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Abstract 
The vulnerability of multi-purpose buildings with fundamental frequency say above 1 Hz when 
exposed to the strong motion phase of an earthquake is considerably reduced by means of base 
isolation. A novel base isolation system, a combination of spring-pendulum (SP) units with 
compatible sliding elements and tuned liquid column-gas dampers (TLCGDs), is presented to 
overcome some of the disadvantages of the conventional ones. The SP unit is an assembly of 
innovatively designed SP elements acting as a low pass filter for isolating horizontal vibrations. 
The SP elements consist of pre-stressed helical steel springs with pivoted columns along vertical 
axes carrying part of the dead weight of the building and guiding the horizontal motion. The 
static-stability of the SP elements and stability criterion even in post-buckling regime and with 
vertical seismic forcing taken into account, reveals that the ratio of axial to shear stiffness of 
helical spring should be maximized within proper design limits. To resist loads by wind gusts 
and small seismic disturbances, say of traffic origin, compatible “sliding elements” consisting of 
two circular plates contacting in static dry friction and controlled by a prestressed conical spring 
are designed without having continuous energy dissipation resulting in less wear and tear of the 
interface surfaces due to abrasive action. Thus, a limited horizontal force can be transmitted 
analogously to the rigid-plastic lead core of the standard steel reinforced rubber isolation element. 
However, in case of horizontal motion of the building, a lever system releases this frictional 
contact. A single-storey asymmetric building, considered as 3-DOF main system, is exemplary 
base-isolated by putting a number of properly designed SP units in-between the rigid foundations 
of the building to produce a basic natural period of about 2 sec. In its vibration modes, the 
isolated building is considered to be rigid and low cost TLCGDs, in optimal arrangement in the 
plan of the basement of the building, supply the effective damping of the remaining horizontal 
vibrations. Modal tuning of each TLCGD is performed for a modally isolated coupled 
TLCGD-main system by properly transforming the classical Den Hartog formulas; an analogy to 
an equivalent TMD (tuned mass damper) exists. Fine-tuning of three TLCGDs in the state-space 
domain in favorable generalized modal coordinates is performed using MATLAB and renders 
optimal natural frequencies (slightly changed) and the damping ratios of fluid flow (considerably 
reduced). The dynamic response of the base-isolated asymmetric building equipped with 
TLCGDs subjected to base excitation (e.g., El Centro seismogram scaled to a maximum 
acceleration of 0.32g) is numerically investigated when the equations of motion for the coupled 
system are solved by using the state-space approach when favorably expressed in the generalized 
modal coordinates. However, early peaks in the response may still require active control for their 
proper reduction. Numerical simulations approve the novel SP units as a replacement of the 
classical elastomeric bearings and illustrate the effectiveness of these liquid absorbers to mitigate 
the seismically forced vibrations of base-isolated asymmetric buildings with fairly small mass 
ratio assigned. A laboratory model of a single-storey 3-DOF space-frame under variable oblique 
base excitation when equipped with an indigenously developed TLCGD, tuned and optimally 
placed with respect to the fundamental mode, is considered to experimentally verify it’s 
effectiveness in a general horizontal motion and the measured results are found to be in good 
agreement when compared to the analytical solutions derived by simulating the experimental 
setup. 
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Kurzfassung 
Die Gefährdung von Mehrzweckgebäuden mit einer Grundfrequenz von mehr als 1 Hz durch die 
Starkbebenphase eines Erdbebens wird durch die Isolierung des Fundaments stark reduziert. Ein 
neuartiges Isolierelement, bestehend aus der Kombination einer Schraubenfeder mit einer 
koaxialen Pendelstütze, wurde entwickelt, das zusammen mit der Dämpfungswirkung des 
Flüssigkeits-Gas-Kombitilgers einige der wesentlichen Nachteile des 
„klassischen“ Gummifederelementes eliminiert. Um Schwingungen des Gebäudes sowohl unter 
Windböenbelastung wie auch schwachen seismischen Einwirkungen z.B. aus Verkehrsbelastung 
zu vermeiden, sind zusätzlich „Festhalteelemente“ einzusetzen. Solche „verträglichen“ Elemente 
basierend auf der Haftung kontaktierender Platten (ohne kontinuierlicher Energiedissipation 
durch Reibung) werden ebenfalls vorgeschlagen. Mehrere Isolierelemente werden zu einer 
Isoliereinheit zusammengefasst und bilden in ihrer Gesamtheit ein Tiefpassfilter. Das Gewicht 
des Gebäudes wird teilweise über die axial vorgespannten Schraubenfedern und über die 
Pendelstützen in das Fundament übertragen. Letztere übernehmen die kinematische Führung der 
Gebäudeschwingungen. Die statische Stabilität der Elemente, auch im Nachbeulbereich 
untersucht und quasistatisch auch unter lotrechter Bebenerregung, erfordert ein möglichst hohes 
Verhältnis der axialen Steifigkeit zur Schubsteifigkeit der Schraubenfedern. Das 
Festhalteelement besteht aus je zwei kontaktierenden Kreisplatten die über die Vorspannung 
einer konischen Feder regelbar zusammengepresst werden. Damit kann dann eine begrenzte 
horizontale Kraft übertragen werden, analog zum starr-plastischen Bleikern des Standard 
Gummielementes. Allerdings wird bei horizontaler Bewegung des Gebäudes der Kontakt 
zwischen den Kreisplatten über eine Hebelwirkung mit Vergrößerungsfunktion der vertikalen 
Gebäudebewegung aufgehoben. Ein asymmetrisches ebenerdiges Haus wird beispielhaft gegen 
Erdbeben isoliert, wobei die Schraubenfedern so ausgelegt werden, dass sich eine Grundperiode 
von ca. 2 Sekunden ergibt. In den drei resultierenden Schwingungsformen des 
Starrkörpermodells wird die Dämpfung effektiv durch die optimale Anordnung und Abstimmung 
von drei Flüssigkeits-Gas-Kombitilgern in Tieflage im Gebäude erreicht. Die Abstimmung dieser 
Tilger erfolgt zuerst im modal isolierten System unter Verwendung der für mechanische Tilger 
entwickelten Formeln von Den Hartog. Die Feinabstimmung des Gesamtsystems erfolgt dann im 
Zustandsraum, wo vorteilhaft die modalen generalisierten Koordinaten weiter verwendet werden, 
unter Verwendung des Programms MATLAB. Das auf 0.32g maximaler Beschleunigung 
skalierte El Centro Erdbeben wird dann zu Testzwecken für die Simulationen eingesetzt. Die 
Einfallrichtung der Erdbebenwelle wird stufenweise variiert und der kritische Einfallwinkel 
(auch aus den verallgemeinerten Partizipationsfaktoren ersichtlich) wird durch die Simulationen 
bestätigt. Die numerischen Simulationen bestätigen die hervorragende Wirkung der neuartigen 
Schwingungsisolierung. Stoßartige Anfangsbeschleunigungen erfordern allerdings u.U. den 
Einsatz einer aktiven Regelung (des Gasdruckes) der Flüssigkeits-Gas-Kombitilger. Als 
Labormodell für experimentelle Untersuchungen diente ein räumlicher Stockwerksrahmen unter 
richtungsabhängiger Anregung mit einem auf die Grundschwingung optimal ausgelegten und 
angeordneten Flüssigkeits-Gas-Kombitilger. Die gemessenen Daten ergaben gute 
Übereinstimmung mit den über analytische Lösungen erzielten Simulationsergebnissen des 
Labormodells.
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1 Introduction 

In this section an overall view of the dissertation is presented to establish the basics of the 

research work by connecting the sequential flow among various aspects of base isolation. 

A brief review of the literature covering the recent scientific developments in the area of 

base isolation, an essential approach to earthquake-resistant design, is highlighted. The 

motivation towards this research is also presented to convincingly establish the 

importance of the objectives achieved and the organisation of the dissertation is finally 

laid out in detail.  

1.1 Evolution of base isolation technology 

Earthquakes are among such natural hazards that have primarily motivated the 

development of earthquake engineering through much of its evolution over the past 

century. The level of knowledge and technology in earthquake engineering is rising to 

meet this demand for buildings, bridges, and other constructions that can withstand strong 

earthquakes without structural failure, costly retrofit of damage, significant chance of 

injuries, or major functional interruption.  

The basic dilemma facing a structural engineer charged with providing superior seismic 

resistance of a building is how to minimize interstory drift and floor accelerations. Large 

interstory drifts cause damage to nonstructural components and to equipment that 

interconnects stories. Interstory drifts can be minimized by stiffening the structure, but 

this leads to high floor accelerations, which can damage sensitive internal equipment. 

Floor accelerations can be reduced by making the system more flexible, but this leads to 

large interstory drifts. Thus, the only practical way of reducing simultaneously interstory 

drift and floor accelerations is to use base isolation, see Naeim-Kelly[1-1]; the isolation 

system provides the necessary flexibility, with the displacements concentrated at the 

isolation (basement) level. Seismic isolation is an approach to earthquake-resistant design 
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that is based on the concept of reducing the seismic demand rather than increasing the 

earthquake resistance capacity of the structure. 

In conventional fixed-base design, efforts to strengthen the structural system to provide 

superior seismic performance lead to a stiffer structure, and thus will attract more force to 

the structure and its contents. However, this solution revealed considerable disadvantages 

because of construction expenditures for conventional strengthening of the structure and 

its foundation, Bachmann[1-2]. Therefore, the idea that a building can be uncoupled from 

the damaging effects of the ground movement produced by a strong earthquake has 

appealed to inventors and engineers for more than a century. Among the structural control 

schemes developed, seismic base isolation is one of the most promising strategies and 

thus became an increasingly applied structural design technique for buildings. 

1.2 Literature review 

The history of development of the base isolation has been covered in several review 

articles, for example, Kelly[1-3] and Buckle-Mayes[1-4]. Prof. James Kelly provides a 

survey of the early history of isolation inventions; approximately 100 schemes have been 

published or patented to 1960, though almost all remained only ideas on paper, 

Reitherman[1-5]. But eventually, the practical application of this concept in real world has 

come into being followed by the series of the developments by various researchers and 

engineers. 

1.2.1 Applications of base isolation systems 

One of the earliest concepts that were actually built was the room that John Milne, 

Professor of Geology and Mining at the Imperial College of Engineering in Tokyo, 

erected next to his house in Japan in 1880s. It rested on pillar foundations but had a layer 

of cast-iron shot placed between the iron plates. Milne carried out pioneering research on 

seismology, so much so that he is often referred to as the “Father of Modern Seismology”, 

Reitherman[1-5]. The first use of a rubber isolation system to protect a structure from 

earthquake was in 1969 for an elementary Pestalozzi School in Skopje, Macedonia. The 
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world first seismically isolated building by means of lead-rubber bearings (rubber sheets 

reinforced between steel plates with the energy dissipating lead core) is the William 

Clayton Building, designed in 1970 and constructed in 1982, in Willington, New Zealand. 

The Union House, Auckland, and Wellington Central Police Station are isolated using 

sleeved-pile approach. The National Museum of New Zealand in Wellington is isolated 

with 142 lead-rubber bearings and 36 Teflon pads under the shear walls. New Zealand 

Parliament House is recently retrofitted using more than 514 lead-rubber bearings.  

The first base-isolated building in the United States was the Foothill Communities Law 

and Justice Center (FCLJC) in California by means of 98 high-damping natural rubber 

bearings, Kelly[1-6]. The Fire Command and Control Facility (FCCF), Emergency 

Operation Center (EOC) in Los Angeles and Traffic Management Center for Caltrans 

(TMCC) in California are other base-isolated buildings by using high-damping rubber. 

The C. R. Drew Diagnostic Trauma Center in California is supported on 70 high-damping 

natural rubber bearings and 12 sliding bearings with lead bronze plates that slide on 

stainless steel surface. The newly constructed Flight Simulator Manufacturing Facility 

(FSMF) in Salt Lake City completed in 1988 in Utah is isolated by 98 lead-rubber 

bearings.  

In process of seismic retrofit, some of the most prominent U.S. monuments like, e.g., 

Pasadena City Hall, San Francisco City Hall, Salt Lake City and County Building and 

Los Angeles City Hall were mounted on base isolation systems. The Los Angeles City 

Hall is the tallest base-isolated structure in the world, having undergone a seismic retrofit 

by means of 475 high-damping rubber isolators in combination with 60 sliders. 

Earthquake-resistant design has always been a high priority in Japan, and many 

mechanisms for the seismic protection of structures, including forms of seismic isolation, 

have been developed there. Japanese structural engineers generally design buildings with 

more seismic resistance than do U.S. or European because of frequent earthquakes in 

their region. There are many base-isolated buildings in Japan e.g., West Japan Postal 

Center and Matsumura-Gumi Technical Research Institute are famous one. There are now 
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427 isolated buildings constructed or under construction just in Japan, with 225 building 

permits issued in 1996 alone, Reitherman[1-5]. There are some applications in New 

Zealand, Dowrick, Cousins, Robinson and Babor[1-7]; several in Italy, Giuliani[1-8], 

including one project of five large buildings; large number of applications in France, 

including two nuclear power plants, Jolivet and Richli[1-9] and few buildings in China, 

Lee[1-10]. 

It seems clear that the increasing acceptance of base isolation throughout the world will 

lead to many more applications of this technology. But as a matter of fact, the lifetime 

problems associated with conventional base isolation systems e.g., lead-rubber bearings 

(LRB), mainly caused by the increase of temperature, like reduction in yield stress with 

repeated cycling and plastic deformation of the lead core within the first occurrence of 

the earthquake or during the aftershocks are encountered.  

Therefore, it was strongly desired either some-how to improve the design philosophy of 

such bearings or to replace them by an advanced mechanism that could withstand the said 

problems so that the isolation mechanism remain effective and durable throughout the life 

of the structure. For all systems, the most important area of future research is that of 

long-term stability of the mechanical characteristics of the isolators and its constituent 

materials, Naeim-Kelly[1-1]. 

Recently an advancement has been practically implemented by Bachmann[1-2] for the 

seismic upgrading of a Fire-brigade building in Basel, Switzerland, where he preferred to 

use elastomeric bearings made of reinforced rubber without having lead core, placed in 

the peripheral basement walls under the columns. Whereas, the sliding bearings situated 

under the column-less partition walls provide damping and static friction. When 

following the current trends and Bachmann[1-2] as recent example of separating the 

damping from isolation bearings, a novel base isolation system, a combination of 

spring-pendulum (SP) units along with sliding elements and tuned liquid column-gas 

dampers (TLCGDs), is proposed with a step ahead. For design details, see 

Khalid-Ziegler[1-11], and detailed description in sub-section 4.2. In connection to 
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Bachmann’s strategy, novel SP units substitute the reinforced rubber bearings while 

low-cost TLCGDs substitute the sliding bearings with the added advantage of no moving 

mechanical parts resulting in maintenance-free long life of the whole base isolation 

system. However, to resist loads by wind gusts and small seismic disturbances, say of 

traffic origin, compatible sliding elements are designed without having continuous energy 

dissipation. Thus, a limited horizontal force can be transmitted analogously to the 

rigid-plastic lead core of the standard steel reinforced rubber isolation element. However, 

in case of horizontal motion of the building, a lever system releases this frictional contact. 

1.3 Base isolation with external passive damper 

Seismic isolation has helped plant the seeds for other response control devices (e.g., 

active and passive control technologies), which, like isolation are based on strategy of 

reducing demand than increasing capacity. Because the natural damping of such a base 

isolation system is low, additional damping is provided by some form of damper. The 

idea of separately supplying the damping by means of external dampers for a 

base-isolated building is not new but the combination of innovatively developed base 

isolation units with low-cost TLCGD as mentioned above, possibly first time with best of 

the author’s knowledge, makes the design novel and superior because of its advantageous 

features e.g., maintenance-free long-life etc. Before touching the functionality and 

importance of the novel base isolation system, a brief overview of the passive damping 

devices is also presented. 

1.3.1 Overview of passive dampers 

Passive devices protect a structure by increasing its energy dissipation capacity. A 

supplemental damping system works by absorbing a portion of the input energy to a 

structure thereby reducing structural energy dissipation demands and preventing damage 

to the primary structure. This effect is achieved either by conversion of kinetic energy to 

heat or through the transfer of energy among vibration modes. The first method utilizes 

devices that operate on principles such as frictional sliding, yielding of metals, phase 
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transformation in metals, and deformation of viscoelastic solids or fluids, examples 

include metallic yield dampers, friction dampers, viscoelastic dampers, viscous fluid 

dampers, etc. The second method of energy dissipation incorporates dynamic vibration 

absorbers, such as tuned mechanical damper (TMD), tuned liquid damper (TLD) and 

tuned liquid column damper (TLCD). The following sub-sections are conceptually 

concerned with TMD, and TLCD along with its modified forms. 

1.3.1.1 The tuned mechanical damper, TMD 

The most commonly used passive device is tuned mechanical damper consisting of a 

mass attached to the building through a spring and a dashpot. Alternatively, a 

pendulum-type mechanical damper is used in high-rise buildings, e.g. in the Taipei 101 

tower. In order to be effective, its parameters need to be optimally tuned to the building 

dynamic characteristics, thus imparting indirect damping through modification of the 

combined structural system.  

Den Hartog[1-12] derived expressions for the optimum damping coefficient and the tuning 

ratio (i.e., ratio of the absorber frequency to the natural frequency of the undamped 

single-degree-of-freedom (SDOF)-primary system) for the coupled generalized 

SDOF-TMD system subjected to harmonic excitation. The optimum absorber parameters 

that minimize the displacement response of the primary system were found to be simple 

functions of the mass ratio (ratio of mass of SDOF-structure and damper).  

1.3.1.2 The tuned liquid column damper and its extension by gas-spring 

TLCD is an effective passive energy absorbing device that has been proposed for 

controlling vibrations of structures under different dynamic loading conditions; see e.g. 

Balendra[1-13]. Such a TLCD consists of a rigid U or V-shaped tube smoothly integrated 

into a building and partially filled with a liquid (preferably water) allowing water column 

to oscillate. Finally, the energy is dissipated by viscous and turbulent fluid damping. 

TLCDs provide many advantages, when compared to TMD, such as low cost, no moving 

mechanical parts, relatively easy installation in new buildings or in retrofitting existing 

structures, simple maintenance requirements. Indeed, a TLCD may not cause additional 
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cost or weight if a water tank used for water supply and fire fighting is incorporated into 

design of a TLCD, see Fu-Ziegler[1-14]. Furthermore, they can be combined with active 

control mechanisms to function as hybrid absorbers, see Hochrainer-Ziegler[1-15]. 
In recent years, there has been an increasing interest in the application of TLCDs to the 

problem of vibration suppression in civil engineering structures. Since Sakai and his 

co-authors[1-16] developed the idea of TLCD in 1989 for the purpose of structural 

vibration suppression, many successors had employed it in many civil engineering 

applications to verify its control effectiveness see e.g., Hitchcock, Kwok, Watkins and 

Samali[1-17]. Hochrainer[1-18] invented the gas-spring effect to achieve tuning conveniently 

just by changing the equilibrium gas-pressure in the sealed piping system. Applications of 

such tuned liquid column-gas damper (TLCGD) to tall buildings or slender bridges, see 

Hochrainer-Ziegler[1-15], Ziegler[1-19] or Reiterer-Ziegler[1-20], effectively reduce steady 

state vibrations, equally well as a direct increase of the modal structural damping.  

Recently, Fu[1-21] presented that the TLCGD instead of the TMD are used to mitigate 

bending and torsional vibrations of tall multipurpose buildings. In her study, the passive 

action of TLCGD is considered and the coupled torsional response of plan-asymmetric 

structures was investigated. She also investigated the torsional tuned liquid column-gas 

dampers (TTLCGD; including the gas-spring effect) to effectively control the torsional 

response of structures, for details see again Fu[1-21]. The plane TLCGDs and TTLCGDs 

were applied in numerical studies in a total of eight different small-scale building models 

and to a 30-storey high-rise eccentric structure, see Huo[1-22].  

1.4 Motivation of the research 

The loss of lives and collapse of infrastructure in the history and a few in my 

self-experience in Pakistan due to earthquake has motivated to play my role as a 

researcher in this field. I was always inspired by the majesty of high-rise buildings but 

being a civil engineer, I remained focus to find ways enabling a structure to withstand 

under dynamic loads e.g., earthquakes and wind excitations. Through literature review 
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and basic research, I would be able to find a slot to step-in and therefore present research 

work as my PhD thesis is a contribution in the sea of knowledge that would lead towards 

the strengthening of seismically safer world.  

The increasing acceptance of base isolation itself, throughout the world as a successful 

earthquake-resistant technique is evidence by rapidly increasing number of applications 

both for new construction and retrofit, see Kelly[1-3]. Similarly the effectiveness of TLCD 

(or more advanced form TLCGD) as passive damper to mitigate the structural vibrations 

is exceeded by far the capabilities of other vibration reducing devices due to its salient 

features, see Hitchcock[1-17]. But the idea of incorporating the TLCGD to the 

base-isolated building is unique of its own nature and thus, subjected to investigation to 

take the advantage of both recently matured technologies in their combined action. In 

addition, the lifetime problems, mainly caused by increase of temperature, related to the 

conventional isolation systems give way to the emergence of such a solution that remains 

effective and durable throughout the life of the structure. Consequently, in this 

dissertation, a novel base isolation system, see details in sub-section 4.2, is proposed and 

numerical studies are worked out in state-space for the coupled system (TLCGDs 

installed on the base-isolated building). Although this new and radical approach to 

seismic design will be able to provide safer buildings at little additional cost as compared 

to the conventional design but on the other hand, this method also limits some 

requirements to meet; base isolation is not suitable for high-rise buildings and for other 

types of loads e.g., for strong wind excitations. 

1.5 Overview of the dissertation 

This dissertation consists of five main Sections, the thematic taken from base isolation of 

the buildings. The control of seismically forced vibrations of multipurpose and 

consequently asymmetric buildings is achieved by means of novel base isolation system 

innovatively developed by the author in course of his PhD research work.  

Section 2 forms the mathematical basis for the implementation of TLCGDs. More 



1.  Introduction 

9 
 

precisely, it provides a theoretical foundation on the performance of TLCGDs for 

mitigating the coupled lateral vibrations of single-storey asymmetric space frames which 

can be modeled as a three degree-of-freedom (3-DOF) structure. Such a 3-DOF 

asymmetric space frame is considered because it is an economical main structural model 

in the laboratory when equipped with TLCGD to confirm the effectiveness of the 

gas-spring effect for frequency tuning. And most importantly, it serves as an easily 

manufactured model of a base-isolated main structure. The coupled equations of motion 

of the TLCGD-space frame considering the rigid-floor and damper interaction lead 

towards the approximate substructure synthesis of the 2-DOF modally isolated coupled 

TLCGD-space frame system. The directional dependency of the modal dynamic 

magnification factor, somehow hidden previously, on varying angle of incidence of 

seismic excitation is pointed out with due justification. 

In Section 3, the effectiveness of the TLCGD is confirmed through experimentation by 

installing an indigenously designed and developed TLCGD, tuned to fundamental mode 

of vibrations of the single-storey space frame lab-model. However, due to financial and 

laboratory constraints, the incorporation of novel base isolation units for such a light 

weight 3-DOF structural lab-model was not possible. A series of experiments is 

performed for different cases, i.e., empty TLCGD-piping system, open TLCD and tuned 

TLCGD installed in optimal position and direction on the floor of the asymmetric 

structural lab-model, to verify the tuning of TLCGD achieved by means of gas-spring 

effect. The experimental results are found to be in good agreement when compared with 

analytical solutions by simulating the experimental setup. 

Section 4 deals with the core concern of the subject starting with the design equations of 

the novel base isolation element referred to as spring-pendulum (SP) element. The 

static-stability of the SP element and stability criterion extended in post-buckling regime 

is determined along with contact-stability considerations under vertical ground 

acceleration. The details of the SP unit designed for a single-storey asymmetric building 

(e.g., four SP elements in parallel action to form an assembly) and a description of an 
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analogous skeletal structure is also presented. To resist loads by wind gusts and small 

seismic disturbances, say of traffic origin, compatible sliding elements with lever system 

are designed without having continuous energy dissipation. The equation of motion for 

base-isolated 3-DOF asymmetric building is formulated rendering modal analysis. In its 

fundamental modes, the base-isolated building is considered to be rigid and low cost 

TLCGDs, in optimal arrangement in the plan of the basement of the building, supply the 

effective damping of the remaining horizontal vibrations. A benchmark five-storey plane 

frame and a single-storey 3-DOF asymmetric building are subjected to base-isolation and 

numerical investigations are performed in state-space for the coupled system when the 

TLCGDs are incorporated. Numerical simulations approve the novel SP system as a 

replacement of classical elastomeric bearings, and illustrate the effectiveness of these 

liquid absorbers (i.e., TLCGDs) to mitigate the seismically forced vibrations of the 

base-isolated buildings with fairly small mass ratio assigned.  

Finally, Section 5 summarizes the results drawn from the research presented in this 

dissertation. This work is expected to convince the professionals in this field for the 

implementation of the proposed novel base isolation system due to its low cost, effective 

performance and maintenance-free long life probably could substitute the problematic 

conventional isolation systems. 
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2 Single-storey Asymmetric Space Frame with 

TLCGDs: Laboratory Model 

2.1 Introduction 

A real building possesses a large number of degrees of freedom and is actually 

asymmetric to some extent even with a nominally symmetric plan. Hence, the 

asymmetric buildings are prone to coupled lateral vibrations under even purely 

translational excitations which may cause occupant discomfort, structural damage, or 

even collapse. Therefore, the idealization of asymmetric buildings makes its way for the 

proper investigation of their response under dynamic loads like earthquakes and wind 

excitations. Thus, a rigid floor supported by the columns, for which center of mass and 

center of stiffness do not coincide, is considered here as a single-storey asymmetric space 

frame. Three degree of freedom (3-DOF) are assigned in horizontal motion of the 

single-storey space frame when its floor is considered as a rigid-plate. Such a 3-DOF 

asymmetric space frame is focused because it is considered as an economical main 

structural model in the laboratory when equipped with TLCGD to confirm the 

effectiveness of the gas-spring effect for the frequency tuning. And most importantly, it 

serves as a conveniently manufactured model of a base-isolated asymmetric building. A 

novel base isolation system is developed with its design details presented in Section 4 

taking into account the damping properties of the TLCGD based on this model. 

The formulation of the equation of motion of asymmetric space frame and the derivation 

of the equation of relative fluid flow in TLCGD are given by Hochrainer[2-1] and repeated 

in this Section with a more result-oriented approach in regard to their practical 

implementation. The coupled equations of motion of the TLCGD-space frame 

considering the rigid-floor and damper interaction lead towards the approximate 

substructure synthesis of the 2-DOF modally isolated coupled TLCGD-space frame 
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system that forms the theoretical basis required for the implementation of TLCGD in its 

design stage. The analogy between TMD and TLCGD when attached to main 

SDOF-structure under the horizontal base excitation established by Hochrainer[2-1], see 

also Hochrainer-Ziegler[2-2] was extended for more general 3DOF-space frame by Fu[2-3], 

see also Fu-Ziegler[2-4] and hence, the modal tuning of TLCGD is conveniently performed. 

The modal dynamic magnification factor is also formulated when the linearized 

approximate coupled equations are subsequently transformed to their respective 

time-reduced linear equations for the 2-DOF modally isolated system.  

It is also pointed out that the directional dependency of such an approximate modal 

dynamic magnification factor on varying angle of incidence of base excitation is because 

of the fact that the position of the center of mass of the main system is no longer exact as 

the small fraction of the dead fluid-mass is not considered in the dynamics of the main 

system. 

2.2 Equation of motion for single-storey asymmetric space 

frame 

A simple single-storey space frame consisting of a “rigid” rectangular floor of size a b×  

having an arbitrarily distributed floor-mass Sm  supported on clamped-clamped elastic 

columns with anisotropic stiffness yk  and zk  in y- and z-directions, respectively is 

sketched in Fig. 2.1. 

The centre of mass MC  and center of stiffness SC  of the asymmetric space frame, two 

distinct points, are not coincident with the geometric centre O  of the floor because of 

the non-uniform distribution of the floor-mass and non-symmetric distribution of the 

supporting columns respectively, rendering the mass- and stiffness-asymmetric space 

frame. 
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Fig. 2.1: Plan of single-storey asymmetric space frame. 

 

Let [ ]T
M M Mr y z=
G  and [ ]T

S S Sr y z=
G  denote the position vectors of MC  and SC  

respectively, as shown in Fig. 2.1. The asymmetric space frame is considered under single 

point horizontal base excitation (e.g., seismic ground acceleration ( )ga t ) with angle of 

incidence α  to y-direction, thus cosga α  and singa α  are the horizontal 

components of the seismic ground acceleration in y- and z-directions, whereas the vertical 

component g gaλ  in x-direction causing the parametric excitation, see sub-section 2.4, is 

not considered in this Section. Since the centre of mass MC  and the centre of stiffness 

SC  do not coincide, even a uni-directional seismic horizontal (ground) excitation, in 

general, causes a three dimensional in-plane motion of the floor. The lateral 

displacements of MC  denoted by Mv  and Mw  along y- and z-axes, respectively and 

the rotational angle θ about the vertical x-axis define three degree of freedom (3-DOF) in 

horizontal motion of the single-storey space frame when its floor is considered as a 

rigid-plate.  

The mass moment of inertia about the vertical x-axis of the rectangular floor is 

2
x S xI m r= , where xr  denotes the radius of inertia with respect to the center of mass CM. 
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The summation of the lumped columns’ stiffness in y- and z-directions render the first 

two diagonal elements of the stiffness matrix respectively, whereas third diagonal and 

remaining off-diagonal elements depend upon arrangement of the columns of the 

asymmetric space frame. The direct stiffness method renders the elements of stiffness 

matrix when applied later on, for the similar asymmetric space frame (i.e., laboratory 

scaled structural model); by considering the lumped columns’ stiffness with respect to 

center of mass to avoid the inertial coupling of the conservation equations. 

The equation of undamped motion of the asymmetric space frame subjected to single 

point horizontal base excitation, considering the conservation of momentum and 

conservation of angular momentum, in matrix form, 

gMx Kx Ma+ = −
G G G��
� � �

, [ ]T
M M Tx v w u=

G , [ ]cos sin 0T
g ga a α α=
G

， T xu rθ= , (2.1) 

where, M
�

 and K
�

 are the diagonal mass and the symmetric stiffness matrix of the 

3-DOF asymmetric space frame, respectively and xG  is referred to the displacement 

vector of the center of mass; gaG  denotes the single point horizontal seismic ground 

acceleration vector. 

2.2.1 Effective mass and stiffness of the column 

The mass of the column is commonly lumped as a single equivalent mass and hence its 

static stiffness is calculated for the proper idealization of the space frame. If the mass per 

unit of length Aρ , as well as the stiffness EI  of the column both considered to be 

constant (for convenience of integration), an approximation of the equation of motion of 

the flexural vibration in the first natural mode can be determined. An admissible Ritz 

approximation can always be given affined to a proper static deformation. Hence, see 

Ziegler[2-5], page 611, 

( ) ( ) ( ),w t q tξ ϕ ξ= , (2.2) 

where ( )ϕ ξ  suffices to choose the Hermite shape function for the cc-beam, unit 

displacement at x l=  is 1,  
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( ) 3 2
3 2 3 , 0 1H x lξ ξ ξ ξ= − +  ≤ = ≤  (2.3) 

The kinetic energy becomes, 

( )
1 1 22

2 2
3

0 0

1
2 2 2

eq mqT w Ald Al H dρ ξ ρ ξ ξ= = =∫ ∫
��� . (2.4) 

Thus, the kinetic energy is equivalent to that of a single equivalent mass me 

( )
1

2
3

0

13
35e cm Al H d mρ ξ ξ= =∫ , cm Alρ=  is the mass of the column. (2.5) 

The potential energy of the slender column (rigid in shear) is approximated by  
221 1 22 2

2 3
3 2 3 2

0 0

1
2 22

d HEI w EI kqV U d q d
l l d

ξ ξ
ξ ξ

⎛ ⎞⎛ ⎞∂
= = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

∫ ∫
 

(2.6) 

The effective static stiffness of the cc-column becomes  
21 2

3
3 2 3

0

12d HEI EIk d
l d l

ξ
ξ

⎛ ⎞
= =  ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ . (2.7) 

The effective lumped mass and the static stiffness of the columns of the laboratory scaled 

structural model (lab-model) are calculated by using Eqs. (2.5) and (2.7), see sub-section 

3.2. 

2.2.2 Geometric stiffness correction: P-∆ effect 

If a slender column is subjected to a large compressive force, its lateral stiffness is 

significantly reduced, termed as P-∆ effect. The geometric correction of stiffness of c-c 

beam is 6 5G ck F l= , where 0cF <  is the compressive axial force, l  is the length of 

the beam. If the lateral load is less than 30% of the critical buckling load, the linear 

geometric stiffness correction is applicable, see e.g. Clough-Penzien[2-6], page 167 and 

Ziegler[2-5], page 604. The geometric stiffness correction is applied for the columns of the 

lab-model and the corresponding corrected stiffness matrix is also presented in 

sub-section 3.2. 

2.2.3 Natural frequencies and modal centers of velocity 

The solution of the eigen-value problem associated with the homogenous equation (2.1) 
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when considering the diagonal mass and symmetric corrected stiffness matrix, renders the 

natural circular frequencies jω  and modal vector jφ
G

, j=1,2,3 of the undamped main 

system (i.e., asymmetric space frame). Consequently, the undamped free vibration is 

time-harmonic, see e.g., Chopra[2-7], page 404, 

( ) cosj j jx t A tφ ω=
GG , (2.8) 

After substituting Eq. (2.8) in the homogenous equation (2.1), the time-reduced equation 

results, 2 0j jK Mω φ⎡ ⎤− =⎣ ⎦
G G

� �
 and hence the characteristic equation becomes 

2det 0jK Mω⎡ ⎤− =⎣ ⎦� �
. The solution by calling the function eig in MATLAB[2-8], renders the 

first three natural frequencies and ortho-normalized modal vectors jφ
G

 of the undamped 

asymmetric space frame by requiring modal mass 1T
j j jm Mφ φ= =
G G
�

. 

The point of a rigid body in-plane motion that instantly has zero velocity is called the 

modal center of velocity CVj, the acceleration of CVj is generally non-zero. The velocity of 

any point P of the rigid body is calculated by using rigid body kinematics, see e.g., 

Ziegler[2-5], page19, 

ˆ
P M PMv v rθ= +
G G G�

 (2.9) 

where, P̂M x PMr e r= ×
G G G  is the positively rotated orthogonal vector to PMrG . If VP C= , 

its material position with respect to MC  is thus defined, 0θ ≠� , 

ˆ 0V M VMv v rθ= + =
G G G� . (2.10) 

With respect to small displacements and small rotation, Eq. (2.10) is multiplied by the 

time differential to render, 

ˆ 0M VMr rδ δθ+ =
G G . (2.11) 

The modal displacements and rotation combine kinematically to a sufficiently small 

rotation about the floor’s modal center of velocity. Consequently, the mode shapes are 

defined by rotations of the floor about the modally resulting centers of velocity, a general 

displaced position (exaggerated) of the floor, is sketched in Fig. 2.2. 
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Fig. 2.2: General mode shape (exaggerated) for asymmetric space frame; small 

displacement and small rotation 1θ �  of the floor are understood. 

 

The position vector of the center of velocity CV is [ ]T
V V Vr y z=
G  and the displacement 

of CV for sufficiently small motion is zero. The material vector 

[ ]T
VM V M V Mr y y z z= − −
G  becomes when rotated, ( ) ( )ˆT

VM V M V Mr z z y y⎡ ⎤= − − −⎣ ⎦
G . 

The coordinates of the center of velocity can be derived by Eq. (2.11) under such 

conditions, δθ θ� , M Mv vδ � , M Mw wδ � , 

1 1,V M M V M My y w z z v
θ θ

= − = +
 

(2.12) 

In terms of the components of the modal vector jφ
G

, the co-ordinates of modal center of 

velocity become, 

2 1
3

3 3
, , 0, 1, 2,3.j j

Vj M x Vj M x j
j j

y y r z z r j
φ φ

φ
φ φ

= − = + ≠ =
 

(2.13) 

The position of the modal center of velocity plays a key role in determining the effective 

location of the respective TLCGD to be installed on the floor of the main system, for 

practical implementation for lab-model, see sub-section 3.4. 
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2.3 The equation of relative fluid flow in a TLCGD 
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Fig. 2.3: Tuned liquid column-gas damper (TLCGD). 

 

A TLCGD with geometry shown in Fig. 2.3 is a symmetric, U- or V-shaped rigid piping 

system consisting of one horizontal and two inclined ( 4 2π β π≤ ≤ ), partially 

water-filled pipe sections. Let B and H denote the horizontal and inclined lengths of the 

liquid columns in their associated pipe sections at rest, whose cross-sectional areas AB, AH 

assumed to be constant, respectively. The relative motion of the liquid column is 

described by the displacement ( )1 2u u u t= =  of the interface with emphasis that 

( ),u s t′  is a relative displacement of the liquid with respect to the moving frame. In a 

sealed design of TLCGD, the ends of the piping system are closed and the gas (e.g. air) 

pressure denoted by 1p  and 2p  is build up in the gas contained on either end of the 

piping system above the liquid with respect to the reference equilibrium gas-pressure 0p , 

see Hochrainer[2-1] and Hochrainer-Ziegler[2-2]. 

A model of the single-storey asymmetric space frame equipped with a TLCGD with its 

trace under the general angle γ  to the y-direction is illustrated in Fig. 2.4. The position 

coordinate of the reference point A of the TLCGD is (yA, zA, 0). 
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Fig. 2.4: Asymmetric space frame with a TLCGD oriented at angle γ  reference 

configuration. 

 

The liquid motion in TLCGD can be classified as two types: i) the global motion of the 

liquid with respect to the main structure; and ii) its relative flow, assuming the piping 

system to be rigid. The generalized non-stationary Bernoulli equation can be used to 

derive the equation of relative fluid flow, see e.g. Ziegler[2-5], page 483. The generalized 

Bernoulli equation of the ideal fluid-flow takes on the form, 

( ) ( )
'

'

2

2 1 2 1
1

1
ta e ds g x x p p

ρ
′ ′⋅ = − − − −∫

G G

 
(2.14) 

where, 1 2,x x  denote the geodesic height of the displaced free surfaces 1' and 2' 

respectively; aG  and g denote the absolute acceleration of the fluid particle (i.e., water in 

TLCGD) and the constant of gravity 29.81g m s= , and te′G  is the relative streamline’s 

tangential direction. 

The motion of TLCGD during lateral and torsional vibrations is illustrated in Fig. 2.5 and 

Fig. 2.6, where gv  and gw  used to describe the instant position of MC  due to the 

horizontal seismic ground acceleration in y- and z- directions, respectively.  
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Fig. 2.5: TLCGD under general in-plane acceleration of the floor: cosg Ma vα + �� , 

sing Ma wα + ��  and θ�� . Resulting force components FAy , FAz and moment MAx are 

indicated in the instant configuration. 

 

The position of the fluid particle against the center of mass MC  of the asymmetric space 

frame is described by Ar r r′= +
G G G , where r ′G  denotes the relative position of the fluid 

particle with respect to reference point A of the TLCGD. The relative position vector r ′G  

is decomposed into its horizontal and vertical components, y z xr r r′ ′′ ′ ′= +
G G G . Ar

G  is the 

in-plane position vector of point A against CM, see e.g. Ziegler[2-5], page 497. The velocity 

of fluid particle vG  can be derived straightforwardly by differentiating rG  with respect to 

time,  

A
A

dr dr drv v
dt dt dt

′ ′
= + = +
G G GG G

 
(2.15) 

ˆ
x y z

dr d re r r u
dt dt

θ θ ′ ′
′ ′ ′

′ ′= × + = +
G GG G G G�� � . 

Here, we define ( , ) tu u s t e′ ′=
G G� � , see Fig. 2.6, as the relative velocity of the fluid particle 

with respect to the moving reference frame. ˆ
gu A y zv v rθ ′ ′′= +
G G G�  denotes the guiding 
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velocity, where ˆ
A M AMv v rθ= +
G G G� . A second differentiation with respect to time renders an 

expression for the acceleration, 

2ˆ 2A y z y z x gu c
d ua a r r e u a a a
dt

θ θ θ′ ′ ′ ′
′

′ ′ ′= + − + × + = + +
G�G G G G G G G G G��� � � , (2.16) 

with the guiding acceleration 2ˆ
gu A y z y za a r rθ θ′ ′ ′ ′′ ′= + −
G G G G�� �  and the Coriolis acceleration 

2c xa e uθ= ×
G G G�� , the latter is perpendicular to the relative velocity uG� . The relative 

acceleration 
d ua
dt
′

′ =
G�G

 is the relative rate of the relative velocity and with respect to the 

moving frame can be expressed as 
2

2t
u ua e
t s

⎛ ⎞′∂ ∂′ ′⋅ = + ⎜ ⎟⎜ ⎟′∂ ∂ ⎝ ⎠

� �G G
, see again Ziegler[2-5], page 

498. Projecting absolute acceleration, Eq. (2.16) along the relative streamline’s tangent 

te′G  yields, 

N
2

2

0
2t gu t c t t A t y z t

u ua e a e a e a e a e r e
t s

θ ′ ′
⎛ ⎞′∂ ∂′ ′ ′ ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅ = ⋅ − ⋅ + + ⎜ ⎟⎜ ⎟′∂ ∂ ⎝ ⎠

� �G G G G G G G G G G G G� . (2.17) 

 

 
Fig. 2.6: TLCGD in general horizontal motion; fC  is instant position of the fluid’s 

center of mass. 

 

The absolute acceleration of the reference point A is given, Fig. 2.5, 
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2ˆ
A y y z z M AM AMa a e a e a r rθ θ= + = + −
G G G G G G�� � ,  (2.18) 

where, ( ) ( ) ( ) ( )ˆ,AM A M y A M z AM A M y A M zr y y e z z e r z z e y y e= − + − = − − + −
G G G G G G . 

Thus, the components of acceleration become, 

( ) ( ) 2cosy g M A M A Ma a v z z y yα θ θ= + − − − −�� ��� , 

( ) ( ) 2sinz g M A M A Ma a w y y z zα θ θ= + + − − −�� ��� , (2.19) 

where Mv�� , Mw��  and θ��  are the acceleration of the floor’s center of mass in y-, 

z-directions and the angular acceleration of the rigid floor of the space frame, respectively. 

AaG  projected in Ae′G -direction is 

( ) ( )cos sinA A y za e a aγ θ γ θ′⋅ = + + +
G G

 
(2.20) 

For the inclined segments: Fig. 2.6, 

10 : cosA ts H u e e β′ ′ ′≤ ≤ − ⋅ =
G G ; 20 : cosA ts H u e e β′ ′ ′≤ ≤ + ⋅ =

G G , 

For the horizontal segment: Fig. 2.6; 0 : 1A ts B e e′ ′ ′≤ ≤ ⋅ =
G G

. 

Using ( )1 2u u u t= =  and the continuity equation ( ) ( ),u s t A s const′ ′ =� , the integral 

term, see Eq. (2.14), becomes, 

( ) ( ){ }( ) ( )( )
'

'

2

1

2 coscos cosA t A A A Aa ds B He H u B H u a e a eββ β′⋅ = = +′ ′ ′− + + + ⋅ ⋅∫
G G G G G G . (2.21) 

For the inclined segments: ( ){ }1 10 : 2 cos cosy z As H u r B H u s eβ β′ ′′ ′ ′ ′≤ ≤ − = − + − −
G G

, 

( ){ }12 cos cos cosy z tr e B H u sβ β β′ ′′ ′ ′⋅ = − + − −
G G , (2.22) 

( )20 : 2 cosy z As H u r B s eβ′ ′′ ′ ′ ′≤ ≤ + = +
G G

, ( )2 cos cosy z tr e B s β β′ ′′ ′ ′⋅ = +
G G . (2.23)

 
For the horizontal segment: 0 s B′≤ ≤ : ( ) ( )2 , 2y z A y z tr B s e r e B s′ ′ ′ ′′ ′ ′ ′ ′ ′= − − ⋅ = − −

G G G G . 

Substituting ( )1 2u u u t= = , the integral terms become, 

( )
2

2 2 2

1

cos 2 cosy z tr e ds u B Hθ θ β β
′

′ ′
′

′ ′ ′− ⋅  = − +∫
G G� � , (2.24) 
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( )
2 2

2 2
2 1

1

1 0
2 2

u ds u u
s

′

′

⎛ ⎞∂ ′ = − =⎜ ⎟⎜ ⎟′∂ ⎝ ⎠
∫

� � �  (symmetry),  (2.25) 

( ) ( )
2

1 2
1

2H H

B B

A Au ds u H u uB u H u H B u
t A A

′

′

⎛ ⎞
⎜ ⎟
⎝ ⎠

′∂ ′ = − + + + = +
∂∫
� �� �� �� �� , (2.26) 

and the difference between geodesic heights of fluid-gas interfaces in the TLCGD is 

( ) ( )2 1 2 1sin sin 2 sinx x H u H u uβ β β− = + − − = . (2.27) 

If the ends of piping system are open to the environmental atmosphere (not sealed) then 

the air pressure at the free surface is approximately equal to the ambient pressure, 

1 2 0p p p= =  and hence, pressure difference vanishes; the same holds true in case of free 

flow of the gas through a connecting pipe. If the piping system is sealed on both sides, 

the gas inside the sealed volume V0 = AH Ha  is quasi-statically compressed, see 

Ziegler[2-5], page 88 by the liquid surface in a sufficiently slow motion (piston theory 

applies). aH  denotes the effective height of the gas-volume at rest 0 H aV A H= . Hence, 

the pressure difference 2 1p p−  in Eq. (2.14) in the range of linearized gas compression, 

i.e. if the maximum fluid-stroke is limited by max 3au H≤ , changes the undamped 

natural frequency of the TLCGD defined in Eq. (2.30), see Hochrainer[2-1] and 

Hochrainer-Ziegler[2-2]. Thus, 2 1 02 ap p np u H− ≈ , where 1 1.4n≤ ≤  is the polytropic 

index determined by the type of quasi-static change of state of the gas. For an adiabatic 

process of any diatomic gas n=1.4, whereas for the isothermal (slow) process n=1.0, 

Ziegler[2-5], page 88. Any other polytropic process is in-between these two extreme 

situations. In the application of TLCGD in base isolation, we expect rather low 

frequencies around 0.5 Hz. Consequently, the gas compression might be close to 

isothermal conditions and thus becomes linear for the strokes to be considered, we put 

1n =  in Eqs. (2.30). Whereas for the laboratory testing, we had to consider polytropic 

gas compression, 1.2n = . 

Finally, the experimentally observed averaged turbulent damping L u uδ � �  must be added, 
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see Hochrainer[2-1], where, 2L L effLδ λ=  is the head-loss coefficient. Substituting 

equations (2.21)-(2.27) in Eq. (2.14) and considering the linearized gas compression yield 

the nonlinear and parametrically forced ( 2β π< ) equation of the relative fluid flow in 

the TLCGD, any vertical motion is not considered here, 

( )
2

2
21L A A A
A

u u u u a eβ
θδ ω κ κ
ω

⎛ ⎞
′+ + − = − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

� G G�� � � , (2.28) 

2 cos

eff

B H
L

βκ +
= , cosβκ κ β= , 2 H

eff
B

AL H B
A

= +  

sin
2A

eff

g
L

ω β=  (“open TLCD”, no gas-spring),  (2.29) 

0
0 0sin ,

2A
eff a

hg h np g
L H

ω β ρ
⎛ ⎞

= +    =⎜ ⎟
⎝ ⎠

 (linearized gas-spring), 1 1.4n≤ ≤  (2.30) 

where, effL  can be considered as the length of an equivalent uniform liquid column of 

constant cross sectional area HA  rendering the same natural circular frequency Aω  of 

the TLCD; κ  and βκ  are geometry dependent coupling factors linking the floor 

acceleration and the TLCGD excitation, respectively. 

The ratio 0 ah H  in Eq. (2.30) accounts for the gas-spring effect enabling the TLCGD 

not only a self-controlling device, as large liquid strokes produce a weakly nonlinear 

compression of the gas, but also the tuning of the TLCGD is controlled conveniently just 

by changing the equilibrium gas-pressure. Hence, the TLCGD is ideally suited to extend 

the frequency range of civil engineering applications by properly adjusting the 

equilibrium gas-pressure 0p .  

The vertical floor acceleration, expected to be present in seismic excitation and 

commonly equal to the vertical component of the ground acceleration g gaλ , commonly 

0 1gλ≤ ≤ , adds parametric forcing in Eq. (2.28) ( )2
A g gu a gω λ  in addition to the 
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rotational excitation. In the course of the tuning procedure, an equivalent linearized 

damping coefficient 2A f A AC m ζ ω=  might be used to replace the nonlinear turbulent 

damping term in Eq. (2.28), ( )4 3 maxA L uζ π δ= , see Hochrainer[2-1]. If this linear 

damping coefficient of relative fluid flow Aζ  exceeds the cut-off value of parametric 

resonance, the influence of parametric excitation becomes fully negligible, for detailed 

experimental and numerical investigations see Reiterer[2-9], page 77 and 

Reiterer-Ziegler[2-10], 

( ),0
04 1 sin
g g

A A
a

a g
h H
λ

ζ ζ
β

> =
+

. (2.31) 

Ziegler[2-11] pointed out the speed limitation of the fluid-gas interface to keep the interface 

intact and thus to allow the application of the piston theory, based on Lindner-Silvester 

and Schneider[2-12], 

max max 10Au u m sω= <� . (2.32) 

Substituting the acceleration components, Eq. (2.19) in Eq. (2.28), and further linearizing 

the forcing terms yield the simplified and linearized equation for the relative fluid flow in 

the TLCGD in proper form for tuning and to be compared to the equivalent 

TMD-equation,  

( )( ) ( )( )
( )

2 cos sin
2

cos
M A M M A M

A A A
g

v z z w y y
u u u

a

θ γ θ γ
ζ ω ω κ

α γ

⎧ ⎫− − + + − +⎪ ⎪+ + = − ⎨ ⎬
−⎪ ⎪⎩ ⎭

�� ���� ��
�� � . (2.33) 

Left-hand terms in Eq. (2.33) are corresponding to the vibration-terms of the relative 

liquid motion and right-hand terms can be regarded as the linearized portions of the 

generalized external forces causing the motion of the liquid. 

2.4 Control forces of TLCGD 

To couple the TLCGD with the main structure (i.e., asymmetric space frame) it becomes 

important to know the interface reactions. Assuming that the dead weight of a rigid 

piping system has been added to the corresponding floor-mass (dead fluid-mass is 
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neglected at this stage), only the interaction forces between the massless, rigid, liquid 

filled piping system and the supporting floor are considered. The control forces FAy, FAz 

and MAx in y, z and θ directions are derived by conservation of momentum and angular 

momentum of the moving fluid. 

(i) Instant coordinates of center of fluid-mass Cf, conservation of momentum f fR m a=
G G . 

The instant position of Cf with respect to reference point A is given by f f xr x e′ +
G G , 

f f Ar s e′ ′ ′=
G G , see again Fig. 2.6. Hence, f A f f xr r r x e′= + +

G G G G ,  

ˆ ˆ,f f
f A f A f A f A f A f x

dr dr
s e s e v v s e s e x e

dt dt
θ θ

′
′ ′ ′ ′ ′ ′ ′ ′= + = = + + +

G G
G G G G G G G� �� � � , (2.34) 

( ) ( )2 ˆ2f
f A f f A f f A f x

dv
a a s s e s s e x e

dt
θ θ θ′ ′ ′ ′ ′ ′= = + − + + +

G
G G G G G� � ���� � �� , (2.35) 

and by means of the static fluid-mass-moments 

( ) ( )

( )

cos cos
2 2 2 2

2 cos

f f H H

H

B H u B H um s A H u A H u

A u B H

ρ β ρ β

ρ β

+ −⎛ ⎞ ⎛ ⎞′ = + + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +  

(2.36) 

( ) ( ) ( )2 2sin sin sin
2 2H H Hf f

H u H um x A H u A H u A H uρ β ρ β ρ β+ −= + + − = +  (2.37) 

Hence, we define, 

1

2 cos , ,f f f
B Hs u u s u s u

L
β κ κ κ+′ ′ ′= = = =� � �� �� , 

( ) ( ) ( )
2 2

2 2 2

1

sin 1 1 1, ,
2f T f T f T

H u
x H u x uu x u uu

L H H Hβ β β

β
κ κ κ

+
= = + = = +� � �� � ��  (2.38) 

with the following geometry coefficients and the total fluid-mass, 

1effL Lκ κ= , 0 sinT Tβκ κ β= , 0 12T H Lκ = , 

2

1
1

( )f Hm A s ds A Lρ ρ
′

′

′ ′= =∫ , 1 2 B

H

AL H B
A

= + .  (2.39) 

1L  equals effL  in the case of H BA A=  and thus κ κ= . 
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Substituting Eq. (2.38) into Eq. (2.35) after multiplication with mf, Eq. (2.40) results, 

( ) ( ) ( )2 21 ˆ2f A f T x f A f AR m a m u uu e m u u e m u u e
Hβκ κ θ κ θ θ′ ′= + + + − + +

G G G G G� � ��� �� �� � , (2.40) 

where, 

( ) ( ){ } ( ) ( ){ } ˆcos sin sin cosA y z A y z Aa a a e a a eγ θ γ θ γ θ γ θ′ ′= + + + + − + + +
G G G . (2.41) 

It must be mentioned, that fluid-mass is not included in the unwanted vertical reaction 

force component FAx. However, when working with framed structures, this vertical force 

is generally negligible. Equation (2.40) renders the components of the control forces 

in-plane acting on the piping system, Fig. 2.5, 

( ) ( ){ } ( )2cos sinA A f y z fF e m a a m u uγ θ γ θ κ κ θ′ = + + + + −
G ��� , (2.42) 

( ) ( ){ } ( )ˆ sin cos 2A A f y z fF e m a a m u uγ θ γ θ κ θ κ θ′ = − + + + + +
G � ��� , (2.43) 

and become when rotated, 

( ) ( ) ( ) ( ){ }2 cos 2 sinAy f yF m a u u u uκ κ θ γ θ κ θ κ θ γ θ= + − + − + +� � ���� � , (2.44) 

( ) ( ) ( ) ( ){ }2 sin 2 cosAz f zF m a u u u uκ κ θ γ θ κ θ κ θ γ θ= + − + + + +� � ���� � . (2.45) 

Equations (2.44) and (2.45) are simplified under the condition 1θ �  and the essential 

linear parts become  

( ){ }cos cosAy f g M A M fF m a v z z m uα θ κ γ= + − − +���� �� , (2.46) 

( ){ }sin sinAz f g M A M fF m a w y y m uα θ κ γ= + + − +���� �� . (2.47) 

(ii) Conservation of the angular momentum of the fluid particle, see again Ziegler[2-5] 

page 405, yields the resultant of the acting moment with respect to the accelerated point 

of reference A, 

( ) ( ),A A A
f f f x A A x A

dD dD d Dm r x e a M e D
dt dt dt

θ
′

′+ + × = = + ×
G G GG GG G G G�  (2.48) 

with the relative angular momentum 
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( ) ( ){ }

( ) ( ) ( )( )
2 2

1 1

ˆ

ˆ( ) , ( )

y z
m mf f

y z t

A f fr v r r u

A s r r ds A s u s t r e s ds

D dm dmθ

θρ

′ ′

′ ′

′ ′
′ ′

′ ′ ′ ′× × +

⎧ ⎫⎪ ⎪′ ′ ′ ′ ′ ′ ′ ′ ′ ′× + ×⎨ ⎬
⎪ ⎪⎩ ⎭

= =

= ∫ ∫

∫ ∫
G G G G G��

G G GK� �

G

 (2.49) 

For inclined and horizontal segments, 

1
ˆ0 : sin

2t A
Bs H u r e eβ′ ′ ′ ′≤ ≤ − × = −

G G G
, 2

ˆ0 : sin
2t A
Bs H u r e eβ′ ′ ′ ′≤ ≤ + × = −

G G G
,  

0 : 0ts B r e′ ′ ′≤ ≤ × =
G G , 

( ) ( )( )
2

1

ˆ, ( )
2t T f A
BA s u s t r e s ds m ueβρ κ

′

′

′ ′ ′ ′ ′ ′ ′× = −∫
G G G� �  (2.50) 

( )
22 2

1
1 0

2 2

0 0

( ) cos cos
2

cos
2 2

H u

y z H

B H u

B H

BA s r ds A H u s ds

B BA s ds A s ds

ρθ ρθ β β

ρθ ρθ β

′ −

′ ′
′

+

⎧ ⎫⎛ ⎞′ ′ ′ ′ ′= − + − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′ ′+ − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
′

∫ ∫

∫ ∫

G� �

� �
 

( )
3 2

2 2 3 2 22cos 2 cos
12 2 3

B
H

H

A B BA H B H u H Hu
A

ρθ β β
⎧ ⎫⎪ ⎪⎛ ⎞= + + + + +⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
�

 
(2.51) 

10 s H u′≤ ≤ − : ( )( ){ } ( )( ){ }1 1
ˆ sin 2 cosx y z Ar r H u s B H u s eβ β′ ′′ ′ ′ ′ ′× = − − − − + − −

G G G , 

20 s H u′≤ ≤ + : ( )( )ˆ sin 2 cosx y z Ar r s B s eβ β′ ′′ ′ ′ ′ ′× = − +
G G G ,  

( )
2

3 2

1

2ˆ( ) sin 2 sin cos
3x y z H AA s r r ds A HBu u H u eρθ ρθ β β β

′

′ ′
′

⎧ ⎫⎛ ⎞′ ′ ′ ′ ′× = − + +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∫
G G G� � , (2.52) 

2 2

1 1 1

3 2 2 2 3 2
2

1 1 1 1 1 1

2 2 cos
3

2cos 2 cos
12 2 3

ˆsin
2A A

B

H

T

x

A f
HB u H
L L L

A B B H u H HuH B
A L L L L L L

Bu e ue

e

D m ββ

β β

θ β κ

θ

⎧ ⎛ ⎞⎛ ⎞⎪ + +⎜ ⎟⎜ ⎟⎨ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩
⎫⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎪+ + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎭

′ ′− −

+

= G G� �

G�

G

, (2.53) 

( )2 2
TAx fD m H uβκ κ θ= + � , (2.54) 

with the following additional geometry coefficients, 

2 3
2

0
1cos cos

2 3 2 2 3
B

T T
H

AB B B
H A H H

κ κ β β
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= + + +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

，
1

effL
Lβ βκ κ= , 0

1

2
T

H
L

κ = , 
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( ){ }2 2 2T
Ax

f H u uudD m
dt βκ θ κ θ θ+ += �� �� �� . (2.55) 

Substituting equations (2.38) and (2.41) in Eq. (2.48) yields, 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 2

2 2

2
sin cos

ˆcos sin sin cos
2

f T y z A

T y z A y z x

x Af f f
H u

H
a a e

H u a a e u a a e
H

m r x e a m β

β

κ γ θ γ θ

κ γ θ γ θ κ γ θ γ θ

+
−

⎧⎪ ′= − + + +⎨
⎪⎩

⎫+ ⎪′+ + + + + − + + + ⎬
⎪⎭

′ + × G

G G

G G G

 

(2.56) 

The undesired additional moment pM
G

 from gravity force with respect to the reference 

point A is 

( ) ˆ
p f f f x x f AM m g r x e e m g ueκ′ ′= − + × =
G G G G G . (2.57) 

The undesired axial moment MA about lateral ˆ
Ae′G  direction is the sum of the 

TLCGD-floor interaction, Eq. (2.53) and a second contribution resulting from gravity 

force acting at the (displaced) center of fluid-mass fm g uκ , Eq. (2.57). The latter is 

similar to that of a TMD with displaced mass. The axial moments MA about ˆ
Ae′G  and Ae′G  

directions are generally both found negligible in their action on the structure. The 

nonlinear resultant control moment MAx (acting on the piping system) becomes finally, 

adding Eq. (2.55) and the proper component of Eq. (2.56), see again Fig. 2.5, 

( ) ( )( ) ( ){ }2 2 2sin cosAx f Ty zM m u H u uua a βκ κ θ κ θ θγ θ γ θ + + += − + + + �� �� �� . (2.58) 

Equation (2.58) is simplified under the condition 1θ �  and when properly linearized, 

becomes,  

2
Ax f TM m Hκ θ= �� , 

2 3
2

0
1cos cos

2 3 2 2 3
B

T T
H

AB B B
H A H H

κ κ β β
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= + + +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

, (2.59) 

and the linearized moment at MC  is determined by 

( ) ( )x Ax Ay A M Az A MM M F z z F y y= − − + − . (2.60) 

The interaction forces and the moment of TLCGD, equations (2.46), (2.47) and (2.60) 

derived by considering the conservation of momentum and angular momentum 
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respectively, refer to the center of mass MC  whose position is no longer exact, because 

the dead fluid-mass of TLCGD is not considered in the main system and thus introduces 

an approximation. 

2.5 Approximate substructure synthesis of the space 

frame with TLCGD  

The equation of motion for the coupled system considering the undamped single-storey 

asymmetric space frame under horizontal ground excitation, Eq. (2.1), and the TLCGD, 

Fig. 2.5, in substructure synthesis when Eqs. (2.46), (2.47) and (2.60) are combined, 

gM x K x M a F+ = − +
GG G G��

� � �
, [ ]cos sin 0T

g ga a α α=
G  (2.61) 

where, T
Ay Az x xF F F M r⎡ ⎤= − ⎣ ⎦

G
 is the linearized control force vector. 

If the floor displacements xG  are expanded into modal series, 
3

1
i i

i
x qφ

=
= ∑

GG  and 

substituted on left-hand side of Eq. (2.61), it decouples by pre-multiplication with the 

transposed ortho-normalized modal vector T
jφ
G

, 

T T T T
j j j j j j j g jM q K q Ma Fφ φ φ φ φ φ+ = − +
G G G G G G GG��
� � �

. (2.62) 

Equation (2.62) divided by modal mass jm  with light modal structural damping added, 

becomes, 

2 1 12 T T
j Sj Sj j Sj j j g j

j j
q q q Ma F

m m
ζ ω ω φ φ+ + = − +

G G GG�� �
�

, (2.63) 

where, 2 ,T T
Sj j j j j j jK m m Mω φ φ φ φ= =

G G G G
� �

, for ortho-normalized modal vector, 1jm = . 

The control force term, 

1 2 3
1 1T

j j j Ayj j Azj j xj x
j j

F F F M r
m m

φ φ φ φ− ⎡ ⎤= + +⎣ ⎦
G G

, (2.64) 

renders modal coupling when the linearized control forces, Eqs. (2.46), (2.47) and (2.60), 

are substituted in Eq. (2.64) by using modal expansion,  
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3

1
1

M i i
i

v q φ
=

= ∑�� �� , 
3

2
1

M i i
i

w q φ
=

= ∑�� �� , 
3

3
1

T i i
i

u q φ
=

= ∑�� �� ,  (2.65) 

( ) ( ){ }

3 3

, 1 , 2
1 1

3
2

3 , , 3
1

1
1

A j i i A j i i g j j j j
i iT

j j fj
j

Tj j j x A j Aj M A j Aj M i i
x i

v q w q a V V u
F

m
H r v z z w y y q

r

α γφ φ κ

φ μ

κ φ φ

= =

=

⎧ ⎫
+ + + +⎪ ⎪

⎪ ⎪= − ⎨ ⎬
⎪ ⎪− − + −⎪ ⎪
⎩ ⎭

∑ ∑

∑

�� �� ��
G G

��
, (2.66) 

fj fj jm mμ = , ( ), 1 3A j j j Aj M xv z z rφ φ= − − , ( ), 2 3A j j j Aj M xw y y rφ φ= + − , 

, ,cos sinj A j j A j jV v wγ γ γ= + , , ,cos sinj A j A jV v wα α α= + . 

Equation (2.66) can be rearranged, 

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

2
1 11 13 , 12 13 , 13

2
2 21 23 , 22 23 , 23

2
3 31 33 , 32 33 , 33

1

Aj M x A j Aj M x A j Tj j x

Aj M x A j Aj M x A j Tj j xT
j j fj

j

Aj M x A j Aj M x A j Tj j x

q z z r v y y r w H r

q z z r v y y r w H r
F

m
q z z r v y y r w H r

φ φ φ φ κ φ

φ φ φ φ κ φ
φ μ

φ φ φ φ κ φ

⎧ ⎫− − + + − +⎨ ⎬
⎩ ⎭

⎧ ⎫+ − − + + − +⎨ ⎬
= − ⎩ ⎭

⎧ ⎫+ − − + + − +⎨ ⎬
⎩ ⎭

��

��G G

��

g j j j ja V V uα γκ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪+ +⎩ ⎭��

       

(2.67) 

Equation (2.67), depicts more clearly the modal coupling, and it is approximated for the 

selected mode number j  for the sake of modal tuning of the TLCGD in a first step in 

the design stage, and hence reduces to, 

( )( ) ( )( )
( )

( )

1 3 , 2 3 ,

2
3

22 2
, , 3

1
j j Aj M x A j j j Aj M x A j

jT
j j fj Tj j j xj

g j j j j

fj j A j A j Tj j j x g j j j j

z z r v y y r w
q

F H rm
a V V u

q v w H r a V V u

α γ

α γ

φ φ φ φ

φ μ κ φ

κ

μ κ φ κ

⎧ ⎫⎧ ⎫− − + + −
⎪ ⎪⎪ ⎪

⎨ ⎬⎪ ⎪= − ⎨ ⎬⎪ ⎪+⎩ ⎭⎪ ⎪
⎪ ⎪+ +⎩ ⎭
⎧ ⎫⎛ ⎞= − + + + +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

��G G

��

�� ��

 

Thus, the control force term results in the modally isolated form, 

1 T
j j j j fj j g fj j j j

j
F q V a V u

m α γφ μ μ μ κ= − − −
G G

�� ��  (2.68) 

where, 2
j fj jVμ μ= , ( )22 *2

3j j Tj j j xV V H rκ φ= + , *2 2 2
, ,j A j A jV v w= + . 
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The term 1 T
j g

j
Ma

m
φ
G G
�

 in Eq. (2.63) can also be expanded to identify the classical modal 

participation factor, 

( )1 2
1 cos sinT

j g Sj j j g Sj g
j

Ma a L a
m

φ μ φ α φ α= + =
G G
�

, (2.69) 

where, Sj S jm mμ = , and ( )1 2cos sinSj Sj j jL μ φ α φ α= +  denotes the classical modal 

participation factor without considering TLCGD.  

Hence, Eq. (2.63) becomes, 

( ) ( )21 2j j Sj Sj j Sj j fj j j j Sj fj j gq q q V u L V aγ αμ ζ ω ω μ κ μ+ + + + = − +�� � �� . (2.70) 

Right-hand side of the above equation (2.70) can also be expressed as 

( ) ( ) ( )1 2 , ,cos sin cos sinSj fj j g Sj j j g fj A j A j gL V a a v w aαμ μ φ α φ α μ α α− + = − + − + , 

and simplified as, 

( ) ( )cos sinSj fj j g yj zj g j gL V a L L a L aαμ α α− + = − + = − , (2.71) 

where jL  is the generalized modal participation factor, the fluid-mass in TLCGD is 

considered, 

cos sinj yj zjL L Lα α= + , 1 ,yj Sj j fj A jL vμ φ μ= + , 1 ,zj Sj j fj A jL wμ φ μ= + . (2.72) 

Thus, the following approximate equation in the selected mode is derived, 

( ) 21 2j j Sj Sj j Sj j j fj j j j gq q q V u L aγμ ζ ω ω κ μ+ + + + = −�� � �� . (2.73) 

Now, the equation of relative fluid flow in TLCGD, Eq. (2.33), takes the form when 

right-hand side is modally expanded, 
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( )( ) ( )( )
( )( )
( )( ) ( )( )

( )( )
( )

2

1 11 13 2 21 23

3 31 33

1 12 13 2 22 23

3 32 33

2

cos

sin

cos

A A A

A M x A M x

A M x

A M x A M x

A M x

g

u u u

q z z r q z z r

q z z r

q y y r q y y r

q y y r

a

ζ ω ω

φ φ φ φ
γ

φ φ

φ φ φ φ
κ γ

φ φ

α γ

+ +

⎧ ⎫⎧ ⎫− − + − −⎪ ⎪⎪ ⎪⎨ ⎬
⎪ ⎪+ − −⎪ ⎪⎩ ⎭⎪ ⎪
⎪ ⎪⎧ ⎫− − + − −⎪ ⎪ ⎪ ⎪= − +⎨ ⎨ ⎬ ⎬

+ − −⎪ ⎪ ⎪ ⎪⎩ ⎭
⎪ ⎪

+ −⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

�� �

�� ��

��

�� ��

��

 

(2.74) 

Modal isolation for the selected mode number j  renders, 

( )( ) ( )( ){ }
( )

2

1 3 2 3

2

cos sin

cos

j Aj Aj j Aj j

j j j Aj M x j j j Aj M x j
j

g j

u u u

q z z r y y r

a

ζ ω ω

φ φ γ φ φ γ
κ

α γ

+ +

⎧ ⎫− − + + −⎪ ⎪= − ⎨ ⎬
⎪ ⎪+ −⎩ ⎭

�� �

��   

( ) ( ){ }, ,cos sin cosj j A j j A j j g jq v w aκ γ γ α γ= − + + −��  

( )cosj j j j g jV q aγκ κ α γ= − − −�� . 

Thus, the approximate equation of relative fluid flow in TLCGD for the selected mode 

takes on the final form, 

( )22 cosj Aj Aj j Aj j j j j j g ju u u V q aγζ ω ω κ κ α γ+ + + = − −�� � �� . (2.75) 

The linearized coupled system of modal approximated equations (2.73) and (2.75) for the 

2-DOF modally isolated space frame with TLCGD attached becomes in matrix form, 

( )

2

2

1 2 0 0

1 0 2 0

cos

j j j fj j Sj Sj j Sj j

j j j Aj Aj j jAj

j
g

j j

V q q q

V u u u
L

a

γ

γ

μ κ μ ζ ω ω

κ ζ ω ω

κ α γ

⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= −

−⎢ ⎥⎣ ⎦

�� �

�� �
.

 

(2.76) 

2.6 Modal tuning of TLCGD, Den Hartog optimization 

If the modes of the main structure are well separated, the fundamental mode is considered 

isolated (with respect to the laboratory experiment) rendering the two degrees of freedom 

(2-DOF) modally isolated coupled TLCGD-space frame system that is still approximate 
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because the dead fluid-mass of TLCGD affecting the main system is not considered in the 

dynamics of the main system. The modal tuning of TLCGD might be performed by 

transformation of the classical Den Hartog’s formulas, see DenHartog[1-12], by means of 

the analogy between equivalent TMD and TLCGD.  

2.6.1 Analogy between equivalent TMD and TLCGD 

The analogy between TMD and TLCGD attached to SDOF main structure has been 

explored by Hochrainer[2-1], which serves as the basic guide line for utilizing the results 

available from the TMD design. Later on, Fu[2-3] has extended the subsequent procedure 

for a more general 3-DOF main structure with TLCGD attached, and the useful results 

are summarized here, a star refers to the equivalent TMD, 

* *,Aj Aj Aj Ajω ω ζ ζ= = . (2.77) 

The modal mass ratio of the TMD-main system is defined by 

( )
( )

2*
*

2*1 1

j j j j
j j j

j j j j j

V V

V V

κ κ
μ μ μ

μ κ κ
= <

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

, (2.78) 

and frequency and damping ratio of the altered main system with an equivalent TMD are 

( )
*

2*1 1

Sj
Sj Sj

j j j j jV V

ω
ω ω

μ κ κ
= <

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

,
( )

*
2*1 1

Sj
Sj Sj

j j j j jV V

ζ
ζ ζ

μ κ κ
= <

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

. (2.79) 

The TMD frequency ratio 
*

,*
*

Aj opt
jopt

Sj

ω
δ

ω
=  and the TLCGD frequency ratio 

,Aj opt
jopt

Sj

ω
δ

ω
=  are thus related by the more general transformation, 

( )

*
*

2*1 1

jopt
jopt jopt

j j j j jV V

δ
δ δ

μ κ κ
= <

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

. (2.80) 

The optimal frequency ratio joptδ  of the TLCGD turns out slightly lowered than that of 

equivalent TMD. The term apparent in the denominator of Eq. (2.78)-(2.80), written as 
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( ) ( ){ }2 2* *1 1j j j fjj j j j jmV V V Vμ κ κ κ⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 for j jκ κ=  and 1jm = , (2.81) 

is the dead fluid-mass which changes the main system, therefore the former should be 

minimized by achieving the higher value of geometry factor jκ  within the limits on 

liquid column H as given by Eq. (2.88). 

Optimal TMD design parameters, frequency ratio and damping ratio, are determined 

subjected to the time-harmonic excitation. The optimum tuning frequency ratio between 

the equivalent mechanical absorber and the main structure for minimum total acceleration 

is, see Den Hartog[2-13], page 97 and 101, 

*
*

1
1optδ

μ
=

+
, (2.82) 

and the corresponding optimum linear viscous damping coefficient is given by 

( )
*

*
*

3
8 1

opt
μζ

μ
=

+
. (2.83) 

2.6.2 Parameters of the gas-spring 

The parameter of gas-spring can be conveniently determined by making use of the linear 

eigen frequency of the mathematical pendulum (i.e. rigid massless rod with a point-mass, 

attached at a pivot point). The frequency of such a mathematical pendulum for small 

angular motion is approximately constant and solely depends on its length L0 by the 

following relation, 
2

0

/
4A

gf
L
π

=  (Hz). Thus, its length is related to frequency by a 

hyperbola, 

2

0 2
/

4 A

gL
f
π

= . (2.84) 

The natural frequency of the open TLCD (i.e. without a gas-spring) is, Eq. (2.29), 

( )
( )

2/
sin

2 4 / 2
A

A
eff

g
f

L

πω β
π

= = . (2.85) 
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If the TLCD and the pendulum have the same frequency, we can write the relation 

02 sineffL L β= . Now, the frequency of a TLCGD with linearized gas-spring effect, Eq. 

(2.30) is rewritten as  

( )
( )

2
0sin

2 4 2
A

A
aeff

g hf
HL

πω β
π

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
. (2.86) 

If the TLCGD and the mathematical pendulum have the same frequency, we can 

conveniently determine the parameters of the gas-spring, crucial for frequency tuning, in 

terms of the effective liquid column length effL  in terms of a simple design formula, 

0 02 sina effh H L L β= − . (2.87) 

2.6.3 Steps of modal tuning of TLCGD in the design stage 

The modal mass ratio of the equivalent TMD *μ  calculated by Eq. (2.78), when the 

TLCGD geometry and fluid-mass (thus jκ  and jμ ) are known, results *
joptδ  and 

*
joptζ  by using Den Hartog optimization formulas, Eqs. (2.82) & (2.83). The optimal 

frequency ratio joptδ ∗  of TMD is transformed to that of TLCGD by using transformation 

Eq. (2.80), whereas the optimal damping ratio of TLCGD is same as that of the 

equivalent TMD (i.e., *
, ,Aj opt Aj optζ ζ= ). The optimal frequency ,Aj optf  calculated by 

using joptδ  for TLCGD renders the required length of mathematical pendulum, Eq. 

(2.84), and thus utilizing simple TLCGD design formula, Eq. (2.87) to calculate the 

critical parameter of gas-spring effect 0 ah H . Hence, the gas-volume H aA H  required 

for the frequency tuning of TLCGD is determined, if for some reasons the equilibrium 

pressure 0p  and thus 0h  is assigned. For the experimental verification of TLCGD 

damping, the atmospheric pressure was maintained as the gas equilibrium pressure, for 

convenience in handling the sealed TLCGD in the laboratory, see sub-section 3.4, 

without observing any buckling of piping system due to small liquid strokes in the 
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TLCGD. However, the atmospheric pressure, in full scale real applications where the 

large liquid strokes are encountered, is not a practical design choice because the 

gas-pressure during its expansion phase becomes lower than the environmental pressure, 

and hence resulting in a compressive state of hoop stress in the piping system associated 

with the danger of buckling, see details in sub-section 4.5.2.5. The maximum liquid 

strokes in the TLCGD 0max u  must be ensured within following acceptable limits, 

0max 2 3u H≤ , 0max 3au H≤ , max u0 ω A ≤ 10 m/s . (2.88) 

2.7 Steady state response and modal dynamic 

magnification factor 

The dynamic magnification factor (DMF), i.e., the ratio of dynamic response to static 

response can be determined by assuming a time harmonic ground excitation under 

various oblique angles of incidence α  ( 0 α π≤ ≤ with respect to the y-axis), thus 

( ) i t
g ga t a e ω= , where ga  is the amplitude of the ground acceleration, commonly 

assigned as a fraction of 29.81m sg =  and ω  is the circular forcing frequency of 

excitation.  

2.7.1 Steady state vibrations of space frame without TLCGD 

When TLCGD is not installed, control force term in equation (2.61) is absent, however 

light modal structural damping of the main system is considered, using result from Eq. 

(2.69), 

22j Sj Sj j Sj j Sj gq q q L aζ ω ω+ + = −�� � . (2.89) 

Inserting ( ) ,1
i t

j jq t q e ω=  and ( ) i t
g ga t a e ω=  into Eq. (2.89), the time reduced modal 

equation results, 

( )2 2
,1 2j Sj Sj Sj Sj gq i L aω ω ζ ω ω− + + = − , ,1 2

Sj g
j st

Sj

L a
q

ω
= −  when 0ω = . (2.90) 
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The complex amplitude ,1jq  for main system alone (i.e. without TLCGD) becomes, 

dividing throughout by 2
Sjω , 

( )
,1

,1 21 2
j st

j
Sj Sj Sj

q
q

iβ ζ β
=

− +
, Sj

Sj

ωβ
ω

= , (2.91) 

where Sjβ  is the ratio of forcing frequency to natural frequency of the main system 

vibrating in its j-th mode, distinct natural frequencies understood. 

Thus, the modal dynamic magnification factor ,1jDMF  for the main system alone 

results, 

( )
,1

,1 2 2 4,1

1

1 2 1 2

j
j

j st Sj Sj Sj

q
DMF

q ζ β β
= =

− − +
. (2.92) 

Equation (2.92) clearly shows that that modal dynamic magnification factor for the main 

system alone is independent of the excitation direction α  as required. 

2.7.2 Steady state vibrations of modally isolated 2-DOF system  

When the TLCGD is installed on the asymmetric space frame, the steady state response 

of the resulting modally isolated coupled 2-DOF system, that is still in unavoidable 

approximation because of the dead fluid-mass of TLCGD as discussed in sub-section 2.6, 

can be determined by inserting ( ) ,2
i t

j jq t q e ω= , ( ) ,2
i t

j ju t u e ω=  and ( ) i t
g ga t a e ω=  

into Eq. (2.76), and the time-reduced linearized modally approximated equations result, 

( )
( )

2 2 2
,2

2 2 2 ,2 cos

1 2

2

jSj j Sj Sj j fj j j
g

j j jj j Aj Aj Aj

LV
a

V

i q
ui

γ

γ

κ μ

κ α γκ

ω μ ω ζ ω ω ω

ω ω ω ζ ω ω

⎡ ⎤− + ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥− + ⎣ ⎦ ⎣ ⎦⎣ ⎦

+ −
=

−
. (2.93) 

The individual equations from matrix Eq. (2.93) become when divided by 2
Ajω , 

( )( )2 2 2
,2 ,2 21 2 j g

j j Aj Sj j Aj j j j fj Aj j
Aj

L a
i q V uγδ μ β ζ δ β κ μ β

ω
− + + − = − , Aj

Aj

ωβ
ω

= , (2.94) 

( ) ( )2 2
,2 ,2 2

cos
1 2 j j g

j j Aj j Aj Aj Aj j
Aj

a
V q i uγ

κ α γ
κ β β ζ β

ω

−
− + − + = − , Sj

j
Aj

ω
δ

ω
= . (2.95) 



2.  Single-storey Asymmetric Space Frame with TLCGDs: Laboratory Model 

40 
 

Equations (2.94) and (2.95) render static values of ,2jq  and ,2ju  when 0ω = , 

( )
,2 ,2 20

cosj j g
j j st

Aj

a
u u

ω

κ α γ

ω=

−
= = − , ,2 ,2 2 2 20

j g j g
j j st

Aj j Sj

L a L a
q q

ω ω δ ω=
= = − = − , (2.96) 

and former can also be abbreviated as, 
2

11 ,2 12 ,2 ,2j j j j stA q A u qδ− = , (2.97) 

21 ,2 22 ,2 ,2j j j stA q A u u− + = , (2.98) 

where, ( )2 2
11 1 2j j Aj Sj j AjA iδ μ β ζ δ β= − + + , 2

22 1 2Aj Aj AjA iβ ζ β= − + , 

2
12 j j fj AjA Vγκ μ β= , 2

21 j j AjA Vγκ β= . (2.99) 

Solution of equations (2.97) and (2.98) e.g., by using Cramer’s rule, render complex ,2jq  

and ,2ju , 

2
22 ,2 12 ,2

,2
11 22 12 21

j j st j st
j

A q A u
q

A A A A
δ +

=
−

, 
2

11 ,2 21 ,2
,2

11 22 12 21

j st j j st
j

A u A q
u

A A A A
δ+

=
−

, (2.100) 

Therefore, the complex amplitude ,2jq  for the modally isolated coupled 2-DOF system 

results, 

( )
2

12
,2 ,2 2 2 4 2

1 2 3 4

1 2Aj Aj Aj
j j st j

j Aj Aj Aj Aj

a i
q q

b b i b b

β ζ β
δ

δ β β β β

− +
=

− + + −
, (2.101) 

where, 2
1 1 4j j Sj Aj jb μ δ ζ ζ δ= + + + , 2

2 1 j j j fj jb Vγμ κ κ μ= + − , 2
3 2 2Sj j Aj jb ζ δ ζ δ= + , 

( )4 2 2 1Sj j Aj jb ζ δ ζ μ= + + , 

( ) ( )( ),2
1 2

,2
, 1 1 cosj fj j j st

j j j fj j j j
j stj

V u
a V L

q
γ

γ
κ μ

α γ κ κ μ α γ
δ

⎛ ⎞
= − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
, (2.102) 

and Eq. (2.101) can be expanded, 

( ) ( )( )
,2 ,2

,2
,2 2 4 6 8

1 2 3 4
Re Im

1 j j

j st
j q q

Aj Aj Aj Aj

q
q i

B B B Bβ β β β
= +

+ + + +
 (2.103) 

where, 

( ) ( ) ( )
,2

2 2 4 61 2
1 1 3 2 4 1 12 2 2

1 1Re 1 2 2
j

j Aj Aj Aj Aj Ajq
j j j

a ba b b b b a bδ ζ β ζ β β
δ δ δ

= − + − + − + − , 
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( ) ( )
,2

2 3 4
3 4 12

2
Im

j

Aj
j Aj Aj Aj Ajq

j
b b b

ζ
δ β β β β

δ
= − + − , 

( )2 2 4
1 3 12 j jB b bδ δ= − , ( )2 2 4

2 1 2 3 42 2j jB b b b bδ δ= + − , ( )2 4
3 4 1 22 jB b b b δ= − , 

2 4
4 2 jB b δ= , (2.104) 

Hence, the modal dynamic magnification factor for such a 2-DOF system becomes, 

( )2 2 2 4
1 1

,2 2 4 6 8
1 2 3 4

1 2 2

1

Aj Aj Aj
j

Aj Aj Aj Aj

a a
DMF

B B B B

ζ β β

β β β β

− − +
=

+ + + +
, (2.105) 

         
( ) ( )2 2 2 4 6 8

1 1 1 2 3 4
2 4 6 8

1 2 3 4

4 2
1

1

Aj Aj Aj Aj Aj

Aj Aj Aj Aj

a B a B B B

B B B B

ζ β β β β

β β β β

− − + − − −
= +

+ + + +
 (2.106) 

where ( )1 , ja α γ  given by Eq. (2.102) points towards the directional dependency of such 

an approximate modal dynamic magnification factor on the varying angle of incidence of 
base excitation. The possible cause of this phenomenon is due to the fact that the position 
of the center of mass is not exact, because the small fraction of dead fluid-mass is not 
considered in the dynamic of the main system; however its effect is commonly negligible 
in practical cases. 
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3 Experimental Verification of TLCGD Damping 

 

3.1 Introduction 

The state-of-the-art designed tuned liquid column-gas damper (TLCGD) increases the 

effective structural damping of vibration-prone buildings when subjected to dynamic 

loads like earthquakes or wind gusts. The effectiveness of the TLCGD is confirmed 

through experimentation by installing a TLCGD (secondary system) designed and tuned 

to the fundamental mode of vibration of the single-storey asymmetric space frame 

laboratory scaled model (i.e., 3 DOF main system: fully described in Section 2). The 

design and development of such a laboratory scaled structural model (str-model) is 

discussed along with its geometric and modal properties. The Section also includes the 

fabrication and installation of indigenously developed TLCGD to be installed in optimal 

position and direction on the str-model. The experimental procedure adopted for data 

acquisition and instrumentations required to measure the response of the coupled system 

(TLCGD installed on str-model) are also described to paint the full picture of the 

laboratory measurements. However, due to financial and laboratory constraints, the 

incorporation of novel base isolation units (design details in Section 4) for such a light 

weight str-model was not possible. The experimental results are compared with analytical 

solutions by simulating the experimental setup. 

3.2 Design and development of the asymmetric structural 

model in view of base isolation 

The simple single-storey space frame, laboratory scaled str-model consists of a “rigid” 

rectangular floor of size 400 280mma b× = ×  with the uniformly distributed floor mass 
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640g Sm = supported on four symmetrically arranged clamped-clamped elastic columns 

of height 440mmcl =  placed at each corner as shown in Fig. 3.1.  

Two thin aluminum rectangular plates having circular holes are joined by using spacer in 

between (a sandwich design) to form a light-weight and extremely stiff floor. The column 

numbered 1 is of larger diameter, M-6, with isotropic stiffness 1 1 1y zk k k= =  in y- and 

z-directions however, the other three columns are of one and the same diameter M-4 with 

isotropic stiffness 2 2 2y zk k k= = . Thus, column M-6 exhibits larger flexural stiffness 

due to which the centre of stiffness is distinct from the geometric centre O of the floor 

(i.e., the origin O of the Cartesian coordinate system).  

The asymmetry of mass is created by introducing an additional point mass 1 100gm =  at 

the upper right corner above the column numbered 1 (i.e., 2, 2y ze a e b= = ) due to 

which centre of mass CM is no more coincident with the geometric centre of the floor. 

Since the centre of mass CM and the centre of stiffness CS are not coincident for such an 

asymmetric structure, so even the uni-directional horizontal seismic (ground) excitation, 

in general, causes a three dimensional in-plane motion of the floor. 

The bottom ends of the columns are rigidly clamped to the base-plate of similar sandwich 

design as that of the floor. The sliding system, shown in Fig. 3.2(a), consists of a rigid 

sliding-plate mounted on rails and hence is capable of moving forth and back when 

connected to the electromagnetic shaker (Brüel & Kjaer type 4808). The base-plate of the 

str-model is fixed on the sliding-plate so as to excite its base at any desired frequency or 

time record. 
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Fig. 3.1: Structural model on sliding plate attached to electromagnetic shaker (Brüel & 

Kjaer type-4808) 

 

The task of base excitation on the str-model at various angles of incidence is managed by 

fixing the base-plate on the sliding-plate both having 12-peripheral holes with nut and 

bolt arrangement as shown in Fig. 3.2 (b). Hence, the relative position of the str-model 

can be changed at various angles by rotating it stepwise about the vertical x-axis with the 

interval of / 6π . 

 

 

                   (a)                              (b) 

Fig. 3.2: (a) base-plate of the structural model fixed to the sliding-plate by nut and bolt 
arrangement through 12-peripheral holes, (b) sliding-plate mounted on the rails and 

connected to the electromagnetic shaker. 
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3.2.1 Properties of the columns  

The columns used to support the floor are threaded so as to adjust their lengths (if 

required), but its moment of inertia I and modulus of elasticity E are not exactly known. 

Therefore, a simple experiment is performed to determine the flexural stiffness EI of the 

columns. A certain length le of the column is taken to serve as a cantilever beam whose 

free-end deflection eΔ  for various lateral static loads Fe is measured experimentally by 

an inductive transducer (Kinex-251858) to determine the linear elastic flexural stiffness 

by 3 3e e eEI F l= Δ . These values are listed along with other properties of the columns in 

Table 3.1. 

 

Table 3.1: Properties of the columns of the structural model. 

Description of columns 
Column 1 

(M-6) 

Column 2, 

3&4 (M-4) 

Flexural stiffness, 3 3e e eEI F l= Δ  [Nm2] 4.978 0.924 

Stiffness cc-column, 312 ck EI l=  [N/m] 701.230 130.222 

Measured mass of column, cm [g] 80 36 

Lumped mass of cc-column, 13 35e cm m=  [g] 29.7 13.4 

Euler critical buckling load, 2 2
, /c cr cF EI lπ=  [N] 253.765 47.125 

Axial compressive load applied, Fc [N] -3.676 -2.436 

Ratio of the applied load to the critical buckling 

load, ,c c c crr F F= < 0.3   
0.014 0.052 

Geometric correction for stiffness, P-∆ effect, 

6 5G c ck F l=  [N/m]  
-10.025 -6.645 

Corrected stiffness, Gk k k = +  [N/m] 691.205 123.577 
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The ratio of the flexural stiffness of the column M-6 to M-4 is 1 2 5.7rk k k= = . As the 

load applied on each column is less than 30% of the respective critical buckling load so it 

is considered safe against buckling and allows a linear geometric correction of the 

flexural stiffness, see e.g., Ziegler[3-1], page 604 and Clough-Penzien[3-2], page167. Hence, 

the corrected stiffness of the column is finally reduced under the influence of the usual 

normal force, see Table 3.1. 

3.2.2 Properties of the structural model 

As the laboratory scaled str-model is a light-weight structure therefore, the mass of the 

columns are lumped to the floor by using Hermite-shape function H3 for the cc-beam, see 

e.g. Ziegler[3-1] page 612. The mass of column M-4 ( 2em ) is considered to be lumped at 

each corner however, the difference between lumped mass of column M-6 and M-4 

( 1 2e e em m mΔ = − ) is added in 1m  to render the total point mass 1 1 em m m= + Δ . 

Therefore, the total mass of the floor becomes 1 24 877gt S em m m m= + + = . 

(i) Center of mass 

The center of mass of the str-model is located at  

1 114.2mm, 17.3mmy z
M M

t t

m e m ey z
m m

= = = = . (3.1) 

(ii) Mass moment of inertia 

The mass moment of inertia about the vertical x-axis is,  

 
( ) ( )2 2

4
2

2 2 2 2
1

6 2
2

2

1
( ) ( ) 2

/12 ( ) (

2.5 10 gmm ,

)

y

x S S M M y M z M

e M Mi zi
i

I m a b m y z m e y e z

m y ze e i column number
=

⎡ ⎤= + + + + − + −⎣ ⎦

⎡ ⎤
⎣ ⎦+ − + − = × =∑

 

(3.2) 

and radius of inertia is 160.3mmx x tr I m= = . 

(iii) Mass and stiffness matrices 

Considering the displacements of the center of mass MC  in the state vector 

[ ],T
M M T T xx v w u u rθ= =

G , the diagonal mass matrix and corrected symmetric 



3.  Experimental Verification of TLCGD Damping 

48 
 

stiffness matrix of the three degree of freedom (3-DOF) str-model are (TLCGD still not 

considered), 

11 12 13

21 22 23

31 32 33

1 0 0
0 1 0 ,
0 0 1

t

k k k
M m K k k k

k k k

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

� �
 (3.3) 

where, the elements of the corrected stiffness matrix K
�

 are 

11 22 1 21 2, 3 ,3 z zy y k k kk k k = += +  

( )( ) ( )( )
( ) ( )

2 2 2 2
1 2 1 2

33 2
2 1 2 1

3 4 3 41 y y M z z M

x y y M z z M

k k b z k k a y
k

r k k bz k k ay

⎡ ⎤+ + + + +
⎢ ⎥=
⎢ ⎥+ − + −⎢ ⎥⎣ ⎦  

12 21 0k k= = , ( ) ( )13 31 1 2 2 13 2y y M y y xk k k k z k k b r⎡ ⎤= = + + − /⎣ ⎦ ,
 

( ) ( )23 32 1 2 2 13 2z z M z z xk k k k y k k a r⎡ ⎤= = − + + − /⎣ ⎦ . 

(iv) Natural frequencies  

The solution of the characteristic equation 2 0j jK Mω φ⎡ ⎤− =⎣ ⎦
G G

� �
, j=1,2,3 by calling the 

function eig in MATLAB[3-3], renders the first three natural frequencies, 1 4.499Hzf = , 

2 5.556Hzf = , 3 7.843Hzf =  and the ortho-normalized modal matrix of the str-model is 

310
0.000

φ −
−456.2 927.5 −288.6⎡ ⎤

⎢ ⎥= 799.2 529.4 470.6⎢ ⎥
⎢ ⎥−541.9 920.2⎣ ⎦

�
 (3.4) 

(v) Modal centers of velocity 

The coordinates of the modal center of velocity for j-th mode are derived in terms of the 

components of the modal vectors jφ
G

, see e.g., Ziegler[3-1], page 13, sufficiently small 

displacements and rotation of the floor understood, for details see Fu[3-4] or 

Fu-Ziegler[3-5], 

2 3 1 3 3, , 0vj M x j j vj M x j j jy y r z z rφ φ φ φ φ= − = + ≠ . (3.5) 

The coordinates of the modal centers of velocity , 1,2,3vjC j =  are, 
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10
1 2 3

251 38 68
mm, 10 mm, mm

152 97 29V V Vr r r
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G G

 
(3.6) 

i.e., mode number 2 is “translational”. 

3.2.3 Corrected properties of structural model after TLCGD 

installation 

In real buildings, the mass of the TLCGD-piping system and dead-mass of the water 

present inside the TLCGD is rather negligible when compared to the mass of the strucutre. 

But for such a laboratory scaled light-weight str-model, the static and modal properties 

are reasonably changed after the installation of TLCGD because of the added dead-mass, 

comparable to the mass of the str-model, and hence lower its natural frequencies. 

Therefore, it becomes necessary for the exact tuning of the TLCGD to update the 

following properties of the str-model.  

(i) Center of mass 

When a TLCGD and an accelerometer are attached at the left short edge on the str-model, 

the mass of TLCGD (i.e., measured mass of TLCGD piping system 215gpm =  plus the 

dead mass of water inside, Eq. (2.81); ( )2* 28g1fd f j jm m V Vκκ⎡ ⎤= =−⎢ ⎥⎣ ⎦
, and the 

measured mass of accelerometer 57gacm = , renders the additional mass 

300gA p fd acm m m m= + + =
 
which is supposed to be concentrated at reference point A 

of the TLCGD (i.e., 160mm, 0Ay Aze e= − = ). Hence, the center of mass CM with the 

total mass on the floor 1119.8gt t Am m m= + =  becomes, Eq. (3.1) properly updated, 

1 123.6mm, 13.5mmy A Ay z A Az
M M

t t

m e m e m e m ey z
m m
+ +

= = − = = . (3.7) 

Thus, significant shift of the center of mass is observed due to the additional dead mass in 

this str-model. 

(ii) Mass moment of inertia 

Equation (3.2) properly updated, 
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( ) ( )2 2 6 228.4 10 gmmx x A Ay M Az MI I m e y e z⎡ ⎤= + − + − = ×⎢ ⎥⎣ ⎦
, 159.2mmx x tr I m= = . (3.8) 

Hence, moment of inertia and radius of inertia about vertical x-axis are also changed. The 

solution of the characteristic equation with updated mass matrix renders the reduced first 

three natural frequencies 1 2 33.598Hz, 4.901Hz, 7.668Hzf f f= = =  and the 

ortho-normalized modal matrix of the str-model becomes, 

310
0.000

φ −
−320.3 870.5 −180.7⎡ ⎤

⎢ ⎥= 758.1 367.7 427.8⎢ ⎥
⎢ ⎥−464.4 823.0⎣ ⎦

�
 (3.9) 

(iii) Modal centers of velocity 

The coordinates of the modal centers of velocity , 1,2,3vjC j =  are slightly shifted when 

Eq. (3.5) is properly updated, 

10
1 2 3

236 45 107
mm, 10 mm, mm

123 106 22V V Vr r r
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G G   (3.10)
 

The center of velocity for first mode 1vC  lies just outside the floor plan, referring to the 

combined translational and rotational motion. The center of velocity for second mode 

2vC  lies far from the floor plan representing the dominant translational motion. However, 

3vC  lies within the floor plan, and 3vC  is distinct from MC , referring to a dominant 

rotational motion. 

3.3 Optimal positioning of TLCGD 

The TLCGD tuned to each rigid-body mode of the str-model should be placed on the 

floor keeping in view the normal distance of its trace to vjC  as large as possible within 

the floor plan, see Fu-Ziegler[3-5], as illustrated in Fig. 3.3, for maximum kinetic energy 

absorption. The center of velocity for 1st mode 1vC  lies just outside the floor plan, 

referring to moderate asymmetry: the dominant translational motion, therefore TLCGD1 

is installed along left short edge (i.e., parallel to z-axis) to effectively damp the horizontal 
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vibrations for this mode. The TLCGD2 can be installed along the bottom long edge (i.e., 

parallel to y-axis) because the center of velocity for 2nd mode 2vC  lies far from the floor 

plan representing the dominant translational motion. In addition, the center of velocity 

3vC  for the 3rd mode lies within the floor plan, and 3vC  is distinct from MC , therefore 

3rd mode is excited as a dominant rotational motion. Hence, TLCGD3 can be installed 

along the right short edge (i.e., parallel to the z-axis). However, torsional tuned liquid 

column-gas dampers (TTLCGD), see Fu[3-4] and Fu-Ziegler[3-5], would be more effective 

to mitigate the torsional vibration of the 3rd mode.  

 

 
Fig. 3.3: Positioning of three TLCGDs: Here,: indicates the modal centres of velocity. 

 

3.4 Design and development of TLCGD 

To confirm the effectiveness of TLCGD experimentally, only single TLCGD (namely 

TLCGD 1 in Fig. 3.3) tuned to the updated first fundamental frequency of the str-model 

is practically installed to effectively damp the horizontal vibration of the first mode of the 

str-model.  

The first effort towards the fabrication of laboratory scaled TLCGD involves the use of 
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plexiglas pipe because of its light-weight and transparent material but the desired 

U-shape of TLCGD could not be formed by plexiglas. So the smooth 90-degree elbows 

were introduced at the turning positions but they had created unwanted edges offering 

turbulence and resistance to the flow of water at the junction inside the TLCGD. 

However, this problem was overcome by using a conventional flexible plastic pipe which 

could easily be formed to the required U-shape so as to keep the smooth flow of water 

inside TLCGD as shown in Fig. 3.5. The required volume of air above the water is 

managed sophisticatedly on each arm of the U-shaped pipe section by using a sealed 

light-weight plastic pipe (referred to as air-chamber) to create the gas-spring effect. The 

ends of the air-chamber pipes are connected to the Y-shaped valve, shown in Fig. 3.7, to 

facilitate the opening and closing (i.e., sealed or open ended liquid column damper) of 

liquid column damper in addition with the provision of changing the amount of water 

inside the TLCGD.  

The geometrical dimension of TLCGD, the horizontal length of the liquid column 

280mmB =  is selected to utilize maximum available length of the str-model along 

z-axis for its efficient design (i.e., higher κ  value) and the vertical height of the liquid 

column, 60mmH =  is guided by Eq. (3.11), thus the ratio 0.7effB L = . 

 

 
Fig. 3.4: TLCGD with required amount of water: green colour of water is due to dye for 

better visibility of its surface strokes. 



3.  Experimental Verification of TLCGD Damping 

53 
 

 

The assembling of different parts of piping system of TLCGD is done with due care so as 

to maintain required gas (i.e., air) pressure above required water volume in its sealed 

design. Keeping the air at atmospheric pressure is manageable for the laboratory scaled 

self-made TLCGD saving any external compressor. The negative pressure by the 

expansion of the air is negligible because of a sufficiently small liquid stroke in TLCGD. 

The firm attachment of such a TLCGD on the floor of the str-model is also ensured to 

avoid any additional vibration induced by loose contact. The parameters of the gas-spring, 

the air-chamber volume and the equilibrium gas pressure, play a key role for rendering 

the optimal frequency of the TLCGD. 

3.5 Experimental measurements 

The experimental setup adopted for the verification of effectiveness of TLCGD is 

generally based on the nature of data acquisition system (DAQ). An accelerometer is 

attached at the center of the base-plate so as to measure the excitation acceleration at the 

base of the model and another biaxial accelerometer is attached very close to reference 

point A of TLCGD to measure the response in terms of acceleration along y- and z-axes 

as illustrated in Fig. 3.7. All the laboratory equipments for the experimentation are 

supplied by the Center of Mechanics and Structural Dynamics (CMSD), E2063, Institute 

of Building Construction and Technology of Vienna University of Technology. Somewhat 

relevant experiments had already been performed in the institute, e.g., for plane frame, 

see Kofler[3-6] and for cable stayed bridges under wind excitation, see Achs[3-7]. 
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Fig. 3.5: Structural model with tuned TLCGD installed. 

 

Electromagnetic shaker (Brüel & Kjaer type-4808) is connected to the sliding-plate at the 

base of the str-model so as to excite the base of the model at desired amplitude and 

frequency. The NI DAQ card-6062E installed in the laptop transmits the signal towards 

the shaker via the power amplifier (Brüel & Kjaer type-7212) through NI BNC-2090 

connector. The response of the str-model measured by the accelerometers attached on it is 

first transmitted to the charge amplifiers (Brüel & Kjaer type-2635) and then acquired at 

the laptop by using same NI DAQ card-6062E via NI BNC-2090 connector as shown 

schematically in Fig. 3.6. Later on, NI USB-6221 DAQ also provided by CMSD 

Laboratory of Vienna University of Technology has replaced the NI DAQ card-6062E 

and NI BNC-2090 connector, to serve the same purpose with more convenient control 

and improved data acquisition. A program developed by using Labview Signal Express 

3.0 of National Instruments controls the excitation of the shaker at prescribed frequency 

sweep rate and simultaneously acquires, and log the response of the model through the 

accelerometers attached on the str-model as illustrated schematically in Fig. 3.6. 
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Fig. 3.6: Schematic flow of signals: green and blue arrows represent excitation to the 

shaker and response of the str-model respectively; connection of shaker to the str-model 
is shown by red arrow. 

 

The response of the str-model equipped with the TLCGD is measured for both cases: the 

empty TLCGD piping system added (i.e., without water) and the properly tuned TLCGD 

(i.e., with required amount of water). The series of experimentations are performed by 

changing the relative position of the str-model with respect to the shaker axis direction 

(i.e., by rotating it stepwise about vertical axis) to record its response at various angles of 

incidence of the base excitation. 

 

 
Fig. 3.7: Accelerometers at the floor and at the base-plate to measure the response and 

base excitation of the structural model respectively. 

 

As it is not convenient in the laboratory to remove and reinstall the TLCGD-piping 
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system repeatedly therefore, it remains on the str-model and the required amount of water 

is added conveniently through the valve for the frequency tuning of TLCGD. 

3.6 Experimental results 

The frequency response function (FRF) is plotted from experimentally measured data for 

the str-model equipped with empty TLCGD-piping system, with detuned TLCD (not 

sealed) and with tuned TLCGD 1 installed. The acceleration measured along z-axis very 

close to reference point A of TLCGD 1 on the floor of the str-model is plotted over the 

excitation frequency at incidence angle of base excitation 090α =  in Fig. 3.8. 

 

 

Fig. 3.8: Acceleration measured along z-axis at point A on the floor of the str-model with 
empty TLCGD-piping system and with tuned TLCGD, angle of incidence α = 900 

 

The three peaks in the measured response depict the first three natural frequencies of 

corresponding rigid body modes of the str-model (with empty TLCGD-piping system 

attached) as shown by dashed line in Fig. 3.8. The response is significantly damped when 

the TLCGD-piping system is filled with the required amount of water and hence tuned to 

the natural frequency of the first mode, as shown by slightly shifted solid blue line 

because of the dead mass of water. It is further mentioned that the response for the 2nd 
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and 3rd modes is almost unaffected by the presence of TLCGD 1, as expected, because 

TLCGD 1 is tuned to the fundamental frequency of the first mode. However, the 2nd and 

3rd modes can be damped by installing TLCGD 2 and TLCGD 3, tuned to the respective 

natural frequencies of these modes, at optimal position and direction, as illustrated in Fig. 

3.3. 

The FRF, ratio of acceleration measured very close to point A on the floor to the 

acceleration measured at the base-plate along z-axis 0za a , is plotted over the ratio of 

excitation frequency to the first natural frequency of the str-model 1f f  both for empty 

TLCGD-piping system and tuned TLCGD, both installed on the str-model. The natural 

frequency of the str-model equipped with empty TLCGD-piping system is estimated as 

3.575Hz and the modal damping of the str-model for the first mode is simply 

approximated as 1 max1 2 0.45%S FRFζ = =  from the experimental FRF of the str-model 

equipped with empty TLCGD-piping system as illustrated in Fig. 3.9, see Fu-Ziegler[3-5]. 

 

 
Fig. 3.9: FRF with empty TLCGD-piping system and with tuned TLCGD 1, angle of 

incidence α = 900. 
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In addition, the acceleration measured along z-axis at point A on the floor of the 

str-model keeping the valve open for the water filled TLCGD-piping system (i.e., open 

TLCD) is focused around the first natural frequency in Fig. 3.10. It is quite evident from 

the red dashed line in Fig. 3.10 that “open TLCD” does not damp the vibration of the 

str-model because of the fact that opening the valve eliminates the gas-spring effect 

resulting in a detuned TLCD, and its effect is not more than the added dead water mass 

on the floor, due to which the red dotted line is slightly shifted ( 0.05f HzΔ = ) towards 

the lower frequency. 

 

 
Fig. 3.10: FRF with empty TLCGD-piping system, open TLCD and with tuned TLCGD, 

angle of incidence α = 900. 

 

The modal participation factor SjL  in Eq. (2.69), for j=1, is calculated at various angles 

of incidence, resulting in the critical angle of incidence close to 090α = . Therefore, we 

focus on the results at the critical angle of incidence; however the FRFs plotted in Fig. 

3.11 at various angle of incidence of base excitation with the interval of 6π  are also 

presented for TLCD, not sealed (detuned TLCD1) and sealed TLCGD (tuned TLCGD1). 
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angle of incidence 030α =   angle of incidence 060α =  

 

angle of incidence 090α =   angle of incidence 0120α =  

 

angle of incidence 0150α =   angle of incidence 0180α =  

Fig. 3.11: FRF with open TLCD 1 and tuned TLCGD 1 at various angles of incidence of 
base excitation. 
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3.7 Numerical Simulations 

The simulation in Matlab is based on the measured mass and stiffness of the experimental 

str-model to calculate its natural frequencies and ortho-normalized modal vectors, see 

sub-section 3.2.3. The calculated natural frequency f1 = 3.598 Hz for the first mode is 

slightly higher (0.63%) than the experimentally measured natural frequency f1 = 3.575 Hz 

for the first mode pointing towards the slight decrease in stiffness of the str-model either 

due to the uncertainties in the measurement of the stiffness or the flexibility of the 

connection of the columns with the floor of the str-model. Since the modes of the 

str-model seem to be sufficiently separated, modal tuning of TLCGD is conveniently 

performed by a transformation of the classical Den Hartog’s formulas, see Den Hartog[3-8], 

by means of the analogy between TMD and TLCGD, see Hochrainer[3-9] and 

Hochrainer-Ziegler[3-10]. The fundamental mode is considered isolated, rendering a two 

degrees of freedom system (2-DOF) for which the time-reduced modally isolated 

linearized equation for the coupled TLCGD-str-model, (i.e., Eq. (2.93) with j=1) renders 

the complex generalized coordinate 1,2q  and liquid stroke 1,2u  for the appropriate 

excitation frequency window and angle of incidence. The maximum liquid strokes in 

TLCGD (i.e., 0max 3mmu = ) under time harmonic excitation are within following 

acceptable limits, 

0max 2 40mmu H≤ = , 0max 3 495mmau H≤ = . (3.11) 

and maximum liquid speed in TLCGD is also well below the acceptable speed limit for 

application of piston theory 4
0 0max 2 max 64mm s 10 mm sAu f uπ= = <� , see 

Lindner-Silvester[3-11] and Ziegler[3-12].  

The required large air volume 0V  in each arm of TLCGD, a consequence of the low 

value of 0 ah H , is managed within the long plastic pipes under atmospheric pressure. 

The geometric dimensions of the TLCGD and other resulting key parameters are 

collected in Table 3.2. 
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Table 3.2: Design steps and parameters of TLCGD 1 

Description of TLCGD 1 Values 

Modal mass ratio, jμ  [%], Eq. (2.68), 1jm =  8.7 

Mass of water inside TLCGD, fm  [g] 56 

Horizontal length of the liquid column, B [mm] 280 

Vertical length of the liquid column, H [mm], Eq. (3.11) 60 

Diameter of the TLCGD pipe, H Bd d=  [mm] 14 

Cross-sectional area of TLCGD pipe, ( )H BA A=  [mm2] 158.4 

Effective length, 1 2effL L B H= = +  [mm] 400 

Geometry factor,κ κ= , Eq. (2.28) 0.70 

Optimal frequency ratio, optδ , Eq. (2.80) 0.94 

Optimal absorber (TLCGD) frequency, ,A opt S optf f δ=  [Hz], 3.387 

Optimal linear absorber damping, ,A optζ [%],  

Eq. (2.83), Aj Ajζ ζ ∗=  
11.78 

Eqv. math. pendulum length, 0L  [mm], Eq. (2.84) 22 

0 02 sina effh H L L β= −  8.232 

Equilibrium pressure head, 0 0h np gρ=  [m], n=1.2 12.232 

Air volume, 0 H aV A H=  [dm3] 0.235 

 

The base excitation is assumed to be complex in the form 0
i ta e ω , where 0a  is the 

amplitude of the base acceleration. The three modal components of the approximate 

displacement at center of mass MC  along y-, z- and rotation about x-axes are 
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1 11 1 12 1 13, ,M M Tv q w q u qφ φ φ= = =  and their respective accelerations, 2
1 11yMa qω φ= −  

2
1 12,zMa qω φ= −  2

1 13Ta qω φ= −  when transformed to point A, by rigid body kinematics, 

see Ziegler[3-1], page 14, 

2ˆ
A M AM AMa a r rθ θ= + −
G G G G�� � , (3.12) 

where, 2
1 13 , ,Sq r iθ φ θ ωθ θ ω θ= = = −� �� ,  

[ ]ˆ , ,T
AM AM AM AM A M AM A Mr z y y y y z z z= − = − = −
G . 

The numerically calculated complex acceleration along z-axis, obtained from Eq. (3.12), 

of the modally isolated 2-DOF system is added to the real amplitude of the base 

acceleration 0a  along z-direction to render the complex resulting total acceleration za . 

The FRF expressed as the ratio of the absolute value of this complex resulting total 

acceleration za  to the base collinear acceleration 0a  is plotted over the ratio of 

excitation frequency in the relevant window around the first natural frequency both for 

empty TLCGD-piping system and tuned TLCGD 1 installed on the str-model in Fig. 3.12.  

 

 

Fig. 3.12: FRF for the str-model with empty TLCGD-piping system (peak value=110) 
and with tuned TLCGD; angle of incidence α = 900. 
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3.8 Comparison of experimental and simulated results 

The simulated FRF for the case of tuned TLCGD 1 exhibits the higher damping than that 

from experimental FRF because of the fact that the damping imparted by the TLCGD 1 in 

the Laboratory is lower than Den Hartog’s optimised damping for the simulated response 

as shown in Fig. 3.13. 

 

 

Fig. 3.13: FRF for the str-model with tuned TLCGD installed: damping in the experiment 
is not optimized, simulated response is with the optimal damping of TLCGD; angle of 

incidence α = 900. 

 

However, the simulated FRF gets closer to the experimental FRF for the case of tuned 

TLCGD 1 when the damping is approximated by using the experimentally determined 

damping coefficient ,exp ,6.1% 11.8%A A simζ ζ= < =  as illustrated in Fig. 3.14.  
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Fig. 3.14: FRF for the structural model with empty TLCGD-piping system and with 
frequency tuned TLCGD 1 installed; experimentally observed damping coefficient 

substituted; angle of incidence α = 900. 

 

It can be concluded from the above discussion that the results by numerical simulations 

are found to be in good agreement with those of the experimental output when 

substituting both the experimentally estimated damping coefficient of the str-model and 

that of the TLCGD 1 as confirmed in Fig. 3.14. 
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4 Novel Base Isolation System 

 

4.1 Introduction 

Earthquake poses serious threats to lives and the integrity of the infrastructure. As is the 

custom, a conventional strengthening of the structure to the code-related horizontal 

seismic forces was considered. However, this solution revealed considerable 

disadvantages because of construction expenditures for conventional strengthening of the 

structure and its foundation, Bachmann[4-1]. Over the past decades, earthquake-resistant 

design of structures has been largely based on a ductility design concept worldwide. The 

performance of the intended ductile structures during major earthquakes (e.g. Northridge, 

1944; Kobe, 1995; Chi-Chi, 1999. etc.), however, have proved to be unsatisfactory and 

indeed far below expectation, Wang-Yen[4-2]. Therefore, to enhance structural safety and 

integrity against severe earthquakes, more effective and reliable techniques for aseismic 

design of structural control are demanded. Among the structural control schemes 

developed, seismic base isolation is one of the most promising strategies and thus became 

an increasingly applied structural design technique for buildings. The concept of isolating 

a structure from the shaking of the ground had long appealed to the imagination of 

inventors, but only in mid-1970’s in New Zealand the elements of modern seismic 

isolation technology come together: quantitative ground motion and structural response 

criteria which could be met by a technology that reliably produced the necessary 

de-coupling of the structure from the foundation, increased damping and shifting of 

periods of vibration, Reitherman[4-3]. Today, it is on the cutting edge of seismic resistance 

engineering, as evidence by the rapidly increasing number of buildings, both new 

construction and retrofit, using this earthquake resistant technique, Kelly[4-4]. 

Base isolation system is a collection of structural elements which should substantially 
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decouple superstructure from its substructure resting on a shaking ground thus protecting 

a building or non-building structure’s integrity. During earthquakes, the conventional 

structure without seismic isolation (i.e., fixed-base) is subjected to substantial 

storey-drifts, which may lead to damage or even collapse of the building. Whereas the 

isolated structure moves uniformly (like a rigid-body) with rather small accelerations, 

even if exposed to the strong motion phase of a severe earthquake, hence prevent most of 

the horizontal movement of the ground from being transmitted to the structure with 

deformation concentrated in the isolation bearings, as illustrated in Fig. 4.1. It is now 

generally accepted that a base-isolated building will perform better than a conventional 

fixed-base building in moderate and strong earthquakes, Kelly[4-4]. 

 

 
Fig. 4.1: Effect of base isolation. 

 

Since base isolation act as a low-pass filter, it is commonly adopted for buildings with 

fixed-base fundamental frequency of more than about 1Hz (or buildings with less than 

about 10 stories), a rough estimate is given by 1 10 ff n≈ , where fn  is the number of 

floors or stories, see e.g., Flesch[4-5], page 264. The lateral forces of the isolated building 

are not only reduced in magnitude but also fairly redistributed over the floors, which 

further mitigates the over turning moment of the structure. 

4.1.1 Key concept of base isolation 

The base isolation gives the structure a fundamental frequency that is much lower than its 
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fixed-base frequency (in other words: increases the period of vibration of the structure) 

and also much lower than the predominant frequencies of the ground motion so that the 

response is significantly reduced as demonstrated in Fig. 4.2. The first dynamic mode of 

the isolated structure involves deformation concentrated in the isolation bearings, the 

structure above being to all intents and purposes rigid. The higher modes which produce 

deformation in the structure are orthogonal to the first mode, and thus to the ground 

motion. These higher modes do not participate in the motion, so that if there is high 

energy in the ground motion at these higher frequencies, this energy cannot be imparted 

to the structure, Kelly[4-4]. 

 

 
Fig. 4.2: Base isolation increases the period of the structure, Symans[4-6]. 

 

4.1.2 Classical base isolation systems 

The system that has been adopted most widely in recent years is typified by the use of 

elastomeric bearings. There are many elegant buildings worldwide, newly constructed or 

retrofit, by using such bearings as mentioned in literature review given in Section 1 of the 

thesis. 

As mentioned earlier, the deformation during earthquake is concentrated in the isolation 

bearings and building above them moves rigidly. There are several tests performed in 

laboratories even on full-scale models to confirm their performance; Fig. 4.3 sharpens the 

imagination of the deformed shape of the elastomeric bearings. 
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Fig. 4.3: Deformed elastomeric bearing: (a) test of bearing used in the Indonesian 

demonstration building, Kelly[4-7] (b) tested at the University of California San Diego 
Caltrans-SRMD (Seismic Response Modification Device) facility[4-8]. 

 

The elastomeric bearings can further be classified into the following types based on the 

damping of the elastomers made of either natural rubber or neoprene; 

• Low-damping natural or synthetic rubber 

• High-damping natural rubber bearing 

• Low-damping natural rubber with lead core (LRB) 

Lead rubber bearings (LRB) have been invented in 1975 in New Zealand and used 

extensively in New Zealand, Japan and United States as well as in Europe, see 

Buckle-Mayaes[4-9]. They are made by vulcanization bonding of sheets of rubber (low 

damping) to thin steel reinforcing plates and the energy dissipating lead core is placed in 

the center as shown in Fig. 4.4. Because the bearings are very stiff in the vertical (axial) 

direction and very flexible in the horizontal (shear) direction, under seismic loading the 

bearing layer isolates the building from the horizontal components of the ground 

movement while the vertical components are transmitted to the structure relatively 

unchanged. 
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Fig. 4.4: Construction of LRB; top mounting plate not shown, Kunde-Jangid[4-10]. 

 

LRB are put between the building and its foundation thus, the resulting fundamental 

mode should have a frequency below about 0.5 Hz. In that case the required damping of 

the resulting nearly rigid-body mode of the base-isolated building is supplied by the 

plastic deformation of a lead core placed in the center of the isolation element. This unit 

has a rather large ratio of the vertical to the horizontal stiffness; the latter in a rough 

approximation is given in terms of the rubber shear modulus G by h r r rk GA n s= , where 

rA  and rs  are respectively, the cross-sectional area and the thickness of the rn -times 

repeated rubber sheets, Ziegler-Khalid[4-11]. 

However, lifetime problems, mainly caused by the increase of temperature, like reduction 

in yield stress with repeated cycling and plastic deformation of the lead core within the 

first occurrence of the earthquake or during the aftershocks are encountered. Therefore, it 

was strongly desired either some-how to improve the design philosophy of such bearings 

or to replace them by an advanced mechanism that could withstand the said problems so 

that the isolation mechanism remain effective and durable throughout the life of the 

structure. 
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4.2 Novel base isolation system 

The lifetime problems related to the conventional isolation systems give way to the 

emergence of such an isolation system that could cope up with the above discussed 

problems. Consequently, keeping in view the extensive need and higher demand, a novel 

base isolation system is proposed to overcome the shortcomings of the conventional ones. 

The novel base isolation system can schematically be dividing into three main 

mechanical components: base isolation unit along with sliding elements and passive 

dampers schematically shown in Fig. 4.5. 

 

 
Fig. 4.5: Schematic representation of a novel base isolation system: isolation units, 

sliding element and passive damper. 

 

The base isolation unit is an assembly of innovatively designed isolation elements, design 

details elaborated in next sub-section, acting as a low pass filter for isolating horizontal 

vibrations. The base isolation element, termed as spring-pendulum (SP) element, consists 

of an axially (vertical) pre-stressed helical steel spring combined with a pinned-pinned 

column (termed as upright-pendulum). The latter carries some portion of the dead weight 

and guides the motion of the rigid building, Ziegler-Khalid[4-11]. The damping of the 

resulting fundamental modes of the building after base isolation is separately supplied by 

Basement 

Isolation units and sliding elements
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the optimal arrangements of low-cost tuned liquid column-gas dampers (TLCGDs) in the 

building’s basement. As static friction is missing in the TLCGD thus, it is provided by 

means of novel sliding elements with non-continuous energy dissipation. Such a novel 

base isolation system has hardly any maintenance cost and has a lifetime comparable to 

that of the building. 

The idea of supplying the damping separately by means of sliding bearings for the 

base-isolated buildings is not new. For example, C. R. Drew Diagnostic Trauma Center 

California and Los Angeles City Hall contain 12 and 60 sliding bearings respectively, as 

mentioned in Section 1. Recently, Bachmann[4-1] preferred to use elastomeric bearings 

made of reinforced rubber without having lead core placed in the peripheral basement 

walls under the columns for the seismic upgrading of a fire-brigade building in Basel, 

Switzerland. Whereas, the sliding bearings situated under the column-less partition walls 

provide damping and static friction. Hence, when following the current trends in the 

development of base isolation technology and Bachmann[4-1] as a recent example, the 

damping is supplied separately by means of low-cost TLCGDs (having no moving 

mechanical parts) for base-isolated building; still the provision of the sliding elements 

becomes necessary to resist the loads by wind gusts and small seismic disturbances, say 

of traffic origin. Therefore, novel compatible sliding elements are designed, however 

without having continuous energy dissipation to achieve less wear and tear of the 

interface surfaces due to abrasive action. Thus, a limited horizontal force is transmitted 

analogously to the rigid-plastic lead core of the standard steel reinforced rubber isolation 

elements. The small amount of unavoidable frictional damping is considered in linearized 

form within the assigned light structural damping. The details of the sliding elements 

designed for single-storey asymmetric building are given in sub-section 4.5.2.3.  

4.2.1 Design of novel base isolation element  

The helical spring of the proposed SP element, see Fig. 4.6, is designed to have maximum 

vertical (axial) to horizontal (shear) stiffness; while the combined upright-pendulum carry 

some portion of the dead weight and also act as a means for transmitting any vertical base 
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acceleration. The base-isolated building in its low frequency modes is considered to be 

rigid when the isolation units are placed in-between the rigid building and its foundation. 

Such a base isolation element is functionally equivalent to a conventional one in 

extending structure’s time period but with the additional advantageous features such as 

temperature-insensitivity and durability.  

Considering a general asymmetric rigid building (idealised as 3-DOF space frame as 

discussed in Section 2) of total mass Sm  to be base-isolated by means of N SP elements 

each having the same horizontal isotropic stiffness 1hk  in y- and z-directions. The 

torsional stiffness of the SP element can be neglected since the angle of rotation about the 

vertical axis is extremely small under seismic excitation. The required period renders a 

first condition to be met in the design of the isolation element by choosing the resulting 

stiffness, see Ziegler-Khalid[4-11], 

12 2 sS hT m Nkπ= ≥ . (4.1) 

The horizontal stiffness of the spring under shear is given by; see Parkus[4-12], page 288, 

( )
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where, d  is the diameter of the steel wire to form the helical spring of diameter D  of 

length l  having tn  active turns and υ  is Poisson’s ratio of the material of the spring. 

The axial stiffness of the helical spring is noted for the sake of defining the proper axial 

pre-stress, see e.g., Wahl[4-13] , Nicholas[4-14] or Ziegler[4-15], page 385, 
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and the ratio of axial to shear stiffness should be maximized within proper design limits, 

Khalid-Ziegler[4-16]. 
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It is quite evident from Eq. (4.4), that the ratio vhλ  can be maximized just by adjusting 

the geometrical parameters, i.e., by increasing the l D  ratio). 

4.2.1.1 Design details of the novel base isolation element 

The various parts that form the SP element, made up of stainless steel, needs to be 

explained in detail because of its novel design. The upper and bottom mounting plates 

fixed with upper and lower foundation beams of the building respectively, are provided 

with studs (or flanges) of suitable diameter such that the helical spring can be firmly 

fitted on the outer periphery of these studs as illustrated in Fig. 4.6.  

 

 
Fig. 4.6: Spring-pendulm (SP) element, dimensions (in mm) derived in sub-section 4.5.  

 

Two similar bearing plates having (cup shaped) spherical surfaces lined with 5mm 

self-lubricating porous bronze layers, shown in black color in Fig. 4.6, are also fitted 

within these studs by making use of the shrink-fit technique. The upright-steel-pendulum 
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consisting of a hollow cylinder with spherical caps at both ends is pivoted (pinned-pinned) 

in-between the spherical cup shaped bearing plates and encapsulated by the axially 

pre-compressed helical spring as depicted in Fig. 4.6. 

The required pre-compression of the helical spring dictates the load distribution on the 

helical spring and upright-pendulum as desired. The sliding of the spherical interfaces 

becomes convenient by use of the self-lubricating layers on the bearing plates when 

pendulum is tilted during the horizontal motion as a result of base excitations.  

4.2.2 Static stability of base isolation element 

When considering, at first in the design stage, the static stability of the pivoted 

upright-pendulum supported by the horizontal, shear stiffness of the helical spring, Fig. 

4.6, a fraction of the dead-weight of the building is carried by the upright-pendulum and 

thus axial pre-stressing ( )1 0 0vk l l− >  of the helical spring, compressed from its free 

length 0l  to pre-compressed length l , is required. Hence, the stability of N SP elements 

under dead-weight of the building S Sw m g=  requires, when taking into account a 

fraction of the critical buckling load k1hl  of a single element to be carried by the 

pendulum, 

( )1 0 1S v hm g Nk l l Nk lλ− − = , 0 1λ< < . (4.5) 

Rearranging Eq. (4.5) after dividing through by 1hNk l  renders, 

0

1
1 ,S

vh
h

m g l
Nk l l

λ λ ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (4.6) 

where, the load factor λ  used to define the required axial pre-stress of the spring must 

be positive to assure compressive axial force and is quantified when considering the 

vertical ground acceleration in next sub-section. Eq. (4.1) when substituted renders a 

universal equation (4.6) in base isolation. The design of the spring also depends on the 

load distribution mechanism for a SP element: a portion of the weight of the building is 

carried by the axially pre-stressed helical spring and the remaining part, for safety reasons 
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is supported by the upright-pendulum, Khalid-Ziegler[4-16]. 

4.2.2.1 Quasi-static consideration for vertical ground motion 

The quasi-static and conservative considerations render Eq. (4.7) when the expected 

maximum vertical ground acceleration gva  is applied quasi-statically at the lower 

bearing, 

( ) ( )1 0 11 =S gv h vh gv hm g a g Nk l l Nk lλ λ± − − , 0 1gvλ≤ <  (4.7) 

where gvλ  is the load factor of the upright-pendulum.  

Subtracting Eq. (4.5) from Eq. (4.7) yields 

( )1h
gv gv

s

Nka l
m

λ λ± = − . (4.8) 

To have the same vertical ground acceleration gva  both in upward and downward 

directions, gvλ  is limited either to 0.98 or zero, respectively, which defines the value of 

the load factor of the upright-pendulum under dead-weight load, λ = 0.98 2 = 0.49 . Thus, 

with that acceptable value taken into account the axial pre-stress ( )0l l−  is defined by 

Eq. (4.5) for the design of the base isolation (SP) elements for exemplary single-storey 

asymmetric building considered in sub-section 4.5.  

Equation (4.1) renders the coefficient in Eqs. (4.6) and (4.8), 

( )2
1 2h sNk m Tπ= ,  (4.9) 

and the condition on the period of base isolation, say 2sT = , further simplifies to 

2
1h sNk m π= . Therefore, consequently the maximum vertical ground acceleration 

results 

2max 0.493gva g l g lλ π= = .  (4.10) 

Therefore, it can be concluded that maximum vertical ground acceleration is directly 

related to the length of the upright-pendulum. However, when considering the base 

isolation (SP) element designed with 400mml =  for exemplary single-storey 
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asymmetric building, the maximum vertical ground acceleration by such a conservative 

estimation is restricted to about 0.2g . In case of higher values of vertical ground 

acceleration, another criterion is applied in the following sub-section to secure the novel 

base isolation unit. 

4.2.2.2 Contact stability under vertical ground motion 

Another conservative estimation of the effect of a ground acceleration peaking over a 

short time to the scaling factor 0.32g  say of the El Centro seismogram is based on 

purely kinematical considerations of the ground movement during the time when the 

acceleration exceeds the critical acceleration of 0.2g (determined above) and by taking 

into account the simplified dynamics of the building during the phase of lost-contact of 

the pendulum with the bearings. The release of the spring force is roughly approximated 

by taking its mean value as constant. 

During the downward motion, it is assumed that the upright-pendulum has lost the 

contact to the bearings just at the instant when the downward ground acceleration reaches 

the critical value of 0.2g  within the peaking acceleration pulse. To save any numerical 

integrations, say of the pulse in the El Centro seismogram of duration Δ = 0.22svt , a 

sine-half-wave pulse is substituted taking into account the maximum = 0.32gva g  also 

in the vertical direction. Thus, 

( ) π
=

Δ
sinv gv

v

t
a t a

t
, ≤ ≤ Δ0 vt t  (4.11) 

renders the time elapsed 1 0.047st =  when the critical downward acceleration is reached. 

The time instant when the ground acceleration takes on the same critical value is 

= Δ −2 1vt t t  (due to symmetry). During this short interval − = Δ −2 1 12vt t t t , in such a 

purely kinematical and hence conservative formulation, the lower bearing and thus the 

ground covers a vertical downward distance of ( )δ
π

Δ
= Δ − ≈12 27mmv

gv gv v
t

a t t .  

The upper bearing also moves downward with the building, with the crude approximated 
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acceleration assumed to be constant, i.e., considering the release of the spring force 

roughly equal to its mean value as a constant during this vertical downward motion, 

( ) ( )λπλ δ δ⎛ ⎞= − − − = − − −⎜ ⎟
⎝ ⎠

2
1

0 0
2

1 2 1 2h vh
Sv vh gv gv
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Nk
a g l l l l

m g T g
 (4.12) 

Hence, the vertical distance travelled by the upper bearing is estimated, 

( )
δ

Δ −
= ≈

2
12

29mm
2

Sv v
Sv

a t t
. That approximate value is slightly larger than the vertical 

distance travelled by the lower bearing. Therefore, the contact-stability is ensured and the 

upright-pendulum does not lose its contact with the bearings in such an intense vertical 

seismic forcing. Further, as pointed out in the sub-section 4.2.3, the expansion of the 

SP-unit is limited by a tensile-rod, thereby saving the unit even in the maximum allowed 

tilted configuration. 

4.2.2.3 Static stability even including the post-buckling regime 

To assure the static stability of the SP-element, i.e., to render a stable bifurcation in the 

upright position, we consider tilted equilibrium positions of the pendulum as well and 

determine the conditions for stability in such a post-buckling regime. The tilted pendulum 

has the shear tip deformation 1 sinh lδ ϕ=  along with the vertical deflection 

1 (1 cos )v lδ ϕ= −  of the spring, Fig. 4.7.  

 

 
Fig. 4.7: Horizontal and vertical deflections at the tilted (equilibrium) position of the 

isolation element. 
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Thus, the strain energy in the spring due to shear and additional compression of the 

spring becomes 

2 2
1 1 1 1

1 1
2 2p h h v vU k kδ δ= +  (4.13) 

Equation (4.13) becomes by substituting the deflections, 

( ) ( )2 2
1 1 1

1 sin 1 cos
2p h v vU l k k kϕ ϕ⎧ ⎫= − + −⎨ ⎬

⎩ ⎭
. (4.14) 

The potential of the vertical force applied to the upright-pendulum is decreased, 

( )1 1 1 1 cosp v v vW F F lδ ϕ= − = − − . (4.15) 

The potential energy, p p pE U W= +  results by adding Eqs. (4.14) and (4.15), 

( ) ( ) ( )2 2
1 1

1 1 sin 1 cos 1 cos
2p h vh vh vE l k F lλ ϕ λ ϕ ϕ⎧ ⎫= − + − − −⎨ ⎬

⎩ ⎭
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1

v
vh

h

k
k

λ= .  (4.16) 

The stationary value of the potential energy requires the resulting moment to vanish, 

( )2 1
1

1
sin 1 cos 0p v

res h vh vh
h

dE FM k l
d k l

ϕ λ ϕ λ
ϕ

⎧ ⎫
= = − + − =⎨ ⎬

⎩ ⎭
,  (4.17) 

The roots of Eq. (4.17) are: 

sin 0ϕ⇒ = , rendering the trivial root 0 0ϕ ϕ= = ; it refers to the vertical position of the 

pendulum, the relevant equilibrium for the SP-element. 

( ) 1 11 cos 0vh vh v hF k lλ ϕ λ⇒ − + − = , (4.18) 

determines the equilibrium in the post-buckling regime, 1 0ϕ ϕ= ≠ , however, actually is 

not relevant for the SP-element, 

1 1
1cos 1

1 1
vh v h vh

vh vh

F k lλ λ λϕ
λ λ
− −

= = <
− −

, (4.19) 

since   λ = F1v k1hl > 1 is the load factor to render equilibrium in the post-buckling 

regime, considered just for stability considerations. 

The Dirichlet stability condition (i.e., requiring a minimum of the potential energy) 

results by differentiating the resulting moment given by Eq. (4.17), 
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( )( ) 0 1

2
2 21

1 0 or 02
1

cos 1 1 2cos 0p v
h vh vh

h

d E Fk l
k ld ϕ ϕ ϕ ϕλ ϕ λ ϕ

ϕ = = = ≠
⎧ ⎫⎛ ⎞⎪ ⎪= − + − − ↓ >⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

. (4.20) 

(i) The stability condition in the vertical relevant position, 0 0ϕ ϕ= =  renders the 

critical buckling load, already mentioned above, Ziegler[4-15], page 519, 

1 , 1 1v cr h cF k l λ= = , (4.21)  

and the admissible dead-weight on the upright-pendulum 1 1 ,   1v hF k lλ λ= < . In addition, 

the maximum vertical ground acceleration is also considered to stay within the stability 

limit, see sub-section 4.2.2.1. 

(ii) In a post-buckling regime, 1 0ϕ ϕ= ≠ , the Dirichlet stability condition becomes,  

( ) ( )( )2
1 1cos 1 1 2cos 0vh vhλ λ ϕ λ ϕ− + − − > ,  (4.22) 

and simply reduces to the inequality, 

2
11 cos 0ϕ− > , (4.23) 

where stability of equilibrium positions require with 1

1
1v

h

F
k l

λ = > , 1

1
1v

vh
h

k
k

λ = > .  

Hence, the Dirichlet stability condition is satisfied in the post-buckling regime in a 

sufficiently wide neighborhood of the vertical position. 

Further, the stability at bifurcation point is also determined, the 2nd derivative of potential 

energy at the bifurcation point vanishes, 1cλ λ= = , 

( ) ( )( ){ } ( )
0

2
2 2 2

1 12 0, 1
cos 1 2cos 1 1 0

c

p
h vh vh h c

d E
l k l k

d ϕ ϕ λ λ
λ λ ϕ λ ϕ λ

ϕ = = = =
= − − − − = − = . (4.24) 

The 3rd derivative of the potential energy also vanishes at 0 0ϕ ϕ= = , 

( ) ( ){ }
0

3
2

13 0
sin 4 1 cos 0h vh vh

d E k l
d ϕ ϕ

ϕ λ ϕ λ λ
ϕ = =

= − − − = . (4.25) 

Consequently, the Dirichlet stability condition at the bifurcation point is decided by the 

4th derivative of the potential energy, 
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( ) ( ){ } ( )
0

4
2 2

1 14 0, 1
cos 4 1 cos 2 3 1 0

c
h vh vh h vh

d E k l k l
d ϕ ϕ λ λ

λ λ ϕ λ ϕ λ
ϕ = = = =

= − − + − = − >   (4.26) 

and thus requires the ratio of the stiffness of the helical spring to be larger than one, 

analogous to the condition in the post-buckling regime, 

( )1 0 1vh vhλ λ− > ⇒ >  (4.27) 

This condition supports the requirement for the SP-element to maximize the ratio of 

vertical to horizontal stiffness, vhλ .  

4.2.3 Base isolation unit for asymmetric building 

For the convenience of mounting the base isolation elements in the continuous 

foundations of the building described in sub-section 4.5.2, four SP elements are put in 

parallel action to form an assembly, termed as spring-pendulum (SP) unit, schematically 

sketched in Fig. 4.8. Thus, the building rests on such assembled units, number ( 4N ), to 

be arranged in equidistant manner along the perimeters in-between the rigid strip 

foundations of the building (masonry construction). The provision to consider safety 

columns is a standard strategy to support the building in case of any failure or mishap. 

Thus, for the exemplarily single-storey asymmetric building (numerically investigated in 

sub-section 4.5.2) four safety steel columns with 70mm axial clearance corresponding to 

maximum allowed 033ϕ =  tilt of the upright-pendulum, based on response of the 

building under El Centro 1940 scaled to 0.32g, in each assembled base isolation unit limit 

the further downward movement of the building and caters for the safety in the case of 

any mishap or malfunctioning of the SP elements. 

However, the helical springs need to be pre-compressed at the assembly stage to keep the 

elements in their desired position so as to place the unit into the isolation gap in-between 

rigid foundations of the building. 
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Fig. 4.8: Schematic plan of an assembled SP unit: four SP elements with four safety steel 
columns (Φ60), tensile-rod in central position acting in the pre-assembly stage is shown; 

dimensions (in mm) as per sub-section 4.5.2.  

 

A sufficient axial compression of the springs can be achieved by means of a tensile-rod 

arrangement at the center of the unit, Fig. 4.8. The working of this arrangement can be 

comprehended from the Fig. 4.9; the tightening of the nut driven a certain allowed 

distance (limited length of the threads) on the tensile-rod creates tensile forces in the rod 

thus brings the mounting plates closer by compressing the four symmetrically arranged 

helical springs as required, namely just to keep the pendulum in contact with the bearing. 

However, in the built-in stage the rod becomes loose when the portion of the building’s 

weight further compresses the helical spring axially. It remains loose if the pendulum is 

tilted during earthquake. 

When implementing the base isolation system for a retrofit or even for new construction, 

a free “play” (i.e., expected ground displacement as per design earthquake) has to be 

provided for the base-isolated building for the purpose of free movement of the ground. 
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Fig. 4.9: Central tensile-rod arrangement for the axial compression of helical springs in 

the assembly stage, dimensions as of sub-section 4.5.2. 

 

Referring to the exemplarily single-storey asymmetric building, see sub-section 4.5.2, the 

maximum horizontal displacement is 220mm when the building is excited under El 

Centro 1940 seismogram scaled to 0.32g. Additionally, in the range of the free plays, all 

supply conduits (tubes of water, waste, electricity cables etc.) must be made flexible for 

elongation and shortening, respectively through installation of flexible parts, see again 

Bachmann[4-1]. 

4.2.4 Base isolation unit for skeletal structure 

The base isolation unit consisting of four spring-pendulum (SP) elements is designed for 

the selected single-storey asymmetric building supported on continuous masonary walls 

with strip foundations as described in sub-section 4.2.3. However, if the building has a 

skeletal structure, its weight is transmitted to the ground by an arrangement of columns 

and the same design of the SP unit may serve the purpose with a proper concentration of 

the required number of SP elements. Thus, for example, if the same building as 

considered in sub-section 4.5.2, is supported on 20 columns, a total of 20 SP units each 

having 12 SP elements of one and the same design, sub-section 4.2.3, combined in 
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parallel action ( 240 20 ) are required. The arrangement of the 12 SP elements on two 

concentric circles of diameter 400mm and 600mm, respectively, with the upper and lower 

mounting plates of diameter 800mm, is illustrated in Fig. 4.10. Axial compression of the 

12 helical springs in the assembled unit is achieved by means of a centrally built-in 

tensile-rod (say of size M-40), a design analogous to that of Fig. 4.8 in sub-section 4.2.3. 

The safety columns, however, are not included in the modified SP unit but are separately 

constructed outside of the unit; likewise to the classical standard constructions in base 

isolation with rubber bearings.  

 

 
Fig. 4.10: Spring-pendulum (SP) unit having 12 SP elements arranged in two concentric 

circles; with tensile-rod in central position acting during assembly, see also Fig. 4.8. 
Safety columns outside of the unit are not shown.  

 

The novel sliding elements as designed in sub-section 4.5.2.3 can be put between the 

shear walls of the skeletal building and their strip foundation since the horizontal forces 

transmitted to the ground are rather small, - for the classical system, see again 

Bachmann[4-1]. 
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4.3 Equation of motion for the base-isolated building 

A simple single-storey rigid building of rectangular plan a b×  with an asymmetrically 

placed intermediate wall, free-body diagram in Fig. 4.11, is base-isolated by putting a 

number of novel base isolation units underneath its rigid foundations. The SP unit is 

proposed to consist of four SP elements as discussed above but for convenience of 

formulation of the equations of motion, the horizontal restoring forces ( ,i iY Z ) along y- 

and z-axes, respectively by a single SP element located at point i are shown in Fig. 4.11. 

 

 
Fig. 4.11: Free-body diagram of base-isolated single-storey asymmetric building, 

restoring forces of a single base isolation (SP) element indicated. 

 

The arbitrarily distributed mass of various structural elements of the building and in 

addition the asymmetrically located intermediate wall with eccentricity wy  create the 

mass asymmetry due to which center of mass MC  is off the geometric centre O of the 

plan of the building. Let [ ]T
M M Mr y z=
G  denote the position vector of MC  as 

illustrated in Fig. 4.11. The asymmetric building of total mass Sm  is considered under a 

single point horizontal seismic ground acceleration ( )ga t  with angle of incidence α  to 

y-direction, thus cosga α  and singa α  are the horizontal components of the seismic 
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ground acceleration in y- and z-directions. The lateral displacements of MC  of the 

building denoted by Mv  and Mw  along y- and z-axes, respectively and the rotational 

angle θ about the vertical x-axis define three degrees of freedom (3-DOF) in horizontal 

motion when the whole building is considered as rigid-body. The mass moment of inertia 

about the vertical x-axis of the building is 2
x S xI m r= , where xr  denotes the radius of 

inertia with respect to the center of mass MC . 

The building is base-isolated by means of symmetrically arranged novel SP units acting 

between ground and heavy foundation beams along its perimeters. These isolation units 

act as a low pass filter, thus the horizontal deformations caused by the horizontal 

component of an earthquake are concentrated in the isolation units and the resulting low 

frequency fundamental modes can be considered as the rigid-body modes of the building. 

The vertical motion of the building is a combination of the vertical component of the 

seismic forcing (no soil-structure interaction is considered) with a guided component 

from the horizontal motion. It is not further considered in this Section.  

Consequently, the equations of horizontal motion are set up by means of conservation of 

momentum and of angular momentum about the vertical x-axis. 

Let [ ]T
i i ir y z=
G  be the position vector of an arbitrarily located single base isolation 

element of isotropic horizontal stiffness 1hk . The single restoring force supplied in the 

spring is 1i h iR k rδ= −
G G  and summation of the restoring forces supplied in all N springs 

render the resultant force, 

1
1

N

h i
i

R k rδ
=

= − ∑
G G . (4.28) 

Using rigid body kinematics, see e.g., Ziegler[4-15], page 9, 

ˆ ˆ ˆ , 1i M iM M M ir r r r r rδ δ θ δ θ θ θ= + = − + <<
G G G G G G , (4.29) 

where, îM x iMr e r= ×
G G G  is the positively rotated orthogonal vector to iMrG . Hence, the 
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resultant restoring force becomes, isotropic shear stiffness understood,  

( )1 1
1 1

ˆ ˆ
N N

iM M
h M M i h

iM Mi i

zv z
R k N r r r k N

yw y
δ θ θ θ θ

= =

⎧ ⎫⎧ ⎫ −⎛ − ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪= − − + = − − +⎜ ⎟⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭ ⎩ ⎭

∑ ∑
G G G G . (4.30) 

The y- and z-components of the resultant restoring force thus become 

( )1 1
1 1

N N

y i h M M h i
i i

R Y Nk v z k zθ θ
= =

= = − + +∑ ∑ ,  

( )1 1
1 1

N N

z i h M M h i
i i

R Z Nk w y k yθ θ
= =

= = − − −∑ ∑ . (4.31) 

The free-body diagram of single-storey asymmetric building under horizontal ground 

excitation as indicated in Fig. 4.11 is subjected to the basic laws of conservation of 

momentum and conservation of angular momentum about the vertical x-axis, see 

Ziegler[4-15], page 400-411.  

Conservation of momentum in the yz-plane of the building is, 

S Mm a R=
GG , M ty y tz za a e a e= +
G G G , costy g Ma a vα= + �� , sintz g Ma a wα= + �� , (4.32) 

where, tya  and tza  are the absolute accelerations of MC  in y- and z-directions, 

respectively and R
G

 is the resultant of the external forces. Hence, in y- and z-directions 

we respectively have,  

1 1
1

cos
N

S M h M h M i S g
i

m v Nk v k Nz z m aθ α
=

⎛ ⎞
+ + − = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑�� , (4.33) 

1 1
1

sin
N

S M h M h M i S g
i

m w Nk w k Ny y m aθ α
=

⎛ ⎞
+ − − = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑�� . (4.34) 

The moment contribution of the single spring iM
G

 is, its torsional stiffness is neglected 

for extremely small rotations, 

( )1i iM i h iM iM r R k r rδ= × = − ×
G GG G G , (4.35) 

and by substituting rigid body kinematics, Eq. (4.29), 

( )1i h iM M iM x iMM k r r r e rδ θ⎡ ⎤= − × + × ×⎣ ⎦
G G G G G G , 
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( ) ( )( )1h iM M iM iM x iM x iMk r r r r e r e rδ θ⎡ ⎤= − × + −⎣ ⎦
G G G G G G G Gi i . (4.36) 

Using ( ) ( )2 2 2 2iM iM iM M i M ir r r r r r r= = + −
G G G G G G Gi i  and ( ) 0iM xr e =

G Gi , Eq. (4.36) becomes, 

( ) ( )( )2 2
1 2i h i M M M i M i xM k r r r r r r r eδ θ⎡ ⎤= − − × + + −⎣ ⎦

G G G G G G G G Gi , (4.37) 

( ) ( ) ( )2 2
1 2i h M M M x i M i M i xM k r r r e r r r r r eδ θ δ θ⎡ ⎤= − − × + + × + −⎣ ⎦

G G G G G G G G G G Gi . (4.38) 

Summation over N springs yields the resulting moment, 

( ) 2 2
1

1 1 1
2

N N N

h M M M x M i i M i x
i i i

M k N r r N r e r r r r r eδ θ δ θ
= = =

⎡ ⎤⎛ ⎞
= − × + − × + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑
G G G G G G G G G G Gi  (4.39) 

Substituting ( )M M M M M M xr r v z w y eδ × = −
G G G  and 

1 1 1

N N N

M i M i M i x
i i i

r r v z w y eδ
= = =

⎛ ⎞
× = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑G G G  

renders the axial moment about vertical x-axis, 

( )

1 1
1 1

2 2 2 2
1

1 1 1 1
2

N N

h M i M h M i M
i i

N N N N

h M M i i M i M i
i i i i

M k Nz z v k Ny y w

k N y z y z y y z z θ

= =

= = = =

⎛ ⎞ ⎛ ⎞
= − + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − + − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑
  (4.40) 

Conservation of angular momentum with respect to MC  about vertical x-axis is  

, ,x x
dD M M Me D I
dt

θ= = =
G G G G �  (4.41) 

Hence, conservation of moment of momentum yields, 

( )2 2 2 2
1

1 1 1 1

1 1
1 1

2

0

N N N N

x h M M i i M i M i
i i i i

N N

h M i M h M i M
i i

I k N y z y z y y z z

k Nz z v k Ny y w

θ θ
= = = =

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ − − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑

��

. (4.42) 

The three coupled mechanical conservation equations (4.33), (4.34) and (4.42) of 

(undamped) approximately rigid-body motion of the base-isolated building subjected to 

single point horizontal ground excitation, are written in matrix form, 

gMx Kx Ma+ = −
G G G��
� � �

, [ ]T
M M Tx v w u=

G , [ ]cos sin 0T
g ga a α α=
G

， T xu rθ= , (4.43) 
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where, M
�

 and K
�

 are the diagonal mass- and the symmetric stiffness-matrix of the 

3-DOF base-isolated building, respectively and xG  is referred to the displacement vector 

of the center of mass; gaG  denotes the oblique single point horizontal seismic ground 

acceleration vector, 

1 0 0
0 1 0
0 0 1

SM m
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
,  (4.44) 

1
1

1

1
1

1

1 1
33

1 1

0

0

N
h

h M i
x i

N
h

h M i
x i

N N
h h

M i M i
x xi i

kNk Nz z
r

kK Nk Ny y
r

k kNz z Ny y k
r r

=

=

= =

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥
⎛ ⎞⎢ ⎥= − −⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞ ⎛ ⎞
⎢ ⎥− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑

∑ ∑

�
, 

( )2 2 2 21
33 2

1 1 1 1
2

N N N N
h

M M i i M i M i
i i i ix

kk N y z y z y y z z
r = = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ . (4.45) 

4.3.1 Modal analysis of base-isolated building 

The solution of the eigen-value problem associated with the homogenous equation (2.1)

when considering the diagonal mass- and symmetric stiffness matrices, renders the 

natural circular frequencies jω  and ortho-normalized modal vectors jφ
G

, j=1,2,3 for the 

base-isolated building by requiring modal mass 1T
j j jm Mφ φ= =
G G
�

. The coordinates of the 

modal centers of velocity VjC , j=1,2,3 are determined by Eq. (2.13), for details see 

Fu[4-17] or Fu-Ziegler[4-18]. The position of the modal center of velocity plays a key role in 

determining the effective location of the respective TLCGDs to be attached to the 

asymmetric building, as discussed in section 3.4. The modally tuned TLCGDs for the 

respective mode are placed in the basement of the base-isolated asymmetric building 

keeping in view the normal distance of its trace to modal center of velocity CVj as large as 

possible within the plan so as to absorb maximum kinetic energy, Fu-Ziegler[4-18]. Thus, 
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the vibration induced by the horizontal ground excitation is damped by increasing the 

effective damping by means of the properly tuned and optimally placed TLCGDs; see 

Hochrainer-Ziegler[4-19]. 

When considering the rigid-body modes of the asymmetric building in the design stage, 

each mode is considered isolated rendering the two degree of freedom (2-DOF) modally 

isolated coupled system (i.e., base isolated asymmetric building coupled with TLCGD) 

for the sake of modal tuning of the corresponding TLCGD, as described in sub-section 

2.5, by the transformation of the classical Den Hartog’s formulas, see Den Hartog[4-20], by 

means of the analogy between TMD and TLCGD, for details, see Hochrainer[4-21] and 

Hochrainer-Ziegler[4-19]. 

4.4 Equations of motion for coupled system in state-space 

domain 

Traditionally, dynamic systems have been described by second order differential 

equations because Newton’s law as well as energy principles (e.g. Lagrange equations of 

motion, Hamilton’s principle) render inertia proportional to acceleration. Alternatively, 

the state-space representation is a systematic approach adaptable for automated 

processing that is not only be used to represent the dynamical systems but also preferred 

for their dynamic investigations especially with respect to control theory.  

4.4.1 Modally isolated 2-DOF coupled system in state space 

Referring to the modally isolated 2-DOF coupled system by the virtue of modal 

approximations as explained in sub-section 2.4, for the similar case of base-isolated rigid 

building equipped with TLCGDs, the linearized modally approximated equations in 

matrix form, Eq. (2.76), is rewritten; light modal structural damping includes the 

linearized friction of the sliding elements, 
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( )

2

2

1 2 0 0

1 0 2 0
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j

j j j fj j Sj Sj j Sj j

j j j Aj Aj j jAj

M

j
g

j j

V q q q

V u u u

L
a

γ

γ

μ κ μ ζ ω ω

κ ζ ω ω

κ α γ

⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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⎡ ⎤
⎢ ⎥= −

−⎢ ⎥⎣ ⎦
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�� �

�� �
����	���


, (4.46) 

and can be rearranged, 

( )
2

1 1 1
2

2

0 2 cos0

jj Sj Sj j Sj j
j j j g

j Aj Aj j j j jAj

Lq q q
M M M a

u u u

ζ ω ω

ζ ω κ α γω
− − −

⎡ ⎤ ⎡ ⎤       0         0   ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

            ⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥          ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

�� �

�� �� � �

where, 
1

1
j j j fj

j
j j

V
M

V
γ

γ

μ κ μ

κ

+⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦�
, 

with abbreviations defined in sub-section 2.4 and 2.5. This system of second-order linear 

coupled differential equations, expressed by the generalized modal coordinate and the 

fluid stroke, can be straight forwardly converted to a first order state-space representation 

by introducing the (4x1) modal state-vector 
T

j j j j jz q u q u⎡ ⎤=   ⎣ ⎦
G � � ,  

( )

1 1

2 2
2

1 1 13 3
24 4

0 0 1 0 0
0 0 0 1 0

0 2 0

0 2 cos0

gjSj Sj Sj
j j j

Aj Aj j jj jAj jj

z z
z z

aLz z
M M M

z z

ω ζ ω

ζ ω κ α γω
− − −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

  �
�
�

� � ��

 (4.47) 

thus, simply rewritten as 

( ) ( ) ( )j rj j g gz t A z t E a t= +G G�
� �

 (4.48) 

where, 1 2 3 4, , ,j j j jz q z u z q z u= = = =� �  and the system matrix rj j j jA A B R= +
� � � �

 is kept 

separated, to keep access to the absorber’s (TLCGD) parameters, 

2
1 1 1 1

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

,
2 0 1 0 1 00

0 1 0 10 00 0

j j
Sj SjSj

j j j j

A B
M M M M

ζ ωω− − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦

� �
� � � �
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( )

2

1

00 0 0 0
00 0 0

,
0 0 0 0

cos0 0 0 2

Aj
j gj j

j
j jAj Aj

R E L
M

ω

κ α γζ ω
−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

� �
�

. (4.49) 

The modally approximated state equation (4.48) is formally solved for ( )jz tG  when 

subjected to ground acceleration ( )ga t , 

( ) ( ) ( )( )1
( )j j j j j gj gz t A B R z t E a t

−
= + −

GG �
� � � �

. (4.50) 

Inserting a time-harmonic forcing, ( ) 0
i t

j jz t z e ω=G G and ( ) i t
g ga t a e ω=  into Eq. (4.48) 

the time-reduced modal equation for TLCGD-main system results 

( ) 1
0j rj gj gz i I A E aω

−
= −G

� � �
. (4.51) 

The modally approximated state equations, Eq. (4.48) and (4.51) in time and frequency 

domain respectively, make the numerical investigations of the modally isolated 2-DOF 

coupled system conveniently possible to get the approximate solution in state-space 

domain. 

4.4.2 Modally coupled system in state-space 

As a matter of fact, the equations of motion for three degree of freedom (3-DOF) 

structure (i.e., base-isolated asymmetric building: main system) with three TLCGDs (i.e., 

secondary system) render modal coupling when modal approximations are no longer 

considered. Thus, incorporating the damping matrix of the main system and the control 

force term due to the TLCGDs in Eq. (2.1), we get 

gMx Cx Kx Ma PF+ + = − +
GG G G G�� �

� � � ��
, (4.52) 

1 2 3 ,T TT T T
Ayj Azj xj xj F F M rF FF F F⎡ ⎤=   = − ⎡ ⎤⎣ ⎦⎣ ⎦

G GG G G
 

where C
�

 is such a damping matrix of the base-isolated building that keeps the modal 

vectors orthogonal; TF
G

 is the control force vector and [ ]1 2 3P P PP =
� � ��

; 

[ ]1 1 1jP diag=
�

 is the position matrix of the TLCGDs. 
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The displacement vector xG  of center of mass of base-isolated building is expanded into 

modal series 
3

1
j j

j
x qφ

=
= ∑

GG  on the left hand side of Eq. (4.52) considering the rigid-body 

motion. Therefore, the term 
3

1
j j

j
qφ

=
∑
G
��  takes the form qφ G��

�
 when expanded for rigid-body 

modes, thus Eq. (4.52) becomes 

gM q C q K q Ma PFφ φ φ+ + = − +
GG G G G�� �

� � � ��� � �
 (4.53) 

The control force vector T
Ayj Azj xj xj F F M rF = − ⎡ ⎤⎣ ⎦

G
 is written for j-th TLCGD when 

Mv�� , Mw��  and Tu�� , i.e., 

11 1 12 2 13 3Mv q q qφ φ φ= + +�� �� �� �� , 21 1 22 2 23 3Mw q q qφ φ φ= + +�� �� �� �� , 31 1 32 2 33 3Tu q q qφ φ φ= + +�� �� �� �� , (4.54) 

are substituted in Eqs. (2.46), (2.47) and (2.60) to render, 

( ) , 1, 2,3j fj j j g j j jF M T q T a u jφ κ γ= − + + =
G G G G�� ��

� � �� �
 (4.55) 

where, 

( )
( )

( ) ( ) 33

1 0

0 1

Aj M x

j Aj M x

Aj M x Aj M x j

z z r

T y y r

z z r y y r T

⎡ ⎤− −
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

�
, 

( ) ( )33

2 2 2
2

1
j Aj M Aj M Tj j

x
T z z y y H

r
κ⎡ ⎤= − + − +⎢ ⎥⎣ ⎦

, 

( ) ( )

1 0 0
0 1 0

0
j

Aj M x Aj M x

T
z z r y y r

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦

, ( ), ,fj fj fj fjM diag m m m=
�

, 

( )
( )

cos
cos sin

sin

j Aj M xT
j j j

j Aj M x

z z r

y y r

γ
δ γ γ

γ

⎡ ⎤⎛ ⎞− −
⎢ ⎥⎜ ⎟=
⎢ ⎥⎜ ⎟+ −⎢ ⎥⎝ ⎠⎣ ⎦

G
, 

1 1 0 0γ δ⎡ ⎤= ⎣ ⎦
G G G

�
, 2 20 0γ δ⎡ ⎤= ⎣ ⎦

G G G

�
, 3 30 0γ δ⎡ ⎤= ⎣ ⎦

G G G

�
. 

Thus, Eq. (4.56) results when the linearized control forces produced by several TLCGDs 

are written in a hyper-matrix notation, 

( )f gF M T q Tx uφ κγ= − + +
G G G G�� �� ��

� � � �� �
, (4.56) 
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where, [ ]1 2 3 ,T T T TT =
� � �� 1 2 3= ,TT T T T⎡ ⎤⎣ ⎦� � � � 1 2 3 ,Τ γ γ γγ ⎡ ⎤= ⎣ ⎦� � ��

 

[ ]1 1 1 2 2 2 3 3 3, , , , , , , ,diagκ κ κ κ κ κ κ κ κ κΤ =
�

, 

1 1 1 2 2 2 3 3 3, , , , , , , ,f f f f f f f f f fM diag m m m m m m m m m⎡ ⎤= ⎣ ⎦�
, 

[ ]1 2 3
T u u uu =
G  samples the fluid strokes. 

Hence, Eq. (4.53) for base-isolated building with three TLCGDs installed in terms of the 

favorable generalized coordinates becomes, 

( ) ( )f f f gM PM T q PM u C q K q M PM T aφ φ κγ φ φ+ + + + = − +
G G G G G�� �� �

� � � � � � � � � � � ��� � � � �
. (4.57) 

The linearized equation of relative fluid flow in TLCGD number j, (Eq. 2.33) is 

( )( )
( )( ) ( )

2
cos

2
sin cos

M Aj M j
j Aj Aj j Aj j j

M Aj M j g j

v z z
u u u

w y y a

θ γ
ζ ω ω κ

θ γ α γ

⎧ ⎫− −⎪ ⎪+ + = − ⎨ ⎬
+ + − + −⎪ ⎪⎩ ⎭

����
�� �

����
. (4.58) 

Substituting the modal expansions of Mv�� , Mw��  and Tu��  given by Eq. (4.54) into Eq. 

(4.58) for each of three TLCGDs, render a set of equations written in matrix notation, 

f f f gIu C u K u T q aγκ φ κγ+ + = − −
GG G G G�� � ��

� � � � �� � �
, (4.59) 

where, [ ]1 1 2 2 3 32 ,2 ,2f A A A A A AC diag ζ ω ζ ω ζ ω=
�

 denotes the linearized absorber 

damping matrix; 2 2 2
1 2 3, ,f A A AK diag ω ω ω⎡ ⎤= ⎣ ⎦�

 denotes the stiffness matrix of TLCGDs, 

[ ]1 2 3, ,diagκ κ κ κ=
�

, c z s yT T Tγ γ γ= +
� � �� �

, [ ]1 2 3cos ,cos ,cosc diagγ γ γ γ=
�

, 

[ ]1 2 3sin ,sin ,sins diagγ γ γ γ=
�

, 

1 1

2 2

3 3

cos sin 0
cos sin 0
cos sin 0

f

γ γ
γ γγ
γ γ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
, 

( )
( )
( )

1

2

3

1 0
1 0
1 0

A M x

A M xz

A M x

z z r
z z rT
z z r

− −⎡ ⎤
⎢ ⎥− −= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

�
,

( )
( )
( )

1

2

3

0 1
0 1
0 1

A M x

A M xy

A M x

y y r
y y rT
y y r

−⎡ ⎤
⎢ ⎥−= ⎢ ⎥
⎢ ⎥−⎣ ⎦

�
. 

The equations of motion for coupled TLCGD-main system by substituting the linearized 

control force and rearranging terms, Eq. (4.57) and (4.59) are assembled in matrix form, 
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0 0

0 0
f f f

g
f f f

M PM T PM C K M PM Tq q q
a

T I uC Ku uγ

φ φ κγ φ φ

κ φ κγ

+ ⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ + = − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

G G G�� � G� � � � � � � �� � � � � � �� � � � � GG G�� �
� � � �� � � �� �

 

 

(4.60) 

and can be written as follows 

1 1 10 0

0 0
f

g
f f f

C K M PM Tq q q
M M M a

uC Ku u

φ φ

κγ
− − − ⎡ ⎤+⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= − − − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G G�� � G�� � � � � � �� � GG G�� �� � �
�� � � � �

, (4.61) 

where, 
f fM PM T PM

M
T Iγ

φ φ κγ

κ φ

+⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
� � � � � � �� � �

�
� � ��

. (4.62) 

This system of second order differential equations is converted to first order state-space 

representation by introducing a state hyper-vector 
TT T T Tz q u q u⎡ ⎤=   ⎣ ⎦

G G G GG � � of order 

( )2 S AN N+ , where SN  is the degree of freedom of the main system (i.e., 3-DOF 

base-isolated asymmetric building) and AN  is the number of TLCGDs installed (e.g. 

three), see e.g. Ziegler[4-15] page 438, 

( ) ( ) ( ) ( )g gz t A BR z t E a t= + +
GG G�

� � � �
, (4.63) 

where, in a hyper-matrix notation, the main system matrix again remains separated, 

1 1

0 0 0
0 0 0

0 0

0 0 0 0

I
I

A
K C

M M
φ φ− −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

�� � �
�� � �

� � � � �� �� �
� � � �

, 
1 1

0 0 0 0
0 0 0 0

0 0
0 0

B
I I

M M
I I

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥⎡ ⎤ ⎡ ⎤
− −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

� � � �
� � � �

�
� �� �

� �
� �� �

  

0 0 0 0
0 0 0

0 00 0
00 0

f

f

K
R

C

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

� � � �
�� � �

�
� �� �
� �� �

, 
1

0
0

g
f

f

E M PM T
M

κγ
−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥⎡ ⎤+
⎢ ⎥− ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

�
�

� � � � �
�

� �

. (4.64) 

The state equation (4.63) is solved for ( )jz tG  to render the response of the coupled 

system in time domain when subjected to ground acceleration ( )ga t . Since generalized 

modal coordinates have been chosen, the coupling refers to the action of the TLCGDs 

only. The calculation of the structural response for the linearized system is straight 

forward, once a dynamic description in the state-space, Eq. (4.63), is available. 
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MATLAB[4-22] provides efficient time integration subroutine like lsim, which simulates 

the time response of continuous linear time invariant systems to arbitrary input (e.g., a 

recorded earthquake seismogram). 

In addition, steady-state solution 0( ) i tz t z e ω=G G , assuming the ground excitation to be 

time-harmonic ( ) i t
g ga t a e ω=
G G  becomes, 

( ) ( ) 1
0 , g gz i I A BR E aα ω ω −

= − +⎡ ⎤⎣ ⎦
GG

� � � � �
. (4.65) 

The state equation (4.65) renders the solution of the fully coupled system in frequency 

domain. 

The optimal natural frequency and the damping ratios of the fine tuned TLCGDs are 

calculated by minimizing the following performance index in state-space domain, 

corresponding to the minimum of the area under the resonance curve, 

( ) ( ) 2T T T
S SJ z Sz d b Pb Minimumω ω ω π

∞

−∞

= = →∫
G G

��
, (4.66) 

where 
TT T

Sz q q⎡ ⎤= ⎣ ⎦
G GG � represents the main structure’s state-vector expressed in 

generalized modal coordinates. g gb E a=
G

�
 is the excitation vector; P

�
 is consequently 

the solution of the algebraic Lyapunov matrix equation, 

( ) ( )TA BR P P A BR S+ + + = −
� � � � � � � � �

,  (4.67) 

evaluated by means of the software MATLAB[4-22], where S
�

 is the positive 

semi-definite weighing diagonal matrix chosen to pronounce the displacements 10 times 

over velocities. The minimization of performance index J  is performed numerically by 

calling the function fminsearch of the MATLAB[4-22] Optimization Toolbox. fminsearch 

quickly finds the minimum of the scalar function J  of several variables, when 

substituting Den Hartog’s modal tuning parameters as initial estimates. 

4.5 Application with numerical examples 

The dynamic response of the base-isolated structures subjected to horizontal ground 
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excitation is investigated numerically in frequency and time domain by using state-space 

representation. Both, a simple five-storey plane frame, a benchmark given in Chopra[4-23], 

page 744, and the single-storey asymmetric building, see section 4.3, are investigated 

under earthquake excitation when equipped with the novel base isolation system (i.e., SP 

units along with sliding elements and TLCGDs). 

4.5.1 Base-isolated plane frame 

Referring to the benchmark five-storey plane frame as considered by Chopra[4-23], page 

744, sketch in Fig. 4.12, it is worthily notified that the storey-drifts (relative deformation 

among various floors) are negligible when frame is base isolated. Such a typical 

base-isolated frame is also worked-out by Hochrainer-Ziegler[4-19] with unnecessary large 

amount of water ( 3%fm Mμ = = ) in the TLCGD placed in the basement of the frame. 

The purpose of reconsidering such a simple frame in this Section is to confirm the 

behavior of the frame as “rigid” after base isolation because of the small storey-drifts of 

the various floors (e.g., deformation of even the top floor is almost same as that for the 

new basic mode of the isolated frame) as illustrated by mode shapes of the base-isolated 

frame in Fig. 4.13(b). 

 

 

Fig. 4.12: Five-storey benchmark frame, Chopra[4-23], base-isolated along with TLCGD in 
the basement, sliding elements not shown. 
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The numerical investigations in state-space are performed to improve the results with 

respect to damping supplied by TLCGD by using the minimum required mass ratio to 

achieve its optimal design. 

4.5.1.1 Modal analysis and installation of TLCGD  

The modal analysis of the fixed-base five-storey frame depicts the relative deformation of 

various floors corresponding to its modes of vibrations, first and second modes are shown 

in Fig. 4.13(a), for details, see Hochrainer-Adam[4-24]. The top (5th) floor experiences the 

maximum deformation 1.049 whereas the first floor is at 0.299 when vibrating in its first 

mode as sketched in Fig. 4.13(a).  

The base isolation introduces a base-slab of one and same mass 45344kgm =  rendering 

a 6-DOF system of total mass ( )5 1 272064kgSm m= + × = . Homogeneous field stiffness 

and stiffness of the base isolation units are chosen such that the same period results as 

given in Chopra[4-23]. It is quite evident from the mode shapes in Fig. 4.13 that most of the 

deformations are in the isolation units and the frame above behaves like a rigid-body. 

Hence, it can be concluded that the contribution of modal deformation is negligible for 

the base-isolated frame. Even, the 2nd mode shape of base-isolated frame (6-DOF) 

exhibits a node almost at the center, thus creating an additional virtual stiffness of the 

frame. 

When working with multi-storey structures, the floor level at which the absorber is 

installed must be chosen carefully, since it highly influences the TLCGD performance. In 

case of base-isolated structure, the mode shape of the new basic mode with contribution 

of modal deformation negligibly small, the optimal position of TLCGD sits in the 

basement of the frame as drawn in Fig. 4.12. Consequently, the dead-fluid mass must not 

be minimized and vertical upright sections of the TLCGD piping system become well 

suited. 
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Fig. 4.13: Changing the natural mode shapes of five-storey plane frame by base isolation, 

Chopra[4-23]: (a) fixed-base (b) base-isolated. 

 

4.5.1.2 TLCGD design parameters 

The vertical height ( 2.5mH = ) of the liquid column of TLCGD is guided by limiting 

conditions on the maximum liquid strokes in TLCGD. It is ensured that latter (i.e., 

0max 1.24mu = ), when base-isolated frame is excited by El Centro 1940 seismogram 

scaled to 0.32g, must be under admissible limits; 0max 2 3 1.67mu H≤ = , 

0max 3 1.35mau H≤ = . In addition, the maximum speed of the fluid interface to the 

gas in the TLCGD should also be within acceptable limits for the application of the piston 

theory: 0 0max max 3.8m s 10m sAu uω= = ≤� , see again Ziegler[4-25].  

The structural modal damping of such a base-isolated frame is extremely low, even with 

linearized frictional damping of the novel sliding elements included, and assumed to be 

0.01% for the basic mode. The geometrical dimensions of the TLCGD and other resulting 

key parameters are collected in Table 4.1. 

 

Table 4.1: Parameters of the TLCGD placed in the basement of plane frame.  
TLCGD Parameters Values 

Mass of water inside TLCGD, fm  [kg] 2721 

Mass ratio, f Sm mμ = [%] 1 
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Horizontal length of the liquid column, B [m] 8.0 

Vertical height of the liquid column, H  [m] 2.5 

Effective length, 2effL B H= + [m] 13 

effB L  0.615 

Angle of inclined pipe section, β  [rad] (might be vertical) 4π  

Inner diameter, circular TLCGD pipe, [m] 0.516 

Geometry factor, κ κ= , Eq. (2.28) 0.89 

Optimal frequency ratio, optδ , Eq. (2.80) 0.991 

Optimal absorber frequency, ,A opt opt Sf fδ=  [Hz] 0.488 

Optimal linear damping coefficient, ,A optζ [%],  

Eq. (2.83), Aj Ajζ ζ ∗=  
5.41 

Eqv. math. pendulum length, 0L [m], Eq. (2.84) 1.042 

0 02 sina effh H L L β= −  5.53 

Equilibrium pressure head, 0 0h np gρ=  [m], 1n =  22.43 

Gas volume, 0 H aV A H=  [m3] 0.849 

Dead fluid-mass, ( )1fd fm m κκ= − [kg], Eq. (2.81) 578.4 

 

4.5.1.3 Simulation results 

The base-isolated shear frame subjected to the ground excitation equipped with Den 

Hartog’s tuned TLCGD in the basement is simulated for further dynamic investigations 

both in frequency and time domain by using the state-space approach. The dynamics of 

shear frame influenced by TLCGD are also investigated by Hochrainer-Adam[4-24].  

The 6-DOF ( 1 2 6, ,...w w w ) base-isolated frame with single TLCGD installed at proper 

location (i.e., in the basement of the frame with control force substituted accordingly) is 
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described by the set of matrix equations in terms of real co-ordinates, see 

Hochrainer-Ziegler[4-19] in their hyper-matrix form, 

0 0
0 0

S f
S g

f f

C K Mr LM iw w w
M a

C K u iu u κ

⎧ ⎫ ⎧ ⎫ ⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ + = ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎢ ⎥⎩ ⎭⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

GGG G G�� �
�� � � � � �GGG G�� �� �� � � �

, (4.68) 

The sparse position matrix is [ ]1 0 0 0 0 0TL =
�

 with dimension 6 1×  apparent 

in (4.68), enters the generalized mass matrix with dimension 7 7×  for the said case,  

T
f f

S T

M LM L LM
M

L I

κ

κ

⎡ ⎤+
⎢ ⎥=
⎢ ⎥⎣ ⎦
� � � � � � �

�
� � �

  

where M
�

, C
�

 and K
�

 are mass, light damping and stiffness matrix of the plane frame 

and fM
�

, fC
�

, fK
�

, κ
�

, κ
�

 are the diagonal matrices of 1 1×  for the single TLCGD 

installed. 

To make the tools of control theory applicable, equation (4.68) is converted to state-space 

representation by means of a state hyper-vector 
T

z w u w u⎡ ⎤= ⎣ ⎦
G G G GG � � of order 

( )2 6 1 14+ = , see e.g. Ziegler[4-15] page 438; modal expansion with the possibility of 

modal truncation is saved here when dealing with a rather small system, 

( ) ( ) ( ) ( )g gz t A BR z t e a t= + +
GG G�

� � �
, (4.69) 

where, in a hyper-matrix notation, the main system matrix of order 14 14×  remains 

separated, 

1 1

0 0 0
0 0 0

0 0
0 0 0 0S S

I
I

A
K C

M M− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥⎡ ⎤ ⎡ ⎤
− −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

�� � �
�� � �

�
� � � �

� �
� � � � , 

1 1

0 0 0 0
0 0 0 0

0 0
0 0S S

B
I I

M M
I I

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥⎡ ⎤ ⎡ ⎤
− −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

� � � �
� � � �

�
� �� �

� �
� �� � , (4.70) 

with 10 0
T

S f
g S

Mr LM i
e M

iκ
−⎡ ⎤⎡ ⎤+

= −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

GG
G � � �G�� �

�

 of order 14 1×  and 

0 0f fR diag K C⎡ ⎤= ⎣ ⎦� �� � �
of order 14 14×  contains the linear TLCGD design 

parameters, subjected possibly to fine tuning. 

The state equation (4.69) is solved for ( )jz tG  to get the response of the coupled system 
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in time domain when subjected to excitation ( )ga t . In addition, steady-state solution 

0( ) i tz t z e ω=G G , assuming the ground excitation to be time-harmonic ( ) i t
g ga t a e ω=  

becomes, 

( ) ( ) 1
0 , g gz i I A BR e aα ω ω −

= − +⎡ ⎤⎣ ⎦
GG

� � � �
. (4.71) 

The optimal natural frequency and the damping ratio of the fine tuned TLCGD are 

calculated by minimizing the same performance index as given by Eq. (4.66), where 

T
Sz w w⎡ ⎤= ⎣ ⎦

G GG � represents the main structure’s state-vector of dimension 12 1× . 

g gb e a=
G  is the excitation vector. For this case, fminsearch quickly finds the minimum 

of the scalar function J  of two critical variables of the TLCGD, when substituting Den 

Hartog’s modal tuning parameters [ ]0 ;A Ax ω ζ=  as initial estimates. The optimization 

results in a slight decrease of the natural frequency whereas the damping coefficient of 

the fluid flow is significantly reduced.  

 

 
Fig. 4.14: Weighed sum of amplitude response function for the base-isolated plane frame. 

 



4.  Novel Base Isolation System 

103 
 

The weighed sum ( )
12

1
i Si

i
S z ω

=
∑ of the amplitude response function of building’s states 

for the original and optimized system, in the logarithmic decibel scale, defined by 

[ ] 20logx dB x=  is illustrated in Fig. 4.14. Thus, the frequency response of the 

base-isolated frame with TLCGD is tremendously reduced at the fundamental resonant 

peak, which confirms the effective damping supplied by TLCGD. 

The displacements of each floor of the base-isolated frame subjected to El Centro 

seismogram scaled to 0.32g with fine tuned TLCGD attached and without any TLCGD is 

illustrated in Fig. 4.15. 
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Fig. 4.15: Displacements of floors (base slab to sixth floor, 1 2 6, ,...w w w ) of base-isolated 

building forced by El Centro seismogram scaled to 0.32g. 

 

The response in terms of total acceleration of each floor of the base-isolated frame 

excited by El Centro 1940 seismogram scaled to 0.32g is calculated by ti i ga a a= + , 

1, 2,...6i =  and plotted in Fig. 4.16 for each floor of the frame. 
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Fig. 4.16: Total acceleration (as a fraction of g) of the floors (base slab to sixth floor, 

1 2 6, ,...t t ta a a ) of the base-isolated frame forced by El Centro seismogram scaled to 0.32g. 

 

It is quite evident from Fig. 4.15 and Fig. 4.16 that vibration response of the base-isolated 

frame is effectively damped by means of the TLCGD installed at the basement of the 

frame even by using less amount of water mass (i.e., low mass ratio) as compared to that 

considered by Hochrainer[4-21]. The resulting time response of the liquid in TLCGD with 

maximum value 1.2m, Fig. 4.17 is an evidence of the vibrations (thus kinetic energy) 

transmitted to the water inside TLCGD. 

 

 
Fig. 4.17: Liquid stroke in TLCGD under El Centro seismogram scaled to 0.32g. 

 

However, the corresponding maximum liquid speed in the TLCGD must be within 
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acceptable speed limit; 0 0max max 3.71m s 10 m sAu uω= = ≤�  to keep the interface 

between liquid and gas intact as specified by Ziegler[4-25]. 

4.5.2 Base-isolated single-storey asymmetric building 

A simple single-storey asymmetric building as discussed in sub-section 4.3 is also 

exemplarily considered for the dynamic investigations. The building consists of 

rectangular-plan 12 8ma b× = ×  rigid base and top floors of combined mass 

118331kgFm =  having exterior walls of mass 84434kgWm =  and an asymmetrically 

located ( 2mwy = ) intermediate wall of mass 18822kgwm =  in-between the rigid floors 

along with additional concentrated (point) mass 1 22159kgm =  placed at the right upper 

corner ( 1 6my = , 1 4mz = ), illustrated in Fig. 4.11. Thus, the distribution of the total 

mass 1 243746kgS F W wm m m m m= + + + =  creates the mass-asymmetry and center of 

mass MC  is located by considering the static mass-moments at 

( )
( )

1 1

1 1

1.071m

0.556m
M w w S

M w w S

y m y m y m

z m z m z m

= + =

= + =
. (4.72) 

 

 
Fig. 4.18: Scaled plan of asymmetric building, dimensions in meter. 
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The mass moment of inertia about the vertical x-axis of the building is 

2 6 25.274 10 kgmx S xI m r= = × , 4.652mxr = . (4.73) 

Such an asymmetric building is base-isolated by introducing symmetrically arranged N  

spring-pendulum (SP) elements along the perimeters (i.e., 2 3a bN N N= + ), between its 

heavy rigid foundation beams and the ground. Actually, they are assembled in isolation 

units each having four SP elements as discussed in sub-section 4.2.3. Thus, the 

coefficients of the symmetric stiffness matrix, given by Eq. (4.45), take the form for the 

selected rectangular-plan, 

11 22 1hk k Nk= = , 

( )2 2 2 2 2 2 21
33 2

1 1

3 22 4
2 2

b aN N
h b a

M M w w M i i
i ix

Nk N Nk y z a y y y b z y
N N N Nr = =

⎡ ⎤
= + + + − + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ , 

12 21 0k k= = , 13 31 1h M xk k Nk z r= = , ( )32 23 1 1h M b w M xk k Nk y N y Ny r= = − , (4.74) 

resulting in the following numerical values of the elements of the stiffness matrix for the 

asymmetric building under consideration isolated by means of 240N =  SP elements, 

6
2.406 0 0.288

10 0 2.406 0.381
0.288 0.381 6.387

K
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

�
N/m. 

When there are 240N =  SP elements, the averaged load on each SP element is 

1 9.96kNSw m g N= = . 

4.5.2.1 Modal analysis and installation of TLCGDs 

Solving the linear eigen-value problem, Eq. (2.1), e.g., by using the tool eig in 

MATLAB[4-22] with the given mass and stiffness matrices for the asymmetric building, 

renders the set of three ortho-normalized modal vectors and the associated natural 

frequencies, say around 0.5Hz,  

1

2

3

0.494
0.500 Hz
0.818

f
f
f

=⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥=⎣ ⎦

, 3

15

1.211 1.617 0.143
10 1.606 1.220 0.190

0.238 2.15 10 2.011

φ −

−

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− ×⎣ ⎦

�
 (4.75) 
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For small displacements, 3 1×  modal vectors jφ
G

 determine the modal centers of 

velocity VjC , j=1,2,3 by using Eq. (2.13), 

1

30.313
m

23.119V
r

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

G , 
2

15 2.643
10 m

3.503V
r

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

G , 
3

1.510
m

0.888V
r ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G , (4.76) 

 

 
Fig. 4.19: Scaled plan of base-isolated asymmetric building with alternative arrangements 

of three TLCGDs; eight novel sliding elements are indicated by circles. 

 

The modal centers of velocity, as illustrated in Fig. 4.19, lie outside of the plan for the 1st 

and 2nd rigid-body modes of the building, indicating a dominant translational motion that 

refers to a moderate asymmetry of the building. Whereas 3vC  for the 3rd mode falls 

within the plan, however distinct from CM , indicating a dominant rotational seismically 

forced motion thus referring to strong asymmetry of the building for this mode. The 

placement of the modally tuned TLCGDs becomes optimal with normal distance to the 

modal centers of velocity maximum; see again Fu-Ziegler[4-18]. Fig. 4.19 illustrates the 

orientation of three TLCGDs in the plan of asymmetric building; alternative diagonal 

arrangement of TLCGD1 and TLCGD2 shown by dashed lines, is preferred because of 

their better performance than that of those placed parallel to the outer perimeter. 
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4.5.2.2 Design steps of base isolation element for asymmetric building 

The required period of the base-isolated rigid building, Eq. (4.1), renders the first 

condition to be met in the design of the isolation (SP) element by choosing the resulting 

horizontal stiffness. The diameter d  of the wire of the spring is calculated by Eq. (4.2) 

when the horizontal (shear) stiffness 1hk , required diameter D , number of turns tn  in 

its length l  and material properties (i.e. modulus of elasticity E, Poisson’s ratio υ ) of 

the selected helical steel spring are known.  

 

 
Fig. 4.20: Novel spring-pendulum (SP) element: pivoted upright-pendulum is 

encapsulated by axially prestressed helical spring. 

 

The key parameters of the helical spring are listed in Table 4.2. Thus, the axial (pre-stress) 

stiffness given by Eq. (4.3) is about 13-times the horizontal stiffness for the selected steel 

spring (i.e. 13.1vhλ = ) so as to serve as a low pass filter. The material properties i.e., 

modulus of elasticity 204E GPa=  and Poisson’s ratio 0.3υ =  are well-known for the 

steel spring. 
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Table 4.2: Key parameters of base isolation (SP) element. 
Parameters  Values 

Horizontal stiffness of helical spring, 1hk  [N/mm], Eq. (4.1) 10.02 

Length of helical spring, l [mm] 400 

Number of active turns/coils of helical spring, tn   8 

 Outer spring diameter, eD  [mm] 142 

Diameter of the wire of helical spring, d  [mm], Eq. (4.2) 21 

Vertical stiffness of helical spring, 1vk  [N/mm], Eq. (4.3) 130.95 

Vertical to horizontal stiffness ratio, 1 1vh v hk kλ = , Eq. (4.3) 13.06 

Mean diameter of spring, eD D d= −  [mm] 121 

Spring index, C D d=  5.8 

 Pre-compression, vδ  [mm], Eq. (4.5) for load factor 0.49λ =  61 

 Free spring length, 0 vl l δ= +  [mm] 461 

Critical buckling load, 1 , 1v cr hF k l=  [kN], 1cλ = , Eq. (4.21) 4.01 

Force in upright-pendulum, 1 1 ,v v crF Fλ= , 0.49λ =  [kN] 1.96 

Force in spring due to axial pre-stress, ( )1 1 0r vF k l l= −  [kN] 8.00 

 Vertical deflection at 33ϕ = D , ( )1 1 cosv lδ ϕ= −  [mm] 70 

Length of spring, when tilted, 1 1vl l δ= −  [mm] 330 

Allowance before solid, 1a sl l l= − , [mm], 168mms tl n d= =  162 

 

4.5.2.3 Design of novel sliding element for asymmetric building  

For the single-storey asymmetric building under consideration where the damping is 

supplied separately by means of TLCGDs, the purpose of the sliding elements is just to 

resist the loads by wind gusts and small seismic disturbances. The average stagnation 

pressure 2150 N mavp = , corresponding to the average wind speed of = 15.5m savv , 

2 2av a avp vρ= , see Ziegler[4-15], page 486, renders the horizontal wind force 9kNwF =  
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acting on the larger face of the building.  

A novel sliding element consists of a circular steel plate of diameter 200mmlsΦ =  

coated with 5mm bronze layer in contact with another circular steel plate of diameter 

680mmusΦ =  connected to the upper foundation beam of the building so as to establish 

a bronze-steel interface between upper and lower sliding plates. Therefore, considering 

the coefficient of static friction at the interface (bronze-steel contact) 0.2μ = , the 

normal force 45kNv wR F μ= =  dictates the total number of sliding elements required 

to be placed in-between the rigid foundation beams of the asymmetric base isolated 

building. The contact at the bronze-steel interface is maintained by a pre-compressed 

conical spring. The appropriate pre-compression vδ  of the conical spring underneath the 

lower sliding plate, providing the necessary static friction against the sliding, requires  

1s v v vn k Rδ =   (4.77) 

where sn  is the number of sliding elements and 1vk  is the axial stiffness of one conical 

spring. Choosing the sufficient number 8sn =  of sliding elements to be arranged as 

illustrated in Fig. 4.19, we get the required vertical stiffness of one conical spring 

1 93.75 N mmvk = , Eq. (4.77). The conical spring is adopted to take the advantage of its 

less solid height and is designed as a linear spring with constant spring rate whereas the 

pitch is variable so that all coils come to touch each other at the same time when pressed 

to solid. Thus, the averaged diameter D  of the conical spring results for the required 

stiffness, Eq. (4.3). The design and other key parameters of the conical spring are listed in 

Table 4.3 and its scaled sketch is drawn in Fig. 4.21 with its top and bottom diameters 

whose arithmetic mean renders the averaged diameter. 

In case of a sufficiently strong earthquake, the foundation beams of the rigid asymmetric 

building experience a relative horizontal motion associated with the vertical downward 

movement of the building. It is also desired that the sliding elements should not offer 

continuous friction by the abrasive contact (i.e., no continuous frictional energy 
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dissipation in this horizontal movement) which can be achieved if the contact at the 

bronze-steel interface is released.  

 

 

(a) 

 

(b) 

 Fig. 4.21: Scaled sketch of compatible novel sliding element without continuous energy 
dissipation, (a) Elevation (b) Plan; all dimensions are in mm. 

 

For this purpose, a lever system consisting of three mechanical levers at 1200 apart as 

illustrated in Fig. 4.21(b) is proposed to magnify the vertical motion of the building. The 

levers of sufficient length 720mmlL =  with thin-walled sandwich cross-section, scaled 

sketched in Fig. 4.21, are designed to serve the purpose. The one end of the lever is 
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hinged-support on the lower foundation beam whereas the other end is connected to the 

extended flanges of the lower sliding plate by means of a bolt in a proper slit as 

illustrated in Fig. 4.21. Thus, the wind forces in static friction are transmitted to the 

ground mainly by compressive axial force in the lever (metal contact of the bolt in the 

slit). The pre-stressed neoprene spring (a bar of about 200 mm length) within the hollow 

lever is pre-tensioned with the bolt at the lower sliding plate-bearing. A ring at the 

periphery of upper sliding plate (moving with the building) contains densely packed ball 

bearings and is attached to the upper foundation beam of the building such that the ball 

bearings just touch the levers under some local admissible clearance. 

The working of the lever is simple and can be grasped for instance; during the horizontal 

movement due to earthquake, the ball bearing slides on the lever and the associated 

vertical downward movement simply pushes the lever down as required. Thus, the tip of 

the lever connected to the lower sliding plate forces it to an amplified downward 

movement by further compressing the conical spring and hence the contact at the 

bronze-steel interface is released. The bolt in the bearing at the lower sliding plate moves 

vertically downward, consequently it slides in the slit provided in the lever side walls. 

 

Table 4.3: Parameters of conical spring and lever. 
Parameters Values 

Number of active turns/coils of conical spring, tn   4 

Vertical stiffness of conical spring, 1vk  [N/mm],  93.75 

Diameter of the wire of conical spring, d  [mm] 25 

Average diameter of conical spring, D [mm], Eq. (4.3) 220 

Spring index, C D d=  8.68 

Required full deflection of the spring [mm] 218 

 Pre-compression, vδ  [mm] 60 

 Force under pre-compression 1 1r v vF k δ=  [kN] 5.63 
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Free length of conical spring, 0 1s v v al l lδ δ= + + + , [mm]  

al = 22mm= allowance before solid, sl d= =25mm 
325 

 Length of the conical spring, 0 vl l δ= − [mm] 265 

 Length of lever, lL  [mm] 720 

 Cross-sectional area of lever, ( )2 2l l l lA b h t= +  [mm2] (thin 

walled sandwich cross-section ( )120, 60 , 5l l lb h mm t mm= = =  
1800 

 Critical force in lever, , 1l cr v lF k L=  [kN] 67.5 

 Normal stress, ,l l cr lF Aσ =  [MPa] 37.5 

 Virtual static friction coefficient, , 1l cr rF Fμ =  12 

  

Therefore, the properly designed sliding elements not only supply the necessary static 

friction against the wind load but also do not cause any continuous energy dissipation in 

the relative horizontal movement under seismic excitation. Buckling of the levers safe the 

element against any unexpected horizontal overloads. 

4.5.2.4 TLCGD design parameters  

The geometric dimensions of TLCGDs; the horizontal length of the liquid column B  is 

selected to utilize maximum available length on the plan of the base-isolated building in the 

optimal orientation for the respective TLCGD for its efficient design (i.e., higher κ  value) 

and the vertical height of the liquid column H  of TLCGD is guided by limiting conditions; 

0max 2 3u H≤ , 0max 3au H≤ . (4.78) 

The maximum liquid strokes in each TLCGD (i.e., 0max u ) when subjected to El 

Centro 1940 seismogram scaled to 0.32g are ensured to be within admissible limits given 

by Eq. (4.78) and in addition, the maximum liquid speed in the TLCGD is also within 

acceptable speed limit for the application of the piston theory (i.e. to keep the interface 

between liquid and gas intact), 0 0max max 10m sAu uω= ≤� , see again Ziegler[4-22].  

The fluid-mass (of water) is chosen as 1 5000kgfm = , 2 4200kgfm =  and 
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3 1000kgfm =  inside the three TLCGDs. The structural modal damping of such a 

base-isolated building is extremely low even with linearized frictional damping of the 

novel sliding elements included thus, assumed to be constant 0.5% in each mode. The 

geometrical dimensions of the TLCGDs and other resulting key parameters at 

corresponding modally critical angles of incidence 125 ,40 ,125crα = D D D  are collected in 

Table 4.4. 

 

Table 4.4: Parameters of the diagonally orientated TLCGD1 and TLCGD2, and the 
z-parallel TLCGD3. 

Description TLCGD1 TLCGD2 TLCGD3 

Orientation and position of TLCGDs γ = 0
1 115  
A(4,0) 

γ = 0
2 45  

A(-1.9,0) 
γ = 0

3 90  
A(-6,0) 

Mass of water in TLCGD, fm  [kg] 5000 4200 500 

Modal mass ratio, jμ [%], 1jm = , Eq. (2.68) 2.25 1.72 0.6 

Horizontal length of the liquid column, B [m] 8.4 10.8 8 

Vertical height of the liquid column, H[m] 1.65 1.75 0.5 

Effective length, 2effL B H= + [m] 11.7 14.3 9.0 

effB L  0.718 0.755 0.889 

Inner diameter, circular TLCGD pipe, [mm] 737 612 266 

Geometry factor, κ κ= , Eq. (2.28) 0.72 0.755 0.889 

Optimal frequency ratio, optδ , Eq. (2.80) 0.983 0.987 0.995 

Optimal absorber frequency, 
,A opt opt Sf fδ= [Hz] 0.4861 0.4933 0.8142 

Optimal linear damping coefficient, ,A optζ  

[%], Eq. (2.83), Aj Ajζ ζ ∗=  
6.51 6.02 3.97 

Equivalent math. pendulum length, 0L [m],  

Eq. (2.84) 
1.053 1.021 0.375 
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0 02 sina effh H L L β= −  4.557 6.003 11.004 

Equilibrium pressure head, 0 0h np gρ=  , 

1n = , [m] 
13.76 15.80 12.232 

Gas volume, 0 H aV A H=  [m3] 1.291 0.773 0.062 

Dead fluid-mass ( )2
1fm V Vκ ∗⎛ ⎞−⎜ ⎟

⎝ ⎠
[kg],  

Eq. (2.81) 
2436.5 1804.3 105 

 

Because of the low frequencies of the base-isolated structures under consideration (i.e., 

around 0.5Hz both for plane frame and single-storey asymmetric building) the gas 

compression might be close to isothermal conditions and thus becomes linear for the 

associated liquid strokes, hence we use 1n =  as listed in Table 4.1 and Table 4.4. 

4.5.2.5 Dimensioning of TLCGD piping 

For the sake of simplicity, a straight circular cylindrical pipe with radius r and wall 

thickness t r�  is considered for the dimensioning of TLCGDs piping system. The 

hoop stress hσ  (pressure-vessel formula) due to the internal gauge pressure gp  is 

determined by, see Ziegler[4-15], page 91, 

g
h

p r
t

σ = . (4.79) 

Considering the larger liquid stroke, max 3au H=  for safety reasons during the 

compression phase of the gas (i.e., upward liquid stroke); the maximum dynamic gas 

pressure p′  is defined by assuming an adiabatic gas compression from the equilibrium 

state, 

0
0

n

p p ρ
ρ

⎛ ⎞′
′ = ⎜ ⎟

⎝ ⎠
, 1.4n = . (4.80) 

Since, the amount of gas remains constant during the compression, 

( )0 0 0 max HV V u Aρ ρ′= − , 0 H aV A H= , (4.81) 
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the gas volume is reduced. By substituting the upward liquid stroke max 3au H= , the 

gas density is increased to 

03 2ρ ρ′ = . (4.82) 

Substituting Eq. (4.82) into Eq. (4.80) yields the absolute gas pressure acting at the 

displaced interface  

01.76p p′ = . (4.83) 

Therefore, the maximum absolute pressure becomes in a quasi-static consideration 

( ) ( )max 3abs ap p g H Hρ′= + + . (4.84) 

The corresponding gauge pressure is  

( )max maxg abs atmp p p= −  , 5 21 10 N matmp = × , (4.85) 

to be substituted in Eq. (4.79) to render the wall thickness of the cylindrical pipe. The 

maximum tensile hoop stress hσ  is set equal to the admissible stress, for steel 

215 N mmaσ = . The results along with other key parameters of the three TLCGD piping 

systems are summarized in Table 4.5. 

However, when considering the same liquid stroke, max 3au H= , during the 

expansion phase of the gas (i.e., downward stroke), the gas volume is increased, - 

updating Eq. (4.81), 

( )0 0 0 max HV V u Aρ ρ′′= + , 0 H aV A H= . (4.86) 

The gas density decreases with respect to the equilibrium state, 

03 4ρ ρ′′ = . (4.87) 

The absolute dynamic gas pressure at the displaced interface equals the minimum 

absolute pressure in such a quasi-static consideration and becomes, by updating Eq. 

(4.80), 

( ) 0min 0.67absp p p′′= = , (4.88) 

Thus, the corresponding gauge pressure is calculated analogous to Eq. (4.85), 
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( )min ming abs atmp p p= − . (4.89) 

Consequently, a sufficiently large value of the equilibrium gas-pressure is required to 

keep the gauge pressure positive for the expansion phase - to be preferred in practice - 

and thus, to avoid compressive hoop stress in the thin-walled pipe.  

The critical buckling pressure for thin-walled long cylinders under uniform radial 

external pressure is, see Young[4-26], page 690, 

( )
3

24 1
cr

E tp
rυ

⎛ ⎞= ⎜ ⎟
⎝ ⎠−

. (4.90) 

For that extreme liquid stroke, negative gauge pressures, i.e., external pressures, are 

possibly acceptable if far below the critical buckling pressure, Eq. (4.90), see Table 4.5. 

Finally, the dead mass of the piping system is also approximately estimated with wall 

thickness known, choosing same wall thickness 5mmt = for all three TLCGDs for 

design reasons, also listed Table 4.5, and by assuming a constant circular cylindrical 

cross-section over their entire length, i.e. including the gas vessels. The density of steel 

3 37.8 10 kg mpρ = ×  is inserted in Eq. (4.91). 

( )2 2 2p p am r t B H Hρ π= + + . (4.91) 

The dead fluid-mass, calculated in Table 4.4 and also listed in Table 4.5, is larger than the 

mass of piping system for TLCGD1 and TLCGD2; however for TLCGD3, it turns out to 

be smaller, see Table 4.5. The wall thickness and the estimated dead mass of the piping 

system are listed along with other key parameters for the three TLCGDs in Table 4.5. 

 

Table 4.5: Dimensioning of circular steel piping for TLCGDs. 

Description TLCGD1 TLCGD2 TLCGD3 

0 0h h n′ = , 1n =  [m], Table 4.4 13.76 15.80 12.23 

aH  [m], Table 4.4 3.020 2.632 1.111 

H [m], Table 4.4 1.65 1.75 0.50 



4.  Novel Base Isolation System 

119 
 

B [m], Table 4.4 8.4 10.8 8.0 

01.76p p′ = , 510− [N/m²], (4.83) 2.38 2.73 2.12 

 ( )maxabsp , 510−  [N/m²], Eq. (4.84) 2.64 2.99 2.20 

 maxgp , 510−  [N/m²], Eq. (4.85) 1.64 1.99 1.20 

Pipe diameter, 2r [mm], Table 4.4 737 612 266 

Wall thickness, t [mm], Eq. (4.79)  4.05 4.06 1.1 

Design wall thickness, t [mm] 5 5 5 

Piping mass, pm  [kg], Eq. (4.91), 

5mmt =  
1602 1467 366 

Dead fluid-mass, [kg], Table 4.4 2436 1804 105 

( ) 0min 0.67absp p p′′= = , 510− [N/m²] 0.902 1.041 0.802 

mingp , 510− [N/m²], Eq. (4.89) -0.1 0.04 -0.2 

Critical buckling pressure, crp  

510− [N/m²], Eq. (4.90) 
1.41 2.44 29.8 

Stability against buckling 0.1 1.41− �  0.04 2.44�  0.2 29.8− �

 

However, the final dimensions of cylindrical steel pipes must be changed according to 

their commercial availability. By considering the dead mass of the piping system, the 

peaks of resonance curves are slightly shifted towards lower frequencies. These 

reductions of the eigen frequencies are not considered in this dissertation except in the 

in-situ testing of the lab-model. Large parts of the piping system can possibly be 

incorporated in the structural carrying system, i.e. without contributing additional mass to 

the main system. 

4.5.2.6 Simulated results  

The base-isolated asymmetric building subjected to the ground excitation is simulated for 
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numerical investigations when novel base isolation system (i.e., SP units with sliding 

elements and the TLCGDs) is incorporated. 

(a) Modally isolated 2-DOF coupled system 

The dynamic response of the modally isolated 2-DOF coupled system (i.e., base-isolated 

building equipped with TLCGDs) subjected to horizontal ground excitation is determined 

numerically both in frequency and time domain. Modal tuning of each TLCGD is 

performed by applying Den Hartog’s optimization formulas, analogy between TMD and 

TLCGD understood. Further, the natural frequency and the damping ratio are optimized 

to render fine tuned TLCGDs on similar lines as described in sub-section 4.4 (i.e., 

minimization of performance index, Eq. (4.66)) but with the slight difference in defining 

the modal performance index jJ  for the modally isolated system under consideration; 

and 
T

Sj j jz q q⎡ ⎤= ⎣ ⎦
G � represents the main structure’s modal state-vector, j gj gb E a=

�
 is 

the excitation vector. In this simple case, fminsearch quickly finds the minimum of the 

modal scalar function jJ  of two variables, when substituting Den Hartog’s modal 

tuning parameters 0 j Aj Ajx ω ζ⎡ ⎤= ⎣ ⎦  as initial estimates. As a result of this optimization, 

the frequencies are slightly lowered whereas the damping ratios are significantly reduced.  

The modally approximated state equation (4.48) is solved for ( )jz tG  for a seismogram 

( )ga t (e.g., El Centro 1940 scaled to 0.32g acting close to the critical angle of incidence) 

for each mode 1, 2,3j = . Thus, the dynamic response in terms of generalized modal 

displacement jq  for modally isolated 2-DOF coupled system and the corresponding 

liquid stroke ju  in corresponding TLCGDs are determined. 

(i) Dynamic response with modally tuned TLCGD1: 

Considering TLCGD1, modally tuned to the fundamental mode and placed along the 

semi-diagonal of right portion of the asymmetric building’s plan, Fig. 4.19, and the 

frequency response function in terms of modal dynamic magnification factor both for the 

main system (i.e., base-isolated building) alone, Eq. (2.92), and for the modally isolated 
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2-DOF coupled TLCGD-fundamental mode system, Eq. (2.105), are plotted in Fig. 4.22. 

The maximum value of modal DMF1 for base-isolated building alone reaches to 100 as 

its structural damping is assumed to be 0.5%. The effective damping supplied by 

TLCGD1, approximated by 1 1max1 2eff DMFζ =  is about 4%. However, the shifting of 

the curve towards left is evidence of the dead fluid-mass of TLCGD1 added to the main 

system. 

 

 
Fig. 4.22: Modal dynamic magnification factor (DMF1) for base-isolated building alone 

and with TLCGD1 installed; the effective damping is increased from 0.5 to 4%. 

 

The gain in dB, shown in Fig. 4.23, as weighed sum ( )
2

1
i ij Sj

i
S z ω

=
∑  of the amplitude 

response function for the base-isolated building with TLCGD1 attached, ground 

acceleration at critical angle of incidence αcr1 =1250, confirms the effective damping and 

results are even improved by fine tuning of TLCGD1 in state-space domain. 
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Fig. 4.23: Weighed sum of amplitude response function for the base-isolated building 

with TLCGD1 attached and without any TLCGD, αcr1 =1250. 

 

The dynamic response in terms of modal displacement 1q  and the corresponding liquid 

stroke 1u  in TLCGD1 (with maximum value, 1max 0.81mu = ) are given over time in 

Fig. 4.24. 

 

 
Fig. 4.24: Time response under El Centro seismogram scaled to 0.32g, (a) Modal 

displacement q1 of base-isolated building (b) Liquid stroke u1 in TLCGD1. 

 

The approximate horizontal displacements of center of mass CM of the base-isolated 
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building are calculated by 1 1 11Mv q φ=  and 1 1 12Mw q φ=  and plotted in Fig. 4.25 for 

base-isolated building equipped with fine tuned TLCGD1 and without any TLCGD. And 

the approximate horizontal total accelerations (as fraction of g) of center of mass of 

base-isolated building are also illustrated in Fig. 4.26. 

 

 
Fig. 4.25: Approximate horizontal displacements of center of mass of base-isolated 

building under the action of El Centro seismogram scaled to 0.32g. 

 
Fig. 4.26: Approximate horizontal total acceleration (as fraction of g) of center of mass of 

base-isolated building under the action of El Centro seismogram scaled to 0.32g.  

 

(ii) Dynamic response with modally tuned TLCGD2: 

The results of the analogously modally isolated 2-DOF coupled system by considering 

TLCGD2 installed to the building, Fig. 4.19, subjected to same El Centro seismogram at 

critical angle of incidence 0
2 40crα = , are obtained on similar lines as discussed above 

for TLCGD1. 
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Fig. 4.27: Modal dynamic magnification factor (DMF2) for base-isolated building alone 

and with TLCGD2 installed; the effective damping is increased from 0.5 to 3.73%. 

 
Fig. 4.28: Weighed sum of amplitude response function for the base-isolated building 

with TLCGD2 attached and without any TLCGD, αcr2 = 400. 
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Fig. 4.29: Time response under El Centro seismogram scaled to 0.32g (a) Modal 

displacement q2 of base-isolated building (b) Liquid stroke u2 in TLCGD2, u2max = 0.77m. 

 
Fig. 4.30: Approximate horizontal displacements of center of mass of base-isolated 

building equipped with TLCGD2 under El Centro seismogram scaled to 0.32g. 

 
Fig. 4.31: Approximate horizontal total acceleration (as fraction of g) of center of mass of 

base-isolated building equipped with TLCGD2 under El Centro seismogram scaled to 
0.32g. 

 

(iii) Dynamic response with modally tuned TLCGD3: 

The results of the modally isolated 2-DOF coupled system by considering modally tuned 

TLCGD3 installed on the asymmetric building, Fig. 4.19, subjected to El Centro at 
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critical angle of incidence 0
3 125crα =  are also presented on similar lines as discussed 

above for TLCGD1 and TLCGD2.  

 

 
Fig. 4.32: Modal dynamic magnification factor (DMF3) for base-isolated building alone 

and with TLCGD3 installed; the effective damping is increased from 0.5 to 2.43%. 

 
Fig. 4.33: Weighed sum of amplitude response function for the base-isolated building 

with TLCGD3 attached and without any TLCGD, αcr3 = 1250. 
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Fig. 4.34: Time response under El Centro seismogram scaled to 0.32g (a) Modal 

displacement q3 of base-isolated building (b) Liquid stroke u3 in TLCGD3, u3max = 0.15m. 

 
Fig. 4.35: Approximate horizontal displacements of center of mass of base-isolated 

building equipped with TLCGD3 under El Centro seismogram scaled to 0.32g. 

 
Fig. 4.36: Approximate horizontal total acceleration (as fraction of g) of center of mass of 

base-isolated building equipped with TLCGD3 under El Centro seismogram scaled to 
0.32g. 

The beat phenomenon observed in the response, Fig. 4.34 is related to the inefficiency of 

the “linear” TLCGD when exposed to a dominating rotational oscillation. Substitution of 

a torsional TTLCGD, see Fu[4-17] or Fu-Ziegler[4-18] is recommended. However, excitation 

of mode 3 is rather small. 
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(b) Modally coupled 6-DOF system 

The equations of motion for three degree-of-freedom structure (e.g., 3-DOF asymmetric 

building) with three TLCGDs render 6-DOF modally coupled system. The equations of 

motion are preferably transformed to generalized coordinates such that the coupling is 

only by the control forces of the TLCGDs. Further, if required, such an approach 

conveniently allows modal truncation in larger multi-degree-of-freedom (MDOF) 

systems. 

The natural frequencies and the damping ratios are optimized for the sake of fine tuning 

of the TLCGDs by similar fashion as described in sub-section 4.4, i.e., by minimizing the 

performance index with the difference that 
TT T

Sz q q⎡ ⎤= ⎣ ⎦
G GG � represents the main 

structure’s state-vector. g gb E a=
G

�
 is the excitation vector. Here also, fminsearch of 

MATLAB[4-22] quickly finds the minimum of the scalar function J  of six variables, 

when substituting Den Hartog’s modal tuning parameters 

[ ]0 1 2 3 1 2 3, , ; , ,A A A A A Ax ω ω ω ζ ζ ζ=  as initial estimates. The optimization results in a 

slight decrease of the natural absorber frequencies whereas the damping coefficients of 

the fluid flow are significantly reduced.  

The weighed sum ( )
6

1
i Si

i
S z ω

=
∑ of the amplitude response function of building’s states 

for the original and optimized system is illustrated in Fig. 4.37. Thus, the frequency 

response of the base-isolated building with 3-TLCGDs (TLCGD1, TLCGD2 diagonal 

and TLCGD3 z-parallel; see Fig. 4.19) is tremendously reduced at resonant peaks, which 

confirm the effective damping supplied by TLCGDs. 
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Fig. 4.37: Weighed sum of amplitude response function for the base-isolated building 

with three TLCGDs attached and without TLCGDs, αcr =1250. 

 

The response in terms of horizontal displacements of MC  of the base-isolated building 

excited by El Centro seismogram scaled to 0.32g at critical angle of incidence 

0125crα =  is calculated by (4.92) and illustrated in Fig. 4.38. 

1 11 2 21 3 31Mv q q qφ φ φ= + + , 1 12 2 22 3 32Mw q q qφ φ φ= + + . (4.92) 

In addition, the horizontal total acceleration of MC  of the base-isolated building excited 

by El Centro seismogram scaled to 0.32g is calculated by (4.93), and illustrated in Fig. 

4.39. 

( )1 11 2 21 3 31 costy ga q q q aφ φ φ α= + + +�� �� �� , ( )1 12 2 22 3 32 sintz ga q q q aφ φ φ α= + + +�� �� ��  (4.93) 
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Fig. 4.38: Horizontal displacements of MC  of the base-isolated building forced by El 

Centro seismogram scaled to 0.32g. 

 

Fig. 4.39: Total horizontal acceleration of MC  of the base-isolated building forced by El 

Centro seismogram scaled to 0.32g. 

 

It is quite evident from Fig. 4.38 and Fig. 4.39 that vibration response of the base-isolated 

building is effectively damped by the fine tuned TLCGDs. It is also noted that all 

TLCGDs need several vibration cycles before they start to mitigate the structural 

vibrations. In other words, early peaks in the response of the base-isolated building are 

hardly affected by passive damping. This is because of the fact that TLCGD is a passive 

type damping device and unable to damp the early peaks. However, if necessary, these 

early peaks can be reduced by the application of actively controlled (with gas-pressure 

injections) tuned liquid column-gas dampers (ATLCGDs), for details, see Soong[4-27] and 

Hochrainer-Ziegler[4-19] for a hybrid actively controlled, ATLCGD. 

The resulting time response of the liquid strokes in each TLCGD is recorded in Fig. 4.40 

to Fig. 4.42. 
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Fig. 4.40: Liquid stroke in TLCGD1 under El Centro seismogram scaled to 0.32g. 

 

Fig. 4.41: Liquid stroke in TLCGD2 under El Centro seismogram scaled to 0.32g. 

 

Fig. 4.42: Liquid stroke in TLCGD3 under El Centro seismogram scaled to 0.32g. 
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The resulting time response of the liquid strokes in TLCGD3 is rather small but reflects 

the beat phenomenon as already observed for modally isolated system. So the torsional 

tuned liquid column-gas damper (TTLCGD) properly tuned to the corresponding mode, 

see again Fu[4-17] and Fu-Ziegler[4-18], would render even better results. However, since 

the contribution of third mode to the overall response is rather small, the TTLCGD is not 

further discussed within this dissertation. 
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5 Conclusions 

In my dissertation, a state-of-the-art novel base isolation system, - a combination of 

durable spring-pendulum (SP) units with compatible sliding elements (without 

continuous energy dissipation) and low-cost tuned liquid column-gas dampers (TLCGDs), 

- is presented to overcome some of the disadvantages of the conventional ones, e.g., by 

avoiding any lifetime problems. In addition, the effectiveness of the tuned liquid 

column-gas damper (TLCGD), tuned and optimally placed with respect to the 

fundamental mode of vibration of a laboratory scaled structural model (space frame), is 

experimentally verified in general horizontal motion. Many useful conclusions were 

obtained within the dissertation, which may be considered as guidelines for practical 

applications of the novel base isolation system. The main contributions and conclusions 

are summarized:  

• The novel base isolation system is functionally equivalent to a conventional one 

in extending structure’s time period (i.e. acting as a low-pass-filter) but with the 

additional advantageous features such as temperature-insensitivity, durability and 

maintenance-free long life. The properly designed compatible sliding elements 

not only supply the necessary static friction against wind load but also do not 

cause any continuous energy dissipation (abrasive friction) during the relative 

horizontal movement under seismic excitation. 

• With a selected natural mode of vibration of the isolated building considered 

(rendering the generalized two-degree-of-freedom (2-DOF) modally coupled 

TLCGD-main system), the modal tuning of the TLCGD is conveniently 

performed by taking advantage of the well-documented Den Hartog’s 

optimization formulas for tuning mechanical dampers, TMD, by means of a 

simple transformation. 

• The placement of the modally tuned TLCGDs becomes optimal with normal 
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distance to the modal centers of velocity maximum. Therefore, diagonally 

arranged TLCGD1 and TLCGD2 for the base-isolated asymmetric building is 

preferred because of their better performance than that of those placed parallel to 

the outer perimeter. However, portions of the piping system should be integrated 

in the structural carrying system, if at all possible. 

• Numerical simulations approve the novel base isolation system as a replacement 

of classical elastomeric bearings with or without sliding elements, and illustrate 

the effectiveness of TLCGDs to mitigate the seismically forced vibrations of the 

base-isolated asymmetric buildings with fairly small mass ratio assigned. 

• It is also noted that all TLCGDs need several vibration cycles before they start to 

mitigate the structural vibrations i.e., early peaks in the response of the 

base-isolated building are hardly affected by passive damping supplied by 

TLCGDs. However, if necessary, these early peaks can be reduced by the 

application of actively controlled (with gas-pressure injections) tuned liquid 

column-gas dampers (ATLCGDs). 

• For a laboratory scaled light-weight structural model, the static and modal 

properties are reasonably changed after the installation of TLCGD because of the 

added dead fluid-mass and mass of the piping system, comparable to the mass of 

the structural model, and hence lower its natural frequencies. Therefore, modal 

properties are updated for the exact tuning of the TLCGD. However, in real 

buildings, the dead mass is rather negligible when compared to the mass of the 

structure. 

• The laboratory experiments verify the tuning of TLCGD achieved by means of 

the gas-spring effect. It is also confirmed experimentally that “open TLCD” does 

not damp the vibrations of the structural model because the gas-spring effect 

vanishes, resulting in a detuned TLCD, and its effect is just that of the added dead 

mass. Therefore, only a TLCGD properly tuned with respect to frequency and less 

importance to damping of the fluid motion can serve the purpose effectively.
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