
Deploying a Web Service Runtime
Environment into the Cloud

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Anton Korosec, BSc
Matrikelnummer 0325672

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.Ass. Mag. Philipp Leitner

Wien, 01.12.2010
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Anton Korosec

Tellgasse 14/11

1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die

verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die

Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen

Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf

jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2010

(Unterschrift)

3

Abstract

This thesis evaluates the benefits and drawbacks of deploying an existing server

application into a commercial cloud computing offering.

The ‘Vienna Runtime Environment for Service-oriented Computing’ (VRESCo) is

being developed on the Institute of Information Systems at the Vienna University

of Technology and is a Web service runtime environment, which addresses some of

the current challenges in the Service-oriented Computing research (e.g., dynamic

binding/invocation, metadata support).

The goal is to deploy VRESCo onto the Amazon Web Services (AWS), which offer a

set of services for a computing platform in the cloud. Not only should the application

run on a virtual machine instance within the Amazon cloud, but the current database

should also be replaced by one of Amazon’s cloud database services.

Besides several drawbacks (e.g., latency, database limitations) it is expected that

VRESCo will overall benefit from the advantages that a cloud architecture has to

offer (scalability, no administration, low costs, etc.).

After an introduction into the used AWS services and their underlying concepts, the

steps undertaken to deploy VRESCo into Amazon’s cloud architecture are presented.

It has especially been focused on the comparison and evaluation of the various cloud

databases offered by Amazon and the techniques (caching, lazy loading, etc.) that

were used in order to achieve the best performance.

Overall, the results show that AWS is suitable for building proper cloud architectures,

which are capable of substituting the need for local resources. The services are not

only easy to use, but also flexibly customizable to the application’s needs.

4

Kurzfassung

Diese Diplomarbeit untersucht die Vor- und Nachteile des Einsatzes eines kom-

merziellen Cloud-Computing Angebots bei einer bestehenden Server-Anwendung.

Das ‘Vienna Runtime Environment for Service-oriented Computing’ (VRESCo) wird

auf dem Institut für Informationssysteme der Technischen Universität Wien entwick-

elt und ist eine Web-Service-Laufzeitumgebung, die sich einigen der aktuellen Her-

ausforderungen im Bereich der service-orientierten Architekturen (z.B. dynamisches

Binden/Aufrufen, Metadaten-Unterstützung) annimmt.

Das Ziel ist es, VRESCo mit Hilfe der ‘Amazon Web Services’ (AWS), die eine

Reihe von Diensten für eine Rechenarchitektur in der Cloud bereitstellen, anzubieten.

Die Anwendung soll nicht nur auf einer virtuellen Maschinen-Instanz innerhalb der

Amazon-Cloud laufen, sondern es soll auch die aktuelle Datenbank durch einen der

von Amazon angebotenen Cloud-Datenbank-Dienste ersetzt werden.

Neben einigen Nachteilen (z.B. Latenz, Datenbank-Einschränkungen) wird erwartet,

dass VRESCo insgesamt von den Vorteilen, die eine Cloud-Architektur mit sich

bringt (Skalierbarkeit, keine Verwaltung, geringe Kosten, etc.), profitiert.

Nach einer Einführung in die verwendeten AWS Dienste und deren zugrunde liegen-

den Konzepte werden die Schritte, die unternommen wurden, um VRESCo innerhalb

Amazons Cloud-Architektur bereitzustellen, vorgestellt. Der Fokus liegt dabei vor

allem auf dem Vergleich und der Bewertung der von Amazon angeboten Cloud-

Datenbanken, sowie auf den Techniken (Caching, Lazy-Loading, etc.), die eingesetzt

wurden, um eine möglichst optimale Leistung zu erzielen.

Insgesamt zeigen die Ergebnisse, dass AWS für den Aufbau von Cloud-Architekturen,

die es ermöglichen auf lokale Ressourcen zu verzichten, geeignet ist. Die Dienste sind

nicht nur einfach zu bedienen, sondern lassen sich auch flexibel an die Bedürfnisse

der Anwendung anpassen.

5

Danksagung

Die vorliegende Diplomarbeit stellt das Ende meines Studiums dar und steht für einen

weiteren Höhepunkt in meiner Ausbildung. Weiters steht diese Arbeit für mich auch

für den Übergang vom jetzigen Studentenleben zum anstehenden Berufsleben.

Ich möchte hiermit die Gelegenheit nutzen und mich bei allen Personen bedanken, die

mich auf diesem Weg stets unterstützt haben und es mir überhaupt erst ermöglicht

haben, dass ich so weit kommen konnte.

Meinen Eltern danke ich für all die Bestärkung und Unterstützung, die ich erfahren

durfte. Nicht nur für die finanzielle und moralische Unterstützung, sondern vor

allem auch dafür, dass sie mir alle Möglichkeiten geebnet haben, bin ich ihnen un-

endlich dankbar. Ich möchte mich auch für deren Verständnis bedanken, dass ich

mir während meines Studiums all die Zeit nehmen konnte, die ich für meine Bildung

und Ausbildung als für notwendig erachtet habe.

Ganz besonders möchte ich mich auch bei meiner Schwester Ana für all die Motivation

und Inspiration bedanken. Durch die Gespräche mit ihr habe ich so viel über die

wirklich wichtigen Dinge im Leben gelernt.

Weiters möchte ich mich auch bei meinen Betreuen, Prof. Dr. Schahram Dustdar

und Mag. Philipp Leitner, für die ausgezeichnete Betreuung meiner Diplomarbeit,

die professionellen Hilfestellungen und das stets prompte Feedback bedanken.

6

Contents

1 Introduction 11

1.1 Motivation . 12

1.2 Contribution . 14

1.3 Organization . 15

2 State of the Art Review 16

2.1 Service-oriented Architecture . 16

2.1.1 Services . 16

2.1.2 Definition and Concepts of a SOA 17

2.1.3 Web Services . 20

2.2 Cloud Computing . 24

2.2.1 Definition . 25

2.2.2 Categories . 28

2.2.3 Advantages . 32

2.2.4 Challenges . 34

2.3 Amazon Web Services . 37

2.3.1 Features . 37

2.3.2 Amazon EC2 . 40

2.3.3 Amazon SimpleDB . 42

2.3.4 Amazon RDS . 46

3 Related Work 48

3.1 Evaluation and Performance Analysis 48

3.2 Cloud Databases . 50

3.3 Popular Uses of AWS . 52

3.3.1 Animoto . 53

3.3.2 TimesMachine . 54

4 Background 56

4.1 VRESCo . 56

4.1.1 Architecture . 56

4.1.2 Service Metadata Model . 58

4.1.3 Dynamic Binding . 60

4.1.4 Dynamic Invocation . 61

5 Design and Implementation 62

5.1 Using Amazon SimpleDB as Database 63

5.1.1 Extending the Data Access Layer 64

5.1.2 Mapping the Relational Data Model to SimpleDB 66

5.1.3 Mapping of NHibernate Attributed Properties 68

5.1.4 Mapping of Relations . 70

7

5.1.5 Lazy Loading . 73

5.1.6 Caching with Memcached . 74

5.2 Using Amazon RDS as Database . 78

5.3 Deploying VRESCo to Amazon EC2 81

6 Evaluation 83

6.1 Quantitative Evaluation . 83

6.1.1 Introducing Example Use Case 83

6.1.2 Use Case Running on SimpleDB 84

6.1.3 Use Case Running on RDS . 87

6.1.4 Discussion . 88

6.2 Limitations . 88

7 Conclusion and Future Work 91

7.1 Future Work . 91

A List of Abbreviations 94

B Complete TELCO Use Case 96

References 106

8

List of Figures

1 The SOA Triangle (from [73]) . 18

2 The Web Services Technology Stack (from [73]) 21

3 WSDL Document (Consisting of Abstract and Concrete Parts) 22

4 How SOAP, WSDL and UDDI Relate to Each Other in SOA (from [89]) 23

5 IT Spending by Consumption Model (from [49]) 25

6 Categories of Clouds (from [61]) . 28

7 Abstractions of Cloud Computing (from [60]) 32

8 Impact of Cloud Computing on Governance Structure (from [61]) . . . 34

9 AWS Management Console . 40

10 Example Hierarchy of SimpleDB Resources (from [68]) 44

11 Comparison of Architectures (from [55]) 51

12 Distributed Database Architecture and Caching (from [55]) 52

13 Animoto’s EC2 Instance Usage (from [16]) 54

14 VRESCo Architecture Overview (from [65]) 57

15 VRESCo Metadata Model (from [83]) 59

16 Mapping of Service Model to Metadata Model (from [65]) 60

17 Extended VRESCo DAO Model . 65

18 Different Approaches to Store Objects into SimpleDB 67

19 Relation Between ServiceCategory and Service 72

20 Launching an RDS Instance . 79

21 Defining Management Options for an RDS Instance 80

22 Monitoring an RDS Instance . 80

23 Choosing an AMI . 81

24 Managing an EC2 Instance . 82

25 Running the TELCO Use Case Using SimpleDB 84

26 SimpleDB Instructions When Running the TELCO Use Case 85

27 Running the TELCO Use Case Within EC2 and Using SimpleDB . . . 86

28 Running the TELCO Use Case Using RDS 87

9

List of Tables

1 EC2 Instance Types . 41

2 EC2 On-Demand Instance Pricing . 42

3 RDS Instance Classes . 46

4 Differences Between AWS Database Solutions (from [2]) 63

5 Essential Attributes for Property Mapping 70

6 Further Attributes Considered for Property Mapping 71

7 Sample Mapping of Attributes . 72

8 Data Cached Within Memcached . 76

9 Memcached Statistics After Running the TELCO Use Case 86

10 List of Abbreviations . 95

10

List of Listings

1 Structure of a SOAP Message (from [73]) 22

2 Getter for Property Holding a ServiceCategory Object 73

3 Getter for Property Holding a Collection of Service Objects 74

4 Basic Cache Functionality . 75

5 Method for Deleting Invalid Data from Cache 78

6 Example NHibernate Connection String 79

7 Complete Listing of the TELCO Use Case (from [64,66]) 96

11

1 Introduction

In the recent years there has been quite a hype about cloud computing [62]. This

paradigm represents the idea of omitting to maintain own IT infrastructure (comput-

ing power, database storage, etc.), but rather renting it from a vendor and accessing

it via network (typically the Internet). The infrastructure, which resides ‘somewhere

out there’ is dynamically rented on demand and only used when needed. The author

of [24] states that cloud computing points us the direction in that computer architec-

tures will be developing in the near future and that it raises computational capacity

onto the same level as electricity is nowadays. This means that although you could

generate your own electricity, you certainly would not do it, as it is more applicable

to purchase it from a vendor.

One of the main advantages of cloud computing is that you do not need to make

any upfront investments before you can start using the IT capacity you need. This

enables a whole new perspective and potential for businesses and application/service

developers. Rather than having to buy and set-up expensive and maybe unprofitable

servers, it is possible to just start using them without actually having to own them.

By using such a just-in-time infrastructure you also do not need to bother about it

after it has served its purpose and you have no use for it anymore. Furthermore, there

is no need for over-provisioning and maintaining IT infrastructure that is hardly used

and just has the purpose to manage potential peaks in usage.

Another important motive for using cloud computing is the fact that there is no

need to care about setting-up and maintaining the used infrastructure. Depending

on the cloud service, the vendor usually takes care of its whole management. Cloud

computing also comes coupled with a certain pay-as-you-use policy, which means that

it is usually strictly usage-based and you only pay for the computational capacities

that you have actually used.

The number of users and IT companies that are recognizing the cloud’s potential

increases, and so cloud computing turns out to establish itself more and more. While

this new paradigm helps to handle your own IT infrastructure more efficiently, on

the other hand it also raises questions about security and safety: How save is the

data after putting it into the cloud and exclusively accessing it via the Internet?

Service-oriented Architecture (SOA) [75] is another paradigm that has received a

lot of attention in the last couple of years. The motivation behind using services

lies within the idea of making software components dynamically usable and flexible.

Other advantages that characterize services are clearly defined interfaces and their

general independence from a specific platform.

1.1 Motivation 12

Service registries play an important role when it comes to mediation between the

so-called service providers and the service requestors, which are the clients using the

services. With the help of service registries the basic idea is actually made possible,

whereby in a SOA the services are first of all published, then dynamically found,

afterwards bound and finally executed.

The ‘Vienna Runtime Environment for Service-oriented Computing’ (VRESCo) [66]

is developed at the Institute of Information Systems on the Vienna University of

Technology. Besides being just another service registry, VRESCo focuses on the

original ideas and goals of a SOA and additionally offers unique features for the

provisioning and the usage of services (e.g., dynamic binding and invocation, service

composition and versioning, support for meta-data, extended searchability, notifica-

tion on events, etc.).

The goal of this thesis is to deploy VRESCo into the cloud. For this purpose, Amazon

has been chosen as the vendor for the used cloud computing infrastructure. Besides

being currently the largest and most important vendor for commercial cloud services,

Amazon has been also chosen because of the variety of its offered services.

With its Amazon Web Services (AWS) [10], Amazon offers a series of services that

make it easy to rent inexpensive computing capacity in the form of virtual machine

instances for swapping out data and computation into the cloud (Amazon Elastic

Compute Cloud (EC2) [3]). Besides a relational database service (Amazon Rela-

tional Database Service (RDS) [5]), also a database service based on key-value pairs

(Amazon SimpleDB [8]), which especially convinces by its enormous scalability and

flexibility, is offered.

1.1 Motivation

The motivation in deploying VRESCo into the cloud is to benefit from the advantages

that a cloud computing solution has to offer. As already mentioned, there are no

up-front investments for the needed infrastructure and computational capacities.

Because of the usage-based and pay-as-you-go policy that often goes along with

cloud computing, a solution involving cloud computing is in most cases cheaper and

more profitable than a traditional architecture.

Another significant argument is that the cloud capacities are designed to be very

scalable. If needed, it is possible to dynamically rent huge amounts of storage ca-

pacities and enormous computational power. This is very essential when it comes to

rapidly handle certain peaks of load and demand by being able to temporary scale

the used infrastructure up.

1.1 Motivation 13

A further benefit is the omission of certain administrative tasks when working with

computational capacity in the cloud. As mentioned, it is not necessary to set-up

or maintain any hardware components, or when it comes to the level of software it

is not needed to take care of any installations or updates. When using a database

service in the cloud, the database administrator’s task of keeping the database ‘up

and running’, and for example to index the data for upcoming searches could be

omitted. It is also clear that management tasks as backing-up and replicating data

are executed more efficiently when done automatically in the cloud.

When deploying VRESCo into the Amazon cloud, not only a server instance of the

application should be run from a rented virtual machine instance, but also the un-

derlying database layer should be replaced by an appropriate cloud database service.

There are several approaches on how to run the application’s database from within

the Amazon cloud. Besides setting-up and running a database server in a rented

Amazon EC2 machine instance, Amazon also offers self-managed cloud database ser-

vices. These services basically differ in their fundamental paradigms. While Amazon

RDS is a fully-featured relational database, Amazon SimpleDB features a simple key-

value store. In this thesis the use of these services in conjunction with VRESCo will

be evaluated.

When swapping out VRESCo’s database, the overall goal will be to exclusively focus

on the application’s Data Access Layer (DAL). The idea behind this is to keep

VRESCo separated from the decision of what database is actually going to be used.

A possibility to easily and transparently choose among the desired databases will

be offered by introducing an appropriate ‘switch’ in the application’s configuration

file. The end user is then able to flexibly decide about to either use his database on

the local machine or to make use of one of the mentioned Amazon databases in the

cloud.

Because VRESCo currently runs upon a relational database, a particular challenge

will be to fully substitute it by the Amazon SimpleDB service. The objective is to

support the features that are offered by the current database and that are already

used by the application. The SimpleDB service seems at first to be rather unsuitable

for the use with VRESCo because of its missing support for the features of a relational

database (e.g., relational database-schema, transactions, etc.). The application will,

by using it, still benefit from the various other advantages it has to offer (e.g., high

availability, theoretically limitless scalability, no database-administration, very low

costs, etc.).

1.2 Contribution 14

1.2 Contribution

Next to a theoretical overview over the definitions and concepts of SOA and cloud

computing, an understanding for their goals and advantages will be given. Besides

also presenting the current state-of-the-art of the used cloud infrastructure services,

the characteristics and uses of VRESCo will be presented.

The goal of this thesis is to gradually evaluate the steps of deploying an existing

server application – in this case VRESCo – onto Amazon’s cloud services. It should

be started by rewriting the existing database layer, which is currently based on a

relational database, and to substitute it by Amazon SimpleDB. The objective is to

only work on the application’s ‘lower’ database layer and to preserve the existing

database schema along with its functionality.

When exchanging the local database server by an external database service, it is also

expected to decrease the overall performance of the application because any read- and

write-operation on the database will be handled over the Internet. Several techniques,

like lazy loading and various caching mechanisms will be applied to overcome these

performance issues.

Besides the use of SimpleDB, VRESCo’s behavior will also be examined when work-

ing upon Amazon’s Relational Database Service as primary database. A significant

advantage of this service is that it offers a fully-featured relational database and

completely takes care of its administration.

After swapping out VRESCo’s database, the actual server application will itself be

deployed into the cloud with the use of a rented virtual machine instance (Amazon’s

EC2 service). Amazon states that the communication within its cloud – between two

of its services (in this case between EC2 and SimpleDB or RDS, respectively) – has

the latency of a Local Area Network (LAN). It is expected that this step leads to a

better performance because of the minimized latency of the database communication.

Furthermore, there are also no charges for the messages sent between two Amazon

services interacting with each other as long as they communicate within the cloud.

Finally the goal of this thesis is to gradually evaluate and compare VRESCo with

the use of the mentioned services and optimizations upon a beforehand introduced

use case scenario. The overall evaluation shows that the best results, when deploying

an existing application that is originally based on a relational database, are achieved

by using the Amazon RDS service in conjunction with Amazon EC2.

1.3 Organization 15

1.3 Organization

The structure of the remainder of this thesis will be outlined in the following:

• Chapter 2 will give definitions and describe the core concepts of Service-oriented

Architecture (SOA) and cloud computing. Next to describing their features and

benefits, their similarities and especially their connectivity will be addressed.

Because Amazon has been chosen in the practical part of this thesis as the

vendor for the used cloud computing services, the Amazon Web Services (AWS)

will be discussed in this chapter as well. This will include a presentation of

their current scope of functionality and their specific features. It should also

be discussed why these services were used and how they are actually used.

• In Chapter 3 related work that has been done by the scientific community

will be outlined. Similar uses of Amazon’s cloud services should be mentioned

alongside already published experience with the use of cloud infrastructures.

Furthermore, also popular uses of the AWS services will be covered.

• The Web service runtime environment, VRESCo, upon which has been worked

during this thesis will be presented in Chapter 4. Besides describing its archi-

tecture and the underlying data model, some of its outstanding features will

be covered in more detail.

• Chapter 5 is at first going to describe the alternative approaches of using the

Amazon Web Services to deploy VRESCo into the cloud. Afterwards, each step

of doing so will be presented. Helpful optimizations throughout this process

will be covered as well as various other mechanisms (caching techniques, etc.).

• In Chapter 6 a possible use case scenario for VRESCo will be introduced. By

using this example the overall performance of the application will be evaluated

during the several steps of its deployment into the cloud. Besides just com-

paring the performance, the focus will also be on interpreting the applications

behavior. Further limitations of the implementation will be covered as well.

• In Chapter 7 the steps undertaken to deploy VRESCo into the Amazon cloud

will be recapitulated. To conclude the thesis, the results of the evaluation

will be summarized and a recommendation about the use of the Amazon Web

Services will be given. Possible future approaches to optimize and enhance the

current results are going to be mentioned.

16

2 State of the Art Review

The following chapter describes the fundamental paradigms (Service-oriented Archi-

tecture and cloud computing) that build the basis for the subject of this thesis. After

outlining their ideas and characteristics, the services (Amazon Web Services) which

have been used during this thesis will be presented.

2.1 Service-oriented Architecture

In a Service-oriented Architecture (SOA), services represent the fundamental ele-

ments of the architecture and are used to build applications. SOA is a way of reorga-

nizing software applications and infrastructure into a set of interacting services [74].

2.1.1 Services

The ‘Organization for the Advancement of Structured Information Standards’ (OA-

SIS), which is a consortium that aims to develop Web service standards, defines a

service as follows:

“A service is a mechanism to enable access to one or more capabilities,

where the access is provided using a prescribed interface and is exer-

cised consistent with constraints and policies as specified by the service

description.” [39]

This definition states that a service basically consists of a service interface and

its service implementation, which are both clearly separate from each other. The

interface defines the identity of the service and together with an additional description

defines how the service is to be invoked. The implementation, as the name states,

actually implements what the service is intended to do and is usually hidden to the

‘rest of the world’. This guarantees that external components do not know about the

actual implementation of the service interface. They can just care about the expected

result of the functionality, which is encapsulated behind the service interface.

According to [75], a service represents “a reusable unit of business-complete work”

and is characterized by the following properties:

• self-contained : The service maintains its own state and acts autonomously.

Services must not require any knowledge at the client or server side. Within a

2.1 Service-oriented Architecture 17

SOA the services are loosely coupled. The term coupling indicates the degree

of dependency that two systems (or in this case services) have on each other.

Loose coupling provides a level of flexibility and interoperability, which allows

to connect and interact more ‘freely’ [73].

• platform-independent : The interface of a service is limited to platform-inde-

pendent assertions and the invocation mechanisms should comply with widely

accepted standards. Services should be as technology neutral as possible and

must be invocable through lowest common denominator technologies [74].

• location transparent : Services should be dynamically located, invoked and even-

tually combined. This is especially made possible in SOA by storing the service

information in a central repository (service registry). A service could then be

dynamically found and invoked by clients – regardless of its actual location [75].

In [74] the author points out that services come in two flavors: simple and composite.

Simple services are atomic in their nature and typically exhibit a request/reply mode

of operation. In contrast, composite services involve the assembly and interaction

of other existing services, which have possibly even originated from multiple service

providers. A common example is a business service, which composes several simple

services that each accomplish a specific business task, such as order taking, order

tracking, order billing and so on.

2.1.2 Definition and Concepts of a SOA

As already mentioned and as the name indicates, a SOA is centered around ser-

vices. [73] states that “SOA is a meta-architectural style that supports loosely cou-

pled services to enable business flexibility in an interoperable, technology-agnostic

manner.” Another more general definition for SOA is given by [32]:

“Service-oriented architecture presents an approach for building distrib-

uted systems that deliver application functionality as services to either

end-user applications or other services.” [32]

The foundations for a SOA are three primary roles. These are the service provider,

the service registry and the service requestor, which represents the client. A service

provider holds the service’s logic and is responsible for publishing the appropriate

service description in a service registry. A service requestor requests the invocation

of a certain service and therefore needs first of all to be able to find the description

of the desired service and to bind to it afterwards. It is possible that a service

2.1 Service-oriented Architecture 18

requestor is simultaneously also a service provider by not only requesting services

but also providing them itself, which is the case with composite services.

Figure 1: The SOA Triangle (from [73])

From this short description of the basic entity types of a SOA it can already be

identified that there is a certain principle of how these primary roles interact. This

paradigm will be referred to as ‘publish-find-bind’ -paradigm and is depicted in the

so-called ‘SOA Triangle’ (see Figure 1). In the remainder of this section, the roles,

the operations and the artifacts that are involved in a SOA will be described.

These roles are:

• Service Provider : The service provider is the owner of the provided service and

implements the underlying logic. It is a network-addressable entity that hosts

and controls the access to its service. The provider is responsible for describing

the service and to register this information into the service registry, so that a

service requestor is able to discover and invoke the service. The service provider

accepts and executes the requests from the requestor.

• Service Registry : A service registry is a searchable directory where it is possi-

ble for service requestors to search for previously published service descriptions.

By finding an appropriate service description the requestor obtains information

on how to bind to a service provider and invoke the desired service. The ser-

vice provider is responsible for providing the required infrastructure to enable

to publish and search for services. It also prescribes a certain format for the

service descriptions, upon which the providers have to comply when publishing

their services. In SOA the service registry is an important role, which actually

enables to decouple the service requestor and the provider. Without the reg-

istry they would need to know about each other at compile-time. In a SOA the

service requestor is able to discover and invoke a desired service at run-time

without previously even knowing about its provider.

2.1 Service-oriented Architecture 19

• Service Requestor : The service requestor, which is also referred to as service

consumer, represents the client that is in need for certain functionality in form

of a service. After searching the service registry for a suitable service and

discovering the appropriate service description, it can use this information to

bind to the actual service.

Each entity in a SOA can take one or even multiple of these three described roles. In

Figure 1 it is depicted how these roles relate to each other in a SOA. Three primary

operations must take place to fulfill the SOA-triangle. These are publication of the

service descriptions, finding the service descriptions, and binding or invocation of

services based on their service description [73]. The specific types of operations will

be described in the following:

• Publish: The goal of the publishing-operation is that the service provider pub-

lishes its provided service into a service registry, so that a service requestor

is able to discover and invoke it. The actual publishing precisely consists of

two other operations, namely describing the service itself and the actual regis-

tration of the service. So in order to publish a service to the service registry

the service provider needs to properly describe the service (e.g., information

regarding the service provider, the nature of the service, implementation de-

tails and invocation methods, etc.). The description has to comply with the

format that the service registry prescribes in order to be searchable. After

having described the service, the service provider is able to register the service

by storing the service description information into the service registry.

• Find : The finding-operation consists of querying the registry for services match-

ing the needs of the service requestor and selecting the desired service from the

search results afterwards. A query consists of several search criteria (e.g., type

of service, technical service characteristics, etc.) and is executed against the

service description information in the registry that were entered by the service

provider.

• Bind and Invoke: During the binding-operation the service requestor interacts

with the actual service a run-time. It therefore uses the technical information

and the binding details from the service description which it gathered from the

service registry. Besides the direct invocation of the service, it is also possible

to use the service registry as a mediator for all the communication between the

service requestor and the service (provider) [73].

According to the author of [74], the roles and operations within a SOA act upon the

following service artifacts:

2.1 Service-oriented Architecture 20

• Service description: The service description usually contains information about

the service interface, its capabilities (conceptual purpose and expected results),

the behavior during execution, and its quality of service (functional and non-

functional quality attributes; e.g., cost, performance, security, availability, etc.).

The description specifies the way a service requestor will interact with the

service provider and specifies the format of the request and response from

the service [74]. The publication of this information to a service registry is

necessary for discovering, selecting and binding to the service. In order to

fulfill its purpose it is essential that the description complies with a format

that is prescribed by the service registry.

• Service (implementation): The implementation realizes a specific service inter-

face whose implementation details are hidden to the ‘rest of the world’. It is

the actual service, which is hosted and made available by the service provider

for the use through the published service description.

In [32] the authors state that SOA is able to help organizations to succeed in the

dynamic business landscape of today. SOA allows businesses to be ready for the

future and provides the flexibility and responsiveness that is critical in order to

remain competitive. The ability to compose services and to reuse them in general

reduces the time needed to go through the SW-development life-cycle and leads

to rapid development and faster time-to-market. Another benefit of the increased

potential for reuse is the reduction of costs. Since one of the key principles of SOA is

the clear separation of the service specification and its implementation, the impact

when infrastructure and implementation changes occur is minimized. Through this

the overall complexity and an eventual integration becomes more manageable. It

is also possible for organizations to make use of the additional layer of abstraction

provided by SOA and to wrap existing IT investments as services in order to leverage

these assets.

2.1.3 Web Services

One possibility to realize SOA are Web services [73]. It is important to point out

that Web services are not the only technology that can be used to implement a

SOA. Web services have also been used to implement architectures that are not

Service-oriented. The W3C’s Web Services Architecture Working Group defines a

Web service as follows:

“A Web service is a software system designed to support interopera-

ble machine-to-machine interaction over a network. It has an interface

2.1 Service-oriented Architecture 21

described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its de-

scription using SOAP messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards.” [45]

For describing, advertising, discovering and binding Web services in a decentralized,

distributed Service-oriented environment the key standards are WSDL, SOAP and

UDDI [89]. The interoperability of these standards supports the basic activities

of a SOA, namely the previously presented ‘publish-find-bind’-paradigm. The Web

service standards are completely independent of programming language, operating

system and hardware and are based on open technologies [32].

Figure 2: The Web Services Technology Stack (from [73])

A comprehensive picture of the Web services technology stack is given in Figure

2. One can see that the Extensible Markup Language (XML) [93], which provides a

cross-platform approach to data encoding and formatting, is used as the fundamental

building block for nearly every other layer. In the following the mentioned key

standards will be briefly presented:

• SOAP : SOAP [95] is a messaging protocol for exchanging structured informa-

tion. It uses XML for data encoding and is not bound to any specific transport

protocol, although it is typically used on top of HTTP to carry its data. SOAP

is not tied to any operating system or programming language and is designed

to be simple and extensible.

2.1 Service-oriented Architecture 22

� �
1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <env:Envelope xmlns:env=” ht tp : //www.w3 . org /2003/05/ soap−enve lope ”>
3

4 <env:Header> < !−− op t i ona l −−>
5 < !−− header b l o c k s go here . . . −−>
6 </ env:Header>

7

8 <env:Body>

9 < !−− payload or Faul t e lement goes here . . . −−>
10 </env:Body>

11 </ env:Envelope>� �
Listing 1: Structure of a SOAP Message (from [73])

A SOAP message has a simple structure and consists of a so-called Envelope,

which contains an optional Header- and a mandatory Body-element (see List-

ing 1). The header contains blocks (header blocks) of information on how the

message needs to be processed and is therefore possibly changed between the

transport layers. While the header holds information relevant for the endpoints

(or intermediate transport points), the main XML data (payload) of the mes-

sage is placed inside the body. The body-element may contain an arbitrary

number of body elements and either holds the application-specific data or a

fault message.

• WSDL: The ‘Web Service Description Language’ (WSDL) [94,96] is an XML-

based specification schema that is used for describing the interface of a Web

service. Its purpose is to specify what a certain Web service does, where it is

located and how it is invoked.

Figure 3: WSDL Document (Consisting of Abstract and Concrete Parts)

A complete WSDL service description provides two pieces of information: an

application-level service description, or abstract interface, and the specific

2.1 Service-oriented Architecture 23

protocol-dependent details that users must follow to access the service at con-

crete service endpoints [27]. By separating the abstract definition of endpoints

and messages from their concrete network deployment or data format bindings,

certain reusability among the various elements of the description is achieved.

Figure 3 outlines the basic structure of a WSDL document and illustrates the

separation of the individual descriptions. The further elements of a WSDL

description are presented in more detail in [73].

• UDDI : The ‘Universal Description, Discovery and Integration’ (UDDI) [37] is

a platform-independent and XML-based registry mechanism that is used to

look-up Web service descriptions. It is a specification proposed by the ‘Orga-

nization for the Advancement of Structured Information Standards’ (OASIS)

on how to implement Web service registries. UDDI specifies the way to store

and retrieve information about Web services (businessService), their corre-

sponding service providers (businessEntity) and their technical entry points

(bindingTemplate and tModel). It does not only provide a repository for

WSDL documents, but rather has its own general-purpose model for capturing

the information. A UDDI registry has a SOAP interface and provides APIs for

registering and discovering Web services.

Figure 4: How SOAP, WSDL and UDDI Relate to Each Other in SOA (from [89])

Figure 4 depicts the roles of these key Web service standards within the previously

introduced ‘SOA Triangle’ (see Figure 1) and illustrates how they relate to each other.

The importance of a (UDDI) service registry should once again be emphasized, as it

plays an important role within the interaction of these three standards.

“SOAP, which is built on XML, defines a simple way to package infor-

mation for exchange across system boundaries. [...] WSDL is an XML

2.2 Cloud Computing 24

grammar for specifying properties of a Web Service. The UDDI specifi-

cations define a next-layer-up that allows two companies share a way to

query each others services and to describe their own services.” [89]

2.2 Cloud Computing

Before presenting the cloud services that were used during the work on this thesis, the

basic concepts of cloud computing should be discussed in this section. Besides giving

a satisfying definition and outlining the key characteristics and features, certain

challenges and risks of using cloud computing will be mentioned too.

According to the authors of [76], cloud computing is one of the most vague ‘technique

terminologies’ in the world of information technology right now. One reason for

this is that cloud computing can be used in many application scenarios, another

reason is that cloud computing is currently hyped by lots of companies for business

promotion [76].

Cloud computing is not actually a revolutionary recent development, but it is rather

the combination of many preexisting technologies and the result of the continuous

evolution of data management technology [100]. This means that although cloud

computing is getting a lot of attention from the IT community nowadays, some

technologies on which it draws on are not new and have matured at different rates

and in different contexts.

Besides technologies like Service-oriented Architectures (see Section 2.1) and Web

services (see Section 2.1.3), cloud computing is also based on virtualization technolo-

gies. The term virtualization refers to the “abstraction of compute resources (CPU,

storage, network, memory, application stack and database) from applications and

end users consuming the service” [61]. The idea is to combine and manage physical

resources as so-called pools. Upon request, it is possible to dynamically create a

suitable platform for a specific application out of these resource-pools. Instead of a

physical machine, a virtual machine is used [20].

The author of [24] stresses the potential impact of cloud computing on information

technology. He equates the rise of cloud computing in the information age to the

electrification in the industrial age. Before electrification, companies had to generate

their own power (steam engines, dynamos). After electric utilities started to offer

cheap power, it not only changed how businesses operated, but also set off a chain

reaction of economic and social transformations. Cloud computing is the beginning

of a similar change within information technology, where organizations do not have

to provide their own computing resources anymore, but rather just – similar to power

2.2 Cloud Computing 25

today – simply plug in to the cloud for the resources they need. Computing turns

into a utility.

Figure 5: IT Spending by Consumption Model (from [49])

Cloud computing is forecasted for high growth and the authors of [99] state that

“there is no doubt that cloud computing has a bright future”. According to the

‘International Data Corporation’ (IDC), which is a market research and analysis

company specialized in information technology, cloud services are expected to grow

at a ‘compound annual growth rate’ (CAGR) of 27% in the next years (see Figure

5). The spending on traditional, on-premise IT is expected to grow only at a CAGR

of around 5%, which is over five times less [49].

2.2.1 Definition

There are many interpretations about the actual meaning of cloud computing, but

there is no standardized or consistent definition of the term. The basic idea behind

cloud computing is to enable the offering and usage of IT infrastructure as services

via the Internet.

In [90] the authors studied more than 20 different definitions of cloud computing in

order to achieve a consensus definition and to extract a minimum definition contain-

ing the essential characteristics. They state that although there are many definitions

on what cloud computing is, they all seem to focus on just certain aspects of the

technology. Their proposed definition of the cloud concept is as follows:

2.2 Cloud Computing 26

“Clouds are a large pool of easily usable and accessible virtualized re-

sources (such as hardware, development platforms and/or services). These

resources can be dynamically reconfigured to adjust to a variable load

(scale), allowing also for an optimum resource utilization. This pool of

resources is typically exploited by a pay-per-use model in which guaran-

tees are offered by the Infrastructure Provider by means of customized

SLAs.” [90]

As further result they conclude that the set of features that most closely resembles

a minimum definition containing the essential characteristics would be: scalability, a

pay-per-use utility model and virtualization.

Another very prominent definition of cloud computing, which is often cited in the

scientific literature, is the definition given by the ‘National Institute of Standards

and Technology’ (NIST):

“Cloud computing is a model for enabling convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service pro-

vider interaction.” [62]

Additionally, the ‘NIST definition of Cloud Computing’ also describes several es-

sential characteristics, service models and deployment models of the cloud concept.

According to its definition, cloud computing is composed of the following essential

characteristics:

• On-demand self-service: A consumer is able to automatically acquire all the

computing capabilities (e.g., server time, network storage) he needs. For this

purpose he is not required to humanly interact in any way with the provider

of the service.

• Broad network access: All the capabilities are available and accessed through

the network. They are accessed through standardized mechanisms that “pro-

mote use by heterogeneous thin or thick client platforms (e.g., mobile phones,

laptops, and PDAs)” [62].

• Resource pooling & Multi-tenancy : In order to serve multiple consumers, the

computing resources offered by a provider are necessarily pooled. Different

physical and virtual resources are dynamically allocated and assigned accord-

ing to the consumers demand. Typical examples of computing resources are

2.2 Cloud Computing 27

processing time, storage, memory, network bandwidth and virtual machines.

Due the resource pooling “the customer generally has no control or knowledge

over the exact location of the provided resources” [62]. It is still often possible

to specify desired locations at a higher abstraction-level, like country or region.

• Massive scalability : With cloud computing the capabilities and resources avail-

able for provisioning often appear to be unlimited to the consumer. Further-

more, it appears that the capabilities can be purchased in any quantity and at

any given time [62].

• Rapid elasticity : The customer needs to be able to quickly scale (out and

in) according to the actual demand. Therefore it is necessary to rapidly and

elastically provision and release capabilities. In some cases this is even done

automatically.

• Measured Service: Typically the use of a resource is controlled and optimized

automatically and by the cloud system itself. In order to obtain a certain

transparency for both the provider and the consumer it needs to be able to

monitor and control the usage of the utilized service.

Very similar are the key attributes identified by the authors of [61]. In addition to

the ‘NIST definition of Cloud Computing’, they stress that a certain ‘pay as you

go’ or pay-per-use policy is another essential attribute of computing in the cloud. It

means that the consumers are only paying for the resources that they are actually

using and only for the time they require them.

In [30] the author even goes one step further and identifies little or no commitment

as being another important aspect and essential characteristic of cloud computing.

The idea behind cloud computing is often confused with grid computing [41], which

is a much older concept. Because clouds and grids both share similar visions, the

distinction between the two concepts is not often clear. According to [40] a grid is a

system that:

“coordinates resources that are not subject to centralized control, us-

ing standard, open, general-purpose protocols and interfaces to deliver

nontrivial qualities of service.” [40]

This means that grid computing is mainly about the joint use of shared resources.

Distributed and parallel computing is achieved by composing a cluster of loosely

coupled computers. As opposed to that, with cloud computing there is a clear

distinction between the supplier, who holds the resources under centralized control

and the consumers.

2.2 Cloud Computing 28

Grid computing is primarily used in academic settings and one of its most prominent

examples is the SETI@home project [98]. A more in-depth analysis, highlighting the

similarities and differences of the two paradigms is carried out in [90].

2.2.2 Categories

There are several possibilities and dimensions to classify cloud computing offer-

ings. Besides the categorization according to the application domain (e.g., high-

performance computing, analytics, finance, web), two other commonly used ways

should be presented in the following. Figure 6 illustrates the relationship between

services, uses and types of clouds.

Figure 6: Categories of Clouds (from [61])

One aspect upon which cloud architectures can be viewed is the organizational point-

of-view. It differentiates between the separation of organizational entities (vendors

and customers). The categorization is based on the service boundary and classifies

cloud computing according to its deployment method, which is public, private or

hybrid [76]:

2.2 Cloud Computing 29

• Public Cloud : With public clouds (or external clouds) the vendor and the

potential customers do not belong to the same organizational entity. It is

basically cloud computing in its traditional sense, where the vendor shares

his resources by offering publicly accessible cloud services to external parties.

These customers are then able to use them on a self-service basis over the

Internet.

The third-party vendor not only hosts, operates and manages the cloud, but is

also responsible for the security management. Which means that “the customer

of the public cloud service offering has a low degree of control and oversight of

the physical and logical security aspects” [61].

• Private Cloud : A private cloud (or internal cloud) is built and operated by

enterprises for their own use and purpose. This means that in this case both

the vendor and the customer belong to the same organizational entity.

The main argument for operating an own private cloud is security. In a private

cloud the control over the data does not exceed organizational boundaries and

therefore stays with the customer. Further benefits for managing data and

processes within the own organization would be no restrictions of the network

bandwidth and no legal requirements that might entail when using public cloud

services across open and public networks [79].

The downside is that because the organization has to buy, build and manage

its own cloud, it does not benefit from lower upfront investments and less

management.

• Hybrid Cloud : Hybrid clouds are scenarios in which services from both public

and private clouds are used. A hybrid environment may consist of multiple in-

ternal and/or external providers where the resources are shared between public

and private clouds.

The authors of [61] write that with a hybrid cloud “organizations might run

non-core applications in a public cloud, while maintaining core applications and

sensitive data in-house in a private cloud”. Another scenario would be to solely

rely on private resources during normal operation and to swap (uncritical)

processes and data to a public cloud at certain peaks.

Another way to classify cloud computing is according to the service type and its

delivery model. This rather technical point-of-view focuses on functional properties

and classifies cloud services as follows:

• Infrastructure-as-a-Service (IaaS): IaaS is, as its name states, the delivery of

computer infrastructure as a service. Customers are offered an abstract view

2.2 Cloud Computing 30

on rentable hardware (servers, mass-storage, network, etc.), which is housed

by the vendor.

“The IaaS model is similar to utility computing, in which the basic idea is

to offer computing services in the same way as utilities.” [61] While with

Infrastructure-as-a-Service the provider is in complete control over the infras-

tructure and it abstracts the user from details about the physical computing

resources and their exact location, with utility computing the user wants to

be in control over the geographical location of the infrastructure and to know

what runs on each server.

At the most basic level of cloud computing, developers are offered virtual ma-

chine instances. These instances behave like dedicated servers and are con-

trolled by the customers, who have the full responsibility for their operation.

Additional to that, an interface for managing the resources is offered, which al-

lows to allocate resources, create and delete images of operating systems, scale

claimed resources, define network topologies and so on.

Besides features like scalability and pay-per-use that were already mentioned

in Section 2.2.1, the IaaS model also often enables instant access to the latest

‘best-of-breed’ technology solutions for just a fraction of their actual cost.

• Platform-as-a-Service (PaaS): An additional abstraction level to IaaS is added

by Platform-as-a-Service. In the PaaS model the vendor offers a development

environment to the application developer, who then develops applications and

offers these as services through the cloud platform. The environment abstracts

machine instances and other technical details from the developer, who is in

contrast to IaaS not concerned with matters of allocation [60].

Furthermore, the idea is to “provide developers with a platform including all the

systems and environments comprising the end-to-end life cycle of developing,

testing, deploying and hosting of sophisticated web applications as a service”

[79]. This means that the vendor provides development toolkits, standards for

the development and channels for distribution.

The PaaS model can help to slash development time and consequently enables

the rapid propagation of software applications and services. Further benefits

are the leveraging of already established channels for costumer acquisition and

the offering of several readily available (development) tools and services.

Besides the benefits of the PaaS model and the development environment that

comes along with it, developers often have to deal with some constraints that

this environment imposes on their application design (e.g., key-value stores

instead of relational databases) [60].

• Software-as-a-Service (SaaS): SaaS offerings are software applications in the

cloud, primarily addressed directly at the end user. Usually these services are

2.2 Cloud Computing 31

of potential interest to a wide variety of users and represent an alternative to

locally run applications.

With Software-as-a-Service the customer does not purchase any software, but

rather rents it for use on a subscription basis, which is in some cases even

free for limited use. What differentiates SaaS from traditional websites or web

applications is that SaaS mainly interfaces with the information and data (e.g.,

documents) of the user and offers him online resources and storage.

There is typically no need for the customer to load software onto his own hard-

ware and on customer-side no need for local software installations or allocations

of the needed resources. Furthermore, the customer does not need to take care

of updating or eventually even patching the application, as it might be the

case with traditional desktop applications. With SaaS, “the purchased service

is complete from a hardware, software, and support perspective” [61].

Prominent examples for SaaS are the online alternatives of typical office ap-

plications such as word processors [90]. Two concrete examples with very rich

and complex functionalities are Google Docs [43] and Salesforce.com [85]. With

Google Docs offering, as it states, “online documents, spreadsheets, presenta-

tions, surveys, file storage and more” and Salesforce.com distributing business

software (‘Customer Relationship Management’) as Software-as-a-Service on a

subscription basis.

In [79] the authors state that Software-as-a-Service is “heralded by many as

the new wave in application software distribution”.

Various cloud service offerings fall into different levels of abstraction and are aimed

at different market segments, which is depicted in Figure 7. The figure shows the

different actors involved in computing in the cloud and their categorization into

roles. The separation of roles helps to identify the different stakeholders and their

individual interests.

It is clear that the vendor is in charge for providing the demanded resources, no

matter if on IaaS-, PaaS- or SaaS-level. In a private cloud both the vendor and the

consumer belong to the same organizational entity. Still, within each cloud the role

of the provider can only be occupied by the vendor itself, who therefore also controls

the cloud.

Cloud service offerings at the level of Software-as-a-Service are mostly aimed at the

so-called end users. Whereas services at IaaS- and PaaS-level are mostly intended

for developers. These developers utilize the provided resources and then build the

services for the end users. The SaaS offerings are commonly built on basis of PaaS

and/or IaaS offerings and are hosted and probably even managed by the vendor.

2.2 Cloud Computing 32

Figure 7: Abstractions of Cloud Computing (from [60])

Actors can take on multiple roles. This makes it possible that for example a vendor

also develops services for end users. Another scenario would be the developer utilizing

cloud services that were developed by other developers in order to build his own.

2.2.3 Advantages

One of the central arguments for customers to rely on cloud computing are lower

IT costs. This is mainly achieved by the fact that there are almost no upfront

investments into the IT infrastructure necessary. In [91] the author states that “to

build a large-scale system it may cost a fortune to invest in real estate, hardware

(racks, machines, routers, backup power supplies), hardware management (power

management, cooling), and operations personnel”. Through computing in the cloud

all these capital expenditures could be avoided because there is mostly no need to

purchase any additional hardware or software.

Because the cloud infrastructure is commonly billed only according to its actual use,

it is no longer an investment, but could rather be treated as an expense. The pay-

per-use model means that the customer is not liable for the entire infrastructure that

he may use, but is only being billed for the fraction that is used by him [91]. This

‘pay as you go’ policy often manages it to keep the ongoing IT costs low.

All the mentioned advantages make cloud computing especially very interesting for

smaller and emerging businesses (e.g., start-ups) because they lower the barrier to

2.2 Cloud Computing 33

entry and open up prospects that would maybe not be possible without. Even

companies that could afford to invest into the needed IT infrastructure benefit from

omitting several rounds of management approvals before the actual project could get

started [91]. It is also a fact that by swapping out your infrastructure the number

of needed IT staff personnel is being reduced and you do not carry the overhead

of additional salaries, benefits, insurance and building space that goes along with

traditional IT system [92]. Furthermore, you do not need to worry about setup,

management and constant maintenance.

Another significant advantage of cloud computing is that because of its high flex-

ibility, companies can acquire computing and development services as needed and

on demand. This not only shortens the time to complete a particular project, but

also reduces the so-called ‘time to market’ and helps to stay competitive. By scaling

the utilized service depending on the actual demand, users can easily handle certain

peaks or cope with eventually higher seasonal demands. Cloud computing also en-

ables the customer to always use and work with the latest technology and provides

him with access to supercomputer-like power at just a fraction of its actual cost.

In [91] the author states the following dilemma: “In the past, if you got famous and

your systems or your infrastructure did not scale you became a victim of your own

success. Conversely, if you invested heavily and did not get famous, you became a

victim of your failure.” Through the ‘just-in-time infrastructures’, which are made

possible by cloud architectures, the risk of failing because of one of the addressed

scenarios is rather low because you only scale as you grow.

It is essential to add that cloud infrastructures can be relinquished in the same and

easy way as they were acquired in the first place – usually in minutes [91]. This

makes cloud computing very interesting for projects that would otherwise not pay

off because of the large IT investments that are necessary in order to carry out a

particular task. After usage, users do not carry any ballast in form of unutilized IT

infrastructure and do not need to further manage or care about such.

The use of cloud computing has also a considerable effect on the consumer’s gover-

nance structure. Traditionally, most IT organizations govern the technology layers

shown in Figure 8 on their own. Cloud computing however has the effect of reducing

the complexity of the consumer’s IT infrastructure by moving the level of control

towards the cloud vendor. This is especially the case when moving from IaaS to

PaaS to SaaS [61].

According to [91], a further benefit of cloud computing is that it has the potential for

shrinking the processing time of compute- or data-intensive jobs in conjunction with

parallelization: “An elastic infrastructure provides the application with the ability

2.2 Cloud Computing 34

Figure 8: Impact of Cloud Computing on Governance Structure (from [61])

to exploit parallelization in a cost-effective manner reducing the total processing

time.” [91]

But not only customers can potentially benefit from cloud computing. This new

paradigm comes in also very handy for larger companies that have already invested in

a considerable IT infrastructure in order to fulfill the demands of their own customers.

Because such an infrastructure is designed to bear up against certain peaks in the

customers demand, it mainly stays unutilized during normal operation. In order to

gain profit out of already undertaken investments and to maximize its ‘Return-of-

Investment’ (ROI), it just seems natural to offer parts of the unused resources as

cloud architecture to potential new customers.

2.2.4 Challenges

Although there are many benefits of computing in the cloud, there are also some

significant barriers to its adoption. Two of its most significant challenges are security

and privacy.

Most of the security and privacy issues in cloud computing are caused by the lack of

control over the physical infrastructure and the cloud’s multi-tenancy model. In [51]

the authors provide an overview over the technical security issues of cloud computing

environments and present possible existing and upcoming threats to its security.

It is important to add that many of these issues are not specific to cloud computing,

2.2 Cloud Computing 35

but rather relate to the underlying security problems of Web services, browsers and

so on. As cloud computing makes heavy use of these, the security issues become more

significant [54]. An example is a ‘Denial of Service’ (DoS) attack against a resource,

where the user ends up paying for the attack because of the increased usage it has

caused.

The authors of [51] also identify that “completely relying the own data and execution

tasks to an external company, eventually residing in another country with a different

regulatory environment, may cause companies not to consider Cloud Computing”.

The major barrier is, in other words, the lack of knowledge about the full details

of how and where the own data is being processed. In [25] the authors write that

the potential of the cloud is not yet being realized and that “Lack of control in

the cloud is the major worry. One aspect of control is transparency in the cloud

implementation – somewhat contrary to the original promise of cloud computing in

which the cloud implementation is not relevant.”

Security issues are very critical from an enterprise perspective and the risks of poten-

tial security and privacy threats, like data exposure, may even exceed the possible

benefits of cloud computing. Another point is that some data (e.g., financial and

health sector) may have to be maintained within a specific jurisdiction and is simply

not transferable to the cloud [54].

In [97] the authors state that the sharing of virtual machine (VM) images is “one

of the fundamental underpinnings of cloud computing”. According to them, virtual

machine image sharing unavoidably introduces new security risks and in their article

they elaborate these from different perspectives. The practicality of mounting cross-

VM attacks in existing third-party clouds is explored in [80]. The authors show that

it might be possible for an attacker to “penetrate the isolation between VMs and

violate customer confidentiality” [80].

Besides the mentioned issues it needs to be said that it is still cheaper to implement

security on a larger scale. Start-ups and individuals may eventually benefit from the

expertise and greater security measures provided by cloud operators. Furthermore,

they could use cloud computing to eliminate the costs of needing to develop a secure

infrastructure on their own.

It is in general important to settle the question about security responsibility, which

is also asked by the author of [53]: “Does using a cloud environment alleviate the

business entities of their responsibility to ensure that proper security measures are

in place for both their data and applications, or do they share joint responsibility

with service providers?”

Besides mentioned barriers, like security concerns and third-party data control, the

2.2 Cloud Computing 36

continuity of cloud services is another important issue. In this case users are con-

cerned about the reliability of the actual server uptime and the availability of their

critical applications and data in the cloud.

In the past there have been several documented incidents where popular cloud ser-

vices have been unavailable to their users for hours. [61] reports about continued

DDoS (‘Distributed Denial of Service’) attacks on the Amazon Web Services (AWS),

which were used during the work on this thesis and will be presented in Section 2.3.

A couple of further outages (some even ranging up to 8 hours) of individual AWS

services are listed in [18]. In [76] even a 22 hours long down-time of one of the cloud

services provided by Microsoft is mentioned.

Another common barrier to the adoption of cloud computing is the potential lock-in

of customers data. The APIs for computing in the cloud are essentially proprietary

and there have been no agreements on the standardization of the external interface.

This means that it is currently not able for customers to easily extract their processes

and data from one site and to run them on another. As a result, once a customer

starts to use the service of a cloud computing provider, he is most likely to be locked-

in by the provider [76].

Although the customer’s lock-in may be attractive to the cloud computing provider,

cloud computing users are “vulnerable to price increases, to reliability problems or

even to providers going out of business” [18]. There have been incidents of companies

loosing their customer’s data and having to shut down because of the latter reason.

An obvious solution to counteract would be to standardize the APIs for cloud com-

puting in order to “enable migration and plug and play of cloud components” [61].

A frequently cited list of the “top 10 obstacles for the adoption of cloud comput-

ing” has been compiled by the authors of [18] and mentions further challenges, like

performance unpredictability and data transfer bottlenecks.

The environmental impact of cloud computing is another very important issue and

it would be irresponsible to neglect it nowadays. The authors of [60] state that a

major concern is “the ever-increasing carbon footprint from the exponential growth

of the data centres required for Cloud Computing”. Furthermore, they add that

“while these issues are endemic to Cloud Computing, they are not flaws in the Cloud

conceptualisation, but the vendor provision and implementation of Clouds” [60].

IBM even claims that the IT is becoming ‘greener’ with the advance of cloud com-

puting and the coherent potential to “increase the utilization rate of server, storage,

network and so on” through virtualization technology [101].

2.3 Amazon Web Services 37

2.3 Amazon Web Services

The Amazon Web Services (AWS) [10] are a collection of infrastructure Web services

(Infrastructure-as-a-Service) delivered over the Internet by Amazon.com. This suite

of cloud services allows third-party developers to access and build applications on

top of Amazon’s ‘battle proved’ IT infrastructure.

Being one of the world’s largest online retail platforms, Amazon made huge invest-

ments into its IT infrastructure in order to bear up against significant peaks in their

customer’s demand, which usually emerge around holidays (Christmas, Thanksgiv-

ing Day, etc.). During normal operation most of the infrastructure remains unused

and does not even reach close to its maximum capacity.

Jeff Bezos, the chief executive officer (CEO) and founder of Amazon, stated that

before introducing its cloud computing offerings, the Amazon servers happened to

ran at even less than 10 percent of their capacity [24]. By renting out its system to

others, Amazon is able to boost its resource utilization and to slash the overall price

for computing, not just for its customers but also for itself.

Today, Amazon advanced to one of the most important commercial providers for

cloud services and was among the first to recognize this potential in order to make

profit out of it. The company claims to have “spent over a decade and hundreds

of millions of dollars building and managing [its] large-scale, reliable and efficient

IT infrastructure” [15]. With AWS, developers and companies of all sizes can now

take advantage of this global computing infrastructure and benefit from Amazon’s

experience and investment.

In the remainder of this section, the features and possibilities of AWS will be dis-

cussed. Amazon currently offers a variety of cloud services, including, among others,

storage, computing power, messaging and database services. The focus will be on

the presentation of the services that were used during the work on this thesis, namely

the Amazon Elastic Compute Cloud (EC2), Amazon SimpleDB and the Amazon Re-

lational Database Service (RDS). Other Amazon Web Services are not within the

scope of this thesis and will not be covered.

2.3.1 Features

The following are characteristics provided by AWS that Amazon claims are “unique

among all vendors in the cloud computing landscape” [15]:

• Flexible: With the Amazon Web Services there is no need for large investments

2.3 Amazon Web Services 38

into new architectures, programming languages or operating systems. Rather

these platform-agnostic services allow the customers to “choose the program-

ming models, languages, and operating systems they are already using or that

are best suited for their project” [15]. It is essential that developers “can bring

their existing skills and knowledge to the platform” and are not limited by the

fact that they have to learn and adapt to the platform [15].

In [15] Amazon claims that AWS’s flexibility enables “that migrating legacy

applications to the cloud is easier and much less expensive” because there is

no need of re-writing existing applications and that they can easily be moved

into the cloud. Furthermore, it is stated that AWS “can be used to run almost

anything – from full web applications to batch processing to offsite data back-

ups” [15].

• Cost-effective: One of the important advantages when working with AWS is

that there is no need for any upfront investments. Furthermore, the customer

is not bound to any long-term commitments or minimum spending, but rather

just ‘pays as he goes’. Customers can start to work with the provided cloud

services in minutes and are able to terminate their relationship with AWS at

any time.

As with cloud computing, there is no need to consider or even pay for costs

that go alongside owning and operating an own IT infrastructure (e.g., power,

cooling, real estate, IT administration staff) when using AWS.

“AWS provides businesses with the increased agility needed to be able to in-

stantly scale their infrastructure up or down based on their unique demands.

This business agility can often be a point of cost savings itself. When a busi-

ness is able to respond quickly to changes, no matter how large or small, it

can take on new opportunities and meet business challenges that could drive

revenue and reduce costs.” [15]

• Scalable and elastic: AWS as cloud services can help to elastically “scale com-

puting resources up and down easily and with minimal friction” [15]. This

is essential when the customer’s application needs to cope with certain usage

peaks and unexpected demands.

“At the same time, the cloud is also useful as a resource for executing mission-

critical, short-term jobs.” [15]

To allocate resources with AWS it only needs to involve simple API calls.

Amazon supports seamless scaling and additionally offers load balancing and

auto-scaling features.

• Secure: “In order to provide end-to-end security and end-to-end privacy, AWS

builds services in accordance with security best practices, provides appropriate

security features in those services, and documents how to use those features.

2.3 Amazon Web Services 39

In addition, AWS customers must use those features and best practices to

architect an appropriately secure application environment.” [15]

Besides leading the way to secure services and data privacy for its customers,

Amazon also stresses its use of multiple layers of operational and physical secu-

rity to ensure the integrity and safety of their customer’s data. Additionally to

that it refers to successfully obtained security certifications and accreditations

to demonstrate the security of its infrastructure and services.

Readers interested in details about the security of the Amazon Web Services

should be referred to the ‘AWS Security Whitepaper’ [14].

• Experienced : Amazon manages the multi-billion dollar business Amazon.com

and serves millions of customers. By running the world’s largest retail platform

for over 16 years, Amazon has gained immense reputation and expertise. AWS

was built on top of this experience and benefits from the company’s infras-

tructure management skills and capabilities. The company itself states that

“AWS has been operating since 2006 and today serves hundreds of thousands

of customers worldwide” [15].

Another appealing point is that AWS is keen on constantly delivering new

services and ‘highly innovative new features’. This has been also experienced

during the work on this thesis. Not only new services and features, but also

continuous price-reductions stood out. The authors of [18] write that “heavy

users of AWS saw storage costs fall 20% and networking costs fall 50% over the

last 2.5 years, and the addition of nine new services or features to AWS over

less than one year”. Furthermore, they state that “in less than two years, Ama-

zon Web Services increased the number of different types of compute servers

(‘instances’) from one to five, and in less than one year they added seven new

infrastructure services and two new operational support options” [18].

It is important to point out that at the time of writing, some of the Amazon cloud

services (e.g., SimpleDB, Relational Database Service) are still in beta stadium. This

means that some features of the service are still evolving and that there is an eventual

risk of problems that may make the service unsuitable for use in production systems

[68].

Amazon offers a whole range of cloud services for various different purposes. A great

convenience is that all Amazon Web Services are designed to integrate easily and

work perfectly in conjunction with other AWS services. Applications running fully

within the Amazon cloud (e.g., a SimpleDB request from within an application that

runs in an EC2 instance) will provide near-LAN latency. Another advantage is that

the data transferred between Amazon Web Services within the same region is free of

charge.

2.3 Amazon Web Services 40

The services are fully manageable with simple API calls. For this purpose Amazon

offers three separate APIs: REST, Query and SOAP [68]. Although the underlying

API operations are largely the same, each interface provides a slightly different way

of interacting with a service. Based on these APIs there are several command line

tools available in order to serve as client interfaces to the services. These tools help

to configure and manage the services, their features and options.

Figure 9: AWS Management Console

In addition to that there are also several programming libraries in various program-

ming languages available, which help developers to easily integrate and interact with

the Amazon Web Services from within their application. Another possibility is to

access, manage and even monitor part of the cloud services from within Amazon’s

‘AWS Management Console’ [11], which is a web-based user interface (see Figure 9).

2.3.2 Amazon EC2

The Amazon Elastic Compute Cloud (EC2) [3] is a Web service that provides resiz-

able compute capacity in the cloud. It provides an environment for running servers

on demand, where each virtual server is manageable just like a physical machine.

Customers are able to start as many virtual servers as needed and are able to scale

the computing power up or down by using more or less powerful virtual server types.

At the time of writing, Amazon offers the EC2 instance types shown in Table 1.

The table lists the available instances together with the memory, compute capacity

and instance storage provisioned for each of these. One EC2 Compute Unit (ECU)

2.3 Amazon Web Services 41

provides the equivalent CPU capacity of a 1.0-1.2 GHz ‘2007 Opteron’ or ‘2007 Xeon’

processor [3].

Instance Type Memory Capacity Storage

Micro Instance 613 MB 2 ECU

Small Instance 1.7 GB 1 ECU 160 GB

Large Instance 7.5 GB 4 ECU 850 GB

Extra Large Instance 15 GB 8 ECU 1690 GB

High-Memory Extra Large 17.1 GB 6.5 ECU 420 GB

High-Memory Double Extra Large 34.2 GB 13 ECU 850 GB

High-Memory Quadruple Extra Large 68.4 GB 26 ECU 1690 GB

High-CPU Medium 1.7 GB 5 ECU 350 GB

High-CPU Extra Large 7 GB 20 ECU 1690 GB

Cluster Compute Quadruple Extra Large 23 GB 33.5 ECU 1690 GB

Table 1: EC2 Instance Types

Amazon provides the ability to place instances in multiple locations and EC2 is

currently available in the regions: US East (Northern Virginia), US West (Northern

California), EU (Ireland), and Asia Pacific (Singapore) [3].

Besides the local instance storage, Amazon also offers so-called Amazon Elastic Block

Stores (EBS), which can be mounted as devices by EC2 instances. Such EBS volumes

provide persistent block level storage for EC2 instances and are independent from

the life of an instance. Amazon allows to create EBS storage volumes up to 1 TB

and they behave like raw, unformatted block devices that can be seen as hard drives.

Amazon Machine Images (AMI) are complete snapshots of EC2 instances at a certain

point in time. These snapshots capture the root file system, including the operating

system, software, configuration and even data of an instance and serve as a boot disk

when launching one.

Various pre-built AMIs for all kinds of purposes and with different pre-configured

operating systems, like Windows Server 2003/2008, Red Hat Enterprise Linux, and

Oracle Enterprise Linux are offered. Certain AMIs also come with pre-installed ap-

plications (e.g., Apache HTTP, Ruby on Rails, Windows Media Server) or databases.

Besides using existing AMIs, users can also create images from scratch or customize

existing ones. These can then be stored and even shared with other EC2 users.

The prices1 for on-demand EC2 instances at the time of writing are shown in Table

2. To simplify matters, the listed prices are valid for machine instances, running a

Windows operating system and with default configuration. Users are billed monthly

1These prices are correct as of November 2010. Refer to [3] to confirm the current pricing.

2.3 Amazon Web Services 42

and the service charges are based on the number of hours that an instance is running.

Instance Type Price Per Hour

Micro Instance $0.03

Small Instance $0.12

Large Instance $0.48

Extra Large Instance $0.96

High-Memory Extra Large $0.62

High-Memory Double Extra Large $1.24

High-Memory Quadruple Extra Large $2.48

High-CPU Medium $0.29

High-CPU Extra Large $1.16

Table 2: EC2 On-Demand Instance Pricing

Besides the hourly usage fee, service charges also include charges for the data transfer,

which is based on the volume of data transferred to or from an EC2 instance and

currently costs around $0.10 per GB. Between Amazon EC2 and other Amazon Web

Services (within the same region) there is no charge for any data transfer.

Next to the mentioned On-Demand Instances, Amazon also started to offer new types

of instances, namely Reserved Instances and Spot Instances. Reserved instances are

purchased for 1 or 3 year terms with a one-time payment. After this low one-time fee,

the instance is reserved to the user, who is in turn receiving a significant discount on

the hourly usage charge for that instance. With spot instances users bid on unused

EC2 capacity and run those instances as long as their bid exceeds the current spot

price, which changes periodically and is based on supply and demand.

The Amazon Elastic Compute Cloud is additionally offering several further features.

The Auto Scaling option allows to automatically scale the EC2 capacity up or down

according to pre-defined conditions. This ensures that used instances scale up seam-

lessly during demand spikes in order to maintain performance. Afterwards, auto

scaling automatically scales down capacity in order to minimize costs.

Elastic Load Balancing is an optional feature that helps to automatically distribute

incoming traffic across multiple Amazon EC2 instances in order to provide a greater

fault tolerance.

2.3.3 Amazon SimpleDB

Amazon SimpleDB is a “highly available, scalable, and flexible non-relational data

store that offloads the work of database administration” [8]. The database is designed

2.3 Amazon Web Services 43

to be simple and to minimize the administrative overhead involved in managing the

data.

SimpleDB allows the user to store “small pieces of textual information in a simple

database structure that is easy to manage, modify and search” [68]. Amazon stores

the user’s data in a secure and redundant way and even automatically takes care of

indexing the stored information, which allows to carry out queries more efficiently.

It is important to understand that SimpleDB is a key-value data store and therefore

differs from a traditional ‘Relational Database Management System’ (RDBMS). On

the one hand, it is not able to offer the same features (e.g., complex transactions

or joins) and all the possibilities of a relational database. On the other hand, its

simplicity and flexibility offer whole new perspectives to the user, when storing his

data.

“A traditional relational database requires a sizable upfront capital outlay, is complex

to design, and often requires extensive and repetitive database administration.” [15]

Amazon states that “SimpleDB eliminates the administrative overhead of running a

highly-available production database, and is unbound by the strict requirements of

a RDBMS” [8]. In general there are a number of major differences between the two

approaches that may be considered as either benefits or drawbacks, depending on

the requirements of the application.

One of the key differences between SimpleDB and a traditional database is that in

SimpleDB items are stored in a rather hierarchical structure and not a table. The

three main resources provided are domains, items and attributes:

• Domains: “A domain is a named container for related data.” [68] Domains

are basically used to partition data sets that are logically distinct. Queries

can be executed against a domain, but cross-domain searches are not allowed.

Domains are collections of items.

• Items: Items represent individual objects that contain one or more attribute

name-value pairs. “Each item has a name that uniquely identifies it within the

domain.” [68]

• Attributes: “An attribute is an individual category of information that is stored

within an item. Each attribute has a name that uniquely identifies it within the

item and it has one or more text string values associated with this name.” [68]

In other words, attributes represent categories of data that can be assigned to

items, and values represent instances of attributes for items.

Figure 10 shows the hierarchy for a simple database of widgets.

2.3 Amazon Web Services 44

Figure 10: Example Hierarchy of SimpleDB Resources (from [68])

Because there is no predefined database or table schema, any item can have a different

set of attributes from the other items. This flexibility means that the user is able to

alter the structure and content of the database whenever this is needed. He is free to

rearrange attributes and values as he adds new data elements or as the application

changes.

For instance, an attribute called ‘warranty’ could without any difficulty be added to

the Widget-X-item from Figure 10. This can be done at any time and without the

other widgets needing to adapt the enhancement.

Besides benefits like simplicity and flexibility, a schema-less database requires ad-

ditional awareness from the developer. It is entirely up to the developer to ensure

that all stored items comply with the intended schema. Working with SimpleDB

means working without the safety-net of a predefined schema and that means that

the services will not complain on any mistakes being made (e.g., forgetting to store

attributes, misspelling attribute names) [68].

Another significant difference between SimpleDB and a traditional database is that

all data is exclusively stored as textual data. SimpleDB does, beyond text strings,

not support any data types like Booleans, integers, floating-point numbers or dates.

This means that the developer has to take care of proper encoding before saving his

data into the database and decoding after retrieving it (e.g., negative number offsets

or zero-padding).

When it comes to querying, SimpleDB is again limited to comparing the attributes

based on their lexicographical ordering. In this case the simplicity of SimpleDB’s

2.3 Amazon Web Services 45

data model eventually again requires additional efforts from the developer.

Amazon SimpleDB provides a simple Web services interface to store, modify, query

and retrieve data sets easily. Its API will be outlined in the following [9]:

• CreateDomain, ListDomains, DeleteDomain: Creating, listing and deleting

domains.

• PutAttributes: Adds, modifies or removes data within a SimpleDB domain.

An item is either added, if it does not already exist, or updated by adding or

updating its attributes, otherwise.

• BatchPutAttributes: Multiple put-operations are generated in a single call in

order to achieve greater overall throughput. The operation either succeeds or

fails as a whole: There are no partial puts.

• DeleteAttributes: Removes one or more attributes associated with an item from

a domain. If all attributes of an item are deleted, the item is deleted itself.

• GetAttributes: Retrieves a subset or all attributes and values of a specific item.

• Select : A select-operation returns a set of attributes for specific items that

match a given select-expression. The supported expressions are similar to the

standard SQL SELECT statements (e.g., select target from domain name

where query expression).

• DomainMetadata: Returns information about the domain, including when the

domain was created, the number of items and attributes, and the size of at-

tribute names and values.

Besides its huge scalability there are some limitations according the data storable

in SimpleDB. Currently, individual domains are enabled to hold a maximum of 1

billion attributes and to grow up to 10 GB each. Furthermore, per default each

user is initially allocated a maximum of 100 domains, which is still enhanceable

upon request. Other constraints limit the length of attribute names and values, and

restrict 256 attribute-value pairs per item [9].

Users of SimpleDB are billed monthly based on three criteria: the amount of storage

they have used ($0.25 per GB-month), the numbers of hours of machine utilization

time their operations have consumed ($0.14 per machine-hour consumed), and the

amount of data transferred into or out of the service (sliding scale, ranging from

$0.08 to $0.15 per GB).2

2These prices are correct as of November 2010. Refer to [8] to confirm the current pricing.

2.3 Amazon Web Services 46

As with other Amazon Web Services, there is no minimum fee and no long-term

commitment. In addition to that, SimpleDB currently offers a ‘free tier’ where the

users pay no charges on the first 25 utilized machine hours and 1 GB of storage.

2.3.4 Amazon RDS

The Amazon Relational Database Service (RDS) [5] is a Web service that provides

an industry-standard relational database in the cloud. RDS makes it easier to set

up, operate and scale the database server. Furthermore, it manages common time-

consuming database administration tasks, automatically takes care of backs up, and

maintains the database software.

In contrast to Amazon’s other database services, RDS offers a fully-featured MySQL

5.1 [70] database. The advantage is that users already familiar with MySQL can

without any difficulty replace their local MySQL database with an RDS instance.

Programming code, applications and tools that are already in use with the existing

MySQL database work seamlessly with Amazon RDS.

At the time of writing, Amazon offers the RDS instance classes shown in Table 3. One

EC2 Compute Unit (ECU) provides, as with the EC2 instance types, the equivalent

CPU capacity of a 1.0-1.2 GHz ‘2007 Opteron’ or ‘2007 Xeon’ processor [5].

Instance Type Memory Capacity Price

Small DB Instance 1.7 GB 1 ECU $0.11

Large DB Instance 7.5 GB 4 ECU $0.44

Extra Large DB Instance 15 GB 8 ECU $0.88

High-Memory Extra Large DB 17.1 GB 6.5 ECU $0.65

High-Memory Double Extra Large DB 34 GB 13 ECU $1.30

High-Memory Quadruple Extra Large DB 68 GB 26 ECU $2.60

Table 3: RDS Instance Classes

For each instance class, RDS provides the ability to select from 5 GB to 1 TB of

associated database storage capacity.

The prices listed in the table are to be paid for the compute capacity by the hour

the database instance runs. In addition to that, users are charged a storage rate

($0.10 per GB-month) and a data transfer rate for data transferred into or out of

the service (sliding scale, ranging from $0.08 to $0.15 per GB).3

As with the Elastic Compute Cloud, Amazon RDS also offers the possibility to

3These prices are correct as of November 2010. Refer to [5] to confirm the current pricing.

2.3 Amazon Web Services 47

purchase reserved database instances. The user makes a one-time up-front payment

for a database instance and reserves it for a one- or three-year term. The result is

that he is charged a significantly lower rate for its utilization.

Furthermore, two different replication features are offered with RDS: Multi-AZ De-

ployments help to enhance the availability and protect against unplanned outages.

Read Replicas make it easy to scale out beyond the capacity constraints of a single

database instance for read-heavy database workloads.

48

3 Related Work

In this chapter an overview over the work that was recently done by the scientific

research community and is related to the topic of this thesis will be given. It can

be identified that the concerned literature dealing with commercial cloud computing

offerings mainly focuses on evaluating the usage of these. It either gives a general

analysis over the offered functionalities and possibilities, or compares them according

to performance and costs.

Similar to a large part of this thesis, there are also a couple of papers that especially

focus on cloud databases and even deal with the possibility of featuring the trans-

actional guarantees of a (traditional) relational database in conjunction with simple

key-value stores in the cloud.

One section of this chapter will mention some popular uses of the AWS services.

It has to be mentioned that many papers focus on and cover the Amazon Simple

Storage Service (S3) [7]. S3 is a simple web storage and it is primarily intended for

the storage of data objects (e.g., media files). It provides the ability to store large

amounts of data reliably and with high availability.

The S3 storage model is a simple two-level hierarchy, where the users may create

buckets and place data objects (up to 5 GB each) into these buckets. Strings are

used as keys for both buckets and objects.

3.1 Evaluation and Performance Analysis

In the following several works that evaluate the use of cloud computing will be

mentioned. In general, the goals of these works are similar to the intention of Section

6.1, which deals with the quantitative evaluation of the used cloud services. It has to

be mentioned that the concerned literature especially focuses on particular subjects,

like the evaluation of the use of cloud computing services for scientific computing.

Many of the cited papers also include evaluations that address further aspects of

computing in the cloud, than were within the scope of this thesis (e.g., cost analysis).

In [59] the authors investigate how they can build a web server farm in the cloud.

A dynamic switching architecture that dynamically switches among several config-

urations depending on the detected workload and traffic pattern is proposed. They

discuss the switching criteria and how to use the cloud’s dynamic capability to imple-

ment the architecture. Furthermore, the authors present a benchmark performance

study on various cloud components and show that the performance results reveal

3.1 Evaluation and Performance Analysis 49

several limitations. They conclude that there is currently not a single configuration

that can satisfy all traffic scenarios.

The use of clouds in a way that strikes the right balance between cost and perfor-

mance is discussed in [29]. The authors study the cost/performance trade-offs of

different execution and resource provisioning plans. Their results show that by pro-

visioning the right amount of storage and compute resources, costs can be reduced

with no significant impact on the application performance. Furthermore, they state

that cloud computing offers a cost-effective solution for data-intensive applications,

because they have experienced that the storage costs were insignificant compared to

the CPU costs. As the cloud field matures, they expect to see a more diverse selec-

tion of fees and quality of service guarantees for the different resources and services

provided by clouds.

There are several papers that evaluate the use of cloud computing services for sci-

entific computing. Such a comprehensive performance analysis of the EC2 service

for scientific computing is given in [71]. The results of the paper indicate that the

current cloud services need an order of magnitude in performance improvement to be

useful to the scientific community. Besides the performance, the authors also write

that the reliability of the tested cloud is rather low. They conclude that although

computing in the cloud is insufficient for scientific computing at large, it may still

appeal to scientists that need resources immediately and temporarily.

A similar evaluation is found in [46], where a case study of the use of EC2 for

scientific computing is presented. The author evaluates the cloud service according

its performance, cost and even usability (learning, remote access, ease of use). The

case study concludes that EC2 provides a feasible and cost-effective model in many

application areas. Although he stresses the advantages of services like EC2 and S3,

the author’s opinion is that these services will not replace dedicated clusters or large

shared super-computer facilities.

After studying the use of cloud computing for scientific workflows in [52], the authors

conclude that clouds are a viable alternative for running scientific workflow applica-

tions and that the performance is reasonable given the resources available. They are

also satisfied with the costs and only critic the relatively high costs for data transfer.

In [21], the authors state that traditional benchmarks are not sufficient for analyzing

the novel cloud services. In their paper they present some initial ideas of how such a

new benchmark should look like in order to better fit to the characteristics of cloud

computing (e.g., scalability, pay-per-use, fault tolerance). Because dynamic alloca-

tion and de-allocation of resources as well as the pay-as-you-go model are inherent

features of these services, an important difference to most existing benchmarks is

3.2 Cloud Databases 50

that this new cloud benchmark should not require using a static configuration of

software and hardware components.

3.2 Cloud Databases

Besides the evaluation of cloud offerings in conjunction with concrete scenarios, many

authors specifically deal with the analysis and the usage of cloud database services.

[72] evaluates S3’s ability to provide storage support to large-scale science projects

from a cost, availability, and performance perspective. The paper evaluates whether

S3 is a feasible and cost-effective alternative for offloading storage from in house

maintained mass storage systems for today’s scientific collaborations. Besides an

independent characterization of S3 in terms of user-observed performance, the costs

of outsourcing the storage functions to S3 are also evaluated. Furthermore, the

authors also discuss the functionality and security features of the service. They

conclude that the current S3 design needs to be improved and give recommendations

for the next-generation storage utility services.

In order to evaluate S3, the authors used the Amazon EC2 service, which was also

used during the work on this thesis. They state that the primary relevance of EC2

is that there are no bandwidth charges for data sent between services within the

cloud and that as a result the data saved within the Amazon cloud can be “cheaply

processed using virtual EC2 hosts” [72]. It is also mentioned that the “observed

availability from EC2 was quite high” and that their “experience using EC2 was

excellent”: “Although Amazon makes no guarantee regarding the durability or avail-

ability of any EC2 instance, we ran instances for a total of 6 CPU months and had

only one case in which an instance was rebooted without our initiation.” [72]

The recently published paper [55] evaluates the current state-of-the-art of cloud

database services – including Amazon SimpleDB, Amazon RDS, Amazon S3, and

others. The questions raised by the authors are: How well do the offerings scale

with an increasing workload? How expensive are these offerings and how does their

cost/performance ratio compare? How predictable is the cost with regard to changes

in the workload?

The authors state that even though the cloud services look similar from the outside,

they vary dramatically when it comes to end-to-end performance, scalability and cost:

“While most (traditional) general-purpose database systems (e.g., DB2, MySQL,

Oracle 11, Postgres, SQL Server) share roughly the same ‘textbook’ architecture and

data structures, the differences in the implementation of cloud services are immense”

[55].

3.2 Cloud Databases 51

In order to carry out their tests with the Amazon SimpleDB service, they needed

to adapt certain layers of their test application. While doing so, they describe what

was also experienced in a similar way during the work on this thesis: “Since Sim-

pleDB does not support SQL, SQL operators such as joins and aggregation had to

be implemented at the application level. To do so, we implemented a (Java) library

with these SQL operations and manually optimized SQL queries (i.e., join orders and

methods). Obviously, this approach resulted in shipping all the relevant base data

from SimpleDB to the application servers and resulted in poorer performance as the

query shipping approach supported by full-fledged SQL database systems.” [55]

Figure 11: Comparison of Architectures (from [55])

After presenting the different offerings and vendors, a comparison of the architectures

(see Figure 11) is presented, next to a detailed cost analysis. The authors state that

the current cloud market is still immature and that they observed that most services

had significant scalability issues. They stress that “S3 is the only variant that is based

on an architecture that has no bottlenecks” [55], which is also reflected in the figure.

It still needs to be mentioned that in contrast to S3, the Amazon services SimpleDB

and RDS are still in beta stadium. The authors admit that “the fundamental question

of what the right data management architecture for cloud computing is, could not

be answered” [55].

When revisiting distributed database architectures that are nowadays used in cloud

computing, the authors of [55] present how caching can be integrated at the database

server layer (see Figure 12) and write that “caching can also help the cloud computing

promises with regard to cost and scalability” [55]. The described concept of caching

is similar to the one used in this thesis.

Although S3 is mostly used to store multimedia documents (e.g., videos, photos,

audio), which are shared by a community of people and rarely updated, the purpose

3.3 Popular Uses of AWS 52

Figure 12: Distributed Database Architecture and Caching (from [55])

of paper [22] is to “demonstrate the opportunities and limitations of using S3 as a

storage system for general-purpose database applications which involve small objects

and frequent updates”. Read, write and commit protocols are presented, and fur-

thermore, the cost, performance and consistency properties of such a storage system

are studied. The authors state that because the majority of the cloud databases were

designed to be cheap and highly available, they are often slow and sacrifice consis-

tency. Their work’s goal is to preserve the scalability and availability of a distributed

system like S3 and to achieve the same level of consistency as a database system.

After evaluating their implementation, they observed high execution times and write:

“These high execution times, however, were expected [...] S3 has about two to three

orders of magnitude higher latency than an ordinary local disk drive [...]. Despite

these high execution times, we believe that the results are acceptable in an interactive

environment such as a Web 2.0 application.” [22]

The authors of [28] have a similar intention. They state that although services like

SimpleDB are highly scalable, they do not provide transactional guarantees. In their

paper they propose ElasTraS, which stands for ‘Elastic Transactional Data Store’

and is a data store that is “elastic along the same lines as the elastic cloud, while

providing transactional guarantees” [28].

3.3 Popular Uses of AWS

In this section two of the most prominent and often cited uses of the AWS services

will be presented.

3.3 Popular Uses of AWS 53

Further case studies and businesses that have successfully applied the Amazon Web

Services are listed and presented under [13].

3.3.1 Animoto

The early utilizations of cloud computing were web applications that were developed

by companies with only limited IT resources. Public cloud services were used in

order to rent a flexibly scalable infrastructure with low entry barriers and at low

costs.

One of the prime examples of the advantages of cloud infrastructure is the success of

Animoto [17]. Animoto is a web application that “automatically produces beautifully

orchestrated, completely unique video pieces from your photos, video clips and music”

[17]. After users provide content to the service, Animoto analyzes it and generates

an animated video. In the case of Animoto, cloud services were used to handle an

unexpectedly high demand by its users.

The start-up company was founded in 2006 and its web application is built on top

of various Amazon Web Services, including Amazon EC2 and S3 [16]. Before its

actual breakthrough, the company used to serve an average of about 5 000 users a

day with at most two video renderings per minute [47]. The company solely relied

on Amazon’s servers and utilized around 50 EC2 machine instances at that point.

Animoto does not host any servers, but rather outsources its computing power to

the Amazon cloud.

After the company started to advertise its web application with the help of ‘social

media’, the service went ‘viral’ and the demand for it dramatically increased over

night. Within only three days the company had to serve up to 750 000 users and at

one point even 25 000 people used Animoto within a single hour [47]. At the peak,

450 videos were rendered per minute and the company’s EC2 server usage increased

in a way that they had to scale from 50 up to 3 500 server instances (see Figure 13).

Figure 13 also shows that there are some significant drops in the graph representing

the demand. This means that the Amazon services are able to automatically scale-

down, if there is less demand for computational power (e.g., middle of the night). As

Amazon follows a strict pay-as-you-go policy, Animoto does not have to further care

or pay for the servers after they were un-deployed and returned back to Amazon.

The authors of [59] write that “such a dramatic change in the infrastructure require-

ment would mean either gross underprovisioning or gross overprovisioning if a fixed

set of capacity is provisioned”. Furthermore, they conclude that “an infrastructure

3.3 Popular Uses of AWS 54

Figure 13: Animoto’s EC2 Instance Usage (from [16])

cloud, such as Amazons EC2/S3 services, is a promising technology that can address

the inherent difficulty in matching the capacity with the demand” [59].

One of the lessons learned from this example is that cloud computing can apparently

help companies to be prepared for their immediate breakthrough, without having

to fear that they are under-provisioning and in this case maybe even missing their

opportunity for success. Furthermore, with computing in the cloud there is opposed

to traditional infrastructure no need to plan and acquire any physical resources,

which demanded capacity could not be foreseen anyway.

As it is practically not able with the use of traditional infrastructure to scale in the

degree of Animoto’s case, cloud services in fact especially clear the way for emerging

start-up businesses.

3.3.2 TimesMachine

A further often cited use of the Amazon Web Services is the TimesMachine project

by the ‘New York Times’ [88]. The idea behind TimesMachine is to make archived

news articles from the years 1851 to 1980 available through the Internet.

In the initial step, around 11 million articles (4 TB of data) were available as scanned

TIFF images and the goal was to create PDF files based on these images. To generate

the PDF version of an article, the numerous TIFF images of which it is composed of

needed to be scaled and composed accordingly.

3.3 Popular Uses of AWS 55

The conventional approaches to generate PDF files from the scans of the articles

proved to be very slow and expensive. For processing such an amount of data, new

servers would have needed to be acquired and the whole project would have taken

months [20]. The use of cloud services promised to process the whole articles within

days and for only a fraction of the costs.

The 4 TBs of source data were uploaded to the Amazon S3 service and code was

written in order to run on numerous EC2 instances simultaneously. After reading

the source data and creating a PDF, the program would store the result back into S3.

Around 100 EC2 instances were used during the project and it was able to process

all 11 million articles in just under 24 hours [87]. While processing, another 1.5 TB

of resulting PDF files were generated.

The TimesMachine project is a prime example for a one-time batch job, which would

maybe not be profitable without the use of cloud infrastructure. The project team

achieved to successfully carry out the generation of the PDFs in a cost-efficient way,

without the need to invest in potentially unprofitable hardware.

56

4 Background

The Web service runtime environment, VRESCo, upon which has been worked during

this thesis will be presented in the following. After describing its architecture and

the underlying data model, some of its features will be covered in more detail.

4.1 Vienna Runtime Environment for Service-oriented Computing

(VRESCo)

As described in the previous section, three roles are needed to fulfill the SOA triangle.

In [66] the authors claim that in practice most of the SOA applications only rely

upon the service provider and the service requestor – neglecting the role of a service

registry. By leaving out the service registry, the exchange of the service information

needs to already happen at design-time. Since the service requestors need to know

about the exact static address of the service, this procedure is obviously contrary to

the core principles of Service-oriented Architectures (SOA).

Another significant issue for SOA is the general shortcoming of current service reg-

istries. Although Web service registries, like UDDI [37] and ebXML [38] have gone

through standardization processes and are considered as standards, the reality is

that both are rarely used. In fact, the public UDDI registry, which was hosted by

companies like IBM, Microsoft and SAP, has been shutdown in 2005 [66].

To fill a gap in current Service-oriented Architectures and to ‘recover the broken

SOA triangle’ the authors of [65] and [66] came up with the idea for the ‘Vienna

Runtime Environment for Service-oriented Computing’ (VRESCo). VRESCo has

been developed on the ‘Vienna University of Technology’ and aims to solve some

of the current challenges in Service-oriented Computing. Among other features it

includes support for service versioning, service composition, dynamic binding and

dynamic invocation. Furthermore also dynamic searching, querying and notification

are supported. In this section the basic architecture of VRESCo will be presented

alongside some of its basic principles and features.

4.1.1 Architecture

The overall system of VRESCo is implemented in the C# programming language

and uses the ‘Windows Communication Foundation’ (WCF). Figure 14 shows an

overview of the VRESCo architecture. The VRESCo Runtime Environment is a

server application that is invocable using the VRESCo Client Library. The VRESCo

4.1 VRESCo 57

Figure 14: VRESCo Architecture Overview (from [65])

runtime environment is built on top of various services and engines. Each of the core

services is exposed as a Web service and could be accessed either by using SOAP or

the client library.

In the following, the core services and components of which the VRESCo runtime

environment is composed of will be presented in short:

• Query Engine: The query engine is used to query the registry database and

search for published services. Querying could be either used to find matches

within the service descriptions and their attributes (e.g., quality of service

attributes) or to find services using a full text search. There is also a special-

ized query language offered, namely the VRESCo Query Language (VQL) [56].

VQL queries are based on the entities and relations of the data model and

therefore abstract from the concrete database schema that is used to store the

model entities.

• Notification Engine: The notification engine informs users about events that

occur during runtime [48]. The user is either notified per E-Mail or Web service

notification whenever certain events of interest occur. Possible events are the

availability of a new service, a change in a service interface or the change of

the QoS of a service [64].

• Publishing/Metadata Service: This service is used to publish services and meta-

4.1 VRESCo 58

data into the registry. The service offers two different interfaces for either

adding entries to the metadata model or for registering a service description

using the service model. The difference and purpose of these two models will

be described in Section 4.1.2.

There is a clear distinction between services and revisions in the VRESCo

service model. A service is available in one or more revisions and a service

revision contains all the information (e.g., reference to the WSDL file) that is

necessary to invoke a service. Service revisions are the basis for the service

versioning, supported in VRESCo. It is able to branch and merge service

revisions and to tag them according to their current version (e.g., custom tags

or default tags, like INITIAL, LATEST, DEPREC, etc.) [57].

• Management Service: The management service is responsible for managing

and storing user information, like names and passwords. It furthermore also

handles the access rights to the VRESCo runtime environment.

• Composition Engine: The composition engine provides mechanisms to compose

services by specifying hard and soft constraints on QoS attributes. A service

composition is conducted by a composition request, which is specified in a

domain specific language. Such a request specifies the functional requirements

for the features, their composition and certain non-functional requirements

(e.g., QoS values) [81,82].

4.1.2 Service Metadata Model

In a SOA it is usual that service functionality is offered by several different service

providers. Although the basic functionality of these services is the same, they may

still differ in their QoS attributes (e.g., response time, availability, price) and would

therefore not be equally interesting for the service consumer. These services may

furthermore even differ in their technical implementation. The service could have

different input and output parameters, where the parameters differ in type, order or

number.

The result is that the service consumer needs to decide which specific service he wants

to use at design time in order to know how to interact with it in his application.

Because there is no generic way to interact with these services, the technical side

of the interaction with a service needs to be ‘hard-coded’ within the application.

It could eventually result in disadvantages for the service consumer, when during

run-time a service provider registers a new service that is better according to its QoS

attributes (e.g., cheaper). In order to use it, the service consumer would need to

adapt its application code, which is certainly not desirable.

4.1 VRESCo 59

To overcome the described issue and to decouple the service consumer from a specific

service, VRESCo introduces a new abstraction layer to hide the technical service

details. The result is that the service consumer does not build its application against

a concrete service, but rather against an abstract service, which offers the desired

functionality. Another advantage is that because the service consumer interacts with

only the abstract version of a service, an eventual exchange of the concrete service

is transparent.

Figure 15: VRESCo Metadata Model (from [83])

Figure 15 shows the basic metadata model used in VRESCo to model services, their

features, pre- and postconditions. A detailed description of the model and its building

blocks is given in [83].

If a service provider registers a service to VRESCo, it needs to be mapped to the

metadata model. The mapping between a concrete service model and the metadata

model is depicted in Figure 16. Although the service model, which basically follows

the Web service based notation as introduced by WSDL, and the metadata model in

VRESCo are different, they can both be transformed into one another. Services are

grouped into categories and service operations are mapped to features, as they repre-

sent concrete implementations of it. The input and output parameters of the service

operations are mapped using data concepts. Again a more detailed description of

4.1 VRESCo 60

the mapping between the two models can be found in [83].

Figure 16: Mapping of Service Model to Metadata Model (from [65])

In Figure 16 it can be also seen that besides the functional attributes described in the

model, there is also a set of QoS attributes associated with each service revision and

service operation. The QoS attributes could be either specified manually or measured

automatically using the QoS monitor, which is integrated into VRESCo and was

introduced in [84]. The pre-defined QoS attributes are Price, Reliable Messaging,

Security, Latency, Response Time, Availability, Accuracy and Throughput. Since the

QoS attributes are part of the service model, QoS-related criteria can be included in

VQL queries, which aids QoS-based service selection [48].

4.1.3 Dynamic Binding

The support for dynamic binding was one of the core motivations for the VRESCo

project. Dynamic binding (or late binding) is the process of linking an abstract

service to a concrete service instance at execution time [66]. The idea is that the

service consumers can at runtime search for a service with the desired functionality

and criteria (e.g., QoS attribute), and dynamically bind to it. Furthermore, this

rebinding to a more suitable service (on change of QoS attributes, etc.) should be

transparent to the service consumer.

The transparent selecting and dynamic binding to concrete service instances accord-

ing to some QoS criteria is referred to as QoS-based dynamic binding [66]. In practice

a QoS monitor (see Figure 14) monitors the QoS attributes of a number of services

that are running on one or more hosts [84]. The dynamic binding mechanism is

then used to select a specific service, which is best fitting according to the specified

4.1 VRESCo 61

selection strategy. VRESCo currently offers various rebinding strategies, like Peri-

odic, OnDemand, OnInvocation and OnEvent. Each of these strategies has different

advantages and disadvantages, which are broader discussed in [48].

4.1.4 Dynamic Invocation

The invocation of services is usually done in a very static manner. Alone the need

to generate stubs out of a WSDL service description in order to invoke a service

operation is the evidence for a lack of dynamism of current Web service technologies.

The goal is to invoke a service by just using its endpoint, the operation name and the

required input message. Because there is no dynamic way in doing this, the result

is that the applications are very inflexible, since the service invocation needs to be

specified at design-time.

The currently predominant Web service implementations rely on service stubs, which

leads to less dynamic applications and does not comply with the initial idea of a

SOA. To overcome this issue, another goal of VRESCo is to support the stubless,

protocol-independent and message-driven invocation of services.

Dynamic invocation in VRESCo is achieved by using the DAIOS (‘Dynamic, Asyn-

chronous and Message-oriented Invocation of Web Services’) framework [58]. The

idea of this framework is to provide a stubless way to use services and to hide their

technical implementation details. The communication is carried out using DAIOS

messages, which are then transformed to a format that is understood by the service.

DAIOS additionally features the support for one-way and asynchronous communi-

cation. A detailed presentation of DAIOS is not within the scope of this thesis and

the interested reader should be referred to [58] for more details.

62

5 Design and Implementation

The overall goal of this thesis is to deploy the web service runtime environment

VRESCo, which has been introduced in Section 4.1, into the cloud. The motivation

behind this is to benefit from the various advantages of computing in the cloud.

These benefits were already covered in Section 2.2.3 and include massive scalability,

no maintenance and administration efforts, and the overall inexpensiveness of the

solution.

To achieve this goal, Amazon has been chosen as the vendor for the cloud services

used during the work on this thesis. The decision to use the Amazon Web Services

(see Section 2.3) is based on their popularity and the variety of the offered services.

Amazon is not only the largest vendor for commercial and public cloud offerings,

but it also offers a comprehensive cloud computing platform (compute, database,

storage, messaging, payment services, etc.).

Besides just deploying the regular VRESCo server application into the Amazon cloud

and running it from within a virtual machine instance, the underlying database has

to be considered as well. There are at least three different options of how to deploy

VRESCo’s database into the Amazon cloud:

• Running a database server (MySQL [70], etc.) from within an Amazon EC2

machine instance and managing the database remotely. This requires launch-

ing an EC2 instance and manually installing and starting a database server.

Besides the benefits that EC2 offers as a scalable virtual machine instance, the

database still has to be administered and maintained (e.g., patching, indexing,

performance tuning) by the user.

• Using the SimpleDB service, which features a simple key-value data store in the

cloud. This opens new perspectives and offers various significant advantages,

like flexibility, enormous scalability and inexpensiveness. A drawback of this

approach is that SimpleDB’s data model is only based on key-value pairs and

is certainly not relational. It does not offer the same features as an RDBMS

and requires a lot more work from the developer in order to compensate for its

simplicity.

• Swapping the database to the fully-relation database service Amazon RDS.

The Relational Database Service is a self-managed and fully-featured MySQL

database in the Amazon cloud. The advantages and disadvantages of this ap-

proach are both conditional upon the fact that RDS is a relational database.

On the one hand, this service features all the common features of a tradi-

tional relational database (e.g., transaction support). On the other hand, it is

5.1 Using Amazon SimpleDB as Database 63

restricted in terms of flexibility and eventually even scalability.

The first option is rather trivial and is not going to be considered in this thesis.

The remote server and its enormous scalability are great, but because it takes the

user to administer and maintain a database, it does not take advantage of the cloud

to its full potential. In the remainder of this chapter, the latter two solutions will

be presented and it will be successively shown how VRESCo was deployed into the

Amazon cloud.

The differences between the mentioned database approaches are once again summed

up in Table 4. It can be seen that although the hardware is automatically provisioned

in all three approaches, only with the services SimpleDB and RDS automatic software

updates and data backup/replication is carried out. Additionally to that, with the

SimpleDB service, the cloud even takes care of data indexing and query tuning.

Db on Amazon EC2 Amazon SimpleDB Amazon RDS

Automated hardware

provisioning

Automated hardware

provisioning

Automated hardware

provisioning

User-controlled software

updates/patching

Automated software up-

dates/patching

Automated software up-

dates/patching

User initiated backups or

snapshots

Automated geo-

redundant replication

Automated backups (ad-

ministered by user) and

user initiated snapshots

User responsible for in-

dexing, query tuning

Automated indexing,

query tuning

User responsible for in-

dexing, query tuning

Table 4: Differences Between AWS Database Solutions (from [2])

After the deployment of the database, the deployment of the overall VRESCo server

application will be covered. The application is going to be run from within an

Amazon EC2 instances and will interact with the databases from within the Amazon

cloud.

5.1 Using Amazon SimpleDB as Database

SimpleDB and its underlying data model have been described previously in Section

2.3.3. It propagates the essence of ‘real’ cloud computing by providing massive

scalability and a strict pay-per-use policy. Furthermore, it is managed by the cloud

provider and there is no need for any installation, update or data indexing efforts.

On the one hand the goal of this approach was to fully substitute VRESCo’s relational

database with the SimpleDB service. On the other hand the objective was to support

5.1 Using Amazon SimpleDB as Database 64

the features that were offered by the initial database and that were already used by

the application. This was overall successfully achieved with the exception of a few

limitations (transaction support, etc.) that are going to be mentioned below.

The current implementation that enables the usage of SimpleDB as a substitution for

the previously used relational database can not be seen as a library. It is specialized

to work in conjunction with VRESCo’s data object model and has been adjusted to

the application in order to exhaust its possibilities and features. There is also no

existing ‘rdbms2simpledb’-library that aims for the same objective, and features the

same complexity and power of the current solution.

To integrate SimpleDB into VRESCo, which is implemented in the C# programming

language, and to use its services from within the application, parts of the ‘AWS SDK

for .NET’ library [12] offered by Amazon were used.

To improve the solutions performance and to maximize its efficiency, an additional

caching layer was implemented. This managed to significantly improve the applica-

tions performance, when using SimpleDB as the database and running the VRESCo

server from outside the Amazon cloud.

It has to be mentioned that an overall goal of this implementation was to mainly

focus on the application’s Data Access Layer (DAL). Further programming logic and

services were not meant to be adjusted in order to achieve better performance and

efficiency. The reason was to keep VRESCo separated from the decision of what

database is actually going to be used and to introduce the possibility to flexibly

choose the desired database paradigm (either an RDBMS or SimpleDB). This is

achieved by introducing a ‘switch’ (key=‘SimpleDB’ value=‘on’) in the applica-

tion’s configuration file, which makes the end user decide about the actual database

that is going to be used.

Besides the work on the DAL, also parts of VRESCo’s query engine were enhanced

in order to feature support for VQL (see Section 4.1.1) when using SimpleDB as the

database. It has to be mentioned that there is currently no full support for VQL in

conjunction with SimpleDB and only the processing for very basic VQL-queries is

possible.

5.1.1 Extending the Data Access Layer

VRESCo was initially built around a relational MSSQL [70] database. In order to

use SimpleDB’s key-value concept, the Data Access Layer had to be enhanced and

several Data Access Objects (DAO) [86] needed to be introduced.

5.1 Using Amazon SimpleDB as Database 65

The purpose of the DAO software design pattern is to hide actual data source im-

plementation details from the client. The interface exposed by the Data Access

Object to the clients does not change when the underlying data source implementa-

tion changes. This allows to make adjustments on the Data Access Layer in order

to support different storage schemes without affecting its clients or business compo-

nents [1].

VRESCo’s Data Access Layer currently exposes a generic interface (IGenericDAO)

with common methods for storing, retrieving and deleting objects from a database.

The interface and its featured methods were implemented for an abstract data object

in the AbstractGenericDAO to support the interaction with a relational MSSQL

database (see Figure 17).

Figure 17: Extended VRESCo DAO Model

Additionally, VRESCo contains several specific Data Access Objects for every object

type featured in its service model (see Section 4.1.2). Each of these model DAOs

extends the generic AbstractGenericDAO, and implements further methods that are

specific for the data access of the concerned model object and that are exposed by

its DAO-interface.

In Figure 17, an extract is shown that depicts the described relation of the DAOs

for the Service object: the ServiceDAO extends the AbstractGenericDAO and im-

plements the methods exposed by its IServiceDAO interface.

In order to feature SimpleDB as a database, an enhancement needed to be made

by introducing new DAO instances that specifically handle the interaction between

VRESCo’s business logic and the new database paradigm. This has been achieved

by adding a new generic DAO (AbstractGenericSimpleDbDAO), which implements

the exposed generic DAO-operations in conjunction with SimpleDB and represents

the core piece of this solution.

Besides that, for every featured object type, several model related DAOs had to be

introduced. These DAOs again handle the model object specific database operations,

but are intended to interact with using SimpleDB as data store. Figure 17 shows

the described extensions by depicting the newly introduced and SimpleDB specific

5.1 Using Amazon SimpleDB as Database 66

DAOs (AbstractGenericSimpleDbDAO and ServiceSimpleDbDAO) on the right side

of the outline of VRESCo’s initial Data Access Layer. Again, for just illustrational

purposes, only a small extract is shown by focusing on the Service type and leaving

the others out.

5.1.2 Mapping the Relational Data Model to SimpleDB

Within the original Data Access Layer, the properties of the relational model objects

and their relations were annotated with NHibernate attributes [19, 69] in order to

make this information accessible to NHibernate when interacting with the underlying

database. The objects are stored to and retrieved from the database according to

the annotated attributes.

With the introduction of SimpleDB as the database, the goal was to fully feature the

original relational service model. The challenge was to extend the Data Access Layer

in order to support the mapping of the existing relational data model to SimpleDB’s

rather primitive key-value paradigm. To achieve this, several NHibernate attributes

were reused in order to not need to alter the existing model objects and to be able

to handle the object relations within the new SimpleDB-DAOs.

The primary question was to determine how to generally save an object instance

within the SimpleDB data model, which was described earlier in Section 2.3.3. In

order to achieve the best result, several alternatives needed to be considered and eval-

uated according their scalability, efficiency, and danger to conflict with SimpleDB’s

limitations. There are basically three possible ways to store objects in SimpleDB.

The different approaches are depicted in Figure 18 and are described in the following:

• Use separate domains for every object type and store each object instance within

its own separate item in the corresponding domain. The effect is that the data

stored within SimpleDB is distributed over several domains. This approach is

recommended by Amazon because it promises to be efficient. Furthermore, it

is, compared to the other alternatives, more intuitive and less complex, which

allows the database operations to be simpler and even faster.

Currently, SimpleDB does not support cross-domain searches (e.g., joins within

a select-statement). This makes it necessary to carry out multiple consecutive

queries in order to query data that is distributed across several domains. The

result is that retrieving objects that for example relate to others, eventually

lacks in efficiency and in performance.

• Save all objects in only one domain (‘vresco’) and store each object instance

within its own separate item. This means that all objects (e.g., s1, s2, sc1,

5.1 Using Amazon SimpleDB as Database 67

Figure 18: Different Approaches to Store Objects into SimpleDB

etc.) are stored within different items. Every item additionally needs to carry

a prefix (the name of the object’s type) in order to carry the information about

its corresponding object type (e.g., ‘service 1’, ‘service 2’, ‘serviceCategory 1’,

etc.).

The major benefit of this approach would be to allow queries across multiple

object types. Opposed to the first approach, everything is saved in only one

domain and a single select-statement would be now able to query all stored

data.

Another benefit of this approach is also that it would allow better usage of

SimpleDB’s BatchPutAttributes operation. This would offer the possibility to

implement a persist operation that saves objects – even of different types –

in a single transaction at once (e.g., persisting an object together with its

cascadedSave-related property objects).

The drawback of this approach is that there is a danger of conflicting with

the limitations of SimpleDB’s domains: a maximum of 10 GB of data and 1

5.1 Using Amazon SimpleDB as Database 68

billion attributes per domain. Furthermore, it is also expected that a query is

carried out slower when issued upon a domain that alone contains all the data,

compared to the approach where the data is split upon several domains and

each of these only holds a fraction of the data.

• Save all objects in only one domain (‘vresco’) and only introduce items for the

different object types. This means that all objects (s1, s2, etc.) of the same

type (Service) are saved within the type’s item (‘service’). The information

of a particular object is stored as attribute-values within its type’s item.

In order to work, every attribute-key would need to carry a prefix to identify

its value as the information that belongs to a certain property of a certain

object instance (e.g., the name of a service s1 is assigned to the attribute-value

‘1 name’ within the item ‘service’).

For applications that require storing lots of data, this approach would eventu-

ally not work. The reasons are the earlier mentioned limitations of SimpleDB,

like the constraints that restrict the name lengths and the maximum number

of attribute name-value pairs per item.

Furthermore, this approach would require complex operations in order to map

the stored values to their corresponding objects and would potentially cause

a lot of overhead when saving and especially when retrieving data from the

database.

Although it does not enable to save and retrieve data belonging to different types

in a transactional manner, it was still decided to implement the first approach. The

reason is to avoid the danger of conflicting with SimpleDB’s limitations and to profit

from the efficiency of distributing the stored data across several domains.

Each domain holds data from objects that belong to the same type. A domain is

named according to the full class name (including the name of its package) of the

corresponding object type (e.g., ‘VReSCO.Contracts.Core.Service’).

The items holding data of specific object instances are named after the object’s

unique ID. For instance, a service with the ID ‘1234’ would be saved in its corre-

sponding item ‘1234’ within the domain ‘service’.

5.1.3 Mapping of NHibernate Attributed Properties

Model objects, their properties and relations are annotated with attributes in order to

help NHibernate map the objects with their representation in the MSSQL database.

With using SimpleDB as database these attributes are reused in order to achieve the

5.1 Using Amazon SimpleDB as Database 69

same relational mapping within the new DAOs and the underlying SimpleDB data

model.

Within the newly introduced SimpleDB-DAO a property of an object that is be-

ing stored to or retrieved from the database, is only handled under the condition

that it has been initialized and that the NHibernate attribute [Property] or one

of the NHibernate attributes describing a relation ([ManyToOne], [OneToMany] or

[ManyToMany]) is attached to it. The property’s information is stored as value to an

attribute-key that is named after either the property or a related name that is re-

trieved from the property’s NHibernate attribute and helps to unambiguously relate

to it.

As mentioned in Section 2.3.3, SimpleDB only allows to store exclusively textual

information as attribute-values. This means that for saving data types other than

strings, a certain encoding (and decoding) has to be considered.

Because there is no need for comparing or sorting the attribute-values when querying,

certain techniques presented in [68] for consigning the ordering of actual property

values to the lexicographical ordering of their string representations (e.g., negative

number offsets or zero-padding), were not used. The encoding is based on the prop-

erty’s type and is kept very simple. In most cases it affects primitive types and

therefore only consists of the value’s string representation.

In SimpleDB an object is stored within an item that is named after the string repre-

sentation of the object’s ID. When an object’s property holds an object of another

model type (e.g., [ManyToOne]), then the relation is commonly mapped by storing

the string representation of the referenced object’s ID as attribute-value within the

referencing object’s SimpleDB item. If the property holds a whole collection of such,

then multiple IDs are assigned to the attribute-key accordingly.

The opposite is done when an object is retrieved from the database. In order to build

it, the data for its properties is being read from SimpleDB. The assigned values are

created based on the retrieved strings and according to their corresponding property’s

type.

The mapping used with this implementation is not only based on the mentioned

NHibernate attributes, but also on several parameters that may be set for these.

For example, the property of an object will be checked prior to saving, if it has been

assigned a value, when its attribute demands it to be NotNull. Cascade (e.g., save or

delete) parameters on certain property attributes also propagate the corresponding

changes further to the referenced object.

Another very important attribute parameter that is considered when mapping the

5.1 Using Amazon SimpleDB as Database 70

relational model to SimpleDB is the declaration of a property relation as being

Inverse. A further comprehensive overview over the reused attributes that are

considered when mapping the data model is given in Table 5 and Table 6.

Attribute Description

[Id] This attribute marks the property as being the ID of the

object.

[Property] The annotated property contains only a ‘simple’ type (inte-

ger, float, date, etc.). It does not relate to other types. The

property carries a Column and eventually also a NotNull

parameter.

[OneToMany] Indicates that the property holds a collection of objects and

relates to another type from the model.

[ManyToOne] The property relates to another object by referencing a

model type. Additionally it may define the parameters

Cascade and NotNull.

[ManyToMany] The attribute defines a many-to-many relation between two

object types from the model. It contains a Column param-

eter.

Table 5: Essential Attributes for Property Mapping

The ID of an object is stored in a property that is marked with the [Id] attribute.

The generation of IDs is done within the AbstractGenericSimpleDbDAO when saving

an object into SimpleDB. The current implementation assigns a random numeric

value to the corresponding property.

An alternative would be to implement counters in order to assign definitely unique

and ascending values. There could either be only one counter for all types, or one

separate counter per type and domain. The drawback of the alternative approaches

may be additional overhead which would be caused when checking for the latest ID.

Although it is very unlikely, it needs to be mentioned that with the current imple-

mentation of assigning random IDs, the possibility of leading to clashes (assigning

the same random ID more than once) exists.

5.1.4 Mapping of Relations

If an object type inherits and extends another type and no specific DAO has been

implemented to take care of its database operations, then the mapping of the subtype

relation has to be handled within the generic AbstractGenericSimpleDbDAO.

When saving such an object into SimpleDB, it is stored into the domain of the

5.1 Using Amazon SimpleDB as Database 71

Attribute Description

[Column] The attribute belongs to the [ManyToOne] attribute and its

parameter Name defines the attribute-key when mapping the

property to SimpleDB. The NotNull parameter may also be

set.

[Key] The name of the mapped property is defined with the at-

tribute’s parameter Column. The attribute belongs to the

attributes [OneToMany] and [ManyToMany].

[Bag] The attribute belongs to the attributes [OneToMany] and

[ManyToMany] and may define the parameters Cascade and

Inverse. (The Inverse parameter only in conjunction

with the [OneToMany] attributes.)

[Element] This attribute is used to annotate that a property contains

a collection of strings. It defines the parameter Column,

which carries the name of the mapping.

Table 6: Further Attributes Considered for Property Mapping

upper type. Additionally its concrete type is stored as attribute-value under a key

‘ type’. (For example an object of the type PostCondition is saved into the domain

‘condition’ and has a string representation of its type (e.g., ‘PostCondition’) stored

under the attribute key ‘ type’.) When getting the object data out of the database,

the resulting object has to be explicitly cast into an object of the value of ‘ type’.

Before handling the mapping of relations, the meaning of an inverse relation has to be

understood. As seen in the previously presented tables, properties that are annotated

with [OneToMany] attributes and relate to other model types can be declared as

Inverse by setting the parameter in the [Bag] attribute that goes along with the

relation.

An inverse relation means that the property of an object, which contains another ob-

ject of the model, does not store the reference within the database representation of

the object. Rather the object referenced from the property stores the reference to the

object in which it is contained itself. The reference is stored under an attribute-key

with the name taken from the Column parameter of the [Key] attribute. The differ-

ences when mapping an inverse relation are shown in Table 7, where the mappings

of a sample model depicted in Figure 19 are shown.

Almost all of the [OneToMany] attributed relations in the current data model are

inverse relations and are additionally coupled with the Cascade parameter. This

cascaded operation ensures that changes are propagated and that the relation is

assuredly stored.

5.1 Using Amazon SimpleDB as Database 72

Figure 19: Relation Between ServiceCategory and Service

Domain Item Attribute-key Attribute-value

Relation mapping of ‘cat1’ (from Figure 19):

servicecategory 9876 name category1

services 1111, 2222

service 1111 name service1

2222 name service2

Inverse relation mapping of ‘cat1’ (from Figure 19):

servicecategory 9876 name category1

service 1111 name service1

category 9876

2222 name service2

category 9876

Table 7: Sample Mapping of Attributes

When getting the objects for an inversely related property out of the database,

they usually need to be queried within a separate step (e.g., for the services in the

ServiceCategory ‘cat1’ from Figure 19: select * from service where category

= 9876) because their relation is not stored within the object itself.

With many-to-many relations the references are stored on both sides of the relations.

This means that when retrieving a many-to-many related property of an object, it

is not sufficient to only get the properties stored within the same object. Rather the

comprehensive result is the aggregation of the references stored within the objects

on both sides of the relation. To retrieve all properties a similar query is carried out

as when getting the properties of an inverse relation.

After extending the DAO and handling the mapping of the data model, various other

techniques were implemented in order to improve the performance of the application.

These techniques will be presented in the following and include lazy loading when

retrieving properties, and various caching mechanisms.

5.1 Using Amazon SimpleDB as Database 73

5.1.5 Lazy Loading

As described in the previous section, when retrieving an object from SimpleDB,

several sequential requests are necessary in order to get all its property objects from

the database and to build it completely. The problem is that these several requests

have a negative effect on the performance and significantly slow down the application.

Furthermore, there may be also situations where these successive request can even

cause loops within the DAO operations (e.g., retrieving a ServiceCategory object

from the database – querying for its services – retrieving each of its Service objects

from the database – querying for their category – and so on), if not prevented.

In [42] the author presents the Lazy Loading design pattern, which is used to prevent

loading a huge number of related objects, when only one object is actually being re-

trieved. He writes that a “Lazy Load interrupts this loading process for the moment,

leaving a marker in the object structure so that if the data is needed it can be loaded

only when it is used” [42].

There are several ways to implement this pattern and the approach carried out in

this solution is the use of so-called ghost objects [42]. A ghost is the real object in a

partial state and without holding any data, except for its ID. When accessing one of

its fields for the first time, it loads its full state and the full data into its fields.

In this solution ghosts are always created when the property object of another object

is being retrieved from SimpleDB. The ghost that is assigned to the retrieved object’s

property is an instance of the property type with the appropriate ID and a ‘lazy-

loading’ flag being set. The ‘lazy-loading’ flag indicates that an object is a ghost and

that it has not been fully loaded yet. Again, the same is done when the property

holds a collection.� �
1 pub l i c Serv iceCategory Category

2 {
3 get

4 {
5 i f (category != nu l l && category . LazyLoad)

6 category = (new ServiceCategorySimpleDbDAO ()) . GetById (category . Id) ;

7

8 r e turn category ;

9 }
10 }� �

Listing 2: Getter for Property Holding a ServiceCategory Object

Because the objects are not fully loaded when retrieved from the database through

one of the DAO operations, the objects retrieve the full data on their own and

5.1 Using Amazon SimpleDB as Database 74

therefore need to know how and where to get it. This required the adaptation of

all the ‘getter’ operations of the properties within the types of the VRESCo data

model. Listing 2 shows the adapted get-method for a property that holds an object

of the type ServiceCategory. The new getter for a collection of Service objects is

shown in Listing 3.� �
1 pub l i c IL i s t<Serv i ce> Se r v i c e s

2 {
3 get

4 {
5 i f (s e r v i c e s != nu l l)

6 {
7 IL i s t<Serv i ce> tempServices = new List<Serv i ce >() ;

8

9 f o r each (var s in s e r v i c e s)

10 {
11 i f (s != nu l l)

12 {
13 i f (s . LazyLoad)

14 tempServices .Add((new ServiceSimpleDbDAO ()) . GetById (s . Id)) ;

15 e l s e

16 tempServices .Add(s) ;

17 }
18 }
19

20 s e r v i c e s = tempServices ;

21 }
22 e l s e

23 {
24 s e r v i c e s = new List<Serv i ce >() ;

25 }
26

27 r e turn s e r v i c e s ;

28 }
29 }� �

Listing 3: Getter for Property Holding a Collection of Service Objects

5.1.6 Caching with Memcached

In order to improve the performance when using SimpleDB as a database from within

a VRESCo server application that is not hosted inside the Amazon cloud, the pos-

sibility to cache the data retrieved from the database was implemented. A cache is

a mechanism used to store frequently used information in a readily accessible place

to reduce the need to retrieve that information repeatedly.

In [68] the author suggests to use Memcached in conjunction with SimpleDB in order

to achieve better results. Memcached [63] is a high-performance in-memory key-value

store that is widely used and helps to reduce repeated database queries. It uses a

client-server architecture, where the server maintains a key-value associative array,

5.1 Using Amazon SimpleDB as Database 75

which is populated and queried by the client. The cache is intended to store small

chunks of arbitrary data (e.g., strings, objects) and was designed to be very fast.

The interface of Memcached exposes basic functions for getting, setting and deleting

data from the cache. In this solution the data is cached right after it is retrieved from

the database (e.g., query with ‘select’ or getting an object). The basic functionality

of a cache is shown in Listing 4.� �
1 f unc t i on getById (id) {
2 // t ry to ge t from cache :

3 obj = memcached . get (id) ;

4

5 i f (! obj) {
6 // nothing found −> ge t from database :

7 obj = loadFromDatabase (id) ;

8

9 // s t o r e in to cache (f o r next ge t) :

10 memcached . put (id , obj) ;

11 }
12

13 r e turn obj ;

14 }� �
Listing 4: Basic Cache Functionality

After the data is cached, subsequent calls do not need to get it from the database

anymore, but rather consult the cache, which is sure faster. To keep the cached data

accurate and up-to-date, it needs to be deleted from the cache, if it changes for some

reason (e.g., a client updates the data in the database). This ensures that the client

is always forced to fetch the updated and most current data out of the database.

Every value or object stored into the cache is associated with a unique key. Addi-

tionally, Memcached also offers the possibility to define when the cached data is to

expire automatically. For the sake of simplicity this has not been considered in the

current implementation. The cached data is not meant to expire by itself, but is

rather deleted by the application when a possible update invalidates it.

Preventing the cache from getting ‘dirty’ requires keeping track of the cached data

and deleting it, if it does not represent the latest replication of the database data any-

more. Because Memcached is kept very simple and only features a rather primitive

model, the developer has to take care of this.

The current implementation keeps track of the cached data by storing lists with

references to it. Table 8 gives an overview over the data that is cached within

Memcached as part of this solution.

The lists that are being cached are necessary in order to delete all the cached objects

5.1 Using Amazon SimpleDB as Database 76

Cached data Key Value

objects the object’s ID the object

queries a query’s unique key the result of the query (as

list containing either the

resulting objects or only

the keys to their caches)

lists to keep track of the

cached objects that con-

tain properties with an

inverse relation

a concrete type a list containing the keys

of cached objects

lists to keep track of the

queries that have been

cached

a concrete type a list containing the keys

of cached queries

lists containing the types

that are inversely related

to other types

a concrete type a list containing types

that are inversely related

to the type

Table 8: Data Cached Within Memcached

or queries of a certain type, if certain database updates result in invalidating their

corresponding replications in the cache. If for example an object is updated because

some of its properties were changed, then all cached query results concerning the

object’s type need to be deleted from the cache. This mechanism is kept for efficiency

reasons rather simple and it is not examined if the concerned queries are really

affected or not.

There are two possible ways to cache the results of a query. One is to cache a list

containing the keys of the objects that have resulted from the query only, and to

cache each of these objects separately. The other possibility is to cache the query

result as a whole. The latter is done when the data retrieved through the query

is expected to be not in a complete state. For example, when only specific proper-

ties are requested within a query (e.g., select itemName() from services where

...) and the resulting objects are only partially loaded. The retrieved data is then

only processed within the scope of the query and there is no need to cache the partial

query result objects separately.

Another challenge of this solution was the caching of objects that are inversely related

to others. As described before, the information about such a relation is not stored

within the object that contains other objects in its property, but rather in the latter

objects itself. This means that if inverse relations are not treated separately and

one of the referenced objects changes, the property where these are referenced and

therefore the whole containing object eventually becomes invalid within the cache.

5.1 Using Amazon SimpleDB as Database 77

In this solution objects with inverse relations are cached too. Additionally, the key of

the object is also listed under the object’s type within a cached list, which is needed

in order to keep track of these objects and to be able to delete them, if they have

outdated because of updates that have affected their type.

To be able to check which types and consequently which objects are potentially

affected by the change of an object, there are other lists that store the inverse type

relations into the cache. If an object of an inversed type is updated, all the cached

data that eventually stores this object in an inverse way is deleted from the cache.

Not only the objects of the affected type, but also the query results issued and cached

upon it, are deleted.

If for example objects of the type ServiceRevision contain properties that store

collections of Tag objects and this relation is defined as inverse, then the reference for

this relation is stored within the individual ‘tag’ items in SimpleDB. Furthermore,

when these objects are cached, the relation from type Tag to ServiceRevision is

also stored in the just mentioned cached list. If an object of the type Tag changes

and is updated, then this list helps to track the relation to the ServiceRevision

objects, which are deleted from the cache.

The reason for explicitly needing to cache the relation between two inversely related

types is because although an object stores another one within its properties (e.g., a

Tag object stores a ServiceRevision), it is not known to the DAO of the type (Tag)

that the state of the object from the other type (ServiceRevision) depends on it

in the first place.

Because the many-to-many related properties of an object can contain the aggrega-

tion of the references which are stored on both sides of the relation, these many-to-

many relations are also handled as if they were inverse relations, and the objects are

cached and treated accordingly as described.

To better illustrate the purpose of caching the mentioned lists, the method for re-

moving the obsolete cache entries (query results and objects) of a certain type is

presented in ‘pseudo-code’ in Listing 5. This function is called from within the ab-

stract DAO (with the parameter deleteAllObjsOfType set to ‘false’) after persisting

or deleting an object from the database.

As with SimpleDB, the use of the additional caching option can be enabled and

disabled using a simple ‘switch’ (key=‘Memcached’ value=‘on’) from within the

application’s configuration file.

5.2 Using Amazon RDS as Database 78

� �
1 f unc t i on RemoveInvalidsFromCache (s t r i n g type , bool deleteAl lObjsOfType)

2 {
3 i f (deleteAl lObjsOfType)

4 {
5 l i s t = memcached . get (” ob j ”+type) ;

6 i f (l i s t)

7 {
8 f o r each (o in l i s t)

9 memcached . d e l e t e (o) ;

10

11 memcached . d e l e t e (” ob j ”+type) ;

12 }
13 }
14

15 l i s t = memcached . get (” qry ”+type) ;

16 i f (l i s t)

17 {
18 f o r each (q in l i s t)

19 memcached . d e l e t e (q) ;

20

21 memcached . d e l e t e (” qry ”+type) ;

22 }
23

24 l i s t = memcached . get (” r e l ”+type) ;

25 i f (l i s t)

26 {
27 memcached . d e l e t e (” r e l ”+type) ;

28

29 f o r each (t in l i s t)

30 RemoveInvalidsFromCache (t , t rue) ;

31 }
32 }� �

Listing 5: Method for Deleting Invalid Data from Cache

5.2 Using Amazon RDS as Database

Amazon launched the Relational Database Service during the work on SimpleDB as

the database for VRESCo. It has been decided to use and evaluate both database

approaches in this thesis.

To launch an Amazon RDS instance is fairly simple and can be done in a couple of

minutes. Because a fully-featured MySQL database is offered by the service, there

is almost no need to make any changes in the VRESCo implementation in order to

adapt it to the new database.

There are several ways to launch a concrete RDS instance. For this purpose Amazon

offers either several programming libraries or even a special command line tool,

which offers simple commands for managing the database instances. Another possible

way to launch, configure and manage an instance is to use the ‘AWS Management

Console’ [11], which features an intuitive web-based user interface.

5.2 Using Amazon RDS as Database 79

Figure 20: Launching an RDS Instance

When launching an RDS instance via this management console, the user is asked to

specify the details about the desired instance (e.g., instance type, allocated storage,

port). Furthermore, the user needs to enter a database instance identifier, and

the master username and password, which are then used to log on to the database

instance (see Figure 20).

Before the instance is launched, there is also the possibility to provide additional

configuration information and to specify certain management options (e.g., backup

retention period, time windows for backup/maintenance), which is shown in Figure

21. It may take a few minutes before the database instance is created by Amazon

and is ready to be used.

The management console also helps to authorize access to the RDS instance by

assigning it to a definable security group. This allows to specify either a single IP

address or a range of IP addresses that are allowed to connect to it. It is then possible

to connect to the instance that is made available through an endpoint of the form

mydbinstance.myaccountid.us-east-1.rds.amazonaws.com.� �
1 Data Source = mydbinstance . myaccountid . us−east −1. rds . amazonaws . com ;

Database = vresco ; User Id = myid ; Password = mypass� �
Listing 6: Example NHibernate Connection String

5.2 Using Amazon RDS as Database 80

Figure 21: Defining Management Options for an RDS Instance

To use the launched instance in conjunction with VRESCo, only a few lines of

the NHibernate configuration file need to be adjusted. Besides defining to use the

MySqlDataDriver and MySQL5Dialect, the NHibernate connection string needs to

be altered (see Listing 6).

Figure 22: Monitoring an RDS Instance

After that, VRESCo can be run as usual either from outside the Amazon cloud or

from within an Amazon EC2 instance (see following section). While running an

RDS database instance, it can be constantly monitored using the AWS Management

Console (see Figure 22). Further features and options of the Relational Database

5.3 Deploying VRESCo to Amazon EC2 81

Service were not used and are not within the scope of this thesis.

5.3 Deploying VRESCo to Amazon EC2

The previously introduced cloud database services can be used from an application

that runs outside the Amazon cloud. However, Amazon promises a better perfor-

mance due to lower latencies when using the services from within the cloud. Fur-

thermore, the application benefits from the various advantages that computing in the

cloud has to offer, like instant scalability and not needing to maintain local servers.

The process for launching an Amazon EC2 instance is similar to the launching of an

Amazon RDS instance. Amazon again offers several libraries, command line tools

and the intuitive web-based management console. The console can be used to search

for available Amazon Machine Images and to easily launch an EC2 instance (see

Figure 23).

Figure 23: Choosing an AMI

When specifying the details (instance type, AMI, etc.) of the instance that is going

to be launched, Amazon’s management console asks to define and assign the instance

to a security group. A security group defines certain rules for the firewall, which then

decides over the delivery of the incoming traffic for the instance.

5.3 Deploying VRESCo to Amazon EC2 82

Before launching, the user also needs to create a key pair. A key pair is a security

credential that is similar to a password and which is used to securely connect to

the EC2 instance. Once the key pair is created, the private key from the key pair

is needed to be saved locally by the user in order to use it to authenticate when

connecting to the instance.

When the instance is launched, it again takes a few minutes before it is ready and can

be used. To connect to it the user needs its corresponding endpoint address, which is

given after the successful launch of the EC2 instance. There are several possible ways

of how to connect and manage the server instance: the ‘Windows Remote Desktop’,

‘secure shell’ (ssh), and more.

After eventually configuring basic server settings and copying all the necessary ap-

plication data to the instance, the VRESCo application server can be run. There is

no need for any further adjustments in order to use the presented database solutions

because VRESCo runs within the EC2 instance just as on a local physical machine.

The EC2 instance can be monitored from within the AWS Management Console

and the user can connect to it at any time, if he needs to undertake any further

configuration or management tasks (see Figure 24).

Figure 24: Managing an EC2 Instance

As described in one of the previous sections, there are many further EC2 features

available. The evaluation of features like Elastic Block Storage, automatic scaling,

load balancing and many more is not within the scope of this thesis.

83

6 Evaluation

Before discussing a few limitations and shortcomings of the presented solution, an

example use case will be introduced in order to further evaluate the effects of the

undertaken architectural changes.

6.1 Quantitative Evaluation

In this subsection an example use case is going to be presented. The next step will be

to run this scenario upon different variations of the VRESCo architecture that were

presented and introduced during the work on this thesis. This will show the effects

of the different services and aspects of computing in the cloud, and their impacts on

the performance of the overall application.

Not only will the influences of the different databases (the initial relational database

and the Amazon cloud database services: SimpleDB and RDS) be measured, but it

will be also tested how the application behaves when it additionally runs from within

the cloud. Additionally the potential benefits of the rather sophisticated caching that

was implemented to support the application when it uses the SimpleDB service will

be quantified.

The performance and efficiency of the current implementation will be evaluated ac-

cording the time the use case requires to run through and the number of issued

database instructions. Each database service will be tested with and without the

combination of VRESCo running from within an Amazon EC2 instance.

6.1.1 Introducing Example Use Case

It has to be mentioned that the VRESCo implementation was not evaluated based

on the performance of specific operations (e.g., create service revision, append revi-

sion tags). Rather various operations that involve a wide range of the underlying

data model were covered in one comprehensive use case. This approach does not

give any detailed information about certain ‘bottlenecks’ within the application, but

the measurements are still representative of the performance characteristics of the

different architectural approaches.

To evaluate the current implementation, a use case resembling the infrastructure of

an example telecommunications company (TELCO) was used. Basically the services

exposed by VRESCo are used to store users and services to the registry. Furthermore,

6.1 Quantitative Evaluation 84

some concrete service revisions are added to the earlier defined services, and several

tags and QoS values are appended to these revisions. The example is reused from

[64,66] and its full listing can be found in Appendix B.

The following measurements are carried out five times and were then aggregated in

order to get a representative average value. The tests undertaken within the Amazon

cloud were carried out by using machines of the default instance type (small Amazon

EC2 instance) in the default region (‘US East’). The local tests were carried out on

an equivalent notebook computer with a 1.86 GHz processor and 1.25 GB of RAM

memory. The Internet connection of the local machine has a bandwidth of about 25

Mbit/s.

6.1.2 Use Case Running on SimpleDB

The first step was to substitute VRESCo’s original database with the Amazon Sim-

pleDB service. It is important to keep in mind that the SimpleDB service is used

from the local machine, which is outside the Amazon cloud. The results after running

the TELCO example are summarized in Figure 25.

Figure 25: Running the TELCO Use Case Using SimpleDB

Before introducing the Amazon cloud services, the TELCO example was run on the

local computer with the initial VRESCo implementation using a relational database

on the same machine, and needed 20 seconds to run through. It can be seen that

after substituting the database with the cloud database service, the processing takes

much longer. A significant loss in performance was expected because of the fact that

part of the central architecture has been swapped to a remote service and all the

crucial database instructions are carried out over the Internet.

For the sake of completeness it needs to be mentioned that the SimpleDB domains

6.1 Quantitative Evaluation 85

that were used to hold objects from the VRESCo data model, were created prior

the execution of the tests. The instruction for creating a domain takes a couple of

seconds and because all the applications using VRESCo are based upon the same

pre-defined data model, these domains were initially created outside the test scope.

After introducing the caching option using Memcached in order to prevent that

identical and avoidable database instructions are issued, the use case was run and

measured again. The results depicted in Figure 25 show that Memcached achieved

to significantly improve the applications performance compared to only relying on

SimpleDB. Already processed data from SimpleDB is replicated at the local cache

server and is retrieved without needing to issue a repeated request over the Internet

and eventually loosing performance.

Figure 26: SimpleDB Instructions When Running the TELCO Use Case

Figure 26 shows the number of database instructions that were issued upon SimpleDB

when the TELCO example was run. It can be seen that the use of Memcached enables

to spare more than half of the retrieving database instructions that were originally

necessary in this example.

It needs to be mentioned that this TELCO example does not reflect the caches full

potential and that even greater improvements were experienced with different use

cases during the work on this thesis. With use cases that heavily query the database,

even almost three quarters of the database instructions were able to be omitted.

After running the example with VRESCo using SimpleDB in conjunction with Mem-

cached, the caching statistics listed in Table 9 were observed. It can be seen that

there is a large number of total set commands compared to the actual db instructions

issued upon SimpleDB. This is the case because the statistic also counts the instruc-

tions that were issued in order to maintain the previously presented helper lists used

6.1 Quantitative Evaluation 86

number of set commands 3967

number of get commands 8906

hits on get commands 6221

misses on get commands 2685

number of delete commands 2027

hits on delete commands 1651

misses on delete commands 376

current bytes 250056

total bytes read 4883217

total bytes written 6161777

current number of items 133

total number of items 3967

Table 9: Memcached Statistics After Running the TELCO Use Case

for keeping track of the cached data. The same cause also affects the number of

delete commands.

The impact of these additionally cached lists presented in Section 5.1.6 also reflects

itself in the large number of total items that were cached during the processing –

opposed to the number of items cached after execution.

The ratio between the hits and misses of the issued ‘get’ commands means that the

vast majority of the requested data was found in the cache and did not needed to be

retrieved from SimpleDB.

Figure 27: Running the TELCO Use Case Within EC2 and Using SimpleDB

The next step was to run VRESCo and the TELCO example entirely from within the

Amazon cloud. In addition to using SimpleDB as the database, the VRESCo server

application was deployed into the cloud. A default machine instance was created in

6.1 Quantitative Evaluation 87

EC2 and the necessary application data was copied to it. The measured results from

running the TELCO use case are shown in Figure 27.

Amazon advertises the close integration of its services and even promises near-LAN

latency for the internal communication between them. Again, the results show that

the performance has improved and that by avoiding the Internet as potential ‘bot-

tleneck’ a significant enhancement was able.

When additionally running and using a Memcached server, the caching does not im-

prove the applications performance significantly. In some cases, as with the TELCO

example, it even slows down the execution. The reason is because of the mentioned

overhead that comes with the caching option. On EC2 the connection to SimpleDB

already has near-LAN latency and therefore this additional overhead is noticed.

6.1.3 Use Case Running on RDS

Next, the TELCO use case was tested against VRESCO running upon the Relational

Database Service. It can be seen in Figure 28 that the result from working with the

remote database while running the VRESCo application on a local machine is not

satisfying. The reason for this is clearly that the use of the remote service requires all

database operations to be carried out over the Internet. In order to still improve the

performance of this architectural scenario, various NHibernate caching and pooling

options could be tried.

Figure 28: Running the TELCO Use Case Using RDS

A further approach to receive a way better performance is to run VRESCo from

within an EC2 instance and to keep the communication between the application and

its database within the cloud. As can be seen in the figure, the time that is needed

to run the TELCO example almost reaches into the range of when running VRESCo

6.2 Limitations 88

and the underlying database locally.

6.1.4 Discussion

The Relational Database Service used by an application that is running from within

the cloud has provided the best measured results for the TELCO use case in terms of

performance. The efforts necessary for creating the instances are minimal and there

is no further need to make any changes within the original implementation in order

to be able to swap the database and use VRESCo as usual.

Although RDS seems to be the first choice for applications that rely on an RDBMS,

SimpleDB may also be a considerable alternative. As seen in the results of the

evaluation, the service is not able to compete with the performances achieved when

using the relational databases. Still, it was shown that the additional use of caching

or the deployment of the application into an Amazon EC2 instance can significantly

speed it up. Memcached helps to prevent the repeated issuing of already executed

retrieve-instructions, and the individual database instructions upon SimpleDB are

executed faster when issued by an application that runs in an EC2 instance from

within the cloud.

The evaluation has also shown that using RDS from outside the cloud leads to very

unsatisfying results in terms of performance. When running upon one of the rela-

tional databases, VRESCo uses NHibernate to interact with it. NHibernate causes

additional overhead in order to manage the relational features (e.g., transactions)

and it needs to be considered that all of these instructions are carried out over the

Internet, causing additional traffic and slowing down the application’s overall per-

formance.

6.2 Limitations

A few mentionable shortcomings of the current implementation will be listed in the

following. The intention is to note some of the current drawbacks of the solution

and to help to decide if the advantages of using a highly available and scalable cloud

service are still outweighing its shortcomings. Because the usage of Amazon RDS and

EC2 did not involve any extensive adaptation of the initial VRESCo implementation,

the following points mostly concern the usage of SimpleDB:

• Because SimpleDB is not a relational database, there is no support for trans-

actions as with when using NHibernate on top of the original database. The

6.2 Limitations 89

problem is that it is not possible to guarantee that the persisting of an object

that again contains other objects within its properties is going to be consistent.

The reason is that there is no way to persist an object and further cascaded

persists within a single transactional scope.

If the alternative approach with storing all SimpleDB items in only one Sim-

pleDB domain would have been realized, then there would be the possibility to

store several different objects with SimpleDB’s BatchPutAttributes instruction

at once.

• Since transactions are not supported, this also means that a commit termi-

nating such a NHibernate transaction does not ensure that the updated data

is also going to be persisted within SimpleDB. It is therefore necessary and

essential to explicitly state in the code to persist the altered data objects.

• Although SimpleDB was designed for extensive parallelization when saving,

getting and searching for data, the problem is that it is not fully possible to

benefit from this advantage. VRESCo’s current data model and the fact that

objects are stored within separate domains according to their types, limits

the scope of individual database operations. Consequently, several sequential

requests are necessary when retrieving objects from the database and it is not

possible to improve the efficiency by using parallel threads.

• Because a remote service is involved, unpredictable latencies that open a new

set of potential error conditions need to be considered (e.g., network connec-

tivity, request timeouts and remote errors due to overload or throttling). In

this case the database, which is one of the applications core layers, is accessed

via network. Fault tolerance, recovery and other techniques are necessary to

ensure consistency within the application.

Another point is that SimpleDB limits the maximum size of data that is re-

trievable from the database at once. This means that when reading a larger

block of data, it needs to be retrieved using multiple consecutive requests. All

this again requires additional work by the developer in order to make up for

the limitations and potential error conditions of the service.

• One of the already mentioned limitations is that the maximum length of a

SimpleDB attribute value is 1024 bytes. In order to handle longer values a

possible solution would be to use other cloud storage services from Amazon in

addition to SimpleDB, which were designed to store larger amounts of data. A

pointer to the saved data block is then stored as attribute value. The result is

that it would need two round trips when writing or reading the property data.

Another alternative approach would be to split the value and store each segment

into separate attributes. Additional splitting and joining logic would be needed.

6.2 Limitations 90

• The current implementation does not support the option deleteOrphan for

relations within the VRESCo data model. To ‘delete the orphan’ means that

not anymore referenced elements of a one-to-many relation should be deleted

from the database. The object contained within another one is not able to

exist without the containing object or at least its relation.

In the current implementation there is no support for tracking the internal

relations and it is not able to tell if a certain object is really not referenced

by any other object in the database. The result is that such an object is still

stored in SimpleDB, but is not used or referenced again. The only side-effect

to this is that it is still saved within the database and reserves space without

being actually needed.

• Furthermore, also not all of the exceptions thrown by NHibernate are sup-

ported. It is currently not able to check if all of the references to an object have

been removed, if it is being deleted. Therefore no ObjectDeletionException

will be thrown as it would be the case with NHibernate when using a relational

database.

• Only very restricted support for VQL (see Section 4.1.1) has been added at the

moment.

• When using the DAOs with SimpleDB it has been experienced that sometimes

a couple of reoccurring and eventually avoidable database instructions repeat

itself without any reason and that the concerned data has not changed in-

between. A possible explanation is that an object’s property which is marked

with Cascade propagates the database operation further to an unchanged prop-

erty object. In the next step this leads the object to be updated – even if there

have not been any changes to it.

A possible but very complex solution to overcome this issue would be to track

and detect the actual changes made upon an object, and to only persist these.

• Because the object IDs are assigned by random, they are neither starting with

‘0’ nor are they ascending. It is therefore not possible to check for example for

the first item of a certain type that was stored to the database.

• There is no fixed order among the multiple values of a SimpleDB attribute.

A certain object is not per se at the same position within the collection of a

property when it is retrieved from the database, as it has been when it was

stored. In other words, it is not guaranteed that the order of the objects within

the running application is the same as within the database.

91

7 Conclusion and Future Work

Besides the current hype around cloud computing, there are some considerable ben-

efits to it and it is conceivable that cloud computing services open whole new per-

spectives and possibilities. The goal of this thesis was to explore the chances and

advantages of deploying an existing application into the cloud. The Amazon Web

Services have been used to achieve this goal because of their popularity and the

general variety of their offering.

The focus was specifically on deploying VRESCo’s database layer into the cloud and

to substitute its original local database with an appropriate cloud database service

from Amazon. One of the approaches was to use Amazon SimpleDB, which is a

massively scalable key-value store. Although it is very flexible, the programmer has

a lot of work to do in order to compensate for its simplicity. Furthermore, not all

of the features from the original relational database are supported by the current

implementation.

The evaluation presented in Chapter 6 showed that very satisfying results were

achieved with Amazon’s RDS service, which offers a fully-featured relational database

in the cloud. To replace the local database with the remote database service, only a

small adjustment in the application’s configuration is necessary.

Summarizing it can be stated that SimpleDB is still a great alternative to the com-

monly used RDBMS. It is very powerful and many great advantages result from its

simplicity and flexibility (e.g., schema-less). Still it has to be kept in mind that it

is certainly not relational and that its usage may eventually involve more program-

ming efforts. This thesis has also shown that SimpleDB’s efficiency can be enhanced

drastically by using Memcached in conjunction with it.

When considering to deploy an application into the cloud, the ‘pros and cons’ have

to be individually considered (e.g., flexibility versus more work). For applications

that are designed from scratch, the key-value database in the cloud (SimpleDB) is

definitely a considerable and potentially beneficial option. Already existing applica-

tions (e.g., VRESCo) that are based on an RDBMS are eventually better off when

sticking to the Relational Database Service and running them from within Amazon

EC2.

7.1 Future Work

However, there are a couple of further possible optimizations and improvements that

have not been explored during this thesis. It would be interesting to see how the

7.1 Future Work 92

application’s performance is affected by the use of the further available EC2 options

(e.g., auto scaling, load balancing). When working with the remote RDS service, it

could be also examined if certain caching and pooling features of NHibernate have

any positive effects on the performance. Another interesting aspect would also be to

evaluate the use of cloud computing services according to their actual cost.

When using SimpleDB with VRESCo, it has to be kept in mind that a wise usage

of the DAOs is able to lessen the number of database operations that are about to

be performed, which certainly has an effect on the applications overall performance.

When analyzing VRESCo’s log files after running use cases, it can be seen that still

many redundant and reoccurring database instructions are carried out. A possible

task could be to improve VRESCo’s service implementations in order to use the

DAOs more efficiently.

Concerning the use of SimpleDB it would be also great to implement the possibility

of issuing several instructions within a single transactional scope. By working on the

data model, it would be eventually able to support both transactions and the com-

prehensive use of parallelization. Most of the currently issued database operations

are exclusively sequential and depend on each other. To be able to concurrently

issue multiple operations would make it possible to further benefit from SimpleDB’s

paradigm, which encourages to excessively make use of parallelization.

Another open point is the not yet realized full support for VQL queries when using

the DAOs based on SimpleDB.

93

Appendix

94

A List of Abbreviations

AMI Amazon Machine Image

API Application Programming Interface

AWS Amazon Web Services

CAGR Compound Annual Growth Rate

CPU Central Processing Unit

DAL Data Access Layer

DAO Data Access Object

DB Database

EBS Amazon Elastic Block Store

EC2 Amazon Elastic Compute Cloud

ECU EC2 Compute Unit

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ID Identification

IDC International Data Corporation

IP Internet Protocol

IT Information Technology

LAN Local Area Network

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured

Information Standards

PaaS Platform as a Service

QoS Quality of Service

RAM Random-Access Memory

RDBMS Relational Database Management System

RDS Amazon Relational Database Service

REST Representational State Transfer

S3 Amazon Simple Storage Service

SaaS Software as a Service

SimpleDB Amazon SimpleDB

SLA Service Level Agreement

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SoC Service-oriented Computing

SQL Structured Query Language

TELCO Telecommunications Company

UDDI Universal Description, Discovery and Integration

Continued on Next Page. . .

95

URI Uniform Resource Identifier

VM Virtual Machine

VQL VRESCo Querying Language

VRESCo Vienna Runtime Environment for Service-oriented Computing

W3C World Wide Web Consortium

WCF Windows Communication Foundation

WSDL Web Services Description Language

XML Extensible Markup Language

Table 10: List of Abbreviations

96

B Complete TELCO Use Case� �
1 //

2 // i n s e r t c a t e g o r i e s

3 //

4

5 var par tnerServ i ceCat = new Serv iceCategory (” Par tne rSe rv i c e ”) ;

6 var paymentServiceCat = new Serv iceCategory (”PaymentService ”) ;

7 var phoneNrPortingCat = new Serv iceCategory (”PhoneNumberPorting”) ;

8 var sh ipp ingServ i ceCat = new Serv iceCategory (” Sh ipp ingServ i c e ”) ;

9 var smsServiceCat = new Serv iceCategory (”SMSService”) ;

10 var supp l i e rCat = new Serv iceCategory (” Supp l i e r S e r v i c e ”) ;

11

12 //

13 // i n s e r t users

14 //

15

16 // crea t e a user group fo r t e l c o s

17 var telcoGroup = new UserGroup () ;

18 te lcoGroup . Groupname = ”TelcoPartners ” ;

19 te lcoGroup . Desc r ip t i on = ”This group c o n s i s t s o f c o l l a b o r a t i n g TELCOs” ;

20 te lcoGroup = userManager . CreateNewUserGroup (telcoGroup) ;

21

22 // crea t e t e l c o prov ide r s and i t s contac t persons

23 var t e l c o 1 = new User () ;

24 t e l c o 1 . Username = ”mobilkom” ;

25 t e l c o 1 . Password = ” sd jaksd ja skd ” ;

26 t e l c o 1 .Company = ”Mobilkom Austr ia ” ;

27 t e l c o 1 . Firstname = ”Ol ive r ” ;

28 t e l c o 1 . Lastname = ”Moser” ;

29 t e l c o 1 . Usergroup = telcoGroup ;

30 t e l c o 1 = userManager . CreateNewUser (t e l c o 1) ;

31

32 var t e l c o 2 = new User () ;

33 t e l c o 2 . Username = ”orange ” ;

34 t e l c o 2 . Password = ” dajsdkajsdad ” ;

35 t e l c o 2 .Company = ”Orange” ;

36 t e l c o 2 . Firstname = ”Rudolf ” ;

37 t e l c o 2 . Lastname = ”Moser” ;

38 t e l c o 2 . Usergroup = telcoGroup ;

39 t e l c o 2 = userManager . CreateNewUser (t e l c o 2) ;

40

41 var t e l c o 3 = new User () ;

42 t e l c o 3 . Username = ” tmobi le ” ;

43 t e l c o 3 . Password = ” f s k f a s d a f a s ” ;

44 t e l c o 3 .Company = ”T−Mobile ” ;

45 t e l c o 3 . Firstname = ”Hans” ;

46 t e l c o 3 . Lastname = ”Moser” ;

47 t e l c o 3 . Usergroup = telcoGroup ;

48 t e l c o 3 = userManager . CreateNewUser (t e l c o 3) ;

49

50 var sh ipp ingUser = new User () ;

51 sh ipp ingUser . Username = ”ups” ;

52 sh ipp ingUser . Password = ” dajsdkajsdad ” ;

53 sh ipp ingUser . Company = ”UPS” ;

54 sh ipp ingUser . Firstname = ”Hans” ;

55 sh ipp ingUser . Lastname = ” Schne l l s ende r ” ;

56 sh ipp ingUser . Usergroup = telcoGroup ;

57 sh ipp ingUser = userManager . CreateNewUser (sh ipp ingUser) ;

97

58

59 var supp l i e rUse r = new User () ;

60 supp l i e rUse r . Username = ”nokia ” ;

61 supp l i e rUse r . Password = ” dajsdkajsdad ” ;

62 supp l i e rUse r . Company = ”NOKIA” ;

63 supp l i e rUse r . Firstname = ”Hans” ;

64 supp l i e rUse r . Lastname = ”Wurst” ;

65 supp l i e rUse r . Usergroup = telcoGroup ;

66 supp l i e rUse r = userManager . CreateNewUser (supp l i e rUse r) ;

67

68 var paymentUser = new User () ;

69 paymentUser . Username = ”mastercard ” ;

70 paymentUser . Password = ” dajsdkajsdad ” ;

71 paymentUser . Company = ”Mastercard” ;

72 paymentUser . Firstname = ”Hans” ;

73 paymentUser . Lastname = ”Viekohl ” ;

74 paymentUser . Usergroup = telcoGroup ;

75 paymentUser = userManager . CreateNewUser (paymentUser) ;

76

77 var smsUser = new User () ;

78 smsUser . Username = ”smsat” ;

79 smsUser . Password = ”dajsdkajsdad ” ;

80 smsUser . Company = ”SMS.AT” ;

81 smsUser . Firstname = ”Hans” ;

82 smsUser . Lastname = ”Viekohl ” ;

83 smsUser . Usergroup = telcoGroup ;

84 smsUser = userManager . CreateNewUser (smsUser) ;

85

86 //

87 // i n s e r t t e s t user groups

88 //

89

90 var superUsers = new UserGroup () ;

91 superUsers . Desc r ip t i on = ”Advanced us e r s but not admins” ;

92 superUsers . Groupname = ”Superusers ” ;

93 superUsers = userManager . CreateNewUserGroup (superUsers) ;

94

95 var gue s t s = new UserGroup () ;

96 gues t s . Des c r ip t i on = ”Guest u s e r s ” ;

97 gues t s . Groupname = ”Guests ” ;

98 gues t s = userManager . CreateNewUserGroup (gue s t s) ;

99

100 var normalUsers = new UserGroup () ;

101 normalUsers . De sc r ip t i on = ”Normal u s e r s ” ;

102 normalUsers . Groupname = ”Users ” ;

103 normalUsers = userManager . CreateNewUserGroup (normalUsers) ;

104

105 var c r e a t e S e r v i c e s = new Claim (Claim . Resources . Serv i ce , Claim . ClaimTypes .

Create) ;

106 var r e adSe rv i c e s = new Claim (Claim . Resources . Serv i ce , Claim . ClaimTypes . Read

) ;

107 userManager . AddClaimToUserGroup (c r e a t eS e r v i c e s , te lcoGroup) ;

108 userManager . AddClaimToUserGroup (r eadServ i c e s , te lcoGroup) ;

109

110 //

111 // de f ine QoS model

112 //

113

114 var doubleConcept = new DataConcept () ;

98

115 doubleConcept .Name = ”double ” ;

116

117 var st r ingConcept = new DataConcept () ;

118 s t r ingConcept .Name = ” s t r i n g ” ;

119

120 var intConcept = new DataConcept () ;

121 intConcept .Name = ” in t ” ;

122

123 var boolConcept = new DataConcept () ;

124 boolConcept .Name = ”bool ” ;

125

126 var process ingTime = new Property () ;

127 process ingTime . Desc r ip t i on = ”Time needed to car ry out the operat i on f o r a

s p e c i f i c r eque s t ” ;

128 process ingTime .Name = ”Process ingTime” ;

129 process ingTime . DataConcept = doubleConcept ;

130

131 var wrappingTime = new Property () ;

132 wrappingTime . Desc r ip t i on = ”Time needed to wrap/unwrap the XML s t ru c tu r e o f

the r eque s t ” ;

133 wrappingTime .Name = ”WrappingTime” ;

134 wrappingTime . DataConcept = doubleConcept ;

135

136 var executionTime = new Property () ;

137 executionTime . Desc r ip t i on = ”Time needed to execute the s e r v i c e (

ProcessingTime + 2 ∗ WrappingTime) ” ;

138 executionTime .Name = Constants .QOS EXECUTION TIME;

139 executionTime . DataConcept = doubleConcept ;

140

141 var l a t ency = new Property () ;

142 l a t ency . Des c r ip t i on = ”Time needed f o r the SOAP reques t to reach i t s

d e s t i n a t i on ” ;

143 l a t ency .Name = Constants .QOS LATENCY;

144 l a t ency . DataConcept = doubleConcept ;

145

146 var responseTime = new Property () ;

147 responseTime . Desc r ip t i on = ”Time needed f o r sending a message from the

c l i e n t un t i l the re sponse r e tu rn s from to the s e r v i c e (ExecutionTime +

2 ∗ Latency) ” ;

148 responseTime .Name = Constants .QOS RESPONSE TIME;

149 responseTime . DataConcept = doubleConcept ;

150

151 var roundTripTime = new Property () ;

152 roundTripTime . Desc r ip t i on = ”Total Time consumed from i s s u i n g a reque s t on

the c l i e n t to r e c e i v i n g the r e s u l t from the s e r v i c e (ResponseTime + 2 ∗
WrappingTime) ” ;

153 roundTripTime .Name = ”RoundTripTime” ;

154 roundTripTime . DataConcept = doubleConcept ;

155

156 var throughput = new Property () ;

157 throughput . Des c r ip t i on = ”The number o f r eque s t s that can be handled per

second” ;

158 throughput .Name = Constants .QOSTHROUGHPUT;

159 throughput . DataConcept = doubleConcept ;

160

161 //

162 // i n s e r t some sample TELCO t e s t s e r v i c e s

163 //

164

99

165 // pub l i s h s e r v i c e 1

166 var aps1 = new Se rv i c e () ;

167 aps1 .Name = ”NumberPortingService ” ;

168 aps1 . Desc r ip t i on = ”A number por t ing s e r v i c e wr i t t en with Axis 1” ;

169

170 var po r t i ngSe rv i c e 1 = new Se rv i c eRev i s i on () ;

171 po r t i ngSe rv i c e 1 . S e rv i c e = aps1 ;

172 po r t i ngSe rv i c e 1 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :8081/ ax i s /

s e r v i c e s /NumberPortingService ?wsdl ” ;

173 po r t i ngSe rv i c e 1 . Contract = ”Por t ingSe rv i c e1 ” ;

174

175 var s r = pub l i s h e r . CreateNewService (aps1 , phoneNrPortingCat , t e l co1 ,

po r t i ngSe rv i c e 1) ;

176 phoneNrPortingCat = s r . S e rv i c e . Category ;

177

178 // pub l i s h s e r v i c e 3

179 var aps3 = new Se rv i c e () ;

180 aps3 .Name = ”Por t ingSe rv i c e3 ” ;

181 aps3 . Desc r ip t i on = ”Yet another number por t ing s e r v i c e wr i t t en with .NET/

WCF. ” ;

182

183 var po r t i ngSe rv i c e 3 = new Se rv i c eRev i s i on () ;

184 po r t i ngSe rv i c e 3 . S e rv i c e = aps3 ;

185 po r t i ngSe rv i c e 3 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30023/TELCO/

Por t ingSe rv i c e3 ?wsdl ” ;

186 po r t i ngSe rv i c e 3 . Contract = ”Por t ingSe rv i c e3 ” ;

187

188 pub l i s h e r . CreateNewService (aps3 , phoneNrPortingCat , t e l co2 , po r t i ngSe rv i c e 3

) ;

189

190 // pub l i s h s e r v i c e 5

191 var sh ipp ingSe rv i c e = new Se rv i c e () ;

192 sh i pp ingSe rv i c e .Name = ” Sh ipp ingServ i c e ” ;

193 sh i pp ingSe rv i c e . De sc r ip t i on = ”UPS Shipping s e r v i c e implementation . ” ;

194

195 var sh ipp ingServ iceRev = new Se rv i c eRev i s i on () ;

196 sh ipp ingServ iceRev . S e rv i c e = sh ipp ingSe rv i c e ;

197 sh ipp ingServ iceRev .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30032/PARTNER

/ Sh ipp ingServ i c e ?wsdl ” ;

198 sh ipp ingServ iceRev . Contract = ” Sh ipp ingServ i c e ” ;

199

200 pub l i s h e r . CreateNewService (sh ipp ingSe rv i c e , sh ipp ingServ iceCat ,

shippingUser , sh ipp ingServ iceRev) ;

201

202 // pub l i s h s e r v i c e 6

203 var paymentService = new Se rv i c e () ;

204 paymentService .Name = ”PaymentService ” ;

205 paymentService . Des c r ip t i on = ”A c r e d i t card payment s e r v i c e from Pay l i f e . ” ;

206

207 var paymentServiceRev = new Se rv i c eRev i s i on () ;

208 paymentServiceRev . S e rv i c e = paymentService ;

209 paymentServiceRev .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30033/PARTNER/

PaymentService ?wsdl ” ;

210 paymentServiceRev . Contract = ”PaymentService ” ;

211

212 pub l i s h e r . CreateNewService (paymentService , paymentServiceCat , paymentUser ,

paymentServiceRev) ;

213

214 // pub l i s h s e r v i c e 7

100

215 var s upp l i e r S e r v i c e = new Se rv i c e () ;

216 s upp l i e r S e r v i c e .Name = ” Supp l i e r S e r v i c e ” ;

217 s upp l i e r S e r v i c e . Des c r ip t i on = ”A Supp l i e r s e r v i c e from another TELCO. ” ;

218

219 var supp l i e rSe rv i c eRev = new Se rv i c eRev i s i on () ;

220 supp l i e rSe rv i c eRev . S e rv i c e = supp l i e r S e r v i c e ;

221 supp l i e rSe rv i c eRev .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30031/PARTNER

/ Supp l i e r S e r v i c e ?wsdl ” ;

222 supp l i e rSe rv i c eRev . Contract = ” Supp l i e r S e r v i c e ” ;

223

224 pub l i s h e r . CreateNewService (s upp l i e r S e r v i c e , suppl ie rCat , supp l i e rUser ,

supp l i e rSe rv i c eRev) ;

225

226 // pub l i s h s e r v i c e 8

227 var smsServ ice = new Se rv i c e () ;

228 smsServ ice .Name = ”SMSService” ;

229 smsServ ice . Des c r ip t i on = ”An SMS s e r v i c e from sms . at . ” ;

230

231 var smsServiceRev1 = new Se rv i c eRev i s i on () ;

232 smsServiceRev1 . S e rv i c e = smsServ ice ;

233 smsServiceRev1 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30011/SMSAT/

SMSService1 ?wsdl ” ;

234 smsServiceRev1 . Contract = ” ISMSService ” ;

235 smsServiceRev1 = pub l i s h e r . CreateNewService (smsService , smsServiceCat ,

smsUser , smsServiceRev1) ;

236 smsServiceCat = s r . S e rv i c e . Category ;

237

238 // de f ine some tag s f o r the SMS s e r v i c e

239 var t1 = new RevisionTag () ;

240 t1 . Property = new Property (”sms s e r v i c e ”) ;

241

242 var t2 = new RevisionTag () ;

243 t2 . Property = new Property (”messaging ”) ;

244

245 pub l i s h e r . AppendRevisionTags (smsServiceRev1 . Id , new RevisionTag [] { t1 , t2 })
;

246

247 // pub l i s h s e r v i c e 9

248 var smsServ ice2 = new Se rv i c e () ;

249 smsServ ice2 .Name = ”SMSService” ;

250 smsServ ice2 . Desc r ip t i on = ”An SMS s e r v i c e from Mobilkom . ” ;

251

252 var smsServiceRev2 = new Se rv i c eRev i s i on () ;

253 smsServiceRev2 . S e rv i c e = smsServ ice ;

254 smsServiceRev2 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30012/TELCO/

SMSService2 ?wsdl ” ;

255 smsServiceRev2 . Contract = ” ISMSService ” ;

256

257 smsServiceRev2 = pub l i s h e r . CreateNewService (smsService2 , smsServiceCat ,

t e l co1 , smsServiceRev2) ;

258

259 Se rv i c eRev i s i on smsServiceRev3 = new Se rv i c eRev i s i on () ;

260 smsServiceRev3 . S e rv i c e = smsServ ice ;

261 smsServiceRev3 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30013/TELCO/

SMSService3 ?wsdl ” ;

262 smsServiceRev3 . Contract = ” ISMSService ” ;

263

264 smsServiceRev3 = pub l i s h e r . AddRevision (smsServiceRev2 , smsServiceRev3) ;

265

101

266 ////////////////////////////

267 //// Pub l i sh case s tudy ver s ion graph inc l ud ing tag s and QoS a t t r i b u t e s

268 ////////////////////////////

269

270 //// v1

271 //// / \
272 //// v3 v2

273 //// | |
274 //// | v4

275 //// | |
276 //// | v5

277 //// v6

278

279 var po r t i n gSe rv i c e = new Se rv i c e () ;

280 po r t i n gSe rv i c e .Name = ”NumberPortingService ” ;

281 po r t i n gSe rv i c e . Des c r ip t i on = ”A number por t ing s e r v i c e f o r our case study” ;

282

283 // now we i n s e r t the r e v i s i o n s and chain them

284 // i n i t i a l ve r s ion

285 var v1 = new Se rv i c eRev i s i on () ;

286 v1 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :8081/ ax i s / s e r v i c e s /

NumberPortingService ?wsdl ” ;

287 v1 . Contract = ” de f au l t ” ;

288 v1 . Binding = ” de f au l t ” ;

289 v1 = pub l i s h e r . CreateNewService (po r t ingSe rv i c e , phoneNrPortingCat , t e l co3 ,

v1) ;

290

291 // v2

292 var v2 = new Se rv i c eRev i s i on () ;

293 v2 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :8081/ ax i s / s e r v i c e s /

NumberPortingService2 ?wsdl ” ;

294 v2 . Contract = ” de f au l t ” ;

295 v2 . Binding = ” de f au l t ” ;

296 v2 = pub l i s h e r . AddRevision (v1 , v2) ;

297

298 // v3

299 var v3 = new Se rv i c eRev i s i on () ;

300 v3 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30023/TELCO/Por t ingSe rv i c e3 ?

wsdl ” ;

301 v3 . Contract = ” de f au l t ” ;

302 v3 . Binding = ” de f au l t ” ;

303 v3 = pub l i s h e r . AddRevision (v1 , v3) ;

304

305 // v4

306 var v4 = new Se rv i c eRev i s i on () ;

307 v4 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30024/TELCO/Por t ingSe rv i c e4 ?

wsdl ” ;

308 v4 . Contract = ” de f au l t ” ;

309 v4 . Binding = ” de f au l t ” ;

310 v4 = pub l i s h e r . AddRevision (v2 , v4) ;

311

312 // v5

313 var v5 = new Se rv i c eRev i s i on () ;

314 v5 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30025/TELCO/Por t ingSe rv i c e5 ?

wsdl ” ;

315 v5 . Contract = ” de f au l t ” ;

316 v5 . Binding = ” de f au l t ” ;

317 v5 = pub l i s h e r . AddRevision (v4 , v5) ;

318

102

319 // v6

320 var v6 = new Se rv i c eRev i s i on () ;

321 v6 .Wsdl = ”http :// vre sco . v i t a l ab . tuwien . ac . at :30026/TELCO/Por t ingSe rv i c e6 ?

wsdl ” ;

322 v6 . Contract = ” de f au l t ” ;

323 v6 . Binding = ” de f au l t ” ;

324 v6 = pub l i s h e r . AddRevision (v3 , v6) ;

325

326 // s e t s e r v i c e

327 s e r v i c e = v6 . S e rv i c e ;

328

329 //

330 // i n s e r t custom tag s

331 //

332

333 // tag s f o r v1

334 var idTag = new RevisionTag () ;

335 idTag . Property = new Property (”v1”) ;

336 var stableTag = new RevisionTag () ;

337 stableTag . Property = new Property (RevisionTag . DefaultTags .STABLE. ToString ()

) ;

338 var jaxrpcTag = new RevisionTag () ;

339 jaxrpcTag . Property = new Property (” jaxrpc ”) ;

340 pub l i s h e r . AppendRevisionTags (v1 . Id , new RevisionTag [] { idTag , stableTag ,

jaxrpcTag }) ;
341

342 // tag s f o r v2

343 idTag = new RevisionTag () ;

344 idTag . Property = new Property (”v2”) ;

345 var altTag = new RevisionTag () ;

346 altTag . Property = new Property (” a l t ”) ;

347 pub l i s h e r . AppendRevisionTags (v2 . Id , new RevisionTag [] { idTag , altTag ,

jaxrpcTag }) ;
348

349 // tag s f o r v3

350 idTag = new RevisionTag () ;

351 idTag . Property = new Property (”v3”) ;

352 var wcfTag = new RevisionTag () ;

353 wcfTag . Property = new Property (”wcf”) ;

354 pub l i s h e r . AppendRevisionTags (v3 . Id , new RevisionTag [] { idTag , wcfTag }) ;
355

356 // tag s f o r v4

357 idTag = new RevisionTag () ;

358 idTag . Property = new Property (”v4”) ;

359 pub l i s h e r . AppendRevisionTags (v4 . Id , new RevisionTag [] { idTag , altTag ,

wcfTag }) ;
360

361 // tag s f o r v5

362 idTag = new RevisionTag () ;

363 idTag . Property = new Property (”v5”) ;

364 pub l i s h e r . AppendRevisionTags (v5 . Id , new RevisionTag [] { idTag , altTag ,

wcfTag }) ;
365

366 // tag s f o r v6

367 idTag = new RevisionTag () ;

368 idTag . Property = new Property (”v6”) ;

369 pub l i s h e r . AppendRevisionTags (v6 . Id , new RevisionTag [] { idTag , wcfTag }) ;
370

371 //

103

372 // i n s e r t random QoS va lue s

373 //

374

375 var random = new Random(DateTime .Now. Mi l l i s e c ond) ;

376

377 // i n s e r t qos va lue s f o r v1

378 var executionTimeQoS = new RevisionQoS () ;

379 executionTimeQoS . Property = executionTime ;

380 executionTimeQoS . DoubleValue = random . Next (1000) ;

381 pub l i s h e r . AppendRevisionQoS (v1 . Id , executionTimeQoS) ;

382

383 var latencyQoS = new RevisionQoS () ;

384 latencyQoS . Property = la t ency ;

385 latencyQoS . DoubleValue = random . Next (1000) ;

386 pub l i s h e r . AppendRevisionQoS (v1 . Id , latencyQoS) ;

387

388 var responseTimeQoS = new RevisionQoS () ;

389 responseTimeQoS . Property = responseTime ;

390 responseTimeQoS . DoubleValue = random . Next (1000) ;

391 pub l i s h e r . AppendRevisionQoS (v1 . Id , responseTimeQoS) ;

392

393 var throughputQoS = new RevisionQoS () ;

394 throughputQoS . Property = throughput ;

395 throughputQoS . DoubleValue = random . Next (1000) ;

396 pub l i s h e r . AppendRevisionQoS (v1 . Id , throughputQoS) ;

397

398 // i n s e r t qos va lue s f o r v2

399 executionTimeQoS = new RevisionQoS () ;

400 executionTimeQoS . Property = executionTime ;

401 executionTimeQoS . DoubleValue = random . Next (1000) ;

402 pub l i s h e r . AppendRevisionQoS (v2 . Id , executionTimeQoS) ;

403

404 latencyQoS = new RevisionQoS () ;

405 latencyQoS . Property = la t ency ;

406 latencyQoS . DoubleValue = random . Next (1000) ;

407 pub l i s h e r . AppendRevisionQoS (v2 . Id , latencyQoS) ;

408

409 responseTimeQoS = new RevisionQoS () ;

410 responseTimeQoS . Property = responseTime ;

411 responseTimeQoS . DoubleValue = random . Next (1000) ;

412 pub l i s h e r . AppendRevisionQoS (v2 . Id , responseTimeQoS) ;

413

414 throughputQoS = new RevisionQoS () ;

415 throughputQoS . Property = throughput ;

416 throughputQoS . DoubleValue = random . Next (1000) ;

417 pub l i s h e r . AppendRevisionQoS (v2 . Id , throughputQoS) ;

418

419 // i n s e r t qos va lue s f o r v3

420 executionTimeQoS = new RevisionQoS () ;

421 executionTimeQoS . Property = executionTime ;

422 executionTimeQoS . DoubleValue = random . Next (1000) ;

423 pub l i s h e r . AppendRevisionQoS (v3 . Id , executionTimeQoS) ;

424

425 latencyQoS = new RevisionQoS () ;

426 latencyQoS . Property = la t ency ;

427 latencyQoS . DoubleValue = random . Next (1000) ;

428 pub l i s h e r . AppendRevisionQoS (v3 . Id , latencyQoS) ;

429

430 responseTimeQoS = new RevisionQoS () ;

104

431 responseTimeQoS . Property = responseTime ;

432 responseTimeQoS . DoubleValue = random . Next (1000) ;

433 pub l i s h e r . AppendRevisionQoS (v3 . Id , responseTimeQoS) ;

434

435 throughputQoS = new RevisionQoS () ;

436 throughputQoS . Property = throughput ;

437 throughputQoS . DoubleValue = random . Next (1000) ;

438 pub l i s h e r . AppendRevisionQoS (v3 . Id , throughputQoS) ;

439

440 // i n s e r t qos va lue s f o r v4

441 executionTimeQoS = new RevisionQoS () ;

442 executionTimeQoS . Property = executionTime ;

443 executionTimeQoS . DoubleValue = random . Next (1000) ;

444 pub l i s h e r . AppendRevisionQoS (v4 . Id , executionTimeQoS) ;

445

446 latencyQoS = new RevisionQoS () ;

447 latencyQoS . Property = la t ency ;

448 latencyQoS . DoubleValue = random . Next (1000) ;

449 pub l i s h e r . AppendRevisionQoS (v4 . Id , latencyQoS) ;

450

451 responseTimeQoS = new RevisionQoS () ;

452 responseTimeQoS . Property = responseTime ;

453 responseTimeQoS . DoubleValue = random . Next (1000) ;

454 pub l i s h e r . AppendRevisionQoS (v4 . Id , responseTimeQoS) ;

455

456 throughputQoS = new RevisionQoS () ;

457 throughputQoS . Property = throughput ;

458 throughputQoS . DoubleValue = random . Next (1000) ;

459 pub l i s h e r . AppendRevisionQoS (v4 . Id , throughputQoS) ;

460

461 // i n s e r t qos va lue s f o r v5

462 executionTimeQoS = new RevisionQoS () ;

463 executionTimeQoS . Property = executionTime ;

464 executionTimeQoS . DoubleValue = random . Next (1000) ;

465 pub l i s h e r . AppendRevisionQoS (v5 . Id , executionTimeQoS) ;

466

467 latencyQoS = new RevisionQoS () ;

468 latencyQoS . Property = la t ency ;

469 latencyQoS . DoubleValue = random . Next (1000) ;

470 pub l i s h e r . AppendRevisionQoS (v5 . Id , latencyQoS) ;

471

472 responseTimeQoS = new RevisionQoS () ;

473 responseTimeQoS . Property = responseTime ;

474 responseTimeQoS . DoubleValue = random . Next (1000) ;

475 pub l i s h e r . AppendRevisionQoS (v5 . Id , responseTimeQoS) ;

476

477 throughputQoS = new RevisionQoS () ;

478 throughputQoS . Property = throughput ;

479 throughputQoS . DoubleValue = random . Next (1000) ;

480 pub l i s h e r . AppendRevisionQoS (v5 . Id , throughputQoS) ;

481

482 // i n s e r t qos va lue s f o r v6

483 executionTimeQoS = new RevisionQoS () ;

484 executionTimeQoS . Property = executionTime ;

485 executionTimeQoS . DoubleValue = random . Next (1000) ;

486 pub l i s h e r . AppendRevisionQoS (v6 . Id , executionTimeQoS) ;

487

488 latencyQoS = new RevisionQoS () ;

489 latencyQoS . Property = la t ency ;

105

490 latencyQoS . DoubleValue = random . Next (1000) ;

491 pub l i s h e r . AppendRevisionQoS (v6 . Id , latencyQoS) ;

492

493 responseTimeQoS = new RevisionQoS () ;

494 responseTimeQoS . Property = responseTime ;

495 responseTimeQoS . DoubleValue = random . Next (1000) ;

496 pub l i s h e r . AppendRevisionQoS (v6 . Id , responseTimeQoS) ;

497

498 throughputQoS = new RevisionQoS () ;

499 throughputQoS . Property = throughput ;

500 throughputQoS . DoubleValue = random . Next (1000) ;

501 pub l i s h e r . AppendRevisionQoS (v6 . Id , throughputQoS) ;� �
Listing 7: Complete Listing of the TELCO Use Case (from [64,66])

REFERENCES 106

References

[1] Deepak Alur, Dan Malks, John Crupi, Grady Booch, and Martin Fowler. Core

J2EE Patterns: Best Practices and Design Strategies. Sun Microsystems, Inc.,

Mountain View, CA, USA, 2003.

[2] Amazon Web Services Developer Community. Structured Data Stor-

age. http://developer.amazonwebservices.com/connect/entry.jspa?

externalID=3087. Visited on 01-November-2010.

[3] Amazon.com, Inc. Amazon Elastic Compute Cloud (Amazon EC2). http:

//aws.amazon.com/ec2. Visited on 01-November-2010.

[4] Amazon.com, Inc. Amazon Elastic Compute Cloud: Developer Guide.

http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-dg.pdf. Visited on

01-November-2010.

[5] Amazon.com, Inc. Amazon Relational Database Service (Amazon RDS). http:

//aws.amazon.com/rds. Visited on 01-November-2010.

[6] Amazon.com, Inc. Amazon Relational Database Service: Developer Guide.

http://awsdocs.s3.amazonaws.com/RDS/latest/rds-dg.pdf. Visited on

01-November-2010.

[7] Amazon.com, Inc. Amazon Simple Storage Service (Amazon S3). http://

aws.amazon.com/s3. Visited on 01-November-2010.

[8] Amazon.com, Inc. Amazon SimpleDB. http://aws.amazon.com/simpledb.

Visited on 01-November-2010.

[9] Amazon.com, Inc. Amazon SimpleDB: Developer Guide. http://awsdocs.

s3.amazonaws.com/SDB/latest/sdb-dg.pdf. Visited on 01-November-2010.

[10] Amazon.com, Inc. Amazon Web Services. http://aws.amazon.com. Visited

on 01-November-2010.

[11] Amazon.com, Inc. AWS Management Console. http://aws.amazon.com/

console. Visited on 01-November-2010.

[12] Amazon.com, Inc. AWS SDK for .NET. http://aws.amazon.com/sdkfornet.

Visited on 01-November-2010.

[13] Amazon.com, Inc. Case Studies. http://aws.amazon.com/solutions/

case-studies. Visited on 01-November-2010.

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=3087
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=3087
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-dg.pdf
http://aws.amazon.com/rds
http://aws.amazon.com/rds
http://awsdocs.s3.amazonaws.com/RDS/latest/rds-dg.pdf
http://aws.amazon.com/s3
http://aws.amazon.com/s3
http://aws.amazon.com/simpledb
http://awsdocs.s3.amazonaws.com/SDB/latest/sdb-dg.pdf
http://awsdocs.s3.amazonaws.com/SDB/latest/sdb-dg.pdf
http://aws.amazon.com
http://aws.amazon.com/console
http://aws.amazon.com/console
http://aws.amazon.com/sdkfornet
http://aws.amazon.com/solutions/case-studies
http://aws.amazon.com/solutions/case-studies

REFERENCES 107

[14] Amazon.com, Inc. Amazon Web Services: Overview of Security

Processes. http://media.amazonwebservices.com/pdf/AWS_Security_

Whitepaper.pdf, 2010. Visited on 01-November-2010.

[15] Amazon.com, Inc. Overview of Amazon Web Services. http://media.

amazonwebservices.com/AWS_Overview.pdf, 2010. Visited on 01-November-

2010.

[16] Animoto Inc. Amazon.com CEO Jeff Bezos on Animoto. http://animoto.

com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto. Visited on

01-November-2010.

[17] Animoto Inc. Animoto – The End of Slideshows. http://animoto.com. Visited

on 01-November-2010.

[18] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,

and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Comput-

ing. http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.

pdf, February 2009. Visited on 01-November-2010.

[19] Christian Bauer and Gavin King. Java Persistence with Hibernate. Manning

Publications Co., Greenwich, CT, USA, 2006.

[20] C. Baun, M. Kunze, J. Nimis, and S. Tai. Cloud Computing – Web-basierte

dynamische IT-Services. Springer-Verlag Berlin Heidelberg, 2010.

[21] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is

the Weather tomorrow?: Towards a Benchmark for the Cloud. In Proceedings

of the Second International Workshop on Testing Database Systems, DBTest

’09, pages 9:1–9:6, New York, NY, USA, 2009. ACM.

[22] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim

Kraska. Building a Database on S3. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, SIGMOD ’08, pages 251–264,

New York, NY, USA, 2008. ACM.

[23] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and

Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Gener. Comput.

Syst., 25(6):599–616, 2009.

[24] Nicholas Carr. The Big Switch: Rewiring the World, from Edison to Google.

W.W. Norton & Company, 2008.

http://media.amazonwebservices.com/pdf/AWS_Security_Whitepaper.pdf
http://media.amazonwebservices.com/pdf/AWS_Security_Whitepaper.pdf
http://media.amazonwebservices.com/AWS_Overview.pdf
http://media.amazonwebservices.com/AWS_Overview.pdf
http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto
http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto
http://animoto.com
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

REFERENCES 108

[25] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Stad-

don, Ryusuke Masuoka, and Jesus Molina. Controlling Data in the Cloud:

Outsourcing Computation without Outsourcing Control. In CCSW ’09: Pro-

ceedings of the 2009 ACM workshop on Cloud computing security, pages 85–90,

New York, NY, USA, 2009. ACM.

[26] Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J. Kistler,

P. P. S. Narayan, Chuck Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam

Silberstein, Utkarsh Srivastava, and Raymie Stata. Building a Cloud for Yahoo!

IEEE Data Eng. Bull., 32(1):36–43, 2009.

[27] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal

Mukhi, and Sanjiva Weerawarana. Unraveling the Web Services Web: An

Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2):86–

93, 2002.

[28] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An Elastic

Transactional Data Store in the Cloud. In Proceedings of the 2009 conference

on Hot topics in cloud computing, HotCloud ’09, Berkeley, CA, USA, 2009.

USENIX Association.

[29] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good.

The Cost of Doing Science on the Cloud: The Montage Example. In Proceedings

of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 50:1–

50:12, Piscataway, NJ, USA, 2008. IEEE Press.

[30] Dave Durkee. Why Cloud Computing Will Never Be Free. Queue, 8(4):20–29,

2010.

[31] Schahram Dustdar and Martin Treiber. A View Based Analysis on Web Service

Registries. Distrib. Parallel Databases, 18(2):147–171, 2005.

[32] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, M. Luo, and

T. Newling. Patterns: Service-Oriented Architecture and Web Services. http:

//www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf, 2004. Visited on

01-November-2010.

[33] Justin R. Erenkrantz, Michael Gorlick, Girish Suryanarayana, and Richard N.

Taylor. From Representations to Computations: The Evolution of Web Ar-

chitectures. In ESEC-FSE ’07: Proceedings of the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering, pages 255–264, New York, NY,

USA, 2007. ACM.

[34] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.

Prentice Hall Professional Technical Reference, 2005.

http://www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf

REFERENCES 109

[35] Thomas Erl. SOA – Entwurfsprinzipien fuer serviceorientierte Architektur.

Addison-Wesley Verlag, 2008.

[36] Roy T. Fielding and Richard N. Taylor. Principled Design of the Modern Web

Architecture. ACM Trans. Internet Technol., 2(2):115–150, 2002.

[37] Organization for the Advancement of Structured Information Standards (OA-

SIS). UDDI Version 3.0.2 Specification. http://uddi.org/pubs/uddi_v3.

htm, 2004. Visited on 01-November-2010.

[38] Organization for the Advancement of Structured Information Standards (OA-

SIS). ebXML Registry Services and Protocols Version 3.0. http://docs.

oasis-open.org/regrep/v3.0/specs/regrep-rs-3.0-os.pdf, 2005. Vis-

ited on 01-November-2010.

[39] Organization for the Advancement of Structured Information Standards (OA-

SIS). Reference Model for Service Oriented Architecture 1.0. http://docs.

oasis-open.org/soa-rm/v1.0/soa-rm.pdf, 2006. Visited on 01-November-

2010.

[40] Ian Foster. What is the Grid? A Three Point Checklist. http://dlib.cs.

odu.edu/WhatIsTheGrid.pdf, 2002. Visited on 01-November-2010.

[41] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. Int. J. High Perform. Comput. Appl.,

15(3):200–222, 2001.

[42] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[43] Google, Inc. Google Docs – Online documents, spreadsheets, presentations, sur-

veys, file storage and more. http://docs.goole.com. Visited on 01-November-

2010.

[44] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web

services architecture. IBM Syst. J., 41(2):170–177, 2002.

[45] World Wide Web Consortium (W3C) Web Services Architecture Working

Group. Web Services Architecture. http://www.w3.org/TR/ws-arch, 2004.

Visited on 01-November-2010.

[46] Scott Hazelhurst. Scientific computing using virtual high-performance comput-

ing: a case study using the Amazon Elastic Computing Cloud. In Proceedings

of the 2008 annual research conference of the South African Institute of Com-

puter Scientists and Information Technologists on IT research in developing

countries: riding the wave of technology, SAICSIT ’08, pages 94–103, New

York, NY, USA, 2008. ACM.

http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://docs.oasis-open.org/regrep/v3.0/specs/regrep-rs-3.0-os.pdf
http://docs.oasis-open.org/regrep/v3.0/specs/regrep-rs-3.0-os.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://dlib.cs.odu.edu/WhatIsTheGrid.pdf
http://dlib.cs.odu.edu/WhatIsTheGrid.pdf
http://docs.goole.com
http://www.w3.org/TR/ws-arch

REFERENCES 110

[47] Hearst Seattle Media, LLC. Hello Animoto, an Amazon Web Services darling.

http://blog.seattlepi.com/amazon/archives/142569.asp. Visited on 01-

November-2010.

[48] W. Hummer, P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar.

VRESCo – Vienna Runtime Environment for Service-oriented Computing. In

Schahram Dustar and Fei Li, editors, Service Engineering: European Research

Results. Springer, 2010.

[49] International Data Corporation (IDC). IDC on “the Cloud”. http://www.idc.

com/research/cloudcomputing/index.jsp, 2008. Visited on 01-November-

2010.

[50] Information Systems Institute at the Technical University of Vienna. VRESCo

– Vienna Runtime Enviroment for Service-oriented Computing. http://www.

infosys.tuwien.ac.at/prototyp/VRESCo. Visited on 01-November-2010.

[51] Meiko Jensen, Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. On Tech-

nical Security Issues in Cloud Computing. In CLOUD ’09: Proceedings of

the 2009 IEEE International Conference on Cloud Computing, pages 109–116,

Washington, DC, USA, 2009. IEEE Computer Society.

[52] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman,

Benjamin P. Berman, and Phil Maechling. Scientific Workflow Applications

on Amazon EC2. In Proceedings of the Workshop on Cloud-based Services

and Applications in conjunction with 5th IEEE International Conference on

e-Science, e-Science 2009, 2009.

[53] Lori M. Kaufman. Data Security in the World of Cloud Computing. IEEE

Security and Privacy, 7(4):61–64, 2009.

[54] Ali Khajeh-Hosseini, Ian Sommerville, and Ilango Sriram. Research Challenges

for Enterprise Cloud Computing. CoRR, abs/1001.3257, 2010.

[55] Donald Kossmann, Tim Kraska, and Simon Loesing. An Evaluation of Alter-

native Architectures for Transaction Processing in the Cloud. In Proceedings

of the 2010 international conference on Management of data, SIGMOD ’10,

pages 579–590, New York, NY, USA, 2010. ACM.

[56] Thomas Laner. VQL – A View-based Querying Approach for the VRESCo

Runtime. Master’s thesis, Vienna University of Technology, 2009.

[57] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar.

End-to-End Versioning Support for Web Services. In SCC ’08: Proceedings of

the 2008 IEEE International Conference on Services Computing, pages 59–66,

Washington, DC, USA, 2008. IEEE Computer Society.

http://blog.seattlepi.com/amazon/archives/142569.asp
http://www.idc.com/research/cloudcomputing/index.jsp
http://www.idc.com/research/cloudcomputing/index.jsp
http://www.infosys.tuwien.ac.at/prototyp/VRESCo
http://www.infosys.tuwien.ac.at/prototyp/VRESCo

REFERENCES 111

[58] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Daios: Efficient

Dynamic Web Service Invocation. IEEE Internet Computing, 13(3):72–80,

2009.

[59] Huan Liu and Sewook Wee. Web Server Farm in the Cloud: Performance

Evaluation and Dynamic Architecture. In Proceedings of the 1st International

Conference on Cloud Computing, CloudCom ’09, pages 369–380, Berlin, Hei-

delberg, 2009. Springer-Verlag.

[60] Alexandros Marinos and Gerard Briscoe. Community Cloud Computing. In

CloudCom ’09: Proceedings of the 1st International Conference on Cloud Com-

puting, pages 472–484, Berlin, Heidelberg, 2009. Springer-Verlag.

[61] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud Security and

Privacy: An Enterprise Perspective on Risks and Compliance. O’Reilly Media,

Inc., 2009.

[62] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing, Version

15. http://csrc.nist.gov/groups/SNS/cloud-computing, 2009. Visited on

01-November-2010.

[63] memcached – a distributed memory object caching system. http://

memcached.org. Visited on 01-November-2010.

[64] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dust-

dar. Advanced Event Processing and Notifications in Service Runtime Envi-

ronments. In DEBS ’08: Proceedings of the second international conference on

Distributed event-based systems, pages 115–125, New York, NY, USA, 2008.

ACM.

[65] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar.

End-to-End Support for QoS-Aware Service Selection, Binding and Mediation

in VRESCo. IEEE Transactions on Services Computing, 99(PrePrints), 2010.

[66] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and

Schahram Dustdar. Towards recovering the broken SOA triangle: a software

engineering perspective. In IW-SOSWE ’07: 2nd international workshop on

Service oriented software engineering, pages 22–28, New York, NY, USA, 2007.

ACM.

[67] Rao Mikkilineni and Vijay Sarathy. Cloud Computing and the Lessons from

the Past. In Proceedings of the 2009 18th IEEE International Workshops on

Enabling Technologies: Infrastructures for Collaborative Enterprises, WETICE

’09, pages 57–62, Washington, DC, USA, 2009. IEEE Computer Society.

http://csrc.nist.gov/groups/SNS/cloud-computing
http://memcached.org
http://memcached.org

REFERENCES 112

[68] James Murty. Programming Amazon Web Services: S3, EC2, SQS, FPS, and

SimpleDB. O’Reilly Media, Inc., March 2008.

[69] NHibernate Project. NHibernate Forge. http://nhforge.org. Visited on

01-November-2010.

[70] Oracle Corporation. MySQL – The worlds’s most popular open source

database. http://www.mysql.com. Visited on 01-November-2010.

[71] Simon Ostermann, Alexandru Iosup, Nezih Yigitbasi, Radu Prodan, Thomas

Fahringer, and Dick Epema. A Performance Analysis of EC2 Cloud Comput-

ing Services for Scientific Computing. In Proceedings of the Cloudcomp 2009,

CloudComp ’09, 2009.

[72] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel.

Amazon S3 for Science Grids: a Viable Solution? In Proceedings of the 2008

international workshop on Data-aware distributed computing, DADC ’08, pages

55–64, New York, NY, USA, 2008. ACM.

[73] Michael P. Papazoglou. Web Services: Principles and Technology. Pearson

Education Limited, 2007.

[74] Mike P. Papazoglou. Service -Oriented Computing: Concepts, Characteristics

and Directions. In WISE ’03: Proceedings of the Fourth International Confer-

ence on Web Information Systems Engineering, Washington, DC, USA, 2003.

IEEE Computer Society.

[75] Mike P. Papazoglou and Willem-Jan Heuvel. Service oriented architectures:

approaches, technologies and research issues. The VLDB Journal, 16(3):389–

415, 2007.

[76] Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. Cloud Computing: An

Overview. In Martin Jaatun, Gansen Zhao, and Chunming Rong, editors,

Cloud Computing, volume 5931 of Lecture Notes in Computer Science, pages

626–631. Springer Berlin / Heidelberg, 2009.

[77] George Reese. Cloud Application Architectures: Building Applications and

Infrastructure in the Cloud. O’Reilly Media, Inc., 2009.

[78] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media,

Inc., 2007.

[79] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A Taxonomy and Survey

of Cloud Computing Systems. In NCM ’09: Proceedings of the 2009 Fifth In-

ternational Joint Conference on INC, IMS and IDC, pages 44–51, Washington,

DC, USA, 2009. IEEE Computer Society.

http://nhforge.org
http://www.mysql.com

REFERENCES 113

[80] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,

You, Get Off of My Cloud: Exploring Information Leakage in Third-Party

Compute Clouds. In CCS ’09: Proceedings of the 16th ACM conference on

Computer and communications security, pages 199–212, New York, NY, USA,

2009. ACM.

[81] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and

Schahram Dustdar. An End-to-End Approach for QoS-Aware Service Com-

position. In EDOC’09: Proceedings of the 13th IEEE international conference

on Enterprise Distributed Object Computing, pages 128–137, Piscataway, NJ,

USA, 2009. IEEE Press.

[82] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, and

Schahram Dustdar. Towards Composition as a Service – A Quality of Service

Driven Approach. In ICDE ’09: Proceedings of the 2009 IEEE International

Conference on Data Engineering, pages 1733–1740, Washington, DC, USA,

2009. IEEE Computer Society.

[83] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, and Schahram Dust-

dar. Integrated Metadata Support for Web Service Runtimes. In EDOCW ’08:

Proceedings of the 2008 12th Enterprise Distributed Object Computing Confer-

ence Workshops, pages 361–368, Washington, DC, USA, 2008. IEEE Computer

Society.

[84] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping

Performance and Dependability Attributes of Web Services. In ICWS ’06:

Proceedings of the IEEE International Conference on Web Services, pages 205–

212, Washington, DC, USA, 2006. IEEE Computer Society.

[85] Salesforce.com, Inc. Salesforce.com – CRM Software & Online CRM System.

http://www.salesforce.com. Visited on 01-November-2010.

[86] Sun Developer Network (SDN). Core J2EE Patterns – Data Access

Object. http://java.sun.com/blueprints/corej2eepatterns/Patterns/

DataAccessObject.html. Visited on 01-November-2010.

[87] The New York Times Company. Self-Service, Prorated Super-

computing Fun! http://open.blogs.nytimes.com/2007/11/01/

self-service-prorated-super-computing-fun. Visited on 01-November-

2010.

[88] The New York Times Company. Times Machine – New York Times. http:

//timesmachine.nytimes.com. Visited on 01-November-2010.

http://www.salesforce.com
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://timesmachine.nytimes.com
http://timesmachine.nytimes.com

REFERENCES 114

[89] Aphrodite Tsalgatidou and Thomi Pilioura. An Overview of Standards and

Related Technology in Web Services. Distrib. Parallel Databases, 12(2-3):135–

162, 2002.

[90] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A

Break in the Clouds: Towards a Cloud Definition. SIGCOMM Comput. Com-

mun. Rev., 39(1):50–55, 2009.

[91] Jinesh Varia. Cloud Architectures. http://media.amazonwebservices.com/

AWS_Cloud_Architectures.pdf, 2008. Visited on 01-November-2010.

[92] Toby Velte, Anthony Velte, and Robert Elsenpeter. Cloud Computing: A

Practical Approach. McGraw-Hill, Inc., New York, NY, USA, 2010.

[93] World Wide Web Consortium (W3C). Extensible Markup Language (XML).

http://www.w3.org/XML. Visited on 01-November-2010.

[94] World Wide Web Consortium (W3C). Web Services Description Language

(WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001. Visited on 01-November-

2010.

[95] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition). http://www.w3.org/TR/soap12-part1, 2007.

Visited on 01-November-2010.

[96] World Wide Web Consortium (W3C). Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language. http://www.w3.org/TR/wsdl20,

2007. Visited on 01-November-2010.

[97] Jinpeng Wei, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, and Peng Ning.

Managing Security of Virtual Machine Images in a Cloud Environment. In

CCSW ’09: Proceedings of the 2009 ACM workshop on Cloud computing secu-

rity, pages 91–96, New York, NY, USA, 2009. ACM.

[98] Dan Werthimer, Jeff Cobb, Matt Lebofsky, David Anderson, and Eric Kor-

pela. SETI@HOME—massively distributed computing for SETI. Computing

in Science and Engg., 3(1):78–83, 2001.

[99] Shuai Zhang, Shufen Zhang, Xuebin Chen, and Xiuzhen Huo. Cloud Comput-

ing Research and Development Trend. In ICFN ’10: Proceedings of the 2010

Second International Conference on Future Networks, pages 93–97, Washing-

ton, DC, USA, 2010. IEEE Computer Society.

[100] Shufen Zhang, Shuai Zhang, Xuebin Chen, and Shangzhuo Wu. Analysis and

Research of Cloud Computing System Instance. In ICFN ’10: Proceedings of

the 2010 Second International Conference on Future Networks, pages 88–92,

Washington, DC, USA, 2010. IEEE Computer Society.

http://media.amazonwebservices.com/AWS_Cloud_Architectures.pdf
http://media.amazonwebservices.com/AWS_Cloud_Architectures.pdf
http://www.w3.org/XML
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/wsdl20

REFERENCES 115

[101] Jinzy Zhu, Xing Fang, Zhe Guo, Meng Hua Niu, Fan Cao, Shuang Yue, and

Qin Yu Liu. IBM Cloud Computing Powering a Smarter Planet. In Cloud-

Com ’09: Proceedings of the 1st International Conference on Cloud Computing,

pages 621–625, Berlin, Heidelberg, 2009. Springer-Verlag.

	Introduction
	Motivation
	Contribution
	Organization

	State of the Art Review
	Service-oriented Architecture
	Services
	Definition and Concepts of a SOA
	Web Services

	Cloud Computing
	Definition
	Categories
	Advantages
	Challenges

	Amazon Web Services
	Features
	Amazon EC2
	Amazon SimpleDB
	Amazon RDS

	Related Work
	Evaluation and Performance Analysis
	Cloud Databases
	Popular Uses of AWS
	Animoto
	TimesMachine

	Background
	VRESCo
	Architecture
	Service Metadata Model
	Dynamic Binding
	Dynamic Invocation

	Design and Implementation
	Using Amazon SimpleDB as Database
	Extending the Data Access Layer
	Mapping the Relational Data Model to SimpleDB
	Mapping of NHibernate Attributed Properties
	Mapping of Relations
	Lazy Loading
	Caching with Memcached

	Using Amazon RDS as Database
	Deploying VRESCo to Amazon EC2

	Evaluation
	Quantitative Evaluation
	Introducing Example Use Case
	Use Case Running on SimpleDB
	Use Case Running on RDS
	Discussion

	Limitations

	Conclusion and Future Work
	Future Work

	List of Abbreviations
	Complete TELCO Use Case
	References

