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Müsset im Naturbetrachten

Immer eins wie alles achten;

Nichts ist drinnen, nichts ist drauÿen;

Denn was innen, das ist auÿen.

So ergreifet, ohne Säumnis,

Heilig ö�entlich Geheimnis.

Goethe



Introduction and motivation

High-energy physics , elementary particle physics and the theory of fundamental interactions have always
been my strongest motivation to study physics. Some of the probably most fascinating questions of modern
physics lie within these disciplines. Here are just a view examples: What was the state of matter in our
universe shortly after the �Big-Bang�? What happened in the cooling process of the universe, leading to the
physical environment we experience today? What happens to matter within incredibly dense astrophysical
objects such as neutron stars? Of course, I am not going to address all these questions in detail , but many
of these aspects are closely related to the study of the QCD phase diagram, which is at the center of this
work. Practically all of the above questions can at least partially be answered through the very powerful
and intriguing concept of symmetries and a big part of this work will be devoted to their discussion.

Another strong motivation to participate in research in this speci�c area is given by its interdisciplinarity.
Despite obvious relations to astrophysics and nuclear physics we also �nd marked similarities to solid-state
physics. Most of the concepts used in the frame of this work, such as superconductivity or spontaneous
symmetry breaking even originate from solid-state physics. Finally, the key tool for the subsiding analysis
of the QCD phase diagram, the Ginzburg-Landau formalism was also primarily developed in order to study
typical quantities of solid state physics, such as magnetism or superconductivity of electrons. Additionally,
we require other theoretical tools such as statistical physics, or quantum-�eld theories, which underlines the
diversity of this �eld of studies. The Ginzburg-Landau formalism by itself has proved to be quite pedagogical
and instructive. All key features of the theory one wants to model have to be introduced to the Ginzburg-
Landau potential manually which is probably the most e�ective way to understand the physical properties
of a system.

At this point, I would like to express my deepest gratitude to my supervisor Andreas Schmitt, who invested
a considerable amount of time in answering my questions, dissolving misunderstandings and providing ideas
on how to solve upcoming problems. This way, I have learned a great deal not only about technical details
within certain calculations, but also about how to decompose a project into small steps and how to apply
reasonable simpli�cations to otherwise insuperable problems.

This work was carried out in cooperation with Andreas Schmitt (TU Vienna) and Motoi Tachibana (Saga
University). The main results have also been summarized in a paper which has been submitted to Phys.
Rev. D (arXiv:1010.4243 [hep-ph]).
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Chapter 1

Physical foundations

As indicated in the introduction, the study of the phase structure of strong interacting matter requires a
large variety of theoretical tools. The aim of this chapter is to provide a short introduction to some of them.
We begin by summarizing the most basic facts about Quantum Chromodynamics and thermal �eld theories.
However, our main focus are non perturbative concepts, such as chiral symmetry breaking we will discuss
them in some more detail. Special emphasis will be placed on symmetries and their breaking patterns.
Then, we discuss the ground state of high density quark matter as well as meson condensation in such a high
density system. At the end, we introduce the (speculative) phase diagram of Quantum Chromodynamics,
which embodies most of the physics discussed in this chapter. However, the most important tool for this
work, the Ginzburg-Landau formalism, will be discussed in the beginning of chapter 2.

1.1 Quantum Chromodynamics (QCD) in a nutshell

In this section, we quickly review the most basic properties of QCD which is an SU(3)color gauge theory
of strong interactions, embedded in the full symmetry group of the standard-model of particle physics
G = U(1)em ⊗ SU(2)weak ⊗ SU(3)color. The charges of the interacting particles (quarks) are given by the
colors red, green and blue, the interactions are mediated by (8) Gluons. The corresponding QCD-Lagrangian
is given by:

LQCD = −1
2
GµνG

µν + Ψ̄(iγµDµ −M)Ψ (1)

The �eld strengths are expressed by Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] and the covariant derivative by
Dµ = ∂µ − igAµ . g denotes the strong coupling constant, and Aµ are matrices in the Lie Algebra of the
gauge group of SU(NC) . Dirac indices are denoted by µ and ν. Since in QCD, the number of colors
NC = 3 , SU(3)C denotes the group of unitary NC ⊗NC=3 ⊗ 3 matrices with determinant 1 and dimension
Dim[SU(3)] = 32 − 1 = 8. We hence require 8 generators which ful�ll the following relations:

[Ta, Tb] = ifabcTc, T+
a = Ta, Tr[TaTb] =

1
2
δab, Ta =

λa
2

(2)

The matrices λa are given by the Gell-Mann matrices. We can now decompose the Gauge(Gluon) �elds and
�eld strenghts into:

Aµ = AaµTa, Gµν = GaµνTa, Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (3)

Additionally to introducing the gauge symmetry of SU(3)C , which is an exact symmetry of the QCD
Lagrangian, we also need to take into account di�erent quark �avors (up,down and strange). However, the
corresponding symmetry of SU(Nf ) is only approximately ful�lled for up down quarks, whereas the strange
quark is much heavier:

�avor mass [MeV
c2 ]

u 1.5...4.5
d 2.5...5.5
s 80...155
c 1.0...1.4 ·10³
b 4.0...4.4·10³
t 189.8...188.5·10³

Table1: Quark masses according to the Particle Data Book (PDB).
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Flavor symmetries are of fundamental interest for our work, and we will discuss them in some detail in
section 1.3. The explicit expression of the Lagrangian including fundamental color indices α,β , ad-joint
color index a and �avor indices i, j is then given by:

LQCD = −1
2
GaµνG

µν
a + Ψ̄α

i [iγµ(δαβ∂µ − igAaµTαβa )− δαβmi]Ψ
β
j (4)

From this Lagrangian, we can construct quark and gluon 2-point functions (propagators) as well as quark-
gluon and gluon-gluon vertices. Applying the path integral formalism, we can perform perturbative calcula-
tions using the generating functional,

〈
0
∣∣TAαµ(....)AβνΨ(.....)Ψ̄

∣∣ 0〉 =

´
D[AΨΨ̄ηη∗]Aαµ(....)AβνΨ(.....)Ψ̄

∑
N

(iSI)N

N ! exp(iS0)´
D[AΨΨ̄ηη∗]

∑
N

(iSI)N

N ! exp(iS0)
(5)

which also contains the ghost\anti-ghost contributions η and η∗ as a consequence of gauge �xing. Hence,
the full QCD Lagrangian is of the form L = LQCD + Lgauge−fix + Lghost and the corresponding action can
be divided in interacting and non-interacting parts which are denoted by S0 and SI in the above formula.
The interacting part now also contains additional gauge-ghost interactions. However, since we are not going
to perform perturbative QCD calculations in the frame of this work, we are not going to work out any more
explicit details. For our consideration much more interesting are non-perturbative e�ects in QCD which we
shall discuss in section 1.4.

1.2 QCD at �nite temperature T and chemical potential µ

We will now give a brief introduction to the basics tools of QCD at �nite T and µ, which we require for our
subsequent analysis of the phase diagram. The proper way to introduce a quark chemical potential into the
QCD Lagrangian is by treating it like a temporal component of a gauge �eld that couples to fermions:

LQCD = −1
2
GµνG

µν + Ψ̄(iγµDµ + γ0µ−m)Ψ (6)

However, we are not going to use the full QCD Lagrangian but rather an e�ective theory corresponding to
the speci�c region of the phase diagram we are interested in (which in our case will be the region of high
density or chemical potential). Probably the most central quantity in statistical physics is the partition
function, which in full glory in QCD is given by:

Z = Tr[e−β(Ĥ−µN̂)] = N

ˆ
DΨ̄DΨDAaµDηDη

+exp
ˆ
X

L (7)

where L denotes the QCD Lagrangian and η and η+ denote ghost �elds as discussed before. For our e�ective
theory we will need the corresponding expression for non interacting scalar �elds, which is given by:

Z = Tr[e−β(Ĥ−µN̂)] = N

ˆ
DΦexp

ˆ
X

L (8)

In both expressions, we abbreviated:
´
X

=
´ β

0
dτ
´
d3x , β = 1

T . The integration involving the square of the
conjugated momentum π of the Hamiltonian is Gaussian and gives an in�nite contribution, which is included
in N. At this point, since we later want to take into account meson condensation, we divide our scalar �eld
into a condensate and background �uctuations:

Φ→ 〈Φ〉+ Φ (9)
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Inserting this ansatz into the Lagrangian we want to consider, yields:

L = −U(Φ2) + L(2) + L(3) + L(4) + (...) (10)

.

U(Φ2)then denotes the tree level potential and L(i) higher order terms in the �uctuations (in case of a φ4

theory we would for example �nd �uctuations up to the fourth order). Neglecting these �uctuations and
considering a condensate, which does not depend on space time, the evaluation of the integral in the exponent
of Z becomes trivial:

´
X
→ V

T . (Keeping terms in the �uctuations would yield additional contributions
describing thermal agitations of the mesons). Using the partition function of a system, we can derive any
thermodynamic quantity. Since we will follow a Ginzburg Landau approach, we will be specially interested
in the grand canonical potential:

Ω = − 1
β

lnZ (11)

The energy density in our case is then simply given by:

Ω
V

= −L(Φ = 〈Φ〉) = U(Φ2) (12)

We will later explicitly evaluate this expression for the Lagrangian in a high density e�ective theory.

1.3 Symmetries in QCD

1.3.1 Gauge symmetry

The invariance of the QCD Lagrangian under SU(3)c transformations can be checked by applying:

Ψ→ UΨ, Aµ → UAµU
−1 +

i

g
U∂µU

−1, Gµν → UGµνU
−1, DµΨ→ UDµΨ (13)

Since gauge transformations are local, U ∈ SU(3) depends on space-time: U = U(~x, t). We will later
come back to gauge symmetries (or more precisely their breaking) when discussing the ground state of
superconductors.

1.3.2 Flavor symmetries

In the limit of high energies, quark masses are negligible and the QCD Lagrangian is invariant under the chiral
symmetry group, which can be characterized as follows: Quark �elds Ψ = [u, d, s, ....]T can be decomposed
into left handed and right handed �elds by using the corresponding projection operators:

Ψ = ΨL + ΨR = PLΨ + PRΨ (14)

PR =
1
2

(1 + γ5), PL =
1
2

(1− γ5), γ5 = iγ0γ1γ2γ3 (15)

which indeed satisfy the properties of projection operators:
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P 2
R,L = PR,L, P+

R,L = PR,L, PRPL = 0, PR + PL = 1 (16)

Using {γ5, γµ} = 0 we can now decompose the fermionic part of the QCD Lagrangian into:

LQCD = Ψ̄R(iγµDµ + γ0µ)ΨR + Ψ̄L(iγµDµ + γ0µ)ΨL − Ψ̄RMΨL − Ψ̄LMΨR (17)

M denotes the mass matrix and is given by M = diag(mu,md,ms) in case of three �avors.

Since mass terms obviously mix left and right handed �avors, chiral symmetry is explicitly broken by non
vanishing quark masses. One can formulate this statement in a more physical way: If chiral symmetry were
always conserved, we would expect, that any (strong interacting) particle comes with a chiral partner of
equal mass and opposite parity. However, these partner particles are not observed in nature. Hence the
QCD vacuum is of lower symmetry. We will now analyze this in more detail.

The full symmetry-group 3 �avor massless QCD is given by:

U(3)L ⊗ U(3)R = SU(3)L ⊗ SU(3)R ⊗ U(1)L ⊗ U(1)R (18)

In order to save the invariance of the mass term in the Lagrangian, we would need to set

U(3)L = U(3)R := U(3)R+L = U(3)V , mu = md = ms (19)

The �rst condition corresponds to a simultaneous rotation of left and right handed �avors in the same
direction and is referred to as vector-rotation. We now have:

Ψ̄Ψ = Ψ̄RU
+
V UV ΨL + Ψ̄LU

+
V UV ΨR = Ψ̄RΨL + Ψ̄LΨR = Ψ̄Ψ (20)

In case of di�erent masses for all �avors, mu 6= md 6= ms , even the vector symmetry becomes only an
approximate one. The only symmetry remaining is a separate U(1)V symmetry for each quark �avor. The
symmetry of vector transformations SU(3)V is often referred to as isospin and is, although being only
approximate, often used to describe the ordering mesons and baryons in corresponding isospin multiplets
1. In order to cover the entire group of U(3)L ⊗ U(3)R, we also need to take into account the axial-vector
symmetry, in which left handed and right handed �avors rotate in opposite directions. In total, we perform
a change of basis in �avor space, given by the following set of transformations:

V → L+R, A→ L−R (21)

SU(3)L ⊗ SU(3)R ⊗ U(1)L ⊗ U(1)R ≡ SU(3)V ⊗ SU(3)A ⊗ U(1)V ⊗ U(1)A (22)

We list all symmetry transformations and the corresponding Noether currents in table 2.

1More precisely, isospin is a SU(2) subgroup of SU(3). In principle we can pick out any two entries from the �avor vector u
d
s

 in order to construct an SU(2) sub algebra. In addition to isospin (u,d) there are also the sub algebras of U (u,s)

and V (d,s) -spin. It is clear that, taking into account the quark masses given in table (1), the isospin is the �best conserved�

symmetry (∆m
m

v 1%). The generators of isospin simply are T1 = λ1
2
, T2 = λ2

2
and T3 = λ3

2
or equivalently using ladder

operators: T3 and T± = (T1 ± iT2). Adding the hypercharge Y = 2√
3
T8 (consider that both, λ3 andλ8 are diagonal matrices

and hence commute), we can construct all multiplets within Y − T3 diagrams, which is the conventional way to illustrate
the ordering of hadrons. Using ladder operators then allows to reach all possible states within a multiplet. Each multiplet
represents states of �xed isospin and parity. The �avor structure of quark-anti-quark states (Mesons) can be decomposed as:
[3̄] ⊗ [3] = [8] ⊕ [1] and states consisting of three quarks (Baryons) as: ([3̄] ⊗ [3]) ⊗ [3] = ([10] ⊕ [8]) ⊕ ([8] ⊕ [1]). For a more
than complete analysis refer to [1].
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transformation Noether current symmetry

Ψ→ Ψ‘ = eiαΨ JµV,0 = Ψ̄γµΨ UV (1) vector
Ψ→ Ψ‘ = eiαaλaΨ JµV,a = Ψ̄γµλaΨ SUV (3) axial-vector
Ψ→ Ψ‘ = eiαγ5Ψ JµA,0 = Ψ̄γµγ5Ψ UA(1) vector

Ψ→ Ψ‘ = eiαaλaγ5Ψ JµA,a = Ψ̄γµγ5λaΨ SUA(3) axial-vector

Table 2: List of symmetry transformations in 3 �avor QCD.

JµV,a corresponds to the conservation of isospin, JµV,0 to the conservation of baryon number. The latter is
always an exact symmetry. Lets now investigate the axial-vector symmetry in more detail:

Mass terms explicitly break the axial-vector symmetry, even in the case of mu = md = ms, which is what we
expect since this explicit breaking through mass terms also occurs for an independent left and right handed
symmetry which is equivalent as indicated in equation (22). Since vector rotations are conserved in case of
mu = md = ms, the axial-vector part now has to cover this explicit breaking. To check this we set:

UR = UV UA, UL = UV U
+
A (23)

where we have explicitly used the fact, that vector symmetries a�ect left handed and right handed �elds in
the same way, whereas axial symmetries a�ect them in the opposite way. With these properties, we �nd:

UA = U+
V UR = U+

L UV (24)

Ψ̄LΨR → Ψ̄LULURΨR = Ψ̄LUAU
+
V UV UAΨR = Ψ̄LUAUAΨR (25)

Ψ̄RΨL → Ψ̄RU
+
RULΨL = Ψ̄RU

+
AU

+
V UV U

+
AΨL = Ψ̄RU

+
AU

+
AΨL (26)

which con�rms our assumption. Finally, even the axial U(1)A symmetry is broken down to the discrete
subgroup of ZA(6) through a quantum e�ect, although the corresponding symmetry transformation leaves
the Lagrangian invariant. Such a symmetry breaking is hence referred to as �anomalous� and was �rst
explained by t`Hooft by the use of instantons [2][3]. This e�ect becomes visible in the non conservation of
the singlet axial-current:

∂µJ
µ
0,A = −g

2Nf
16π2

GaµνG̃
µν
a (27)

where G̃µν = 1
2ε
µνρσGρσ denotes the dual �eld strength tensor. We summarize all results of this section in

the following diagram:

Figure 1: Schematic of symmetry breaking patterns. Spontaneous symmetry breaking di�ers essentially from the explicit

symmetry breaking discussed in this section and will be discussed later.
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1.4 Non perturbative aspects of QCD

1.4.1 Asymptotic freedom and Con�nement:

Probably the most striking feature of QCD is the fact, that the strength of the interaction between quarks
which is mediated by gluons approaches zero in the limit of high momentum transfer or small distances
[4][5]. Another way of characterizing this phenomenon is by introducing the concept of a running coupling
constant αQCD = α(q2) depending on the momentum transfer q. The �rst order approximation of αQCD is
then given by:

α(t) =
α

1− (απ )b1t
(28)

where t = 1
2 ln( q2

Λ2
QCD

) and α = α(t = 0).

ΛQCD denotes the QCD scale which is experimentally determined to be about 200MeV. The coe�cient b1
can be calculated perturbatively where one �nds b1 < 0, which re�ects asymptotic freedom (α(t) decreases
with increasing t), whereas b1 > 0 for example in the case of QED. (Extensive treatment of asymptotic
freedom in terms of renormalization-group theory can be found for example in [6][7]). Therefore we �nd the
usual screening-e�ect of electromagnetic forces in QED but anti-screening of color charges in QCD.

At low energies, quarks are hence strongly correlated and an additional experimental constraint is given
by the fact, that we observe only color-neutral hadrons (strong interacting particles), namely mesons and
baryons, in accelerator experiments. While mesons remain color neutral by pairing quarks and anti-quarks
such that colors are always combined with the respective anti-color, baryons consist of three quarks and
mix colors such that the resulting color is white (completely analogous to regular colors, where for example
the addition of red, green and blue yields white). The mechanism, that con�nes quarks into Mesons and
Baryons is still poorly understood and cannot be explained by perturbative means.

1.4.2 Spontaneous breaking of chiral symmetry

The extraordinary small mass of pions which is about 140MeV led to speculations whether mesons might
actually be Goldstone Bosons of chiral symmetry breaking. The Goldstone realization of symmetry breaking
di�ers essentially from the ones discussed in chapter 2. We shall categorize symmetry breaking in the frame
of this works as follows:

• explicit symmetry breaking: The symmetry is broken on the level of the Lagrangian. This scenario
was discussed in connection with the breaking of chiral symmetry through mass terms.

• anomalous symmetry breaking: The Lagrangian is invariant under a symmetry transformation, but
the symmetry is still broken due to quantum e�ects. This scenario was discussed in connection with
the symmetry of U(1)A.

• spontaneous symmetry breaking: The Lagrangian is invariant under a symmetry transformation, but
the ground state is not. In this case, the Goldstone-theorem tells us to expect Dim(H)-Dim(G) massless
Goldstone-particles where H and G are the symmetry groups of the Lagrangian and the ground state.

The spontaneous breaking of chiral symmetry is somewhat more complicated. Since, as discussed before,
chiral symmetry is only approximate, its breaking is a dynamical matter. The explicit breaking through
quark masses, even though very small, leads to small masses for the Goldstone bosons. Goldstone modes
with non vanishing masses are generally referred to as pseudo-Goldstone modes.
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We now have to determine the symmetry groups G and H. Spontaneous breaking of chiral symmetry is
induced by a condensate of the form

〈
Ψ̄LΨR

〉
and the corresponding symmetry-breaking pattern is given

by:

SU(3)L ⊗ SU(3)R ⊗ U(1)L ⊗ U(1)R → SU(3)L+R ⊗ U(1)L+R (29)

Consequently we �nd: Dim(H)=8+8 , Dim(G)=8 and Dim(H)-Dim(G)=8 in case of the breaking of SU(3),
as well as Dim(H)-Dim(G)=1 in case of U(1). The resulting 8+1 pseudo Goldstone-modes are given by the
meson nonet, where the η´ mode corresponds to the breaking of the chiral U(1) symmetry and is unusually
heavy due to the axial anomaly (see chapter 2). We can relate the non conservation of the axial current
discussed in chapter 2 to the small pion masses by considering

〈
0
∣∣Jk5µ(x)

∣∣πJ〉 = iδj,kfπpµe
−ipx , where j and

k denote isospin indices and fπ≈93 MeV is the pion decay constant (to simplify matters we have restricted
ourselves to chiral SU(2) here). From this ansatz, we can see that conservation of the axial current is only
possible in the case of vanishing pion masses:

〈
0
∣∣∂µJk5µ(x)

∣∣πJ〉 = δj,kfπp
µpµe

−ipx = δj,km
2
πe
−ipx (30)

The Meson nonet is conventionally illustrated within an Isospin-Hypercharge diagram:

Figure 2: The meson nonet in the Y-T3 plane. Mesons decompose into isospin multiplets according to [3]⊗ [3̄]→ [8]⊕ [1].

The SU(3) matrix, containing all these mesonic �elds θa, a ranging from 1 to 9, is given by:

U = eiθaλa/fπ (31)

with the meson �elds θa and Gell-Mann matrices λa. Rows of the exponent of this matrix carry left handed
�avor, while columns carry right handed anti-�avor. We can now easily read of the particle content (for
example π+ ∼ d̄u):

θaλa =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 −
√

2
3η

 (32)

An instructive e�ective model to study the spontaneous breaking of chiral symmetry in the simpli�ed case
of SU(2)L⊗SU(2)R is the so called linear-σmodel. In this model, the elementary �elds are provided by the
nucleon-doublets Ψ , a triplet pion �eld πi and a scalar �eld σ, all of which are massless and hence represent
�real� Goldstone-modes .
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The corresponding Lagrangian is given by :

L = Ψ̄(iγµ∂µ − gσ + i~τ~πγ5)Ψ +
1
2

(∂µσ∂µσ +
1
2
∂µ~π∂

µ~π +
µ2

2
(σ2 + π2)− λ

4
(σ2 + π2)2 (33)

where the e�ective potential V is represented by the last two terms and we can observe spontaneous symmetry
breaking for µ2 > 0 (see �gure 3). For more details see for example reference [7].

Figure 3: Illustration of the spontaneous breaking of chiral symmetry in the linear sigma model. The minimum of the potential

energy is �xed by σ2 + ~π2 = µ2

λ
which describes of sphere of degenerate massless ground states. If we introduce a linear shift

to the σ �elds σ → σ̄ = σ − v and plug this new �eld into the e�ective Lagrangian, we now �nd a mass term 2µ2σ̄2, whereas
the pion �eld remains exactly massless.(which is still not entirely true since pions are unusual light but not massless particles).
One illustrative way to understand this e�ect is to imagine, that the mexican-hat potential is now tilted on one side.

At the end of this chapter, we descirbe a chiral e�ective Lagrangian which is invariant under the symmetry
group G. As discussed before, we often rely on e�ective Lagrangians according to the speci�c energy scale
we want to consider. Low energy e�ective theories have been used with great success for example in nuclear
physics. At this energy scale we have to consider Mesons and Baryons rather than Quarks and Gluons. At
�rst sight, building a Lagrangian invariant under G seems not to be an appropriate choice in a low energy
regime, since nonzero quark masses break chiral symmetry. Nevertheless, quark masses are small compared
to the speci�c scale of chiral symmetry breaking 4πfπ v 1GeV and we can still consider chiral symmetry as
approximate. An e�ective Lagrangian is then given by [8]:

L =
f2
π

4
Tr[∂µU∂µU+] + cTr[M+U +MU+] + (.......) (34)

where we have neglected higher order mass terms. The trace is taken over �avor space. In such a low density
e�ective theory, one should also consider the existence of Baryons (which interact through the exchange of
mesons). Hence the full e�ective Lagrangian would be given by L = LMeson + LBaryon + Lint. A list of
all terms included in Lint would be rather lengthy and complicated, see for example [9]. However, in our
discussion of the phase diagram we will not include Baryons. We shall later also consider an high density
e�ective theory and compare it to the low density counterpart.
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1.5 High density quark matter

1.5.1 Superconductivity in high density quark-matter

We now turn to the region of large chemical potential µ. As mentioned already in the introduction, we expect
to �nd asymptotically free quarks, which are in a state of superconductivity. Due to asymptotic freedom,
superconductivity in high density quark matter can be understood theoretically from (perturbative) �rst
principle calculations. Before asking for the explicit ground state in this regime, we quickly review the
de�nition superconductivity, which is best given by Cooper's theorem. To that end, we consider a system of
fermions with a chemical potential µ and zero temperature,where the free energy is given by:

Ω = E − µN (35)

We can quickly check, that adding another fermion at the Fermi surface (which means with Efermion = µ)

does not change the overall energy of the system: Ω
′

= (E + µ) − µ(N + 1) = Ω. If we now add an
(however small) attractive interaction to the fermions, adding two fermions will automatically reduce the
free energy of the system, because the attractive interaction will lead to an energy gain from the binding
energy. The original Fermi surface will become unstable and a new ground state is formed which contains
pairs of fermions rather than single independent ones,and these fermion pairs can formally be viewed as
bosons (Note however, that the fermion-fermion correlations exists in momentum space, not in real space).
We are hence dealing with a Bose condensate.

This mechanism is general and holds true for any fermionic system. The only di�erence arises in the way
the attractive interaction is provided: In a solid state body, we need a complex mechanism of electron-
phonon interactions in order to observe superconductivity among electrons (direct Coulomb interaction
between electrons is repulsive), whereas in quark-matter the attractive force is simply given by single gluon
exchange. Applying this principle for example on neutrons, protons and quarks we expect to �nd super�uidity
(neutrons) as well as superconductivity. In the case of quarks we will have to be very careful in de�ning
superconductivity since we will not only have to deal with electric charges but also with color charges.

The �nite amount of energy, required to break Cooper pairs is given by an energy �gap� 4 which appears
in the single particle dispersion-relation:

ε =
√

(Ek − µ)2 +42, Ek =
√
k2 +m2 (36)

Setting 4 = 0 we �nd ε = ±(Ek−µ) which is the expected dispersion relation for particle/hole systems. As
we can see for large µ, quark matter will only contain quarks and no anti-quarks since the amount of energy
required to excite anti-quarks increases with µ, and we are hence looking for an attractive channel between
quarks.

As stated before, the energy gap4 in equation (36) can be computed from �rst principles in (asymptotically)
high density quark matter and is given by [9],[10]:

4 = 2bµexp(− 3π2

√
2g

), b = 256π4(
2

Nfg2
)5/2 (37)

However, a weak coupling calculation of 4 can strictly only be considered valid at chemical potentials of
the order of µ & 108MeV (whereas the most dense natural systems after black holes are compact stars,
which come with a quark chemical potential of the order of at most µ . 500MeV ). Since going from
a superconducting to a non-superconducting phase involves a phase transition, it must be related to the
breakdown of a symmetry. We will hence now investigate symmetries and breaking patterns of high density
quark matter.
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1.5.2 Basic properties of color-�avor-locked (CFL) quark matter

The Cooper pair order parameter, given by a quark-quark two point function 〈ΨΨ〉,obviously breaks color
symmetry SU(3)C spontaneously analogously to the way the transition to superconductivity of electrons,
which breaks U(1)em ,which justi�es the terminology of color superconductivity. We will now investigate
the color �avor structure of this condensate. As mentioned before, in the case of asymptotically free quarks,
the attractive interaction is provided by single gluon exchange. In terms of the color gauge group SU(3)C ,
quark-quark pairing is given by:

[3]C ⊗ [3]C = [3̄]AC ⊕ [6]SC (38)

At the left side, the quarks are given in their fundamental representation. The right side shows possible
channels for interactions: An antisymmetric anti-triplet channel, which is attractive, and a symmetric sextet
channel, which is repulsive and hence not of any interest. In the high density regime we can also consider
chiral symmetry to be restored and therefore �nd the same result for SU(3)f as for SU(3)C :

[3]L,R ⊗ [3]L,R = [3̄]AL,R ⊕ [6]SL,R (39)

Taking into account, that cooper pairing is preferred in the antisymmetric spin-0 channel and that the overall
wave function of the cooper pairs (spin+�avor+color) must be antisymmetric, we can conclude that also
the �avor structure of the condensate must be antisymmetric, which leads us to the following color-�avor
structure of the order parameter:

〈ΨΨ〉 ∈ [3̄]Ac ⊗ [3̄]Af (40)

More explicitly, we can now choose an antisymmetric basis for both indices and write:

〈
Ψα
i Cγ5Ψβ

j

〉
∝ εαβaεijbΦba (41)

On the left we have used the charge conjugation matrix C = iγ2γ0 in order to take care of the Dirac (spin)
degree of freedom. The 3× 3 matrix Φba on the right side now determines the speci�c color-�avor structure
within the given antisymmetric basis. From this ansatz, it becomes clear that we could in principle construct
many di�erent color superconducting phases by choosing di�erent structures for the matrices Φba. In some
phases, all tnine color/�avor combinations contribute to the condensation, in others (such as 2SC), one �avor
remains unpaired. We will now focus on color-�avor-locking (CFL) which can be shown to be the favored
ground state at high densities [11],[12],[13],[14]. The speci�c ansatz for Φba CFL is given by:

Φba = δba,
〈

Ψα
i Cγ5Ψβ

j

〉
∝ εαβaεija (42)

The resulting 9× 9 matrix is explicitly given by:

〈
Ψα
i Cγ5Ψβ

j

〉
∝



0 0 0 0 −1 0 0 0 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
−1 0 0 0 −1 0 0 0 0


(43)

We also can write this result by de�ning our antisymmetric basis as:

(Ja)αβ = −iεαβa, (Ib)ij = −iεijb (44)
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We then �nd the following compact relation:

〈
Ψα
i Cγ5Ψβ

j

〉
∝ ~J · ~I = i

 0 −I3 I2
I3 0 −I1
−I2 I1 0

 (45)

We label rows and columns with nine quarks in the following fashion: ru, rd,rs,gu,gd,gs,bu,bd,bs (where ru
denotes a red up quark etc) and can immediately read up all non vanishing pairings. As we can see, only
the following combinations are possible: ru-gu, bu-rs, bd-gs, ru-gd-bs

The corresponding quasi-particle dispersion relation is given by:

εk,r =
√

(k − µ)2 + λr42 (46)

By λr we denote the eigenvalues of the operator L = ( ~J ·~I)2 and by4 the expression for the superconducting
gap (37).

1.5.3 Chiral symmetry breaking in CFL

Having determined the speci�c color-�avor structure of the CFL order parameter, we need to investigate the
pattern of the induced symmetry breaking. In this respect it is necessary to apply symmetry transformations
on the generators J and I as follows:

JAIA → (UJAU)(V IAV T ) (47)

U and V are the corresponding SU(3) color and �avor transformations, explicitly: U = eiΦ
C
a Ta , V = eiΦ

f
aTa .

We now have:

(UαβεβγAUTγδ)(VijεijAV
T
kl ) = UαβU

T
γδVijV

T
kl (δβjδγk − δβkδγj) = UαjU

T
kδVijV

T
kl − UαkUTjδVijV Tkl (48)

Demanding invariance, we have to choose U and V such that the right hand side of the above equation is
equal to δβjδγk − δβkδγj . Rearranging U and V we �nd:

UαjU
T
kδVijV

T
kl − UαkUTjδVijV Tkl = UαjV

T
jiUδkV

T
kl − UαkV TklUδjV Tji (49)

which yields the desired result in case of V = U∗. We are also later going to make use of the explicit structure
of φaTa, given by:

φaTa =
1
2

 φ3 + 1√
3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8

 (50)

Hence, for any real matrix element (φaTa)Rei,j we have V ≡ U whereas for imaginary elements (φaTa)Imi,j
we need V = U∗. The CFL diquark condensate breaks chiral, color and baryon conservation symmetries
according to:

SU(3)C ⊗ SU(3)L ⊗ SU(3)R ⊗ U(1)B → SU(3)L+R+C ⊗ Z(2) (51)

where Z(2) denotes a discrete subgroup of U(1). In this pattern we have already neglected the group
ofUA(1), which is broken anyway due to the axial anomaly. Regarding chiral symmetry, this breaking
pattern is exactly the same as in a low density nuclear matter regime where chiral symmetry breaking is
induced by a condensate of the form

〈
Ψ̄RΨL

〉
rather then 〈ΨLΨL〉 or 〈ΨRΨR〉. The fundamental di�erence
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is given by the color degree of freedom: In order to leave the order parameter invariant, a color-rotation has
to be compensated by equal right and left handed rotations.

This motivates the declaration of �color-�avor-locking�. We will now brie�y summarize the most important
consequences of the above breaking pattern:

- Due to spontaneous chiral symmetry breaking, we expect to �nd an octet of Goldstone modes in analogy
to the breaking induced by

〈
Ψ̄RΨL

〉
. Especially at lower densities, where we the e�ect of strange quarks

increases, we expect kaon condensation.

- The gauge group SU(3)c is completely broken. Since spontaneous breakdown of a gauge symmetry leads
to masses for the gauge bosons, we expect to �nd Meissner masses for all 8 gluons (just like the photon
acquires a Meissner mass due to the breaking of U(1)em).

- The breakdown of baryon conservation number U(1)B ,which is always an exact symmetry of QCD(even at
lower densities), gives rise to one massless Goldstone mode and CFL becomes a super-�uid.

1.5.4 Kaon condensation in CFL

In the same way the chiral �eld U was embedded in an e�ective theory in equation (34), we can now set up
an high density e�ective theory around a new chiral �eld Σ. In this case, Σ is explicitly given by

Σ =
d+
LdR
d2

, ε U(3) (52)

By dL,R we denote the diquark two-point functions 〈ΨR,LΨR,L〉 with the symmetry properties discussed in
the last section. Σ contains nine degrees of freedom, one of which is usually ignored since it corresponds to η´

particle, which is relatively heavy due to the anomalous breaking of U(1)A. We can identify the 8 remaining
mesons with the meson octet also obtained for nuclear matter in �gure(2). Both meson �elds are very
similar, in particular they posses the same quantum numbers. However, we have to consider one essential
di�erence: While a �regular� meson is composed of a quark-anti-quark pair, CFL mesons are composed
of two diquarks (which means two fermions and two fermion-holes). The neutral kaon K0 for example is
composed of K0 ∝ s̄d while the CFL counterpart is given by K̃0 ∝ ūs̄du. From this we can deduce the
following equivalences:

 u
d
s

→
 d̄s̄

ūs̄
ūd̄

 (53)

which re�ects the antisymmetric anti-triplet representation of diquark condensates, discussed before. A
meson in this sense will di�er signi�cantly in mass and also decay constants will have to be recalculated:
The �normal� mass ordering given by mu < md < ms is now replaced by mdms > mums > mumd which
means, that also the mass ordering of the Goldstone modes has to be rearranged. In particular, the neutral
kaon is now lighter than the neutral pion since we now �nd:

�normal mesons�: mπo ∝ (mu +md) mK0 ∝ (ms +md) → mπ0 < mK0

�CFL mesons�: m2
π0 ∝ (mdms +mums) m2

K0 ∝ (mumd +mums) → mπ0 > mK0

A more detailed analysis of the inverse mass ordering is given in [14]. A complete evaluation of the mass-
term is lengthy and given in appendix [1]. In our analysis of meson condensation in CFL we will restrict
ourselves to neutral kaons for the following reasons:

1. Charged mesons would require the presence of electrons or positrons to establish electric neutrality,
which disfavors charged condensates.

2. If we go down from asymptotically high densities to lower densities, we expect the e�ects of the
strange quark mass to be come important. The system is then expected to react by developing a
meson condensates. The neutral kaon is the lightest particle to produce an e�ective chemical potential
proportional to m2

s. (see for example reference [14] , [15] ,[16]).

3. The η‘ particle is ignored in this analysis, since it is very heavy due to the explicit breaking of U(1)A.
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Formally, restricting ourselves to neutral kaons means setting all �elds except for the kaon �elds in (32)
equal to zero (the structure is of course the same as in (50)):

Q = φaλa =

 0 0 φ4 − iφ5

0 0 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 0

 (54)

Using [9]:

cosQ = 1− Q2

φ2
(1− cosφ), sinQ =

Q

Φ
sinφ, φ =

√
φ2

4 + φ2
5 + φ2

6 + φ2
7 (55)

and restricting ourselves to neutral Kaons (φ4 = φ5 = 0), we �nd:

Σ =

 1 0 0
0 cosφ isinφ
0 isinφ cosφ

 (56)

A nonzero φ introduces a relative rotation between left- and right-handed diquarks. This rotation does not
change the energy of the CFL ground state in the symmetric case of vanishing quark masses. Only with
nonzero quark masses the energy is changed and a meson condensate becomes possible. The �elds φ6 and
φ7 appear in the exponent of the unitary matrix Σ = eiQ = cosQ + isinQ . We can now use this result to
introduce kaon condensation in a high density e�ective theory.

1.5.5 High density e�ective theory

A high density equivalent to the chiral e�ective Lagrangian introduced in (1.4.2) is for example provided in
[16],[18]. The e�ective Lagrangian for the chiral �eld Σ is given by:

Leff =
f2
π

4
Tr[∇0Σ∇0Σ+ − v2

π∂iΣ∂iΣ
+] +B[MΣ+ +M+Σ] +

af2
π

2
detM Tr[M−1(Σ + Σ+)] (57)

Weak-coupling calculations give the following values for the constants [16]:

f2
π =

21− 8 ln 2
18

µ2
q

2π2
, v2

π =
1
3
, a =

3∆2

π2f2
π

, B = c

(
3
√

2π
g

∆
µ2
q

2π2

)2(
8π2

g2

)6 Λ9
QCD

µ12
q

(58)

Here, µq is the quark chemical potential, ∆ the superconducting gap parameter, c ' 0.155, g the strong
coupling constant, and ΛQCD the QCD scale factor. An important contribution to the e�ective Lagrangian
is given by promoting the time derivatives to covariant derivatives:

∇0Σ ≡ ∂0Σ + i[A,Σ] , A ≡ −MM+

2µq
(59)

Inserting this expression into the Lagrangian, and evaluating as discussed in chapter (1.2), where we use
(56) for the chiral �eld and diag(mu,md,ms) for the quark masses, we �nd:

V (φ) = −f
2
π

2
µ2 sin2 φ+ f2

πm
2
K0(1− cosφ) (60)
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Here, µ denotes the kaon chemical potential:

µ2 = (
m2
s −m2

d

2pf
)2 (61)

and the e�ective kaon mass squared is given by:

m2
K0 ≡

2B(md +ms)
f2
π

+ amu(ms +md) (62)

In equation (60) we have already subtracted the vacuum contribution V(0). The kaon mass squared receives
an instanton contribution linear in the quark masses and a contribution quadratic in the quark masses. In
the weak-coupling limit at very high densities,µq � ΛQCD, the instanton contribution is negligible since
U(1)A is e�ectively restored. In this case the term M−1detM becomes dominant and the inverse meson
mass ordering discussed before has to be taken into account.

1.6 The QCD phase-diagram

The following �gure illustrates the speculative outline of the QCD phase diagram:

Figure (4): Speculative outline of the QCD phase-diagram taken from reference [13]. The di�erent phases are introduced below.

Besides heavy ion collisions, also neutron stars [20] are a valuable test ground for dense matter. An introduction into dense matter in

compact stars and observable constraints can be taken for example from reference [9].

Quantum Chromodynamics at �nite temperature T and chemical potential µ has a rich phase structure
[19]. In principle, in a phase diagram one compares the ground states of all available phases and assigns
the one with the lowest energy to the corresponding areas in a T- µ plane. However, in QCD this process
is further complicated due to (de)con�nement. In many cases, it is crucial to understand whether a phase-
transition takes place before or after con�nement sets in since some phases explicitly exist only in a con�ned
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or decon�ned state. Where exactly this transition line to con�nement is located in a T- µ plane , and whether
it really is a phase transition is still unknown and subject to intense research. However, reliable results from
lattice-QCD predict, that in case of vanishing µ no real phase transition takes place when we move upwards
along the T-axis. In other words, a (speculative) phase-transition line separating decon�ned quark matter
from con�ned quark matter has to end at a critical point, probably located somewhere near the T-axis. The
chiral phase transition in our Ginzburg-Landau calculations also re�ects this fact, as we will demonstrate in
chapter (2.3). Unfortunately, lattice calculations are limited to regions of very small µ due to a numerical
issue referred to as the �sign problem�.

In cold low-density matter, a Nambu-Goldstone (NG) phase is realized by breaking of chiral symmetry
through condensation of quark-anti-quark pairs whereas for high T these condensates �melt� away and a
quark-gluon plasma (QGP) of asymptotically free quarks and gluons is realized. This transition from NG
to QGP is currently investigated with the help of ultra-relativistic heavy ion collisions for example at RHIC
(Relativistic Heavy Ion Collider) or LHC (Large Hadron Collider). In the case of high µ on the other hand
we �nd color-�avor-locked (CFL) quark matter. This state of matter, in which quarks form cooper pairs and
become superconducting can be investigated using �rst principle (perturbative) calculations since we are in
an asymptotically free region of the phase diagram (see section1.5.1). In case of low density nuclear matter
on the other hand, a variety of e�ective theories and su�cient experimental data is available. Hence the
most challenging task lies in determining the phase structure in between. Many di�erent approaches to this
density region have been pursued. One possibility is to perform calculation within a density regime, that is
well under theoretical control and then extrapolate this results up or down to the intermediate density region.
Another possibility would be to use an e�ective model speci�cally designed to re�ect the physical properties
of intermediate densities in QCD, such as the NJL model. Our Ginzburg-Landau approach however will be
quite di�erent as argued at the beginning of the next chapter.

Besides determining phase transition lines, another interesting question can be investigated within the QCD
phase diagram: The fact, that chiral symmetry breaking is also realized in CFL in principle allows for the
intriguing possibility of a quark-hadron continuity [21]. Such a continuity is possible if hadronic matter is
properly �prepared� by a series of phase transitions, including transitions to hyperonic matter and hyperon
super�uids [22]. Looking from the opposite point of view we can start with high density quark matter and
study the e�ect of increasing strange quark masses once we decrease the density. This increase of ms will
impose a stress on the highly symmetric pairing pattern of CFL and it was shown that the �rst reaction on
this stress is the development of a kaon condensate (see section 1.5.4). Also other pairing patterns, which
do not break chiral symmetry may occur (in the frame of this work we will consider 2SC). Only if such a
phase does not appear before con�nement sets in, a smooth quark hadron crossover is possible.
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Chapter 2

Phase diagrams in a Ginzburg-Landau model

In the frame of this work, we model the QCD phase structure in a very simpli�ed fashion. The �rst
simpli�cation is the use of a Ginzburg-Landau free energy. We assign speci�c order parameters to the
phases we want to analyze and expand the free energy in terms of these order-parameters up to a certain
order. Hence, we have to take into account, that strictly speaking our results are only valid in an area
close to second order phase transitions, where the order-parameter is small. The order parameters we
are going to consider are a chiral condensate corresponding to the Nambu-Goldstone (NG) phase and a
diquark condensate corresponding the the CFL phase, which we later enhance by equipping it with a meson
condensate. We will of course not only consider these pure phases but also take into coexistence of both
order parameters. Our modeling of the phase structure for increasing chemical potential µ is obviously
relatively crude since we have nuclear matter on one hand and CFL matter on the other. Other phases
that might appear in between and are necessary to properly �prepare� nuclear matter such, that a smooth
quark hadron crossover is possible will not be taken into account in this approach. In this frame, we shall
instead ask the question, whether it is possible for the chiral condensate to approach zero smoothly, i.e.,
without causing an additional phase transition. In [23], it was shown, that this is indeed possible in the
case of vanishing strange quark masses. As we shall later argue in more detail, the presence of an U(1)A
violating term (representing the e�ect of the axial anomaly) which couples diquark and chiral condensates
is crucial for the existence of this crossover since it induces a critical point, where a �rst order transition
line, located within the coexistence phase, ends. In the other extreme case of in�nite large strange quark
mass, we do not �nd such a critical end point. However, since the real world lies somewhere in between, a
�rst step towards a more realistic phase diagram is to introduce a nonzero but �nite strange quark mass,
which is demonstrated in chapter (2.3). In the next step, we take into account that CFL breaks chiral
symmetry spontaneously, which leads to the octet of pseudo Goldstone-modes, discussed in chapter (1.5.4).
As we have shown there, the lightest CFL meson is the neutral kaon, and it was hence suggested, that
neutral kaons form a Bose condensate in the presence of a nonzero strange quark mass [16]. The resulting
phases have be termed CFL−K0 and COE−K0([24]-[27]) and their interplay with the other phases,taken
into account in our Ginzburg-Landau phase diagram will be discussed in chapter (2.4). We should keep in
mind however, that by extrapolating down from ultra high densities, meson masses squared are not only
represented by a term quadratic in quark masses but also by a linear term which corresponds to the anomaly
and is suppressed in the domain of asymptotically large µ . In order words, allowing for U(1)A violating
terms in the Ginzburg-Landau potential, we might have to take into account potentially large corrections to
the meson masses and we can only speculate, that the neutral kaon still remains the lightest meson.

The following chapters are organized as follows: We �rst set up the full Ginzburg-Landau potential including
additional mass terms and kaon condensate. Then we review the evaluation of this potential for the case of
ms = 0 and vanishing kaon condensate according to [23]. The next step will be to analyze the impact of
ms 6= 0 on the phase diagram before we �nally �switch on� kaon condensation. At the end of this section we
will also discuss the appearance of the 2SC phase due to mass corrections in the Ginzburg-Landau potential.

A few �nal remarks on the Ginzburg-Landau approach are in order: After this introductionary discussion,
one might think that this Ginzburg-Landau approach does not give any �real� answers, since we have to cover
an incredibly large (14-dimensional!) parameter space. Within this space, the �real word� lies on a hyper-
surface which is recovered by calculating all coe�cients in our expansion of the Ginzburg-Landau potential
as a function of T and µ. This could be done within an e�ective theory, such as the NJL model. But looking
on this matter from a reversed point of view, we can also state that, by systematically scanning the entire
parameter space, we could in principle list all possible scenarios (topologies of the phase diagram). We will
however see, that such a systematic scanning is only possible by applying simpli�cations, which reduce the
set of parameters, which have to be taken into account. The great strength of our approach now lies in
the model-independence: Any Ginzburg-Landau potential only depends on the symmetries of the phases we
want to consider, whereas for example the validity of a NJL calculations depends on validity of the model
itself, which is still in dispute. The results we �nd are thus purely qualitative, but model-independent.
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2.1 The Ginzburg-Landau potential

2.1.1 Order parameters

We are interested in a Ginzburg-Landau potential for the chiral and diquark condensates, including a neutral
kaon condensate and corrections from the strange quark mass. based on references[23],[28]-[31]. The �nal
result of this section is equation (104), and the following pages are devoted to the derivation of this equation.
We shall consider a Ginzburg-Landau free energy of the following form:

Ω = ΩΦ + Ωd + ΩΦd (63)

with a chiral part ΩΦ depending only on the chiral condensate Φ, a diquark part depending only on the
diquark condensates dL and dR (which in turn depend on the kaon condensate) and an interaction part
ΩΦd which couples Φ with dL and dR. In terms of left- and right-handed quark �elds qL and qR we have〈
q̄αRiq

α
Lj

〉
∝ Φji and

〈
qαLiCq

β
Lj

〉
∝ −εαβAεijB [d+

L ]AB ,
〈
qαRiCq

β
Rj

〉
∝ εαβAεijB [d+

R]AB , with �avor indices i, j, B,

color indices α, β,A, and the charge conjugation matrix C = iγ2γ0 as discussed in section (1.5.2). Since we
consider a three-�avor system,Φ, dL, and dR are 3× 3 matrices.

The quark �elds transform under the symmetry group G ≡ SU(3)c × SU(3)L × SU(3)R × U(1)B × U(1)A
as:

qL → eiαBe−iαAVLU qL (64)

qR → eiαBeiαAVRU qR (65)

where (VL, VR) ∈ SU(3)L × SU(3)R is a chiral transformation,U ∈ SU(3)c is a color gauge transformation,
eiαB ∈ U(1)B is a transformation associated with baryon number conservation, and eiαA ∈ U(1)A is an axial
transformation. In terms of left- and right-handed U(1) transformations we have qL → eiαLqL, qR → eiαRqR
and the vector and axial U(1) transformations follow from αB = (αR + αL)/2, αA = (αR − αL)/2 , see
also section (1.3). Eventually, our potential will not be invariant under the full group G. The chiral group
SU(3)L×SU(3)R and the axial U(1)A become approximate symmetries after including the e�ects of a small
strange quark mass and the QCD axial anomaly, respectively. Since the anomaly breaks U(1)A down to a
discrete subgroup ZA(6) we will include terms in the potential that are invariant only under ZA(6), and not
under the full U(1)A. We now have to �nd transformation properties for the order parameters. In case of
the chiral condensate, we immediately �nd:

Φ→ e−2iαAVLΦV +
R (66)

In case of the diquark condensate, we have to consider transformations of the (antisymmetric) color and
�avor basis, which are given by [dAB ]+ → (UJAUT )(V IBV T )[dAB ]+. The expressions (UJAU) and (V IBV T )
can now be written in terms of matrix multiplications [32]:

UJAU → U+
AiJ

i, V IBV → V +
BjI

j (67)

Consequently, we �nd:

[dAB ]+ → U+
AiJ

iV +
BjIj [d

A
B ]+ (68)

[dAB ]→ [dAB ](VBjIj)(J iUTiA) (69)

Hence, the full transformation properties of diquark �elds are given by:

dAB → V dUT (70)
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.

More explicitly, in the case of left and right handed diquark �elds, we have:

dL → e2iαBe−2iαAVLdLU
T (71)

dR → e2iαBe2iαAVRdRU
T (72)

The mass terms are generated by the �eld

M =

 mu 0 0
0 md 0
0 0 ms

 , (73)

which transforms under G in the same way as the chiral �eld Φ, M → e−2iαAVLM V +
R . Although we shall

write down the Ginzburg-Landau terms with general quark masses mu, md, ms, we shall later neglect the
up and down quark masses and only keep the strange quark mass. Our ansatz for the order parameters is
as follows. The chiral �eld is given by:

Φ =

 σu 0 0
0 σd 0
0 0 σs

 . (74)

We shall derive the potential Ω within this general ansatz, but later set for simplicity σu = σd = σs. Di�erent
values for each quark �avor are more realistic in the presence of a strange quark mass and a kaon condensate.
However, this would introduce additional independent parameters into our potential, making a systematic
evaluation very complicated. Therefore, we shall use the symmetric case as a simpli�cation.

For the diquark condensate and the diquark chiral �eld we use the ansatz discussed in chapter (1.5.4):

dL = d†R = d

 1 0 0
0 cos(φ/2) i sin(φ/2)
0 i sin(φ/2) cos(φ/2)

 , Σ =
dLd

+
R

d2

 1 0 0
0 cosφ isinφ
0 isinφ cosφ

 (75)

where φ is the kaon condensate. For φ = 0 we recover the pure CFL order parameter dL = dR = diag(d, d, d).
Note however, that while dL and dR are gauge variant quantities, Σ is gauge invariant. Therefore, our ansatz
is one of in�nitely many choices for dL and dR - all related by gauge transformations. The �eld Σ transforms
under G as:

dLd
†
R → e−4iαAVLdLd

†
RV

+
R . (76)

This is the same transformation property as the ordinary chiral �eld Φ, except for the transformations under
U(1)A. This di�erence re�ects the fact that in CFL the mesons are composed of four quarks, not two.

2.1.2 Chiral potential

We can now derive the explicit form of the potential Ω and we start with the chiral part ΩΦ . We collect all
terms up to fourth combined order in M and Φ with at most one power in the mass �eld M . The terms of
O(M0) which are invariant under G are:

Tr[Φ+Φ] = σ2
u + σ2

d + σ2
s (77)

(Tr[Φ+Φ])2 = (σ2
u + σ2

d + σ2
s)2 (78)

Tr[(Φ+Φ)2] = σ4
u + σ4

d + σ4
s (79)

If we do not require the potential to be invariant under U(1)A, we have the additional term [34]:

det Φ + h.c. ∝ εabcεijkΦaiΦbjΦck + h.c. = 12σuσdσs (80)
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Because of det Φ→ e−6iαAdet Φ , this term is only invariant under the discrete subgroup ZA(6) ⊂ U(1)A, as
expected from the anomaly. Microscopically, det Φ accounts for an e�ective six-point instanton vertex which
converts three left-handed quarks into three right-handed quarks, thus violating axial charge conservation
by an amount 2Nf = 6.

The terms of order O(M1) arise from replacing one chiral �eld Φ by the mass �eld M in each of the above
O(M0) terms. We obtain:

Tr[MΦ+] + h.c. = 2(muσu +mdσd +msσs) (81)

Tr[MΦ+]Tr[ΦΦ+] + h.c. = 2(muσu +mdσd +msσs)(σ2
u + σ2

d + σ2
s) (82)

Tr[MΦΦ+Φ] + h.c. = 2(muσ
3
u +mdσ

3
d +msσ

3
s) (83)

εijkεabcMaiΦbjΦck + h.c. = 4(σuσdms + σuσsmd + σdσsmu) (84)

We can now add all these contributions, each coming with a separate prefactor and obtain the chiral potential.
Approximating mu ' md ' 0 and setting for simplicity σu = σd = σs ≡ σ, we can write the potential as

ΩΦ = a0msσ +
a1 +msa2

2
σ2 +

c1 +msc2
3

σ3 +
b

4
σ4 . (85)

In the given approximation, ms gives rise to a linear term in σ and yields corrections to the quadratic and
cubic terms. Because of the linear term, the chiral condensate cannot vanish exactly in the ground state.
Instead of a vacuum phase with σ = 0 there will be a phase with very small σ where chiral symmetry is
approximately restored and which is continuously connected to the chirally broken phase in which σ has a
sizable value. This is the most obvious consequence of the mass term. Due to the coupling of chiral and
diquark condensates, to be discussed in section (2.1.4), we shall �nd other, less obvious, e�ects of the linear
term for our phase diagram. These e�ects are discussed in section (2.3)

2.1.3 Diquark potential

For the diquark potential Ωd we also start from the terms up to O(d4), �rst without mass insertions. Within
our CFL-K0 ansatz they simply yield the structures d2 and d4 since the kaon condensate always drops out:

Tr[dLd+
L ] = Tr[dRd+

R] = 3d2 (86)

(Tr[dLd+
L ])2 = (Tr[dRd+

R])2 = (Tr[dLd+
L ])(Tr[dRd+

R]) = 9d4 (87)

Tr[(dLd+
L)2] = Tr[(dRd+

R)2] = Tr[(dRd+
LdLd

+
R] = 3d4 (88)

All these terms are invariant under the full group G. There is no such term as det dL,R since this term
would not only break U(1)A but also baryon number conservation which must not be explicitly broken. To
include the e�ect of quark masses, we need to replace dLd

+
R by M . From the above equations, the only

possible term (except for a term constant in dL, dR which we can omit) is

Tr[d+
LMdR] + h.c. = 2d2[mu + (md +ms) cosφ] . (89)

This term is invariant under ZA(6) ⊂ U(1)A and thus is allowed in the presence of the anomaly. Other
O(M1) terms arise from replacing one chiral �eld dLd

+
R in the O(d6) terms. They all yield the same

structure and are invariant under ZA(6):

Tr[d+
LMdRd

+
RdR] + h.c. = 2d4 [mu + (md +ms) cosφ] (90)

Tr[d+
LMdRd

+
LdL] + h.c. = 2d4 [mu + (md +ms) cosφ] (91)

Tr[d+
LMdR]Tr[d+

RdR] + h.c. = 6d4 [mu + (md +ms) cosφ] (92)

Tr[d+
LMdR]Tr[d+

LdL] + h.c. = 6d4 [mu + (md +ms) cosφ] (93)

So far the only structure we have produced for the kaon condensate is cosφ. If we were to stop here, the
minimization of Ωd would not allow for nontrivial condensates. This would be in contradiction to high-
density calculations. Therefore we need to include at least one extra term with nontrivial structure in φ.
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To �nd the term providing this non trivial structure, we turn to the discussion of the high density e�ective
theory in section (1.5.5). We �rst notice, that the term linear in the masses in the e�ective Lagrangian (57)
corresponds to the term (89) introduced above. However, the kaon mass, given by equation (62) also includes
a term quadratic in the quark masses (which is dominant in high density regions), which we will not cover
in our potential since it wont reproduce the desired non-trivial structure in φ. Including terms coming from
the covariant derivatives (59), we �nd a non trivial contribution ∝ µ2sin2φ which also contains the square
kaon chemical potential (62) and hence is of the order O(M4) . This term is crucial for kaon condensation to
occur as one can check by expanding V (φ) in equation (60) up to the order of φ4 to reproduce the potential
of an ordinary φ4- model. The resulting φ2 term becomes negative only for µ > mK0 in which case a nonzero
value of φ minimizes the potential. We thus conclude that the critical strange quark mass for the onset of

kaon condensation scales at high density as ms ∼ m
1/3
u ∆2/3. At this point, it might seem inconsistent to

drop terms quadratic in the mass but keep terms O(M4) . We justify this by arguing, that this term can
become comparable to the O(M2) terms [16] and introduces a qualitatively new structure to our Ginzburg-
Landau potential. In other words, terms O(M2) would simply provide corrections to the Ginzburg-Landau
coe�cients ∝ d2 and ∝ d4(which will not introduce any qualitative changes in the phase diagram as we shall
argue later). We hence include the following term:

Tr[[MM+, dLd
+
R][M+M,dRd

+
L ]] = −2d4(m2

d −m2
s)

2 sin2 φ . (94)

and assume -guided by the high density results- that the coe�cient in front of this term is large enough to
compensate for the suppression of the quark masses.

We can now collect all diquark terms and set mu ' md ' 0 to write the diquark potential as

Ωd =
α1 + α2ms cosφ

2
d2 +

β1 + β2ms cosφ− µ2 sin2 φ

4
d4 , (95)

where we have written the prefactor of the term ∝ sin2φ as µ2, reminiscent of the e�ective kaon chemical
potential of the e�ective theory.

2.1.4 Interaction potential

For the interaction potential ΩΦd, the term of lowest order in the order parameters is

Tr[dRd+
LΦ] + h.c. = 2d2[σu + (σd + σs) cosφ] . (96)

This term is anomalous since it is not invariant under U(1)A. Without kaon condensate it has already been
considered in [23]. We see that, in contrast to the pure diquark terms, the kaon condensate appears even in
the absence of a strange quark mass. Including one more power in Φ yields the following terms which are
invariant under the full symmetry group G:

Tr[dLd+
LΦΦ+] = Tr[dRd+

RΦΦ+] = d2(σ2
u + σ2

d + σ2
s) (97)

Tr[dLd+
L + dRd

+
R]Tr[Φ+Φ] = d2(σ2

u + σ2
d + σ2

s) (98)

DetΦTr[dLd+
RΦ−1] + h.c. = 2[σdσs + σu(σd + σs)cosφ] (99)

We include mass terms up to O(M1), which arise from replacing a chiral �eld Φ in the above expressions
(obviously, replacing a �eld dLd

+
R in these terms does not yield interaction terms):

Tr[dLd+
LMΦ] + h.c. = 2d2(muσu +mdσd +msσs) (100)

Tr[dLd+
L + dRd

+
R]Tr[M+Φ] + h.c. = 12d2(muσu +mdσd +msσs) (101)

εabcεijkMaiΦbj(dLd+
R)ck = 2d2{mdσs +msσd + [mu(σd + σs) + σu(md +ms)] cosφ} (102)

Estimates of the prefactor of the d2σ2 term suggest this contribution to be negligible [23]. We shall thus
focus only on the d2σ terms, as it was done for the three-�avor case in reference [23]. Then, collecting the
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terms and again setting mu ' md ' 0, σu = σd = σs ≡ σ, the most general form of the interaction potential
can be written as

ΩΦd = −
[
γ

1 + 2 cosφ
3

+ms(γ1 + γ2 cosφ)
]
d2σ (103)

For φ = ms = 0 we recover the interaction term −γd2σ from reference [23].

2.1.5 Complete Potential

We can now put the contributions of sections (2.1.2-2.1.4) together to obtain the full Ginzburg-Landau
potential, including mass corrections and the meson condensate in the approximations discussed above,

Ω = a0msσ +
a1 +msa2

2
σ2 +

c1 +msc2
3

σ3 +
b

4
σ4

+
α1 + α2ms cosφ

2
d2 +

β1 + β2ms cosφ− µ2 sin2 φ

4
d4

−
[
γ

1 + 2 cosφ
3

+ms(γ1 + γ2 cosφ)
]
d2σ (104)

Equipped with this Potential, we will now try to systematically analyze the phase structure resulting from
the interplay between chiral and diquark condensates including the e�ects of axial anomaly, strange quark
mass and kaon condensation. The dynamics of this interplay are given by the stationary equations:

∂Ω
∂σ

=
∂Ω
∂d

=
∂Ω
∂φ

= 0 (105)

As written in the full potential (104), there are 14 independent parameters. This is too unwieldy for a
systematic study and therefore we shall work in several limit cases in the subsequent sections. In the next
section we start with the case of a vanishing quark masses and kaon condensate. We are reproducing the
results from reference [23], which can be considered the ground work for all our advanced studies.
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2.2 Vanishing quark masses and meson condensate.

In the limit case of vanishing quark masses and meson condensate, we have to consider the following potential:

Ω(σ, d) =
a

2
σ2 − c

3
σ3 +

b

4
σ4 +

α

2
d2 +

β

4
d4 − γd2σ . (106)

Note, that a term linear in σ is proportional to ms and hence vanishes completely for ms = 0. Changes
in the sign of a and α drive the phase transitions. We shall hence use these variables as key parameters
(axes of the phase diagram). Before going into the details of the evaluation of the phase structure, we
review constraints on the parameters of equation (106) provided in reference [23]. We shall also rely on these
constraints through the remainder of this chapter.

• We assume b to be positive. However, b may change sign as a function of T and µ in which case the
above potential would become unstable. We are then forced to introduce a term proportional to σ6

and an additional coe�cient f > 0, but qualitative phase structure of three massless �avors is not
in�uenced by this.

• we assume β to be always positive as expected from e�ective theories and weak coupling QCD

• terms ∝ d2σ as well as ∝ σ3 are both originating from the axial anomaly. Their corresponding
coe�cients c and γ are microscopically related. In particular, they come with the same sign and order
of magnitude. The coe�cients c and γ are then both considered positive.

With these conditions in mind, we can now minimize the potential and ask for the corresponding ground
state. We now have to distinguish between four possible cases:

1. Normal (NOR) phase: σ = 0 and d = 0. The only phase completely invariant under the group G which
physically corresponds to Quark-Gluon Plasma (QGP).

2. CSC phase: σ = 0 but d 6= 0. Pure CFL color superconductor. Looking at equation (106) we �nd,
that it is impossible to realize d 6= 0 if σ = 0 and CFL is only approximately realized.

3. NG phase: d = 0 but σ 6= 0.

4. Coexistence (COE) phase: σ 6= 0 and d 6= 0. A color superconductor on the CFL phase with non
vanishing chiral condensate.

The stationary equations are:

∂Ω
∂d

= 2d(
α

2
+
β

2
d2 − γσ) = 0 (107)

∂Ω
∂σ

= aσ − cσ2 + bσ3 − γd2 = 0 (108)

For the determination of the ground state it is useful to also consider the second derivatives. The Hessian
matrix of Ω(d, σ) is

H =


∂2Ω
∂σ2

∂2Ω
∂σ∂d

∂2Ω
∂d∂σ

∂2Ω
∂d2

 =

(
a− 2cσ + 3bσ2 −2γd

−2γd α+ 3βd2 − 2γσ

)
. (109)

For a solution to be a local minimum, the Hessian, evaluated at this solution, must have positive eigenvalues.
If the potential is bounded from below � which is guaranteed by b, β > 0 � the solution with the lowest free
energy yields the ground state, i.e., the global minimum, unambiguously. In other words, if we �nd a
stationary point of the potential with a negative eigenvalue of its Hessian, then we must also have found
another stationary point with lower free energy. Since the potential is bounded from below, the stationary
point with lowest free energy must have a positive de�nite Hessian. Consequently, the second derivatives
are strictly speaking not necessary for a stability check. We shall however, use them to determine phase
transition lines in a relatively simple way by using the eigenvalues of the Hessian (see appendix [2]).
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2.2.1 Nambu Goldstone phase

In the case of the Nambu Goldstone phase, the �rst stationary equation (107) is automatically ful�lled since
d=0. The second equation yields

σ =
c

2b
±
√

c2

4b2
− a, σ = 0 (110)

σ = 0 leads to the normal phase and is not of any interest right now. We can now use the stability criterion
of the Hessian discussed above. The Hessian in the case of a vanishing diquark condensate is given by:

H(d = 0) =

(
a− 2cσ + 3bσ2 0

0 α− 2γσ

)
(111)

leading to the following set of conditions for a and α:

a > 2cσ + 3bσ2 (112)

α > 2γσ (113)

We can use the second inequality to �nd a phase transition line exactly when α = 2γσ(a)min where σ(a)min
is given by equation (110). The two possible solutions then are:

α =
γ

b
(c±

√
c2 − 4ba) (114)

Additionally using (112) we can restrict ourselves to the positive sign in (114). We will review all phase
transition in terms of symmetries in chapter (2.2.3). Next we turn to the transition between NG and NOR
phase. Here we can make use of the fact, that the coupling γ is irrelevant, since d vanishes in both phases.
We then demand ΩNG = ΩNOR = 0 at the potential minimum and �nd:

a =
2c2

9b
(115)

2.2.2 Coexistence and approximate CFL phase

It remains to determine interplay of the COE and the (approximate) CFL phase as well as transition between
the COE and the NOR phase. The latter is the hardest task and the transition line can partially only be
determined by a numerical approach. For more details on numerics, refer to appendix 2. First, we express
σ = σ(d) and �nd:

ΩCoe(σ(d), d) = Ω0 +
α∗

2
d2 +

β∗

4
d4 (116)

where just as in the opposite case before, α∗ and β∗are expressions of the old parameters set α, β, γ, a, b, c .
This expression is equivalent to the potential of an Ising ferromagnet in case of β∗ > 0. We are especially
interested in the explicit form of the coe�cient α∗ , since changes in this coe�cient lead to a phase transition
in case of the given potential (116):

α∗ =
βα

32γ6
(4bγ2α2 − 8cαγ3 + 16aγ4) (117)

At the same time,β∗, given by β∗ = β
32γ6 (12bγ2α2 − 16cγ3α + 16aγ4 − 32γ

6

β must not be negative. The
condition α∗ = 0 obviously also implies α = 0 which partly represents the phase transition line to the NOR
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phase we were looking for. The remaining two solutions for α in (117) lead back to the solutions (110) we
have already obtained. However, one di�culty here is given by the fact that in case of the COE phase, both
condensates have to coexist at the same time, and hence we have an additional constraint d(σ) ε R. This
condition sets in at the borderline between COE and NOR phase and we hence have to numerically ask,
which phase represents the ground state in agreement with this additional constraint. We �nd, that the
straight line of the �rst order phase transition in the COE phase (see text below and �gure 7) terminates at
the intersection with the second-order line and then continues as a nontrivial, non-straight, curve.

For the analysis of the inner structure of the coexistence phase, we eliminate d in equation (107) instead of
σ which yields d = 0 or d2 = ( 2

β )(γσ − α
2 ). Inserting the d 6= 0 solution into the potential, we �nd:

ΩCOE(σ, d(σ)) = −α
2

4β
+ γ∗σ +

a∗

2
σ2 − c

3
σ3 +

b

4
σ4 (118)

where we have abbreviated:

γ∗ =
αγ

β
, a∗ = a− 2

γ2

β
(119)

Solving for the stationary equation ∂Ω
∂σ = 0 now involves solving a cubic equation in σ . Although this

can in principle be done analytically, it is very hard to extract information out of these lengthy solutions.
Solutions to cubic equations will play a key role also in the following sections. We shall therefore follow two
approaches:

• we introduce a linear shift to the σ �elds by setting σ → τ = σ− c
(3b) . This will not only eliminate the

σ3 term but also allow for some important analytical observations such as the existence of a critical
point as we will demonstrate below.

• we will numerically produce phase diagrams in order to gain information even from those regions,
which are to complicated to be treated analytically. The agreement of our analytical and numerical
results provides a valuable check of both approaches ( Appendix [2])

The shifting of the �elds in σ results in a new form of the potential:

ΩCOE(τ) = Ωc + γ∗c τ +
a∗c
2
τ2 +

b

4
τ4 (120)

with:

Ωc = − β

4γ2
γ∗2 +

c

3b
γ∗ +

c2

18b2
a∗ − c4

108b3
(121)

γ∗c = γ∗ +
c

3b
a∗ − 2c3

27b2
(122)

a∗c = a∗ − c2

3b
(123)

We again exploit the analogy to solid state physics, where an equivalent system is given by an Ising ferromag-
net in an external magnetic �eld. We therefore expect the existence of a critical point at which a �rst order
phase transition line ends, just as in the case of ferromagnetism. In order to understand this phenomenon,
we consider �gure(5) below. We have divided the entire phase space into regions where the linear or the
quadratic term is smaller or bigger than zero. By looking at the shape of the potential Ω(τ) we �nd that by
crossing the line at which the linear term vanishes, the order parameter τ jumps discontinuously between

τ = ±
√
−a∗c
b . However, if we also happen to cross the line at which the quadratic term in τ vanishes, we

see that there is no more jump of the order parameter but a smooth transition. Hence we �nd cross-over
instead of a real phase transition for this region. Qualitatively, the existence of such a critical point can be
understood in terms of residual symmetries, determined by the e�ect of the axial anomaly. We will discuss
this issue in more detail in the next section.
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Figure (5): Illustration of the appearance of a critical point for a free energy with a linear, quadratic, and positive quartic term in the
order parameter, such as in equation (120). The coe�cients in front of the linear and the quadratic term change their sign across the
two straight lines. For a negative quadratic term there is a �rst-order phase transition, indicated by the thick solid line. This line ends
at the critical point at which both linear and quadratic terms vanish. Across the dashed lines there is no phase transition. This implies
that one can smoothly connect two nontrivial minima of the potential by �going around� the �rst order line. In our context, these two
phases are the COE phase and the (approximate) CFL phase.

Setting γ∗c = a∗c = 0, we �nd the position of the critical point in our a− α plane:

Pc = (
c2

3b
+

2γ2

β
,− βc3

27γb2
) (124)

and the �rst order line, determined by γ∗c = 0 is given by:

α = − βc

3γb
a+

2γc
3b

+
2βc3

27γb2
(125)

This situation is illustrated in �gure (6):

Figure(6): �rst order phase transition line (thick solid line) and critical point in the (a, α) plane within the COE phase. This critical

point in the COE phase is present only due to instanton e�ects and vanishes from the phase diagram for γ = 0, as we shall explain

below.
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It is obvious that the critical point is a consequence of the anomaly: if the anomalous term vanishes,γ = 0,
the critical point disappears from the phase diagram because its α coordinate goes to −∞ or +∞, depending

on the sign of c3

27b2 (while its a coordinate remains �nite). This leaves a �rst order phase transition between
the COE and the CFL phase, while for γ > 0 there is a crossover between the COE and the approximate
CFL phase. We shall discuss both scenarios in terms of symmetries in the next section and end this one by
summarizing all analytical and numerical results of the previous two sections in �gure (7):
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b

Γ c - c2 - 4 a b

b

2 c2

9 b
-

c Β a

3 b Γ
+

2 c3 Β

27 b2 Γ
+

2 c Γ

3 b

numerics

0.00 0.02 0.04 0.06 0.08 0.10

-0.10

-0.05

0.00

0.05

0.10

0.15

a

Α

NOR
NG

COE

0.00 0.02 0.04 0.06 0.08 0.10

-0.10

-0.05

0.00

0.05

0.10

0.15

a

Α

Figure(7):Left panel: Analytical curves and shape of the resulting phase diagram (thick black lines). The only region, which cannot

be determined by analytical means is located in between the α = 0 and α = γ
b (c+

√
c2 − 4ba). From our analytical analysis, one

could have expected the straight �rst-order line to be present wherever the γ∗c = 0 line lives in the COE region. The reason for this

di�erent behavior is the condition d εR. In terms of the schematic potentials of �gure (5), the �rst order line separates two nontrivial

minima. Here, for positive α, the second minimum is forbidden since it would imply d2 < 0. Consequently, upon crossing the line

γ∗c = 0 the ground state remains in the same local minimum although, if one had ignored the condition d2 > 0, there would have be a

second local minimum with lower free energy. Right panel: Phase diagram and corresponding phases. Here the dashed lines represent

second order transitions, whereas a thick black lines represents a �rst order transition. In order to simplify our diagrams, we will not

include analytical lines in the following chapters but refer to the discussion in the Appendix [A2].

2.2.3 Symmetries of the phase diagram

Before we extend our model by including e�ects of the strange quark mass and meson condensation, we
review the last chapter and try to gain a deeper qualitative insight by analyzing the symmetries of all phases
involved. In �gure (8),we compare two di�erent scenarios: One where we set the coe�cient γ equal to zero,
and one where we leave it non-zero. Since γ corresponds to the only interaction term in our approximation,
the chiral and diquark parts of the free energy decouple, resulting in a very simple phase diagram (left panel).
In this phase diagram COE and CFL phases are separated by a �rst order line which does not end at a
critical point (vertical solid line).

As indicated in �gure(8), the symmetries of COE and CFL are di�erent without the anomaly. In other
words, adding a chiral condensate to the CFL phase changes the (discrete) symmetries of the phase. This
can be seen from the transformation properties of the order parameters in equations (66) and (67). The
chiral condensate Φ = diag(σ, σ, σ) and the CFL diquark condensate spontaneously break the chiral group
SU(3)L ⊗ SU(3)R down to the vector subgroup of simultaneous left- and right-handed rotations SU(3)V .
From equation (66) we see, that any chiral condensate is also invariant under U(1)B transformations and
under transformations of an axial subgroup ZA(2). However, this ZA(2) is contained in U(1)B . To see this
it is helpful to consider the group U(1)L ⊗ U(1)R as a topological space, in this case a torus, on which the
discrete subgroups are sets of discrete points. We show this geometric picture in �gure(9), which illustrates
and facilitates the discussion of the discrete subgroups, in particular since we switch repeatedly between the
bases of left- and right-handed rotations vs. axial and vector rotations, which can be confusing without this
illustration.
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Figure (8): Phase diagrams in the (a, α) plane without strange quark mass e�ects and without meson condensation, without (left

panel) and with (right panel) anomalous e�ects. First-order phase transition lines are solid, second-order lines are dashed. For each

phase we have indicated its global symmetries. They explain why the �rst-order phase transition line does not (left) and does (right)

end at a critical point (see below for a detailed discussion). The vertical (�rst-order) phase transition line separating NG from NOR

(left and right) and COE from CFL (left) is located at a = 2c2/(9b). We have set the Ginzburg-Landau parameters to b = 1.2,

c = 0.5, β = 1.6 for both plots, and γ = 0 (left), γ = 0.1 (right). This particular choice is completely irrelevant for the topology of the

left plot. For the right plot, one slightly di�erent topology can be obtained in a di�erent class of parameter values, where the phase

transition between NG and COE is of �rst order along a certain piece of the transition line, see right panel of Fig. 2 in reference [23].
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Figure (9): Diagram (left): topological space of U(1)L ⊗ U(1)R with generators αL, αR ∈ [0, 2π]. Opposite sides of the square have to

be identi�ed (in particular, all four corners of the square correspond to the unit element). The resulting torus can also be parametrized

by αB = (αR + αL)/2 ∈ [0, 2π] and αA = (αR − αL)/2 ∈ [−π, π]. Table (right): symmetries of the free energy Ω and the NG, COE,

and CFL phases without and with axial anomaly. Thick (red) lines and points indicate group elements under which the free energy and

the respective phases are invariant. For instance, in the �rst row, the points for the COE phase are obtained as the common subset

of the points of the NG and CFL phases (and all sets of points are subsets of the points for Ω). Only with anomaly, i.e., only after

restricting the symmetry of Ω from U(1)L ⊗ U(1)R to U(1)B × ZA(6), the symmetries of COE and CFL are identical, allowing for a

smooth crossover between these two phases.

In contrast to the chiral condensate, the diquark condensates dL, dR break U(1)B spontaneously. Hence
there must be a true phase transition separating the NG and NOR phases from the COE and CFL phases.
This statement is independent of the anomaly. The anomaly becomes important for the di�erence between
COE and CFL phases. In the absence of instanton e�ects, the diquark condensates are invariant under
independent sign �ips of left- and right-handed quark �elds, ZL(2)⊗ZR(2). This discrete group is broken by
the chiral condensate; therefore, the COE phase, containing both order parameters, is only invariant under
the common subgroup of U(1)B and ZL(2)⊗ ZR(2). This is the group of simultaneous sign �ips, Z(2). As
a result, without axial anomaly COE and CFL have di�erent residual symmetry groups, see �rst row of the
table in �gure (9).
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The anomaly reduces the axial symmetry U(1)A of the potential to ZA(6), see �gure 1. The group U(1)B ×
ZA(6) is represented in the �rst panel of the second row in �gure (9). The anomaly does not a�ect the
residual group of the NG phase. However, the residual group of the CFL phase is reduced since only
Z(2) ⊂ ZL(2)×ZR(2), not the entire group ZL(2)⊗ZR(2), is a subgroup of U(1)B ×ZA(6), as can be seen
geometrically in �gure (9) . Therefore, if instanton e�ects are taken into account, CFL is invariant only
under the group of simultaneous sign �ips Z(2). Now the addition of the chiral condensate does not further
reduce this group, and the residual groups of COE and CFL become identical, see second row of �gure (9).
This allows for a smooth crossover between these two phases, and thus the �rst-order line between COE and
(approximate) CFL can end at a critical point. This expectation from symmetry arguments is borne out in
the Ginzburg-Landau phase diagram, see right panel of �gure(8). This diagram will serve as a basis for our
extensions in the following.

2.3 Mass e�ect without meson condensate

The next systematic step is to include non-zero mass terms as discussed in sections (2.1.2 - 2.1.4) while
still �switching o�� kaon condensation by setting φ = 0. We can rely on most of the results gained in the
previous section, however some interesting and important new results can be worked out. For vanishing kaon
condensate, all mass terms except for the linear σ term are simply numerical corrections to the Ginzburg-
Landau parameters. We thus absorb these mass terms into new overall prefactors. This reduces the number
of independent parameters and does not change the results qualitatively (as before, we do not attempt do
determine the complete quantitative e�ect of the strange quark mass in the full parameter space). Then we
can write the potential (104) as:

Ω(σ, d) = a0σ +
a

2
σ2 − c

3
σ3 +

b

4
σ4 +

α

2
d2 +

β

4
d4 − γd2σ (126)

Since linear terms have a profound impact on the phase structure, we are no more able to base our analysis
on the variation of the coe�cients a and α, but also need to consider variations in a0. These parameters
shall be varied without further constraints. The resulting phase diagram would hence in principle be 3
dimensional. In order to illustrate our results in a relatively simple way, we continue to describe our phase
diagrams with an (a, α) plane by cutting through the 3 dimensional space at several �xed values of a0. For
notational convenience we have absorbed the factor ms into the de�nition of a0. We then reproduce the
known results of �gure (7) for the special case a0 = 0. We shall see that several analytical arguments used
in the massless case regarding phase transitions and critical points can be used repeatedly also for the more
complicated cases. For the complete evaluation of the phase diagram, however, we need to employ numerical
calculations.

We now have the following two stationary equations:

∂Ω
∂d

= a0 + aσ − cσ2 + bσ3 − γd2 = 0 (127)

∂Ω
∂σ

= αd+ βd3 − 2γdσ = 0 (128)

The Hessian remains independent of a0 and hence is still given by (109).

2.3.1 Nambu Goldstone Phase

The most important di�erence to the case discussed before lies within the fact, that now in the general case
of a0 6= 0 the NOR phase does no longer exist (we can think of it as the limiting case of a0 → 0). The
quadratic equation determining σmin (116) is now replaced by a cubic one (see equation (127) and set d
equal to zero). As in the case of section (2.2), we also �nd a (semi) analytical curve at the phase boundary
to the COE phase, see appendix[2].
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We can follow the same procedure as in the last section and introduce a linear shift σ → τ = σ − c
(3b) only

this time for the analysis of the NG phase and �nd:

ΩNG(τ) = Ω0 + a∗0τ +
ac
2
τ2 +

b

4
τ4 (129)

with the following abbreviations:

Ω0 ≡
a0c

3b
+

ac2

18b2
− c4

108b3
(130)

a∗0 ≡ a0 +
ac

3b
− 2c3

27b2
(131)

ac ≡ a−
c2

3b
(132)

The cubic equation then simpli�es to
a∗0 + acτ + bτ3 = 0 (133)

We now know, that the intersection of the lines determined by a∗0 = 0 and ac = 0 represents a critical point
at which a �rst order phase transition line ends. As we can �nd from equations (132), the resulting crossover

between NG and (approximate) NOR phase sets in beyond a critical value for a0 = − c3

27b2 . In other words,
if we plot phase diagrams in the (a, α) plane for �xed values of a0, this �rst order line should be absent for

all a0 < − c3

27b2 . In an (a, α) plane, we will rather see a critical vertical line instead of a critical point (which
is given in a (a, a0) plane). This observation is also con�rmed by lattice QCD, where it was discovered, that
the phase transition to Quark Gluon Plasma ( which corresponds to the maximally symmetrical phase, or
NOR phase in our terminology) at µ = 0 is indeed a smooth cross-over. Our inclusion of mass terms makes
the GL ansatz compatible with these lattice results. We hence also gain a small glimpse on where to place
the temperature axis in a speculative translation of our diagram into (T, µ) space (see section 2.3.3). Since
also the coexistence phase still ends at critical point (see next section), we can conclude, that the only phase
transition line, which does not end at any point is in between the COE and NG phase. The positions of
both critical end points are given in �gure (10).
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Figure (10): Left panel: �rst order phase transition line (thick solid line) and critical point in the (a, a0) plane within the NG phase.
The plot shows the coordinates of the critical point and of the intersections of the lines a∗0 = 0, ac = 0 with the coordinate axes. Since
the NG phase is given by the chiral potential ΩΦ only, the coordinates depend on the Ginzburg-Landau coe�cients b and c, and not on
α, β, and γ. In the three-dimensional (a0, a, α) diagram, the critical point thus becomes a critical line parallel to the α-axis where a
�rst-order phase transition surface ends. Right panel: analogous scenario for the COE phase in the (a, α) plane (note di�erent vertical
axes of the two plots!), derived from the potential (129).
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2.3.2 Coexistence and CFL Phase

Due to the appearance of the constant term in stationary equation (127) it now is in principle possible to
�nd a �pure� CFL phase (d 6= 0 and σ = 0 at the same time). The diquark condensate then becomes:

d2 =
a0

γ
(134)

Since we require d2 > 0, a CFL phase is possible in case of a0 > 0. Then, the �rst stationary equation (127)
yields a constraint for the parameters:

α = −a0
β

γ
(135)

For given a0, this is simply a straight line in the (a, α) space, where σ vanishes. This line is of no particular
interest and we obtain it as a limit case of the COE phase. Both, the NOR and CFL phases exist in a two
dimensional subspace of our three dimensional (a, α, a0) parameter space as they appear as straight lines in
an (a, a0) and (a, α)plane. Anyway this shouldn't be too surprising if we consider, that this results only from
the way we choose to plot our phase diagrams. In a (T, µ) diagram, they can still exist within an area of
�nite extension. In the following discussion we will stick to the three phases we have considered throughout
the last sections. We now turn to the coexistence phase.

After inserting d(σ) (with d(σ) εR ) into the potential (126) we �nd:

ΩCOE[σ, d2(σ)] = −α
2

4β
+ (a0 + γ∗)σ +

a∗

2
σ2 − c

3
σ3 +

b

4
σ4 (136)

where a∗ and γ∗ are given by (119). In terms of the shifted �eld τ we have:

ΩCOE(τ) =
a0c

3b
+ Ωc + (a0 + γ∗c )τ +

a∗c
2
τ2 +

b

4
τ4 (137)

with

Ωc ≡ −α
2

4β
+
γ∗c

3b
+
a∗c2

18b2
− c4

108b3
(138)

γ∗c ≡ γ∗ +
a∗c

3b
− 2c3

27b2
(139)

a∗c ≡ a∗ − c2

3b
(140)

All a0's are written explicitly. A nonzero a0 gives additional contributions to the constant and linear terms
in τ . All other terms are identical to the massless case (remember that we have absorbed the mass terms in
the overall coe�cients unless they have produced new structures in the order parameters). The stationary
equation is thus

a0 + γ∗c + a∗cτ + bτ3 = 0 (141)

Again we can determine the transition line for the �rst-order transition within the COE phase and the
corresponding critical point. We show the coordinates of this line in the right panel of �gure (10) . Besides
the disappearance of the critical line between NG and approximate NOR phases (and deformations of the
transition lines which do not change the topology of the phase diagram and thus are not very interesting for
our purpose) there is one more topological change upon varying a0: For su�ciently small values of a0, the
�rst-order line within the COE phase disappears and the phase diagram in the (a, α) plane consists of a sole
second-order transition separating NG and COE phases. We can check this by considering the coordinates
of the critical point in �gure (10): Decreasing a0 at a �xed anomaly coe�cient γ, shifts the critical point
towards larger values of α while keeping the a coordinate �xed. We then have to keep in mind, that we only
know that the respective phases (NG and COE) are a stationary point of the potential, and we have not
yet determined the global minimum. For negative a0 with su�ciently large modulus, the α coordinate of
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the critical point is shifted into a region where the NG phase, not the COE phase, is the ground state, i.e.,
the critical point has disappeared. Interestingly, at the same value of a0 where the �rst order line between
NG and approximate NOR phases disappears, the critical point sits on the α = 0 axis. We can see this
analytically, see also �gure(10). Then, upon further decreasing a0, it approaches the phase transition line
between NG and COE phases and disappears for values of a0 below some critical value for which we do not
have an analytic expression. We have thus found two di�erent ways to make the critical point disappear:
switching o� the anomaly removes the critical point but leaves the �rst-order critical line, while going to
(possibly unphysical) small values of a0 removes the critical point and the critical line. We illustrate all the
topological results of this section in the following series of diagrams for decreasing a0, which are obtained
by numerical evaluation.

Figure (11): Ginzburg-Landau phase diagrams in the (a, α) plane with quark mass e�ect in the chiral potential. Black lines are

�rst-order phase transitions. Transitions, which are not marked with a black line are second-order phase transitions. The dots mark

the points where a �rst-order line ends (critical point) and where a second order line terminates at a �rst-order line (critical endpoint).

We choose various values for the linear coe�cient a0 of the chiral condensate, starting with a0 = c3

27b2
in the above diagram. All

other coe�cients remain �xed at the same value as in the right panel of �gure(7). In particular, the strength of the couplingγ remains

at γ = 0.1. Intensive numerical studies show, that the qualitative outline of the phase diagram remains unchanged by variations of all

other parameters than α and a, which justi�es this approach. The parameter a0 is given in units of c3

27b2
because for a0 < − c3

27b2
the

critical line which separates NG and approximate NOR phases vanishes and there is a crossover between these two phases.

Figure (12): Diagram for a0 = −0.5 c3

27b2
. The critical point approaches the phase-transition line in between COE and NG.

36



Figure(13): Diagram for a0 = −1.1 c3

27b2
. We have crossed the critical value of a0 = − c3

27b2
and the �rst order phase-transition line

separating NG from (approximate) NOR phase has disappeared. The critical point of the COE phase further approaches toward the

region occupied by the NG phase.

Figure(14): Diagram for a0 = −1.8 c3

27b2
.The critical point has propagated into a region of the phase diagram where the ground state is

represented by the NG phase and hence disappeared. At this speci�c parameter set, there is neither a critical line nor a critical point.

At the end of this chapter, we revisit the analysis of symmetries given in the last section and discuss
modi�cations. First, we notice, that due to the e�ect of ms 6= 0 the chiral group SU(3)L ⊗ SU(3)R is
now only approximate, which allows for the smooth crossover between COE and (approximate) NOR phase.
This is the symmetry based argument for the outline of the diagrams �gures (11-14). However, we should
mention, that by including only a nonzero strange quark mass M = (0, 0,ms) instead of the realistic case
of M = diag(mu,md,ms),we would still �nd di�erent residual groups in NG and COE, since we now have
SU(2)L ⊗ SU(2)R ⊗ U(1)V in COE, where the intact SU(2) symmetry corresponds to the �avors up and
down. In the COE phase on the other hand, we use diag(σ, σ, σ) for the chiral condensate, which corresponds
to an unbroken vector symmetry SU(3)V . Hence, the crossover should in principle only be visible if we adapt
our ansatz for the chiral condensate to diag(σ, σ, σs) in order to �nd the same residual symmetries in both
phases. We can check however, that the GL mass terms are equivalent (despite of some irrelevant numerical
prefactors) if we choose to set M=diag(m,m,m), in which case we indeed leave the SU(3)V symmetry intact
in both phases.In other words, we reproduce the qualitatively correct result although we are using a simpli�ed
ansatz.
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2.3.3 Speculative outline of the phase diagram in a (T, µ) plane

The mapping from our (a, α) diagrams into a (T, µ) plane is a dynamical question which, for several reasons,
we cannot address within the phenomenological Ginzburg Landau approach. Firstly, the Ginzburg-Landau
potential is an expansion in the order parameters and thus cannot account for the complete potential; the
expansion is expected to fail far away from second-order phase transitions. Secondly, even if we assume the
Ginzburg-Landau approximation to be valid for all temperatures and densities of interest, we would need
the dependence of the Ginzburg-Landau coe�cients on the baryon chemical potential µB and temperature
T . This dependence is of course not known within QCD, since the relevant regions of the phase diagram
involve strong-coupling e�ects, and lattice calculations are inapplicable due to the sign problem at �nite
µB . Nevertheless, it is interesting to speculate how the Ginzburg-Landau results translate into the QCD
phase diagram. The conjectured translation from the Ginzburg-Landau phase diagrams to QCD is given
in �gure(15), where the left and middle panel correspond to the situation without strange quark mass, and
thus to the Ginzburg-Landau diagrams in �gure (8).
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Figure (15): Conjectured translations of the Ginzburg-Landau phase diagrams to the QCD phase diagram in the(µB , T ) plane [35]. We
have indicated the global symmetries which are broken in the various transitions. Left panel: zero quark masses, no instanton e�ects,
corresponding to the left panel in �gure (8). Middle panel: zero quark masses, nonzero instanton e�ects. In this case the CFL and COE
phases are no longer distinguished by symmetry and thus allow for a smooth crossover. Whether the critical point is indeed present in
the QCD phase diagram cannot be decided from the Ginzburg-Landau study; the T = 0 axis may or may not intersect with the �rst
order line in the COE phase in the right panel of �gure (8). Here we show the case where it does not. Right panel: nonzero quark
masses, nonzero instanton e�ects, see �gures (11-14). Here we know from lattice QCD that the �rst-order phase transition between
NG and (approximate) NOR does not reach the µB = 0 axis.

For the interpretation of our Ginzburg-Landau results with strange quark mass, it is helpful to think of the
QCD (µB , T ) plane to be a complicated surface in our (a0, a, α) parameter space. We know from lattice
calculations that, at µB = 0, the transition from the chirally broken to the chirally (approximately)
symmetric phase is a smooth transition . Therefore, the temperature axis must not intersect the critical
surface between NG and (approximate) NOR phases. This critical surface may then manifest itself as a
critical line between NG and approximate NOR phases which ends at a critical point, see right panel of
�gure(15). Another logical possibility is the absence of this line , which would for instance be realized if the

whole (µB , T ) surface were located �behind� the a0 = − c3

27b2 plane. For the critical point at low T and large
µB our analysis with �nite strange quark mass has opened up a third possibly topology. Without mass, the
point may, although always present in the Ginzburg-Landau phase diagram, be either outside the (µB , T )
plane (formally, one can think of the point being located at negative T ) or within the (µB , T ) plane. With
mass e�ect we have seen that the critical line that ends at this critical point may be absent in the
Ginzburg-Landau phase diagram. Thus, if the (µB , T ) surface is located at su�ciently negative a0, there is
no �rst-order transition within the COE phase.
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2.4 Phase-diagram including meson condensation

We can now extend the results from the previous sections by allowing for a nonzero kaon condensate φ. In
principle, this requires to consider several additional independent Ginzburg-Landau parameters as we can
see from the full potential (104). In this potential, the parameters α2, β2, µ

2, and γ2 become relevant when
we allow for nontrivial values of φ. All of these parameters correspond to mass terms and one might, as
a �rst approximation, neglect these terms. However, then the only nontrivial structure involving φ is the
unsuppressed d2σ cosφ term, and there would be no kaon condensation at all (in principle, there could be a
condensate at the �xed value of φ = π, which, as one can check numerically, never represents ground state).
Therefore, we have to keep the µ2 sin2 φ term in order to match our potential to the high-density e�ective
theory, as discussed in section (2.1.3), but for simplicity neglect the terms proportional to α2, β2, and γ2.
We have checked numerically that the inclusion of these terms can indeed make a di�erence to the topology
of the phase diagrams with kaon condensate. We shall come back to this issue in the discussion at the end
of section(2.5).

Within this approximation, the only additional parameter compared to the previous section is µ2, and our
potential becomes

Ω(σ, d, φ) = a0σ +
a

2
σ2 − c

3
σ3 +

b

4
σ4 +

α

2
d2 +

β − µ2 sin2 φ

4
d4 − γ 1 + 2 cosφ

3
d2σ . (142)

A comparison with the potential of the high-energy e�ective theory shows that one can consider the inter-
action term d2σ cosφ as an e�ective, dynamical mass term for the kaon. The boundedness of the potential
requires the d4 term to be positive, which yields an upper bound for µ2, µ2 < β . The stationary equations
are:

∂Ω
∂σ

= a0 + aσ − cσ2 + bσ3 − γ 1 + 2 cosφ
3

d2 = 0 (143)

∂Ω
∂d

= αd+ (β − µ2 sin2 φ)d3 − 2γ
1 + 2 cosφ

3
dσ = 0 (144)

∂Ω
∂φ

= d2 sinφ
[

2γ
3
σ − µ2

2
d2 cosφ

]
= 0 (145)

We distinguish the following phases:

1. NG phase: σ 6= 0, d = 0

2. COE phase: σ 6= 0, d 6= 0, φ = 0

3. COE-K0 phase: σ 6= 0, d 6= 0, φ 6= 0

The �rst two phases are the same as in the previous section. Note that φ only appears in the potential when
d is nonzero. This is clear since without diquark condensation there are no kaons to condense. Therefore,
the NG phase does not depend on φ. The value of φ distinguishes between the phases with nonzero CFL
order parameter, COE and COE-K0. Again, as discussed for the case without meson condensate , the NOR
and �pure� CFL/CFL-K0 phases are obtained as special cases from the NG and COE/COE-K0 phases and
exist in a two-dimensional subspace of the three-dimensional (a0, a, α) parameter space. The new straight
line, on which the CFL phase �lives� in our (a, α) diagrams is given by:

α =
−3a0

(
β2 + 4µ4

)
4γ (β + µ2)

(146)

In order to compute the phase structure in the presence of a kaon condensate, we need to compute the free
energies of the three phases listed above. The results for the NG and COE phases can be taken from the
previous section. Thus we only have to discuss the COE-K0 phase. It is convenient to express φ and d as
functions of σ. Solving equation (145) for cosφ and inserting the result into equation (144) yields

cosφ(σ) =
4γσ

3µ2d2(σ)
(147)

d2(σ) =
2γσ − 3α
3(β − µ2)

(148)

39



These expressions can be inserted into equation (143) to obtain an equation for σ. Equivalently, we can
insert them into the potential (142) and then minimize it with respect to σ.

The potential becomes

ΩCOE−K0 [σ, d(σ), φ(σ)] = − α2

4(β − µ2)
+ (a0 + γ∗µ)σ +

a∗µ
2
σ2 − c

3
σ3 +

b

4
σ4 , (149)

where

γ∗µ ≡
αγ

3(β − µ2)
(150)

a∗µ ≡ a−
2γ2

9

(
1

β − µ2
+

4
µ2

)
(151)

We see that the potential of the COE-K0 phase has the same structure as the one of the COE phase (137),
with modi�ed coe�cients γ∗µ, a

∗
µ. We may thus proceed analogously to determine the critical point within

the COE-K0 phase. With the variable τ = σ − c/(3b) from equation (149) we obtain the potential

ΩCOE−K0(τ) =
a0c

3b
+ Ωc,µ + (a0 + γ∗c,µ)τ +

a∗c,µ
2
τ2 +

b

4
τ4 (152)

with the following coe�cients:

Ωc,µ ≡ −
α2

4(β − µ2)
+
γ∗µc

3b
+
a∗µc

2

18b2
− c4

108b3
(153)

γ∗c,µ ≡ γ∗µ +
a∗µc

3b
− 2c3

27b2
(154)

a∗c,µ ≡ a∗µ −
c2

3b
(155)

in complete analogy to equation.The resulting stationary equation after elimination of d and σ is given by:

0 = a0 + γ∗c,µ + a∗c,µτ + bτ3 . (156)

Similar to the constraint for d discussed in section (2.2.2) and (2.3.2) we now have to carefully check the
angular variable φ which means that now, we have to consider two conditions which have to be ful�lled at
the same time:

d2(σ) > 0 (157)

−1 < cosφ(σ) < 1 (158)

Since the cubic equation has the same structure as for the COE phase, we obtain an analogous �rst-order
line as shown in section 2.3.2. From a0 + γ∗c,µ = a∗c,µ = 0 we can compute the location of the critical point.
Its (a, α) coordinates turn out to be:

aCOE−K0 =
c2

3b
+

2γ2

9

(
1

β − µ2
+

4
µ2

)
(159)

αCOE−K0 = −3(β − µ2)
γ

(
a0 +

c3

27b2

)
(160)

40



We can compare this to the critical point in the COE phase whose coordinates are calculated in section
(2.3.2):

aCOE =
c2

3b
+

2γ2

β
(161)

αCOE = −β
γ

(
a0 +

c3

27b2

)
(162)

The phase transition line in between COE and COE-K0 can again be check by (semi)analytical means, as
discussed in appendix [2].

Our next goal is to compute the phase diagram including meson condensation. In particular, the following
two questions are of special interest:

1. What is the fate of the critical point in the (a, α) phase diagram in the presence of kaon condensation?
We have seen above that a �rst-order line ending at a critical point is possible in the COE and in the
COE-K0 phase. More precisely, there is a �would-be� critical point with coordinates given in equation
(153) which, if the COE phase is the ground state at this point, is a true critical point, and there is a
�would-be� critical point with coordinates given in equation (126) which, if the COE-K0 phase is the
ground state at this point, is a true critical point. This leaves us with four logical possibilities. There
may be no critical point at all when both �would-be� critical points are covered by the �wrong� phases;
there might be one critical point, either in the COE or COE-K0 phase; or both �would-be� critical
points are realized if they are covered by the �right� phases. This classi�cation is very useful since the
information about the critical points determines, to a large extent, the topology of the entire phase
diagram.

2. Is there a region in the parameter space (here we mean all parameters except for a and α) for which
the COE phase is completely replaced by the COE-K0 phase in the (a, α) plane? This question is
interesting in view of the quark-hadron continuity. Recall that the existence of the anomaly-induced
critical point opens up the possibility to go, at least at zero temperature, smoothly from the COE phase
to the highest-density phase, the (approximate) CFL phase. If we now introduce a meson-condensed
phase we might introduce an additional phase transition, separating the COE from the COE-K0 phase.
This phase transition cannot end at a critical point because the kaon condensate breaks strangeness
conservation U(1)S which is an exact symmetry of QCD, i.e., the CFL phases with and without kaon
condensation have distinct residual symmetry groups. Only if we take into account the weak interaction
which breaks �avor conservation, this line can end at a critical point. Another way of saying this is
that through weak interactions the Goldstone mode associated with kaon condensation receives a small
mass which has been estimated to be of the order of 50 keV[35]. Here we do not consider such small
U(1)S-breaking terms and thus whenever both COE and COE-K0 phases are present in the phase
diagram, they are separated by a true phase transition. Such an additional phase transition could be
avoided if the COE phase is completely replaced by the COE-K0 phase. We shall �nd that this is
never realized in our parameter space.

2.4.1 Critical points with meson condensate

We shall continue to use �xed values for the parameters b,c, and β with respect to which the results are
insensitive. To answer question (1) we thus determine for each value of the parameter set (a0, µ, γ) the
number of critical points in the (a, α) plane. To this end, we compute the ground state at the two �would-
be� critical points (161/162) and (159/160) and check whether the COE-K0 phase is the ground state at
the point (159/160) and whether the COE phase is the ground state at the point (161/162). This leaves us
with 4 possible topologies, which might occur:

• The critical point of the COE phase is located at a position where the COE indeed represents the
ground state. We then �nd one critical point within the COE phase.

• The critical point of the COE-K0 phase is located at a position where the COE-K0 indeed represents
the ground state. We then �nd one critical point within the COE-K0 phase.
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• Both critical points are located at positions where the respective phase represents the ground state.
We �nd two critical points, one within the COE and one within COE-K0 phase.

• No critical point is located at a position where the respective phase represents the ground state. We
�nd no critical point in the phase diagram.

We shall �nd, that all these cases are realized within our parameter space. As we have learned from previous
sections, the existence of the critical point within the COE phase strongly depends on the value of a0. On
the other hand, the space occupied by the COE-K0 phase (and hence also the probability to observe a
critical point in this phase) is naturally linked to the magnitude of the e�ective kaon chemical potential µ.
It is therefore reasonable to distinguish all four cases in a (a0, µ) plane. We can also check the e�ect of the
coupling by choosing two di�erent values of γ. The results are shown in diagram (16-17).

Figure (16): Classi�cation of parameter regions in the (a0, µ) plane for γ = 0.05 according to the number of critical points (CP) in the
(a, α) plane. Recall that a0 is the coe�cient of the linear term in the chiral condensate, induced by the strange quark mass, µ is the

e�ective kaon chemical potential (bounded from above by µ = β1/2 beyond which our Ginzburg-Landau potential becomes unstable),
and γ parametrizes the strength of instanton e�ects. The plot shows four qualitatively di�erent cases each of which is represented by a
diagram in �gures(18-21). In the dark-gray regions there are, according to our numerical algorithm, two critical points. However, the
corresponding phase diagrams show that one of them seems to lie on top of the phase transition line between COE and COE-K0, see
�gure(19).

Firgure (17): Classi�cation of parameter regions in the (a0, µ) plane for γ = 0.1 according to the number of critical points (CP) in the

(a, α) plane. We �nd, that the region without critical point is shifted toward smaller values of a0 for increasing γ.

The most obvious observation is that for large µ it is more likely to �nd the critical point in the kaon
condensed phase. The reason is simply that with increasing µ the kaon condensed phase covers more and
more space in the phase diagram which supports our interpretation of µ as an e�ective chemical potential.
For su�ciently small values of a0 there is no critical point at all (except for very large values of µ, just
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below its maximum value, for which there is a critical point in the COE-K0 phase). The reason is the same
as already discussed for the COE phase in �gure(14): both points (159/160) and (161/162) are in a region
where the NG phase is the ground state, and thus they are not realized. Figure(17) shows, that the region
without critical points is shifted to smaller values of a0 for increasing instanton e�ects, parametrized by γ.
We also see that with decreasing instanton e�ect, it becomes more likely to �nd the critical point in the
meson-condensed phase.

The regions with a critical point in the COE phase are not separated from the regions with a critical point
in the COE-K0 phase by a one-dimensional line. We rather �nd a two-dimensional region in the (a0, µ)
space where our numerical algorithm �nds two critical points, one in each phase. However, a closer look
reveals that in this region (dark gray in �gures(16/17)) the point (159/160) seems to lie exactly on top of
the phase transition line between COE and COE-K0. In other words, moving within the dark gray areas,
the critical point seems to �drag� the second-order phase transition line which is attached to it. Since this
is a purely numerical observation, we cannot make a precise statement about the nature of this interesting
point. We illustrate this observation below in the context of the corresponding (a, α) phase diagram. Figures
(16/17) also show that this two-dimensional region is �squeezed� to a one dimensional point in two instances.

The �rst instance is at µ = ( 2
3β)1/2, a0 = − c3

27b2 . We can determine this point as follows: Taking into
account, that the phase transition line in between COE and COE-K0 is of second order (which we determine
numerically, see in the following section) we consider nonzero, but very small values of φ, divide equation
(145) by sinφ and then set cosφ = 1 to get a simple relation between σ and d. With the help of equation
(148), we eliminate d from this relation and obtain the value of σ at the phase boundary between COE and
COE-K0,

σ =
3α
2γ

µ2

3µ2 − 2β
. (163)

This relation shows, that for µ = ( 2
3β)1/2 the phase transition line between COE and COE-K0 is identical

with the a axis because in this case σ can only be �nite if α = 0. Additionally, from equations (159/160)
and (160/161) we see that for the parameter values for µ and a0 from above, the two potential critical
points coincide and sit at α = 0, i.e., on the a axis. Consequently, both points coincide and lie on the phase
separation line. Now, keeping µ �xed and varying a0 will keep both points together but move them away
from the a axis, while the phase transition line remains unchanged. Hence, depending on which direction in
a0 one takes, a critical point will appear either in the COE (smaller a0) or the COE-K

0 (larger a0) phase.

The second instance is at positive a0, and the scenario is quite di�erent here. Now the two critical points do

not coincide. Nevertheless, for the given parameters (for γ = 0.1 we read o� µ ' 0.25β1/2, a0 ' 0.85 c3

27b2 )
both points lie on the second-order phase transition line between COE and COE-K0, and again varying the
parameters by an arbitrarily small amount creates a critical point in one or the other phase. In contrast to
the �rst instance this is a purely numerical observation.

2.4.2 Phase diagram with meson condensation

We will now illustrate all four qualitatively di�erent scenarios discussed in the previous section in four phase
diagrams, corresponding to the cases of one, two or no critical point. The numerical results of all second order
phase transition lines (including the new one in between COE and COE-K0) are in perfect agreement with
the results obtain from semi-analytical calculation, discussed in appendix[2]. Not surprisingly, the COE-K0

phase covers more and more phase space with increasing µ. More interestingly, for all values of µ that are
allowed in our approximation, a �nite region of the COE phase without meson condensation survives. Here
we have increasedµ up to 90% of its upper limit, but we have checked that this conclusion remains valid
for all allowed values of µ. This seems to answer the above question 2 of section (2.4) with no, and meson
condensation always appears to induce an additional phase transition line which does not end at a critical
point. We have checked, however, that this statement depends on our approximation. Taking into account
additional terms, for instance the ones proportional to α2, β2, γ2 in equation (104), it is possible to �nd
regions in the parameter space where the COE-K0 phase completely eliminates the COE phase from the
phase diagram. We now systematically investigate for increasing chemical potential µ in �gures (18) to (21).

A few remarks need to be made regarding the topology in �gure (19). Although our numerical algorithm
shows that the COE-K0 phase is the ground state at the point (159\160), this appears not to be a critical
point since there is no �rst-order line attached to it. Numerically we �nd that the second-order phase
transition between COE and COE-K0 in the vicinity of this point is very strong, i.e., the kaon condensate
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φ develops a sizable nonzero value on a much smaller parameter region than it does further away from this
point. In other words, the critical point of the COE-K0 phase behaves like a singular point, at which an
otherwise second order phase transition becomes a �rst order phase transition. This can be seen in �gures
(22-24) where we compare the order parameters σ, d, and φ as a function of a for three �xed values of α.
Figure(23) shows the behavior close to the critical point of COE-K0.

Figure (18): Phase Diagram including strange quark mass and kaon condensation, according to potential (137). a0 is �xed at a value

of a0 = − c3

27b2
. The maximum value for µ is given by µ =

√
β. We begin with µ = 0.35

√
β. All other parameters remain unchanged in

comparison to the previous phase diagrams. In �gure (17) we can see, that we expect to �nd a phase diagram containing one critical
point within the COE phase for this set of parameters, which is indeed the case.

Figure(19): Phase diagram for a0 = − c3

27b2
and increased µ = 0.5

√
β. The �rst trivial observation is, that the expansion of the COE-K0

phase has increased due to the increase in the e�ective kaon chemical potential. For this set of parameters, we �nd ourselves in a region
where two critical points coexist in �gure (17). It is a numerical observation, that in such a case the critical point of the COE-K0

phase is always located on top of the phase transition line in between COE and COE-K0.
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Figure(20). In case of for a0 = − c3

27b2
and µ = 0.9

√
β the COE phase survives in two disconnected regions. From the translation of

the (a, α) plane into the QCD phase diagram, as discussed in section (2.3.3), we can expect the T = 0 axis to pass through the larger
of these two regions, on the left-hand side of the �rst-order transition. The smaller strip on the right-hand side can be expected to
be passed upon heating up the CFL phase, in agreement with NJL model calculations [27]. In both regions it is interesting to check
whether a less symmetric color-superconducting phase than CFL becomes favorable. We discuss this possibility in the next section
where we include the 2SC phase in our calculation.

Figure (21): Finally, we set a0 = −1.8 c3

27b2
and hence behind the critical value at which the phase transition line in between approximate

NOR and COE phase ends. This represents the scenario in which there is no critical point.
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Figure(22): Order parameters plotted for �xed values of α = −0.12 (lower than the α coordinate of the critical point). All other
parameters are taken from �gure(7). As a normalization for the chiral and diquark condensates we have chosen their maximal values
in the selected section of the (a, α) phase diagram. These values σmax and dmax are assumed in the lower left corner, i.e., at (a, α) =
(0,−0.13). The meson condensate is normalized by its maximum value π.We can also see, that the onset of kaon condensation and
crossover (�rst-order phase transition) to a phase where the approximate ZL(2)×ZR(2) symmetry is restored happen at di�erent values
for a.
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Figure(23): Order parameter plotted for α = −0.01 (higher than the α coordinate of the critical point).
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Figure(24): Order parameters plotted for �xed values of α = −0.06. This the α position, at which the critical point of the COE-K0 is
located. We can see, that the order parameters (in particular φ) do not run smoothly across the a- coordinate of the critical point. We
seem to have found a singular point, where the phase transition in between COE and COE-K0 becomes �rst order. Here, the onset of
kaon condensation and crossover to a phase where the approximate ZL(2)× ZR(2) symmetry is restored happen at the same value for
a.

The curves for the order parameters also illustrate the �rst-order transition at large, but still negative, α
(right panel) and its smooth version at small α (left panel). Translated to the QCD phase diagram, we can
think of the latter, if present at all, as being closer to zero temperature as the former. In the case of the
�rst-order transition, here taking place in the COE phase, both σ and d are a�ected signi�cantly. After the
transition, the chiral condensate goes to zero for large a. This is as expected because the phase at large a
corresponds to the (approximate) CFL-K0 phase. For the crossover, here taking place in the CFL-K0 phase,
we see that the diquark and meson condensates are not much a�ected, only the chiral condensate decreases
smoothly but drastically. The location of this crossover is given by the continuation of the critical line, see
�gure(10).

We can rephrase the main conclusion from �gures(22-24) in the following concise way. There are basically
two transitions: in the �rst, the chiral condensate goes to approximately zero; this is either a �rst-order
transition or a crossover since the symmetry which gets restored is only approximate in the presence of the
axial anomaly. The second is the onset of kaon condensation which is always of second order since the broken
symmetry is exact (neglecting weak interactions). The transitions appear at two separate points in �gure(22)
and (23) (and in di�erent orders, comparing left with right). In �gure(24), they appear approximately at
the same value of a, which seems to be the reason for the interesting, non-smooth, behavior in this case.
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2.5 2SC-Phase

So far our choice of the color-superconducting phases was inspired by high-density arguments. We have
considered the CFL phase, which is present at asymptotically large densities, and the kaon condensed CFL
phase, which is the �rst adjustment of the CFL phase to the e�ect of a small strange quark mass within a
weak-coupling approach. Our calculation, however, intends to shed light on the phase structure at moderate
densities where less symmetric phases may appear, as discussed in the �rst chapter. In this section we take
into account one of these phases, namely the 2SC phase. In the 2SC phase, all strange quarks as well as all
quarks of one color, say blue, remain unpaired, i.e., Cooper pairs are made of red up/green down and green
up/red down quarks [36]. At weak coupling and parametrically small strange quark mass the 2SC phase has
larger free energy than either CFL or unpaired quark matter [37].Phenomenological models such as the NJL
model suggest that this may no longer be true at large coupling [38],[39], and the 2SC phase (or variants
thereof) may cover a region in the phase diagram between the low-density chirally broken phase and CFL.
The appearance of the 2SC phase would clearly interrupt a possible quark-hadron continuity since 2SC does
not break chiral symmetry and thus true phase transitions would be unavoidable between hadronic matter
and 2SC and between 2SC and CFL. Building on NJL model calculations with U(1)A-breaking terms [40],
[41], it has been argued that the 2SC phase indeed covers the potential anomaly-induced critical point for a
wide region in the NJL parameter space [42].

To get an idea about the possibility of a 2SC phase in our general Ginzburg-Landau formalism, we discuss
the 2SC phase in the simplest possible way. We shall not attempt to study the whole phase space with
2SC and meson-condensed CFL. This would require the use of several additional Ginzburg-Landau param-
eters. Without meson condensation we shall be able, however, to make some general statements about the
phase diagram including 2SC. On a qualitative level, we give some arguments about the addition of meson
condensation at the end of this section.

Without meson condensate, the CFL order parameter is simply dL = dR = diag(d, d, d), which is obtained
from the more general order parameter (75) by setting φ = 0. For the 2SC phase, the order parameter
is dL = dR = diag(0, 0, d) which describes pairing of only up and down quarks of two colors. In order to
compare the free energies of 2SC and CFL we need to go back to the general Ginzburg-Landau terms. We
shall for simplicity keep our assumption Φ = diag(σ, σ, σ) in both 2SC and CFL. As an alternative ansatz,
accounting for the broken �avor symmetry, one might use the ansatz Φ = diag(σ, σ, 0) for the 2SC phase. In
this case, the potential becomes trivial because the d2σ term that couples chiral and diquark condensates
vanishes, and we have checked numerically that the 2SC phase appears nowhere in the phase diagram. For
a more complete study one would have to include the d2σ2 interaction term and/or allow for independent
chiral condensates Φ = diag(σu, σd, σs). Here we proceed with the symmetric ansatz for Φ and show that
the 2SC phase appears in certain regions of the parameter space in accordance with physical expectations
and with NJL studies. Our complete ansatz for the 2SC phase is hence given by:

dL = dR = diag(0, 0, d) (164)

Φ = diag(σ, σ, σ) (165)

Within this ansatz, the chiral part of the potential ΩΦ can be taken directly from section(2.1.2) and is the
same for CFL and 2SC. As for the diquark and interaction part, we �nd the following potentials:

• Diquark potential:

Tr[dLd+
L ] = Tr[dRd+

R] = d2 (166)

(Tr[dLd+
L ])2 = (Tr[dRd+

R])2 = Tr[dLd+
L ]Tr[dRd+

R] = d4 (167)

Tr[(dLd+
L)2] = Tr[(dRd+

R)2] = Tr[dRd+
LdLd

+
R] = d4 (168)

• Diquark mass-terms:

Tr[d+
LMdR] + h.c. = 2msd

2 (169)

Tr[d+
LMdRd

+
RdR] + h.c. = Tr[d+

LMdRd
+
LdL] + h.c. = 2msd

4 (170)

Tr[d+
LMdR]Tr[d+

RdR] + h.c. = Tr[d+
LMdR]Tr[d+

LdL] + h.c. = 2msd
4 (171)
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• Interaction potential:

Tr[dRd+
LΦ] + h.c. = 2d2σ (172)

Tr[dLd+
LΦΦ+] = Tr[dRd+

RΦΦ+] = d2σ2 (173)

Tr[dLd+
L + dRd

+
R]Tr[Φ+Φ] = 6d2σ2 (174)

DetΦTr[dLd+
RΦ−1] + h.c. = 2d2σ2 (175)

• Interaction mass-terms:

Tr[dLd+
LMΦ] + h.c. = 2d2σms (176)

Tr[dLd+
L + dRd

+
R]Tr[M+Φ] + h.c. = 4d2σ(mu +md +ms) (177)

εabcεijkMaiΦbj(dLd+
R)ck = d2σ(md +mu) (178)

In the construction of the full diquark potential potential,

Ωd = α1

(
Tr[dLd+

L ] + Tr[dRd+
R]
)

+ α2

(
Tr[d+

LMdR] + h.c.
)

+ β1

{
(Tr[dLd+

L ])2 + (Tr[dRd+
R])2

}
+ β2Tr[dLd+

L ]Tr[dRd+
R] + β3

{
Tr[(dLd+

L)2] + Tr[(dRd+
R)2]

}
+ β4Tr[dRd+

LdLd
+
R] + β5

(
Tr[d+

LMdRd
+
RdR] + h.c.

)
+ β6

(
Tr[d+

RMdLd
+
LdL] + h.c.

)
β7

(
Tr[d+

LMdR]Tr[d+
RdR] + h.c.

)
+ β8

(
Tr[d+

LMdR]Tr[d+
LdL] + h.c.

)
(179)

We have assumed the coe�cients in front of terms that are related by an exchange of L and R to be identical.
Here, α1 and α2 are the coe�cients for the d2 terms without and with mass insertion, and β1, . . . , β4 and
β5, . . . , β8 are the coe�cients for the d4 terms without and with mass insertions. For the interaction terms
(we neglect again the d2σ2 terms) we obtain:

ΩΦd = γ1

(
Tr[dRd+

LΦ] + h.c.
)

+ γ2

(
Tr[dLd+

L + dRd
+
R]Tr[M+Φ] + h.c.

)
+ γ3

(
Tr[dLd+

LMΦ] + h.c.
)

+ γ4

[
εabcεijkMaiΦbj(dLd+

R)ck + h.c.
]

(180)

with γ1 and γ2, . . . , γ4 being the coe�cients for the terms without and with mass insertions. We use the
explicit computation of the traces shown above and write the 2SC and CFL potentials as

ΩCFL = ΩΦ + (α1 + α2ms)d2 + (βCFL
1 + βCFL

2 ms)d4 + (γ1 + γCFL
2 ms)d2σ (181)

Ω2SC = ΩΦ +
(
α1
3 + α2ms

)
d2 + (β2SC

1 + β2SC
2 ms)d4 +

(
γ1
3 + γ2SC

2 ms

)
d2σ (182)

where we have used the fact, that (apart from aCFL0 = a2SC
0 , aCFL = a2SC , bCFL = b2SC , cCFL = c2SC)

there are simple relations between the coe�cients α1 , α2and γ1 in both phases:

αCFL1 = 1
3α

2SC
1 (183)

αCFL2 = α2SC
2 (184)

γCFL1 = 1
3γ

2SC
1 (185)

However, the coe�cients β
CFL/2SC
1 , βCFL,2SC

2 and γ
CFL/2SC
2 consist of many di�erent contributions as we

can see from equations (179) and (180).
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The overall ratio between the α and γ coe�cients and their mass corrections in both phases can be written
by an expansion in ms:

αCFL1 + αCFL2 ms

α2SC
1 + α2SC

2 ms
=

α1 + α2ms
1
3α1 + α2ms

=
1 + α2

α1
ms

1
3 + α2

α1
ms

= 3− 6
α2

α1
ms + 18(

α2

α1
)
2
m2
S +O((ms)3) (186)

γ1 + γCFL2 ms

γ̄1 + γ2SC
2 ms

=
1 + γCFL2

γ1
ms

1
3 + γ2SC

2
γ1

ms

= 3 + 3(
γCFL2

γ1
− 3

γ2SC
2

γ1
)ms +O(m2

s) (187)

where γCFL2 = 2(γ2 + 6γ3 + γ4) and γ2SC
2 = 2(γ2 + 2γ3) in terms of equation (150). For our numerical

purpose, it is of course irrelevant how the composite coe�cients depend on the original ones. The important
point is, that including a small mass term corresponds to a small correction to this �xed ratio of 1/3 for
α1 and γ1 as shown by the expansion above. Such a statement is not possible for the d4 terms where in
general we need independent parameters even for the mass-independent terms. Hence, the overall coe�cient
in front of the d4 term in the 2SC phase must be taken as a new parameter and cannot be expressed in
terms of a single coe�cient of the CFL phase. Fortunately, we can check, that our results are (qualitatively)
insensitive to variations of coe�cients ∝ d4 on a large scale whereas variations of terms ∝ d2 and ∝ d2σ
lead to signi�cant changes as we will discuss below. We shall therefore use the following convenient way to
include the 2SC phase into our phase diagram:

Ω2SC(σ, d) = a0σ +
a

2
σ2 − c

3
σ3 +

b

4
σ4 +

α

2

(
1
3

+ α̃ms

)
d2 +

β

4
d4 − γ

(
1
3

+ γ̃ms

)
d2σ (188)

We have explicitly included e�ects of mass corrections to α and γ and ignored corrections to β. We can now
proceed analogously to the previous sections and determine the ground state of the system. Now we need to
compare the NG, COE(CFL), and COE(2SC) phases, where COE(CFL) is the phase with coexisting chiral
condensate σ and diquark condensate in the CFL pattern (this phase was simply termed COE in the previous
sections), and COE(2SC) is the phase where σ coexists with the diquark condensate in the 2SC pattern.
The main question is under which conditions and where in the phase diagram the 2SC phase appears. We
summarize the results of our numerical studies and illustrate them in �gures (25) and (26).

• If we neglect the mass corrections to the d2 and d2σ terms, i.e.,α̃ = γ̃ = 0 in equation (188), there is
no 2SC phase in our (a, α) phase diagram for all values of a0. In other words, the mass e�ect through
the linear term in the chiral potential ∝ a0 is not su�cient to trigger the 2SC phase. More mass
corrections are needed.

• As soon as mass corrections α̃ < 0 or γ̃ > 0 or both are switched on, there is at least one region in the
(a, α) phase diagram for all a0 where the 2SC phase is the ground state. (It is a numerical observation
that only the given signs of α̃, γ̃ yield the results shown in �gure(25) and (26); di�erent signs, i.e.,
α̃ > 0 and/or γ̃ < 0 require su�ciently large positive values of a0 for the 2SC phase to appear.) The
2SC phase appears in the expected regions of the phase diagram, separating the NG phase from the
CFL phase. This is shown in �gures (25\26) for two di�erent values of a0 < 0. Increasing |a0| for
negative a0 increases the area which is covered by the 2SC phase.

• The phase transition from COE(CFL) to COE(2SC) is of �rst order. This is clear since two of the gap
parameters must change discontinuously in the transition from dL = dR = diag(d, d, d) to dL = dR =
diag(0, 0, d). Additionally, our numerical results show that the chiral condensate is discontinuous at
this transition.

It is an interesting question whether meson condensation can prevent the 2SC phase from appearing. Com-
paring �gures(18-21) and �gures(25,26), the answer seems to be no because the COE-K0 phase does not
reach areas close to the transition to the NG phase, and this is exactly where the 2SC phase lives. However,
we have to remember that in our discussion of kaon condensation we have neglected all mass terms except
for a0 and the one associated with the kaon chemical potential. The omitted terms are exactly the ones
that are needed to obtain the 2SC phase. Hence we would have to redo our analysis, including 2SC and
kaon condensation and taking into account the mass corrections for the d2 and d2σ terms in the potential
(104). This would introduce more independent parameters and without further constraints a systematic
study would be very unwieldy. Therefore, we have only done some numerical calculations with selected pa-
rameters. These calculations show that if we take for instance one of the phase diagrams in �gures (25/26)
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, there is a range of parameters for the mass corrections where the kaon-condensed phase does expel the
2SC phase. However, the 2SC phase is only expelled completely from the(a, α) phase diagram if the mass
corrections ∝ α2, β2, γ1, γ2 in equation are of the order of or larger than the O(m0

s) terms. In this case, our
Ginzburg-Landau expansion becomes unreliable since we have neglected mass terms of higher order (except
for the term ∝ µ2 which is suggested to be relevant from high-density arguments, as explained). If we keep
the mass corrections much smaller than the O(m0

s) terms, the 2SC phase, if it is preferred over the CFL
phase in some region of the phase diagram, also appears to be favored (in a smaller region) over the CFL-K0

phase.

Figure(25): Phase diagram including 2SC for a0 = −0.5 c3

27b2
. Again, we set up all other parameters the same way as in the previous

diagrams. The 2SC phase occurs after including mass corrections according to the potential (188), for these plots we have chosen
−α̃ms = γ̃ms = 0.05. As a function of increasing |a0| (a0 < 0) the 2SC phase �rst appears on the left-hand side of the phase transition
between NG and COE, then additionally in a disconnected region on the right-hand side , before the two regions merge for su�ciently
large |a0| (see below). COE(CFL) denotes the phase with nonzero chiral condensate and diquark condensate in the CFL phase (denoted
simply COE in all previous plots), COE(2SC) denotes the phase with nonzero chiral condensate and diquark condensate in the 2SC
phase. The transition in between COE(2SC) an COE (CFL) is of �rst order (us usually indicated by an enforced black line). Had
we not taken into account the 2SC phase, the (second-order) transition between COE and NG would have been between the shown
COE(CFL)/COE(2SC) and COE(2SC)/NG transitions. In this sense, the 2SC phase extends the color-superconducting area.

Figure(26): Phase diagram including 2SC for a0 = −1.8 c3

27b2
. This scenario corresponds to the case discussed in diagrams (14) and

(11). The two separated region of 2SC have merged.

50



Chapter 3

Summary and Outlook

We have studied phases of dense matter in a Ginzburg-Landau approach. Previous Ginzburg-Landau studies
have shown that the axial anomaly may induce a high-density critical point in the QCD phase diagram,
possibly leading to a smooth crossover between hadronic matter and color-�avor locked quark matter. We
have explained in detail that the existence of this critical point is a consequence of the (discrete) symmetry of
the CFL phase which � in the presence of the axial anomaly � is not changed by adding a chiral condensate.
Our main goal has been to extend the previous studies by including a strange quark mass. We have discussed
several di�erent, although related, mass e�ects.

Firstly, the strange quark mass introduces a term linear in the chiral condensate σ, say a0σ, which allows for
a smooth crossover between the phases of broken and (approximately) restored chiral symmetry. This e�ect
is most relevant for the high-temperature, low-density phase of QCD where there is indeed such a crossover
between the hadronic phase and the Quark-Gluon Plasma, as we know from lattice calculations. We have
shown that the term a0σ is also relevant for the high-density critical point. The reason is the anomalous
interaction term that couples the chiral to the diquark condensate d, say γd2σ. For su�ciently large values
of |a0| (a0 < 0) the �rst-order phase transition line which, for nonzero γ, ends at the high-density critical
point disappears. As a result the transition between the ordinary chirally broken phase and the CFL phase
is smooth everywhere.

Secondly, a nonzero strange quark mass is expected to induce less symmetric color-superconducting phases.
In high-density calculations, the CFL-K0 phase is the �rst phase that appears after going down in density
from the asymptotically dense CFL region. We have introduced a kaon condensate as a relative rotation
of left- and right-handed diquark condensates and have adjusted the Ginzburg-Landau potential to match
the essential terms of the high-density e�ective theory. We have identi�ed the region in the parameter
space where the critical point has moved from the CFL into the CFL-K0 phase and have determined the
location of both possible critical points in the presence of a strange quark mass. In addition to a shift
of the critical point, the kaon condensate introduces a true phase transition because it breaks strangeness
conservation spontaneously which is an exact symmetry in QCD. For future studies it would be interesting
to also consider terms in the Ginzburg-Landau potential which explicitly break strangeness, to account for
(small) e�ects of the weak interaction.

Thirdly, we have discussed a more radical reaction of the system to a nonzero strange quark mass, namely
the appearance of the 2SC phase. In previous studies in the Ginzburg-Landau approach, it has been shown
that for in�nitely large strange quark mass there cannot be a high-density critical point. The reason is that
the 2SC phase does not break chiral symmetry and thus there must be a true phase transition between
the 2SC phase with and without coexisting chiral condensate. Since we have included a nonzero, but �nite,
strange quark mass, we could study the competition between the 2SC and CFL phases under the in�uence of
a nonzero chiral condensate. We have shown that the mass terma0σ is not su�cient to favor the 2SC phase
in any part of the phase diagram. Additional mass terms, which we have neglected in our discussion of the
meson condensate, are necessary for the 2SC phase to appear between unpaired quark matter and the CFL
phase. In a conjectured translation to the QCD phase diagram it seems that the 2SC phase appears ��rst�
(i.e., for the smallest values of these mass terms) at low temperature. As a consequence, the smooth crossover
at zero temperature between hadronic and quark matter would be disrupted by true phase transitions. The
appearance of the 2SC phase is in agreement with recent NJL model calculations.

There are several possible extensions of our work. We have studied the competition between 2SC and
CFL systematically, but have only brie�y discussed the competition between 2SC and CFL-K0. For a
more complete analysis it would be helpful to �rst �nd some constraints for the additional Ginzburg-Landau
parameters. The potential proliferation of parameters has also led us to a simpli�ed, �avor-symmetric ansatz
for the chiral condensate. One should check in further studies how our results change with a more realistic
ansatz. It would also be interesting to consider di�erent meson condensates and possibly their coexistence.
This is important since we do not know the masses of the CFL mesons at intermediate densities, and it may
well be a di�erent meson than the kaon which condenses in this regime. Furthermore, one should also take
into account the requirement of electric and color neutrality. This was not an issue in our calculations with
the CFL phase since this phase is automatically neutral (and a neutral kaon condensate does not change this).
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In the 2SC phase, however, the numbers of up, down, and strange quarks are not identical, and the existence
and details of this phase (as for any non-CFL color superconductor) depend strongly on the neutrality
constraint. In our general Ginzburg-Landau approach the de�nition of charge is not straightforward since
one would need the dependence of the Ginzburg-Landau parameters on the various chemical potentials,
either from weak-coupling calculations or from a phenomenological model.

More generally speaking, the Ginzburg-Landau approach, including possible extensions in the future, is an
interesting model-independent alternative to NJL model studies regarding the QCD phase diagram at low
temperature and large, but not asymptotically large, densities. Both approaches, however, are far from being
conclusive for the actual, full QCD situation. Therefore, it is important to also pursue other approaches such
as improvements of perturbative calculations [43] or studies of dense matter in the astrophysical context and
comparing properties of phases of dense (quark) matter with data from compact stars [44],[45].
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Appendix 1

High density e�ective Meson masses

In order to determine the mass ordering of the e�ective meson masses, we follow the steps of reference
[13/14]. We need to evaluate the following mass term of the high density e�ective Lagrangian, discussed in
section (1.5.5):

∆Leff =
af2
π

2
detMTr[M−1Σ] + h.c. (189)

We start by expanding the chiral �eld Σ:

Σ = eiθaλa/fπ = 1 + i
θaλa
fπ
− θaθbλaλb

2f2
π

+ .... (190)

where we are interested in terms quadratic in the �elds θi. As usual, the λi are Gellmann matrices. Addi-

tionally, we include λ9 =
√

2
3 in order to take into account the singlet state of η‘. We can then read o� the

mass matrix :

1
2
M2
abθ

aθb =
C

2
detMTr[M−1λaλb]θaθb (191)

where C ∼ 1.578 has been calculated in reference [13]. The explicit evaluation of the 9 × 9 matrix yields a
block diagonal structure of three 2× 2 blocks and one 3× 3 matrix. The 2× 2 blocks corresponding to the
�elds (θ1, θ2), (θ4, θ5), (θ6, θ7) are given for a high density e�ective mass term (left) and compared to the
chiral e�ective mass term in (34) (right):

(
ms(mu +md) ims(md −mu)
ims(mu −md) ms(mu +md)

) (
(mu +md) i(mu −md)
i(md −mu) (mu +md)

)
(192)(

mu(ms +md) imu(ms −md)
imu(md −ms) mu(ms +md)

) (
(mu +ms) i(mu −ms)
i(ms −mu) (mu +ms)

)
(193)(

md(ms +md) imd(ms −mu)
imd(mu −ms) md(ms +md)

) (
(ms +md) i(md −ms)
i(ms −md) (md +ms)

)
(194)

and the 3× 3 block corresponding to (θ3, θ8, θ9) is given by:


ms(mu +md) 1√

3
ms(md −mu)

√
2
3ms(md −mu)

1√
3
ms(md −mu) 1

3 (mdms +mums + 4mdmu)
√

2
3 (mdms +mums − 2mdmu)√

2
3ms(md −mu)

√
2

3 (mdms +mums − 2mdmu) 2
3 (mdms +mums +mdmu)

 (195)

We analyze the structure of the the 2× 2 blocks which is very simple as we can see from (192 - 194):

(
A iB
−iB A

)
(196)

with eigenvalues λ1,2 = A±B and eigenvectors θ1 ± iθ2, θ4 ± iθ5, θ5 ± iθ6 corresponding to the eigenstates
of π±, K± and K0/K̄0. Considering, that these eigenvalues correspond to the meson masses squared, a pion
mass term for example would then have to be constructed as follows:

m2
π±θ

2
π± =∝ (A+B) ‖(θ1 − iθ2)‖2 + (A−B) ‖(θ1 + iθ2)‖2 = 2Aθ2

π±
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where we have used the fact, that any member of the group U(3) is represented by eiλaθa with θa ∈ R. The
mass terms of π± are hence proportional to A, where A is taken from matrix (192\left) A = ms(mu +md).
Similar considerations apply for the particle content of all 2 × 2 blocks which con�rms the mass ordering
introduced in chapter (1.5.4). For the 3 × 3 block corresponds to the particle content of η, η‘ and π0. For
these cases one has to perform a numerical diagonalization. Additionally, one also has to take into account
the e�ect of the axial anomly, which leads to the unusual heavy η‘ mass.

Appendix 2

Numerics

Through out this entire work we often rely on numerical calculations of phase diagrams since we either don't
posses any analytical expression for phase transitions line or the corresponding expressions are simply to
complicated to be analyzed analytically. The �rst case is illustrated by the curve labeled �numerics� in �gure
(7). This is indeed the only region for which we cannot �nd any analytical solution-not even in principle.
The second situation often occurs because in the general case we are forced to deal with solutions to cubic
equations after minimizing the full potential . We will now brie�y discuss the basic idea of the numerical
algorithm and provide semi-analytical methods to check our numerical results. In order to construct a phase
diagram, we execute the following steps:

• Since we scan all phases within an (a, α) plane for �xed values of a0, we need to set up a discrete lattice
for a and α and loop over all values within this lattice. All other constants remain at a �xed value.

• We use an expression, in which we have already minimized our potential in φ and d, Ω(σ, φ(σ), dmin(σ)),
minimize this potential in σ and solve the stationary equation and evaluate Ω(σmin) repeatedly for all
values of a and α. Since this is a cubic equation in σ, we have to consider three potential solutions.
Either one or all three of them are real.

• We pick out only the real solutions we get from the second step and check, if the following constraints
are ful�lled: d2(σmin) > 0, −1 < cosφ(σ) < 1. Solutions which violate one or both conditions
are rejected. The conditions of d2(σmin) > 0 is of course di�erent for COE(2SC), COE(CFL) and
COE-K0.

• We now calculate all the energy of the ground state of all phases and all possible solutions, compare
them, and pick the one with the lowest value.

• We ask, which phase represents the overall ground state for a �xed value of a and α and then assign
numbers to the speci�c phases (for example if the ground is represented by the NG phase, assign �1�
to the phase parameter). All positions (a, α), at which this number changes, are saved in an array.

additionally, we can speci�cally ask for �rst order transitions. In this case we have to monitor all order
parameters (especially σ). If |σ| has increased by, lets say, ten times compared to the last (a, α) position,
we mark this point as �rst order. In addition to these purely numerical results, we have developed some
semi-analytical approaches to con�rm our �ndings.

• We can make use of Hessian an determine the phase transition line as discussed in section 2.2.1. Even
in the more complicated case, where σmin in α = 2γσ(a)min is given by a cubic equation, we can,
at least numerically, plot the analytical curve α(a) in order to determine the phase transition-line in
between COE(CFL) and NG as well as COE(2SC). The result is illustrated in �gure A1 and A2.

• A semi-analytical expression for the phase transition line between the COE and COE-K0 phases can
be found if we follow the steps in section 2.4.1 leading to equation 163. There we have determined the
value of σat the phase boundary between COE and COE-K0 to be

σ =
3α
2γ

µ2

3µ2 − 2β
.

Using the relation between τ = σ− c
3b , we can insert this into the stationary equation 149 which then

only contains the Ginzburg-Landau parameters. One then obtains a cubic equation for α which has
a very lengthy, but analytical, solution α(a) for the second-order phase transition line between COE
and COE-K0 phases.The result is illustrated in �gure A3.

With the two methods discussed above, we posses analytical expressions for all second order transitions. First
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order (critical) lines are determined analytically anyway, which means, that the only region in the entire
phase diagram, not determined by an analytical approach is the curved �rst order line labeled �numerics� in
�gure (7).

Figure A1: Phase transition-lines, determined by α = 2γσ(a)min . Since σmin is a solution to a cubic equation, we �nd di�erent
branches which alternating coincide with the (numerical) phase transition-line. All values correspond to �gure 11. Not however, that
here thick black lines represent the semi-analytically obtained second order transition, whereas �rst order transition are light gray.

Figure A2: Semi-analytical check corresponding to �gure 14.

Figure A3: Semi-analytical phase transition-line by using equation 163. Again we have used a thick black line for the

semi-analytically obtained second order transition.
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