
TlJ
W I E N

DISSERTATION

A Scalable Special-Purpose Metasearch Engine

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

o. Prof. Dr. Georg Gottlob
und

Dr. rer. nat. Robert Baumgartner als mitwirkenden Assistenten

E184
Institut fiir Informationssysteme

eingereicht an der Technischen Universitat Wien
Fakultat fiir Informatik

von

Mag. Ondrej Jaura

0327722

Wien, am 08.05.2006

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Contents

1 Introduction 3
. 1.1 Motivation 3

. 1.2 Structure 4

2 Internet Technologies 5
. 2.1 XML Technologies 5

. 2.1.1 XML. 6

. 2.1.2 XPath 6
2.1.3 XSLT . 7
2.1.4 xQuery . 7

. 2.1.5 Use in Metasearch Solution 7
. 2.2 Hypertext Transfer Protocol 8

2.3 HTML, XHTML . 8
2.3.1 HTML . 8

. 2.3.2 XHTML 9
2.4 Forms . 9

. 2.4.1 HTML Forms 10
. 2.4.2 HTML Form Submission 11

. 2.4.3 XForms 12
. 2.5 Search Engine Forms 14

3 Form Mapping 18
. 3.1 Search Engines Interfaces Classification 18

. 3.2 Interface Representation 19
. 3.3 Matching 20

. 3.3.1 Semantic Matching 21
. 3.3.2 Weight-based Matching 21

. 3.4 Global Interface 23
. 3.4.1 Merging Attribute Names 24
. 3.4.2 Merging Attribute Values 24
. 3.4.3 Creating Global Interface 29

. 3.5 Global Result Presentation 31

4 Existing Solutions and State of the Art 33
. 4.1 Existing Meta Search Engines 33

. 4.1 . 1 Academic Projects 33
. 4.1.2 Commercial Projects 36

. 4.1.3 Lixto Project 38

. 4.2 LixtoSuite 38
. 4.3 Lixto Visual Wrapper 39

4.3.1 Navigator . 39
. 4.3.2 Visual Wrapper 40

. 4.3.3 Visual Developer 42

. 4.3.4 Usage of Mozilla 42
. 4.4 Transformation Server 42

4.4.1 Components . 43
4.4.2 User Roles . 43

. 4.4.3 Hydra 44
. 4.5 Lixto MetaSearch 45

. 4.5.1 Requirements 45
. 4.5.2 Current Status 45

. 4.5.3 Mapping Framework 50
. 4.5.4 Technology 52

. . 4.5.5 Intermediate Results 53
. 4.5.6 Multiple Requests 53

. 4.5.7 Session Identification Assignment 54
. 4.5.8 Wizard Search Interfaces 56

. 4.5.9 New Requirements 56

5 Form Mapping Framework Design 58
. 5.1 Form Descriptor 58

5.2 Form Mapping . 59
. 5.3 Reverse Mapping 60

. 5.4 Mapping Notation 60
. 5.4.1 Complete Notation 61
. 5.4.2 Semantic Notation 62

. 5.4.3 Weight-based Rule Notation 63
. 5.4.4 Combined Notation 64

. 5.4.5 Value Mapping Notation 64
. 5.5 Advanced Mapping 64

. 5.5.1 List Mapping 64
. 5.5.2 Date Mapping Notation 66

. 5.5.3 Currency Mapping Notation 66
. 5.5.4 Script Mapping Notation 66

. 5.6 URL Mapping 69
. 5.7 Navigation Mapping 71

. 5.8 Comparison 71
. 5.9 Mapping Strategies 74

. 5.10 Execution Language 74

6 Execution Framework Design 75
. 6.1 Requirements 75

6.1.1 Vocabulary . 75
. 6.1.2 Basic Requirements 76

. 6 . 1 . 3 Advanced Requirements 77
. 6.1.4 Optimisation Requirements 77

. 6.2 Actors 78
. 6.2.1 Request Producer 78

. 6.2.2 Result Consumer 78
6.2.3 System . 79
6.2.4 Supervisor . 79
6.2.5 Scenario Developer . 79

6.3 Use Cases . 79
6.3.1 Vocabulary . 79

. 6.3.2 Request Producer 80
. 6.3.3 Result Consumer 80

. 6.3.4 System 82
. 6.3.5 Supervisor 87

. 6.3.6 Scenario Developer 87
. 6.4 Components 90

. 6.4.1 Engine 90
. 6.4.2 Manager 91

. 6.4.3 User Interface 91
. 6.4.4 User 91

. 6.4.5 Administrator Interface 93
6.4.6 Administrator . 93
6.4.7 Developer . 93

. 6.4.8 SystemActorComponents 94
. 6.5 Components Design 94

. 6.5.1 Components Relationship 94
. 6.5.2 Components Intercommunication 97

. 6.5.3 Engine Design 97
. 6.6 Architecture 102

. 6.7 Interconnection with Transformation Server Design 103

7 Prototype Implementation 106
. 7.1 Technologies and Their Application 106

. 7.1.1 Java 106
. 7.1.2 Java Enterprise Edition 107

. 7.1.3 Web Services 107
. 7.1.4 Java Message Service 110

. 7.1.5 Java Server Pages 110
. 7.1.6 Java Server Faces 111

. 7.1.7 Enterprise Java Beans 111
. 7.1.8 Java Native Interface 114

. 7.1.9 Databases 114
. 7.1.10 Application Servers 115

. 7.2 Overview 115
. 7.3 Server 116

. 7.3.1 Engine 116
. 7.3.2 Database 119

. 7.3.3 Octopus 119
. 7.3.4 Navigator & Data Extractor 120

. 7.3.5 Mapping Framework 121
. 7.4 User 122

. 7.5 Administrator 122
. 7.6 Interaction 124

8 Flight Metasearch Case S tudy 129
. 8.1 Introduction 129

. 8.2 Requirements 129
. 8.3 Form Descriptors 130

. 8.3.1 SkyEurope 130
. 8.3.2 Ryanair 130

. 8.3.3 Global Search From 132
. 8.4 Mappings 133

. 8.5 Global Interface 133
. 8.6 Server Connection 134

. 8.7 Results 134
. 8.7.1 Extraction 134

. 8.7.2 Presentation 136
. 8.8 Conclusion 137

9 Conclusion 140
. 9.1 Requirements Fulfilment 140

. 9.2 Further Development 141
. 9.3 Possible Application and Economic Impact 142

A Screenshots 144

B Source Code

List of Figures

2.1 XPath Example
2.2 HTML form tags example source
2.3 HTML form tags example
2.4 XForms presentation options

. 2.5 XForms main aspects
2.6 Google search form

. 2.7 Amazon search form
. 2.8 SkyEurope search form

. 2.9 Ryanair search form

. Range numeric domain . one selection list 26
Range numeric domain . one selection list and one text box 26

. Range numeric domain . two text boxes 27
. Wizard type search form - first step 30

. Wizard type search form - second step 30
. Simple type search form 30

. Global interface search form 31
. Overview of scenario creating 32

. 4.1 Result pages navigator 39
. 4.2 Processing of Navigator and Visual Wrapper 41

. 4.3 Hydra as layer 44
. 4.4 Transformation Server Processing 46

. 4.5 MetaSearch Server Processing 46
. 4.6 MetaSearch work flow 47

. 4.7 MetaSearch - login screen 48
. 4.8 MetaSearch . administrator console screen 49

. 4.9 Abstraction of local values 50
. 4.10 Global mapping 51

. 4.11 URI builder example 52
. 4.12 Success test results 55

. 5.1 Form descriptor 59
. 5.2 Form descriptor example 59

. 5.3 Mapping notation of common elements 61
. 5.4 Local elements mapping notation 61

. 5.5 Mmapping notation with normalisation 61

. 5.6 Example of complete mapping notation 62
. 5.7 Semantic list for mapping structure 62

5.8 Semantic mapping notation example 63
5.9 Weight-based rule notation structure 64
5.10 Combined notation structure . 64
5.11 Full notation structure example 65
5.12 Date mapping notation structure 67
5.13 Currency mapping notation structure 67
5.14 Scripts list structure . 68

. 5.15 Example of local script mapping notation 69

. 5.16 Example of local script mapping notation 70
. 5.17 Example of parameter script mapping notation 70

. 5.18 URL mapping 72
. 5.19 Navigation mapping 73

6.1 Use cases . request producer and result consumer 81
. 6.2 Use cases . system 82

. 6.3 Flowchart . accept request 83
. 6.4 Flowchart . perform processing 86

. 6.5 Use cases . supervisor and scenario developer 88
. 6.6 Flowchart . develop scenario 89

. 6.7 Components . system actor components 95
. 6.8 Components . separation and relationships 96

. 6.9 Components intercommunication no cached 98
. 6.10 Components intercommunication cached 99
. 6.11 Components intercommunication stopped 100

. 6.12 Engine schema 102
. 6.13 Simplified architecture design 103

. 6.14 Complex architecture design 104

. 7.1 J2EE Architecture Diagram 108
. 7.2 Stateless session bean life cycle 112

. 7.3 Stateful session bean life cycle 112
. 7.4 Entity bean life cycle 113

. 7.5 Message-driven bean life cycle 114
. 7.6 Architecture implementation 117

. 7.7 Engine class diagram 118
. 7.8 Database Entity Relationships 119
. 7.9 Octopus package class diagram 120
. 7.10 Mapping package class diagram 121

. 7.11 User and admin package class diagram 123
. 7.12 Administrator management console page 124

. 7.13 Sequence diagram for Flight Search 125
. 7.14 Data flow diagram for Flight Search 128

. 8.1 Form descriptor for SkyEurope search form 131
. 8.2 Form descriptor for Ryanair search form 132

. 8.3 Form descriptor for global search form 133
. 8.4 Mapping for flight metasearch 134

. 8.5 Flight search forms 135
. 8.6 Flight output example skeleton 136

. 8.7 Flight Search result page with started search process 137

8.8 Flight Search result page with one result 137
8.9 Flight Search result page with two results 138
8.10 Flight Search result page with finished search process 138

A . l Intermediate result example . start 144
. A.2 Intermediate result example start 145

. A.3 Visual Designer wrapping screen 146
. A.4 Transformation Server developer interface screen 147

A.5 MetaSEEk search form . 148
. A.6 Kar t00 graphical results presentation 149

A.7 Vivisimo clustered results . 149

Input entity bean source code
Parametervalue entity bean source code
SearchResult entity bean source code
Request session bean source code
Heartbeat session bean source code
Response session bean source code

. Result JSP page source code
Result web service interface source code

. Result web service interface source code

List of Tables

. 4.1 Multiple requests test results 54
. 4.2 Success test results 55

Kurzfassung

Gleich nach dem Mailen, ist das Suchen die beliebteste Tatigkeit im Internet
und Suchmaschinen sind das Werkzeug, mit dem man an die unermesslichen In-
formationsmengen im World Wide Web herankommt. Eine Losung, die auf der
Zusammenfiihrung von Suchergebnissen mehrerer Suchmaschinen basiert - wird
als Metasuche bezeichnet. Eine Losung, die spezialisierte Suchmaschinen und
Metasuchmaschinen kombiniert, bezeichnet man als spezialisierte Metasuche
oder Spezial-Metasuche. Eine Spezial-Metasuche ist in der Lage Suchergebnisse
von nachgestellten Datenbanken zu integrieren, die uber konkrete spezialisierte
Suchmaschinen verkgbar sind.

Ein gutes Beispiel dafiir, wie Technologie einem Endkunden dabei hilft die
zweckmafligsten Angaben zu finden - sind Flugbuchungen. Durch die Integra-
tion von Suchergebnissen von mehreren Buchungssystemen der Fluggesellschaften
konnen die Kunden vergleichen um so den am besten geeigneten und gunstigsten
Flug unter mehreren Fluggesellschaften zu finden. Ohne eine spezialisierte
Metasuchlosung, miisste der Endkunde die Buchungssysteme jeder einzelnen
Fluggesellschaft prufen, d.h. jede spezialisierte Suchmaschine. Eine durch-
dachte Metasuchlosung ermoglicht auch Wiihrungskonversionen, die Sortierung
der Suchergebnisse und das Kombinieren von mehreren Flugrouten verschiedener
Gesellschaften.

Diese Arbeit entwickelt eine neuartige spezialisierte Metasuchmaschine, die
fiir jeden Geschaftszweck anwendbar ist; sie prasentiert den theoretischen und
technischen Hintergrund, den Entwurf wie auch die fur einen kommerziellen
Einsatz geeignete Umsetzung. Der technische Hintergrund befasst sich rnit
solchen Gebieten, wie der Mapping-Theorie; der Entwurf zeigt Einzelheiten
des Mapping- und Ausfiihrungsrahmens und bei der Umsetzung werden zur
Erreichung einer robusten und skalierbaren Losung unternehmenseigene Tech-
nologien eingesetzt.

Die beigefiigte Fallstudie ist eine Flug-Metasuche, eine Spezialmetasuche,
die die Suchergebnisse der Buchungssysteme von Fluggesellschaften integriert.

Abstract

Search is after e-mail is the second most popular activity on the Internet
and search engines are tools to reach the extensive amount of information on
the World Wide Web. A solution based on the aggregation of results from
more search engines, that can lead to better quality and higher number of
results, is called metasearch. A solution that combines specialised search en-
gines and metasearch engines is called specialised metasearch or special-purpose
metasearch. A specialised metasearch solution is able to integrate results from
backend databases that are available through particular specialised search en-
gines.

A good example of how this technology helps an end customer to find the
most appropriate data is the flight booking area. The integration of results
from more airline flight booking systems allows users to compare and find the
most suitable and cheapest flight from a number of airlines. Without a spe-
cialised metasearch solution an end customer would have to check every single
airline flight booking system, i.e. each specialised search engine. A sophisticated
metasearch solution can also provide features such as currency conversion, sort-
ing of results and combining more routes from different airlines.

This thesis develops a novel special-purpose metasearch engine that can be
used for any business purpose, presenting its theoretical and technical back-
ground, design and implementation suitable for commercial use. The technical
background embraces areas such as mapping theory; the design shows details of
the mapping and execution frameworks, and the implementation uses enterprise
technologies to achieve a robust and scalable solution.

The case study included is - a flight metasearch, a special-purpose metasearch
that integrates results from airline booking systems.

Chapter 1

Introduction

1.1 Motivation

Search engines are tools to reach the extensive amount of information on the
World Wide Web. Recent studies mentioned in the [ZMW+05] paper show that
search after e-mail is the second most popular activity.

Common search engines search static web pages with a simple and generic
search interface. They do not search specific data stored in backend databases,
also known as the deep web, which are estimated to be 500 times larger than the
static web, as mentioned in the [SteOl] paper. The scale of searched backend
databases raises various technical problems.

Moreover, users are not able to retrieve the required information because of
the too generic search interface provided by common search engines.

A solution based on the aggregation of results from more search engines is
called metasearch. Each search engine has its strengths and weaknesses and the
integration of results from more search engines can lead to the better quality
and higher number of results. For example there are metasearch engines that
combine results from the most popular search engines such as Google, Yahoo
and MSN.

The search interface of a metasearch engine is similar to its search engines.

A solution that combines both worlds of specialised search engines and
metasearch engines is called specialised metasearch or special-purpose metasearch.
It is a solution that applies the metasearch approach to an area of specialised
search engines such as flight booking systems or car rental systems. A specialised
metasearch solution is able to integrate results from backend databases that are
available through particular specialised search engines. A search interface is
similar to the specialised search interfaces of the search engines used.

A good example of how this technology helps an end customer to find the
most appropriate data is the flight booking area. The integration of results
from more airline flight booking systems allows to compare and find the most
suitable and cheapest flight from a number of airlines. Without a specialised
metasearch solution an end customer would have to check every single airline
flight booking system, i.e. a specialised search engine. A metasearch solution

can also provide features such as currency conversion, the sorting of results and
combining more routes from different airlines.

This thesis describes the special-purpose metasearch engine, Snorril, which
can be used for any business purpose, its technical background, design and im-
plementation suitable for commercial use. The technical background embraces
areas such as mapping theory; the design shows details of the mapping and
execution frameworks.

It vastly improves and extends the existing Lixto MetaSearch version by
eliminating limitations such as synchronous provision of results, complicated
creation and deployment of scenarios, and introduces caching, scalability and
load balancing.

The proposed solution allows a user to be up-to-date and to choose the most
profitable option at any time - it offers an instant economic advantage on a
real-time enterprise level.

1.2 Structure

This thesis consists of seven chapters:
The Internet Technologies chapter describes technical areas necessary for a

metasearch solution. From the low-level HTTP requests to a description of an
HTML form.

The Forms Mapping chapter explains a theoretical background of an item
mapping from local interfaces to the global interface and vice versa.

The Existing Solution and State of the Art chapter summarizes possibilities,
advantages and disadvantages of the existing solutions.

The Form Mapping Framework Design chapter shows how to use the above
mentioned theory and techniques to create and design a form mapping frame-
work.

The Execution Framework Design chapter describes requirements, use cases,
flowcharts and class diagrams of the execution framework design.

The Prototype Implementation chapter shows technologies used for the a
prototype implementation. Interesting parts of the code are also shown.

The Flight Metasearch Case Study chapter contains a case study where the
proposed metasearch solution is used for a flight search service.

The Conclusion chapter summarizes achieved goals, next steps and possible
improvements.

'Snorri Thorfinnsson, born sometime between 1005 and 1013. He was purported
to have been born in Vinland, a Viking settlement in North America, possibly mak-
ing him the first European to born in North America. For more details see
http://en.wikipedia.org/wiki/Snorri-%C3%9Eorfinnsson Wikipedia page.

Chapter 2

Int ernet Technologies

The metasearch world is a part of the Internet universe. It consists of In-
ternet sources such as HTML pages that are produced by a server that receives
requests. A request or a page is transferred via the HTTP protocol. Necessary
data is extracted to XML documents, that are changed and concatenated by
XSL transformations in to the final form as presented to a user.

All technologies that are important and necessary for a metasearch solution
are mentioned in the following sections.

The first section explains XML technologies as a malleable exchange medium
between processes. The second section shows the main protocol between a server
and a client in the WWW world, HTTP. The third part describes the main
element of the WWW world, an HTML page. The next section focuses on an
HTML form as the entry point for user requests that are substituted with a
metasearch solution. The last section shows real examples of search forms and
points out typical and problematic parts.

2.1 XML Technologies

XML technologies represent a set of standards such as data format, trans-
formation and query specified by the World Wide Web Consortium (W3C).

The data format is represented by XML. Nowadays it is an industrial stan-
dard for exchanging information between processes. It is described in Section
2.1.1.

An increasing amount of data represented by the XML data format has
caused the introduction of query languages for the XML world - XPath and
XQuery, that are described in Section 2.1.2 and Section 2.1.4.

A transformation functionality is represented by XSLT described in Section
2.1.3.

The usage of these technologies in the Metasearch world is explained in
Section 2.1.5.

2.1.1 XML
Extensible Markup Language, XML, is a language for pure structural de-

scription. It is organised as a tree; one tree is called an XML document.
XML represents a possibility of data organisation in a tree structure. There

are many languages in XML that describe different areas: from MathML, a
mathematical notation suitable for web pages and WSDL, a description of web
services to languages for the description of relationships of elements, such as
FOAF.

XML is a restricted form of SGML, the Standard Generalized Markup Lan-
guage. The construction of XML documents conforms to SGML documents. It
was developed in 1996.

The specification [Con04a] says: " X M L documents are made u p of storage
uni ts called entities, which contain either parsed o r unparsed data. Parsed data
is made u p of characters, some of which form character data, and some of which
form markup. Markup encodes a description of the document's storage layout
and logical structure. X M L provides a mechanism t o impose constraints o n the
storage layout and logical structure."

Origin and Goals

The design goals for XML, described in the [Con04a] specification, are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear,

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

2.1.2 XPath
XPath, described in the [Con05b] specification, addresses a node or a set of

nodes in an XML tree. XPath uses a compact syntax for its values and has
many possibilities to express an address.

For example, see Figure 2.1, where the node on the second line can be
addressed with the /l ibrary/book [l] XPath expression, all books can be ad-
dressed with the //book XPath expression, where it does not matter how many
parents have a book node.

Figure 2.1: An XPath example.

It represents the core of the XSLT technology, which makes it possible to
specify a node or a set of nodes.

With the new XSTL2 a new version of XPath, named XPath2, was published.
New features are described in the [Con05d] specification.

2.1.3 XSLT
XSLT is a declarative rule language for the transformation of a source XML

tree into a result tree. The result tree can be completely different from the
structure of the source tree. In the process of constructing the result tree,
elements from the source tree can be filtered, reordered and modified and added
to the result tree.

XSLT 1.0, described in the [Con991 specification, was published in November
1999. The new version 2.0 was published in 2005 and represents a significant
increase in the capability of the language. XSLT2 is described in the [Con05d]
specification.

2.1.4 xQuery

The ability to query XML data becomes more important with increasing
amounts of stored and exchanged information using XML. A flexibility in rep-
resenting different kinds of data from various sources is one of the main strengths
of XML. To exploit this flexibility, an XML query language must provide fea-
tures for retrieving and interpreting information from these diverse sources.

There are the following differences between xQuery and XSTL:

xQuery is more human-legible. It is mainly based on the standard query
language for databases, SQL.

it is a functional language.

it is strongly typed.

xQuery operates on the abstract, logical structure, known as the data model,
of an XML document, rather than its surface syntax.

xQuery Version 1.0, described in the [Con05c] specification, is an extension
of XPath Version 2.0. Any expression that is syntactically valid and executes
successfully in both XPath 2.0 and XQuery 1.0 will return the same result in
both languages.

2.1.5 Use in Metasearch Solution

For a metasearch solution the XML data format is a suitable exchange and
storage medium for all parts, from internal structures to user data.

The natural variability of the XML data format with rich support for trans-
formations and querying is a better data format in contrast to a rich querying
but fixed structure of relational databases or with a high variability of own
binary or text format but a lack of transformation and query standards and
tools.

Various user data can be generally transformed by XSLT and their process-
ing of them can use the XPath and XQuery query languages.

High variability of XML standards on the other hand requires more processor
and memory resources. The processing of large XML documents may require
special handling: optimised algorithm for detecting duplicates is described in
the [Nau04] paper, the [KBNK02] paper shows improved efficiency of the XPath
query language using indices, and the [GKPOS], [GKPOSb] and [GKP03a] papers
describe and improve an XPath query evaluation.

The proposed metasearch solution in further chapters resolves this problem
by processing results for each Internet source separately.

2.2 Hypertext Transfer Protocol
The Hypertext Transfer Protocol, HTTP is the basic communication proto-

col in the web world. It has been in use since 1990.
The [W3C99b] specification describes HTTP as: "It i s a n application-level

protocol for distributed, collaborative, hypermedia information systems. I t i s a
generic, stateless, protocol which can be used for m a n y tasks beyond i ts use for
hypertext, such as n a m e servers and distributed object management systems,
through extension of i t s request methods, error codes and headers. A feature of
H T T P i s the typing and negotiation of data representation, allowing systems t o
be built independently of the data being transferred."

It is basically a request-response protocol that is sent via TCP/IP connec-
tion. A client sends a request to a server in the form of a request method, URI,
and a message. The server responds with a status line, a success or error code,
and a message. Request methods are described in Section 2.4.2.

2.3 HTML, XHTML
In the following sections markup languages designed for the creation of web

pages are presented.

2.3.1 HTML
The HyperText Markup Language, or HTML, is a form of a markup language

that is used to create and publish hypertext documents. Viewing of documents is
provided by specialized rendering applications called HTML user agents mainly
known as web browsers. It is a non-proprietary format built on an SGML
grammar.

HTML provides various kinds of meta-data and rendering hints that are in-
cluded in a document. The meta-data include information about the document
title, author and keywords, structure elements like headings, paragraphs, lists

and information that allows the document to be linked to other documents. The
last feature allows to form a hypertext web.

The rendering hints provide features such as text decoration, insertion of
images and form definition, which is the main area of interest and will be ex-
plained in detail in the following sections.

HTML is standardised by the World Wide Web Consortium, the latest is the
HTML 4.01 [W3C99a] specification that includes minor revision of the HTML
4.0 specification. It was published in December 1999.

The HTML 4.0 cleaned u p the standard by marking some elements as d e p
recated. It also adopted browser-specific element types and attributes. It was
published in December 1997.

The HTML 3.0 specification was proposed by W3C in 1995 and provided
many new capabilities. Unfortunately it was too complex and due to lack of
browser support it was discontinued. The next HTML 3.2 specification, that
was accepted, adopted element types and attributes of Netscape and Mosaic
web browsers. It was published in January 1997.

The HTML 2.0 was created as the first formal specification. The version
number 2.0 helped to distinguish it from many unofficial 1.0 quasi-standards.

HTML can be generated on demand by a server-side scripting system such
as PHP, JSP or ASP.

2.3.2 XHTML
Extensible HyperText Markup Language, XHTML, is a family of document

types and modules that reproduce, subset, and extend HTML 4.0. The [ConOO]
specification says: " X H T M L family document types are X M L based, and ulti-
mately are designed t o work in conjunction wi th XML-based user agents."

The main differences between HTML and XHTML are:

XHTML is an XML based language. An application that processes an
XHTML page can be simpler. An application that processes an HTML
page has to be able for example, to complement missing closing tags on
the right position, which is a non-trivial process.

XHTML defines several levels, where an application or a designer can
decide how complicated and complex pages will be accepted or created,
e.g. with or without frames.

XHTML elements must be properly nested, documents must be well formed,
tag and attributes names must be written lower-case, empty elements must
be terminated and attribute values must be quoted.

2.4 Forms

An area on a page designed for exchanging data between a server application
and a user is called a form. It is usually a rectangle area visibly separated from
other page elements and it contains a t the bottom or on the right side a set of

buttons. One of the buttons is a button that submits entered data.

A form is the most important part of a page for a metasearch solution. As
a user can enter data, also a metasearch system is able to use a form to enter
its data to retrieve information from a server.

2.4.1 HTML Forms

HTML and XHTML have specific tags for defining a form and its elements.
See Figure 2.2 for a form example source code and see Figure 2.3 for a form
example visual representation.

The form tags are described in the following list:

Form. The root tag of a form is the form tag. It is shown in Figure 2.2 in
line 1. It specifies the request method in the method attribute and a URI
where entered data should be submitted in the action attribute. I t does
not affect the graphical layout, that is, actually, a form on an HTML page
can be spread over more visually separated areas.

Input. The tag that represents an input element is the input tag. The type
attribute specifies the type, the name attribute specifies the name, and
the value attribute the value of an input element.

There are the following input element types:

- Text. The text input type represents a textual value that is displayed
as an edit box where any text can be typed. For example, see Figure
2.2, line 2.

- Radio. The radio type can be used only for a set of input elements
with the same name, because it represents a choice between values
of the elements with the same name where only one can be selected.
For example, see Figure 2.2, lines 3 and 4.

- Checkbox. The checkbox type can be used alone or as a set of input
elements with the same name, because it represents a choice between
values of the elements with the same name where none, one or more
can be selected. For example, see Figure 2.2, line 5.

- Submit and Reset. The submit and reset types are visually repre-
sented as a button. The submit type emits the submission process,
for more details see Section 2.4.2. The reset type resets the form, i.e.
it resets a value of all input elements. For example, see Figure 2.2,
lines 12 and 13.

- Hidden. The hidden type is a special type that allows the adding
to a form technical data used by an application that produced the
page and will receive the submitted data. An input element with the
hidden type is not visible. For example, see Figure 2.2, line 6.

The other types such as password or file are described in the [W3C99a]
specification.

Select and Option. The tag select is a special type of input tag. It repre-
sents a drop down box, where its values are defined with the option tag.

By default only one value can be selected, when the multiple attribute is
added to the select tag, none or more values can be selected. For example,
see Figure 2.2, from line 7 to 10.

Textarea. The textarea tag is a special type of input tag. It represents an
area where a text on more lines can be written, such as a remark. For
example, see Figure 2.2, line 11.

<form a c t i o n = " p r o c e s s . j s p " method=" g e t ">
Surname: < i n p u t type=" t e x t " name=" s u r n a m e M / >
< i n p u t type=" r a d i o " name=" sex" value=" malen />Male
< i n p u t type=" r a d i o " name=" sex" value=" f e m a l e n / > F e m a l e
< i n p u t type="checkbox" name=" l i c e n s e " / > I have a d r i v i n g l i c e n s e
< i n p u t type=" h i d d e n " name=" a u t h o r i s e d " value=" l"/>
S e l e c t a c a r t y p e : < s e l e c t name="carV>

< o p t i o n value=" normal">Normal
< o p t i o n value=" l u x u r i o u s " > L u x o r i o u s

< / s e l e c t >
A r e m a r k : < t e x t a r e a rows="2" c o l s = " 2 O " > < / t e x t a r e a >
< i n p u t type=" s u b m i t " va lue="Submi tV/>
< i n p u t type=" r e s e t " value=" R e s e t v / >
</form>

Figure 2.2: HTML form tags example source code. Formatting tags are excluded
for clarity.

2.4.2 HTML Form Submission

Values from the completed form are transferred to a server in a process called
submission.

The form data can be transferred in two ways specified by the requested
method that is set in the method attribute of the form tag:

Get Method. Form data are appended to the URI specified in the action
attribute. Each parameter appears in a request as a name-value pair,
where the equals sign '=' is the delimiter between the name and value
parts, e.g. name=John. Pairs are delimited by the and sign '&' and the
first pair is delimited by the question mark '?' from the previous part
of URI, e.g. http://server/process.jsp?name=john&surname=smith. The
created URI is sent to the processing agent.

The [W3C99a] specification says: "This method should be used when the
form is idempotent (i.e., causes n o side-effects). M a n y database searches
have n o visible side-effects and make ideal applications for the get method."

The length of URI is limited in browsers; large data should be sent with
the post method.

The set of allowed characters in a URL is limited. Other characters have
to be URL encoded, i.e. a forbidden character is replaced with a percent

Surname: 1-
blale

C^ Female

F I have a drlvrng llcense

Select a car type 1-
A remark:

7
Figure 2.3: HTML form tags example.

'%l sign, as a prefix, and its hexadecimal numeric value defined in the
ASCII table, e.g. a space is replaced with '%20'.

Post Method. Form data are sent to the processing agent included in the
body of the sent message.

The [W3C99a] specification says: "If the service associated with the pro-
cessing of a form causes side effects (for example, if the form modifies a
database or subscription t o a service), the post method should be used."

This method is also used when a form contains large data such as files,
i.e. a form contains an input element with the file type.

2.4.3 XForms

XForms is a new form standard proposed by W3C organisation that improves
the current minimal support for forms.

HTML Web forms do not separate the purpose from the presentation of a
form. The [Con05a] specification says: "XForms, i n contrast, are comprised of
separate sections that describe what the form does, and how the form looks. This
allows for flexible presentation options, including classic X H T M L forms, t o be
attached to an X M L form definition."

The schema in Figure 2.4 illustrates how a single XML form definition, called
the XForms Model, has the capability to work with a variety of standard or pro-
prietary user interfaces.

The XForms User Interface provides a standard set of visual controls that
replace common XHTML form controls. These form controls are directly usable
inside XHTML and other XML documents such as SVG.

The XForms [ConOGc] page says: "An important concept i n XForms is that
forms collect data, which is expressed as X M L instance data. Among other du-
ties, the XForms Model describes the structure of the instance data. This is

Presentation Options

Figure 2.4: The presentation options of XForms, as described on the
[ConOGcIpage.

important, since like XML, forms represent a structured interchange of data.
Worlcflow, auto-fill, and pre-fill form applications are supported through the use
of instance data."

The XForms Submit Protocol defines how XForms send and receive data,
including the ability to suspend and resume the completion of a form.

The illustration in Figure 2.5 summarizes the main aspects of XForms, as
described on [ConOGc] page.

Key Goals of XForms

XForms has the following key goals that are mentioned on [ConOGc] page:

Support for handheld, television, and desktop browsers, plus printers and
scanners

Richer user interface to meet the needs of business, consumer and device
control applications

Decoupled data, logic and presentation

Type checking

Improved internationalization

Support for structured form data

Advanced form logic

Multiple forms per page, and pages per form

Figure 2.5: The main aspects of XForms, as described on [ConOGc] page.

Suspend and Resume support

Seamless integration with other XML tag sets

2.5 Search Engine Forms

For a metasearch solution search forms are the main way to get data. This
section shows technical details and interesting parts of important search engines
in various areas such as book shopping or flight ticket ordering.

Google

The best known search engine for the search of a text phrase is Google.

Its search [GooOGc] form, shown in Figure 2.6, is simple, it contains only a
plain HTML tag without any JavaScript code calls necessary to submit form
data.

A metasearch solution can produce a URL directly or emulate user actions
to enter form data. Basically there are no pitfalls.

Figure 2.6: Interesting parts of the Google [GooOGc] HTML search form.

Amazon

Amazon is one of the biggest Internet shops. It contains several search forms;
a universal search is on the top of all pages, some specialised pages contain a

special search form.

Its universal search [AmaOG] form, shown in Figure 2.7, is a simple HTML
form without any JavaScript method calls to submit form data. One speciality
of the form is that it submits data with the image input type, see line 6.

A metasearch solution can produce a URL directly or emulate user actions
to enter form data. Basically there are no pitfalls.

1 <form method=" get "
2 action="search-handle-url/ ref=br-ss-hs /102">
3 <input type=" hidden" name=" platform" value=" gurupa" />
4 <input type=" t ex t " id="twotabsearchtextbox"
5 name" f ie ld -keywordsn value="" size=" 25"/>
6 <input type=" image" src=" imageslgo . g i f "
7 value=" Go" name=" Go" />

Figure 2.7: Interesting parts of the Amazon [AmaOG] HTML search form.

SkyEurope

The SkyEurope airline offers cheap flight tickets in Europe. Its booking
search form is a standard flight booking form, there is just one difference: it
does not distinguish between adults and children. It contains only two cate-
gories: adults and infants, i.e. the age is from 0 to 24 months. A common form
contain three categories: adults, children, i.e. under 16 years, and infants.

This search [SkyOGa] form, shown in Figure 2.8 contains one problematic
point - the -VIEWSTATE parameter value, see line 3. It is generated per
request, i.e. every generated booking search page has its own specific value in
this parameter.

A metasearch solution that sends a URL directly has to download the book-
ing page, extract a value of the parameter and use it. A metasearch solution
that is emulating user's actions to enter form data has to always start entering
data on a freshly downloaded page with an actual value of the parameter.

Ryanair

The Ryanair airline offers cheap flight tickets in Europe. Its booking search
form is a standard flight booking form that contains three categories: adults,
children, i.e. the age is under 16 years, and infants, i.e. the age is under 2 years.

Its search [RyaOG] form, shown in Figure 2.9, is a complicated web page with
a lot of JavaScript calls to submit form data. Figure 2.9 contains only important
parts for an explanation.

Lines 1 and 2 define the search form. Data are sent with the post method.
Lines 4 to 7 define the departure airport select. The select tag contains a

list of airports defined with the option tags. Every change of selected airport
will cause the invoking of a JavaScript method to filter the list of destination

<form name" Forml" method=" post"
action=" c r i t e r i a . aspx?lang=en& agencyId=" id="Formln>

< input type=" hidden" name2"'VIEWSTATE"
value="dDw2ODYlMjA5Nzk7. . . " />

. . .
< s e l e c t name=" - c t l l : cboRetDayl' id=" -c t l l -cboRetDayn>

<opt ion value=" Oll'>O1</opt ion>

< input src="images/next . g i f " language=" j a v a s c r i p t "
name=" - c t l l : cmdNextM id=" -ctl l-cmdNextn type=" image"/>

Figure 2.8: Interesting parts of the SkyEurope [SkyOGa] HTML search form.

airports, i.e. a user can select only valid routes at the beginning of the searching
and booking process1.

Lines 9 to 11 define the departure day select. Similar to the departure airport
select, every change causes calling a JavaScript method to check selected dates,
e.g. that the selected departure date is before the selected arrival date.

Lines 13 to 14 define the submit button. It does not directly cause a sub-
mission of form data, it calls the submit-SB-Form JavaScript method specified
in the onclick attribute instead.

Lines 16 to 17 define hidden parameters that will contain form data that
will be processed on the server side. Their values are set in the submit-SB-Form
method.

Last lines 19 to 20 define the submit-SB-Form JavaScript method. The
method copies data from the search form to hidden parameters, e.g. line 20
shows how a value of the date2 parameter is computed, and submits data.

For a metasearch solution this kind of search form is difficult. A design of
a solution that sends a URL includes an investigation process to find out how
values are transferred between parameters. Any change may lead to a situation
where it is necessary to revisit the whole process of value transferral.

A solution that emulates user's actions to enter form data should work with-
out any problems. There can be a complication with changing the content of
parameters, such as a dependency between two or more select parameters that
requires to filter or limit a content of other select parameters, e.g. the depar-
ture - arrival airport dependency. Any dependency change, e.g. a new route or
cancelled route, may require a revision.

'Several years ago such a feature was not available. A wrong selection was possible, it was
checked on the server side and the server produced an error page. This caused unnecessary
client - server network communication and prolonged the time necessary to correctly fill out
a form.

<form name=" SBform" method="POST7'
a c t i o n = " h t t p : / / w w w . b o o k r y a n a i r . c o m / s k y l i g h t s . c g i n >

. . .
< s e l e c t name=" s e c t o r 1-0" onchange=

" c h a n g e O r i g D e s t L i s t (d o c u m e n t . SBform. s e c t o r l - o) ; ">
< o p t i o n value="aAAR">Aarhus (AAR)
< o p t i o n value="aABZ">Aberdeen (ABZ)

< s e l e c t n a m e = s e c t o r - l - d onChange='reconcile-dates()'>
< o p t i o n value=01>01
< o p t i o n value=02>02

. . .
< i n p u t value=" S e a r c h - f o r , F l i g h t s 9 ' type=" b u t t o n "

onc l ick="submi t -SB-Form () ">

< i n p u t type=" h i d d e n " name=" d a t e l " >
< i n p u t type=" hidden1' name=" d a t e a n >
. . .
f u n c t i o n submit-SB-Form () {

d o c u m e n t . SBform. d a t e 2 . value=""+rYear+rMonth+rDay;

Figure 2.9: Interesting parts of the Ryanair [RyaOG] HTML search form.

Chapter 3

Form Mapping

A sophisticated metasearch solution creates a universal gateway, called a
global interface, that reflects features of searched engines, called local interfaces
- in other words, a metasearch solution of car hiring search pages contains
different elements as a metasearch solution to flight booking system pages.

This chapter explains a theoretical background of an item mapping from
local interfaces to a global interface and vice versa. All interfaces are presented
as search forms in our case.

In general there are two form mapping and metasearch solution oriented
research fields: general-purpose and special-purpose. This thesis describes a
special-purpose oriented metasearch solution.

Firstly a classification of a common search engine will be presented. Then
the following section shows an interface representation. Both sections will be
used in the third section about a matching of attributes and in the fourth sec-
tion about creating a general interface. The last section describes a process of
the result presentation.

3.1 Search Engines Interfaces Classification

A classification of search engines aims to specify possible different interfaces
with characteristic elements.

Based on analysis and classifications mentioned in the [DH97], [MYL02],
[Wei04], [CCHOS] and [PMHY04] papers, there are the following three types of
interfaces:

Simple Type. Such an interface consists of one search form on one page.

For an example see Figures 3.4 and 3.5.

Divided Type. In this case, a search form can search multiple categories
(e.g. books, DVDs). There are the following possible implementations of
this category:

- O n e form o n one page. An interface allows the choosing of a cate-
gory, that means it has common elements for all categories and one
common way of submission.

- More forrns o n one page. There are multiple visual areas, each with
own submission, on one page.

- More forms o n more pages. Such an interface is divided into more
specialised search forms, each on a separate page.

Wizard Type. A search form is spanned into multiple pages and each
requires a submission. In this partial steps a query is built. Only after
all pages are submitted, is the query completed and executed, and results
are displayed.

For an example, see Figure 3.6.

The classification described in the [PMHY04] paper is based on analyses
of 270 sites and it has 6 types of interfaces. A transformation can be found
between this and our model and we can consider our model as a simplification.

3.2 Interface Representation

A search interface is presented as an HTML form. It usually contains ele-
ments like text box, check box, radio button, selection box and a submit button.
In most cases each of them has a label, i.e. a descriptive text on the left or the
right side of an element.

A user fills out a form, i.e. the user enters values to elements, and submits
the form. Data is sent to a server and the server returns a response according
to sent data.

The HTML source of a form contains more data that better describe the
form, like the default value or the m a x i m u m length.

The difference between a label and a default value of an element is that a
label describes the meaning of an element and a default value shows one of the
possible contents of an element.

In the interface representation, an element or a set of elements, mostly vi-
sually connected, e.g. in one row, is associated with an attribute; a label is
considered as the name of an attribute.

Each element has a format, we distinguish three types:

Text Type. One-or-multi-row box where a user can enter a free text.

One Option Type. A set of two or more options, where only one can be
chosen.

More Options Type. One or more options, where none, several or all can
be chosen.

Mapping t o the H T M L tags is straightforward: the text type i s a text box o r
a text area; one option type i s a set of radio buttons grouped in to one group,
i.e. only one can be selected, one check box, or a selection list wi th the disabled
multi-select; and the more options type i s a set of check boxes o r a selection list

with the enabled multi-select.

Each element has a value type, they are described in detail in the [HMYW04b]
paper: date, t ime , currency, number, and id. The id type indicates that the
attribute is used for identification purposes as an order number.

The name of an element, its label (if it exists) and also the default value or
the maximal length of an element can help to detect the value type.

There is a relation between multiple elements of an attribute. There are four
relationship types, as described in the [HMYW04b] paper:

Range Type. Two or more elements of an attribute are used to define a
range. A very common usage is a price range. For example see Figure 3.1
or Figure 3.3.

Part Type. It refers to the part of a relationship, like a relationship author
has two elements first n a m e and last name . For example, see Figure 3.6,
the Postcode part.

Group Type. In this type of a relationship a group of check boxes or radio
buttons is used to form a single attribute. The labels of the check boxes
or radio buttons are the values of the attribute. For example, see Figure
3.6, the select a category part.

Constrained Type. An element is a constraint for another element - a parent
element. This element is meaningless without being related to the parent
element. For example, see Figure 3.6, the Make and Model parts.

Each attribute A is represented as a n-tuple A = (N, FT, VT, DV, ML, RT),
where N is the name, i.e. label, FT is the format type, VT is the value type,
DV is the default value, ML is the maximal length and RT is the relationship
type between elements of the attribute.

The default value can be one value1, a set of values2 or not specified.

The interface representation will be used to describe a match between dif-
ferent search engine interfaces.

3.3 Matching

This section shows different approaches to finding matching attributes and
attribute values from various search engine interfaces. Some of the mentioned
approaches are described in the [HMYW04b] paper.

The first section explains the semantic matching as the main approach. The
second section shows the weight-based matching as a secondary and helper a p
proach.

lE.g. for a text box.
2E.g. for a set of radio buttons.

3.3.1 Semantic Matching

Semantic relationships between textual forms of an attribute representation
point out matching attributes of various interfaces.

The following semantic relationships can be found between a name (i.e. a
unique identifier of an attribute, in general a meaningful text that describes a
meaning of the attribute), or a default value of attributes. Each of them has
a weak and a stronger form - the strong form of a semantic relationship is
applicable in different domains, the weak form is applicable only in a specific
domain:

Strong Synonymy. Term tl is a synonym of term t2 if t l is an element of
a set of synonyms of t2. Strong synonymy is denoted by S,(tl,t2). For
example, S(pillow, cushion).

Weak Synonymy. It is denoted by S,(tl, t2).

Strong Hypernymy. Term tl is a hypernym of term t2 if tl is more generic
than t2. Strong hypernymy is denoted by H, (tl, t2) . For example, H, (f ruit, apple).

Weak Hypernymy. It is denoted by H, (t l , t2)

Strong Meronymy. Term tl is a meronym of term t2 if t l is a part of t2. It
is denoted by M(t l , t2. For example M, (f irstname, name).

Weak Meronyrny. It is denoted by M,(tl, t2). For example, M,(firstname, author).
This example shows domain-specific knowledge where the first name at-
tribute3 in one interface describes the same attribute as the artist attribute
in another interface of search engines for books or CDs.

So the main difference between weak and strong semantic relationship is that
to define a weak relationship between two attributes requires a knowledge of a
specific domain.

The semantic matching describes relationships in a natural way for a human
being, e.g. terms that describe the same feature tend to have synonymical names
- this reIationship is easily comprehensible and detectable.

Non-human processing requires a rich vocabulary with defined semantic re-
lationships. Or, as with an expert system, described in the [Jac98] and [sPK89]
books, a narrow specific expert area can be covered with a relatively smaller
vocabulary with a reasonable number of semantic relationships.

3.3.2 Weight-based Matching

The weight-based matching calculates the matching weight between two at-
tributes or values of attributes and then says whether the compared values
match or not.

First a helper pre-processing algorithm is explained and then the metrics are
listed.

3Together with the last name attribute.

The normalisation, as the pre-processing phase of attribute names and values
helps to reduce mismatches in non-human processing.

The normalisation consists of processes like lower case or upper case, removal
non-alphanumeric characters or reduction of the number of spaces:

Lower Case. It is denoted by Nl,,,,(t), e.g.

Njozue,. (" Car") = "car"

Only Alphanumeric Characters. It is denoted by Na~,hanUm(t), e.g.

Reduction Spaces. It is denoted by Ntrim(t), e.g.

NtTim(" author name ") = "author name"

The main difference between removal of non-alphanumeric characters and
reduction spaces normalisations is that the latter does not remove non-alphanumeric
characters, but both of them remove spaces. In other words, if special charac-
ters like '-' are necessary, the application of reducing spaces is appropriate.

The weight between two attributes or value of attributes t and U is computed
by the following metrics, as described in the [HMYW04b]:

Edit Distance. The edit distance metric, Wed(t, U), is defined as the number
of changes necessary to apply to transform the first value t to U. If the edit
distance of the values is lower then the allowed threshold Ted, a positive
value is returned, otherwise 0.

Vector Space Similarity. The vector space similarity, W,ss(u,~) , is based
on a tokenisation of values to get a term frequency of each term in each
value. The weight is the Cosine similarity of two strings.

U j .uj
Wvss (U, 'U) =

J ~ > (u j) 2

where m is the number of unique terms, u j is the term frequency of the
j th term in value U and similar uj is the term frequency of the j th term
in value v.

Value Type Match. If the value types defined in the previous section 3.2
are the same for two values, the value type match, Wvtm(u, U) , returns a
positive value, otherwise 0.

Default Value. Some attributes may have a default value. A metric based
on the comparison of default values t and U is the default value metric,
Wdv(t, U). If the specified default values are the same, a positive value is
returned, otherwise 0.

Boolean Property. Basically a special case for a single check box based on
the value types defined in Section 3.2. Such check box usually means a yes
or no selection. A metric based on this phenomenon is boolean property
metric, Wbp(u, t), where u and t are attributes. If both attributes have
the boolean property, a positive value is returned, otherwise 0.

The final weight W(u, t) between attributes t and u is the sum of the above
mentioned metrics:

A positive value for each metric is determined per a specific domain.
For example, in a flight prices domain, values of departure and arrival at-

tributes can help to identify these attributes. They are specified as possible
values4, i.e. not as a free text, and their content is similar5. It follows that a
higher positive value for the edit distance metric and a lower positive value for
the other metrics is the right constellation.

For a book prices domain, where values are mainly entered as a free text, a
higher positive value for the value type match metric and a lower positive value
for the other metrics is a more appropriate configuration.

Attributes and attribute values with the highest weight value are considered
as matched.

3.4 Global Interface

One specific search form contains its attributes and attribute values, i.e. a
local interface contains its local attributes and local attribute values.

The matching process finds local attributes with the same meaning from a
set of local interfaces.

A set of attributes that emerges from this process is a set of global attributes,
that is a set of attributes where each of them can be found in every local inter-
face through a correlation based on the semantic matching or the weight-based
matching, that has the highest weight of selected metrics.

The name of a global attribute is found in a process called merging attribute,
for more details see Section 3.4.1.

A value or values of a global attribute, i.e. a global attribute value, emerges
in the process of merging attribute values process described in Section 3.4.2.

Global interface is an interface that contains global attributes with their
global attribute values. The process of creating a global interface is described in
Section 3.4.3.

41n most cases as a drop-down list.
5Airport codes and names are standard

3.4.1 Merging Attribute Names

A global attribute name is important for creating a human-usable global
interface.

A global attribute ga emerged from local attributes lai, where i E 1, .. , m
where m is the number of local interfaces.

The set of names of the local attributes is defined as N = {n(al), n(az), .., n(a,)),
where the n(a) function returns the name of the specified attribute a.

The most frequently occurring name is the name of global attribute n(ga) =

n(ak), where k is the first index of the most used name in the N set.

It may happen, the local interfaces are so varied that none of the names is
the most used. Then different techniques may be used like the longest name,
assuming that the longest text contains the most of human readable information
tokens.

3.4.2 Merging Attribute Values

In general, there are three possible ways to merge attribute values from a
number of local interfaces:

W Collection. All values from all local interfaces are collected as values of the
general attribute. Any duplicates are removed.

The (dis)advantages of this solution are:

+ just one request is sent per local interface

- a huge and confusing amount of values may be displayed to a user

+ real values are displayed to a user

W Generalisation. Relationships are found between values from all local in-
terfaces. Appropriate relationships are used to replace more values with
one. Of course, any duplicates are removed.

The (dis)advantages of this solution are:

+ convenient amount of values is displayed to a user

- more requests are sent per local interface

Most Used. Only the most used values are considered.

The (dis)advantages of this solution are:

+ convenient amount of values is displayed to a user

- more requests may be sent per local interface

+ easy to develop

- values can be confusing and wrongly distributed

Possible value types are textual or numerical. Each of them requires special
handling.

Merging Textual Values

In the first step, all values for a global attribute from local interfaces are
clustered into groups. The selection is based on above the described matching
metrics such as synonymy and hypernymy match, edit distance and vector space
similarity matching.

Values categorised into groups are processed based on one of the three merg-
ing approaches.

The third way, most used merging, represents a selection of a limited number
of the most used terms in each group.

The second way, generalisation merging, presents a more complex selection
based on the identification of a representative of a group, that is a hypernym of
terms in a group or a hypernym of the most used terms.

The first way is straightforward.

A special category is a translation of terms when local search pages are in
different languages.

The translation should be performed from the less used languages to the
most used language or to the requested language. Basically, the process is not
modified, only a translation pre-processing of attribute values is performed.

A mapping of values is stored for the most used and the generalisation merg-
ing. It is used in the creation of a result from a global interface.

Merging Numerical Values

Numerical values require pre-processing where:

if values are presented in more currencies, they are converted by an ex-
change rate to the most used or other necessary currency,

if values are in physical units, these units should be converted to have a
uniform unit,

if values are in different scales, they are converted to a unified scale or to
a preferred scale.

After the above-mentioned pre-processing all locale attributes numeric val-
ues are unified.

A useful differentiation a numeric values into numerical domains is men-
tioned in the [HMYW04b] paper:

There are two numeric domains:

Non-range Numeric Domain. Values of non-range local attributes are merged
together as values of the global attribute.

Range Numeric Domain. A range numeric attribute exists in three types
of formats:

- One Selection List. An attribute consists of one selection list.
E.g. Less than 58, Less than 108, Less than 208, Less than 50€
Or see Figure 3.1.

Figure 3.1: The Penshop [Pen061 page shows a selection list for one range nu-
meric attribute for the price range.

year: 1-

Figure 3.2: The Countrybookshop [CouO6] advanced search page shows a se-
lection list and a text box that specify one range numeric attribute for the
publication year.

- One Selection List and One Text Box. An attribute consists of two
elements: a selection list for a range modifier and a text box for
numeric value.
E.g. Less, Equal, More ... 1008

Or see Figure 3.2.

- Two Text Boxes or Two Selection Lists. This type of attribute consists
of two elements where each of them can be a text box or a selection
list.
E.g. Year range: after 1968 ... before 1989
Or see Figure 3.3.

The merging process for the range numeric domain can handle borders spec-
ified in a textual form, like:

from a to b means the < a, b > interval,
before a means the < 0, a) interval for a positive number attribute or the

(-00, a) interval for a number attribute.

The range numeric domain can be merged in two ways:

o to keep the smallest scale steps. This may lead to a high number of
intervals in the general interface, but it provides a safe way of merging.

to use bigger scale steps. This leads to an acceptable number of intervals,

, ? C C ' . J J U I I F J 9 I .YUY - 9 L . U U Y b R I I V I I I I I Q L I U IP l l J Y I ~ I J I C I I W I J L I ? J I I ~

Lenses $2.n00 - $4.0110 c a n o n dialtal leris
Over $4.000 cano t l calllera lens
$ p t ~ $ p g -

-" -. -" -"-"p-.-- --
Results for canon lens S $1,000.00 - $3,000.00

Canon 70-200 t~ l~ i f/2 8L USM E F Lens - Cash-In with
Canon ...

Figure 3.3: The Froogle [GooOGa] page shows two text boxes that specify one
range numeric attribute for the price range.

although it can cause that one general request means more requests for a
local interface.

For exampIe, the merging of two selection lists from two local interfaces; the
smallest scale step is kept:

- Under $2

- From $10 to $50

- From $50 to $100

- Over $100

- Less than €5

- Less than €10

- Less than €20

- Less than €50

it is necessary to convert the first list currency from US$ to 8, with the exchange
rate US$ 2 for l€:

- Under €1

- From €5 to €25

- From 625 to €50

- Over €50

and then the two lists can be unified as values of the general attribute:

- Under €1

- From €1 to €5

- From €5 to €10

- From €10 to €20

- From €20 to €25

- From €25 to €50

- Over €50

Also in the merging of numeric values the general ways of merging can be
applied, especially the collection way, to use all values from local attributes or
the most used way to choose only the limited number of the most used values.

Merging Complex Values

The merging of complex values is similar to the merging of a list of values,
while values of more parameters are used, not only values of one parameter.

The merging can concatenate parameters or split them. The are no general
rules, the complex value merging covers only specific domains. The most used
domains are mentioned in the following list:

Date Domain. A date value can be expressed by one, two or three param-
eters - the most common configurations are: day, month, year or month
& day, year or month & day & year.

Date domain merging can be denoted in the following ways:

- one parameter to three parameters is denoted as

Mdate13 (param, format) = {paramday, Parammonth, param, ear)

that is a param with the specified format format is split into three
parameters day, month and year with their values paramday, parammonth
and paramyear .

- three parameters to one parameter is denoted as

- for two parameters to one or vice versa the denotation is similar.

The most important is the format input parameter that defines the con-
tent of a specified parameter. Possible values of this parameter are defined
in this list:

- d defines the day part of the parameter value.

- m defines the month part of the parameter value.

- y defines the year part of the parameter value.

- a non-numeric value defines a delimiter like '.l or ','

Example of a date domain merging:

where param = "11.17.1989". The parameters will contain the following
values: paramday = 17, parammonth = 11 and param,,,, = 1989.

The merging process should also handle relative notation of a date, such as
Today or Tomorrow, where the textual form is translated into the absolute
value and then processed like other absolute dates.

The majority of relative date textual forms depend on the actual date.

Currency Domain. A currency can be expressed by one or two parameters
- the configurations are the following: number & currency, currency &
number or number, currency.

The currency domain merging from one parameter to two parameters is
denoted as

Mcurr12 (param, format) = paramnumb,, , paramcur,

that is the param parameter is split into parameters number and currency.
Merging from two parameters to one parameter is denoted similarly:

Again the most important input parameter is the format parameter:

c defines currency of the parameter value.

n defines number of the parameter value.

a non-alphanumeric delimiter that delimits the previous two parts. E.g.
(space) or ', ' (comma and space).

Example of a currency merging:

Mcurr12 (param, "c n") = {paramcuTT, paramnumber)

where param = "US$ 100". The parameters will contain the following values:
param,,, = "US$" and paramnumb,, = 100.

3.4.3 Creating Global Interface

A global interface contains global attributes with their global attribute values
and a global attribute name.

The usability of a global interface that contains all global attributes can be
reduced if the number off all global attributes is too high, e.g. over 10 global
attributes. There is a possibjlity to reduce their number, i.e. only the selected
attributes will be available for an end user.

The process of the reducing of the number of all global attributes can be
based on the number of local interfaces where a mapping for the processed global
attribute exists, i.e. a higher occurrence of a global attribute indicates a more
important attribute.

Although a global interface can be created automatically, it should only
represent the starting point of the creating process, e.g. where the order of
attributes corresponds to their importance, but the final layout has to have a
human blessing.

Minimum Price: 1500 ;I
Maximum Price: 8000 A

... ,
,Next >;

Figure 3.4: The first search form of the Autolocate search engine.

Select a Manufacturer: I All Manufacturers

Select a Ranae: t ~ l l Ranaes -1
Please enter a Postcode: I

Or select a Town: I -- Plck nearest town -- -1
Please select a D~stance l ~ n v Dlstance

Sot t 6y [~ l s t a n c e =l
S h o w Extra Search Paramete rs

Nex t > I

Figure 3.5: The second search form of the Autolocate search engine.

Example

In this example, a global interface will be created from two search forms.

The first search engine Autolocate on [Auto61 page, has the wizard type of
interface. It consists of three steps - search forms. Only the first two of t h e m
will be shown for simplicity i n this example. The search forms are shown in
Figures 1.4 and 1.5.

The second search engine Carland on the [Car061 page, has the simple type
of interface. The search form is shown in Figure 1.6.

The process of creating the general interface for the above-mentioned search
engines is the following:

1. Let's assume that the requirements are to search for a price and a manu-
facturer.

2. No conversion of values is necessary - both of search engines search in the

Figure 3.6: The search form of the Carland search engine.

30

tvbnrmurn Price 1-
Mlnlmurn Prlce 1-
Manufacturer m
Model pG".3

Figure 3.7: The global interface search form for the two car search engines.

UK.

3. The attributes Minimum Price and Maximum Price are in both search
forms and therefore they will be added to the general interface.

The values will be created by the numeric value merging.

4. Matching of the Manufacturer and Make attributes is more complicated
and can be done in two ways:

By comparing values of the attributes. They contain very similar
data; the edit distance metric has the highest value for these two
parameters.

By the strong synonymy and the strong hypernymy - manufacturer
and maker are synonyms; maker and make are hypernyms.

The values of the general attribute Manufacturer (because the name is
longer and may contain more information than Make, although in this
case the informational value is the same) will be created by the textual
values merging process.

5. The local attributes Range and Model can only be considered as matching
when using the following ways:

By comparing values of the attributes.

Domain knowledge that range and model mean the same, i.e. the
weak synonymy semantic relationship.

The name of the general attribute will be Model. The values will be created
by the textual value merging process.

6. The graphical layout is done manually and it is shown in Figure 3.7.

3.5 Global Result Presentation
The intention of this section is not t o describe i n detail such a complicated

topic as the global result presentation is, solely t o provide the whole picture of a
meta search solution that also needs t o display obtained results.

A global interface is used as a unified interface for all local interfaces.
A user enters data in a global interface, then a system is able to translate

global attributes and their values to local attributes and values and to perform

Figure 3.8: An overview diagram of creating a metasearch scenario.

requests to search engines presented by local interfaces.

Particular results obtained from search engines need to be presented in a
unified form. The process of creating a global result presentation is similar
to the process of creating a global interface, but the technical background is
different.

A global interface is created from a relatively clearer environment of attribute
- value pairs, that are technically distinguished with special tags; whereas a
global result presentation does not have a friendly technical environment - re-
sulting data can be presented in various forms such as simple text, table, a set
of rectangular areas6, basically in an unstructured and unorganised way.

A solution to extracting data from results is to use a wrapper such as Lixto
Vzsual Wrapper. For more details, see Section 4.3.2.

There are techniques to merge search results automatically, as described in
the [CHT99] and [LMS+05] papers. Another automatic search result merge
approach, described in the [ZMW+05] paper, uses graphical information like
position of a block of data to distinguish relevant and irrelevant data.

The final presentation should be the result of human-guided process that is
more appropriate, less error-prone and results in a easy to understand, struc-
tured and well-arranged format.

The process of creating a metasearch scenario is summed-up in Figure 3.8.
The mapping from local interfaces to a global interface can be applied in

an automatic creating of a global interface, e.g. a wizard in an application for
creating scenarios. The mapping from a global interface to local interfaces is
used in metasearch solutions for processing requests, i.e. to map values from a
global interface to particular local interfaces - search engines.

6The div tag.

Chapter 4

Existing Solutions and
State of the Art

This chapter describes existing solutions and products that will be used for
the design and implementation of the Snorri metasearch solution.

The first section shows existing meta search engines, approaches and papers.

The following sections describe the starting point for new requirements and
design - the existing Lixto MetaSearch product with other related products
included in the Lixto Suite; designed, researched by the DBAI at the Vienna
University of Technology and developed by Lixto company.

The first part describes the main products of the Lixto Suite and the second
part describes the current Lixto MetaSearch version.

4.1 Existing Meta Search Engines
Existing meta search engines can be split into academic and commercial

engines. The first group focuses on and solves particular problems and most of
the solutions do not concentrate on a high use load. The second group needs to
create very effective solutions and avoid slower responses for an end user.

4.1.1 Academic Projects

Most of academic projects focuses on the theoretical background of a metasearch
engine and related topics.

The first papers in this area were focused on the analysis that existing search
engines cover a very small range of the pages on Internet, and that a combination
of several search engines provides better results.

The [LG98] paper explains that a single engine does not index more than
about one-third of the indexable Web and says: "The coverage of the six engines
investigated varies by order of magnitude, and combining the results of the six
engines yields about 3.5 times as many documents on average as compared with

the results from only one engine."

A lot of meta search engines were created at universities: Inquirus, MetaCrawler,
SavvySearch, ProFusion and meta search for images MetaSEEk. Some of them
operate as commercial services.

For more details see below.

One recent group from the University of Illinois focused on the creation of
an automatic meta search engine that is described in their papers [WMYLOl],
[HMYW04a], [PMHY04], [HMYW04b], [WYDM04] and [MWR+05]. Their re-
cent papers [LMS+05] and [ZMW+05] focus on automatic result merging. They
created a system called WISE. Its features are mentioned below, in the last
section.

In the [WYDM04] paper they mentioned that they are investigating: "the
possibility of user interactions in resolving other uncertainties in the matching
process ".

The [HZC05] paper describes a tool for extracting and matching web query
interfaces - MataQuerier. The paper says: "The MetaQuerier sys tem fully au-
tomates all the tasks in streamline t o output semantic matchings". For demon-
stration purposes the tool can display matching elements.

The [HC03] paper describes a new approach based on a statistical schema
matching. The paper says: "Unlike traditional approaches using pairwise-
attribute correspondence, given a set of input sources as observed schemas,
we will find hidden models that are consistent, in a statistical sense, wi th the
schemas observed. Using a scenario of matching".

There is also ongoing metasearch research at the University of Freiburg.
They use a fully automatic wrapper tool to extract the results received from
search engines. For more details see the [SimOG] page.

In general, research has moved from simple search form engines to more
complicated search form engines with automatic mapping of a search form to
the automatic processing of results.

Inquirus

The Inquirus metasearch engine described in papers [GLG+99], [GLBG99]
and [GloOl] was created to avoid difficulty in merging the results from multiple
search engines. The [GLG+99] paper says: 'Ynquirus downloads and analyzes all
pages listed by the search engines. W i t h the full-text of all pages, the document
ordering problem returns t o the easier, but still very hard, problem encountered
by standard search engines." The architecture allows the ability to display
query-sensitive summaries, results that are always up to date with the current
contents of the Web (improving relevance), and improved duplicate detection.

The Inquirus meta search engine also allows searching for images. This
functionality also facilitates the MetaSEEk meta search engine, for more in-
formation see below, but MetaSEEk targets query by example as opposed to
keyword search, which is the focus of the image metasearch functions of Inquirus
as described in the [LG99] paper.

MetaCrawler

The MetaCrawler metasearch engine provides a single, central interface for
Web document searching. It receives a query and posts the query to multi-
ple search services in parallel, collates the returned references, and loads those
references to verify their existence and to ensure that they contain relevant in-
formation. The [SE951 paper says: "The MetaCrawler is suf ic ient ly lightweight
to reside o n a user's machine, which facilitates customization, privacy, sophis-
ticated filtering of references, and more."

It is available on-line on the [Met061 site as a commercial service.

SavvySearch

The [HD97] paper says: "SavvySearch is designed t o balance two potentially
confiicting goals: maximizing the likelihood of returning good links and mini-
mizing computational and Web resource consumption. T h e key t o compromise
is knowing which search engines t o contact for specific queries at particular
times." The engine tracks long term performance of search engines on specific
query terms to decide which are appropriate. It also decides if to contact a
search engine at all by monitoring recent performance of the search engine.

It was absorbed by Search.com and it is available on-line on the [Sea061 site
as a commercial service.

P r o h s i o n

The Prohsion metasearch system, described in the [Gau97] paper, is a Web
meta-search engine that supports automatic query dispatches. It analyzes in-
coming queries, categorizes them, and automatically picks the best search en-
gines for the query based on a priori knowledge - confidence factors - which,
as described in the [Gau97] paper, "represents the suitability of each search
engine for each category. I t uses these confidence factors t o merge the search
results into a re-weight list of the returned documents, removes duplicates and,
optionally, broken links and presents the final rank-ordered list t o the user".
The [BBC971 paper says: "ProFusion's performance has been compared t o the
individual search engines and other meta searchers, demonstrating its ability t o
retrieve more relevant information and present fewer duplicate pages.''

ProF'usion meta search is also available on-line on the [Pro061 site as a com-
mercial service.

MetaSEEk

MetaSEEk is an integrated search engine, which serves as a common gate-
way, linking users to multiple image search engines. The [BBC971 paper says:
"It includes three main components: display interface (for a client), me ta search
engine and query interface (for search engines). " The query interface compo-
nent receives search queries from a user and translates them to the specific query
interfaces used by each target search engine. Then the dispatching component

decides which search engines the query should be sent to. The last component,
the display component merges the results and ranks them for display.

The [BBC981 paper says: '(It evaluates the performance of each query method
o n a search engine for future queries based o n the user's feedback." This in-
formation is then used to optimise and modify the corresponding entries in a
performance database.

The feedback page is shown in Figure A.5 on page 148.

WISE

The [PMHY04] paper describes a new approach of clustering e-commerce
search engines so that clustered engines in one cluster sell similar products.
This fact allows the building of a metasearch engine over all e-commerce search
engines in a cluster. The [PMHY04] paper says: "Our approach performs the
clustering based o n the features available o n the interface page (i.e. the W e b
page containing the search form or interface) of each E S E . Special features that
are utilized include the number of links, the number of images, t e rms appearing
in the search form, and normalized price terms. O u r experimental results based
o n nearly 300 E S E s indicate that this approach can achieve good results."

For more details see a list of related papers and projects on the [Men061 page.

4.1.2 Commercial Projects

The commercial metasearch engines can be split into the following categories:
handling of general search engines like Google, handling specialised search en-
gines and complex metasearch solutions.

General Search Engines

Search engines like Google, Altavista or Yahoo have and are focusing to have
very simple user interfaces, i.e. search forms.

To create a mapping for those search engines is very simple, there is practi-
cally just one parameter - the search phrase.

Although a search phrase has a simple syntax, like using '+' or ' e lement1
element2'' practically all of the above-mentioned search engines have the same
syntax, as described on their help pages [GooOGb] and [YahOG].

A metasearch engine basically has a simple job:

1. map one global parameter to several search engines with one parameter

2. perform queries to search engines

3. retrieve results

4. transform results like sorting, filtering and removing duplicates

5. display results

The main difference between metasearch engines with low complexity of
searched engines is in the transformation and presentation of results. All of
them cover the well know search engines.

The Mamma metasearch engine, available on the [MamOGb] site, uses for
transformation its own rSort algorithm - rSort works like a voting system
for search results. Their [MamOGa] about page says: "The search engines
Mamma.com queries often return duplicate results. Instead of simply elirninat-
ing the duplicates as many metasearch engines may do, we use this information
to rank our results. Each duplicate search result is considered a 'vote' for that
result. "

The K a r t 0 0 metasearch engine, available on the [KarOG] site, presents its
results in an interesting graphical form - maps. For example see Figure A.6 on
page 149.

The jm2 metasearch engine, available on the [JuxOG] site, facilitates the
comparing of results between Google, Yahoo and MSN search engines, that is
it can show what e.g. Google found and what others did not and vice versa.

The Vivisimo metasearch engine, available on the [VivOGb] site, facilitates
clustering results. For example see Figure A.7 on page 149.

Specialised Engines

A more complicated search form indicates a more specific search engine. A
good example are search engines for shops or the travel industry, like flights,
hotels or car rental.

The flight metasearch engine Check Felix, available on the [CheOGb] site,
searches more then 170 particular airline and travel agent pages that are de-
scribed on its [CheOGa] page.

Its situation is completely different compared to general search engines - it
has to map nine parameters, see its [CheOGb] main page, to various pages from
different countries with unstable parameter names.

The travel metasearch engine Kayak, available on the [KayOGb] site, describes
its technology on the [KayOGc] page: it searches 100 on-line travel sites, hundreds
of airlines, thousands of hotels and leading rental car brands.

The [KayOGa] specification for a hotel search partner defines that the partner
has to provide a CSV or an XML file.

The flight metasearch engine Skyscanner, available on the [skyOGb] site,
searches for cheap flights in Europe and Australasia. Their specific approach .
is based on the fact that users start the update process for the price of the
selected flight if the price was not recently updated. The engine essentially only
updates flight prices chosen by users and it does not update all flight prices au-
tomatically. The most demanded flights are collectively updated in a short time.

From the technological point of view the above-mentioned metasearch en-
gines, like others in this group, have hardwired mappings for particular search
engines.

Complex Solutions

Some companies provide products for creating metasearch like solutions.

The Fetch company provides the Fetch Agent Platform for extracting and
integrating information from multiple Web sources, and the [FetOG] page says:
'Yo transform the data into a form that is useful for business applications."

The Fetch Agent Platform is composed of AgentBuilder, the design-time
component, and AgentRunner, the run-time component. Additional capabili-
ties, including the ability to extract named entities and to normalize terminology
across sources, can be deployed as part of an AgentRunner installation.

They also did research in the area of automatic wrapper maintenance that
is described in the [LMKOZ] paper.

The Vivisimo company, see the [VivOGb] company site, provides the Veloc-
i ty platform for crawling and indexing documents and databases, searching all
sources with just one query and it offers, as mentioned on the [VivOGc] page,
search results organized in folders rather than long lists.

A part of the Velocity platform is the Content Integrator product that facili-
tates search query through a single search interface that acts as an intermediary
to various informational repositories. The query is sent simultaneously to all
designated search sources and results are returned to the user in a single list.

The Content Integrator [VivOGa] specification says that the company pro-
vides handlers for the most commonly used search engines (Google, Autonomy,
FAST, Ultraseek, Verity, etc.). A custom search engine, that is not included,
requires a minor customization to complete the integration process.

4.1.3 Lixto Project

The Lixto Suite presented below with the Lixto MetaSearch product is com-
parable to common metasearch commercial solutions.

The Lixto Suite facilitates a strong platform for accessing Internet sources
with all features like HTTPS and Java Script. The Lixto MetaSearch is a
product to write hardwired metasearch solutions.

4.2 Lixto Suite

The Lixto Suite consists of two products: Lixto Visual Wrapper and Lixto
Transformation Server.

Each of them solves a different area of problems and the connection between
them is a XML document as an universal exchange format.

The Visual Wrapper part provides downloading and extracting an XML
document from an Internet source, like a web page.

The Transformation Server part provides data flow processes like collecting,
transforming, concatenating, sending and storing for XML documents.

Together they present a complete solution to data processing from the In-
ternet.

MetaSearch uses the first product, Visual Wrapper, that provides structuring
capabilities for Internet sources.

4 Goooooootlooog I P b
Resultpage. Previous 1 2 3 rl5 G 7 8 3XY.l Next

Figure 4.1: Result pages navigator on Google. (Probably the most famous pages
navigator in the world.

4.3 Lixto Visual Wrapper

The Lixto Visual Wrapper, VW, that is described in the [GKB+04], [BFGOlb]
and [BFGOla] papers, is a product that provides a visual and an interactive way
to create a set of instructions, called wrapper, for extracting of data from web
pages into an XML document.

The product consists of modules such as Navigator, Extractor and Visual
Developer that are described in the following sections.

4.3.1 Navigator

The navigator module is able to load a start page, defined by an URL and
then mimic actions of a user like moving and clicking with a mouse or typing
on the loaded page.

User's actions cause different changes that depend to a greater extent on the
defined functionality of the loaded page and to a lesser extent on the standard
browser functionality.

The recording of user actions is more powerful than a recording of request -
response behaviour because it is able to record the behaviour of internal func-
tions of a page, e.g. a page can change its structure by clicking on a link or
button - this is a functionality of a page; or a browser creates the onsubmit
event when a user clicks on the submit button and the related form data are sent
to the specified URL - this is the standard functionality of a browser, although
this behaviour can be changed by the internal functions of a page, for example
validation of data.

One important change is a change of the actual URL, where a new page is
loaded and the whole process continues on the fresh loaded page.

This allows a navigation through several pages, i.e. portals with a login
screen, pages with a menu or wizard style pages, that is a requested result page
is retrieved after several query pages.

Also search engines style pages are covered, which is very important for
MetaSearch, i.e. pages, where the required result is spread over more pages
that are accessible through a page navigator, as in Figure 4.1.

The Navigator process consists of the following steps, for a diagram see
Figure 4.2:

1. Receive a request.

2. Start a navigation sequence with the starting URL.

3. Send recorded user actions like moving with the mouse, keystrokes, clicks.
These actions may lead to change of URL or page structure. All actions
can be parametrised.

4. Last recorded actions are sent; the last page is returned and it is used in
the Visual Wrapper module.

The next step is to extract data from a loaded page.

Parametrisation

A loaded page is a result based on user's requests that are recorded in a
navigation. A navigation can be parametrised, that is a process using this
navigation can specify the values of parameters.

Specific recorded user actions can be marked as a parameter like entering
a name of a product. The replaying of a recorded navigation uses values of
parameters, i.e. it replaces recorded values with parameter values.

This allows widely reuse of a created navigation for e.g. searching for prod-
ucts with different attributes.

A very important and complex topic in this area is the mapping between
parameters of different search engine forms, i.e. values of parameters are defined
on a general level and are used for different search forms with different parameter
features like name and value metric.

For more information see Section 5.7.

4.3.2 Visual Wrapper

The Visual Wrapper or extractor module mines requested data from a page
into a predefined output structure.

Because the result is an XML document, the predefined output structure is
given by a DTD or xSchema description.

The Visual Wrapper process consists of the following steps, for a diagram
see Figure 4.2:

5. Requested data are selected by the Elog extraction language or XPath.

6. Selected data are mapped to the output structure.

7. The resulting XML document is created and returned.

Wrapping Search Forms

A wrapping process, in general, allows the extracting of data from a web
page. For most cases, a result is based on human readable information from the
extracted web page.

But the wrapping of search forms can also provide machine readable infor-
mation like parameter names and values of hidden parameters.

Obtained information can be used in two processes:

Figure 4.2: The processing of Navigator and Visual Wrapper. Navigator sends
the first URL and then applies recorded user actions to the page. The last page
is then processed by Visual Wrapper, where elements are found and their values
are extracted to a XML document.

A mapping creating. A graphical interface or a helper tool can use this
data and speedup the process of creating a mapping like to display a list of
all parameters or to find automatically matching parameters and values.

The URL mapping, as shown in Section 5.6. This feature allows to dy-
namically and automatically find matching parameters and values, i.e. a
developer does not have to fully specify a mapping; its vague formula-
tion can describe relationships between elements that leads to a non-fixed
mapping.

4.3.3 Visual Developer

The Visual Designer product is a visual tool for creating a complete navi-
gation and extractor procedure, that is also called a wrapping.

The user graphical interface is inherited from the Eclipse interface, that is
represented as a mature interface and world leaders in development tools have
claimed they will use Eclipse for creating their own tools.

A user uses a full-featured and world-wide accepted Mozilla browser inte-
grated into the user interface for creating a navigation and an extraction.

An example of the wrapping mode with highlighted anchors on a page, see
Figure A.3 on page 146.

4.3.4 Usage of Mozilla

Mozilla is a mature browser based on Netscape Navigator fundamentals.

The browser engine, Gecko, was designed to support open Internet stan-
dards such as HTML 4.0, CSS 112, the W3C Document Object Model, XML
1.0, RDF, and JavaScript, that includes also AJAX, as described on the [MozOO]
page.

But Mozilla is not only a browser, it is also a cross-platform application
framework, a base for many other browsers and last but not least an open
source community, see the [Moz05] page for details.

4.4 Transformation Server

Lixto Tranformation Server, TS, described in the [Her021 thesis, is a product
that in general provides data flow between various components.

The TS solution is a complex system that has large input and output pos-
sibilities, with rich internal functionality. Almost all features are accessible
through a graphical user interface. It defines several user roles that have spe-
cialised user interfaces.

The following sections describe TS features.

MetaSearch i s basically a subsystem of the T S system. Although they were
developed separately, they share the same ideas and solutions for c o m m o n prob-
lems.

T h e new MetaSearch version as described and prototyped in this thesis brings
J 2 E E technologies like E J B that are used o n a limited area compared t o T S . I t
i s easier t o solve obstacles and pitfalls that will emerge in a smaller project
and then predict more accurately possible problems and go around already know
pitfalls in a larger project like T S .

4.4.1 Components

Each component has its functionality like transformation or delivering data
to an external system. All components have specified allowed inputs and out-
puts; the number of them is limited by the specification. The transmission
medium between components is an XML document.

Almost all component types have the possibility to be started at defined
times. This functionality is called scheduler.

A schematic picture of the processing is shown in Figure 4.4.

A set of components is called a process or a scenario or a pipe. It groups
components to achieve a functionality like to read data from required sources,
integrate it and send by an e-mail to a user. A pipe is a directed acyclic graph.

When a component is started, it applies its function to its inputs. When
inputs changed, the result is also changed and this change is propagated to the
following components, i.e. they are started by this change.

In TS there are several components, the main ones, from the metasearch
point of view, are mentioned in the following list:

Source. The Source component facilitates obtaining data from various
sources as Internet, by means of VW, database or web service. It is the
first component in a pipe.

XSLT. The XSLT component facilitates a transformation of an input XML
document with an XSTL. The Transformer and Integrator components fa-
cilitate specialised but simplified functionality of the XSLT component.

Composer. It provides a specialised transformation of an input XML into
formats like simple text, PDF, picture. Basically every deliverer compo-
nent has its composer component.

Deliverer. It facilitates delivering data to various systems like e-mail, FTP,
database. It is the last component in a pipe.

4.4.2 User Roles
As mentioned above, TS is a complex system. It facilitates its functionality

from more points of view, i.e. several user roles were defined and each of them
has its user interface optimised for the user role tasks.

The following user roles and user interfaces were defined:

Figure 4.3: Hydra and its position between Transformation Server and Naviga-
tor and Visual Wrapper.

Administrator. It facilitates the server configuration and it allows to mon-
itor and manage running pipes.

Scenario Designer. A workbench for a scenario developer. It allows to
create new scenarios, add components and configure them.

For a screenshot see Figure A.4 on page 147.

User. A lightweight user role with simple interface facilitates the using of
created pipes by a developer.

Manager. A role between a developer and a user. It allows to manage a
limited set of pipes used by users.

4.4.3 Hydra

Hydra is a layer between Transformation Server on the one side and Navi-
gator and Visual Wrapper on the other hand, see Figure 4.3.

Generally, it provides an unified interface between an application and couple
Navigator and Visual Wrapper.

Hydra allows Transformation Server or any application in a simple way to
use all the power of Navigator and Visual Wrapper.

There are three main advantages of Hydra:

It allows to separate and install Hydra with Navigator and Visual Wrapper
on one server and on another application like Transformation Server on
another server.

It hides any possible problems with Navigator or Visual Wrapper. If
there is a problem with a not responding Visual Wrapper instance, the
process can be terminated and start a new instance, that will start again
or continue in a process.

The last advantage is technology-dependent. A Java enterprise applica-
tion that uses EJB and runs on an application server can not use the
JNI library, for more details see the Sun EJB specifications [Sun03b] and
[SunO5b]. Navigator and Visual Wrapper use the JNI library to commu-
nicate with Mozilla.

Hydra is a multi-threaded Java application that publishes an interface to
applications and uses the Navigator and Visual Wrapper common interface to
communicate with them.

Hydra starts instances of Navigator and Visual Wrapper locally on a server,
i.e. typically on a server there is one Hydra instance and many Navigator and
Visual Wrapper instances started by the Hydra instance.

4.5 Lixto MetaSearch
This section is dedicated to the actual version of Lixto MetaSearch, that is

described in the [Ros04] thesis.
The first sections describe requirements, the second the state of the art. The

third and the following sections show problems of the current version. The last
section lists new requirements for the new version.

4.5.1 Requirement S

Transformation Server is a heavyweight solution with complex data flow
processing. Its main principle is based on processing at defined times, where a
result is delivered to many users.

MetaSearch complies with completely different requirements.
It was created to provide a highly optimised environment able to process

multiple requests in undefined times, where each request required its processing.
In other words, MetaSearch has to be fast but reliable.

See Figure 4.4 and Figure 4.5 for a schematic picture of the differences
between the Transformation Server and the MetaSearch.

4.5.2 Current Status

The current MetaSearch implementation consists of three main parts:

Engine. The multi-threaded core of the system.

It processes a received request: creates a job that is put to a pool of jobs;
a main system thread takes a job from the pool and executes it; in the
last step all results (for more search engines) are taken and transformed.

The execution of a job consists of the following steps; see Figure 4.6 for a
work flow diagram:

1. For each job a request for the corresponding search engine is prepared.
This part is sequential.

G Tmnsfont61ons

2 Prom!
3 Navrgat~on 7 ResuI
4 Ex:8:racllon 5 XML document

Visual Wrapper Transformation Sewer

Figure 4.4: A schematic picture of the processing in Transformation Server.
Results are generated in scheduled times and sent to users. There is heavy
traffic only in the last step, sending results to users.

Visual Wrapper MetaSearch

Figure 4.5: A schematic picture of the processing in MetaSearch. Results are
generated on a request by users and sent back to users. Heavy traffic is basically
in the whole system.

Create job a
Put $0 y o l I

Prepare request
b r search englne

Transformation Q

Nalrigwtur

Navigator

Extractor

Figure 4.6: The work flow of the current MetaSearch version. The last but one
process Transformation is one of the problematic points because the MetaSearch
is not able to process it parallel.

This point is problematic for complicated scenarios that require a
longer t ime for preparing a request. T h e problem was partially solved
by creating the possibility t o process a part of the preparation of a
request parallel; it is a solution that broke the design.

2. A job is split into threads, for each search engine one. This allows a
concurrent processing and faster delivery of result.

3. A request is sent, a response is downloaded and the result data are
extracted via an instance of Visual Wrapper.

4. When all the results are received, the final transformation of results
is performed.
This i s one of the problematic points because it i s n o t in the parallel
part of the processing.

5. The final result is ready.

MetaSearch
Composer
Y2.4.5

narn
Password:

Figure 4.7: The login screen of the current MetaSearch version.

Web Layer. The web layer is implemented in WebWork, for details see the
[Ope06] page, a MVC, defined in the [SunOGc] specification, is a framework
similar to Apache Struts, that is described on the [ApaOGb] page, but
simpler.

It receives all HTTP requests, they are then dispatched to the engine part
or to the administrator graphical user interface.

Administrator Console. A user web interface that allows to manage installed
search engines handlers, to enable or disable them, or to configure them.

See the 4.7 figure for the login screen and the 4.8 figure for the list of
installed handlers.

The engine part is the oldest, the last two were added later with a medium
impact to the engine part.

There are settings in the configuration of MetaSearch that limit various
numbers and give protection from problems such as not enough memory, high
processor load, high network traffic:

the maximum number of concurrently received requests. A request beyond
the limit is refused.

the size of the downloading processes pool

the size of the extracting processes pool

Log Off Preferences Aemlnlstratlon View Contiguratlon Vlew 4, 1.3 m 5 P~*vI I

* - .
- J

i l
i An overvlevd of the configured MetaSearch appllcat~ons

1 List o f available Metasearcl1 applications

http lllocalhast 9090i disabled

nttp'lIlocalhost'90901 enabled
transavia http lilacalhost 9090i enabled

airone http://locaIhost.90901 enabled

germamngs http.lIlocalhost'9090/ enabled
ryanalr http.l~ocalhost9090I enabled
alltalla http'lflocaihost 90901 enabled

flydba http:lllocalhost:909C~l enabled
tS rneridiana http:lilocalhost 909tll enabled

skyeurope http:11Iocalhost 90901 enabled
alrbaltlc http'Nlocalhost 9090/ dlsabled

hapag-lloyd http lllocalhost.9090/ enabled

easyjet httplllocalhost.909DI enabled
bmlbaby http:Mocalhost'9090I enabled

o http:/llOCalhOSt'90901 enabled

Figure 4.8: The administrator login screen of the current MetaSearch version.
The list of handlers is in the Name column of the Attached Sources header. The
buttons on the bottom provide management of the installed handlers.

Figure 4.9: An abstraction of values of the local parameter manufacturer for
the truckscout source.

A pool has the following features:

processes can run concurrently

to limit memory and processor needs

each process is created and stored in a pool to reduce the startup time or
initialising of a process

each process is reusable, that is when the task of a process is finished, this
process can work on a next task without any influence from the previous
task(s)

Processes in the downloading and extracting pools are shared between all
executed jobs.

The current version is maintained, that means small features and bug fixing,
and is used in several projects.

4.5.3 Mapping Framework

The mapping framework provides mapping from the global interface to local
interfaces.

Its functionality is divided into two parts:

Mapping. It covers mapping of parameter values.

URI Builder. This part provides mapping of parameters.

Mapping

In the mapping every local source has mapping file, that makes an abstrac-
tion of local values of parameters; for example see Figure 4.9.

An abstraction of local values can be done manually or automatically. Vi-
sual Wrapper is used for the automatic generation, where a page with a form is
loaded by it, then all form parameters are extracted and stored to a mapping file.

All abstracted values are mapped in a global file, where each global value is
mapped to different local sources, to corresponding abstraction of local values.

For example see Figure 4.10.

The mapping between global and abstracted local parameters is divided into
three categories, where each category covers special cases:

<parameter name="type">
<manualmapping>

<value originalvalue=" 5.4">
<source name=" tec24">

<mappingvalue>Pflanzenschutzspritzen</mappingvalue>
</source>
<source name=" truckscout">

<mappingvalue>Pflanzenschutz</mappingvalue>
</source>
<source name=" casev>

<mappingvalue>Used spray er</mappingvalue>
</source>

</value>

Figure 4.10: A manual mapping for the 5.4 global value of the type parameter.
The targets are local sources tec24, truckscout and case with abstracted local
values.

Direct Mapping. This covers trivial cases; the value of a global parameter
is mapped to the value of a local parameter. It is used mainly for text
and hidden fields.

Basically it is the 1 : 1 mappings.

Domain Mapping. The domain mapping is used for a parameter with a
finite set of values. It is used for selects, radio-buttons and check-boxes.

A value set of a global parameter is mapped to values of local parameters,
where each value of a global parameter can be mapped to a set of values.
This leads to a situation, where the corresponding local source has to send
more requests, for each request at least one.

It is the n : m mapping.

Custom Mapping. The last type of mapping in the current MetaSearch
version provides support for 1 : n mappings and for special 1 : 1 mappings.

A scripting language can be used in mappings to cover special implemen-
tation needs, like transforming date values. In other words it provides a
flexible way to comply with various needs.

An abstraction of local values of a local source and a global mapping file
present a complete mapping of values form a global interface to local interfaces.

URI Builder

The URI building process maps global parameters to local parameters for
each local source by generating HTTP GET or POST requests.

For each source a separate URI is generated, or in special cases, where one
global value is mapped to a set of local values for one local interface, a set of
URI is generated.

The process of a URI building can be:

String uri = "http://www. caseumc .com/header . asp?" ;
uri += " sltModl=All&hdnPreviousProximityPage=" ;
uri += "&sltManu=" + manuf acturermapping ;
uri += "&txtMeterFrom=" +

5 ((hoursfrom. equals (" ")) ? "0" : hoursfrom);
uri += "&sltToYear=" +

((yearto. equals("")) ? "2006" : yearto);
u r i += "&sltFromYear=" +

((yearfrom. equals("")) ? " 1950" : yearfrom);
10 uri += "-Anyn ;

uri += "&sltProd=" + typemapping;
uri += "&hdnLingo=l&txtMeterTo=" +

((hoursto .equals("")) ? "99999" : hoursto);

Figure 4.11: A part of a URI builder. An example of constructing a URI. The
variables are already mapped and transformed parameter values. The parameter
names are fixed.

manual, where a special Java class is created that implements an interface.
The interface contains one method that returns a list of URIs.

For an example see Figure 4.11.

This is a problematic part that brings high requirements into a process of
creating a scenario. A developer has t o know a programming language
and the deployment process is relatively complicated. A n y change requires
a restart of the whole MetaSearch server.

m automatic, actually a quasi-automatic process. A developer can use a GUI
in the administrator console to create visually a mapping between global
and local parameters.

Unfortunately i n practice this method was not usable for complicated por-
tals. A session identification meant that a manual U R I building process
was necessary with a special pre-loading of a local source page where a
session id was obtained.

4.5.4 Technology

The implementation of the current version of MetaSearch started almost
three years ago and the older design and technologies used there can not meet
increasing requirements.

Also new technologies matured and allowed the implementation of otherwise
hard to implement features in the old version.

A good example is the scalability feature, that can be easily achieved by
using an enterprise technology such as J2EE.

The current implementation uses J2SE and hence the environment does not
provide any support.

The main problems of the current version are listed in the next sections.
The last section summarizes new requirements.

4.5.5 Intermediate Results

MetaSearch retrieves results from more sources, each of them has its char-
acteristic such as how fast the server is or the complexity of the wrapper. The
implication of characteristics is a different response time of each source.

The current version, as shown in Figure 4.6, starts all retrieving processes in
a parallel mode, however it waits until all of them are finished and then performs
a transformation of all particular results to one unified result and sends it.

Obviously all characteristics of all sources are disregarded.

For a non-human recipient this drawback may not be desirable, but for a
human recipient, when the showing of results can be done progressively, by using
technologies such as AJAX, this drawback is critical .

For an example see the A.l and A.2 figures on pages 144 and 145.
It is an interesting feature that improves usability and responsiveness.

Also non-human recipients can take advantage of this feature; a recipient
can stop the provision of next results after several received results, e.g. it needs
only a limited amount of data or data to comply to a condition.

4.5.6 Multiple Requests

MetaSearch was designed in a way that enables it to handle multiple requests.
It receives requests so often that many processes of the previously received

request or requests are still running. This, of course, increases processor load
and memory consumption.

Slow responsiveness is the main consequence, which for a commercial meta
search application is critical and unacceptable.

The tests mentioned below were performed on a Dell desktop computer with
Intel Pentium 4 3 GHz, 2 GB RAM and the Linux operating system. MetaSearch
was tested with the Lixto Flightsearch project that searches on several flights
pages for the best prices.

The JMeter is a testing application, for more details see the [ApaOGa] page,
that is used for sending requests and measuring times.

Concurrent Requests Test

The concurrent requests test results are shown in the 4.1 table.
All requests were sent at the same time. The total response time means the

response time for all sent requests.

The tests are commented in the following list:

1. MetaSearch was fast enough for the one request test.

The response time is 11 seconds that is a user-friendly value.

2. MetaSearch was acceptably fast enough for the six requests test.

The start time is 42 seconds, but it can be hidden for an end user with an
artificial initial request to the server.

Table 4.1: The results of the multiple requests test. Legend: Config: Configu-
ration (the maximal number of concurrent requests - the size of the download-
ing processes pool - the size of the extracting processes pool), CPU: Percent-
age CPU usage, Mem: Memory usage in MB, Requests: Number of Requests,
Startup: Startup time in ms, and Response: Total response time in ms.

Config I CPU [%] I Mem [MB] I Requests I Startup [ms] I Response [ms] I

The total response time is acceptable, although a waiting page or message
should be displayed for the end user, for more details about usability see
the [Nie94] book.

6-3-3 1 50%

3. The t en requests test shows that MetaSearch is unusable for ten concurrent
requests on relatively strong hardware.

An end user would not wait 1; minute for a result, as defined in the
[Nie94] book.

The server was totally unserviceablel with this configuration under the
load.

256 1 l I 7 1 l 1 I

Success Test

The success test is another test that checks the ability of a server to respond
to a set of sequential requests sent in a specified interval.

The results are shown in the 4.2 table and the 4.12 figure.

The most suitable 6-6-6 configuration from the previous test was used in
this test.

It emerges from the results that relatively strong hardware allows the send-
ing of a request every seven seconds.

The 100% success rate is guaranteed only if the time interval between re-
quests is 7 seconds or more. Requests sent in shorter time intervals will be
refused.

An improvement of the responsiveness is an interesting feature for an instal-
lation that will be accessed by a higher number of users.

The results of the concurrent requests test and the success test imply the
need for scalability and the new design will focus on processing higher loads.

4.5.7 Session Identification Assignment

The session identification assignment problem was already mentioned in Sec-
tion 4.5.3.

'The system load average was higher then 11.

Time [sec] I Successful Requests I Success Rate

l I 3 1 30%

Table 4.2: The results of the success test.

9

- 8 - 2 7

$ 6
E
2 5

: 4 z
9
"'2

1

0
10 20 30 40 50 60 70

Time [sec]

Figure 4.12: The results of the success test.

Complicated web pages or portals, mainly generated by a web application
frameworks, such as Struts, Sun Portal, and Apache Tomcat, use a session
identification, for more details see their pages [ApaOtia], [Sun05d] and [ApaOSb]
about usage a session id.

A session identification is usually a special parameter in an HTML GET or
POST request, or it is stored in a site cookie.

Because the current MetaSearch version generates all URIs for a local source
in one step in a URI builder, there is only one way to obtain a session ID - to
make a special request to the local source in the URI builder, where a session
ID is extracted and then inserted into all URI generated by this URI builder.

This approach caused another problem in the current MetaSearch version.
When a request is received, MetaSearch generates URIs for all local sources.

This part is sequential. The generated URIs are processed in a parallel, i.e.
multi-threaded, part.

Special requests meant that the sequential process of creating URIs was sig-
nificantly slower.

A fix for the current MetaSearch version split a URI builder into two parts,
the first one is called in the sequential mode, the second in the parallel mode.
A developer can decide which part to use.

The fix is an artificial element and broke the designed architecture of the
current version.

4.5.8 Wizard Search Interfaces

The problem of wizard search interfaces is similar to the session identification
assignment problem, but it is basically not solvable in the current MetaSearch
version.

A wizard search interface was explained in Section 3.1.

If a transition between pages is provided through only a session identifica-
tion, the solution described in the previous section will help.

If a transition between pages uses generated parameters, e.g. for saving
values entered in previous pages, there is practically no solution.

Generated parameters can be generated by a know algorithm such as a simple
copy of entered values. A more complicated algorithm can be hacked, but it this
method can not be called a general solution.

Also an artificial parameter like a time stamp can ruin an attempt to emulate
a step.

A change of the algorithm on the local server side will not only make a
developed scenario unusable, but this change is also hard to detect compared to
the detection of a changed parameter.

4.5.9 New Requirements

Almost all the following requirements of the new version are missing and
hard to implement features of the old version:

Faster development of MetaSearch elements. There should be an easier way
to develop elements needed for a scenario like mappings. The currently
used creation of Java classes requires compiling, that is not trivial for the
majority of users.

The simplification consists of two parts: a graphical user interface, that is
partially designed in Section 6.3.6, but an implementation is not covered,
and the using of scripts for mappings, that is designed in Section 5.5.4
and Section 5.10 and an implementation is described in Section 7.3.3.

Monitoring of the whole process. A checking of the health of system should
be available.

A design is described in Section 6.3.5 and Section 6.4.5, an implementation
is shown in Section 7.5.

Scalability and load balancing. The solution should be scalable to meet the
requirements of a customer.

A design is described in Section 6.5.3, an implementation in Section 7.3.1.

Caching. The system should cache results to speedup the responsiveness
of the system.

A design is shown in Section 6.1.4 and an implementation is Section 7.3.1.

Source Pruning. A source pruning should be a part of the searching process.
Sources that did not provide any result for a similar query will be searched
at the end of a searching process, or not at all.

A partial design is shown in Section 6.1.4. The implementation is not
covered.

Intelligent Pre-loading. The most requested sources and queries should be
pre-loaded to speedup the responsiveness of the system.

A partial design is shown in Section 6.1.4. The implementation is not
covered.

Accessible Intermediate Results. Intermediate results of a search process
should be available, not only a t the end of the whole search process.

A design is described in Section 6.3.4 and Section 6.5.2, an implementation
is shown in Section 7.3.1.

Session ID Assignment. A session identification assignment should be per-
formed automatically, without any artificial steps. A developer should not
perform any special steps to handle a session identification.

A solution is explained in Section 5.9.

Multi-page search forms. Multi-page or the wizard style of search forms
should be supported without any special handling. A developer should
not perform any additional steps for handling search forms; generated
internal parameters should be handled automatically.

A solution is explained in Section 5.9.

In general, all requirements are designed in Chapter 5 and Chapter 6.

Chapter 5

Form Mapping Framework
Design

A mapping between global and local elements is the fundamental operation
in MetaSearch. This chapter explains how the form mapping theory is used in
MetaSearch.

A notation of a mapping will be defined, where a good choice of the notation
will bring the desired flexibility to the whole process.

The first section explains the form descriptor. The next two Sections Form
Mapping and Reverse Mapping describe the design of the form mapping theory
in MetaSearch. Mapping Design Section shows different notations of a mapping.
The two sections URL Mapping and Navigation Mapping contain two technical
realisations of the mapping design.

The theoretical background is explained in Chapter 3.
The main requirements naturally emerge from the theory - to map global

and local parameters and values in different mapping styles; the experiences
from the solution mentioned in Section 4.5, Lixto MetaSearch, determine the
requirement for easier and faster development of mappings mentioned in Section
4.5.9.

5.1 Form Descriptor

The form descriptor is an image of a search form. It is an excerpt of a search
form that contains:

parameter names

parameter values

The structure of the form descriptor has the descriptor root element with a
unique identification, name, of the corresponding local search form.

The root element contains the param element that may contain the value
elements with values, if the parameter is a list of options, the values are extracted
and the list attribute with the on value is added.

The structure is shown in Figure 5.1.

Figure 5.1: The structure of the form descriptor.

All techniques and algorithms described in the next sections work with a set
of form descriptors for all required local search engine forms.

Figure 5.2 contains an example of a form descriptor. Original search forms
are shown in Figure 8.5.

5.2 Form Mapping

The form mapping theory mentioned in Chapter 3 is applied in the develop-
ment phase.

Advanced techniques such as semantic matching or weight-based matching
support a developer in the following steps:

finding an appropriate mapping between global and local attributes and
their values.

defining a global interface.

Form descriptors of at least two local search engines are required for the
above-mentioned operations.

1 <td class="sub" valign=" top" width="28%">
2 < s e l e c t name="ADULT' s i z e = l class="sbsm">
3 <opt ion value=" 0">0
4 <opt ion value="l" s e l ec t ed=" s e l e c t e d l ' > l

1 <param name=" adul t " l i s t = " onn>
2 <value>O</value>
3 <value>l</value>

Figure 5.2: The first part shows the adult parameter in the Ryanair [RyaOG]
search form HTML page. The second part shows the corresponding form de-
scriptor part.

5.3 Reverse Mapping
The reverse mapping is a mapping process, where global attributes and their

values are transformed to local parameters and values that a local search engine
understands.

This process is performed for every local search engine. A form descriptor
is required for this process.

In the reverse form mapping process the same approaches can be applied as
in the form mapping, just in the reverse meaning.

MetaSearch uses the reverse mapping during processing requests, that is a
mapping from global to local attributes and values is used in the processing of
requests.

5.4 Mapping Notation
A mapping notation describes a matching relationship between global and

local attributes - their names and values. For each local source there is a
mapping notation between the global attributes and the local attributes defined
in the local source.

In the next sections various relationships are defined, from simple such as
complete notation to the most complicated script notation.

All notations are described in the XML style. This does not have any impact
for the final implementation, where another technologies can be used.

Because all notations are XML based, all of them have to have some common
elements that are also shown in Figure 5.3:

Root Element. The mapping root element is shown in line 1. It contains
the id attribute that contain a unique identification for a mapping.

Global Parameter Element. The global element is shown in lines 2 and 11.
It contains the n a m e attribute that points to a global parameter name.

A global parameter element contains two kinds of children elements: a
specific mapping notation for the parameter mapping, in line 3, or the
value element that is described below.

Global Value Element. The value element is shown in lines 4 and 7. It
contains the n a m e attribute that points to a global parameter value name.

Its children elements are particular mapping notations; it is shown in lines
5 and 8.

Every mapping notation has the following form that is also shown in Figure
5.4:

A mapping element and its attributes. This is specific for every notation.

A set of the local elements, where each of them contains only an attribute
id that points to a local search engine, that is the mapping notation will be
used to transform global parameter or value to a local one for the specified
local search engine.

<mapping id=" mappingIdV>
<globa l name=" globalParamln>

<!-- parameter mapping ->
<value name=" globalpar am l v a l u e l ">

<!-- value mapping -->
</value>
<value name=" globalParamlValue2">

<!-- value mapping -->
</value>

</global>
<global name=" globalParam2">

<!-- det to -->
</global>

</mapping>

Figure 5.3: A structure of common elements for mapping notations.

1 <notation-name name=" localParaml">
2 < l o c a l id=" l o c a l I d l " / >
3 < l o c a l id=" localId2"/>
4 </not a t ion-name,

Figure 5.4: A structure of local elements for mapping notation.

The normalisations mentioned in Section 3.3.2 are available for notations.
By default the following of them are used: lower case and only alphanumeric
characters.

Whether or not normalisation can be used is specified by attributes in the
notation tag: lower-case, only-alphanum and trim. For a schema see Figure 5.5.

1 <notation-name name=" 1ocalParaml" lower-case=" t r u e "
2 only-alphanum=" t rue" trim=" fa l se7 '>
3 <!-- loca l elements -->
4 </notation-name,

Figure 5.5: A structure of a mapping notation with attributes for normalisation.

Obviously all local parameter names and their values have to correspond to
their local form descriptors.

5.4.1 Complete Notation
The complete notation is the most straightforward notation. It simply spec-

ifies the exact mapping between two terms, i.e. a global term is replaced by the
specified local term.

The complete notation has the following structure:

Root element complete.

1 <global name=" adul t ">
2 <complete name=" adul t ">
3 < l o c a l id=" r y a n a i r n / >
4 </complete>
5 </global>

Figure 5.6: The complete mapping notation for the adult parameter of the
Ryanair [RyaOG] search form.

1 < l i s t s >
2 <synonyms id="synonymsl">
3 <item>synonyml</item>
4 <item>synonym2</item>
5 </synonyms>
G <!-- e t c -->
7 < / l i s t s >

Figure 5.7: The semantic list with synonyms structure.

- Attribute n a m e that defines the result term.

Children elements local that were explained before.

For example see Figure 5.6, where the global parameter adult is mapped to
the local parameter adult for the ryanair local source.

Original search forms are shown in Figure 8.5.

5.4.2 Semantic Notation

The semantic notation, described in Section 3.3.1, is a flexible mapping,
where a change of the name of a parameter or a value can still be handled with-
out a revisory intervention, if the new value is already defined in a semantic
notation.

The semantic notation has the following structure:

Root element semantic.

- Attribute synonyms, hypernyms or meronyms that defines which list
of semantic relationships will be used.

Children elements local that were explained before.

A list of semantic relationships is defined globally, so it can be reused in
more cases.

Its schema is shown in Figure 5.7. A root of lists is the lists element, that is
a child of the root element. Every kind of semantic relationship has its list root
element - synonyms, hypernyms or meronyms with the id attribute; its value is
used to identify the right semantic list in a semantic notation.

Figure 5.8: The semantic mapping notation example.

The semantic mapping allows a user to specify a list of related words in
terms of semantics, e.g. synonyms, for a parameter name or value. The mapping
framework will automatically find the appropriate value for a particular source
described by its form descriptor that contains the value.

For example see Figure 5.8, where the global value Austria is mapped by
the semantic mapping country-austrza-synonyms to two possible values Austria
and A.

The mapping framework then checks the local form descriptors if they con-
tain one of the synonym values, e.g. the Sourcel source contains the value A
and the Source2 source contains the value Austria, and automatically maps a
global value to right local values, i.e. the Austria value for the Sourcel source
and the value A for the Source2 source.

5.4.3 Weight-based Rule Notation
The weight-based rule notation allows to use mapping techniques described

in Section 3.3.2.
The weight-based rule notation has the following children elements and at-

tributes that are shown in Figure 5.9:

Attribute metric that identifies the used metric and attribute threshold
that specifies the threshold of the metrics. The attribute name was ex-
plained before.

The following metric identifiers are defined:

- ed - edit distance

- vss - vector space similarity

- bp - boolean property. The use of this metric requires two additional
attributes true-value and false-value, like <weight name="paramlU
metric="bp" true-value="on" f alse-value="of f l#>.

Children elements local that were explained before.

1 <weight name=" localParamln metric=" metric-type" threshold=" t">
2 < loca l id=" l oca l Id l " />
3 < loca l id=" localId2"/>
4 </weight>

Figure 5.9: The weight-based rule notation structure.

5.4.4 Combined Notation

The combined notation represents a comfort notation that combines all
above-mentioned notations to allow a user to use an appropriate notation for
parameters, their values and local search engines independently.

As shown in Figure 5.10, a parameter or value can be mapped for different
local search engines independently.

Figure 5.10: The combined notation structure.

If there are more notations for the same local search engine identifier, only
the first one is considered.

5.4.5 Value Mapping Notation

The value mapping notation is the same as for the parameter names notation.
Special cases like mapping of a list are mentioned below in Section 5.5.

Parameter mapping without value mapping means a value of the parameter
is copied without any change.

The full and complete mapping structure is shown in Figure 5.11.

5.5 Advanced Mapping

This section shows how to map special cases such as a list of values and a
date.

5.5.1 List Mapping
The list mapping is a mapping of a list of values, therefore it can only be

used for values.

<mapping id="mappingl">
<global name=" country">

<complete name=" country">
<local id=" LocallO"/>
<local id=" Local20"/>

</complete>
<value name=" United-Kingdomn>

<complete name="LJK">
<local id=" SourcelV/>

</complete>
<complete name=" United-Kingdomv>

<local id=" Source2"/>
</complete>

</value>
<value name=" Austrian>'

<semantic synonym=" country -austria-synonyms">
<local id=" Sourceln/>
<local id=" Source2"/>

</semantic>
</value>

<lglobal>
<lists>

<synonym id="country-austria-synonymsn>
<item>Austria</item>

25 <item>A</item>
</synonym>

</lists>
</mapping>

Figure 5.11: An example of the full structure of a mapping notation. It shows
all described notations and elements in one structure.

The mapping does not require a special notation - it is performed automati-
cally if one side of a mapping is a list or both sides of a mapping are lists, which
is defined in the corresponding form descriptors.

The mapping has two features:

It checks if a value for a list was found, otherwise the mapping is not
successful.

It provides an index of the mapped value for the target form with a list. If
the target form does not contain a list, just the mapped value is provided,
i.e. the mapping has the same behaviour as other mapping.

There are three possible situations in the list mapping:

A global interface contains a selection list and a local interface does not.

In this case a global interface is more restrictive then local interface. A
mapping has to contain pairs: a global interface selection list item - a
local interface value. A local interface may be capable to return results
also for values other than in a global interface selection list.

Both interfaces contain a selection list.

A mapping contains pairs: a global interface selection list item - a local
interface selection list item. A mapping may not link all items from a
global to a local interface and vice versa.

A local interface contains a selection list and a global interface does not.

A mapping contains pairs: a global interface value - a local interface
selection list item. This situation indicates a wrong design, because it
allows a user to enter a value that the corresponding local interface can
not handle, i.e. it is not in the list.

5.5.2 Date Mapping Notation

The date mapping notation is based on the date value merging defined in
Section 3.4.1.

The date format is the same as in the above-mentioned section.
For the structure see Figure 5.12.

5.5.3 Currency Mapping Notation

The currency mapping notation is based on the currency value merging
defined in Section 3.4.1.

The format is the same as in the above-mentioned section.
For a structure see Figure 5.13.

5.5.4 Script Mapping Notation

The script mapping is a pragmatic approach to the complexity of the real
HTML world. It allows to evaluate a script that computes the value of a local
parameter from the value of the corresponding global parameter or it computes
the whole mapping of all or a part of parameters and their values.

< d a t e - c o n c a t e n a t i o n format="da te , fo rmat">
<day>

<!-- p a r a m e t e r m a p p i n g -->
</day>
<month>

<!-- p a r a m e t e r m a p p i n g ->
</month>
< y e a r >

<!-- p a r a m e t e r m a p p i n g ->
< / y e a r >
< l o c a l id=" l o c a l I d l " / >
< l o c a l id=" l o c a l I d 2 " / >

< / d a t e - c o n c a t e n a t i o n >

Figure 5.12: T h e d a t e mapping notat ion structure.

1 < c u r r e n c y - s p l i t f o rmat="cur rency , f o r m a t n get=" c u r r e n c y - p a r t ">
2 < l o c a l id=" l o c a l I d l " / >
3 < l o c a l id=" l o c a l I d 2 " / >
4 < / d a t e - s p l i t >

< c u r r e n c y - c o n c a t e n a t i o n format=" c u r r e n c y , fo rmat">
< c u r r e n c y >

<!-- p a r a m e t e r m a p p i n g ->
< / c u r r e n c y >
<number>

<!-- p a r a m e t e r m a p p i n g -->
</number>
< l o c a l id=" l o c a l I d l " / >
< l o c a l id=" l o c a l I d 2 " / >

< / d a t e -conca t e n a t i o n >

Figure 5.13: T h e currency mapping notat ion structure.

A script represents a logic necessary to transform a set of values to a set
of values. The background can be technical, such as adding leading zeros, or
business, such as making a currency conversion.

All the used scripts are defined, like semantic relationship lists, as children
of the scripts element, that is a child of the root mapping element. For the
structure see Figure 5.14.

1 < s c r i p t s >
2 < s c r i p t name=" sc r ip t ,name">
3 S c r i p t commands
4 < / s c r i p t >
5 </ sc r ip t s>

Figure 5.14: The structure of a list of scripts.

All examples are written in the JavaScript language. For more details see
Section 5.10.

This mapping can be called in two ways: value or parameter script, i.e.
to compute a value of a parameter or to compute the name of a parameter
optionally with its value.

Value Script

A value script is a simpler usage of the scripting functionality. It is used
as one of the value mapping notations and allows to use a script to compute a
value.

It can compute a specific global value that is specified in the n a m e attribute
of the corresponding value node, which is used mainly for textual values; or it
can compute any value where the n a m e attribute is kept empty, which is used
mainly for numeric values, such as converting metric.

A value script has an access to all global parameters and values. It can only
return a computed value.

The value script structure is similar to other value mapping notation struc-
tures, the script tag has the n a m e attribute that contains a script name. The
content of a script itself is stored in the above-mentioned list of scripts.

The example in Figure 5.15 shows a business logic that sums two values from
the global search form to one value, because the local search form contains just
one parameter - the sum of number of adults and children in the global form
is the number of adults in the local search form. The sumAdultChildren value
script sums the two values and is called for any value, because it is applicable
to any number.

Original search forms are shown in Figure 8.5.

<global name=" adul t ">
<complete name=" - c t l l : c b o A d u l t s " >

< l o c a l id=" skyeuropeV>
</complete>
<value name="">

< s c r i p t name="sumAdultChildren">
< l o c a l id="skyeurope"/>

< / s c r i p t >
</value>

</global>

1 < s c r i p t s >
2 < s c r i p t name=" sumAdultChildren">
3 getGlobalValue (' adul t ') +
4 getGlobalValue (' ch i ld ren ')

Figure 5.15: The local script mapping notation for the adult parameter of the
SkyEurope [SkyOGa] search form.

Parameter Script

The parameter script notation is more complex than the value script nota-
tion. The structure is similar to the value script notation structure, it is only
used for a parameter, i.e. as a child of the global node.

It can be called in the following modes:

To Compute Parameter Name. A parameter script returns one text value
to set the name of a parameter. This usage is similar to the value script
notation.

For example see Figure 5.16.

To Compute Parameter Value Pair. A parameter script returns parameter
name-value pairs. For example see Figure 5.17.

This usage allows to compute sets of pairs and its strength is comparable
to a URI builder in the current MetaSearch version. For more details see
Section 4.5.3.

The script environment and support is mentioned in Section 5.10.

5.6 URL Mapping

Global attributes and their values are transformed to local attributes and
values, that are mapped to local search engines URLs.

For example see Figure 5.18.
The URL mapping is suitable for simple search pages without any session

identification or dynamic changing of parameters on a page, which are prob-
lematic for this mapping. On the other hand it is faster then the navigation
mapping.

1 < s c r i p t s >
2 < s c r i p t name=" getSkyEuropeParamNameAdult">
3 - c t l l : c b o ' + ' A d u l t s '
4 < / s c r i p t >
s < / s c r i p t s >

Figure 5.16: The local script mapping notation for the adult parameter of the
SkyEurope [SkyOGa] search form.

1 < s c r i p t s >
2 < s c r i p t name=" getSkyEuropeParamNameAdult">
3 s t o r a g e . addpa ramva lue (' ~ c t l l : c b o A d u l t s ' ,
4 ge tGloba lVa lue (' a d u l t ') +
5 ge tGloba lVa lue (' c h i l d r e n '))

Figure 5.17: The parameter script mapping notation for the adult parameter
and its value of the SkyEurope [SkyOGa] search form.

The mapping is available as the URL action in the Navigator tool, for more
details see Section 4.3.1.

5.7 Navigation Mapping

Global attributes and their values are transformed to local attributes and
values, that are mapped to parameters of search engine navigations.

This mapping is more powerful but slower then the previous one - a navi-
gation mimics user actions, for more details see Section 4.3.1 and Section 6.5.3.
It should be used for more problematic pages with the session identification, a
JavaScript mapping of parameters or dynamic loading of content, e.g. pages
build on the AJAX technology.

For example see Figure 5.19.

5.8 Comparison

There is a number of differences and new features between the new mapping
framework and the existing mapping framework described in Section 4.5.3:

There is only the value mapping in the existing mapping framework. The
new one adds also mapping for parameters.

The existing mapping framework has only direct mapping between values,
the new one provides various mappings such as complete, semantic, list,
date, and currency mapping.

The existing mapping framework provides a possibility to create a URIBuilder,
for more details see Section 4.5.3, that allows to use the Java programming
language for complex mappings. The new framework provides the script
mapping to achieve this functionality.

The proposed mapping framework allows to combine script mapping with
other mapping, i.e. to use an appropriate mapping where it is suitable.
The existing framework does not allows to combine the direct mapping
with the URIBuilder mapping.

The proposed mapping framework simplifies the development and deploy-
ment process, because the scripting mapping does not require compiling
- the URIBuilder mapping does.

The URIBuilder mapping and the script mapping notation represent a prag-
matic approach to the complexity of the real HTML world. The newly added
mapping notations, such as data and currency, reduce the need to use a complex
script mapping notation for common mapping of date and currency parameters.

The URIBuilder mapping is a URL mapping, i.e. a URIBuilder produces
a URL. The proposed mapping framework allows to use two mappings: the
already existing URL mapping and the new navigation mapping.

The navigation mapping in the proposed mapping framework solves many
difficult problems that occurred with the URL mapping, e.g. JavaScript map-
ping of parameters or session identification.

Figure 5.18: An example of the URL mapping. Input parameters and their
values are transformed to the suitable form for two search engines.

#the base edit box

4. Press key TAB
5. Type: $date-frem #DDMMYYW
6 . Pmss key: TAB

5. Type; 201 601 16 #YYYYiUMDW
6. Press key. TAB

#YYYYMMDD

5.9 Mapping Strategies

The URL mapping was the only possibility of mapping in the current MetaSearch
version. It required special handling in cases like multiple page forms or session
identification mentioned in Section 4.5.7 and Section 4.5.8.

The main idea and basically also a solution to the above-mentioned special
cases is to use the new navigation mapping that handles these cases naturally,
because a standard browser is used. See Section 4.3.4 and Section 6.5.3 for more
details.

5.10 Execution Language

An execution language support adds the possibility to write custom mapping
notations and perform complex custom operations.

An execution language is a standard programming language with features
such as variables, conditions, cycles, functions, and recursion. This allows the
writing of mapping logic limited only by a programming language.

There are many scripting languages for Java, summarised on the [VM02],
[Jav02] and [Jav06b] pages, with different features that can be used as an exe-
cution language.

The Rhino scripting library, described on the [MozOG] project page, that
supports the JavaScript language was chosen for its similarity to Java and its
easy to use.

Because the scripting environment is a complex feature, it is facilitated by
a scripting framework.

Unfortunately scripting frameworks technology background is not compati-
ble with the technological background of the execution part of the solution. A
similar problem is described in Section 6.5.3 and technical details are mentioned
in Section 4.4.3 and Section 7.3.

The solution is based on the same principles as the Hydra solution mentioned
in Section 4.4.3. They together represent a complete solution: the new compo-
nent called Octopus allows the running scripts as Hydra allows the starting of
the downloading and extracting tasks.

The Hydra scripting framework supports the JavaScript scripting language
but it is ready to be extended also to other scripting languages such as Jython
or JRuby as well.

Chapter 6

Execution Framework
Design

This chapter shows the design of the Snorri'metasearch system. The stan-
dard object-oriented software development techniques are used.

The requirements are listed and explained in the first section. The actors
are defined in the second section. The third section defines use cases for each
actor defined in the first section.

The last sections design the Snorri metasearch system based on the previous
sections.

6.1 Requirement S

The Snorri metaseach system is a distributed data flow system capable of
receiving and processing requests, storing and providing results, and optimising
the whole process according to the specific and characteristic area.

It has to comply with various requirements; from simple and straightforward
requests such as to accept a request to complex requests such as distributed
processing.

6.1.1 Vocabulary

The first step in a design is to define a vocabulary to understand all terms.

m Parameter. A pair of a name and a value is a parameter. It is denoted by
P(name, value), e.g.

P("artistl', "Leonardo da Vinci")

m Request. A set of parameters is called a request. Basically the parameters
in a request are parameters of the general interface. They will be mapped
to particular interfaces. A request is denoted by R(P1, P2, .., P,), where
Pi is a parameter, e.g.

R((" artist", " Leonardo da Vinci"), ("artwork", "Lady with an Ermine"))

Result. Technically, a result is any information related to the specified
request. It is denoted by S(R), e.g.

S(R(("artistV, "Leonardo da Vinci"),

("artwork", "Lady with an Ermine")) =

{"Museum of Fine Arts, Houston, Texas")

Process. A function that transforms a request to a result. It is denoted
by f (R) = {S(R)).

Request Producer. An entity that produces requests.

System. An entity that by using a process for a request produces results
is a system.

Source. A source of information. E.g. a museum web page.

Scenario. A set of sources that provide information from the desirable
sphere. E.g. museum web pages, airline pages or book shop pages.

6.1.2 Basic Requirements

The basic requirements are:

- Accepting Request. The system is accepting requests.

- Confirming Accepted Request. The system sends a confirmation for
an accepted request.

- Providing Result. The system provides the obtained result from a
request.

- Providing Partial Results. The system provides also partial results for
a request. I.e. if the processing of a request reads more sources,
like more book shops, the results are available immediately for each
source. This is one of the main improvements of the new version.

- Harmonising Result Data. Result data are from various sources in
different formats and styles. It is necessary to harmonise them, i.e.
to transform them into a common format and style.

- Sort Result Data. Result data are in most cases in a tabular form and
they are sorted by a predefined column.

- Session Identification Assignment. A session identification assignment
should be done automatically.

- Multi-page Search Forms. Multi-page or the wizard style of search
forms should be supported without any special handling.

- Responsiveness. A result should be sent in less then 7 seconds (at
least partial result).

- Meta-data. An output contains the result and result meta-data.
Meta-data contain information about processing like times, possible
warnings or error descriptions.

GUI:

- Sort Result Data. An end-user has an opportunity to change the
sorting direction and the sorting column.

- Scenario Developer Tool. A developer tool for creating scenarios.
Should contain a mapper tool and a general form generator. These
requirements were already specified in the [Ros04] thesis.
A detailed design and an implementation are not covered i n this the-
sis.

6.1.3 Advanced Requirement S

The advanced requirements make the whole solution more comfortable for
use, stable and powerful:

Monitoring. The system maintains a list of running processes and gives a
possibility to display and control them. This is one of the improvements
of the new version.

Distribution & Reliability. The system can be distributed on more servers.
The distribution brings a better reliability. This is one of the main im-
provements of the new version.

Easy Developing. An easy developing of mappings. This requirement is
not covered in this thesis.

Deep Linking. Retrieved results should contain a link that points to a link
on the original page. It allows to an end customer make a booking or buy
an item in the result.

6.1.4 Optimisation Requirements

The optimisation requirements speedup a response time and save a network
traffic:

Caching Results. The results of a request are saved to speedup a response
time of the next requests with the same parameters as the parameters of
the first request.

The main idea is that users tend to have similar requests. E.g. i n a book
shop scenario people tend to look for bestsellers.

Reasonable Sources. When a process for a request uses more sources,
statistics of the successfulness are computed and stored. A source, that
returned any information is more reasonable, and vise versa.

A next similar request, i.e. with similar parameters, is processed more
optimal, because the more reasonable sources are used by the process as
the first, the less reasonable sources are processed as the last or not a t all.

The main idea is that sources tend to provide similar responses. E.g. for
a flight search scenario airlines tend to have regular flights, that is if an
airline does not provide a regular flight from an airport, it will not provide
it i n the next days.

Intelligent pre-loading. A technique that merges the previous techniques.
The most used sources and the most reasonable sources obtained in the
same way as in the previous optimisation technique are automatically
processed without a user request. The results are then cached.

T h e m a i n idea is t o predict possible requests and processed t h e m in ad-
vance. T h e effect of this technique is a feeling for a user that the sys tem
behaves intelligently.

In general the optimisation techniques are dependent on specific scenarios.
The caching results technique can noticeably help to a bookshop scenario,

because prices of books do not change every hour; on the other hand, a flight
search scenario can use the technique partially, the results can be cached no
more than tens of minutes.

6.2 Actors

From the previous section 6.1 the following actors are defined:

Request Producer.

Result Consumer.

System.

Supervisor

Scenario Developer.

6.2.1 Request Producer

It is a human being or an application that sends a request to the system.
The number of request producers can be from one to several tens, they may

send their requests on a large-scale or in several hours, their requests may be
sent periodically or randomly.

They may send an incorrect request, that is with parameter names not
matching the general interface parameters orland with a wrong parameter value.

6.2.2 Result Consumer

It is a human being or an application that is in a close relationship with the
request producer.

It asks the system for a result or results of the previous request. It can ask
periodically or randomly.

In most cases the Request Producer and Result Consumer actors will be the
same person or application; the distinction is based on different goals - to send
data and to receive data. These goals may require different technologies, user
management, response times, etc.

E.g. a request producer i s a n application that periodically sends a request.
A result producer i s a simple application that asks for results, saves t h e m in a
database and publishes t h e m o n a portal accessible t o registered user only.

6.2.3 System

The core component. It performes the processing and provides results.

6.2.4 Supervisor

It is a human being that checks the status of the system and running pro-
cesses.

6.2.5 Scenario Developer

It is a human being that develops particular scenarios, that is he/she defines
sources, general interface and mapping.

6.3 Use Cases

Use cases are a standard form of describing processes of actors.
A use case consists of several detailed steps that explain actor's actions to

achieve the goal of a use case.
Use cases used in this section are slightly simplified - they may contain also

conditions directly in the description of a use case.

There are use cases for each actor in the following sections. The first section
explains the vocabulary necessary for the next sections.

6.3.1 Vocabulary

Use cases require new terms, that are defined in the following list:

Result Handler. A unique identification of a set of results. It provides
a unified medium for the result interchange between the result consumer
and the system actors.

For example it can be an integer number.

Result Handler List. A list of result handlers stored on the system actor
side. The list contains all result handlers that can be used in the result
interchange between the result consumer and the system actors.

If there cannot be any new result for a result handler, it is removed from
the result handler list.

Processing Queue. A queue of items that are going to be processed.

All items have a priority. The topmost item will be processed as the first
one. The item at the end of a queue will be processed as the last one.

Items in a queue can be reordered according to any change of the priority
of items.

The processing queue mechanism allows to process limited and manage-
able number of items.

6.3.2 Request Producer

The list and Figure 6.1 show and explain use cases of the request producer
actor:

Produce Request.

1. Prepare a set of parameters.

2. Create a request from the parameters.

3. Send it to the system. This will cause calling of the accept request
use cases of the sys tem actor.

Ask For Confirmation. A confirmation contains a result handler that is
necessary for the response consumer to identify the results.

1. The system actor calls the confirm request use case. The use case
sends a result handler.

2. Receive a result handler.

Exchange Result Handler.

1. The received result handler is exchanged between the result producer
and result consumer actors.

6.3.3 Result Consumer

The list below and Figure 6.1 show and explain the use cases of the result
consumer actor:

Exchange Result Handler.

1. The received result handler is exchanged between the result producer
and result consumer actors.

Ask For Result.

1. A result handler is sent in a result request message to the system
actor.

2. It causes, that the provide result use case for the sys tem actor is
called.

3. Receive a result or an empty result if there is no new data.

Stop Producing Result.

1. A result handler in a stop producing result is sent to the system
actor.

2. It causes, that the stop providing result use case for the sys tem actor
is called.

Figure 6.1: Use cases for the request producer and the result consumer actors.

t-'

Figure 6.2: Use cases for the system actor.

6.3.4 System

The system actor is the most complex actor with the majority of use cases.
Basically, it is the central actor of the solution.

Figure 6.1 and Figure 6.5 show user stories - interactions of this actor with
other actors. They do not contain the complete list of all use cases of this actor.

The list below and Figure 6.2 show and describe all use cases of this actor;
for simplicity the figure does not contain links to other actors:

Accept Request. For a flowchart see Figure 6.3.

1. Wait for an incoming request.

2. Receive a request.

3. Choose1 the appropriate scenario.

4. Check syntactic and semantic characteristics of parameters; param-
eters are correct.

5. Create a result handler, that is an unique key that will identify all
results that belong to this request.

6. Register the created key to the result handler list.

7. Take all parameters and store them.

l A technical solution based on a specific URL or via values of a special parameter.

82

1. Wait for
lnwjrtllng feques?

Figure 6.3: A flowchart for the accept request use case of the system actor

8. Add a ticket to the processing queue for all sources.

9. Call the confirm request use case.

Alternatives:

4'. Check syntactic and semantic characteristics of parameters; if any of
parameters is incorrect, the request is denied.

Confirm Request.

1. Prepare a confirmation message, that is to create a message with the
created result handler.

2. Send a confirmation message back to the request producer actor.

Provide Result.

1. Check the result handler list for the specified request handler.

2. There is a stored result for the specified request handler.

3. Return it. Remove the returned result.

Alternatives:

2'. There is no stored result for the specified request handler

3'. Return an empty response.

Stop Providing Result.

1. The specified request handler is in the result handler list.

2. Stop all processes that are producing a result for the request handler.

3. Delete any stored results for the specified request handler.

4. Remove the request handler from the result handler list.

Alternatives:

1'. The specified request handler is not in the result handler list.

2'. - 4'. Return an error response.

3". There are no stored results for the specified request handler.

Provide System Status.

1. Prepare and return the following list of system and business logic
attributes:

- uptime
- system load
- list of all/running/stopped/broken scenarios
- list of running processes
- list of delivered results
- list of cached results
- statistics

Start Scenario.

1. Enable the specified scenario, that is it will be visible for the process
of accepting a request.

Stop Scenario.

1. Disable the specified scenario, that is it will be invisible for the pro-
cess of accepting a request.

Deploy Scenario.

1. Install the specified scenario to the system. This scenario is in the
disabled state.

Undeploy Scenario.

1. Call the stop scenario use case for the specified scenario.

2. Wait until all running processes of the scenario finish.

3. Delete the scenario from the system.

Cache Result.

1. Store the specified request and result.

2. Remove cached items older then a predefined threshold.

Compute Statistics.

1. Prepare the following list system and business statistics about:

- number of received/processed/denied requests
- number of processed/cached results
- list of most used sources and parameters

Find Reasonable Source.

1. Check statistics for all sources.

2. Take a predefined number of the most used sources and requests,
that is sets of parameters, and store it in the reasonable source list.

Pre-load Source.

1. Take a group of most used sources with used parameters.

2. Select a predefined number of them.

3. Add a ticket to the processing queue for the selected sources with
parameters.

Check Processing Queue.

l. The number of already running processes is smaller then a predefined
threshold.

2. Flag the ticket with the highest priority from the processing queue.

3. Increase the priority for reasonable sources and vice versa.

4. Increase the priority for cached results.

Figure 6.4: A flowchart for the perform processing use case of the system actor.

Alernatives:

1'. The number of already running processes is equal or higher then a
predefined threshold.

2'. - 4'. Wait a predefined time.

Perform Processing. For a flowchart see Figure 6.4.

1. Take the flagged ticket from the processing queue.

2. No cached result exists for the request.

3. Send parameters from the request to the source, read a response,
transform it if required, store it for the request handler.

4. Cache the result (of the previous step), that is call the cache result
use case.

5. Store the result for the request handler.

Alternatives:

2'. - 5'. Store the cached result for the request for the request handler

Heartbeat. This use case calls the specified use cases in a predefined inter-
vals or timest amps.

1. Call always the check processing queue use case.

2. Call always the perform processing use case.

3. Call always the compute statistics use case.

4. Call sometimes the find reasonable source use case.

5. Call seldom the pre-load source use case.

6.3.5 Supervisor

The list below and Figure 6.5 show and describe the use cases of the super-
visor actor:

Monitor System Status.

1. Retrieve the list of system and business statistics from the sys tem
actor. The statistics were prepared in the compute statistics use
cases of the system actor.

2. Display retrieved data.

Control Scenario.

1. Retrieve a list of all scenarios.

2. Choose a scenario.

3. Choose start, stop or undeploy operation.

4. This will cause that use cases start scenario, stop scenario or undeploy
scenario of the sys tem actor are called.

Exchange Developed Scenario.

1. Transfer a scenario from the scenario developer actor to the supervi-
sor actor.

Deploy Developed Scenario.

1. The scenario is transferred from the exchange developed scenario use
case to the system actor.

2. This will cause that the deploy scenario use case of the sys tem actor
is called.

6.3.6 Scenario Developer

The list below and Figure 6.5 show and describe the use cases of the scenario
developer actor.

Develop Scenario. For a flowchart see Figure 6.6.

1. Design a scenario.

2. Create a form descriptor for every local search engine.

3. Create navigation for every local search engine. The navigation has
to have parameters for necessary fields in the corresponding search
form.

4. Create a general interface descriptor. It contains a list of parameters
and values accepted by a general search form.

Figure 6.5: Use cases for the supervisor and the scenario developer actors.

3 Creara -
navigation t

3 Prczprr,
sc@rtJno package

Artefacts

Figure 6.6: A flow chart for the develop scenario use case of the scenario devel-
oper actor.

5. Create a wrapper for results of every local search engine. A wrapper
transforms results to an XML document.

6. Test it.

7. Prepare a scenario deploy package that will be used in the exchange
developed scenario use case. A deploy package contains form descrip-
tors, navigations and a general interface descriptor.

Exchange Developed Scenario.

1. Transfer a scenario from the scenario developer actor to the supervi-
sor actor.

6.4 Components

Components represent logical units of functionality. Actors with similar
functional fundamentals may belong to the same component. On the other
hand, actors with a large group of use cases may be split into more components.

The Snorri metasearch solution consists of seven components:

Engine.

Manager.

User Interface.

User.

Administrator Interface.

Administrator.

Developer.

The following sections describes the components

6.4.1 Engine

The most complicated, central, with the highest load - the core component.
It merges all use cases of processing of requests, producing and providing results.

It complies with all basic requirements.
It has to comply with the monitoring and distribution & reliability advanced

requirements.
And it has to comply with all optimisation requirements.

It is an environment for the following use cases of the following actors:

System actor:

- check processing queue

- perform processing

- heartbeat

- provide system status

- cache result

- compute statistics

- find reasonable source

- pre-load source

6.4.2 Manager

The manager component merges all use cases related to the managing of
scenarios.

Although it provides descriptions as to what t o do, i.e. scenarios, it is not
a part of the engine component, because it is not a time nor processor critical
part of the solution. Its needs are different and requires different approaches.

It is an environment for the following use cases of the follbwing actors:

System actor:

- start scenario

- stop scenario

- deploy scenario

- undeploy scenario

6.4.3 User Interface

The user interface component is an interface between the engine and the
user component. It contains all necessary request and result handling use cases.

It complies to all basic requirements.

I t is an environment for the following use cases of the following actors:

System actor:

- accept request

- confirm request

- provide result

- stop providing result

6.4.4 User

The user component is one of the most variable components. It is based
on scenario requirements and characteristics. In other words - it varies from
scenario to scenario.

I t uses features of the user interface component that in most cases can split
the user component to two parts:

Generating Request. This part generates a request and it is related to the
request producer actor.

Collecting Result. This part asks for a result and it is related to the result
consumer actor.

The mentioned parts are important for the whole solution picture; see below
for a more detailed description.

It is an environment for the following use cases of the following actors:

Request Producer actor:

- produce request

- ask for confirmation

- exchange result handler

Result Consumer actor:

- ask for result

- stop producing result

- exchange result handler

From the previous list it follows that the user component has to provide an
exchanging and a result handler from the generating result part to the collecting
result part.

Generat ing Request

A request can be generated basically in two ways:

Human Interface. A human interface allows a user to fill out a form or
set several controls. Then a user component can produce a human based
request.

This kind of interface has its special characteristics like error prone input,
slow rated submission.

Application Interface. An application interface is used by an application
that requires an well defined set of commands that can be called2.

Its special characteristic is a fast rated submission.

Collecting Result

A result has to be collected in more steps. The engine component, that is
the system actor, via the user interface provides a result in more parts than
appear immediately when a source produced a part of the result.

This allows the immediate display of results to an end customer - to a hu-
man or machine readable form.

The collecting result component part has the possibility to stop the pro-
duction of a requested result, that can be used only when a limited number of
results is sufficient.

2 ~ o o d implementation candidates are: Web Services, RMI, JMS, etc

92

6.4.5 Administrator Interface

The administrator interface component is an interface between the engine
and the administrator component. It handles the managing of scenarios and
monitoring of the engine component.
I t has to comply with the monitoring advanced requirements.

It is an environment for the following use cases of the following actors:

Supervisor actor:

- monitor system status

- control scenario

- deploy developed scenario

6.4.6 Administrator

The administrator component is a human interface component that uses
features of the administrator interface component.

It provides tools for displaying and controlling scenarios, monitoring system
status and deploying a developed scenario by a scenario developer in the devel-
oper component.

I t is an environment for the following use cases of the following actors:

Supervisor actor:

- exchange developed scenario

Access to the administrator component has to be secured and therefore can
also be provided for a remote administration.

6.4.7 Developer

The developer component provides a set of tools for developing a scenario,
i.e. a set of sources with mapping to a result.

It has to comply with the easy developing advanced requirement.

I t is an environment for the following use cases of the following actors:

Supervisor actor:

- exchange developed scenario

Scenario Developer actor:

- exchange developed scenario

- develop scenario

A n implementat ion of the developer component i s n o t covered in this thesis.

6.4.8 System Actor Components

An example of how an actor can be split between components is shown in
Figure 6.7 for the system actor.

The system actor is split between three components: engine, user interface
and manager.

6.5 Components Design

A components design is an advance on the way to the implementation phase.
The first section shows a separation of components and their connections.

An interaction between components is defined in the next section. The next
sections present a design of selected components.

The result of these sections is a clear architecture overview as presented in
Section 6.6.

6.5.1 Component S Relationship

There can be two kinds of components:

m Client Component.

Server Component.

A communication between two components is defined as a connection; and
because there are two kinds of components, similar, three kinds of a connection
are defined:

Local Client Connection. An internal connection between client compo-
nents.

m Local Server Connection. An internal connection between server compo-
nents.

m Remote Connection. A connection between a client and a server compo-
nent.

Each kind of connection has its specific characteristics - a remote connec-
tion can transfer less data with slower response times; a local server connection
has to be reliable and fail-over; and for a local client connection there are no
limit at ions.

The relationship between components, as shown in Figure 6.8, consists of
three client components:

user

m administrator

e developer

and the rest of components as server components:

Figure 6.8: The separation of components and their connections.

m engine

m manager

m user interface

m administrator interface

The following connections emerge from the above-mentioned separation of
components and it is shown in Figure 6.8:

m local client connections

- administrator - developer

- user (generating a request - collecting a result, i.e. request producer
actor - result consumer actor).

m local server connections

- engine - manager

- engine - user interface

- engine - administrator interface

- manager - administrator interface

m remote connections

- user interface - user

- administrator interface - administrator

6.5.2 Components Intercommunication

The following diagrams of an intercommunication between the main compo-
nents - user, user interface and engine - show possible flows in three cases:

m there is no cached result, see Figure 6.9.

m the first result is cached, see Figure 6.10.

m the providing of the second result is stopped, see Figure 6.11.

The result 1 processing is a shorter time then the result 2 processing.

6.5.3 Engine Design

The engine component is the most complex component - it has to connect
two different technology worlds: a reliable and distributed server with an Inter-
net browser. This results in two parts of this component: core part and Internet
data processing part.

Core Part

The core part is deployed on an application server that provides a distributed
and reliable environment. Functionality is divided into logical units like tasks,
data stores. An application server starts tasks as necessary and is able to start a
task on another application server in a cluster if a load is higher than a defined
threshold.

Figure 6.9: An intercommunication between components with no cached result.

I I I I

Produce Reqmst
\

Ask For Confirmation
C

Confirm Request
- - - - - - - - - I I k a r t h b e d 1 I I I 1 .-, -. I .

\
\

I Exchange Result Handler
I

I
/ I I

,
&--

I Check Processing Qu&ue I
I

Ask ForResun

Provide Resun i n o resun
- - - - - - - - -

P erfotm Processing i I
Ask For Resun

Provide Result I I
- - - -v - - --

Cache Resun I I Perform P messing l 2

Ask For Result l

Provide Result l 2
-

I Cache Result l 2 - - I
I I I
I I I
I I I

-
I

I I l I
l I I I

I I I
I
I

I
I
I
I
I
I

Accept R quest
b

I
I
I

7

User Interface EIl Enune llhread A D Enaine TT head B E 3
I I

Produce Reqmst
'7

-

Ask For

Confirm Request

-. -. T -. I - '. I

Confirmation I I I I

I : Exrhange Result Handler

Ask For Resutl

-------- -

Ask For Resuk

b Hearthbed

I
I
I

C he& Processing Queue

P erfotm Processing l I

Perform P mcessing

Cache Result l 2

Figure 6.10: An intercommunication between components with a cached result.

User Interface cl Endne Uhread A Enaine TT hread B rzzl
I I I I

I I
Produce Request I

I
I
I

Accept Request
C

I
I
I - I

Ask For Confirmation I
C I

Confirm Request I

k a r t h b e d I I I .
\

I
I I
, .-

W
I

Chedc Processing Queue
Ask For Result

b Check Processing Queue
Prwide Resul (no result

- -

P erfotm Processing I I
Ask For Resul

Prodde Result I I
- - - - - - -

Cache Resul l l
Perform P messing l 2

Stq, Produang Result

7

I I
I U I LJ
I I I I
I I I I
I I I I
I I I I
I I I I

of the result 2.

Figure 6.11: An intercommunication between components where the processing
and providing of a result was stopped.

Internet Data Processing Part

The most appropriate environment for the Internet data processing part is
a browser. A browser can handle the majority of Internet standards and tech-
nologies such as HTTPS, cookies, JavaScript.

The solution, as a part of the engine component, has to be reliable, a direct
connection to a browser can not be used - it is necessary to wrap it.

A wrapped browser should also provide an extraction functionality, i.e. ex-
tracting data from an Internet source like creating an XML document from a
web HTML page.

The engine components are also capable of processing more sources parallel,
that is, it is necessary to start more then one wrapped browser instance.

Additionally, the technologies used to wrap a browser, so it can be used by
the engine component, are incompatible with technologies used for the core of
the engine component. For more information see Section 7.3.

The solution inhere in creating two separate segments:

Downloader & Extractor. Basically it is a wrapped browser with an extrac-
tion module. It is capable of navigating to a source, downloading it and
extracting required data from it.

An integration of a wrapped browser and an extraction module connects
two logically and technically close elements. Logically, because the ex-
traction step immediately follows the navigation and downloading step.
Technically, because an extractor module can work on the downloaded
document directly.

For more technical detail, see Section 4.4.3 and Section 7.3.

The possibility to parameterise a navigation is a feature provided by the
downloader that is essential for a metasearch solution.

All user inputs such as typing or moving with a mouse can be parametrised,
i.e. their values3 can be marked as parameterisable and their values can
be defined externally. An external process such as a metasearch engine or
Lixto Transformation Server specifies values for parametrised user inputs
in a navigation. The navigation is then executed with changed values, e.g.
a user fills out a city name input field - London is typed. The typed se-
quence is marked as parameterisable. Metasearch loads the navigation and
changes the value of the parametrised input to Vienna. The navigation is
executed as if a user had typed Vienna there.

Dispatcher. It dispatches incoming requests from the core part to browser
instances. Browser instances are created by the dispatcher.

The dispatcher sends a request from the engine part to a not busy in-
stance. If an instance does not respond till a threshold, the instance is
terminated and the request is re-sent to a non busy or a new instance.

3For the typing input a value of the pressed keys and the number of pressed keys can be
changed For the mouse input a position of the recorded points can be changed.

Figure 6.12: A schema of the engine component. The browser element function-
ality is wrapped. The downloader and extractor elements access the wrapped
browser, but also have a direct access to the browser element. The dispatcher
element provides an abstraction layer for the core element.

b w

D i ~ i c h e r

The dispatcher segment creates an abstraction layer between the core part
and the downloader & extractor segment. The core part does not have to
solve problems like a not responding browser instance.

The abstraction also brings the possibility to use another browser or sys-
tem, or to use more systems - the core part does not have to be changed.

Dawnloader

For a schema see Figure 6.12.

Extractor

6.6 Architecture

W ~ P P ~ R ~

B r m r

The architecture design is the last step in the design of the whole solution.
In the previous sections everything was prepared for it.

The implementation phase, in the next chapter, is built on the architecture
design.

A simplified design overview, see Figure 6.13, shows basic components user,
administrator and engine.

It shows fundamental components and connections between them.

A complex design overview, see Figure 6.14, extends the simple overview
with elements described in Section 6.5.3 and a new element data storage:

User

Administrator

Engine

Dispatcher

Downloader & Extractor

Users / Engine

Administrator

Figure 6.13: A simplified architecture design overview.

Data Storage

The data storage element is added as a consequence of various needs from
use cases and component designs, for example a process queue has to be stored
in a data storage to facilitate reliability.

It has to comply to general requirements for a database, like it has to sup-
port SQL and transactions.

The next Chapter Implementation connects the design with technologies to
meet requirements.

6.7 Interconnection wit h Transformation Server
Design

A design of the new Lixto Transformation Server product version is inter-
connected with the design presented in the previous sections. Parts of the
metasearch design can be reused completely or partially, but in general the ar-
chitecture is the same.

The engine - dispatcher intercommunication is also the same for TS. This
part can be reused completely.

The request - response model allows simplification of the metasearch engine
component - there is no need to start user processes at specified times, there are
only predefined system tasks such as caching. The TS engine component will
be more complex, but it can reuse issues such as accepting requests, providing
results, caching, heartbeat and technical areas such as data storage access.

The administration functionality is similar for both products, although TS
has to provide more information, because it is a more complex system, the way
of providing them is the same. This part can be reused completely.

Figure 6.14: A complex architecture design overview.

The client component and the intercommunication with a client or another
system and the server are different and they have other requirements. Only
technically related issues such as a client - server communication can be reused.

This thesis does not only create a new metasearch solution design, but also
lays the fundamentals of a new version of the Lixto Transformation Server prod-
uct and introduces appropriate technologies and their application.

Chapter 7

Prototype Implementation

A prototype implementation of the Snorri metasearch solution designed and
developed in this thesis is shown in this chapter. It is a complex system that
uses advanced enterprise technologies.

The first section Technologies and Application briefly explains the technolo-
gies used and their application in the implementation.

The second section Overview describes the implementation and the subse-
quent sections such as Server and User show interesting implementation details.

7.1 Technologies and Their Application
The technologies that are used in the implementation are briefly described

in the following section, where the application of each mentioned technology in
the implementation is specified.

For each mentioned technology its application in the implementation is de-
scribed.

7.1.1 Java

The Java programming language is a general-purpose, concurrent, class-
based, object-oriented language that is related to C and C++ but is organized
rather differently, with a number of aspects of C and C++ omitted. It is in-
tended to be a production language, not a research language. It was developed
by Sun in 1990s.

The Java programming language is strongly typed and its specification clearly
distinguishes between the compile-time errors that can and must be detected at
compile time, and those that occur at run time. Compile time normally consists
of translation of programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed for execu-
tion of a program, optional machine code generation and dynamic optimization
of the program, and actual program execution.

A compiled machine-independent byte code is executed in a platform-dependent
environment called Java Virtual Machine (JVM).

The specification [SunO5a] says: "The Java programming language is a rel-
atively high-level language, i n that details of the machine representation are
not available through the language. I t includes automatic storage management,
typically using a garbage collector, to avoid the safety problems of explicit deal-
location (as i n C's free or C++'s delete). High-performance garbage-collected
implementations can have bounded pauses to support systems programming and
real-time applications. The language does not include any unsafe constructs,
such as array accesses without index checking, since such unsafe constructs
would cause a program to behave i n an unspecified way."

For the implementation purposes the Java programming language is an easy-
to-use, safe and platform-independent programming language with a rich set of
various libraries, such as regular expression, HTTP support. One of the main
advantages is the enterprise edition described in the next section.

7.1.2 Java Enterprise Edition

The Java Enterprise Edition, Java E E or previously J2EE, is a set of speci-
fications listed in the [Sun05c] specification - Web Service, JSF, JSTL, EJB 3.0,
JAXB and JAX-WS - for development and execution of a multi tier application.

The required relationships of architectural elements of the J2EE platform are
shown in Figure 7.1. The figure shows the logical relationships of the elements.

The [Sun05c] specification describes the above mentioned figure as follows:
"The Containers, denoted by the separate rectangles, are J 2 E E runtime environ-
ments that provide required services t o the application components represented
in the upper half of the rectangle. The services provided are denoted by the boxes
i n the lower half of the rectangle. For example, the Application Client Container
provides Java Message Service (J M S) APIs t o Application Clients, as well as
the other services represented.

The arrows represent required access t o other parts of the J 2 E E platform.
The Application Client Container provides Application Clients with direct ac-
cess t o the J2EE required Database through the Java A P I for connectivity with
database systems, the J D B C T M API . Similar access t o databases is provided t o
J S P pages and servlets by the W e b Container, and t o enterprise beans by the
E J B Container."

For a metasearch implementation the Java EE technologies provide an in-
dustrial standard for creating distributed multi tier applications, i.e. the imple-
mentation has features such as fail-over, scalability and distribution of load.

The following sections describe the main and most widely used Java EE
technologies and services.

7.1.3 Web Services

The Web Service standard describes a communication technology between
two processes mainly over a network. Both sides of communication can exchange
a set of XML documents or use a defined structure of a communication protocol
such as SOAP, where a request contains a specific structure to call a remote
method on the other hand, and a response can contain result data or an error
structure with the error description.

Figure 7.1: J2EE architecture [Sun05c] diagram.

A web service is described by Web Service Description Language, WSDL. A
descriptor contains all necessary data to start communication.

The [ConOBb] specification says: Web service is a software system de-
signed to support interoperable machine-to-machine interaction over a network.
It has an interface described i n a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by its de-
scription using SOAP messages, typically conveyed using H T T P with an X M L
serialization i n conjunction with other Web-related standards."

For the metasearch implementation the web service standard and library
provide an industrial standard for the exchange of data between other systems,
such as clients that produce requests, and systems that receive results.

Technically the metasearch solution contains a web service for receiving re-
quests and a web service for providing obtained results. The use of web services
for intercommunication with other systems facilitates the implementation of a
producer of requests and a system for the processing of results independently of
the metasearch implementation, such as a programming language, environment
and hardware platform.

Web Service standard and its technologies such as XML, SOAP and WSDL
represent a commonly used implementation in Service-Oriented Architecture,
SOA - that is a system design methodology for the creation of reusable busi-
ness processes.

The description language WSDL and the protocol SOAP are described be-
low.

Web Services Description Language

Web Services Description Language version 2.0, WSDL 2.0, provides an XML
format for describing web services. WSDL 2.0 allows to separate the description
of an abstract functionality from concrete details of a service description, such
as how and where that functionality is offered.

The [ConOGb] specification says: "WSDL 2.0 describes a Web service i n
two fundamental stages: one abstract and one concrete. Within each stage, the
description uses a number of constmcts to promote reusability of the description
and to separate independent design concerns."

At an abstract level it describes a web service as it sends and receives mes-
sages. Messages are described independently using a type system such as XML
Schema. Operation associates a message exchange pattern with one or more
messages. A message exchange pattern identifies the sequence and cardinality
of messages sent and/or received. Interface groups operate without any com-
mitment to transport.

At a concrete level a binding specifies transport and wire format details for
one or more interfaces. An endpoint associates a network address with a binding
and a service groups together endpoints that implement a common interface.

Simple Object Access Protocol

Simple Object Access Protocol, SOAP, is a communication protocol based
on XML.

The [ConOGa] specification says: "SOAP i s a lightweight protocol intended
for exchanging strmctured information in a decentralized, distributed environ-
men t . I t uses XML technologies t o define a n extensible messaging framework
providing a message construct that can be exchanged over a variety of underlying
protocols. T h e framework has been designed t o be independent of a n y particular
programming model and other implementation specific semantics."

The protocol provides a way to encapsulate method calls with parameter
types and values, returning types and exceptions.

7.1.4 Java Message Service

The Java Message Service, JMS, provides a method to exchange messages via
a messaging service for Java applications. This allows a separation of different
business components into a reliable and flexible system.

The communication between components is transmitted through a Message
Oriented Middleware product, MOM. It facilitates the receipt of sent messages
and their distribution to specified receivers. A message can be delivered reliably,
i.e. stored and delivered when the receiver will be able to receive it, e.g. it
recovers from a crash.

The [SunOl] specification says: "JMS i s a set of interfaces and associated
semantics that define how a JMS client accesses the facilities of a n enterprise
messaging product."

For the metasearch implementation the JMS technology provides a reliable
means of communication between business and logical parts of the solution.

7.1.5 Java Server Pages

The Java Server Pages, JSP, platform is an Java Enterprise Edition tech-
nology for the creation of applications with dynamically generated web content.
It simply enables generation of a content for web standards, such as HTML,
DHTML, XHTML and XML.

The [SunOGb] specification says: "JSP technology provides the means for
textual specification of the creation of a dynamic response t o a request." and
"A JSP page i s a text-based document that describes how t o process a request
t o create a response. T h e description intermixes template data wi th dynamic
actions."

The technology is built on the concepts of template data, where templates
are text or XML fragments, on addition of dynamic data to templates and encap-
sulation of functionality, where JavaBeans component architecture facilitates an
access to data and tag libraries provide custom actions, functions and validation.

For the implementation the JSP pages represent the basis for the creation
of web based graphical interfaces, such as the administrator console; for more
details about the implementation of the administrator console of Snorri refer to
Section 7.5.

7.1.6 Java Server Faces

Java Server Faces, JSF, is a user interface, UI, framework for web applica-
tions written in Java. As described in the [SunOGa] specification, it simplifies
design, writing and maintenance of user interfaces by easy creation and reuse
U1 components, simplification of migration of data between an application and
UI, and by providing a simple model for wiring events produced by a client to
server application code.

JSF is protocol and markup language independent. However, as described
in the [SunOGa] specification, it helps to solve many common problems with
writing an application for HTML clients that communicate via HTTP to a Java
application server with the support for JSP based applications. It supports var-
ious form processing methods such as a multi-page form, validation of a request,
error handling with reporting in a human-readable form, and type conversion.

For the metasearch implementation it is a matter of course to choose the
application of a Model-View-Control, MVC, framework with the support of
JSP as a template technology. JSF is used for the creation of the administrator
console UI; for more details see Section 7.5.

7.1.7 Enterprise Java Beans

The Enterprise Java Bean, EJB, technology is one of the Java EE technolo-
gies. It is a complex technology for the creation of enterprise applications, for
more details see the [SunOSb] specification.

The implementation utilities the latest version 3.0 that noticeably simpli-
fies the whole development process in that is uses Java annotations and the
dependency injection, contains suitable components such as EJB Timer, that
can define a specific time when it should be activated and perform a defined
task, and solves serious drawbacks of the previous versions, such as creating a
primary key.

One of the main simplifications is the use of Java annotations that removed
one of the most complex part of the development phase - creation and mainte-
nance of description files.

Each enterprise bean represents a business logic element - a programming
artifact. Each bean consists of an interface and an implementation class. The
necessary features are annotated using Java annotations.

For different purposes various types of enterprise beans are defined. They
are described in the following sections.

Stateless Session Bean

A stateless session bean represents an action in a business model. It does not
contain a state, that is, every call has to take all its parameters; the advantage
of this is easier distribution of such calls in a cluster as for the stateful session
beans.

For a life cycle see Figure 7.2.

business

Figure 7.2: Simplified stateless session bean life cycle [BEA03] diagram.

Does Not
Exist

-
business

ejbpassivate

Passiw E l
iagram. Figure 7.3: Simplified stateful session bean life cycle [BEA03] d'

Stateful Session Bean

A stateful session bean, like the stateless version, represents an action, but
it saves its state between calls.

In practise, stateful session beans are not used and a lot of literature, such
as the [RAJ021 book, recommend not using them. An alternative to them is a
combination of a stateless session bean and an entity bean or just a stateless
session bean with all parameters on the input.

For a life cycle see Figure 7.3.

Entity Bean

An entity bean represents a business data object that is persisted. The
specification describes necessary features for the persisting functionality such as
transactions and isolation levels.

Does Not
Exist

setEntityCmtext unsetEntityContex t

-----=-qhStore

Figure 7.4: Simplified entity bean life cycle [BEAOJ] diagram.

The development and use of entity beans in EJB 3.0 is significantly simpli-
fied compared to the previous versions. Main functions, such as the creation of
a new instance of an entity bean, are available in the entity manager.

It is recommended using session beans, rather than calling an entity bean
directly - it naturally corresponds with the reality, where actions modify a state
of data objects.

For a life cycle see Figure 7.4.

Enterprise JavaBeans Query Language

The Enterprise JavaBeans Query Language, EJBQL, is a query language
based on SQL92. It is used for the definition of finder and select queries for
an entity bean, that is a possibility exists to search for an entity bean instance
rather then to search for a row in a common relational database.

The new EJB version 3.0 brings features in EJBQL, such as grouping and
sorting, that improve the usability.

Message-Driven Bean

The last type of enterprise beans, the message-driven bean, MDB, is a spe-
cialised type designed to receive a JMS message. It simplifies the process of
receiving a message and propagating its content to other entity bean, such as a
stateless session bean.

Does Not
Exist

setMessageDrivenCmtext I T ejbRemove
ejbcreate

Figure 7.5: Simplified message-driven bean life cycle [BEA03] diagram.

Message-driven beans represents the only way in the EJB world to split a
process into more subprocesses, that is to emulate starting a new thread in the
Java Standard Edition. This feature is used in the metasearch implementation
to start a set of processes for a new request handling.

For a life cycle see Figure 7.5.

7.1.8 Java Native Interface

The Java Native Interface, JNI, allows the Java code to call applications and
libraries written in other programming languages, such as C++.

The [Sun03a] specification illustrates possible usage:

The standard Java class library does not support the platform-dependent
features needed by the application.

You already have a library written in another language, and wish to make
it accessible to the Java code through the JNI.

You want to implement a small portion of a time-critical code in a lower-
level language, such as the Assembly language.

In the metasearch implementation the JNI is used for communication with
the Mozilla browser; for more details see Section 7.3.4.

7.1.9 Databases

The [WikOG] Wikipedia page says: "A database i s a n organized collection of
data. "

The metasearch solution uses a database as storage for its configuration set-
tings, scenario settings, such as form descriptors and mappings, and run-time
data, such as cached results.

In the implementation only the Relational Database Management Systems,
RDBMS, are considered.

There are commercial database engines such as Oracle DB, IBM DB2, or
open-source database engines, such as PostgreSQL and MySQL.

The PostgreSQL is used in the Snorri metasearch prototype implementation
for its features and the open-source character. Since PostgreSQL is similar to
Oracle DB, in case of increased requirements the Oracle DB can be used with
minimal costs of migration.

7.1.10 Application Servers

An application server is a component-based product that resides in the
middle-tier of a server centric architecture. It provides middleware services
for security and state maintenance, along with data access and persistence.

The most comprehensive and the latest list of J2EE application servers is
available on the Application Server Matrix [The051 page. Another page [Jav06a]
contains a list of Open Source EJB Servers.

Basically, there are only two application servers that support the EJB 3.0
standard: JBoss Application Server and Oracle Application Server.

JBoss Application Server

At present the server that is most widely used and accepted for the EJBS
architecture is JBoss described on the [JBoOG] page. It is open-source software
with large community and support.

The Snorri metasearch prototype implementation uses this application server
for its features and the open-source character.

Oracle Application Server

As a commercial alternative, the Oracle Application Server, Oracle AS, is
described on the [Ora06] page.

7.2 Overview

The Snorri metasearch prototype implementation is described in the follow-
ing sections.

The prototype implementation represents a vertical prototype that imple-
ments crucial parts of the solution to point out any insufficient design or tech-
nology part. In the vertical prototype some functionalities and features are
simplified or simulated.

The architecture implementation overview, see Figure 7.6, shows assigned
implementation solutions to the elements described in Section 6.6 and pictured
in Figure 6.5.3:

The user element is implemented as a set of JSP pages, for the graphical
user interface access suitable for a human user, and as a set of web services,
that are designed for the application - application communication. For
details see Section 7.4.

The administrator element is implemented as a JSP page. For details see
Section 7.5.

The implementation of the engine element is represented by the Snorri
server. For details see Section 7.3.1.

The dispatcher element is implemented as the Octopus server. For details
see Section 7.3.3.

The implementation of the downloader & extractor element is represented
by the Lixto Navigator and Visual Wrapper products. For details see
Section 7.3.4.

The PostgreSQL database stands for the data storage element. For details
See 7.3.2.

7.3 Server

The server implementation is based on the above mentioned Java EE tech-
nologies, mainly EJB 3.0. The main part, the engine, uses several subsystems
to provide the designed functionality - a database instance for a reliable stor-
age of data, Octopus for the evaluation of JavaScript scripts and calling Lixto
Navigator and VW, and the mapping framework implementation prototype for
the mapping of global parameters and values to local.

7.3.1 Engine

The engine prototype implementation, for a class diagram see Figure 7.7,
has the following enterprise beans:

The Input entity bean stores data about a request. The parameter - value
pairs are stored in the Parametervalue entity bean.

The Request stateless session bean is a gateway for user requests. It stores
the received requests in the Input and Parametervalue entity beans and
returns the id of the Input entity bean as the handler.

The Heartbeat stateless session bean is the core bean of the system. It also
is an EJB Timer where a method tagged with the Tzrneout annotation is
called every defined interval; during call the Input bean is checked for a
new unprocessed input. If there is an unprocessed input, the processing
flag is set to true, the input as a set of global parameters and values is
mapped to local parameters and values that are then sent via the Octopus
server to Lixto Navigator and VW for downloading and extracting data
from local search engines. The received data are stored in the SearchResult
entity bean.

The timer has to be started automatically; this is done in the management
JSP page that is loaded automatically and in its constructor calls the start
method of the Heartbeat bean.

The Response stateless session bean is a gateway for providing results. It
checks if there are unsent results for the specified handler.

Figure 7.6: Architecture implementation overview.

Figure 7.8: Database entity relationship diagram.

Appendix B on page 150 shows some notable parts of the source: the Input
entity bean in Figure B.1, the ParameterValue entity bean in Figure B.2, the
SearchResult entity bean in Figure B.3, the Request session bean in Figure B.4,
the Heartbeat session bean in Figure B.5, and the Response session bean in Fig-
ure B.6.

The engine is deployed in the JBoss Application Server.
The JBoss Application Server is a reliable Java EE application server and

hence it is used in the prototype implementation.
The engine prototype implementation fulfils the accessing intermediate re-

sults requirement and theoretically fulfils the requirements for scalability and
reliability that are guaranteed by the used technologies, although the imple-
mentation itself was not tested for a higher load. It solves all main technical
problems and it represents a proof of the correct design concept.

7.3.2 Database

Table structures in the PostgreSQL database are automatically created by
the JBoss application server from the entity beans; for a diagram see Figure 7.8.

The Input entity bean is mapped to the input table, the ParameterValue
entity bean to the parameters table, the 1 : n relationship between them is
stored in the input-parameter table, and the SearchResult entity bean is stored
in the results table.

The usage of a database such as PostgreSQL in the prototype implementa-
tion fulfil the requirements for reliability.

7.3.3 Octopus
The Java EE technologies bring advantages, such as a robustness, but also

disadvantages mentioned in the previous chapters, such as disallowed usage of
features such as JNI, threads or I/O operations. That is the reason for the

Figure 7.9: Octopus package prototype implementation class diagram that fo-
cuses on the communication between the engine and the Lixto Navigator &
Extractor.

development of the Octopus server - a small isolated functionality accessible
via allowed techniques, such as RMI.

The Octopus prototype implementation communicates with the engine via
the JBoss Remoting library that provides a simple-to-use functionality for com-
munication between two processes. It allows to use several communication meth-
ods, such as a simple socket connection or RMI. The prototype implementation
uses the socket connection between communication points.

The Octopus server prototype implementation solves the following problem-
atic areas:

1. Communication with Lixto Navigator and Extractor, i.e. Octopus re-
places Hydra, for more details see Section 4.4.3. The main reasons are:
simplification of the prototype implementation - for the deployment pro-
cess, because JBoss Remoting is included in the JBoss AS, and for the
implementation process, because it represents a high-level communication
library.

2. Evaluation of JavaScript. JavaScript is a scripting language of the map-
ping framework prototype implementation; for more details see Section
5.10. In other words, Octopus provides a connection between the engine
and the Rhino scripting library.

For a class diagram of the Octopus prototype implementation see Figure 7.9.
The Octopus prototype implementation solves all related technical problems.

7.3.4 Navigator & Data Extractor

The Lixto Navigator and Data Extractor product as a part of the Lixto
Visual Developer is accessed via its NavigatorAPI interface.

In the prototype implementation it is started manually. A production im-
plementation has to be able to start and stop Lixto Navigator and Extractor
instances automatically.

For more details about the Lixto Navigator and Extractor see Section 4.2.
Using the Lixto Navigator and Extractor helps to meet the faster devel-

opment, session identification assignment and multi-page search forms require-
ments.

Figure 7.10: Mapping package prototype implementation class diagram.

7.3.5 Mapping Framework

The mapping framework prototype implementation covers all main parts:
global and local form descriptors; complex, synonyms, combined and script
mapping notation with the list mapping support. For more details see Chapter
5.

See Figure 7.10 for the class diagram of the mapping framework prototype
implementation.

The mapping framework prototype implementation is incorporated in the
engine. The engine calls directly the main gateway Mapper class that accepts
global and local form descriptors, a mapping, and a set of global parameter -
value pairs and returns a set of parameter - value pairs for each local search form.

The prototype implementation of the mapping framework fulfils the faster
development requirement. It implements the main parts of the mapping frame-
work design, solves all technical problems and represents a solid base for a
mapping framework with all designed features.

7.4 User

The user element prototype implementation covers the following two areas;
for a class diagram see Figure 7.11:

1. It is an exchange point for graphical user interfaces suitable for a human
user. The implementation consists of two JSP pages: search.jsp for the re-
ceipt of requests and returning of a handler and result.jsp for the provision
of results.

The search.jsp calls the Search stateless session bean that represents a
simplified engine-user interface; for more details see 6.4. The bean calls
the engine's Request bean. The JSP page generates an XML response
with a handler.

The result.jsp calls the Response stateless session bean that calls the en-
gine's Response bean. The JSP page generates an XML response with
result data.

For the source code of the result.jsp page see Figure B.7 on page 153.

2. It represents a gateway for the application - application communication.
The implementation consists of two web services: Search and Result. Sim-
ilar to the previous h u m a n interface, the application interface calls the
engine's Request and Response beans.

Technically EJB 3.0 allows to tag a stateless session bean with special
annotations that allow to use it as a web service. The source code of the
Result web service consists of two parts: an interface, shown in Figure B.8
on page 154, and an implementation as a bean, shown in Figure B.9 on
page 154.

The prototype implementation covers the scalability and accessing interme-
diate results requirements. It solves all technical problems.

For a prototype of a user interface with dynamic loading of results see Chap-
ter 8.

7.5 Administrator
The administrator prototype implementation is simplified to one JSP page,

the management.jsp page, that calls directly the engine's Heartbeat bean and
allows to start or stop the timer, i.e. to manage the processing of received
requests.

For a class diagram see Figure 7.11.
For a page see Figure 7.12.

The administrator prototype implementation partially fulfils the monitor-
ing requirement. It provides a simple base, where main technical problems are
solved, and it can be easily extended to provide more information and opera-
tions.

Figure 7.11: User and the admin package prototype implementation class dia-
gram.

Management console

Operation start hearbeat process finlshed successfully

Figure 7.12: Administrator management console page. The start operation
represent the last operation.

7.6 Interaction

The interaction of the implemented elements mentioned above is shown in
Figure 7.13. It is extended to include elements from the following Chapter 8 -
the flight-search.jsp search page and the flight-result.jsp result pages that are
described in Section 8.6 -so that the sequence diagram can show all interactions.

The interaction covers the whole request - response process, i.e.:

production, sending and receipt of requests,

creation and return of a handler,

loading and mapping of input data,

calling the downloading and extracting functionality,

storage of results,

loading and return of results.

Figure 7.14 shows a different on the interaction. It describes data flow be-
tween the implemented elements:

1. A user enters data on the global search form.

2. The user submits data that are transformed to a request.

3. A request is sent to the server, to the RequestBean stateless session bean.

4. The RequestBean stateless session bean stores the received request in the
Input entity bean, that is persisted to the database. The persisted Input
entity bean gets new unique identification, an ID, that is used as a handler
in the subsequent steps.

5. A result page is generated with the new handler.

6. The Heartbeat stateless session bean with an EJB Timer is periodically
called. It checks if there are any new unprocessed Input instances in the
database.

Ched

I I l I I I I I I
I l I I I 1 I 1 i

Figure 7.13: Flight Search sequence diagram.

7. If there is a new unprocessed Input instance, the Heartbeat stateless session
bean starts the processing of this instance - the global parameters and
values are mapped to local ones in the mapping framework presented by
the Mapper class.

8. The mapper framework allows a mapping to execute a JavaScript code.
It can be executed only out of the application server box. The execution
of a JavaScript code provides the Octopus server that is accessible via
the 'OctopusClient class. If there is any JavaScript code, a method of the
OctopusClient class is called to execute the code.

9. The OctopusClient class connects with the Octopus server via the JBoss
Remoting library and sends the JavaScript code to execute.

10. The Octopus server receives the code to execute and sends it to the Rhino
library that executes the JavaScript code.

The results is sent back to the Octopus server that returns it to the Octo-
pusClient class, which then returns the result to the mapping framework.

11. The started processing continues with the download and extraction of data
from local search engines. The download and extraction process has to be
executed out of the application server box. The download and extraction
process of the Octopus server is accessible via the OctopusClient class.
The OctopusClient class is called for each local search form.

12. The OctopusClient class connects with the Octopus server via the JBoss
Remoting library and sends the corresponding navigation, information on
how to download data, and extraction, information how to extract data,
with parameters.

13. The Octopus server sends the received navigation and extraction to the
Lixto VW & Navigator tool.

The downloaded and extracted data are sent back to the Octopus server
that returns the results to the OctopusClient class which returns it to the
Heartbeat stateless session bean.

14. The received data, that are received asynchronously, are saved to the
Result entity bean, that is persisted to the database.

15. Meanwhile the result page periodically asks the ResultBean stateless ses-
sion bean for new results with the handler.

16. The ResultBean stateless session bean returns a result if there are any
unsent data with the specified handler, i.e. the ID.

If there are no data, a message "no data" is sent back to the ResultBean
stateless session bean that returns it to the result page.

If there are any unsent data, they are sent back.'

If all processes for the specified handler are finished and there are no unset
data, a ' n o more results' message is sent.

The described data flow allows to process requests and to provide results
asynchronously - if more requests are received, there are more Input entity
beans persisted, i.e. there are more result page instances with different handlers.
For each handler there are persisted Result entity beans.

Figure 7.14: Data flow diagram.

Chapter 8

Flight Metasearch Case
Study

8.1 Introduction

. Flight metasearch solution makes the searching of flights on the web very
easy and transparent. A user does not have to check tens of flight booking pages
and can choose the most suitable flight for him/her self on a result page that
contains flight data from several flight booking systems.

On-line flight booking is an area with well defined parameters and values,
results are well structured. Also in terms of coverage, as almost all airlines
have their own on-line booking system, this area is suitable for a metasearch
solution, i.e. a solution that provides a global search form, where an input is
entered only once, this is mapped to particular flight booking systems or flight
search engines and results are gathered and transformed into a unified overview
form that allows sorting and comparing the received flights data.

Every on-line booking system essentially contains the same parameters like
point and time of departure and arrival and number of passengers. This situa-
tion is an advantage for a metasearch solution because it simplifies the process
of creating a global search form, a mapping between the global search form and
a particular booking system, and the final merging of result data.

A global search form contains the same parameters as all particular booking
systems. Values of a global form parameter are merged values of the parameter
on particular booking systems.

A part of the result is also a deep link, i.e. a link that points to the corre-
sponding original page and allows the completion of a booking process for the
last step from the search, select and buy steps.

8.2 Requirements

Requirements for the flight search case study are straightforward - to create
a metasearch solution that is able to aggregate results from two airline booking

systems.
The flight metasearch prototype covers the following steps:

1. The prototype sends requests and processes results from SkyEurope and
Ryanair booking systems.

2. Creating a global search form interface and mappings to local search forms
that allow to enter all data that are available on the search forms of the
handled booking systems.

3. To merge results from both booking systems and present the result in
HTML.

8.3 Form Descriptors

The first step is to create form descriptors for each processed booking system
and the global search form.

All forms contain the same parameters: origin and destination airport, de-
parture and return date, and number of passengers.

8.3.1 SkyEurope

The SkyEurope [SkyOGa] search form is shown in Figure 8.5; it is analysed
in Section 2.5.

The appropriate form descriptor is shown (only its important parts) in Figure
8.1 and contains the following parts:

m a list of origin airports on line 3

a day of the departure date as a list on line 7

a month and a year of the departure date as a list on line 11

a number of adults as a list on line 15

a number-of infants as a list on line 19

The parts for the origin parameters are similar to the departure parts.

8.3.2 Ryanair

The Ryanair [RyaOG] search form is shown in Figure 8.5; it is analysed in
Section 2.5.

The appropriate form descriptor is shown (only its important parts) in Figure
8.2 and contains the following parts:

a list of departure airports on line 3

a day of the departure date as a list on line 7

a month and a year of the departure date as a list on line 11

a number of adults as a list on line 15

Figure 8.1: Important parts of the form descriptor for the SkyEurope search
page.

a number of children as a list on line 19

a number of infants as a list on line 23

The parts for the origin parameters are similar to the departure parts.

<param l i s t="on n name=" sector l - d " >
<value>AAR</value>
<value>ABZ</value>

. . .
<param l i s t = " on" name="ADULT'>

<value>O</value>
<value>l</value>

<param l i s t = " on" name="CHILD">
<value>O</value>
<value>l</value>

Figure 8.2: Important parts of the form descriptor for the Ryanair search page.

8.3.3 Global Search From

The global search form is shown in Figure 8.5 and it is described in Section
8.5.

The appropriate form descriptor is shown (only its important parts) in Figure
8.3 and contains the following parts:

a list of departure airports on line 3

a day of the departure date as a list on line 7

a month and a year of the departure date as a list on line 11

a number of adults as a list on line 15

a number of children as a list on line 19

a number of infants as a list on line 23

The parts for the origin parameters are similar to the departure parts.

<param l i s t = " on" name="depmy">
<value>032006</value>
<value>042006</value>

<param l i s t = " o n V name=" adul t ">
<value>l</value>
<value>2</value>

. . .
<param l i s t = " o n V name=" in fant ">

<value>O</value>
<value>l</value>

Figure 8.3: Important parts of the form descriptor for the global search page.

8.4 Mappings

A mapping is shown in Figure 8.4 (only important parts).
Lines 6 to 15 define a mapping for the adult parameter. The value mapping

uses the sumAdultChildren script to compute the number of adult passengers
for the SkyEurope search form.

8.5 Global Interface

The global interface of the flight metasearch is shown in Figure 8.5. As in
most cases, it does not introduce any new element; it is inspired by the existing
interfaces of processed search forms of the processed flight booking systems.

From the design point of view, the global interface is on the client side and
it sends a request to the server side.

< s c r i p t s >
< s c r i p t name=" sumAdultChildren">

getGlobalValue (' a d u l t ') +
getGlobalValue (' c h i l d r e n ')

Figure 8.4: Important parts of a mapping for the flight metasearch.

8.6 Server Connection

The fight-search.jsp global search form page and the flight-result.jsp result
page are JSP pages. They connect to the human interface gateway provided by
the engine pro totype implementation.

The search form page sends user parameters and values via the POST
method to the result page. The result page sends user parameters and val-
ues to the search session bean, which returns a handler. The result page then
periodically asks for new results, i.e. it calls the result session bean with the
handler via the AJAX technology. Received data is dynamically inserted to the
page and the status line is updated.

The result page stops asking for new result when the result session bean
sends a terminate notification.

8.7 Results

The results are processed in two steps - firstly, results are extracted and
secondly, they are presented to an end customer.

8.7.1 Extraction

A parameterisable navigation ends on a result page, so the extraction func-
tionality of Lixto Visual Developer can be used to extract result data as the

6 Round Trip Return fc One Way

r" Qne Way Select Your Journey

Depaeure Date

m
I 1 February 2005 3

Return Date

C_,

Depart Oate

wij /Feb20011]
Return Oate m
Number of Passengers m A ~ U I ~ S

Children
funder 16 years)
lnfants
(under 2 years)

Return F one Way

Depat-t Date

Return Date
I-;]

Number of Passengers
Adults
Children (under l Gyears)
lnfants (under 2 years)

Figure 8.5: The SkyEurope [SkyOGa] local search forms (in the upper left corner),
the Ryanair [RyaOG] local search form (in the upper right corner) and the global
search form (at the botom) created by the application designer.

downloading functionality was used to navigate and download a result page; for
more details see Section 6.5.3.

An extraction process consists of two parts: an output model and an extrac-
tion descriptor.

An output model is generally a schema that defines how an output can look.
It is common for all processed airline booking systems. The output example
skeleton for the flight metasearch case study is shown in Figure 8.6. Basically
the meaning of all items is clear from the concept, the last item deep-link on
line 9 contains the corresponding deep link, i.e. a URL to the last possible step
of the booking process of an airline.

Figure 8.6: The output example skeleton of the flight metasearch.

An extractor descriptor is created for each airline booking system. It de-
scribes how a process of an extraction should be performed, i.e. it is a mapping
by rules that identify areas on a HTML page and their content is transfered
to the specified output model. For more details see the papers [GKB+04],
[BFGOlb], [BFGOla] and see Section 4.2.

From the design point of view, the downloading and extraction functionality
is performed on the server side.

8.7.2 Presentation

The result data are presented as a HTML page that contains a merged list
of all suitable flights found.

The result page has several stages that reflect the behaviour of the engine
that fulfil the accessing intermediate results requirement:

At the beginning, the result page waits for the first result. For example
see Figure 8.7.

The result page receives the first result and displays it. For example see
Figure 8.8.

The result page received two additional results and displays them. For
example see Figure 8.9.

Flight MetaSearch
From Bratlslava BTS to London-Stansted STN on 10th May 2006

Search status: searching

fir,rns c l i ~ h t ~ D Orlgln Destinatloll Departure 4rrlbal P c?[@; @noi\tng

Figure 8.7: The Flight Search result page - the search process started.

Flight MetaSearch
From Bratislava BTS to London-Stansted STN on 10th May 2006

Search status: searching (one result receiwd)

P~rlr-e Fl~p"lt lU Ottjln Deslinat~isn Depart~~rt: 4niral Pt~r:e[fj Eooltlng
S1+El ope NE:~CII BTS STN DG 50 08 l i l 55 451 r)~ool(ths RlqbJ

Figure 8.8: The Flight Search result page with one result from SkyEurope.

The result page received a notification that there are no more results and
notifies the end user about it in the status line. For example see Figure
8.10.

The result page uses the AJAX technology, so it is able to dynamically ask
for new results and add them without any reloading of the page.

From the design point of view, the presentation of results is done on the
client side.

8.8 Conclusion

The flight metasearch case study showed a metasearch solution that satisfies
the general requirements mentioned in Section 6.1 and specific requirements
from Section 8.2.

The fulfilment of the steps defined in Section 8.2:

1. The Flight Search prototype implementation sends requests and processes
results from SkyEurope and Ryanair booking systems - see Section 8.3.1
and Section 8.3.2.

2. To create a global search form interface that allows to enter all data that
are available on search forms of the booking systems handled - see Section
8.5.

Flight MetaSearch
From Bratislava BTS to London-Stansted STN on 10th May2006

Search status: searching (3 restins received)

Airline FiigRl iCl c ? n ~ n Gs:tination Depaltt~:.? A:.l.ivs, Price [C] ~ a o l i n ~
5;I'"yElli'qpe PIE 1201 6T5 ?.:'l'l~.j 06 I jC l Et?:? Cl !16.4[:1 hi;ol..ril!im';

Rpnir~r F f t " r1 ";TT ':;STFI l 0 ilii i l l 2'5 ,at7 I'lgg!i&!;:, fIII;ll:fi
i",u:anoir V C 3 l E [-: t; ri.1 91 lli:l :2.01:1 :?[I ~ I : I l:1!3~1i< tllis rllr?l?t P-."

Figure 8.9: The Flight Search result page with additional two results from
Ryanair .

Flight MetaSearch
From Bratislava BTS to London-Stansted STN on 10th May 2006

Search status:finished

A~rlini. Fiiglit lC k r g n Destination Departi~rs Arcval ?rice [C] Boolc?g
SkyTirr'-7ps NC1'2O1 @;S STN 06'50 68 10 5f3.4Cl t~!~qjfi&,..?f~':;

i-?;yariair bK23 1 ::; BT.5 S1 lil lil:Oc? 11 15 2%30 bO~!i% tl'lis tilal::
F8/ali?ir FR?31 7 6T:i STbI ? l 00 12 ::a,t:o tjonl. n~i.; !II~I;!. ~

Figure 8.10: The Flight Search result page - the search process finished.

3. To merge results from both booking systems - see Section 8.7.2.

The flight metasearch case study showed how a special-purpose metasearch
solution helped an end customer to receive better results in an easy way. The
global interface does not significantly differ from the source forms in this case -
an end customer can us it immediately.

Chapter 9

Conclusion

This thesis provides an explanation of the main technologies that form the
basis of the metasearch world; the existing solutions that defined this field in the
past and at present including their advantages, disadvantages, orientation and
efficiency, while more thoroughly focusing on the Lido MetaSearch product as
the starting point for improvements and new requirements; further it describes
the theory of mapping search forms featuring semantic mapping, mapping list
support, and date and currency conversion.

It designs a mapping and an execution framework - the main parts of the
Snorri metasearch solution. The mapping framework design reflects the de-
scribed mapping theory and the execution framework design provides a multi-
tier, scalable and fail-over solution.

The thesis provides a prototype implementation for the two frameworks.
The proposed mapping framework implementation facilitates a simplified devel-
opment and deployment process of scenarios. The proposed execution frame-
work implementation allows implemented scenarios to be processed in a robust
and distributed environment. The prototype implementation represents a solid
proof of concept as a base for commercial use.

It contains a case study using the prototype implementation that searches
two airline booking systems.

The solution described in this thesis combines the worlds of specialised search
engines and metasearch engines. It provides integration of results from back-
end databases that are available through particular specialised search engines.
Integration includes features such as currency conversion, sorting of results or
combining of results from several sources.

The main goal of the solution presented in the thesis is to allow a user to be
up-to-date and to choose the most profitable option at any time.

9.1 Requirement S Fulfilment
The fulfilment of the requirements from Section 4.5.9 and Section 6.1:

Faster development of MetaSearch elements. The main aspects of the graph-
ical user interface are mentioned in Section 6.3.6. The mapping framework

significantly simplifies the development and deployment process; it is de-
signed in Chapter 5 and an implementation is described in Section 7.3.3
and Section 7.3.5.

Monitoring of the whole process. The design is described in Section 6.3.5
and Section 6.4.5, a simplified implementation is shown in Section 7.5.

Scalability and load balancing. The design is described in Section 6.5.3.
The prototype implementation of the engine part shown in Section 7.3.1
uses technologies that provide an industrial standard for creating scalable
and load balanced solutions, although the prototype implementation was
not tested for it.

Caching. The caching functionality is designed in Section 6.1.4 and Section
6.5.2. The prototype implementation mentioned in Section 7.3.1 and used
technologies provides a base for any caching functionality.

Source Pruning and Intelligent Pre-loading. The solution is designed in
Section 6.3.4 and Section 6.1.4.

Accessible Intermediate Results. The design is described in Section 6.3.4
and Section 6.5.2. A prototype implementation is shown in Section 8.7.2.

Session ID Assignment. A session identification assignment is done auto-
matically by using the Lixto navigator Tool for navigations. A solution is
explained in Section 5.7 and Section 5.9.

Multi-page search forms. Multi-page or the wizard style of search forms is
supported by using the Lixto navigator Tool for navigations.

9.2 Further Development
Areas for further development include:

Advanced optimisation and checking techniques. Statistical processing
of received data allows the execution framework to perform better opti-
rnisation of processing and to check input data based on limits that are
adjustable.An expert system can provide sophisticated checking of input
data or make expert decisions during the processing phase.

Grid computing. A huge amount of processed data and requests can be
problematic in a multi-tier environment when adding new servers to a
cluster does not have the desired effect. In such a case, the grid computing
may represent an appropriate solution.

GUI. A graphical user interface can use features from the mapping the-
ory and design. A combination of features provides the support for an
automatic creation of a mapping. It can be used in the preparation of an
initial mapping or it can be accessible through a wizard that may focus on
a particular aspect of the mapping theory, e.g. the creation of a currency
mapping.

9.3 Possible Application and Economic Impact
The proposed solution brings integration of real-time results in all aspects

such as different currencies and measure units. The integrated results are clas-
sified by different aspects as preferred by an end customer such as price, age
and size.

This extends the possibilities of the end customer to search for more sources
in a shorter time and it creates a full market picture through the use of one
search form.

The solution provides a greater opportunity to find a better value available,
thus creating added value for end users.

Naturally, there are many possible application areas, just to name a few:
flight booking, car rental, accommodation booking, and shopping.

Acknowledgment S

I would like to thank GBbor Farkas, Gerald Ledermiiller, Peter Szinek, Ty-
mon Wiedemair, and Viktor Zigo for their hours spent by discussions with me
and their priceless comments.

Last but not least, I thank Robert Baumgartner, Georg Gottlob, and Marcus
Herzog for their support and helpful advice.

Appendix A

Screenshots

m h t s l HDlels i (,a& 8 &.& I m kayak" ,,,I, .I,~I.. I . I i ,, ,,,. - .U. ,, ,,. , ,..,
Start seorch wer Price (USD) Stars Hotel Name - . oc:oacsttavel.com hoislclub con, * vener8 con7

col-1c:tlnns com clual~ty~nnz corn

miimmllm~ ,,,, * * ' * Qllalrly Hmrow Hotel

Enough Results] p e r 3 1 ' I '? ' t ' inwr "'l ,, I $ 3 -!l:

$85 ** 9 * Royal ~ I S S B X Hotel
/ . , P '1. ,,c,n ,AIS 1 S " S , l 4 , l !!l

$123 * + p Best Western Johll Howard Hotel
' G , I .

l " . lC 8 ; , -

$374 **M* Royal Garden Hotel
l>*(,X, ,I,. ? ? 4 lwens~*i~?:ii i .I , ?: ! !I~!~.,:JI) \'<Cl 4PT

$78 *f * * "entral Park Hotel
(, / 1. 4Mb1: tob i l t a l l L ~ I I ~ I I ' ; - ~ >

$114 0** I rl Coulary Inn a Suites By Corlsoa
8.3 n i l - 16: Ct t l l h2 ' I : >-Am

$146 ** * S * The Galnsbarough
ro, n g l l ?.l? !iU*i.liSb6f7:'IEI':i i -.n4oi? S'Pii :'[)I

$226 It * f * * Cl~esteKmld Mayfair Hotel
(.F, n ,I;: .,.. ?:. -.*- ~ , # ~ $ r l ~ . C U+ > , . I . . s - . 2;13c? ' f ~1J 5kb

Figure A. l : A kayak.com page with displayed intermediate results, the searching
process just started.

U h t F HOt%l% , W l Q& 1 kayak 6,445WMmonIlne L.~.,.,a,,,,m,. sat2.,.,.2..6 - ... ,, ,,. 20.6' ,,,.,,,., , ...,,.
Wart sesrctt over Prlcc (USD) Stars Hotel Name

G09 of 609 resuns show11 () Now adding rostinsfrotn:

Dli3PRIilliIM11111 moi'parlsliotelgroup.toin . venate corn la~tmi1it11etr8~el cnni
r e ~ ~ ~ f t l a ~ ' 4 1 coin . co17tfo1$nra corn qunlltyinns col11
Ihw: c~,!il . hnfsieookco~'! ~IPXPIRSI con)

Enough Results I - t011d~pinn caln . o.n~un*plaza ram

$93 k** X Holiday Inn Eexley
(ioi ni;n:

v . . ;luu~hw[iid l i l i , 5 : d.^$:'!U

$163 **$ h h QualWHarrow Hotel
p*, i lqn i 12-22 pirp;rii$ ra-.c,, FP:

$113 *** 4 Best Western Cumberland Hotel
F* ' r,i?hi 1 SiJr:llils P I , ~zl~?.: &Xi ?FT

$140 * * * = COmfoR Bin
,%t*j :bt :'.l .' l I~? i t l t~~?,~, , i F+j,c?,; .-<;tg::,,+.s I+l&i .,&)l

$305 * * * JIIW Clman Ford Hate1
0. $ 8 1 1 ' r i i " I

$265 * * * London @ridge Hotel
>,, t h b ~ h .

! 1 S 1,c,n:>:-:r, l!::<<$:: ?'. l 3l-q*.:', S>[.:: :l?,<;

$100 * * * ' * Brflttston cotm Hotel
E?: 8>i31,t 5 b - b U Li:~;fCl.rrb~t.i;-S i , .ac? Loridcfi, h i t - i ;i O

$207 * * * Grange White Hall Hotel
rbr V C , k'ol1%1qLl- 3% I 8 r #A I P %l1

$128 **R lnlerllatlonal Hotel
1 8 t,,,,1<+ l I l l l 1 l . !

$85 * * Royal Sussex Hotel
I*,, iiiyi*: iS .80 Surs-r '>; .,l!:i L?:?,I! ,+I

Figure A.2: A kayak.com page with displayed intermediate results, the searching
process is finishing.

'r'ahoo sharG fall on%efj rpens~on agency B~Jwou'd gut'

l ' i
! i 1 1 f I

l
I

l ! ' -- _. - - . . -- - - - - - - -- - -
/ ' Properties, ~roblemsj b Page Source E\, . - - - - - R'

- - - -. -. -- . - - -- -- -- - - -

Figure A.4: A screen of the developer interface in Transformation Server. At
the menu on the left side are listed developer's pipes. The main area in the
middle contains a graphical view of the selected pipe.

Figure A.5: The MetaSEEk search form page. The search form is based rele-
vance feedback - every picture has Like and Dislike options. http : //www . ee .
columbia.edu/"ana/metaseek/figures/figl.jpg

Figure A.6: The graphical results presentation of the Ka r t00 metasearch en-
gine. The nodes represent found pages.

Search Clusty.com with our NEW FlreFox Toolbar
*---

; i i i p 2 3 i E u 1 i i ~ ~ ~ 0 0 rit@ved fotthequjYrV5 giiriiiereh b ~ u ~ C - - " ~ - - _
9 m (2 3 2)

W German. Sl~orthairetl Polnter (6 0)

@ , P~ctiires (631

@ Lmser Polnter 1141

Q h Ker~nel CIIII) (6)

p Xnolnter fz)

W Resources (2)

Otlier Toalcs (l

@ 1. Soliltions (7)

&I * Books(61

* Pointer Sisters (31

h Mouse notnter (11

T !-c*

Fond ~n clusten

l ~ n t e r Keywords Q

1. German Wirehaired Pointer Club of America - Ho
American Kennel Club parent club forthe breed. Breed im

? Pointers Nscd '/our h e p be. ~tndo.1 ~tramsl pact>el [xe

Organ~zat~on help ng to place ~ a s c ~ e d Polnters wit11 aaoc

3 Garman Snonna red Pointer C ub of Amerlia hew
AKC Darent club for the breed Club informat~on, tou ten li:

4 American Pointer Club Inc Inc. wlndou] [tr.lmel lcachal [p
AKC parent club ofthe breed Histoly. informallon photos

5 Pointer Brand Overalls a n l Jeans Horn? Paqe [n
Jeans and coveralls for adults and ch~ldren

6 XML Pointer Lanauaqe (XPointer) [nam wmdaw] [frame]
A specification of constructs that support addlesslng Into
XML documents
\~$#v~w3 orgiTRhpt1 r.l:tr sr; 5 1 ii,isx et- , oc151natt;17

7 Mid-Atlant~c German Shorthalred Pointer Rescue
h#^" ..<on, .r....,n -r-r..i-.-+,nn r(r*lr . .+.-A t,. (I..r(l".. !"A,.....

Figure A.7: The clustered results tree of the Vivisimo metasearch engine.

Appendix B

Source Code

QEnt ity
@Table (name=" input")
public class Input implements Serializable {
. . .

5 private int id;
private Timestamp received, accepted, finished;
private List<ParameterValue > parameters ;
private boolean inprocess , ended ;

10 @Id QGeneratedValue public int getId() {
return i d ;

1
. . .
QOneToMany public List<ParameterValue> getparameterso {

15 return parameters ;
1

Figure B.l: The interesting parts of the Input entity bean source code.

2 (OTable (name=" parameter")
3 public class ParameterValue implements Serializable {
4 . . .
5 @Id QGeneratedValue public int getId() {
B return id;
7 1

Figure B.2: The interesting parts of the Parametervalue entity bean source
code.

@Entity
@Table(name=" result ")
public class SearchResult implements Serializable {
. . .

5 private int id;
private Timestamp created;
private String data;
private Input input ;
private boolean sent ;

OGeneratedValue
public int getId() {

return id;
l5

OManyToOne
public Input getlnput() {

return input ;
1

Figure B.3: The interesting parts of the SearchResult entity bean source code.

public @Stateless class RequestBean implements Request {
@PersistenceContext private EntityManager em ;

public int accept (Map<String , String [l > params) {
5 long now = new Date () . getTime () ;

List<ParameterValue> reqParams =
new LinkedList<ParameterValue > () ;

for (Map. Entry<String , string [l > entry :

10 params . entrySet ()) {
i f (entry. getvalue () . length > 0) {
Parametervalue pv = new Parametervalue(

entry. getKey () , entry. getvalue () [O]) ;
reqParams . add(pv) ;

15 em.persist (pv);

1
1

Input input = new 1nput (reqparams , new Timestamp (now)) ;
em.persist (input) ;

20

return input. get Id () ;
1

Figure B.4: The interesting parts of the Request session bean source code.

public @Stateless class HeartbeatBean implements Heartbeat {
private @Resource Sessioncontext context ;
private @PersistenceContext EntityManager em;

5 public void startTimer() {
/ / w a i t i n i t i a l 5 s e c , t h e n e v e r y s e c o n d
context. getTimerService () . createTimer (5000, 1000, null);

1

10 (OTimeout public void timeoutHandler(Timer timer)

{
List inputs =

em. createQuery("from,Input~i,where,i . inProcess,=,false")
getResultList () ;

15

if (inputs. isEmpty ()) return;

Input input = (Input) inputs. get (0);
input. setInProcess (true);

20 input. setAccepted (new Timestamp (new Date () . getTime 0)) ;

Map<String , String> reqParams =
new HashMap<String , String > () ;

for (Parametervalue pv : input. getparameters ()) {
25 reqParams .put (pv. getName () , pv. getvalue ()) ;

1

Map<String , Map<String , String>> locals =
new Mapper () .process (reqparams) ;

30

for (Map. Entry<String , Map<String , String>> entry :
locals. e n t r ~ ~ e t ()) {
String source = entry. getKey () ;
Map<String , String> sourceParams = entry .getvalue () ;
String result = new Navigatorclient () .
make~nvocation(source , sourceParams) ;

SearchResult sr = new SearchResult (
new Timestamp (new Date () . get~ime ()) , result , input) ;

40 em. persist (sr);

1
input. setEnded(true) ;
input. setFinished(new Timestamp(new Date () . getTime 0));

Figure B.5: The interesting parts of the Heartbeat session bean source code.

public @Stateless class ResponseBean implements Response {
OPersistenceContext
private Ent ityManager em ;

5 public String getResult(String handler) {
try {

List results =
em. createquery ("from-SearchResult ,r,where," +
" r . input. id,=," + handler + " -andMr. sent-=,falsen)
getResultList () ;

if (results. isEmpty ()) return null;
SearchResult result = (SearchResult) results.get(0);
result. setsent (true) ;

return result. getData () ;
} catch (Throwable e) {

return "<error/>" ;

1
20 1

1

Figure B.6: The interesting parts of the Response session bean source code.

<%!
private Result result = null;
public void jspInit () {

Initialcontext ctx = new Initialcontext () ;
5 result = (Result) ctx.lookup(

" p r o t o t y p e / R e s u l t B e a n / r e m o t e n) ;

'3G
1

<%
10 String handler = request. getparameter (" handler") ;

String ret = result. getResult (handler) ;
YG

<data>
15 <% if (ret == null) { %>

<noresult/>
<%} else {%>

<result~~ret~~</result>
<%)'3&

zo </data>

Figure B.7: The interesting parts of the Result JSP page source code.

1 QWebService
z @SOAPBinding(style=Style.RPC)
3 public interface Result extends Remote {
4 QWebMethod String getResult (String handler) ;
5 1

Figure B.8: The interesting parts of the Result web service interface source
code.

2 @WebService(endpointInterface=
3 " s n o r r i . app. i n t e r f a c e s . R e s u l t ")
4 public class ResultBean implements Result
5 {
6 @EJB Response response;

8 public String getResult (String handler) {
9 return response. getResult (handler) ;

10 I
l1 }

Figure B.9: The interesting parts of the Result web service interface source
code.

Bibliography

[BBC971

[BBC981

[BEA03]

[BFGOla]

[BFGOlb]

Amazon. Search form page, 2006. http : //www . amazon. com.

Apache. Struts key technologies, December 2005.
http://struts.apache.org/struts-action/userGuide/
preface. html.

Apache. Tomcat servlet API, 2005. http: //tomcat. apache . org/
tomcat-5.5-doc/servletapi/index.html.

Apache. Jmeter project page, 2006. http : // j akarta. apache .
org/jmeter.

Apache. Struts page, 2006. http: //struts. apache . org/

Autolocate. Use car search page, 2006. http : //parkers .
autolocate. CO. uk.

M. Beigi, A. Benitez, and S. Chang. Metaseek: A content-based
meta search engine for images, 1997.

A. Benitez, M. Beigi, and S. Chang. Using relevance feedback in
content-based image metasearch, 1998.

BEA. WebLogic workshop help, 2003. http : //e-docs . bea . corn/
workshop/docs8l/doc/en/core/index.html.

Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Declara-
tive information extraction, Web crawling, and recursive wrapping
with Lixto. Lecture Notes in Computer Science, 2173, 2001.

Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual
web information extraction with Lixto. In The VLDB Journal,
pages 119-128, 2001.

Carland. Search page, 2006. http : //www . carland. com.
Jared Cope, Nick Craswell, and David Hawking. Automated
discovery of search interfaces on the web. In Xiaofang Zhou
and Klaus-Dieter Schewe, editors, The Fourteenth Australasian
Database Conference, volume 17 of Conferences in Research
and Practice in Information Technology, Adelaide, Australia,
2003. http : //research .microsof t . com/users/nickcr/pubs/
cope-adc03.pdf.

[CheOGa] Checkfelix. FAQ page, 2006. http : //www . checkf elix . com/f aq.
htm.

[Con991

[ConOO]

[Con04a]

[Fe t 061

[Gau97]

Checkfelix. Search form page, 2006. http : //www . checkf elix .
com.

Nick Craswell, David Hawking, and Paul B. Thistlewaite. Merging
results from isolated search engines. In Australasian Database
Conference, pages 189-200, 1999.

World Wide Web Consortium. XSL transformations XSLT spec-
ification, 1999. http: / / w w . w3. org/TR/xslt.

World Wide Web Consortium. XHTML specification, 2000. http:
//www . w3. org/TR/xhtm11.

World Wide Web Consortium. Extensible markup language XML
1.0 (third edition) specification, 2004. http : //www . w3. org/TR/
2004/REC-xml-20040204.

World Wide Web Consortium. Web services architecture, 2004.
http://www.w3.org/TR/ws-arch.

World Wide Web Consortium. XForms 1.1 working draft, 2005.
http://www.w3.org/TR/xformsll.

World Wide Web Consortium. XML path language (XPath) spec-
ification, 2005. http: //www . w3. org/TR/xpath20.
World Wide Web Consortium. Xquery specification, 2005. http:
/ /WWW. w3. org/TR/xquery.

World Wide Web Consortium. XSL transformations XSLT version
2.0 specification, 2005. http: //www . w3. org/TR/xslt20.

World Wide Web Consortium. Soap, 2006. http : //www . w3. org/
TR/soapl2-partl.

World Wide Web Consortium. Web services description language
(wsdl), 2006. http : //www . w3. org/TR/wsdl20/.

World Wide Web Consortium. XForms page, 2006. http : //ww .
w3. org/MarkUp/Forms/.

Countrbookshop. Advanced search page, 2006. http://www.
countrybookshop.co.uk/search/advancedsearch.phtml.

Daniel Dreilinger and Adele E. Howe. Experiences with selecting
search engines using metasearch. ACM Transactions on Informa-
tion Systems, 15(3):195-222, 1997.

Fetch. Products page, 2006. http: / / w w .f etch. com/solutions .
asp?sub=sol-products.

Susan Gauch. Data discovery on the information highway, 1997.

[GloOl]

G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca.
The Lixto data extraction project - back and forth between the-
ory and practice. In Symposium on Principles of Database Systems
2004, 2004.

G. Gottlob, Ch. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. In Proc. 28th Int. Conf. on Very Large
Data Bases (VLDB 2002), pages 95-106, Hong Kong, China,
2002. Morgan Kaufrnann.

G. Gottlob, Ch. Koch, and R. Pichler. The complexity of
XPath query evaluation. In Proc. 21st ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS
2003), San Diego, California, USA, 2003. ACM.

G. Gottlob, Ch. Koch, and R. Pichler. XPath query evaluation:
Improving time and space efficiency. In Proc. 19th Int. Conf.
on Data Engineering (ICDE 2003), Bangalore, India, 2003. IEEE
Computer Society.

Eric J. Glover, Steve Lawrence, William P. Birmingham, and
C. Lee Giles. Architecture of a metasearch engine that supports
user information needs. In Eighth International Conference on
Information and Knowledge Management (CIKM'99), pages 210-
216, Kansas City, MO, November 1999. ACM Press.

Eric J. Glover, Steve Lawrence, Michael D. Gordon, William P.
Birmingham, and C. Lee Giles. Web search - your way. Commu-
nications of the ACM, 1999. accepted for publication.

Eric J. Glover. Using Extra-topical User Preferences to Improve
Web-based Metasearch. PhD thesis, The University of Michigan,
2001.

Google. Froogle online shopping page, 2006. http : //f roogle .
google. com.

Google. Help center page, 2006. http: //www . google. com/help/
basics. html.

Google. Search form page, 2006. http : //www . google. com.

Bin He and Kevin Chen-Chuan Chang. Statistical schema match-
ing across web query interfaces. In SIGMOD Conference, pages
217-228, 2003.

Adele E. Howe and Daniel Dreilinger. SavvySearch: A metasearch
engine that learns which search engines to query. A I Magazine,
18(2):19-25, 1997.

Marcus Herzog. A Rapid Application Development Environment
for XML-based Data Flow Applications. PhD thesis, Database and
Artificial Intelligence Group, Institute of Information Systems,
Vienna University of Technology, Austria, February 2002.

[HMYW04a] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. Automatic
extraction of web search interfaces for interface schema integra-
tion. In WWW Alt. '04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters,
pages 414-415, New York, NY, USA, 2004. ACM Press.

[HMYW04b] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. Auto-
matic integration of web search interfaces with wise-integrator.
The VLDB Journal, 13(3):256-273, 2004.

[HZC05] Bin He, Zhen Zhang, and Kevin Chen-Chuan Chang. Towards
building a metaquerier: Extracting and matching web query in-
terfaces. In ICDE, pages 1098-1099, 2005.

[Jac98] Peter Jackson. Introduction to Expert Systems. Addison-Wesley,
3nd edition, December 1998.

[JavO2] JavaWorld. Java scripting languages: Which is right for
you?, April 2002. http : //www . j avaworld. corn/ j avaworld/
jw-04-2002/jw-0405-scripts.htrn1.

[JavOGa] JavaSource. Open source EJB servers, 2006. http : / /
java-source.net/open-source/ejb-servers.

[Jav06b] JavaSource. Open source scripting languages in Java, 2006. http :
//java-source.net/open-source/scripting-languages.

[JBoOG] JBoss. Application server page, 2006. http : //www . j boss. corn/
products/jbossas.

[Ju06] Jux2. Search form page, 2006. http : //www . jux2. corn.

[KarOG] KartOO. Search form page, 2006. http: //kart00 .corn.

[KayOGa] Kayak. Hotel search API overview, 2006. http: //developer.
kayak.corn/sysinteg/hotel/overview.htrnl.

[KayOGb] Kayak. Search form page, 2006. http: //www . kayak. corn.
[KayOGc] Kayak. Technology page, 2006. http: //carp. kayak. corn/tech.

htrnl.

[KBNK02] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and
Henry F Korth. Covering indexes for branching path queries.
In Proceedings of the 2002 ACM SIGMOD international confer-
ence on Management of data, pages 133-144. ACM Press, 2002.
http://www.cs.wisc.edu/"raghav/paper-309.pdf.

[LG98] Steve Lawrence and C. Lee Giles. Searching the World Wide Web.
Science, 280(5360):98-100, 1998.

[LG99] Steve Lawrence and C. Lee Giles. Text and image metasearch on
the web. In International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 829-835. CSREA
Press, 1999.

[LMK02] K. Lerman, S. Minton, and C. Knoblock. Wrapper maintenance:
A machine learning approach, 2002.

[Met 061

Yiyao Lu, Weiyi Meng, Liangcai Shu, Clement Yu, and King-
Lup Liu. Evaluation of result merging strategies for metasearch
engines. In 6th International Conference on Web Information
Systems Engineering (WISE05), pages 53-66, November 2005.
http://ww.cs.binghamton.edu/~meng/pub.d/Lu~p211.pdf.

Mamma. About page, 2006. http : //ww . mamma . com/inf o/
about . html.
Mamma. Search form page, 2006. http : //ww . mamma. com.
Weiyi Meng. Projects page, 2006. http : //www . CS. binghamton .
edu/"meng/metasearch.html.

MetaCrawler. Search form page, 2006. http: //ww .
metacrawler . corn/.

Mozilla. Gecko FAQ, November 2000. http : //www . mozilla . org/
newlayout/f aq. html.

Mozilla. About mozilla, October 2005. http : //ww .mozilla.
org/about.

Mozilla. Javascript for Java, 2006. http : //www . mozilla. org/
rhino/.

Dheerendranath Mundluru, Zonghuan Wu, Vijay Raghavan,
Weiyi Meng, and Hongkun Zhao. Automatically extract-
ing subsequent response pages from web search sources. In
IEEE Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge
Sources, November 2005. http : //ww . CS. binghamton . edu/
-meng/pub.d/ICDMWorkshop05.pdf.

Weiyi Meng, Clement T. Yu, and King-Lup Liu. Building effi-
cient and effective metasearch engines. ACM Computing Surveys,
34(1):48-89, 2002.

Felix Naumann. Detecting duplicate objects in XML doc-
uments. In Proceedings of the 2004 international workshop
on Information quality in informational systems, pages 10-19.
ACM Press, 2004. http: //www. inf 0rmatik.h~-berlin.de/
mac/publications/IQIS04.pdf.

Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1994.

Opensymphony. Webwork page, 2006. http: //ww .
opensyrnphony.com/webwork.

Oracle. Oracle application server EJB 3.0, 2006. http : / / w w .
oracle. com/technology/tech/ java/ejb30. html.

[Pen061 Penshop. Shop page, 2006. http : //www . penshop. CO. uk.

[SteOl]

Qian Peng, Weiyi Meng, Hai He, and Clement T. Yu. Wise-
cluster: clustering e-commerce search engines automatically. In
WIDM, pages 104-111, 2004.

ProFusion. Search form page, 2006. http : //www . prof usion. corn.

Ed Roman, Scott W. Ambler, and Tyler Jewell. Master-
ing Enterprise JavaBeans. Willey Computer Publishing, 2nd
edition, 2002. http: //eu .wiley . corn/WileyCDA/WileyTitle/
productcd-0471417114.htrnl.

Florian Rosenberg. A congurable deep web metasearch en-
gine based on Lixto. Master's thesis, Software Engineering,
Fachhochschul-Diplomstudiengang, Hagenberg, Austria, Septem-
ber 2004.

Ryanair. Search form page, 2006. http : //www . ryanair . corn.
E. Selberg and 0. Etzioni. Multi-service search and comparison
using the MetaCrawler. In Proceedings of the 4th International
World- Wide Web Conference, Darmstadt, Germany, December
1995.

Search. Search form page, 2006. http : //www . search. corn.
Kai Simon. Meta search engine systems page, 2006.
http://www.informatik.uni-freiburg.de/-ksirnon/Meta-
Search-Engines.htrn1.

SkyEurope. Search form page, 2006, http: //www . skyeurope.
corn.

skyscanner. Main page, 2006. http : //www . skyscanner. net.
Miku168 Popper and Jozef Kelemen. Expertne' syste'my (Expert
Systems, i n Slovalc). Alfa, Bratislava, 1989.

Robert Steele. Techniques for specialized search engines. In Proc.
Internet Computing 2001, Las Vegas, June 25-28 2001.

Sun. Java message service specification 1.0.2, August 2001.

Sun. Java native interface specification 1.1, 2003. http : / / j ava.
sun. c o r n / j 2 s e / l . 4 . 2 / d o c s / g u i d e / j n i / ~ ~ ~ c / ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ .

Sun. JSR 153, enterprise javabeans 2.1 specification, November
2003. http://jcp.org/en/jsr/detail?id=153.

Sun. The Java language specification, third edition,
2005. http://java.sun.corn/docs/books/jls/third~edition/
htrnl/intro.htrnl.

Sun. JSR 220, enterprise javabeans 3.0 specification, December
2005. http://jcp.org/en/jsr/detail?id=220.

Sun. JSR 244, enterprise edition 5 (Java EE 5) specification,
November 2005. http: // j cp. org/en/ j sr/detail?id=244.

Sun. White paper iPlanet portal server - session service,
2005. http : //developers. sun. com/sw/docs/wpapers/portal/
session. html.

Sun. Java server faces specification 2.1 final draft 2, February
2006.

Sun. Java server pages specification 2.1 final draft 2, February
2006.

Sun. Model-View-Controller page, 2006. http : // j ava. sun. corn/
blueprints/patterns/MVC.html.

TheServerSide. Application server matrix, 2005. http : //www .
theserverside.com/articles/article.tss?l=ServerMatrix.

Vivisimo. Content integrator specifications product page, 2006.
http://vivisimo.com/html/vci-specs.

Vivisimo. Search form page, 2006. http : //vivisimo . com.
Vivisimo. Velocity product page, 2006. http : //vivisimo . corn/
html/velocity.

Andrej Vckovski and Michel Mathis. Scripting for Java. In 9th
Annual Tcl/Tk Conference, 2002.

W3C. Hypertext markup language specification 4.01, December
1999. http://www.w3.org/TR/REC-html40.

W3C. Hypertext transfer protocol specification 1.1, June 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

Qian Peng Weiyi. Clustering e-commerce search engines, 2004.

Wikipedia. Database, 2006. http : //en. wikipedia. org/wiki/
Database.

Zonghuan Wu, Weiyi Meng, Clement T. Yu, and Zhuogang Li.
Towards a highly-scalable and effective metasearch engine. In
World Wide Web, pages 386-395, 2001.

Wensheng Wu, Clement T. Yu, AnHai Doan, and Weiyi Meng. An
interactive clustering-based approach to integrating source query
interfaces on the deep web. In SIGMOD Conference, pages 95-
106, 2004.

Yahoo. Search tips page, 2006. http : //help. yahoo. com/help/
us/ysearch/basics/basics-04.html.

Hongkun Zhao, Weiyi Meng, Zonghuan Wu, Vijay Raghavan, and
Clement Yu. Fully automatic wrapper generation for search en-
gines, May 2005.

MSc. Ondrej Jaura

CONTACT Blagoevova 16
851 04 Bratislava
Slovakia

PROFILE alphabetical skills listing:
Ajax, Ant, Bash, C, CSS, CVS, Delphi, DHTML, Eclipse, EJB, Hibernate, HTML,
J2EE, Java, JavaBeans, JavaScript, JBoss, JSP, JUnit, m, Log4J7 MVC, Oracle
AS&DB, P d , Pm, PL/SQE, PostgteSQL, Scrum, Servlet, SQL, Subversion, Tom-
cat, UML, Velocity, Xalan, Xerces, XWTML, X&&, XSL-FO, XSLT
communication skills:
Slovak - native, English, Czech - fiuent. German - good
driving licence:
B

EDUCATION Database and Artificial Intelligence Group,
Institute of Information Systems, Computer Science Department,
Vienna University of Technology, Vienna, Austria 2004 - now

PhD studies

Faculty of mathematics, physics and informatics
Comenius University, Bratislava, Slovakia 1998 - 2003

Field: Computer Science
Specialization: Algorithms and paralel computing, Artscid intelligence
Diploma thesis: Emergence of vocabulary in a society of agents
The Master of Science degree attained in June 2003.

Secondary school (Gyrnn;izium) P.O.Hviezdoslava, Keimarok 1993 - 1997

EXPERIENCE Lixto GmbH., Vienna, Austria, http://www.lizto.com

software arzhitect and developer February 2004 - now
Product Transform&ion Server. Java, J2EE, XML, projects from Apache Software
Foundation and Oracle DB and AS. Design and analysis of a distributed process workf-
low engine. ImpIernentation, testing and bug fixing. Installation. CVS, bug tracking
system. Work in an international team (approx. 15 members) - Project Management
with Scrum.

Database and Artificial Intelligence Group,
Institute of Information Systems, Computer Science Department,
Vienna University of Technology, Vienna, Austria, http://www. dbai. tuwien. ac. at

developer January 2001 - January 2004
Project Lixto, product 'Ikamformation Sewer. Devetoping in Java, XML, projects from
Apache Software Foundation and Oracle AS and DB. System design, implementation,
testing and bug fixing. CVS, bug tracking system. Work in an international teanl
(approx. 10 members).

Datalock as., Bratislava, Slovakia http://www.ckatalock.sk

developer-analyst 2001 - June 2003
Design and implementation of the Horn project (Java). Using state-of-the-art techno-
logies. Independent solution seeking. Development of prototypes.

developer November 1999 - 2001
Projects Monetka (BorIand Delpbi) and Horee (Java). Design, implementation, testing,
bug fixing, instaliation, customer support. Teamwork (2 - 5 members).

Borland s.r.o., Bratislava, Slovakia http://wmu.borhTud.sk

lecturer November 2001 - March 2002
Training courses "Inkroduction to Java" a "Java for advanced". Preparation and pre-
sentation of course materials.

PROFESSIONAL cornpater languages: Java, Pascal, C, LISP
EXPERIENCE developer IDE: Eclipse, 3orland JBuilder 4 X

JZEE: EJB 3.0 and 2.x, XDoclet, Sevbt, JSP
J2EE application servers: JBoss, Oracle AS

0 web: XHTML, CSS, JavaScript, HTML, PHP, DHTML, Ajax
XML: XML, XSLT, XSL-F0
DB: SQL, PL/SQL
DB servers: Oracle DB, PostgreSQL, MySQL
apache.09.g: Tomcat, Xerces, Velocity, Log4J, Struts, Xalan, FOP
operating system: Linux, Windows

PERSONAL photography, movies, music, reading books, in-line skating, squash

	jaura0000001A.tif
	jaura0000002A.tif
	jaura0000003A.tif
	jaura0000004A.tif
	jaura0000005A.tif
	jaura0000006A.tif
	jaura0000007A.tif
	jaura0000008A.tif
	jaura0000009A.tif
	jaura0000010A.tif
	jaura0000011A.tif
	jaura0000012A.tif
	jaura0000013A.tif
	jaura0000014A.tif
	jaura0000015A.tif
	jaura0000016A.tif
	jaura0000017A.tif
	jaura0000018A.tif
	jaura0000019A.tif
	jaura0000020A.tif
	jaura0000021A.tif
	jaura0000022A.tif
	jaura0000023A.tif
	jaura0000024A.tif
	jaura0000025A.tif
	jaura0000026A.tif
	jaura0000027A.tif
	jaura0000028A.tif
	jaura0000029A.tif
	jaura0000030A.tif
	jaura0000031A.tif
	jaura0000032A.tif
	jaura0000033A.tif
	jaura0000034A.tif
	jaura0000035A.tif
	jaura0000036A.tif
	jaura0000037A.tif
	jaura0000038A.tif
	jaura0000039A.tif
	jaura0000040A.tif
	jaura0000041A.tif
	jaura0000042A.tif
	jaura0000043A.tif
	jaura0000044A.tif
	jaura0000045A.tif
	jaura0000046A.tif
	jaura0000047A.tif
	jaura0000048A.tif
	jaura0000049A.tif
	jaura0000050A.tif
	jaura0000051A.tif
	jaura0000052A.tif
	jaura0000053A.tif
	jaura0000054A.tif
	jaura0000055A.tif
	jaura0000056A.tif
	jaura0000057A.tif
	jaura0000058A.tif
	jaura0000059A.tif
	jaura0000060A.tif
	jaura0000061A.tif
	jaura0000062A.tif
	jaura0000063A.tif
	jaura0000064A.tif
	jaura0000065A.tif
	jaura0000066A.tif
	jaura0000067A.tif
	jaura0000068A.tif
	jaura0000069A.tif
	jaura0000070A.tif
	jaura0000071A.tif
	jaura0000072A.tif
	jaura0000073A.tif
	jaura0000074A.tif
	jaura0000075A.tif
	jaura0000076A.tif
	jaura0000077A.tif
	jaura0000078A.tif
	jaura0000079A.tif
	jaura0000080A.tif
	jaura0000081A.tif
	jaura0000082A.tif
	jaura0000083A.tif
	jaura0000084A.tif
	jaura0000085A.tif
	jaura0000086A.tif
	jaura0000087A.tif
	jaura0000088A.tif
	jaura0000089A.tif
	jaura0000090A.tif
	jaura0000091A.tif
	jaura0000092A.tif
	jaura0000093A.tif
	jaura0000094A.tif
	jaura0000095A.tif
	jaura0000096A.tif
	jaura0000097A.tif
	jaura0000098A.tif
	jaura0000099A.tif
	jaura0000100A.tif
	jaura0000101A.tif
	jaura0000102A.tif
	jaura0000103A.tif
	jaura0000104A.tif
	jaura0000105A.tif
	jaura0000106A.tif
	jaura0000107A.tif
	jaura0000108A.tif
	jaura0000109A.tif
	jaura0000110A.tif
	jaura0000111A.tif
	jaura0000112A.tif
	jaura0000113A.tif
	jaura0000114A.tif
	jaura0000115A.tif
	jaura0000116A.tif
	jaura0000117A.tif
	jaura0000118A.tif
	jaura0000119A.tif
	jaura0000120A.tif
	jaura0000121A.tif
	jaura0000122A.tif
	jaura0000123A.tif
	jaura0000124A.tif
	jaura0000125A.tif
	jaura0000126A.tif
	jaura0000127A.tif
	jaura0000128A.tif
	jaura0000129A.tif
	jaura0000130A.tif
	jaura0000131A.tif
	jaura0000132A.tif
	jaura0000133A.tif
	jaura0000134A.tif
	jaura0000135A.tif
	jaura0000136A.tif
	jaura0000137A.tif
	jaura0000138A.tif
	jaura0000139A.tif
	jaura0000140A.tif
	jaura0000141A.tif
	jaura0000142A.tif
	jaura0000143A.tif
	jaura0000144A.tif
	jaura0000145A.tif
	jaura0000146A.tif
	jaura0000147A.tif
	jaura0000148A.tif
	jaura0000149A.tif
	jaura0000150A.tif
	jaura0000151A.tif
	jaura0000152A.tif
	jaura0000153A.tif
	jaura0000154A.tif
	jaura0000155A.tif
	jaura0000156A.tif
	jaura0000157A.tif
	jaura0000158A.tif
	jaura0000159A.tif
	jaura0000160A.tif
	jaura0000161A.tif
	jaura0000162A.tif
	jaura0000163A.tif
	jaura0000164A.tif
	jaura0000165A.tif
	jaura0000166A.tif
	jaura0000167A.tif
	jaura0000168A.tif
	jaura0000169A.tif
	jaura0000170A.tif
	jaura0000171A.tif
	jaura0000172A.tif

