.lel')
l ,
C
i(f2v_ld2(p), [ae('W' ,2,0)1, [fp2r(O)l, [I),
i(f2v_ld2(p), [ae(inout ,3,0)1, [fp2r(1)1, [l),
i(f2v_ld2(p), [ae('W2 ,O,O)], [fp2r(2)], [l),
i(f 2v_ld2(p), [ae(inout ,1,0)] , [fp2r(3)] , [l),
i(f2v_ld2(p), [ae('W1 ,1,0)], [fp2r(4)], [l),
i(f2vmN(xpmul), [fp2r(O) ,fp2r(l)l, [fp2r(5)1, [l),
i (f 2v_ld2(p) , [ae(inout ,2,0)1 , Cfp2r(6)1 , [l) ,
i(f 2v_ld2(p), [ae(inout ,O,0)] , [fp2r(7)] , [l) ,
i(f 2v_N(xpmul), [fp2r(2) ,fp2r(3)1 , [fp2r(8)1 , [l) ,
i(f2vvld2(p), [c(~(O.lel,O.lel)')] ,[fp2r(9)], [l),
i(f2v_N(xpmul), [fp2r(4) ,fp2r(6)1, [fp2r(10)1, [l),
i(f2v-~(xcxnsma) , [fp2r(O) ,fp2r(l) ,fp2r(5)1, [fpar(O)], Cl),
i (f 2v-M(xcxnsma), Cfpar(2) ,fp2r(3) ,fp2r(8)1, [fp2r(2)] , [l) ,
i(f2v-~(xcxnsma), [fp2r(4) ,fp2r(6) ,fp2r(lO)l, [fp2r(4)1, [l),
i(f2~-N(~addsub(add,add)), [fp2r(2) ,fp2r(O)l, [fp2r(ll)l, [l) ,
i(f2v-~(~addsub(sub,~~b)), [fp2r(2) ,fp2r(0)], [fp2r(2)1, [I),
i(f 2v-~(~addsub(add,add)) , [fp2r(7) ,fp2r(4)1 , [fp2r(12)] , [l 1,
i (f 2v-14 (paddsub (sub, sub)) , [f p2r (7) , f p2r (4) 1 , [f p2r (7) 1 , C1) ,
i(f2~_N(~addsub(add,add)), [fp2r(12) ,fp2r(Il)l , [fpar(13)1, [l),
i(f2~-N(~addsub(sub,sub)), [fp2r(12) ,fp2r(ii)], [fp2r(12)1, [l),
i(f2v_~(xcxnsma), [fp2r(9) ,fp2r(2) ,fp2r(7)], [fp2r(i)l, [l),
i (f 2v_N(xcxnpma) , [fp2r(9) ,fp2r (2) ,fp2r(7)] , [fp2r(9)1 , [l) ,
i(f2v_st2(p), Cfp2r(13)1, [ae(inout,O,O)I, [l),
i(f 2v_st2(p), [fp2r(12)1, [ae(inout ,2,0)] , [l) ,
i(f2v_st2(p), Cfp2r(I)l, [ae(inout,3,0)1, [l),
i(f2v_st2(p), [fp2r(9)1, [ae(inout,l,O)I, [l)

l

CHAPTER 7. COMPILATION EXAMPLES

Example f t w i -4: Effective Address Generat ion

procedure(fftwi_twiddle-4_inner,
C
array_stride_multitude~precision(inout,i0~tride,2,double),
array~stride~multi~ude~precision('W~,1,2,double)

1 ,

inout,
'W',
iostride

l ,

f2-const(O,double,)0.1el', '0.lel')
l ,
C
i(i-shift~eft(41, [r(5>1, [r(5)1, Cl),
i (i-add1~('~onsts--f ftwi-twiddle-4-inner@ha') , [im(0)] , [r(l2)] , C]),
i(i-add1('~onsts--f ftwi-twiddle-4-inner@l'), [r (12)1, [r(12)1 , [l 1,
i(i~copyI(32),Cl,Cr(2)l,Cl),
i(f2v_ld2(double,p>, [r(4) ,r(2)1, [fp2r(O) ,r(4)1, [s(ae('WY ,2,0))1),
i(i-add, Cr(5) ,r(5)1, Cr(6)1, Cl),
i(i-add, Cr(6) ,r(5>1, [r(7)1, [l) ,
i(f2v_ld2(double,p>, [r(3) ,r(7)1, [fp2r(l)], ~ s ~ a e ~ i n o ~ t ~ 3 ~ ~ ~ ~ ~ ~ ,
i(i-copyI(-321, Cl, Cr(811, Cl 1,
i(f2v_ld2(double,p>, [r(4) ,r(8)1, [fp2r(2)], [s(ae('WY ,O,O))l),
i(f2v_ld2(double,p>, [r(3) ,r(5)1, Cfp2r(3)1, ~ ~ ~ a e ~ i ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ,
i(i-copyI(-161, Cl, Cr(9)], [l),
i(f2v_ld2(double,p), [r(4) ,r(9)1, [fp2r(4) I , [s(ae('W',i,O))l),
i(f 2v_ld2(double ,p), [r(3) ,r(6)1 , Cfp2r(6)1, [s(ae(inout ,2,0))1 1,
i (f 2v_N(xpmul> , [fp2r(0) ,fp2r(l)l , [fp2r(5)1 , [I 1,
i(f2v_ld2(double,p>, [r(3)1, [fp2r(7)1, ~ s (a e ~ i n o u t y O , O ~ ~ ~ ~ ,
i(f 2v-N(xpmu1) , [fp2r(2) ,fp2r(3)1 , [fp2r(8)1 , [l 1,
i(f 2v_ld2(double ,p>, Cr(12)l , [fp2r(9)] , [s(const(O))l 1,
i(f2v_N(xpmul), [fp2r(4) ,fp2r(6)1 , [fp2r(10)1 , [I),
i(f2v_N(xcxnsma), [fp2r(O) ,fp2r(l) ,fp2r(5)], [fp2r(O)], [l),
i(f 2v_N(xcxnsnia), [fp2r(2) ,fp2r(3) ,fp2r(8)1 , [fp2r(2)] , [l),
i (f 2v_N(xcxnsma) , [fp2r (4) ,f p2r (6) , f p2r (10) l , rfp2r (4) 1 , [l) ,
i(f2v_N(paddsub(add,add)), [fp2r(2) ,fp2r(O)I, [fp2r(ll)l, [l),
i (f 2v_N(paddsub(sub, sub) , [fp2r (2) ,f p2r(O)I , [fp2r (2) 1 , Cl ,
i (f 2v_N(paddsub(add,add) , [fp2r(7) ,fp2r (411 , [fp2r (1211 , [l) ,
i(f2v-N(paddsub(sub,sub)), [fp2r(7) ,fp2r(4)], Cfp2r(7)], [l),
i (f 2v-N (paddsub (add, add)) , [f p2r (12) , f p2r (l 1) 1 , [f par (13) 1 , [l) ,
i(f2v-N(paddsub(sub,sub)), [fp2r(12) ,fp2r(ll)], [fp2r(12)], [l),
i (f 2v_N(xcxnsma), [fp2r(9) ,fp2r(2) ,fp2r(7)] , [fp2r(l)l , [l 1,
i(f 2v_N(xcxnpma) , [fp2r(9) ,fp2r(2) ,fp2r(7)1 , [fp2r(9)1 , [l 1 ,
i(f2v_st2(double,p), Cfp2r(l3) ,r(3)1, [l , [d(ae(inout,O,O))l),
i(f2v_st2(double,p), Cfp2r(l2) ,r(3) ,r(6)1, [l, [d(ae(inouty2,0))l),
i(f2v7st2(double,p), Cfp2r(i) ,r(3),r(7)1, [l, [d(ae(inout,3,0))1),
i(f2v_st2(double,p), [fp2r(9) ,r(3) ,r(5)1, [l, [d(ae(inout,l,O))l)

l
1 -

CHAPTER 7. COMPILATION EXAMPLES

Example f t w i - 4 : List-based Instruction Scheduling

procedure(fft~l-twiddle-4~inner,

a r r a y ~ s t r i d e ~ r n u l t i t u d e ~ p r e c i s i o n (i n o u t , ~ l e) ,
a r ray~s t r ide~mul t i tude_prec is ion('W' ,1 ,2 ,double)

1 ,
r
inout,
'W',
iostride

l ,
r
f2~const(0,double,'0.lel','O.lel')

1 ,

/* 0 * / i(i_shiftLeft(4), Cr(5>], Cr(5>], C1 1,
/* 0 */ i(i_copyI(32), Cl , Cr(2)1, Cl 1,
/* 1 */ i(i-add, Cr(5) ,r(5>1 ,Cr(6)1 , Cl),
/* 1 */ i(i-copyI(-321, Cl, Cr(8)1, Cl),
/* 2 */ i(i-copyI(-161, Cl, Cr(9>1, Cl 1,
/* 2 * / i(i-add, Cr(6) ,r(5)1 ,Cr(i')I , Cl),
/* 3 */ i(f2v~ld2(double,p),~r(4),r(2)l,~fp2r(0),r~4~~,~s~ae~'W',~,O~~~~,
/ X 3 */ i(i-add~S(y~onsts--fftwi,twiddle-44inner@hay) , Cimm(0)l , cr(I2)l , cl 1,
/* 4 */ i(f2v~ld2(double,p),[r(3),r(5)~,~fp2r(3)~,~s~ae~inout,l,O~~~~,
/* 4 */ i(i~add1(~~onsts~~fftwi~twiddle~4~inner@l~~ , cr(I2)l , cr(I2)l , cl 1,
/* 5 * / i(f2v_ld2(double,p), [r(3) ,r(6)l , [fp2r(6)1, [s(ae(inout ,2,0))1),
/* 6 */ i (f 2v_ld2(double ,p) , rr(3) ,r (7)l , [fp2r(l)l , [S (ae(in0ut ,3 J O))l) ,
/* 7 */ i(f2v_ld2(double,p), [r(4) ,r(8)1, [fp2r(2), [s(ae('W' ,O,O))I),
/* 8 */ i(f2v~ld2(double,p),~r(4),r(9)1,~fp2r(4)~,~s~ae~~W',l,O~~~~,
/* 9 */ i(f2v_ld2(double,p>, [r(3)l , [fp2r(7)1 , [s(ae(inout ,O,O))l),

/* 10 */ i(f2v~N(xpmul),[fp2r(0),fp2r(I~1,[fp2r(5)1,~1),
/* 10 */ i(f2v_ld2(double,p), [r(12)1 , [fp2r(9)l, [~(const 1,
/ l / i(f 2v_N(xpmul), Cfp2r(2) ,fp2r(3)1 , Cfp2r(8)1 , [l 1,
/* 12 */ i(f 2v_N(xpmul), [fp2r(4) ,fp2r(6)1 , [fp2r(10)1 , [l 1,
/* 15 */ i(f 2v_N(xcxnsma), [fp2r(O) ,fp2r(1) ,fp2r(5)] , [fp2r(o)] , [l),
/* 16 */ i(f 2~-N(xcxnsma) , [fp2r(2) ,fp2r(3) ,fp2r(8)] , [fp2r(2)] , [l),
/* 17 */ i(f2v~N(xcxnsma),[fp2r(4),fp2r(6),fp2r(iO~~,~fp2r~4~~,~~~,
/* 21 */ i(f2~~N(paddsub(add,add)),[fp2r(2),fp2r(0)l,~fp2r(11)1,[1),
/* 22 */ i(f2v_N(paddsub(add,add)), [fp2r(7) ,fp2r(4)] , [fp2r(12)] , [l) ,
/* 23 */ i(f2v~N(paddsub(sub,sub)),[fp2r(2),fp2r(0)],~fp2r(2)1,[1),
/* 24 */ i (f 2v_N(paddsub(sub,sub) 1, [fp2r(7) ,fp2r(4)], [fp2r(7)] , [l),
/* 27 */ i(f2v~N(paddsub(add,add)),[fp2r(12),fp2r(11)1,[fp2r(13)1,~~),
/* 28 */ i(f2v-N(paddsub(sub,sub)), [fp2r(l2) ,fp2r(ll)l, [fp2x(I2)1, [l),
/* 29 */ i(f 2v_N(xcxnsma), Cfp2r(9) ,fp2r(2) ,fp2r(7)] , [fp2r(l)1 , [l 1,
/* 30 */ i(f 2v_N(xcxnpma) , Cfp2r(9) ,fp2r(2) ,fp2r(7)1 , [fp2r(9)1 , [l) ,
/* 32 */ i(f2v-st2(double,p), [fp2r(13) ,r(3)1 , [l, [d(ae(inout ,O,O))l),
/* 33 */ i(f 2v_st2(double,p), Cfp2r(12) ,r(3) ,r(6)1 , [l , Cd(ae(inout ,2,0))l 1,
/* 34 */ i(f2v_st2(double,p), Cfp2r(l) ,r(3) ,r(7)1, C l , Cd(ae(inout,3,0))1),
/* 35 */ i(f2v_st2(double,p), [fp2r(g),r(3),r(5)1, [l, Cd(ae(inout,1,0))1)

1
1.

CHAPTER 7. COMPILATION EXAMPLES

Example f t w i - 4 : Assembly Output

. data
. align 3

Consts--fftwi-twiddle-4-inner:
.double O.le1, O.le1

.text
. align 3
.glob1 _fftwi_twiddle_4_inner

-fftwi_twiddle_4_inner:
slwi r5, r5, 4
addi r2, 0, 32
add r6, r5, r5
addi r8, 0, -32
addi r9, 0, -16
add r7, r6, r5
lfpdux fO, r4, r2
addis 1-12, 0, Consts--fftwi-twiddle-4-inner@ha
lf pdx f3, r3, r5
addi r12, 1-12, Const~--fftwi-twiddle-4~inner@l
lf pdx f6, r3, r6
lf pdx fl, r3, r7
lf pdx f2, r4, r8
lf pdx f4, r4, r9
lf pdx f7, 0, r3
f xpmul f5, fO, fl
lf pdx f9, 0, r12
f xpmul f8, f2, f3
fxpmul flO, f4, f6
fxcxnsma fO, fO, fl, f5
fxcxnsma f2, f2, f3, f8
fxcxnsma f4, f4, f6, f10
f padd fll, f2, fO
f padd f12, f7, f4
f psub f2, f2, fO
f psub f7, f7, f4
f padd f13, f12, fll
f psub f12, f12, fll
fxcxnsma fl, f9, f2, f7
fxcxnpma f9, f9, f2, f7
stfpdx f 13, 0, r3
stfpdx f12, r3, r6
stfpdx fl, r3, r7
stf pdx f9, r3, r5
blr

Chapter 8

Results

To assess the performance impact of the presented techniques on real Blue Gene
systems, the compute-intensive numerical kernels of FFTW 2.1.5 were compiled
using the following setups. (i) xlc-scalar uses the XL C compiler without au-
tomatic vectorization. (ii) xlc-vect uses XL C with automatic vectorization.
(iii) xlc-mapvect uses the MAP vectorizer and optimizer, producing C code with
SIMD intrinsics compiled by XL C. (iv) map-vect uses the MAP vectorizer, op-
timizer, and backend.

Complex 1D FFT on an IBM PowerPC 440 FP2

I I I I I I I I I I I I I I I I
map-vect -

xlc-mapvect --X - -
xlcscalar .--+....

xlc-vect -
-

-

21 22 2-24 25 2G 27 28 29 210 211 212 213214 215 2 1 9 1 7 218

Figure 8.1: Complex Power-of-two ID F F T Performance on Blue Gene.

Complex 1D FFT on an IBM PowerPC 440 FP2

Figure 8.2: Complex Non-power-of-two ID F F T Performance on Blue Gene.

2

Figs. 8.1 and 8.2 show the single-processor complex FFT performance achieved
on Blue Gene systems by using various compilers and settings. In both cases,

I I I I I I I I I I I
map-vect -c

xlc-~napvect --X--
xlcscalar .---+--.

xlc-vect -+-

CHAPTER 8. RESULTS 124

the MAP vectorizer and optimizer improve the floating-point performance sig-
nificantly. For complex power-of-two length FFTs, the MAP backend gives an
additional performance boost.

Real 1D FFT on an IBM PowerPC 440 FP2

I I I I I I I I I I I I I I l l
map-vect ~c
xlcscalar ...-+..--

2 1 2 2 2 3 24 2 5 2 6 2 7 2 8 2-10 211 212 213 214 215 216 217 218

Figure 8.3: Real Power-of-two 1D FFT Performance on Blue Gene.

Fig. 8.3 shows performance of real 1D FFTs of vectors with a power-of-two length.
The MAP tool chain improves performance, but the effect is noticably smaller
than for complex FFT codes.

Discussion

Performance of Large Transforms. In all figures shown, it is noticable that
the performance falls sharply as soon as cache capacity boundaries are hit, i. e.,
as soon as the size of data sets no longer fits into the cache.

Performance of Complex Non-power-of-two Sizes. It is noticeable that
the backend does not yield significant performances gain in the non-power-of-two
case (Fig. 8.2). Experiments show that a comparable performance level as in the
power-of-two case could be obtained, if a large number of additional numerical
kernels was integrated into the library. Because of pragmatic reasons-many
FFTW users primarily calculate power-of-two complex FFTs- the library was
kept slim, and the additionally needed kernels were not included.

Performance of Real Transforms. Real transforms have a larger number
of memory access instructions compared to complex transforms operating on
interleaved complex data. Also, the optimal SIMD vectorization of real FFT
kernels is not always possible. Thus, the speedup for real FFTs is lower than for
complex FFTs.

Performance of Multi-Dimensional Transforms. Internally, FFTW reduces
any multi-dimensional transform to multiple one-dimensional transforms done in
a row-column style. As early tests indicated, it would make sense to generate

CHAPTER 8. RESULTS 125

specialized codes optimized for the case when all array data do not reside in L1
cache but in L2 cache, future work will focus on specifically optimizing these cases
as well.

Instruction Count. For all codes investigated, the MAP vectorizer and opti-
mizer for Blue Gene systems significantly reduced the instruction count by utiliz-
ing FP2 SIMD instructions. While the biggest part of the gain can be attributed
to vectorization, the optimizer also contributed to code quality by utilizing FP2
specific instructions, thus eliminating many SIMD swaps and multiplications.

For SIMD codes the address generation part of the backend improves the code
quality by minimizing the number of integer instructions.

As FFTW kernels can be very large, minimizing the instruction count helps
avoid hitting L1 instruction cache capacity limits.

Effect of the Backend. Experiments to find out the performance contribution
of the compiler backend (xlc-mapvect vs. map-vect) show that the MAP backend
produces much better code for compilation units consisting of one large basic
block, while XL C profits from being able to perform its optimizations on units
larger than one basic block by utilizing techniques like loop unrolling.

Summary

The MAP compiler tool chain covers all stages of compilation that are important
for achieving high performance in numerical software for linear signal processing
transforms.

First, the code produced by a special purpose program generator, like FFTW'S
genf f t, is vectorized, seeking an optimal utilization of the 2-way SIMD floating-
point unit of IBM's PowerPC 440 FP2 processors.

Next, the MAP optimizer tries to minimize SIMD data reordering overhead
and maximize utilization of FMAs and other FP2 specific idioms.

Finally, the code is compiled down to assembly, using (i) an optimal algorithm
for register allocation for basic blocks, (ii) several levels of scheduling, and (iii) a
clever instruction selection method for dealing with effective address generation
on a processor with DSP-like addressing mode restrictions.

Superior Performance Level. In the best cases, code produced by the MAP
compiler runs at 80% of the performance that the best algorithm known in the
literature could theoretically achieve on the target hardware.

MAP compiled FFTW codelets enabled the material science code Qbox [39]
to run with a sustained performance of 60 Tflop/s on BlueGene/L, thus reaching
the second highest performance ever achieved by an application code. Recent
advancements have allowed to reach significantly higher performance values.

Appendix A

MAP Backend Source Codes

The appendix presents a selection of OCAML source codes of two generic compo-
nents of the MAP backend, the flexible list-based instruction scheduler LL1 and
the register allocator-along wit h the auxiliary modules they require.

A. 1 Generic Auxiliary Modules

Commonly used functions that are not adequately covered by the OCAML stan-
dard library are implemented in the following modules.

A . l . l basics .ml: Basic Functions
open List
open Num

type precision = Single I Double

let string-of-precision = function Single -> "single" I Double -> "double"

let precision-of-string = function
I "single" -> Single
I "double" -> Double
l s -> failwith ("precision-of-string(" ^ s "")")

module IntMap = Map.Make(struct type t = int let compare = compare end)
module StringMap = Map.Make(struct type t = string let compare = compare end)
module Stringset = Set.Make(struct type t = string let compare = compare end)

let hdTIJ = function C] -> failwith "hdT1"' I [X] I -: :X: :- -> X

let subst y z X = if X = y then z else X

let overlap (xs,ys) = exists (fun X -> mem X ys) xs

let uniq xs = match xs with
I Cl I [-l -> xs
I a: : ([b] as ys) -> if a=b then ys else xs
I - -> f old-right (fun X xs -> if mem X xs then xs else X: :xs) xs Cl

let identity X = X

let option-is-some = function Some - -> true I None -> false
let value-of-option = function Some X -> X I None -> failwith "value-of-option"

(* incr' is like the built-in function incr, but returns the old value *)
let incr' a-ref = let a-val = !a-ref in incr a-ref; a-val

let rec 2s-from-to' i j zs = if i>j then 2s else zs-from-to' i (j-l) (j::zs)
let ints-from-to z0 z = zs-from-to' z0 z [l

APPENDIX A. MAP BACKEND SOURCE CODES

let se13and4of4uniq - - X y = (uniq X, uniq y)
let sel3of4uniq - - X - = uniq X
let get3of3 (-,-,X) = X

let pick-maximum eval = function
I C1 -> f ailwith "pick-maximum(C1) "
1 x::xs ->

let X-val = eval X in
let rec loop max-val max-el = function

I C1 -> (mm-va1,max-el)
I x::xs ->

let X-val = eval X in
if X-val > max-val then loop X-val X xs
else loop max-val max-el xs

in loop X-val X xs

let optionalcons X xs = match X with Some X -> x::xs I None -> xs

let list-of-optionlist xs = fold-right optionalcons xs [l

let msb X =
let rec msb-internal msbO = function

I 0 -> msbO
I n -> msb-internal (msbO+l) (n lsr 1) in

msb-internal (-1) X

let find-elem p xs = try Some (List.find p xs) with Not-found -> None

let toFalse - = false
let toTrue - = true

let getlof3 (X,-,-) = X

let get2of3 (-,X,-) = X

let get3of3 (-,-,X) = X

let getlof4 (X,-,-,-) = X
let get2of4 (-,X,-,-) = X
let get3of4 (-,-,X,-) = X
let get4of4 (-,-,-,X) = X

let queue-of-list xs =
let q = Queue. create 0
in List.iter (fun X -> Queue.add X q) xs; q

let rec mapOptionWithN n f = function
I Cl -> Cl
I x::xs ->

match f n X with
I Some v -> (v,x)::(mapOptionWithN (n+l) f xs)
I None -> mapOptionWithN (n+l) f xs

let swappair (a,b) = (b,a)

let one = num-of -int 1
let zero = num-of-int 0
let mone = minus-num one
let ten = num-of-int 10
let negative X = X </ zero

(* decimal digits of precision to maintain internally, and to print out *)

let precision = 50
let print-precision = 25

let inveps = ten **/ (Int precision)
let epsilon = one // inveps

APPENDIX A. MAP BACKEND SOURCE CODES

let pinveps = ten **/ (Int print-precision)
let pepsilon = one // pinveps

let round X = epsilon */ (round-num (X */ inveps))

(* comparison predicate for real numbers *)
let nun-equal X y = (* use both relative and absolute error *)
let absdiff = abs-num (X -/ y) in
absdiff <=/ pepsilon or
absdiff <=l pepsilon */ (abs-nun X +/ abs-num y)

let takeNth0-of n =
let rec takeNth0-of' bag n = function

I C] -> failwith "takeNth0-of"
I X: :xs when n = 0 -> (x,List .rev-append bag xs)
I x::xs -> takeNth0-of' (X: :bag) (n-l) xs

in takeNth0-of ' [l n

let sliceNth0-of n =
let rec sliceNth0-of' bag n = function

I [l -> f ailwith "sliceNth0-of"
I x::xs when n = 0 -> (bag,x,xs)
I x::xs -> sliceNth0-of' (x::bag) (n-l) xs

in sliceNth0-of ' Cl n

let slices-of p ys =

let rec slices-of' bag = function
I Cl -> raise Not-found
I x::xs -> if p X then (bag,x,xs) else slices-ofJ (x::bag) xs

in slices-ofJ Cl ys

A.1.2 id.ml: Identifiers
open List

module Id : sig

type t

val makeNew : unit -> t
val equal : t -> t -> boo1
val compare : t -> t -> int
val tostring : t -> string

end = struct
type t = ID of int

let makeNew =

let currentId ref 0 in
fun 0 ->
incr currentId;
ID !currentId

let tostring (ID i) = Printf.sprintf "id(%d)" i
let equal = (=)
let compare = compare

end

module IdSet = Set.Make(Id)
module IdMap = Map.Make(Id)

let idmapToXs keymap-addE valueToXs =

IdMap. f old
(fun id value ->

fold-right (fun key -> keymap-addE key id) (valueToXs value))

APPENDIX A. MAP BACKEND SOURCE CODES

l e t 1istToIdmap xs =
fo ld-r ight (fun X -> 1dMap.add (1d.makeNew 0) X) xs 1dMap.empty

l e t idmap-exists k m = t r y 1dMap.find k m; t r u e with Not-found -> f a l s e
l e t idmap-inc key map = 1dMap.add key (1dMap.find key map + 1) map

(* add t o list of e x i s t i n g e n t r i e s *)
l e t idmap-findE k m = t r y 1dMap.find k m with Not-found -> [l
l e t idmap-ad& k v m = 1dMap.add k (v::idmap-fin& k m) m
l e t idmap-ad&' value key = idmap-addE key value

A. 1.3 nonDetMonad . m l : Simulating Backtracking
open U t i l

l e t identityM a s t a t e = Some(a,state)

l e t unitM a s t a t e cont = cont a s t a t e

l e t (>>=) = fun f l f 2 -> fun s t a t e cont ->
f l s t a t e (fun a s t a t e 1 -> f 2 a s t a t e ' cont)

l e t fetchStateM s t a t e cont = cont s t a t e s t a t e
l e t storeStateM s t a t e -o lds ta te cont = cont 0 s t a t e

l e t catchlM exn handler s t a t e cont =

t r y cont 0 s t a t e with exn -> handler 0 s t a t e cont

l e t (I I I) = fun f l f 2 ->
fun s t a t e cont ->

match f l 0 s t a t e cont with
I None -> f 2 0 s t a t e cont
I Some(a' ,state ') -> Some(aJ ,s ta te ')

l e t fai lM - s t a t e -cant = None

l e t difM a b = i f a <> b then unitM 0 e l s e failM

l e t runM f X s t a t e = f X s t a t e identityM
l e t runP f X s t a t e = optionIsSome (runM f X s t a t e)

l e t posAssertM = funct ion t r u e -> unitM 0 I f a l s e -> failM
l e t negAssertM = funct ion f a l s e -> unitM 0 I t r u e -> failM

l e t oneOf2M X y s t a t e cont =

match cont X s t a t e with
I Some X -> Some X

I None -> cont y s t a t e

(* avoid crea t ion of choicepoint f o r l a s t member of a l i s t *)
l e t r e c member#' e l x s s t a t e cont = match xs with

I Cl -> cont e l s t a t e
I x: :xs ->

match cont e l s t a t e with
I None -> memberM' X x s s t a t e cont
I Some X -> Some X

l e t memberM xs s t a t e cont = match xs with
I C1 -> None
I x: :xs -> member#' X x s s t a t e cont

APPENDIX A. MAP BACKEND SOURCE CODES

let rec enumNthOMemberM1 el no = function
1 [l -> unitM (n0,el)
I x::xs -> (fun - -> unitM (n0,el)) I l c I

(funi- -> enumNthOMemberM' X (n0+1) xs)

let enumNthOMemberM = function
I C1 -> failM
I x::xs -> enumNthOMernberM' X 0 xs

let mapPairM f (a,b) =
f a >>= fun a' ->
f b >>= fun b' ->
unitM (aJ,b')

let rnapTripleM f (a,b,c) =
f a >>= fun a' ->
f b >>= fun b' ->
f c >>= fun c' ->
unitM (a' ,b' ,c1)

let consM X xs = unitM (x::xs)

let rec mapM f = function
I Cl -> unitM C1
I x::xs -> f X >>= fun X' ->

mapM f xs >>= fun xs' ->
unitM (X': :xs')

let optionToValueM = function
I None -> failM
I Some X -> unitM X

let rec iterM f = function
I Cl -> unitM 0
I x::xs -> f X >>= fun - -> iterM f xs

let rec iterirevM f i = function
I C1 -> unitM 0
I x::xs -> iterirevM f (succ i) xs >>= fun - -> f i X

(* aux. predicate to avoid creation of choicepoint for the last element *)
let rec select#' el = function

I Cl -> unitM (el, Cl)
I X: : xs as xxs ->

(fun - -> unitM (e1,xxs)) 1 I I
(fun - -> select#' X xs >>= fun (z,zs) -> unitM (z,el: :zs))

let selectM = function
I C] -> failM
I x::xs -> selectM' X xs

let rec selectFirstM p = function
I Cl -> failM
I x::xs when p X -> unitM (x,xs)
I X::XS -> selectFirstM p xs >>= fun (z,zs) -> unitM (z,x: :zs)

let deleteFirstM p xs = selectFirstM p xs >>= fun (-,zs) -> unitM zs

let rec permutationM = function
I C1 -> unitM C1
I xs -> selectM xs >>= fun (z,zs) -> permutationM zs >>= consM z

let rec forallM p = function
I C] -> unitM 0
I x::xs -> p X >>= fun - -> forallM p xs

APPENDIX A. MAP BACKEND SOURCE CODES

let existsM p xs = memberM xs >>= p

(* auxiliary function to avoid creation of choicepoint *)
let rec betweenM1 iO il i =
if il <= i then (fun - -> unitM iO) I l l (fun - -> betweenM1 il (succ ill i)
else unitM iO

let betweenM iO i =
if iO <= i then betweenMJ iO (succ iO) i
else failM

let disjM xs = memberM xs >>= fun f -> f 0

A. 1.4 unpars ing . ml: Generic Unparsing
open Basics
open Buffer

let string-of-precision = function Single -> "single" I Double -> "double"
let char-of-precision = function Single -> 'S' I Double -> 'd'
let shortstring-of-precision = function Single -> "S" I Double -> " "

let add-precision b p = add-char b (char-of-precision p)

let add-int b i = add-string b (string-of-int i)

let add-list' S-lbracket S-comma S-rbracket addone b = function
1 [l ->

add-string b S-lbracket;
add-string b S-rbracket

I x::xs ->
add-string b S-lbracket;
addone b X;
let rec add-list" = function

1 [l -> add-string b S-rbracket
I x::xs -> add-string b S-comma; addone b X; add-listJJ xs

in add-list ' ' xs

let add-list addone b xs = add-list ' " C\n\t " " ,\n\t " "\n\tl" addone b xs
let add-listC addone b xs = add-listJ " C" "," "l" addone b xs

, " " addone b xs let add-listC' addone b xs = add-list' "" " "

let add-decimal = add-int
let add-decimals b xs = add-list add-decimal b xs
let add-decimalsc b xs = add-listC add-decimal b xs

let add-lit b lit = add-char b '\"; add-string b lit; add-char b '\"
let add-lits b xs = add-list add-lit b xs
let add-litsC b xs = add-listC add-lit b xs

let add-litpair b (11,12) = add-lit b 11; add-char b I- '; add-lit b 12
let add-litpairs b xs = add-list add-litpair b xs
let add-litpairsc b xs = add-listC add-litpair b xs

let add-somestring string-of-one b X = add-string b (string-of-one X)

let string-of-something add-something X =
let buf = Buffer.create 16 in add-something buf X; Buffer.contents buf

let string-of-listC' string-of-one xs =
string-of-something (add-listC1 (add-somestring string-of-one)) xs

APPENDIX A. MAP BACKEND SOURCE CODES

A.1.5 util.ml: Other Utilities
open List
open Unix

..
* Integer operations
..

(* fint the inverse of n modulo m *)
let invmod n m =

let rec loop i =
if ((i * n) mod m == 1) then i
else loop (i + 1)

in
loop 1

(* YooklidJs algorithm *)
let rec gcd n m =

if (n > m)
then gcd m n

else
let r = m mod n
in

if (r == 0) then n
else gcd r n

(* reduce the fraction m/n to lowest terms, modulo factors of n/n *)
let lowest-terms n m =

if (m mod n == 0) then
(1,O)

else
let nn = (abs n) in let mm = m * (n / nn)
in let mpos =

if (mm > 0) then (mm mod nn)
else (mm + (1 + (abs mm) / nn) * nn) mod nn

and d = gcd nn (abs mm)
in (nn / d, mpos / d)

(* find a generator for the multiplicative group mod p
(where p must be prime for a generator to exist!!) *)

exception No-Generator

let find-generator p =
let rec period X prod =

if (prod == 1) then l
else 1 + (period X (prod * X mod p))

in let rec findgen X =
if (X == 0) then raise No-Generator
else if ((period X X) == (p - 1)) then X
else f indgen ((X + 1) mod p)

in findgen 1

(* raise X to a power n modulo p (requires n > 0) (in principle,
negative powers would be fine, provided that X and p are relatively
prime ... we don't need this functionality, though) *)

exception Negative-Power

let rec pow-mod X n p =
if (n == 0) then 1
else if (n < 0) then raise Negative-Power
else if (n mod 2 == 0) then pow-mod (X * X mod p) (n / 2) p
else X * (pow-mod X (n - 1) p) mod p

APPENDIX A. MAP BACKEND SOURCE CODES

* auxiliary functions
...
let rec forall combiner a b f =

if (a >= b) then Cl
else combiner (f a) (forall combiner (a + 1) b f)

let sum-list 1 = fold-right (+) 1 0
let max-list l = fold-right (mad 1 (-999999)
let min-list 1 = fold-right (mid 1 999999
let count pred = fold-left (fun a elem -> if (pred elem) then 1 + a else a) 0

let remove elem = filter ((!=) elem)
let cons a b = a: :b

let null = function Cl -> true I - -> false

(* functional composition *)
let (@Q) f g X = f (g X)

(* Hmm.. . CAML won't allow second-order polymorphism. Oh well.. *)
(* let forall-flat = forall (Q);; *)
let rec forall-flat a b f =

if (a >= b) then [l
else (f a) Q (forall-flat (a + 1) b f)

let identity X = X

let find-elem p xs = try Some (List.find p xs) with Not-found -> None

(* find X, X >= a, such that (p X) is true *)
let rec suchthat a pred =

if (pred a) then a else suchthat (a + 1) pred

let selectFirst p xs =

let rec selectFirst' = function
I Cl -> raise Not-found
I x::xs when p X -> (x,xs)
I x::xs -> let (x',xs') = selectFirstJ xs in (xJ,x::xs')

in try Some(se1ectFirst' xs) with Not-found -> None

(* used for inserting an element into a sorted list *)
let insertList stop el xs =
let rec insert' = function

1 Cl -> Cell
I x::xs as xxs -> if stop el X then e1::xxs else x::(insertJ xs)

in insert' xs

(* used for inserting an element into a sorted list *)
let insert-list p el xs =
let rec insertJ = function

I C1 -> Cell
I x::xs as xxs -> if p el X < 0 then e1::xxs else x::(insertJ xs)

in insertJ xs

let zip xs =
let rec zip' 1s rs = function

I Cl -> (ls,rs)
I x::xs -> zip' (x::rs) 1s xs

in zipJ C1 Cl xs

let rec intertwine xs zs = match (xs,zs) with
I (C1,zs) -> zs
I (x::xs,zs) -> x::(intertwine zs xs)

APPENDIX A. MAP BACKEND SOURCE CODES

let (a.) (a,b) (c,d) = (aQc,bQd)

let listAssoc key assoclist =
try Some (List.assoc key assoclist) with Not-found -> None

let identity X = X
let return X = X

let 1istToString tostring separator =
let rec 1istToString-internal = function

1 [l -> " "
I [X] -> tostring X
I X: :xs -> (tostring X) separator - (1istToString-internal xs) in

1istToString-internal

let stringlistToString = listToString identity

let intToString = string-of-int
let floatToString = string-of-float

let same-length xs zs =

let rec same-length-internal = function
I Cl, Cl -> true
I Cl, - -> false
I -, [l -> false
I -::xs,-::zs -> same-length-internal (xs,zs)

in same-length-internal (xs,zs)

let optionIsSome = function None -> false I Some - -> true
let optionIsNone = function None -> true I Some - -> false
let optionToValueJ exn = function None -> raise exn I Some X -> X

let optionToValue v = optionToValuel (Failure "optionToValue") v
let optionToList = function None -> Cl I Some a -> Cal

let optionToListAndConcat xs = function
I None -> xs
I Some X -> x::xs

let option-to-boolvaluepair oldvalue = function
I None -> (false, oldvalue)
I Some newvalue -> (true, newvalue)

let minimize f xs =

let rec minimizeJ z z' = function
I C1 -> Some z
I x::xs ->

let X' = f X in
if X' < z' then minimize' X X' xs else minimize' z z' xs

in match xs with
I [l -> None
I [X] -> Some X
I X: :xs -> minimizeJ X (f X) xs

let list-removefirst p =
let rec remove-internal = function

I Cl -> Cl
I x::xs -> if p X then xs else x::(remove-internal xs)

in remove-internal

let cons a b = a: :b

let mapoption f = function
I Some X -> Some (f X)
I None -> None

APPENDIX A. MAP BACKEND SOURCE CODES

let getlof3 (X,-,-) = X
let get2of3 (-,X,-) = X

let get3of3 (-,-,X) = X

let getlof4 (X,-,-,-) = X

let get2of4 (-,X,-,-) = X
let get3of4 (-,-,X,-) = X
let get4of4 (-,-,-,X) = X

let getlof5 (X,-,-,-,-) = X
let get2of5 (-,X ,-,-,-) = X
let get3of5 C-,-, X ,-,-) = X
let get4of5 (-,-,-,X,-) = X
let get5of5 (-,-,-,-,X) = X

let getlof6 (X ,-,-,-, -, -1 = X

let get2of6 (-,X ,-,-, -, -1 = X

let get3of 6 (-,-,X, -, -, -1 = x
let get4of 6 L, -, -, X, -, -) = x
let get5of6 (-,-,-,-,X,-) = X
let get6of6 (-,-,-,-,-,X) = X

let repllof2 X (-,a) = (x,a)
let rep12of2 X (a,-) = (a,x)

let repllof3 X (-,a,b) = (x,a,b)
let rep12of3 X (a,-,b) = (a,x,b)
let rep13of3 X (a,b,-) = (a,b,x)

let repllof4 X (-,a,b,c) = (x,a,b, c)
let rep12of4 X (a,-,b, c) = (a,x,b, c)
let rep13of4 X (a,b,-, c) = (a,b,x, c)
let rep14of4 X (a,b,c,-) = (a,b,c,x)

let repllof5 X (-,a,b,c,d) = (x,a,b,c,d)
let rep12of5 X (a,-,b,c,d) = (a,x,b,c,d)
let rep13of5 X (a,b,-,c,d) = (a,b,x,c,d)
let rep14of5 X (a,b,c,-,d) = (a,b,c,x,d)
let rep15of5 X (a,b,c,d,-) = (a,b,c,d,x)

let repllof6 X (-,a,b,c,d,e) = (x,a,b,c,d,e)
let rep12of6 X (a,-,b,c,d,e) = (a,x,b,c,d,e)
let rep13of6 X (a,b,-,c,d,e) = (a,b,x,c,d,e)
let rep14of6 X (a,b,c,-,d,e) = (a,b,c,x,d,e)
let rep15of6 X (a,b,c,d,-,e) = (a,b,c,d,x,e)
let rep16of6 X (a,b,c,d,e,-) = (a,b,c,d,e,x)

let rec fixpoint f a = match f a with
I (false, b) -> b
I (true, b') -> fixpoint f b'

let diff a b = filter (fun X -> not (List.mem X b)) a

let addelem a set = if not (List .mem a set) then a : : set else set

let union 1 =

let f X = addelem X (* let is source of polymorphism *)
in List .fold-right f 1

let uniq 1 =

List.fold-right (fun a b -> if List.mem a b then b else a :: b) 1 C]

let toNil - = [l
let toNone - = None
let tozero - = 0

APPENDIX A. MAP BACKEND SOURCE CODES

let lists-overlap xs zs = List.exists (fun i -> List.mem i xs) zs
let lists-intersection xs zs = List.filter (fun i -> List.mem i xs) zs

let msb X =

let rec msb-internal msbO = function
I 0 -> msbO
I n -> msb-internal (msbO+l) (n lsr 1) in

msb-internal (-1) X

let rec list-last = function
I [l -> failwith "list-last"
I [XI -> X
I x::xs -> list-last xs

A.2 Input and Output of Prolog Terms

All components of the MAP tool chain operate on the same intermediate rep-
resentation, which is a subset of ground Prolog terms. Unlike PROLOG and
MERCURY, OCAML does not natively support Prolog terms. This necessitated
the implementation of the following modules.

A.2.1 gil-basics .ml: Basic Definitions

This module includes the data-type definitions of Prolog-style terms and imple-
ments common opererations on these terms like testing for groundness, checking
for term equality, term comparison, and term unification.

open List
open Num

type gilTerm =
I GT-Atom of

string
I GT-Any
I GT-Var of

string
I GT-Int of

num
I GT-Float of

string ref *

num
I GT-List of

gilTerm list
I GT-Struct of

string *
gilTerm array

(* GIL TERM
(* atom (=constant) *)

(* <l> : txt repr. (wo/quotes) *)
(* anonymous variable *
(* variable (named) *)

(* <l> : textual repr. *
(* integer (of arbitrary size) *)
(* <l> : number *
(* floating-point number *
(* <l> : cached txt. repr. *)
(* " " = not yet cached. *)
(* <2> : number *)
(* (proper) list *)

(* <l> : list of subterms *)
(* structure (w/quoted functor) *)
(* <l> : functor (wo/quotes) *)
(* <2> : arguments (fields). *)

let num-print-precision = ref 25

(* TBD: integrity constraints for this datatype *)
(* NOTE: GT-Float can retain the original textual representation of the
* input. This can help improve the resemblance between input and output,
* which increases user-friendliness. *)

module StringMap = Map.Make(struct type t = string let compare = compare end)
module Stringset = Set.Make(struct type t = string let compare = compare end)

APPENDIX A. MAP BACKEND SOURCE CODES

let rec eq-gilTerm U v = match (u,v) with
I (GT-Atom sl, GT-Atom s2) -> sl = s2
I (GT-Var vl, GT-Var v21 -> v1 = v2
I (GT-Int i, GT-Int j)
I (GT-Float(-.i), GT-Float(-, j)) -> i =/ j
I (GT-List xs, GT-List ys) ->

length xs = length ys && for-all2 eq-gilTerm xs ys
I (GT-Struct (f l, al) , GT-Struct (f 2, a2)) ->

let 1 = Array .length a1
in Array.length a2 = 1 && fl = f2 &$ eq-gilTermArrayJ (1 - 1) a1 a2

I - -> false
and eq-gilTermArray' i a1 a2 =

i < 0 I I (eq-gilTerm al. (i) a2. (i) && eq-gilTermArrayJ (i - 1) a1 a2)

let rec compare-gilTerm U v = match (u,v) with
I (GT-Int i, GT-Int j)
I (GT-Float C-, i) , GT-Float (-, j)) -> compare-num i j
I (GT-List xs, GT-List ys) -> compare-gilTerms xs ys
I (GT-Struct (f l, al) , GT-Struct (f 2, a2)) ->

let c = compare fl f2 in
if c <> 0 then c
else
let 11 = Array.length a1
and 12 = Array.length a2
in if 11 <> 12 then compare 11 12

else compare-gilTermArrayJ 0 (11 - 1) a1 a2
I (u,v) -> compare U v

and compare-gilTerms xs ys = match (xs,ys) with
I (Cl, Cl) -> 0
l : : I -> 1
1 : : ->-l
I (x::xs. y: :ys) ->

let c = compare-gilTerm X y in
if c <> 0 then c else compare-gilTerms xs ys

and compare-gilTermArrayJ i n a1 a2 =

if i > n then 0
else
let C = compare-gilTerm al.(i) a2.(i) in
if c <> 0 then c else compare-gilTermArrayJ (i +

module GilTermSet = Set.Make(struct
type t = gilTerm
let compare = compare-gilTerm

end)

let gilTermSet-mem' set el = GilTermSet.mem el set

module GilTermMap = Map.Make(struct
type t = gilTerm
let compare = compare-gilTerm

end)

let gilTermMap-find k m = try Some(GilTermMap.find k m) with Not-found -> None
let gilTermMap-findE k m = try GilTermMap.find k m with Not-found -> C]
let gilTermMap-addE k v m = GilTermMap.add k (v::(gilTermMap-findE k m)) m
let gilTermMap-addEJ v k m = GilTermMap.add k (v::(gilTermMap-findE k m)) m

let rec subst-in-gilTerm map t =

try GilTermMap.find t map with Not-found -> subst-in-gilTerm' map t
and subst-in-gilTerm' map t = match t with

I GT-Any -> t
I GT-Atom - -> t
I GT-Var - -> t
I GT-Int - -> t

APPENDIX A. MAP BACKEND SOURCE CODES

I GT-Float(-,-) -> t
I GT-List xs -> GT-List (List.map (subst-in-gilTerm map) xs)
I GT-Struct(f,args) -> GT-Structcf, Array.map (subst-in-gilTerm map) args)

(* returns true if term U is a subterm of v or u=v. *)
let rec occurs-in-gilTerm U v = eq-gilTerm U v I I occurs-in-gilTerml U v
and occurs-in-gilTerml U = function

I GT-Any -> false
I GT-Atom - -> false
I GT-Var - -> false
I GT-Int - -> false
I GT-Float(-,-) -> false
I GT-List xs -> exists (occurs-in-gilTerm U) xs
I GT-Struct (-, args) -> occurs-in-gilTermArrayl U (Array. length args - 1) args

and occurs-in-gilTermArrayJ U i xs =

i >= 0 && (occurs-in-gilTerm U xs.(i) I I occurs-in-gilTermArray' U (i-l) xs)

let rec gilTerm-is-ground = function
I GT-Any -> false
I GT-Atom - -> true
I GT-Var - -> false
I GT-Int - -> true
I GT-Float - -> true
I GT-List xs -> for-all gilTerm-is-ground xs
I GT-Struct(-,args) -> gilTermArray-is-ground' (Array.length args - 1) args

and gilTermArray-is-ground' i args =
i < 0 I I (gilTerm-is-ground args.(i) && gilTermArray-is-ground' (i - 1) args)

exception Not-unifyable

(* note: In most cases, dereferencing is -not- necessary.
* Try to make the default path fast. *)
let rec unify-gilTermsJ map U v = match (U, v) with

I (GT-Atom sl, GT-Atom s2) when sl = s2 -> map
I (GT-Int nl, GT-Int n2) when nl =/ n2 -> map
I (GT-Float (-, i) , GT-Float (-, j)) when i =/ j -> map
I (GT-List xs, GT-List ys) -> unify-gilTermsList map (xs,ys)
I (GT-Struct (f l,al), GT-Struct (f 2,a2))
when fl = f2 && Array.length a1 = Array.length a2 ->
unify-gilTermsArray (Array.length a1 - 1) map a1 a2

I (GT-Any, -)
I (-, GT-Any) -> map
I (GT-Var vi, GT-Var v2) when v1 = v2 -> map
I (GT-Var - as v, t)
I (t, (GT-Var - as v)) -> unify-var map t v (* maybe deref *)
I - -> raise Not-unifyable

and unify-var map t v =

try (unify-gilTermsJ map t (GilTermMap.find v map))
with Not-found ->

(if occurs-in-gilTerm' v t then raise Not-unif yable
else GilTermMap.add v t map)

and unify-gilTermsList map = function
I (Cl, Cl -> map
I (x::xs, y::ys) -> unify-gilTermsList (unify-gilTermsl map X y) (xs,ys)
I - -> raise Not-unifyable

and unify-gilTermsArray i map a1 a2 =
if i < 0 then map
else unify-gilTermsArray (i - 1) (unify-gilTermsl map al. (i) a2. (i)) a1 a2

let unifyable-gilTerms U v =
try ignore (unify-gilTerms' GilTermMap.empty U v); true
with Not-unifyable -> false

let unify-gilTerms U v =
try Some (unify-gilTermsJ GilTermMap.empty U v) with Not-unifyable -> None

APPENDIX A. MAP BACKEND SOURCE CODES

let memberchk-gilTermList t xs = exists (unifyable-gilTerms t) xs
let nonMember-gilTermList t xs = not (exists (unifyable-gilTerms t) xs)
let nonMember-gilTermListl xs t = not (exists (unifyable-gilTerms t) xs)
let mem-gilTermList t xs = exists (eq-gilTerm t) xs

let assoc-gilTedist key xs =

snd (find (fun (pat ,-) -> unifyable-gilTerms pat key) xs)

let assoc-gilTermList--pred key pred xs =

snd (find (fun (pat,stuff) ->
unifyable-gilTerms pat key &&
pred key stuff) xs)

let assoc-gilTermList' key default xs =
try assoc-gilTermList key xs with Not-found -> default

let value-of-option = function
I Some s -> s
I None -> failwith "value-of-option(None)"

let gilTermLists-overlap (xs,zs) = exists (fun X -> mem-gilTermList X zs) xs

let uniq-gilTermList xs =
fold-right (fun X xs -> if mem-gilTermList X xs then xs else x::xs) xs [l

let diff-gilTermList xs ys =
fold-right (fun X xs -> if mem-gilTermList X ys then xs else x::xs) xs [l

let gilTerm-of-int i = GT-Int (Num.num-of-int i)

let functor-is-in-map S-map = function
I GT-Atom f I GT-Struct (f , -) -> StringMap.mem f S-map
I - -> false

A.2.2 gil-ut il .ml: Basic Operations

This module provides low-level routines on Prolog-style terms.

open Array
open List
open String
open Num
open Gil-basics

let range-includes range c = match range with
I 'Tl(pt) -> c = pt
I 'T2(fromPt,toPt) -> c >= fromPt && c <= toPt

let lowercase-ranges = ['T2('aJ, 'z')]
and uppercase-ranges = C1T2('A','Z'); 'Tl('-')I
and identchar-ranges = ECT2('A','Z'); 'T2('a1,'z'); 'T1('-'); 'T2('OJ,'9')1

let lut-of-ranges rs = (* slow, used once during program initialization *)
init 256 (fun i -> exists (fun r -> range-includes r (char-of-int i)) rs)

let lowercase-lut = lut-of-ranges lowercase-ranges
and uppercase-lut = lut-of-ranges uppercase-ranges
and identchar-lut = lut-of-ranges identchar-ranges

let atom-must-be-quoted s =
let rec loop i =

i > 0 && (not identchar-lut.(int-of-char s.[il) I I loop (i - 1))
in = U # o I I not (lowercase-lut.(int-of-char s.CO1)) I I loop (length s - 1)

APPENDIX A. MAP BACKEND SOURCE CODES

(* strip away <nL> on the left and <nR> chars on the right side of <S>. *)
(* precondition: nL and nR are non-negative integers *)
let strip nL nR s = if nL + nR = 0 then s else sub s nL (length s - nL - nR)

let rindex2 str cl c2 = try rindex str cl with Not-found -> rindex str c2

let num-of-floatstring str =

let idx-dot = index str l . ' in
let len = length str - 1
and ten = num-of-int 10 in
let str' = create len in
begin
blit str 0 strJ 0 idx-dot;
blit str (idx-dot + 1) str' idx-dot (len - idx-dot);
try
let idx-e = rindex2 str' 'eJ 'E' in
let ab = num-of-string (strip 0 (len - idx-e) str')
and e = num-of-string (strip (idx-e + 1) 0 str') in
ab / / (ten **/ (num-of -int (idx-e - idx-dot) -/ e))

with Not-found ->
num-of-string str' // (ten **/ num-of-int (len - idx-dot))

end

let number-of-trailing-chars s c =
let rec loop i =

if i < 0 then (i, 'EndOfString)
else let c' = S. [il in if c ' = c then loop (i-l) else (i, 'DifChar(c')) in

let l-mone = length s - l in let (p,why) = loop l-mone in (1-mone - p, why)

let floatstring-of-num n =

let s = approx-num-exp !nun-print-precision n in
let 1 = length s in
let (sR, e0pt) =
if 1 > 2&&s.[1 - 11 = '0' && (* min. len. = 2, last char = '0' *)

(let c = s.Cl- 21 in c = 'e' l l c = 'E') then (2, None)
else let i = rindex2 s 'e' ' E ' in (1 - i, Some (strip i 0 S)) in

let sL = if S. CO] = '+' then 1 else 0 in
let mantissa = strip sL sR s in
let trailing-zeroes = match number-of-trailing-chars mantissa '0' with

I (tz, 'EndOfString) -> tz
I (tz, 'DifChar('.')) when tz > 0 -> tz-l
I (tz, 'DifChar(-)) -> tz in

let mantissa = strip 0 trailing-zeroes mantissa in
match eOpt with

I Some exponent -> mantissa exponent
I None -> mantissa

(* "float atom" = arbitrary precision floating point number. Prolog format. *)
let floatAtom-of-num n = GT-Atom (floatstring-of-num n)

let num-of-floatAtom = function
I GT-Atom s -> num-of-floatstring s
I - -> f ailwith "num-of -f loatAtom"

let string-of-numPair (n,m) =
M (U - (floatstring-of-num n) "," " (floatstring-of-num m) - ")"

A.2.3 g i l l 0 .ml: Input/Output Functions

This module includes functions for handling input and output of Prolog-style
terms.
open Buffer

APPENDIX A. MAP BACKEND SOURCE CODES

open String
open Gil-basics
open Gil-util

let add-unquoted b s = add-string b s
let add-quoted b s = add-char b l \ " ; add-string b S; add-char b '\"

let cachedstring-of-num tRep n = (* uses 'tRep' as a cache *)

let s = !tRep
in if s = " " then let s = floatstring-of-num n in tRep := S; s else s

let rec add-list b S-term c-sep = function
I [l -> add-string b S-term
I X: :xs -> add-char b c-sep; add-term b X; add-list b "1" ',' xs

and add-term b = function
I GT-Atom s when atom-must-be-quoted s -> add-quoted b s
I GT-Atom s -> add-unquoted b s
I GT-Var s -> add-unquoted b s
I GT-Any -> add-char b '-'
I GT-Int n -> add-unquoted b (Num.string-of-num n)
I GT-Float (tRep, n) -> add-unquoted b (cachedstring-of -num tRep n)
I GT-List xs -> add-list b " C l " ' C' xs
I GT-Struct (f, args) ->

let 1 = Array.length args in
assert (1 > 0);
if atom-must-be-quoted f then add-quoted b f else add-unquoted b f;
add-char b 'C';
add-term b args. (0) ;
for i = 1 to 1 - 1 do add-char b ' , l ; add-term b args.(i) done;

add-char b ') '

(* EXPORTED FUNCTIONS ..

(* Limitation: at the moment 'read-file' only works with regular files. *)
let read-file-as-string f =

let in' = open-in f
in let length = in-channel-length in'
in let s = String.create length
in really-input in' s 0 length; close-in in'; s

let write-buffer-as-file f b =
let oc = open-out f in output-buffer oc b; close-out oc

let write-string-as-file f s =
let oc = open-out f in output-string oc S; close-out oc

let append-string-to-file f s =

let oc = open-out-gen append-mode 00644 f
in output-string oc S; close-out oc

(* output (unparsing) *)
let add-gilTerm buf t = add-term buf t
let add-gilTermDotN1 buf t = add-term buf t ; add-string buf " . \n"

let string-of-gilTerm t = let b = Buffer.create 16 in add-term b t; contents b

let print-gilTerm eol t = print-string (string-of-gilTerm t); print-string eol

let print-gilTermDotN1 t = print-gilTerm ".\n" t
let print-gilTermDotN1Flush t = print-gilTerm ".\n" t; flush stdout

(* input (parsing) *)

APPENDIX A. MAP BACKEND SOURCE CODES

(* XXX ' lexbuf should be created from a string (bug?) *)
let gilTerm0ption-f rom-lexbuf 1 = Gil-parser .p-OneTerm Gil-lexer . scan 1

let gilTerms-of-string s =
Gil-parser.p-AllTerms Gil-1exer.scan (Lexing.from-string S)

let gilTerms-of -f ile f = gilTerms-of -string (read-f ile-as-string f

let exactly0neTerm-of-string str = match gilTems-of-string str with
I C t 1 when gilTerm-is-ground t -> t
I - -> failwith "exactlyOneTerm-of-string"

let exactly0neTerm-of-file f = exactly0neTerm-of-string (read-file-as-string f)

let io-behaviour = ref (None : (gilTerm * gilTerm * gilTerm * gilTerm) option)

let invoke-gilFilter read-term f =

let (termIn,input,output,termOut) = value-of-option !io-behaviour
in let substis = unify-gilTerms' GilTermMap.ernpty termIn read-term
in print-gilTermDotN1

(subst-in-gilTerm
(unify-gilTermsl

substis (f (subst-in-gilTerm substis input)) output) termout)

let verbose = ref false
let info s = if !verbose then prerr-endline (Sys.argv.(O) - ": l' S)

(* TBD: support increasing indentation (enhances readability) *)
let debug-output = ref true
let outputDebugString s = if !debug-output then print-endline C"% " - S)
let outputDebugStringJ s t =

if !debug-output then print-endline ("% " s - (string-of-gilTerm t))
let process-command fn = function

I GT-Struct("debugOutput", Cl GT-Atom b I]) ->
debug-output := bool-of-string b

I GT-Struct("verbose", [I GT-Atom b 11) ->
verbose := bool-of-string b

I GT-Struct("io-behaviour", Cl in'; i; o; out' I]) ->
io-behaviour := Some(in',i,o,outJ)

I GT-Struct(f, args) ->
fn (f, args)

l - -> 0

let usage2 = "Usage: " - Sys.argv.(O) ^ " ccrnd-file> <input-file>"

let assert-and-get-two-args 0 =
if Array.length Sys.argv <> 3 then failwith usage2
else (Sys.argv. (l), Sys.argv. (2))

let gilFilter2Args process-argument f (cmd-file, data-file) =
List.iter (process-command process-argument) (gilTerms-of-file cmd-file);
invoke-gilFilter (exactlyOneTerm-of -f ile data-f ile) f

let failwith s = failwith (Sys.argv.(O) ": " - S)
exception IllegalTerm of string * string

let illTerm where t = raise (IllegalTerm'(where, string-of-gilTerm t))
let illTerm-s where s = raise (IllegalTerm(where, S))

let gilTermMap-find' id k m =
try GilTermMap.find k m
with Not-found -> illTerm ("GilTermMap.find(" id - ")") k

APPENDIX A. MAP BACKEND SOURCE CODES

let assoc-gilTermList--exn k xs =

try assoc-gilTermList k xs
with Not-found -> illTerm "assoc-gilTermList" k

let assoc-gilTedist--pred--em k pred xs =
try assoc-gilTerdist--pred k pred xs
with Not-found -> illTerm "assoc-gilTermList--predl' k

let functor-of-gilTerm = function
I GT-Struct (f , -) -> f
I GT-Atom a -> a
I t -> illTerm "functor-of-gilTermStruct4' t

let list-of-gilTerm = function
I GT-List xs -> xs
I t -> illTerm "list-of-gilTerm" t

let int-of-gilTerm = function
I GT-Int n -> Num.int-of-num n
I t -> illTerm "int-of-gilTerm" t

A.2.4 gil- lexer .mll: Tokenizing

The lexical analysis of input terms uses ocamllex, a lexical analyzer generator.
Out of the following input, ocamllex produces a lexical analyzer for Prolog-style
terms.

C
open Lexing
open Gil-basics
open Gil-util
open Gil-parser

exception Illegalchar-atPos of string * int

let f 1oatToken-of -string s = T-Float (S, num-of -f loatstring S)
let intToken-of-string s = T-Int(Num.num-of-string S)

let strip-lexeme SO sl lexbuf =

let str = lexeme lexbuf
in String.sub str SO (String.length str - SO - sl)

1

let lowercase = ['aJ-'z']
let uppercase = ['A1-'Z' '-'l
let identchar = ['AJ-'Z' 'a'-'2' '- ' '0'-'9'1
let digit = ['O'-'S']
let sign = C'+' '-'l
let e = ['e' 'E']

rule scan = parse
I I - '

C Tunderline)
I uppercase+ identchar*

I T-Var(1exeme lexbuf))

I lowercase identchar* ' ('

C T-Functor(strip-lexeme 0 l lexbuf) 1
I lowercase identchar*

C T-Atom(1exeme lexbuf))

APPENDIX A. MAP BACKEND SOURCE CODES

C T-Functor(strip-lexeme 1 2 lexbuf)
1 , , , l , [- > \ > > l * l t , # l

C T-Atom(strip-lexeme 1 1 lexbuf) >
I sign? digit+ ' . ' digit+ (e sign? digit+)?

floatToken-of-string (lexeme lexbuf) 1
I sign? digit+

C intToken-of-string (lexeme lexbuf))

I 'C'
1 'l'
l '1'
I ','
I ' . I

I eof

C Tlbracket)
C Trbracket)
C Trparen)
C Tc)
C Tperiod 1
C Teof 1

l [' ' '\tJ '\nJ '\r']+
I '%' Ĉ '\n11* C scan lexbuf)
I - C raise (Illegalchar-atPos(1exeme lexbuf, lexeme-start lexbuf)) 1

A.2.5 g i l -parser .mly: Parsing

Syntax analysis of input terms uses the parser generator ocamlyacc. Out of the
following input, ocamlyacc produces a parser for Prolog-style terms.

%C
open Gil-basics
%l

%token Tunderline Tlbracket Trbracket Trparen Tc Tperiod Teof

p-AllTerms:
I p-Term Tperiod p-AllTerms C $1::$3 1
I p-Term Teof C [$l1 1
I Teof C [l 1

p-0neTerm:
I p-Term Tperiod C Some $1)
I p-Term Teof C Some $1)
I Teof C None 1

p-Term :
I Tunderline
I T-Var
I T-Atom
I T-Int
I T-Float

C GT-Any)
C GT-Var($l) 1
C GT-Atom($l) 1
C GT-Int($l))
C GT-Float(ref (fst $l), snd $1) 1

APPENDIX A. MAP BACKEND SOURCE CODES

I Tlbracket Trbracket C GT-List [l)
l Tlbracket p-List C GT-List $2 1
I T-Functor p-StructArgs (GT-Struct ($1, Array. of -list $2) 1

p-StructArgs:
I p-Term Trparen C [$l])
I p-Term Tc p-StructArgs C $1::$3 1

p-List :
I p-Term Trbracket
I p-Term Tc p-List

A.3 Instruction Definitions

As all modules operate on instruction DAGs, they also share the definition of
instructions and basic operations on them.

A.3.1 instr-def .ml: Instr Definition
open Basics
open Gil-basics
open Num

type instr =
I I of

gilTerm *
gilTerm list *
gilTerm list *
gilTerm list

type cDecl =
I F-Const of

(* ANNOTATED INSTRUCTION ***W*******)
(* operation *)
(* list of source operands *)
(* list of destination operands *)
(* annotations *)

(* CONSTANT DECLARATION *************)
(* scalar FP constant *)

string * precision * num
I F2-Const of (* 2-way SIMD FP constant *)

string * precision * num * num
I F4-Const of (* 4-way SIMD FP constant *)

string * num * num * num * num
I 14-Const of (* 4-way SIMD integer constant *)

string * num * num * num * num

let srcs-of-instr (I(-,srcs,-,-l) = srcs
let dsts-of-instr (I(-,-,dsts,-)) = dsts
let annos-of-instr (I(-,-,-, annos)) = annos

let id-of-cDecl = function (* get identifier of some const-declaration *)

I F-Const (id,- ,-) -> id
I F2_Const(id ,-,-,-) -> id
I F4_Const(id ,-,-,-,-) -> id
I 14-Const (id ,-,-,-,-) -> id

A.3.2 ins t r - I0 .ml: Input/Output of Instructions
open Basics
open Gil-basics

APPENDIX A. MAP BACKEND SOURCE CODES

open Gil-util
open Gil-I0
open Instr-def

let instr-of-gilTerm = function
I GT-Struct("i", [I op; GT-List srcs; GT-List dsts; GT-List annos I]) ->

I(op,srcs,dsts,annos)
I t -> illTerm "instr-of-gilTerm" t

let gilTerm-of-instr (I(op,srcs,dsts,annos)) =
GT-Struct("il', [I op; GT-List srcs; GT-List dsts; GT-List annos I])

let cDecl-of-gilTerm = function
I GT-Struct("f-const", [I GT-Atom id; GT-Atom p; c 11) ->

F-Const(id, precision-of-string p, num-of-floatAtom c)
I GT-Struct("f2-const", [I GT-Atom id; GT-Atom p; CL; CH 11) ->

F2_Const(id, precision-of-string p,
num-of -f loatAtom CL, num-of -f loatAtom CH)

I GT-Struct("f4-const", [l GT-Atom id; cl; c2; c3; c4 11) ->
F4_Const(id, num-of-floatAtom cl, num-of-floatAtom c2,

num-of -f loatAtom c3, num-of -f loatAtom c4)
I GT-Struct("i4-const", [I GT-Atom id;

GT-Int il; GT-Int i2; GT-Int i3; GT-Int i4 11) ->
14_Const(id, il, i2, i3, i4)

I t -> illTerm "cDecl-of-gilTerml' t

let gilTerm-of-cDecl = function
I F-Constcid, p, c) ->

GT-Struct("f-const",
[I GT-Atom id; GT-Atom (string-of-precision p);

f loatAtom-of -num c I 1)
I F2_Const(id, p, CL, CH) ->

GT-Struct("f2-const",
[I GT-Atom id; GT-Atom (string-of-precision p);

f loatAtom-of -num CL; f loatAtom-of -num CH 11)
I F4_Const(id, cl, c2, c3, c41 ->

GT-Struct ("f4-const",
[I GT-Atom id;

floatAtom-of-num cl; floatAtom-of-num c2;
f loatAtom-of -num c3; f loatAtom-of -num c4 11)

I 14_Const(id, il, i2, i3, i4) ->
GT-Struct ("i4-const" ,

[I GT-Atom id; GT-Int il; GT-Int i2; GT-Int i3; GT-Int i4 11)

A.4 List-based Scheduling

The list-based instruction scheduler LL1 comprises five program modules shown
in the following subsections.

A.4.1 inssched-def .ml: Basic Definitions

Instruction scheduling builds upon the following definitions of dependencies, de-
pendency types, and earliest starting times.

open Id

type depType =
I RAW of

int

(* DEPENDENCY TYPE ******************)
(* Read After Write *
(* <l> : instruction latency *)

APPENDIX A. MAP BACKEND SOURCE CODES

I WAR
I WAW

type dependency =
depType *
1d.t *
1d.t *
int

type bwdepscnt-est =

int *

int

type est-id =
I EST-Id of

int *
1d.t

type cp-id =

I CP-Id of
int *
1d.t

(* Write After Read *
(* Write After Write *)

(* INSTRUCTION DEPENDENCY ***********)
(* <l> : dependency type *)
(* <2> : id of succeeding instr. *)
(* <3> : id of preceeding instr. *)
(* <4> : crit. path contribution *)

(* WAITING INSTRUCTION ****W********)
(* an instr waiting on other instrs *)
(* <l> : bw. dependency count *)

(* = # of instrs to be issued *)
(* before this instr *)
(* <2> : earliest starting time *)

(* PRE-READY INSTRUCTION ***W*******)
(* an instr that can be issued once *)
(* its inputs have been written *)
(* <l> : earliest starting time *)
(* <2> : instruction id *

(* READY INSTRUCTION ****************)
(* an instr ready for issue *
(* <l> : critical path length *)
(* <2> : instruction id *)

(* set of pre-ready instructions *)
module ESTIdSet = Set.Make(struct type t = est-id let compare = compare end)

let depToSucc (-,succ,pred,-) = succ

(* map a dependency to the latency from the preceeding to the succeeding
* instruction. if the dependency is of type 'read after write',
* return the latency of the producer. otherwise return 0. *)

let depToLatency (t,-,-,-) = match t with
I RAW n -> n
I WAW -> 0
I WAR -> 0

(* map a dependency to its effective contribution to the critical path length.
* the effective contribution may be different from its latency. *)

let depToCPLen (-,-,-.X) = X

(* compare two ready instructions (used for sorting in descending order) *)
let cmp-cpid (CP-Id(x,-1) (CP-Id(y,-1) = compare y X

A.4.2 inssched-basics . ml: Basic Operations

The basic operations of the instruction scheduler include calculating forward and
backward dependencies and critical path lengths, all implemented in the following
module.

open Id
open Util
open List
open Gil-basics
open Gil-I0
open Instr-def
open Instr-I0
open Inssched-def

APPENDIX A. MAP BACKEND SOURCE CODES

(* look up the effective latency for the instruction pair ('s','dl), for
* the resource of type 'res' in the list of scheduling clauses
* 'scheduling'. if that pair can not be found, return 'default-latency'. *)
let get-effective-latency scheduling s d res default-latency =

try
let t = (GT-Struct("s-d", [I S; d 11))
in assoc-gilTermList res (get2of5 (assoc-gilTermList t scheduling))

with Not-found -> default-latency

(* lookup a scheduling clause in 'scheduling' matching 'instr'. *)
let lookup-instr instr scheduling =
let test i (annoReq ,-.-,-,-) =

let annos = annos-of-instr (instr-of-gilTerm i)
in for-all (fun req -> memberchk-gilTermList req annos) annoReq

in assoc-gilTermList--pred--exn instr test scheduling

let calc-forward-dependencies favor favorReleasers scheduling instrs =
let calc-fw-deps (idx,orig~order,idmap,deps,lastreads,lastwrite) instr =

let id = 1d.makeNew 0 in
let addDepsR r-res = match gilTermMap-find r-res lastwrite with (* RAW *)

I None -> return
I Some (W-id,w-latency) ->

let producer = 1dMap.f ind W-id idmap
in let eLat = get-effective-latency

scheduling producer instr r-res W-latency
in idmap-addE W-id ((RAW eLat), id, W-id, eLat + 1)

and addDepsW (W-res,-) deps = (* WAW and WAR *)

fold-right (fun r-id -> idmap-ad& r-id (WAR, id, r-id, 1))
(gilTemMap-findE W-res lastreads)
(match gilTermMap-find W-res lastwrite with

I Some (W-id,-) -> idmap-addE W-id (WAW, id, W-id, 1) deps
I None -> deps)

in let (I(-,rs,ws,-)) = instr-of -gilTerm instr
in let (-,lats,xsrcs,xdsts,-) = lookup-instr instr scheduling
in let rs = xsrcs @ rs
in let ws = map (fun d -> (d, assoc-gilTermList' d 0 lats)) (xdsts @ ws)
in let lastreads' = fold-right (gilTermMap-ad&' id) rs lastreads
in (idx + 1,

1dMap.add id idx orig-order,
1dMap.add id instr idmap,
fold-right addDepsW ws

(fold-right addDepsR rs (1dMap.add id [l deps)) ,
f old-right (fun (res, -) -> GilTermMap. add res [l) vs lastreads',
fold-right
(fun (res,lat) -> GilTermMap.add res (id,lat)) ws lastwrite) in

let (idm0,gtmO) = (IdMap.empty, GilTermMap.empty)
in let SO = (0, idm0, idm0, idm0, gtm0, gtm0)
in let (-,orig-order,idmap,fw-deps,-,-) = fold-left calc-fw-deps SO instrs
in (orig-order, (fun id -> IdMap. f ind id idmap) , fw-deps)

(* given the forward dependencies of some DAG,
* return the corresponding backward dependencies. *)
let calc~backward~dependencies~count fw-deps =

1dMap.f old (fun - -> f old-right (fun dep -> idmap-inc (depToSucc dep)))
fw-deps (1dMap.map tozero fw-deps)

(* map the forward and backward-dependencies to critical-path lengths *)
let calc-critical-path-lengths fw-deps bw-deps-cnt =
let fold-start-instrs id cnt = if cnt = 0 then cons id else return in
let startinstrs = 1dMap.fold fold-start-instrs bw-deps-cnt Cl in
let rec calc-cplen' id cplen =
if idmap-exists id cplen then cplen else calc-cplen" id cplen

and calc-cplen" id cplen = match 1dMap.find id fw-deps with
I [l -> IdMap. add id 0 cplen
I deps ->

APPENDIX A. MAP BACKEND SOURCE CODES

let cplen' = fold-right calc-cplen' (map depToSucc deps) cplen in
let depToCPLen' d = depToCPLen d + 1dMap.find (depToSucc d) cplen'
in 1dMap.add id (max-list (map depToCPLenJ deps)) cplen' in

let cplens = fold-right calc-cplen' startinstrs 1dMap.empty in
fun id -> 1dMap.find id cplens

A.4.3 execut ionmodelling. m l : Execution Modeling

The parametrizable simulation of a super-scalar in-order approximation of some
target architecture is shown in the following module.

open Id
open Util
open List
open Gil-basics
open '31-10
open Inssched-def
open Inssched-basics

type requiredResources = (* REQUIRED RESOURCES **********W***)
I True (* None (succeeds always) *
I False (* (fails always) *
I Unit-blocked of gilTerm * int (* Unit <l> for <2> cycles *
I Or of requiredResources list (* One of the resources in <l> *)
I And of requiredResources list (* All of the resources in <l> *)

let rec reqRes-of-gilTerm = function
I GT-Atom "true" -> True
I GT-Atom "false" -> False
I GT-Struct("andl', [I GT-List xs I]) -> And (map reqRes-of-gilTerm xs)
I GT-Struct("or", [I GT-List xs I]) -> Or (map reqRes-of -gilTerm xs)
I GT-Struct("unit-blocked", [I U; n I]) -> Unit-blocked(u, int-of-gilTerm n)
I t -> illTerm "reqRes-of-gilTermn t

type allocationStatus = (* UNIT ALLOCATION STATUS ***********)
I Free of gilTerm (* <l> is available for use *)
I Busy-until of gilTerm * int (* <l> is blocked until t >= <2> *)

let initialstatus-of-resources xs = map (fun X -> Free X) xs

let maybe-release-resource t = function
I Busy-until(r.unti1) when t > until -> Free r
I x - > X

let suitable-free-resource unit = function
I Busy-until - -> false
I Free r -> unifyable-gilTerms r unit

open NonDetMonad

let rec mayIssueInSameCycleM" = function
I True -> unitM 0
I False -> failM
I And xs -> iterM mayIssueInSameCycleM" xs
I Or xs -> memberM xs >>= mayIssueInSameCycleM"
I Unit-blocked(u,n) ->

fetchStateM >>= fun (t,res) ->
selectFirstM (suitable-free-resource U) res >>= function

I (Free r,other) -> storeStateM (t, (Busy-until(r,t+n-1))::other)
I - -> failwith "mayIssueInSameCycleM"

let mayIssueInSameCycleM' scheduling (-, -, instr) =

try mayIssueInSameCycleM" (get5of5 (lookup-instr instr scheduling))

APPENDIX A. MAP BACN'END SOURCE CODES

with - -> unitM 0 (* ignore unknown instructions *)

let mayIssueInSameCycleM scheduling idmap instrs ready =
iterM (mayIssueInSameCycleM' scheduling) instrs >>= fun - ->
selectM ready >>= fun ((CP-Id(cplen,id),rs) as p) ->
mayIssueInSameCycleMJ scheduling (-l,-1,idmap id) >>= fun - ->
unitM p

A.4.4 inssched. m l : List Scheduling Algorithm

The actual list-based scheduling algorithm is implemented in the following mod-
ule.

open Id
open Util
open List
open Basics
open Gil-basics
open Gil-I0
open Instr-def
open Instr-I0
open Inssched-def
open Inssched-basics
open Execution-modelling
open NonDetMonad

type picking-heuristics = OrigOrder I CritPath

(* adapt earliest starting time. decrement the number of bw deps of an
* instruction. if it is zero, move the instr from waiting to preready. *)
let adapt-est t dep (preready,waiting) =

let id = depToSucc dep
in let (r-bwDepsLen,r-est) = 1dMap.find id waiting
in let r-est' = max (t + (depToLatency dep)) r-est
in if r-bwDepsLen > 1 then (* # of other bw-deps of the successor *)

(preready, 1dMap.add id (r-bwDepsLen-l, r-est') waiting)
else

(ESTIdSet.add (EST-Id(r-est',id)) preready, 1dMap.remove id waiting)

let flatinssched maxPerCycle favor favorReleasers resources scheduling
idmap fw-deps cplens =

(* move instructions from 'preready' to 'ready' *)
let rec add-new-ready t ((ready, preready) as ready-preready) =
if EST1dSet.i~-empty preready then ready-preready
else
let EST-Id(est,id) as X = ESTIdSet.min-elt preready
in if t < est then ready-preready

else
let instr = idmap id
in let (I(-,rs,ws,-)) = instr-of-gilTerm instr
in let rws = lists-intersection rs ws
in let rws' =

List.map (fun X -> assoc-gilTermList' X 0 favorReleasers) rws
in let i-favor = assoc-gilTermListJ instr 0 f avor
in let i-favorReleasers = sum-list rws'
in let cpl' = cplens id + i-favor + i-favorReleasers
in let ready' = insert-list cmp-cpid (CP-Id(cpl',id)) ready
in add-new-ready t (ready', ESTIdSet.remove X preready)

and loop avail-res t nr-freeslots instrs-in-t instrs
((ready, preready) as ready-preready) waiting =

let complete () = rev (instrs-in-t Q instrs)
and start-new-cycle 0 =
let (-,C-,avail-res')) =

APPENDIX A. MAP BACKEND SOURCE CODES

value-of-option (runM (iterM (mayIssueInSameCycleM' scheduling))
instrs-in-t (t,avail-res))

in let t' = t+l
in loop (map (maybe-release-resource t') avail-resJ)

t' maxPerCycle [l (instrs-in-t Q instrs)
(add-new-ready t' ready-preready) waiting in

match (ready,preready,waiting) with
I ([l ,p,w) when ESTIdSet. is-empty p && W = 1dMap.empty -> complete 0
I ([l ,p,-) when not (EST1dSet.i~-empty p) -> start-new-cycle 0
I ([l , -, -) -> f ailwith "f latinssched"
I (-: : -,-,-) when nr-freeslots = 0 -> start-new-cycle 0
I (-::- as ready,-,-) ->

(* select an instr with the longest critical path that may be issued
* simultaneously with the ones already selected earlier. *)

match runM (mayIssueInSameCycleM scheduling idmap instrs-in-t)
ready (t , avail-res) with

I None -> start-new-cycle 0
I Some((CP-Id(cplen,id),ready'),-) ->

let (preready',waiting') =
fold-right (adapt-est t) (1dMap.find id fw-deps)

(preready,waiting)
in let instrs-in-t' = (t,cplen,idmap id)::instrs-in-t
in loop avail-res t (nr-freeslots-l) instrs-in-t' instrs

(add-new-ready t (ready',preready')) waitingJ
in loop (initialstatus-of-resources resources) 0 maxPerCycle [l [l

let instrsToInstructionscheduled
pickHeur
maxPerCycle favor favorReleasers resources scheduling instrs =

let (orig-order,idmap,fw-deps) =

calc-forward-dependencies favor favorReleasers scheduling instrs
in let bw-deps-cnt = calc-backward-dependencies-count fw-deps
in let toCP = match pickHeur with

I OrigOrder -> fun id -> -(IdMap.find id orig-order)
I CritPath -> calc-critical-path-lengths fw-deps bw-deps-cnt

in let foldReady id h,-) = if n=O then cons (CP-IdCtoCP id,id)) else return
in let all = 1dMap.map (fun cnt -> (cnt, 0)) bw-deps-cnt
in let ready = sort cmp-cpid (1dMap.fold foldReady all [l)
in let waiting = fold-right (fun (CP-Id(-,i)) -> 1dMap.remove i) ready all
in flatinssched maxPerCycle favor favorReleasers resources scheduling

idmap fw-deps toCP (ready, ESTIdSet.empty) waiting

A.4.5 Main Program Entry Point

The following module implements the program entry point of the scheduler.

open List
open Basics
open Gil-basics
open Gil-I0
open Instr-def
open Instr-I0
open Execution-modelling
open Inssched

(* GLOBAL VARIABLES ..

let maxInstrsPerCycle = ref 1
and resources = ref [l
and scheduling = ref C]
and favor = ref [l
and favorReleasers = ref Cl

APPENDIX A. MAP BACKEND SOURCE CODES

and pickHeur = ref CritPath

(* PREPARATION ...

let gilTerm-of -iTuple (t , cplen, i) =
GT-Struct ("t-cplen-i" , [I gilTerm-of -int t ; gilTerm-of -int cplen; i I])

let do-scheduling instrs =
let instrs =

instrsToInstructionscheduled
!pickHeur !maxInstrsPerCycle !favor !favorReleasers
!resources !scheduling (list-of-gilTerm instrs)

in let instrs' = map gilTerm-of-iTuple instrs
in GT-Struct("tU, [I GT-List (map get3of3 instrs); GT-List instrs' I])

(* PROGRAM START-UP ..

let latency-of-gilTerm = function
I GT-Struct("dst-lat", [I d; lat I]) -> (d , int-of-gilTerm lat)
I t -> illTerm "latency-of-gilTerml' t

let schedInfo-of-gilTerm term =
let mkSchedInfo' annoReq Is xS xD reqRes =
(annoReq, map latency-of-gilTerm Is, xS, xD, reqRes-of-gilTerm reqRes)

in match term with
I GT-Struct("i-lats-res", [I i; GT-List 1s; reqRes 11) ->

(i, mkSchedInfoJ [l 1s [l [l reqRes)
I GT-Struct("i-lats-xsrcs-xdsts-res",

[I i; GT-List Is; GT-List xS; GT-List xD; reqRes 11) ->
(i, mkSchedInfoJ [l 1s xS xD reqRes)

I GT-Struct("i-annoreq-lats-xsrcs-xdsts-res",
[I i; GT-List annoReq; GT-List Is; GT-List xS; GT-List xD;

reqRes 11) ->
(i, mkSchedInfo' annoReq Is xS xD reqRes)

I t -> illTerm "schedulingInfo-of-gilTerm" t

let favor-of-gilTerm = function
I GT-Struct ("i-howmuch" , [I i; howmuch I]) -> (i , int-of -gilTerm howmuch)
I t -> illTerm "favor-of-gilTermn t

let favorReleasers-of-gilTerm = function
I GT-Struct("d-howmuch", [I d; howmuch (1) -> (d, int-of-gilTerm howmuch)
I t -> illTerm "f avorReleasers-of -gilTerm" t

let pickHeur-of-gilTerm = function
I GT-Atom "original-order" -> OrigOrder
I GT-Atom "critical-path" -> CritPath
I t -> illTerm "pickHeur-of-gilTerm" t

let process-argument = function
I ("pickingHeuristics", [I p 11) -> pickHeur := pickHeur-of-gilTerm p
I ("maxInstrsPerCycle", [I m 11) -> maxInstrsPerCycle :=

int-of -gilTerm m
I ("resources", [I GT-List r 11) -> resources := r
I ("scheduling", [I GT-List X I]) -> scheduling :=

map schedInfo-of-gilTerm X
I ("favor", [I GT-List f 11) -> favor := map favor-of-gilTerm f
I ("favorReleasers", [I GT-List X I1) -> favorReleasers :=

map f avorReleasers-of -gilTerm X
l - -> 0

APPENDIX A. MAP BACKEND SOURCE CODES

gilFilter2Args process-argument do-scheduling (assert-and-get-two-args 0);
exit 0

A.5 Register Allocation

The register allocator comprises two modules, listed in the following.

A.5.1 regalloc-basics . ml: Basic Definitions
open Num
open Basics
open Gil-basics
open Gil-I0
open Queue

class ['a] finiteSetLIF0 xsO =
object
val mutable xs : 'a list ref = ref xsO
method draw = match !xs with C1 -> raise Empty I x::xsl -> xs := xsl; X
method add X = xs := x::!xs

end

class ['a] finiteSetFIF0 elsO =
object
val q : 'a 4ueue.t = queue-of-list elsO
method draw = Queue.take q
method add el = Queue.add el q

end

class finiteIntSetNoReuse from' toJ = (* for use with large sets *)
object
val mutable next = ref (from' - 1)
method draw = if !next >= to1 then raise Empty; incr next; !next
method add (- : int) = 0

end

class infiniteIntSetNoReuse from' =

object
val mutable next = ref (from' - 1)
method draw = incr next; !next
method add (- : int) = 0

end

class ['a] twoSetsPlusSet sl s2 s3 =
object
method draw = ((try sl#draw with Empty -> s2#draw) : 'a)
method add (el : 'a) = ((s3#add el) : unit)

end

class ['a] encapsulateset f-draw f-add S =
object
method draw = ((f-draw (s#draw)) : 'a)
method add (el : 'a) = ((s#add (f-add ell) : unit)

end

class ['a, 'b. 'cl finiteMap (eq-keys : ('a -> 'a -> bool))
(eq-values : ('b -> 'b -> bool)) =

object (self)
val mutable bindings : ('a * 'b) list ref = ref [l

method add r v = bindings := (r,v)::!bindings (* young *)

APPENDIX A. MAP BACKEND SOURCE CODES

method assoc r = (* quite defensive *)
match List.partition (fun (rJ,-) -> eq-keys r r') !bindings with

I (Cell, rest) -> (el, rest)
I - -> failwith "finiteMap#assocN

method remove r = bindings := snd (self#assoc r)
method touch r = let (el, rest) = self#assoc r in bindings := e1::rest

method findMaximum (f : int -> ('a * 'b) -> int option) =
snd (snd (pick-maximum f st (mapOptionWithN 1 f !bindings)))

end

type ('a, 'b) allocationResult = UseNow of 'a I Spill-ThenUse of 'b * 'a

class ['a, 'bl allocation free bindings force-reuse =

object (self)
val mutable released : 'a list ref = ref [l

method allocate (v : 'b) (eval : (int -> ('a * 'b) -> int option)) =

let ((r : 'a), action) =

match !released with

released := rs;
(r, UseNow r)

1 [l ->
try let r = free#draw in (r, UseNow r)
with Empty ->
begin
let (r,(vl : 'b)) = bindings#findMaximum eval
in let - = bindings#remove r
in (r, Spill-ThenUse(vJ,r))

end
in bindings#add r v; action

method free (r : 'a) = (bindings#remove r; free#add r : unit)

method mark (r : 'a) = (bindings#touch r : unit)

method release (r : 'a) =

(bindings#remove r;
if force-reuse then released := r::!released else free#add r : unit)

method freeReleased =

List.iter (fun X -> free#add X) !released;
released := [l

method replace (r : 'a) (v : 'b) =
(bindings#remove r;
bindings#add r v : unit)

end

let create-buffered-set set (modestly,fifo) =

let (b-modestly, b-fifo) = (bool-of-string modestly, bool-of-string fifo)
in let buf = if b-fifo then new finiteSetFIF0 [l else new finiteSetLIF0 [l
in let (sl,s2) = if b-modestly then (buf ,set) else (set ,buf)
in new twoSetsPlusSet sl s2 buf

let buffer-of-creationGilTem = function
I GT-Struct ("f inite-from-f if o-modestly" ,

[I GT-Int amount; GT-Int start; GT-Atom fifo; GT-Atom m 11) ->
let (s0,n) = (int-of-num start, int-of-num amount)
in let unbuffered = new finiteIntSetNoReuse SO (SO + n - 1)
in create-buffered-set unbuffered (m, fifo)

APPENDIX A. MAP BACKEND SOURCE.CODES

I GT-Struct ("inf initeFroml', I GT-Int n 1 I) ->
new infiniteIntSetNoReuse (int-of-num n)

I t -> illTerm "buffer-of-creat ionGilTed t

let set-of-gilTerm id t =

let int-of -gilTerm = function
I GT-Struct(id', [I GT-Int n 11) when id = id' -> int-of-nun n
I t -> illTerm "intTerm-of-gilTerm" t

and gilTerm-of-int i = GT-Struct(id, [I GT-Int (nun-of-int i) I])
in match t with

I GT-Struct ("f irst-then" , C I f irst-set ; then-set I I) ->
let first' = buffer-of-creationGilTerm first-set
and thenJ = buffer-of-creationGilTerm then-set
in let buffered = new twoSetsPlusSet first' then' thenJ
in new encapsulateset gilTerm-of-int int-of-gilTerm buffered

I GT-Struct("modest1y-fifo-creation",
Cl GT-Atom modestly; GT-Atom fifo; creat 11) ->

let unbuffered = buffer-of-creationGilTerm creat
in let buffered = create-buffered-set unbuffered (modestly, fifo)
in new encapsulateset gilTerm-of-int int-of-gilTerm buffered

I t -> illTerm "set-of-gilTerm" t

A.5.2 regalloc . ml: Main Program Entry Point
open Basics
open List
open Num
open Gil-basics
open Gil-I0
open Instr-def
open Instr-I0
open Queue
open List
open Regalloc-basics

(* GLOBAL VARIABLES ..

let srcToInfo = ref StringMap.empty (* WO Q program start up *)
let constantLoads = ref [l (* promised to load consts *)

(* REGISTER ALLOCATION ...

let srcInfo-of-gilTerm v =
try StringMap.find (functor-of-gilTerm v) !srcToInfo
with Not-found -> illTerm "srcInfo-of-gilTerm" v

type vregfileentry =

I Fresh
I In of gilTerm
I Out of gilTerm
I InOut of gilTem * gilTerm
I Const of instr
I InConst of gilTerm * instr

let vrf e-is-mapped = function
I Fresh I Out - I Const - -> true
I In - I InOut - I InConst - -> false

(* REG. FILE ENTRY **W******)

(* Unmapped *
(* Resides in Register *)
(* Lies on the Stack *)
(* In Reg and On Stack *)
(* Creator *
(* In Reg. + Creator *)

let vrfe-to-rreg = function
I In r I InOut(r,-) I InConst(r,-) -> r
I Fresh I Out - I Const - -> failwith "vrfe-to-rreg: register not mapped"

APPENDIX A. MAP BACKEND SOURCE CODES

let dump-reg r v' = function
l In(r) ->

let (-,-,-,stack,spillOp,-) = srcInfo-of-gilTerm v'
in let eLoc = try stack#draw with Empty -> failwith "dump-reg(1n -1"
in ([I(spillOp, [rl , CeLocl , [l)l, Out(eLoc))

I InOut (-, eLoc) -> ([l , Out (eLoc)
I InConst(-,c) -> ([l, Const(c))
I Fresh I Out - I Const - -> failwith "dump-reg"

let reload-reg r v = function
I In - I InConst - I InOut - -> failwith "reload-reg: already mapped"
I Fresh -> ([l, In(r))
I Const (I(op,srcs,dsts,annos) as i) ->

([I Cop, srcs, [rl ,annos)] , InConst (r, i))
I Out eLoc ->

let (-,-,-,-,-,reloadOp) = srcInfo-of-gilTerm v
in ([I (reloadop, CeLoc] , [rl , Cl)l , InOut (r , eLoc))

let release-dead-reg vRF v =
let (-,rRF,-,stack,-,-) = srcInfo-of-gilTerm v
in match GilTermMap.find v vRF with

I Fresh I Out - I Const - -> illTerm "release-dead-reg" v
I In r I InConst(r, -1 -> rRF#release r; rRF
I InOut(r, eLoc) -> rRF#release r; stack#add eLoc; rRF

let add-substis vRF =
f old-lef t

(fun m k -> GilTermMap.add k (vrfe-to-rreg (GilTermMap.find k vRF)) m)

let update-future-refs (refs,dead) v = match tl (GilTermMap.find v refs) with
I [l -> (GilTermMap. remove v ref S, v: :dead)
I -::- as xs -> (GilTermMap.add v xs refs, dead)

let spillGain refs keep index (r,v) =

if mem-gilTermList v keep then None
else try Some (hd (GilTermMap.find v refs)) with - -> illTerm "spillGain" v

let allocate-regJ vRF instrs v = function
I UseNow r -> (r,vRF,instrs)
I Spill-ThenUse(v',r) ->

let (spill-code,vrfe) = dump-reg r v' (GilTermMap.find v' vRF)
in (r, (GilTermMap. add v' vrf e vRF) , spill-code Q instrs)

let allocate-reg refs keep vRF instrs v =
let (-,rRF,-,-,-,-) = srcInfo-of-gilTerm v
in allocate-reg' vRF instrs v (try rRF#allocate v (spillGain refs keep)

with - -> failwith "allocate-reg")

let spillNmap refs keep to-vrfe (vRF,instrs) v =
let (r,vRF,instrs) = allocate-reg refs keep vRF instrs v
in (GilTermMap.add v (to-vrfe r) vRF,instrs)

let spillNreload refs keep (vRF,instrs) (v,-) =
let (r,vRF,instrs) = allocate-reg refs keep vRF instrs v
in try

let (reload-instrs,vrfe) = reload-reg r v (GilTermMap.find v vRF)
in (GilTermMap.add v vrfe vRF, reload-instrs B instrs)

with Not-found -> (GilTermMap.add v (In(r)) vRF,instrs)

let add-to-history vRF =
fold-right (fun v xs -> (v, vrfe-to-rreg (GilTermMap.find v vRF))::xs)

let instr-is-constLoad instr =
memberchk-gilTermList (gilTerm-of-instr instr) !constantLoads

APPENDIX A. MAP BACKEND SOURCE CODES

let update-references refs vRF regs =
let (refs,dead) = fold-left update-future-refs (refs,[I) regs
in let rRFs-rs = List.map (release-dead-reg vRF) dead
in (refs, rRFs-rs, fold-right GilTermMap.remove dead vRF)

(*ideally, when reusing a register, we want to take to pick the one
* that has been dead the longest, *unless* we could reuse one of the
* source operands of the instruction being processed -- no matter
* what other allocation options are enabled. also reusing (in this way)
* should be even preferred to using a fresh register. *)
let regallocl (refs,vRFO,history,instrs) (I(op,srcsO,dstsO,annos) as i) =
let srcs = uniq-gilTermList (filter (functor-is-in-map ! srcToInf o) srcs0)
and dsts = uniq-gilTermList (filter (functor-is-in-map !srcToInfo) dsts0)
in let dstsMinusSrcs = filter (nonMember-gilTermListJ srcs) dsts
in let all = map (fun v -> (v, try GilTermMap.find v vRFO

with Not-found -> Fresh)) srcs
in let unmapped = filter (fun (-,vrfe) -> vrfe-is-mapped vrfe) all
in let (vRF1,instrs) =

fold-left (spillNreload refs (srcs (P dsts)) (vRF0,instrs) mapped
in let substisl = add-substis vRFl GilTermMap.empty srcs
in let (refs,rRFs_rsI,vRF2) = update-references refs vRFl srcs
in let to-vrfe r = if instr-is-constload i then InConst(r,i) else In r
in let (vRF3,instrs) =

fold-left (spillNmap refs dsts to-vrfe) (vRF2,instrs) dstsMinusSrcs
in let substis = add-substis vRF3 substisl dsts
in let history' = add-to-history vRFl (map fst unmapped) history
in let history" = add-to-history vRF3 dsts history'
in let instr' = I(op, map (subst-in-gilTerm substis) srcs0,

map (subst-in-gilTerm substis) dsts0, annos)
in let (refs,rRFs-rs2,vRF) = update-references refs vRF3 dstsMinusSrcs
in let - = iter (fun rRF -> rRF#freeReleased 0) (rRFs-rsl 0 rRFs-rs2)
in (refs, vRF, historyJ', instrJ::instrs)

let defsuses-for-instrs xs =
let defuse (n,rs) (I(-,s,d,-1) =
let sd-uniq = uniq-gilTermList (rev-append d S)
in let relevant = filter (functor-is-in-map !srcToInfo) sd-uniq
in (n + 1, fold-right (gilTermMap-addE' n) relevant rs)

in GilTermMap.map rev (snd (f old-left defuse (0, GilTermMap. empty) xs))

let regAllocN instrs =
let stO = (defsuses-for-instrs instrs, GilTermMap.empty, [l, [l)
in let st = fold-left regallocl stO instrs
in let (-,-,history',instrs') = st in (rev history', rev instrs')

(* PREPARATION ...

let do-allocation ts =

let instrsO = map instr-of-gilTerm (list-of-gilTerm ts)
in let (history, instrs) = regAllocN instrsO
in let instrs' = map gillem-of-instr instrs
in let history' = map (fun (f ,t) -> GT-Struct("f-t", [I f; t 11)) history
in GT-Struct ("t" , [I GT-List instrs' ; GT-List history' 11)

(* PROGRAM START-UP ..

let dstToInf o = ref StringMap . empty
and stackToInfo = ref StringMap.empty

let process-argument = function
I ("dst-forceReuse-set", [I GT-Atom dst; GT-Atom force-reuse; set 11) ->

let free = set-of-gilTerm dst set
and fmap = new finiteMap eq-gilTerm eq-gilTerm
and force-reuseB = bool-of-string force-reuse

APPENDIX A. MAP BACh'END SOURCE CODES

in let rRF = new allocation free fmap force-reuseB
in dstToInfo := StringMap.add dst rRF !dstToInfo

I ("src-dst-stack", [I GT-Atom src; GT-Atom dst; GT-Atom stack; I-]) ->
let dst-obj = StringMap.find dst !dstToInfo
and (spillOp,reloadOp,stack-obj) = StringMap.find stack !stackToInfo
in let t = (dst,dst~obj,stack,stack~obj,spill0p,reloadOp)
in srcToInfo := StringMap.add src t !srcToInfo

I ("stack-spill-reload-set" , [I GT-Atom id; spill; reload; set I1) ->
let t = (spill, reload, (set-of-gilTerm id set))
in stackToInfo := StringMap.add id t !stackToInfo

I ("constantLoads", [I GT-List 1s I]) -> constantLoads := Is
l - -> 0

let main =
gilFilter2Args process-argument do-allocation (assert-and-get-two-args 0) ;
exit 0

Bibliography

[l] Advanced Micro Devices Inc., AMD Core Math Library (ACML), 2006,
http://developer.amd.com/acml.

[2] R. Allen and K. Kennedy, Optimizing Compilers for Modern Architectures,
Morgan Kaufmann Publishers, 2002.

[3] G. Almasi, R. Bellofatto, J. Brunheroto, C. Causcaval, J. G. Castanos,
L. Ceze, P. Crumley, C. Ch. Erway, J. Gagliano, D. Lieber, X. Martorell,
J . E. Moreira, A. Sanomiya, and K. Strauss, An Overview of the BlueGene/L
System Software Organization, Proceedings of Euro-Par 2003 - 9th Interna-
tional Conference on Parallel and Distributed Computing, LNCS, vol. 2790,
Springer-Verlag, 2003, pp. 543-555.

[4] American National Standards Institute (ANSI), ISO/IEC 9899 - Program-
ming languages - C, 1999.

[5] Apple Computer, vDSP Library, 2001, http : //developer. apple. corn/.

[6] J. W. Backus, The history of FORTRAN I, 11 and 111, Proceedings of the
first ACM SIGPLAN conference on the History of programming languages,
1978.

[7] D. H. Bailey, FFTs in External or Hierarchical Memory, Supercomputing
Journal 4 (1990), pp. 23-35.

[8] L. A. Belady, A study of replacement algorithms for virtual storage comput-
ers, IBM Systems Journal 5 (1966), no. 2, pp. 78-101.

[g] J. Bilmes, K. Asanovit, C. Chin, and J. Demmel, Optimizing matrix multiply
using PHiPAC: a Portable, High-Performance, ANSI C coding methodology,
Proceedings of ICS 1997 - International Conference on Supercomputing,
ACM Press, 1997, pp. 340-347.

[l01 S. Chatterjee, L. R. Bachega, P. Bergner, K. A. Dockser, M. Gupta, F. G.
Gustavson, C. A. Lapkowski, G. K. Liu, M. Mendell, R. Nair, C. D. Wait,
T. J. C. Ward, and P. Wu, Design and exploitation of a high-performance
SIMD floating-point unit for Blue Gene/L, IBM Journal for Research and
Development 49 (2005), no. 213, pp. 377-392.

[l11 D. Chaver, C. Tenllado, L. Pinjuel, M. Prieto, and F. Tirado, Wavelet trans-
form for large scale image processing on modern microprocessors, Proceed-
ings of VECPAR 2002 - 5th International Conference on High Performance

BIBLIOGRAPHY 160

Computing for Computational Science, LNCS, vol. 2565, Springer-Verlag,
2002, pp. 549-562.

[l21 CodePlay Ltd., Vector C Compiler, 2005, http : //www . codeplay. com.

[l31 J . W. Cooley and J. W. Tukey, An Algorithm for the Machine Calculation
of Complex Fourier Series, Mathematics of Computation 19 (1965), pp.
297-301.

[l41 R. Crandall and J . Klivington, Supercomputer-Style F F T Library for the
Apple G4, Advanced Computation Group, Apple Computer, 2002.

[l51 Institut National de Recherche en Informatique et Automatique (INRIA),
The Cam1 Language, 2006, http : //cam1 . inria. fr.

[l61 J. Demmel, J . Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
R. C. Whaley, and K. Yelick, Self-Adapting Linear Algebra Algorithms and
Software, Proceedings of the IEEE 93 (2005), no. 2, pp. 293-312.

[l71 K. Dockser, Oedipus Architecture: Extensions to PowerPC BookE for
Humme?, Tech. report, IBM, August 2001.

[l81 J. Dongarra and F. Sullivan, Top Ten Algorithms of the Century, Computing
in Science and Engineering 2 (2000), pp. 22-23.

[l91 J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Numerical
Linear Algebra for High-Performance Computers, SIAM Press, Philadelphia,
1998.

[20] J. J. Dongarra, F. G. Gustavson, and A. Karp, Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine, SIAM Review
26 (1984), pp. 91-112.

[21] S. Egner and M. Piischel, The AREP Home Page, 2000,
http://www.ece.cmu.edu/"smart/arep/arep.html.

[22] , Symmetry-Based Matrix Factorization, Journal of Symbolic Com-
putation 37 (2004), no. 2, pp. 157-186.

[23] R. J. Fisher and H. G. Dietz, Compiling for SIMD Within A Register, Pro-
ceedings of LCPC 1998 - 11th Workshop on Languages and Compilers for
Parallel Computing, 1998, pp. 290-304.

[24] R. J . Fisher and H. G. Dietz, The scc Compiler: SWARing at MMX and
3DNow, Proceedings of LCPC 2000 - 12th Annual Workshop on Languages
and Compilers for Parallel Computing, LNCS, vol. 1863, Springer-Verlag,
2000, pp. 399-414.

BIBLIOGRAPHY 161

[25] F. Franchetti, J. Lorenz, and C. W. Ueberhuber, Low Communication FFTs,
AURORA Technical Report TR2002-27, Institute for Applied Mathematics
and Numerical Analysis, Vienna University of Technology, 2002.

[26] F. F'ranchetti and M. Piischel, A SIMD Vectorizing Compiler for Digital Sig-
nal Processing Algorithms, Proceedings of IPDPS 2002 - 16th International
Parallel and Distributed Processing Symposium, 2002.

[27] F. Franchetti and M. Piischel, Short vector code generation for the discrete
Fourier transform, Proceedings of IPDPS 2003 - 17th International Parallel
and Distributed Processing Symposium, 2003, pp. 22-26.

[28] M. Frigo, A fast Fourier transform compiler, Proceedings of PLDI 1999 -
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 169-180.

1291 M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for
the FFT, Proceedings of ICASSP 1998 - IEEE International Conference on
Acoustics Speech and Signal Processing, vol. 3, 1998, pp. 1381-1384.

[30] , The design and implementation of FFTW3, Proceedings of the IEEE
93 (2005), no. 2, pp. 216-231.

[31] M. Frigo and S. Kral, The Advanced F F T Program Generator GENFFT,
AURORA Technical Report TR2001-03, Institute for Applied Mathematics
and Numerical Analysis, Vienna University of Technology, 2001.

[32] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious
algorithms, Proceedings of FOCS 1999 - 40th Annual Symposium on Foun-
dations of Computer Science, 1999, pp. 285-297.

[33] K. S. Gatlin and L. Carter, Faster FFTs via Architecture-Cognizance, Pro-
ceedings of PACT 2000 - 9th International Conference on Parallel Architec-
tures and Compilation Techniques, 2000, pp. 249-260.

[34] S. W. Golomb and L. D. Baumert, Backtrack programming, Journal of the
ACM 12 (1965), pp. 516-524.

[35] G. H. Golub and C. F. VanLoan, Matrix computations, 3nd ed., Johns Hop-
kins University Press, Baltimore, 1996.

[36] J. R. Goodman and W. C. Hsu, Code scheduling and register allocation in
large basic blocks, Proceedings of ICS 1988 - 2nd International Conference
on Supercomputing, 1988, pp. 442-452.

[37] The GAP Group, The GAP (groups, algorithms and programming) Web
Page, http://www.gap-system.org.

BIBLIOGRAPHY 162

[38] J. Guo, M. Garzaran, and D. Padua, The power of Belady's algorithm in
register allocation for long basic blocks, Languages and Compilers for Parallel
Computing, LNCS, vol. 2958, Springer-Verlag, 2004, pp. 374-390.

[39] F. Gygi, E. Draeger, B. R. de Supinski, R. K. Yates, F. Franchetti, S. Kral,
J . Lorenz, C. W. Ueberhuber, J . Gunnels, and J . Sexton, Large-Scale First-
Principles Molecular Dynamics Simulations on the BlueGene/L Platform
using the Qbox Code, Proceedings of the ACM/IEEE Conference on Super-
computing, 2005, Gordon Bell Prize runner-up.

[40] S. Hoxey, F. Karim, B. Hay, and H. Warren (editors), The PowerPC Com-
piler Writer's Guide, Warthman Associates, 1996.

[41] Intel Corporation, AP-808 split radix fast Fourier transform using streaming
SIMD extensions, 1999.

[42] , Intel C/C++ Compiler, 2005,
http://www.intel.com/software/products/compilers.

[43] , Math Kernel Library (MKL), 2005,
http://www.intel.com/software/products/mkl.

[44] International Technology Roadmap for Semiconductors (ITRS), 2006,
http://public.itrs.net.

[45] J . Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, A Methodology
for Designing, Modifying, and Implementing Fourier Transform Algorithms
on Various Architectures, Circuits, Systems and Signal Processing 9 (1990),
pp. 449-500.

[46] J. R. Johnson, R. W. Johnson, C. P. Marshall, J. E. Mertz, D. Pryor, and
J . H. Weckel, Data flow, the FFT, and the CRAY T3E7 Proceedings of the
9th SIAM Conference on Parallel Processing for Scientific Computing, 1999.

[47] H. Karner and C. W. Ueberhuber, Overlapped Four-Step F F T Computation,
Parallel Computation, LNCS, vol. 1557, Springer-Verlag, 1999, pp. 590-591.

[48] R. Korf, Depth-First Iterative Deepening: An optimal admissible tree search,
Artificial Intelligence 27 (1985), no. 1, pp. 97-109.

[49] S. Kral, FFT Compiler Techniques for 2-way SIMD Architectures, Master's
thesis, Institute for Applied Mathematics and Numerical Analysis, Vienna
University of Technology, 2004.

[SO] , The FFTW-GEL Web Page, 2005,
http://www.complang.tuwien.ac.at/skral/fftwgel.html.

BIBLIOGRAPHY 163

[51] S. Kral, F. Franchetti, J. Lorenz, and C. W. Ueberhuber, SIMD Vectoriza-
tion of Straight Line F F T Code, Proceedings of Euro-Par 2003 - 9th Interna-
tional Conference on Parallel and Distributed Computing, LNCS, vol. 2790,
Springer-Verlag, 2003, pp. 251-260.

[52] S. Kral, F. F'ranchetti, J. Lorenz, C. W. Ueberhuber, and P. Wurzinger,
F F T Compiler Techniques, Proceedings of CC 2004 - 13th International
Conference on Compiler Construction, LNCS, vol. 2985, Springer-Verlag,
2004, pp. 217-231.

[53] S. H. Lamson, SCIPORT, 1995, h t t p : //www . netlib. org/scilib.

[54] S. Larsen and S. Amarasinghe, Exploiting superword level parallelism with
multimedia instruction sets, ACM SIGPLAN Notices 35 (2000), no. 5, pp.
145-156.

[55] R. Leupers and S. Bashford, Graph-based code selection techniques for em-
bedded processors, ACM Transactions on Design Automation of Electronic
Systems 5 (2000), no. 4, pp. 794-814.

[56] J. Lorenz, S. Kral, F. F'ranchetti, and C. W. Ueberhuber, Vectorization
techniques for the Blue Gene/L double FPU, IBM Journal of Research and
Development 49 (2005), no. 213, pp. 437-446.

[57] M. Lorenz, D. Koffmann, S. Bashford, R. Leupers, and P. Marwedel, Opti-
mized address assignment for DSPs with SIMD memory accesses, Proceed-
ings of ASP-DAC 2001 - Asia and South Pacific Design Automation Con-
ference, 2001, pp. 415-420.

[58] M. Lorenz, L. Wehmeyer, T . Drager, and R. Leupers, Energy aware Compi-
lation for DSPs with SIMD instructions, Proceedings of LCTES/SCOPES
2002 - Joint Conference on Languages, Compilers, and Tools for Embedded
Systems & Software and Compilers for Embedded Systems, 2002, pp. 94-101.

[59] D. Mirkovic, Automatic Performance Tuning in the UHFFT Library, Pro-
ceedings of ICCS 2001 - International Conference on Computational Science,
LNCS, vol. 2073, Springer-Verlag, 2001, pp. 71-80.

[60] J. E. Moreira, G. Almasi, C. Archer, R. Bellofatto, P. Bergner, J . R. Brun-
heroto, M. Brutman, J. G. Castanos, P. G. Crumley, M. Gupta, T. Inglett,
D. Lieber, D. Limpert, P. McCarthy, M. Megerian, M. Mendell, M. Mundy,
D. Reed, R. K. Sahoo, A. Sanomiya, R. Shok, B. Smith, and G. G. Stewart,
Blue Gene/L Programming and Operating Environment, IBM Journal for
Research and Development 49 (2005), no. 213, pp. 367-376.

BIBLIOGRAPHY 164

[61] J . M. F. Moura, J. Johnson, R. W. Johnson, D. Padua, V. Prasanna,
M. Puschel, and M. M. Veloso, SPIRAL: Portable Library of Optimized Signal
Processing Algorithms, 1998.

[62] J. M. F. Moura, M. Puschel, D. Padua, and J. Dongarra, Scanning the
Issue: Special Issue on Program Generation, Optimization, and Platform
Adaptation, Proceedings of the IEEE 93 (2005), no. 2, pp. 211-215.

[63] S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan
Kaufmann Publishers, 1997.

[64] K. Nadehara, T. Miyazaki, and I. Kuroda, Radix-4 F F T implementation
using SIMD multi-media instructions, Proceedings of ICASSP 1999 - IEEE
International Conference on Acoustics Speech and Signal Processing, 1999,
pp. 2131-2135.

[65] Iain Nicholson, LIBSIMD, 2005, http : //libsimd. sourcef orge .net/.

[66] Performance Application Programming Interface (PAPI), 2005,
http://icl.cs.utk.edu/papi.

[67] D. A. Patterson and J. L. Hennessy, Computer Organisation and Design:
The Hardware/Software Interface, 2nd ed., Morgan Kaufmann Publishers,
1998.

[68] M. Puschel, Decomposing Monimial Representations of Solvable Groups,
Symbolic Computation 34 (2002), no. 6, pp. 561-596.

[69] M. Puschel, J . M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J . Xiong, F. F'ranchetti, A. GaEi6, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo, SPIRAL: Code Generation for DSP Transforms, Proceed-
ings of the IEEE 93 (2005), no. 2, pp. 232-275.

[70] M. Puschel, B. Singer, M. Veloso, and J . M. F. Moura, Fast Automatic
Generation of DSP Algorithms, Proceedings of ICCS 2001 - International
Conference on Computational Science, LNCS, vol. 2073, Springer-Verlag,
2001, pp. 97-106.

[71] M. Puschel, B. Singer, J . Xiong, J . Moura, J . Johnson, D. Padua, M. Veloso,
and R. W. Johnson, SPIRAL: A generator for platform-adapted libraries of
signal processing algorithms, Journal of High Performance Computing and
Applications 18 (2004), no. 1, pp. 21-45.

[72] P. Rodriguez, A Radix-2 FFT Algorithm for Modern Single Instruction Mul-
tiple Data (SIMD) Architectures, Proceedings of ICASSP 2002 - IEEE In-
ternational Conference on Acoustics Speech and Signal Processing, 2002.

BIBLIOGRAPHY 165

[73] E. Sikha and R. Simpson, The PowerPC Architecture: A Specification for
a New Family of RISC Processors, 2nd ed., Morgan Kaufmann Publishers,
1995.

[74] B. Singer and M. Veloso, Stochastic Search for Signal Processing Algorithm
Optimixation, Proceedings of Supercomputing 2001, 2001.

[75] Z. Somogyi, F. Henderson, and T. Conway, Mercury: an eficient purely
declarative logic programming language, Proceedings of the Australian Com-
put er Science Conference, 1995, pp. 499-5 12.

[76] , The execution algorithm of Mercury: an eficient purely declarative
logic programming language, Journal of Logic Programming 29 (1996), no. l-
3, pp. 17-64.

[77] N. Sreraman and R. Govindarajan, A vectorixing compiler for multimedia
extensions, International Journal of Parallel Programming 28 (2000), pp.
363-400.

[78] Y. N. Srikant and P. Shankar (editors), The Compiler Design Handbook:
Optimizations and Machine Code Generation, CRC Press, 2003.

[79] L. S. Sterling and E. Y. Shapiro, The Art of Prolog, MIT Press, 1986.

[80] P. N. Swarztrauber, F F T Algorithms for Vector Computers, Parallel Com-
puting 1 (1984), pp. 45-63.

[81] P. van Hentenryck, Constraint Satisfaction in Logic Programming, MIT
Press, 1989.

[82] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform,
Frontiers in Applied Mathematics, vol. 10, SIAM, Philadelphia, 1992.

[83] Y. Voronenko and M. Piischel, Multiplierless multiple constant multiplica-
tion, 2006, ACM Transactions on Algorithms, to appear.

[84] R. J. Walker, An enumerative technique for a class of combinatorial prob-
lems, Combinatorial Analysis (Proceedings of the Symposium on Applied
Mathematics) 10 (1960), pp. 91-94.

[85] Z. Wang, Fast Algorithms for the Discrete W Transform and for the Discrete
Fourier Transform, IEEE Transactions on Acoustics, Speech, and Signal
Processing 32 (1984), no. 4, pp. 803-816.

[86] B. Wess and T. Zeitlhofer, On the Phase Coupling Problem Between Data
Memory Layout Generation and Address Pointer Assignment, In Proceed-
ings of SCOPES 2004 - Software and Compilers for Embedded Systems, 8th

BIBLIOGRAPHY 166

International Workshop, LNCS, vol. 3 199, Springer-Verlag, 2004, pp. 152-
166.

[87] R. C. Whaley, User contribution to ATLAS, 2003,
http://www.cs.utk.edu/~rwhaley/papers/atlas~contrib.ps.

[88] R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated Empirical Opti-
mization~ of Software and the ATLAS Project, Parallel Computing 27 (2001),
pp. 3-35.

[89] M. J. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press,
1989.

1901 J. Xiong, J . Johnson, R. Johnson, and D. Padua, SPL: A Language and
Compiler for DSP Algorithms, Proceedings of PLDI 2001 - ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2001,
pp. 298-308.

[91] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Comput-
ers, ACM Press, 1991.

CURRICULUM VITAE

Name: Stefan Kral

Title: Dip1.-Ing.

Date and Place of Birth: hday 29th 1978, Krems an der Donau, Lower Austria

Nationality: Austria

Home Address: Anzengrubergasse 61/1/6, A-2380 Perchtoldsdorf, Austria

Affiliation

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstrasse 8-10/101, A-1040 Vienna
Phone: +43 1 58801 10167
Fax: +43 1 58801 10196
E-mail: skralQaurora. anum. tuwien.ac.at

Education

1996 High School Diploma (Matura)
1996 - 2004 Studies in Technical Mathematics

at the Vienna University of Technology
2004 Dip1.-Ing. (Technical Mathematics)

at the Vienna University of Technology
2004 - 2006 Ph.D. studies

Employment

Research Assistant at the Institute for
Analysis and Scientific Computing (TU Wien) ,
funded by the SFB AURORA

Project Experience

2004 - Participation in the SFB AURORA

	kral0000001A.tif
	kral0000002A.tif
	kral0000003A.tif
	kral0000004A.tif
	kral0000005A.tif
	kral0000006A.tif
	kral0000007A.tif
	kral0000008A.tif
	kral0000009A.tif
	kral0000010A.tif
	kral0000011A.tif
	kral0000012A.tif
	kral0000013A.tif
	kral0000014A.tif
	kral0000015A.tif
	kral0000016A.tif
	kral0000017A.tif
	kral0000018A.tif
	kral0000019A.tif
	kral0000020A.tif
	kral0000021A.tif
	kral0000022A.tif
	kral0000023A.tif
	kral0000024A.tif
	kral0000025A.tif
	kral0000026A.tif
	kral0000027A.tif
	kral0000028A.tif
	kral0000029A.tif
	kral0000030A.tif
	kral0000031A.tif
	kral0000032A.tif
	kral0000033A.tif
	kral0000034A.tif
	kral0000035A.tif
	kral0000036A.tif
	kral0000037A.tif
	kral0000038A.tif
	kral0000039A.tif
	kral0000040A.tif
	kral0000041A.tif
	kral0000042A.tif
	kral0000043A.tif
	kral0000044A.tif
	kral0000045A.tif
	kral0000046A.tif
	kral0000047A.tif
	kral0000048A.tif
	kral0000049A.tif
	kral0000050A.tif
	kral0000051A.tif
	kral0000052A.tif
	kral0000053A.tif
	kral0000054A.tif
	kral0000055A.tif
	kral0000056A.tif
	kral0000057A.tif
	kral0000058A.tif
	kral0000059A.tif
	kral0000060A.tif
	kral0000061A.tif
	kral0000062A.tif
	kral0000063A.tif
	kral0000064A.tif
	kral0000065A.tif
	kral0000066A.tif
	kral0000067A.tif
	kral0000068A.tif
	kral0000069A.tif
	kral0000070A.tif
	kral0000071A.tif
	kral0000072A.tif
	kral0000073A.tif
	kral0000074A.tif
	kral0000075A.tif
	kral0000076A.tif
	kral0000077A.tif
	kral0000078A.tif
	kral0000079A.tif
	kral0000080A.tif
	kral0000081A.tif
	kral0000082A.tif
	kral0000083A.tif
	kral0000084A.tif
	kral0000085A.tif
	kral0000086A.tif
	kral0000087A.tif
	kral0000088A.tif
	kral0000089A.tif
	kral0000090A.tif
	kral0000091A.tif
	kral0000092A.tif
	kral0000093A.tif
	kral0000094A.tif
	kral0000095A.tif
	kral0000096A.tif
	kral0000097A.tif
	kral0000098A.tif
	kral0000099A.tif
	kral0000100A.tif
	kral0000101A.tif
	kral0000102A.tif
	kral0000103A.tif
	kral0000104A.tif
	kral0000105A.tif
	kral0000106A.tif
	kral0000107A.tif
	kral0000108A.tif
	kral0000109A.tif
	kral0000110A.tif
	kral0000111A.tif
	kral0000112A.tif
	kral0000113A.tif
	kral0000114A.tif
	kral0000115A.tif
	kral0000116A.tif
	kral0000117A.tif
	kral0000118A.tif
	kral0000119A.tif
	kral0000120A.tif
	kral0000121A.tif
	kral0000122A.tif
	kral0000123A.tif
	kral0000124A.tif
	kral0000125A.tif
	kral0000126A.tif
	kral0000127A.tif
	kral0000128A.tif
	kral0000129A.tif
	kral0000130A.tif
	kral0000131A.tif
	kral0000132A.tif
	kral0000133A.tif
	kral0000134A.tif
	kral0000135A.tif
	kral20000001A.tif
	kral20000002A.tif
	kral20000003A.tif
	kral20000004A.tif
	kral20000005A.tif
	kral20000006A.tif
	kral20000007A.tif
	kral20000008A.tif
	kral20000009A.tif
	kral20000010A.tif
	kral20000011A.tif
	kral20000012A.tif
	kral20000013A.tif
	kral20000014A.tif
	kral20000015A.tif
	kral20000016A.tif
	kral20000017A.tif
	kral20000018A.tif
	kral20000019A.tif
	kral20000020A.tif
	kral20000021A.tif
	kral20000022A.tif
	kral20000023A.tif
	kral20000024A.tif
	kral20000025A.tif
	kral20000026A.tif
	kral20000027A.tif
	kral20000028A.tif
	kral20000029A.tif
	kral20000030A.tif
	kral20000031A.tif
	kral20000032A.tif
	kral20000033A.tif
	kral20000034A.tif
	kral20000035A.tif
	kral20000036A.tif
	kral20000037A.tif
	kral20000038A.tif

