
DISSERTATION

Protecting Web Clients from
Internet Threats

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Privatdozent Dipl.-Ing. Dr.techn. Christopher Krügel
und

Privatdozent Dipl.-Ing. Dr.techn. Engin Kirda

Institut für Rechnergestützte Automation
Arbeitsgruppe Automatisierungssysteme (E183-1)

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Manuel Egele
Kernstockstraße 26

A-6850 Dornbirn
0025546

Wien, am 13. Dezember 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung (German Abstract)

Das Internet hat sich in den letzten Jahren immer mehr zu einem Netzwerk en-
twickelt in dem die Nutzer die Möglichkeit haben unterschiedliche Dienste in
Anspruch zu nehmen. Beispielsweise ist es für Nutzer heute sehr einfach möglich
soziale Kontakte zu pflegen oder Produkte zu vermarkten und zu kaufen. Online-
Banking ist nur ein weiterer Aspekt der die Kommerzialisierung des Internet
verdeutlicht.

Wie auch im der realen Welt, zieht das Vorhandensein von Geld immer auch
Personen mit bösartigen Intentionen an, die versuchen sich auf Kosten anderer
zu bereichern. Bösartige Software (Malware) ist das Mittel der Wahl dem sich
solche Personen bedienen. Mittels sogenannter drive-by Downloads ist es Cyber-
Kriminellen möglich beim Besuch einer Webseite solche Malware auf dem Rech-
ner eines Nutzers unbemerkt zu installieren. Desweiteren machen sich die An-
greifer eine Technik namens web-spamming zunutze das es ihnen erlaubt, die
Suchergebnisse von Internet Suchmaschinen in ihrem Interesse zu verfälschen,
um damit mehr Besucher auf ihre Webseiten zu locken. Auf Grund dieses Vorge-
hens, widmet sich diese Dissertation zu Beginn den beiden Techniken (drive-by
Downloads und web-spam) und stellt geeignete Schutzmechanismen vor.

Sollte die installierte Malware bisweilen unbekannt sein, haben Anti-Virus
Hersteller und Forscher vielfältige Möglichkeiten die Malware auf ihre Schad-
wirkung zu untersuchen. Dynamische Analyse Techniken führen dazu die Mal-
ware in einer kontrollierten Umgebung aus und beobachten gleichzeitig das Ver-
halten der Malware. Statische Techniken hingengen erledigen die Analyse ohne
den bösartigen Code auszuführen. Im Bereich der statischen Analyse stellt diese
Dissertation daher ein neuartiges System vor das in der Lage ist iOS Programme
auf Code zu untersuchen der die Privatsphäre des Nutzers untergräbt.

i

ii

Abstract

The Internet has evolved from a basic communication network to an intercon-
nected set of services enabling, among other things, new forms of (social) in-
teractions and market places for the sale of products and services. Furthermore,
online banking or advertising are mere examples of the commercial aspects of the
Internet.

Just as in the physical world, whenever money is involved, there are people on
the Internet with malevolent intentions that strive to enrich themselves by taking
advantage of legitimate users. Malware (i.e., software of malicious intent) helps
these people to accomplish their goals. Commonly, the business model of such
entities begins with a successful attack on an Internet-connected personal com-
puter, where the attacker installs a piece of malware. A drive-by download attack
refers to a technique where malware is installed on a victims’ computer as a result
of the mere visit to an attackers’ web site. Such attacks are insidious, because
commonly the user does not notice that malware gets installed. Additionally, to
increase the number of visitors to their malicious sites, attackers can make use
of web-spamming to manipulate search engine results in their favor. Thus, this
thesis initially focuses on web-spamming and drive-by downloads and presents
mitigation approaches for these threats.

In case the installed malware was previously unknown, anti-virus companies
and researchers have two possibilities to analyze the potential threat. Dynamic
analysis techniques execute the captured sample in a controlled environment and
observe the behavior of the program during execution. Static techniques, on the
other hand, perform their analysis task without executing the malicious program.
This thesis contributes to the field of malware analysis techniques as we present
our novel static analysis system for iOS applications. The evaluation of this sys-

iii

iv

tem shows that the employed techniques are suitable to precisely identify code
paths that pose a threat to the privacy of the user.

Acknowledgments

Finishing my PhD studies culminating in this thesis would not have been possible
without the help and support of a multitude of people. Therefore, I think it is only
fair to give my thanks to these people here.

First, my gratitude goes to my advisors, Engin Kirda and Christopher Krügel.
They guided me through my studies, and provided me with the necessary feedback
that was required to improve my skills.

Furthermore, I would like to thank all my colleagues that I had the honor
to work with at the International Secure Systems Lab. Be it in Vienna, Sophia-
Antipolis, or Santa Barbara, it was always a great time in terms of work and fun.

Last but not least, I would like to say thank you to my awesome family. They
provided me with all the support, love, and understanding I could wish for.

v

vi

Contents

1 Introduction 1
1.1 Contributions . 2

1.2 Thesis Overview . 3

2 Threats to Internet-Connected Devices 5
2.1 What is Malware? . 5

2.1.1 Types of Malware . 7

2.1.2 Infection Vectors . 9

2.2 Understanding the Threats . 12

2.2.1 Static Analysis . 12

2.2.2 Dynamic Analysis . 13

2.3 Summary . 14

3 Influencing Search Engine Results with Web-Spam 17
3.1 Overview . 19

3.1.1 Inferring Important Features 20

3.1.2 Removing Spam from Search Engine Results 20

3.2 Feature Inference . 21

3.2.1 Feature Selection . 21

3.2.2 Preparation of Pages . 22

3.2.3 Execution of Experiments and Results 25

3.2.4 Extraction of Important Features 26

3.3 Reducing Spam from Search Engine Results 29

3.3.1 Detecting Web Spam in Search Engine Results 29

3.3.2 Evaluated Classification Models 31

vii

viii CONTENTS

3.3.3 Evaluation of the J48 decision tree 35

3.4 Summary . 37

4 Drive-by Download Attacks 39
4.1 Anatomy of a drive-by attack . 42

4.1.1 JavaScript basics . 42

4.1.2 An example of a real-world drive-by download 43

4.2 Automatically detecting drive-by attacks 45

4.2.1 Tracking object (string) allocations 46

4.2.2 Checking strings for shellcode 47

4.2.3 Performance optimizations 48

4.3 Evaluation . 49

4.3.1 False positive evaluation 50

4.3.2 Detection effectiveness 50

4.3.3 Performance . 54

4.4 Implementation details . 55

4.5 Summary . 59

5 Analyzing iOS Applications for Privacy Threats 61
5.1 System Overview . 64

5.2 Background Information . 67

5.2.1 Objective-C . 67

5.2.2 Mach-O Binary File Format 68

5.2.3 iOS Applications . 69

5.3 Extracting CFGs from Objective-C Binaries 71

5.3.1 Building a Class Hierarchy 72

5.3.2 Resolving Method Calls 73

5.3.3 Generating the Control Flow Graph 77

5.4 Finding Potential Privacy Leaks 77

5.4.1 Sources and Sinks . 78

5.4.2 Dataflow Analysis . 80

5.5 Evaluation . 81

5.5.1 Resolving Calls to objc msgSend 81

CONTENTS ix

5.5.2 Advertisement and Tracking Libraries 82
5.5.3 Reachability Analysis 84
5.5.4 Data Flow Analysis . 85
5.5.5 Case Studies . 86
5.5.6 Discussion . 88

5.6 Limitations . 89
5.7 Summary . 90

6 Related Work 91

7 Conclusions 97

x CONTENTS

List of Tables

3.1 Feature set used for inferring important features. 21
3.2 List of experiment groups. 24
3.3 Comparison of different classification models 34
3.4 Confusion matrix of the J48 decision tree 36

4.1 Page load times (sec) with and without drive-by download protec-
tion. 55

5.1 Sensitive information sources. 78
5.2 Prevalence of advertising and tracking libraries. 83
5.3 Applications accessing sensitive data. 84

xi

xii LIST OF TABLES

List of Figures

1.1 Life Cycle of Malware . 3

3.1 Differences when comparing predicted values with actual ranking
positions. 28

3.2 Generated J48 decision tree. 36

4.1 The typical steps of a drive-by download attack. 40
4.2 ActiveX components involved in drive-by downloads. 54

5.1 The PiOS system. 65

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

Today, Internet-connected devices face a plethora of attacks that threaten the in-
tegrity of the data they store, and the privacy of their users. Historically, such
attacks focus on Internet-connected personal computers. More recently, however,
with the growing processing power of mobile devices, such devices also became
the target of attacks. Once an attack is successful, the compromised machine is
considered to be under the control of the attacker. Commonly, this entails that
the machine is made to join a botnet where the machine’s resources are misused
to distribute spam messages or to contribute to denial of service attacks. At the
same time, the attacker can install spyware on the compromised target to surrepti-
tiously steal private information from the user, such as online banking credentials
or credit card numbers. Although mobile devices face similar threats, one char-
acteristic distinguishes such devices from regular personal computers. Mobile
devices advance more and more to become communication hubs for their users,
and store and access a multitude of sensitive information, such as address books,
email accounts, text messages, or positional data. Mobile devices not yet face the
variety of malware as seen on PCs. However, third party applications with ques-
tionable behavior threaten the integrity of the often sensitive data that is stored on
these devices.

1

2 Chapter 1. Introduction

1.1 Contributions

In this thesis, we present the research we conducted towards the mitigation of the
threats that Internet-connected devices and their users face. Our contributions in
this endeavor are as follows:

• First, we demonstrate how miscreants perform web-spamming attacks to in-
fluence search engine ranking algorithms. Being able to manipulate search
engine results in their favor, attackers can attract web traffic (i.e., visitors)
to their sites and thus increase the chances of successfully attacking innocu-
ous web surfers. Of course, we also present our findings in trying to defend
against such web-spam attacks. This work was first published in the Journal
of Computer Virology.

• Web-spam can be used to promote web sites that perform drive-by down-

load attacks. That is, the mere visit of such a site leads to an infection with
malware. This infection occurs without additional interaction from the user,
and thus commonly goes unnoticed. Therefore, we present a novel system
that is able to prevent such attacks and incurs only minimal performance
overheads. We published this work at the Conference on Detection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA).

• Besides drive-by downloads, a user can also be tricked with social engi-
neering techniques to install malicious applications voluntarily. This is the
approach that privacy-threatening applications use to make their way to mo-
bile devices. Regardless of how a malicious application is installed, it is
important to security vendors and researchers to have adequate tools and
techniques to analyze such malware samples. To this end, we present our
novel approach to statically analyze iOS applications for possible privacy
leaks that threaten the integrity of the information stored on mobile devices.
This work has been accepted at the Network and Distributed System Secu-
rity Symposium (NDSS), and will be presented there.

1.2. Thesis Overview 3

1.2 Thesis Overview

As illustrated in Figure 1.1, this thesis is structured in three parts and is based on
some of our previously published [26, 29] and not yet published [27, 28] work.

Result 1

Result 3

Malicious Result

Result 2

Attacker

1. Attacker performs web-spam
attack to influence

search engine results

Client

Malicious
web site

2a. Client visits a malicious
search engine result

2b. Drive-by download

A/V Vendor
ResearcherInfected

Client

3. A/V Vendor or Researcher
analyzes the threat

Chapter 3 Chapter 5Chapter 4

Figure 1.1: Life Cycle of Malware

Figure 1.1 depicts a possible life cycle of a malware sample. An attacker first
performs web-spamming to attract visitors to his malicious site. Second, this mali-
cious site will attack visitors with a so-called drive-by download. Finally, in case
of a successful attack, security vendors and researchers will analyze previously
unknown threats and provide protection mechanisms to prevent similar attacks
from happening in the future.

Following this outline, Chapter 2 strives to make the reader familiar with the
different kinds of threats that lurk on the Internet. Furthermore this chapter dis-
cusses what techniques attackers apply to infect their targets with malware. In
Chapter 3, we present our findings regarding the web-spam problem. Our ap-
proach to detect and prevent drive-by downloads is presented in Chapter 4. In

4 Chapter 1. Introduction

Chapter 5, we present our novel static analysis technique for iOS applications.
Chapter 6 discusses related work before Chapter 7 concludes this thesis.

Chapter 2

Threats to Internet-Connected
Devices

In this chapter, we will elaborate on the different classes of malware that lurk
all over the Internet and threaten its users and their privacy. Furthermore, we
summarize the infection vectors used by attackers to install malware on Internet
connected devices. We also give an overview of the different techniques that can
be applied to analyze malicious software.

2.1 What is Malware?

Software that “deliberately fulfills the harmful intent of an attacker” is commonly
referred to as malicious software or malware [64]. Terms such as “worm”, “virus”,
or “Trojan horse” are used to classify malware samples that exhibit similar ma-
licious behavior. The first instances of malicious software were viruses. The
motivation for the creators of such early malware was usually to highlight some
security vulnerabilities or simply to show off technical ability. For example, the
cleaning of Bagle worm infected hosts by instances of the Netsky worm could
be considered as rivalry between different authors [95]. As time passed, the mo-
tivations changed. Today, there is a flourishing underground economy based on
malware [105]. It is no longer the fun factor that drives the development in these
circles, but the perspective of the money that can be made.

5

6 Chapter 2. Threats to Internet-Connected Devices

Consider the following scenario which illustrates the distribution of malware
and its effects. A bot is a remotely-controlled piece of malware that has infected
an Internet-connected computer system. This bot allows an external entity, the
so-called bot master, to remotely control this system. The pool of machines that
are under control of the bot master is called a botnet. The bot master might rent
this botnet to a spammer who misuses the bots to send spam emails containing
links to a manipulated web page. This page, in turn, might surreptitiously install
a spyware component on a visitors system which collects personal information,
such as credit card numbers and online banking credentials. This information
is sent back to the attacker who is now able to misuse the stolen information by
purchasing goods online. All involved criminals make money at the expense of the
infected user, or her bank respectively. With the rise of the Internet and the number
of attached hosts, it is now possible for a sophisticated attacker to infect thousands
of hosts within hours after releasing the malware into the wild [62]. Recently, a
study by Stone-Gross et al. [92] revealed that the Torpig botnet consists of more
than 180,000 infected computer systems.

The risk described above motivates the need to create tools that support the
detection and mitigation of malicious software. Nowadays, the weapon of choice
in combat against malicious software are signature-based anti-virus scanners that
match a pre-generated set of signatures against the files of a user. These signatures
are created in a way so that they only match malicious software. This approach
has at least two major drawbacks. First, the signatures are commonly created by
human analysts. This, often, is a tedious and error-prone task. Second, the us-
age of signatures inherently prevents the detection of unknown threats for which
no signatures exist. Thus, whenever a new threat is detected, it needs to be ana-
lyzed, and signatures need to be created for this threat. After the central signature
database has been updated, the new information needs to be deployed to all clients
that rely on that database. Because the signatures are created by human analysts,
unfortunately, there is room for error. Multiple AV vendors released signature up-
dates that mistakenly identified legitimate executables as being malware [39, 51],
thus, rendering the operating system they were designed to protect, inoperative.

Closely related to the second drawback (i.e., not being able to detect un-
known threats), is the inability to detect specifically tailored malware. Besides

2.1. What is Malware? 7

the mass phenomenon of Internet worms and malicious browser plug-ins, one can
observe the existence of specifically tailored malware that is created for targeted
attacks [5]. Spyware programs might be sent via email to the executive board of
a company with the specific intent to capture sensitive information regarding the
company. Because these malware samples usually do not occur in the wild, it is
unlikely that an anti-virus vendor receives a sample in time to analyze it and pro-
duce signatures. This means that the spyware could be operational in the company
for a long time before it is detected and removed, even if anti-virus software is in
place.

The inability to detect unknown threats is an inherent problem of signature-
based detection techniques. This is overcome by techniques that base their deci-
sion of identifying a piece of code as being malicious or not, on the observation
of the software’s behavior. Although these techniques allow for the detection of
previously unknown threats to a certain extent, they commonly suffer from false
positives. That is, legitimate samples are falsely classified by the detection system
as being malicious due to the detector’s inability to distinguish legitimate from
malicious behavior under all circumstances.

2.1.1 Types of Malware

This section gives a brief overview of the different classes of malware programs
that have been observed in the wild. The following paragraphs are solely intended
to familiarize the reader with the terminology that we will be using in the remain-
der of this work. Furthermore, these classes are not mutually exclusive. That is,
specific malware instances may exhibit the characteristics of multiple classes at
the same time. A more detailed discussion of malicious code in general can be
found for example in Skoudis et al. [86], or Szor [94].

Worm Prevalent in networked environments, such as the Internet, Spafford [89]
defines a worm as “a program that can run independently and can propa-

gate a fully working version of itself to other machines.” This reproduction
is the characteristic behavior of a worm. The Morris Worm [89] is the first
publicly known instance of a program that exposes worm-like behavior on
the Internet. More recently, in July 2001, the Code Red worm infected

8 Chapter 2. Threats to Internet-Connected Devices

thousands (359,000) of hosts on the Internet during the first day after its re-
lease [62]. Today, the Storm worm and others are used to create botnets that
are rented out by the bot masters to send spam emails or perform distributed
denial of service attacks (DDOS) [54], where multiple worm infected com-
puters try to exhaust the system resources or the available network band-
width of a target in a coordinated manner.

Virus “A virus is a piece of code that adds itself to other programs, including

operating systems. It cannot run independently - it requires that its “host”

program be run to activate it.” [89] As with worms, viruses usually prop-
agate themselves by infecting every vulnerable host they can find. By in-
fecting not only local files but also files on a shared file server, viruses can
spread to other computers as well.

Trojan Horse Software that pretends to be useful, but performs malicious ac-
tions in the background, is called a Trojan horse. While a Trojan horse
can disguise itself as any legitimate program, frequently, they pretend to
be useful screen-savers, browser plug-ins, or downloadable games. Once
installed, their malicious part might download additional malware, modify
system settings, or infect other files on the system.

Spyware Software that retrieves sensitive information from a victims’ system and
transfers this information to the attacker is denoted as spyware. Informa-
tion that might be interesting for the attacker include accounts for computer
systems or bank account credentials, a history of visited web pages, and
contents of documents and emails.

Bot A bot is a piece of malware that allows its author (i.e., the bot master) to
remotely control the infected system. The set of bots collectively controlled
by one bot master is denoted a botnet. Bots are commonly instructed to
send spam emails or perform spyware activities as described above.

Rootkit The main characteristic of a rootkit is its ability to hide certain infor-
mation (i.e., its presence) from a user of a computer system. Rootkit tech-
niques can be applied at different system levels, for example, by instrument-
ing API calls in user-mode or tampering with operating system structures

2.1. What is Malware? 9

if implemented as a kernel module or device driver. Manipulating the re-
spective information allows a rootkit to hide processes, files, or network
connections on an infected system. Moreover, virtual machine based rootk-
its [56, 81, 106] conceal their presence by migrating an infected operating
system into a virtual machine. The hiding techniques of rootkits are not bad
per se, but the fact that many malware samples apply rootkit techniques to
hide their presence in the system, justifies mentioning them here.

2.1.2 Infection Vectors

This section gives an overview of the infection vectors that are commonly used
by attackers to infect a victim’s system. Brief examples are used to illustrate how
these infections work and how malware used them in the past.

Exploiting Vulnerable Services over the Network

Network services running on a server provide shared resources and services to
clients in a network. For example, a DNS service provides the capabilities of re-
solving host names to IP addresses, a file server provides shared storage on the
network. Many commodity off the shelf operating systems come with a variety of
network services that are already installed and running. Vulnerabilities in such ser-
vices might allow an attacker to execute her code on the machine that is providing
the service. Large installation bases of services that share the same vulnerability
(e.g., [61]) pave the way for automatic exploitation. Thus, such conditions allow
malicious software to infect accessible systems automatically. This characteristic
makes network service exploitation the preferred method for infection by worms.
Moreover, services that provide system access to remote users, and authenticate
these users with passwords (e.g., ssh, administrative web interfaces, etc.), are fre-
quently exposed to so-called dictionary attacks. Such an attack iteratively tries to
log into a system using passwords stored in a dictionary.

10 Chapter 2. Threats to Internet-Connected Devices

Drive-by downloads

Drive-by downloads usually target a victim’s web browser. By exploiting a vul-
nerability in the web browser application, a drive-by download is able to fetch
malicious code from the web and subsequently execute it on the victim’s machine.
This usually happens without further interaction with the user. In contrast to ex-
ploiting vulnerabilities in network services in which push-based infection schemes
are dominant, drive-by downloads follow a pull-based scheme [75]. That is, the
connections are initiated by the client as it is actively requesting the malicious con-
tents. Therefore, firewalls that protect network services from unauthorized access
cannot mitigate the threat of drive-by attacks. Currently, two different techniques
are observed in the wild that might lead to a drive-by infection:

• API misuse: If a certain API allows for downloading an arbitrary file from
the Internet, and another API provides the functionality of executing a ran-
dom file on the local machine, the combination of these two APIs can lead to
a drive-by infection [60]. The widespread usage of browser plug-ins usually
gives attackers a huge portfolio of APIs that they might use and combine for
their nefarious purposes in unintended ways.

• Exploiting web browser vulnerabilities: This attack vector is identical to the
case of exploitable network services. Moreover, as described in Sotirov [87]
and Daniel et al. [23] the availability of client-side scripting languages, such
as Javascript or VBScript, provide the attacker with additional means to suc-
cessfully launch an attack. A detailed discussion of such threats is presented
in Chapter 4.

Before a drive-by download can take place, a user is first required to visit the
malicious site. In order to lure the user into visiting the malicious site, attackers
perform social engineering and send spam emails that contain links to these sites
or infect existing web pages with the malicious code. For example, the infamous
Storm worm makes use of its own botnet resources to send spam emails containing
links to such attack pages [54].

To maximize the number of sites that host such drive-by attacks, attackers
exploit vulnerabilities in web applications that allow them to manipulate these

2.1. What is Malware? 11

web sites (e.g., [22]). This is an example in which attackers use the infection
vector of vulnerable network services to launch drive-by download attacks on
clients of that service (e.g., a web site). Another technique for attackers to lure
users to their web sites is by trying to cheat the ranking algorithms that web search
engines use, to sort result pages. An attacker may create a page that is specifically
instrumented to rank high for common search query terms. If the page is listed on
a top position for these query terms, it will result in a large number of visitors [9,
48]. Chapter 3 elaborates on these so-called web-spam attacks in detail. Provos et
al. [75] discovered that more than 1.3% of results to Google search queries include
at least one page that tries to install malicious software on a visitor’s machine.
Provos et al. [76] also analyzed the techniques malware authors apply to lure a
user to open a connection to a host that performs drive-by download attacks. The
most prevalent of these actions are circumventing web-server security measures,
providing user generated content, advertising schemes, and malicious widgets.

Social Engineering

All techniques that lure a user into deliberately executing malicious code on her
device, possibly under false pretenses, are subsumed as social engineering attacks.
There are virtually no limits to the creativity of attackers when social engineering
is involved. Asking the user to install a provided “codec” to view the movie that
is hosted on the current web site, clicking and opening an image that is attached
to a spam email, or speculating that the user plugs a “found” USB key into her
computer eventually [91] are just a few examples of social engineering. At the
time of writing, virtually all malware for mobile devices is distributed using so-
cial engineering. That is, malicious software or ill-behaved software is seeded
in the respective market places and the user deliberately downloads and installs
the offending programs from there. Commonly, the user is not aware of the pro-
grams’ malicious behavior. Therefore, to better assess the privacy threats such
applications pose for their users we present our novel static analysis system for
iOS applications in Chapter 5.

12 Chapter 2. Threats to Internet-Connected Devices

2.2 Understanding the Threats

Regardless of what what infection vector a malware sample used to compromise
an Internet-connected device, it is important for security vendors and researchers
to have appropriate tools and techniques to analyze these samples. The available
analysis methods are divided into two categories. Dynamic analysis subsumes the
techniques that execute the malware in a controlled environment and monitor the
malware’s execution. Static analysis, on the other hand, refers to those techniques
that perform the analysis by inspecting the sample without actually running its
code.

2.2.1 Static Analysis

Static analysis techniques can be applied on different representations of a pro-
gram. If the source code is available, static analysis tools can help finding mem-
ory corruption flaws [14, 15, 34] and prove the correctness of models for a given
system.

Note that when dealing with potentially malicious code, the source code is
usually not available. However, static analysis techniques can also be applied
to the binary representation of a program. Such approaches commonly start by
disassembling the code of the binary under analysis. That is, the binary code
is translated to assembly instructions of the respective instruction set. Based on
this disassembly, further analysis steps can be performed. By extracting the call

graph, for example, an analyst can understand which functions invoke what other
functions in the program. This requires that the analysis is able to distinguish
function boundaries in the binary successfully. A control flow graph, on the other
hand, illustrates the possible execution paths on a finer grained level (e.g., within
a function body). When compiling the source code of a program into a binary
executable, some information (e.g., the size of data structures or variables) is lost.
This loss of information complicates the task of statically analyzing binary pro-
grams.

Limitations of Static Malware Analysis Approaches: Generally, the source
code of malware samples is not readily available. This reduces the applicable

2.2. Understanding the Threats 13

static analysis techniques for malware analysis to those that retrieve the informa-
tion from the binary representation of the malware. Analyzing binaries brings
along intricate challenges. Consider, for example, that most malware attacks de-
vices executing instructions in the IA32 instruction set (e.g., PCs). The disassem-
bly of such programs might result in ambiguous results if the binary employs self
modifying code techniques, such as packer programs. Additionally, malware re-
lying on values that cannot be statically determined (e.g., current system date, in-
direct jump instructions) exacerbate the application of static analysis techniques.
However, most mobile devices feature RISC CPUs that have a different, much
simpler instruction set, such as ARMv7. Therefore, some of the limitations for
static analysis techniques on IA32 binaries are not fully applicable to applications
compiled to run on such RISC CPUs.

2.2.2 Dynamic Analysis

Monitoring the actions performed by a program, and the effects these actions have
on the system, while the program is executed is called dynamic analysis.

Function Call Monitoring: It is relatively easy for dynamic malware analysis
tools to monitor the invocation of functions during program execution. Regard-
less of whether the called function is implemented in the binary itself, or in a
dynamically loaded library, calling a function is commonly performed by a call
instruction. Thus, intercepting such calls enables a dynamic malware analysis tool
to create the function call graph for the observed execution paths. System calls
are a special kind of function, as they provide the only means for a program to
communicate or influence its environment (e.g., file system, network, etc.). This
system call interface is commonly well documented and thus, many dynamic anal-
ysis techniques also monitor system call invocations.

Of course, many dynamic analysis tools keep track of parameter and return
values between function calls. For example, opening and writing to a file requires
at least two separate function or system calls. It is important for a dynamic anal-
ysis tool to keep track of whether these two function calls refer to the same file
object or not.

14 Chapter 2. Threats to Internet-Connected Devices

Apart from focusing on the execution of a single program, a dynamic analysis
tool might be designed to monitor a complete system. Such whole system anal-
ysis techniques allow the analyst to gain insight into the interaction of multiple
programs.

Information Flow Tracking: An orthogonal approach to the monitoring of
function calls during the execution of a program is the analysis on how the pro-
gram processes data. The goal of information flow tracking is to shed light on
the propagation of “interesting” data throughout the system while a program ma-
nipulating this data is executed. In general, the data that should be monitored
is specifically marked (tainted) with a corresponding label. Whenever the data
is processed by the application, its taint-label is propagated. Assignment state-
ments, for example, usually propagate the taint-label of the source operand to the
target. Besides the obvious cases, policies have to be implemented that describe
how taint-labels are propagated in more complex scenarios. Such scenarios in-
clude the usage of a tainted pointer as the base address when indexing to an array
or conditional expressions that are evaluated on tainted values.

Limitations of Dynamic Malware Analysis Approaches: Although dynamic
malware analysis techniques are a powerful instrument to gain insight into the
operation of malware, these techniques are also limited by a number of factors.
For example, a malware sample could perform a series of operations to determine
whether it is currently being analyzed. In case the sample detects the analysis
environment it could cease to exhibit any malicious behavior and therefore escape
analysis. Furthermore, dynamic analysis suffers from the problem of incomplete
path coverage. That is, information is only collected while the program is running
and only along the code paths that are actually executed. Therefore, logic bombs
or startup delays are often successful countermeasures for malware samples to
evade dynamic analysis.

2.3 Summary

This chapter made the reader familiar with the different infection vectors that
attackers make use of to infect target devices with all sorts of malware. Further-

2.3. Summary 15

more, we briefly elaborated on what analysis techniques can be used to scrutinize
malware once it successfully infected a system.

Web-spam and drive-by downloads attacks often go hand in hand, and are
among the most prevalent of the attack scenarios on the Internet. Thus, the fol-
lowing two chapters will elaborate on these attacks. Of course, we also propose
mitigation approaches to these threats.

16 Chapter 2. Threats to Internet-Connected Devices

Chapter 3

Influencing Search Engine Results
with Web-Spam

Search engines are designed to help users find relevant information on the Internet.
Typically, a user submits a query (i.e., a set of keywords) to a search engine,
which then returns a list of links to pages that are most relevant to this query. To
determine the most-relevant pages, a search engine selects a set of candidate pages
that contain some or all of the query terms and calculates a page score for each
page. Finally, a list of pages, sorted by their score, is returned to the user.

This score is calculated from properties of the candidate pages, so-called fea-
tures. Unfortunately, details on the exact algorithms that calculate these ranking
values are kept secret by search engine companies, since this information directly
influences the quality of the search results. Only general information is made
available. For example, in 2007, Google claimed to take more than 200 features
into account for the ranking value [42].

The way in which pages are ranked directly influences the set of pages that
are visited frequently by the search engine users. The higher a page is ranked, the
more likely it is to be visited [9]. This makes search engines an attractive target
for everybody who aims to attract a large number of visitors to her site. There
are three categories of web sites that benefit directly from high rankings in search
engine results. First, sites that sell products or services. In their context, more vis-
itors imply more potential customers. The second category contains sites that are

17

18 Chapter 3. Influencing Search Engine Results with Web-Spam

financed through advertisement. These sites aim to rank high for any query. The
reason is that they can display their advertisements to each visitor, and, in turn,
charge the advertiser. The third, and most dangerous, category of sites that aim to
attract many visitors by ranking high in search results are sites that distribute ma-
licious software. Such sites typically contain code that exploits web browser vul-
nerabilities to silently install malicious software on the visitor’s computer. Once
infected, the attacker can steal sensitive information (such as passwords, financial
information, or web-banking credentials), misuse the user’s bandwidth to join a
denial of service attack, or send spam. The threat of drive-by downloads (i.e.,
automatically downloading and installing software without the user’s consent as
the result of a mere visit to a web page) and distribution of malicious software via
web sites has become a significant security problem. Web sites that host drive-by
downloads are either created solely for the purpose of distributing malicious soft-
ware or existing pages that are hacked and modified (for example, by inserting an
iframe tag into the page that loads malicious content). Provos et al. [75, 77]
observe that such attacks can quickly reach a large number of potential victims,
as at least 1.3% of all search queries directed to the Google search engine contain
results that link to malicious pages. Moreover, the pull-based infection scheme
circumvents barriers (such as web proxies or NAT devices) that protect from push-
based malware infection schemes (such as traditional, exploit-based worms). As
a result, the manipulation of search engine results is an attractive technique for
attackers that aim to attract victims to their malicious sites and spread malware
via drive-by attacks [79].

Search engine optimization (SEO) companies offer their expertise to help
clients improve the rank for a given site through a mixture of techniques, which
can be classified as being acceptable or malicious. Acceptable techniques refer to
approaches that improve the content or the presentation of a page to the benefit
of users. Malicious techniques, on the other hand, do not benefit the user but aim
to mislead the search engine’s ranking algorithm. The fact that bad sites can be
pushed into undeserved, higher ranks via malicious SEO techniques leads to the
problem of web spam.

Gyöngyi and Garcia-Molina [44] define web spam as every deliberate human
action that is meant to improve a site’s ranking without changing the site’s true

3.1. Overview 19

value. Search engines need to adapt their ranking algorithms continuously to mit-
igate the effect of spamming techniques on their results. For example, when the
Google search engine was launched, it strongly relied on the PageRank [8] al-
gorithm to determine the ranking of a page where the rank is proportional to the
number of incoming links. Unfortunately, this led to the problem of link farms and
“Google Bombs,” where enormous numbers of automatically created forum posts
and blog comments were used to promote an attacker’s target page by linking to
it.

Clearly, web spam is undesirable, because it degrades the quality of search re-
sults and draws users to malicious sites. Although search engines invest a signif-
icant amount of money and effort into fighting this problem, checking the results
of search engines for popular search terms demonstrates that the problem still ex-
ists. In this work, we aim to post-process results returned by a search engine to
identify entries that link to spam pages. To this end, we first study the impor-
tance of different features for the ranking of a page. In some sense, we attempt to
reverse-engineer the “secret” ranking algorithm of a search engine to identify the
most important features. Based on this analysis, we attempt to build a classifier
that inspects these features to identify indications that a page is web spam. When
such a page is identified, we can remove it from the search results.

The two main contributions presented in this chapter are the following:

• We conducted comprehensive experiments to understand the effects of dif-
ferent features on search engine rankings.

• We developed a system that allows us to reduce spam entries from search
engine results by post-processing them. This protects users from visiting
either spam pages or, more importantly, malicious sites that attempt to dis-
tribute malware.

3.1 Overview

In this section, we first provide an overview of our approach to determine the
features that are important for the ranking algorithm. Then, we describe how we

20 Chapter 3. Influencing Search Engine Results with Web-Spam

use this information to develop a technique that allows us to identify web spam
pages in search engine results.

3.1.1 Inferring Important Features

Unfortunately, search engine companies keep their ranking algorithms and the
features that are used to determine the relevance of a page secret. However, to
be able to understand which features might be abused by spammers and malware
authors to push their pages, a more detailed understanding of the page ranking
techniques is necessary. Thus, the goal of the first step of our work is to determine
the features of a web page that have the most-pronounced influence on the ranking
of this page.

A feature is a property of a web page, such as the number of links pointing
to other pages, the number of words in the text, or the presence of keywords
in the title tag. To infer the importance of the individual features, we perform
“black-box testing” of search engines. More precisely, we create a set of different
test pages with different combinations of features and observe their rankings. This
allows us to deduce which features have a positive effect on the ranking and which
contribute only a little.

3.1.2 Removing Spam from Search Engine Results

Based on the results of the previous step, we developed a system that aims to
remove spam entries from search engine results. To this end, we examine the
results that are returned by a search engine and attempt to detect links that point
to web spam pages. This is a classification problem; every page in the result set
needs to be classified as either spam or nospam.

To perform this classification, we have to determine those features that are
indicators of spam. For this, we leverage the findings from the first step and a
labeled training set to construct a C4.5 decision tree. A decision tree is useful
because of its intuitive insight into which features are important to the classifica-
tion. Using this classifier, we can then check the results from the search engine
and remove those links that point to spam pages. The result is an improvement of
search quality and fewer visits to malicious pages.

3.2. Feature Inference 21

3.2 Feature Inference

In this section, we give a detailed introduction to our inference techniques for
important features. First, we discuss which features we selected. Then, we de-
scribe how these features are used to prepare a set of (related, but different) pages.
Finally, we report on the rankings that major search engines produced for these
pages and the conclusions that we could draw about the importance of each fea-
ture.

3.2.1 Feature Selection

As mentioned previously, we first aim to “reverse engineer” the ranking algorithm
of a search engine to determine those features that are relevant for ranking. Based

1 Keyword(s) in title tag
2 Keyword(s) in body section
3 Keyword(s) in H1 tag
4 External links to high quality sites
5 External links to low quality sites
6 Number of inbound links
7 Anchor text of inbound links contains keyword(s)
8 Amount of indexable text
9 Keyword(s) in URL file path
10 Keyword(s) in URL domain name

Table 3.1: Feature set used for inferring important features.

on reports from different SEO vendors [83] and study of related work [7, 32],
we chose ten presumably important page features (see Table 3.1). We focused
on features that can be directly influenced by us. The rationale is that only from
the exact knowledge of the values of each feature, one can determine their impor-
tance. Additionally, the feature value should remain unchanged during the whole
experiment. This can only be ensured for features under direct control.

When considering features, we first examined different locations on the page
where a search term can be stored. Content-based features, such as body-, title-, or
headings-tags are considered since these typically provide a good indicator for the

22 Chapter 3. Influencing Search Engine Results with Web-Spam

information that can be found on that page. Additionally, we also take link-based
features into account (since search engines are known to rely on linking informa-
tion). Usually, the number of incoming links pointing to a page (i.e., the in-link

feature) cannot be influenced directly. However, by recruiting 19 volunteers will-
ing to host pages linking to our experiments, we were able to fully control this
feature as well.

Together with features that are not directly related to the page’s content (e.g.,
keyword in domain name), we believe to have covered a wide selection of features
from which search engines can draw information to calculate the rankings.

We are aware of the fact that search engines also take temporal an location-
based aspects into account when computing their rankings (e.g., how does a page
or its link count evolve over time). However, we decided against adding time- and
location-dependent features to our feature set because this would have made the
experiment significantly more complex and does not necessarily add value. We
aim to eliminate the influence of these aspects by always publishing and modify-
ing pages from the same location and at the same time.

3.2.2 Preparation of Pages

Once the features were selected, the next step was to create a large set of test pages,
each with a different combination and different values of these features. For these
test pages, we had to select a combination of search terms (a query) for which no
search engine would produce any search results prior to our experiment (i.e., only
pages that are part of our experiment are part of the results). We arbitrarily chose
“gerridae plasmatron” as the key phrase to optimize the pages for.1 Remember,
the goal is to estimate the influence of page features to the ranking algorithms and
not to determine whether our experiment pages outperform (in terms of search
engine response position) existing legitimate sites.

Using this search phrase, we prepared the test pages for our experiment. To
this end, we first created a reference page consisting of information about ger-
ridae and plasmatrons compiled from different sources. In a second step, this
reference page was copied 90 times. To evade duplicate detection by search en-

1Gerridae is the Latin expression for water strider, plasmatron is a special form of an ion source.

3.2. Feature Inference 23

gines (where duplicate pages are omitted from the results), each of these 90 pages
was obfuscated by substituting many words in a manner similar to [55]. Subse-
quent duplicate detection by the search engines (presumably based on title and
headline tag) required a more aggressive obfuscation scheme where title texts and
headlines where randomized as well.

For features whose possible values exceed the boolean values (i.e., present
or absent), such as keyword frequencies, we selected representative values that
correspond to one of the following four classes.

• The feature is not present at all.

• The feature is present in normal quantities.

• The feature is present in elevated quantities.

• The feature is present in spam quantities.

That is, a feature with a large domain (i.e., set of possible values) can assume
four different values in our experiment. Of course, there is no general rule to
define a precise frequency for which a feature can be considered to be normal,
elevated, or spam. Thus, we manually examined legitimate and spam pages and
extracted average, empirical frequencies for the different values. For example, for
the frequencies of the keyword in the body text, a 1% keyword frequency is used
as a baseline, 4% is regarded elevated, and 10% is considered to be spam.

Since only 90 domains were available, we had to select a representative subset
of the 16,392 possible feature combinations. Moreover, to mitigate any measure-
ment inaccuracies, we decided to do all experiments triple-redundant. That is,
we chose a subset of 30 feature combinations, where each combination forms an
experiment group that consists of three identical instances that share the same
feature values. For these 30 experiment groups, we decided to select the feature
values in a way to represent different, common cases. The regular case is a legit-
imate site, which is represented by the reference page. For this page, all feature
values belong to the normal class. Other cases include keyword stuffing in differ-
ent page locations (e.g., body, title, headlines), or differing amounts of incoming
and outgoing links. The full list of the created experiments is listed in Table 3.2.

24 Chapter 3. Influencing Search Engine Results with Web-Spam

No. Feature Combination Description
1 1,2,3,4,7,9 Baseline
2 1,2,3,7,$9 Baseline with much text
3 1,2,3,$6,7,$9 Baseline with much text, links to low quality sites
4 1,+2,3,7,9 Elevated use of keywords in BODY
5 1,$2,3,7,9 Keyword spamming of BODY
6 +1,2,3,7,9 Elevated use of keywords in the TITLE
7 $1,2,3,7,9 Keyword spamming of TITLE
8 1,2,3,$4,7,9,10 Keyword spamming of the URL
9 $1,$2,$3,$4,$5,7,9 Spam all on site
10 $1,$2,$3,$4,$5,$7,9 Spam all
11 $1,$2,$3,$4,$5,$7,$9 Spam all with much text
12 1,2,3,4,5,7,9 Include links to high quality pages
13 1,2,3,4,+5,7,9 Include more links to high quality pages
14 1,2,3,4,$5,7,9 Include many links to high quality pages
15 1,2,3,4,6,7,9 Include links to low quality pages
16 1,2,3,4,+6,7,9 Include more links to low quality pages
17 1,2,3,4,$6,7,9 Include many links to low quality pages
18 1,2,3,4,7,8,9 In-links with keywords in anchor text
19 1,2,3,4,7,9 In-links without keywords in anchor text
20 1,2,3,4,+7,8,9 Elevated amount of in-links w/ kw in anchor text
21 1,2,3,4,+7,9 Elevated amount of in-links w/o kw in anchor text
22 1,2,3,4,$7,8,9 Spam amount of in-links w/ kw in anchor text
23 1,2,3,4,$7,9 Spam amount of in-links w/o kw in anchor text
24 1,2,3,$4,7,9 URL keyword spam without domain name
25 1,2,3,4,7,9,10 Baseline with keyword in domain name
26 $1,$2,$3,$4,$5,$7,$9,10 Spam all w/ kw in domain name
27 1,2,3,4,7,8,9 In-links with keywords and kw in file name
28 1,2,3,4,7,9 In-links without keywords and kw in file name
29 1,2,3,4,7,8,9,10 In-links with keywords and kw in domain name
30 1,2,3,4,7,9,10 In-links without keywords and kw in domain name

Table 3.2: List of experiment groups.
Column 2 references the features in Table 3.1 and captures the list of applied

features for this experiment group. The lack of a feature in the description
denotes that the feature is not used for this experiment, the prefix (+) indicates
that a feature is applied in elevated quantities, where ($) means the feature is

present in spam quantities. The third column is a description of the case that this
experiment group reflects.

3.2. Feature Inference 25

3.2.3 Execution of Experiments and Results

Once the 30 experiment groups (i.e., 90 pages) were created, they were deployed
to 90 freshly registered domains, served by four different hosting providers. Ad-
ditionally, some domains were hosted on our department web server. This was
done to prevent any previous reputation of a long-lived domain to influence the
rankings, and hence, our results.

Once the sites were deployed, we began to take hourly snapshots of the search
engine results for the query “gerridae plasmatron.” To keep the results comparable
we queried the search engines for results of the English web (i.e., turning off
any language detection support). In addition, we also took snapshots of results
to queries consisting of the individual terms of the key phrase. Since all major
search engines had results for the single query terms (gerridae/plasmatron) before
our experiment started, we gained valuable insights into how our sites perform in
comparison to already existing, mostly legitimate sites.

Our experiment was carried out between December 2007 and March 2008.
During 86 days, we submitted 2,312 queries to Google and 1,700 queries to the
Yahoo! search engine. Interestingly, we observed that rankings usually do not
remain stable over a longer period of time. In fact, the longest period of a stable
ranking for all test pages was only 68 hours for Google and 143 hours for Yahoo!.
Also, we observed that Google refuses to index pages whose path (in the URL)
contained more than five directories. This excluded some of our test pages from
being indexed for the first couple of weeks.

One would expect that instances within the same experiment group occupy
very close positions in the search engine results. Unfortunately, this is not al-
ways the case. While there were identical instances that ranked at successive or
close positions, there were also some experiment groups whose instances were
significantly apart. We suspect that most of these cases are due to duplicate de-
tection (where search engines still recognized too many similarities among these
instances).

At the time of writing, querying Google for “gerridae plasmatron” resulted in
92 hits. Including omitted results, 330 hits are returned. Yahoo! returns 82 hits
without and 297 hits including the omitted results. Microsoft Live search returns

26 Chapter 3. Influencing Search Engine Results with Web-Spam

only 28 pages. Since Microsoft Live search seemed slower in indexing our test
pages, we report our results only for Google and Yahoo!.

Note that the Google and Yahoo! results consist of more than 90 elements.
The reason for this is that the result sets also contain some sites of the volunteers,
which frequently contain the query terms in anchor texts pointing to the test sites.

For Google, searching for “gerridae” yields approximately 55,000 results. Our
test pages constantly managed to occupy five of the top ten slots with the high-
est ranking page at position three. Six was the highest position observed for the
“plasmatron” query.

For Yahoo!, we observed that for both keywords pages of our experiments
managed to rank at position one and stay there for about two weeks.

3.2.4 Extraction of Important Features

Because of the varying rankings, we determined a page’s position by averaging
its positions over the last six weeks of the experiment. We decided for the last
six weeks, since the initial phase of our experiment contains the inaccuracies that
were introduced due to duplicate detection. Also, it took some time before most
pages were included in the index. We observed that when we issued the same
query to Google and Yahoo!, they produced different rankings. This indicates
that the employed algorithms weight features apparently differently. Thus, we
extracted different feature weights for Google and Yahoo! as described below.

Knowing the combinations of all feature values for a page k and observing its
position pos(k) in the rankings, our goal is now to assign an (optimal) weight to
each feature that best captures this feature’s importance to the ranking algorithm.
As a first step, we define a function score. This function takes as input a set of
weights and feature values and computes a score score(k) for a page k.

score(k) =
n∑

i=1

fk
i · wi

n . . . number of features
wi ∈ [−1, 1] . . . weight of feature i

fk
i ∈ 0, 1 . . . presence of feature i in test page k

3.2. Feature Inference 27

This calculation is repeated for all test pages using the same weights. Once all
scores are calculated, the set of test pages is sorted by their score. This allows us
to assign a predicted ranking rank(k) to each page. Subsequently, distances be-
tween the predicted ranking and the real position are calculated for all test pages.
When the sum of these distances reaches the minimum, the weights are optimal.
This translates to the following objective function of a linear programming prob-
lem (LP):

min :
m∑
k=1

αk|pos(k)− rank(k)|

Note that we added the factor α(k) = m − pos(k) to the LP, which allows
higher-ranking test pages to exert a larger influence on the feature weights (m
is the number of test pages). This is to reflect that the exact positions of lower-
ranking pages often fluctuated significantly. Thus, we required a way to reduce
these “random” influence on the calculation of the weights. Solving this LP with
the Simplex algorithm results in weights for all features that, over all pages, min-
imize the distance between the predicted rank and the actual position.

For Google, we found that the number of search terms in the title and the text
body of the document had the strongest, positive influence on the ranking. Also,
the number of outgoing links was important. On the other hand, the fact that the
keywords are part of the file path had only a small influence. This is also true for
the anchor text of inbound links.

For Yahoo!, the features were quite different. For example, the fact that a
keyword appears in the title has less influence and even decreases with an increase
of the frequency. Yahoo! also (and somewhat surprisingly) puts significantly more
weight on both the number of incoming and outgoing links than Google. On the
other hand, the number of times keywords appear in the text have no noticeable,
positive effect.

As a last step, we examine the quality of our predicted rankings. To this end,
we calculate the distance between the predicted position and the actual position
for each experiment group. More precisely, Figure 3.1 shows, for each experiment

28 Chapter 3. Influencing Search Engine Results with Web-Spam

group, the distance between the actual and predicted positions, taking the closest
match for all three pages in each group.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

D
is

ta
n

c
e

Experiment Group

Google
Yahoo!

Figure 3.1: Differences when comparing predicted values with actual ranking
positions.

Considering the Google results, 78 experiment pages of 26 experiment groups
were listed in the rankings. The missing experiment groups are those whose pages
have a directory hierarchy level of five, and thus, were not indexed by the search
engine spiders. Looking at the distance, we observe that we can predict the posi-
tion for six groups (23%) within a distance of two, and for eleven groups (42%)
with a distance of five or less (over a range of 78 positions). For Yahoo!, when
comparing the experiment groups with the rankings, 21 groups appear in the re-
sults. Three (14%) of these groups are predicted within a distance of two, while
eight (38%) are within a distance of five or less positions to the observed rank
(over a range of 63 positions).

At a first glance, our predictions do not appear very precise. However, espe-
cially for Yahoo!, almost all predictions are reasonably close to the actual results.
Also, even though our predictions are not perfectly accurate, they typically re-
flect the general trend. Thus, we can conclude that our general assessment of the
importance of a feature is correct, although the precise weight value might be dif-

3.3. Reducing Spam from Search Engine Results 29

ferent. Also, we only consider a linear ranking function, while the actual ranking
algorithms are likely more sophisticated.

3.3 Reducing Spam from Search Engine Results

In this section, we present the details of our prototype system to detect web spam
entries in search engine results. The general idea behind this system is to use ma-
chine learning techniques to generate a classification model (a classifier) that is
able to distinguish between legitimate and spam sites by examining a page’s fea-
tures. The following section first presents the details on how the system operates.
Then, the evaluation section describes our spam detection effectiveness.

3.3.1 Detecting Web Spam in Search Engine Results

During the previous feature inference step, we determined the features that are
most important to search engine ranking algorithms. Assuming an attacker can
also learn this information, this suggests that the attacker will focus on those fea-
tures that have the most pronounced influence on the rankings. This motivates our
approach in developing a classifier that distinguishes spam and non-spam pages
according to these features.

The classifier presented in this section is developed for the Google search en-
gine. Thus, we include those features that are most relevant for Google, as dis-
cussed in the previous section. These are the number of keywords in the title,
body, and domain name. In addition, we consider linking information. While
counting the outgoing links of a page is trivial, the number of incoming links is
not easily determinable. The information of how many in-links point to a page
is not made available by search engines. This is the reason why we have to es-
timate the corresponding features with the help of link: queries. Google and
Yahoo! support queries in the form of link:www.example.com resulting in
a list of pages that link to www.example.com. The drawback is that neither the
Google nor the Yahoo! results contain all pages that link to the queried page. Thus,
these numbers are only an approximation of the real number of links pointing to
a site.

30 Chapter 3. Influencing Search Engine Results with Web-Spam

On the other hand, we can introduce additional information sources that were
not available to us before. For example, the PageRank value (as reported by the
Google toolbar) was added to the feature set. This value could not be used for the
experiment because of the infrequent updates (roughly every three months) and
its violation of the requirement that we can control each feature directly.

Classifier. To build a classifier for web pages, we first require a labeled training
set. Another set of data is required to verify the resulting model and evaluate its
performance. To create these sets, 12 queries were submitted to the Google search
engine (asking for popular search terms, extracted from Google’s list of popular
queries, called Zeitgeist [41]). For every query, the first 50 results were manually
classified as legitimate or spam/malicious. Discarding links to non-HTML content
(e.g., PDF or PPT files) resulted in a training data set consisting of 295 sites (194
legitimate, 101 spam). The test data set had 252 pages (193 legitimate, 59 spam).

All result pages were downloaded and fed into feature extractors that parse the
HTML source code and return the value (i.e., the frequency) of the feature under
consideration. If the query consists of multiple terms, query dependent feature
extractors report higher values if the full query matches the analyzed feature. The
rationale behind this is that a single heading tag that contains the whole query in-
dicates a better match than multiple, individual heading tags, each containing one
of the query terms. Feature extractors that follow this approach are marked with
an (X) in the following list, which enumerates all the features that we consider:

• Title: the number of query terms from HTML title tag (X)
• H1-Tag: the number of query terms in HTML H1-tags (X)
• Body: the number of query terms in the HTML body section (X)
• Domain name: the number of query terms in the domain name part of the

URL
(e.g, www.gerridae-plasmatron.com/index.php)
• Filepath: the number of query terms in the path of the URL

(e.g., www.example.org/gerridae-plasmatron/index.php)
• Out-links: the total number of outbound links
• Out-links-keywords: number of outbound links containing keywords as

anchor texts (X)

3.3. Reducing Spam from Search Engine Results 31

• In-links - Google: the number of inbound links reported by Google link:
query
• In-links - Yahoo!: the number of inbound links reported by Yahoo! link:

query
• PageRank site: the Google PageRank value for the URL as reported by the

Google toolbar
• PageRank domain: the Google PageRank value for the domain as reported

by the Google toolbar
• Word count: total number of words in the document
• Tfreq: the frequency of query terms appearing on the page (number of

query terms / number of words on page)

Using the labeled training data as a basis, we ran a series of algorithms to train
different classification models. Each classifier was evaluated against the test data
set. To this end, we leveraged the Weka [102] toolkit that provides support for a
multitude of classification models.

3.3.2 Evaluated Classification Models

We evaluated a total of eight distinct classification models from the Weka toolkit to
assess their applicability for our purpose. Each model comes with a unique set of
properties and settings, which we briefly discuss here. A comparative evaluation
of the presented classification models is illustrated in Table 3.3.

Naive Bayesian Classifier Heckerman [47] describes Bayesian networks as a
graphical model that encodes probabilistic relationships among variables of in-
terest. Such a network can be learned from training data or a-priori knowledge.
In our case, the model is inferred from our training data set. The applied naive
Bayesian classifier is described by John et al. [49] as a Bayesian network that re-
lies on two simplifying assumptions. First, the predictive attributes for a given
class are conditionally independent. Furthermore, no hidden or latent attributes
influence the prediction process.

32 Chapter 3. Influencing Search Engine Results with Web-Spam

Support Vector Machines with Sequential Minimal Optimization Support
vector machines [46] (SVMs) can classify objects by projecting them into a n-
dimensional space. The dimensional size is determined by the number of charac-
teristics of the training- or query-vector. In our case, the feature vector is of size
13, resulting in an equally sized vector space. The actual classification is done by
filling the vector space with labeled elements from the training set and creating a
hyperplane that separates the points according to their labels. A query can then be
categorized by simply projecting it into the same space and determining on which
side of the plane it resides.

Platt [70] introduced sequential minimal optimization (SMO) as an alternative
approach to train support vector machines. The original SVM’s training step re-
quires that a large quadratic programming problem is solved. SMO speeds up this
training by breaking the QP problem into a series of smallest possible QP prob-
lems which can be solved analytically. Once the SVM is trained, classification is
performed like in a normal SVM.

Locally weighted learning As explained in [4], the locally weighted learning
approach can be used to classify an unknown sample by the following steps. Given
the sample point to classify, the system calculates those points in the training data
set that are close to this sample. The class of each of those points influences the
classification decision inversely proportional to the measured distance. That is,
the closer a point in the training set is to the sample to classify, the more influence
this point’s class has on the final classification decision.

Fuzzy Lattice Reasoning Classifier (FLR) During training, this classification
model [53] generates hyperboxes based on the points contained in the training
data set. A hyperbox corresponds to a rule which indicates that a point located
within this box is a member of the respective class. Training is performed itera-
tively and each point from the training data set induces a new rule. For each new
rule the model calculates a fuzzy degree of inclusion with the existing rules. The
maximum value of these degrees suggests, how existing and new rules must be
combined. For classifying an unknown data point, the system calculates the in-

3.3. Reducing Spam from Search Engine Results 33

clusion degrees for the rule induced by the unknown point and assigns this point
to the class of the rule with the highest value.

ConjunctiveRule This classifier aims to make decisions based on a single logic
proposition of the form if A, then B. The proposition’s antecedent

(that is, the A part of the proposition) is the conjunction of selected feature rules,
whereas the consequent is the mere statement whether a site is to be labeled
as spam or not.

The proposition is generated by iteratively selecting single features from the
data set. The algorithm greedily adds feature rules based on their information gain

calculated on the instances of the training set that are not covered by the current
rule. To avoid over-fitting of possibly irrelevant features, the Weka toolkit uses
reduced error pruning in its default configuration.

An exemplary logic proposition, generated from our training set, can be seen
below:

(title < 0.166667) ∧ (domainname ≤ 1.5) ∧ (tfreq ≤ 3.5)→ no-spam

J48 The J48 classifier implements the C4.5 algorithm [78] for generating deci-
sion trees. Given a set of features, the heuristic selects an item that best splits the
training set into distinct groups. To this end, the normalized information gain is
leveraged to compare all available features. The selected feature (i.e., the feature
with highest gain) is inserted as a rule into a decision tree, dividing the data set
into distinct subsets.

This classification is repeated on the generated subsets until all features have
been mapped as rules into the decision tree or none of the remaining features can
be used to correctly sub-classify the data. Terminal nodes are inserted into the tree
holding the information on branch classification (such as spam or no-spam).

A more detailed description of this method can be found in Section 3.3.3.
Furthermore, Figure 3.2 shows a C4.5 decision tree generated from the training
set.

Best-first decision tree This decision tree heuristics differs from the J48 clas-
sifier by means of selecting the ordering of features used for making a decision.

34 Chapter 3. Influencing Search Engine Results with Web-Spam

The best-first heuristics [85] seeks to maximally reduce impurity of subsets after
each decision.

That is, the features are selected in such a way that the branch-paths are as
short as possible, ending in pure terminal nodes (all elements of that node have
been equally classified) as soon as possible.

Clustering Weka offers a multitude of algorithms for computing clusters. The
most widely used method is the k-means clustering [59]. Here, the training set
is organized in d-dimensional vectors. k randomly selected vectors make up the
mean values for initial clustering. The remaining vectors are assigned to the clos-
est cluster based on the Euclidean distance to the cluster’s selected mean value.

These initial clusters are refined by updating the chosen means with their ac-
tual values, possibly reassigning elements to clusters with closer distance. This
refinement is repeated until no further modifications in the partitioning/clustering
of the vectors is observed.

Thus, the training set is always divided into 2 clusters (k = 2) containing 13-
dimensional vectors (d = 13), one dimension per feature.

Model TP FN FP TN FPR Precision Recall
bayes.NaiveBayes 22 37 29 164 0.15 0.43 0.37
function.SMO 19 40 27 166 0.13 0.41 0.32
lazy.LWL 28 31 33 160 0.17 0.45 0.47
misc.FLR 2 57 9 184 0.04 0.18 0.03
rules.ConjunctiveRule 37 22 68 125 0.35 0.35 0.62
trees.J48 28 31 46 147 0.23 0.37 0.47
trees.BFTree 24 35 35 158 0.18 0.40 0.40
meta.Clustering 30 29 61 132 0.31 0.32 0.50

Table 3.3: Comparison of different classification models

Table 3.3 gives a numerical representation of the classification approaches pre-
sented in this section. The first four columns refer to the number of true/false

positives (TP/FP) and true/false negatives (TN/FN), followed by the false positive

rate. The numbers show, that most of the approaches perform comparably good

3.3. Reducing Spam from Search Engine Results 35

in terms of precision and recall, with Fuzzy Lattice Reasoning (misc.FLR) as the
only exception.

3.3.3 Evaluation of the J48 decision tree

We chose a decision tree as the classifier because it intuitively presents the im-
portance of the involved features (i.e., the closer to the root a feature appears in
the tree, the more important it is). The J48 implementation included in the Weka
package, offers various possibilities to tweak the final result. The most interesting
parameter is the confidence factor, which allows to tweak the degree of pruning
and, therefore, classification accuracy. We found that a value of 0.1 leads to the
best results for our data set. The generated tree is shown in Figure 3.2. This tree
consists of 21 nodes, 11 of which are leafs. Five features were selected by the
algorithm to be useful as distinction criteria between spam and legitimate sites.
Additionally, Weka calculates a confidence factor for every leaf, indicating how
accurate this classification is.

The most important feature is related to the presence of the search terms on
the page (i.e., the query term frequency > 0). Other important features are the
domain name, the file path, the number of in-links as reported by Yahoo!, and the
PageRank value of the given site as reported by the Google toolbar.

The fact that we want to improve the results by removing spam sites demands
a low false positive rate. False positives are legitimate sites that are removed
from the results because they are misclassified as spam. It is clearly desirable to
have a low number of these misclassifications, since false positives influence the
quality of the search results in a negative way. False negatives on the other hand,
do not have an immediate negative effect on the search results. If a spam site is
misclassified as legitimate, it ends up as part of the search results. Since we are
only post-processing search engine results, the site was there in the first place.
Thus, false negatives indicate inaccuracies in our classification model, but do not
influence the quality of the original search results.

Evaluating the J48 decision tree with our test data set results in the confusion
matrix as shown in Table 3.4. The classifier has a false positive rate of 10.8% and
a false negative rate of 64.4%. The detection rate (true positives) is 35.6%.

36 Chapter 3. Influencing Search Engine Results with Web-Spam

<= 0 > 0

<= 0 > 0 <= 1 > 1

<= 2 > 2 <= 3 > 3

<= 5 > 5

<= -1 > -1

<= 0 > 0

<= 2 > 2

<= 4 > 4

tfreq

filepath domainname

True (27.0/1.0) inlink_yahoo inlink_yahoo True (15.0/3.0)

False (7.0/1.0) True (9.0/1.0) False (187.0/29.0) inlink_yahoo

pagerank_site False (4.0)

True (6.0) domainname

tfreq True (6.0/1.0)

False (20.0/5.0) inlink_yahoo

True (8.0/1.0) False (6.0/2.0)

Figure 3.2: Generated J48 decision tree.
The node labels correspond to the feature extractors listed in Section 3.3.1

Classified as Spam Classified as Legitimate
Spam 21 38
Legitimate 20 173

Table 3.4: Confusion matrix of the J48 decision tree

Detecting 35% of the unwanted sites is good, but the false positive rate of
11% is unacceptable. To lower the false positive rate, we decided to incorporate
the confidence factor that is provided for each leaf in the decision tree. By using
this confidence factor as a threshold (i.e., a site is only classified as spam when
the confidence factor is above the chosen threshold), we can tune the system in a
way that it produces less false positives, at the cost of more false negatives. For
example, by using a confidence value of 0.88, the classifier has a false negative
rate of 81.4%. However, it produces no false positives for our test set. The true

3.4. Summary 37

positive rate with this threshold value is 18.6%, indicating that the system still
detects about every fifth spam/malicious page in the search results.

While a detection rate of 18% is not perfect and allows for improvement, it
clearly lowers the amount of unwanted pages in the results. Taking into consider-
ation that most users only pay attention to the top 10 or top 20 results of a search
query, these 18% create up to two empty slots in the top 10 rankings that can
accommodate potentially interesting pages instead.

3.4 Summary

Search engines are a target for attackers that aim to distribute malicious content
on their websites or earn undeserved (advertising) revenue. This observation mo-
tivated our work to create a classifier that is able to identify and remove unwanted
entries from search results. First, we need to understand which features are im-
portant for the rank of a page. The reason is that these features are most likely the
ones that an attacker will tamper with. To infer important features, we conducted
an experiment in which we monitored, for almost three months, the ranking of
pages with 30 different combinations of feature values. Then, we computed the
weights for the features that would best predict the actual, observed rankings.
Those features with the highest weights are considered to be the most important
for the search engine ranking algorithm. Based on the features determined in the
first step and a labeled training set, we generated a classifier (a J48 decision tree).
This decision tree was then evaluated on a test data set. The initial evaluation
resulted in 35% detection rate and 11% false positives. By taking into account
the confidence values of the decision tree and introducing a cutoff value, the false
positives could be lowered to zero. At this rate, almost one out of five spam pages
can be detected, improving the results of search engines without removing any
valid results. Furthermore, we also compared the performance of the J48 decision
tree with seven other machine learning algorithms.

In this chapter we have shown how attackers can influence the ranking of their
web sites in search engine results. Many malicious pages that are pushed in this
way perform so-called drive-by download attacks. That is, the mere visit of such

38 Chapter 3. Influencing Search Engine Results with Web-Spam

a page can lead to an infection with malware. Chapter 4 will elaborate in detail on
this threat and a countermeasure technique we developed.

Chapter 4

Drive-by Download Attacks

A drive-by download attack denotes a download and subsequent execution of soft-
ware that happens without the knowledge and consent of the user. Unfortunately,
drive-by downloads present a major threat to the Internet and its users [75]. In a
typical attack, the mere visit of a web site that contains the malicious content can
lead to the infection of a user’s computer with malware. The malicious code that
is installed as part of the attack then has typically full control over the victim’s
machine. Often, keystrokes are recorded, passwords are stolen, and sensitive in-
formation is leaked out. Also, infected computers may join a botnet [21], a large
collection of compromised hosts controlled by the attacker. The computational
power of compromised hosts are valuable for attackers as these hosts can be mis-
used for spam campaigns [54] or denial of service attacks [63].

The typical steps of a drive-by download attack are shown in Figure 4.1. It can
be seen how the attacker first prepares a web site with malicious content. When
this site is later visited by a victim, hostile script code is downloaded and executed
by the victim’s browser. This script exploits a vulnerability in the browser or an
installed browser-plugin. Once successful, the payload (shellcode) of the exploit
downloads malware that provides full control to the attacker.

Most current drive-by downloads target browser plug-ins that are developed
and distributed by third parties [75, 76]. The reason is that these plug-ins are less
tested than the core browser, and thus, more likely to contain security relevant vul-
nerabilities. Also, plug-ins are typically distributed as binary executables (at least

39

40 Chapter 4. Drive-by Download Attacks

Figure 4.1: The typical steps of a drive-by download attack.

in the case of Microsoft’s Internet Explorer). As many plug-ins are written in non-
safe languages such as C, they are susceptible to a wide range of vulnerabilities
that are common for applications written in such languages. These vulnerabilities
include buffer overflows, memory corruption issues, and pointer overwrites. Fi-
nally, plug-ins are often executed in the context of the browser, and as a result,
can get full access to the browser and the underlying operating system.

As mentioned previously, as part of a drive-by download, attackers use client-
side scripting code to load the shellcode (payload) into memory and execute the
exploit against a vulnerable component. More precisely, JavaScript [36] is typ-
ically used to assign the binary representation of shellcode to a variable that is
stored in the address space of the browser. To make their exploits more reliable,
attackers resort to a technique called heap spraying [23, 88]. Heap spraying cre-

41

ates multiple instances of the shellcode, combined with a NOP sledge [96]1. By
leveraging the knowledge of how a script engine manages its heap memory, an
attacker can, to a certain extent, influence where variables are stored in memory.
As a result, the area of heap memory that needs to be sprayed for an attack to suc-
ceed is reduced. Once the heap memory has been “prepared,” the actual exploit is
launched. To this end, the hostile script typically invokes a vulnerable method (of
a plug-in) with malicious arguments.

When the attacker has prepared a malicious script that can launch a drive-by
download, it can be placed on a web site. Then, the attacker has to ensure that
potential victims visit this site. One way is to create a new site and manipulate
search engines so that they list this site high in their rankings. The higher a page
is ranked, the higher the chance is that an unsuspecting Internet user will visit it.
Another approach is to embed malicious content in advertisements that are placed
on legitimate web pages. Here, the site embedding the advertisement becomes an
unknowing accomplice for distributing the attack. Moreover, an attacker can also
take advantage of vulnerabilities found in popular web applications. By exploiting
these applications, they are able to place their content directly on the vulnerable
web site. Automated SQL injection attacks [22, 50], for example, modify the
database back-ends of web applications in order to include iframe tags that
load the malicious pages.

Drive-by attacks belong to the most common methods for spreading malware
today [76]. Thus, it is important to find solutions that mitigate the problem and
protect users. In this chapter, we present a proof-of-concept implementation of a
system that detects shellcode-based drive-by download attacks. Our basic idea is
to check the variables (strings) that are allocated by the browser (the script engine)
when executing client-side scripts. When such a variable contains shellcode, we
assume that the script is hostile, attempting to setup the environment for an exploit.
Thus, the script is terminated, before any vulnerable function is invoked. We
implemented our system in the Mozilla Firefox browser. However, our conceptual
solution is general and works for arbitrary browsers.

The main contributions presented in this chapter are as follows:

1A NOP sledge consists of a sequence of NOP instructions that increase the chance of success-
fully hitting the shellcode when hijacking the control flow of the vulnerable application.

42 Chapter 4. Drive-by Download Attacks

• We propose a technique that uses emulation to automatically identify shell-
code-based drive-by download attacks in a browser.

• We describe a proof-of-concept implementation of our approach that is in-
tegrated into the Mozilla Firefox browser.

• We present experimental results that show the feasibility of our approach.
We have evaluated our prototype on more than one thousand malicious and
several thousand benign sites. Our experimental results demonstrate that
the system is able to accurately detect drive-by downloads with no false
positives.

4.1 Anatomy of a drive-by attack

In this section, we first provide a short overview of JavaScript to enable the reader
to understand script-based drive-by downloads. Then, we present and discuss a
real-world attack to illustrate the problem that we aim to defend against.

4.1.1 JavaScript basics

JavaScript is an implementation of the ECMA-262 standard that defines an object-
oriented scripting language [36]. The JavaScript specification defines a set of core
components, such as data types (e.g., String, Integer, Object), special ob-
jects (e.g., Date, Math), and operators. The most prominent use of JavaScript
is for supporting dynamic content on the client-side (in web browsers). However,
JavaScript is also often embedded in other software, such as Adobe’s Acrobat
PDF reader. Systems that use JavaScript typically provide environments that al-
low a script to interact and communicate with other components. The document
object model (DOM), for example, is part of the environment provided by the web
browser. It allows scripts to manipulate the web pages that are displayed and to
react to user actions and inputs.

The JavaScript interpreter of the Mozilla foundation is called SpiderMon-
key [36]. Microsoft’s implementation of ECMA-262 is called JScript [66]. This

4.1. Anatomy of a drive-by attack 43

implementation adds facilities to the environment that allow a script to instanti-
ate and communicate with ActiveX components [65]. These components are the
preferred way of providing plug-ins for the Internet Explorer. On request, the
libraries implementing the components are loaded into the address space of the
Internet Explorer process, and the necessary objects are instantiated. ActiveX
plug-ins, thus, have the same privileges that the browser has, often including full
access to the file system and the network.

Among the data types, strings deserves special attention. ECMA-262 de-
fines strings as sequences of 16-bit integers, commonly interpreted as UTF-16
characters. Popular JavaScript engines, such as SpiderMonkey, implement strings
as immutable. That is, once a string variable is initialized, the value does not
change for the rest of its lifetime. String operations, such as substituting charac-
ters (i.e., replace method of the string object), do not modify the original value.
Instead, a new additional string variable is instantiated with the modified content.
We will see that this fact has important ramifications for the implementation of
our defense technique.

4.1.2 An example of a real-world drive-by download

In this section, we describe a typical drive-by download attack. We actually en-
countered this specific attack during our experiments. On September 2, 2008,
our high-interaction client honeypot visited http://www.thewebleaders.
com. This page contained an iframe that loaded the script presented in List-
ing 4.1.

The most noticeable property of the script is that it uses obfuscated variable
and function names to make it difficult for a human analyst to understand the
script’s purpose. Manual analysis reveals that the function defined in Line 1 serves
as a decryption routine. The two values that make up the key for decryption are
the location currently visited by the browser (location.href, Line 2), and the
source code of the decryption function itself (arguments.callee, Lines 3,4).
Using the current location as part of the key to the decryption function allows the
attacker to prevent the analysis of the script when it is loaded from a different
location. That is, when the script is captured, and during a later analysis served

http://www.thewebleaders.com
http://www.thewebleaders.com

44 Chapter 4. Drive-by Download Attacks

1 function XfNLVA421(IaP1EoKdg) {
2 var I833Nad64 = location.href;
3 var hOtmWAGmO = arguments.callee;
4 hOtmWAGmO = hOtmWAGmO.toString()
5 ...
6 try {
7 eval(jiiIUpFi3);
8 } catch(e)
9 ...
10 }
11 XfNLVA421(’a7A7a7A7ac9bB5b261...’);

Listing 4.1: Excerpt of an obfuscated, real-world malicious script.

1 function IxQUTJ9S() {
2 if (!Iw6mS7sE) {
3 var YlsElYlW = 0x0c0c0c0c;
4 var hpgfpT9z = unescape("%u00e8%u0000% ...");

...
5 for (var CCEzrp0s=0;CCEzrp0s<Wh_74Nkm;CCEzrp0s++) {
6 je9rIXgu[CCEzrp0s] = QdV7IGyr + hpgfpT9z;
7 }

...
9 }

...
11 var Kp1uYOjP = new ActiveXObject(’Sb.SuperBuddy’);
12 if (Kp1uYOjP) {
13 IxQUTJ9S();
14 oH9mUjOd(9);
15 Kp1uYOjP.LinkSBIcons(0x0c0c0c0c);

Listing 4.2: Excerpt of a real-world, decrypted malicious script.

locally, the decryption will fail. The last step of the function uses the decrypted
content in an eval2 statement (Line 7). Nesting the eval in a try-catch block
suppresses the errors that would be seen by the analyst if the eval would fail.
This failure would happen, for example, in case the key is wrong.

2ECMA-262 specifies that an implementation must provide an eval function. This function
takes an argument of type string and interprets its argument as an ECMAScript program. That is,
the eval function executes the argument it receives as a script.

4.2. Automatically detecting drive-by attacks 45

After decryption, the string passed to eval contains the code excerpt pre-
sented in Listing 4.2. Line 4 loads x86 shellcode into variable hpgfpT9z. Sub-
sequently, the heap is sprayed by filling the memory with a large number of
strings that contain a NOP sledge and a copy of the shellcode (Lines 5-7). In
Line 11, the SuperBuddy ActiveX component is instantiated. If a valid object can
be created, then the vulnerable method LinkSBIcons is invoked (Line 15). The
LinkSBIcons vulnerability is known as CVE-2006-5820 [20]; the argument of
LinkSBIcons is used as a function pointer, thus diverting control flow to the
sprayed heap.

4.2 Automatically detecting drive-by attacks

As described in the previous section, drive-by downloads that target memory cor-
ruption vulnerabilities have to prepare the environment before they can success-
fully launch their exploits. To this end, they use client-side script code to allocate
(often large numbers of) strings that are filled with x86 (shell)code. The key
idea of our detection approach targets precisely this behavior. More specifically,
to detect drive-by downloads that exploit memory corruption vulnerabilities, we
monitor all strings that are allocated by the JavaScript interpreter. These strings
are checked for the presence of shellcode. Of course, all checks occur before a
vulnerability can be abused to redirect control flow to the shellcode. When our
system detects that a script creates a string that contains shellcode, the execution
of the script is stopped.

The prototype implementation of our detection technique was implemented
and integrated into the Mozilla Firefox browser and SpiderMonkey, its JavaScript
engine. We chose Firefox as our prototype platform as this is an open source
browser. Obviously, we would have liked to have integrated our solution into the
Internet Explorer. Unfortunately, we did not have access to the source code. Nev-
ertheless, we note that our solution is conceptually generic, and is not dependent
on a specific browser. We have chosen to target JavaScript because it is by far
the most common language for writing scripts on the web. Of course, an attacker
could make use of a different language than JavaScript to deliver an exploit (and

46 Chapter 4. Drive-by Download Attacks

some indeed use Visual Basic Script). However, it would be straightforward to
include our technique also into other script engines.

In the following sections, we describe our technique in more detail. In partic-
ular, we discuss how we keep track of the strings that are allocated, and how we
detect the shellcode that an attacker may attempt to inject. Then, we discuss two
optimizations that are applied to make the proposed approach fast enough to be
used in practice.

4.2.1 Tracking object (string) allocations

For a drive-by attack to succeed, it is important that the bytes constituting the
shellcode are stored at successive addresses in memory. Otherwise, these bytes
would not be interpreted as valid x86 instructions. Of course, one could consider
to split a sequence of instructions over multiple segments and connect these seg-
ments with jumps, but at least the bytes of each segment need to be consecutive
to be valid. In JavaScript, the only way to guarantee that bytes are stored in a
consecutive manner is by using a string variable. Here, consecutive characters of
the string are allocated in adjacent memory locations.

To detect the shellcode that a malicious script might construct on the heap,
we have to keep track of all string variables that the program allocates. To this
end, we modified the SpiderMonkey JavaScript interpreter that is embedded in
Firefox. More precisely, we added code to all points in the interpreter where
string variables are created. These points were found at three locations: one for
the allocation of global string variables, one for local string variables, and one for
strings that are properties (members) of objects. The code that we added simply
keeps track of the start address of a new string variable and its length. Here,
it is important to recall that strings in JavaScript are immutable. As a result,
whenever a character in a string is modified, or when two strings are concatenated,
the resulting string is created in a new memory area. Thus, string manipulation is
automatically handled by the code introduced for creating a new string variable.

In addition to the start address and the length of new string variables, we also
keep track of the two sub-strings that are used in a string concatenation operation.
That is, whenever a new string is created as a result of a concatenation operation,

4.2. Automatically detecting drive-by attacks 47

we keep pointers to the sub-strings. This is needed for an optimization that is
discussed later.

An attacker might consider to use integer arrays to store the shellcode in suc-
cessive memory addresses. However, JavaScript supports arrays of integers that
follow this (packed) memory layout only for 31-bit values, where the remaining
bit is always set to indicate that the value is an integer. The fact that one bit is set
in each four-byte integer makes it more difficult for the attacker to craft his shell-
code. Also, support for packed integer arrays can be easily disabled. For integer
values that are larger than 31-bit, and for all other data types, JavaScript handles
arrays differently. More precisely, such arrays only store identifiers (pointers) that
reference objects that are allocated elsewhere. Since these objects contain addi-
tional management information and are allocated from a pool of memory, it is
very difficult for an attacker to reliably predict where these objects will end up.
As a result, our system focuses on the content of string variables. Of course, when
attackers develop techniques to store shellcode in objects that are allocated in the
object pool, we could easily add checks for these objects as well.

4.2.2 Checking strings for shellcode

Given information about the addresses and lengths of the strings in memory, the
next question that needs to be answered is how shellcode can be automatically
detected within these strings. More precisely, we have to discuss how shellcode
can be recognized, and the points in time when this analysis is launched.

For the detection of shellcode, we are leveraging libemu [6]. libemu is a small
library written in C that offers basic x86 emulation and shellcode detection. It is
efficient in detecting shellcode and being used in projects such as Nepenthes and
Honeytrap. To recognize shellcode in a string (character buffer), libemu checks,
starting from each character, whether there is a sequence of valid instructions of
sufficient length. When such an instruction sequence is found, libemu reports
shellcode. Since most bytes can be disassembled to valid x86 instructions, libemu
also uses a number of heuristics to discriminate random instructions from actual
shellcode. We currently use a value of 32 bytes as the threshold for the minimal
length of a shellcode sequence. We found that this value works well in our experi-

48 Chapter 4. Drive-by Download Attacks

ments, and it is also significantly shorter than all Windows shellcode encountered
in the wild [73].

Note that an attacker might try to evade detection by distributing shellcode
fragments over multiple strings. In this case, to be successful, each fragment must
end in a jump instruction to the next fragment. Moreover, since the total length
of each fragment must not exceed 32 bytes, there is almost no space for a NOP
sledge. As a result, the attacker must guess the jump offset quite precisely. While
modern heap manipulation techniques allow for a certain control over the heap
layout, we believe that such an attack is very difficult to launch in practice. More-
over, randomizing the allocation of individual objects in the heap would be easy
to do and render this hypothetical evasion vector infeasible. Note that random-
izing object allocations does not help against current drive-by attacks that store
the complete shellcode in one string. The reason is that the location of a partic-
ular string might not be know precisely, but the attacker can allocate thousands
of such self-contained, malicious strings (sometimes worth tens or hundreds of
megabyte). Then, hitting a single string is sufficient to successfully run the shell-
code.

The goal of our detection approach is to ensure that the attacker cannot execute
shellcode before we analyze all (string) objects that he has created. The straight-
forward approach to do this is to invoke the emulator whenever a new string object
is created. Of course, every string object is only checked once. Nevertheless, this
naive approach incurs a significant performance penalty.

4.2.3 Performance optimizations

To reduce the performance penalty that is incurred when checking every string that
is allocated, two approaches are possible. First, one can reduce the total number of
invocations of the emulation engine. Second, one can reduce the amount of data
that the emulator needs to inspect. Our prototype supports techniques to leverage
speedups from both of these approaches.

Since vulnerabilities exploited by drive-by download attacks are almost al-
ways found in the browser or its plug-in components, we consider the JavaScript
interpreter as safe. As a result, while executing JavaScript core functionality, a

4.3. Evaluation 49

script is allowed to create string objects without checks, even ones that contain
shellcode. To transfer control flow to such a string buffer with shellcode, the ma-
licious script must exploit a vulnerability in an “external” component, leaving the
JavaScript core part. Thus, to detect any shellcode before it can be executed, it
is not required to perform emulation immediately after creating a new string ob-
ject. Instead, it is possible to only record information on all created string objects,
and postpone emulation to the time at which control flow leaves the interpreter,
entering an external component or the browser.

The delayed checking allows us to collect information about the involved
string objects and leverage this knowledge to decrease the overall amount of data
that has to be checked. First, we use information about string concatenation, a
frequent operation. Consider that we observe the fact that a given string a con-
sists of the concatenation of strings x and y. This allows us to skip the analysis
(emulation) of x and y when a was already scanned and found to be clean. A
second venue for optimization is the JavaScript garbage collector. By invoking
garbage collection on every transition from the interpreter to the environment, we
are able to discard all objects from the emulation that are freed by the garbage
collector. We have modified the garbage collector routines to remove the freed
contents from the list of objects to emulate (after zeroing their content).

Note that although the detection is delayed, it is still complete in the sense that
no machine instructions residing in the memory space of a JavaScript object can
potentially be executed before being checked by our shellcode detector.

4.3 Evaluation

This section discusses how we evaluated our prototype as well as the experimental
results. The evaluation was carried out in three parts. First, we evaluated our
system for false positives by accessing a large number of popular benign web
pages. Second, we used our system on pages that launch drive-by downloads
and evaluated the detection effectiveness. Third, we examined the performance
overhead of our system.

50 Chapter 4. Drive-by Download Attacks

4.3.1 False positive evaluation

In the context of our system, a false positive is a page that is detected as malicious
without actually loading shellcode to memory. To evaluate the likelihood of false
positives, we extended our prototype system to visit a list of k = 4, 502 known,
benign pages. These pages were taken from the Alexa ranking of global top-sites,
and simply consisted of the top k pages. We consider this to be a realistic test set
that reflects a wide range of web applications and categories of content.

For the batch evaluation of URLs, we implemented a Firefox extension that
visits all URLs provided in a file. After a timeout, the extension automatically
visits the next URL in the list. More precisely, the extension moves to the next
URL two seconds after the page finished loading, or ten seconds after page load-
ing started. The hard limit of ten seconds was necessary to handle scripts that
continuously issued page reloads.

Our prototype did not produce any false positives for this dataset. This might
look suspicious at a first glance: The x86 instruction set is known to be densely
packed, thus, almost any sequence of bytes makes up valid instructions. How-
ever, one has to consider the fact that JavaScript uses 16-bit Unicode characters to
store text. That is, even if a given sequence of ASCII characters results in a valid
x86 instruction most of the time, the JavaScript representation of the same char-
acters most likely does not, since every other byte would contain the value 0x0.
Of course, an attacker can encode the shellcode appropriately. However, benign
pages typically do not contain strings that map to valid instruction sequences.

4.3.2 Detection effectiveness

In a next step, we evaluated the capabilities of our technique to identify drive-
by attacks that rely on shellcode to perform their malicious actions. To this end,
we evaluated our system on the traces of 1,187 web browsing sessions that are
known to contain drive-by attacks. These traces were collected by visiting URLs
that are advertised in spam emails. We retrieved a list of such URLs from the
Spamcop [90] web service, as well as from mails collected in the spam trap of a
medium-size security company.

4.3. Evaluation 51

To filter those URLs that actually host drive-by attacks, we used the Capture
Honeypot Client (HPC) [11]. Capture visits the URLs with a browser on a virtual
machine (VM). After a site is loaded, the state of the VM is inspected, and all
modifications to the file system and registry as well as new processes are logged.
In addition to the logged information, the system records a trace of all network
communication that was taking place. Capture simply visits a URL in a browser
and performs no additional actions. Thus, by filtering URLs that caused a new
process to be launched, we were able to identify those sites that perform drive-by
attacks. The system running in the VM was a Windows XP Professional (Service
Pack 2) installation. No additional security patches were applied, and automatic
updates were turned off. Additionally, the Flash and QuickTime plug-ins were
installed.

Once a URL was identified to host a drive-by attack, we used Chaosreader [43]
to extract application level data from the network traces. Chaosreader is able
to recognize a variety of application data from network traces. Among others,
Chaosreader identifies HTML documents, binary images, or gzip compressed
data, saving each response to an HTTP request in a distinct file. Files that were
found to be compressed were decompressed before continuing.

Extracting a single file for every response to an HTTP request made further
post-processing necessary. For example, if an HTML page references a JavaScript
URI via an src attribute of a script tag, this results in another request in which
the browser fetches the JavaScript. The response contains only JavaScript code
without surrounding HTML tags. Visiting such a file in a web browser results in
its contents being interpreted as text, and thus, no interpretation of the code takes
place. We used a simple heuristics to add the necessary HTML and script

tags to such files. More precisely, whenever a file does not already contain valid
HTML, and it does contain any of the most used JavaScript reserved words (e.g.,
function, var), it is wrapped in appropriate tags.

Once the HTML and JavaScript files were restored, they were uploaded on
a local web server. In total, 11,910 URLs (files) were associated with the 1,187
traces. Note that a trace can contain multiple resources that are accessed by the
browser. For example, redirection chains or embedded content. Our prototype
system was instructed to visit each of these URLs. The modifications required to

52 Chapter 4. Drive-by Download Attacks

process encrypted attack scripts are detailed in Section 4.4. One might ask why we
did not simply use our system to visit malicious pages that are live on the Internet,
but, instead, replicate malicious sites and their scripts locally. The reason is that
malicious sites on the Internet are frequently taken down. Additionally, many
malicious sites only perform attacks on the first visit of a client. Thus, changing
the prototype and revisiting the same location could not detect attacks hosted on
such pages. In our setup, we have created a corpus that allows us to replicate our
experiments and better debug and understand cases in which the detection fails
initially.

When running our prototype detection system on the resources associated with
1,187 traces, we detected 956 instances of shellcode. This yields an initial detec-
tion effectiveness of 81%. We then examined the remaining 231 traces to under-
stand why our system did not detect shellcode while the Capture honeypot client
indicated an attack.

Manual analysis revealed four main causes that result in our prototype failing
to detect a threat. One group (with 62 traces) contains drive-by downloads that do
not make use of memory exploits. In particular, a popular attack against the Sina
Downloader ActiveX component exploits insecure component behavior. More
precisely, this component contains functions that allow a script to download a file
and to start a program. This makes it trivial for an attacker to download malware
and start it, without ever corrupting memory. However, note that this attack targets
an old vulnerability (from 2006) that is very specific to a particular component.
Thus, it is not a general class of vulnerabilities that our approach misses, but a
specific problem in a component that basically offers all the functionality required
by the attacker.

The second group of attacks (with four traces) that were missed by our system
are due to exploits that use Visual Basic (VB) script code to prepare the environ-
ment and launch the exploit. As mentioned previously, our current prototype only
instruments the JavaScript engine. However, similar techniques could easily be
added to the VB script engine.

The third group of missed attacks (with 127 traces) are due to the way our
experiments are carried out. Recall that we do not visit live pages on the Internet,
but invoke individual resources (files) that we extracted from network traces. In

4.3. Evaluation 53

some cases, the malicious code is distributed over several scripts that are in dif-
ferent files. In these cases, the browser does not see and analyze the complete,
malicious script at once. This typically leads to JavaScript errors, and failure to
inject shellcode into the heap. This, however, does not reflect a deficiency in our
approach. If these sites were visited with a browser protected by our proposed
technique, all scripts would be fetched and executed by the web browser in the
same context, thus, allowing to detect the threat.

Finally, a forth group (with 38 traces) was not recognized as malicious because
it contains traces that were false positives of the Capture honeypot client. More
specifically, they were .cab archive files. Whenever a .cab file is downloaded,
Windows automatically starts the Windows Management Instrumentation to han-
dle this resource. While this activity results in a new process being launched, it is
not because of a malicious drive-by download but due to legitimate activity. How-
ever, Capture considers the start of a new process as an indication of a successful
attack.

Given the discussion of the four cases above, we argue that only the traces
associated with attacks against the Sina Downloader ActiveX and similar compo-
nents should be considered false negatives for our system. As a result, we can
compute a detection rate of 956

956+62
= 93.9%. Also, we observe that we detected

all drive-by attacks that exploited a memory corruption vulnerability, which is by
far the most common type of exploit found in the wild.

After evaluating the detection capabilities of our system, we also performed
further analysis of the ActiveX components created by the malicious scripts. Our
results show that most malicious sites perform their attacks through only a handful
of vulnerable components. Figure 4.2 depicts a breakdown of the distribution of
the involved components. It is interesting to observe that the two most prominent
components (SuperBuddy and QuickTime viewer) account for almost 50% of the
targets of the attacks. Note that the figure lists the 1,688 ActiveX components that
were created during our evaluation. Nonetheless, not every created component
lead to a successful exploit.

54 Chapter 4. Drive-by Download Attacks

Sb.SuperBuddy (511)

QuickTime.QuickTime.4 (300)

AcroPDF.PDF (213)

snpvw.Snapshot Viewer Control.1 (175)

AgControl.AgControl (163)

IERPCtl.IERPCtl.1 (75)

GLIEDown.IEDown.1 (50)

Downloader.DLoader.1 (45)

DPClient.Vod (41)

UUUPGRADE.UUUpgradeCtrl.1 (38)

NCTAudioFile2.AudioFile2.2 (26)

Other (51)

0

100

200

300

400

500

600

Figure 4.2: ActiveX components involved in drive-by downloads.

4.3.3 Performance

Our approach uses x86 instruction emulation to detect shellcode within JavaScript
strings. This happens online; that is, the analysis must be performed at the time the
browser loads a page. Since emulation is a resource intensive task, careless invo-
cations of the emulator may lead to a significant performance overhead. We have
pursued several strategies to minimize the overhead, as explained in Section 4.2.3.
In this section, we describe the results of our performance evaluation.

Our experiment measures the wall-clock time required to load a set of web
pages. We have chosen the 150 most popular web sites (according to Alexa).
The same set of pages was processed three times. First, we ran an off-the-shelf
Mozilla Firefox browser without performing any additional tasks. Second, we
used our modified version of the browser that provides protection against drive-
by download attacks, without any performance optimizations. Third, we used the
browser with protection and performance optimizations.

All measurements have been carried out on a machine with an Intel Core 2 Duo
processor running at 2.66 GHz and 4 GB of main memory. Internet connectivity
was established using an ADSL line with a bandwidth of 1 MBit/s.

The results of our performance evaluation are presented in Table 4.1. On av-
erage, an unmodified Firefox browser took 3.51 seconds to load one web page
from our testing set. This time includes the download of the content over the In-
ternet, parsing and rendering of the page, and execution of all JavaScript code. In
comparison, a modified version of the browser, which provides protection against

4.4. Implementation details 55

Total time[s] Time/page[s] Overhead/page Factor
Off-the-shelf browser 527 3.51
Protected browser

w/o optimizations 1,237 8.25 4.74 2.35
w/ optimizations 876 5.84 2.33 1.66

Table 4.1: Page load times (sec) with and without drive-by download protection.

drive-by download attacks, takes additional time. The overhead can be attributed
to the effort spent on tracing the allocated string objects, and more importantly,
emulation of their content when executing functionality from the JavaScript en-
vironment. A basic implementation of our system, without application of perfor-
mance optimization measures, took 8.25 seconds per page. This is a significant
performance penalty. Our final implementation, including all optimizations took,
5.84 seconds per page. That is, the overhead of the naive version could be reduced
in half.

Browsing the Web is an interactive occupation, and it is desirable for the user
to experience as little latency as possible when loading a new page. Obviously, the
decrease in performance introduced by our approach seems significant. However,
note that the time users typically spend on consuming the downloaded content
(e.g., reading an article) by far outweighs the time that is spent on waiting for
new content to be loaded. Thus, we believe that the benefit of a secure browsing
experience, without the risk of falling prey to a drive-by download attack, well
compensates the inflicted performance penalty.

4.4 Implementation details

As mentioned previously, our system has been implemented by extending Mozilla
Firefox and SpiderMonkey. However, all drive-by download attacks in our dataset
target the Internet Explorer (IE). The astute reader might wonder how our system
can actually detect such attacks, since they are not supposed to work with Firefox.
In the following, we provide some (what we believe) interesting details on how
we implemented our system to detect IE attacks with a modified Firefox browser.

56 Chapter 4. Drive-by Download Attacks

Of course, when our technique would be integrated with Internet Explorer, such
extensions would not be necessary. Also, the system as introduced can readily de-
tect drive-by downloads that target Firefox. Moreover, we discuss some additional
issues that needed to be addressed because of our experimental setup.

Simulating ActiveX components.

Attacks that aim to exploit a vulnerability in a specific plug-in often perform a
check for the availability of this plug-in. That is, such attacks only reveal their
malicious behavior when the vulnerable component is present. In the case of
ActiveX plug-ins, this is done by trying to instantiate the vulnerable component. If
the plug-in object is instantiated successfully, it usually means that the component
is present.

Unfortunately, Mozilla Firefox does not support ActiveX plug-ins. However,
as most drive-by attacks rely on ActiveX to be present, we had to modify the
browser appropriately. More precisely, we extended Firefox such that it creates
dummy objects for instantiation requests to ActiveX components. Thus, whenever
a malicious script attempts to instantiate an ActiveX component, the call succeeds
and the corresponding dummy object is created.

These objects accept all method invocations, and also log method calls to-
gether with their respective arguments. Note that although it is not the main focus
of our work, this information can be used to identify the vulnerability that is used
to divert the control flow.

Browser fingerprinting.

Browser fingerprinting is a technique applied by attackers to serve only exploits
that match the specific browser of the sites’ visitors. To this end, instead of bluntly
trying a series of attacks, a script is executed to determine the browser, its version,
and installed plug-ins. Based on the knowledge gathered by this script, it fetches
only those exploit scripts that match this setup (e.g., if no QuickTime plug-in is
detected, no QuickTime related exploits are tried). Even when no fingerprinting
is performed as described above, the malicious script most likely verifies that it
is executed in a browser that it intends to exploit. Therefore, the script queries

4.4. Implementation details 57

1 try {
2 ...
3 } catch (e) {};
4 finally {
5 ...
6 }

Listing 4.3: Illustration of different parsing behavior.

the properties of the navigator object and only continues if the information
matches its authors’ intentions. Since our prototype is implemented in Mozilla
Firefox, this would have prevented all scripts that perform such techniques from
executing. However, the recorded traces hold proof of a successful drive-by attack.
Thus, we modified our prototype to pretend to be the same browser and version3

that was used when the traces were recorded.

To assure that the script is executing in Microsoft’s Internet Explorer, attackers
rely on inaccuracies of the JScript parser. More precisely, the JScript parser is
more tolerant with regards to semicolons than SpiderMonkey.

Listing 4.3, for example, illustrates this with a try-catch-finally construct.
While the JScript parser gladly accepts this syntax (notice the semicolon after
the catch block in Line 3), the SpiderMonkey engine terminates the script with
an error (i.e., “finally without try”) at Line 4. These different parsing behaviors
introduce further means for an attacker to make sure the script is interpreted by
the Internet Explorer. As we could observe such attacks in the wild, we had to
modify the parser of our prototype to reflect the behavior of the JScript parser.

Dynamic encryption keys.

Most malicious scripts are encrypted in some way. The attackers’ motivation to
disguise malicious scripts is obviously the intention to encumber the analysis of
such scripts. Encryption is a straightforward approach to do so.

An encrypted script contains a decryption routine and a cipher text. During
execution, the cipher text is decrypted by the routine, and the result is executed via

3Corresponding to the user-agent string: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1)

58 Chapter 4. Drive-by Download Attacks

JavaScript’s eval function. Two possibilities exist where the decryption routine
derives the correct key from. (1) the key might be part of the script itself (e.g.,
stored in a variable), or (2) the key is dependent on the environment of the script.
While in the first case, decryption is automatically handled by the interpreter,
the second case requires that the environment presents the right information for
the queried value. In our evaluation dataset, many decryption keys were partly
derived from the current URL of the browser. Since the scripts were hosted at
a local web server, the URLs were different, thus leading to wrong decryption
keys. For wrong key values, the decryption routines produce only garbage and,
as a result, no malicious behavior can be observed. Since, on the other hand,
the values were correct when the network traces were recorded, we modified our
prototype to report the URL that was visited during the recording of the trace as
the current location. This allowed the scripts to decrypt the cipher text correctly,
and we were able to analyze and detect their malicious behavior.

Batch processing time-outs.

Some malicious scripts use the setTimeout function of JavaScript to delay
their actions. During our batch processing of URLs, we use a time-out of ten
seconds before moving to the next page. As a result, the usage of such timers
could prevent detection. To mitigate this problem, we had to assure that these
timeouts expire before the batch processing extension moves to the next URL. To
this end, we modified Firefox to replace all delays of setTimeout calls with a
delay of 50ms.

Interestingly, during our evaluation, we encountered a malicious script that im-
plemented a custom version of a setTimeout-equivalent function. More precisely,
the script looped and measured the expired time between the initial run of the
loop and the current time. Once the desired delay was reached, execution contin-
ued. This sample did not use the setTimeout function and thus, the extension
switched to the next URL before the malicious content was executed. Notice,
however, that not detecting the malicious script in this sample is an artifact of the
batch processing and does not indicate a weakness in our proposed approach. In

4.5. Summary 59

fact, after removing the sleep function, the system did detect the malicious script,
the shellcode it used, and the involved ActiveX components.

4.5 Summary

Drive-by downloads belong to the most threatening vectors of attack that are cur-
rently used by cyber-criminals to illegitimately gain control of victims’ comput-
ers. In this chapter, we present a novel approach that helps protect a user against
drive-by attacks that rely on shellcode.

Our system is integrated into the web browser where it monitors JavaScript
code that is downloaded and executed. More precisely, our system traces all string
objects that are created during run-time, and it uses x86 instruction emulation to
determine whether a string buffer contains executable shellcode. The detection of
the shellcode takes place before a vulnerability can be exploited (and control flow
redirected). Hence, an attack can be mitigated before the security of the browser
is compromised.

Our approach includes optimizations to assure a reasonable performance over-
head while delivering excellent detection results for drive-by attacks that exploit
binary vulnerabilities in browser plug-in software. We have built a prototype im-
plementation with which we have verified the capability of our approach to suc-
cessfully detect real-world drive-by download attacks. Our evaluation shows that
our approach is feasible in practice.

Although drive-by download attacks are one of the most common infection
vectors for malware, they are not the only possibility. Social engineering, for
example, can also be used to trick users into voluntarily installing malicious pro-
grams on their devices. No matter how a malware program was installed on a
device, anti-virus companies and researchers alike need access to the appropriate
tools and techniques to analyze such malware samples. This analysis allows them
to assess the threat the malware poses to the user and her privacy, and is a nec-
essary precursor to develop effective countermeasures. Therefore, the following
chapter presents our novel contribution in the field of static analysis of privacy
threatening iOS applications.

60 Chapter 4. Drive-by Download Attacks

Chapter 5

Analyzing iOS Applications for
Privacy Threats

Mobile phones have rapidly evolved over the last years. The latest generations
of smartphones are basically miniature versions of personal computers; they offer
not only the possibility to make phone calls and to send messages, but they are a
communication and entertainment platform for users to surf the web, send emails,
and play games. Mobile phones are also ubiquitous, and allow anywhere, anytime
access to information. In the second quarter of 2010 alone, more than 300 million
devices were sold worldwide [40].

Given the wide range of applications for mobile phones and their popularity,
it is not surprising that these devices store an increasing amount of sensitive in-
formation about their users. For example, the address book contains information
about the people that a user interacts with. The GPS receiver reveals the exact
location of the device. Photos, emails, and the browsing history can all contain
private information.

Since the introduction of Apple’s iOS1 and the Android operating systems,
smartphone sales have significantly increased. Moreover, the introduction of mar-
ket places for apps (such as Apple’s App Store) has provided a strong economic
driving force, and tens of thousands of applications have been developed for iOS
and Android. Of course, the ability to run third-party code on a mobile device

1Apple iOS, formally known as iPhone OS, is the operating system that is running on Apples’
iPhone, iPod Touch, and iPad products.

61

62 Chapter 5. Analyzing iOS Applications for Privacy Threats

is a potential security risk. Thus, mechanisms are required to properly protect
sensitive data against malicious applications.

Android has a well-defined mediation process that makes the data needs and
information accesses transparent to users. With Apple iOS, the situation is differ-
ent. In principle, there are no technical mechanisms that limit the access that an
application has. Instead, users are protected by Apple’s developer license agree-
ment [3]. This document defines the acceptable terms for access to sensitive data.
An important rule is that an application is prohibited from transmitting any data
unless the user expresses her explicit consent. Moreover, an application can ask
for permission only when the data is directly required to implement a certain func-
tionality of the application. To enforce the restrictions set out in the license agree-
ment, Apple has introduced a vetting process.

During the vetting process, Apple scrutinizes all applications submitted by
third-party developers. If an application is determined to be in compliance with
the licencing agreement, it is accepted, digitally signed, and made available on
the iTunes App Store. It is important to observe that accessing the App Store is
the only way for users with unmodified iOS devices to install applications. This
ensures that only Apple-approved programs can run on iPhones (and other Apple
products). To be able to install and execute other applications, it is necessary to
“jailbreak” the device and disable the check that ensures that only properly signed
programs can run.

Unfortunately, the exact details of the vetting process are not known pub-
licly. This makes it difficult to fully trust third-party applications, and it raises
doubts about the proper protection of users’ data. Moreover, there are known
instances (e.g., [101]) in which a malicious application has passed the vetting pro-
cess, only to be removed from the App Store later when Apple became aware
of its offending behavior. For example, in 2009, when Apple realized that the
applications created by Storm8 harvested users phone numbers and other per-
sonal information, all applications from this developer were removed from the
App Store.

The goal of the work described in this chapter is to automatically analyze iOS
applications and to study the threat they pose to user data. As a side effect, this
also shines some light on the (almost mysterious) vetting process, as we obtain

63

a better understanding of the kinds of information that iOS applications access
without asking the user. To analyze iOS applications, we developed PiOS, an
automated tool that can identify possible privacy breaches.

PiOS uses static analysis to check applications for the presence of code paths
where an application first accesses sensitive information and subsequently trans-
mits this information over the network. Since no source code is available, PiOS
has to perform its analysis directly on the binaries. While static, binary analysis
is already challenging, the work is further complicated by the fact that most iOS
applications are developed in Objective-C.

Objective-C is a superset of the C programming language that extends it with
object-oriented features. Typical applications make heavy use of objects, and most
function calls are actually object method invocations. Moreover, these method in-
vocations are all funneled through a single dispatch (send message) routine. This
makes it difficult to obtain a meaningful program control flow graph (CFG) for a
program. However, a CFG is the starting point required for most other interesting
program analysis. Thus, we had to develop novel techniques to reconstruct mean-
ingful CFGs for iOS applications. Based on the control flow graphs, we could
then perform data flow analysis to identify flows where sensitive data might be
leaked without asking for user permission.

Using PiOS, we analyzed 825 free applications available on the iTunes App
Store. Moreover, we also examined 582 applications offered through the Cydia
repository. The Cydia repository is similar to the App Store in that it offers a
collection of iOS applications. However, it is not associated with Apple, and
hence, can only be used by jailbroken devices. By checking applications both
from the official Apple App Store and Cydia, we can examine whether the risk of
privacy leaks increases if unvetted applications are installed.

The contributions of this chapter are as follows:

• We present a novel approach that is able to automatically create compre-
hensive CFGs from binaries compiled from Objective-C code. We can then
perform reachability analysis on these CFGs to identify possible leaks of
sensitive information from a mobile device to third parties.

64 Chapter 5. Analyzing iOS Applications for Privacy Threats

• We describe the prototype implementation of our approach, PiOS, that is
able to analyze large bodies of iPhone applications, and automatically de-
termines if these applications leak out any private information.

• To show the feasibility of our approach, we have analyzed more than 1,400
iPhone applications. Our results demonstrate that a majority of applications
leak the device ID. However, with a few notable exceptions, applications do
respect personal identifiable information. This is even true for applications
that are not vetted by Apple.

5.1 System Overview

The goal of PiOS is to detect privacy leaks in applications written for iOS. This
makes is necessary to first concretize our notion of a privacy leak. We define as a
privacy leak any event in which an iOS application reads sensitive data from the
device and sends this data to a third party without the user’s consent. To request
the user’s consent, the application displays a message (via the device’s UI) that
specifies the data item that should be accessed. Moreover, the user is given the
choice of either granting or denying the access. When an application does not
ask for user permission, it is in direct violation of the iPhone developer program

license agreement [3], which mandates that no sensitive data may be transmitted
unless the user has expressed her explicit consent.

The license agreement also states that an application may ask for access per-
missions only when the proper functionality of the application depends on the
availability of the data. Unfortunately, this requirement makes it necessary to un-
derstand the semantics of the application and its intended use. Thus, in this work,
we do not consider privacy violations where the user is explicitly asked to grant
access to data, but this data is not essential to the program’s functionality.

In a next step, we have to decide the types of information that constitute sen-
sitive user data. Turning to the Apple license agreement is of little help. Unfor-
tunately, the text does neither precisely define user data nor enumerate functions
that should be considered sensitive. Since the focus of this work is to detect leaks
in general, we take a loose approach and consider a wide variety of data that can

5.1. System Overview 65

be accessed through the iOS API as being potentially sensitive. In particular,
we used the open-source iOS application Spyphone [84] as inspiration. The pur-
pose of Spyphone is to demonstrate that a significant number of interesting data
elements (user and device information) is accessible to programs. Since this is ex-
actly the type of information that we are interested in tracking, we consider these
data elements as sensitive. A more detailed overview of sensitive data elements is
presented in Section 5.4.

Data flow analysis. The problem of finding privacy leaks in applications can be
framed as a data flow problem. That is, we can find privacy leaks by identifying
data flows from input functions that access sensitive data (called sources) to func-
tions that transmit this data to third parties (called sinks). We also need to check
that the user is not asked for permission. Of course, it would be relatively easy to
find the location of functions that interact with the user, for example, by display-
ing a message box. However, it is more challenging to automatically determine
whether this interaction actually has the intent of warning the user about the ac-
cess to sensitive data. In our approach, we use the following heuristic: Whenever
there is any user interaction between the point where sensitive information is ac-
cessed and the point where this information could be transferred to a third party,
we optimistically assume that the purpose of this interaction is to properly warn
the user.

Step 3: Data-Flow Analysis
Step 1: Reconstruct CFG &
Step 2: Reachability Analysis

0011001010
1010101101
1010101010
1001010101
0101010101
0101010101

Figure 5.1: The PiOS system.

66 Chapter 5. Analyzing iOS Applications for Privacy Threats

As shown in Figure 5.1, PiOS performs three steps when checking an iOS ap-
plication for privacy leaks. First, PiOS reconstructs the control flow graph (CFG)
of the application. The CFG is the underlying data structure (graph) that is used
to find code paths from sensitive sources to sinks. Normally, a CFG is relatively
straightforward to extract, even when only the binary code is available. Unfortu-
nately, the situation is different for iOS applications. This is because almost all
iOS programs are developed in Objective-C.

Objective-C programs typically make heavy use of objects. As a result, most
function calls are actually invocations of instance methods. To make matters
worse, these method invocations are all performed through an indirect call of a
single dispatch function. Hence, we require novel binary analysis techniques to
resolve method invocations, and to determine which piece of code is eventually in-
voked by the dispatch routine. For this analysis, we first attempt to reconstruct the
class hierarchy and inheritance relationships between Objective-C classes. Then,
we use backward slicing to identify both the arguments and types of the input
parameters to the dispatch routine. This allows us to resolve the actual target of
function calls with good accuracy. Based on this information, the control flow
graph can be built.

In the second step, PiOS checks the CFG for the presence of paths that con-
nect nodes accessing sensitive information (sources) to nodes interacting with the
network (sinks). For this, the system performs a standard reachability analysis.

In the third and final step, PiOS performs data flow analysis along the paths
to verify whether sensitive information is indeed flowing from the source to the
sink. This requires some special handling for library functions that are not present
in the binary, especially those with a variable number of arguments. After the
data flow analysis has finished, PiOS reports the source/sink pairs for which it
could confirm a data flow. These cases constitute privacy leaks. Moreover, the
system also outputs the remaining paths for which no data flow was found. This
information is useful to be able to focus manual analysis on a few code paths for
which the static analysis might have missed an actual data flow.

5.2. Background Information 67

5.2 Background Information

The goal of this section is to provide the reader with the relevant background in-
formation about iOS applications, their Mach-O binary format, and the problems
that compiled Objective-C code causes for static binary analysis. The details of
the PiOS system are then presented in later sections.

5.2.1 Objective-C

Objective-C is a strict superset of the C programming language that adds object-
oriented features to the basic language. Originally developed at NextStep, Apple
and its line of operating systems is now the driving force behind the development
of the Objective-C language.

The foundation for the object-oriented aspects in the language is the notion of
a class. Objective-C supports single inheritance, where every class has a single
superclass. The class hierarchy is rooted at the NSObject class. This is the most
basic class. Similar to other object-oriented languages, (static) class variables are
shared between all instances of the same class. Instance variables, on the other
hand, are specific to a single instance. The same holds for class and instance
methods.

Protocols and categories. In addition to the features commonly found in object-
oriented languages, Objective-C also defines protocols and categories. Protocols
resemble interfaces, and they define sets of optional or mandatory methods. A
class is said to adopt a protocol if it implements at least all mandatory methods of
the protocol. Protocols themselves do not provide implementations.

Categories resemble aspects, and they are used to extend the capabilities of
existing classes by providing the implementations of additional methods. That is,
a category allows a developer to extend an existing class with additional function-
ality, even without access to the source code of the original class.

Message passing. The major difference between Objective-C binaries and bi-
naries compiled from other programming languages (such as C or C++) is that,
in Objective-C, objects do not call methods of other objects directly or through

68 Chapter 5. Analyzing iOS Applications for Privacy Threats

virtual method tables (vtables). Instead, the interaction between objects is ac-
complished by sending messages. The delivery of these messages is implemented
through a dynamic dispatch function in the Objective-C runtime.

To send a message to a receiver object, a pointer to the receiver, the name of
the method (the so-called selector; a null-terminated string), and the necessary
parameters are passed to the objc_msgSend runtime function. This function is
responsible for dynamically resolving and invoking the method that corresponds
to the given selector. To this end, the objc_msgSend function traverses the
class hierarchy, starting at the receiver object, trying to locate the method that
corresponds to the selector. This method can be implemented in either the class
itself, or in one of its superclasses. Alternatively, the method can also be part of a
category that was previously applied to either the class, or one of its superclasses.
If no appropriate method can be found, the runtime returns an “object does not
respond to selector” error.

Clearly, finding the proper method to invoke is a non-trivial, dynamic process.
This makes it challenging to resolve method calls statically. The process is further
complicated by the fact that calls are handled by a dispatch function.

5.2.2 Mach-O Binary File Format

iOS executables use the Mach-O binary file format, similar to MacOS X. Since
many applications for these platforms are developed in Objective-C, the Mach-
O format supports specific sections, organized in so-called commands, to store
additional meta-data about Objective-C programs. The __objc_classlist
section, for example, contains a list of all classes for which there is an implemen-
tation in the binary. These are either classes that the developer has implemented or
classes that the static linker has included. The __objc_classref section, on
the other hand, contains references to all classes that are used by the application.
The implementations of these classes need not be contained in the binary itself, but
may be provided by the runtime framework (the equivalent of dynamically-linked
libraries). It is the responsibility of the dynamic linker to resolve the references
in this section when loading the corresponding library. Further sections include

5.2. Background Information 69

information about categories, selectors, or protocols used or referenced by the
application.

Apple has been developing the Objective-C runtime as an open-source project.
Thus, the specific memory layout of the involved data structures can be found in
the header files of the Objective-C runtime. By traversing these structures in the
binary (according to the header files), one can reconstruct basic information about
the implemented classes. In Section 5.3.1, we show how we can leverage this
information to build a class hierarchy of the analyzed application.

Signatures and encryption. In addition to dedicated sections containing meta-
data for Objective-C files, the Mach-O binary file format also supports crypto-
graphic signatures and encrypted binaries. The LC_SIGNATURE_INFO com-
mand2 stores the cryptographic signature information. Upon invoking a signed
application, the operating system’s loader verifies that the binary has not been
modified. This is done by recalculating the signature and matching it against the
information stored in the section. If the signatures do not match, the application
is terminated.

The LC_ENCYPTION_INFO command consists of three fields that indicate
whether a binary is encrypted and store the offset and the size of the encrypted
content. When the field cryptid is set, this means that the program is encrypted.
In this case, the two remaining fields (cryptoffset and cryptsize) identify
the encrypted region within the binary. When a program is encrypted, the loader
tries to retrieve the decryption key from the system’s secure key chain. If a key
is found, the binary is loaded to memory, and the encrypted region is replaced in
memory with an unencrypted version thereof. If no key is found, the application
cannot be executed.

5.2.3 iOS Applications

The mandatory way to install applications on iOS is through Apple’s App Store.
This store is typically accessed via iTunes. Using iTunes, the requested applica-
tion bundle is downloaded and stored in a zip archive (with an .ipa file exten-

2A command is part of a section.

70 Chapter 5. Analyzing iOS Applications for Privacy Threats

sion). This bundle contains the application itself (the binary), data files, such as
images, audio tracks, or databases, and meta-data related to the purchase.

All binaries that are available via the App Store are encrypted and digitally
signed by Apple. When an application is synchronized onto the mobile device
(iPhone, iPad, or iPod), iTunes extracts the application folder from the archive
(bundle) and stores it on the device. Furthermore, the decryption key for the
application is added to the device’s secure key chain. This is required because the
application binaries are also stored in encrypted form.

As PiOS requires access to the unencrypted binary code for its analysis, we
need to find a way to obtain the decrypted version of a program. Unfortunately, it
is not straightforward to extract the application’s decryption key from the device
(and the operating system’s secure key chain). Furthermore, to use these keys,
one would also have to implement the proper decryption routines. Thus, we use
an alternative method to obtain the decrypted binary code.

Decrypting iOS applications. Apple designed the iPhone platform with the in-
tent to control all software that is executed on the devices. Thus, the design does
not intend to give full system (or root) access to a user. Moreover, only signed
binaries can be executed. In particular, the loader will not execute a signed bi-
nary without a valid signature from Apple. This ensures that only unmodified,
Apple-approved applications are executed on the device.

The first step to obtain a decrypted version of an application binary is to lift the
restriction that only Apple-approved software can be executed. To this end, one
needs to jailbreak the device3. The term jailbreaking refers to a technique where
a flaw in the iOS operating system is exploited to unlock the device, thereby ob-
taining system-level (root) access. With such elevated privileges, it is possible to
modify the system loader so that it accepts any signed binary, even if the signature
is not from Apple. That is, the loader will accept any binary as being valid even
if it is equipped with a self-signed certificate. Note that jailbroken devices still
have access to the iTunes App Store and can download and run Apple-approved
applications.

3In July 2010 the Library of Congress which runs the US Copyright Office found that jail-
breaking an iPhone is fair use [19].

5.3. Extracting CFGs from Objective-C Binaries 71

One of the benefits of jailbreaking is that the user obtains immediate access
to many development tools ready to be installed on iOS, such as a debugger, a
disassembler, and even an SSH server. This makes the second step quite straight-
forward: The application is launched in the debugger, and a breakpoint is set to
the program entry point. Once this breakpoint triggers, we know that the system
loader has verified the signature and performed the decryption. Thus, one can
dump the memory region that contains the now decrypted code from the address
space of the binary.

5.3 Extracting CFGs from Objective-C Binaries

Using the decrypted version of an application binary as input, PiOS first needs
to extract the program’s inter-procedural control flow graph (CFG). Nodes in the
CFG are basic blocks. Two nodes connected through an edge indicate a possible
flow of control. Basic blocks are continuous instructions with linear control flow.
Thus, a basic block is terminated by either a conditional branch, a jump, a call, or
the end of a function body.

Disassembly and initial CFG. In an initial step, we need to disassemble the
binary. For this, we chose IDA Pro, arguably the most popular disassembler. IDA
Pro already has built-in support for the Mach-O binary format, and we imple-
mented our analysis components as plug-ins for the IDA-python interface. Note
that while IDA Pro supports the Mach-O binary format, it provides only limited
additional support to analyze Objective-C binaries: For example, method names
are prepended with the name of the class that implements the method. Similarly, if
load or store instructions operate on instance variables, the memory references are
annotated accordingly. Unfortunately, IDA Pro does not resolve the actual targets
of calls to the objc_msgSend dispatch function. It only recognizes the call to
the dynamic dispatch function itself. Hence, the resulting CFG is of limited value.
The reason is that, to be able to perform a meaningful analysis, it is mandatory to
understand which method in which class is invoked whenever a message is sent.
That is, PiOS needs to resolve, for every call to the objc_msgSend function,

72 Chapter 5. Analyzing iOS Applications for Privacy Threats

what method in what class would be invoked by the dynamic dispatch function
during program execution.

Section 5.3.2 describes how PiOS is able to resolve the targets of calls to
the dispatch function. As this process relies on the class hierarchy of a given
application, we first discuss how this class hierarchy can be retrieved from an
application’s binary.

5.3.1 Building a Class Hierarchy

To reconstruct the class hierarchy of a program, PiOS parses the sections in the
Mach-O file that store basic information about the structure of the classes imple-
mented by the binary. The code of Apple’s Objective-C runtime is open source,
and thus, the exact layout of the involved structures can be retrieved from the
corresponding header files. This makes the parsing of the binaries easy.

To start the analysis, the __objc_classlist section contains a list of all
classes whose implementation is present in the analyzed binary (that is, all classes
implemented by the developer or included by the static linker). For each of these
classes, we can extract its type and the type of its superclass. Moreover, the entry
for each class contains structures that provide additional information, such as the
list of implemented methods and the list of class and instance variables. Similarly,
the Mach-O binary format mandates sections that describe protocols used in the
application, and categories with their implementation details.

In principle, the pointers to the superclasses would be sufficient to recreate the
class hierarchy. However, it is important for subsequent analysis steps to also have
information about the available methods for each class, as well as the instance and
class variables. This information is necessary to answer questions such as “does a
class C, or any of its superclasses, implement a given method M?”

Obviously, not all classes and types used by an application need to be imple-
mented in the binary itself. That is, additional code could be dynamically linked
into an application’s address space at runtime. Fortunately, as the iOS SDK con-
tains the header files describing the APIs (e.g., classes, methods, protocols, . . .)
accessible to iOS applications, PiOS can parse these header files and extend the
class hierarchy with the additional required information.

5.3. Extracting CFGs from Objective-C Binaries 73

5.3.2 Resolving Method Calls

As mentioned previously, method calls in Objective-C are performed through the
dispatch function objc_msgSend. This function takes a variable number of ar-
guments (it has a vararg prototype). However, the first argument always points
to the object that receives the message (that is, the called object), while the sec-
ond argument holds the selector, a pointer to the name of the method. On the
ARM architecture, currently the only architecture supported by iOS, the first two
method parameters are passed in the registers R0 and R1, respectively. Additional
parameters to the dispatch function, which represent the actual parameters to the
method that is invoked, are passed via registers R2, R3, and the stack.

Listing 5.1 shows a snippet of Objective-C code that initializes a variable of
type NSMutableString to the string “Hello.” This snippet leads to two method
invocations (messages). First, a string object is allocated by the alloc method
of the NSMutableString class. Second, this string object is initialized with
the static string “Hello.” This is done through the initWithString method.

The disassembly in Listing 5.2 shows that CPU register R0 is initialized with a
pointer to the NSMutableString class. This is done by first loading the (fixed)
address off_31A0 (instruction: 0x266A) and then dereferencing it (0x266E).
Similarly, a pointer to the selector (alloc, referenced by address off_3154) is
loaded into register R1. The addresses of the NSMutableString class and the
selector refer to elements in the __objc_classrefs and __objc_selrefs
sections, respectively. That is, the dynamic linker will patch in the final addresses
at runtime. However, since these addresses are fixed (constant) values, they can
be directly resolved during static analysis and associated with the proper classes
and methods. Once R0 and R1 are set up, the BLX (branch with link exchange)
instruction calls the objc_msgSend function in the Objective-C runtime. The
result of the alloc method (which is the address of the newly-created string
instance) is saved in register R0.

In the next step, the initWithString method is called. This time, the
method is not calling a static class function, but an instance method instead. Thus,
the address of the receiver of the message is not a static address. In contrast, it
is the address that the previous alloc function has returned, and that is already

74 Chapter 5. Analyzing iOS Applications for Privacy Threats

conveniently stored in the correct register (R0). The only thing that is left to do is
to load R1 with the proper selector (initWithString) and R2 with a pointer
to the static string “Hello” (cfstr_Hello). Again, the BLX instruction calls
the objc_msgSend function.

As the example shows, to analyze an Objective-C application, it is necessary
to resolve the contents of the involved registers and memory locations when the
dispatch function is invoked. To this end, PiOS employs backward slicing to
calculate the contents of these registers at every call site to the objc_msgSend
function in an application binary. If PiOS is able to determine the type of the
receiver (R0) and the value of the selector (R1), it annotates the call site with the
specific class and method that will be invoked when the program is executed.

NSMutableString *v;

v = [[NSMutableString alloc] initWithString : @’’Hello’’]

Listing 5.1: Simple Objective-C expression

__text:00002668 30 49 LDR R1, =off_3154

__text:0000266A 31 48 LDR R0, =off_31A0

__text:0000266C 0C 68 LDR R4, [R1]

__text:0000266E 00 68 LDR R0, [R0]

__text:00002670 21 46 MOV R1, R4

__text:00002672 00 F0 32 E9 BLX _objc_msgSend ;

; NSMutableString alloc

__text:00002676 2F 49 LDR R1, =off_3190

__text:00002678 2F 4A LDR R2, =cfstr_Hello

__text:0000267A 09 68 LDR R1, [R1]

__text:0000267C 00 F0 2C E9 BLX _objc_msgSend ;

; NSMutableString initWithString:

Listing 5.2: Disassembly of Listing 5.1

Backward Slicing

To determine the contents of the registers R0 and R1 at each call site to the
objc_msgSend function, PiOS performs backward slicing [100], starting from

5.3. Extracting CFGs from Objective-C Binaries 75

those registers. That is, PiOS traverses the binary backwards, recording all in-
structions that influence or define the values in the target registers. Operands that
are referenced in such instructions are resolved recursively. The slicing algorithm
terminates if it reaches the start of the function or if all values can be determined
statically (i.e., they are statically defined). A value is statically defined if it is a
constant operand of an instruction or a static memory location (address).

In Listing 5.2, for example, the slice for the call to objc_msgSend at ad-
dress 0x2672 (the alloc call) stops at 0x2668. At this point, the values for both
R0 and R1 are statically defined (as the two offsets off_3154 and off_31A0).
The slice for the call site at 0x267c (the string initialization) contains the instruc-
tions up to 0x2672. The slicing algorithm terminates there because function calls
and message send operations store their return values in R0. Thus, R0 is defined
to be the result of the message send operation at 0x2668.

Once the slice of instructions influencing the values of R0 and R1 is deter-
mined, PiOS performs forward constant propagation. That is, constant values are
propagated along the slice according to the semantics of the instructions. For ex-
ample, MOV operations copy a value from one register to another,4 and LDR and
STR instructions access memory locations.

Tracking Type Information

PiOS does not track (the addresses of) individual instances of classes allocated
during runtime. Thus, the question in the previous example is how to handle
the return value of the alloc function, which returns a dynamic (and hence,
unknown pointer) to a string object. Our key insight is that, for our purposes, the
actual address of the string object is not important. Instead, it is only important to
know that R0 points to an object of type NSMutableString. Thus, we do not
only propagate constants along a slice, but also type information.

In our example, PiOS can determine the return type of the alloc method
call at address 0x2672 (the alloc method always returns the same type as its
receiver; NSMutableString in this case). This type information is then prop-

4GCC seems to frequently implement such register transfers as SUB Rd, Rs, #0, or ADD
Rd, Rs, #0.

76 Chapter 5. Analyzing iOS Applications for Privacy Threats

agated along the slice. As a result, at address 0x267c, we have at our disposal the
crucial information that R0 contains an object of type NSMutableString.

To determine the types of function arguments and return values, our system
uses two sources of information. First, for all external methods, the header files
specify the precise argument and return types. Unfortunately, there is no such in-
formation for the methods implemented in the application binary. More precisely,
although the data structure that describes class and instance methods does con-
tain a field that lists the parameter types, the stored information is limited to basic
types such as integer, Boolean, or character. All object arguments are defined as a
single type id and, hence, cannot be distinguished easily.

Therefore, as a second source for type information, PiOS attempts to resolve
the precise types of all arguments marked as id. To this end, the system examines,
for each method, all call sites that invoke this method. For the identified call sites,
the system tries to resolve the parameter types by performing the above-mentioned
backward slicing and constant propagation steps. Once a parameter type is iden-
tified, the meta-data for the method can be updated accordingly. That is, we are
building up a database as we learn additional type information for method call
arguments.

Frequently, messages are sent to objects that are returned as results of previous
method calls. As with method input arguments, precise return type information is
only available for functions whose prototypes are defined in header files. How-
ever, on the ARM architecture, the return value of a method is always returned
in register R0. Thus, for methods that have an implementation in the binary and
whose return type is not a basic type, PiOS can derive the return type by determin-
ing the type of the value stored in R0 at the end of the called method’s body. For
this, we again use backward slicing and forward constant propagation. Starting
with the last instruction of the method whose return type should be determined,
PiOS calculates the slice that defines the type of register R0 at this program loca-
tion.

5.4. Finding Potential Privacy Leaks 77

5.3.3 Generating the Control Flow Graph

Once PiOS has determined the type of R0 and the content of R1 at a given call site
to objc_msgSend, the system checks whether these values are “reasonable.” To
this end, PiOS verifies that the class hierarchy contains a class that matches the
type of R0, and that this class, or any of its superclasses or categories, really
implements the method whose name is stored as the selector in R1. Of course,
statically determining the necessary values is not always possible. However, note
that in cases where only the selector can be determined, PiOS can still reason
about the type of the value in R0 if there is exactly one class in the application
that implements the selector in question.

When PiOS can resolve the target of a function call through the dispatch
method, this information is leveraged to build the control flow graph of the ap-
plication. More precisely, when the target of a method call (the recipient of the
message) is known, and the implementation of this method is present in the binary
under analysis (and not in a dynamic library), PiOS adds an edge from the call site
to the target method.

5.4 Finding Potential Privacy Leaks

The output of the process described in the previous section is an inter-procedural
control flow graph of the application under analysis. Based on this graph, we per-
form reachability analysis to detect privacy leaks. More precisely, we check the
graph for the presence of paths from sources (functions that access sensitive data)
to sinks (functions that transmit data over the network). In the current implemen-
tation of PiOS, we limited the maximum path length to 100 basic blocks.

Interestingly, the way in which iOS implements and handles user interactions
implicitly disrupts control flow in the CFG. More precisely, user interface events
are reported to the application by sending messages to delegate objects that con-
tain the code to react to these events. These messages are not generated from code
the developer wrote, and thus, there is no corresponding edge in our CFG. As a re-
sult, when there is a user interaction between the point where a source is accessed,
and data is transmitted via a sink, there will never be a path in our CFG. Thus, all

78 Chapter 5. Analyzing iOS Applications for Privacy Threats

paths from sensitive sources to sinks represent potential privacy leaks. Of course,
a path from a source to a sink does not necessarily mean that there is an actual
data flow. Hence, we perform additional data flow analysis along an interesting
path and attempt to confirm that sensitive information is actually leaked.

5.4.1 Sources and Sinks

In this section, we discuss in more detail how we identify sources of sensitive data
and sinks that could leak this data.

Sources. Sources of sensitive information cover many aspects of the iOS envi-
ronment. Table 5.1 enumerates the resources that we consider sensitive. As men-
tioned previously, this list is based on [84], where Seriot presents a comprehensive
list of potentially sensitive information that can be accessed by iOS applications.

Access to the address book
Current GPS coordinates of the device
Unique Device ID
Photo Gallery
Email account information
WiFi connection information
Phone related information (Phone# , last called, etc.)
Youtube application (watched videos and recent search)
MobileSafari settings and history
Keyboard cache

Table 5.1: Sensitive information sources.

Any iOS application has full read and write access to the address book stored
on the device. Access is provided through the ABAddressBook API. Thus,
whenever an application performs the initial ABAddressBookCreate call, we
mark this call instruction a source.

An application can only access current GPS coordinates if the user has ex-
plicitly granted the application permission to do so. This is enforced by the
API, which displays a dialog to the user the first time an application attempts
to access the CoreLocation functionality. If access is granted, the application

5.4. Finding Potential Privacy Leaks 79

can install a delegate with the CoreLocation framework that is notified when-
ever the location is updated by the system. More precisely, every time the loca-
tion is updated, the CoreLocation framework will invoke the handler method
(i.e., locationManager:didUpdateToLocation:fromLocation) of
the delegate which was passed to the CLLocationManager:setDelegate
method during initialization.

A unique identifier for the iOS device executing the application is available to
all applications through the UIDevice uniqueIdentifier method. This
ID is represented as a string of 40 hexadecimal characters that uniquely identifies
the device.

The keyboard cache is a local file accessible to all applications. This file con-
tains all words that have been typed on the device. The only exception are char-
acters typed into text fields marked to contain passwords.

Furthermore, there exist various property files that provide access to different
pieces of sensitive information. The commcenter property file contains SIM
card serial numbers and IMSI identifiers. The user’s phone number can be ac-
cessed by querying the standardUserDefaults properties. Email account
settings are accessible through the acountsettings properties file. Similar
files exist that contain the history of the Youtube and MobileSafari applications,
as well as recent search terms used in these applications. The wifi properties
file contains the name of wireless networks the device was connected to. Also, a
time stamp is stored, and the last time when each connection was active is logged.
Accesses related to these properties are all considered sensitive sources by PiOS.

Sinks. We consider sinks as operations that can transmit information over the
network, in particular, methods of the NSURLConnection class. However,
there are also methods in other classes that might result in network requests, and
hence, could be used to leak data. The initWithContentsOfURL method of
the NSString class, for example, accepts a URL as parameter, fetches the con-
tent at that URL, and initializes the string object with this data. To find functions
that could leak information, we carefully went through the API documentation. In
total, we included 14 sinks.

80 Chapter 5. Analyzing iOS Applications for Privacy Threats

5.4.2 Dataflow Analysis

Reachability analysis can only determine that there exists a path in the CFG that
connects a source of sensitive information to a sink that performs networking
operations. However, these two operations might be unrelated. Thus, to enhance
the precision of PiOS, we perform an additional data flow analysis on the paths
that the reachability analysis reports. That is, for every path that connects a source
and a sink in the CFG, we track the propagation of the information accessed at the
source node. If this data reaches one or more method parameters at the sink node,
we can confirm a leak of sensitive information, and an alert is raised.

We use a standard data flow analysis that uses forward propagation along
the instructions in each path that we have identified. For methods whose im-
plementation (body) is not available in the binary (e.g., external methods such as
initWithString of the NSMutableString class), we conservatively as-
sume that the return value of this function is tainted when one or more one of the
arguments is tainted.

Methods with variable number of arguments. To determine whether the out-
put of an external function should be tainted, we need to inspect all input argu-
ments. This makes functions with a variable number of arguments a little more
intricate to handle. The two major types of such functions are string manip-
ulation functions (e.g., NSMutableString appendStringWithFormat)
that use a format string, and initialization functions for aggregate types that fetch
the objects to be placed in the aggregate from the stack (e.g., NSDictionary
initWithObjects:andKeys). Ignoring these functions is not a good option
– especially because string manipulation routines are frequently used for process-
ing sensitive data.

For string methods that use format strings, PiOS attempts to determine the
concrete value (content) of the format string. If the value can be resolved statically,
the number of arguments for this call is determined by counting the number of
formatting characters. Hence, PiOS can, during the data flow analysis, taint the
output of such a function if any of its arguments is tainted.

5.5. Evaluation 81

The initialization functions fetch the contents for the aggregate from the stack
until the value NULL is encountered. Thus, PiOS iteratively tries to statically
resolve the values on the stack. If a value statically resolves to NULL, the number
of arguments for this call can be determined. However, since it is not guaranteed
that the NULL value can be determined statically, we set the upper bound for the
number of parameters to 20.

5.5 Evaluation

We evaluated PiOS on a body of 1,407 applications. 825 are free applications
that we obtained from Apple’s iTunes store. We downloaded the remaining 582
applications from the popular BigBoss [1] repository which is installed by de-
fault with Cydia [37] during jailbreaking. Applications originating from the Cy-
dia repositories are not encrypted. Therefore, these applications can be directly
analyzed by PiOS. Applications purchased from the iTunes store, however, need
to be decrypted before any binary analysis can be started. Thus, we automated the
decryption approach described in Section 5.2.3.

Since iTunes does not support direct searches for free applications, we rely
on apptrakr.com [2] to provide a continuously updated list of popular, free iOS
applications. Once a new application is added to their listings, our system auto-
matically downloads the application via iTunes and decrypts it. Subsequently, the
application is analyzed with PiOS.

5.5.1 Resolving Calls to objc msgSend

As part of the static analysis process, PiOS attempts to resolve all calls to the
objc_msgSend dispatch function. More precisely, for each call site referring
to objc_msgSend, the system reasons about the target method (and class) that
would be invoked during runtime (described in Section 5.3.2) by the dispatch
routine. This is necessary to build the program’s control flow graph.

During the course of evaluating PiOS on 1,407 applications, we identified
4,156,612 calls to the message dispatch function. PiOS was able to identify the
corresponding class and method for 3,408,421 call sites (82%). Note that PiOS

82 Chapter 5. Analyzing iOS Applications for Privacy Threats

reports success only if the inferred class exists in the class hierarchy, and the
selector denotes a method that is implemented by the class, or its ancestors in the
hierarchy. These results indicate that a significant portion of the CFGs can be
successfully reconstructed, despite the binary analysis challenges.

5.5.2 Advertisement and Tracking Libraries

PiOS resolves all calls to the objc_msgSend function regardless of whether the
target method in the binary was written by the application developer herself, or
whether it is part of a third-party library that was statically linked against the ap-
plication. In an early stage of our experiments, we realized that many applications
contained one (or even multiple instances) of a few popular libraries. Moreover,
all these libraries triggered PiOS’ privacy leak detection because the system de-
tected paths over which the unique device ID was transmitted to third parties.

A closer examination revealed that most of these libraries are used to display
advertisement to users. As many iOS applications include advertisements to create
a stream of revenue for the developer, their popularity was not surprising. How-
ever, the fact that all these libraries also leak the device IDs of users that install
their applications was less expected. Moreover, we also found tracking libraries,
whose sole purpose is to collect and compile statistics on application users and
usage. Clearly, these libraries send the device ID as a part of their functionality.

Applications that leak device IDs are indeed pervasive, and we found that 656
(or 55% of all applications) in our evaluation data set include either advertisement
or tracking libraries. Some applications even include multiple different libraries at
once. In fact, these libraries were so frequent that we decided to white-list them;
in the sense that it was of no use for PiOS to constantly re-analyze and reconfirm
their data flows. More precisely, whenever a path starts from a sensitive sink in
a white-listed library, further analysis is skipped for this path. Thus, the analysis
results that we report in the subsequent sections only cover the code that was
actually written by application developers. For completeness, Table 5.2 shows
how frequently our white-list triggered for different applications.

While not directly written by an application developer, libraries that leak de-
vice IDs still pose a privacy risk to users. This is because the company that is

5.5. Evaluation 83

Library Name Type # apps using # white-listed accesses
AdMob Advertising 538 55,477
Pinchmedia Statistics/Tracking 79 2,038
Flurry Statistics/Tracking 51 386
Mobclix Advertising 49 1,445
AdWhirl Advertising 14 319
QWAdView Advertising 14 219
OMApp Statistics/Tracking 10 658
ArRoller Advertising 8 734
AdRollo Advertising 7 127
MMadView Advertising 2 96
Total 772 61,499

Table 5.2: Prevalence of advertising and tracking libraries.

running the advertisement or statistics service has the possibility to aggregate de-
tailed application usage profiles. In particular, for a popular library, the advertiser
could learn precisely which subset of applications (that include this library) are
installed on which devices. For example, in our evaluation data set, AdMob is
the most-widely-used library to serve advertisements. That is, 82% of the appli-
cations that rely on third-party advertising libraries include AdMob. Since each
request to the third-party server includes the unique device ID and the application
ID, AdMob can easily aggregate which applications are used on any given device.

Obviously, the device ID cannot immediately be linked to a particular user.
However, there is always the risk that such a connection can be made by leveraging
additional information. For example, AdMob was recently acquired by Google.
Hence, if a user happens to have an active Google account and uses her device
to access Google’s services (e.g., by using GMail), it now becomes possible for
Google to tie this user account to a mobile phone device. As a result, the infor-
mation collected through the ad service can be used to obtain a detailed overview
of who is using which applications. Similar considerations apply to many other
services (such as social networks like Facebook) that have the potential to link a
device ID to a user profile (assuming the user has installed the social networking
application).

84 Chapter 5. Analyzing iOS Applications for Privacy Threats

The aforementioned privacy risk could be mitigated by Apple if an identifier
would be used that is unique for the combination of application and device. That
is, the device ID returned to a program should be different for each application.

5.5.3 Reachability Analysis

Excluding white-listed accesses to sensitive data, PiOS checked the CFGs of the
analyzed applications for the presence of paths that connect sensitive sources to
sinks. This analysis resulted in a set of 205 applications that contain at least one
path from a source to a sink, and hence, a potential privacy leak. Interestingly, 96
of the 656 applications that triggered the white-list also contain paths in their core
application code (i.e., outside of ad or tracking libraries).

The overwhelming majority (i.e., 3,877) of the accessed sources corresponds
to the unique device identifier. These accesses originate from 195 distinct appli-
cations. 36 applications access the GPS location data at 104 different program
locations. Furthermore, PiOS identified 18 paths in 5 applications that start with
an access to the address book. One application accesses both the MobileSafari
history and the photo storage. An overview that summarizes the potential leaks is
shown Table 5.3.

Source # App Store # Cydia Total
DeviceID 170 25 195
Location 35 1 36
Address book 4 1 5
Phone number 1 0 1
MobileSafari history 0 1 1
Photos 0 1 1

Table 5.3: Applications accessing sensitive data.

An interesting conclusion that one can draw from looking at Table 5.3 is that,
overall, the programs on Cydia are not more aggressive (malicious) than the ap-
plications on the App Store. This is somewhat surprising, since Cydia does not
implement any vetting process.

5.5. Evaluation 85

5.5.4 Data Flow Analysis

For the 205 applications that were identified with possible information leaks, PiOS
then performed additional analysis to attempt to confirm whether sensitive infor-
mation is actually leaked. More precisely, the system enumerates all paths in the
CFG between a pair of source and sink nodes whose length does not exceed 100
basic blocks. Data flow analysis is then performed on these paths until either a
flow indicates that sensitive information is indeed transmitted over the network, or
all paths have been analyzed (without result). Note that our analysis is not sound;
that is, we might miss data flows due to code constructs that we cannot resolve
statically. However, the analysis is precise, and every confirmed flow is indeed
a privacy leak. This is useful when the majority of paths actually correspond to
leaks, which we found to be true.

For 172 applications, the data flow analysis confirmed a flow of sensitive in-
formation to a sink. We manually analyzed the remaining 33 applications to asses
whether there really is no data flow, or whether we encountered a false negative.
In six applications, even after extensive, manual reverse engineering, we could
not find an actual flow. In these cases, our data flow analysis produced the correct
result. The remaining 27 cases were missed due to a variety of program constructs
that are hard to analyze statically (recall that we operate directly on binary code).
We discuss a few of the common problems below.

For six applications, the data flow analysis was unsuccessful because these
applications make use of custom-written functions to store data in aggregate types.
Also, PiOS does not support nested data structures such as dictionaries stored
inside dictionaries.

In four cases, the initial step could not resolve all the necessary object types.
For example, PiOS was only able to resolve that the invoked method (the sent
message) was setValue:forHTTPHeader- Field. However, the object on
which the method was called could not be determined. As a result, the analysis
could not proceed.

Two applications made use of a JSON library that adds categories to many
data types. For example, the NSDictionary class is extended with a method
that returns the contents of this dictionary as a JSON string. To this end, the

86 Chapter 5. Analyzing iOS Applications for Privacy Threats

method sends each object within the dictionary a JSONRepresentation mes-
sage. The flows of sensitive information were missed because PiOS does not keep
track of the object types stored within aggregate data types (e.g., dictionaries).

In other cases, flows were missed due to aliased pointers (two different point-
ers that refer to the same object), leaks that only occur in the applications excep-
tion handler (which PiOS does not support), or a format string that was read from
a configuration file.

5.5.5 Case Studies

When examining the results of our analysis (in Table 5.3), we can see that most
leaks are due to applications that transmit the device ID. This is similar to the
situation of the advertising and tracking libraries discussed previously. Moreover,
a number of applications transmit the user’s location to a third party. These cases,
however, cannot be considered real privacy leaks. The reason is that iOS itself
warns users (and asks for permission) whenever an application makes use of the
CoreLocation functionality. Unfortunately, such warnings are not provided
when other sensitive data is accessed. In the following, we discuss in more detail
the few cases in which the address book, the browser history, and the photo gallery
is leaked.

Address book leaks. PiOS indicated a flow of sensitive information for the
Gowalla social networking application. Closer examination of the offending path
showed that the application first accesses the address book and then uses the
loadRequest method of the UIWebView class to launch a web request. As
part of this request, the application transmits all user names and their correspond-
ing email addresses.

We then attempted to manually confirm the privacy leak by installing Gowalla
on a iOS device and monitoring the network traffic. The names of the methods
involved in the leak that was detected, emailsAndNamesQueryString and
emailsAndNamesFromAddressBook, both implemented in the same class
(i.e., InviterViewController), made it easy to find the corresponding ac-
tions on the user interface. In particular, the aforementioned class is responsible

5.5. Evaluation 87

for inviting a user’s friends to also download and use the Gowalla application. A
user can choose to send invitations to her Twitter followers, Facebook friends, or
simply select a group of users from the address book. This is certainly legitimate
behavior. However, the application also, and before the user makes any selection,
transmits the address book in its entirety to the developer. This is the flow that
PiOS detects. The resulting message5 indicates that the developers are using this
information to crosscheck with their user database whether any of the user’s con-
tacts already use the application. When we discovered this privacy breach, we
informed Apple through the “Report a problem” link associated with this appli-
cation on iTunes. Despite our detailed report, Apple’s response indicated that we
should discuss our privacy concerns directly with the developer.

PiOS found another leak of address book data in twittericki. This application
checks all contacts in the address book to determine whether there is a picture as-
sociated with the person. If not, the application attempts to obtain a picture of this
person from Facebook. While information from the address book is used to create
network requests, these requests are sent to Facebook. It is not the application
developers that attempt to harvest address book data.

In other three cases, the address book is also sent without displaying a di-
rect warning to the user before the sensitive data is transferred. However, these
applications either clearly inform the user about their activity at the beginning
(Facebook) or require the user to actively initiate the transfer by selecting con-
tacts from the address book (XibGameEngine, to invite friend; FastAddContacts

to populate the send-to field when opening a mail editor). This shows that not
all leaks have the same impact on a user’s privacy, although in all cases, PiOS
correctly recognized a sensitive data flow.

Browser history and photo gallery. Mobile-Spy offers an application called
smartphone on the Cydia market place. This application is advertised as a surveil-
lance solution to monitor children or employees. Running only on jailbroken de-
vices, the software has direct access to SMS messages, emails, GPS coordinates,
browser history, and call information. The application is designed as a daemon

5“We couldn’t find any friends from your Address Book who use Gowalla. Why don’t you
invite some below?”

88 Chapter 5. Analyzing iOS Applications for Privacy Threats

process running in the background, where it collects all available information and
transfers it information to Mobile-Spy’s site. The user who installs this application
can then go to the site and check the collected data.

PiOS was able to detect two flows of sensitive information in this applica-
tion. The upload of the MobileSafari history, and the upload of the Photo gallery.
However, PiOS was not able to identify the leaking of the address book, and the
transfer of the email box, or SMS messages. The reason for all three cases is that
the application calls system with a cp command to make a local copy of the
local phone databases that hold this information. These copies are later opened,
and their content is transferred to the Mobile-Spy service. Tracking through the
invocation of the system library call would require PiOS to understand the se-
mantics of the passed (shell) commands. Clearly, this is outside of the scope of
this thesis.

Phone Number. In November 2009, Apple removed all applications developed
by Storm8 due to privacy concerns. More precisely, these applications were found
to access the user’s phone number via the SBFormattedPhoneNumber key in
the standardUserDefaults properties. Once retrieved, the phone number
was then transmitted to Storm8’s servers. Shortly after the ban of all their ap-
plications, Storm8 developers released revised versions that did not contain the
offending behavior. This incident prompted Apple to change their vetting pro-
cess, and now, all applications that access this key are rejected. Thus, to validate
PiOS against this known malicious behavior, we obtained a version of Vampires
Live (a Storm8 application) that predates this incident, and hence, contains the
offending code. PiOS correctly and precisely identified that the phone number is
read on program startup and then sent to Storm8.

5.5.6 Discussion

With the exception of a few bad apples, we found that a significant majority of
applications respects the person user information stored on iOS devices. While
this could be taken as a sign that Apple’s vetting process is successful, we found
similar results for the unchecked programs that are hosted on Cydia, an unofficial

5.6. Limitations 89

repository that can only be accessed with a jailbroken phone. However, the unique
device ID of the phone is treated distinctively different, and more than half of the
applications leak this information (often because of advertisement and tracking li-
braries that are bundled with the application). While these IDs cannot be directly
linked to a user’s identify, they allow third parties to profile user behavior. More-
over, there is always the risk that outside information can be used to eventually
make the connection between the device ID and a user.

5.6 Limitations

It is not always possible for PiOS to statically determine the receiver and selector
for every call to the objc_msgSend function.Recall that the selector is the name
of a method. Typically, this value is a string value stored in the __objc_selref
section of the application. However, any string value can be converted to a selec-
tor, and it is possible to write programs that receive string values whose value
cannot be statically determined (e.g., as a response to a networking request, or as
a configuration value chosen by the user). This limitation is valid for all static
analysis approaches and not specific to PiOS.

Furthermore, aggregate types in Objective-C, such as NSArray, NSSet, or
NSDictionary are not generic. Therefore, the types of objects in such con-
tainers cannot be specified more precisely than id (which is of type NSObject).
For example, the delegate method touchesEnded:withEvent provided by
the UIResponder class is called whenever the user finishes a touch interaction
with the graphical user interface (e.g., click an element, swipe an area, . . .). This
method receives as the first argument a pointer to an object of type NSSet. Al-
though this set solely contains UITouch elements, the lack of generic support
in Objective-C prohibits the type information to be stored with the aggregate in-
stance. Similarly, any object can be added to an NSArray. Thus, PiOS has to
treat any value that is retrieved from an aggregate as NSObject. Nevertheless,
as described in Section 5.3.2, PiOS might still be able to reason about the type
of such an object if a subsequent call to the objc_msgSend function uses a
selector that is implemented by exactly one class.

90 Chapter 5. Analyzing iOS Applications for Privacy Threats

5.7 Summary

The growing popularity and sophistication of smartphones, such as the iPhone or
devices based on Android, have also increased concerns about the privacy of their
users. To address these concerns, smartphone OS designers have been using dif-
ferent security models to protect the security and privacy of users. For example,
Android applications are shipped with a manifest that shows all required permis-
sions to the user at installation time. In contrast, Apple has decided to take the
burden off its iPhone users and determine, on their behalf, if an application con-
forms to the predefined privacy rules. Unfortunately, Apple’s vetting process is
not public, and there have been cases in the past (e.g., [101]) where vetted appli-
cations have been discovered to be violating the privacy rules defined by Apple.

The goal of the work described in this chapter is to automatically analyze iOS
applications and to study the threat they pose to user data. We present a novel
approach that is able to automatically create comprehensive CFGs from binaries
compiled from Objective-C code. We can then perform reachability analysis on
the generated CFGs and identify private data leaks. We have analyzed more than
1,400 iPhone applications. Our experiments show that most applications do not
secretly leak any sensitive information that can be attributed to a person. This
is true both for vetted applications on the App Store and those provided by Cy-
dia. However, a majority of applications leaks the device ID, which can provide
detailed information about the habits of a user. Moreover, there is always the pos-
sibility that additional data is used to tie a device ID to a person, increasing the
privacy risks.

Chapter 6

Related Work

In this chapter, we will discuss the work that is related to the topics that are covered
in this dissertation. First, we will cover the related work in the research area of
web-spam. Subsequently, we will discuss the works that are related to our drive-
by download prevention technique. This includes works in the realm of shellcode
detection and JavaScript analysis. Finally, we present the related work in the field
of static analysis and mobile device security.

Web spam In recent years, considerable effort was dedicated to the detection
and mitigation of web spam. In [44], the authors present different techniques to
fool search engine ranking algorithms. Boosting techniques, such as link farms,
are used to push pages to undeserved higher ranks in search engine results. Hiding
or cloaking techniques are used to trick search engines by serving different content
to the search engine spiders and human users.

One of the most prominent boosting techniques are link farms, and multiple
researchers have presented techniques for detecting them. For example, Wu and
Davison [104] propose an algorithm that generates a graph of a link farm from an
initial seed and propagates badness values through this graph. This information
can then be used with common, link-based ranking algorithms, such as PageRank
or HITS. The same authors also present their findings on cloaking and redirec-
tion techniques [103]. Ntoulas et al. [68] present a technique of detecting spam
pages by content analysis. This work only takes query independent features into
account, while Svore et al. [93] also use query dependent information. A system

91

92 Chapter 6. Related Work

to detect cloaking pages is proposed by Chellapilla and Chickering in [13]. For
this, a given URL is downloaded twice, providing different user agent strings for
each download. If the pages are (significantly) different, the page uses cloaking
techniques.

Wang et al. [99] follow the money in advertising schemes and propose a five-
layer, double-funnel model to explain the relations that exist between advertisers
and sites that employ web spam techniques. Fetterly et al. [35] present a series of
measurements to evaluate the effectiveness in web spam detection. A quantitative
study of forum spamming was presented by Niu et al. [67]

The work that is closest to our attempt in inferring the importance of different
web page features is [7]. In that paper, Bifet et al. attempt to infer the importance
of page features for the ranking algorithm by analyzing the results for different
queries. They extract feature vectors for each page and try to model the ranking
function by using support vector machines. Since their work is based on already
existing pages, they do not have control over certain features (e.g., in-link prop-
erties). In [32], Evans performs a statistical analysis of the effect that certain
factors have on the ranking of pages. While he includes factors, such as the listing
of pages in web directories and a site’s PageRank value, Evans only focuses on
query independent values while neglecting all other factors.

Drive-by downloads While powerful, existing analysis techniques are typically
too heavyweight to be used for detection on a client machine. In contrast to that,
our proposed technique detects drive-by download attacks by monitoring poten-
tially malicious scripts directly in the browser.

Previous studies have shown that drive-by download attacks pose a real threat
to the Internet and its users. The mechanisms used by attackers to mount their
attacks are investigated by Provos et al. in [76]. The life cycle of an infected ma-
chine is analyzed by Polychronakis in [74]. In [75], Provos et al. present a mea-
surement study that reports that the results for 1.3% of all Google search queries
contain at least one link pointing to a page that performs a drive-by attack. Also,
Frei et al. [38] analyzed the vulnerability landscape of web browsers in the Inter-
net. Apparently, only 60% of the users that navigate the Internet everyday use the
latest, most secure version of their web browser. Based on a Secunia report [82],

93

the authors argue that many browser plug-ins commonly in use have known vul-
nerabilities. The fact that many users only reluctantly update their web browsers
and plug-ins makes it feasible for attackers to distribute attacks that target old vul-
nerabilities. As many of the vulnerabilities leading to control flow hijacking are
present in ActiveX components, Dormann and Plakosh [25] propose fuzzy testing
as a means of detecting such flaws before distributing a component.

Network level shellcode detection Detecting shellcode in network traffic has a
long standing history. Network intrusion detection systems, such as Snort [80]
or Bro [69], rely on signatures to identify malicious network streams. While
signature detection works well for known static threats, advanced polymorphic
shellcode and engines that can automatically produce such shellcode can some-
times evade these detection techniques. Based on abstract payload execution, Toth
and Kruegel have proposed a mechanism to detect buffer overflow attacks [96].
More precisely, their prototype implementation identifies long valid sequences
of instructions in HTTP requests, thus detecting the NOP sledge that commonly
accompanies shellcode. Continuing this work, Polychronakis et al. [71, 73] pro-
posed to apply lightweight emulation on network data to identify polymorphic
shellcode. This approach relies on the so-called GetPC heuristic. That is, a shell-
code is only identified if a sequence of instructions is emulated that reads the
current program counter value. The class of non-self-contained shellcode, how-
ever, contains code that reaches its goal without showing such behavior. In [72],
the authors extend their detection techniques to also identify this class of attacks.
While network-traffic-based techniques are useful, they typically cannot be used
to detect drive-by downloads. The reason is that, although JavaScript contents of
a web page are transmitted over the network, this code is often obfuscated. Fur-
thermore, the shellcode contained in the JavaScript scripts are not transmitted in
binary form. Instead, the ASCII representation of the individual bytes is transmit-
ted. This sequence does not yield a valid instruction sequence in general.

Analyzing JavaScript Analyzing malicious JavaScript has experienced signif-
icant attention by the scientific community. Hallaraker and Vigna [45] describe
an approach to audit the execution of JavaScript code. These audit logs can be

94 Chapter 6. Related Work

compared to high-level policies to detect potential attacks. Similarly, Feinstein
and Peck introduced Caffeine Monkey [33], a tool that supports the collection
and analysis of malicious JavaScript. To this end, they extended the Mozilla Spi-
derMonkey JavaScript engine by adding run-time logging facilities. Chenette et
al. [16] aim at automatically reversing the obfuscation of malicious JavaScripts.
Their approach relies on hooking techniques to monitor calls to relevant JavaScript
functions, such as eval or document.write. These systems focus on auditing Java-
Script activity, while our approach aims at detecting malicious drive-by down-
loads.

Vogt et al. propose a system that prevents cross-site scripting attacks per-
formed by malicious JavaScript code [98]. To protect a user from JavaScript that
tries to steal sensitive information, the propagation of such information through
the JavaScript engine is tracked. Requests to a domain containing information
originating from another domain raise an alert, and allow the user to stop further
execution of the script.

Static analysis Clearly, static analysis and program slicing have been used be-
fore. Weiser [100] was the first to formalize a technique called program slic-
ing. As outlined in Section 5.3.2, PiOS makes use of this technique to calcu-
late program slices that define receiver and selector values at call-sites to the
objc_msgSend dynamic dispatch function.

Also, static binary analysis was used in the past for various purposes. Kruegel
et al. [57] made use of static analysis to perform mimicry attacks on advanced
intrusion detection systems that monitor system call invocations. Christodorescu
and Jha [17] present a static analyzer for executables that is geared towards detect-
ing malicious patterns in binaries even if the content is obfuscated. Similarly, the
work described in Christodorescu [18] et al. is also based on binary static analy-
sis, and identifies malicious software using a semantics-aware malware detection
algorithm. However, some of the obfuscation techniques available on the x86 ar-
chitecture cannot be used on ARM based processors. The RISC architecture of
ARM facilitates more robust disassembly of binaries, as instructions cannot be
nested within other instructions. Furthermore, the strict memory alignment pro-

95

hibits to jump to the middle of ARM instructions. Thus, disassembling ARM
binaries generally produces better results than disassembling x86 binaries.

Note that while static binary analysis is already challenging in any domain, in
our work, the analysis is further complicated by the fact that most iOS applications
are developed in Objective-C. It is not trivial to obtain a meaningful program
control flow graph for iOS applications.

In [10], Calder and Grunwald optimize object code of C++ programs by re-
placing virtual function calls with direct calls if the program contains exactly one
implementation that matches the signature of the virtual function. This is possible
because the mangled name of a function stored in an object file, contains infor-
mation on the class and parameter types. PiOS uses a similar technique to resolve
the type of a receiver of a message. However, PiOS only follows this approach if
the type of the receiver cannot be determined by backwards slicing and constant
propagation.

In another work, Dean et al. [24] present an approach that performs class hi-
erarchy analysis to statically resolve virtual function calls and replace them with
direct function calls. In PiOS, we do not use the class hierarchy to resolve the
invoked method. However, we do use this information to verify that the results of
the backwards slicing and forward propagation step are consistent with the class
hierarchy, and thus sensible.

PiOS is also related to existing approaches that perform static data flow analy-
sis. Livshits and Lam [58], for example, use static taint analysis for Java byte-code
to identify vulnerabilities that result from incomplete input validation (e.g., SQL
injection, cross site scripting). The main focus of Tripp et al. [97] is to make static
taint analysis scale to large real-world applications. To this end, the authors intro-
duce hybrid thin-slicing and combine it with taint analysis to analyze large web
applications, even if they are based on application frameworks, such as Struts or
Spring. Furthermore, Pixy [52] performs inter-procedural, context-sensitive data-
flow analysis on PHP web-applications, and also aims to identify such taint-style
vulnerabilities.

Mobile device security There has also been some related work in the domain
of mobile devices: Enck et al. [30] published TaintDroid, a system that shares a

96 Chapter 6. Related Work

similar goal with this work; namely, the analysis of privacy leaks in smart phone
applications. Different to our system, their work targets Android applications and
performs dynamic information-flow tracking to identify privacy leaks. Most An-
droid applications are executed by the open source Dalvik virtual machine. The
information-flow capabilities of TaintDroid were build into a modified version of
this VM. iOS applications, in contrast, are compiled into native code and executed
by the device’s CPU directly. TaintDroid was evaluated on 30 popular Android
applications. The results agree quite well with our findings. In particular, many
of the advertising and statistics libraries that we identified in Section 5.5.2 also
have corresponding Android versions. As a result, TaintDroid raised alerts when
applications transmitted location data to AdMob, Mobclix, and Flurry back-end
servers. Furthermore, Enck et al. [31] present an approach named Kirin where
they automatically extract the security manifest of Android applications. Before
an application is installed, this manifest is evaluated against so-called logic in-

variants. The result is that the user is only prompted for her consent to install the
application if these invariants are violated. That is, only applications that violate
a user’s assumption of privacy and security are prompted for the user agreement
during installation. The concept of a security manifest provides the user basic in-
formation on which she can base her decision on whether to install an application
or not. Unfortunately, the iOS platform does not provide such amenities. To take
a decision, the user can only rely on the verbal description of the application and
Apple’s application vetting process.

Another work that focuses on Android is the formal language presented by
Chaudhuri [12]. Together with operational semantics and a type system, the au-
thor created the language with the aim of being able to describe Android appli-
cations with regard to security properties. However, the language currently only
supports Android-specific constructs. That is, the general Java constructs that
build the majority of an application’s code cannot currently be represented.

Chapter 7

Conclusions

In this thesis we analyzed the techniques attackers make use of to attack and infect
Internet-connected devices. Once a system is compromised it is the task of secu-
rity vendors and researchers to analyze the threat and provide countermeasures.

Thus, this thesis covered the problem of web-spam, a technique malware au-
thors frequently make use of to increase their chances to infect Internet-connected
personal computers with malware. Based on the insight we gained from conduct-
ing this research we designed and presented a technique to detect such web-spam
pages.

Additionally, we presented our research on drive-by download attacks, where
the mere visit of a web page can infect a web client with malware. Based on the
observation that many drive-by attacks feature executable exploit code we pre-
sented a technique to protect unsuspecting users from web sites that launch such
drive-by download attacks. Since the runtime overhead of this approach is barely
noticeable when compared to the delays introduced by the network, our approach
could be implemented as an integral part of protecting users from malicious web
sites.

Although the iOS platform, at the time of writing, does not suffer from the
proliferation of malware comparable to PCs, there are still third party applications
with at least questionable behavior and functionality. Thus, in this thesis we also
presented a technique to automatically analyze iOS applications with respect to
privacy violations. That is, our system is able to detect applications that send

97

98 Chapter 7. Conclusions

sensitive data, such as address book contents or positional data, to the network,
possibly breaching the user’s privacy.

Bibliography

[1] http://thebigboss.org.

[2] AppTrakr, Complete App Store Ranking. http://apptrakr.com/.

[3] iPhone Developer Program License Agreement. http://www.eff.

org/files/20100302_iphone_dev_agr.pdf.

[4] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artif. Intell. Rev., 11(1-5):11–73, 1997.

[5] Avira Press Center. Avira warns: targeted malware attacks increasingly
also threatening German companies. http://www.avira.com/

en/security_news/targeted_attacks_threatening_

companies.html, 2007. Last accessed, May 2010.

[6] P. Baecher and M. Koetter. x86 shellcode detection and emulation. http:
//libemu.mwcollect.org/. Last accessed, May 2010.

[7] A. Bifet, C. Castillo, P.-A. Chirita, and I. Weber. An Analysis of Factors
Used in Search Engine Ranking. In Adversarial Information Retrieval on

the Web, 2005.

[8] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. In 7th International World Wide Web Conference (WWW),
1998.

[9] F. Cacheda and Á. Viña. Experiencies retrieving information in the World
Wide Web. In Proceedings of the Sixth IEEE Symposium on Computers

99

http://thebigboss.org
http://apptrakr.com/
http://www.eff.org/files/20100302_iphone_dev_agr.pdf
http://www.eff.org/files/20100302_iphone_dev_agr.pdf
http://www.avira.com/en/security_news/targeted_attacks_threatening_companies.html
http://www.avira.com/en/security_news/targeted_attacks_threatening_companies.html
http://www.avira.com/en/security_news/targeted_attacks_threatening_companies.html
http://libemu.mwcollect.org/
http://libemu.mwcollect.org/

100 BIBLIOGRAPHY

and Communications (ISCC 2001), pages 72–79. IEEE Computer Society,
2001.

[10] B. Calder and D. Grunwald. Reducing indirect function call overhead in
c++ programs. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 397–
408, New York, NY, USA, 1994. ACM.

[11] Capture-HPC Client Honeypot / Honeyclient. https://projects.

honeynet.org/capture-hpc, 2009.

[12] A. Chaudhuri. Language-based security on android. In ACM Workshop on

Programming Languages and Analysis for Security (PLAS), 2009.

[13] K. Chellapilla and D. Chickering. Improving Cloaking Detection Using
Search Query Popularity and Monetizability. In Adversarial Information

Retrieval on the Web, 2006.

[14] H. Chen, D. Dean, and D. Wagner. Model Checking One Million Lines of C
Code. In 11th Annual Network and Distributed System Security Symposium

(NDSS04), 2004.

[15] H. Chen and D. Wagner. MOPS: an infrastructure for examining security
properties of software. In Proceedings of the 9th ACM conference on Com-

puter and communications security (CCS), pages 235 – 244, 2002.

[16] S. Chenette. ToorConX - the ultimate deobfuscator. http://www.

toorcon.org/tcx/26_Chenette.pdf, 2008.

[17] M. Christodorescu and S. Jha. Static analysis of executables to detect
malicious patterns. In SSYM’03: Proceedings of the 12th conference on

USENIX Security Symposium, pages 12–12, Berkeley, CA, USA, 2003.
USENIX Association.

[18] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant.
Semantics-aware malware detection. In IEEE Symposium on Security and

Privacy (Oakland), 2005.

https://projects.honeynet.org/capture-hpc
https://projects.honeynet.org/capture-hpc
http://www.toorcon.org/tcx/26_Chenette.pdf
http://www.toorcon.org/tcx/26_Chenette.pdf

BIBLIOGRAPHY 101

[19] A. Cohen. The iPhone Jailbreak: A Win Against Copyright
Creep. http://www.time.com/time/nation/article/0,

8599,2006956,00.html.

[20] Superbuddy activex control vulnerability. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2006-5820, 2006.

[21] D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Structures.
In Annual Computer Security Applications Conference (ACSAC), 2007.

[22] Dan Goodin (The Register). SQL injection taints Business-
Week.com. http://www.theregister.co.uk/2008/09/

16/businessweek_hacked/, 2008. Last accessed, May 2010.

[23] M. Daniel, J. Honoroff, and C. Miller. Engineering heap overflow ex-
ploits with javascript. In 2nd USENIX Workshop on Offensive Technologies

(WOOT08), 2008.

[24] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented pro-
grams using static class hierarchy analysis. In European Conference on

Object-Oriented Programming, 1995.

[25] W. Dormann and D. Plakosh. Vulnerability detection in activex controls
through automated fuzz testing. http://www.cert.org/archive/
pdf/dranzer.pdf, 2008.

[26] M. Egele, C. Kolbitsch, and C. Platzer. Removing web spam links from
search engine results. Journal in Computer Virology, pages 1–12, 2009.
10.1007/s11416-009-0132-6.

[27] M. Egele, C. Krügel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy
Leaks in iOS Applications. In 17th Annual Network and Distributed System

Security Symposium (NDSS11), to appear, 2011.

[28] M. Egele, T. Scholte, E. Kirda, and C. Krügel. A survey on automated
dynamic malware analysis techniques and tools. ACM Comput. Surv., to
appear.

http://www.time.com/time/nation/article/0,8599,2006956,00.html
http://www.time.com/time/nation/article/0,8599,2006956,00.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5820
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5820
http://www.theregister.co.uk/2008/09/16/businessweek_hacked/
http://www.theregister.co.uk/2008/09/16/businessweek_hacked/
http://www.cert.org/archive/pdf/dranzer.pdf
http://www.cert.org/archive/pdf/dranzer.pdf

102 BIBLIOGRAPHY

[29] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection at-
tacks. In DIMVA, pages 88–106, 2009.

[30] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of OSDI 2010, October
2010.

[31] W. Enck, M. Ongtang, and P. McDaniel. Understanding android security.
IEEE Security and Privacy, 7(1):50–57, 2009.

[32] M. P. Evans. Analysing Google rankings through search engine optimiza-
tion data. Internet Research Vol. 17 No. 1, 2007.

[33] B. Feinstein and D. Peck. Caffeine monkey: Automated col-
lection, detection and analysis of malicious javascript. http:

//www.dc414.org/download/confs/defcon15/Speakers/

Feinstein_and%20_Peck/Whitepaper/dc-15-feinstein_

and_peck-WP.pdf, 2006.

[34] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. For-
malizing sensitivity in static analysis for intrusion detection. In IEEE Sym-

posium on Security and Privacy, pages 194 – 208, 2004.

[35] D. Fetterly, M. Manasse, and M. Najork. Spam, damn spam, and statistics:
Using statistical analysis to locate spam web pages. In WebDB, pages 1–6,
2004.

[36] M. Foundation. SpiderMonkey (JavaScript-C) Engine. http://www.

mozilla.org/js/spidermonkey/.

[37] J. Freeman. http://cydia.saurik.com/.

[38] S. Frei, T. Dübendorfer, G. Ollmann, and M. May. Understanding the web
browser threat. Technical Report 288, ETH Zurich, 06 2008. 2008.

http://www.dc414.org/download/confs/defcon15/Speakers/Feinstein_and%20_Peck/Whitepaper/dc-15-feinstein_and_peck-WP.pdf
http://www.dc414.org/download/confs/defcon15/Speakers/Feinstein_and%20_Peck/Whitepaper/dc-15-feinstein_and_peck-WP.pdf
http://www.dc414.org/download/confs/defcon15/Speakers/Feinstein_and%20_Peck/Whitepaper/dc-15-feinstein_and_peck-WP.pdf
http://www.dc414.org/download/confs/defcon15/Speakers/Feinstein_and%20_Peck/Whitepaper/dc-15-feinstein_and_peck-WP.pdf
http://www.mozilla.org/js/spidermonkey/
http://www.mozilla.org/js/spidermonkey/
http://cydia.saurik.com/

BIBLIOGRAPHY 103

[39] FRISK Software International. F-prot virus signature updates cause
false alarm in Windows 98. http://www.f-prot.com/news/

vir_alert/falsepos_invictus.html, 2003. Last accessed, May
2010.

[40] Gartner Newsroom. Competitive Landscape: Mobile Devices, World-
wide, 2Q10. http://www.gartner.com/it/page.jsp?id=

1421013, 2010.

[41] Google. Zeitgeist: Search patterns, trends, and surprises. http://www.
google.com/press/zeitgeist.html. Last accessed, 29.06.2009.

[42] Google Keeps Tweaking Its Search Engine. http://www.nytimes.

com/2007/06/03/business/yourmoney/03google.html?

pagewanted=4&_r=1. Last accessed, 29.06.2009.

[43] B. Gregg. fetch application data from snoop or tcpdump logs. http:

//chaosreader.sourceforge.net/.

[44] Z. Gyöngyi and H. Garcia-Molina. Web Spam Taxonomy. In Adversarial

Information Retrieval on the Web, 2005.

[45] O. Hallaraker and G. Vigna. Detecting malicious javascript code in mozilla.
In 10th International Conference on Engineering of Complex Computer

Systems (ICECCS 2005), pages 85–94, 2005.

[46] M. A. Hearst. Support vector machines. IEEE Intelligent Systems,
13(4):18–28, 1998.

[47] D. Heckerman. A tutorial on learning with bayesian networks. Technical
report, Microsoft Research, 1995.

[48] B. J. Jansen and A. Spink. An analysis of web searching by euro-
pean AlltheWeb.com users. Information Processing and Management,
41(2):361–381, 2005.

[49] G. H. John and P. Langley. Estimating continuous distributions in bayesian
classifiers. In UAI ’95: Proceedings of the Eleventh Annual Conference

http://www.f-prot.com/news/vir_alert/falsepos_invictus.html
http://www.f-prot.com/news/vir_alert/falsepos_invictus.html
http://www.gartner.com/it/page.jsp?id=1421013
http://www.gartner.com/it/page.jsp?id=1421013
http://www.google.com/press/zeitgeist.html
http://www.google.com/press/zeitgeist.html
http://www.nytimes.com/2007/06/03/business/yourmoney/03google.html?pagewanted=4&_r=1
http://www.nytimes.com/2007/06/03/business/yourmoney/03google.html?pagewanted=4&_r=1
http://www.nytimes.com/2007/06/03/business/yourmoney/03google.html?pagewanted=4&_r=1
http://chaosreader.sourceforge.net/
http://chaosreader.sourceforge.net/

104 BIBLIOGRAPHY

on Uncertainty in Artificial Intelligence, August 18-20, 1995, Montreal,

Quebec, Canada, pages 338–345, 1995.

[50] John Leyden. Drive-by download attack compromises 500k web-
sites. http://www.channelregister.co.uk/2008/05/13/

zlob_trojan_forum_compromise_attack/. Last accessed,
February 2009.

[51] John Leyden (The Register). Kaspersky false alarm quarantines Win-
dows Explorer. http://www.channelregister.co.uk/2007/

12/20/kaspersky_false_alarm/, 2007. Last accessed, May
2010.

[52] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In IEEE Symposium

on Security and Privacy, 2006.

[53] V. G. Kaburlasos, I. N. Athanasiadis, and P. A. Mitkas. Fuzzy lattice rea-
soning (flr) classifier and its application for ambient ozone estimation. Int.

J. Approx. Reasoning, 45(1):152–188, 2007.

[54] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker, V. Pax-
son, and S. Savage. Spamalytics: an empirical analysis of spam marketing
conversion. In ACM Conference on Computer and Communications Secu-

rity (CCS), pages 3–14, 2008.

[55] C. Karlberger, G. Bayler, C. Kruegel, and E. Kirda. Exploiting Redundancy
in Natural Language to Penetrate Bayesian Spam Filters. In First USENIX

Workshop on Offensive Technologies (WOOT07), 2007.

[56] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. Subvirt: Implementing malware with virtual machines. In IEEE

Symposium on Security and Privacy, pages 314–327, 2006.

[57] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating
mimicry attacks using static binary analysis. In 14th USENIX Security

Symposium, 2005.

http://www.channelregister.co.uk/2008/05/13/zlob_trojan_forum_compromise_attack/
http://www.channelregister.co.uk/2008/05/13/zlob_trojan_forum_compromise_attack/
http://www.channelregister.co.uk/2007/12/20/kaspersky_false_alarm/
http://www.channelregister.co.uk/2007/12/20/kaspersky_false_alarm/

BIBLIOGRAPHY 105

[58] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java ap-
plications with static analysis. In 14th USENIX Security Symposium, 2005.

[59] J. B. MacQueen. Some Methods for classification and Analysis of Multi-
variate Observations. Proceedings of 5th Berkeley Symposium on Mathe-

matical Statistics and Probability, pages 281–297, 1967.

[60] Microsoft Corporation. Microsoft Security Bulletin MS06-014 - Vulnera-
bility in the Microsoft Data Access Components (MDAC) Function Could
Allow Code Execution. http://www.microsoft.com/technet/
security/Bulletin/MS06-014.mspx, 2006. Last accessed, May
2010.

[61] Microsoft Corporation. Microsoft Security Bulletin MS08-067 - Crit-
ical; Vulnerability in Server Service Could Allow Remote Code Ex-
ecution. http://www.microsoft.com/technet/security/

Bulletin/MS08-067.mspx, 2008. Last accessed, May 2010.

[62] D. Moore, C. Shannon, and K. C. Claffy. Code-Red: a case study on the
spread and victims of an Internet worm. In Internet Measurement Work-

shop, pages 273–284, 2002.

[63] D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial of Service
Activity. In Usenix Security Symposium, 2001.

[64] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execution Paths
for Malware Analysis. In IEEE Symposium on Security and Privacy, Oak-

land, May 2007.

[65] M. D. Network. ActiveX Controls. http://msdn.microsoft.com/
en-us/library/aa751968.aspx.

[66] M. D. Network. JScript (Windows Script Technologies. http://msdn.
microsoft.com/en-us/library/hbxc2t98.aspx.

[67] Y. Niu, Y.-M. Wang, H. Chen, M. Ma, , and F. Hsu. A quantitative study of
forum spamming using context-based analysis. In NDSS, 2007.

http://www.microsoft.com/technet/security/Bulletin/MS06-014.mspx
http://www.microsoft.com/technet/security/Bulletin/MS06-014.mspx
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://msdn.microsoft.com/en-us/library/aa751968.aspx
http://msdn.microsoft.com/en-us/library/aa751968.aspx
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx

106 BIBLIOGRAPHY

[68] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting Spam Web
Pages through Content Analysis. In 15th International World Wide Web

Conference (WWW), 2006.

[69] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time.
Computer Networks, 31, 1999.

[70] J. C. Platt. Fast training of support vector machines using sequential mini-
mal optimization. pages 185–208, 1999.

[71] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Network-level
polymorphic shellcode detection using emulation. In Detection of Intru-

sions and Malware & Vulnerability Assessment, Third International Con-

ference (DIMVA), pages 54–73, 2006.

[72] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Emulation-
based detection of non-self-contained polymorphic shellcode. In Recent

Advances in Intrusion Detection, 10th International Symposium (RAID),
pages 87–106, 2007.

[73] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Network-level
polymorphic shellcode detection using emulation. Journal in Computer

Virology, 2(4):257–274, 2007.

[74] M. Polychronakis and N. Provos. Ghost turns zombie: Exploring the life
cycle of web-based malware. In First USENIX Workshop on Large-Scale

Exploits and Emergent Threats, 2008.

[75] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your
iFRAMEs point to us. In Proceedings of the 17th USENIX Security Sym-

posium, 2008.

[76] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu.
The Ghost In The Browser: Analysis of Web-based Malware. In First

Workshop on Hot Topics in Understanding Botnets (HotBots ’07), 2007.

BIBLIOGRAPHY 107

[77] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu.
The Ghost In The Browser Analysis of Web-based Malware. In First Work-

shop on Hot Topics in Understanding Botnets (HotBots ’07), 2007.

[78] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[79] Rahul Mohandas (McAfee Avert Labs). Analysis of Adversarial Code:
The role of Malware Kits! http://clubhack.com/2007/files/

Rahul-Analysis_of_Adversarial_Code.pdf, December 2007.
Last accessed, 29.06.2009.

[80] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In 13th

Systems Administration Conference (LISA), 1999.

[81] J. Rutkowska. Introducing Blue Pill. http://

theinvisiblethings.blogspot.com/2006/06/

introducing-blue-pill.html, 2006. Last accessed, May
2010.

[82] Secunia PSI study: 28% of all detected applications are insecure. http:
//secunia.com/blog/11/, 2007.

[83] Google Search Engine Ranking Factors. http://www.seomoz.org/
article/search-ranking-factors. Last accessed, 29.06.2009.

[84] N. Seriot. iPhone Privacy. http://www.blackhat.

com/presentations/bh-dc-10/Seriot_Nicolas/

BlackHat-DC-2010-Seriot-iPhone-Privacy-slides.

pdf.

[85] H. Shi. Best-first decision tree learning. 2007.

[86] E. Skoudis and L. Zeltser. Malware: Fighting Malicious Code. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2003.

http://clubhack.com/2007/files/Rahul-Analysis_of_Adversarial_Code.pdf
http://clubhack.com/2007/files/Rahul-Analysis_of_Adversarial_Code.pdf
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://secunia.com/blog/11/
http://secunia.com/blog/11/
http://www.seomoz.org/article/search-ranking-factors
http://www.seomoz.org/article/search-ranking-factors
http://www.blackhat.com/presentations/bh-dc-10/Seriot_Nicolas/BlackHat-DC-2010-Seriot-iPhone-Privacy-slides.pdf
http://www.blackhat.com/presentations/bh-dc-10/Seriot_Nicolas/BlackHat-DC-2010-Seriot-iPhone-Privacy-slides.pdf
http://www.blackhat.com/presentations/bh-dc-10/Seriot_Nicolas/BlackHat-DC-2010-Seriot-iPhone-Privacy-slides.pdf
http://www.blackhat.com/presentations/bh-dc-10/Seriot_Nicolas/BlackHat-DC-2010-Seriot-iPhone-Privacy-slides.pdf

108 BIBLIOGRAPHY

[87] A. Sotirov. Heap feng shui in javascript. http://www.phreedom.

org/research/heap-feng-shui/heap-feng-shui.html.
Last accessed, May 2010.

[88] A. Sotirov. Heap Feng Shui in JavaScript. http://www.phreedom.
org/research/heap-feng-shui/heap-feng-shui.html.
Last accessed, November 2008.

[89] E. H. Spafford. The Internet worm incident. In Proceedings of the 2nd

European Software Engineering Conference, pages 446–468, 1989.

[90] Spamcop - the premier service for reporting spam. http://www.

spamcop.net/.

[91] S. Stasiukonis. Social engineering, the USB way. http://www.

darkreading.com/security/perimeter/showArticle.

jhtml?articleID=208803634, 2007. Last accessed, May 2010.

[92] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. A.
Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my botnet: analysis of
a botnet takeover. In ACM Conference on Computer and Communications

Security (CCS), pages 635–647, 2009.

[93] K. Svore, Q. Wu, C. Burges, and A. Raman. Improving Web Spam Clas-
sification using Rank-time Features. In Adversarial Information Retrieval

on the Web, 2007.

[94] P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, 2005.

[95] S. Tanachaiwiwat and A. Helmy. Vaccine: War of the worms in wired and
wireless networks. In IEEE Infocom 2006, Poster, 2006.

[96] T. Toth and C. Krugel. Accurate buffer overflow detection via abstract
payload execution. In RAID, pages 274–291, 2002.

http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
http://www.spamcop.net/
http://www.spamcop.net/
http://www.darkreading.com/security/perimeter/showArticle.jhtml?articleID=208803634
http://www.darkreading.com/security/perimeter/showArticle.jhtml?articleID=208803634
http://www.darkreading.com/security/perimeter/showArticle.jhtml?articleID=208803634

BIBLIOGRAPHY 109

[97] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. Taj: effec-
tive taint analysis of web applications. In ACM Conference on Program-

ming Language Design and Implementation, 2009.

[98] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna.
Cross site scripting prevention with dynamic data tainting and static anal-
ysis. In 14th Annual Network and Distributed System Security Symposium

(NDSS 2007), 2007.

[99] Y.-M. Wang, M. Ma, Y. Niu, and H. Chen. Spam Double-Funnel: Connect-
ing Web Spammers with Advertisers. In 16th International Conference on

World Wide Web, 2007.

[100] M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th inter-

national conference on Software engineering, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press.

[101] Wired. Apple Approves, Pulls Flashlight App with Hidden Teth-
ering Mode. http://www.wired.com/gadgetlab/2010/

07/apple%2dapproves%2dpulls%2dflashlight%2dapp%

2dwith%2dhidden%2dtethering%2dmode/.

[102] I. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2nd edition edition, 2005.

[103] B. Wu and B. Davison. Cloaking and Redirection: A Preliminary Study. In
Adversarial Information Retrieval on the Web, 2005.

[104] B. Wu and B. D. Davison. Identifying Link Farm Spam Pages. In 14th

International World Wide Web Conference (WWW), 2005.

[105] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou. Studying mali-
cious websites and the underground economy on the Chinese web. In 7th

Workshop on Economics of Information Security 2008, 2008.

[106] D. D. Zovi. Hardware Virtualization Based Rootkits, 2006. in Black Hat
Briefings and Training USA 2006.

http://www.wired.com/gadgetlab/2010/07/apple%2dapproves%2dpulls%2dflashlight%2dapp%2dwith%2dhidden%2dtethering%2dmode/
http://www.wired.com/gadgetlab/2010/07/apple%2dapproves%2dpulls%2dflashlight%2dapp%2dwith%2dhidden%2dtethering%2dmode/
http://www.wired.com/gadgetlab/2010/07/apple%2dapproves%2dpulls%2dflashlight%2dapp%2dwith%2dhidden%2dtethering%2dmode/

110 BIBLIOGRAPHY

Curriculum Vitae

17. Februar 1982 Geboren in Dornbirn/Vorarlberg

1992 - 2000 Bundesrealgymnasium Dornbirn

2000 - 2006 Diplomstudium Informatik an der TU Wien

12/2006 Verleihung des akademischen Grades Dipl. Ing.
Diplomarbeit “Behavior-Based Spyware Detection
Using Dynamic Taint Analysis”.

2007 - 2010 Doktoratsstudium am International Secure Systems Lab
der TU Wien
Betreuer: Privatdozent Dipl.-Ing. Dr. Christopher Krügel
und Privatdozent Dipl.-Ing. Dr. Engin Kirda

111

	Introduction
	Contributions
	Thesis Overview

	Threats to Internet-Connected Devices
	What is Malware?
	Types of Malware
	Infection Vectors

	Understanding the Threats
	Static Analysis
	Dynamic Analysis

	Summary

	Influencing Search Engine Results with Web-Spam
	Overview
	Inferring Important Features
	Removing Spam from Search Engine Results

	Feature Inference
	Feature Selection
	Preparation of Pages
	Execution of Experiments and Results
	Extraction of Important Features

	Reducing Spam from Search Engine Results
	Detecting Web Spam in Search Engine Results
	Evaluated Classification Models
	Evaluation of the J48 decision tree

	Summary

	Drive-by Download Attacks
	Anatomy of a drive-by attack
	JavaScript basics
	An example of a real-world drive-by download

	Automatically detecting drive-by attacks
	Tracking object (string) allocations
	Checking strings for shellcode
	Performance optimizations

	Evaluation
	False positive evaluation
	Detection effectiveness
	Performance

	Implementation details
	Summary

	Analyzing iOS Applications for Privacy Threats
	System Overview
	Background Information
	Objective-C
	Mach-O Binary File Format
	iOS Applications

	Extracting CFGs from Objective-C Binaries
	Building a Class Hierarchy
	Resolving Method Calls
	Generating the Control Flow Graph

	Finding Potential Privacy Leaks
	Sources and Sinks
	Dataflow Analysis

	Evaluation
	Resolving Calls to objc_msgSend
	Advertisement and Tracking Libraries
	Reachability Analysis
	Data Flow Analysis
	Case Studies
	Discussion

	Limitations
	Summary

	Related Work
	Conclusions

