WIENER MITTEILUNGEN

WASSER • ABWASSER • GEWÄSSER

Schlammfaulung mit erhöhtem Feststoffgehalt – Chancen, Grenzen, Herausforderungen

Markus Reichel

WIENER MITTEILUNGEN

WASSER • ABWASSER • GEWÄSSER

Band 235

Schlammfaulung mit erhöhtem Feststoffgehalt – Chancen, Grenzen, Herausforderungen

Markus Reichel

Herausgeber: Em.Prof. Dr. Dr.h.c. Helmut Kroiss Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft Dissertationsschrift zur Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften an der Technischen Universität Wien, Fakultät für Bauingenieurwesen

Technische Universität Wien Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft

Karlsplatz 13 / 226 1040 Wien

Institut für Wassergüte und Abfallwirtschaft Karlsplatz 13/226; 1040 Wien Tel: + 43 1 58801 - 22611

> Fax: + 43 1 58801 - 922611 Mail: iwag@iwag.tuwien.ac.at

Alle Rechte vorbehalten.

Ohne Genehmigung der Herausgeber ist es nicht gestattet, das Buch oder Teile daraus zu veröffentlichen © Institut für Wassergüte und Abfallwirtschaft TU-Wien, 2015

> Druck: Riegelnik 1080, Piaristengasse 19

ISSN 0279 - 5349 ISBN 3 - 85234 - 129 - 3

Kurzfassung

<u>Schlagwörter</u>: kommunale mesophile Schlammfaulung, hoher Trockensubstanzgehalt, Optimierungspotential, Mischenergie, Durchmischungsgrad, Rheologie, hydraulischer Druckverlust Sandakkumulation

In dieser Arbeit wird das Optimierungspotential für kommunale Kläranlagen bei Umstieg von aerober auf anaerobe Schlammstabilisierung dargestellt. Chancen, Grenzen und Herausforderungen werden erläutert.

Ändert man die Art der Schlammstabilisierung von aerob auf anaerob, ergibt sich großes Einsparungspotential hinsichtlich des Energieverbrauchs und der Entsorgungskosten des anfallenden Klärschlamms. Darüber hinaus kann davon ausgegangen werden, dass der Grad der Stabilisierung und der Entwässerbarkeit steigen. Außerdem können dadurch Kapazitätsreserven der biologischen Reinigung genutzt werden.

Die theoretischen Grundlagen für die Ermittlung des erforderlichen Schlammalters bei einstufigen Schlammfaulanlagen im mesophilen Bereich werden erläutert. Dabei hat sich gezeigt, dass bei der Bemessung neben theoretischen Grundlagen auch Praxiserfahrungen unabdingbar sind, um einen stabilen Betrieb und einen guten Stabilisierungsgrad zu gewährleisten.

Wird die Faulung mit erhöhtem organischem Trockensubstanzgehalt betrieben, wird durch Hydrolyse vergleichsweise mehr Stickstoff und Phosphor in Lösung gebracht. Je höher der pH-Wert, desto größer ist die Gefahr kristalliner Ausfällungen an Phosphor (hauptsächlich als MAP), die sich im Schlamm oder als Anlagerung, z.B an Rohrleitungen wieder finden, wo diese Probleme bereiten können. Stickstoff wird freigesetzt und dissoziiert in Abhängigkeit von pH-Wert und Temperatur zu Ammoniak und Ammonium. Das Ammonium erhöht mit Hydrogencarbonat die Pufferkapazität, sodass der pH-Wert stabilisiert wird und etwas steigt.

Organische Säuren und Schwefelwasserstoff dissoziieren mehr, je höher der pH-Wert ist. Da vor allem deren undissoziierte Anteile hemmend auf die Methanbakterien wirken, ist die Erhöhung des pH-Wertes in diesem Zusammenhang günstig. Beim Ammoniak verhält es sich umgekehrt, da hier ein Anstieg des pH-Werts das Verhältnis von Ammonium/Ammoniak zum giftigen Ammoniak verschiebt. Bleibt der pH-Wert stabil, ist dieses Problem nicht latent.

Auf der Hauptkläranlage-Wien (HKA-Wien) wurden Versuche durchgeführt. Die HKA-Wien ist bereits von der Planung her eine Anlage mit geringem Rohschlammverbrennung. Energiebedarf mit Durch die 2-stufige Belebungsanlage gelingt es mehr Energie in den Schlamm einzulagern als bei einstufigen Anlage. Mit Hilfe einer Schlammfaulung einer Faulgasverstromung kann in der Anlage mehr elektrische Energie erzeugt werden als für den Betrieb notwendig ist.

des derzeit in Umsetzung begriffenen Im Zuge Projekt EOS (Energieoptimierung-Schlammbehandlung der Hauptkläranlage Wien) wird eine Schlammfaulanlage errichtet, für die eine Minimierung der Investitionskosten angestrebt wird. Im Rahmen dieses Projektes wurde eine Pilotanlage zur Schlammfaulung im halbtechnischen Maßstab betrieben ($V_{FB} = 130 \text{ m}^3$). Die Anlage wurde mit maschinell eingedicktem Rohschlamm, einer Mischung aus Primär- und Überschussschlamm, der 2-stufigen Abwasserreinigungsanlage, beschickt. Dieser energiereiche Schlamm hatte einen Glühverlust von etwa 75 bis 81 %. Die Schlammeindickung erfolgte mittels Seihband. Die sich einstellende Trockensubstanzkonzentration des Faulschlammes (TSFS) lag zwischen 3,7 und 4,1 %. Die Temperatur lag im Regelbetrieb bei etwa 38 °C. Bei einem Schlammalter ($t_{TS.FB}$) von etwa 24 Tagen wurde ein durchschnittlicher oTS-Abbau von 50,5 % und ein CSB-Abbau von 59,4 % ermittelt. Bei Verkürzung des Schlammalters auf etwa 20 Tage war der ermittelte Abbau ähnlich. Der oTS-Abbau lag bei 52,7 % und ist damit etwas höher als bei 24 Tagen Schlammalter. Die leichte Erhöhung kann auf die Unschärfe der Bestimmung bzw. auf den jahreszeitlichen Einfluss zurückzuführen sein. Der CSB-Abbau war mit 59,3 % praktisch gleich groß wie bei 24 Tagen Schlammalter. Der Methangehalt des produzierten Gases lag zwischen 63 und 65 %. Durch die erhöhte Trockensubstanz stellte sich eine Ammonium-Konzentration zwischen 1.800 und 1.900 mg/L ein. Der pH-Wert lag zwischen 7,4 und 7,5.

Bei der maschinellen Schlammeindickung soll ein hoher Wirkungsgrad der Feststoffabtrennung erreicht werden. In der Praxis ist die Verifikation aufgrund fehlender Durchflussmessungen oft nicht möglich. Es wird ein Vorschlag zur Berechnung des Abscheidegrades erarbeitet und ein praxisgerechtes grafisches Verfahren zur Ermittlung des spezifisch eingesetzten Polymers vorgestellt.

Durch die Eindickung kommt es zur Veränderung der rheologischen Schlammeigenschaften. Die theoretischen Grundlagen des Verhaltens von

Newtonschen und nicht-Newtonschen Flüssigkeiten werden erklärt und ein Algorithmus zur Berechnung der hydraulischen Verluste in Rohrleitungen vorgestellt. Anhand von ermittelten Fließparametern (Fließindex n und Konsistenzfaktor K) werden die hydraulischen Verlusthöhen h_r anhand von Beispielen quantifiziert. Bei einem Rohr mit einer Länge l = 100 m und einem Durchmesser D = 0.2 m errechnet sich bei einer Geschwindigkeit v = 0.5 m/s bei Wasser ein hydraulischer Druckverlust von 0,12 m. Bei Faulschlamm ist dieser etwa um den Faktor $(h_{r,FS}/h_{r,Wasser})$ 2 bis 3 größer. Der Faktor für den hydraulischen Druckverlust zwischen Rohschlamm und Faulschlamm $(h_{r,RohS}/h_{r,FS})$ beträgt 12 bis 55. Bei höherer Geschwindigkeit werden die absoluten Verluste größer, die relativen Verhältnisse jedoch kleiner. So beträgt der Faktor bei v = 2.0 m/s bei Faulschlamm zu Wasser $(h_{r,FS} / h_{r,Wasser})$ etwa 1,2 bis 1,5 und bei Rohschlamm zu Faulschlamm ($h_{r,RohS} / h_{r,FS}$) etwa 3 bis 10.

Der Einfluss des in der Faulung entstehenden Gases auf die Durchmischung wird in der vorliegenden Arbeit untersucht. Eine Formel zur Ermittlung der Energiedichte wird vorgestellt und der Zusammenhang zwischen Gasproduktion, Reaktorhöhe und Energiedichte hergestellt. Anhand von Betriebsdaten der Pilotanlage wurde die erforderliche Gasproduktion für vollständige Durchmischung (Energie der aufsteigenden Blasen) mit 1,0 bis 1,3 W/m³_{FB} quantifiziert.

Die im Faulschlamm enthaltene Gasmenge ist im Wesentlichen von der Tiefe des Reaktors abhängig. Bei spontaner Durchmischung des Reaktors kann ein erheblicher Anteil davon entweichen. Bei einem Methangehalt des Faulgases von 64 % und ohne Berücksichtigung des Gasüberdrucks im Gasraum des Faulbehälters beträgt die austreibbare Gasmenge 0,0115·h_{FB}·V_{FB} [m³]. Darüber hinaus ist mit einer Gasübersättigung zu rechnen, die bei einem Versuch bei 41 % lag.

Eine Abschätzung zur Quantifizierung des sich akkumulierenden Sandes im Faulbehälter wird durchgeführt. Bei der Pilotanlage, die mit einer TS von 3,4 % (Medianwert über 18,4 Monate) betrieben wurde betrug die Sandakkumulation ~0,71 cm/(m_{FB}·a).

Abstract

<u>Keywords</u>: municipal mesophilic digestion, high solid content, optimization potential, mixing-energy, mixing efficiency, rheology, hydraulic loss, sandaccumulation

This work outlines the potential for the optimization of municipal wastewater treatment plants when switching from aerobic to anaerobic sludge stabilization. Opportunities, challenges and limitations are explained.

By changing the type of sludge-stabilization from aerobic to anaerobic, a large saving potential with respect to energy-consumption and disposal costs for the stabilized sludge can be expected. Improved stabilization and dewatering of the sludge are further benefits of this process change. Moreover, anaerobic sludge treatment frees up capacity in the biological wastewater treatment stage.

The theoretical backgrounds for the calculation of the required sludge retention in mesophilic single-stage digester systems are discussed. It has been demonstrated that for the design beside of theoretical backgrounds also practical experiences are essential to ensure a stable process and a good level of stabilization.

Operating the digesters with increased dry solid matter, relatively more nitrogen and phosphor will be released by hydrolysis. The higher the pH-value, the higher the risk of crystalline precipitation of phosphor (mainly MAP), which can be found in the digested sludge or as incrustation, e.g. in pipes, where it can cause severe problems. Nitrogen will be resolved and dissociate in dependency of the pH-value and temperature to ammonium and ammonia. The ammonium increases in combination with hydrogen carbonate the buffering capacity, so that the pH-value will be stabilized and slightly increased.

With higher pH, higher dissociation rates of organic acids and hydrogen sulfide are expected. Their undissociated fractions inhibit the methane bacteria, thus increasing the pH-value in this context is advantageous. For ammonia it is different, an increase of pH will shift the ammonium/ammonia ratio towards toxic ammonia. Consequently, a stable pH-value is necessary to avoid these addressed problems.

Test were realized at the main wastewater treatment plant of Vienna (WWTP-Vienna). The WWTP-Vienna has originally been designed in a way to minimize the energy-demand with incineration of raw-sludge. As a result of the 2-stage

activated sludge plant it is possible to transfer more energy into the sludge in comparison to single stage plants. With the anaerobic sludge digestion and the conversion of the digester gas into electricity, more electrical energy can be produced in comparison to the demand of operating the plant.

As part of the project EOS (energy optimization sludge treatment of the WWTP-Vienna), a sludge digestion plant will be build, for which the investment costs should be minimized. As part of this project a pilot plant was operated in half technical scale ($V_{digester} = 130 \text{ m}^3$). The digester was fed with a mixture of primary and excess sludge (raw sludge) of the 2-stage WWTP. This sludge had an organic solid content in the range of 75 to 81 % of the total solids. The sludge was mechanically thickened using a gravity drainage deck. The dry solid content of the digested sludge was in the order of 3.7 to 4.1 %. The temperature of the digester was set to 38°°C. At a retention time of ~24 days, the average reduction of volatile solids (VS) was 50.5 % and a COD reduction of 59.4 % could be obtained. At reduced sludge retention time of 20 days, a slightly higher VSdegradation of ~52.7 % was determined. This variance may be due to the uncertainty of the determination or the seasonal influence. COD removal was identical (59.3 %). The methane content of the produced gas was 63-65 %. As a consequence of the increased dry solid content, the ammonium concentration in the liquid phase ranged between 1800 and 1900 mg/L. The pH-value ranged from 7.4 to 7.5.

To reach the aspired high dry matter content of the feeding sludge, special focus needs to be given to the mechanical sludge thickening unit. In practice, verification of the separation efficiency is often not given, due to missing flow measurements. Thus, a methodology for the calculation for the separation efficiency was proposed and a practical graphical method to determine the specific load of polymer is presented.

As a result of the thickening, significant changes in the rheological sludge properties are expected. The theoretical fundamentals of the behavior of Newtonian and non-Newtonian fluids in pipes are explained and an algorithm to calculate the hydraulic losses is presented. Based on the determined flow parameters (flow index n, and consistency factor K) the hydraulic head losses are quantified based on trials. In a pipe with a length of L=100 m and a diameter of D=0.2 m the calculated hydraulic head loss of water at a velocity of v=0.5 m/s is 0.12 m. Compared to water, digested sludge shows a higher hydraulic head loss by the factor of 2 to 3, while the factor between raw and

digested sludge is 12 to 55. At higher velocity, the absolute hydraulic head losses are higher, but the relative proportions are smaller. At a typical velocity of v = 2.0 m/s, the factor between digested sludge and water is 1.2 to 1.5 and between raw and digested sludge 3 to 10.

The influence of the produced gas on the mixing in the reactor was observed. A formula to calculate the energy density and the relationship between gas production, reactor height and energy density is shown. On the basis of the determined operational data, the required energy density for a complete mixing of the reactor is 1.0 to 1.3 W/m³.

The amount of dissolved gas in the digested sludge is mainly related to the depth of the reactor. In case of spontaneous reactor turnover, a significant additional amount of gas can escape from the sludge. Taking into account a methane content in the digester gas of 64 %, neglecting the gas overpressure in the gas-space of the digester, the amount of gas which could be desorbed is $0.0115*h_{digester}*V_{digester}$ [m³]. Additionally, the supersaturation of gas has to be considered, which was 41 % (one experiment).

Due to higher dry matter content, increased sand-accumulation in the digester is expected, which was extrapolated from the pilot plant to quantify the amount of sand in the full scale digester. During the 18 month operation and a dry matter content of 3.4 %, the specific annual sand accumulation was ~0.71 cm/(m·a).

Inhaltsverzeichnis

1	EIN	LEITU	JNG, VERANLASSUNG UND ZIELSETZUNG	1
	1.1	Them	natische Einleitung	1
	1.2	Hinte	ergrund dieser Arbeit	3
	1.3	Zielse	etzungen	7
	1.4	Über	tragbarkeit de Ergebnisse	8
2	OPT	IMIE	RUNGSPOTENTIAL DURCH SCHLAMMFAULUNG	10
	2.1	Energ	gieverbrauch	10
	2.2	Stabi	lität des Klärschlamms	14
	2.3	Schla	mmanfall	15
	2.4	Entw	ässerbarkeit und Schlammentsorgung	17
		2.4.1	Allgemeines	
		2.4.2	Empirische Auswertung zur Entwässerbarkeit von Klärschlämmen	17
	2.5	Kapa	zitätsreserven der biologischen Stufe von Kläranlagen	22
	2.6	Faulg	gasproduktion	23
3	GRI	UNDLA	AGEN FÜR DIE BEMESSUNG EINER FAULUNG	24
_	3.1		men eines einstufigen Reaktors zur mesophilen Schlammfaulung	
	3.2		ttlung des Schlammalters	
			Grundlagen des anaeroben Abbaus	
			Hydrolyse	
			Versäuerung, Acetogenese und Methanogenese	
			Berechnung des Schlammalters über die Wachstumsgeschwindigkeit	
			Empfehlungen für die Wahl des Schlammalters aus der Literatur Schlussfolgerungen	
	3.3	Häha	re Trockensubstanz – Auswirkungen und Hemmung	
	3.3	3.3.1	Stickstoffverbindungen	
		3.3.2	Organische Säuren	
		3.3.3	Schwefelverbindungen	
		3.3.4	Phosphor	
		3.3.5	Zusammenfassung	43
4	RHI	EOLO	GIE	44
	4.1	Rheo	logische Grundparameter	44
	4.2	Fließ	verhalten	47
		4.2.1	Newtonsche Fließkurven	47
		4.2.2	Nicht-Newtonsche Fließkurven	47
	4.3	Anpa	ssungsmodelle	50
	4.4	Rohr	hydraulik	54
		4.4.1	Rohrströmung	55

		4.4.2	Newtonsche Flüssigkeiten	55
			Hydraulischer Widerstandsbeiwert: Laminare Strömung,	
			Newtonsche Flüssigkeit	56
			Hydraulischer Widerstandsbeiwert: Turbulente Strömung,	
			Newtonsche Flüssigkeit	
		4.4.3	Nicht-Newtonsche Flüssigkeiten	57
			Hydraulischer Widerstandsbeiwert: Laminare Strömung, nicht-Newtonsche Flüssigkeit	58
			Hydraulischer Widerstandsbeiwert: Turbulente Strömung,	
			nicht-Newtonsche Flüssigkeit	
		4.4.4	Berechnung der hydraulischen Verlusthöhe	60
5	ME'	THOD	IK	62
	5.1	Versu	ıchsanlage zur Schlammfaulung – Pilotmaßstab	62
		5.1.1	Beschreibung der Pilotanlage	
		5.1.2	Komponenten der Pilotanlage	
			Pumpen und Rührwerke	
			MÜSE (Maschinelle Überschussschlammeindickung)	
			Vorlagebehälter	69
			Schlammeinmischung und Heizsystem	69
			Faulbehälter	70
			BHKW (Blockheizkraftwerk)	72
		5.1.3	Prozessleitsystem und Datenbank	73
		5.1.4	Analysedaten der Pilotanlage	74
	5.2	Rheo	logische Versuche	74
		5.2.1	Laborversuche	75
		5.2.2	Feldversuche: Messgerät und Messsystem	77
	5.3	Ausw	vertungsmethoden	78
		5.3.1	Massebilanzen	78
		5.3.2	Rechenwert: Schlammalter	84
6	ATIC	SWED!	ΓUNGEN: VERSUCHE ZUR SCHLAMMFAULUNG	96
O	6.1		vahl geeigneter Bilanzzeiträume mittels CUSUM-Methode	
	0.1	Ausw	Angestrebte Ziele der bilanzierten Versuchsphasen	
			Charakteristika der bilanzierten Versuchsphasen	
			Versuchsphase 1: "Standardbetrieb"	
			Versuchsphase 4: "Maximale Belastung"	
			Versuchsphase 7: "Sehr hohe Belastung"	
	6.2	Über	prüfung der ausgewählten Bilanzzeiträume	
	0.2		Versuchsphase 1: "Standardbetrieb"	
			Versuchsphase 4: "Maximale Belastung"	
			Versuchsphase 7: "Sehr hohe Belastung"	
			Verifikation des Messfehlers bei der Gasmessung	
	6.3	CSB.	TS, oTS: Auswertungen, Bilanzen und Abbau	
		6.3.1	Verhältnis: CSB/oTS	
		6.3.2	Auswertungsergebnisse der Versuchsphasen 1, 4 und 7	
		.	Interpretation der Auswertungsergebnisse	
			Auswertungsergebnisse auf Basis von Einwohnerwerten	
			Interpretation der ermittelten einwohnerspezifischen Gaserträge	

	6.4	Grenz	zen der Anaerobie	113
		6.4.1	Organische Säuren	115
			Versuchsphase 8.1: "Grenzen der Anaerobie: Belastung"	
		6.4.2	Temperatur	
			Versuchsphase 8.2: "Grenzen der Anaerobie: Temperatur"	120
	6.5	Schw	efelwasserstoff im Gas	121
	6.6	Sticks	stoff: Bilanzierung und dynamische Betrachtung	122
		6.6.1	Statische Betrachtung	122
		6.6.2	Dynamische Betrachtung	125
			Dynamische Betrachtung von Stickstoff-Kennzahlen	125
			Ergebnisse und Interpretation der dynamischen Auswertung	128
	6.7	Phosp	phor: Bilanzierung	129
7	MA	SCHIN	ELLE SCHLAMMEINDICKUNG: BETRIEBSERGEBNISSE	
		7.1.1	Quantifizierung des Abscheidegrades einer maschinellen Schlammeindicku	ng . 132
		7.1.2	Praxisnahe Ermittlung des eingesetzten Polymers	
		7.1.3	Erreichbare TS	136
8	AUS	SWERT	ΓUNGEN: RHEOLOGIE	138
•	8.1		ıchsergebnisse	
		8.1.1	TS-Gehalt vs. Schubspannung bei ÜS und Rohschlamm	
		8.1.2	TS-Gehalt vs. Schubspannung bei Faulschlamm	
		8.1.3	Hydraulische Verlusthöhen	
	8.2	Berec	chnung der hydraulischen Verlusthöhe	
		8.2.1	Zusammenstellung hydraulischer Kennwerte	
		8.2.2	Beispielhafte Berechnung der hydraulischen Verluste	
	8.3	Optin	nierungspotential der hydraulischen Verluste	
9	ын	-	ISCHUNG	
,	9.1		meines zur Durchmischung	
		_	älzung durch entstehendes Gas	
	7. ₽	9.2.1	Eingebrachte mechanische Energie durch entstehendes Gas	
		9.2.2	Ermittlung der erforderlichen Energiedichte zur	133
			indigen Durchmischung	156
	9.3		aulschlamm enthaltenes Gas	
	7.5	9.3.1	Gelöstes Gas	
		9.3.2	Austreibfähiges Gas	
		9.3.3	Versuch zur Bestimmung der Übersättigung	
	9.4		akkumulation	
10				
10	LUS	AWIWI	ENFASSUNG Vorteile der Schlammfaulung	
			Nachteile der Schlammfaulung	
			Schlammfaulung mit erhöhter Trockensubstanz	
			Inhalt der Arbeit	
			Schlussworte und Ausblick	180
T T	FFD A	THDV	/FD7FICHNIS	182

Abbildungsverzeichnis

Abbildung 1:	Luftbild der Hauptkläranlage-Wien, nach der Inbetriebnahme 1980	4
Abbildung 2:	Layout der Hauptkläranlage-Wien nach dem Ausbau 2005 (ebswien, 2013a)	
Abbildung 3:	Verfahrensschema der Hauptkläranlage-Wien; oben: Bypassverfahren, unten: Hybridverfahren (ebswien, 2013b)	5
Abbildung 4:	Projektiertes Verfahrensschema der Hauptkläranlage-Wien nach Umbau (BDL, 2010)	6
Abbildung 5:	Spezifischer Energieverbrauch österreichischer Kläranlagen (Lindtner und Haslinger, 2012). Datenbasis: 76 Kläranlagen aus der Benchmarkingperiode 2003 bis 2010 (Mittelwerte bei Anlagen, die mehrfach teilgenommen haben; Basis: 110 g CSB/EW/d)	12
Abbildung 6:	Energieverbrauch österreichischer Kläranlagen in Abhängigkeit der Ausbaugröße und der Art der Stabilisierung (Lindtner, 2012)	13
Abbildung 7:	Spezifischer Energieverbrauch der mechanisch-biologischen Abwasserreinigung aerob und anaerob stabilisierender Kläranlagen (Füreder et al., 2012)	14
Abbildung 8:	CSB-Bilanz in Abhängigkeit des Schlammalters (bei 15 °C), (CSB _{ÜS} + OVC = η-CSB); Quelle: Svardal, 2012	15
Abbildung 9:	Vergleich des spezifischen Schlammanfalls von aerob und anaerob stabilisierenden Kläranlagen als organische Trockensubstanz (oTS) (Füreder et al., 2012)	16
Abbildung 10:	Mittelwerte der erreichten Trockensubstanzgehalte (TS); "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)	19
Abbildung 11:	Mittelwerte des erreichten Glühverlustes (GV); "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)	19
Abbildung 12:	Grafische Darstellung der statistischen Auswertung der Gegenüberstellung von erreichter TS und gemessenem GV; "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)	20
Abbildung 13:	Entwässerungsergebnis nach Größengruppen (ohne Anlagen mit Mischkanalisation und ohne Kammerfilterpressen mit Kalk als Konditionierungsmittel); "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)	21
Abbildung 14:	Reduktion der Schlammmenge aufgrund verbesserter Entwässerbarkeit durch Faulung; Annahmen: 40 % TS-Reduktion durch Faulung; Steigerung der Entwässerbarkeit +1,8 % durch Faulung	22
Abbildung 15:	Kapazitätssteigerung der biologischen Stufe einer Kläranlage bei Reduktion des Schlammalters t_{TS} durch Umstellung der Verfahrensweise von aerober simultaner Schlammstabilisierung auf anaerobe Schlammstabilisierung; Randbedingungen: Anlage > 100.000 EW, 10 °C, $V_D/V_{BB} = 0.5$, Berechnung nach ATV-DVWK-A 131 (2010)	23
Abbildung 16:	Schema des mehrstufigen anaeroben Abbaus (Gujer, 1983)	

Abbildung 17:	Wachstumskinetik acetatverarbeitender Methanbakterien; Quelle: Bischofsberger et al., 2005 nach Gujer, 1983	30
Abbildung 18:	Änderung von CSB, N und P bei der Schlammfaulung	34
Abbildung 19:	Abhängigkeit des pH-Wertes im Faulbehälter von der NH ₄ -N-Konzentration bei unterschiedlichem CO ₂ -Gehalt des Faulgases (Svardal, 2002)	36
Abbildung 20:	Dissoziationsgleichgewicht NH ₃ -N/NH ₄ -N nach Gleichung (3-15); links: x- und y-Achse linear; rechts: logarithmische Darstellung der y-Achse	36
Abbildung 21:	Zulässige NH ₄ -N-Konzentration in Abhängigkeit von pH-Wert und Temperatur (Kroiss, 1985)	37
Abbildung 22:	oTS-Abbau in Abhängigkeit von der Ammonium-Konzentration (Baumgartner und Jahn, 2014)	38
Abbildung 23:	Prozentualer Anteil der undissoziierten Säuren an den Gesamtsäuren in Abhängigkeit vom pH-Wert (Kroiss, 1985)	39
Abbildung 24:	Hemmung der Methanbildung in Abhängigkeit vom pH-Wert und der Essigsäurekonzentration (Kroiss, 1985)	39
Abbildung 25:	Anteil von HS ⁻ und H ₂ S am Gesamtsulfid in Abhängigkeit vom pH- Wert (Kroiss, 1985)	41
Abbildung 26:	Verteilung der Sulfidfraktionen auf Gas und Wasser (Kroiss, 1985)	42
Abbildung 27:	Parallelplattenversuch, 2D-Darstellung, nach Moshage (2004)	44
Abbildung 28:	Parallelplattenversuch (3D Darstellung)	46
Abbildung 29:	Fließ- und Viskositätskurve einer Newtonschen Flüssigkeit	47
Abbildung 30:	Fließverhalten nicht-Newtonscher Fluide; nach Klinksieg (2010)	48
Abbildung 31:	Fließ- und Viskositätskurve einer nicht-Newtonschen, strukturviskosen Flüssigkeit	48
Abbildung 32:	Fließ- und Viskositätskurve einer Nicht-Newtonschen, dilatanten Flüssigkeit	49
Abbildung 33:	Fließkurve einer strukturviskosen und thixotropen Flüssigkeit (links) und Änderung der Viskosität bei anhaltender Scherbeanspruchung (rechts)	49
Abbildung 34:	Fließkurve einer dilatanten und rheopexen Flüssigkeit (links) und Änderung der Viskosität bei anhaltender Scherbeanspruchung (rechts)	
Abbildung 35:	Fließ- und Viskositätskurve einer strukturviskosen Flüssigkeit mit Fließgrenze	50
Abbildung 36:	Anpassungsmodell nach Bingham	51
Abbildung 37:	Anpassungsmodell nach Ostwald-de Waele	52
Abbildung 38:	Anpassungsmodell nach Herschel und Bulkley	53
Abbildung 39:	Anpassungsmodell nach Windhab	53
Abbildung 40:	Stromfäden eines bewegten Fluids in einem Rohr – laminare (links) und turbulente (rechts) Rohrströmung	55
Abbildung 41:	Schematische Darstellung der Geschwindigkeits- und Schubspannungs-verteilung bei laminarer Rohrströmung nach Moshage (Moshage, 2004)	58

Abbildung 42:	Organigramm zur Berechnung der hydraulischen Verlusthöhe in Rohrleitungen von Newtonschen und nicht-Newtonschen Flüssigkeiten	61
Abbildung 43:	Vereinfachtes Schema der Pilotanlage	63
Abbildung 44:	Schlammpumpen im Keller beim Mischbauwerk; links: Pumpen; rechts: Verrohrung (Aufnahmedatum: 11.03.2014)	63
Abbildung 45:	Vorlagebehälter 1 und 2 (Speicherbehälter für Rohschlamm) (Aufnahmedatum: 11.03.2014)	64
Abbildung 46:	Dosierpumpe des Substrats zum Faulbehälter; Zu-/Ableitungen des Vorlagebehälters 1 und 2 (Aufnahmedatum: 11.03.2014)	64
Abbildung 47:	Wärmetauscher in Faulschlamm-Umwälzleitung (Aufnahmedatum: 11.03.2014)	65
Abbildung 48:	Versuchsanlage, Außenansicht (Aufnahmedatum: 17.04.2013)	66
Abbildung 49:	Versuchsanlage, Außenansícht: Faulbehälter und BHKW (Aufnahmedatum: 17.04.2013)	66
Abbildung 50:	MÜSE (Maschinelle Überschussschlammeindickung); links: Außenansicht des Containers; rechts: Innenansicht Seihtisch und Schaltschrank)	67
Abbildung 51:	Polymeraufbereitungsanlage der MÜSE; links: Blick vom Seihband zur Container-Doppeltüre; rechts: Blick von außen in den Container	67
Abbildung 52:	Schema der Polymeraufbereitungsanlage	68
Abbildung 53:	Eingabe- und Status-Display der MÜSE	69
Abbildung 54:	Allgemeine Begriffsdefinitionen einer Regelstrecke (ÖWAV- Messtechnikkurs, 2014)	70
Abbildung 55:	Faulbehälter; links: Entnahme und Überlaufkasten; rechts: Zulauf, Gasleitung (Aufnahmedatum: 11.03.2014)	71
Abbildung 56:	Faulbehälter; links: rückwärtige Ansicht mit Abluftschlauch der Stützluft; rechts: Über-/Unterdrucksicherung und Stützluftgebläse (Aufnahmedatum: 11.03.2014)	71
Abbildung 57:	Blockheizkraftwerk (BHKW) der Versuchsanlage; Blick vom Faulbehälter (Aufnahmedatum: 11.03.2014)	72
Abbildung 58:	BHKW: Innenansicht; links: Blick in den Container; rechts: Blick aus dem Container (Aufnahmedatum: 11.03.2014)	73
Abbildung 59:	Screenshot der Visualisierung der Bedienstation des Prozessleitsystems; Hauptbildschirm Schlammbehandlung	73
Abbildung 60:	Koaxiales Zylindermesssystem; 1: Boden Außenzylinder, 2: Außenzylinder, 3: Innenzylinder, 4: Füllhöhe der Messprobe; Abbildung übernommen aus DIN 53019-1 (2008)	75
Abbildung 61:	Versuchsaufbau Rotationsrheometer; Innerer- und äußerer Zylinder des koaxialen Zylindermesssystems CC39, Flüssigkeitstemperiereinrichtung und Umlaufthermostat (Füreder, 2014)	76
Abbildung 62:	Fließkurve Faulschlamm Pilotanlage HKA-Wien – TS = 3,9 %; $T = 38$ °C; Messprogramm: 500-180/300/180; Anpassungsfunktion Ostwald-de Wale an Aufwärts- und Abwärtsrampe (Füreder, 2014)	77
Abbildung 63:	Schema der rheologischen Versuchsstrecke	78

Abbildung 64:	Rheologische Versuchsstrecke (Schlauch: TORONTO HED; $D = 50 \text{ mm}$; l in Abbildung = 20 m; 2 Drucksensoren, IDM 50 mm; Exzenterschneckenpumpe, Speicherbehälter 5 m³) (Füreder, 2014)	78
Abbildung 65:	Schema für die Bilanzierung einer Faulung	79
Abbildung 66:	Analyse des Bilanzfehlers CSB der Pilotanlage mittels CUSUM- Methode; links: Input, Output, Differenz; rechts: CUSUM- Kontrollkarte des Fehlervektors; x-Achse: 1 = 25.02.2013	88
Abbildung 67:	Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 1	91
Abbildung 68:	CSB-Bilanz der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 1	92
Abbildung 69:	Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 1	92
Abbildung 70:	Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 4	94
Abbildung 71.	CSB-Blanz der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 4	94
Abbildung 72:	Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 4	95
Abbildung 73:	Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 7	96
Abbildung 74:	CSB-Blanz der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 7	97
Abbildung 75:	Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 7	97
Abbildung 76:	Produktbild der auf der Pilotanlage eingebauten Gasmessung, Fa. E+H, Prosonic Flow B 200 ("Endress+Hauser, Gasmessung," 2014)	98
Abbildung 77:	Gegenüberstellung spezifische Stromproduktion und Methangehalt des Faulgases	99
Abbildung 78:	spezifische Gasproduktion in Bezug zur zugeführten oTS (mitlaufende Bilanzierung)	100
Abbildung 79:	spezifische Gasproduktion in Bezug zum zugeführten CSB (mitlaufende Bilanzierung)	101
Abbildung 80:	Jahresganglinie, genutzte Betriebskubikmeter/Normkubikmeter Faulgas mittels BHKW; Daten: gleitende Wochenmittel auf Tagesbasis)	101
Abbildung 81:	Gasqualität (CH ₄) bei der Pilotanlage, Gegenüberstellung stationäres Messsystem und Handmessgerät	102
Abbildung 82:	Anteil von Methan im ablaufenden Faulschlamm in Bezug zum abgezogenen Gas und sich einstellender Methangehalt bei verschiedenen TS _{FS} -Konzentrationen	104

Abbildung 83:	Anteil der Inhaltsstoffe eines Substrats in Abhängigkeit von der Gasausbeute; CH ₄ = 64 %	105
Abbildung 84:	CSB/oTS-Verhältnis des Rohschlammes der Pilotanlage im Jahresverlauf	106
Abbildung 85:	CSB/oTS-Verhältnis des Faulschlammes der Pilotanlage im Jahresverlauf	107
Abbildung 86:	Stoffflussdiagramm der CSB-Fracht im Ist-Zustand (Spindler, 2013)	111
Abbildung 87:	Stoffflussdiagramm der CSB-Fracht im Ausbau-Zustand mit Trübwassernitritation und 45 % Bypass (LF3) (Spindler, 2013)	112
Abbildung 88:	Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) Versuchsphasen 8.1 und 8.2	114
Abbildung 89:	CSB-Blanz der EOS-Pilotanlage (mitlaufende Bilanzierung); Versuchsphasen 8.1 und 8.2	114
Abbildung 90:	Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung); Versuchsphasen 8.1 und 8.2	115
Abbildung 91:	Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung); alle Versuchsphasen	116
Abbildung 92:	Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung); Versuchsphasen 8.1 und 8.2	117
Abbildung 93:	Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage; Versuchsphasen 8.1 und 8.2	118
Abbildung 94:	Gegenüberstellung spezifische Gasproduktion (Basis: Tages- und gleitende Wochenmittel) und Summe an organischen Säuren der EOS-Pilotanlage; Versuchsphase 8.1	119
Abbildung 95:	Relative Aktivität der mesophilen Methanbakterien in Abhängigkeit von der Temperatur, bezogen auf die Aktivität bei 35 °C (= 100 %) (Henze und Harremoës, 1983)	120
Abbildung 96:	Gegenüberstellung spezifische Gasproduktion (Basis: Tages- und gleitende Wochenmittel) und Temperatur im Faulbehälter (oben, unten) der EOS-Pilotanlage; Versuchsphase 8.2	121
Abbildung 97:	gemessener Schwefelwasserstoff-Anteil im Faulgas der Pilotanlage	122
Abbildung 98:	Vereinfachte, schematische Darstellung der Rücklösung von N und P bei der Faulung	123
Abbildung 99:	N-Bilanz auf Basis TS, oTS und CSB der Versuchsanlage	124
Abbildung 100:	Ammonium-Konzentration im Faulschlamm, abhängig von TS im Faulbehälter; Datenbasis: Mittelwerte NH ₄ -N/TS _{FB} und zugehörige Werte TS _{RohS} , Annahme: TS-Reduktion = 41 %	124
Abbildung 101:	Vergleich von TS _{FS} und NH ₄ -N in der Faulung	
Abbildung 102:	Vorgehensweise bei der Ermittlung des Stickstoffgehalts im Feststoff	
.11.91	des Faulschlammes (N _{TS,FS})	
Abbildung 103:	Ganglinien Verhältniszahlen Stickstoff, Basis oTS	
Abbildung 104:	Ganglinien Verhältniszahlen Stickstoff, Basis CSB	129

Abbildung 105:	P-Bilanz auf Basis TS und oTS der Versuchsanlage	130
Abbildung 106:	Stoffströme einer maschinellen Schlammeindickung; gemessene Messgrößen sind unterstrichen	133
Abbildung 107:	Ermittlung der Menge an Polymer-Wirksubstanz in Bezug auf die Feststoff-fracht des Rohschlammes; $c_{Polymer} = 0.15$ % WS, Erwartungsbereich grau hinterlegt	135
Abbildung 108:	Erreichte TS mittels Seihband, in Abhängigkeit vom eingesetzten Polymer (RohS: PS+ÜS; Polymer: Flocstar L214, Fa. ACAT); TS _{Input} : "analytisch bestimmt" oder "Bestimmung mit Sonde", TS _{Output} : immer analytisch bestimmt	137
Abbildung 109:	Schubspannung vs. TS: ÜS- und RohS der HKA-Wien im Vergleich mit Literaturdaten – Schubsp. von Abwärtsrampe des Messprogramms $500-180/300/180$ bei $\dot{\gamma}=500\text{s}^{-1}$; Anpassungen mit Exponentialfunk.;	
	PolymerkonzRohS: 3,93 kg WS/t TS (Füreder, 2014)	138
Abbildung 110:	Schubspannung vs. TS-Gehalt: Faulschlamm der HKA-Wien im Vergleich mit Literaturdaten – Schubspannungen entstammen Aufwärtsrampe des Messprogramms 500-180/300/180 bei $\dot{\gamma} = 500\text{s}^{-1}$	
	(Füreder, 2014)	140
Abbildung 111:	Verlusthöhen Rohschlamm der HKA-Wien in Abhängigkeit von v; $D=50$ mm; $l=10$ m; Poly = Polymerkonzentration [kg WS/t TS] (Anm.: "Mess." = Messung, "Rech."=Rechnung) (Füreder, 2014)	141
Abbildung 112:	Verlusthöhen Faulschlamm der HKA-Wien in Abhängigkeit der Geschwindigkeit; $D = 50$ mm; $l = 10$ m	142
Abbildung 113:	Verlusthöhe h_r in einer Rohrleitung ($D = 0.2$ m, $l = 100$ m) unterschiedlicher Medien (Wasser, Faulschlamm, maschinell eingedickter Rohschlamm) in Abhängigkeit von der Fließgeschwindigkeit, rechnerisch ermittelt nach Abbildung 42	144
Abbildung 114:	Verlusthöhe h_r in einer Rohrleitung ($D = 0.2$ m, $l = 100$ m) unterschiedlicher Medien (Wasser, Faulschlamm) in Abhängigkeit von der Fließgeschwindigkeit, rechnerisch ermittelt nach Abbildung 42	145
Abbildung 115:	Verlusthöhe in Abhängigkeit der TS (Wasser, Faulschlamm, maschinell eingedickter Rohschlamm), rechnerisch ermittelt: $D = 0.2 \text{ m}, l = 100 \text{ m}, v = 1 \text{ m/s}, \text{Werte aus Tabelle 33 und Tabelle 32}$	145
Abbildung 116:	Möglichkeiten der Dosierung von Substrat in den Faulbehälter	
Abbildung 117:	Verhältnis der Trockensubstanzkonzentrationen von Mischschlamm (TS _{RohS+FS}) zu Faulschlamm (TS _{FS}) in Abhängigkeit des Mischungsverhältnisses (Q_{FS}/Q_{RohS}); Annahme: TS-Reduktion in der	1.40
Abbildung 118:	Faulung = 40 %)	
Abbildung 119:	Temperaturdifferenz im Faulbehälter der Pilotanlage in Abhängigkeit von der spezifischen Gasproduktion	
Abbildung 120:	Erforderliche Energiedichte für vollständige Durchmischung eines Faulbehälters in Abhängigkeit der Gasentstehungshöhe (1 = unten, 0 = oben); $T = 38$ °C, Annahmen: $0.15 \text{ Nm}^3_{\text{Gas}}/(\text{m}^3_{\text{FB}} \cdot \text{h})$ ausreichend bei $h_{FB} = 4.6 \text{ m}$	160

Faulbehälter nach Entleerung; links: Innenaufnahme des

Faulbehälters; Mitte: Boden des Faulbehälters; rechts: Probe des

Abbildung 126:

Abbildung 127:

Tabellenverzeichnis

Tabelle 2: Spezifische "Energieäquivalente" von kommunalem Abwasser; Quelle: in Anlehnung an (Kroiss und Svardal, 2009)	Tabelle 1:	Einwohnerspezifischer Energieverbrauch in Österreich, Bezugsjahr 2008; kursiv: Rechenwerte	10
Österreich" (Svardal und Valkova, 2012)	Tabelle 2:		12
auf Kanalsystem und Art der Schlammstabilisierung; "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)	Tabelle 3:		17
gemessenem GV [%]; "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)	Tabelle 4:	auf Kanalsystem und Art der Schlammstabilisierung; "Umfrage zur	18
Reinigungsverfahren (DWA-M 363, 2010; Geyer, 2008), Schwankungsbereich ca. ± 25 %	Tabelle 5:	gemessenem GV [%]; "Umfrage zur Klärschlammentwässerung in	20
Glucose bei Temperaturen von 30 bis 37 °C (Meyer, 2005)	Tabelle 6:	Reinigungsverfahren (DWA-M 363, 2010; Geyer, 2008),	23
Aminosäuren bei Temperaturen von 30 bis 37 °C (Meyer, 2005)	Tabelle 7:		28
Tabelle 10: Nach DWA-M 368 (2014) empfohlenes Schlammalter einer einstufigen, mesophilen Faulung	Tabelle 8:		29
mesophilen Faulung	Tabelle 9:		29
Tabelle 12: Beispiele für den Anwendungsbereich des Berechnungsorganigramms nach Abbildung 42	Tabelle 10:	` , , <u>.</u>	32
nach Abbildung 4266Tabelle 13:Probe- und Analyseplan: Vorlagebehälter 1 und 27Tabelle 14:Probe- und Analyseplan: Faulbehälter7Tabelle 15:Betriebsphasen der Pilotanlage; graue Bereiche: Bilanzierung und Diskussion durchgeführt8Tabelle 16:erklärende Tabelle zu Abbildung 668Tabelle 17:Theoretische Gasausbeuten (Mudrak und Kunst, 1988)10Tabelle 18:Henry-Konstanten für Methan, Kohlendioxid und Schwefelwasserstoff und deren Temperaturabhängigkeit (Helgeson, 1967)10Tabelle 19:statistische Auswertung des Verhältnisses CSB/oTS; Analysewerte: TU Wien10Tabelle 20:Zusammenfassung der Versuchsergebnisse aus den Phasen 1, 4, 7 und 8 (Anmerkung: Ergebnisse der Versuchsphase 8 (graue Schrift) haben aufgrund des kurzen Bilanzzeitraumes lediglich informativen Charakter)10Tabelle 21:Anfallender Rohschlamm - aus Studie zur Energieoptimierung der Hauptkläranlage-Wien: Untersuchte Lastfälle und maßgebliche	Tabelle 11:	Gegenüberstellung der Eigenschaften rheologischer Anpassungsmodelle	54
Tabelle 14: Probe- und Analyseplan: Faulbehälter	Tabelle 12:		61
Tabelle 15: Betriebsphasen der Pilotanlage; graue Bereiche: Bilanzierung und Diskussion durchgeführt	Tabelle 13:	Probe- und Analyseplan: Vorlagebehälter 1 und 2	74
Tabelle 16: erklärende Tabelle zu Abbildung 66	Tabelle 14:	Probe- und Analyseplan: Faulbehälter	74
Tabelle 17: Theoretische Gasausbeuten (Mudrak und Kunst, 1988)	Tabelle 15:	•	87
Tabelle 18: Henry-Konstanten für Methan, Kohlendioxid und Schwefelwasserstoff und deren Temperaturabhängigkeit (Helgeson, 1967)	Tabelle 16:	erklärende Tabelle zu Abbildung 66	88
und deren Temperaturabhängigkeit (Helgeson, 1967)	Tabelle 17:	Theoretische Gasausbeuten (Mudrak und Kunst, 1988)	103
Tu Wien	Tabelle 18:		103
(Anmerkung: Ergebnisse der Versuchsphase 8 (graue Schrift) haben aufgrund des kurzen Bilanzzeitraumes lediglich informativen Charakter)	Tabelle 19:	· · · · · · · · · · · · · · · · · · ·	107
Hauptkläranlage-Wien: Untersuchte Lastfälle und maßgebliche	Tabelle 20:	(Anmerkung: Ergebnisse der Versuchsphase 8 (graue Schrift) haben	108
Betriebsparameter (Reichel und Svardal 2010)	Tabelle 21:		110

Abkürzungsverzeichnis

Formelzeichen

0	Grad	[-]
A	Fläche; Übertragungsfläche	$[m^2]$
aTS	anorganische Trockensubstanz	[g/L]
b	Sterberate	$[d^{-1}]$
BSB ₅	Biologischer Sauerstoffbedarf nach 5 Tagen	[mg/L]
\mathbf{B}_{R}	Raumbelastung	$[kg/(m^3 \cdot d)]$
c	spezifische Wärmekapazität	$[J/(kg \cdot K)]$
C	Celsius	[°]
Caustreibbar	max. austreibbarer Gasanteil (inkl. Übersättigung)	$[m^3_{Gas}/m^3_{Schlamm}]$
C_i	Konzentration des Stoffes i	[mg/L]
Ci	Konzentration des Stoffes i (in Wasser)	$[mol/(L \cdot bar)]$
C_O	Konzentration an gelöstem Gas im FB oben	$\left[m^3_{Gas}/\ m^3_{Schlamm}\right]$
$\mathcal{C}_{O}, \ddot{U}$	Gaskonzentration der Übersättigung im FB oben	$\left[m^3_{Gas}/\ m^3_{Schlamm}\right]$
CS,i	Sättigungswert des Stoffes i (in Wasser)	$[mol/(L \cdot bar)]$
$C_{\mathcal{U}}$	Konzentration an gelöstem Gas im FB unten	$\left[m^3_{Gas}/\ m^3_{Schlamm}\right]$
Cu, \ddot{U}	Gaskonzentration der Übersättigung im FB unten	$\left[m^3\text{Gas}/\ m^3\text{Schlamm}\right]$
Cu,Ü,ges	gesamte Gasübersättigung im Faulbehälter unten	$\left[m^3_{Gas}/\ m^3_{Schlamm}\right]$
CSB	Chemischer Sauerstoffbedarf	[mg/L]
CSB_{abb}	abbaubarer CSB	[mg/L]; [%]
CSB-ÜS	CSB im Überschussschlamm	[%]
D	Durchmesser bzw. innerer Rohrdurchmesser	[m]
ET	Einblastiefe	[m]
etfB,ø	Abminderungsfaktor für die Höhe des	
	durchschnittlichen Entstehungsortes des Gases	[-]
f	hydraulischer Widerstandbeiwert	[-]
f_A	Anreicherungsfaktor	[-]
f_T	Temperaturfaktor	[-]
fu,Ü	Faktor der Gasübersättigung unten, bezogen auf	
	die max. lösliche Gaskonzentration; $f_{u.\ddot{U}} \ge 1,0$	[-]
$f_{o,\ddot{U}}$	Faktor der Gasübersättigung oben, bezogen auf	
	die max. lösliche Gaskonzentration; $f_o, \ddot{v} \ge 1,0$	[-]
fü,ges	Faktor der gesamten Gasübersättigung; $f_{U,ges} \ge 1,0$	[-]
F	Kraft	[N]
F-CSB	Fracht CSB	[kg/d]
g	Erdbeschleunigung (= 9,81 m/s²)	$[m/s^2]$
GV	Glühverlust	[%]
h_{FB}	hydrostatische Höhe im FB	[m]
h_r	hydraulische Verlusthöhe	[m]
$h_{\emptyset Gasprod}$.	Höhe des durchschnittlichen Entstehungsortes	

v	v
$^{\Lambda}$	$^{\Lambda}$

	des Gases	[m]
K	Konsistenzfaktor	[Pa·s ⁿ]
k_H	Hydrolysekonstante der Stoffmischung	[d ⁻¹]
$k_{H,i}$	Hydrolysekonstante des Stoffes <i>i</i>	[d ⁻¹]
k_m	maximale Umsatzrate der Bakterien	$[g CSB/(g oTR \cdot d)]$
K_B	Basenkonstante	[-]
K_S	Halbgeschwindigkeitssubstratkonzentration	[mg CSB/L]
l	Länge	[m]
m	Masse	[kg]
m	Massestrom	[kg/s]
M_{FS}	Masse der Feststoffe im Faulschlamm des FB	[kg]
MÜS, FS , d	täglich abgezogene Feststoffmasse des Faulschlamms	[kg/d]nFließindex
	[-]	
oTS	organische Trockensubstanz	[g/L]
OVC	Sauerstoffverbrauch für Kohlenstoffabbau	[mg $O_2/(L \cdot h)$]; [%]
$P_{elektr.}$	Elektrische Leistung	[W]; [kW]
p_{FB}	Überdruck im Gasraum des Faulbehälters	[mbar]
p_i	Partialdruck des Stoffes i in der Gasphase	[bar]
P_i	Prozessrate des Stoffes i	$[kg CSB/(m^3 \cdot d)]$
Q	Durchfluss bzw. Volumenstrom	$[m^3/h]; [L/s]$
Q_e	Menge des eingedickten Schlammes	$[m^3/d]$
QRohS, d	täglich zugeführte Rohschlammmenge	$[m^3/d]$
QÜS,FS, d	täglich abgezogene Faulschlammenge	$[m^3/d]$
q_{FB}	spezifische Gasproduktion im Faulbehälter	$[Nm^3/(m^3_{FB} \cdot h)]$
q_L	spezifischer Luftvolumenstrom	$\left[Nm^{3}/\left(m^{3}_{BB}\!\cdot\!h\right)\right]$
Q	Wärmestrom	[W]
Re	Reynoldszahl	[-]
Rekrit	kritische Reynoldszahl	[-]
Remr	Reynoldszahl nach Metzner und Reed	[-]
RemR,krit.	kritische Reynoldszahl nach Metzner und Reed	[-]
SF	Sicherheitsfaktor	[-]
$spezP_{BB}$	spezifische Energiedichte im Belebungsbecken	$[W/m^3_{BB}]$
$spezP_{FB}$	spezifische Energiedichte im FB	$[W/m^3_{FB}]$
S_r	reduzierbarer Schwefel	[mg/L]; [%]
T	Temperatur	[° C]; [K]
TS	Trockensubstanzgehalt	[%]
TS	Trockensubstanzkonzentration	[g/L]
TS_e	Trockensubstanzgehalt des eingedickten Schlammes	[g/L]
T_{FB}	Temperatur im Faulbehälter	[°C]
T_W	Wassertemperatur	[°C]
tts	Schlammalter	[d]
tTS,aerobe Stabi.	Schlammalter der aeroben Stufe	[d]
tTS,anaerobe Stabi	Schlammalter der anaeroben Stufe	[d]

tts,fb	Aufenthaltszeit im Faulbehälter = Schlammalter	[d]
U	Wärmedurchgangskoeffizient	$[W/(m^2 \cdot K)]$
ν	Geschwindigkeit	[m/s]
\overline{v}	Fließgeschwindigkeit	[m/s]
V	Volumen	$[m^3]$
$V_{austreibbar}$	gesamte austreibbare Gasmenge (inkl. Übersättigung)	$[m^3_{Gas}]$
V_{BB}	Reaktionsvolumen des Belebungsbeckens	$[m^3]$
V_{FB}	Reaktionsvolumen des Faulbehälters	$[m^3]$
Vübersättigt	Volumen des übersättigten Gases im FS	$[m^3Gas]$
V_0	gelöste Gasmenge im FS, die bei vollständiger	
	Durchmischung plötzlich entweichen kann	
	(exkl. Übersättigung)	$[m^3_{Gas}]$
Welektr.	Energiebedarf bzw. Elektrische Arbeit	[W]; [kW]
X_i	Substratkonzentration des zu hydrolysierenden	
	Stoffes i	[kg CSB/m³]
X_i	Konzentration des Filterrückstandes des Stoffes i	[mg/L]
y	Abstand	[m]
Y	Ertragskoeffizient	[g oTS/ g CSB]

Griechische Buchstaben			
$\dot{\gamma}$	Scherrate (= Schergefälle bzw.		
	Geschwindigkeitsgefälle)	$[s^{-1}]$	
$\dot{\gamma}^*$	Funktionsscherrate	$[s^{-1}]$	
ΔT	mittlere Temperaturdifferenz	[K]	
η	dynamische Viskosität	[Pa·s]	
η	Wirkungsgrad	[%]	
$oldsymbol{\eta}_{abb}$	Abbaugrad	[-]; [%]	
η-CSB	CSB-Abbau	[%]	
η_B	Bingham-Viskosität	[Pa·s]	
η_∞	Gleichgewichtsviskosität	$[Pa \cdot s]$	
λ	hydraulischer Widerstandbeiwert	[-]	
μ_{max}	maximale Wachstumsrate	$[s^{-1}]$	
ho	Dichte	$[kg/m^3]$	
hoWasser,LF	Dichte von luftfreiem Wasser	$[kg/m^3]$	
au	Schubspannung	[Pa]	
$ au_B$	Bingham-Fließgrenze	[Pa]	
$ au_{HB}$	Herschel-Bulkley-Fließgrenze	[Pa]	
$ au_W$	Wandschubspannung	[Pa]	
$ au_{O}$	Fließgrenze	[Pa]	
$ au_I$	Schubspannungskonstante	[Pa]	

Abkürzungen

ATV Abwassertechnische Vereinigung

ATV-DVWK Abwassertechnische Vereinigung - Deutsche Vereinigung für

Wasserwirtschaft, Abwasser und Abfall e.V.

BB Belebungsbecken

BDL Büro Dr. Lengyel ZT GmbH, Wien

BHKW Blockheizkraftwerk

ebswien Entsorgungsbetriebe Wien

ED Eindicker

EOS Energieoptimierung Schlammbehandlung

EPS extrazelluläre polymere Substanzen

EW Einwohnerwert FS Faulschlamm

IDM Induktiver Durchflussmesser

IWR Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft der

TU Wien

KA Kläranlage

MAP Magnesium-Ammonium-Phosphat

MÜSE maschinelle Überschussschlammeindickung

PS Primärschlamm RohS Rohschlamm

SRB Sulfat reduzierende Bakterien

ÜS ÜberschussschlammVLB VorlagebehälterWS Wirksubstanz

1 Einleitung, Veranlassung und Zielsetzung

1.1 Thematische Einleitung

"Abwasserreinigung muss einfach funktionieren!"

Hinter dieser simplen Aussage verbergen sich weitreichende Aussagen, die einer näheren Erklärung bedürfen.

Durch die Technologie der Abwasserreinigung kommt es zu einer Entfrachtung v.a. von Nährstoffen (N, P) und Kohlenstoff des vom Menschen gebrauchten Wassers. Es werden auch andere Verunreinigungen wie hormonell wirksame Stoffe zu einem großen Teil abgebaut.

Der Mensch nimmt durch diese Maßnahmen seine Verantwortung als Teil der Umwelt wahr nachhaltig zu agieren und schließlich sich selbst zu schützen. Deshalb sollte es selbstverständlich sein Abwasser zu reinigen, bevor es wieder der Natur übergeben wird.

Hinter der als Einleitung erwähnten Aussage, dass "Abwasserreinigung einfach funktionieren muss" ist gemeint, dass dieser Prozess *zuverlässig*, wie auch *simpel* sein soll. Zielsetzung des Planers und Betreibers einer Kläranlage soll es sein, diese beiden Anforderungen zu verbinden, da hier Synergien genutzt werden können. Ist eine Technologie simpel und technisch wenig anspruchsvoll, sind deren Fehleranfälligkeit und damit das Risiko des Ausfalls klein, sodass diese zuverlässiger wird. Reparaturen und Wartungen sind leichter auszuführen. Die Aussage, dass weniger manchmal mehr ist, unterstreicht dies.

Die vom Gesetzgeber vorgeschriebenen Anforderungen an die Reinigungsleistung von Kläranlagen sind in den letzten Jahrzehnten gestiegen. Ein Rückschritt wird in unserer nach Wachstum strebenden Gesellschaft derzeit auch in diesem Themenfeld glücklicherweise nicht akzeptiert. Dies ist der Grundstein, dass der Gewässerschutz nicht nur unserer, sondern auch nachfolgenden Generationen zu Gute kommt. Dieser Umstand ist gleichzeitig auch Triebfeder für neue Entwicklungen, um die gesetzten Anforderungen zu erreichen, einzuhalten und eventuell sogar zu übertreffen. In diesem Spannungsfeld steht auch die Finanzierbarkeit bestehender und neu zu planender Kläranlagen. Die Gesellschaft versteht die Notwendigkeit von Kläranlagen, auch die Bereitschaft Abgaben (Kanalgebühr) zu entrichten ist vorhanden.

Verteuerungen werden naturgemäß sensibel wahrgenommen und sind des Öfteren auch politisch schwierig durchzusetzen.

Aufgabe des Planers, Betreibers und Wissenschaftlers ist es, an diesem Punkt anzusetzen, um fortschrittliche Technologien zu entwickeln, deren Kosten neutral bzw. kleiner sind als bisherige Lösungen. Bei einer entscheidenden Verbesserung der Reinigungsleistung können auch Verteuerungen argumentiert werden.

Auf einer Kläranlage werden kommunale, industrielle, gewerbliche oder eine Kombination dieser Abwässer gereinigt. Der Betreiber einer kommunalen Kläranlage ist in Österreich meist eine Gemeinde oder ein Abwasserverband. Die größten Stromverbraucher einer Gemeinde sind die Straßenbeleuchtung und die Kläranlage. Der Wunsch jedes Betreibers ist es Kosten einzusparen. Bei Kläranlagen gibt es verschiedene Möglichkeiten den Energiebedarf zu senken. In diesem Zusammenhang ist es von besonderer Wichtigkeit zu erwähnen, dass Energieeinsparungen auf Kläranlagen nicht dazu führen dürfen, deren oberste Zielsetzung, nämlich die zuverlässige Reinigung von Abwässern, zu gefährden. Es mag zwar stimmen, dass Kläranlagen einen großen Energiebedarf haben, spezifisch betrachtet beträgt der Energiebedarf etwa 8 W/E bzw. 4 W/EW (Svardal und Kroiss, 2011). Die in Österreich verbrauchte elektrische Energie 2008 etwa 950 W/E (STATISTIK AUSTRIA, 2010), Energieverbrauch eines Einwohners für Standby-Geräte betrug 2008 ~30 W. Der Energiebedarf für Kläranlagen beträgt auf einen Einwohner bezogen damit etwa 0,8 % der gesamten Stromproduktion und beträgt etwa ¼ des Verbrauchs von Standby-Geräten.

Durch Energie-Einsparungsmaßnahmen auf Kläranlagen kann man keine nationale oder internationale Energiewende herbeiführen, doch hat man die Möglichkeit, den Bedarf eines einzelnen großen Verbrauchers zu optimieren und einen Beitrag zur Verringerung an Primärenergie zu leisten.

Erfolgt eine Umstellung der Schlammstabilisierung von aerob auf anaerob, wird die Möglichkeit geschaffen, den Energiebedarf einer Kläranlage erheblich zu senken. Weiters können durch die Reduktion der Schlammfracht Entsorgungskosten reduziert werden und das entstehende Gas energetisch (Wärme, elektrisch) genutzt werden kann. Darüber hinaus wird die Entwässerbarkeit des Schlammes tendenziell verbessert und Kapazitätsreserven der biologischen Reinigungsstufe können genutzt werden.

Das Volumen einer Anlage zur Schlammfaulung wird im Wesentlichen durch die Parameter Trockensubstanz des Rohschlammes TS_{RohS} sowie vom Schlammalter $t_{TS,FB}$ beeinflusst. Da es bei der Wahl des Schlammalters nur begrenzten Spielraum gibt, liegt der größte Teil des Optimierungspotentials für die Bemessung einer einstufigen, mesophilen Schlammfaulung im kommunalen Bereich bei der Wahl des Trockensubstanzgehaltes des Rohschlammes. Das erforderliche Volumen nimmt linear mit der Zunahme der Trockensubstanz ab. Um höhere TS zu erreichen ist die maschinelle Eindickung des Rohschlammes erforderlich.

Durch den höheren Trockensubstanzgehalt kommt es zu einem Anstieg der Ammonium-Konzentration, wodurch in weiterer Folge der pH-Wert etwas erhöht und stabilisiert wird.

Neben den genannten Vorteilen sind auch Nachteile zu nennen. So ist die Entscheidung zur Umstellung bzw. den Bau einer anaeroben Schlammstabilisierung von hohen Investitionskosten für Bauwerke und Maschinen begleitet. Im Betrieb gibt es höheren Arbeitsauswand für die Mannschaft und laufende Kosten für Betriebsmittel.

1.2 Hintergrund dieser Arbeit

Anlass für die Untersuchungen mit dem Thema "Schlammfaulung bei erhöhtem Trockensubstanzgehalt" war die energetische Optimierung der Hauptkläranlage-Wien.

Die Hauptkläranlage-Wien wurde in den 1970er Jahren gebaut und ging 1980 in Betrieb. Sie wurde als 1-stufige Hochlastbelebungsanlage zur Kohlenstoffentfernung konzipiert (von der Emde, 1982, 1957). Die Anlage bestand aus einer mechanischen Vorreinigung, einer Vorklärung und einer Hochlast-Belebungsanlage. Der Überschusschlamm der zweiten Stufe gelangt in die erste Stufe und wird dort gemeinsam mit dem Überschussschlamm der ersten Stufe abgezogen. Der zu entsorgende Primär- und Überschussschlamm wurde gemeinsam statisch eingedickt und zu einer benachbarten Verbrennungsanlage gepumpt, wo dieser entwässert und verbrannt wurde.

Abbildung 1: Luftbild der Hauptkläranlage-Wien, nach der Inbetriebnahme 1980

Den erhöhten Anforderungen an den Gewässerschutz wurde in den 1990er Jahren Rechnung getragen (1. AEV für kommunales Abwasser, 1996). Damals wurde der Ausbau der Anlage zur Nährstoffentfernung beschlossen. Die Umsetzung erfolgte als 2-stufige Anlage. Die bestehende Anlage der alten Belebungsanlage wurde als 1. Stufe einer 2-stufigen Belebungsanlage integriert. Der neue Teil der Anlage hat 15 Belebungsbecken, denen jeweils ein Nachklärbecken zugeordnet ist (Abbildung 2). Die Fertigstellung und Inbetriebnahme erfolgte 2005 (Kainz und Hofstetter, 1996).

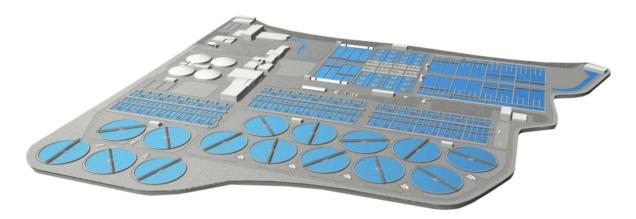
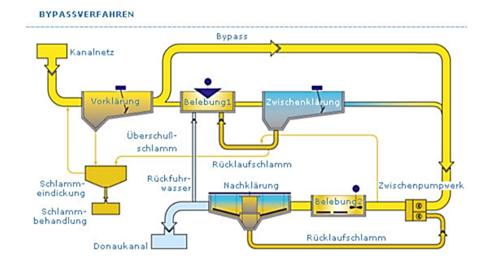



Abbildung 2: Layout der Hauptkläranlage-Wien nach dem Ausbau 2005 (ebswien, 2013a)

Die Besonderheit dieser Anlage ist, dass diese nach dem Bypass- bzw. Hybridverfahren betrieben werden kann (Matsché und Moser, 1994) (Abbildung 3).

HYBRIDVERFAHREN Kanalnetz Rücklauf-schlamm Trüb Überschußwasse schlamm Schlammkreislauf 1 Rückfuhr Schlamm-Nachklärung Belebung 2 eindickung Schlammbehandlung Zwischenpumpwerl Donaukanal Rücklaufschlamm

Abbildung 3: Verfahrensschema der Hauptkläranlage-Wien; oben: Bypassverfahren, unten: Hybridverfahren (ebswien, 2013b)

Die 1. Stufe der Anlage ist nun über 30 Jahre in Betrieb und muss regelmäßig umfangreichen und kostspieligen Sanierungen der Bauwerke unterworfen werden. Eine Studie über die Wirtschaftlichkeit von Baumaßnahmen kam zu dem Schluss, dass bei langfristiger Betrachtung die Neuerrichtung der 1. Stufe kostengünstiger ist, als regelmäßige Sanierungsmaßnahmen. Es folgten eine Studie über die Evaluierung der Wiener Klärschlammbehandlung (Spindler und Svardal, 2009) und in weiterer Folge ein Konzept zur Neugestaltung der Hauptkläranlage-Wien (Reichel und Svardal, 2010), welches ein Ingenieurbüro planerisch umsetzte (BDL, 2010). Das Wesentliche dieses Konzepts ist die Verbesserung der energetischen Situation der Hauptkläranlage, daher wurde das Projekt "EOS – Energieoptimierung Schlammbehandlung" genannt. Das Konzept sieht vor, dass die bestehende 1. Stufe zur Gänze neu gebaut wird und Primär- und Überschussschlamm ausgefault werden, sodass durch das

entstehende Gas elektrischer Strom und Wärme nutzbar werden. Die Herausforderung bei dem Projekt lag darin, dass die neue 1. Stufe und die Schlammfaulung im Bereich der alten 1. Stufe (ohne Schlammfaulung) Platz finden müssen, weil Freiflächen nicht verfügbar sind. Die zukünftigen Becken werden daher tiefer ausgeführt als die alten, damit Platz für die Schlammfaulung geschaffen wird. Die gewonnene Freifläche reicht aber nur dann aus, wenn das erforderliche Faulraumvolumen entsprechend reduziert wird. Dies kann erreicht werden, indem der Rohschlamm maschinell eingedickt und die Faulung mit erhöhter Trockensubstanz betrieben wird (Abbildung 4).

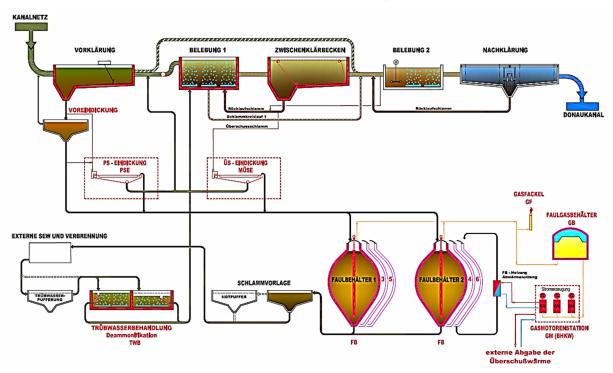


Abbildung 4: Projektiertes Verfahrensschema der Hauptkläranlage-Wien nach Umbau (BDL, 2010)

Der Vorteil dieses Konzepts ist, dass im Zuge der Erneuerung der 1. Stufe die energetische Situation der Anlage gleichzeitig verbessert werden kann. Die Voraussetzung dafür ist jedoch die durch die begrenzte Fläche notwendige Optimierung des erforderlichen Faulraumvolumens. Die wesentlichen Nachteile Problemfelder daher erhöhte Aufwand sind der die Schlammeindickung, die Förderung und Einmischung des Schlammes bei höherem TS-Gehalt, Verfahrensstabilität der Faulung hinsichtlich Ammoniaktoxizität und die Behandlung des anfallenden hochkonzentrierten Trübwassers.

Bei der Erstellung des Konzepts mussten einige Annahmen getroffen werden, für die es in der Praxis keine oder nur unzureichende Erfahrungen gibt. Darum

folgte die Geschäftsleitung der Hauptkläranlage-Wien der Empfehlung des Planungsteams (TU-Wien, BDL) eine Versuchsanlage im Pilotmaßstab zu errichten und zu betreiben, um Fragestellungen, die hinsichtlich der Planung der Großanlage von Bedeutung sind, klären zu können. Mit der wissenschaftlichen Betreuung dieser Anlage wurde das Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft (kurz: IWR) der TU Wien beauftragt.

1.3 Zielsetzungen

Ziel dieser Arbeit ist es, die Möglichkeiten und Grenzen bei der Optimierung einer einstufigen, mesophil betriebenen Schlammfaulungsanlage im kommunalen Bereich aufzuzeigen, sodass solche Anlagen kompakter, einfacher und kostengünstiger gebaut und betrieben werden können.

Zunächst sollen die konzeptionellen Beweggründe (Energieverbrauch, Stabilisierungsgrad, Schlammanfall, Entwässerbarkeit, Kapazitätsreserven der biologischen Stufe der Abwasserreinigung und Faulgasproduktion) für die Umstellung von aerober auf anaerobe Schlammstabilisierung erörtert werden.

Da die Größe eines Faulbehälters bei gegebenem Schlammalter ($t_{TS,FB}$) im Wesentlichen durch die Trockensubstanz des Rohschlammes (TS_{RohS}) sowie vom Schlammalter ($t_{TS,FB}$) beeinflusst wird, sollen zunächst durch die Auseinandersetzung mit den theoretischen Hintergründen zur Wahl des Schlammalters Möglichkeiten der Optimierung gefunden werden.

Durch das maschinelle Eindicken des Rohschlammes verändern sich zahlreiche prozesstechnische Parameter. Die Auswirkungen auf den Prozess sollen dargestellt sowie Vor- und Nachteile genannt werden.

Im Zuge des Projekts EOS (Kapitel 1.2, S. 3ff) wurde eine Pilotanlage zur Schlammfaulung mit hohem TS-Gehalt betrieben, mit der praktische Erfahrungen und Betriebsdaten gesammelt wurden, um anschließend Auswertungen durchführen zu können. Hierbei sollten die Auswirkungen und das Verhalten des anaeroben Prozesses beim Betrieb mit maschinell eingedicktem Rohschlamm (Primär- und Überschussschlamm) und unterschiedlichem Schlammalter ermittelt werden.

Bei Schlamm handelt es sich um eine nicht-Newtonsche Flüssigkeit. Durch das Eindicken kommt es zu einer Veränderung des rheologischen Verhaltens, sodass die Viskosität steigt. Im Labor ermittelte rheologische Kennwerte sollten im Feldversuch validiert werden. Die Ergebnisse sollen genutzt werden können, um hydraulische Druckverluste zu berechnen.

Die Durchmischung ist bei der Schlammfaulung ein wesentlicher Parameter für einen stabilen Betrieb. Durch das entstehende Gas wird Energie eingetragen, dass zur Durchmischung beiträgt. Wird die Trockensubstanz erhöht und bleibt die spezifische Gasproduktion [m³Gas/oTSabgebaut] gleich, steigt die eingebrachte Energiedichte. Es soll eine Formel zur Abschätzung der eingetragenen Energie erarbeitet werden. Aus den Daten der Pilotanlage soll eine Abschätzung der erforderlichen Energiedichte [W/m³] für vollständige Durchmischung erarbeitet werden.

Je höher ein anaerober Reaktor ist, desto größer wird der hydrostatische Druck, sodass mehr Gas im Schlamm gespeichert wird. Die Grundlagen zur Ermittlung des gelösten Gases sollen dargestellt und die Übersättigung des Faulschlammes mit Gas berücksichtigt werden. Mittels Versuchsdaten sollen diese Überlegungen verifiziert werden.

1.4 Übertragbarkeit de Ergebnisse

Das Abwasser der Stadt Wien kann als typisches kommunales Abwasser klassifiziert werden, da der Einfluss von industriellem Abwasser unbedeutend ist. Somit sind keine Auswirkungen auf den ausgefaulten Schlamm zu erwarten.

Beim Kanalsystem der Stadt Wien handelt es sich überwiegend um ein Mischkanalsystem. Der Anteil der mineralischen Bestandteile des Primärschlammes bzw. des Rohschlammes ist daher größer als bei einem reinen Trennsystem. Aufgrund von Ablagerungen im Kanal kommt es aufgrund von Spülstößen zu starken Schwankungen des Primärschlammanfalls.

Bei der HKA-Wien handelt es sich um eine 2-stufige Belebungsanlage. Der Überschussschlamm der 2-stufigen Belebungsanlage ist mit Überschussschlämmen einstufiger Anlagen nicht vergleichbar, die direkte Übertragbarkeit nicht gegeben.

Aufgrund der 2-Stufigkeit der Belebungsanlage führt der Überschussschlamm wahrscheinlich auch zu einem höheren N-Gehalt im Faulschlamm, im Vergleich bei einer 1-stufigen Anlage.

Das Gesamtkonzept der HKA-Wien (Projekt EOS) besteht aus der 2-stufigen Belebungsanlage plus Faulung, sodass eine energieproduzierende Anlage entsteht.

Die Wirtschaftlichkeit dieses Gesamtkonzepts hängt ab von Investitionskosten ab. Die Reduzierung des Faulraumbehältervolumens durch Erhöhung der TS wirkt sich günstig auf die Amortisationszeit aus.

2 Optimierungspotential durch Schlammfaulung

Durch den Einsatz der Schlammfaulung können Betriebskosten eingespart werden. Außerdem kann die zulässige Zulaufschmutzfracht der Kläranlage durch die Nutzung von Kapazitätsreserven der Biologie, die durch die Umstellung einer biologischen Schlammstabilisierung von aerob auf anaerob erhöht werden. Demgegenüber stehen die erforderlichen Investitionskosten, der notwendige Flächenbedarf und die Erhöhung des Arbeitsaufwandes bei anaerober Schlammfaulung. Die Vorteile der anaeroben Schlammstabilisierung im Vergleich zur aeroben werden in den folgenden Unterkapitel und die prozesstechnischen Auswirkungen der anaeroben Schlammstabilisierung werden in Kapitel 3.3 (S. 33ff) behandelt.

2.1 Energieverbrauch

Der Primärenergieverbrauch (= Produktion + Importe – Exporte) in Österreich betrug im Jahr 2008 ~8.200 W/E (STATISTIK AUSTRIA, 2009), wovon ~950 W/E (STATISTIK AUSTRIA, 2010) auf elektrische Leistung entfallen. Der Stromverbrauch von Haushalten lag im selben Zeitraum bei ~220 W/E, jener von Stand-by-Geräten von Haushalten bei ~30 W/E (STATISTIK AUSTRIA, 2013). Der Median des elektrischen Energiebedarfs von österreichischen Kläranlagen lag im Zeitraum 2003 bis 2010 bei ~35 kWh/(EW·a) bzw. ~70 kWh/(E·a) (Lindtner und Haslinger, 2012), was einer Leistung von ca. 8 W/E entspricht.

Tabelle 1: Einwohnerspezifischer Energieverbrauch in Österreich, Bezugsjahr 2008; kursiv: Rechenwerte

Bezeichnung	Wert	Einheit	kWh/E/a	W/E	Quelle
Einwohner	8.322.000	-			(STATISTIK AUSTRIA, 2014a)
Privathaushalte	3.566.000	-			(STATISTIK AUSTRIA, 2014b)
Einwohner je Haushalt	2,33	E/Haushalt			
Energieproduktion, gesamt (inkl. Importe, ohne Exporte)	598.140	GWh/a	71.875	8.205	(STATISTIK AUSTRIA, 2009)
Stromproduktion, gesamt (inkl. Importe, ohne Exporte)	69.231	GWh/a	8.319	950	(STATISTIK AUSTRIA, 2010)
Stromverbrauch Haushalte	16.119	GWh/a	1.937	221	(STATISTIK AUSTRIA, 2013)
Stromverbrauch Stand- by-Geräte (Mittelwert)	607	kWh/Haushalt	260	29,7	(STATISTIK AUSTRIA, 2013)
Stromverbrauch Kläranlagen			70	8,0	

Der elektrische Energiebedarf von Kläranlagen beträgt etwa ¼ jenes Energiebedarfs von Stand-by-Geräten in Haushalten bzw. beträgt ~3,6 % des Bedarfs der im Haushalt verbrauchten elektrischen Energie eines Einwohners. Gemessen an der gesamten in Österreich verbrauchten elektrischen Energie beträgt der elektrische Energiebedarf von Kläranlagen ~0,8 %.

Soll Abwasser als Energiequelle betrachtet werden, muss eine Quantifizierung des Energieinhaltes erfolgen. Energie steckt auch in den organischen Verbindungen, die im Abwasser vorhanden sind. Ersetzen im Abwasser enthaltene Nährstoffen Handelsdünger, kann den Nährstoffen ein Energieäquivalent zugeordnet werden, das dem Energieaufwand der Herstellung entspricht (Kroiss und Svardal, 2009).

Ein EW entspricht einer mittleren spezifischen Fracht von 110 g CSB/(EW·d) bzw. 40 kg CSB/(EW·a). Der CSB hat einen Energieinhalt von 14 kJ/g CSB, was einen Energieinhalt von 560 MJ/(EW·a) (= 40·14) ergibt. Auf einen EW bezogen ergibt dies 156 kWh/(EW·a) (= 560.000 kWh/3600 s/h). Als Leistung ausgedrückt sind dies 18 W/EW. Geht man davon aus, dass die Schmutzfracht bei Anlagen > 50.000 EW 2 EW/E entspricht, ergibt sich der Energieinhalt der organischen. Verunreinigungen zu ~36 W/E.

Für die Herstellung von Stickstoffdünger aus Luftstickstoff sind etwa 11 kWh/kg N an Primärenergie erforderlich (Egle und Reichel, 2012; Zessner, 1999). Für die Produktion von Phosphordünger werden etwa 10 kWh/kg P benötigt (UBA, 2008). Geht man von diesen Werten aus und nimmt eine Stickstofffracht von 9 g N/(EW·d) (= 3,3 kg N/(EW·a)) und eine Phosphorfracht von 1,45 g P/(EW·d) (= 0,53 kg N/(EW·a)) an, entspricht das Energieäquivalent der Nährstoffe im Abwasser 41,4 kWh/(EW·a) bzw. ~10 W/E.

Die Nutzung der Wärmeenergie des Abwassers kann nur unter günstigen Randbedingungen wirtschaftlich erfolgen (Schmid, 2009), sodass diese hier nicht berücksichtigt wird.

Die Summe des Energieäquivalents aus organischer Belastung und Nährstoffen des Abwassers beträgt ~45 W/E (Tabelle 2) und ist damit um ein Vielfaches kleiner als der österreichische Primärenergieeinsatz (8.200 W/E) bzw. die Stromproduktion (950 W/E), sodass nationale Energieprobleme mit Abwasser nicht gelöst werden können.

Tabelle 2: Spezifische "Energieäquivalente" von kommunalem Abwasser; Quelle: in Anlehnung an (Kroiss und Svardal, 2009)

Energie- äquivalent Abwasser- parameter	kWh/(EW·a)	W/E ($EW = 2E$)	
CSB	155,6	35,5	Brennwert
Nährstoffe (N, P)	41,4	9,5	Primärenergie für Handelsdüngerproduktion
Summe	197,0	45,0	"Energieinhalt"

Die kommunale Kläranlage ist meist einer der größten Stromverbraucher einer Gemeinde (z. B. Energieberichte: Gemeindeamt Langenegg, 2005; Gemeinde Hittisau, 2013).

Aus diesem Grund ist es für den Betreiber einer Kläranlage von besonderem Interesse, den Stromverbrauch zu minimieren. In diesem Zusammenhang ist zu beachten, dass der Anteil der Energiekosten an den Gesamtbetriebskosten von österreichischen Kläranlagen im Mittel bei 16 % liegt und je nach Größe der Kläranlage zwischen 8 und 20 % schwankt (Lindtner und Haslinger, 2012). Dies bedeutet, dass durch Energieautarkie von Kläranlagen die Gesamtbetriebskosten im Mittel um 16 % gesenkt werden könnten.

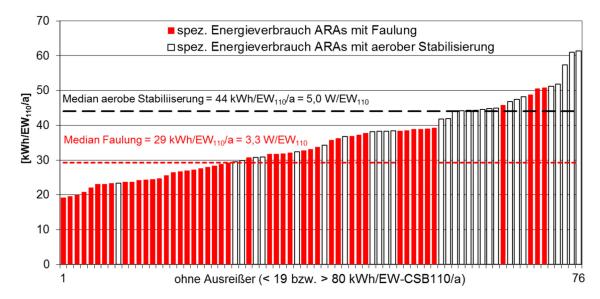


Abbildung 5: Spezifischer Energieverbrauch österreichischer Kläranlagen (Lindtner und Haslinger, 2012). Datenbasis: 76 Kläranlagen aus der Benchmarkingperiode 2003 bis 2010 (Mittelwerte bei Anlagen, die mehrfach teilgenommen haben; Basis: 110 g CSB/EW/d)

Auswertungen des ÖWAV-Abwasser-Benchmarkings (Lindtner und Haslinger, 2012) verdeutlichen das Einsparungspotential des spezifischen Energieverbrauchs bei der Wahl einer Schlammfaulung gegenüber aerober Schlammstabilisierung. Abbildung 5 zeigt den spezifischen Energieverbrauch von 76 Kläranlagen (Daten der Jahre 2003 bis 2010 des ÖWAV-Abwasser-

Benchmarkings), unterteilt in Kläranlagen (ARAs) mit aerober und anaerober Stabilisierung (Faulung). Der Median der Anlagen mit Faulung liegt mit 29 kWh/EW₁₁₀/a deutlich unter jenem für Anlagen mit aerober Stabilisierung (44 kWh/EW₁₁₀/a), was auf den verfahrensbedingt höheren Energieverbrauch für die Belüftung bei der aeroben Stabilisierung zurückzuführen ist.

Einen erheblichen Einfluss auf den spezifischen Stromverbrauch einer Kläranlage hat die Größe der Anlage. Wie Abbildung 6 zeigt, wird der spezifische Energieverbrauch mit steigender Anlagengröße kleiner. Dies ist mit der effizienteren Betriebsführung bei größeren Anlagen zu begründen. Demnach weisen in Österreich Kläranlagen > 50.000 EW mit Faulung den geringsten Energieverbrauch auf.

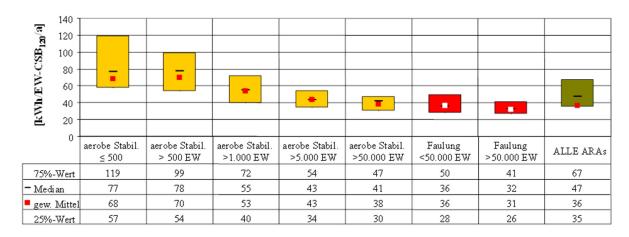


Abbildung 6: Energieverbrauch österreichischer Kläranlagen in Abhängigkeit der Ausbaugröße und der Art der Stabilisierung (Lindtner, 2012)

Auf einer Kläranlage entfallen etwa 60 bis 70 % des gesamten Energieverbrauchs auf die mechanisch-biologische Abwasserreinigung (Belebungsbecken, Vor- und Nachklärung; Belüftung, Rührwerke, Pumpen), wobei der Energiebedarf für die Belüftung dominiert (Lindtner, 2008). Abbildung 7 zeigt den spezifischen Energieverbrauch von jeweils sieben Kläranlagen mit aerober und anaerober Schlammstabilisierung. Der unterschiedliche Energieverbrauch der beiden Stabilisierungsverfahren ist deutlich zu erkennen. Kläranlagen mit anaerober Schlammstabilisierung haben einen geringeren Energieverbrauch als solche mit aerober Schlammstabilisierung. Der Energieverbrauch sinkt mit steigender Größe der Anlage. Die Streuung der Werte innerhalb der beiden Gruppen ist recht hoch und die Unterschiede der beiden Betriebsweisen ist kleiner als theoretische Überlegungen vermuten lassen. Dies kann mit der Betriebsführung der einzelnen Anlagen begründet werden. In der Praxis weisen Kläranlagen mit Schlammfaulung oft ein viel zu hohes Schlammalter in der Belebungsstufe auf, als es für das

erforderliche Reinigungsziel notwendig wäre. Auf Kläranlagen mit aerober Schlammstabilisierung ist das Schlammalter der Belebungsstufe oft zu gering, sodass der Klärschlamm nicht ausreichend stabilisiert wird.

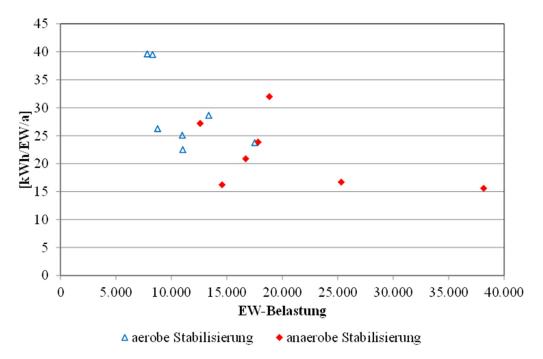


Abbildung 7: Spezifischer Energieverbrauch der mechanisch-biologischen Abwasserreinigung aerob und anaerob stabilisierender Kläranlagen (Füreder et al., 2012)

2.2 Stabilität des Klärschlamms

Das Hauptprozessziel der Klärschlammstabilisierung ist der weitgehende Abbau der organischen Inhaltsstoffe (DWA-M 368, 2014), also das Überführen gelöster und partikulärer organischer Stoffe in anorganische oder sehr langsam weiter abbaubare organische Stoffe. Auf diese Weise werden Geruchsprobleme weitgehend vermeiden.

In der Literatur findet man zahlreiche Parameter zur Beurteilung des Stabilisierungsgrades. Dichtl und Eck-Düpont (1986) haben mehr als 50 verschiedene Kriterien zusammengefasst. Kennwerte sind oft nicht vorhanden oder schwierig miteinander zu vergleichen. Eine einheitliche Regelung für einen Grenzwert gibt es nicht. Im Merkblatt DWA-M 368 (2014) wird angegeben, dass stabilisierter Schlamm weniger als 0,01 g Essigsäure-Äquivalent je g oTS haben soll, die Atmungsaktivität sollte kleiner als 0,1 g O₂/(g oTS·d) sein, wobei bei letzterem Kennwert keine Temperatur angegeben ist. Nowak (2002) schlägt als geeigneten Indikator für die Stabilisierung die Atmungsaktivität vor und gibt für stabilisierten Schlamm einen Bereich von 2 bis 2,5 mg O₂/(g oTS·h) (= 0,048 bis 0,06 g O₂/g oTS/d) bei 20 °C an, der nicht überschritten werden soll.

Ebenso bei 20 °C werden für die maximal zulässige Atmung in O₂/(g oTS·d) von Mudrak (1966) 0,12, von Wolf (1973) 0,1 und von Tonkovic (1999) 0,51 angegeben. Die Bandbreite dieser vorgeschlagenen Grenzwerte liegt etwa um den Faktor zwei auseinander und verdeutlicht die Schwierigkeit eines gemeinsamen Konsenses.

Ein wesentlicher Parameter bei der aeroben Schlammstabilisierung ist das aerobe Schlammalter, da die Aktivität von Belebtschlamm unter anoxischen Bedingungen deutlich geringer ist. Aerob stabilisierter Klärschlamm ist oft unzureichend stabilisiert, weil das aerobe Schlammalter in der Belebungsstufe zu gering ist (Nowak, 2002). In ATV-DVWK-A 131 (2010) wird für die Bemessung von Kläranlagen mit Stickstoffentfernung ein minimales Schlammalter von 25 Tagen angegeben. Dies lässt allerdings keine Aussagen auf das aerobe Schlammalter zu.

Bei der anaeroben Schlammstabilisierung konnte Nowak (2002) im Batch-Test eine spezifische Fracht von 18 bis 20 g oTS/(EW·d) im ausgefaulten Schlamm feststellen, unabhängig von der spezifischen oTS-Fracht im Überschussschlamm und damit unabhängig vom Belastungszustand der Anlage und dem Entnahmezeitpunkt (Sommer/Winter) des Überschussschlammes.

2.3 Schlammanfall

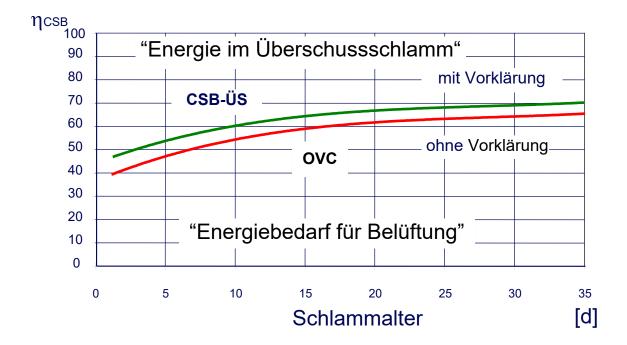


Abbildung 8: CSB-Bilanz in Abhängigkeit des Schlammalters (bei 15 °C), (CSB $\ddot{\text{U}}$ S + OVC = η -CSB); Quelle: Svardal, 2012

Ein Nebenziel der Schlammfaulung ist die Verminderung der Feststoffmasse (DWA-M 368, 2014), was durch den Abbau von organischem Material erreicht wird. Je höher der Stabilisierungsgrad, desto kleiner ist die verbleibende Masse.

Bei der simultanen aeroben Schlammstabilisierung erfolgt der CSB-Abbau (η-CSB) über den Einbau des CSB in den Überschussschlamm (CSB-ÜS) (= Baustoffwechsel) und unter Sauerstoffverbrauch durch Veratmung (OVC, Sauerstoffverbrauch für Kohlenstoffabbau = Energiestoffwechsel). Diese beiden Prozesse laufen parallel ab und werden maßgeblich durch das Schlammalter geprägt (Abbildung 8). Je höher das Schlammalter, desto mehr Kohlenstoff wird veratmet (OVC) und desto geringer wird die Überschussschlammproduktion (CSB-ÜS) (Kroiss und Svardal, 2009; Nowak und Svardal, 1989).

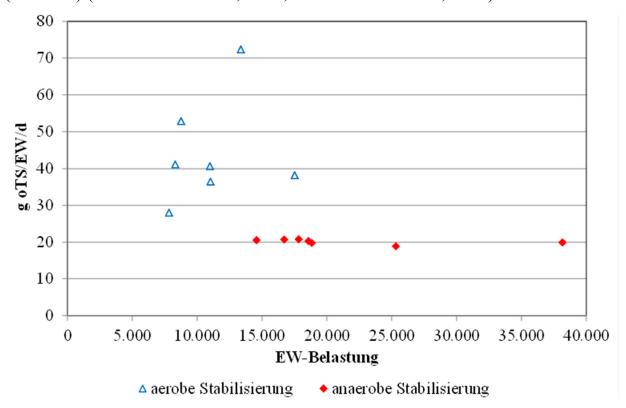


Abbildung 9: Vergleich des spezifischen Schlammanfalls von aerob und anaerob stabilisierenden Kläranlagen als organische Trockensubstanz (oTS) (Füreder et al., 2012)

In einer Studie der TU Wien (Füreder et al., 2012) wurde der zu entsorgende Klärschlamm von Anlagen mit aerober und anaerober Stabilisierung erhoben und als spezifische Fracht dargestellt. Kläranlagen mit aerober Schlammstabilisierung haben mit 25 bis 75 g oTS/(EW·d) einen deutlich höheren Schlammanfall als Kläranlagen mit anaerober Schlammstabilisierung, da bei diesen die organische Substanz deutlich besser abgebaut wird, was in einem Schlammanfall etwa 20 g oTS/(EW·d) resultiert.

Die Menge der anorganischen Trockensubstanz (aTS) wird weitgehend vom Kanalsystem (Trenn- oder Mischsystem) und dem Einzugsgebiet (Winterstreuung, Neigung, Einwohnerdichte, Regenereignisse etc.) bestimmt.

Die unterschiedliche Feststoffreduktion wirkt sich auch bei den Kosten der Schlammentsorgung aus, die gemäß ÖWAV-Abwasser-Benchmarking im Mittel bei 18 % der Betriebskosten liegen (81 Kläranlagen ≥ 10.000 EW) (Lindtner, 2012).

2.4 Entwässerbarkeit und Schlammentsorgung

2.4.1 Allgemeines

Die Schlammstabilisierung beeinflusst die Entwässerbarkeit, wobei generelle Aussagen über deren qualitative Wirkungsweise nicht möglich sind, da zahlreiche Einflussfaktoren ineinander greifen. Eine ausführliche Darstellung dieser Zusammenhänge ist in DWA-M 363 (2010) zu finden. Die Annahme, dass anaerob stabilisierter Klärschlamm besser entwässerbar ist als aerob stabilisierter Klärschlamm, wird in Kapitel 2.4.2 empirisch untersucht.

Primärschlamm lässt sich gut entwässern und wird durch eine Stabilisierung wenig verändert. Bei der Stabilisierung von Überschussschlamm werden extrazelluläre polymere Substanzen (EPS) abgebaut, was dessen Entwässerbarkeit verbessert, durch die Zerkleinerung der Partikel kommt es allerdings zu einer Verschlechterung. Generelle Aussagen über die Entwässerbarkeit von Mischschlämmen (Primär- und Überschussschlamm) sind daher nicht möglich, wobei die Entwässerbarkeit von stabilisierten Schlämmen schlechter wird, je höher der Anteil des Überschussschlammes ist (DWA-M 368, 2014).

Bei der Stabilisierung steigt durch den Abbau von organischem Substrat der relative Anteil der anorganischen Trockensubstanz, was sich positiv auf die Entwässerbarkeit auswirkt.

Bei einer verbesserten Entwässerbarkeit des Schlammes sinkt die Menge des zu entsorgenden Schlammes und damit auch die Entsorgungskosten.

2.4.2 Empirische Auswertung zur Entwässerbarkeit von Klärschlämmen

Um die in Fachkreisen bekannte Aussage, dass anaerob stabilisierter Klärschlamm besser entwässerbar sei als aerob stabilisierter Klärschlamm, zu verifizieren, wurde auf Initiative der TU Wien im Rahmen der österreichischen

Kläranlagen-Nachbarschaften (KAN) eine Umfrage zur Klärschlammentwässerung bei Betreibern von Kläranlagen durchgeführt. Abgefragt wurden neben spezifischen Anlagenkenndaten (z. B. Ausbaugröße, Art des Kanalsystem (Misch-/Trennsystem), Stabilisierungsverfahren, eingesetztes Fällmittel etc.) die Entwässerungseigenschaften der Klärschlämme (Svardal und Valkova, 2012). Von den 640 Rückmeldungen der Umfrage waren 224 Datensätze in Bezug auf die 5 relevanten Parameter ausgefüllt.

Tabelle 3: Relevante Fragen der "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)

Parameter	mögliche Antwort	Abkürzung
Kanalsystem	Trennkanalisation	T
	Mischkanalisation	M
Schlammstabilisierung	aerob	a
	anaerob (Faulung)	f
Entwässerungstechnik	Kammerfilterpresse mit Kalkzugabe	KFP,k
	Kammerfilterpresse mit Polymerzugabe	KFP,p
	Schneckenpresse	SP
	Siebbandpresse	SBP
	Zentrifuge	Z
Trockensubstanz	%	TS
Glühverlust	%	GV

Tabelle 4: Anzahl an Kläranlagen mit bestimmter Entwässerungstechnik in Bezug auf Kanalsystem und Art der Schlammstabilisierung; "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)

	Anzahl der Kläranlagen				
Entwässerungstechnik	Trennkanalisation		Mischka	nalisation	
Entwasserungstechnik	Aerob stabilisiert	Faulung	Aerob stabilisiert	Faulung	
KFP,k	10	3	15	12	
KFP,p	4	7	5	17	
SP	4	7	7	8	
SBP	2	12	5	13	
Z	39	11	17	26	
Summe	59	40	49	76	

Bei Kammerfilterpressen werden beim **Einsatz** von Kalk als erzielt. Konditionierungsmittel hohe TS Dies ist mit den Entwässerungsmaschinen nicht vergleichbar. Die besten Ergebnisse erreichen Kammerfilterpressen mit Polymer als Konditionierungsmittel und Zentrifugen. Die geringste TS wird mit der Siebbandpresse erreicht.

Erwartungsgemäß ist die erreichte TS bei Mischkanalisation höher als bei Trennkanalisation (Mittelwert Mischkanalisation: 24,8 %, Mittelwert Trennkanalisation: 23,9 %).

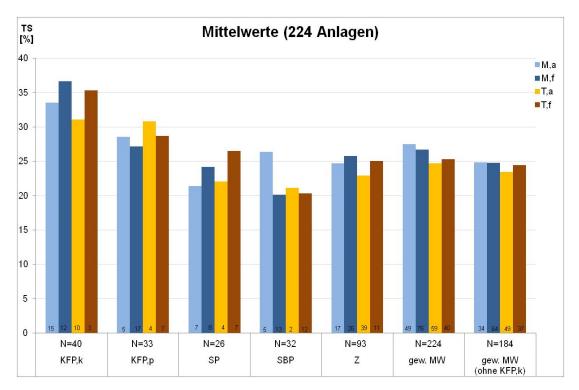


Abbildung 10: Mittelwerte der erreichten Trockensubstanzgehalte (TS); "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)

Entwässerter Schlamm von Anlagen mit Trennkanalisation hat einen geringeren Glühverlust (Mittelwert 60,9 %) als Schlamm von Anlagen mit Mischkanalisation (Mittelwert 56,5 %). Auch ist der Glühverlust bei Anlagen, die anaerob stabilisieren (Faulung), im Mittel etwas geringer als jener von Anlagen mit aerober Stabilisierung.

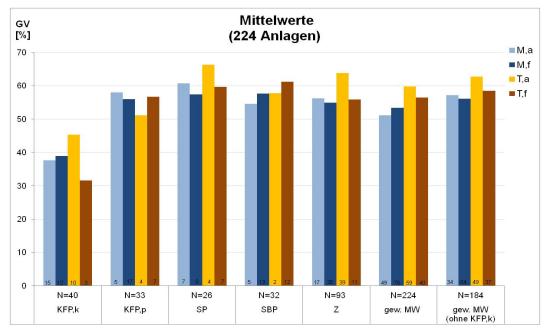


Abbildung 11: Mittelwerte des erreichten Glühverlustes (GV); "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)

Vergleicht man die Ergebnisse für aerob und anaerob stabilisierten Schlamm, zeigt sich, dass mit steigendem GV die erreichte TS sinkt. Schlamm, der gut stabilisiert wurde, lässt sich somit tendenziell besser entwässern.

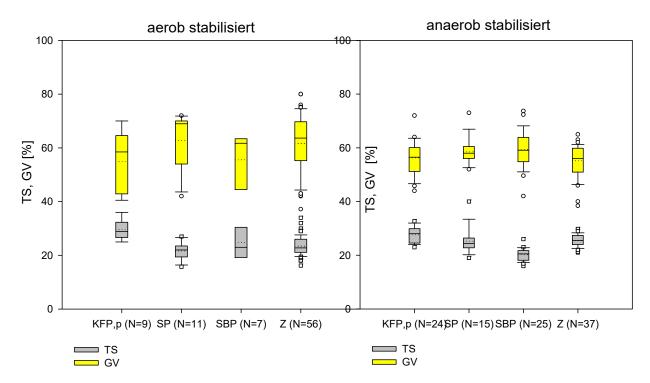


Abbildung 12: Grafische Darstellung der statistischen Auswertung der Gegenüberstellung von erreichter TS und gemessenem GV; "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)

Der Medianwert der erreichten TS bei Anlagen mit aerober Stabilisierung liegt bei 23,0 %, bei anaerober Stabilisierung wird eine etwas höhere TS erreicht (Medianwert 24,8 %).

Tabelle 5: Statistische Auswertung der Gegenüberstellung von erreichter TS und gemessenem GV [%]; "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)

		aerobe Stabilisierung				anaero	be Stabil	isierung		
	KFP,p	SP	SBP	Z	gesamt	KFP,p	SP	SBP	Z	gesamt
Median	28,9	22,0	23,0	22,8	23,0	28,0	24,4	20,5	25,5	24,8
Standard-										
abweichung	3,6	3,1	7,5	3,4	4,3	2,9	4,8	2,3	2,3	4,0

Bei Betrachtung der Entwässerungsergebnisse nach Größengruppen der Kläranlagen zeigt sich, dass die eingesetzten Aggregate effektiver werden, je größer diese sind. Anlagen mit Mischkanalisation und Anlagen mit Kammerfilterpressen mit Kalk als Konditionierungsmittel wurden zum Zweck der besseren Vergleichbarkeit hierbei nicht berücksichtigt (Abbildung 13).

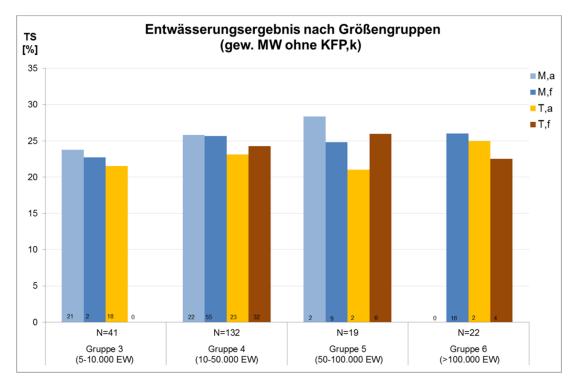


Abbildung 13: Entwässerungsergebnis nach Größengruppen (ohne Anlagen mit Mischkanalisation und ohne Kammerfilterpressen mit Kalk als Konditionierungsmittel); "Umfrage zur Klärschlammentwässerung in Österreich" (Svardal und Valkova, 2012)

Beispiel: Quantifizierung der Schlammreduktion durch Faulung und verbesserte Entwässerbarkeit durch Faulung

Angabe: Überschussschlammanfall nach

biologischer Reinigung: $\ddot{U}S_d = 1.000 \text{ kg/d}$

Entwässerbarkeit nach aerober Stufe: $\eta_{Entw.,aerob} = 25 \%$

Schlammreduktion durch Faulung: $\eta_{TS,anaerob} = 40 \%$

Verbesserte Entwässerbarkeit

durch Faulung: $\eta_{Entw.,anaerob} = 1.8 \%$

Lösung: entwässerter Schlamm nach aerober Stabilisierung:

$$1.000 / (25 \cdot 10) =$$
 4,00 m³/d (\(\delta\) 100 \(\frac{\psi}{\psi}\))

entwässerter Schlamm nach Faulung und nominale Entwässerbarkeit:

$$1.000 \cdot (100 - 40) / 100 = 600 \text{ kg TS/d}$$

 $600 / (25 \cdot 10) = 2,40 \text{ m}^3/\text{d} (\triangleq 60 \%)$

entwässerter Schlamm nach Faulung, mit verbesserter Entwässerbarkeit:

$$600 / (25+1.8) / 10 =$$
 2,24 m³/d ($\triangleq 56 \%$)

Reduktion der Schlammenge:

Schlammreduktion durch verbesserte Entwässerbarkeit gegenüber nominaler Entwässerbarkeit:

$$(1-2,24/2,4)\cdot 100 = \underline{6,7\%}$$

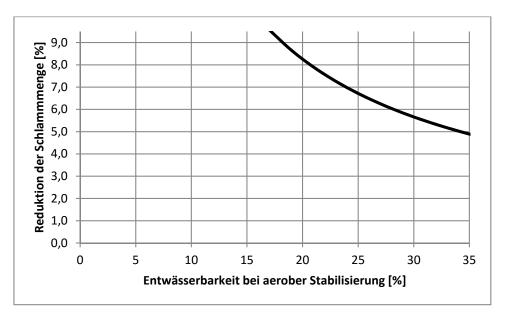


Abbildung 14: Reduktion der Schlammmenge aufgrund verbesserter Entwässerbarkeit durch Faulung; Annahmen: 40 % TS-Reduktion durch Faulung; Steigerung der Entwässerbarkeit +1,8 % durch Faulung

2.5 Kapazitätsreserven der biologischen Stufe von Kläranlagen

Das Schlammalter in der Belebungsstufe muss bei aerober simultaner Schlammstabilisierung deutlich größer gewählt werden, als es für das Reinigungsziel Stickstoffelimination erforderlich ist. Wird die Verfahrensweise von aerober simultaner Schlammstabilisierung auf anaerobe Schlammstabilisierung umgestellt, werden daher Kapazitätsreserven in der Belebungsstufe frei.

Geht man von einer Kläranlage mit einer Bemessungsgröße von > 100.000 EW, bei 10 °C und einem Anteil des Denitrifikationsvolumens von 50 % $(V_D/V_{BB}=0.5)$ aus, beträgt das erforderliche Schlammalter (t_{TS}) nach ATV-DVWK-A 131 (2010) 16 Tage. Bei derselben Anlage ist bei geforderter aerober simultaner Schlammstabilisierung ein Schlammalter von 25 Tagen erforderlich. Die mögliche Kapazitätssteigerung kann in erster Näherung mit dem Quotienten des Schlammalters mit aerober Stabilisierung zu Schlammhalter mit anaerober Stabilisierung $(t_{TS,aerobe\ Stabil.}/t_{TS,anaerobe\ Stabil.})$ abgeschätzt werden. Bei diesem Beispiel wäre dies 25/16 = 1,56, das entspricht einer möglichen Kapazitätssteigerung von 56 %. Darüber hinaus ist zu beachten, dass bei einem geringeren

Schlammalter weniger CSB veratmet wird und die Überschussschlammproduktion daher größer ist. Die tatsächliche Kapazitätssteigerung ist daher kleiner als die zuvor berechnete erste Näherung. Wird dies berücksichtigt, errechnet sich eine mögliche Kapazitätssteigerung von 47 % (Abbildung 15).

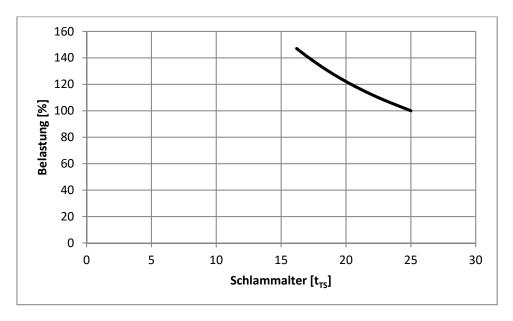


Abbildung 15: Kapazitätssteigerung der biologischen Stufe einer Kläranlage bei Reduktion des Schlammalters t_{TS} durch Umstellung der Verfahrensweise von aerober simultaner Schlammstabilisierung auf anaerobe Schlammstabilisierung; Randbedingungen: Anlage > 100.000 EW, 10 °C, $V_D/V_{BB} = 0.5$, Berechnung nach ATV-DVWK-A 131 (2010)

2.6 Faulgasproduktion

Die Menge des spezifischen Faulgasanfalls hängt vom eingesetzten Reinigungsverfahren ab (siehe Tabelle 6). Den größten Einfluss auf den Gasertrag hat hierbei die Vorklärung, da der anfallende Primärschlamm sehr energiereich ist. Weiters ist das Schlammalter in der Belebungsstufe von Bedeutung, da bei einem höheren Schlammalter mehr Substrat veratmet wird und der Überschussschlamm dann vergleichsweise weniger org. Kohlenstoff enthält, der in der Faulung zu Methan umgewandelt werden kann.

Tabelle 6: Mittlerer spezifischer Faulgasanfall in Abhängigkeit vom Reinigungsverfahren (DWA-M 363, 2010; Geyer, 2008), Schwankungsbereich ca. \pm 25 %.

Vorklärung	Belebungsstufe	spezifischer Gasanfall [L/(EW·d)]
groß	2-stufig; $t_{TS, 1.Stufe} = 1 - 2 d$	25
groß	$t_{TS} = 8 d / N$	21
groß	$t_{TS} = 15 d / N / DN$	18
klein	$t_{TS} = 15 d / N / DN$	14
-	$t_{TS} = 15 d / N / DN$	8
	$t_{TS} = 25 \text{ d} / \text{aerobe Stabilisierung.}$	5

3 Grundlagen für die Bemessung einer Faulung

Die Überlegungen in diesem und den weiteren Kapiteln beziehen sich auf mesophile, einstufige Anlagen zur anaeroben Schlammstabilisierung von kommunalen Schlämmen. Psychrophile, thermophile, mehrstufige und Verfahrensweisen mit Schlammaufschluss werden in dieser Arbeit nicht behandelt.

3.1 Volumen eines einstufigen Reaktors zur mesophilen Schlammfaulung

Das Schlammalter ist die mittlere Verweilzeit der Feststoffe in einem Bioreaktor. Da es bei einer Schlammfaulungsanlage üblicherweise keinen Feststoffrückhalt gibt, entspricht das Schlammalter der hydraulischen Aufenthaltszeit. Voraussetzung hierfür ist, dass die zufließende ($Q_{RohS,d}$) und abfließende ($Q_{US,FS,d}$) Schlammmenge gleich groß sind, es also keine bzw. vernachlässigbare Schwankungen des Reaktionsvolumens gibt.

$$Q_{\ddot{U}S,FS,d} = Q_{RohS,d}$$
 (3-1)
mit: $Q_{\ddot{U}S,FS,d}$ täglich abgezogene Faulschlammenge [m³/d]
 $Q_{RohS,d}$ täglich zugeführte Rohschlammenge [m³/d]

Das Schlammalter ist nur dann ident mit der hydraulischen Verweilzeit, wenn es sich um einen ideal durchmischten und durchströmten Reaktor handelt, was erfahrungsgemäß in der Praxis nur selten der Fall ist. Die Berechnung erfolgt nach folgender Gleichung.

$$t_{TS,FB} = \frac{M_{FS}}{M_{\ddot{U}S,FS,d}} = \frac{V_{FB} \cdot TS_{FS}}{Q_{\ddot{U}S,FS,d} \cdot TS_{FS}} = \frac{V_{FB}}{Q_{\ddot{U}S,FS,d}}$$
(3-2)

Damit ergibt sich das Volumen der Schlammfaulung zu:

	$V_{FB} = t_{TS,FB}$	$\cdot Q_{\ddot{\mathit{US}}.\mathit{FS}.\mathit{d}}$	(3-3)
mit:	$t_{TS,FB}$	Schlammalter im Faulbehälter	[d]
	M_{FS}	Masse der Feststoffe im Faulschlamm des FB	[kg]
	$M_{\ddot{U}S,FS,d}$	täglich abgezogene Feststoffmasse des	
		Faulschlamms	[kg/d]
	V_{FB}	Reaktionsvolumen des Faulbehälters	$[m^3]$
	QÜS,FS, d	täglich abgezogene Faulschlammenge	$[m^3/d]$

Das erforderliche Reaktionsvolumen ist proportional dem Schlammalter bzw. der Menge des zugeführten Schlammes.

Soll das Volumen optimiert (minimiert) werden, kann das Schlammalter so klein gewählt werden, dass der Prozess noch stabil und im Rahmen der Zielsetzung

(Schlammstabilisierung oder Maximierung der Gasproduktion) betrieben werden kann. In Kapitel 3.2 werden Grundlagen zur Wahl des Schlammalters dargestellt.

Die Menge des zugeführten Schlammes wird durch Eindickung reduziert, während die Feststofffracht dabei konstant bleibt. Die Schlammmenge sinkt indirekt proportional zur Erhöhung der Feststoffkonzentration (Gleichung (7-4), S. 133). Der Trockensubstanzgehalt von statisch eingedickten Schlämmen liegt bei Primärschlamm im Bereich von 3 bis 6 %, bei Überschussschlamm bei etwa 1 % nach der Nachklärung bzw. bei etwa 2,5 % nach weitergehender Eindickung. Mischschlämme erreichen etwa 3 bis 4,5 % (Bischof, 1998; DWA-M 368, 2014; Gujer, 2007; Schneider, 2008). Bei der maschinellen Eindickung können Feststoffkonzentrationen von 8 % oder sogar mehr erreicht werden. Erfolgt die Schlammeindickung maschinell anstatt statisch, sinkt das erforderliche Volumen für die Schlammfaulung somit etwa auf die Hälfte. Eine Übersicht der Auswirkungen auf den anaeroben Abbauprozess durch Erhöhung der Trockensubstanz ist in Kapitel 3.3 (S. 33ff) dargestellt. In den Kapiteln 6 bis 9 werden die Auswertungen und gewonnenen Erfahrungen der Pilotanlage beschrieben.

3.2 Ermittlung des Schlammalters

Grundlagen des anaeroben Abbaus

Bei der Faulung werden organische Substanzen unter anaeroben Bedingungen von fakultativ und obligat anaeroben Mikroorganismen abgebaut. Hierbei wird Faulgas produziert, das hauptsächlich aus Methan (CH₄), Kohlendioxid (CO₂) sowie Spuren von Schwefelwasserstoff (H₂S), Ammoniak (NH₃), Stickstoff (N) und Wasserstoff (H) besteht. Buswell (1952) formulierte Gleichung (3-4), die für alle organischen Substanzen gültig ist.

$$C_c H_h O_o + \left(c - \frac{h}{4} - \frac{o}{2}\right) H_2 O \rightarrow \left(\frac{c}{2} + \frac{h}{4} - \frac{o}{8}\right) C H_4 + \left(\frac{c}{2} - \frac{h}{4} + \frac{o}{8}\right) C O_2$$
 (3-4)

Werden die Stickstoff- und Schwefelverbindungen von organischen Verbindungen berücksichtigt, ergibt sich die erweiterte Buswell'sche Gleichung (3-5) nach Boyle (1977).

$$C_c H_h O_o N_n S_s + \frac{1}{4} (4c - h - 2o + 3n + 2s) H_2 O \rightarrow$$

$$\frac{1}{8} (4c + h - 2o - 3n - 2s) C H_4 + \frac{1}{8} (4c - h + 2o + 3n + 2s) C O_2 + n N H_3 + s H_2 S$$
(3-5)

Der vollständige anaerobe Abbau erfolgt in drei bis vier Stufen von polymeren Stoffen zum Methan (Abbildung 16). In der Praxis laufen diese Stoffwechselprozesse simultan ab.

- 1. *Hydrolyse-Phase*: Hochmolekulare, oft ungelöste Stoffe werden durch Enzyme in gelöste Bruchstücke übergeführt.
- 2. Versäuerungs-Phase: Fakultativ und obligat anaerobe Bakterienarten bilden H₂, CO₂, kurzkettige organische Säuren (z. B. Buttersäure, Propionsäure, Essigsäure) und Alkohole. Die Methanbakterien können von diesen Zwischenprodukten allerdings nur H₂, CO₂ und Essigsäure direkt zu Methan umsetzen.
- 3. *Acetogene-Phase*: Die im zweiten Schritt gebildeten organischen Säuren und Alkohole werden hier zu Essigsäure umgebaut.
- 4. *Methanogene-Phase*: Hauptsächlich aus Essigsäure und aus H₂ und CO₂ wird Methan gebildet.

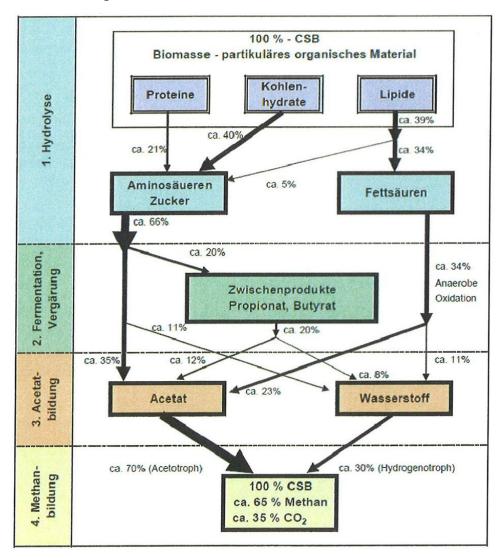


Abbildung 16: Schema des mehrstufigen anaeroben Abbaus (Gujer, 1983)

Hydrolyse

Die Hydrolyse kann als Reaktion erster Ordnung nach folgender Gleichung dargestellt werden (Kunst, 2005) und gilt allgemein für ein bestimmtes Substrat X_i bei einer zugehörigen Hydrolysekonstante $k_{H,i}$.

$$P_i = k_{H,i} \cdot X_i$$
 (3-6)
mit: P_i Prozessrate (Hydrolysegeschwindigkeit) des
Stoffes i [kg CSB/(m³·d)]
 $k_{H,i}$ Hydrolysekonstante des Stoffes i [d⁻¹]
 X_i Substratkonzentration des zu
hydrolysierenden Stoffes i [kg CSB/m³]

Die Hydrolysekonstante ist vor allem vom Substrat, der Temperatur, dem pH-Wert (optimal: pH-Wert = 6) und dem Schlammalter abhängig. Es gibt zahlreiche Literaturstellen (Batstone et al., 2002; Gujer, 1983; Pavlostathis, 1991), wo eine Bandbreite von $k_H = 0.02$ bis 2.0 d⁻¹ angegeben wird. In DWA-M 368 (2014) wird vorgeschlagen, die Hydrolysekonstante k_H in Abhängigkeit der Temperatur in Anlehnung an ATV-DVWK-A 131 (2010) zu berechnen.

$$k_H = 0.045 \text{ d}^{-1} \cdot 1.072^{(T-10 \, ^{\circ}\text{C})}$$
 mit: k_H Hydrolysekonstante der Stoffmischung [d⁻¹]

Hierbei handelt es sich um die Regel nach Arrhenius und van't Hoff, nach der eine Verdoppelung der Geschwindigkeit von biologischen und chemischen Reaktionen bei Erhöhung der Temperatur um $10\,^{\circ}$ C eintritt. Dieser Zusammenhang ist für den Temperaturbereich von 10 bis $40\,^{\circ}$ C gültig. Bei $35\,^{\circ}$ C errechnet sich eine Hydrolysekonstante k_H von $0,256\,^{\circ}$ d-1, bei $40\,^{\circ}$ C sind es $0,362\,^{\circ}$ d-1, was mit Gujer (1983) korrespondiert.

Für die Hydrolysegeschwindigkeit P_i ist neben der Hydrolysekonstante $k_{H,i}$ die Substratkonzentration X_i sowie andere Faktoren, wie die Konzentration an Mikroorganismen, die Reaktordurchmischung, die Subpartikelgröße und die Verfügbarkeit des Substrats entscheidend.

Aus der Vielzahl der Einflussfaktoren ist abzuleiten, dass eine exakte theoretische Bemessung nicht möglich ist, weswegen in der Praxis meist durch Versuche ein optimaler Betriebspunkt erreicht wird.

Ist die Population von acetogenen und methanogenen Bakterien groß genug, wird die Hydrolysegeschwindigkeit zum prozesslimitierenden Schritt und die Bemessung des erforderlichen Schlammalters kann über die Hydrolyse erfolgen. Wird dabei angenommen, dass es keine Kurzschlüsse im Reaktor gibt, also das

gesamte Volumen genutzt wird ($t_{TS,FB} = V_{FB}/Q_{\ddot{U}S,FS}$), kann der Abbaugrad η_{abb} wie folgt nach DWA-M 368 (2014) angegeben werden:

$$\eta_{abb} = \frac{k_H \cdot t_{TS,FB}}{1 + k_H \cdot t_{TS,FB}}$$
mit: η_{abb} Abbaugrad [-]
$$k_H$$
 Hydrolysekonstante der Stoffmischung [d⁻¹]
$$t_{TS,FB}$$
 Aufenthaltszeit im Faulbehälter = Schlammalter [d]

In DWA-M 368 (2014) ist angegeben, dass für die Bemessung ein technischer Abbaugrad von 85 % ausreichend ist. Damit errechnet sich bei 35 °C ein erforderliches Schlammalter von ~22 Tagen und bei 40 °C von ~16 Tagen.

Die für die Hydrolyse verantwortlichen Bakterien kommen größtenteils über den Rohschlamm in die Faulung bzw. haben eine hohe Wachstumsrate, die deutlich größer ist als die Hydrolysegeschwindigkeit. Für die Ermittlung des erforderlichen Schlammalters in Bezug auf den Prozessschritt der Hydrolyse ist daher die Hydrolyse selbst, nicht aber die Wachstumsrate der daran beteiligten Bakterien maßgeblich.

Versäuerung, Acetogenese und Methanogenese

Die nachfolgenden Tabellen geben einen Überblick über die kinetischen Parameter der an diesen Prozessen beteiligten Bakterien, die bei Meyer (2005) zu finden sind.

Bei der Darstellung der kinetischen Parameter für die Versäuerung von Glucose (Tabelle 7) und Aminosäuren (Tabelle 8) wurde, soweit Werte vorhanden sind, ein Mittelwert über die Bandbreite gebildet und in der letzten Zeile ein abgeschätzter Mittelwert angegeben, um die leichtere Vergleichbarkeit mit anderen Bakteriengruppen zu erlauben.

Tabelle 7: Kinetische Parameter mesophiler Bakterien bei der Versäuerung von Glucose bei Temperaturen von 30 bis 37 °C (Meyer, 2005)

Quelle	maximale Umsatzrate der Bakterien	Halbgesch- windigkeits- substrat- konzentration	Ertrags- koeffizient	maximale Wachstums- rate	Sterberate
	k_m	K_S	Y	μ_{max}	b
	g CSB/ (g oTR·d)	mg CSB/L	g oTS/ g CSB	1/d	1/d
Batstone et al. (2002)	88 (51-125)	234 (22-630)	0,15 (0,14-0,17)	14 (7-21)	-
Pavlostathis (1991)	37 (1,3-70)	249 (22-527)	0,15 (0,14-0,17)	0,60 (0,3-1,3)	6,1
(Henze und Harremoës, 1983)	7,5	84 (23-192)	0,18 (0,13-0,26)	19 (7-30)	6,1
Gujer, (1983)	-	22	0,10	7,2	-
Mittelwert	30	200	0,15	5,0	

Tabelle 8: Kinetische Parameter mesophiler Bakterien bei der Versäuerung von Aminosäuren bei Temperaturen von 30 bis 37 °C (Meyer, 2005)

Quelle	maximale Umsatzrate der Bakterien	Halbgesch- windigkeits- substrat- konzentration	Ertrags- koeffizient	maximale Wachstums- rate	Sterberate
	k_m	K_S	Y	μ_{max}	b
	g CSB/ (g oTR·d)	mg CSB/L	g oTS/ g CSB	1/d	1/d
Batstone et al. (2002)	36 (27-53)	600 (50-1200)	0,10 (0,06-0,15)	3,0 (2,4-4,0)	0,02-0,8

In Tabelle 9 sind die kinetischen Parameter der methanogenen und acetogenen Bakterien aus mehreren Quellen (Batstone et al., 2002; Gujer, 1983; Pavlostathis, 1991; Speece, 1996; Wageningen University, 1997) zusammengefasst. Da die Werte stark schwanken, sind Mittelwerte angegeben.

Tabelle 9: Kinetische Parameter methanogener und acetogener Bakterien bei Temperaturen von 30 bis 37 °C (Meyer, 2005)

Bakteriengruppe	maximale	Halbgesch-	Ertrags-	maximale	Sterberate
Bakteriengrappe	Umsatzrate	windigkeits-	koeffizient	Wachstums-	Sterocrate
	der	substrat-	ROUTIZION	rate	
	Bakterien	konzentration		Tate	
	k_m	K_S	Y	μ_{max}	b
	g CSB/ (g oTR·d)	mg CSB/L	g oTS/ g CSB	1/d	1/d
A 4 B 14 :	10	25	0,03	0,3	(0.01.0.06)
Acetogene Bakterien	(0,3-41)	(13-1146)	(0,02-0,07)	(0.02-1)	(0,01-0,06)
Methanbildung aus Acetat	(3,4-19)	(11-930)	(0,01-0,08)	(0,05-1,4)	(0,004- 0,036)
M-4l	10	250	0,04	0,4	
nur Methanosarcina	(5,9-12)	(200-300)	(0,02-0,07)	(0,4-0,6)	
M-41	5	25	0,02	0,1	
nur Methanosaeta	(1,6-6,1)	(18-30)	(0,002-0,03)	(0,1-0,15)	
N	20	0,1	0,06	1,4	(0.01.1.2)
Methanbildung aus H ₂	(1,6-44)	(0,01-0,6)	(0,01-0,18)	(0,02-12)	(0,01-1,2)

Die Umsatzrate der versäuernden Bakterien ist deutlich größer als jene der acetogenen und methanogenen Bakterien, sodass die Hydrolyse i.d.R. nicht zum limitierenden Faktor wird. Die Wachstumsrate der acetatverwertenden Methanbakterien wird durch die Konzentration an Acetat bestimmt. Die Umsatzrate der methanogenen Bakterien liegt etwa in der gleichen Größenordnung der acetogenen Bakterien, sodass die Methanbildung nur so schnell abläuft, wie für die methanogenen Bakterien Substrat bereitgestellt wird. Der geschwindigkeitslimitierende Prozess ist daher die acetogene Phase. Die Umsatzkapazität der methanogenen Bakterien muss zu jeder Zeit in der Lage sein die Acetatproduktion bei niedriger Essigsäurekonzentration in Methan umzuwandeln. Bei einer Hemmung der Methanbakterien steigt der Partialdruck

von H₂ an, wodurch die acetogenen Bakterien höhere Fettsäuren nicht mehr zur Essigsäure abbauen können. Damit kommt es zu einer Anreicherung von höheren Fettsäuren (Propionsäure, Buttersäure) und zu einer zusätzlichen Hemmung des Abbauvorgangs (Bischofsberger et al., 2005).

Jene Bakteriengruppe, die notwendigerweise an der anaeroben Schlammstabilisierung im mesophilen Bereich beteiligt ist und die kleinste Wachstumsrate μ_{max} [d⁻¹], abzüglich der Sterberate b [d⁻¹] aufweist, ist maßgeblich für die Ermittlung des minimalen Schlammalters. Vergleicht man die Werte aus Tabelle 8 und Tabelle 9, zeigt sich, dass dies eindeutig die acetoclastischen Bakterien sind.

Bei niedrigen Acetat-Konzentrationen im Faulschlamm ist die reale Wachstumsgeschwindigkeit der acetatverarbeitenden Methanbakterien deutlich kleiner als deren maximale Wachstumsgeschwindigkeit (Abbildung 17). Bei der Bemessung des Schlammalters ist daher für die Wachstumsgeschwindigkeit ein kleinerer Wert als die maximale Wachstumsgeschwindigkeit einzusetzen. In diesem Fall kann der Sicherheitsfaktor SF kleiner und der Anreicherungsfaktor f_A mit 1,0 gewählt werden.

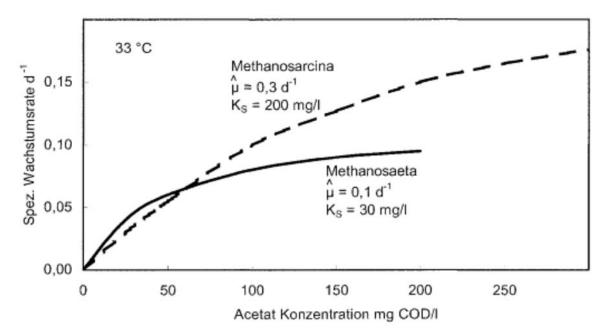


Abbildung 17: Wachstumskinetik acetatverarbeitender Methanbakterien; Quelle: Bischofsberger et al., 2005 nach Gujer, 1983

Berechnung des Schlammalters über die Wachstumsgeschwindigkeit

Wird die Faulung als einstufiger Ausschwemmreaktor bemessen, müssen folgende Parameter für die Berechnung des theoretischen Mindestschlammalters über die Wachstumsgeschwindigkeit berücksichtigt werden:

• Wachstumsrate μ_{max} [d⁻¹], Sterberate b [d⁻¹]

Die maximale Wachstumsrate μ_{max} gibt an, wie schnell sich eine Bakteriengruppe bei bestimmten Prozessbedingungen maximal vermehrt. Die zugehörige Sterberate b gibt den Anteil der absterbenden Bakterien je Zeiteinheit an. Jene Bakteriengruppe, die für den Prozess unerlässlich ist und die kleinste Wachstumsrate abzüglich der Sterberate hat, ist maßgeblich.

• Anreicherungsfaktor f_A

Hierdurch wird gewährleistet, dass sich unter der Voraussetzung, dass keine negativen Einflussfaktoren (z. B. pH-Wert, organische Säuren, Giftstoffe, ausreichende Durchmischung etc.) vorhanden sind, genügend Bakterien ausbilden und im System gehalten werden können. Mit diesem Faktor werden auch unvermeidliche Kurzschlüsse berücksichtigt. Kurzschlussströmungen vermindern die effektive Aufenthaltszeit und sollten daher so klein als möglich sein. Der Anreicherungsfaktor f_A kann in Anlehnung an das Arbeitsblatt ATV-DVWK-A 131 (2010) mit 1,6 gewählt werden.

• Temperaturfaktor f_T

Dies ist der Faktor zur Korrektur der Wachstumsrate bei einer bestimmten Temperatur im Vergleich zur vorherrschenden Betriebstemperatur. Dieser Wert ist 1,0, wenn die Wachstumsrate für die Betriebstemperatur gilt.

• Sicherheitsfaktor SF

Dieser Faktor berücksichtigt Schwankungen der Zulaufbelastung (Tages-, Wochen- und Jahresganglinien), Änderungen der Substratzusammensetzung, Prozessstörungen und dergleichen. Mit diesem Faktor wird auch die Ausfallsicherheit der Anlage berücksichtigt. Generell kann dieser Wert kleiner sein, je mehr Einwohner (bzw. EW) angeschlossen sind. Der Sicherheitsfaktor berücksichtigt auch die Geschwindigkeitslimitierung des Prozesses durch die Hydrolyse. Da die Sterberate b im Vergleich zur maximalen Wachstumsrate μ_{max} deutlich kleiner ist und für diese keine genauen Daten vorliegen, wird diese ebenfalls mit dem Sicherheitsfaktor erfasst.

Bei Meyer (2005) findet sich folgende Formulierung zur Ermittlung des Schlammalters.

Lösung:

$$t_{TS} = \frac{1}{\mu_{max}} \cdot f_A \cdot f_T \cdot SF$$
mit: t_{TS} Schlammalter [d]
$$\mu_{max}$$
 maximale Wachstumsrate
$$f_A$$
 Anreicherungsfaktor [-]
$$f_T$$
 Temperaturfaktor [-]
$$SF$$
 Sicherheitsfaktor [-]

Beispiel: Berechnung des erforderlichen Schlammalters einer mesophilen,

einstufigen Schlammfaulung

Angabe: maximale Wachstumsrate der maßgeblichen

Bakteriengruppe (Methanosaeta)	$\mu_{max} =$	$0,1 d^{-1}$
Anreicherungsfaktor	f_A =	1,6
Temperaturfaktor	$f_T =$	1,0
Sicherheitsfaktor	SF =	1,0
Schlammalter $t_{TS} = 1/0, 1 \cdot 1, 0 \cdot 1, 0 \cdot 1, 6 =$		<u>16 d</u>

Empfehlungen für die Wahl des Schlammalters aus der Literatur

In zahlreichen Literaturstellen finden sich Empfehlungen zur Wahl des Schlammalters in Abhängigkeit von der Anlagengröße (Bischofsberger et al., 2005; Bischof, 1998; DWA-M 368, 2014; Gujer, 2007). Den angegebenen Werten liegen kinetische Parameter und Erfahrungen aus der Praxis zugrunde, sodass der erforderliche Sicherheitsfaktor inkludiert ist und ausreichend groß sein sollte.

Nach DWA-M 368 (2014) wurde für Anlagen größer 100.000 EW der in Tabelle 10 angegebene Bereich für das zu wählende Schlammalter für 35 bis 40 °C mit einem Ausfaulgrad von 85 % angegeben. Für Kläranlagen mit einer Ausbaugröße von 50.000 bis 100.000 EW wurde ein Sicherheitsfaktor von 1,15 und für Kläranlagen unter 50.000 EW ein solcher von 1,25 gewählt.

Tabelle 10: Nach DWA-M 368 (2014) empfohlenes Schlammalter einer einstufigen, mesophilen Faulung

Anlagengröße	enthaltener Sicherheitsfaktor	Schlammalter
EW (E)	SF	$t_{TS,FB}$
-	-	d
< 50.000	1,25	20 - 28
50.000 - 100.000	1,15	18 - 25
> 100.000	1,00	16 - 22

Schlussfolgerungen

Durch die Wahl eines geringeren Schlammalters (z. B. < 15 d) für die Bemessung eines Faulbehälters kann Volumen eingespart werden. Dadurch sinkt der Stabilisierungsgrad, organische Säuren verbleiben im Schlamm, die Geruchsbelastung steigt und der Prozess wird zunehmend instabil, sodass der Überwachungsaufwand steigt.

Wenn es das Ziel der anaeroben Behandlung ist, den Klärschlamm ausreichend zu stabilisieren, ist der Handlungsspielraum zur Reduzierung des Schlammalters gering. Vor allem bei kommunalen Anlagen ist ein stabiler Betrieb von besonderer Wichtigkeit, weswegen das erhöhte Risiko eines labilen Betriebes, der durch Einsparungen zu Lasten des Schlammalters erwirkt werden würde, meist nicht dafür steht.

Das größere Potential zur Optimierung (= Minimierung) des Faulraumvolumens besteht somit darin, den Feststoffgehalt des zugeführten Rohschlammes zu erhöhen.

3.3 Höhere Trockensubstanz – Auswirkungen und Hemmung

In diesem Kapitel werden die Auswirkungen auf biochemische Änderungen durch den Betrieb einer Faulung mit erhöhtem Trockensubstanzgehalt beschrieben. Grundlagen der Einflüsse von physikalischen und chemischen Parametern (Temperatur, pH-Wert etc.) auf den anaeroben Abbauprozess werden nicht beschrieben und auf weiterführende Literatur verwiesen, wie z. B. Bischofsberger et al., 2005; Kapp, 1984; Leschber und Loll, 1996; Roediger et al., 1990; Svardal, 1991.

3.3.1 Stickstoffverbindungen

Biomasse besteht weitestgehend aus Kohlenstoff, Stickstoff und Phosphor. Nach der Einbringung der Biomasse in die Faulung kommt es zur Hydrolyse, Kohlenstoffverbindungen werden letztlich zu Gas umgewandelt, Phosphor und Stickstoff gehen in Lösung, sodass deren Konzentrationen in der flüssigen Phase des Faulschlammes höher sind als jene in der flüssigen Phase des Rohschlammes. Je mehr organische Trockensubstanz abgebaut wird, desto mehr Stickstoff und Phosphor werden freigesetzt. Unter folgenden Bedingungen steigen die Konzentrationen:

- Hoher Abbaugrad der organischen Trockensubstanz in der Faulung
- <u>Hohe Konzentration an organischer Trockensubstanz</u> des Substrats durch Eindickung (Voraussetzung = keine Hemmung)
- Substrat mit hohem Stickstoff bzw. Phosphorgehalt

In Abbildung 18 sind die Änderungen von CSB, N und P bei anaerober Behandlung dargestellt, wobei die Abbildung die generellen Pfade darstellt, jedoch nicht maßstäblich ist.

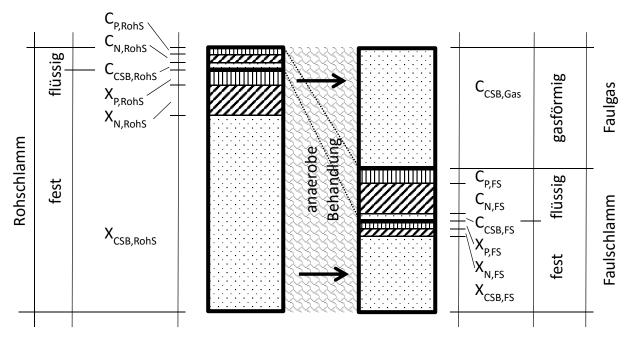


Abbildung 18: Änderung von CSB, N und P bei der Schlammfaulung

Die Konzentration an Stickstoff in der flüssigen Phase steigt annähernd proportional zur abgebauten organischen Trockensubstanz (Ammonifikation: org. geb. N \rightarrow NH₃). Der frei werdende Stickstoff liegt zunächst als Ammoniak (NH₃) vor (Barker, 1956; Schink, 1988). Ammoniak ist in Wasser sehr gut löslich und reagiert mit Wasser unter Bildung von Hydroxidionen (OH⁻):

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^- \tag{3-10}$$

Das Gleichgewicht dieser Reaktion wird maßgeblich vom pH-Wert bestimmt.

$$K_{\rm B} = \frac{c \left[NH_4^+ \right] \cdot c \left[OH^- \right]}{c \left[NH_3 \right]} 1,75 \cdot 10^{-5}$$
(3-11)

Im Faulwasser befindet sich aufgrund der Gasproduktion Kohlendioxid (CO₂), das zu Hydrogencarbonat (HCO₃) dissoziiert. Das Gleichgewicht, abhängig von Konzentration, Temperatur und Druck, liegt hier auf der Seite des

Kohlendioxids. Durch Anhebung des pH-Wertes wird das Verhältnis nach rechts verschoben.

$$CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+ \tag{3-12}$$

Fasst man die Dissoziationsprodukte der Gleichungen (3-10) und (3-12) zusammen, ergibt sich:

$$NH_4^+ + OH^- + HCO_3^- + H^+ \rightleftharpoons NH_4^+ + HCO_3^- + H_2O$$
 (3-13)

Jedes Ammonium-Ion bildet mit einem Hydrogencarbonat-Ion einen Bindungspartner, sodass die Konzentration an Hydrogencarbonat steigt. Dies vergrößert die Pufferkapazität der Flüssigkeit und lässt den pH-Wert ansteigen (Kapp, 1984).

$$pH = pK_{sC} + \log \frac{[HCO_3]}{[CO_2]} = pK_{sN} + \log \frac{[NH_3]}{[NH_4^+]}$$
(3-14)

Hierbei bezeichnen p K_{sC} den p K_{s} -Wert des HCO $_{3}$ /CO $_{2}$ -Systems und p K_{sN} den p K_{s} -Wert des NH $_{3}$ /NH $_{4}^{+}$ -Systems. Diese Konstanten sind abhängig von Temperatur und Druck. Kapp (1984) hat hierzu Versuche durchgeführt und bei einer Temperatur von ~33 °C und einem Druck von ~1 bar einen p K_{sC} -Wert von ~6,32 und einen p K_{sN} -Wert von ~9,0 bestimmt.

Die gelöste CO₂-Konzentration im Faulschlamm ist proportional zum CO₂-Partialdruck des Faulgases, der bei kommunalem Faulschlamm zwischen 25 und Ammonium-Konzentration schwankt. Die im Faulschlamm proportional der Konzentration an hydrolysierbarem organisch gebundenen Stickstoff im Rohschlamm und damit dessen Feststoffgehalt. weitergehende Voreindickung bewirkt somit eine höhere Alkalität im Faulschlamm und damit eine Stabilisierung des Faulprozesses (Svardal, 2002). Der Zusammenhang zwischen der CO2-Konzentration des Faulgases, der Ammonium-Konzentration im Faulschlamm und des sich einstellenden pH-Wertes ist in Abbildung 19 dargestellt. Andere Substanzen, die den pH-Wert beeinflussen könnten, wurden in dieser Abbildung nicht berücksichtigt, weil deren Konzentration unter normalen Prozessbedingungen sehr gering sind und somit vernachlässigt werden können.

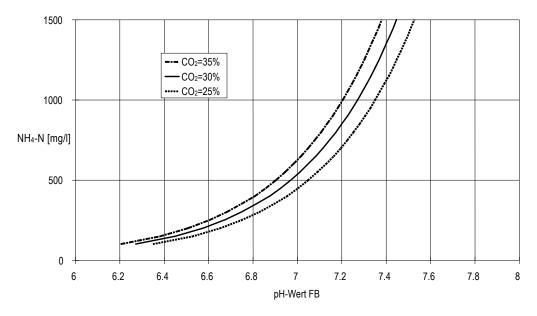


Abbildung 19: Abhängigkeit des pH-Wertes im Faulbehälter von der NH₄-N-Konzentration bei unterschiedlichem CO₂-Gehalt des Faulgases (Svardal, 2002)

Das Verhältnis des Dissoziationsgleichgewichtes von NH₃/NH₄⁺ hängt wiederum vom pH-Wert und der Temperatur ab und kann nach Rautenbach et al. (1995) wie folgt angegeben werden.

$$NH_{3}-N=NH_{4}^{+}-N\cdot\frac{10^{pH}}{e^{\left(6344/(273+T)\right)}+10^{pH}}$$
 (3-15) mit: [NH₃] Konzentration an Ammoniak [mg/L] [NH₄⁺] Konzentration an Ammonium, aus analytischer Bestimmung [mg/L] T Temperatur [°C] pH pH-Wert [-]

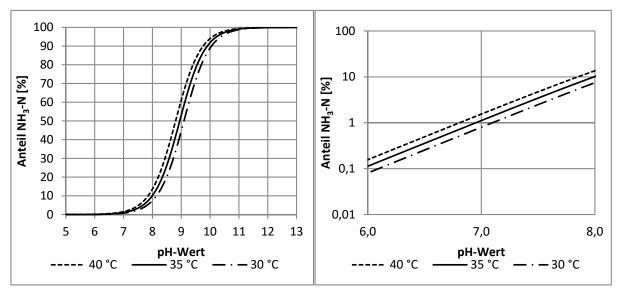


Abbildung 20: Dissoziationsgleichgewicht NH₃-N/NH₄-N nach Gleichung (3-15); links: x-und y-Achse linear; rechts: logarithmische Darstellung der y-Achse

Bei einem pH-Wert von 7 liegt etwa 1 % als undissoziiertes Ammoniak vor, bei einem pH-Wert von 8 sind es etwa 10 % (Abbildung 20). Im Wesentlichen beeinflusst der Anteil des Ammoniaks den pH-Wert und die Hemmung.

Der pH-Wert wird mit steigender Konzentration an Ammoniak höher. Solange der Anteil des Ammoniaks sehr gering ist, also der Wert NH₃/NH₄⁺ sehr klein ist, ändert sich der pH-Wert kaum. Steigt der Wert an, kommt es zu einem raschen Anstieg des pH-Wertes.

Die hohe Toxizität von Ammoniak resultiert daher, dass molekularer Ammoniak leichter durch die biologische Membran diffundiert als Ammonium (Hobiger, 1996; Hütter, 1992). Das Maß der Hemmung wird vom Anteil des Ammoniaks bzw. dessen vorliegender Konzentration bestimmt. Bei der Schlammfaulung reagieren vor allem die acetoclastischen Methanbakterien empfindlich auf Ammoniak.

Die zulässige Ammonium-Konzentration, bei der es noch zu keiner Hemmung kommt, liegt nach Kroiss (1985) bei einem pH-Wert von 7,5 und einer Temperatur von 38 °C bei etwa 1.200 mg NH₄-N/L, was einer Konzentration von 50 mg NH₃-N/L entspricht.

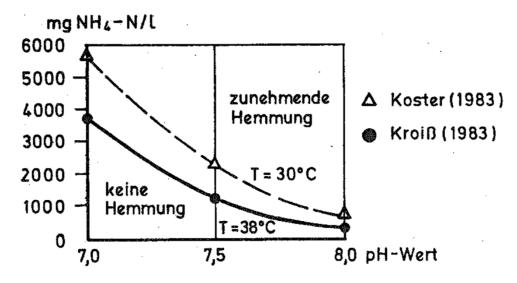


Abbildung 21: Zulässige NH₄-N-Konzentration in Abhängigkeit von pH-Wert und Temperatur (Kroiss, 1985)

Laboruntersuchungen, die im Zuge des Projekts EOS durchgeführt wurden, kommen zu einem ähnlichen Ergebnis. Bei jeweils 37 °C wurden Laborreaktoren mit verschiedenen Feststoffkonzentrationen beschickt, sodass sich unterschiedliche Ammonium-Konzentrationen eingestellt haben (Abbildung 22). Ab einer Konzentration von etwa 2.000 mg NH₄-N/L zeigt sich eine

Verschlechterung des oTS-Abbaus. Der pH-Wert lag dabei bei etwa 7,4, sodass sich eine beginnende Hemmung ab ~63 mg NH₃-N/L errechnet.

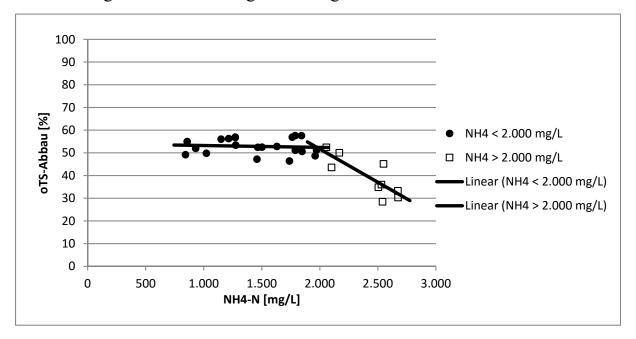


Abbildung 22: oTS-Abbau in Abhängigkeit von der Ammonium-Konzentration (Baumgartner und Jahn, 2014)

Ist der Anteil des Stickstoffs im Rohschlamm (TS_{RohS}) und der oTS-Abbau konstant, stellt sich eine Ammonium-Konzentration ein, die proportional zur TS_{RohS} ist.

3.3.2 Organische Säuren

Organische Säuren gelangen entweder über das Substrat in die Faulung (z. B. durch eine vorgeschaltete Versäuerungsstufe) oder akkumulieren sich, wenn die Methanbakterien langsamer arbeiten, als organische Säuren durch Hydrolyse oder acetogene Bakterien gebildet werden. Dies ist dann der Fall, wenn die Population an Methanbakterien nicht groß genug ist oder eine Hemmung der Methanbakterien vorliegt. Ist der Prozess der Schlammfaulung stabil, liegt die Konzentration an organischen Säuren unter 200 mg/L, da produzierte Säuren sofort wieder abgebaut werden. Durch die Akkumulation an organischen Säuren kommt es zu einem Absinken des pH-Wertes. Bei einer hohen Pufferkapazität erfolgt dies jedoch kaum bis gar nicht. Eine hohe Pufferkapazität wird beispielsweise durch den Betrieb der Faulung mit hoher Trockensubstanz und damit hohem Ammoniumgehalt sichergestellt. Die in der Faulung vorhandenen organischen Säuren dissoziieren, was mit der folgenden allgemeinen Gleichgewichtsbedingung beschrieben werden kann (Kroiss, 1985; Kunst, 2005):

$$R-COOH \rightleftharpoons R-COOH^- + H^+ \tag{3-16}$$

Die undissoziierten Säuren wirken hemmend und deren Anteil ist abhängig vom pH-Wert. Je höher der pH-Wert ist, desto kleiner ist der Anteil an undissoziierten Säuren und damit deren hemmende Wirkung (Abbildung 23).

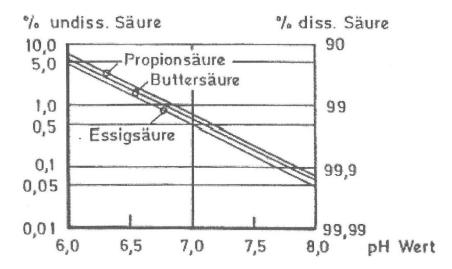


Abbildung 23: Prozentualer Anteil der undissoziierten Säuren an den Gesamtsäuren in Abhängigkeit vom pH-Wert (Kroiss, 1985)

Die Abbildung 24 wurde von Kroiss (1985) nach den Daten von Durate und Anderson (1982) berechnet und zeigt, dass die Hemmung im Anaerobreaktor mit steigendem pH-Wert abnimmt. Damit dies verhindert wird, sollte der CSB-Abbau möglichst weitgehend erfolgen, damit Restkonzentrationen an organischen Säuren die Methanbakterien nicht hemmen. Dies wird durch ein hohes Schlammalter erreicht, da entsprechend der Monod-Kinetik die Restkonzentrationen bei hohem Schlammalter klein sind (Kreuzinger, 2005).

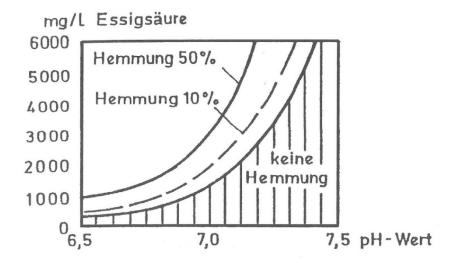


Abbildung 24: Hemmung der Methanbildung in Abhängigkeit vom pH-Wert und der Essigsäurekonzentration (Kroiss, 1985)

3.3.3 Schwefelverbindungen

Schwefel kommt entweder über den Schlamm oder über die flüssige Phase (z. B. Sulfat aus Trübwasser oder Waschmitteln) in den Faulreaktor. Im Schlamm ist der Schwefel biologisch gebunden, was hauptsächlich bei kommunalen Anlagen der Fall ist. Bei zahlreichen Industrieprozessen fällt sulfatreiches Abwasser an. In diesem Fall gelangt der Schwefel überwiegend über die flüssige Phase in den anaeroben Reaktor.

Unter anaeroben Bedingungen wird Sulfat durch sulfatreduzierende Bakterien (SRB) bei der Umsetzung von Kohlenstoffverbindungen bzw. Wasserstoff zu Schwefelwasserstoff reduziert (Kunst, 2005).

Sulfatreduktion:

$$SO_4^{2-} + 4 H_2$$
 $\Rightarrow H_2S + 2 H_2O + OH^- \Delta G = -135 \text{ kJ/mol} (3-17)$

$$SO_4^{2-} + CH_3COOH \rightleftharpoons H_2S + 2 HCO_3$$
 $\Delta G = -28.5 \text{ kJ/mol}$ (3-18)

Methanbildung:

$$CO_2 + 4 H_2$$
 $\rightleftharpoons CH_4 + 2 H_2O$ $\Delta G = -154 \text{ kJ/mol}$ (3-19)

$$CH_3COOH$$
 $\rightleftharpoons CH_4 + CO_2$ $\Delta G = -43 \text{ kJ/mol}$ (3-20)

Ist die Sulfatkonzentration erhöht, stehen die sulfatreduzierenden Bakterien in Konkurrenz zu den Methanbakterien, da beide Gruppen die gleichen Substrate verwenden. Dabei haben die sulfatreduzierenden Bakterien den Vorteil, dass die frei werdende Energie (Bildungsenthalpie) bei der Sulfatreduktion größer ist als jene bei der Methanbildung. Die Substrate Essigsäure und Wasserstoff werden von den sulfatreduzierenden Bakterien bevorzugt verwendet und nur der verbleibende Rest kann von den Methanbakterien genutzt werden.

Wie bei vielen anderen Stoffen bestimmt nur der undissoziierte gelöste Anteil des Schwefelwasserstoffes die Hemmung des anaeroben Abbaus, insbesondere der acetoclastischen Methanbakterien. Das bei der Sulfatreduktion gebildete Sulfid liegt in einem Reaktor in drei Formen vor (Kroiss, 1985):

- Schwefelwasserstoff im Gas (H₂S)
- gelöster Schwefelwasserstoff in der Flüssigkeit (H₂S), undissoziiert und hemmend
- dissoziierte Form (HS⁻, S²⁻)

Schwefelwasserstoff dissoziiert in Abhängigkeit vom pH-Wert nach folgender Reaktionsgleichung:

$$H_2S \rightleftharpoons HS^- + H^+ \tag{3-21}$$

Wie Abbildung 25 zeigt, nimmt der Anteil des toxischen H₂S mit steigendem pH-Wert ab. Wird die Faulung bei hohem Trockensubstanzgehalt betrieben, liegt wie bereits beschrieben die Ammonium-Konzentration und damit der pH-Wert etwas höher. Somit wird durch Faulung bei hohem Trockensubstanzgehalt der Gefahr einer H₂S-Toxizität entgegengesteuert.

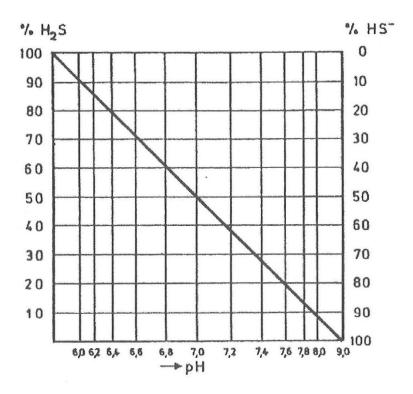


Abbildung 25: Anteil von HS⁻ und H₂S am Gesamtsulfid in Abhängigkeit vom pH-Wert (Kroiss, 1985)

Das chemische Gleichgewicht wird neben dem pH-Wert auch noch vom Partialdruck des Schwefelwasserstoffs in der Gasphase p_{H_2S} und der Konzentration des Schwefelwasserstoffs in der Flüssigkeit c_{H_2S} bestimmt, dessen Zusammenhang durch das Gesetz von Henry beschrieben wird:

Der Sättigungswert c_{S,H_2S} ist temperaturabhängig und nimmt mit steigender Temperatur ab. Der Partialdruck des Schwefelwasserstoffs ist sehr stark von der Gasproduktion (CH₄ + CO₂) im Reaktor abhängig, diese hängt wiederum von biochemischen und chemischen Prozessen ab. Dieser Zusammenhang ist in Abbildung 26 dargestellt.

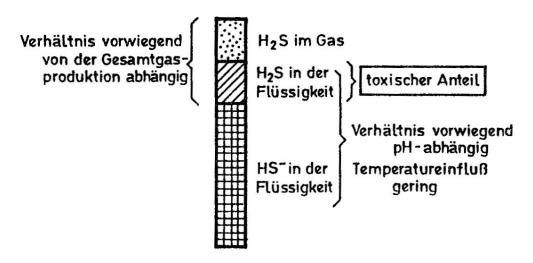


Abbildung 26: Verteilung der Sulfidfraktionen auf Gas und Wasser (Kroiss, 1985)

Da es eine starke Verknüpfung zwischen der H₂S-Toxizität und dem Verhältnis von abbaubarem CSB zu reduzierbarem Schwefel (CSB_{abb}/S_r) gibt, lässt sich eine Abschätzung über zu erwartende Probleme machen (Kroiss, 1985).

- $CSB_{abb}/S_r \ge 100$ anaerobe Reinigung möglich; keine Probleme durch H_2S zu erwarten
- 15 > CSB_{abb}/S_r < 100 anaerobe Reinigung möglich; H₂S-Probleme müssen berücksichtigt werden
- $\bullet \ CSB_{abb}/S_r < 15 \\ \hspace{1.5cm} Methan produktion \ nur \ in \ Sonderf\"{a}llen \ m\"{o}glich \\$

Aus den obigen Ausführungen kann festgestellt werden, dass Schwefelwasserstoff bzgl. der Stabilität des Faulprozesses keine Rolle spielt, sehr wohl aber bei der Gasverwertung (vgl. Kapitel 6.5, S. 121).

3.3.4 Phosphor

Phosphor kommt über das Substrat in die Faulung, wo dieser überwiegend biologisch gebunden ist. Durch Hydrolyse wird dieser frei und liegt dann gelöst als Orthophosphat (PO₄⁻) vor. Sind Ammonium, Phosphor und Magnesium in der flüssigen Phase des Faulschlammes vorhanden, kann es unter alkalischen Bedingungen zu Ausfällungen von MAP (Magnesium-Ammonium-Phosphat) kommen. MAP kristallisiert an Oberflächen, sodass es zur Verengung von

Rohrleitungen kommt. Die Reinigung ist schwierig bzw. gar nicht möglich, sodass Bauteile eventuell gänzlich getauscht werden müssen.

Eine Methode diese Problem zu beherrschen ist es Phosphor gezielt als MAP zu fällen, was beispielsweise auf der Kläranlage Berlin Wassmannsdorf durchgeführt wird (Lesjean et al., 2003; Meinel und Gnirss, 2014).

Beim Betrieb einer kommunalen Schlammfaulung mit hoher Trockensubstanz sind eine hohe Ammonium-Konzentration und ein pH-Wert von 7,2 bis 7,6 zu erwarten. Handelt es sich beim Substrat um kommunalen Klärschlamm, ist im Gegensatz zu industriellen Anlagen mit einem höheren Phosphorgehalt zu rechnen. Die Menge, die als MAP ausfällt, ist weitestgehend vom Magnesium-Gehalt im Faulschlamm limitiert.

3.3.5 Zusammenfassung

Wird eine Faulung mit erhöhter Trockensubstanz betrieben, wirkt die höhere Ammonium-Konzentration günstig auf den Prozess, da der pH-Wert angehoben wird und die Pufferkapazität steigt. Erst ab einer Ammonium-Konzentration von etwa 2.000 mg/L ist eine Hemmung und damit einer Verschlechterung des Substratabbaus zu erwarten.

Durch die Erhöhung des pH-Wertes wird die Gefahr verringert, dass H₂S-Toxizitäten maßgeblich werden könnten.

Kommt es in der Faulung zu einer vorübergehenden Erhöhung der Konzentration an organischen Säuren, wird das Absinken des pH-Werts durch die erhöhte Pufferkapazität aufgrund der hohen Ammonium-Konzentration abgepuffert. Durch ein hohes Schlammalter in der Faulung kann die Gefahr der Hemmung durch organische Säuren kompensiert werden.

4 Rheologie

Die Rheologie ist ein wissenschaftliches Teilgebiet, das sich mit dem Verformungs- und Fließverhalten von flüssigen bis plastischen Stoffen beschäftigt. Unterschiedliche Fluide (z. B. Wasser, Öl) weisen auch unterschiedliche rheologische Stoffeigenschaften auf.

Auf Kläranlagen werden Fluide mit unterschiedlichen rheologischen Parametern bewegt (Wasser, verschiedene Klärschlamme mit unterschiedlicher TS). Die unterschiedlichen Parameter hinsichtlich Rheologie führen beim Rohrleitungstransport zu verschieden hohen Druckverlusten. Ähnlich verhält es sich auch beim Mischen in Behältern.

In diesem Kapitel werden die rheologischen Grundlagen beschrieben, die Ermittlung rheologischer Parameter erläutert und hydraulische Rechenmodelle erklärt, sodass schließlich eine praxistaugliche Anleitung dargestellt wird, um Druckverluste von Wasser und Klärschlamm in Rohrleitungen zu quantifizieren.

4.1 Rheologische Grundparameter

Mittels Parallelplattenmodell (Abbildung 27) können grundlegende rheologische Größen (Schubspannung, Scherrate, Viskosität) definiert werden.

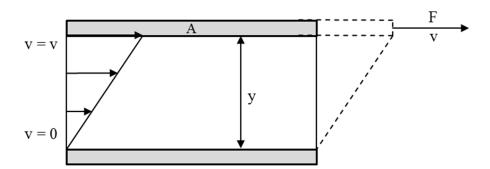


Abbildung 27: Parallelplattenversuch, 2D-Darstellung, nach Moshage (2004)

Zwischen zwei parallel angeordneten Platten mit der Fläche A und dem Abstand y befindet sich eine flüssige Messprobe. Die untere Platte verbleibt in Ruhe, während die obere Platte mit der Kraft F und der Geschwindigkeit v tangential bewegt wird. Wird davon ausgegangen, dass die Messprobe an den Platten haftet (Wandhaftung) und zwischen den Platten laminare Fließbedingungen herrschen, können die rheologischen Parameter exakt bestimmt werden. Werden eventuelle elastische Verformungen vernachlässigt, wirkt der innere Widerstand

der Flüssigkeitsmoleküle der aufgebrachten Kraft entgegen (Klinksieg, 2010; Mezger, 2010).

Die auf die Messprobe aufgebrachte **Schubspannung** τ errechnet sich als Quotient der tangentialen Kraft F und der benetzten Fläche A der bewegten Platten.

$$\tau = \frac{F}{A}$$
 (4-1)
mit: τ Schubspannung [Pa]
$$F Kraft [N]$$

$$A Fläche [m^2]$$

Die **Scherrate** $\dot{\gamma}$ (auch Schergefälle, Geschwindigkeitsgefälle) errechnet sich als Quotient aus der Geschwindigkeit v und dem Plattenabstand y. Anders ausgedrückt beschreibt sie die Geschwindigkeit v der sich bewegenden Platte, wenn der Abstand v einen Meter beträgt.

$$\dot{\gamma} = \frac{v}{y}$$
 (4-2)

mit: $\dot{\gamma}$ Scherrate (bzw. Schergefälle, Geschwindigkeitsgefälle [(m/s)/m] gekürzt: [s⁻¹]

 v Geschwindigkeit [m/s]

 y Abstand der Platten [m]

Die **dynamische Viskosität** η errechnet sich als der Quotient aus der Schubspannung und der Scherrate.

Sie kann als Proportionalitätsfaktor zwischen der Schubspannung und der Scherrate betrachtet werden und ist eine Maßzahl für die Zähflüssigkeit, also die innere Reibung des Fluids. Die Viskosität ist höher, je dickflüssiger, d.h. je weniger fließfähig die Flüssigkeit ist. Sie resultiert aus den zwischenmolekularen Kräften im Fluid und ist folglich abhängig von der Kohäsion zwischen den Molekülen oder Teilchen (Klinksieg, 2010).

Die Ursache für unterschiedliche Viskositäten beruht auf den Bindungen der Partikeln. Diese resultieren aus Bindungskräften zwischen den Atomen bzw. den Molekülen eines Fluids (Ionenbindung, Komplexbindung), den zwischenmolekularen Kräften (Van-der-Waals-Kräfte, Dispersionswechselwirkungen,

Wasserstoffbrückenbindungen) sowie den thermisch getriebenen Eigenbewegungen der Teilchen (Brownsche Molekularbewegung). Die dynamische Viskosität ist außerdem noch abhängig von Druck und Temperatur. Sie wird im allgemeinen kleiner, wenn die Temperatur steigt bzw. der Druck fällt (Klinksieg, 2010).

Die dynamische Viskosität ist eine abstrakte Größe, die einfacher vorstellbar wird, wenn das Modell des Parallelplattenversuches 3-dimensional dargestellt wird (Abbildung 28). Die dynamische Viskosität η hat den Wert 1 Pa·s, wenn die beiden parallelen Platten eine Größe von jeweils 1 m² haben, der Abstand y 1 m beträgt, die obere Platte mit 1 m/s beweget wird und die dafür erforderliche Kraft F 1 N beträgt (4-4).

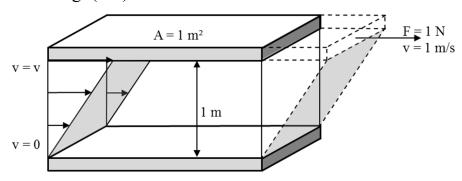


Abbildung 28: Parallelplattenversuch (3D Darstellung)

$$\eta = \frac{\tau}{\dot{\gamma}} = \frac{F}{A} = \left[\frac{N}{m^2}\right] = \left[\frac{N}{m^2} = Pa\right] = [Pa \cdot s]$$
mit: η dynamische Viskosität [Pa·s]
$$\tau \quad \text{Schubspannung} \quad [Pa]$$
 $\dot{\gamma} \quad \text{Scherrate} \quad [s^{-1}]$

$$F \quad \text{Kraft} \quad [N]$$

$$A \quad Fläche$$

$$v \quad Fließgeschwindigkeit$$

$$y \quad \text{Abstand der Platten} \quad [m]$$

Wird die dynamische Viskosität auf die Dichte der Flüssigkeit bezogen, erhält man die **kinematische Viskosität** ν (Bohl, 2002).

$$v = \frac{\eta}{\rho}$$
 (4-5)
mit: v kinematische Viskosität [mm²/s]
 η dynamische Viskosität [Pa·s]
 ρ Dichte [kg/m³]

4.2 Fließverhalten

Die Viskosität ist eine charakteristische Kenngröße des Fluids, die allerdings nicht notwendigerweise eine Stoffkonstante darstellen muss. Neben Druck und Temperatur können diese noch weitere Parameter, wie beispielsweise die Zeit, beeinflussen. Für einige Stoffe ergibt sich eine Abhängigkeit der rheologischen Eigenschaften von der Dauer während und nach der Scherbeanspruchung. Außerdem beeinflusst die Scherrate entscheidend die Viskosität vieler Flüssigkeiten. Eine Erhöhung der Scherrate kann sowohl eine Zunahme, als auch eine Abnahme der Viskosität nach sich ziehen.

Das Fließverhalten während einer Scherbeanspruchung eines Fluids lässt sich anhand der grafischen Darstellung der Schubspannung τ bzw. der dynamischen Viskosität η über dem Geschwindigkeitsgefälle $\dot{\gamma}$ mittels Fließ- und Viskositätskurven beschreiben, die im Folgenden erläutert werden (Klinksieg, 2010).

4.2.1 Newtonsche Fließkurven

Um eine Newtonsche Flüssigkeit handelt es sich dann, wenn die Schubspannung τ der Scherrate $\dot{\gamma}$ proportional ist. Das Fließverhalten ist ideal-elastisch. Die Viskosität ist eine Stoffkonstante, die lediglich temperaturabhängig ist (z. B. bei Wasser). Die Fließkurve einer idealen Flüssigkeit hat eine konstante Steigung, deren Viskositätskurve ist waagrecht (Abbildung 29). Ideale Flüssigkeiten sind inkompressibel, ihre Strömung ist definitionsgemäß reibungsfrei.

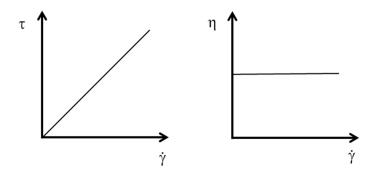


Abbildung 29: Fließ- und Viskositätskurve einer Newtonschen Flüssigkeit

4.2.2 Nicht-Newtonsche Fließkurven

Weist eine Flüssigkeit die in Kapitel 4.2.1 beschriebenen Eigenschaften einer idealen Flüssigkeit nicht auf, spricht man von einer "Nicht-Newtonschen" Flüssigkeit. Die Viskosität ändert sich also mit zunehmender Scherrate bzw. Dauer der Beanspruchung. Nicht-Newtonsche Flüssigkeiten können verschiedene Fließeigenschaften haben, die in Abbildung 30 dargestellt sind.

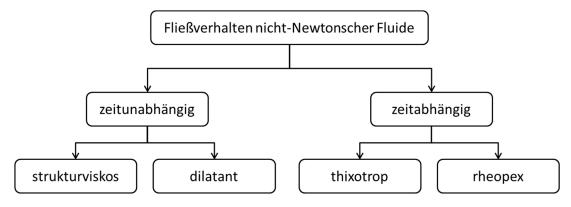


Abbildung 30: Fließverhalten nicht-Newtonscher Fluide; nach Klinksieg (2010)

Das Fließverhalten kann demnach nicht nur durch die Angabe der Viskosität alleine charakterisiert werden.

Bei einer **strukturviskosen** Flüssigkeit verhält sich die Steigung der Schubspannung im Fließdiagramm degressiv zur Scherrate. Die Viskosität nimmt mit steigender Scherrate ab, was mit einer Strukturveränderung im Fluid zu begründen ist, sodass die einzelnen Partikel besser aneinander vorbei gleiten können (Abbildung 31). Durch die Einwirkung der Scherbeanspruchung, die als Energieumwandlungseffekt zu verstehen ist, werden ungeordnete Strukturen des zunächst in Ruhe befindlichen Fluids abgebaut. Die Viskosität wird durch Effekte wie Orientierung, Streckung von Makromolekülen sowie Deformation oder Zerfall der Aggregation kleiner. Partikel orientieren sich hierbei in Richtung der Strömung bzw. des Schergradienten (Klinksieg, 2010). Beispiele für strukturviskose Flüssigkeiten sind Überschuss- und Faulschlamm.

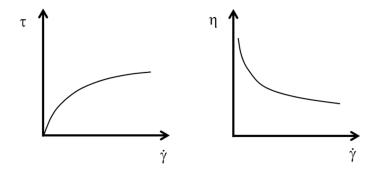


Abbildung 31: Fließ- und Viskositätskurve einer nicht-Newtonschen, strukturviskosen Flüssigkeit

Dilatante Flüssigkeiten haben ein gegensätzliches Fließverhalten zu strukturviskosen Flüssigkeiten. Hierbei nimmt die Schubspannung bei steigender Scherrate zu. Die Zunahme der Viskosität bei höherer Scherrate basiert auf Wechselwirkungen der einzelnen Fluidpartikel (z. B. Verhaken). In weiterer Folge gleiten die Partikel schlechter aneinander vorbei (Abbildung 32).

Dilatante Fluide haben im Zusammenhang mit Abwasserreinigungsanlagen keine Bedeutung.

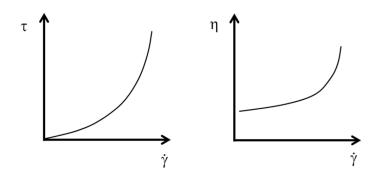


Abbildung 32: Fließ- und Viskositätskurve einer Nicht-Newtonschen, dilatanten Flüssigkeit

Die Eigenschaften strukturviskos und dilatant sind unabhängig von der Zeitdauer der Scherbeanspruchung. Thixotropie und Rheopexie beschreiben zeitabhängige Änderungen der Viskosität bei Scherbeanspruchung.

Bei **thixotropen** Flüssigkeiten nimmt die Viskosität bei andauernder Scherbeanspruchung ab (Abbildung 33). Nach einer bestimmten Ruhezeit ohne Scherbeanspruchung steigt die Viskosität wieder auf den Anfangswert an. Es handelt sich hierbei also um einen reversiblen Vorgang.

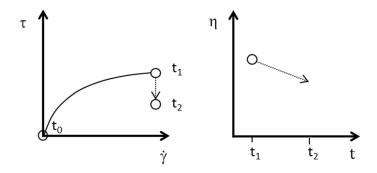


Abbildung 33: Fließkurve einer strukturviskosen und thixotropen Flüssigkeit (links) und Änderung der Viskosität bei anhaltender Scherbeanspruchung (rechts)

Rheopexie ist das Gegenteil von Thixotropie. Wird die Scherbeanspruchung für einige Zeit gehalten und steigt die Viskosität, spricht man von einem rheopexen Fluid (Abbildung 34). Nach Beendigung der Scherbeanspruchung sinkt die Viskosität wieder auf den Anfangswert.

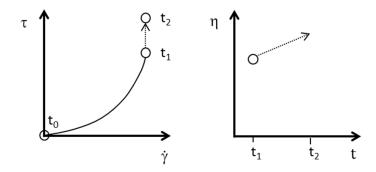


Abbildung 34: Fließkurve einer dilatanten und rheopexen Flüssigkeit (links) und Änderung der Viskosität bei anhaltender Scherbeanspruchung (rechts)

Die Fließgrenze τ_0 kennzeichnet Flüssigkeiten, die ein Fließverhalten mit Plastizität haben. Bei geringen Scherbeanspruchungen verhält sich solch eine Flüssigkeit elastisch wie ein Feststoff, erst bei genügend hoher Scherbeanspruchung beginnt diese zu fließen. Beispiele hierfür sind manche Polymere, Zahnpasta oder Ketchup. Schlämme haben in der Regel eine Fließgrenze. Diese spielt vor allem dann eine Rolle, wenn Schlamm in Bewegung versetzt wird. Ist ein Schlamm in Bewegung hat die Fließgrenze eine untergeordnete Bedeutung.

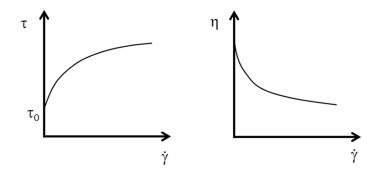


Abbildung 35: Fließ- und Viskositätskurve einer strukturviskosen Flüssigkeit mit Fließgrenze

4.3 Anpassungsmodelle

Werden die Fließ- bzw. Viskositätskurven einer Flüssigkeit experimentell (z. B. mittels Rheometer) bestimmt, ist es durch mathematische Anpassungsmodelle möglich, diese Kurven als Funktionen zu beschreiben, wozu nur wenige Parameter erforderlich sind. Hierfür stehen zahlreiche Modelle zur Verfügung, von denen nachfolgend vier bekannte Modelle erläutert werden.

Die Anpassungsfunktion nach **Bingham** ist eine mathematische Beschreibung von *strukturviskosem* Fließverhalten. Die Anpassung der Fließfunktion wird als Gerade vorgenommen, wobei die Steigung der Bingham-Viskosität η_B

entspricht. Der Schnittpunkt der Geraden mit der Ordinate stellt die Fließgrenze τ_B dar. Vorteil dieser Anpassung ist, dass lediglich zwei Parameter benötigt werden. Als Nachteil ist anzugeben, dass die Bingham-Fließgrenze τ_B die reale Fließgrenze einer nicht-Newtonschen Flüssigkeit relativ ungenau wiedergibt. Vor allem bei kleiner Schergeschwindigkeit, welche in der Praxis häufig auftritt, ist der Fehler groß. Das Bingham-Modell wurde vor allem früher angewandt, als die zur Verfügung stehenden Messgeräte bei niedrigen Scherraten ungenau waren und noch keine computerunterstützte Auswertung der Ergebnisse erfolgte (Klinksieg, 2010; Moshage, 2004).

$$\tau = \tau_B + \eta_B \cdot \dot{\gamma} \tag{4-6}$$

bzw.

$$\eta = \frac{\tau_B}{\dot{\gamma}} + \eta_B \tag{4-7}$$
mit: τ Schubspannung [Pa]
$$\eta \qquad \text{dynamische Viskosität} \qquad [Pa \cdot s]$$

$$\tau_B \qquad \text{Bingham-Fließgrenze} \qquad [Pa]$$

$$\eta_B \qquad \text{Bingham-Viskosität} \qquad [Pa \cdot s]$$

$$\dot{\gamma} \qquad \text{Scherrate} \qquad [s^{-1}]$$

Abbildung 36: Anpassungsmodell nach Bingham

Ein weiteres mathematisches Modell zur Charakterisierung nicht-Newtonschen Fließverhaltens ist jenes nach **Ostwald-de Waele**. Hierbei handelt es sich um eine Potenzfunktion. Der Konsistenzfaktor K beschreibt hierbei die Viskosität des Fluids. Der Fließindex n stellt die lineare Steigung der Fließkurve bei doppeltlogarithmischer Steigung dar und charakterisiert damit die Abweichung vom Newtonschen Verhalten.

Mit diesem Modell ist auch die Beschreibung Newtonscher Flüssigkeiten möglich. In diesem Fall ist n = 1 und die Viskosität also konstant. Bei n < 1 handelt es sich um *strukturviskoses*, bei n > 1 um *dilatantes* Verhalten der Flüssigkeit (Klinksieg, 2010).

$$\tau = K \cdot \dot{\gamma}^n \tag{4-8}$$

bzw.

$$\eta = K \cdot \dot{\gamma}^{n-1}$$
mit: τ Schubspannung [Pa]

 η dynamische Viskosität [Pa·s]

 K Konsistenzfaktor [Pa·sⁿ]

 n Fließindex [-]

 $\dot{\gamma}$ Scherrate [s⁻¹]

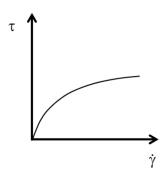


Abbildung 37: Anpassungsmodell nach Ostwald-de Waele

Die Anpassungsfunktion nach Ostwald-de Waele wird für die Beschreibung von Klärschlämmen häufig verwendet. Auch in dieser Arbeit wird in weiterer Folge Bezug darauf genommen.

Das Anpassungsmodell nach **Herschel und Bulkley** beschreibt *strukturviskoses* Fließverhalten. Der Schnittpunkt der Kurve mit der Ordinate entspricht der Herschel-Bulkley-Fließgrenze τ_{HB} . Die Steigung der Funktion wird durch den Konsistenzfaktor K und den Fließindex n bestimmt.

$$\tau = \tau_{HB} + K \cdot \dot{\gamma}^n \tag{4-10}$$

oder

$$\eta = \frac{\tau_{HB} + K \cdot \dot{\gamma}^{n}}{\dot{\gamma}} \tag{4-11}$$
mit: τ Schubspannung [Pa]
$$\eta \qquad \text{dynamische Viskosität} \qquad [Pa \cdot s]$$

$$K \qquad \text{Konsistenzfaktor} \qquad [Pa \cdot s^{n}]$$

$$n \qquad \text{Fließindex} \qquad [-]$$

$$\tau_{HB} \qquad \text{Herschel-Bulkley-Fließgrenze} \qquad [Pa]$$

$$\dot{\gamma} \qquad \text{Scherrate} \qquad [s^{-1}]$$

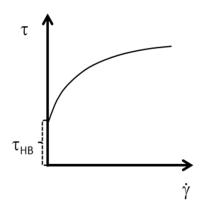


Abbildung 38: Anpassungsmodell nach Herschel und Bulkley

Das rheologische Anpassungsmodell nach **Windhab** wurde bisher für das Fließverhalten von Klärschlämmen selten verwendet. Hierbei werden *strukturviskose* Flüssigkeiten beschrieben, wofür im Gegensatz zu den bisher beschriebenen Modellen vier Parameter erforderlich sind. Die Fließkurve wird durch die Fließgrenze τ_0 und die Schubspannungskonstante τ_I beschrieben, die der Fließgrenze nach Bingham τ_B entspricht. Bei höherer Scherrate wird die Funktion durch die Schubspannungskonstante τ_I und Gleichgewichtsviskosität η_∞ beschrieben, was der Geraden nach Bingham entspricht.

$$\tau = \tau_0 + (\tau_1 - \tau_0) \cdot \left[1 - e^{\frac{-\dot{\gamma}}{\dot{\gamma}^*}}\right] + \eta_{\infty} \cdot \dot{\gamma}$$
mit: τ Schubspannung [Pa]
$$\tau_0 \qquad \text{Fließgrenze} \qquad \qquad [Pa]$$

$$\tau_1 \qquad \text{Schubspannungskonstante} \qquad \qquad [Pa]$$

$$\eta_{\infty} \qquad \text{Gleichgewichtsviskosität} \qquad \qquad [Pa]$$

$$\dot{\gamma}^* \qquad \text{Funktionsscherrate} \qquad \qquad [s^{-1}]$$

$$\dot{\gamma} \qquad \text{Scherrate} \qquad \qquad [s^{-1}]$$

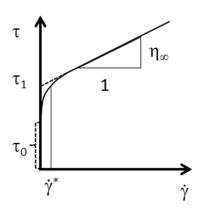


Abbildung 39: Anpassungsmodell nach Windhab

In nachfolgender Tabelle 11 sind die Eigenschaften der beschriebenen rheologischen Anpassungsmodelle gegenübergestellt. Die Wahl eines Modells ist abhängig von der Qualität des damit erzielten Ergebnisses. Soll beispielsweise die Fließgrenze eines Fluids damit abgebildet werden, ist das Modell nach Ostwald-de Waele ungeeignet. Ebenso wäre das Modell nach Bingham ungeeignet, wenn die maßgebliche Scherrate klein ist. Die Modelle nach Herschel und Bulkey und das Modell nach Windhab sind jedoch schwieriger anzupassen, da 3 bzw. 4 Parameter bestimmt werden müssen.

Wie nachfolgend beschrieben (Tabelle 11), eignet sich die Anpassungsfunktion nach Ostwald-de Waele sehr gut für die Beschreibung von Schlämmen, weswegen diese in weiterer Folge verwendet wird.

Tabelle 11:	Gegenübers	tellung der Eiger	nschaften rheo	logischer Anpass	ungsmodelle
M	1.111.	D'1	Ostwald-de	Herschel und	XX7' 11 1

Modell nach	Bingham	Ostwald-de Waele	Herschel und Bulkley	Windhab
Fließgrenze berücksichtigt	ja	nein	ja	ja
Anzahl der zu bestimmenden Parameter	2	2	3	4
Steigung	linear	exponentiell	exponentiell	exponentiell / linear
Beschreibung einer strukturviskosen Flüssigkeit möglich	ja	ja	ja	ja
Beschreibung Newtonscher Flüssigkeiten möglich	ja	ja	ja	ja
Fehler bei kleiner Scherrate	groß	mittel/klein	klein	klein

4.4 Rohrhydraulik

Beim Fördern einer Flüssigkeit durch eine Rohrleitung entsteht ein Druckverlust, dessen Höhe von einigen Parametern abhängig ist. Maßgeblich sind hierbei die Fördergeschwindigkeit v, der Rohrdurchmesser D und die Fließeigenschaften des Fluids (n, K). Insbesondere für die Auslegung von Rohrleitungen und Pumpen ist die Kenntnis über den zu erwartenden Druckverlust entscheidend, da bereits bei der Planung Überlegungen hinsichtlich der betrieblichen Optimierung einfließen können.

In diesem Kapitel werden die Grundlagen für die Berechnung hydraulischer Verluste für Newtonsche und nicht-Newtonsche Flüssigkeiten erklärt und eine methodische Vorgehensweise für die Berechnung vorgestellt. Mit den Ergebnissen, die beim Projekt EOS ermittelt wurden, werden beispielhaft Abschätzungen durchgeführt (Kapitel 4.4.4, S. 60ff).

4.4.1 Rohrströmung

Bei Strömungen kann generell zwischen laminar und turbulent unterschieden werden, was für die Berechnung von hydraulischen Verlusten entscheidend ist.

Eine **laminare Rohrströmung** liegt dann vor, wenn die Stromlinien parallel angeordnet sind. Bei laminarer Strömung findet kein Austausch von Fluidteilchen quer zur Strömungsrichtung statt. Kennzeichen laminarer Strömung ist eine geringe Reynoldszahl *Re*.

Bei **turbulenter Rohrströmung** sind die Stromlinien nicht parallel, Austausch von Fluidteilchen findet quer zur Strömungsrichtung statt, die Reynoldszahl *Re* ist groß.

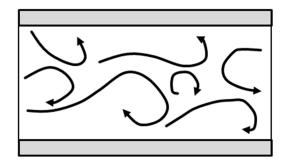


Abbildung 40: Stromfäden eines bewegten Fluids in einem Rohr – laminare (links) und turbulente (rechts) Rohrströmung

Die Grenze zwischen laminarem und turbulentem Verhalten wird mit der kritischen Reynoldszahl (Re_{krit}) angegeben, die bei Newtonschen Flüssigkeiten eine feste Größe (bzw. einen festen Bereich) darstellt und bei nicht-Newtonschen Flüssigkeiten ($Re_{krit,MR}$) vom Fließindex n abhängt.

Die Berechnung der vorliegenden Reynoldszahl ist für Newtonsche und nicht-Newtonsche Flüssigkeiten unterschiedlich und wird in den nachfolgenden Kapiteln erklärt.

4.4.2 Newtonsche Flüssigkeiten

Die **Reynoldszahl** Newtonscher Fluide wird mit Gleichung (4-13) ermittelt. Der Wechsel von laminarer zu turbulenter Rohrströmung wird mit der **kritischen Reynoldszahl** (Re_{krit}) angegeben, für deren Wert man in der Literatur den Bereich von 2.100 bis 2.300 findet. Bei Bollrich (2000) wird ein konkreter Wert von 2.320 genannt. Ist der ermittelte Wert kleiner, liegt eine laminare Strömung vor, darüber ist diese turbulent.

Zu Newtonschen Fluiden zählt Wasser. Auch Klärschlamm mit geringem TS-Gehalt (ca. 1 bis 2 %) kann ohne größere Abweichungen hinsichtlich des berechneten Druckverlustes als solche behandelt werden.

$$Re = \frac{\rho \cdot \overline{v} \cdot D}{\eta}$$
mit: Re Reynoldszahl [-]
$$\rho$$
 Dichte der Suspension [kg/m³]
$$\overline{v}$$
 Fließgeschwindigkeit [m/s]
$$D$$
 Durchmesser der Rohrleitung [m]
$$\eta$$
 dynamische Viskosität [Pa·s]

In der deutschsprachigen Literatur wird der hydraulische Widerstandsbeiwert als λ angegeben, im angelsächsischen Raum wird hierfür f verwendet, wobei Gleichung (4-14) gilt.

$$f = \frac{\lambda}{4}$$
 (4-14)
mit: f hydraulischer Widerstandbeiwert,
gebräuchlich im angelsächsischen Raum [-]
 λ hydraulischer Widerstandbeiwert,
gebräuchlich im deutschsprachigen Raum [-]

Im Folgenden wird für den hydraulischen Widerstandsbeiwert die angelsächsische Bezeichnung f verwendet, da diese Form in Formeln, die in der Literatur zu finden sind, meist angegeben wird.

Hydraulischer Widerstandsbeiwert: Laminare Strömung, Newtonsche Flüssigkeit

Bei laminarer Strömung errechnet sich der hydraulische Widerstandsbeiwert f für Newtonsche Flüssigkeiten nach Gleichung (4-14). Diese Gleichung ist hier der Vollständigkeit halber angegeben, hat für die praktische Anwendung im Bereich der Abwassertechnik jedoch keine Relevanz.

$$f = \frac{16}{Re}$$
 (4-15)
mit: f hydraulischer Widerstandsbeiwert $(f = \lambda/4)$ [-]
 Re Reynoldszahl [-]

Hydraulischer Widerstandsbeiwert: Turbulente Strömung, Newtonsche Flüssigkeit

Ist die Strömung einer Newtonschen Flüssigkeit turbulenten, wird der hydraulische Widerstandsbeiwert f iterativ nach Gleichung (4-16) ermittelt. Als praktikabler Hinweis sei hier erwähnt, dass durch Multiplikation der Gleichung mit \sqrt{f} die Gleichung in einer Tabellenkalkulation bequem nach dem Wert 1 aufgelöst werden kann, um f zu ermitteln.

$$\frac{1}{\sqrt{f}} = 4 \cdot log(Re \cdot \sqrt{f}) - 0.4$$
mit: f hydraulischer Widerstandsbeiwert $(f = \lambda/4)$ [-]
$$Re$$
 Reynoldszahl [-]

4.4.3 Nicht-Newtonsche Flüssigkeiten

Die Kennzeichen nicht-Newtonscher Flüssigkeiten sind in Kapitel 4.2.2 (S.47ff) erklärt. Bei Newtonschen Flüssigkeiten ist der hydraulische Widerstandsbeiwert f bei laminarer Strömung lediglich von der Reynoldszahl Re abhängig (Gleichung (4-15), S.56). Metzner und Reed haben diese Gleichung für nicht-Newtonsche Flüssigkeiten erweitert, wobei die allgemeine Reynoldszahl Re durch die Reynoldszahl nach Metzner und Reed Re_{MR} ersetzt wird (Metzner und Reed, 1955; Moshage, 2004). Die Reynoldszahl von Fluiden, deren Fließverhalten nach dem Potenzansatz von Ostwald-de Waele beschrieben werden kann, lässt sich mit nachfolgender Gleichung ermitteln (Moshage, 2004).

	$Re_{MR} =$	$= \frac{\rho \cdot \overline{v}^{2-n} \cdot D^n}{8^{n-1} \cdot K \cdot \left(\frac{3n+1}{4n}\right)^n}$	(4-17)
mit:	Re_{MR}	Reynoldszahl nach Metzner und Reed	[-]
	ho	Dichte der Suspension	$[kg/m^3]$
	\overline{v}	Fließgeschwindigkeit	[m/s]
	D	Durchmesser der Rohrleitung	[m]
	K	Konsistenzfaktor	$[Pa \cdot s^n]$
	n	Fließindex	[-]

Ebenso wie bei Newtonschen Fluiden ist die Größe der Reynoldszahl auch bei nicht-Newtonschen Fluiden eine Maßzahl, ob laminare oder turbulente Strömung vorliegt. Die kritische Reynoldszahl *Re_{MR,krit}* bei nicht-Newtonschen

Flüssigkeiten hängt vom Fließindex n ab und wurde von Ryan und Johnson (1959) beschrieben.

$$Re_{MR,krit} = \frac{6464n}{(3n+1)^2} \cdot (2+n)^{\frac{2+n}{1+n}}$$
 (4-18)
mit: $Re_{MR,krit}$ kritische Reynoldszahl nach Metzner und Reed [-]
 n Fließindex [-]

Bei $Re_{MR} < Re_{MR,krit}$ ist die Strömung laminar, bei $Re_{MR} \ge Re_{MR,krit}$ liegt turbulente Strömung vor.

Obwohl sich mit dieser Gleichung beispielsweise bei n = 0,4 eine Reynoldszahl $Re_{MR,krit}$ von rund 2.400 ergibt und experimentelle Beobachtungen von Doge und Metzner (Dodge und Metzner, 1959) laminares Fließverhalten bei einer Reynoldszahl Re_{MR} von 3.100 beobachtet haben, wird diese Formel von Chharbra und Richardson (Chhabra und Richardson, 1999) für den Gebrauch in der Praxis empfohlen (Moshage, 2004).

Hydraulischer Widerstandsbeiwert: Laminare Strömung, nicht-Newtonsche Flüssigkeit

Bei laminarer Strömung bewegen sich die Fluidteilchen in parallelen Bahnen. An der Rohrwand ist die Geschwindigkeit null, in der Rohrachse maximal, sodass sich eine Geschwindigkeitsverteilung wie in Abbildung 41 ergibt. Moshage (2004) leitet aus dem Gleichgewicht zwischen Schubkraft und Druckkraft im Rohr her, dass die Schubspannung bei einem Radius *R* konstant ist und eine lineare Verteilung über den Radius vorliegt, die in der Rohrmitte null und am Rand maximal ist (Abbildung 41).

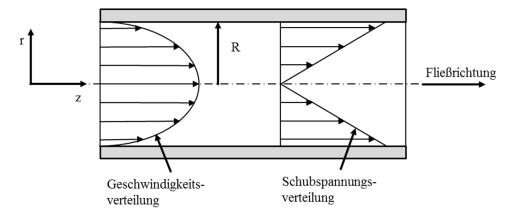


Abbildung 41: Schematische Darstellung der Geschwindigkeits- und Schubspannungsverteilung bei laminarer Rohrströmung nach Moshage (Moshage, 2004)

Moshage (2004) kommt letztlich zu folgender Darstellung der Wandschubspannung für laminare Strömung bei nicht-Newtonschen Flüssigkeiten:

$$\tau_W = K \cdot \left[\frac{Q}{\pi \cdot R^3} \left(\frac{3n+1}{n} \right) \right]^n$$
mit: τ_W Wandschubspannung [Pa]

 R Radius des Rohrleitung [m]

 Q Durchfluss [m³/s]

 K Konsistenzfaktor [Pa·sⁿ]

 N Fließindex [-]

Mit der Gleichung (4-20) von Darcy und Weisbach kann der hydraulische Widerstandsbeiwert f errechnet werden, indem die Gleichung die Wandschubspannung τ_W Gleichung (4-19) eingesetzt wird.

$$f = \frac{2 \cdot \tau_W}{\rho \cdot \overline{v}^2}$$
mit: f hydraulischer Widerstandsbeiwert $(f = \lambda/4)$ [-]
$$\tau_W$$
 Wandschubspannung [Pa]
$$\frac{\rho}{\overline{v}}$$
 Dichte der Suspension [kg/m³]
$$\overline{v}$$
 Fließgeschwindigkeit [m/s]

Für Newtonsche Fluide gilt die Gleichung (4-15) (f = 16/Re), die Metzner und Reed (1955) für nicht-Newtonsche Flüssigkeiten, die nach dem Potenzansatz von Ostwald-de Waele beschreibbar sind, erweitert haben. Die Reynoldszahl wird durch die Metzner und Reed-Reynoldszahl Re_{MR} aus Gleichung (4-17) ersetzt.

$$f = \frac{16}{Re_{MR}}$$
 (4-21)
mit: f hydraulischer Widerstandsbeiwert $(f = \lambda/4)$ [-]
 Re_{MR} Reynoldszahl nach Metzner und Reed [-]

Hydraulischer Widerstandsbeiwert: Turbulente Strömung, nicht-Newtonsche Flüssigkeit

Für die Berechnung turbulenter Strömungen nicht-Newtonscher Fluide gibt es keine exakten mathematischen Ansätze (Moshage, 2004). Die turbulente Rohrströmung wird stets von kleineren Störungen quer zur Fließrichtung beeinflusst.

Für Newtonsche Fluide im hydraulisch glatten Bereich wird der hydraulische Widerstandsbeiwert f nach Karman und Nikuradse (Darby, 2001) folgendermaßen definiert:

$$\frac{1}{\sqrt{f}} = 4 \cdot log(Re \cdot \sqrt{f}) - 0.4$$
mit: f hydraulischer Widerstandsbeiwert $(f=\lambda/4)$ [-]
$$Re$$
 Reynoldszahl [-]

Der hydraulische Widerstandsbeiwert f kann für nicht-Newtonscher Flüssigkeiten, für die der Potenzansatz von Ostwald-de Waele gilt, angegeben werden, indem diese Gleichung mit der Reynoldszahl von Metzner und Reed Re_{MR} kombiniert wird (Dodge und Metzner, 1959).

$$\frac{1}{\sqrt{f}} = \left(\frac{4}{n^{0.75}}\right) \cdot log\left(Re_{MR} \cdot f^{1-\frac{n}{2}}\right) - \frac{0.4}{n^{1.2}}$$
mit: f hydraulischer Widerstandsbeiwert $(f=\lambda/4)$ [-]
$$Re_{MR}$$
 Reynoldszahl nach Metzner und Reed
$$n$$
 Fließindex [-]

4.4.4 Berechnung der hydraulischen Verlusthöhe

Die hydraulische Verlusthöhe h_r errechnet sich nach Gleichung (4-24), die sowohl bei laminaren als auch turbulenten Newtonschen und nicht-Newtonschen Flüssigkeiten gilt.

	$h_r = \frac{2}{3}$	$\frac{2 \cdot f \cdot \overline{v}^2 \cdot l}{g \cdot D}$	(4-24)
mit:	h_r	hydraulische Verlusthöhe	[m]
	f	hydraulischer Widerstandsbeiwert ($f = \lambda/4$)	[-]
	\overline{v}	Fließgeschwindigkeit	[m/s]
	l	Länge der Rohrleitung	[m]
	\boldsymbol{g}	Erdbeschleunigung (= 9,81 m/s²)	$[m/s^2]$
	D	Durchmesser der Rohrleitung	[m]

In Abbildung 42 findet sich die Zusammenstellung für die systematische Vorgehensweise bei der Berechnung der hydraulischen Verlusthöhe einer Newtonschen bzw. nicht-Newtonschen Flüssigkeit in Abhängigkeit davon, ob die Rohrströmung laminar oder turbulent ist. Anwendungsbeispiele in der Abwassertechnik sind in Tabelle 12 angegeben. Zu beachten ist, dass Formeln für nicht-Newtonsche Flüssigkeiten auch für Newtonsche Flüssigkeiten angewendet werden können. In diesem Fall ist n = 1 und $K = \eta$.

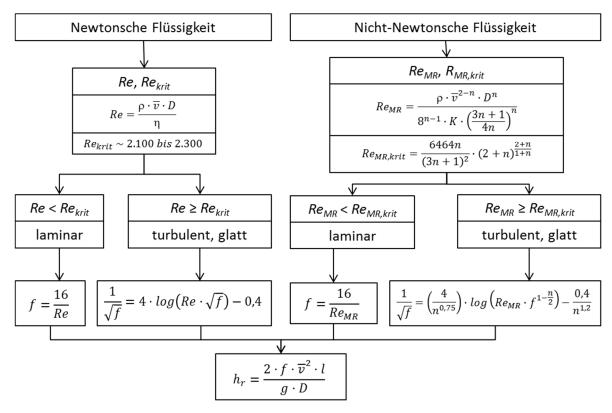


Abbildung 42: Organigramm zur Berechnung der hydraulischen Verlusthöhe in Rohrleitungen von Newtonschen und nicht-Newtonschen Flüssigkeiten

Tabelle 12: Beispiele für den Anwendungsbereich des Berechnungsorganigramms nach Abbildung 42

Art der Flüssigkeit	Newtonsch	e Flüssigkeit	nicht-Newtonsche Flüssigkeit		
Strömung	laminar turbulent		laminar	turbulent	
Beispiele	keine praktische Bedeutung in der Abwassertechnik		TS hoch (z. B. maschinell eingedickter RohS)	TS niedrig (z. B. FS)	

5 Methodik

In diesem Kapitel werden die eingesetzten Versuchsanordnungen, Analysebzw. Auswertungsmethoden vorgestellt, die für die Beschreibung der Versuchsergebnisse verwendet wurden.

Sind für die Beantwortung einer Fragestellung Versuchsergebnisse erforderlich, ist vorab zu klären, welcher der geeignete Maßstab ist, um repräsentative Ergebnisse zu erhalten.

5.1 Versuchsanlage zur Schlammfaulung – Pilotmaßstab

Mit einer Anlage im Pilotmaßstab werden Fragestellungen untersucht, für die der Labormaßstab nicht geeignet ist. Im Zuge des Projekts EOS sollten vor allem der Abbau von oTS bzw. CSB unter Realbedingungen ermittelt werden. Weiters sollten die Eindickfähigkeit des Schlammes, Polymerverbrauch bei der maschinellen Eindickung, Durchmischung im Faulbehälter, Schäumen, Verzopfungspotential und das Verhalten von Pumpen, Rohrleitungen und Sonden im Betrieb untersucht werden.

Ein weiteres Ziel war es, die rheologischen Eigenschaften des Schlammes zu untersuchen, um Aussagen bzgl. Pumpfähigkeit, Einmischverhalten und hydraulischer Druckverluste treffen zu können. Repräsentative Schlammproben sind in diesem Zusammenhang viel eher von einer Pilotanlage, als von einer Laboranlage zu erwarten. Außerdem sind für Feldversuche zum Zwecke der Verifikation große Mengen an Schlamm erforderlich.

Mit der EOS-Pilotanlage sollte die Möglichkeit geschaffen werden, ausreichend Faulschlamm zu produzieren, um mit dem Filtrat einer nachgeschalteten Entwässerung eine Versuchsanlage zur Trübwasserbehandlung zu betreiben.

Eine Pilotanlage bietet die Möglichkeit das Planungskonzept unter Praxis-Bedingungen zu prüfen, insbesondere die Stabilität der Faulung bei unterschiedlichem Schlammalter. Wertvolle Erfahrungen hinsichtlich des Betriebs können gesammelt werden.

Bei einer Laborversuchsanlage können Zusammenhänge mit wissenschaftlichen Methoden untersucht werden, wie z. B. die Hemmung von NH₃.

5.1.1 Beschreibung der Pilotanlage

Die beim Reinigungsprozess auf der HKA-Wien anfallenden Schlämme (PS, ÜS) werden in das Mischbauwerk gepumpt und entsprechend den Erfordernissen des Betriebes auf die Eindicker (ED) 1 bis 4 aufgeteilt und gemeinsam eingedickt. Der statisch eingedickte Schlamm wird zur benachbarten Verbrennungsanlage gepumpt.

Die Versuchsanlage setzte bei der statischen Schlammeindickung der HKA-Wien an (Abbildung 43). Im Keller des Mischbauwerks wurden 2 Exzenterschneckenpumpen installiert (Abbildung 44) und mittels Rohrleitung mit der Versuchsanlage verbunden.

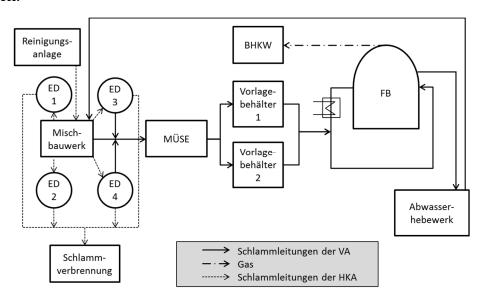


Abbildung 43: Vereinfachtes Schema der Pilotanlage

Abbildung 44: Schlammpumpen im Keller beim Mischbauwerk; links: Pumpen; rechts: Verrohrung (Aufnahmedatum: 11.03.2014)

In der Regel wurde der gemischte und statisch eingedickte PS und ÜS mittels Seihband maschinell eingedickt. Die Maschine wurde so betrieben, dass diese innerhalb einiger Stunden die Tagesfracht an eingedicktem Rohschlamm (RohS) herstellte. Daher war es notwendig, den eingedickten Schlamm in den VLB 1 und 2 (Vorlagebehälter, Abbildung 45) zu speichern.

Abbildung 45: Vorlagebehälter 1 und 2 (Speicherbehälter für Rohschlamm) (Aufnahmedatum: 11.03.2014)

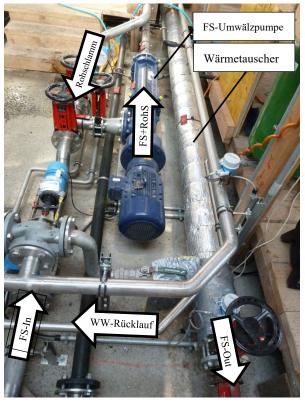

Mittels Dosierpumpe (Abbildung 46) wurde das in VLB 1 und 2 gespeicherte Substrat in die Heiz-Umwälzleitung des Faulbehälters gepumpt. Die Dosierpumpe wurde intervallweise betrieben (Lauf/Pause). Die Zeiten wurden den Erfordernissen angepasst.

Abbildung 46: Dosierpumpe des Substrats zum Faulbehälter; Zu-/Ableitungen des Vorlagebehälters 1 und 2 (Aufnahmedatum: 11.03.2014)

Durch die Einbringung des eingedickten Schlammes in die Heiz-Umwälzleitung wird durch Mischung mit Faulschlamm der Trockensubstanzgehalt des zu fördernden eingedickten Schlammes reduziert. Diese Mischung ist leichter förderbar.

Die Temperatur im Faulbehälter wurde im mesophilen Bereich (30 bis 40 °C) konstant betrieben, wobei üblicherweise 38 °C eingestellt wurden. Um die Temperatur zu halten, wurde Faulschlamm dem Heizkreislauf zugeführt. Die Erwärmung erfolgte mittels Rohrwärmetauscher im Gegenstrom, der nach der Einmischung des Substrats positioniert war. Das Heißwasser wurde durch die Abwärme des Blockheizkraftwerks (BHKW) oder mittels 15 kW-Heizpatrone aufgewärmt.

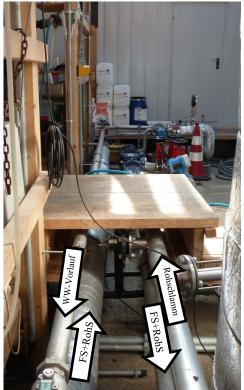


Abbildung 47: Wärmetauscher in Faulschlamm-Umwälzleitung (Aufnahmedatum: 11.03.2014)

Die Entnahme des aufzuwärmenden Faulschlammes, der dem Heizkreislauf zugeführt wurde, konnte beim Faulbehälter unten oder mittig erfolgen. Der aufgewärmte Schlamm konnte in den Faulbehälter unten, mittig, oder über der Wasserlinie des Faulschlammes aufgegeben werden.

Der Faulbehälter verfügte über einen Doppelmembrangasspeicher. Das im Faulbehälter produzierte Faulgas stieg auf und wurde in einer Gasblase, die durch eine Kunststoffmembran begrenzt wurde, gesammelt. Durch eine zweite Membran, die

darüber angeordnet war, entsteht dazwischen ein Luftraum, der von einem Stützluftgebläse gefüllt und auf einem bestimmten Druck (etwa 15 bis 25 mbar) gehalten wurde. Überschüssige Luft entwich über eine Öffnung. Der auf diese Weise erzeugte Vordruck des Faulgases war ausreichend, um das BHKW zu betreiben.

Abbildung 48: Versuchsanlage, Außenansicht (Aufnahmedatum: 17.04.2013)

Abbildung 49: Versuchsanlage, Außenansicht: Faulbehälter und BHKW (Aufnahmedatum: 17.04.2013)

Mittels BHKW wurde das erzeugte Gas verbrannt und daraus elektrische Energie und Wärme produziert. Der Strom wurde in das Netz der ebswien eingespeist. Die Abwärme wurde für das Heizsystem der Versuchsanlage (Faulung und Trübwasserbehandlung) genutzt, überschüssige Wärme wurde mittels Notkühler an die Umgebung abgegeben.

5.1.2 Komponenten der Pilotanlage

In diesem Kapitel werden die wesentlichsten Komponenten der Pilotanlage, soweit dies für das Prozessverständnis notwendig ist, beschrieben.

Pumpen und Rührwerke

Die Versuchsanlage verfügte über zahlreiche Pumpen und Rührwerke, die über das Prozessleitsystem geschaltet werden konnten. Ausgenommen waren hierbei Pumpen, die der Schlammeindickung (kurz: MÜSE, maschinelle Überschussschlammeindickung) und dem BHKW zugeordnet waren.

MÜSE (Maschinelle Überschussschlammeindickung)

Zur Eindickung des Rohschlammes verfügte die Versuchsanlage über eine MÜSE (Seihband) inkl. Polymeraufbereitungsanlage von der Fa. W+AT GmbH in kompakter Container-Bauweise.

Abbildung 50: MÜSE (Maschinelle Überschussschlammeindickung); links: Außenansicht des Containers; rechts: Innenansicht Seihtisch und Schaltschrank)

Abbildung 51: Polymeraufbereitungsanlage der MÜSE; links: Blick vom Seihband zur Container-Doppeltüre; rechts: Blick von außen in den Container

Das flüssige Polymerkonzentrat wurde in den Ansatzbehälter der Polymeraufbereitungsanlage gepumpt, dort mit (Brauch-)Wasser versetzt und aufgerührt. Durch Verdrängung floss dieses in den Reife- und anschließend in den Dosierbehälter. Von hier wurde die Polymerlösung (0,15 % WS) zur Mischung mit dem Rohschlamm entnommen und zur Dünnschlammleitung gepumpt.

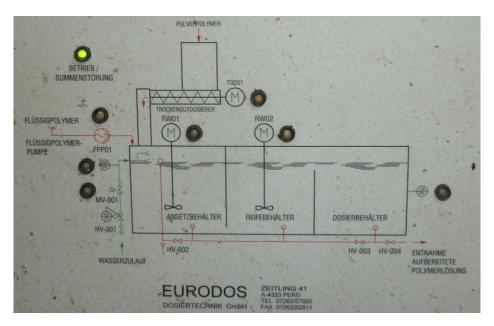


Abbildung 52: Schema der Polymeraufbereitungsanlage

Der Rohschlamm wurde per Anforderung der MÜSE mittels einer der beiden Kellerpumpen zum MÜSE-Container gepumpt. In einem Injektor erfolgte die Mischung des angesetzten Polymers mit dem Rohschlamm. Die Mischung gelangte über ein aufsteigendes Rohr in den Verteilkasten und schließlich auf das Seihband. Dieses lief über Rollen im Kreis und transportiert den Schlamm Richtung Dickstofftrichter. Der Schlamm wurde mittels Keilen und Spoiler umgelenkt und umgeschichtet. Während des Transportes tropfte frei gewordenes Schlammwasser nach unten durch das mit Löchern versehene Seihband ab. Damit das Band laufend von Verunreinigungen gereinigt wurde, erfolgte die Reinigung mit Spritzdüsen. Das hierfür erforderliche Waschwasser wurde einerseits das Schlammwasser andererseits und Brauchwasser zur Verfügung gestellt. Das Waschwasser wurde aus dem Trog unter dem Seihband mittels Waschwasserpumpe angesaugt und zu den Düsen gepumpt. Der eingedickte Schlamm fiel am Ende des Seihbandes in den Dickstofftrichter. Eine Exzenterschneckenpumpe förderte den Schlamm zu den Vorlagebehältern. Das Ein-, Ausschalten und Regeln des zugehörigen Frequenzumrichters erfolgte mittels druckaufnehmender Niveaumessung.

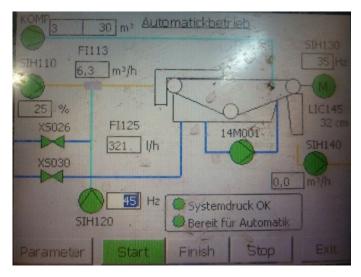


Abbildung 53: Eingabe- und Status-Display der MÜSE

Vorlagebehälter

Die beiden Vorlagebehälter waren aus PE gefertigt und dienten dazu, Schlamm, der in die Faulung eingebracht werden soll, zwischenzeitlich zu speichern. Das nutzbare Volumen von einem Behälter betrug ca. 10,8 m³. Damit die Geruchsemission minimiert wurde, waren beide Behälter abgedeckt. Mittels händisch zu manipulierendem Deckel erreichte man den Innenraum.

Die Behälter konnten mit eingedicktem Schlamm der MÜSE bzw. statisch eingedicktem Rohschlamm gefüllt werden. Wurde Schlamm zum Faulbehälter gepumpt, konnte wahlweise einer der beiden Behälter oder beide gleichzeitig dafür verwendet werden. Die Einstellung erfolgt händisch mittels Kugelschieber.

Jeder Behälter verfügte über ein Paddel-Rührwerk und war mit einer Niveausonde ausgestattet.

Das Konzept der Umwälzung basierte einerseits auf dem Paddelwerk, andererseits auf einer außenliegenden Umwälzpumpe. Die Umwälzung jedes Behälters ist wichtig, da die Beprobung über Stichproben erfolgte. Die Analyseergebnisse einer solchen Stichprobe wurden dem Schlamm im Behälter zugeordnet und damit der Charge an Schlamm, die in die Faulung gepumpt wurde. Dies ging in die Bilanzierung ein, sodass die Durchmischung des Behälters vor der Beprobung notwendig war, um eine repräsentative Stichprobe zu erhalten.

Schlammeinmischung und Heizsystem

Der Rohschlamm wurde in die Faulschlamm-Umwälzleitung des Heizsystems eingebracht. Die Einbringung des Rohschlammes erfolgt in der Regel getaktet, sodass für einige Minuten (etwa 5 Minuten) gepumpt und anschließend pausiert

(etwa 5 bis 10 Minuten) wurde. Während der Zeit der Beschickung ergabt sich ein Mischungsverhältnis Rohschlamm zu Faulschlamm, das von der Förderleistung der Rohschlamm-Beschickungspumpe und der Umwälzpumpe des Heizkreislaufes abhängig war (üblicher Bereich $Q_{Rohs}/Q_{FS} = 1:20$ bis 1:35).

Der Schlamm durchfloss einen Rohrwärmetauscher, der im Gegenstrom betrieben wurde. Das hierfür erforderliche Heißwasser wurde durch das BHKW bereitgestellt. War dieses nicht in Betrieb, konnte ein elektrischer Heizstab (sog. Heizpatrone) mit 15 kW diese Aufgabe übernehmen.

Erfolgte die Heißwasserbereitung mittels BHKW, wurde die maximale Temperatur durch den Wasser-Kühlkreislauf im BHKW vorgegeben und lag bei max. 74 °C, wobei aufgrund von Wärmeverlusten etwa max. 71,5 °C bei der Versuchsanlage ankamen. War das BHKW außer Betrieb, erfolgt die Wärmebereitstellung mittels Heizstab, der sich bei Unterschreiten der Wassertemperatur von 70 °C einschaltete.

Die Aufheizung des Schlammes erfolgt aufgrund von 2 Regelparametern:

- Temperatur Schlamm, Ablauf des Wärmetauschers (üblicherweise: 38 bis 39,5 °C)
- Temperatur Wasser, Ablauf des Wärmetauschers (üblicherweise: 70 bis 74 °C)

Diese Paramater waren im Prozessleitsystem vorzugeben (siehe Abbildung 59, S. 73). War eine der beiden Regelgrößen (y_i) größer als die zugehörigen Führungsgrößen (w_i), wurde der Volumenstrom durch schrittweises Schließen des 3-Wege-Mischventils (u) des Heizkreislaufes reduziert. Lagen beide Temperaturen (y_i) unter den vorgegebenen Werten, öffnete das Ventil (u). Die Abfrage der Temperaturen erfolgte vom System alle 30 Sekunden, woraufhin eine Entscheidung über das Öffnen oder Schließen erfolgt.

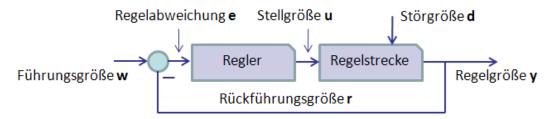


Abbildung 54: Allgemeine Begriffsdefinitionen einer Regelstrecke (ÖWAV-Messtechnikkurs, 2014)

Faulbehälter

Der Faulbehälter (Fa. AAT) hatte ein nutzbares Reaktorvolumen von etwa 130 m³ und verfügte über einen Gas-Doppelmembranspeicher von nominal 60 m³. Der

Innendurchmesser betrug 6,0 m. Die Wandkonstruktion bestand aus Email-Platten, die außenliegend isoliert und mittels Trapezblech verkleidet waren.

Schlamm gelangte wahlweise unten (+1,22 m über Bodenplatte), Mitte (+2,90 m über Bodenplatte) bzw. oben (+5,00 m über Bodenplatte; Anm.: über Wasserspiegel) in den Behälter. Die Entnahme für die Umwälzung erfolgte entweder unten (+0,35 m über Bodenplatte) oder in der Mitte (+2,90 m über Bodenplatte). Faulschlamm floss mittels Verdrängungseffekt über den Überlaufkasten aus dem Behälter. Die hydraulische Trennung des Behälterinhalts und außen (Atmosphäre) erfolgte im Überlaufkasten durch ein vertikales Trennblech, dessen Überlaufkante auf einer Höhe von +4,83 m lag.

Abbildung 55: Faulbehälter; links: Entnahme und Überlaufkasten; rechts: Zulauf, Gasleitung (Aufnahmedatum: 11.03.2014)

Abbildung 56: Faulbehälter; links: rückwärtige Ansicht mit Abluftschlauch der Stützluft; rechts: Über-/Unterdrucksicherung und Stützluftgebläse (Aufnahmedatum: 11.03.2014)

Die Mischung des Faulschlammes im Behälter erfolgte durch das entstehende Gas, die Umwälzung des Faulschlammes durch die Pumpe des Heizkreislaufes (Exzenterschneckenpumpe, ca. 21,5 m³/h) und evtl. noch durch eine außenliegende Umwälzung (Kreiselpumpe, ca. 150 bis 180 m³/h).

Das unter geringem Druck stehende Gas gelangte mittels Gasleistung, die an der Behälterwand ansetzt (+5,7 m), zum BHKW.

Im Falle von starken Druckschwankungen im Gasspeicher des Faulbehälters wurden diese durch die Über-/Unterdrucksicherung ausgeglichen.

BHKW (Blockheizkraftwerk)

Das BHKW der Fa. IET hatte eine maximale elektrische Leistung von 35 kW und war in Container-Bauweise ausgeführt. Das Faulgas gelangte über eine Rohrleitung in den Container, passierte einen Kiestopf, wo Kondenswasser abgeschieden wurde und gelangte nach der mechanischen und elektronischen Gasmengenzählung zum Motor. Der erzeugte elektrische Strom wurde in das Stromnetz der HKA-Wien eingespeist. Die Abwärme wurde mittels Wärmetauscher an den Heißwasserkreislauf abgegeben, der zur Beheizung des Faulbehälters und der Trübwasserbehandlung genutzt wurde. Überschüssige Wärme wurde über einen sich am Dach der Anlage befindenden Tischkühler abgeführt. Bei einer Störung des BHKWs wurde Gas mit eine Fackel, die am Dach des Containers positioniert war, verbrannt.

Abbildung 57: Blockheizkraftwerk (BHKW) der Versuchsanlage; Blick vom Faulbehälter (Aufnahmedatum: 11.03.2014)

Abbildung 58: BHKW: Innenansicht; links: Blick in den Container; rechts: Blick aus dem Container (Aufnahmedatum: 11.03.2014)

5.1.3 Prozessleitsystem und Datenbank

Die Versuchsanlage verfügte über ein Prozessleitsystem, in das sämtliche Aggregate und Sonden der Anlage eingebunden waren. Die Programmierung erfolgte durch die Fa. IAS. Ausnahme hierbei bildete die maschinelle Schlammeindickung und das BHKW, welche lediglich die Zustände "in Betrieb", "außer Betrieb" und "Störung" an das Prozessleitsystem weitergeben konnten.

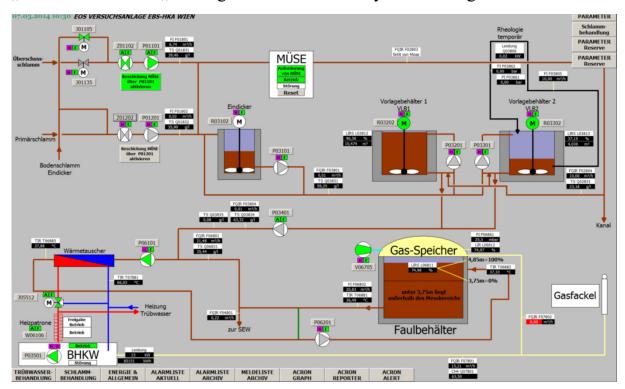


Abbildung 59: Screenshot der Visualisierung der Bedienstation des Prozessleitsystems; Hauptbildschirm Schlammbehandlung

Das Prozessleitsystem verfügte über eine Visualisierung, welche alle Anlagenteile, die aktuellen Messwerte der Sonden und den Zustand der Aggregate (Pumpen, Rührwerke, Schieber) darstellte (EIN/AUS/STÖRUNG, AUF/ZU/STÖRUNG) (Abbildung 59).

Die Anlage wurde grundsätzlich über ein Terminal (PC), welches im Büro-Container der Versuchsanlage untergebracht war, bedient. Mittels VPN-Verbindung war es möglich, über den Server der ebswien auf das System zuzugreifen.

Die von den auf der Versuchsanlage eingebauten Sonden gemessenen Parameter wurden an eine Datenbank der HKA-Wien weitergeleitet und dort abgespeichert. Generell wurden die Werte alle 30 Sekunden abgespeichert. Die Visualisierung und das Auslesen der Daten erfolgte mit dem EDV-Programm ACRON.

5.1.4 Analysedaten der Pilotanlage

Die Proben der jeweiligen Schlämme wurden stets als Stichproben entnommen. Häufigkeit und Umfang sind den nachfolgenden Tabellen (Tabelle 13 und

Tabelle 14) zu entnehmen.

Tabelle 13: Probe- und Analyseplan: Vorlagebehälter 1 und 2

	TS	oTS	CSB	N-ges	P-ges
Mo-So	jede Charge (= gefüllter VLB)			-	
Freitag	-				X

Tabelle 14: Probe- und Analyseplan: Faulbehälter

	pН	TS	oTS	NH ₄ -N	PO ₄ -P	N-ges	P-ges	CSB	Säuren
Montag	X	X	X	X	X	X	X	X	X
Dienstag	-	-	-	-	-	-	-	-	-
Mittwoch	X	X	X	-	-	-	-	-	
Donnerstag	-	-	-	-	-	-	-	-	-
Freitag	X	X	X	-	-	-	1	1	-
Samstag	-	-	-	-	-	-	-	-	-
Sonntag	-	-	-	-	-	-	-	-	-

5.2 Rheologische Versuche

Die rheologischen Versuche im Labor wurden durchgeführt, um Kennwerte mit einer genormten Messeinrichtung zu ermitteln. In Feldversuchen wurden die Ergebnisse verifiziert.

5.2.1 Laborversuche

Die Rheometrie beschäftigt sich mit der Messung der Fließeigenschaften von Stoffen. Je nach Anwendungsbereich werden unterschiedliche Messsysteme eingesetzt. Für nicht-Newtonsche Flüssigkeiten eignen sich Rotationsviskosimeter und Rotationsrheometer (Moshage, 2004).

Ein Rotationsviskosimeter ist ein Messgerät, in dem eine Substanz zwischen einer rotierenden und einer feststehenden Wandung geschert wird. Die Spaltweite zwischen dem rotierenden und dem feststehendem Messkörper sowie die Drehzahl des rotierenden Körpers beeinflussen die Scherrate $\dot{\gamma}$ der Probe. Fließ- bzw. Viskositätsfunktionen können ermittelt werden, indem bei Vorgabe einer definierten Scherrate die resultierende Schubspannung τ bestimmt wird. Bei modernen Rotationsviskosimetern kann die Scherrate über eine elektrische Regelung der Motordrehzahl eingestellt werden (Moshage, 2004).

Mit einem **Rotationsrheometer** kann zusätzlich bei einer definierten Schubspannung die zugehörige Scherrate bestimmt werden.

Die rheologischen Parameter der in dieser Arbeit beschriebenen Schlämme wurden mittels Rotationsrheometer gemessen.

Als Messsystem wurde dabei ein nach DIN 53019-1 (2008) genormtes **koaxiales Zylindermesssystem** verwendet, das von Moshage (2004) als geeignet für die rheologischen Untersuchungen von Klärschlämmen erachtet wird.

Ein solches Messgerät besteht aus einem inneren und einem äußeren Zylinder mit identischer Rotationsachse. In den äußeren Zylinder wird die Messprobe gefüllt.

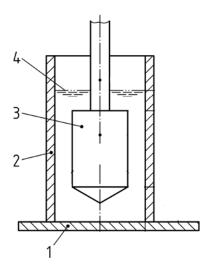


Abbildung 60: Koaxiales Zylindermesssystem; 1: Boden Außenzylinder, 2: Außenzylinder, 3: Innenzylinder, 4: Füllhöhe der Messprobe; Abbildung übernommen aus DIN 53019-1 (2008)

Bei dem Gerät, das zum Einsatz kam, handelt es sich um das luftgelagerte Rheometer Physica MCR 301 der Firma Anton Paar (Abbildung 61). Als primäres Messsystem wurde das durch DIN 53019-1 (2008) genormte koaxiale Zylindermesssystem CC39 mit einer Spaltweite von 1,638 mm verwendet. Der äußere Zylinder rotiert, während der innere in Ruhe verbleibt (Searle-System). Die Probe wurde während des Versuchs temperiert.

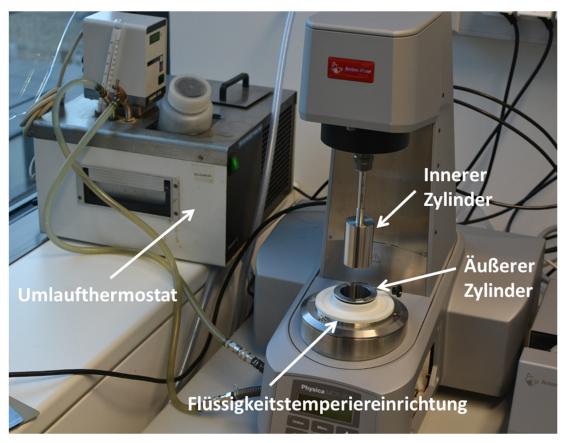


Abbildung 61: Versuchsaufbau Rotationsrheometer; Innerer- und äußerer Zylinder des koaxialen Zylindermesssystems CC39, Flüssigkeitstemperiereinrichtung und Umlaufthermostat (Füreder, 2014)

Damit die Ergebnisse der verschiedenen Schlämme untereinander vergleichbar sind, wurde stets das gleiche Messprogramm absolviert: 500-180/300/180

mit:	500	maximale Scherrate $\dot{\gamma}$ des Messprogramms	$[s^{-1}]$
	180	Dauer der Aufwärtsrampe	[s]
	300	Dauer der konstanten Scherrate	[s]
	180	Dauer der Abwärtsrampe	[s]

Ein Beispiel für das Ergebnis eines Rheometer-Versuches ist in Abbildung 62 dargestellt. Die Aufwärtsrampe zeigt die Fließkurve eines unbeanspruchten Faulschlammes, die Abwärtsrampe stellt sich bei Reduzierung der Scherrate ein, nachdem für einige Zeit die Beanspruchung am Maximum gehalten wurde (hier

300 Sekunden). Der Unterschied erklärt sich aus dem thixotrope Verhalten von Faulschlamm (vgl. Abbildung 33, S.49).

Sowohl die Aufwärts-, als auch die Abwärtsrampe wurden mittels Ausgleichsfunktion nach Ostwald-de Waele approximiert, sodass man die Koeffizienten n und K erhält, die für weitere hydraulische Berechnungen herangezogen werden können.

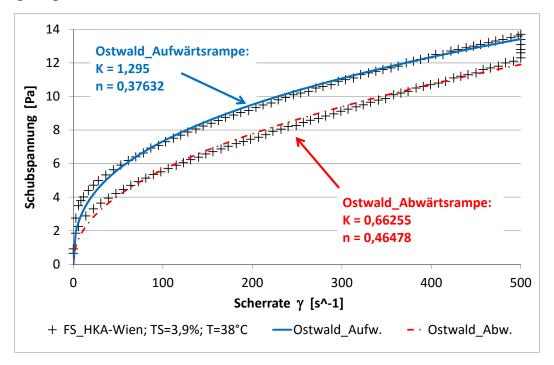


Abbildung 62: Fließkurve Faulschlamm Pilotanlage HKA-Wien – TS = 3,9 %; *T* = 38 °C; Messprogramm: 500-180/300/180; Anpassungsfunktion Ostwald-de Wale an Aufwärts- und Abwärtsrampe (Füreder, 2014)

Um die Praxistauglichkeit dieser Ergebnisse zu verifizieren, wurden diese mittels Feldversuchen überprüft (Kapitel 5.2.2).

5.2.2 Feldversuche: Messgerät und Messsystem

Die Validierung der Verlusthöhenberechnung erfolgte über Differenzdruckmessung im Feldversuch. Dies wurde im Zuge des Projekts EOS auf der HKA-Wien realisiert (Abbildung 63). Die Versuchseinrichtung bestand aus einem Behälter (~5 m³), in dem der zu untersuchende Schlamm vorgelegt wurde, einer Exzenterschneckenpumpe, einem IDM und zwei Drucksonden, um den Differenzdruck zu bestimmen. Die Rohrstrecke wurde zwischen den beiden Drucksonden kreisrund ausgelegt, sodass diese weitgehend einer geraden Rohrstecke entsprach und Verluste aufgrund Rohrkrümmung vernachlässigt werden konnten (Abbildung 64). Schlämme verschiedener Qualitäten (Faulschlamm, maschinell eingedickter Rohschlamm mit unterschiedlicher TS) wurden durch die

Versuchsstrecke gepumpt, die Durchsatzleistung variiert, sodass zu verschiedenen Fließgeschwindigkeiten der zugehörige Druckverlust aufgenommen wurde.

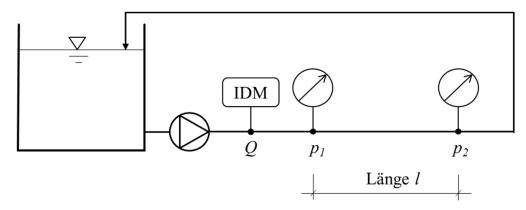


Abbildung 63: Schema der rheologischen Versuchsstrecke

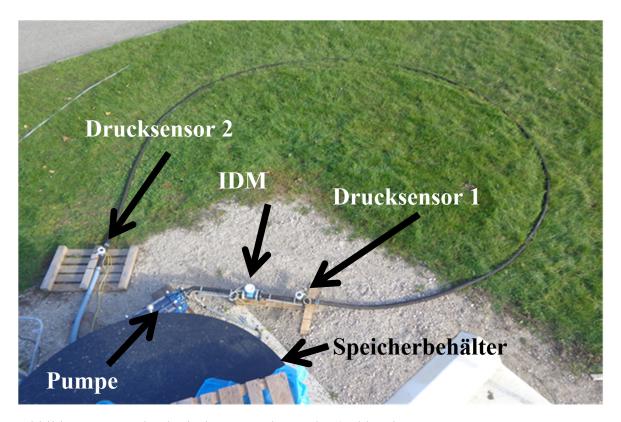


Abbildung 64: Rheologische Versuchsstrecke (Schlauch: TORONTO HED; D = 50 mm; l in Abbildung = 20 m; 2 Drucksensoren, IDM 50 mm; Exzenterschneckenpumpe, Speicherbehälter 5 m³) (Füreder, 2014)

5.3 Auswertungsmethoden

5.3.1 Massebilanzen

Massebilanzen werden auf Grundlage der Erhaltungssätze für Masse und Energie gebildet. In einem definierten System, das zeitliche und örtliche Grenzen hat, können diese zwar transformiert, jedoch nicht vernichtet werden.

Im Bereich der Abwassertechnik ist diese Methode sehr gut dafür geeignet, um

- Daten auf Plausibilität zu überprüfen,
- Erkenntnisse über Umsetzungsprozesse zu gewinnen sowie um
- Stoffströme abzuschätzen, die messtechnisch nicht erfasst wurden (Wandl, 2005).

Für die Methodik der Bilanzierung gibt es zahlreiche Literaturstellen (z. B. IWAG, 1999; Nowak, 2000; Schweighofer, 1994; Svardal et al., 1998). In weiterer Folge werden hier knapp die Grundlagen erklärt und auf die spezifische Vorgehensweise der Auswertung eingegangen.

Eine Bilanz stellt die Summe aller Abflüsse (Output), inkl. Berücksichtigung der Lageränderung im System, den Zuflüssen (Input) gegenüber (Gleichung (5-1)). Ist die Bilanz geschlossen, so beträgt das Ergebnis 1 bzw. 100 %. Ist das Ergebnis größer als 1 bzw. 100 %, ist die Summe aus Output plus Lageränderung größer als der Input. Bei einem Ergebnis kleiner als 1 bzw. 100 %, ist dies umgekehrt.

$$Bilanz = \frac{Output + Lageränderung}{Input}$$
 (5-1)

Die Systematik zur Bilanzierung einer Schlammfaulung ist in Abbildung 65 dargestellt.

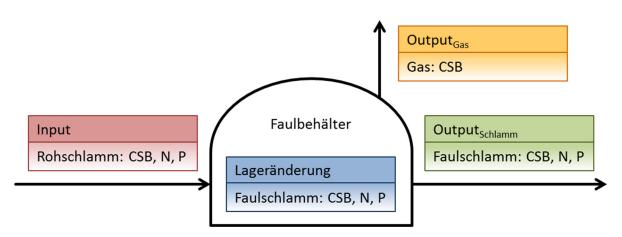


Abbildung 65: Schema für die Bilanzierung einer Faulung

Da N und P im untersuchten System nicht gasförmig vorliegen, erfolgt deren Auswertung ausschließlich über den Zu- und Ablauf des Schlammes. Beim CSB muss darüber hinaus das die Anlage verlassende Gas berücksichtigt werden. Die Berechnung erfolgt ausschließlich mit Frachten, wie in Gleichung (5-2) dargestellt. Soll der Bilanzzeitraum beispielsweise 28 Tage betragen, ergibt sich Gleichung (5-3).

$$Bilanz = \frac{\sum_{i=1}^{k} Output_{Gas} + \sum_{i=1}^{k} Output_{FS} + (c_k - c_i) \cdot V_{FB}}{\sum_{i=1}^{k} Input_{RohS}}$$
(5-2)

Für die laufende Kontrolle der Betriebsparameter der Pilotanlage wurden anstatt einzelner statischer Werte über einen definierten Zeitraum gleitende Mittelwerte errechnet. Vor allem durch die Visualisierung dieser Werte bietet dies den Vorteil, dass Änderungen deutlich ersichtlich sind, was auf instationäre Betriebsverhältnisse hindeutet. Beispielhaft ist die allgemeine Berechnung des gleitenden Mittels für die oTS-Reduktion mit Berücksichtigung der Lageränderung in Gleichung (5-4) und im speziellen für einen 7-tägigen Zeitraum (Gleichung (5-5)) dargestellt.

$$\Delta \text{oTS} = \left(1 - \frac{\sum_{i=1}^{k} \text{oTS}_{FS} + (c_{oTS,FS,k} - c_{oTS,FS,i}) \cdot V_{FB}}{\sum_{i=1}^{k} \text{oTS}_{RohS}}\right) \cdot 100 \text{ [\%]}$$
(5-4)

$$\Delta \text{oTS} = \left(1 - \frac{\sum_{1}^{7} \text{oTS}_{FS} + (c_{oTS,FS,7} - c_{oTS,FS,I}) \cdot V_{FB}}{\sum_{1}^{7} \text{oTS}_{RohS}}\right) \cdot 100 \, [\%]$$
(5-5)

mit:
$$\Delta$$
oTS Reduktion an oTS [%]

Anstatt Summen der täglichen Frachten zu bilden, kann die Berechnung alternativ mit Mittelwerten der jeweiligen Zeiträume durchgeführt werden. Dies bietet den Vorteil, dass die Auswertung weniger fehleranfällig wird, da die Zahlen, mit denen gerechnet wird, geläufiger sind. Beispielweise ist eine durchschnittliche Beschickung von 540 kg CSB/d über einen Zeitraum von 28 Tagen besser vorstellbar als die Gesamtmenge von 15.120 kg CSB (= 540 ·28). Hier am Beispiel der CSB-Reduktion dargestellt.

$$\overline{\text{F-CSB}_{\text{Input}}}|_{(i=1,...,k)} = \frac{\sum_{i=1}^{k} \text{F-CSB}_{\text{Input}}}{k}$$
(5-6)

mit: \overline{F} - $\overline{CSB}|_{(i=1,...,k)}$ Mittelwert der täglichen CSB-Inputfracht über den Zeitraum von Tag i bis Tag k [kg/d]

$$\Delta CSB = \left(1 - \frac{\overline{F - CSB_{Output}}|_{(i=1,\dots,k)} \cdot (k-i+1) + \left(c_{CSB,FS,k} - c_{CSB,FS,i}\right) \cdot V_{FB}}{\overline{F - CSB_{Input}}|_{(i=1,\dots,k)} \cdot (k-i+1)}\right) \cdot 100$$

$$(5-7)$$

bzw.

$$\Delta \text{CSB} = \left(1 - \frac{\overline{\text{F-CSB}_{\text{Output}}}|_{(i=1,\dots,k)} \cdot (\Delta t+1) + \left(c_{CSB,FS,k} - c_{CSB,FS,i}\right) \cdot V_{FB}}{\overline{\text{F-CSB}_{\text{Input}}}|_{(i=1,\dots,k)} \cdot (\Delta t+1)}\right) \cdot 100$$
(5-8)

mit: Δ CSB prozentuelle Reduktion des CSB

> im Schlamm [%]

 $\overline{\text{F-CSB}}|_{(i=1,\ldots,k)}$ Mittelwert der CSB-Fracht des

> Zeitraums *i* bis *k* [kg/d]

erster Tag des Betrachtungszeitraumes i [-] k

letzter Tag des Betrachtungszeitraumes [-]

Zeitdifferenz zwischen letztem und Δt

erstem Tag des Betrachtungszeitraumes [d]

Berechnung des CSB-Abbaus gemäß Gleichung (5-8) Beispiel:

 \overline{F} - \overline{CSB}_{RohS} mittlere CSB-Fracht, Input Angabe: 540 kg/d $\overline{\text{F-CSB}}_{\text{FS}}$ mittlere CSB-Fracht, Output 221 kg/dErster Tag 14.04.2013 30.06.2013 Letzter Tag kDifferenz der Tage 77 Tage CSB-Konzentration, erster Tag c_{CSB,FS,i} $43,256 \text{ kg/m}^3$ CSB-Konzentration, letzter Tag CCSB,FS,k $40,306 \text{ kg/m}^3$ V_{FR} 130 m³

Volumen des Faulbehälters

Lösung:

$$\Delta CSB = \left(1 - \frac{221 \cdot (77 + 1) + (40,306 - 43,576) \cdot 130}{540 \cdot (77 + 1)}\right) = 60,1 \%$$
 (5-9)

Je länger der Bilanzierungszeitraum, desto geringer wird der Einfluss der Lageränderung, also der Konzentrationsänderung im Faulbehälter.

Sollen Betriebswerte, wie z. B. die spezifische Gasproduktion, mitlaufend dargestellt werden, werden bei der Methode der gleitenden Mittelwerte kurzfristige Schwankungen eliminiert, was vorteilhaft sein kann. Dies wird nachfolgend am Beispiel erklärt:

Nach der Aufgabe von Rohschlamm in den Faulbehälter kommt es zur Hydrolyse und Versäuerung, anschließend zur Gasproduktion. Vom Zeitpunkt der Beschickung bis zur Gasproduktion und weiter zur Nutzung und damit zur mengenmäßigen Erfassung mittels Gasmessung beim BHKW, das in Abhängigkeit vom Füllstand des Gasspeichers betrieben wurde, gibt es einen Zeitversatz. So kann es passieren, dass an einem Tag beschickt wird, die zugehörige Gasproduktion und/oder deren Erfassung erst am nächsten Tag erfolgt. Bei der Betrachtung von mehrtägigen Mittelwerten wird dieser Umstand ausgeglichen. Wichtig ist die geeignete Wahl für die Länge des Betrachtungszeitraumes.

Die Erfassung der Beschickungsmengen erfolgte mittels Behältermessung. Das Schlammniveau im jeweiligen Vorlagebehälter wurde vor und am Ende der Beschickung erfasst und mittels Faktor in ein Volumen umgerechnet. Die Beschickung aus einem VLB begann und endete während eines Arbeitstages und nicht um Mitternacht, wohingegen die Erfassung der vom BHKW verbrannten Gasmenge jeweils auf einen Kalendertag bezogen war. Deshalb ist es nicht sinnvoll, die zugeführte und abgeführte CSB-Facht auf Tagesbasis zu vergleichen. Bei der Betrachtung der Wochenmittel ist dies unbedeutend. Beschickte Schlammmengen werden jeweils dem Tag zugeordnet, an dem die Beschickung endet. Beispielsweise wird die beschickte Schlammmenge von Montag auf Dienstag dem Dienstag zugeordnet. Bei einer Beschickung über mehrere Tage, wie z. B. an Wochenenden, wird die Schlammmenge gleichmäßig auf die Tage, an denen beschickt wurde, aufgeteilt. Beispielsweise wird der Schlamm, welcher von Freitag bis Montag beschickt wurde, durch die Anzahl der Tage dividiert (hier: 3) und den jeweils folgenden Tagen zugeordnet, also Samstag, Sonntag und Montag.

Faulschlamm konnte dem Teilsystem Faulbehälter der Pilotanlage entweder über den Ablauf beim Überlaufkasten, durch Entnahme zur Schlammentwässerung oder über einen i.d.R. verschlossenen Auslass in der Umwälzleitung verlassen. Für eine Bilanzierung der Mengen in und aus dem Faulbehälter müssten an mehreren Orten Mengenmessungen angebracht werden, wodurch die möglichen Fehlerquellen steigen. Bei der Schlammfaulung wird der TS-Gehalt des aufgegebenen Rohschlammes reduziert, das Volumen bleibt allerdings nahezu gleich. Daher wurde auf ablaufseitige Mengenmessungen der Faulung verzichtet

(5-11)

und vorausgesetzt, dass die Menge des aus der Faulung abfließenden Schlammes gleich der aufgegebenen Menge ist.

Auf Instationaritäten im Betrieb, die das Niveau und damit Reaktionsvolumen beeinflussen, wurde in der Auswertung nicht eingegangen, da diese eine untergeordnete Rolle spielen. Änderungen waren in der Regel klein und üblicherweise von kurzer Dauer. Fehlender Schlamm wurde durch die Beschickung stets ergänzt. Das maximale Niveau stellte sich aufgrund des Überlaufs von selbst ein. Zu einer Absenkung des Füllstandes kam es z. B. Faulschlamm zur Entwässerung, Entnahme von Ablassen Zentrifugenversuche und Fehlbedienungen (z. B. Juni 2013). Eventuell auftretende Schwankungen (durch Schlammentwässerung) betrugen maximal 3 m³, was bei einem Reaktionsvolumen von 130 m³ etwa 2 % entspricht. Lediglich bei einzelnen Ereignissen kam es zu größeren Schwankungen, die bei etwa max. 9 m³, also 7 % lagen. Da diese Ereignisse auf die Bilanzierung und Schlussfolgerungen praktisch keinen Einfluss haben, wurde auf eine nähere Auswertung verzichtet. Das Faulraumvolumen wurde für die Berechnungen konstant mit 130 m³ angenommen.

Der CSB des Gases, der die Faulung verlässt, wurde aus den Parametern errechnet, welche von der Gasmessung beim BHKW ermittelt wurden.

$$F_{CSB} = V_{Gas,d} \cdot \frac{c_{CH_4}}{100} / 0,35$$
 mit: F_{CSB} CSB-Fracht [kg/d]
$$V_{Gas,d}$$
 Gasvolumen eines Tages (inkl. Korrekturen für entwichenes und über die Fackel verbranntes Gas) [m³/d]
$$c_{CH_4}$$
 Konzentration an Methan im Faulgas [%] 0,35 Umrechnungsfaktor von m³ CH₄ auf kg CSB [kg CSB/m³ CH₄]

Beispielsweise ergibt sich für eine gemessene Tagesmenge an Gas von 231 Nm³, bei einem Methangehalt von 64 % eine CSB-Fracht von 422 kg CSB/d.

 $F_{CSB} = 231 \cdot \frac{64}{100 \cdot 0.35} = 422 \text{ kg CSB/d}$

Die Ermittlung der Gasmenge erfolgte mittels Ultraschallmessung, wobei hier lediglich die vom BHKW verbrannte Menge erfasst wurde. Gas, welches über

die Über- oder Unterdrucksicherung entwich, konnte weder erfasst, noch sinnvoll abgeschätzt werden. Ein solches Ereignis verursacht eine Unsicherheit der Daten, sodass eine Bilanzierung über einen solchen Zeitraum grundsätzlich fehlerbehaftet ist. Mit der Fackel verbranntes Gas wurde nicht gemessen. Über die Dauer des Abfackelns, die aus den Daten des Leitsystems ausgelesen werden konnte, und die gemessene Gasmenge dieses Tages war es möglich, diese Gasmenge abzuschätzen.

Die Qualität des Gases (Methangehalt) wurde ebenfalls mit der Ultraschallmessung ermittelt. Nach dem Abschalten des BHKWs kam es vor allem während der heißen Jahreszeit dazu, dass der gemessene Methangehalt sprunghaft anstieg, was wahrscheinlich durch die Aufwärmung der Messstrecke durch die Umgebung, vor allem durch die Abstrahlung des heißen Motors bedingt war. Da diese offensichtlich zu hohen Messwerte den Tagesmittelwert des Methangehaltes erhöhten, wurde eine alternative Ermittlung eines tagesrepräsentativen Methangehaltes erarbeitet, der für die Berechnung der CSB-Fracht im Gas herangezogen werden konnte. Hierfür wurden die Prozesswerte (alle 30 Sekunden) der Messung herangezogen. Nur jene Werte, bei denen das BHKW lief, wurden berücksichtigt, da es aufgrund des Gasdurchsatzes zu einer Kühlung der Messstrecke kam und die hier gemessenen Werte plausibel schienen. Anschließend wurde der Medianwert der plausiblen Messwerte eines Tages gebildet, der für die Auswertung herangezogen wurde.

Sind Daten als "1 Wo", "4 Wo" oder dergleichen dargestellt, handelt es sich um den gleitenden Mittelwert des jeweiligen Zeitraumes (z. B. 1 Woche, 4 Wochen) des entsprechenden Parameters. Insbesondere beim 4-Wochen-Mittel kann man von einem aussagekräftigen Bilanzzeitraum ausgehen. Voraussetzung hierfür ist, dass auch die für eine solche Aussage erforderlichen weiteren Rahmenbedingungen (z. B. Temperatur, Beschickung etc.) in diesem Zeitraum konstant waren.

5.3.2 Rechenwert: Schlammalter

Das Schlammalter ist die mittlere Aufenthaltszeit der Feststoffe in einem Bioreaktor. Da es bei einer Schlammfaulungsanlage üblicherweise keinen Feststoffrückhalt gibt, entspricht die hydraulische Aufenthaltszeit dem Schlammalter. Voraussetzung hierfür ist, dass die zufließende und abfließende Schlammenge gleich groß sind, es also keine bzw. vernachlässigbare Schwankungen des Reaktionsvolumens gibt.

$$t_{TS,FB} = \frac{M_{FS}}{M_{\ddot{U}S,FS,d}} = \frac{V_{FB} \cdot \mathrm{TS_{FS}}}{Q_{\ddot{U}S,FS,d}} = \frac{V_{FB}}{Q_{\ddot{U}S,FS,d}}$$
 (5-12) mit: $t_{TS,FB}$ Schlammalter im Faulbehälter [d] M_{FS} Masse der Feststoffe im Faulschlamm [kg] $M_{\ddot{U}S,FS,d}$ Masse der Feststoffe im Faulschlamm, die täglich abgezogen wird [kg/d] V_{FB} Reaktionsvolumen des Faulbehälters [m³] TS_{FS} Trockensubstanzkonzentration Faulschalmm $Q_{\ddot{U}S,FS,d}$ Menge an Faulschlamm, die täglich abgezogen wird [m³/d]

Diese Betrachtung ist stationär über einen bestimmten Zeitraum. Damit eine aussagekräftige Angabe des Schlammalters getroffen werden kann, muss ein längerer Zeitraum berücksichtigt werden, um betriebliche Schwankungen, insbesondere der Beschickung, zu berücksichtigen. Da sich der Zustand im Faulbehälter nicht nennenswert ändert, reicht für eine Bilanzierung unter Vernachlässigung der Konzentrationsänderung im Reaktor das doppelte Schlammalter.

Für die laufende Darstellung des Schlammalters wird das Schlammalter als gleitendes Mittel über verschiedene Zeiträume ermittelt. Auf diese Weise werden kurzfristige Schwankungen der Beschickung, die Auskunft darüber geben, ob stationäre Zustände vorliegen, erfasst. Mittel über längere Zeiträume stellen ein repräsentatives Schlammalter dar.

$$t_{TS,FB} = \frac{V_{FB}}{\left(\sum_{i=1}^{k} Q_{\ddot{U}S,FS,d}\right) / (k-i+1)}$$
(5-13)

bzw.

$$t_{TS,FB} = \frac{V_{FB}}{\left(\sum_{i=1}^{k} Q_{\ddot{U}S,FS,d}\right)/\Delta t}$$
(5-14)

mit:	V_{FB}	Reaktionsvolumen des Faulbehälters	$[m^3]$
	QÜS,FS, d	Menge an Faulschlamm, die täglich	
		abgezogen wird	$[m^3/d]$
	i	erster Tag des Betrachtungszeitraumes	[d]
	k	letzter Tag des Betrachtungszeitraumes	[d]
	Δt	Zeitdifferenz zwischen letztem und erstem Tag	[d]

6 Auswertungen: Versuche zur Schlammfaulung

Mittels Bilanzierung können Parameter wie CSB- und oTS-Reduktion für verschiedene Betriebszustände ermittelt werden. Eine Bilanzierung ist nur dann sinnvoll und aussagekräftig, wenn mehrere Voraussetzungen, die nachfolgend angeführt sind, erfüllt werden.

- Der *Bilanzzeitraum* muss *lang genug* sein, um unvermeidbare Ungenauigkeiten, die z. B. bei der Messung oder Analytik erfolgen, auszugleichen.
- Betriebsparameter sollen dabei möglichst unverändert bleiben (Temperatur; Beschickung: Menge, Intervall; Qualität des Substrats etc.), wobei dies v.a. bei einer Pilotanlage schwerer durchführbar ist als bei einer Laboranlage, da es mehr Fehlerquellen gibt (z. B. Ausfall einer Maschine, Abhängigkeit vom Betrieb der Abwasserreinigungsanlage etc.).
- Lageränderungen, wie z. B. die Änderung der TS in der Faulung, müssen berücksichtigt werden.
- Probenahme und Analyse der Proben müssen ausreichend oft erfolgen, sodass ausreichend viele Messdaten vorliegen.
- Die Qualität der Messerte muss gesichert sein.

Im Zuge des Projekts EOS wurde auf der Pilotanlage ein Versuchsprogramm durchgeführt, das in Tabelle 15 angeführt ist. Betriebsphasen, die im Zusammenhang mit möglichen Betriebsproblemen stehen, wurden nicht bilanziert. Ebenso wurden Phasen, in denen eine Umstellung der Biozönose aufgrund veränderter Betriebseinstellungen (z. B. Schlammalter) zu erwarten war, nicht berücksichtigt. Die Bilanzierung und Diskussion beschränkt sich daher auf die in Tabelle 15 grau hinterlegten Perioden.

Tabelle 15: Betriebsphasen der Pilotanlage; graue Bereiche: Bilanzierung und Diskussion durchgeführt

Phase	Datum	Dauer	Bezeichnung	TS_{FB}	t_{TS}	Temp.
-	-	d	-	%	d	°C
0.1	26.11.2012	126	Einfolamhaga	2,9	26,9	36,2
0.2	01.04.2013	42	Einfahrphase	4,1	24,5	37,6
1	13.05.2013	140	Standardbetrieb	4,1	24,4	37,9
2	30.09.2013	7	Schäumen	3,8	24,7	37,8
3	07.10.2013	7	max. Gasproduktion	3,9	24,1	38,0
4.1	14.10.2013	35	may Dalastuna	4,0	27,4	37,4
4.2	18.11.2013	63	max. Belastung	3,9	19,4	37,8
5.1	20.01.2014	7	Schäumen	3,8	19,0	37,7
6	27.01.2014	14	max. Gasproduktion	3,8	18,4	37,5
5.2	10.02.2014	7	Schäumen	4,0	21,6	37,7
7.1	17.02.2014	28	aahu haha Dalaatuu	4,1	18,8	37,3
7.2	17.03.2014	49	sehr hohe Belastung	4,4	16,5	37,6
8.1	05.05.2014	14	Grenzen der Anaerobie	4,5	11,2	37,1
8.2	19.05.2014	9	Grenzen der Anaerobie	4,4	23,0	41,2
-	28.05.2014		Einstellen des Vers	uchsbe	triebes	

6.1 Auswahl geeigneter Bilanzzeiträume mittels CUSUM-Methode

Für die Bilanzierung ist von Interesse, wie gut die Qualität der vorhandenen Daten ist. Zu diesem Zweck werden die Daten einer Qualitätskontrolle mit der CUSUM-Methode auf CSB-Basis unterzogen, womit geprüft wird, ob und wie weit diese Bilanz geschlossen ist.

Bei dieser Methode, die von (Spindler und Vanrolleghem, 2012) erarbeitet wurde, wird die Input- der Outputfracht gegenüber gestellt, die hydraulische Retentionszeit im Faulbehälter berücksichtigt, Differenzen gebildet und aus diesen die CUSUM-Kontrollkarte ermittelt (Abbildung 66).

Liegen die ermittelten Datenpunkte nahe dem Wert null, handelt es sich um einen Zeitraum, wo es keine oder kaum Abweichungen gibt, die Bilanz also geschlossen ist. Weichen die Werte von null ab, ist der Zeitraum für eine Auswertung weniger geeignet. Außerdem sind jene Zeiträume als geeignet einzustufen, in denen auf der CUSUM-Kontrollkarte ein Plateau gehalten wird (wie z. B. um den Tag 300, Abbildung 66). Auch ein sich der Nulllinie nähernder Verlauf ist als günstig zu bewerten, sofern es nicht gleichzeitig auf der anderen Seite der Nulllinie zu einer Entfernung von der Nulllinie kommt.

In Abbildung 66 ist die CUSUM-Auswertung der Pilotanlage inkl. Überlagerung mit den bilanzierten Versuchsphasen und den gewählten Bilanzzeiträumen, die in Tabelle 16 näher beschrieben werden, dargestellt.



Abbildung 66: Analyse des Bilanzfehlers CSB der Pilotanlage mittels CUSUM-Methode; links: Input, Output, Differenz; rechts: CUSUM-Kontrollkarte des Fehlervektors; x-Achse: 1 = 25.02.2013

Tabelle 16: erklärende Tabelle zu Abbildung 66

Tag Nr.	Datum	Versuchsphase		suchsphase	Aussagen zufolge CUSUM-Auswertung		
		Status	Nr.	Bezeichnung	Qualität der Daten	mittlerer Fehler CSB	mittlerer Fehler aTS
1	25.02.2013				Beginn der CUSUM- Auswertung		
78	13.05.2013	Beginn	1	Standardbetrieb			
90	25.05.2013	_			Beginn "sehr gute Daten"	2.0	0.0
218	30.09.2013	Ende	1	Standardbetrieb		2,0	0,0
226	08.10.2013				Ende "sehr gute Daten"		
267	18.11.2013	Beginn	4	max. Belastung		•	
280	01.12.2013				Beginn "gute Daten"	0.0	2.0
320	10.01.2014				Ende "gute Daten"	0,0	-2,0
330	20.01.2014	Ende	4	max. Belastung	·		
358	17.02.2014	Beginn	7	sehr hohe Belastung	-	-11,0	-1,0
435	05.05.2014	Ende	7	sehr hohe Belastung	_	-11,0	-1,0
435	05.05.2014	Beginn	8	Grenzen der Anaerobie		-8,0	-4,0
453	23.05.2014	Ende	8	Grenzen der Anaerobie		-0,0	-4,0

Angestrebte Ziele der bilanzierten Versuchsphasen

In den Versuchsphasen 1, 4 und 7 sollten Betriebsparameter (z. B. CSB-, oTS-Abbau) bei unterschiedlichem Schlammalter ermittelt werden. Die Temperatur sollte dabei unverändert stets 38,0 °C betragen. Als Substrat dient jeweils maschinell eingedickter Rohschlamm, eine Mischung aus Primär- und Überschussschlamm.

Charakteristika der bilanzierten Versuchsphasen

In Versuchsphase 1 war das angestrebte Schlammalter 25 Tage, tatsächlich wurden 24,4 Tage ermittelt, die Temperatur betrug im Mittel 37,9 °C.

In Versuchsphase 4 war das angestrebte Schlammalter 18,2 Tage, im Bilanzzeitraum wurden 19,4 Tage ermittelt, die Temperatur betrug im Mittel 37,8 °C.

In Versuchsphase 7 war kein bestimmtes Schlammalter projektiert. Es sollte versucht werden, mit der vorhandenen Verfahrenstechnik der Pilotanlage die maximal mögliche Beschickung über einen Zeitraum von mehreren Wochen zu erreichen. Für den Versuchszeitraum wurde ein Schlammalter von 16,5 Tagen ermittelt, bei einer mittleren Temperatur von 37,6 °C.

Versuchsphase 1: "Standardbetrieb"

Am Beginn dieser Versuchsphase liegt ein positiver Bilanzfehler vor, der auch bei der CUSUM-Auswertung erkennbar ist. Der Beginn des Bilanzzeitraumes wurde mit dem Scheitelpunkt der CUSUM-Auswertung gewählt, also dem Zeitpunkt, ab dem der Bilanzfehler praktisch nicht mehr vorhanden ist und sich der Graph bei der CUSUM-Auswertung der Nulllinie nähert. Das Ende des Bilanzzeitraumes wird mit dem Ende der Versuchsphase 1 gewählt.

Der mittlere Bilanzfehler beträgt nach der CUSUM-Methode für den CSB 2,0 %. Die Bilanz ist damit weitgehend geschlossen und Auswertungsergebnisse dieses Zeitraumes sind damit sehr gut abgesichert.

Versuchsphase 4: "Maximale Belastung"

Vor dem Beginn der Versuchsphase 4 gibt es einen positiver Bilanzfehler, der wenige Tage nach dem Beginn auf nahezu null zurückgeht. Ab diesem Zeitpunkt ist in der CUSUM-Kontrollkarte ein Plateau auszumachen und der Beginn des Bilanzzeitraumes wurde mit dem Beginn dieses Plateaubereiches gewählt. Gegen Ende von Versuchsphase 4 wird der Bilanzfehler negativ und

auf der CUSUM-Kontrollkarte ist ein starker Abfall festzustellen, weswegen das Ende des Bilanzzeitraumes mit dem Beginn des Knicks festgelegt wurde.

Der mittlere Bilanzfehler beträgt nach der CUSUM-Methode für den CSB 0,0 %. Es liegen geringfügig positive und negative Bilanzfehler vor, die sich, über den Bilanzzeitraum betrachtet, aufheben. Die Bilanz ist damit weitgehend geschlossen und Auswertungsergebnisse dieses Zeitraumes sind damit sehr gut abgesichert.

Versuchsphase 7: "Sehr hohe Belastung"

Die Phase 7 ist gekennzeichnet von einem permanenten negativen Bilanzfehler, sodass in der CUSUM-Kontrollkarte die negative Abweichung von null ständig zunimmt. Die Daten dieser Versuchsphase sind aufgrund dieser CSB-Bilanz für eine Auswertung weniger geeignet als die Daten von Versuchsphase 1 und 4.

Der mittlere Bilanzfehler beträgt nach der CUSUM-Methode für den CSB - 11,0 %. Der Grund für diese Abweichung ist bekannt und liegt bei Problemen mit der online-Gasmessung in dieser Periode. Betriebskennwerte dieser Versuchsphase wie CSB- oder oTS-Abbau können trotzdem vorgenommen, ohne einen Fehler zu erwarten, der größer ist als jener bei Versuchsphase 1 und 4, wenn angenommen werden kann, dass sich die Vorgehensweise für Verfahrensweise, Probenahme, Analyse und Auswertung im Vergleich nicht geändert hat, was der Fall war.

6.2 Überprüfung der ausgewählten Bilanzzeiträume

Ob ein Datenzeitraum für die Bilanzierung geeignet ist, kann alternativ zur CUSUM-Methode über die Darstellung von gleitenden Mitteln durchgeführt werden. Zusätzlich sollen solche Zeiträume hinsichtlich instationärer Zustände (schwankende Beschickung, organische Säuren) untersucht werden. Versuchszeiträume, die bilanziert wurden, werden nachfolgend einzeln diskutiert. Anschließend folgt eine gegenüberstellende Darstellung.

Versuchsphase 1: "Standardbetrieb"

In der Versuchsphase 1 (13.05.2013-23.09.2013) wurde statisch eingedickter Rohschlamm mittels MÜSE eingedickt, bevor dieser in die Faulung gepumpt wurde.

Die vorgegebenen Betriebsparameter, die mit der Pilotanlage getestet werden sollten, waren:

Substrat Mischung aus PS und ÜS
Schlammalter 25 Tage Schlammalter
Temperatur 38 °C
Eingangs-Trockensubstanz 7,5 % TS_{RohS}
Erwartete TS im Faulbehälter ca. 4,0 % TS_{FS}

Für die Pilotanlage errechnet sich bei einem Reaktionsvolumen von 130 m³ und einem einzustellenden Schlammalter von 25 Tagen eine erforderliche tägliche Beschickung von 5,2 m³/d (= 130/25).

In Abbildung 67 ist der mittels CUSUM-Methode ermittelte und für Versuchsphase 1 geeignet befundene Zeitraum den TS-Konzentrationen des Roh- und Faulschlammes überlagert. Obwohl die TS-Konzentration des eingedickten Rohschlammes schwankt und damit auch jene des Faulschlammes (*TSFS*), kann der Zeitraum mit nur einem kleinen Bilanzfehler ausgewertet werden.

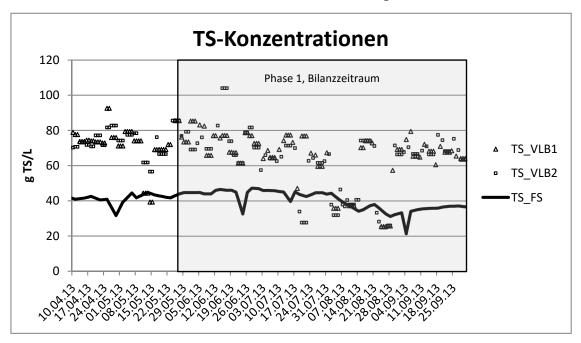


Abbildung 67: Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 1

Betrachtet man die gleitenden Mittel (1-, 2- und 4-Wochen-Mittelwert) der CSB-Bilanz, um einen Datenbereich auszuwählen, würde der mittels CUSUM-Methode bestimmte Bereich nicht unbedingt als geeignet erscheinen. Am Anfang dieses Zeitraumes beträgt der Bilanzfehler beim 4-Wochen-Mittel mehr als 10 %. Hierbei ist zu beachten, dass ein Punkt auf dieser Linie die vergangenen 4 Wochen repräsentiert und somit Schwankungen berücksichtigt werden, die bereits 4 Wochen in der Vergangenheit liegen. Unter diesem Aspekt

passen die Aussagen beider Beurteilungsmethoden zusammen, wenngleich die Aussage mittels CUSUM-Methode deutlicher ausfällt (Abbildung 68).

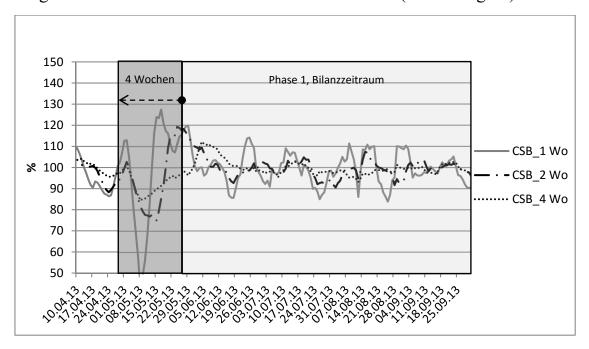


Abbildung 68: CSB-Bilanz der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 1

Im Bilanzzeitraum gibt es kaum Schwankungen der Beschickung und damit der Raumbelastung und dem Schlammalter. Organische Säuren wurden analysiert, der Mittelwert für Essigsäure liegt bei 36,3 mg/L (n = 15), die anderen organischen Säuren lagen unterhalb der Bestimmungsgrenze (Abbildung 69).

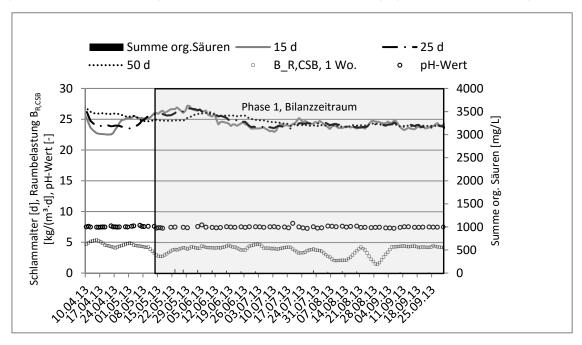


Abbildung 69: Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 1

Auf Basis der Auswertungen hinsichtlich Datenqualität wurde der Beginn des Bilanzierungszeitraum mit 25.05.2013 und dessen Ende mit 30.09.2013 gewählt.

Versuchsphase 4: "Maximale Belastung"

In der Versuchsphase 4 (14.10.2013-20.01.2014) wurde statisch eingedickter Rohschlamm mittels MÜSE eingedickt, bevor dieser in die Faulung gepumpt wurde.

Die maximale Belastung tritt in der Praxis dann auf, wenn einerseits die Kläranlage mit Bemessungsbelastung (4,0 Mio. EW) betrieben wird und zusätzlich ein Faulbehälter in Revision ist.

Die vorgegebenen Betriebsparameter, die mit der Pilotanlage getestet werden sollten, waren:

• Annahme: Vermindertes Reaktionsvolumen (5, statt 6 Faulbehälter) aufgrund Revision und maximale Belastung (4,0 Mio. EW, statt 3,5 Mio. EW).

•	Substrat	Mischung aus PS und ÜS
•	Schlammalter	18,2 Tage Schlammalter
		$= 25 \cdot (5/6) \cdot (3,5/4,0)$
•	Temperatur	38 °C
•	Eingangs-Trockensubstanz	7,5 % TS _{RohS}
•	Erwartete TS im Faulbehälter	ca. 4,0 % TS _{FS}

Für die Pilotanlage errechnet sich bei einem Reaktionsvolumen von 130 m³ und einem einzustellenden Schlammalter von 18,2 Tagen eine erforderliche tägliche Beschickung von 7,1 m³/d (= 130/18,2).

In Abbildung 90 ist der mittels CUSUM-Methode ermittelte und für Versuchsphase 4 geeignet befundene Zeitraum den TS-Konzentrationen des Roh- und Faulschlammes überlagert. Die TS-Konzentration des Rohschlammes schwankt kaum, ein leichter Rückgang ist festzustellen, der zeitversetzt und gedämpft beim Trockensubstanzgehalt des Faulschlammes festzustellen ist.

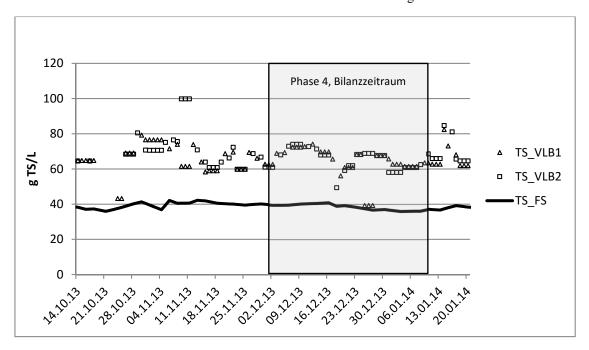


Abbildung 70: Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 4

Das gleitende 4-Wochen-Mittel der CSB-Bilanz hat im Bilanzzeitraum kaum Schwankungen. Ebenso ist bei der Darstellung des Bilanzfehlers mit der CUSUM-Methode ist zu erkennen, dass sich der Bilanzfehler über den Bilanzzeitraum nahezu ausgleicht. Das 4-Wochen-Mittel hat zunächst einen Wert kleiner 100 %, am Ende des Zeitraumes liegt dieser etwas über 100 %.

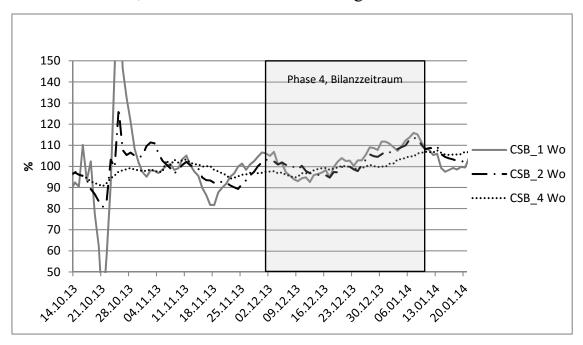


Abbildung 71. CSB-Blanz der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 4

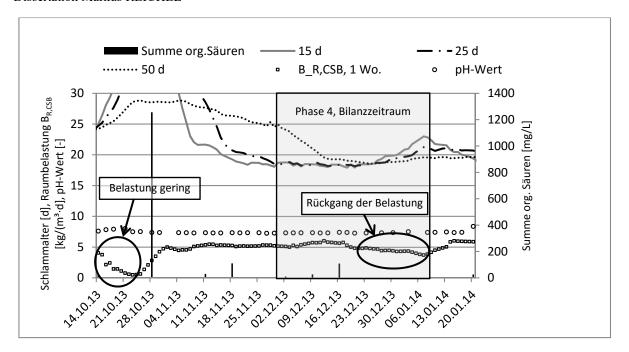


Abbildung 72: Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 4

Wie in Abbildung 72 zu erkennen ist, wurde im Oktober 2013 die Belastung der Pilotanlage gesteigert, sodass es zu einem plötzlichen Anstieg der organischen Säuren gekommen ist. Nach dem Erreichen stabiler Betriebsverhältnisse waren organische Säure kaum mehr vorhanden. Der Mittelwert für Essigsäure lag bei 38,3 mg/L (n = 3), für Propionsäure bei 10,7 mg/L (n = 3), die anderen organischen Säuren lagen unterhalb der Bestimmungsgrenze.

Auf Basis der Auswertungen hinsichtlich Datenqualität wurde der Beginn des Bilanzierungszeitraum mit 01.12.2013 und dessen Ende mit 10.01.2014 gewählt.

Versuchsphase 7: "Sehr hohe Belastung"

In der Versuchsphase 7 (17.02.2014 bis 05.05.2014) wurde statisch eingedickter Rohschlamm mittels MÜSE eingedickt, bevor dieser in die Faulung gepumpt wurde.

Die vorgegebenen Betriebsparameter, die mit der Pilotanlage getestet werden sollten, waren:

• sehr hohe Belastung (so hoch wie technisch und logistisch möglich)

• Substrat Mischung aus PS und ÜS

• Schlammalter so niedrig wie möglich

• Temperatur 38 °C

• Eingangs-Trockensubstanz 7,5 % TS_{RohS}

• Erwartete TS im Faulbehälter ca. 4,0 % TS_{FS}

In Abbildung 73 ist der mittels CUSUM-Methode ermittelte und für Versuchsphase 7 geeignet befundene Zeitraum den TS-Konzentrationen des Roh- und Faulschlammes überlagert. Die TS-Konzentration des Rohschlammes schwankt kaum. Der leichte Anstieg in der TS-Konzentration des Rohschlammes kann zeitversetzt und gedämpft beim Trockensubstanzgehalt des Faulschlammes festgestellt werden.

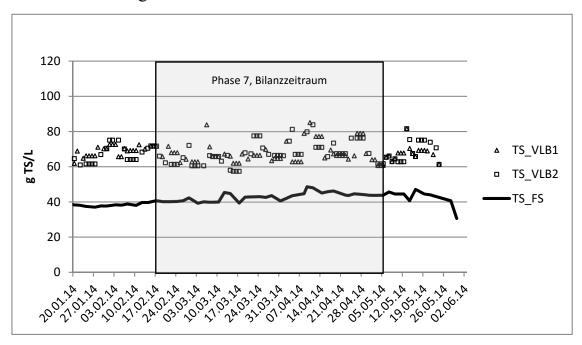


Abbildung 73: Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 7

Das gleitende 4-Wochen-Mittel der CSB-Bilanz hat im Bilanzzeitraum kaum Schwankungen und liegt im Mittel um +5,5 % über dem Wert von 100 %, der für eine geschlossene Bilanz steht.

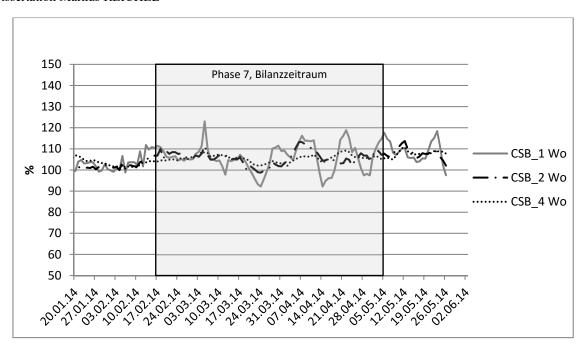


Abbildung 74: CSB-Blanz der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 7

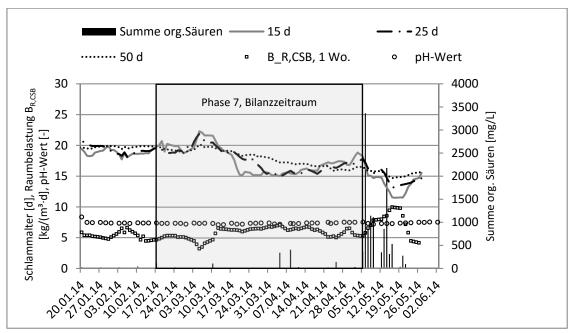


Abbildung 75: Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung) mit Überlagerung der CUSUM-Auswertung; Versuchsphase 7

Durch die Steigerung der Belastung kam es zu keinem nennenswerten Anstieg der organischen Säuren. Nach dem Erreichen stabiler Betriebsverhältnisse waren organische Säuren kaum mehr vorhanden. Der Mittelwert für Essigsäure lag bei 66,5 mg/L, das Maximum bei 305 mg/L (n = 12), für Propionsäure lag der Mittelwert bei 56,6 mg/L und das Maximum bei 238 mg/L (n = 12), die anderen organischen Säuren lagen unterhalb der Bestimmungsgrenze (Abbildung 75).

Wie bereits erwähnt, können Aussagen bzgl. CSB- oder oTS-Abbau getroffen werden, auch wenn die CSB-Bilanz nicht geschlossen ist. Das Ausmaß des Fehlers ist allerdings bei einer offenen Bilanz schwierig bis gar nicht abschätzbar. In diesem Fall liegt der errechnete maximale Fehler bei 5,5 %.

Hieraus leitet sich die Frage ab, was die Ursache dieses offensichtlichen Fehlers ist. Geringfüge Fehler sind niemals auszuschließen. Der hauptsächliche Grund, warum die CSB-Bilanz während dieses Zeitraums stets positiv ist, dürfte auf unplausible Werte der Gasmessung zurückzuführen sein, was in weiterer Folge erläutert wird.

Verifikation des Messfehlers bei der Gasmessung

Die Messung der Gasqualität und Gasmenge erfolgte auf der Pilotanlage mit einer Messsonde der Fa. E+H (Prosonic Flow B 200, Abbildung 76). Das Prinzip der Messung beruht darauf, dass in der Rohrwand paarweise, gegenüberliegende Sensoren ein Ultraschallsignal abwechselnd aussenden und empfangen. In Strömungsrichtung werden die Signale beschleunigt, gegen die Strömungsrichtung verzögert. Die von beiden Sensoren gemessene Zeitdifferenz ist direkt proportional zur momentanen Fließgeschwindigkeit, was dem Volumendurchfluss entspricht. Die Laufzeiten werden ermittelt, die Temperatur gemessen und die Schallgeschwindigkeit errechnet. Außerdem kann der Methangehalt errechnet werden ("Endress+Hauser, Prosonic Flow B 200," 2014).

Abbildung 76: Produktbild der auf der Pilotanlage eingebauten Gasmessung, Fa. E+H, Prosonic Flow B 200 ("Endress+Hauser, Gasmessung," 2014)

Die mit der Gasmessung ermittelten Messwerte (Durchflussmenge und Methangehalt) werden somit über das gleiche Messprinzip erfasst, sodass bei einem Messfehler beide Parameter betroffen sein können.

In Abbildung 77 ist die spezifische Stromproduktion des BHKWs in Bezug auf die dem BHKW zugeführte Gasmenge, welche über eine analoge Gasmessuhr erfasst wurde, dargestellt. Bei der Messung der verbrannten Gasmenge handelt es sich um eine alternative Messeinrichtung, die nicht den Methangehalt misst. Da die Temperatur nicht aufgezeichnet und berücksichtigt wurde, handelt es sich hier um Betriebskubikmeter, nicht um Normkubikmeter.

Die in der Abbildung 77 dargestellte erwartete spezifische Stromproduktion lässt sich durch den unterschiedlichen Wirkungsgrad des Motors bei unterschiedlicher Temperatur der Ansaugluft erklären. Bei geringerer Temperatur der Ansaugluft, also während der kalten Jahreszeit, ist der Wirkungsgrad besser. Ursache hierfür ist die konstante Hublänge der Kolben im Motor, sodass bei kalter Ansaugluft mehr Sauerstoffmoleküle in den Zylinder kommen und eine höhere Kompression erfolgt.

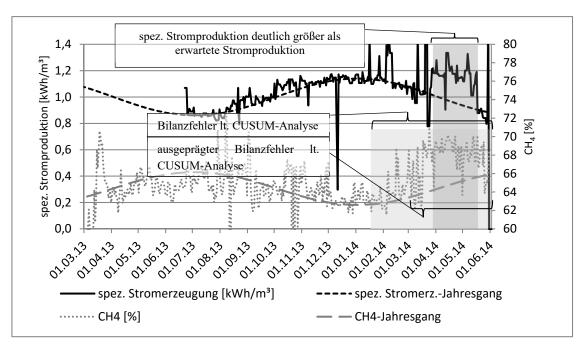


Abbildung 77: Gegenüberstellung spezifische Stromproduktion und Methangehalt des Faulgases

In der Periode vom 30.03.2014 bis 19.05.2014 (Abbildung 77, dunkelgrauer Bereich) ist zu erkennen, dass die aus Messwerten errechnete spezifische Stromproduktion [kWh/m³] deutlich über der zu erwartende Stromproduktion liegt. Offensichtlich liegt hier ein Messfehler vor.

Gemäß CUSUM-Auswertung ist ein deutlicher Bilanzfehler ab dem 10.01.2014 bis zum Ende des Versuchsbetriebes (Ende Mai 2014) nachzuweisen. Ab der zweiten Monatshälfte im Februar 2014 wird dieser Bilanzfehler größer (siehe Abbildung 66).

Die auf das Substrat bezogene spezifische Gasproduktion (oTS: Abbildung 78, CSB: Abbildung 79) nimmt während dieser Periode ab. Dies kann teilweise mit dem schlechteren Abbau des Substrats bei geringerem Schlammalter begründet werden.

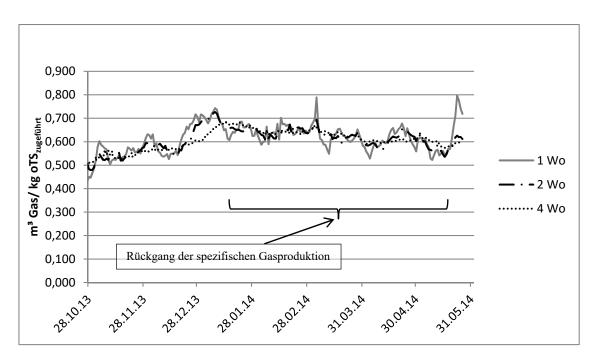


Abbildung 78: spezifische Gasproduktion in Bezug zur zugeführten oTS (mitlaufende Bilanzierung)

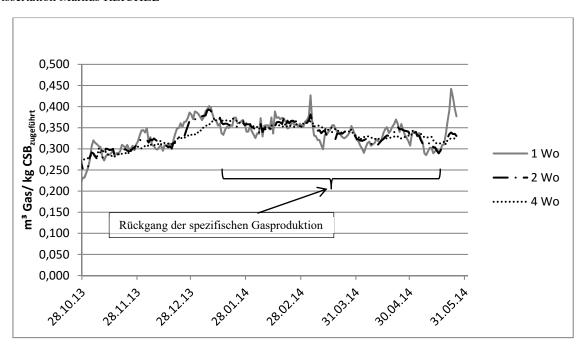


Abbildung 79: spezifische Gasproduktion in Bezug zum zugeführten CSB (mitlaufende Bilanzierung)

Wird das Verhältnis der mittels BHKW genutzten Betriebskubikmeter (analoge Messung) den Normkubikmetern (digitale Messung) gegenüber gestellt, ist eine Schwankung im Jahresverlauf zu erwarten, die der Sinus-Linie der Lufttemperatur und damit dem Wirkungsgrad des Motors entspricht. Die ermittelten Werte weichen nicht wesentlich und sprunghaft von der idealisierten Jahresganglinie ab (Abbildung 80), was darauf schließen lässt, dass die online-Messung des Gasdurchflusses keine signifikanten Fehler aufweist. Der potentielle Fehler ist daher bei der Messung des Methangehaltes zu erwarten.

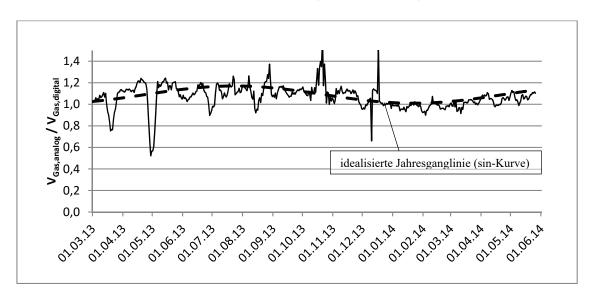


Abbildung 80: Jahresganglinie, genutzte Betriebskubikmeter/Normkubikmeter Faulgas mittels BHKW; Daten: gleitende Wochenmittel auf Tagesbasis)

Die Gasqualität wurde auf der Pilotanlage stichprobenartig mit einem Hand-Gasmessgerät bestimmt und die Messwerte mit jenen des fix eingebauten Messsystems verglichen (Abbildung 81).

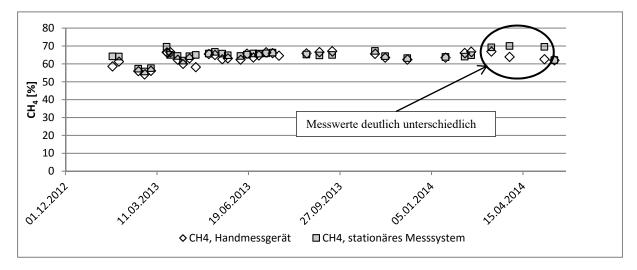


Abbildung 81: Gasqualität (CH₄) bei der Pilotanlage, Gegenüberstellung stationäres Messsystem und Handmessgerät

Die Abweichung des mit dem Handmessgerät gemessenen Methangehaltes zum Methangehalt des online-Messsystems beginnt mit 11.03.2014 bei 3.5%, bis schließlich am 08.05.2014 11.0% ermittelt werden. Vor dieser Periode haben die Messwerte im Mittel eine Abweichung von 1.8% (n = 31).

Der CSB-Bilanzfehler der Pilotanlage von Mitte Februar 2014 bis zum Ende des Versuchsbetriebes (Ende Mai 2014) ist vermutlich auf die unplausiblen Werte des Methangehalts der stationären Messung zurückzuführen.

6.3 CSB, TS, oTS: Auswertungen, Bilanzen und Abbau

In diesem Kapitel werden zunächst theoretische Überlegungen zur Plausibilität des ermittelten Verhältnisses CSB/oTS angestrengt und anschließend mit den Analysedaten verglichen. Der Jahresgang dieses Verhältnisses wird bei Rohund Faulschlamm analysiert.

Die ermittelten Betriebskennwerte der einzelnen Versuchsphasen werden in einer Tabelle zusammengefasst und anschließend interpretiert.

6.3.1 Verhältnis: CSB/oTS

Das Verhältnis CSB/oTS gibt an, wie viel kg CSB je kg oTS im Schlamm enthalten sind. Je höher der Wert für Rohschlamm, desto größer ist der potentielle Gasertrag bei der Faulung je kg oTS_{abgebaut}.. Für Fette beträgt das

Verhältnis 2,46, für Eiweiß 1,43 und für Kohlenhydrate 1,14. Mischschlämme haben üblicherweise ein CSB/oTS-Verhältnis von 1,6 bis 1,8 (Roediger et al., 1990).

Tabelle 17: Theoretische Gasausbeuten (Mudrak und Kunst, 1988)

Stoffart	CH ₄	Gasausbeute
	%	$Nm^3/(kg \ oTS_{abgebaut})$
Kohlenhydrat	50	0,886
Fett	70	1,535
Protein	84	0,587

Bei den in Tabelle 17 angegebenen Werten der sich einstellenden Methangehalten handelt es sich um theoretische Werte, die nur bei Batch-Versuchen gelten. Der Abzug von Gas, welches im abfließenden Schlamm enthalten ist, wird hierbei nicht berücksichtigt. Die Größe dieses Einflusses und die praktische Relevanz soll exemplarisch mit Betriebskennwerten der Pilotanlage berechnet werden.

Es wird von einer Faulung mit 37 °C und einem Schlammalter von 25 Tagen ausgegangen. Der Glühverlust des Substrates beträgt 80 %, der oTS-Abbau 50 % und die spezifische Gasausbeute 1,2 Nm³/kg oTS_{abgebaut}. Bei einer TS_{FB} von 4,0 % stellt sich ein Methangehalt von 64 % ein. Die aufgegebene Fracht und das Faulraumvolumen sind konstant. Die Löslichkeit eines Gases lässt sich mit Gleichung (6-1) nach Helgeson (1967) beschreiben, wobei die Konstanten Tabelle 18 zu entnehmen sind.

$$\log K_{H} = \frac{A}{T} - B + C \cdot T$$
mit: T Temperatur [K]

Tabelle 18: Henry-Konstanten für Methan, Kohlendioxid und Schwefelwasserstoff und deren Temperaturabhängigkeit (Helgeson, 1967)

Komponente	K _H (38 °C)	A	В	С
	[mol·L ⁻¹ ·bar ⁻¹]			
CH ₄	$1,1108\cdot 10^{-3}$	2370,40	16,330	0,01850
CO_2	$2,4958 \cdot 10^{-2}$	2385,73	14,0184	0,01526
H_2S	$7,5959 \cdot 10^{-2}$	1851,50	10,337	0,01050

Für die Berechnung wird H₂S vernachlässigt. Weiters wird angenommen, dass die Menge an produziertem Gas konstant ist. In Abhängigkeit von der Menge an Substrat ändert sich die Gasmenge, welche die Faulung über den Schlamm bzw. die Gasphase verlässt.

Da Kohlendioxid in Bezug auf Methan eine höhere Löslichkeit aufweist, wird bei größerer Beschickungsmenge, also kleinerer Trockensubstanzkonzentration des Rohschlammes und damit kleinerer Trockensubstanzkonzentration des Faulschlammes, mehr Kohlendioxid über die flüssige Phase ausgetragen als Methan, sodass der Methangehalt im Faulgas steigt (Abbildung 82).

Bei einer Erhöhung der Trockensubstanzkonzentration des Rohschlammes und damit einer Erhöhung der Trockensubstanzkonzentration des Faulschlammes (TS_{FS}) von 20 kg/m³ auf 40 kg/m³ reduziert sich die über den Faulschlamm ausgetragene Gasmenge in Bezug zur gesamten produzierten Gasmenge auf die Hälfte, nämlich von 0,16 % auf 0,08 %, wobei hier keine Gasübersättigung berücksichtigt ist. Geht man von einer Gasproduktion von 25 L/(EW·d) aus, beträgt der Methanverlust 0,0128 L CH₄/(EW·d) (= 25·0,64·0,08/100).

Das Einsparungspotential an Methanverlust durch Austrag über die flüssige Phase ist durch Erhöhung der Trockensubstanz in der Faulung somit praktisch unbedeutend.

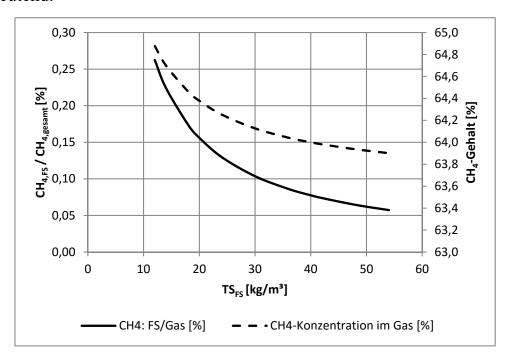


Abbildung 82: Anteil von Methan im ablaufenden Faulschlamm in Bezug zum abgezogenen Gas und sich einstellender Methangehalt bei verschiedenen TS_{FS}-Konzentrationen

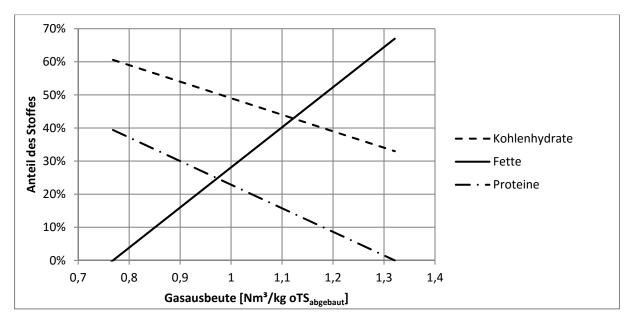


Abbildung 83: Anteil der Inhaltsstoffe eines Substrats in Abhängigkeit von der Gasausbeute; CH₄ = 64 %

Aus den eben angestrengten Überlegungen ist der Anteil des Fehlers bei einem durchflossenen System im Gegensatz zu einem Batch-Reaktor zwar gegeben, allerdings verhältnismäßig klein. Wird vorausgesetzt, dass das bei der Schlammfaulung entstehende Gas aus den Stoffen Kohlenhydrat, Fett und Protein entsteht, kann der Anteil dieser Inhaltsstoffe durch lineare Algebra abgeschätzt werden. Geht man von den theoretischen Gasausbeuten gemäß Tabelle 17 aus und setzt für den Methangehalt den Mittelwert aller Messungen ein (64 %), variiert die Gasausbeute, errechnet sich die Verteilung auf Kohlenhydrate (K), Fette (F) und Proteine (P) wie in Abbildung 83 dargestellt.

Da der Anteil jedes Stoffes (*K*, *F* und *P*) nicht kleiner als null sein kann, ergibt sich eine rechnerische Gasausbeute von 0,76 bis 1,34 Nm³/kg oTS_{abgebaut}. Bei einer Gasausbeute von 1,2 Nm³/kg oTS_{abgebaut} errechnet sich gemäß dem linearen Gleichungssystem (6-2) eine Aufteilung von 37 % Kohlenhydrate, 53 % Fette und 10 % Proteine.

$$\begin{bmatrix} 50 & 70 & 84 \\ 0,886 & 1,535 & 0,587 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} K \\ F \\ P \end{bmatrix} = \begin{bmatrix} 64 \\ 1,2 \\ 1 \end{bmatrix}$$
mit: K Kohlenhydrate $\begin{bmatrix} -1 \\ F \end{bmatrix}$

$$F \text{ Fett}$$

$$P \text{ Protein}$$

$$[-]$$

Das theoretische Verhältnis CSB/oTS für den Rohschlamm errechnet sich damit zu:

$$\frac{CSB}{oTS} = \frac{1,14 \cdot 37 + 2,46 \cdot 53 + 1,43 \cdot 10}{100} = 1,86 \tag{6-3}$$

Der Medianwert aller vorliegenden Daten für den Rohschlamm der Pilotanlage beträgt für das Verhältnis CSB/oTS 1,86. Damit liegt dieser zwar über dem typischen Bereich von 1,6 bis 1,8, ist aber plausibel. Deutlich ist eine jahreszeitliche Schwankung auszumachen, die das Maximum in der warmen Jahreszeit (Anfang August) und das Minimum in der kalten Jahreszeit (Anfang Februar) hat (Abbildung 84). Gründe für diese Schwankungen können lediglich vermutet werden. Auch sind Überlagerungen der Begründungen möglich. Mögliche Ursachen sind:

- Bei niedrigen Temperaturen emulgiert weniger Fett im Abwasser und lagert an Kanalwänden an. Bei steigenden Temperaturen wird angelagertes Fett wieder emulgiert und abtransportiert.
- In den Sommermonaten gibt es mehr Niederschlagsereignisse, die an Kanalrohre angelagertes Fett mitschwemmen. Im Winter sind die Niederschlagsereignisse seltener und weniger ergiebig.
- Schwankungen in Bezug auf die Zusammensetzung der Abwasseremittenten (kommunal/Gewerbe/Industrie). Dies ist bei der Pilotanlage auszuschließen, da es hier aufgrund Betriebsferien gewerblicher oder industrieller Einleiter, Urlaubs- bzw. Ferienzeiten der Bevölkerung zu sprunghaften Änderungen kommen müsste, die nicht festgestellt werden konnten.

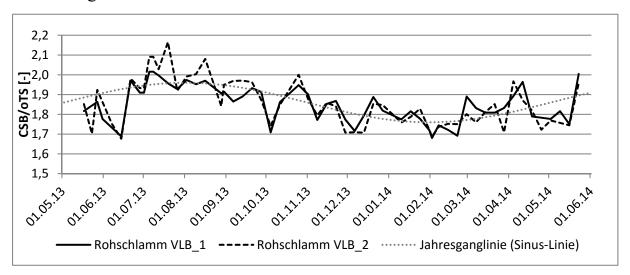


Abbildung 84: CSB/oTS-Verhältnis des Rohschlammes der Pilotanlage im Jahresverlauf

Beim Faulschlamm beträgt der Medianwert des Verhältnisses CSB/oTS 1,57. Eine jahreszeitliche Schwankung ist nicht festzustellen. Energiereichere Verbindungen im Schlamm werden demzufolge weitgehender abgebaut als energieärmere, sodass es zu einer Nivellierung des CSB/oTS-Verhältnisses über das Jahr kommt. Der Unterschied zwischen dem Maximum und dem Minium des Verhältnisses CSB/oTS ist beim Rohschlamm mit 0,49 deutlich größer als beim Faulschlamm mit 0,27, was die Nivellierung mit statistischen Werten verifiziert (Tabelle 3). Die Qualität der Stabilisierung ist über das Jahr und über alle durchgeführten Betriebseinstellungen bei der Pilotanlage gleich (Abbildung 85).

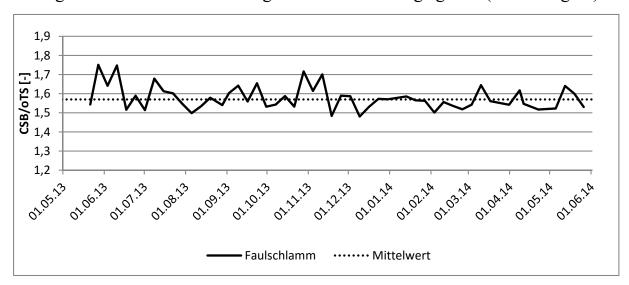


Abbildung 85: CSB/oTS-Verhältnis des Faulschlammes der Pilotanlage im Jahresverlauf

Tabelle 19: statistische Auswertung des Verhältnisses CSB/oTS; Analysewerte: TU Wien

statistischer Wert	Rohschlamm	Faulschlamm
Anzahl	107	53
Mittelwert	1,85	1,58
Median	1,85	1,57
Standardabweichung	0,11	0,07
95 %-Wert	2,02	1,73
5 %-Wert	1,70	1,50
Maximum	2,17	1,75
Minimum	1,68	1,48

6.3.2 Auswertungsergebnisse der Versuchsphasen 1, 4 und 7

Tabelle 20: Zusammenfassung der Versuchsergebnisse aus den Phasen 1, 4, 7 und 8 (Anmerkung: Ergebnisse der Versuchsphase 8 (graue Schrift) haben aufgrund des kurzen Bilanzzeitraumes lediglich informativen Charakter)

Über- geordneter Parameter	Parameter	Einheit	Standard- betrieb	max. Belastung	sehr hohe Belastung	Grenzen der Anaerobie: max. Belastung	Grenzen der Anaerobie: hohe Temp.
Allgemeines	Versuchsphase		1	4	7	8.1	8.2
	Auswertungszeitrau	m, Beginn	25.05.13	01.12.13	17.02.14	05.05.14	19.05.14
	Auswertungszeitrau	m, Ende	30.09.13	10.01.14	05.05.14	19.05.14	26.05.14
	Anzahl der Tage	d	128	40	77	14	7
Betriebs- parameter	Ø Temperatur _{oben}	°C	38,1	38,3	37,8	37,4	41,2
	Ø Temperatur _{unten}	°C	37,8	37,6	37,3	36,9	40,8
	Ø	°C	38,0	37,9	37,5	37,2	41,0
	Temperatur _{oben/unten} Ø Q	m³/d	5,38	6,57	7,53	11,26	5,66
	t _{TS}	d d	24,2	19,8	17,3	11,20	23,0
	${ m B}_{ m R,CSB}$	kg/(m³·d)	3,79	4,91	5,82	8,63	4,26
	pH-Wert		7,52	7,37	7,38	7,33	7,42
Konzen-	Ø TS _{FB}	kg/m³	40,65	38,63	43,02	44,73	43,71
trationen	Ø 15FB	Kg/III	40,03	30,03	73,02	тт,/3	73,71
	\emptyset oTS _{FB}	kg/m³	24,10	25,06	28,23	28,13	26,89
	TS _{FB} , Beginn	kg/m^3	43,7	40,0	40,5	44,4	46,0
	TS _{FB} , Ende	kg/m³	38,8	37,1	44,4	46,0	42,4
	oTS _{FB} , Beginn	kg/m³	26,4	26,1	26,4	28,7	29,0
	oTS _{FB} , Ende	kg/m³	24,3	24,7	28,7	29,0	26,0
	CSB _{FB} , Beginn	mg/L	44.397	40.850	40.594	43.764	46.449
	CSB _{FB} , Ende	mg/L	37.224	39.337	43.764	46.449	39.856
	Ø NH ₄ -N	mg/L	1.885	1.819	1.902	1.888	1.927
TS	Ø TS _{zu}	kg/d	348	432	523	784	383
	Ø TS _{ab}	kg/d	219	255	325	501	248
	TS-Reduktion	%	37,2	41,0	37,9	36,1	35,4
oTS	Ø oTS _{zu}	kg/d	262	350	412	608	294
	Ø oTS _{ab}	kg/d	130	166	214	313	152
	oTS_{Abbau}	%	50,5	52,7	48,0	48,5	48,2
	Ø GV _{zu}	%	75,2	81,1	78,8	77,5	76,7
	Ø GV _{ab}	%	59,3	65,0	66,0	62,5	61,5
CSB		kg/d	493	638	757	1122	553
	Ø CSB _{ab} -FS	kg/d	207	264	309	516	245
	Ø CSB _{ab} -Gas	kg/d	287	395	490	679	410
	Ø Gas	Nm³/d	154,8	219,2	254,5	348,7	213,0
	Ø CH ₄	%	64,6	63,2	67,3	68,3	67,3
	Ø CH ₄	m³/d	100,4	138,4	171,4	237,8	143,6
	CSB-Abbau	%	59,4	59,3	58,5	52,0	75,1
	CSB-Bilanz	%	99,7	96,8	94,7	93,9	84,4
Spezifische Werte	Zu: CSB/oTS	-	1,88	1,82	1,84	1,84	1,88
11 0110	Ab: CSB/oTS	-	1,60	1,60	1,44	1,65	1,60
	spez. Gasertrag	$Nm^3/kg\ oTS_{zu}$	0,591	0,626	0,617	0,574	0,724
	spez. Gasertrag	Nm³/kgCSBzu	0,314	0,343	0,336	0,311	0,385

Interpretation der Auswertungsergebnisse

Die Länge der Zeiträume für die Versuchsphasen 1, 4 und 7 sind für eine aussagekräftige Auswertung lange genug. Die Versuchsphase 8, die sich in die Phasen 8.1 und 8.2 untergliedert, ist relativ kurz, sodass deren Auswertung lediglich informativen Charakter haben.

Versuchsphase 1 (Standardbetrieb) und 4 (max. Belastung)

Der oTS-Abbau der Versuchsphase 1 liegt bei 50,5 %, der Abbau bei Versuchsphase 4 ist mit 52,7 % etwas höher. Dieser Unterschied kann damit begründet werden, dass bei niedriger Temperatur in der Abwasserreinigungsanlage mehr CSB bzw. oTS in den Überschussschlamm eingelagert wird. Gründe hierfür sind die verminderte Sterberate und geringere Hydrolyse bei niedriger Temperatur.

Der CSB-Abbau liegt bei den Versuchsphasen 1 und 4 bei etwa 59 %. Analog der oTS-Auswertung sollte der CSB-Abbau in Phase 4 etwas höher liegen. Der geringere Wert kann mit der Unschärfe der Analytik begründet werden.

Der TS-Abbau beträgt bei Versuchsphase 1 ca. 37 %, bei Versuchsphase 4 ca. 41 %. Dieser Unterschied ist auf den unterschiedlichen Anteil an anorganischer Trockensubstanz (aTS) im Zulauf der Kläranlage zu begründen. Der Glühverlust des Rohschlammes beträgt bei Versuchsphase 1 75,1 % und bei Versuchsphase 4 81,1 % und spiegelt den höheren Anteil an Sand während der warmen Monate wieder, in denen es mehr Regenereignisse gab.

Zusammenfassend kann festgestellt werden, dass der Betrieb bei einem Schlammalter von etwa 20 Tagen problemlos möglich ist.

Versuchsphase 7

Das in Versuchsphase 7 erreichte Schlammalter lag bei etwa 17 Tagen. Der biologische Abbau war gegenüber den Versuchsphasen 1 und 4 kleiner, was mit dem kürzeren Schlammalter begründet werden kann. Der oTS-Abbau betrug lediglich 48 %, der CSB-Abbau 58,5 %.

Versuchsphase 8

Wie bereits erwähnt, haben die Ergebnisse der Auswertung von Versuchsphase 8 aufgrund des kurzen Bilanzzeitraumes nur informativen Charakter, weshalb diese in Tabelle 20 grau hinterlegt sind.

Beim Ausloten der Grenzen der Biologie der Faulung zeigte sich, dass ein vorübergehendes sehr starkes Belasten der Anlage möglich ist, ohne die Biologie nachhaltig zu schädigen.

Wird die Raumbelastung kurzfristig gesteigert, führt dies dazu, dass die Methanbakterien die Zwischenprodukte des anaeroben Abbaus nicht verwerten können, weil deren momentane Umsatzrate für diese Fracht zu klein ist. Während dieser Zeit kommt es zu einer Anreicherung von organischen Säuren. Bleibt die Raumbelastung konstant, stellt sich ein neues Gleichgewicht bei höherer Wachstumsrate (höhere Säurekonzentration) ein.

Auswertungsergebnisse auf Basis von Einwohnerwerten

In Tabelle 20 wurden keine auf Einwohnerwerte spezifischen Kennwerte angegeben, da die Vergleichbarkeit mit der Definition des Einwohnerwertes eingeschränkt ist. Für die Auswertung sind weiterführende Annahmen erforderlich, die beispielsweise aus einer mathematischen Simulation der Gesamtanlage ermittelt werden können. Dies wird nachfolgend beschrieben.

Im Zuge der Erstellung der Studie zur Energieoptimierung der Hauptkläranlage-Wien (Reichel und Svardal, 2010) wurde in Absprache mit dem Auftraggeber die Belastung der Anlage abgestimmt, wofür Varianten und entsprechende Rohschlammmengen berechnet werden sollten (Tabelle 21).

Tabelle 21: Anfallender Rohschlamm - aus Studie zur Energieoptimierung der Hauptkläranlage-Wien: Untersuchte Lastfälle und maßgebliche Betriebsparameter (Reichel und Svardal, 2010)

Parameter	Einheit	derzeitige Betriebsweise	energie- optimierte Betriebs-	energie- optimierte Betriebsweise	Intensivierte Vorklärung unter Einhaltung der N-
			weise		Emissionsgrenzwerte
Belastung	-	Jahresmittel	Jahresmittel	max. Belastung	Jahresmittel
				(Bemessungs-	
				belastung)	
EW (Mio.)	Mio. EW	3,5	3,5	4,0	3,5
BSB ₅ -Fracht	t/d	210	210	240	210
CSB ₁₁₀ -Fracht	t/d	385	385	440	385
Betrieb der VKB		konventionell	konventionell	konventionell	Vorfällung
Kohlenstoff- entfernung in	%	33	33	33	50
Vorklärung η_{VK}	0/	2.5	20	17	40
Bypass	%	ca.35	20	ca.17	40
N-Entfernung	%	84	83	ca. 80	70
anfallender	t TS/a	72.000	81.100	92.700	87.300
Rohschlamm					
anfallender	g TS/(EW·d)	56,4	63,5	63,5	68,3
Rohschlamm					

Abhängig von der Betriebsweise der Kläranlage fallen bei gegenwärtiger Betriebsweise 56,4 g TS/(EW·d) und bei energieoptimierter Betriebsweise zukünftig 63,5 g TS/(EW·d) an. Bezieht man die Betriebsergebnisse der Pilotanlage auf die Schlammproduktion bei gegenwärtiger Betriebsweise (56,4 g TS/(EW·d)), ermitteln sich die in Tabelle 22 angeführten einwohnerspezifischen Gaserträge.

Tabelle 22: Zusammenfassung der Versuchsergebnisse aus Phase 1, 4 und 7; einwohnerspezifischer Gasertrag – Basis TS_{RohS}

Parameter	Einheit	Standard-	max.	sehr hohe
		betrieb	Belastung	Belastung
Versuchsphase	-	1	4	7
anfallender Rohschlamm (derzeitige Betriebsweise)	g TS/(EW·d)	56,4	56,4	56,4
Ø EW	EW	6.177	7.652	9.281
Anzahl betriebener FB der Großanlage (max. 6)	-	6	5	6
Reaktionsvolumen Großanlage ($V_{FB,Gro\betaanlage}$)	m^3	75.000	62.500	75.000
entspr. EW bei Großanlage	EW	3.560.000	3.680.000	5.350.000
$(= \varnothing EW / 130 \text{ m}^3_{Pilotanlage} \cdot V_{FB,Gro\beta anlage})$				
spez. Gasertrag	L/(EW·d)	25,1	28,6	27,4
spez. CH ₄ -Ertrag	L/(EW·d)	16,2	18,1	18,5

Die aussagekräftigste Angabe der spezifischen Gasproduktion ist jene auf Basis des CSB. Hierfür muss allerdings bekannt sein, wieviel CSB je Einwohner in den Schlamm gelangt.

Mittels dynamischer Simulation wurde der Anteil des CSB ermittelt, welcher bei gegenwärtiger (70,6 %, Abbildung 86) und bei zukünftiger, energieoptimierter Betriebsweise (68,9 %, Abbildung 87) in den Schlamm gelangt (Spindler, 2013). Bei der Großanlage wird zwar im Zusammenhang mit der Schlammfaulung die Schlammproduktion optimiert, jedoch wird für die N-Entfernung des Trübwassers etwas mehr CSB in der Reinigungsanlage benötigt, wodurch die Verlagerung des CSB in den Schlamm etwa gleich bleiben wird.

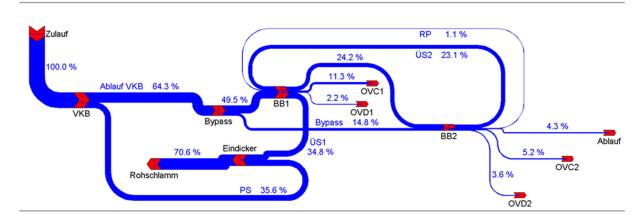


Abbildung 86: Stoffflussdiagramm der CSB-Fracht im Ist-Zustand (Spindler, 2013)

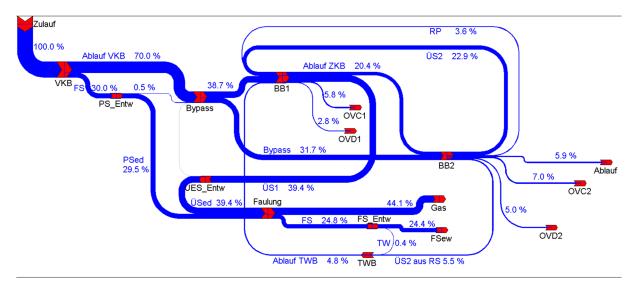


Abbildung 87: Stoffflussdiagramm der CSB-Fracht im Ausbau-Zustand mit Trübwassernitritation und 45 % Bypass (LF3) (Spindler, 2013)

Geht man von dem in der Simulation für die gegenwärtige Schlammproduktion ermittelten CSB-Transferkoeffizienten aus und zieht die Betriebsergebnisse der Pilotanlage heran, ergeben sich die in Tabelle 22 angeführten spezifischen Gaserträge.

Tabelle 23: Zusammenfassung der Versuchsergebnisse aus Phase 1, 4 und 7; einwohnerspezifischer Gasertrag – Basis CSB_{Rohschlamm} aus Simulation (Spindler, 2013)

Parameter	Einheit	Standard-	max.	sehr hohe
		betrieb	Belastung	Belastung
Versuchsphase	-	1	4	7
Zulauf zur KA	$g CSB/(EW \cdot d)$	120	120	120
CSB zur Faulung (aus Simulation,	%	70,6	70,6	70,6
gegenwärtige Betriebsweise)				
CSB zur Faulung	g CSB/(EW·d)	84,7	84,7	84,7
Ø EW	EW	5.815	7.536	8.930
Anzahl betriebener FB der Großanlage (max. 6)	-	6	5	6
Reaktionsvolumen Großanlage ($V_{FB,Gro\betaanlage}$)	m^3	75.000	62.500	75.000
entspr. EW bei Großanlage	EW	3.350.000	3.620.000	5.150.000
$(=V_{FB,Gro\beta anlage}/130 \text{m}^3 \cdot \text{EW})$				
spez. Gasertrag	L/(EW·d)	26,6	29,1	28,5
spez. CH ₄ -Ertrag	$L/(EW \cdot d)$	17,3	18,4	19,2
Zulauf zur KA	g CSB/(EW·d)	120	120	120
CSB zur Faulung (aus Simulation, energieoptimiert)	%	68,9	68,9	68,9
CSB zur Faulung	g CSB/(EW·d)	82,7	82,7	82,7
spez. Gasertrag	L/(EW·d)	26,0	28,4	27,8
spez. CH ₄ -Ertrag	$L/(EW \cdot d)$	16,8	17,9	18,7

Interpretation der ermittelten einwohnerspezifischen Gaserträge

Die ermittelten Ergebnisse der spezifischen Gaserträge sind in Tabelle 24 gegenübergestellt. Beispielhaft wird der Standardbetrieb (Versuchsphase 1) interpretiert.

Die auf Basis der TS ermittelte Gasproduktion (25,1 L/EW/d) müsste formal gleich groß sein wie jene auf Basis des CSB (26,6 L/EW/d). Der prozentuelle Unterschied fällt angesichts der zahlreichen Einflussfaktoren mit 6,0 % relativ gering aus und liegt in der Unschärfe der Auswertungsmethoden. Es wird angenommen, dass der als Eingangsparameter erforderliche Wert für die TS ungenauer ist als jener des CSB, weshalb der aus dem CSB ermittelte spezifische Gasertrag als wahrscheinlicher angenommen werden kann. Die Simulationsergebnisse berücksichtigend, ergibt sich ein zukünftiger spezifischer Gasertrag von 26,0 L/EW/d, der etwa jenem bei gegenwärtiger Betriebsweise entspricht.

Wie auch schon in Tabelle 20 ersichtlich, ist die bei maximaler Belastung der Anlage ermittelte spezifische Gasproduktion geringfügig größer als bei einem Schlammalter von etwa 25 Tagen. Erwartungsgemäß müsste dies umgekehrt sein und kann damit begründet werden, dass während der kalten Jahreszeit in der Abwasserreinigungsanlage mehr CSB bzw. oTS in den Überschussschlamm eingelagert wird.

Tabelle 24: Gegenüberstellung der spezifischen Gaserträge aus Tabelle 22 und Tabelle 23

Parameter	Basis	Einheit	Standard- betrieb	max. Belastung	sehr hohe Belastung
Versuchsphase	-	-	1	4	7
spez. Gasertrag	TS, gegenwärtige Betriebsweise	L/(EW·d)	25,1	28,6	27,4
	CSB, gegenwärtige Betriebsweise	$L/(EW \cdot d)$	26,6	29,1	28,5
	CSB, zukünftige, energieoptimierte Betriebsweise	L/(EW·d)	26,0	28,4	27,8
spez. Methanertrag	TS	L/(EW·d)	16,2	18,1	18,5
	CSB, gegenwärtige Betriebsweise	$L/(EW \cdot d)$	17,3	18,4	19,2
	CSB, zukünftige, energieoptimierte Betriebsweise	L/(EW·d)	16,8	17,9	18,7

6.4 Grenzen der Anaerobie

Durch höhere Belastung und Änderung der Temperatur kann es zu einem verschlechterten Abbau des Substrats und schließlich zu instabilen Betriebsverhältnissen in der Faulung kommen. In Versuchsphase 8 ("Grenzen der Anaerobie") wurde die Pilotanlage diesen Bedingungen ausgesetzt. Als Substrat wurde jeweils maschinell eingedickter Rohschlamm verwendet.

In Versuchsphase 8.1 ("Grenzen der Anaerobie: Belastung", 05.05.2014 bis 19.05.2014) wurde die Pilotanlage mit der technisch und logistisch maximal möglichen Menge Substrat beschickt und die Konzentrationen an organischen Säuren gemessen.

In Versuchsphase 8.2 ("Grenzen der Anaerobie: Temperatur", 19.05.2014 bis 26.05.2014) wurde die Faulung mit jener Menge an Substrat beschickt, die der üblichen Belastung entspricht (tTS,FB = 25 d), und die Temperatur auf 43 °C erhöht.

Da diese beiden Versuchsphasen sehr kurz sind, ist eine Bilanzierung nicht besonders abgesichert, wurde jedoch trotzdem durchgeführt. Die Auswertungen, die eher informellen Charakter haben, sind in Tabelle 20 (S. 108) dargestellt.

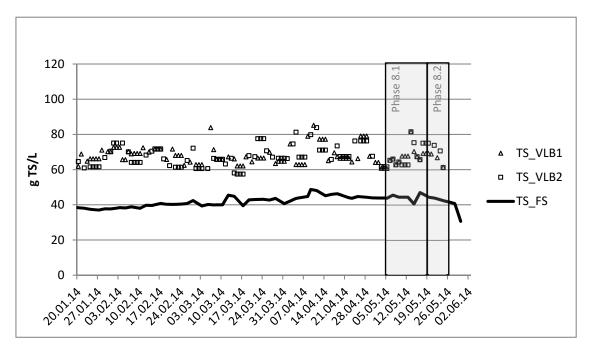


Abbildung 88: Analysewerte der TS-Konzentrationen (VLB1, VLB2 und FS) Versuchsphasen 8.1 und 8.2

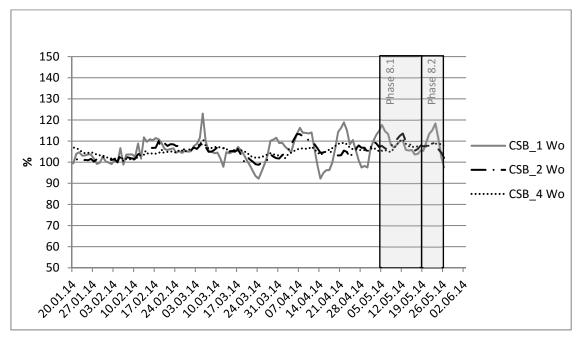
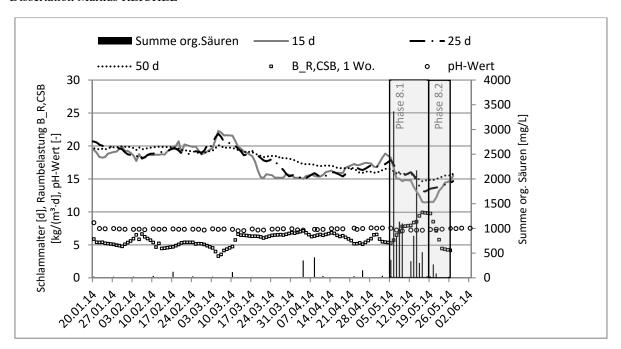



Abbildung 89: CSB-Blanz der EOS-Pilotanlage (mitlaufende Bilanzierung); Versuchsphasen 8.1 und 8.2

Abbildung 90: Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung); Versuchsphasen 8.1 und 8.2

6.4.1 Organische Säuren

Wird Rohschlamm in die Faulung eingebracht, kommt es durch die Hydrolyseund acetogene Phase zur Säurebildung. Die entstandenen organischen Säuren werden in weiterer Folge von den Methanbakterien zu Gas verarbeitet. Erfolgt die Säurebildung schneller, als die Methanbakterien die Säure zu Gas verarbeiten können, akkumuliert diese. Bei einer gut funktionierenden Faulung halten sich diese Prozesse die Waage, sodass keine oder kaum Säure messbar ist. Faulschlamm gilt nach Roediger (1997) noch als gut ausgefault, wenn die Konzentration an organischen Säuren unter 500 mg/L als Acetatäquivalent liegt. Vor allem bei hoher Belastung und diskontinuierlicher Beschickung können org. Säuren auftreten.

Die Bestimmung der Säuren erfolgte stets mit der am Montag gezogenen Probe des Faulschlamms. Hierbei muss beachtet werden, dass zu erwarten ist, dass die zu erwartende Konzentration an organischen Säuren montags am geringsten ist, da die Beschickung über das Wochenende aufgrund des begrenzten Volumens der Vorlagebehälter reduziert werden musste.

Die gemessenen Konzentrationen an organischen Säuren sind, mit Ausnahme der Versuchsphase 8, gering. Jene bilanzierte Versuchsphase, wo die höchste Belastung vorlag, war Versuchsphase 7 ("sehr hohe Belastung", 17.02.2014 bis 05.05.2014). Die CSB-Raumbelastung lag hier im Mittel bei 5,8 kg/(m³·d), was

einem Schlammalter von 17,3 Tagen entspricht. Die höchste hier gemessene Konzentration an Essigsäure lag bei 305 mg/L, was den höchsten Messwert aller Versuchsphasen bei kontinuierlichem Betrieb darstellt. Der Faulschlamm ist daher nach Roediger (1997) als gut stabilisiert zu charakterisieren und der Prozess als stabil zu werten.

In Bezug auf das Auftreten erhöhter Konzentrationen an organischen Säuren gibt es zwei Ausnahmen:

- 1. Am 28.10.2013 wurden 778 mg/L Essigsäure und 478 mg/L Propionsäure gemessen. Dies war zu einem Zeitpunkt, als zuvor über mehrere Tage keine Beschickung erfolgte und anschließend wieder die übliche Tagesmenge aufgegeben wurde.
- 2. Im Mai 2014 wurde die Anlage mit sehr hoher Belastung betrieben. Diese Periode (Versuchsphase 8.1, "Grenzen der Anaerobie") wurde gesondert betrachtet.

In Abbildung 91 sind das Schlammalter, die CSB-Raumbelastung und die Summe der gemessen organischen Säuren (Milch-, Ameisen-, Essig-, Propion-, Butter- und Valeriansäure) der Pilotanlage gegenübergestellt.

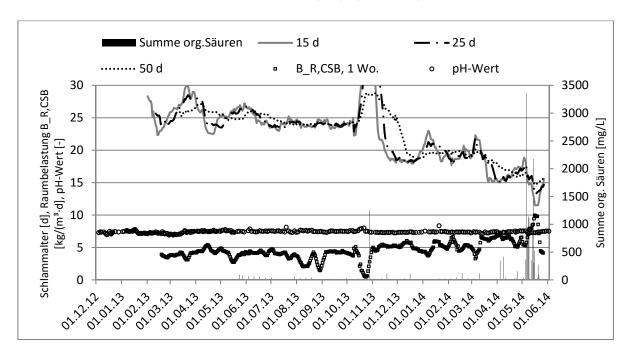


Abbildung 91: Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung); alle Versuchsphasen

Der pH-Wert war aufgrund der hohen Pufferkapazität des NH₄-N praktisch stets konstant. Einzelne Ausreißer sind auf Fehler bei der Bestimmung zurückzuführen. Im Mittel liegt der Wert bei etwa 7,4.

Tabelle 25: Statistische Auswertung der gemessenen pH-Werte des Faulschlammes

Parameter	рН
Einheit	-
Anzahl	266
Mittelwert	7,4
Median	7,4
Standardabweichung	0,2
95 %-Wert	7,7
5 %-Wert	7,1

Versuchsphase 8.1: "Grenzen der Anaerobie: Belastung"

Ziel der Versuchsphase 8.1 (05.05.2014 bis 19.05.2014) war es, die Konzentration organischer Säuren zu bestimmen, um so den Faulungsprozess bei hoher Belastung zu evaluieren.

Hierbei ist anzumerken, dass die Beschickung montags bis freitags höher war als am Wochenende, da bedingt durch das limitierte Volumen der Vorlagebehälter die Beschickung am Wochenende reduziert werden musste. Wie in Abbildung 92 deutlich zu erkennen ist, steigt der Wert der Summe an organischen Säuren nach Erhöhung der Beschickung stark an.

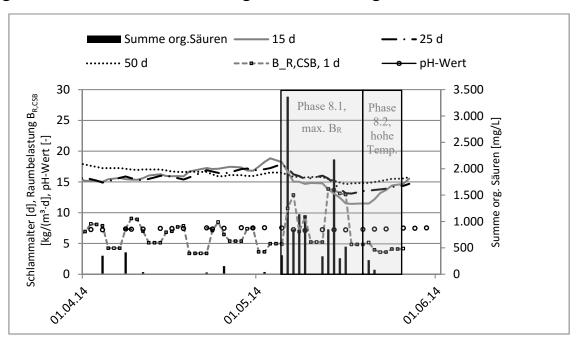


Abbildung 92: Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage (mitlaufende Bilanzierung); Versuchsphasen 8.1 und 8.2

Während dieser Versuchsphase erfolgte eine häufigere Beprobung und Analyse des Faulschlammes. Die einzelnen analysierten organischen Säuren sind in Tabelle 26 angeführt.

Tabelle 26: Analysierte organische Säuren im Faulschlamm mit Summenformel

Name der organischen Säure	Summenformel
Milchsäure	$C_3H_6O_3$
Ameisensäure	CH_2O_2
Essigsäure	$C_2H_4O_2$
Propionsäure	$C_3H_6O_2$
Buttersäure	$C_4H_8O_2$
Valeriansäure	$C_5H_{10}O_2$

Jene organischen Säuren, die in hohen Konzentrationen gemessen wurden, waren Essig- und Propionsäure, wobei die höchsten Messwerte von der Propionsäure stammen. Valerian- und Buttersäure waren auch, jedoch in geringeren Konzentration zu messen. Die Konzentrationen an Milch- und Ameisensäure lagen unter der Bestimmungsgrenze.

Es zeigte sich, dass bei Erhöhung der Beschickung die Propionsäure ansteigt. Diese wird in weiterer Folge zu Essigsäure abgebaut, sodass am folgenden Tag die Konzentration an Propionsäure geringer und jene an Essigsäure höher ist (Abbildung 93).

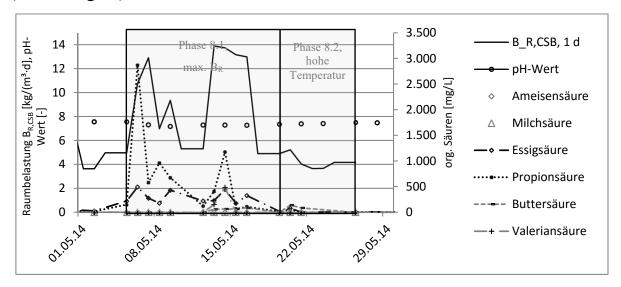


Abbildung 93: Gegenüberstellung Schlammalter, Raumbelastung, Summe an organischen Säuren und pH-Wert der EOS-Pilotanlage; Versuchsphasen 8.1 und 8.2

Beträgt die Konzentration der Summe der organischen Säuren mehr als 1.000 mg/L, ist generell mit einer Beeinträchtigung der Faulung, insbesondere der Gasproduktion, zu rechnen. Diese wurde untersucht und die Daten in Abbildung 94 dargestellt. Nach Anstieg der organischen Säuren ist eine Abnahme der spezifischen Gasproduktion, bezogen auf die zugeführte oTS, zu verzeichnen, was bei der Ganglinie des gleitenden Wochenmittels deutlich wird. Da die Beschickung der Faulung nicht konstant über 7 Tage pro Woche erfolgen konnte und am Wochenende weniger beschickt wurde, ist der Rückgang bei der spezifischen Gasproduktion auf Basis täglicher Daten nicht deutlich erkennbar. Nach zwei Wochen wurde die Beschickung reduziert und die vorhandenen organischen Säuren wurden sukzessive abgebaut. Die spezifische Gasproduktion stieg wieder an, was auf den Abbau von Stoffen zurückzuführen ist, die während der Zeit der erhöhten Belastung nicht abgebaut wurden.

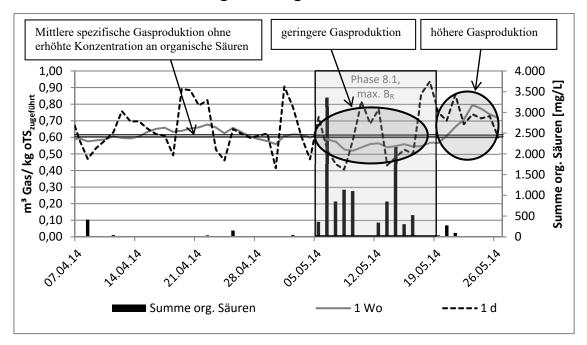


Abbildung 94: Gegenüberstellung spezifische Gasproduktion (Basis: Tages- und gleitende Wochenmittel) und Summe an organischen Säuren der EOS-Pilotanlage; Versuchsphase 8.1

6.4.2 Temperatur

Die meisten bekannten Methanbakterienstämme haben ihren optimalen Temperaturbereich zwischen 30 und 45 ° (Kroiss, 1985). Henze und Harremoës (1983) haben Literaturdaten von Methanproduktionsraten zusammengestellt und in Abhängigkeit von der Temperatur aufgetragen (Abbildung 95). Die Zunahme der Aktivität beträgt zwischen 10 und 30 °C etwa 10 %/°C und ist damit etwas größer als bei aeroben Mischkulturen, deren Aktivitätszunahme etwa 7 %/°C ausmacht. Bei Temperaturen über 30 °C bleibt die Aktivität nahezu konstant und fällt über 40 °C rasant ab. Ab 45 °C kommt die Aktivität zum Erliegen und es treten irreversible Schädigungen der Methanbakterien auf.

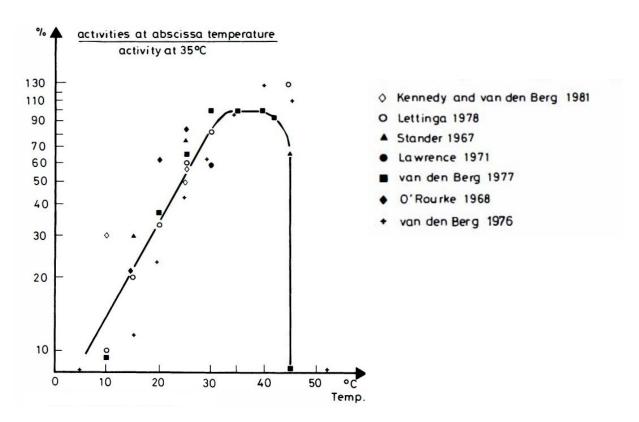


Abbildung 95: Relative Aktivität der mesophilen Methanbakterien in Abhängigkeit von der Temperatur, bezogen auf die Aktivität bei 35 °C (= 100 %) (Henze und Harremoës, 1983)

Versuchsphase 8.2: "Grenzen der Anaerobie: Temperatur"

In der Versuchsphase 8.2 (19.05.2014 bis 26.05.2014) sollten Auswirkungen der Gasproduktion zufolge Erhöhung der Temperatur untersucht werden. Ab Freitag, den 16.Mai 2014 wurde damit begonnen, die Temperatur im Faulbehälter zu erhöhen (Abbildung 96).

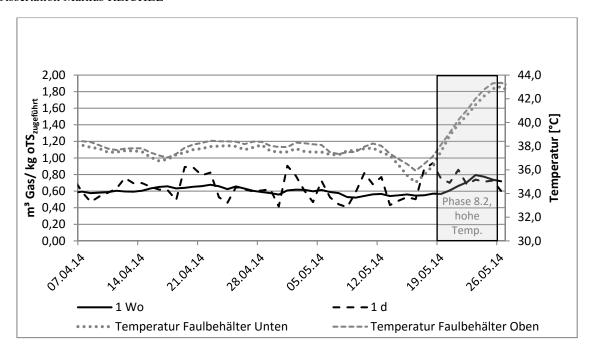


Abbildung 96: Gegenüberstellung spezifische Gasproduktion (Basis: Tages- und gleitende Wochenmittel) und Temperatur im Faulbehälter (oben, unten) der EOS-Pilotanlage; Versuchsphase 8.2

Der Versuch hat gezeigt, dass bei einer Erhöhung der Temperatur auf über 41 °C die Gasproduktion steigt. Die Versuchsdauer war relativ kurz, sodass aus den Ergebnissen dieses Zeitraums nicht auf Auswirkungen auf das Langzeitverhalten geschlossen werden kann. Der Versuch zeigte allerdings, dass kurzfristige Temperaturerhöhungen keinen unmittelbaren negativen Einfluss auf die Biozönose haben.

6.5 Schwefelwasserstoff im Gas

Die Gaszusammensetzung wurde mit einem Handmessgerät regelmäßig stichprobenartig gemessen. Die gemessene Konzentration an H₂S lag als Medianwert bei 28 ppm. Der höchste während des gesamten Versuchszeitraumes gemessene Wert lag bei 68 ppm (Abbildung 97). Die geringe Schwefelwasserstoff-Konzentration im Faulgas kann mit dem Einsatz eines Phosphorfällmittels auf Eisenbasis in der Belebungsanlage begründet werden, da Eisen Schwefelwasserstoff als Eisen(II)-sulfid (FeS) bindet.

Schwefel im Faulgas wirkt sich negativ auf die Lebensdauer von Motoren aus bzw. verkürzt die Serviceintervalle und erhöht die Menge an Öl, die gewechselt werden muss, deutlich. Der Wechsel auf ein Fällmittelprodukt auf Aluminiumbasis würde die Konzentration an H₂S im Faulgas erhöhen.

Tabelle 27: Statistische Auswertung der stichprobenartigen Messwerte von H₂S

Parameter	H_2S
	[ppm]
Anzahl der Messwerte	36
Mittelwert	30
Median	28
Standardabweichung	11
Maximum	68

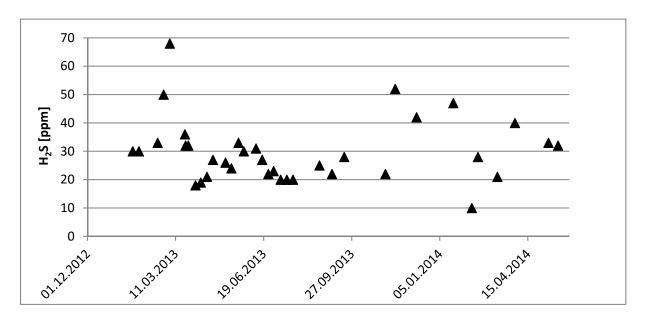


Abbildung 97: gemessener Schwefelwasserstoff-Anteil im Faulgas der Pilotanlage

6.6 Stickstoff: Bilanzierung und dynamische Betrachtung

6.6.1 Statische Betrachtung

Die Bilanzierung des Stickstoffs bei einer Anlage zur Schlammfaulung ist ebenso wie jene über den Phosphor relativ einfach, da der Stickstoff nur in der flüssigen bzw. festen Phase vorliegt, im Faulgas ist kein Stickstoff enthalten (Abbildung 99). Zunächst wird kontrolliert, ob die Bilanz geschlossen ist, um anschließend spezifische Kennwerte zu ermitteln, wieviel Stickstoff je Kilogramm CSB, TS und oTS in und aus der Faulung gelangen, um die Stickstofffracht zu quantifizieren die wieder in die Reinigungsanlage gelangt und dort entfernt werden muss.

vor Faulung (Input: Rohschlamm):
oTS (CSB, P, N)

Hydrolyse,
Methanisierung

Gas

Feststoff

Feststoff

Feststoff

Feststoff

Feststoff

NP

SB

NP

Flüssige Phase
(Trübwasser)

Abbildung 98: Vereinfachte, schematische Darstellung der Rücklösung von N und P bei der Faulung

Im Unterschied zur Methodik der CSB-Bilanzierung wird hier nicht ein Vergleich der zugeführten Frachten durchgeführt. Da beim Stickstoff im Faulbehälter kein Masseverlust zu erwarten ist und davon ausgegangen werden kann, dass der Stickstoff in einem bestimmten, nicht bzw. kaum schwankenden Verhältnis zur TS, oTS bzw. zum CSB vorliegt, kann die Konzentration des Inputs direkt der Konzentration des Outputs gegenüber gestellt werden.

Tabelle 28: Statistische Auswertung der Stickstoff-Analyseergebnisse

Art	F	Rohwerte	;	V	ergleich	n mit TS	S	V	ergleicl	n mit o	ΓS	V	ergleich	n mit C	SB
Herkunft	RS	FS	FS	RS	FS	FS	FS	RS	FS	FS	FS	RS	FS	FS	FS
Parameter	N-ges	N-ges	NH4-N		N-ges/1S	NH4-N/ TS	((N-ges) – NH4-N) / TS		N-ges/oTS	NH4-N/ oTS	((N-ges) – NH4-N) / oTS		N-ges/CSB	NH4-N/ CSB	((N-ges) – NH4-N) / CSB
Einheit	%/kg S	chlamm	mg/L	mg/g	mg/g	mg/g	mg/g	mg/g	mg/g	mg/g	mg/g	mg/g	mg/g	mg/g	mg/g
Anzahl	109	53	48	109	53	48,0	48	107	53	48	48	109	53	48	48
Mittelwert	0,357	0,358	1.877	53,6	89,1	46,9	42,2	69,7	142,3	74,9	67,1	37,5	90,1	47,5	42,6
Median	0,365	0,369	1.900	54,0	90,3	46,7	41,0	69,5	144,4	75,0	68,2	37,7	91,4	47,1	43,3
Standard- abweichung	0,054	0,033	141	4,9	7,6	4,1	6,18	7,0	11,1	7,9	8,34	2,8	7,7	4,97	5,83
95 %-Wert	0,419	0,393	2.017	60,4	99,4	52,0	51,9	81,7	158,3	88,7	78,8	42,4	101,1	56,4	49,8
5 %-Wert	0,210	0,302	1.647	44,9	79,2	39,5	34,2	59,5	126,5	62,8	55,9	32,5	77,5	40,0	33,9
Minimum	0,135	0,214	1.283	38,2	68,8	38,5	24,7	52,7	106,3	58,5	38,1	30,6	69,8	37,8	25,0
Maximum	0,433	0,408	2.084	67,4	103,6	57,8	54,2	90,9	160,2	96,0	82,0	43,9	104,4	59,1	55,4

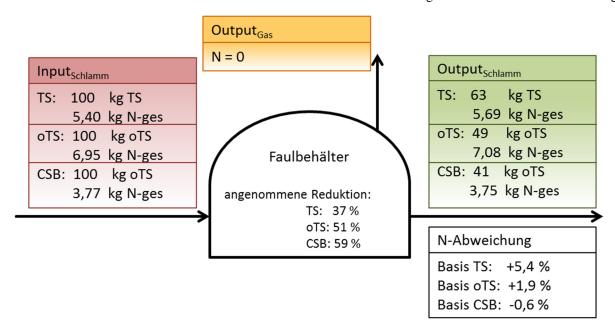


Abbildung 99: N-Bilanz auf Basis TS, oTS und CSB der Versuchsanlage

Nimmt man das mittlere Verhältnis von 47,25 mg NH₄-N/g TS_{FS} als Basis (mit einer Schwankungsbreite des Medianwertes von \pm 3,60 mg/L), lässt sich die zu erwartende NH₄-N-Konzentration im Faulbehälter ermitteln. Wird eine bestimmte TS-Reduktion in der Faulung angenommen, kann die zu erwartende Ammonium-Konzentration eine zugehörige Konzentration des TS_{RohS} abgeschätzt werden (Abbildung 100).

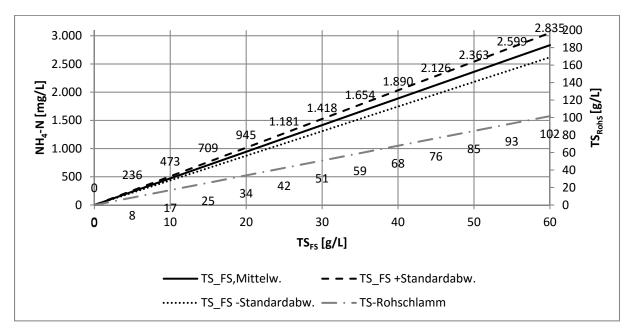


Abbildung 100: Ammonium-Konzentration im Faulschlamm, abhängig von TS im Faulbehälter; Datenbasis: Mittelwerte NH₄-N/TS_{FB} und zugehörige Werte TS_{RohS}, Annahme: TS-Reduktion = 41 %

Bei einer TS_{FS} von 4,0 % ergibt sich eine NH_4 -N-Konzentration von 1.890 mg/L. Die zugehörige TS_{RohS} ist abhängig vom Glühverlust und unterliegt jahreszeitlichen Schwankungen und kann mit $TS_{RohS} = 6.8$ % abgeschätzt werden.

6.6.2 Dynamische Betrachtung

In Abbildung 101 wird die TS_{FS} der Ammonium-Konzentration in der Faulung gegenübergestellt. Die Darstellung wurde um einzelne Ausreißer bereinigt, Zwischenwerte wurden interpoliert. Ammonium wurde wöchentlich, die Trockensubstanz zweimal pro Woche analysiert. Deutlich ist der Zusammenhang der beiden Parameter zu erkennen, wodurch die in Kapitel 6.6.1 (S.122ff) getroffenen Aussagen bestätigt werden.

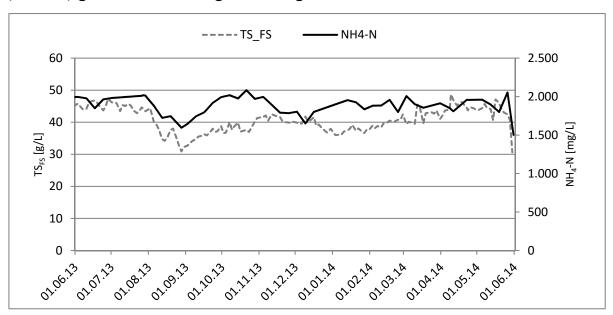


Abbildung 101: Vergleich von TSFS und NH4-N in der Faulung

Dynamische Betrachtung von Stickstoff-Kennzahlen

Es ist nicht auszuschließen, dass es jahreszeitliche Schwankungen des Stickstoffs in Bezug auf die oTS oder den CSB gibt, die auf unterschiedlichen Abbaugrad in der Faulung, Entwässerungsergebnisse etc. im Jahresverlauf schließen lassen. Zu diesem Zweck werden vier verschiedene Kennzahlen, bei denen es sich um Konzentrationen handelt, miteinander verglichen, die im Folgenden vorgestellt werden. Die Beschreibung bezieht sich stets auf die oTS. Bei den nachfolgenden Auswertungen sind Kennwerte auf oTS und sinngemäß auf CSB dargestellt.

1. N-ges_{RohS}/oTS_{RohS}: Stickstoffgehalt des Rohschlammes zu oTS_{RohS}

Der Stickstoffgehalt des Rohschlammes (N-ges_{RohS}) bezogen auf die oTS_{RohS} kann Auskunft darüber geben, ob es Schwankungen der oTS hinsichtlich derer Zusammensetzung (Kohlenhydrate, Fette, Proteine) gibt. Beim Rohschlamm ist der Anteil des Ammoniums zu vernachlässigen, weswegen dieser nicht analysiert wurde.

$$\frac{N-ges_{RohS}}{oTS_{RohS}} \qquad \frac{\left[\frac{mg}{kg}\right]}{\left[\frac{g}{kg}\right]} = \left[\frac{mg}{g}\right]$$
(6-4)

2. $N_{TS,FS}$ /oTS_{FS}: Stickstoffgehalt des Feststoffes im Faulschlamm zu oTS_{FS}

Dieses Verhältnis beschreibt, wie hoch der Anteil an Stickstoff in Bezug auf die organische Trockensubstanz im Faulschlamm ist.

Der im Feststoff des Faulschlammes enthaltene Stickstoff wird aus der Differenz des Gesamtstickstoffes (N-ges_{FS}) und dem Stickstoff der flüssigen Phase ermittelt. Bei letzterem kann vorausgesetzt werden, dass dieser gänzlich als NH₄-N vorliegt (Abbildung 102, Gleichung (6-6)).

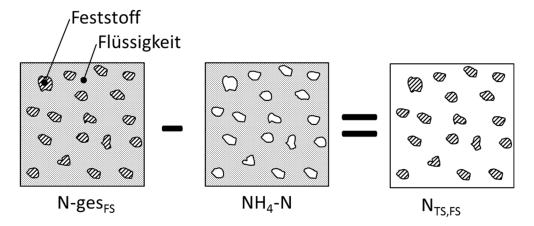


Abbildung 102: Vorgehensweise bei der Ermittlung des Stickstoffgehalts im Feststoff des Faulschlammes (N_{TS,FS})

$$N_{TS,FS} = (N - ges_{FS}) - (NH_4 - N_{FS})$$
 (6-5)

Die Konzentration wird durch Division der oTS_{FS} errechnet.

$$\frac{N_{TS,FS}}{\sigma TS_{FS}} \qquad \frac{\left[\frac{mg}{kg}\right]}{\left[\frac{g}{kg}\right]} = \left[\frac{mg}{g}\right] \tag{6-6}$$

3. $NH_4-N_{FS}/\Delta oTS$: Ammoniumgehalt des Faulschlammes im Vergleich zur abgebauten oTS

Das im Faulschlamm enthaltene Ammonium entsteht praktisch gänzlich durch Rücklösung während der Hydrolyse des zugeführten Substrats. Die in Lösung gehende Menge an Ammonium ist daher proportional zur abgebauten oTS-Fracht und dem Verhältnis N-ges_{RohS}/oTS_{RohS}. Schwankungen des Verhältnisses NH₄-N_{FS}/ Δ oTS sollten mit N-ges_{RohS}/oTS_{RohS} korrespondieren.

Die gemessene Ammonium-Konzentration ist eine Momentaufnahme, welche aus dem oTS-Abbau der vorangegangen Zeitperiode stammt. Für eine Auswertung ist es sinnvoll, das Mittel über einen längeren Zeitraum des oTS-Abbaus auf Tagesbasis zu bestimmen. Sinnvoll erscheint die Periode von etwa einem Schlammalter, weswegen in nachstehender Gleichung beispielhaft 4 Wochen angegeben sind.

$$\Delta oTS_{FS} = oTS_{RohS} - oTS_{FS} \Rightarrow oTS_{RohS} - oTS_{FS} \left[\frac{kg}{d} \right]$$

$$= \overline{oTS_{RohS}}|_{4Wo,d} - \overline{oTS_{FS}}|_{4Wo,d}$$
(6-7)

Bei der Berechnung der Verhältniszahl wird die abgeführte Ammonium-Fracht auf die abgebaute oTS-Fracht bezogen.

$$\frac{\text{NH}_{4}\text{-N}_{FS}}{\Delta \text{oTS}_{FS}} = \frac{\text{NH}_{4}\text{-N}_{FS} \cdot Q}{\text{oTS}_{RohS} - \text{oTS}_{FS}} \cdot \frac{\left[\frac{g}{\text{m}^{3}}\right] \cdot \left[\frac{\text{m}^{3}}{\text{d}}\right]}{\left[\frac{\text{kg}}{\text{d}}\right]} = \left[\frac{\text{mg}}{\text{g}}\right]$$
(6-8)

4. CH₄/ΔoTS: Menge Methan zur abgebauten oTS

Die Menge an gebildetem Methan und die Konzentration an Ammonium im Faulschlamm sind proportional zur abgebauten oTS-Fracht. Daher kann mit dem Verhältnis CH₄/ΔoTS das Verhältnis NH₄-N/ΔoTS verifiziert werden. Der Verlauf sollte bei diesen Parametern parallel erfolgen. Ist dies der Fall, können Fehler bei den Durchflussmessungen ausgeschlossen werden.

Die Ermittlung von Δ oTS erfolgt auf die gleiche Weise, wie bei NH4-N_{FS}/ Δ oTS. Für die Menge Methan kann die täglich produzierte Menge herangezogen werden.

$$\frac{\text{CH}_4}{\Delta \text{oTS}_{\text{FS}}} \cdot \frac{\left[\text{m}^3_{\text{CH}_4}/\text{d}\right]}{\left[\frac{\text{kg}}{\text{d}}\right]} = \left[\frac{\text{m}^3_{\text{CH}_4}}{\text{kg}}\right] \tag{6-9}$$

Die Ergebnisse sind in Abbildung 103 und Abbildung 104 100-fach überhöht dargestellt, damit Änderungen besser erkennbar sind.

Ergebnisse und Interpretation der dynamischen Auswertung

In den nachfolgenden Abbildungen sind die Auswertungen der zuvor beschriebenen Verhältniszahlen dargestellt.

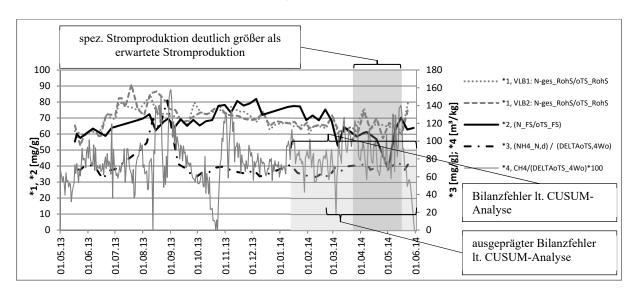


Abbildung 103: Ganglinien Verhältniszahlen Stickstoff, Basis oTS

Das Verhältnis N-ges_{RohS}/oTS_{RohS} (*1) zeigt leichte Tendenzen einer Jahresganglinie mit einem Höchstwert von etwa 90 mg N-ges/g oTS im Sommer (Juli) und einem Tiefstwert von etwa 60 mg N-ges/g oTS am Ende der kalten Jahreszeit (März). Das Verhältnis N_{FS}/oTS_{FS} (*2) folgt tendenziell diesem Verlauf mit einem Zeitversatz, der mit der hydraulischen Verweilzeit im Faulbehälter begründet werden kann. Der Gehalt an N-ges im Faulschlamm unterscheidet sich also kaum vom N-ges-Gehalt des Rohschlamms. Die Hydrolyse der im Rohschlamm enthaltenen N-Verbindungen erfolgt daher unabhängig von deren Ausgangskonzentration. Die hydrolysierten N-Verbindungen des Rohschlammes liegen gelöst als Ammonium oder Ammoniak vor.

Das Verhältnis NH₄-N/ΔoTS (*3) ist bis auf eine längere Periode im Sommer 2013 und eine kurze Periode im Herbst 2013 weitgehend konstant. Die als Ammonium vorliegende hydrolysierte Stickstofffracht kann daher als proportional zur abgebauten oTS-Fracht angenommen werden. Der in Abbildung 103 und Abbildung 104 deutlich zu erkennende Anstieg (*3) im Sommer 2013 ist mit dem Ausfall der MÜSE im August 2013 zu begründen, sodass die Pilotanlage für etwa 3 Wochen nur mit statisch eingedicktem Rohschlamm beschickt wurde. Mitte Oktober 2013 kam es erneut zu einem

Ausfall der MÜSE, sodass der Faulbehälter über einen Zeitraum von 9 Tagen kaum bis gar nicht beschickt wurde und ein leichter Anstieg des Verhältnisses NH₄-N/ΔoTS (*3) zu erkennen ist. Diese Zwischenfälle erklären, warum der Wert der spezifischen Gasproduktion CH₄/ΔoTS (*4) zweimal auf null abfällt.

Das Verhältnis CH₄/ΔoTS (*4), das die produzierte Methanmenge zur abgebauten oTS-Fracht angibt verläuft nahezu parallel zum Verhältnis NH₄-N/ΔoTS (*3). Die Abweichungen zum Verhältnis NH₄-N/ΔoTS (*3) beginnen etwa ab Mitte April 2014 größer zu werden. Bei der Überlagerung der Zeiträume mit den ermittelten Bilanzfehlern nach der CUSUM-Methode zeigt sich, dass hier auch ein ausgeprägter Bilanzfehler vorliegt. Zur Abweichung kommt es, weil in diesem Zeitraum die Messwerte der Methanmessung unplausibel sind.

Die Auswertungen und Interpretationen, die auf Basis der oTS vorgenommen wurden, lassen sich analog auf Auswertungen auf Basis des CSB übertragen (Abbildung 104).

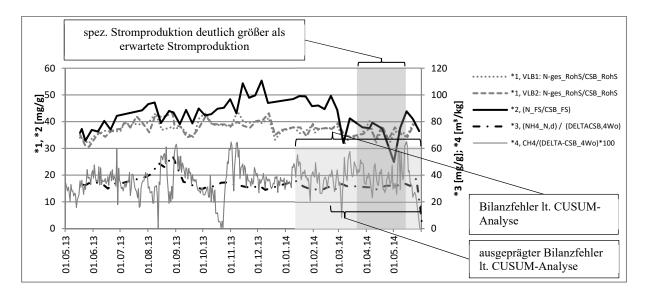


Abbildung 104: Ganglinien Verhältniszahlen Stickstoff, Basis CSB

6.7 Phosphor: Bilanzierung

Die Bilanzierung des Phosphors bei einer Anlage zur Schlammfaulung ist relativ einfach, da der Phosphor nur in der flüssigen bzw. festen Phase vorliegt, im Gas ist kein Phosphor enthalten (Abbildung 105). Zunächst wird kontrolliert, ob die Bilanz geschlossen ist, um anschließend spezifische Kennwerte zu ermitteln, wieviel Phosphor je Kilogramm CSB, TS und oTS in und aus der Faulung gelangen, was für weiterführende Betrachtungen wie Beurteilungen hinsichtlich MAP-Bildung (Magnesium-Ammonium-Phosphat) bedeutend ist.

Da beim Phosphor im Faulbehälter kein Masseverlust zu erwarten ist und davon ausgegangen werden kann, dass der Phosphor in einem bestimmten, nicht schwankenden Verhältnis zur oTS bzw. zum CSB vorliegt, kann die Konzentration des Inputs direkt der Konzentration des Outputs gegenüber gestellt werden.

Tabelle 29:	Statistische Auswei	tung der Phosphor-A	Analyseergebnisse

Art		Rohwert	e	1	ergleic	h mit TS	1	ergleic	h mit oTS
Herkunft	RS	FS	FS	RS	FS	FS	RS	FS	FS
Parameter	P-ges	P-ges	PO ₄ -P	P-g	es/TS	PO ₄ -P/TS	P-ge	s/oTS	PO ₄ -P/oTS
Einheit	%/kg \$	Schlamm	mg/L	m	g/g	mg/g	m	g/g	mg/g
Anzahl	109	53	48	109	53	48	107	53	48
Mittelwert	0,133	0,135	57,6	20,0	33,5	1,44	26,2	53,6	2,29
Median	0,142	0,140	55,9	20,6	34,2	1,38	26,4	55,0	2,24
Standardabweichung	0,028	0,019	12,7	3,7	4,1	0,32	4,5	6,5	0,50
95 %-Wert	0,159	0,151	81,7	24,0	37,1	1,97	31,9	59,6	3,07
5 %-Wert	0,069	0,093	39,1	10,3	28,6	1,06	15,3	46,0	1,66
Minimum	0,045	0,072	31,0	7,1	15,8	0,75	10,2	25,1	1,17
Maximum	0,177	0,153	87,8	25,8	38,3	2,29	34,8	60,9	3,45

Stellt man die Verhältnisse Phosphor-gesamt zur TS bzw. zur oTS, des Rohschlammes und des Faulschlammes gegenüber – unter Berücksichtigung einer TS-Reduktion von 37 % und einer oTS-Reduktion von 51 % (in Anlehnung an die Auswertungen zur Versuchsphase 1, siehe Kapitel 0, S. 108) – ergibt sich ein Bilanzfehler von +4,5 % bei der Basis TS und +2,1 % bei der Basis oTS. Beide Werte sind relativ klein, sodass die Richtigkeit der Methode (Analyse, Probenahme, Berechnung etc.) vorausgesetzt werden kann.

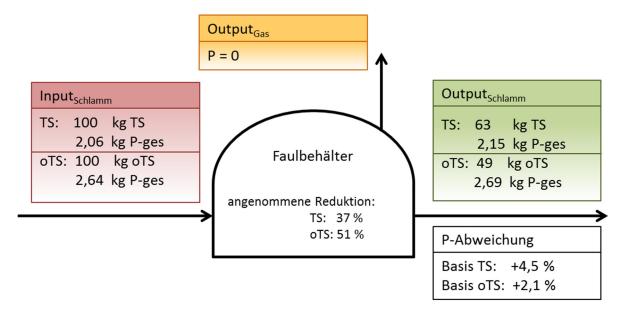


Abbildung 105: P-Bilanz auf Basis TS und oTS der Versuchsanlage

7 Maschinelle Schlammeindickung: Betriebsergebnisse

Für den Betrieb einer Faulung mit Trockensubstanzgehalt >> 4 % ist es unerlässlich, den Schlamm maschinell einzudicken. Für die Auswahl einer solchen Maschine gibt es zahlreiche Einflussfaktoren: Investitionskosten, Durchsatzmenge, Strombedarf, Platzbedarf, zur Verfügung stehende Stellfläche, Betriebs- und Ausfallsicherheit, Servicegarantie, Wartungsintensität, Bedienbarkeit, Geruchskapselung, erreichbare TS, Bedarf und Kosten für Konditionierungsmittel, Wasserbedarf, Abscheidegrad etc. Verschiedene Verfahren zur maschinellen Schlammeindickung stehen, wie bei Frey (2002) beschrieben, zur Verfügung.

Bei der Auswahl einer solchen Maschine wird dem Kriterium Abscheidegrad oft eine untergeordnete Beachtung geschenkt, obwohl dieses im Betrieb erhebliche Probleme verursachen kann. Feinteile, die nicht flocken, gelangen über das Filtrat zurück in die Abwasserreinigungsanlage. Werden diese in der biologischen Stufe nicht abgebaut bzw. nicht an den Schlamm adsorbiert, akkumulieren diese in der Anlage. Dieser Effekt ist insbesondere bei Zentrifugen von Interesse, da solche Feinteile schlechter abgeschieden werden. In weiterer Folge kann durch einen schlechten Abscheidegrad der maschinellen Eindickung der Schlammindex der Anlage verschlechtert werden.

Der Abscheidegrad bei der maschinellen Schlammeindickung kann durch zahlreiche Parameter beeinflusst werden: Kontaktzeit und -intensität zwischen Schlamm und Konditionierungsmittel, Aufenthaltszeit in der Maschine, Temperatur, Auswahl und Qualität des Konditionierungsmittels und vor allem Menge des Konditionierungsmittels. Der Wirkungsgrad sollte nach DWA-M 368 (2014) mindestens 95 % (besser > 97 %) betragen.

Schlamm ist eine Suspension von Feststoffen und Wasser. Das enthaltene Wasser ist in unterschiedlicher Art und Stärke an den Feststoff gebunden. Man unterscheidet zwischen freiem Wasser, das nicht an Schlammpartikel gebunden ist, und gebundenem Wasser. Gebundenes Wasser kann nach Kopp (2010) unterteilt werden in:

- Zwischenraumwasser, das durch Kapillarkräfte zwischen Klärschlammpartikeln oder in Flocken gebunden ist.
- Oberflächenwasser, das durch Adhäsionskräfte gebunden ist.
- In Hydrogelsystemen gebundenes Wasser.
- Zellinnenwasser: Zellflüssigkeit oder inneres Kapillarwasser.
- Chemisch gebundenes Wasser, das auch als Kristallwasser (Hydratwasser) bezeichnet wird und durch Ionenbindungen gebunden ist.

Bei der Schlammeindickung wird das freie Wasser abgetrennt, durch Konditionierungsmittel wird dies verbessert beschleunigt. und Konditionierungsmittel neutralisiert die an der Oberfläche der Schlammflocken befindlichen Ladungen, sodass die abstoßenden Kräfte zwischen den Flocken reduziert werden. Bei der Optimierung des Konditionierungsmittelbedarfs im laufenden Betrieb werden vor allem die Durchsatzleistung und die erreichte TS berücksichtigt, da diese einfach bestimmt werden können. Der Abscheidegrad wird oft nicht ausgewertet, da nicht alle Stoffströme erfasst werden. Mittels Bilanzierung ist es möglich, den Abscheidegrad zu ermitteln. Ist die optimale Dosierung des Konditionierungsmittels experimentell bestimmt worden, gilt es, die Dosierung an die tatsächliche TS des Zulaufs anzupassen. Oft erfolgt dies automatisch, in vielen Fällen erfolgt diese Anpassung manuell. Hierbei stellt sich die Schwierigkeit, dass einige Rechenoperationen erforderlich sind, weswegen vom Betriebspersonal davon Abstand genommen wird.

Im nachfolgenden wird eine Methode zur Quantifizierung des Abscheidegrades dargestellt und eine grafische Ermittlung des eingesetzten Konditionierungsmittels vorgestellt, die im Zuge des Projekts EOS erarbeitet wurden. Vor allem die grafische Methode des eingesetzten Polymers zur Optimierung der Dosierung hat sich im praktischen Betrieb bewährt.

7.1.1 Quantifizierung des Abscheidegrades einer maschinellen Schlammeindickung

Bei der Quantifizierung des Abscheidegrades stößt man in der Praxis oft auf das Problem, dass nicht alle Stoffströme erfasst werden. Insbesondere wird die Menge des Filtrats i.d.R. nicht erfasst. In Abbildung 106 ist das typische Verfahrensschema einer maschinellen Schlammeindickung mit den üblicherweise gemessenen Parametern dargestellt.

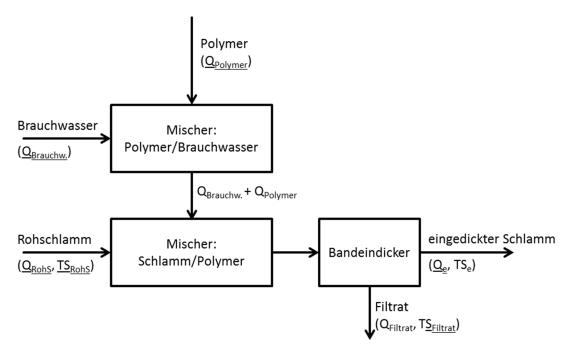


Abbildung 106: Stoffströme einer maschinellen Schlammeindickung; gemessene Messgrößen sind unterstrichen

Es gilt die Massenbilanz:

$$Fracht_{TS,RohS} = Fracht_{TS,e} + Fracht_{TS,Filtrat}$$
 (7-1)

$$Q_{RohS} \cdot TS_{RohS} = Q_e \cdot TS_e + Q_{Filtrat} \cdot TS_{Filtrat}$$
 (7-2)

Die Menge des Filtrats kann errechnet werden:

$$Q_{Filtrat} = Q_{RohS} + Q_{Brauchw.} + Q_{Polymer} - Q_e$$
 (7-3)

Wird die Menge des eingedickten Schlammes (Q_e) nicht erfasst, kann diese über die Zunahme der TS aufgrund der Eindickung abgeschätzt werden. In diesem Zusammenhang wird die TS-Fracht im Filtrat ($Fracht_{TS,Filtrat}$) vernachlässigt, sodass vereinfacht gilt:

$$Q_e = \frac{\mathrm{TS}_{\mathrm{RohS}}}{\mathrm{TS}_{\mathrm{e}}} \cdot Q_{RohS} \tag{7-4}$$

Der Wirkungsgrad der Abscheidung ist:

$$\eta = \left(1 - \frac{Q_{Filtrat} \cdot TS_{Filtrat}}{Q_{RohS} \cdot TS_{RohS}}\right) \cdot 100 \, [\%]$$
 (7-5)

Gleichung (7-3) in Gleichung (7-5) eingesetzt, ergibt:

$$\eta = \left(1 - \frac{\left(Q_{RohS} + Q_{Brauchw.} + Q_{Polymer} - Q_{e}\right) \cdot \text{TS}_{\text{Filtrat}}}{Q_{RohS} \cdot \text{TS}_{\text{RohS}}}\right) \cdot 100 \, [\%]$$
(7-6)

Bei der Pilotanlage wurde diese Methode angewandt. Um den Fehler der unsicheren Messung der Brauchwassermenge ($Q_{Brauchw.}$) zu eliminieren, wurde

vor und während der Probennahme die Bandreinigung nur mit Umlaufwasser betrieben, sodass $Q_{Brauchw}$ gleich null ist. In Tabelle 30 sind Ergebnisse des Abscheidegrades dargestellt.

Tabelle 30: Abscheidegrad der maschinellen Schlammeindickung

Anzahl	Min	Max	Mittelwert	Median
	[%]	[%]	[%]	[%]
5	91,0	98,5	95,4	97,1

Die Auswertungen zeigen, dass mit dem eingesetzten Seihband ein hohes Maß an Feststoffabscheidung möglich und die vorgestellte Methode praktikabel ist. Die Versuche wurden nicht intensiv betrieben, da im Zuge des Projekts EOS diese Fragestellung in Kombination mit der eingesetzten Maschine irrelevant wurde.

7.1.2 Praxisnahe Ermittlung des eingesetzten Polymers

Zur Optimierung des Konditionierungsmittels wird der eingesetzte Wirkstoff auf die erreichte Trockensubstanz bezogen.

$$Fracht_{WS} = Q_{Polymer} \cdot c_{Polymer}$$
 [kg WS/h] (7-7)

$$Fracht_{TS,RohS} = Q_{RohS} \cdot TS_{RohS}$$
 [kg TS/h] (7-8)

$$spezifischer WS-Einsatz = \frac{Fracht_{WS}}{Fracht_{TS RohS}}$$
 [kg WS/kg TS] (7-9)

In der Praxis ist oft ein Justieren der Einstellungen, v.a. der Polymerpumpe, erforderlich, wobei die Kontrolle des spezifischen Polymerverbrauchs oft nicht durchgeführt wird, da hierfür einige Rechenoperationen erforderlich sind. Aus diesem Grund wurde eine grafische Methode entwickelt, um die spezifische Polymermenge zu ermitteln.

Vorteile der Methodik:

- Rasche Anwendbarkeit
- Ein Computer oder Taschenrechner ist nicht erforderlich.
- Umrechnungsfehler in Bezug auf Einheiten werden ausgeschlossen.
- Das Ergebnis liegt augenblicklich vor.

Nachteile der Methodik:

- Das Diagramm ist für den jeweiligen Einsatzbereich abzustimmen.
- Das Diagramm ist nur für eine bestimmte Ansatzkonzentration des Polymers $c_{Polymer}$ gültig.
- Die Richtigkeit der Messwerte, die als Eingangsgrößen dienen, wird vorausgesetzt.

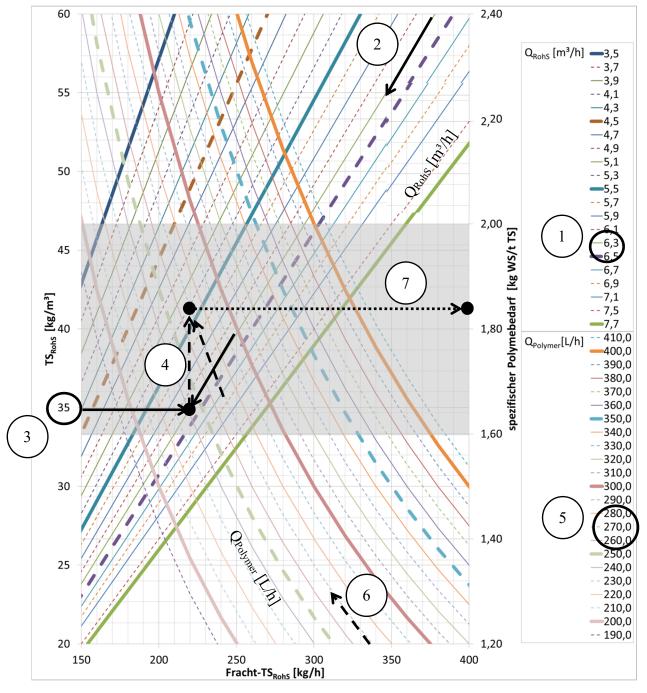


Abbildung 107: Ermittlung der Menge an Polymer-Wirksubstanz in Bezug auf die Feststofffracht des Rohschlammes; *c*_{Polymer} = 0,15 % WS, Erwartungsbereich grau hinterlegt

Erklärung zur grafischen Ermittlung des spezifischen Wirksubstanzeinsatzes:

- 1. Q_{RohS} [m³/h]: Farbe/Linie in Legende finden
- 2. Q_{RohS} [m³/h]: Linie in Diagramm finden
- 3. TS_{RohS} [g/L]: Horizontale Linie mit Linie für Q_{RohS} schneiden
- 4. Vom gefunden Schnittpunkt vertikale Linie bilden (nach oben bzw. nach unten)
- 5. *Q*_{Polymer} [L/h]: Farbe/Linie in Legende finden
- 6. Q_{Polymer} [L/h]: Linie in Diagramm finden und schneiden mit Linie "4"
- 7. Vom Schnittpunkt horizontal nach rechts und spezifischen Polymerbedarf ablesen [kg WS/t TS]

Zur einfacheren Beurteilung ist der Erwartungsbereich für die spezifische Menge an eingesetztem Polymer im Diagramm grau hinterlegt.

Beispiel: spezifischer Polymerverbrauch bei der Schlammeindickung

Angabe: Polymeransatzkonzentration (= Wirksubstanz, WS)

 $c_{Polymer} = 0.15 \%$, $c_{Polymer} = 0.15/100 = c_{Polymer} = 0.0015$ Menge der Polymerlösung $Q_{Polymer} = 270 \text{ L/h}$ Zufließende Rohschlamm-Fracht $Q_{RohS} = 6.3 \text{ m}^3/\text{h}$ TS-Konzentration des Rohschlammes $TS_{RohS} = 35 \text{ g/L}$

 Lösung: $Fracht_{Polymer} = 270 \cdot 0,0015 =$ 0,405 kg WS/h

 $Fracht_{TS,RohS} = 6,3 \cdot 35/1000 =$ 0,2205 t/h

 spezifischerWS-Einsatz = 0,405/0,2205 =
 1,84 kg WS/t TS

7.1.3 Erreichbare TS

Die maschinelle Schlammeindickung des Rohschlammes wurde bei der Pilotanlage mit einem Seihband durchgeführt. Als Konditionierungsmittel diente das Produkt Flocstar L214 der Fa. ACAT, ein flüssiges Polymer, mit dem eine auf die Wirksubstanz (WS) bezogene 0,15 %ige Lösung eingesetzt wurde. Die Dosierung lag üblicherweise zwischen 1,6 bis 2,0 kg WS/t TS. Die erreichte TS des Schlammes lag etwa im Bereich von 60 bis 80 g/L. Eine gute Korrelation zwischen diesen beiden Einflussgrößen ist nicht möglich, da zahlreiche Parameter das Ergebnis der Eindickung beeinflussen. So z. B.:

- Anzahl von eingesetzten Umlenkungen, sog. Spoiler: 0, 1, oder 2 Stk.
- Reinheit des Seihbandes
- Mischung des Polymers mit dem Schlamm (typischer Zulauf: $Q_{RohS} = 6.3 \text{ m}^3/\text{h}$ statisch eingedickter Schlamm $TS_{RohS} = 3.5 \%$; Brauchwasserdosierung zur besseren Einmischung des Polymers: $Q_{Brauchw.} = 3.0 \text{ m}^3/\text{h}$)
- Richtigkeit des Messwertes für die TS des Zulaufs

Eine eindeutige Ableitung hinsichtlich der Optimierung der Flockungsmitteldosierung für die Praxis kann aus den Messdaten nicht abgeleitet werden.

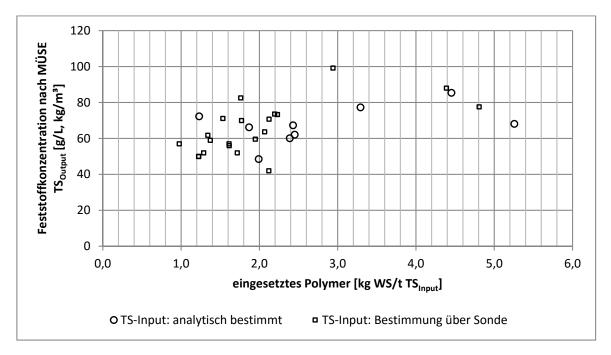


Abbildung 108: Erreichte TS mittels Seihband, in Abhängigkeit vom eingesetzten Polymer (RohS: PS+ÜS; Polymer: Flocstar L214, Fa. ACAT); TS_{Input}: "analytisch bestimmt" oder "Bestimmung mit Sonde", TS_{Output}: immer analytisch bestimmt

8 Auswertungen: Rheologie

8.1 Versuchsergebnisse

Um die in den vorangegangenen Kapiteln angeführten theoretischen Grundlagen auf ihre Praxistauglichkeit zu überprüfen, wurden rheologische Versuche im Labor durchgeführt und die Ergebnisse mit einer Versuchsstrecke im Feldversuch validiert. Die Versuche werden nachfolgend beschrieben und anschließend die Ergebnisse gegenübergestellt und diskutiert.

8.1.1 TS-Gehalt vs. Schubspannung bei ÜS und Rohschlamm

Der allgemein bekannte Zusammenhang, dass die Schubspannung mit steigender Trockensubstanz und sinkender Temperatur größer wird, konnte durch Versuche im Rahmen des Projekts EOS bestätigt werden (Abbildung 109). Bei Überschuss- und Rohschlamm lässt sich der Verlauf der gemessenen Schubspannungen in Abhängigkeit von der TS durch Potenzfunktionen sehr gut annähern.

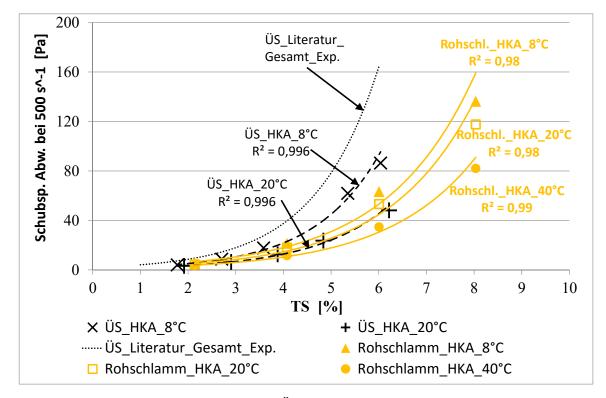


Abbildung 109: Schubspannung vs. TS: ÜS- und RohS der HKA-Wien im Vergleich mit Literaturdaten – Schubsp. von Abwärtsrampe des Messprogramms 500- 180/300/180 bei $\dot{\gamma} = 500\text{s}^{-1}$; Anpassungen mit Exponentialfunk.; Polymerkonz.-RohS: 3,93 kg WS/t TS (Füreder, 2014)

Bei gleicher TS wäre generell zu erwarten, dass Überschussschlamm eine höhere Schubspannung als Primärschlamm aufweist (Markis et al., 2013). Die Mischung dieser beiden Schlämme (= Rohschlamm) müsste demnach eine Schubspannung dazwischen haben. Die Versuche zeigen, dass die Schubspannungen für Überschuss- und Rohschlamm bei ähnlicher TS in der gleichen Größenordnung liegen, was nicht dem Erwartungswert entspricht. Hierbei dürften sich zwei gegensätzliche Einflüsse ausgleichen. Zwar verringert die Zugabe von Primärschlamm die Schubspannung von ÜS, doch dürfte die Zugabe von Polymer, das bei der maschinellen Eindickung eingesetzt wird, die Schubspannung erhöhen.

Die Literaturwerte für Schubspannungen von ÜS liegen deutlich über den Messwerten des ÜS der HKA-Wien (Abbildung 109).Begründet kann dies mit dem geringen Schlammalter (1,5 bis 2 Tage) der 1. Stufe der HKA-Wien werden (Füreder, 2013).

Die Auswertungen zeigen, dass die Schubspannung mit steigender TS zunimmt und steigender Temperatur abnimmt. Spezifika des Schlammes (Art des Schlammes, Schlammalter, Polymereinsatz etc.) haben jedoch erheblichen Einfluss auf die tatsächliche Schubspannung.

8.1.2 TS-Gehalt vs. Schubspannung bei Faulschlamm

Die Ergebnisse der 10 ausgewerteten Faulschlämme entsprechen weitestgehend jenen Werten, die in der Literatur zu finden sind. Erwähnenswert ist hierbei, dass sich die Ergebnisse der Messung zu zwei Gruppen zusammenfassen lassen, nämlich "Sommer" (Ende April bis September 2013) und "Winter" (Mitte September 2013 bis Jänner 2014). Diese rheologischen Messungen wurden stets bei 38 °C durchgeführt. Die Messwerte der Schubspannung für den Winter sind höher als jene für den Sommer. Die Faulzeit war im Winter mit etwa 20 Tagen kleiner als im Sommer mit 24 Tagen. Bei kleinerem Schlammalter liegt tendenziell ein geringerer oTS-Abbau vor, der oTS-Gehalt ist daher etwas höher. Nach Moshage (2004) steigt dadurch tendenziell die Viskosität des Faulschlamms. Was die Viskosität jedoch vermutlich stärker beeinflusst, ist die Tatsache, dass durch das Ausbleiben von Starkregenereignissen im Winter der Kanal nicht gespült wird, daher nicht so viel aTS in die Faulung gelangt und damit der relative Anteil an oTS in der Faulung steigt (Füreder, 2014).

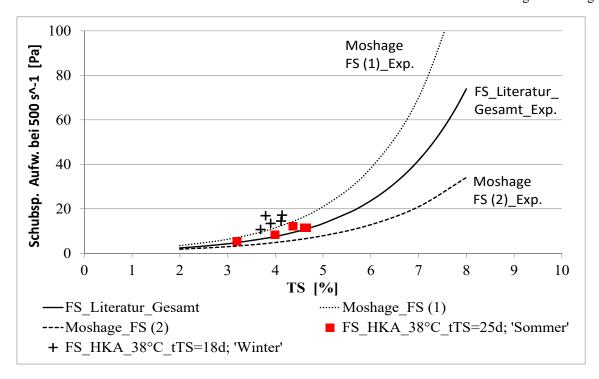


Abbildung 110: Schubspannung vs. TS-Gehalt: Faulschlamm der HKA-Wien im Vergleich mit Literaturdaten – Schubspannungen entstammen Aufwärtsrampe des Messprogramms 500-180/300/180 bei $\dot{\gamma} = 500 \text{s}^{-1}$ (Füreder, 2014)

8.1.3 Hydraulische Verlusthöhen

Die Fließkurven der Schlämme wurden mittels Rheometer bestimmt. Es wurden Ausgleichskurven nach Ostwald-de Waele und damit die Parameter n und K ermittelt. Schließlich wurden die hydraulischen Verluste gemäß Kapitel 4.4 bzw. Abbildung 42 (S. 61) berechnet. Die Druckverluste in der Rohrleitung wurden experimentell mittels Feldversuchen (Versuchsanordnung gemäß Kapitel 5.2.2, S. 77) bestimmt und zur Validierung der berechneten Verlusthöhen herangezogen. In Abbildung 111 sind die Ergebnisse grafisch gegenübergestellt.

Hydraulische Verluste bei Rohschlamm

Die hydraulischen Verluste von strukturviskosen Schlämmen mit hohen TS-Gehalten nehmen bei zunehmender Geschwindigkeit degressiv zu. Bei den untersuchten Schlämmen (TS = 7 bis 8 %) stellte sich bei einer Verdoppelung der Geschwindigkeit von 1 m/s auf 2 m/s eine Zunahme der Druckverluste von etwa 20 bis 30 % ein (Füreder, 2014). Im Vergleich dazu würde sich bei Wasser theoretisch die Zunahme vervierfachen.

Die Auswertungen zeigen, dass die auf Basis der rheologischen Messungen durchgeführten hydraulischen Berechnungen sehr gut mit den Messungen der Feldversuche übereinstimmen. Die Abweichungen betragen im Mittel ca. 5 % (Füreder, 2014).

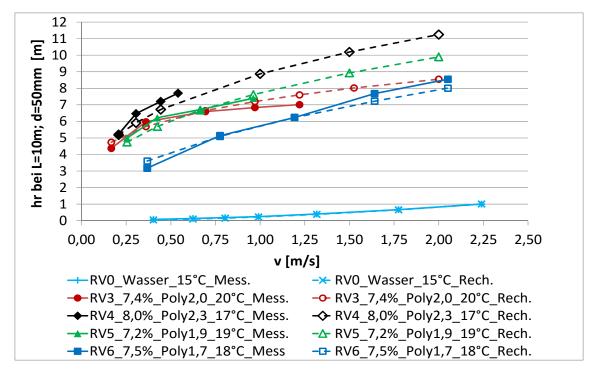


Abbildung 111: Verlusthöhen Rohschlamm der HKA-Wien in Abhängigkeit von v; D = 50 mm; l = 10 m; Poly = Polymerkonzentration [kg WS/t TS] (Anm.: "Mess." = Messung, "Rech."=Rechnung) (Füreder, 2014)

Hydraulische Verluste bei Faulschlamm

Die untersuchten Faulschlämme stammen alle aus der EOS-Versuchsanlage. Die unterschiedlichen TS-Gehalte (3,2 bis 3,9 %) lassen sich durch unterschiedliche Entnahmezeitpunkte erklären. Diese Schlämme sind wenig strukturviskos, sodass die Verluste bei steigender Geschwindigkeit progressiv zunehmen.

Auch hier stimmen die errechneten hydraulischen Verluste mit den Feldmessungen gut überein. Die Abweichungen betragen im Mittel ca. 13 %.

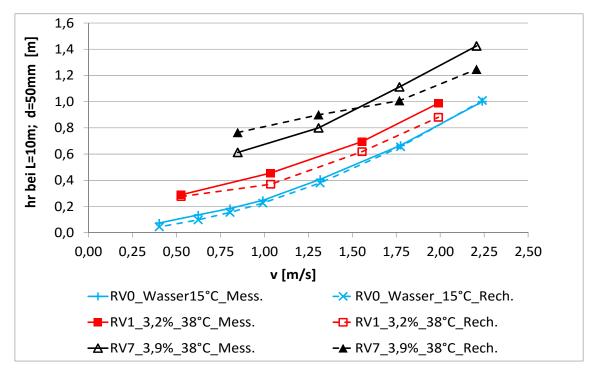


Abbildung 112: Verlusthöhen Faulschlamm der HKA-Wien in Abhängigkeit der Geschwindigkeit; D = 50 mm; l = 10 m

Zusammenfassung

Die verwendeten Berechnungsansätze für nicht-Newtonsche Flüssigkeiten zur Ermittlung der hydraulischen Verluste von nicht-Newtonschen (strukturviskosen) Flüssigkeiten erweisen sich als praxistauglich und ermöglichen eine viel bessere Näherung als Ansätze nach Newtonscher Rohrhydraulik.

8.2 Berechnung der hydraulischen Verlusthöhe

Mit den im Zuge des Projekts EOS ermittelten Fließparametern werden exemplarische Berechnungen der hydraulischen Verlusthöhe für Rohschlamm und Faulschlamm durchgeführt. Die Ergebnisse werden jenen von Wasser gegenübergestellt.

8.2.1 Zusammenstellung hydraulischer Kennwerte

Die für die Berechnung der hydraulischen Verlusthöhe erforderliche dynamische Viskosität ist für verschiedene Temperaturen in Tabelle 31 angegeben.

Tabelle 31: Dynamische Viskosität von Wasser bei unterschiedlichen Temperaturen (Bollrich, 2000)

Temperatur	η
[°C]	[Pa·s]
6	$1,47 \cdot 10^{-3}$
10	$1,31\cdot10^{-3}$
20	$1,00\cdot 10^{-3}$
30	$8,00\cdot 10^{-4}$
40	$6,50\cdot 10^{-4}$

Im Zuge der Versuche zum Projekt EOS wurden zahlreiche rheologische Untersuchungen durchgeführt. In den nachfolgenden Tabellen werden ermittelte Fließparameter (n, K) für Rohschlamm und Faulschlamm angegeben.

Tabelle 32: Experimentell bestimmte Fließparameter (n, K) von Rohschlamm

TS	K	n	τ bei 500s ^{-1*}	Probe	
%	$Pa\!\cdot\! s^n$	-	Pa	-	
6,01	4,17	0,44	64,6	RohS 5	
6,83	19,33	0,24	85,0	RohS 2	
7,19	16,62	0,32	121,9	RohS 15	
7,73	12,84	0,36	123,2	RohS 18	
8,03	36,50	0,22	145,9	RohS 4	
8,51	23,19	0,26	117,6	RohS 1	

Tabelle 33: Experimentell bestimmte Fließparameter (n, K) von Faulschlamm

TS	K	n	τ bei 500s ^{-1*}	Probe
%	$Pa \cdot s^n$	-	Pa	-
3,20	0,45	0,43	6,6	FS 5
3,69	0,98	0,38	10,7	FS 6
3,90	1,30	0,38	13,4	FS 8
3,99	0,50	0,45	8,4	FS 1
4,12	1,93	0,32	14,5	FS 7
4,14	2,40	0,32	17,2	FS 9
4,37	1,11	0,39	12,2	FS 4
4,44	1,69	0,36	15,9	FS 11
4,61	1,21	0,36	11,5	FS 3
4,65	1,19	0,37	11,6	FS 2

8.2.2 Beispielhafte Berechnung der hydraulischen Verluste

Für die beispielhafte Berechnung der hydraulischen Verluste wurde die Länge des Rohres *l* mit 100 m und einem Durchmesser *D* von 0,2 m gewählt. Es wurde angenommen, dass die Geschwindigkeit *v* 0,0 bis 2,5 m/s beträgt.

In Abbildung 113 sind die errechneten Verlusthöhen für Wasser, Faul- und Rohschlamm dargestellt. Damit die Unterschiede zwischen Wasser und Faulschlamm besser ersichtlich sind, wurden in Abbildung 114 nur die Ergebnisse von Wasser und Faulschlamm, mit einer anderen Skalierung, dargestellt.

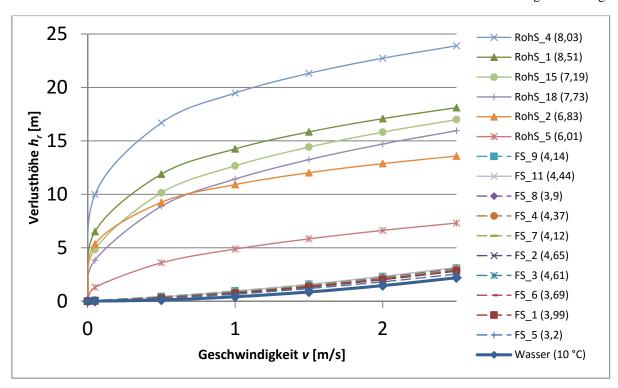


Abbildung 113: Verlusthöhe h_r in einer Rohrleitung (D=0.2 m, l=100 m) unterschiedlicher Medien (Wasser, Faulschlamm, maschinell eingedickter Rohschlamm) in Abhängigkeit von der Fließgeschwindigkeit, rechnerisch ermittelt nach Abbildung 42

Bei niedriger Geschwindigkeit ist das Verhältnis zwischen hydraulischer Verlusthöhe des Faulschlammes zu hydraulischer Verlusthöhe von Wasser $(h_{r,FS} / h_{r,Wasser})$ deutlich größer als bei höherer Geschwindigkeit. Bei 0,5 m/s liegt der Faktor bei etwa 2 bis 3, bei 2 m/s ist der Faktor etwa 1,2 bis 1,5.

Die hydraulische Verlusthöhe bei Rohschlamm ist deutlich größer als jene von Faulschlamm oder Wasser. Bereits bei geringen Geschwindigkeiten ist diese hoch, nimmt allerdings mit steigender Geschwindigkeit degressiv zu. Das Verhältnis der hydraulischen Verlusthöhe von Rohschlamm zur hydraulischen Verlusthöhe von Faulschlamm ($h_{r,RohS} / h_{r,FS}$) liegt bei 0,5 m/s etwa 12 bis 55, bei 2,0 m/s beträgt der Faktor etwa 3 bis 10.

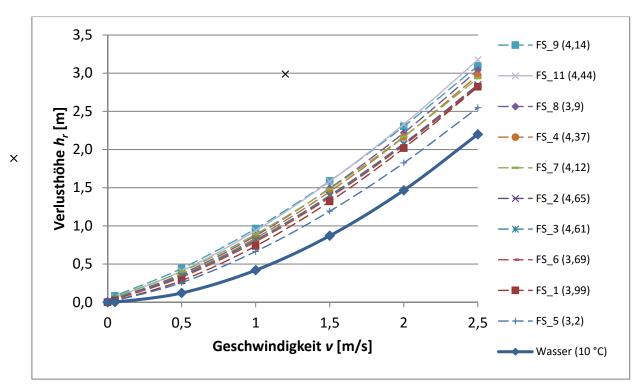


Abbildung 114: Verlusthöhe h_r in einer Rohrleitung (D = 0.2 m, l = 100 m) unterschiedlicher Medien (Wasser, Faulschlamm) in Abhängigkeit von der Fließgeschwindigkeit, rechnerisch ermittelt nach Abbildung 42

Die errechneten Verlusthöhen aus Abbildung 113 sind in Abbildung 115 in Abhängigkeit von der TS aufgetragen. Deutlich zeigt sich hier der Einfluss der TS auf die Verlusthöhe.

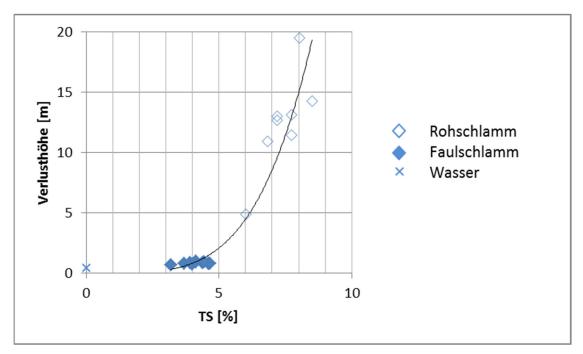


Abbildung 115: Verlusthöhe in Abhängigkeit der TS (Wasser, Faulschlamm, maschinell eingedickter Rohschlamm), rechnerisch ermittelt: D = 0.2 m, l = 100 m, v = 1 m/s, Werte aus Tabelle 33 und Tabelle 32

8.3 Optimierungspotential der hydraulischen Verluste

Soll eine Schlammfaulung mit erhöhter TS betrieben werden, ist es notwendig Schlämme verschiedener Qualität (statisch/maschinell eingedickt, ÜS, PS, RohS, FS etc.) zu pumpen. Die Druckverluste in der Rohrleitung werden höher, wenn folgende Bedingungen zutreffen:

Schla	mmeigenschaften			
0	Trockensubstanz	TS	[%]	steigt
0	Temperatur	T	[°C]	sinkt
0	Eingesetztes Polymer			[kg WS/t TS]
	steigt			
0	Glühverlust	GV	[%]	steigt
Rohrg	geometrie und Förderung			
0	Rohrdurchmesser	D	[m]	sinkt
0	Fließgeschwindigkeit	v	[m/s]	steigt
0	Rohrlänge	1	[m]	steigt
	o o o Rohrg	 Trockensubstanz Temperatur Eingesetztes Polymer steigt Glühverlust Rohrgeometrie und Förderung Rohrdurchmesser Fließgeschwindigkeit 		

Sollen die hydraulischen Verluste minimiert werden, stößt man hierbei schnell an Grenzen.

Trockensubstanz TS

Auf einer Kläranlage gibt es eine bestimmte Menge an anfallender Trockensubstanz, die im Wesentlichen von der Zulaufbelastung und dem Verfahren der Abwasserreinigung (1-/2-stufig, mit/ohne Vorklärung, Schlammalter im Belebungsbecken) abhängig ist. Soll eine Schlammfaulung mit einem bestimmten Schlammalter betrieben werden, gibt die anfallende Schlammenge und die Größe des Faulbehälters die Trockensubstanz-Konzentration vor, auf die der Schlamm eingedickt werden muss. Weitere Einflussfaktoren sind hierbei noch der Glühverlust des Rohschlammes und der Abbaugrad in der Faulung.

Bei einer vorgegeben Ausbildung der Abwasserreinigungs- und Schlammfaulungsanlagen besteht hierbei kaum Möglichkeit der Einflussnahme.

Rohrdurchmesser D und Fließgeschwindigkeit v

Bei gleichbleibender Durchsatzmenge Q steigt die Fließgeschwindigkeit v mit dem Quadrat des Rohrdurchmessers D. Demzufolge hat die Wahl eines größeren

Rohrdurchmessers eine erhebliche Verringerung der Fließgeschwindigkeit zur Folge, die bei der Berechnung der hydraulischen Verlusthöhe quadratisch einfließt. Dem muss allerdings entgehen gehalten werden, dass stark strukturviskose Flüssigkeiten (z. B. maschinell eingedickter Rohschlamm) bei hohen Geschwindigkeiten nur mehr geringe Änderungen der Reynoldszahl nach Metzner und Reed Re_{MR} erfahren, sodass sich die Änderung des Druckverlustes nur mehr gering auswirkt.

Rohrlänge 1

Die Rohrlänge wird auf der Kläranlage zumeist durch örtliche Gegebenheiten vorgegeben und kann durch geschickte Planung eventuell optimiert werden (Positionierung der Becken und der maschinellen Schlammeindickung, Leitungsführung). Es sei darauf hingewiesen, dass lokale Verluste durch Einbauten (Krümmer, Rückschlagklappen, Messungen etc.) einen erheblichen Einfluss auf den gesamten Druckverlust einer Leitung ausmachen können.

Optimierungspotential ist durch eine alternative Art der Beschickung von Rohschlamm in den Faulbehälter auszumachen (Abbildung 116).

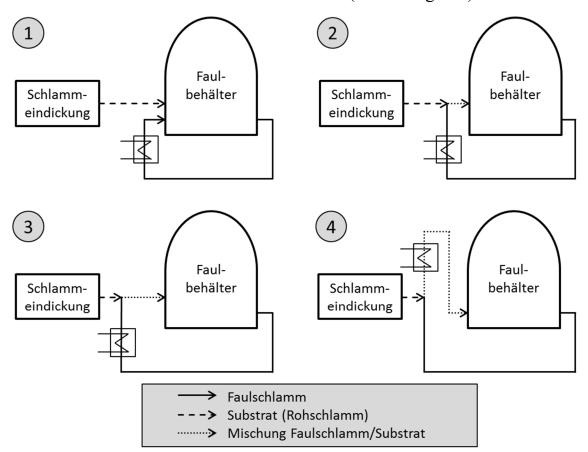


Abbildung 116: Möglichkeiten der Dosierung von Substrat in den Faulbehälter

1) Beschickung des RohS in den Faulbehälter:

Üblicherweise wird das Substrat direkt in den Faulbehälter gepumpt. Die Länge der Substrat-Beschickungsleitung beträgt in diesem Fall das Maximum, nämlich die Entfernung zwischen dem Ort der Eindickung (Seihband, Zentrifuge, statischer Eindicker) und der Faulung selbst.

2) Beschickung des RohS in die FS-Umwälzleitung

Wird das Substrat in die Faulschlamm-Umwälzleitung gepumpt, kann die Länge der Rohschlamm-Beschickungsleitung erheblich verkürzt werden. Außerdem bietet diese Variante den Vorteil, dass das Substrat bereits in der Leitung mit dem Faulschlamm und damit der Biozönose des Faulbehälters in Kontakt gebracht wird. In der Rohrleitung ist die lokal eingebrachte Mischenergie ein Vielfaches der spezifischen Mischenergie im Faulbehälter. Die sich einstellende TS des Mischschlammes (Rohschlamm + Faulschlamm) ist abhängig von der TS der beiden Schlämme und dem Mischungsverhältnis.

$$TS_{RS+FS} = \frac{TS_{RohS} \cdot Q_{RohS} + TS_{FS} \cdot Q_{FS}}{Q_{RohS} + Q_{FS}}$$
(8-1)

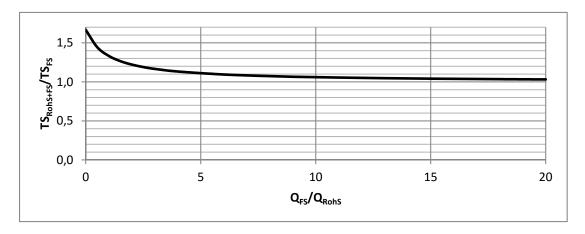


Abbildung 117: Verhältnis der Trockensubstanzkonzentrationen von Mischschlamm (TS_{RohS+FS}) zu Faulschlamm (TS_{FS}) in Abhängigkeit des Mischungsverhältnisses (Q_{FS}/Q_{RohS}); Annahme: TS-Reduktion in der Faulung = 40 %)

Ein Mischungsverhältnis bis (etwa) 1:5 bringt eine erhebliche Reduktion der TS des Rohschlammes und somit auch eine Verringerung der hydraulischen Verluste mit sich (Bsp: $TS_{FS} = 4,0$ kg/m³, $TS_{RohS} = 6,7$ kg/m³, Mischungsverhältnis $Q_{FS}/Q_{RohS} = 1:5$ \rightarrow $TS_{RohS}/TS_{FS} = 1,13$ \rightarrow $TS_{RohS+FS} = 4,4$ kg/m³). Bei einem Verhältnis kleiner als 1:5 sinkt die TS des Mischschlammes nur mehr unbedeutend.

3) Beschickung des RohS in die FS-Umwälzleitung und Verlegen der FS-Umwälzleitung

Durch das Verlegen der Faulschlamm-Umwälzleitung in Richtung der Substrat-Beschickungsleitung kann dessen Länge verkürzt werden.

4) Beschickung des RohS in die FS-Umwälzleitung, Verlegen der FS-Umwälzleitung und Erwärmung des gemischten Schlammes

Die Wärmemenge, die in einen Faulbehälter eingebracht werden muss, um die Temperatur zu halten, wird als konstant angenommen. Der Wärmestrom ist jene Wärmeenergie, die vom Heizmedium (i.d.R. Wasser) an den Schlamm abgegeben wird. Werden die Verluste nicht berücksichtigt, dann gilt Gleichung (8-2).

Der erforderliche Wärmestrom errechnet sich nach Gleichung (8-3).

$Q = U \cdot$	$A \cdot \Delta T$	(8-3)
mit: <i>Q</i>	Wärmestrom	[W]
U	Wärmedurchgangskoeffizient	$[W/(m^2 \cdot K)]$
A	Übertragungsfläche	$[m^2]$
ΔT	mittlere Temperaturdifferenz	
	(auch $\Delta\theta$ in Verwendung)	[K]

Die mittlere Temperaturdifferenz ΔT bezieht sich hierbei auf den Wärmetauscher.

$$\Delta T = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1/\Delta T_2)}$$
mit: ΔT mittlere Temperaturdifferenz [K]
$$\Delta T_1$$
 Temperaturdifferenz der Medien am Anfang
des Wärmetauschers [K]
$$\Delta T_2$$
 Temperaturdifferenz der Medien am Ende
des Wärmetauschers [K]

Der Wärmestrom kann auch wie folgt ausgedrückt werden. Wird dieser und die mittlere Temperaturdifferenz als konstant angenommen, kann der erforderliche Massestrom errechnet werden, was der Durchsatzmenge entspricht.

$$\dot{Q} = c \cdot \dot{m} \cdot \Delta T$$
 (8-5)
mit: \dot{Q} Wärmestrom [W]
 c spezifische Wärmekapazität [J/(kg·K)]
 \dot{m} Massestrom [kg/s]
 ΔT mittlere Temperaturdifferenz [K]

Wird der Wärmetauscher nach der Einmischung von Rohschlamm in den Faulschlamm positioniert, kann die Menge des umzuwälzenden Schlammes evtl. reduziert werden, da die Temperaturspreizung ΔT zwischen Schlamm und dem Wärmeträger (i.d.R. Wasser) größer wird.

Die Reduktion der Fließgeschwindigkeit v bringt auch eine Reduktion der Reynoldszahl Reme mit sich. Dies kann den Wirkungsgrad des Wärmetauschers erheblich verschlechtern. da für einen guten Wärmeübergang Wärmetauscher turbulente Fließverhältnisse im vorausgesetzt werden. Wird die Strömung laminar, ist es wahrscheinlich zweckmäßig, den Rohschlamm nach dem Wärmetauscher einzumischen.

Für Überlegungen hinsichtlich der Optimierung gehen hier folgende Faktoren ein:

- o Trockensubstanzgehalt bzw. Fließeigenschaften von
 - Rohschlamm: TS_{RohS} bzw. dessen Fließeigenschaften (n, K)
 - Faulschlamm: TS_{FS} bzw. dessen Fließeigenschaften (*n*, *K*)
- Mischungsverhältnis von TS_{RohS} und TS_{FS}
 - TS_{Mischschlamm} bzw. dessen Fließeigenschaften (n, K)
- o mittlere Temperaturdifferenz ΔT , die vorgegeben wird durch
 - die maximale Oberflächentemperatur des Wärmetauschers und
 - die maximale Temperatur des Schlammes beim Verlassen des Wärmetauschers
- Massestrom m
 durch den Wärmetauscher bzw. erforderliche
 Energie f
 ür
 - Heizungspumpe
 - Faulschlamm-Umwälzpumpe
 - Substrat-Pumpe

9 Durchmischung

9.1 Allgemeines zur Durchmischung

Der Durchmischung kommt bei der Faulung eine besondere Bedeutung zu und hat mehrere Aufgaben (Dichtl et al., 2005):

- Die aktive Biomasse soll mit dem Rohschlamm gemischt werden, um einen intensiven Stoffaustausch zu erreichen. Hierfür empfiehlt sich die Einmischung des Rohschlammes in die Faulschlamm-Umwälzleitung, da hier die Mischenergie deutlich größer als im Faulraum ist.
- Durch die ständige Durchmischung soll die biochemische Symbiose der abbauenden Bakterienpopulationen nicht gestört werden. Substrat, pH-Wert, organische Säuren und Temperatur sollen gleichmäßig verteilt sein, damit es nicht zu lokalen Hemmungen kommt.
- Die Turbulenz im Reaktor soll der Bildung einer Schwimmschlammdecke entgegen wirken und Ablagerungen vermeiden.

In großtechnischen Faulanlagen werden folgende Einrichtungen zur Umwälzung eingesetzt:

- Hydraulische Umwälzung durch Pumpen
- Mechanische Umwälzung durch Rühr- und Mischwerke, Schraubenschaufler
- Umwälzung durch Gaseinpressung

Bei der Bemessung einer Umwälzvorrichtung wird üblicherweise der Energieeintrag zur Durchmischung durch das entstehende Gas nicht berücksichtigt. In Kapitel 9.2.1 wird hierfür eine Quantifizierung durchgeführt.

Für die Auslegung von Mischeinrichtungen in Faulbehältern existiert keine einheitliche Bemessungsvorschrift. Die Bemessung erfolgt in der Praxis aufgrund von Erfahrungen des jeweiligen Mischsystems. Zum Vergleich der verschiedenen Verfahren kommen dennoch folgende Größen zur Anwendung:

- Leistung pro Reaktorvolumen [W/m³]
- Anzahl der theoretischen Reaktorumwälzungen pro Tag [d⁻¹]

Für die Vorplanung kann man nach Dichtl et al. (2005) von folgenden Werten ausgehen:

• Schraubenschaufler: $5-20 \text{ d}^{-1}$

• Außenliegende Umwälzung: 2 – 4 d⁻¹

• Gaseinpressung: $5-10 \text{ W/m}^3$ Anschlussleistung der Verdichter

• Rührwerke: $2-6 \text{ W/m}^3 \text{ Anschlussleistung}$

Diese Bemessungsansätze zeigen, dass die Qualität der Reaktordurchmischung im Betrieb sehr unterschiedlich ist. Die Durchmischung ist lediglich ein Faktor für den geordneten Prozessablauf der Schlammfaulung. Zahlreiche Parameter sind bei der Bemessung zu berücksichtigen:

- Geometrie des Faulbehälters
- Viskosität des Schlammes \rightarrow f(TS_{FS} bzw. oTS_{FS})
- Wirkungsweise der Umwälzeinrichtung: flächig, punktuell
- Störende Einflüsse, wie z. B. Verzopfungen und Ablagerungen
- Volumen zur reibenden Fläche
- etc.

9.2 Umwälzung durch entstehendes Gas

In diesem Kapitel wird eine allgemein gültige Abschätzung für das Potential der eingebrachten Turbulenz aufgrund der Gasproduktion gegeben. Eine Abschätzung für die erforderliche Energiedichte bei der Durchmischung eines Faulbehälters wird aus Messdaten der Pilotanlage abgeleitet, um schließlich auf Auswirkungen auf den Betrieb und die Planung einer Faulanlage mit unterschiedlicher Höhe einzugehen.

9.2.1 Eingebrachte mechanische Energie durch entstehendes Gas

Der Energieeintrag durch aufsteigende Gasblasen kann über deren Wasserverdrängung berechnet werden. Zum Heben von einem m³ Wasser bzw. Schlamm um einen Meter ist Arbeit zu leisten.

Arbeit = Kraft · Weg =
$$m \cdot g \cdot h = 1000[\text{kg}] \cdot 9.81 \left[\frac{\text{m}}{\text{s}^2}\right] \cdot 1[\text{m}] = 9.810[\text{J}] = 9.810[\text{Ws}]$$
 (9-1)

Mit der Umrechnung 1 Wh = 3.600 J erhält man die Arbeit zu 9.810 J / 3.600 s·h⁻¹ = 2.72 Wh. Unter der Voraussetzung, dass für die eingebrachte Turbulenz die Zustandsgrößen in halber Tiefe gelten, wurde Gleichung (9-2) für Druckbelüftungsanlagen bei Belebungsanlagen erstellt (DWA-M 229-1, 2013; Frey, 1993).

$$q_{L} = \frac{spezP_{BB}}{2,72} \cdot \frac{1}{ET} \cdot \frac{\left(1013 + 98,1 \cdot \frac{ET}{2}\right)}{1013} \cdot \frac{273}{\left(273 + T_{W}\right)}$$
mit: q_{L} spezifischer Luftvolumenstrom [Nm³/(m³_{BB}·h)]
$$spezP_{BB}$$
 spezifische Energiedichte im BB
$$ET$$
 Eintauchtiefe [m]
$$T_{W}$$
 Wassertemperatur [°C]

Die eingebrachte spezifische Energiedichte ergibt sich umgeformt zu:

$$spezP_{BB} = q_L \cdot 2,72 \cdot ET \cdot \frac{1013}{\left(1013 + 98,1 \cdot \frac{ET}{2}\right)} \cdot \frac{(273 + T_W)}{273}$$
 (9-3)

Bei einem Belebungsbecken mit Tiefenbelüftern durchströmt das Gas den Wasserkörper von den Belüfterelementen bis zur Wasseroberfläche, der sog. Eintauchtiefe *ET*. Soll diese Gleichung sinngemäß auf Faulbehälter angewendet werden, muss ein Abminderungsfaktor eingeführt werden, der die mittlere Höhe der Gasproduktion berücksichtigt.

$$et_{FB,\emptyset} = \left(1 - \frac{h_{\emptyset Gasprod.}}{h_{FB}}\right)$$
mit: $et_{FB,\emptyset}$ Abminderungsfaktor für die Höhe des durchschnittlichen Entstehungsortes des Gases (oben: 0, unten: 1) [-]
 $h_{\emptyset Gasprod.}$ Höhe des durchschnittlichen Entstehungsortes des Gases [m]
 h_{FB} Höhe des Schlammes im Faulbehälter [m]

Zusätzlich zu Gleichung (9-3) muss der Überdruck im Gasraum des Faulbehälters p_{FB} berücksichtigt werden. Die durch das im Faulbehälter entstehende Gas eingetragene spezifische Energiedichte ergibt sich zu:

$$spezP_{FB} = q_{FB} \cdot 2,72 \cdot h_{FB} \cdot et_{FB,\theta} \cdot \frac{1013 + p_{FB}}{\left(1013 + p_{FB} + 98,1 \cdot \frac{h_{FB} \cdot et_{FB,\theta}}{2}\right)} \cdot \frac{(273 + T_{FB})}{273} \quad (9-5)$$
mit: $spezP_{FB}$ spezifische Energiedichte im FB [W/m³_{FB}] q_{FB} spezifische Gasproduktion im FB [Nm³/(m³_{FB}·h)] h_{FB} hydrostatische Höhe im FB [m] $et_{FB,\theta}$ Abminderungsfaktor für die Höhe des durchschnittlichen Entstehungsortes des Gases (oben: 0, unten: 1) [-] p_{FB} Überdruck im Gasraum des Faulbehälters [mbar] T_{FB} Temperatur des Schlammes im Faulbehälter[°C]

Bei der Annahme, dass die mittlere Gasproduktion in der halben Tiefe ($et_{FB,\emptyset} = 0,5$) erfolgt und der Überdruck im Faulbehälter vernachlässigt werden kann, ergibt dies:

$$spezP_{FB} = q_{FB} \cdot 2,72 \cdot \frac{h_{FB}}{2} \cdot \frac{1013}{\left(1013 + 98,1 \cdot \frac{h_{FB}}{4}\right)} \cdot \frac{(273 + T_{FB})}{273}$$
(9-6)

In Abbildung 118 ist der Zusammenhang zwischen der spezifischen Energiedichte und der spezifischen Gasproduktion für verschiedene Höhen des Faulschlammes aufgetragen. Folgende Interpretationen können daraus abgeleitet werden, wenn die Höhe des Faulbehälters als konstant angenommen wird:

• Größere Energiedichte durch steigende Gasproduktion Steigt in einem Faulbehälter die Gasproduktion, werden die Energiedichte und damit die Turbulenz größer.

• Größere Energiedichte durch höheren Reaktor

Je höher der Faulbehälter ist, desto länger wird der Weg, den die Gasblasen aufsteigen, wodurch die eingetragene mechanische Energie größer wird.

• Größere Energiedichte durch höhere Trockensubstanz des Faulschlamms (TS_{FS})

Wird ein Faulbehälter mit höherer Trockensubstanz betrieben und bleibt der Gasertrag gleich, steigt die eingetragene Energie proportional zur Erhöhung von TS_{FS}.

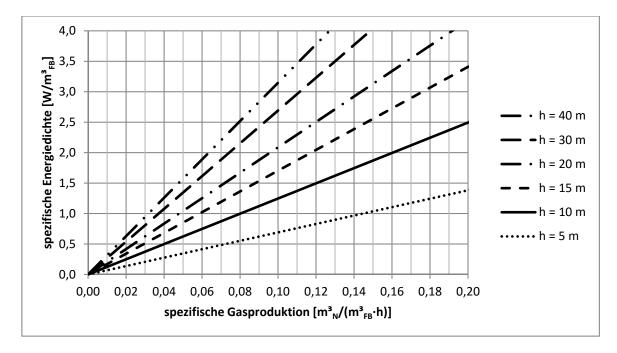


Abbildung 118: Zusammenhang zwischen spezifischer Energiedichte und Höhe des Faulbehälters, in Abhängigkeit der spezifischen Gasproduktion; Annahmen: $T_{FB} = 38$ °C, $et_{FB,\theta} = 0.5$

Implizit ist auch die Information enthalten, dass die durch das entstehende Gas eingetragene mechanische Energie steigt, je tiefer der Ort der Gasentstehung im Faulbehälter ist (Abbildung 120, S.160). Wird das Substrat in der Nähe des Faulbehälterbodens gleichmäßig eingebracht ist der Effekt am größten.

Wenn es möglich ist, ohne Zuschalten einer Mischeinrichtung den Faulschlamm turbulent zu halten, kann Energie eingespart werden.

Beispiel:	Quantifizierung des Energieauf	wandes	einer	Faulbehälter-
	Mischeinrichtung			
Angabe:	Volumen des Faulbehälters	$V_{FB} =$	2.500	m^3
	Faulraumvolumen je Einwohnerwert	$V_{FB,EW} =$	40	L/EW
	Mittlere Belastung der Anlage		60	%
	Leistungsaufnahme der			
	Mischeinrichtung	$P_{elektr.} =$	3	W/m^3
Lösung:	Bemessungsgröße der Faulanlage:			
	2.500 / 0,04 =		62.500	EW
	Belastung der Faulanlage:			
	60 / 100 · 62.500 =		37.500	EW
	Leistungsaufnahme der Mischeinrich	tung:		
	3·2.500 / 1.000 =	$P_{elektr.} =$	7	,5 kW
	Energiebedarf der Mischeinrichtung			
	(elektrische Arbeit): 7,5·24·365	$W_{elektr.} =$	65.700	kWh
	Energiebedarf je EW und Jahr:			
	65.700 / 62.500 =	<u>W_{elektr.}/E</u>	W = 1	<u>,1 kWh/(EW·a)</u>

Das Energieeinsparungspotential bei der Umwälzeinrichtung kann mit etwa 1 kWh/(EW·a) abgeschätzt werden. Dies deckt sich mit Angaben von Lindtner (2008), der einen Energiebedarf für die Faulung mit gesamt von 1,0 bis 2,5 kWh/(EW₁₂₀·a) angibt.

9.2.2 Ermittlung der erforderlichen Energiedichte zur vollständigen Durchmischung

Ziel einer optimierten Planung kann es sein, den Energiebedarf für die Umwälzung zu minimieren. Daraus leitet sich die Frage ab, bei welcher Energiedichte man von einer vollständigen Durchmischung sprechen kann.

In der Planung ist darauf Rücksicht zu nehmen, ob die Durchmischung kontinuierlich oder diskontinuierlich erfolgt. Bei diskontinuierlicher

Durchmischung sind deutlich höhere Energiedichten erforderlich, als bei einer kontinuierlichen Durchmischung. Die Durchmischung durch die Gasproduktion selbst kann also bzgl. der erforderlichen Energiedichte nur mit anderen kontinuierlich betriebenen Mischeinrichtungen verglichen werden. Dies ist insbesondere beim Vergleich von Angaben für erforderliche Energiedichten in Regelwerken zu beachten.

Vollständige Durchmischung liegt dann vor, wenn in jedem Punkt des Reaktors Stoffkonzentrationen, allen voran der Trockensubstanz-Konzentration, vorliegen. Durch Tracer-Versuche kann dies quantifiziert werden. Bei diesen gelangt ein Stoff über den Zulauf in den Behälter und im Ablauf wird die Konzentration dieses Stoffes im zeitlichen Verlauf gemessen. Über Modellrechnungen kann man auf die Effektivität der Durchmischung und auf Kurzschlüsse schließen, wie beispielsweise bei Steinle (1984) dargestellt. Diese Methode kann auch dahingehend adaptiert werden, dass anstatt der Zugabe eines Stoffes der Zulauf eine signifikant kleinere oder größere Temperatur gegenüber dem Reaktorinhalt hat und im Ablauf die Temperatur gemessen wird. Setzt man die Temperatur als Tracer zur Beurteilung der vollständigen Durchmischung eines Reaktors ein, kann dies auch im laufenden Betrieb erfolgen. Dazu wird die Temperaturverteilung im Behälter beobachtet. Warmes Wasser ist spezifisch leichter als kaltes Wasser und steigt daher auf, weswegen im Faulbehälter, wenn die Durchmischung nicht ausreichend ist, oben höhere Temperaturen als unten gemessen werden.

Die Berechnung der Dichte von luftfreiem Wasser kann mit der Gleichung (9-7) und den Koeffizienten aus Tabelle 34 erfolgen (DKD, 2002).

$$\rho_{Wasser,LF} = \frac{a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4 + a_5T^5}{1 + bT}$$
mit:
$$\rho_{Wasser,LF} \quad \text{Dichte von luftfreiem Wasser} \quad \text{[kg/m³]}$$

$$T \quad \text{Temperatur} \quad \text{[°C]}$$

Tabelle 34: Koeffizienten für die Berechnung der Dichte von luftfreiem Wasser für Gleichung (9-7).

a_0	a_1	a_2	<i>a</i> ₃	<i>a</i> ₄	a_5	b
[°C]	$[^{\circ}C^{-1}]$	$[^{\circ}C^{-2}]$	$[^{\circ}\mathrm{C}^{-3}]$	$[^{\circ}\mathrm{C}^{-4}]$	[°C ⁻⁵]	[-]
999,83952	16,952577	$-7,9905127 \cdot 10^{-3}$	$-4,6241757\cdot 10^{-5}$	$1,0584601 \cdot 10^{-7}$	$-2,8103006\cdot 10^{-10}$	0,0168872

Im Temperaturbereich von 30 °C bis 40 °C (mesophile Faulung) ändert sich beim Anstieg der Temperatur um ein Grad Celsius die Dichte im Mittel um -0,035 %/°C.

Zu Temperaturunterschieden in der Faulung kommt es durch Einmischung von kaltem Rohschlamm, Erwärmung des Schlammes, Wärmeverluste durch Abstrahlung und Wärmeverluste über den Wasserdampf im Gas. Die Erwärmung aufgrund biologischer Prozesse ist zu vernachlässigen.

Die Ergebnisse der Pilotanlage wurden für die Auswertung herangezogen und sind in Abbildung 119 dargestellt. Die Differenz der mittleren täglichen Temperatur oben und unten ($\Delta T_d = T_{FB,oben} - T_{FB,unten}$) wurde der spezifischen Gasproduktion gegenübergestellt.

Hierbei ist zu beachten, dass zahlreiche Fehlerquellen in die Ergebnisse einfließen können, die am Beispiel der Pilotanlage erläuterte werden:

• Temperaturmessungen

Die Ergebnisse der Temperaturmessungen können fehlerhaft sein (Kalibrierung, Übertragungsfehler, Umrechnungsfehler, Einbausituation der Sonde etc.)

• Bestimmung der Gasmenge

Bei der für die Auswertung herangezogenen Gasmenge handelt es sich um die elektronisch, messtechnisch erfasste Gasmenge. Fehler gegenüber der tatsächlichen Gasmenge sind nicht auszuschließen.

• Abstrahlverluste

Aufgrund von Abstrahlverlusten der Umwälzleitung, in der sich eine Temperaturmessung befindet, kann es zu Messwerten kommen, die kleiner sind, als die Temperatur des Schlammes im Reaktor vor der Einströmung in die Leitung.

• Dynamik des Systems

Ist der Faulbehälter aufgrund hoher Gasproduktion vollständig durchmischt und wird anschließend die Gasproduktion kleiner, dauert es bis sich ein Temperaturgradient einstellt.

Der Temperaturgradient war bei eingeschalteter außenliegender Umwälzung (min. $Q = 150 \text{ m}^3/\text{h}$; Umwälzung ca. 28 d⁻¹) sehr klein, der Median lag bei 0,03 °C, sodass man von vollständiger Durchmischung ausgehen kann. War die außenliegende Umwälzung abgeschaltet, sank die Schlammumwälzung, da lediglich die Zirkulationspumpe für den Wärmetauscher in Betrieb war, die eine $21.5 \text{ m}^3/\text{h}$ 4 d⁻¹). Förderleistung von hatte (Umwälzung ca. Temperaturgradient war hier größer, mit dem Median 0,6 °C. Tendenziell sank bei höherer Gasproduktion die Temperaturdifferenz, da mit steigender Gasproduktion die Durchmischung größer wurde. Legt man eine Hüllkurve über erforderliche vollständige die Daten. kann die Gasproduktion für Durchmischung ermittelt werden (Abbildung 119).

Die Auswertung zeigt einige Ausreißer, die in zwei Gruppen unterteilt werden können und die im Folgenden interpretiert werden.

Ausreißer 1: An diesen Tagen (14.05.2014-16.05.2014) war die Beschickung deutlich größer als sonst und betrug im Mittel 17,3 m³/d, was einem theoretischen Schlammalter von 7,5 d entspricht. Die verhältnismäßig hohe Temperaturdifferenz kann mit dem Sinken der Temperatur im unteren Bereich des Faulbehälters begründet werden, da die große Menge an Schlamm vom Wärmetauscher nicht entsprechend aufgeheizt werden konnte. Am Tag nach dieser Periode (17.05.2014) wurde deutlich weniger beschickt (6,1 m³/d). Dieser Datenpunkt ist auch in Abbildung 119 war Gasproduktion diesem markiert. Die an Tag noch hoch, da gespeichertes Substrat abgebaut wurde, die Temperaturdifferenz sank auf 0,10 °C.

Ausreißer 2: An diesem Tag (03.02.2014) wurde ein Versuch zur Stoßbelastung begonnen, sodass kurzfristig mehr Gas als am Vortag produziert wurde. Die Turbulenz hat nicht ausgereicht, um zu einer vollständigen Durchmischung des Faulbehälters beizutragen. Nach Beendigung der Stoßbelastung wurde für 24 Stunden nicht beschickt, die Gasproduktion ging zurück, sodass sich dies nicht positiv auf die Durchmischung ausgewirkt hat.

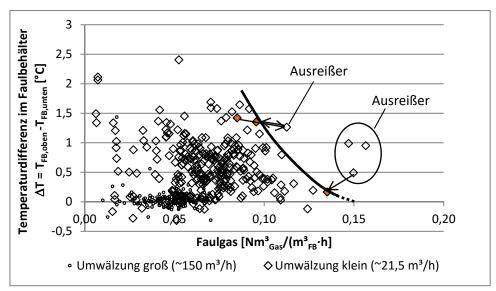


Abbildung 119: Temperaturdifferenz im Faulbehälter der Pilotanlage in Abhängigkeit von der spezifischen Gasproduktion

Interpretiert man die in Abbildung 119 eingetragenen Daten, kann für vollständige Durchmischung des Reaktors der Pilotanlage eine spezifische Gasproduktion von 0,15 Nm³_{Gas}/(m³_{FB}·h) ermittelt werden. Mit Gleichung (9-6) kann die zugehörige Energiedichte errechnet werden. Der Ort der Gasentstehung wird mit 30 bis 50 % der Faulbehälterhöhe abgeschätzt. Der Abminderungsfaktor *et_{FB,Ø}* (Gleichung (9-4) ergibt sich damit zu 0,7 bis 0,5. Die erforderliche spezifische Energiedichte für vollständige Durchmischung beträgt daher zwischen 0,96 bis 1,29 W/m³_{FB}. Entstünde das Gas ausschließlich am Boden des Faulbehälters, betrüge die eingebrachte mechanische Energie 1,75 W/m³_{FB}. (Abbildung 120).

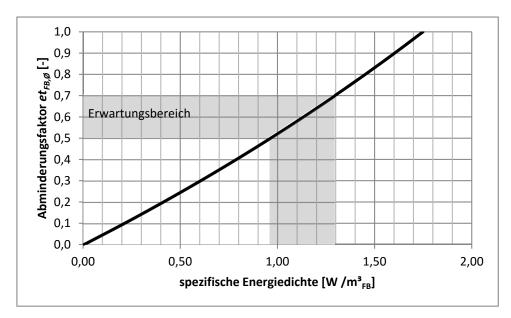


Abbildung 120: Erforderliche Energiedichte für vollständige Durchmischung eines Faulbehälters in Abhängigkeit der Gasentstehungshöhe (1 = unten, 0 = oben); T = 38 °C, Annahmen: 0,15 Nm³_{Gas}/(m³_{FB}·h) ausreichend bei $h_{FB} = 4,6$ m

Vergleicht man diesen errechneten Bereich $(0.96-1.29 \text{ W/m}^3)$ mit Empfehlungen nach Dichtl et al.(2005) für Gaseinpressung $(5-10 \text{ W/m}^3)$ erscheint dies relativ wenig, auch bei der Anwendung von Rührwerken wird eine höhere Leistungsdichte $(2-6 \text{ W/m}^3)$ empfohlen. Gaseinpressungen werden üblicherweise nicht kontinuierlich betrieben, sodass die hohe Anschlussleistung erforderlich ist, um die Massenträgheit des Schlammes zu überwinden. Da Rührwerke kontinuierlich betrieben werden, muss die Massenträgheit also nicht überwunden werden. Rührwerke wirken lokal beschränkt. Die Strömung ist in unmittelbarer Nähe des Rührwerks groß und nimmt mit der Entfernung rasch ab. Bei Faulschlamm handelt es sich um eine nicht-Newtonsche Flüssigkeit, sodass dieser Effekt größer ist als bei Wasser.

Erfolgt die Einbringung des Substrats am Boden des Faulbehälters (idealerweise flächig), trägt das entstehende Gas über die gesamte Grundfläche der Faulung zur Turbulenz bei. In diesem Zusammenhang relativiert sich der Unterschied zwischen der hier ermittelten erforderlichen Energiedichte durch entstehendes Gas im Vergleich zu den Empfehlungen bei Gaseinpressung und Rührwerken.

Der Zusammenhang zwischen der erforderlichen Höhe eines Faulbehälters für vollständige Durchmischung und der spezifischen Gasproduktion ist in Abbildung 121 dargestellt.

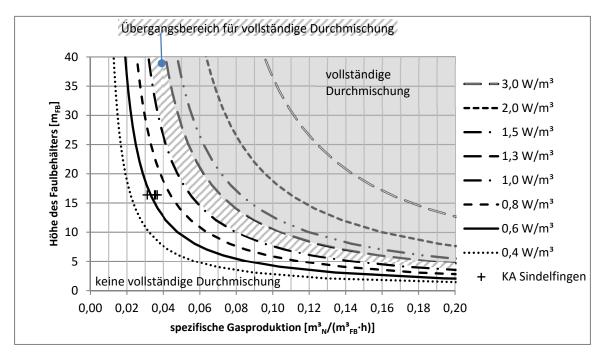


Abbildung 121: Zusammenhang zwischen spezifischer Gasproduktion und erforderlicher Höhe des Faulbehälters in Abhängigkeit der erforderlichen Energiedichte für vollständige Durchmischung; Annahmen: $T_{FB} = 38$ °C, $et_{FB,\emptyset} = 0.5$

Vergleich mit Betriebsdaten der KA Sindelfingen (Deutschland)

Zur Verifikation der obigen Überlegungen wurden Betriebsergebnisse der Kläranlage Sindelfingen (Deutschland) in Abbildung 121 integriert. Hierbei handelt es sich um die Jahresmittelwerte der Jahre 2010 bis 2013. Diese Anlage wird mit hoher TS_{FS} betrieben (4,8 bis 5,3 % TS_{FS}). Die Einbringung des PS und ÜS erfolgt in zwei separaten Leitungen am Boden der Anlage ohne vorherige Mischung mit Faulschlamm. Die Umwälzung erfolgt durch Gaseinpressung. Betriebserfahrungen zeigen, dass es ohne Gaseinpressung zur Schichtung des Faulschlammes kommt, weswegen sie einmal pro Tag für 30 Minuten eingeschaltet wird. Die ermittelten Energiedichten (0,57 bis 0,67 W/m³) liegen damit am unteren Ende des Bereichs, ab dem vollständige Durchmischung zu erwarten ist. Die Faulung der KA Sindelfingen wurde im Auswertungszeitraum mit einer höheren TS_{FS} als die Pilotanlage (im Mittel 3,8 % TS_{FS}) betrieben. Es ist anzunehmen, dass aufgrund des höheren Feststoffgehaltes die Viskosität des Faulschlammes der KA Sindelfingen höher ist, als jener der Pilotanlage und daher der Schlamm eine höhere Energiedichte benötigt, um eine vollständige Durchmischung zu erzielen.

<u>Beispiel</u>: Erforderliche Höhe eines Faulbehälters bei ausreichender Durchmischung durch entstehendes Faulgas

Angabe allgemein:

Lösung b:

erforderliche Energie für

gemäß Gleichung (9-5)

	Durchmischung	$spezP_{FB}$ =	$= 1.0 \text{ W/m}^3$
	Temperatur im Faulbehälter	$T_{FB} =$	38 °C
	mittlerer Entstehungsort des Gases	$et_{FB,\emptyset} =$	0,5
	Überdruck im FB (wird		
	vernachlässigt)	$p_{FB} =$	0,0 mbar
Angabe a:	spezifische Gasproduktion	$q_{FB} =$	$0.04 \text{ m}^3\text{N}/(\text{m}^3\text{FB}\cdot\text{h})$
Lösung a:	gemäß Gleichung (9-5)	$h_{FB} =$	<u>26,1 m</u>
Angabe b:	spezifische Gasproduktion	$q_{FB} =$	$0.02 \text{ m}^3\text{N}/(\text{m}^3\text{FB}\cdot\text{h})$

 $h_{FB} =$

135,3 m

In diesem Fall muss bei halber spezifischer Gasproduktion die Faulbehälterhöhe etwa 3 Mal so groß gewählt werden, um die gleiche Energiedichte zu erhalten.

<u>Beispiel</u>: Eingebrachte mechanische Energie durch entstehendes Gas in einem Faulbehälter bei unterschiedlicher spezifischer Gasproduktion

Angabe allgemein:

Temperatur im Faulbehälter $T_{FB} = 38 \, ^{\circ}\text{C}$ mittlerer Entstehungsort des Gases $et_{FB,\emptyset} = 0,5$

Überdruck im FB

(wird vernachlässigt) $p_{FB} = 0.0 \text{ mbar}$

spezifische Gasproduktion 23 L/(EW·d)

Belastung der Anlage 560.000 EW

hydrostatische Höhe

im Faulbehälter $h_{FB} = 20 \text{ m}$

Angabe a: spezifisches Volumen des Faulbehälters

bei üblicher TS (etwa 2,5 bis 3 %) 40 L/EW

Lösung a: Volumen des Faulbehälters:

 $560.000 \cdot 0.04 = V_{FB} = 22.400 \text{ m}^3$

Gasproduktion: $560.000 \cdot 0,023 = Q = 12.880 \text{ m}^3/\text{d}$

spezifische Gasproduktion:

 $12.880 / 22.400 / 24 = q_{FB} = 0.024 \text{ Nm}^3/(\text{m}^3_{FB} \cdot \text{h})$

Eingebrachte Energie:

gemäß Gleichung (9-5) $spezP_{FB} = 0.5 \text{ W/m}^3$

Angabe b: spezifisches Volumen des Faulbehälters

bei hoher TS 16 L/EW

Lösung b: Volumen des Faulbehälters:

 $560.000 \cdot 0,016 = V_{FB} = 8.960 \text{ m}^3$

Gasproduktion:

 $560.000 \cdot 0,023 = Q = 12.880 \text{ m}^3/\text{d}$

spezifische Gasproduktion:

 $12.880 / 8.960 / 24 = q_{FB} = 0.060 \text{ Nm}^3/(\text{m}^3_{FB} \cdot \text{h})$

Eingebrachte Energie:

gemäß Gleichung (9-5) $spezP_{FB} = 1,25 \text{ W/m}^3$

Wird die Faulung mit höherem Trockensubstanzgehalt betrieben und auch das Volumen hierfür optimiert, also nicht überdimensioniert, kann durch das entstehende Gas genügend Energie eingebracht werden, um ausreichende Turbulenz zu erzeugen. Die Energiedichte steigt proportional zur Erhöhung des Trockensubstanzgehalts, sofern der prozentuelle Abbau organischen Materials gleich bleibt.

9.3 Im Faulschlamm enthaltenes Gas

9.3.1 Gelöstes Gas

Die Löslichkeit von Gasen in Flüssigkeiten hängt von folgenden Faktoren ab:

- Henry-Konstante des Gases
- Partialdruck des Gases (Konzentration des Gases und Druck)
- Temperatur der Flüssigkeit

Werden die Gasqualität und die Temperatur im Faulbehälter als konstant angenommen, steigt die spezifisch gelöste Gasmenge im Faulschlamm ausschließlich in Abhängigkeit vom Druck (hydrostatischer Druck und Überdruck) und damit in Abhängigkeit von der Höhe des Faulbehälters. Aufgrund des höheren Druckes am Boden des Behälters ist dort die gelöste Gasmenge maximal und nimmt nach oben hin linear ab. Die Löslichkeit eines Gases lässt sich mit Gleichung (6-1) (Helgeson, 1967) beschreiben.

Das Gas, das im Faulschlamm gelöst ist, setzt sich im Wesentlichen aus Methan und Kohlendioxid zusammen, wobei die Löslichkeit am Boden des Behälters (*u*) höher ist als im Bereich der Schlammoberfläche (*o*).

$$c_u = c_{CO_2,u} + c_{CH_4,u}$$
 (9-8)
 $c_o = c_{CO_2,o} + c_{CH_4,o}$ (9-9)
mit: c Konzentration an gelöstem Gas
im Faulbehälter [m³_{Gas}/m³_{Schlamm})
 u ,,unten", Bodenniveau im Faulbehälters [-]
 o ,,oben", Niveau des Schlammoberfläche
im Faulbehälter [-]

9.3.2 Austreibfähiges Gas

Die Menge an Gas, welche aus dem Faulschlamm ausgetrieben werden kann, ist für die Auslegung und den Betrieb eines Gasspeichers von Interesse. Sollte es betrieblich dazu kommen, dass der Behälterinhalt plötzlich umgewälzt wird, kommt es zur Freisetzung von Gas, das augenblicklich verwertet oder gespeichert werden muss, um ein unkontrolliertes Ablassen in die Atmosphäre zu verhindern. Für eine plötzliche Umwälzung gibt es verschiedene Gründe:

• Diskontinuierliche mechanische Durchmischung
Bei Anlagen, bei denen die Durchmischung des Faulbehälters aufgrund
des entstehenden Gases erfolgt, ist es üblich, regelmäßig eine

Mischeinrichtung einzuschalten. Dies ist bei Schlammfaulungen mit hoher TS der Fall.

• Spontane hohe Gasbildung

Kommt es plötzlich zur hohen Gasbildung, kann die durch das Aufsteigen der Gasblasen eingebrachte mechanische Energie zur Durchmischung beitragen.

Durch die Quantifizierbarkeit der austreibbaren Gasmenge können folgende Maßnahmen abgeleitet werden:

- Planerische Maßnahmen
 - Größe des Gasspeichers
 - Vorsehen einer <u>Mischeinrichtung</u>, die eine <u>Steigerung der</u> <u>Mischenergie</u> zulässt (z. B. Motor mit mehreren Stufen oder FU; regelbare Gaseinpressung)
 - Fackel bemessen
- Betriebliche Maßnahmen
 - o <u>Reservevolumen im Gasspeicher</u> freihalten
 - Sind mehrere Faulbehälter vorhanden, die <u>diskontinuierlich</u> gemischt werden, sollte dies <u>zeitlich hintereinander</u> erfolgen, statt gleichzeitig.
 - o Rohschlamm kontinuierlich beschicken, nicht stoßweise.
 - Ort der Schlammeinbringung in den Faulbehälter nicht spontan ändern.

Schlamm, der zum Zwecke der Durchmischung, oder Aufwärmung umgewälzt wird, soll nicht spontan an einer anderen Stelle, insbesondere einer anderen Höhe im Faulbehälter, eingebracht werden. Durch den geringeren hydrostatischen Druck kommt es zu einer Entspannung und damit zu einem Entgasen des Schlammes.

Die gesamte austreibbare Gasmenge setzt sich aus der Gasmenge, die gelöst und austreibbar ist, sowie einem Anteil an Übersättigung zusammen. Nachfolgend wird die Quantifizierung dieser Menge erarbeitet.

Quantifizierung von austreibbarem gelöstem Gas

Die Menge an austreibbarem gelöstem Gas beträgt maximal die halbe Differenz der Gaskonzentration oben c_o und unten c_u im Faulbehälter (Abbildung 123). Diese kann theoretisch dann entweichen, wenn der Behälterinhalt plötzlich zur Gänze gemischt wird.

$$c_{austreibbar} = \frac{c_u - c_o}{2}$$
 (9-10)

mit: $c_{austreibbar}$ max. austreibbare

gelöste Gaskonzentration

 c_u Konzentration an gelöstem Gas

im FB unten

 c_o Konzentration an gelöstem Gas

im FB oben

 $[m^3_{Gas}/m^3_{Schlamm}]$

Quantifizierung von austreibbarem übersättigtem Gas

In der Regel ist Faulschlamm gasübersättigt. Zusätzlich zur Gaskonzentration, die maximal gelöst werden kann, befindet sich Gas in der Flüssigkeit. Ursache hierfür ist die Anlagerung von Gasblasen an Schlammpartikeln.

Die Übersättigung wird als Prozentwert angegeben, der sich auf 100 % Sättigung (Basis z. B. c_o , c_u) bezieht und oben und unten unterschiedlich sein kann. Die Übersättigung kann auch lediglich auf den austreibbaren Anteil des Gases bezogen werden.

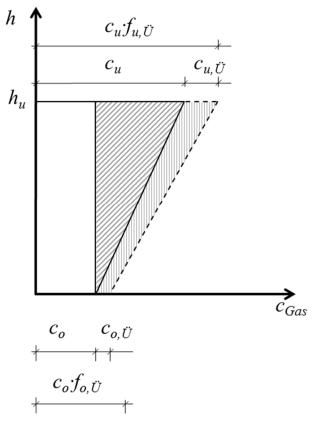


Abbildung 122: Gelöste und übersättigte Gaskonzentration im Faulschlamm über die Höhe eines Faulbehälters; schraffiert: maximal austreibbares Gas

Die maximal austreibbare Gaskonzentration kann nach folgender Gleichung angegeben werden:

$$c_{austreibbar} = \frac{\left(c_{u} + c_{u,\bar{U}}\right) + \left(c_{o} + c_{o,\bar{U}}\right) - 2c_{o}}{2} = \frac{c_{u} + c_{u,\bar{U}} + c_{o,\bar{U}} - c_{o}}{2} = \frac{c_{u} \cdot f_{u,\bar{U}} + c_{o} \cdot f_{o,\bar{U}} - 2c_{o}}{2} \quad (9-11)$$
mit: $c_{austreibbar}$ maximal austreibbarer Gasanteil $[m^{3}_{Gas}/m^{3}_{Schlamm}]$

$$f_{u,\bar{U}}$$
 Faktor der Gasübersättigung unten, bezogen auf die max. lösliche

Gaskonzentration; $f_{u,\bar{U}} \ge 1,0$ [-]

 $f_{o,\bar{U}}$ Faktor der Gasübersättigung oben, bezogen auf die max. lösliche

Gaskonzentration; $f_{o,\bar{U}} \ge 1,0$ [-]

 c_{u} Konzentration an gelöstem Gas im FB unten $[m^{3}_{Gas}/m^{3}_{Schlamm}]$
 c_{o} Konzentration an gelöstem

Gas im FB oben $[m^{3}_{Gas}/m^{3}_{Schlamm}]$
 $c_{u,\bar{U}}$ Gaskonzentration der Übersättigung im Faulbehälter unten $[m^{3}_{Gas}/m^{3}_{Schlamm}]$
 $c_{o,\bar{U}}$ Gaskonzentration der Übersättigung im Faulbehälter oben $[m^{3}_{Gas}/m^{3}_{Schlamm}]$

Das austreibbare Gasvolumen bezogen auf das Reaktorvolumen des Faulbehälters errechnet sich zu:

$$V_{austreibbar} = c_{austreibbar} \cdot 100$$
 [Vol.-% des V_{FB}] (9-12)

bzw.

Die Schwierigkeit hierbei liegt darin, die beiden Koeffizienten $f_{o,\ddot{U}}$ und $f_{u,\ddot{U}}$ zu bestimmen, sodass diese Überlegungen eher theoretischer Natur sind.

Alternativ kann man mittels Versuch die gesamte Menge an austreibbarem Gas ermitteln ($V_{austreibbar}$). Diese Gasmenge wird auf die maximal mögliche gelöste Gasmenge bei vollständiger Durchmischung (V_o) bezogen, sodass man einen Faktor für die fiktive Übersättigung ($f_{U,ges}$) erhält. Zur Vereinfachung kann angenommen werden, dass die Übersättigung an der Grenzfläche (oben) null ist, da es hier zum Ausgasen kommt, sodass folgende Gleichungen gelten.

$$V_0 = \frac{c_u - c_o}{2} \cdot V_{FB} \tag{9-14}$$

$$V_{\ddot{u}bers\ddot{a}ttigt} = \frac{c_{u,\ddot{U},ges}}{2} \cdot V_{FB} \tag{9-15}$$

 $V_{austreibbar}$

$$V_{austreibbar} = V_0 + V_{\ddot{u}bers\ddot{a}ttigt} = \qquad (9-16)$$

$$= V_0 \cdot f_{\ddot{U},ges} = \qquad (9-17)$$

$$= \frac{c_u + c_{u,\ddot{U},ges} - c_o}{2} \cdot V_{FB} \qquad (9-18)$$

$$f_{\ddot{U},ges} = \frac{V_{austreibbar}}{V_0} = \frac{c_u + c_{u,\ddot{U},ges} - c_o}{c_u + c_o} \qquad (9-19)$$
mit: V_0 gelöste Gasmenge im FS, die bei vollständiger Durchmischung plötzlich entweichen kann (exkl. Übersättigung) [m³Gas]
$$c_u \qquad \text{Konzentration an gelöstem Gas} \qquad \text{im FB unten} \qquad \text{[m³Gas/m³Schlamm]}$$

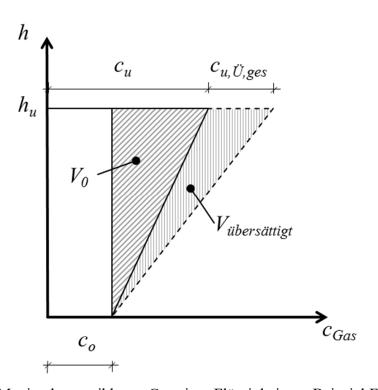
$$c_u \qquad \text{Konzentration an gelöstem Gas} \qquad \text{im Faulbehälter unten} \qquad \text{[m³Gas/m³Schlamm]}$$

$$c_u \qquad \text{Konzentration an gelöstem Gas} \qquad \text{im FB oben} \qquad \text{[m³Gas/m³Schlamm]}$$

$$c_v \qquad \text{Konzentration an gelöstem Gas} \qquad \text{[m³Gas/m³Schlamm]}$$

$$v_{FB} \qquad \text{Reaktionsvolumen des Faulbehälters} \qquad \text{[m³]}$$

$$V_{\ddot{u}bers\ddot{a}ttigt} \qquad \text{Volumen des übersättigten Gases im FS} \qquad \text{[m³Gas]}$$


$$v_{austreibbar} \qquad \text{maximal austreibbares Gasvolumen}$$

$$(inkl. Übersättigung) \qquad \text{[m³Gas]}$$

$$f_{\ddot{v},ges} \qquad \text{Faktor der gesamten Gas\"{u}bers\"{a}ttigung} \qquad \text{[-]}$$

gesamte austreibbare Gasmenge

(inkl. Übersättigung)

 $[m^3_{Gas}]$

Abbildung 123: Maximal austreibbares Gas einer Flüssigkeit am Beispiel Faulschlamm über die Höhe eines Faulbehälters; schraffiert: maximal austreibbares Gas

9.3.3 Versuch zur Bestimmung der Übersättigung

Im Zuge von Versuchen des Schaumbildungspotentials vom Faulschlamm wurde eine Verifikation der theoretischen Überlegungen hinsichtlich Löslichkeit von Gas und dessen Übersättigung vorgenommen.

In Abbildung 124 ist der Ablauf dieses Versuchs als Diagramm dargestellt. Bei gleichbleibender Beschickung des Faulbehälters der Pilotanlage mit Substrat und damit gleichbleibender Gasproduktion wurde der Ort der Beschickung von unten auf oben, oberhalb des Schlammspiegels, geändert und gleichzeitig die Umwälzung von ca. 20,5 m³/h auf ca. 160 m³/h durch Zuschalten einer in der Umwälzleitung befindlichen Kreiselpumpe erhöht. Es ist anzunehmen, dass der Faulbehälter unmittelbar nach dem Einschalten der Kreiselpumpe vollständig durchmischt war, sodass gelöstes Gas, welches aufgrund des höheren Drucks im unteren Bereich vermehrt gelöst war, ausgetrieben wurde. Ebenfalls kann angenommen werden, dass durch die starke Turbulenz übersättigtes Gas ausgetrieben wurde.

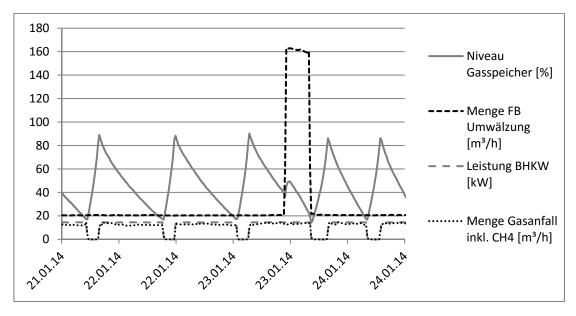


Abbildung 124: Versuch zum Potential der Schaumbildung und Gasübersättigung (23.01.2014)

Unmittelbar nach dem Einschalten der Kreiselpumpe kam es zu einem Anstieg des Gasspeicherniveaus. Die Auswertung dieses Ereignisses ist in Tabelle 35 zusammengefasst. Die Ergebnisse sollen als Anhaltspunkt verstanden werden, da die Auswertung einige Unsicherheiten beinhaltet (v.a. Niveaumessung des Gasspeichers, Durchsatzmenge beim BHKW).

Tabelle 35: Auswertung des Versuchs zur spontanen Freisetzung von Gas durch Änderung der Druckverhältnisse

Parameter	Wert	Einheit
Gasverbrauch durch BHKW	12,46	m³/h
Gasproduktion	10,68	m^3/h
VolReduktion des Gasspeichers durch BHKW	1,78	m^3/h
Dauer für plötzlichen Gasanstieg	52	Minuten
plötzlicher Anstieg von	35	%
plötzlicher Anstieg auf	51	%
äquivalente Zeitdauer für Anstieg ohne laufendes BHKW	36	Minuten
Volumen des Gasanstiegs	6,4	m^3
Gasmenge, die plötzlich frei geworden ist	7,9	m^3

Die Auswertung ergibt, dass 7,9 m³ Gas freigesetzt wurden, rechnerisch konnten 5,6 m³ gelöst sein, sodass sich eine gesamte Übersättigung von 41 % ($f_{U,ges} = 1,41$), bezogen auf das austreibbare Gas, ergibt.

Vergleicht man die Zeitdauer des Befüll-/Entleerungs-Intervalls des Gasspeichers während des Versuchs mit jenen Intervallen davor, zeigt sich, dass diese etwa gleich lang sind. Das bedeutet, dass zwar spontan Gas freigesetzt werden kann und im Anschluss daran v.a. im unteren Bereich des Faulbehälters vermehrt Gas von der Flüssigkeit aufgenommen wird, sodass der Faulschlamm im unteren Bereich des Behälters zunächst kein neues Gas freisetzt. Erst wenn Gassättigung (evtl. inkl. Übersättigung) hergestellt ist, entweicht dieses wieder nach oben in den Gasraum.

Bei plötzlich auftretender Turbulenz kann es zum Austrag von Gas kommen bzw. lässt sich im Umkehrschluss sagen, dass die hydraulischen Verhältnisse eines Faulbehälters, insbesondere der Ort der Beschickung, nicht plötzlich verändert werden sollen.

In Abbildung 125 ist die Menge an austreibfähigem Gas von Faulschlamm, als Prozentwert des Faulraumvolumens, in Abhängigkeit von der Höhe des Faulbehälters aufgetragen. Beispielhaft ist hier auch die Menge dargestellt, die sich bei einer Übersättigung von 40 % ergibt. Die Berechnung erfolgt gemäß Gleichung (9-17).

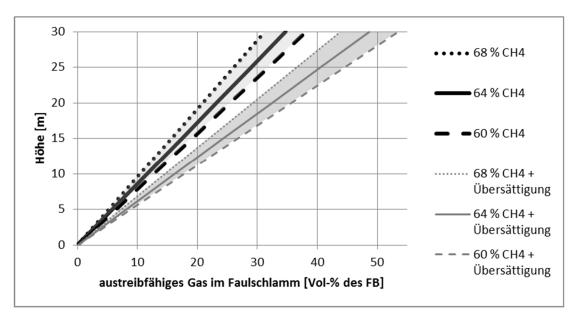


Abbildung 125: Austreibfähiges Gas im Faulschlamm: ohne bzw. mit 40 % Übersättigung; Temp. 38 °C, Überdruck = 0 mbar

Vernachlässigt man den Gasüberdruck und die Übersättigung des Gases, beträgt die Menge an austreibbarem Gas bei einem Methangehalt im Faulgas von 64 % $0.0115 \cdot h_{FB} \cdot V_{FB}$ [m³].

Beispiel:	Quantifizierung des austreibfähigen Gases eines Faulbehälters				
Angabe:	Höhe Schlamm in Faulbehälter	$h_{FB} =$	20 m		
	Volumen des Faulbehälters	$V_{FB} =$	2.500 m^3		
	Gasüberdrucks im Gasraum				
	des Faulbehälters	$p_{FB} =$	0 mbar		
	CH ₄ -Gehalt des Gases	$c_{CH_4} =$	64 %		
	angenommene Übersättigung	$f_{\ddot{U},ges} =$	40 %		
	Temperatur Faulschlamm	$T_{FS} =$	38 °C		
Lösung:	austreibfähige, gelöste Gasmenge im FB				
	(aus Abbildung 125):	23 %			
	$V_0 = 23 \% / 100 \cdot 2.500 \text{ m}^3 =$	$V_0 =$	575 m^3		
	$V_{austreibbar} = V_0 \cdot (1 + 40 / 100) =$	$V_{austreibbar}$	$= 805 \text{ m}^3$		

9.4 Sandakkumulation

Beim Betrieb einer Faulung kommt es zur Akkumulation von Sand am Boden des Behälters, der über den Rohschlamm eingetragen wird. Der Austrag erfolgt üblicherweise über den Faulschlamm, der abgezogen wird, in Ausnahmefällen über ein Räumsystem, wie es beim EKJ-Reaktor (Kroiss, 1988b) der Fall ist. Die Räumung eines Faulbehälters ist früher oder später erforderlich. Üblicherweise liegt das Intervall der Reinigung im Bereich mehrerer Jahre bis Jahrzehnte.

Die Menge des abgesetzten Sandes ist von folgenden Faktoren abhängig:

- Art des Kanalsystems (Misch-/Trennkanal)
- Wirkungsgrad des Sandfanges
- Menge des eingebrachten Sandes in die Faulung bzw. Belastung der Faulung
- Strömungsverhältnisse in der Faulung
- Art und Ort der Abzugseinrichtung im Faulbehälter

Erfolgt der Abzug im oberen Bereich des Faulbehälters, muss der Sand in Schwebe gehalten werden, damit dieser das System verlassen kann. Kommt es im Faulbehälter vorübergehend zu schlechter Durchmischung, sedimentiert Sand, der bei erneuter Turbulenz nicht unbedingt in Schwebe gebracht wird.

Je mehr Sand über den Rohschlamm eingebracht wird, desto mehr Sand kann sich im Faulbehälter absetzen. Außerdem beeinflusst die Trockensubstanz die Viskosität des Faulschlammes. Darüber hinaus können sich auch Fällungsprodukte absetzen.

Zur Abschätzung der Sandmenge, welche sich in einem Faulbehälter absetzt, wurde die Sandhöhe am Boden der Pilotanlage nach der Außerbetriebnahme bestimmt. Auf Basis dieses Messwerts wurde eine Berechnung durchgeführt, die auf der sicheren Seite liegt (Tabelle 37).

Die im Faulbehälter festgestellte Schichtdicke des Sandes lag zwischen 3 bis 5 cm. Die Sandablagerungen traten nicht flächig auf. Im Bereich des Pumpensumpfes und bei der Düse des Einlaufrohres wurden kaum Ablagerungen festgestellt, was auf die dort herrschende Turbulenz zurückzuführen ist. Weiters kann bei dieser Betrachtung nicht unterschieden werden, ob sich der am Boden befindliche Sand während des Versuchsbetriebes oder bei der Außerbetriebnahme, bei der es aufgrund der rückläufigen

Gasproduktion zu wenig Turbulenz kam, abgesetzt hat. Es kann angenommen werden, dass nur ein geringer Anteil des Sandes am Boden auf die Außerbetriebnahme zurückzuführen ist.

Abbildung 126: Faulbehälter nach Entleerung; links: Innenaufnahme des Faulbehälters; Mitte: Boden des Faulbehälters; rechts: Probe des sedimentierten Materials (Aufnahmedatum: 11.06.2014)

Der Schlamm am Boden des Faulbehälters enthielt kaum organisches Material (GV = 8 %) und dessen TS_{FS} war mit 60 % hoch. In der Schlammschicht unmittelbar darüber ($h = \sim 10$ cm) war der Anteil an organischem Material höher (GV = 29 %) und die TS_{FS} war mit 16 % deutlich kleiner.

Der Schlamm am Boden des Faulbehälters hatte in Bezug zur Trockensubstanz einen Gesamtphosphoranteil von 5,4 %, was deutlich höher ist als der Medianwert des Faulschlammes (3,4 %). In Bezug auf die organische Trockensubstanz beträgt der Anteil des Gesamtphosphors 67 % beim Bodenschlamm und 5,5 % beim Medianwert des Faulschlammes. Ein bedeutender Anteil des abgelagerten Schlammes muss daher ein Phosphor-Fällungsprodukt sein.

Der Stickstoffanteil des Bodenschlammes ist mit 1,4 % in Bezug zur Trockensubstanz deutlich kleiner als der Medianwert des Faulschlammes, der bei 9,0 % liegt. In Bezug zur organischen Trockensubstanz ist der Stickstoffanteil des Bodenschlammes mit 18 % dem Medianwert des Faulschlammes (14 %) ähnlich.

Tabelle 36: Gegenüberstellung: Konzentrationen P und N im Faulschlamm, im Bodenschlamm des Faulbehälters und Medianwerte

Bezeichnung	Ges-P	TKN	PO ₄ -P	TS	oTS	GV	Ges-P/ TS	Ges-P/ oTS	TKN/ TS	TKN/ oTS
	%/kg S	chlamm	mg/L	g/L	g/L	%	%	%	%	%
Faulschlamm, oberhalb unterster Bodenschicht				157,3	45,6	29,0				
Faulschlamm, unterste Bodenschicht	3,207	0,8551		598,0	48,0	8,0	5,4	66,8	1,4	17,8
Faulschlamm, Medianwert aller Messungen (siehe Tabelle 28 und	0,140	0,369	55,9			59-65	3,4	5,5	9,0	14,4
Tabelle 29)										

Geht man davon aus, dass während eines Zeitraumes von etwa 18 Monaten die Sandakkumulation im Faulbehälter der Pilotanlage 5 cm beträgt, errechnet sich eine Sandakkumulation von 0,71 cm/(m_{FB}·a), woraus Abbildung 127 abgeleitet werden kann.

Tabelle 37: Akkumulation von Sand in der Pilotanlage

Bezeichnung	Einheit	Wert
Betriebszeitraum des Faulbehälters	-	20.11.2012-26.05.2014
Betriebszeitraum des Faulbehälters	Monate	18,4
Höhe der Sandschicht am Boden des Faulbehälters	cm	3-5
angenommene mittlere Höhe der Sandschicht am Boden des Faulbehälters (konservative Annahme)	cm	5,0
Höhe des Faulbehälter-Reaktionsvolumens	m	4,58
Sand-Akkumulation im FB	cm/(m _{FB} ·a)	0,71

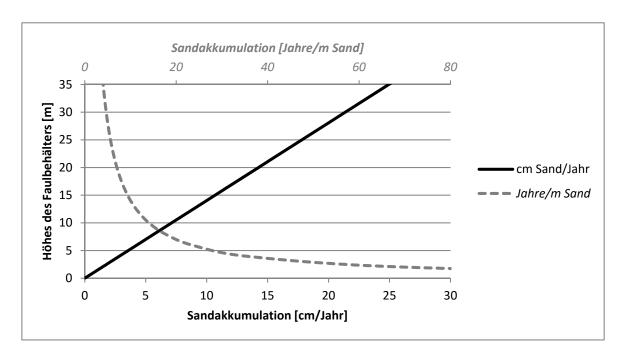


Abbildung 127: Akkumulation von Sand in der Pilotanlage (mittlere $TS_{FS} = 38 \text{ g/L}$)

Bei einer Verdoppelung der Höhe des Faulbehälters dauert die Akkumulation für die gleiche Menge an Sand nur halb so lange. Wird die aufgegebene Fracht an anorganischer Trockensubstanz in die Faulung halbiert, so ist mit der Hälfte der abgesetzten Sandmenge zu rechnen.

Beispiel: Abschätzung der Sandakkumulation eines Faulbehälters

Angabe a:	Höhe Schlamm in Faulbehälter	$h_{FB} =$	20 m
	Volumen des Faulbehälters	$V_{FB} =$	2.500 m^3
	Trockensubstanz-Konzentration		
	des Faulschlammes	$TS_{FS} =$	38 g/L

Lösung a:	Sandakkumulation pro Jahr:		
	$0.71 \text{ cm/(m\cdot a)} \cdot 20 \text{ m} =$		14,2 cm/a
	100 cm/14,2 cm/a =		$\sim 7.0 \text{ a/m}$
Angabe b:	Höhe des Faulbehälters	$h_{FB} =$	20 m
	Volumen des Faulbehälters	$V_{FB} =$	2.500 m^3
	Trockensubstanz-Konzentration		
	des Faulschlammes	$TS_{FS} =$	19 g/L
Lösung b:	Sandakkumulation pro Jahr:		
	$0.71 \text{ cm/(m\cdot a)} \cdot 20 \text{ m} \cdot 19 / 38 =$		7,1 cm/a
	100 cm/14,2 cm/a =		$\sim 14,1 \text{ a/m}$

10 Zusammenfassung

Vorteile der Schlammfaulung

Die Technologie der Schlammfaulung wird auf vielen Kläranlagen eingesetzt und hat sich aufgrund zahlreicher Vorteile bewährt. Bei diesem Prozess wird Faulgas gebildet, welches einen hohen Anteil an Methan hat, sodass dieses energetisch verwertet werden kann, um elektrischen Strom und Wärme zu erzeugen. Durch den Abbau von organischer Trockensubstanz wird die Masse der gesamten Trockensubstanz reduziert und damit die Fracht an zu entsorgendem Faulschlamm, wodurch Entsorgungskosten eingespart werden können. Wird die Verfahrensweise von aerober simultaner Schlammstabilisierung auf anaerobe Schlammstabilisierung umgestellt, kann das Schlammalter in der Belebungsanlage gesenkt werden. Das erforderliche Reaktionsvolumen Belebungsbecken im wird damit kleiner und Kapazitätsreserven der biologischen Abwasserreinigung können genutzt werden. Wird das Schlammalter in der Belebungsanlage reduziert, sinkt der Sauerstoffbedarf und Strom für die Belüftung kann eingespart werden. Die anaerobe mesophile Schlammstabilisierung, bei der gut stabilisierter Schlamm produziert werden kann, ist weitgehend unabhängig von jahreszeitlichen Temperaturschwankungen. Die Entwässerbarkeit des Schlammes wird tendenziell besser, je höher das Schlammalter in der Faulung ist. Das Erzielen einer höheren TS des entwässerten Schlammes verringert das erforderliche Faulraumvolumen V_{FB} die zu entsorgende Schlammmenge und damit die Entsorgungskosten.

Nachteile der Schlammfaulung

Der Bau einer Schlammfaulungsanlage ist mit Investitionskosten verbunden, die durch die betrieblichen Einsparungen gerechtfertigt werden müssen. Die Errichtung verursacht einen Flächenbedarf am Betriebsgelände. Die Schlammfaulung bringt einen höheren betrieblichen Arbeitsaufwand mit sich (Laboranalysen, Prozessüberwachung, Wartungsarbeiten an Maschinen und Anlagenteilen etc.). Soll die Schlammfaulung mit erhöhter TS betrieben werden, muss eine maschinelle Schlammeindickung betrieben werden, wofür wiederum Anschaffungskosten, Stellfläche, Betriebsmittel und Manipulationsaufwand des Personals einzurechnen sind. Aufgrund der Methanproduktion müssen explosionsgefährdete Bereiche ausgewiesen und höhere

Anforderungen hinsichtlich der Sicherheit des Betriebspersonals gestellt werden. Bei der Schlammfaulung kommt es zur Rücklösung von Stickstoff und Phosphor. Überschreitet die Ammonium-Konzentration einen kritischen Wert, kommt es zur Hemmung der Methanbakterien. Das bei der Schlammentwässerung anfallende Trübwasser hat erhöhte Konzentrationen an einem Reinigungsprozess Stickstoff und Phosphor, weshalb dieses zuzuführen ist. Hinsichtlich der Entfernung des im Trübwasser enthaltenen Stickstoffs kann es erforderlich werden eine separate Trübwasserbehandlung zu installieren. Faulschlamm, der aus dem Faulbehälter abgezogen wird, verliert im Laufe der weiteren Behandlung CO₂, wodurch der pH-Wert steigt. Gefahr Dadurch besteht die der vermehrten Ausfällungen von Kaliziumkarbonat und Magnesium-Ammonium-Phosphat (MAP).

Schlammfaulung mit erhöhter Trockensubstanz

Die Möglichkeit, die Klärschlammfaulung bei erhöhter Trockensubstanz zu betreiben, bietet den Vorteil, mit weniger Reaktionsvolumen auszukommen und darüber hinaus einen verfahrenstechnisch stabileren Prozess zu betreiben. Den Investitions- und Betriebskosten für die hierfür notwendige maschinelle Schlammeindickung stehen die verringerten Investitionskosten für das erforderliche Faulraumvolumen, dem geringeren Platzbedarf, Energieeinsparungen bei der Aufwärmung des Rohschlammes gegenüber. Je höher die maschinelle Eindickung des Rohschlammes ist, desto viskoser, also weniger fließfähig, wird der Schlamm.

Schlämme mit einem hohen Anteil an Trockensubstanz lassen sich schwerer fördern, sodass dadurch eine Grenze der maximal sinnvollen Eindickung vorgegeben wird. Gleichzeitig mit dieser Grenze liegt man auch bei der beginnenden Hemmung der Methanbakterien durch Ammoniak.

Inhalt der Arbeit

In der vorliegenden Arbeit wurde das Optimierungspotential für Kläranlagen bei Umstieg von aerober auf anaerobe Schlammstabilisierung dargestellt. Energieverbrauch, Stabilität des Klärschlammes, Schlammanfall, Entwässerbarkeit des Schlammes, Kapazitätsreserven der biologischen Reinigung und Faulgasproduktion wurden beschrieben.

Die theoretischen Grundlagen für die Ermittlung des erforderlichen Volumens einer einstufigen, mesophilen Anlage zur Schlammfaulung im kommunalen Bereich wurden zusammengefasst. Die Bemessung und Planung einer Schlammfaulung mit deutlich höherem Feststoffgehalt erfordert neben der Klärung der theoretischen Grundlagen und ihren Folgen auch den Nachweis der Praxistauglichkeit. Daher wurde über etwa 1 ½ Jahren eine Pilotanlage online und onsite der Hauptkläranlage Wien betrieben. Im Rahmen dieser Untersuchungen konnten eine Reihe von praxisrelevanten Erkenntnissen und Erfahrungen gewonnen werden, die für die Betriebssicherheit der Faulanlage von ausschlaggebender Bedeutung sind.

Erfolgt die Beschickung der Faulung mit eingedicktem Rohschlamm, wird durch Hydrolyse mehr Stickstoff in Lösung gebracht. In Abhängigkeit von pH-Wert und Temperatur dissoziiert dieser zu Ammoniak (NH₃) und Ammonium (NH₄⁺). Da sich Ammonium mit Hydrogencarbonat (HCO₃) bindet, steigt die Pufferkapazität des Schlammes und der pH-Wert wird etwas angehoben. Dadurch sinkt die Gefahr, dass es zu Hemmungen der Methanbakterien aufgrund Schwefelwasserstoff (H₂S) oder organischer Säuren kommt. Das Dissoziationsgleichgewicht von NH₃/NH₄⁺ verschiebt sich bei steigendem pH-Wert mehr zu Ammoniak. Wird eine bestimmte Konzentration überschritten, werden die Methanbakterien gehemmt. Die Auswertungen der Laborversuche zum Projekt EOS zeigten, dass bei einem pH-Wert von 7,4 diese Grenze bei etwa 2.000 mg NH₄-N/L liegt, was 63 mg NH₃-N/L entspricht. Dies stimmt mit Literaturwerten von Kroiss (1985) gut überein, wo umgerechnet etwa 50 mg NH₃-N/L als Hemmschwelle angegeben werden.

Durch die Hydrolyse wird auch Phosphor frei, der in gelöster Form als Orthophosphat (PO₄-) vorliegt. Vor allem bei höheren pH-Werten kann es zu Ausfällungen kommen, die schwer zu beherrschende Betriebsprobleme verursachen.

Im Rahmen des Projekts EOS (Energieoptimierung Schlammbehandlung) der Hauptkläranlage-Wien wurde eine Pilotanlage betrieben und im Zuge dessen zahlreiche Untersuchungen durchgeführt. Zur Überprüfung der Messdaten wurden die Parameter CSB, Stickstoff und Phosphor in der vorliegenden Arbeit bilanziert. Hierfür wurde die CUSUM-Methode und gleitende Mittelwerte herangezogen. Damit war es möglich Zeiträume zu lokalisieren, wo Bilanzfehler möglichst klein sind. Betriebswerte wie z. B. CSB-, oTS-Abbau, spezifische Gasproduktion wurden ausgewertet, um die Leistungsfähigkeit der Schlammfaulung unter realen Betriebsbedingungen zu bestimmen.

Die Temperatur im Faulbehälter wurde im Regelbetrieb auf etwa 38 °C eingestellt. Die Anlage wurde mit maschinell eingedicktem Rohschlamm, einer Mischung aus Primär- und Überschussschlamm der 2-stufigen Abwasserreinigungsanlage, beschickt. Dieser energiereiche Schlamm hatte einen Glühverlust von etwa 75 bis 81 %. Die maschinelle Eindickung wurde Seihband realisiert. Die sich einstellende Trockensubstanzkonzentration in der Faulung TS_{FS} lag zwischen 3,7 bis 4,1 %. Bei einem Schlammalter t_{TS,FB} von etwa 24 Tagen wurden ein oTS-Abbau von 50,5 % und ein CSB-Abbau von 59,4 % ermittelt. Bei Verkürzung des Schlammalters auf etwa 20 Tage war der ermittelte Abbau ähnlich. Der oTS-Abbau lag bei 52,7 % und war damit etwas höher als bei 24 Tagen Schlammalter, was mit der Unschärfe der Bestimmung bzw. dem jahreszeitlichen Einfluss begründet werden kann. Der CSB-Abbau war mit 59,3 % praktisch gleich groß wie bei 24 Tagen. Der Methangehalt des produzierten Gases lag zwischen 63 bis 65 %. Durch die erhöhte Trockensubstanz stellte sich eine Ammonium-Konzentration zwischen 1.800 und 1.900 mg NH₄-N/L ein. Der pH-Wert lag zwischen 7,4 und 7,5.

Für den Betrieb einer Schlammfaulung mit hoher Trockensubstanz ist die maschinelle Eindickung des Rohschlammes notwendig. Gleichzeitig ist ein hoher Abscheidegrad erforderlich, damit es nicht zur Anreicherung von Feinteilen in der biologischen Stufe der Kläranlage kommt. Die Quantifizierung wird oft nicht vorgenommen, da in der Praxis nicht alle hierfür erforderlichen Stoffströme erfasst werden. Eine Vorgehensweise zur Berechnung des Abscheidegrades wurde angegeben und ein praxisgerechtes grafisches Verfahren zur Ermittlung der Dosierung des spezifisch eingesetzten Polymers vorgestellt.

Durch die erhöhte Eindickung kommt es zur deutlichen Veränderung der rheologischen Eigenschaften des Schlammes. Die theoretischen Grundlagen des Verhaltens von Newtonschen und nicht-Newtonschen Flüssigkeiten wurden erklärt und ein Algorithmus zur Berechnung der hydraulischen Verluste in Rohrleitungen vorgestellt. Anhand der ermittelten Fließparameter (Fließindex n und Konsistenzfaktor K) wurde die hydraulische Verlusthöhe h_r anhand von Beispielen quantifiziert. Bei einem Rohr mit einer Länge l = 100 m und einem Durchmesser D = 0.2 m errechnet sich bei einer Geschwindigkeit v = 0.5 m/s bei Wasser ein hydraulischer Druckverlust von 0.12 m. Bei Faulschlamm ist dieser etwa um den Faktor $(h_{r,FS} / h_{r,Wasser})$ 2 bis

3 größer, der Faktor für den hydraulischen Druckverlust zwischen Roh- und Faulschlamm $(h_{r,RohS}/h_{r,FS})$ beträgt 12 bis 55. Bei höherer Geschwindigkeit werden die absoluten Verluste größer, die relativen Verhältnisse jedoch kleiner. So beträgt der Faktor bei v = 2,0 m/s bei Faulschlamm zu Wasser $(h_{r,FS}/h_{r,Wasser})$ etwa 1,2 bis 1,5 und bei Rohschlamm zu Faulschlamm $(h_{r,RohS}/h_{r,FS})$ etwa 3 bis 10.

Der Einfluss des in der Faulung entstehenden Gases auf die Durchmischung wurde untersucht. Eine Formel zur Ermittlung der Energiedichte wurde vorgestellt und der Zusammenhang zwischen Gasproduktion, Reaktorhöhe und Energiedichte hergestellt. Anhand von Betriebsdaten der Pilotanlage erfolgte eine Abschätzung der erforderlichen Energiedichte für vollständige Durchmischung zufolge Gasproduktion, die mit 1,0 bis 1,3 W/m³FB quantifiziert wurde. Erfolgt die Durchmischung ausschließlich durch entstehendes Gas, könnte etwa 1 kWh/EW/a an Energie zur Durchmischung eingespart werden.

Die im Schlamm gelöste Gasmenge nimmt mit dem Druck und damit mit der Tiefe des Reaktors linear zu. Bei plötzlicher Änderung der hydraulischen Verhältnisse kann dieses Gas durch Entspannung entweichen. Bei einem Methangehalt des Faulgases von 64 % und ohne Berücksichtigung des Gasüberdrucks im Gasraum des Faulbehälters beträgt die austreibbare Gasmenge $0.0115 \cdot h_{FB} \cdot V_{FB}$ [m³]. Bei einem beispielsweise 20 m hohen Anaerobreaktor könnten 23 % des gesamten Reaktorvolumens an Gas ausgetrieben werden. Weiters ist die Übersättigung des Gases zu berücksichtigen, die bei einem Versuch mit 41 % ermittelt wurde.

Nach der Leerung der Pilotanlage wurde die Menge des akkumulierten Sandes am Behälterboden quantifiziert. In einer groben Abschätzung ergeben sich etwa 0,71 cm Sand/(m_{FB}·a).

Schlussworte und Ausblick

Mit dieser Arbeit wurde gezeigt, dass der Betrieb eines Faulbehälters mit erhöhter Trockensubstanz aus prozesstechnischer Sicht ohne besondere Schwierigkeiten möglich ist. Eine erhebliche Menge an Faulraumvolumen kann dadurch ohne Einbußen im Abbaugrad eingespart werden.

Durch das Eindicken des Schlammes und der Erhöhung der Viskosität müssen zu erwartende hydraulische Druckverluste berücksichtigt werden.

Optimierungspotential ist dabei in der Gestaltung der Rohrleitungen vorhanden.

Durch die Erhöhung des Trockensubstanzgehaltes in der Faulung kann auch die Energiedichte zufolge Gasproduktion erhöht werden. Außerdem steigt die Energiedichte, je höher der Reaktor ist. Wird dies bei der Planung und im Betrieb berücksichtigt, kann evtl. auf den ständigen Betrieb einer Mischeinrichtung verzichtet werden.

Der Energieverbrauch an elektrischem Strom beträgt in Österreich für Kläranlagen etwa 8 W/E, was in Bezug auf die Primärenergieerzeugung mit ~8.200 W/E wenig erscheint. Dennoch sind kommunale Kläranlagen Großverbraucher und zählen neben der Straßenbeleuchtung zu den größten Stromverbrauchern von Gemeinden. Die anaerobe Schlammstabilisierung kann dazu beitragen, den Energiebedarf einer Kläranlage zu senken, sodass eine Anlage energieneutral wird oder sogar Überschuss produziert.

Die Einsparung an Energie ist auf Kläranalgen ein erstrebenswertes Ziel, doch darf bei allen Ambitionen der Optimierung nie die zuverlässige und wirkungsvolle Reinigung des Abwassers gefährdet werden – zum Schutz der Gewässer, der Umwelt, uns Menschen und zukünftigen Generationen.

Literaturverzeichnis

- 1. AEV für kommunales Abwasser, 1996. , Bundesgesetzblatt für die Republik Österreich, BGBI. 210/1996.
- ATV-DVWK-A 131, 2010. Bemessung von einstufigen Belebungsanlagen, ATV-DVWK-Regelwerk. GFA-Gesellschaft zur Förderung der Abwassertechnik e.V., Hennef.
- Barker, H.A., 1956. Bacterial Fermentations. John Wiley & Sons, New York.
- Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A., 2002. Anaerobic Digestion Model No. 1, IWA Scientific and Technical Report. IWA Publishing, London.
- Baumgartner, T., Jahn, L., 2014. unveröffentlicht. Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, TU Wien.
- BDL, 2010. Studie EOS Energieoptimierung Schlammbehandlung. Büro Dr. Lengyel ZT GmbH, Wien.
- Bischofsberger, W., Dichtl, N., Rosenwinkel, K.-H., Seyfried, C.F., Böhnke, B. (Eds.), 2005. Anaerobtechnik, 2. Auflage. ed. Springer-Verlag, Berlin/Heidelberg.
- Bischof, W., 1998. Abwassertechnik, 11., neubearbeitete und erweiterte Auflage. ed. B. G. Teubner, Stuttgart Leipzig.
- Bohl, W., 2002. Technische Strömungslehre, 12. Auflage. ed. Vogel Fachbuch, Würzburg.
- Bollrich, G., 2000. Technische Hydromechanik 1, 5. Auflage. ed. Verlag Bauwesen, Berlin.
- Boyle, W.C., 1977. Energy recovery from sanitary landfills A review, in: Schlegel, H.G., Barnea, J. (Eds.), Microbial Energy Conversion. Pergamon Press, Göttingen, S. 119–138.
- Buswell, A.M., 1952. Mechanism of Methane Fermentation. Industrial and Engineering Chemistry 44, 550–552.
- Chhabra, R.P., Richardson, J.F., 1999. Non-Newtonian flow in the process industries Fundaments and Engineering Applications. Butterworth Heinemann, Oxford.
- Darby, R., 2001. Chemical Engineering Fluid Mechanics, Revised and Expanded, Second Edition. ed. Marcel Dekker Inc, New York.
- Dichtl, N., Eck-Düpont, M., 1986. Kennwerte zur Beurteilung des Stabilisierungsgrades biologisch behandelter Schlämme. Korrespondenz Abwasser 33, 1043–1052.
- Dichtl, N., Wendler, D., Schmelz, G., 2005. Verfahrenstechniken zur Behandlung von Klärschlamm, in: Bischofsberger, W., Dichtl, N., Rosenwinkel, K.-H., Seyfried, C.F., Böhnke, B. (Eds.), Anaerobtechnik. Springer-Verlag, Berlin/Heidelberg, S. 87–282.
- DIN 53019-1, 2008. Viskosimetrie Messung von Viskositäten und Fließkurven mit Rotationsviskosimetern Teil 1: Grundlagen und Messgeometrie. DIN Deutsches Institut für Normung e. V.
- DKD, 2002. Deutschen Kalibrierdienstes (DKD) Leitfaden für die Volumenbestimmung bei Referenzmessprozeduren in medizinischen Referenzlaboratorien.
- Dodge, D.W., Metzner, A.B., 1959. Turbulent flow of non-Newtonian systems. AIChE Vol. 5, No. 2, 189–204.

- Durate, A.C., Anderson, G.K., 1982. Inhibition modelling in anaerobic digestion. Water Science & Technology Vol 14, 749–763.
- DWA-M 229-1, 2013. Systeme zur Belüftung und Durchmischung von Belebungsanlagen, Teil 1: Planung, Ausschreibung und Ausführung, DWA-Regelwerk. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V, Hennef.
- DWA-M 363, 2010. Herkunft, Aufbereitung und Verwertung von Biogasen, DWA-Regelwerk. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V, Hennef.
- DWA-M 368, 2014. Biologische Stabilisierung von Klärschlamm, DWA-Regelwerk. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V, Hennef.
- ebswien, 2013a. Abwasserreinigung [WWW Document]. ebswien. URL http://www.ebswien.at/hauptklaeranlage/hauptklaeranlage/abwasserreinigung/ (abgerufen 30.05.2014).
- ebswien, 2013b. Die Natur als Vorbild [WWW Document]. ebswien. URL http://www.ebswien.at/hauptklaeranlage/hauptklaeranlage/die-natur-als-vorbild/ (abgerufen: 28.05.2014).
- Egle, L., Reichel, M., 2012. Stand und Trends bei der Nährstoffrückgewinnung auf Kläranlagen, in: Standortbestimmung in der Wassergütewirtschaft, Wiener Mitteilungen. Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft TU Wien, Wien, S. 103–148.
- Endress+Hauser, Gasmessung [WWW Document], 2014. URL http://www.at.endress.com/eh/sc/europe/dach/de/home.nsf/#product/9B2B (abgerufen: 30.01.2014).
- Endress+Hauser, Prosonic Flow B 200 [WWW Document], 2014. URL http://www.at.endress.com/eh/sc/europe/dach/de/home.nsf/contentview/~faulgas?O pen&popup (abgerufen: 31.01.2014).
- Frey, W., 1993. Anforderungen an Belüftungssysteme, in: Bemessung und Betrieb von Kläranlagen zur Stickstoffentfernung, Wiener Mitteilungen. Institut für Wassergüte und Abfallwirtschaft, Wien, p. K 1–27.
- Frey, W., 2002. Maschinelle Ausrüstung der Schlammbehandlung, in: Klärschlamm, Möglichkeiten und Verfahren zur Verwertung/Entsorgung ab 2004, Wiener Mitteilungen. Wien, S. 77–124.
- Füreder, K., 2013. Der Einfluss des Trockensubstanzgehalts auf die Fließfähigkeit von Überschuss-, und Faulschlamm der Hauptkläranlage Wien. Universität für Bodenkultur Wien, Wien.
- Füreder, K., 2014. Fließverhalten von Schlämmen mit hohem Trockensubstanzgehalt, in: Abwasserreinigung Werte erhalten, Effizienz steigern und Ressourcen schonen, Wiener Mitteilungen. Institut für Wassergüte und Landschaftswasserbau, Wien.
- Füreder, K., Schaar, H., Reichel, M., Svardal, K., 2012. KLARAS Einsatz von Schlammfaulanlagen auf kleinen und mittleren kommunalen Kläranlagen Grenzen der Wirtschaftlichkeit, Machbarkeitsstudie Theoretische Grundlagen. Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, Wien.
- Gemeindeamt Langenegg (Ed.), 2005. Energiebericht 2008, Gemeinde Langenegg.
- Gemeinde Hittisau (Ed.), 2013. Energiebericht 2012, Gemeinde Hittisau.

- Geyer, W., 2008. BHKWs Auslegung, Gesamtkosten und Optimierungsmöglichkeiten.
- Gujer, W., 1983. Conversion Processes in Anaerobic Digestion. Water Science & Technology Vol 15, 127–167.
- Gujer, W., 2007. Siedlungswasserwirtschaft, 3., bearbeitete Auflage. ed. Springer-Verlag, Berlin Heidelberg.
- Helgeson, H.C., 1967. Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. The Journal of Physical Chemistry 71, 3123–3136.
- Henze, M., Harremoës, P., 1983. Anaerobic Treatment of Wastewater in Fixed Film Reactors A Literature Review. Water Science & Technology Vol 15, 1–101.
- Hobiger, G., 1996. Ammoniak im Wasser Ableitung einer Formel zur Berechnung von Ammoniak in wäßrigen Lösungen (No. UBA-BE-076). Umweltbundesamt, Wien.
- Hütter, L.A., 1992. Wasser und Wasseruntersuchung: Methodik, Theorie und Praxis chemischer, chemisch-physikalischer, biologischer und bakteriologischer Untersuchungsverfahren, 5. ed. Salle, Frankfurt am Main.
- IWAG, 1999. Plausibilitätsprüfung in der Eigenüberwachung.
- Kainz, H., Hofstetter, H., 1996. Adaption of the main waste water treatment plant in Vienna to meet Austrian emission regulations. Water Science & Technology Vol 33, 65–72.
- Kapp, H., 1984. Schlammfaulung mit hohem Feststoffgehalt. TU Stuttgart, Stuttgart.
- Klinksieg, K., 2010. Charakterisierung des Absetzverhaltens von kommunalen Klärschlämmen mit Hilfe rheologischer Messungen. Gesellschaft zur Förderung des Instituts für Siedlungswasserwirtschaft der Technischen Universität Braunschweig e.V., Braunschweig.
- Kopp, J.B., 2010. Beurteilung der Entwässerbarkeit von Klärschlamm. F & S Filtrieren und Sparieren 24, 168–173.
- Kreuzinger, N., 2005. Grundlagen der Wasserchemie Kinetik und Abwasserreinigung, in: Chemie in der Wassergütewirtschaft, Wiener Mitteilungen. Institut für Wassergüte und Abfallwirtschaft, Wien, S. 293–321.
- Kroiss, H., 1985. Anaerobe Abwasserreinigung, Wiener Mitteilungen. Institut für Wassergüte und Landschaftswasserbau, Wien.
- Kroiss, H. (Ed.), 1988a. Anaerobe Abwasserreinigung Grundlagen und großtechnische Erfahrungen, Wiener Mitteilungen. TU Wien, Institut für Wassergüte und Landschaftswasserbau, Wien.
- Kroiss, H., 1988b. Aufwärtsdurchströmter Schlammbettreaktor mit Drehverteiler (EKJ-Reaktor), in: Kroiss, H. (Ed.), Anaerobe Abwasserreinigung Grundlagen und großtechnische Erfahrungen, Wiener Mitteilungen. TU Wien, Institut für Wassergüte und Landschaftswasserbau, Wien, S. 59–77.
- Kroiss, H., Svardal, K., 2009. Energiebedarf von Abwasserreinigungsanlagen. Österr Wasser- und Abfallw 61, 170–177. doi:10.1007/s00506-009-0134-0
- Kunst, S., 2005. Mikrobiologische Grundlagen, in: Bischofsberger, W., Dichtl, N., Rosenwinkel, K.-H., Seyfried, C.F., Böhnke, B. (Eds.), Anaerobtechnik. Springer-Verlag, Berlin/Heidelberg.

- Leschber, R., Loll, U. (Eds.), 1996. Klärschlamm, 4. Auflage. ed, ATV-Handbuch. Ernst & Sohn.
- Lesjean, K., Gnirss, R., Adam, C., Kraume, M., Luck, F., 2003. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling. Water Science & Technology 87–94.
- Lindtner, S., 2008. Leitfaden für die Erstellung eines Energiekonzeptes kommunaler Kläranlagen. Wien.
- Lindtner, S., 2012. Energiekonzepte für kommunaler Kläranlagen Potentiale und Praxisbeispiele. Energieoptimierung und -gewinnung für siedlungswasserwirtschaftliche Anlagen.
- Lindtner, S., Haslinger, J., 2012. Stand und Zukunft des Benchmarkings auf österreichischen Kläranlagen, in: Standortbestimmung in der Wassergütewirtschaft, Wiener Mitteilungen. Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft TU Wien, Wien, S. 77–102.
- Markis, F., Hii, K., Parthasarathy, R., Baudez, J., Slatter, P., Eshtiaghi, N., 2013. Rheological characterisation of blends of primary und secondary sludge, Chemeca 2013: Challenging Tomorrow. Brisban, Australia.
- Matsché, N., Moser, D., 1994. Operation of a Two-Stage Activated Sludge Package Plant for High Efficiency Treatment. Water Science & Technology Vol 28, 299–307.
- Meinel, F., Gnirss, R., 2014. Phosphor-Elimination: Ökobilanz und Vergleich der Wirtschaftlichkeit. wwt 28–31.
- Metzner, A.B., Reed, J.C., 1955. Flow of non-Newtonian fluids correlation of the laminar, transition and turbulent flow regions. AIChE Vol. 1, No. 4, 434–440.
- Meyer, H., 2005. Leistungsfähigkeit anaerober Reaktoren zur Industrieabwasserreinigung, Veröffentlichungen des Instituts für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover. Hannover.
- Mezger, T.G., 2010. Das Rheologie Handbuch, 3., überarbeitete Auflage. ed. Vincentz Network, Hannover.
- Moshage, U., 2004. Rheologie kommunaler Klärschlämme Messmethoden und Praxisrelevanz -. Gesellschaft zur Förderung des Instituts für Siedlungswasserwirtschaft der Technischen Universität Braunschweig e.V., Braunschweig.
- Mudrak, K., 1966. Die aerobe Schlammstabilisierung, in: Münchner Beiträge zur Abwasser-, Fischerei- und Flussbiologie, Die Verwertung und Beseitigung von häuslichen und industriellen Abwasserschlämmen. Oldenburg, München, Wien, S. 290–314.
- Mudrak, K., Kunst, S., 1988. Biologie der Abwasserreinigung, 2. Auflage. ed. Gustav Fischer Verlag, Stuttgart.
- Nowak, O., 2000. Bilanzierung in der Abwasserreinigung, Habilitationsschrift. Institut für Wassergüte und Abfallwirtschaft TU Wien, Wien.
- Nowak, O., 2002. Schlammbehandlung bei Anlagen ohne mesophile Schlammfaulung, in: Klärschlamm, Möglichkeiten und Verfahren zur Verwertung/Entsorgung ab 2004, Wiener Mitteilungen. Wien, S. 29–76.

- Nowak, O., Svardal, K., 1989. Biologische Abwasserreinigung, in: ÖWWV-Fortbildungskurs, TU-Wien, Wiener Mitteilungen. Institut für Wassergüte und Landschaftswasserbau, Wien, S. G1–G55.
- ÖWAV-Messtechnikkurs, 2014. Regelungstechnik.
- Pavlostathis, S.G., 1991. Kinetics of Anaerobic Treatment. Water Science & Technology Vol. 24, 35–59.
- Rautenbach, R., Gebel, J., Frye, A., Kollbach, J.S., Dahm, W., 1995. Bilanzierung einer Ammoniak-Strippkolonne unter Berücksichtigung des Dissoziationsgleichgewichtes Ammoniak/Ammonium. KA 42, 48–55.
- Reichel, M., Svardal, K., 2010. EOS Energieoptimierung Schlammbehandlung. TU Wien, Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, Wien.
- Roediger, H., Roediger, M., Kapp, H., 1990. Anaerobe alkalische Schlammfaulung, 4. Auflage. ed. Oldenbourg Industrieverlag, München, Wien.
- Roediger, M., 1997. Bemessungsvorschlag für Schlammfaulungsanlagen. Korrespondenz Abwasser 44, 1856–1864.
- Ryan, N.W., Johnson, M.M., 1959. Transition form laminar to turbulent flow in pipes. AIChE Vol. 5, 433–435.
- Schink, B., 1988. Fermentation Degradation of Nitrogenous Aliphatic and Aromatic Compounds, in: Anaerobic Digestion 1988. Presented at the Advantages in Water Pollution Control, Pergamon Press, Oxford, S. 459–464.
- Schmid, F., 2009. Wärmerückgewinnung aus Abwasser -Potentialerhebung im Rahmen des GEP. gwa, Gas Wasser Abwasser 6, 406–411.
- Schneider, K.-J., 2008. Bautabellen für Ingenieure, 18. Auflage. ed. Werner Verlag, Köln.
- Schweighofer, P., 1994. Möglichkeiten der Plausibilitätsprüfung von Messdaten, in: Wiener Mitteilungen. Institut für Wassergüte und Abfallwirtschaft TU Wien, Wien, S. G1–G42.
- Speece, R.E., 1996. Anaerobic Biotechnology for Industrial Wastewaters, Archae Press. Vanderblit.
- Spindler, A., 2013. Verfahrenstechnische Auslegung der 1. Stufe der Hauptkläranlage Wien auf Grundlage der dynamischen Simulation. TU Wien, Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, Wien.
- Spindler, A., Svardal, K., 2009. Evaluierung der Wiener Klärschlammbehandlung. Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, Wien.
- Spindler, A., Vanrolleghem, P.A., 2012. Dynamic mass balancing for wastewater treatment data quality control using CUSUM charts. Water Science & Technology 2148–2153.
- STATISTIK AUSTRIA, 2009. Energiegesamtrechnung 1999 bis 2008 [WWW Document]. Statistische Nachrichten. URL http://www.statistik.at/web_de/statistiken/energie_und_umwelt/energie/energiegesa mtrechnung/ (abgerufen: 22.09.2014).
- STATISTIK AUSTRIA, 2010. Energiegesamtrechnung [WWW Document]. STATISTIK AUSTRIA. URL http://www.statistik.at/web_de/statistiken/energie_und_umwelt/energie/energiegesa mtrechnung/036357.html (abgerufen: 18.09.2014).

- STATISTIK AUSTRIA, 2013. Energieeinsatz der Haushalte [WWW Document]. STATISTIK AUSTRIA. URL http://www.statistik.at/web_de/statistiken/energie_und_umwelt/energie/energieeins atz der haushalte/035454.html (abgerufen: 30.05.2014).
- STATISTIK AUSTRIA, 2014a. Bevölkerung im Jahresdurchschnitt [WWW Document]. URL http://www.statistik.at/web_de/statistiken/bevoelkerung/bevoelkerungsstand_und_v eraenderung/bevoelkerung_im_jahresdurchschnitt/index.html (abgerufen: 18.09.2014).
- STATISTIK AUSTRIA, 2014b. Haushalte [WWW Document]. STATISTIK AUSTRIA. URL http://www.statistik.at/web_de/statistiken/bevoelkerung/haushalte_familien_lebensf ormen/haushalte/index.html (abgerufen: 18.09.2014).
- Steinle, E., 1984. Abschätzung der Durchmischungseffektivität kontinuierlich umgewälzter Faulbehälter mit Hilfe von Tracer-Versuchen. Korrespondenz Abwasser 34, 604.
- Svardal, K. (Ed.), 1991. Anaerobe Abwasserbehandlung Ein Modell zur Berechnung und Darstellung der maßgebenden chemischen Parameter, Wiener Mitteilungen. TU Wien, Institut für Wassergüte und Landschaftswasserbau, Wien.
- Svardal, K., 2002. Schlammbehandlung bei Anlagen mit mesophiler Schlammfaulung, in: Klärschlamm, Möglichkeiten und Verfahren zur Verwertung/Entsorgung ab 2004, Wiener Mitteilungen. Institut für Wassergüte und Landschaftswasserbau, TU Wien, Wien, S. 1–28.
- Svardal, K., 2012. Die energieautarke Kläranlage, in: Standortbestimmung in der Wassergütewirtschaft, Wiener Mitteilungen. Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft TU Wien, Wien, S. 203–216.
- Svardal, K., Kroiss, H., 2011. Energy requirements for waste water treatment. Water Science & Technology 1365–1361.
- Svardal, K., Nowak, O., Schweighofer, P., 1998. Dokumentation und Auswertung Plausibilitätsanalyse von Messwerten, in: Wiener Mitteilungen. Institut für Wassergüte und Abfallwirtschaft TU Wien, Wien, S. 439–475.
- Svardal, K., Valkova, T., 2012. Klärschlammentwässerung in Österreich Umfrage Erste Ergebnisse.
- Tonkovic, Z., 1999. Aerobic stabilisation criteria for BNR biosolids. Water Science & Technology Vol 39, 167–174.
- UBA, 2008. UBA [WWW Document]. Prozessorientierte Basisdaten für Umweltmanagement-Instrumente (ProBas). URL http://www.probas.umweltbundesamt.de/php/ index.php?
- Von der Emde, W., 1957. Beitrag zu Versuchen zur Abwasserreinigung mit belebtem Schlamm, Veröffentlichungen des Instituts für Siedlungswasserwirtschaft der Technischen Hochschule Hannover. Institut für Siedlungswasserwirtschaft der Technischen Hochschule Hannover, Hannover.
- Von der Emde, W., 1982. Design and Operation Interaction An Example: Main Treatment Plant Vienna. Water Science & Technology Vol 14, 493–506.

- Wageningen University (Ed.), 1997. Handbook of International Course on Anaerobic Waste Water Treatment. Wageningen University, Department of Environment Technology, Wageningen.
- Wandl, G., 2005. Möglichkeiten und Grenzen der Nitrifikation und Stickstoffentfernung in zweistufigen Belebungsanlagen. Technische Universität Wien, Wien.
- Wolf, P., 1973. Aerobe Schlammstabilisierung Folgerungen aus der fachlichen Diskussion in Bad Boll, in: Berichte aus dem Institut für Wasserwirtschaft und Gesundheitsingenieurwesen der TU München.
- Zessner, M., 1999. Bedeutung und Steuerung von Nährstoff- und Schwermetallflüssen des Abwassers. Technische Universität Wien, Wien.

WIENER MITTEILUNGEN

WASSER • ABWASSER • GEWÄSSER

Eine von den Wasserbauinstituten an der Technischen Universität Wien, den Instituten für Wasserwirtschaft der Universität für Bodenkultur und dem Österreichischen Wasser- und Abfallwirtschaftsverband herausgegebene Schriftenreihe

Banc	l Nr	Preis €
1	Das Wasser (1968) Kresser W.	vergriffen
2	Die Gesetzmäßigkeiten der stationären Flüssigkeitsströmung durch gleichförmig rotierende zylindrische Rohre (1968) Breiner, H.	vergriffen
3	Abwasserreinigung - Grundkurs (1969) von der Emde, W.	vergriffen
4	Abwasserreinigungsanlagen - Entwurf-Bau-Betrieb (1969) 4. ÖWWV-Seminar, Raach 1969	vergriffen
5	Zukunftsprobleme der Trinkwasserversorgung (1970) 5. ÖWWV-Seminar, Raach 1970	vergriffen
6	Industrieabwässer (1971) 6. ÖWWV-Seminar, Raach 1971	vergriffen
7	Wasser- und Abfallwirtschaft (1972) 7. ÖWWV-Seminar, Raach 1972	vergriffen
8	Das vollkommene Peilrohr (Zur Methodik der Grundwasserbeobachtung) (1972) Schmidt, F.	vergriffen
9	Über die Anwendung von radioaktiven Tracern in der Hydrologie Pruzsinsky, W. Über die Auswertung von Abflußmengen auf elektronischen Reche Doleisch, M.:	` '
10	1. Hydrologie-Fortbildungskurs (1972)	

vergriffen

11	Vergleichende Untersuchungen zur Berechnung von HW-Abflüssen aus kleinen Einzugsgebieten (1972)	
	Gutknecht, D.	vergriffen
12	Uferfiltrat und Grundwasseranreicherung (1973) 8. ÖWWV-Seminar, Raach 1973	vergriffen
13	Zellstoffabwässer-Anfall und Reinigung (1972) von der Emde W., Fleckseder H., Huber L., Viehl K.	vergriffen
14	Abfluß - Geschiebe (1973) 2. Hydrologie-Fortbildungskurs 1973	vergriffen
15	Neue Entwicklung in der Abwassertechnik (1973) 9. ÖWWV-Seminar, Raach 1974	vergriffen
16	Praktikum der Kläranlagentechnik (1974) von der Emde W.	vergriffen
17	Stabilitätsuntersuchung von Abflußprofilen mittels hydraulischer Methoden und Trendanalyse (1974) Behr, O.:	18
18	Hydrologische Grundlagen zur Speicherbemessung (1975) 3. Hydrologie-Fortbildungskurs 1975	vergriffen
19	Vorhersagen in der Wasserwirtschaft (1976) 1. Hydrologisches Seminar des ÖWWV 1976	10
20	Abfall- und Schlammbehandlung aus wasserwirtschaftlicher Sicht (19 11. ÖWWV-Seminar, Raach 1976	976) vergriffen
21	Zur Theorie und Praxis der Speicherwirtschaft (1977) 2. Hydrologisches Seminar des ÖWWV 1977	22
22	Abwasserreinigung in kleineren Verhältnissen (1977) 12. ÖWWV-Seminar, Raach 1977	vergriffen
23	Methoden zur rechnerischen Behandlung von Grundwasserleitern (19 Baron W., Heindl W., Behr O., Reitinger J.	977) vergriffen
24	Ein Beitrag zur Reinigung des Abwassers eines Chemiefaserwerkes, eines chemischen Betriebes und einer Molkerei (1978) Begert A.	vergriffen
	Degen 11.	vergriiieli

25	Ein Beitrag zur Reinigung von Zuckerfabriksabwasser (1978) Kroiss H.	vergriffen
26	Methoden der hydrologischen Kurzfristvorhersage (1978) Gutknecht D.	vergriffen
27	Wasserversorgung-Gewässerschutz (1978) 13. ÖWWV-Seminar, Raach 1978	vergriffen
28	Industrieabwasserbehandlung - Neue Entwicklungen (1979) 14. ÖWWV-Seminar, Raach 1979	vergriffen
29	Probleme der Uferfiltration und Grundwasseranreicherung mit besonderer Berücksichtigung des Wiener Raumes (1979) Frischherz H.	vergriffen
30	Beiträge zur Hydraulik, Gewässerkunde und Wasserwirtschaft (1979) o. UnivProf. DDr. Werner Kresser zum 60. Geburtstag	vergriffen
31	Grundwasserströmungsverhältnisse bei Horizontalfilterrohrbrunnen (Schügerl W.	(1980) vergriffen
32	Grundwasserwirtschaft (1980) 3. Hydrologisches Seminar des ÖWWV 1980	25
33	Kulturtechnik und Wasserwirtschaft heute (1) (1980)	vergriffen
34	Behandlung und Beseitigung kommunaler und industrieller Schlämme 15. ÖWWV-Seminar, Raach 1980	e (1980) vergriffen
35	Faktoren, die die Inaktivierung von Viren beim Belebungsverfahren beeinflussen (1980) Usrael G.	vergriffen
36	Vergleichende Kostenuntersuchungen über das Belebungsverfahren (1 Flögl W.	980) vergriffen
37	Ein Beitrag zur Reinigung und Geruchsfreimachung von Abwasser aus Tierkörperverwertungsanstalten (1980) Ruider E.	vergriffen
38	Wasserwirtschaftliche Probleme der Elektrizitätserzeugung (1981) Schiller, G.:	vergriffen

39	Kulturtechnik und Wasserwirtschaft heute (1981) Teil 2	vergriffen
40	Wasseraufbereitung und Abwasserreinigung als zusammengehörige Techniken (1981)	
	16. ÖWWV-Seminar, Raach 1981	vergriffen
41	Filterbrunnen zur Erschließung von Grundwasser (1981) ÖWWV-Fortbildungskurs 1981	29
42	Zur Ermittlung von Bemessungshochwässern im Wasserbau (1981) Kirnbauer R.	22
43	Wissenschaftliche Arbeiten, Zeitraum 1977 bis 1981 (1981)	25
44	Kulturtechnik und Wasserwirtschaft - heute (1981) Teil 3	25
45	Verbundwirtschaft in der Wasserversorgung (1982) ÖWWV-Fortbildungskurs 1982	29
46	Gewässerschutzplanung, deren Umsetzung und Zielkontrolle im Einzugsgebiet des Neusiedler Sees (1982) Stalzer W.	vergriffen
47	Wechselwirkung zwischen Planung und Betrieb von Abwasserreinigungsanlagen, Erfahrungen und Probleme (1982) 17. ÖWWV-Seminar, Ottenstein 1982	vergriffen
48	Kleinwasserkraftwerke - Notwendigkeit und Bedeutung (1982) Flußstudien: Schwarza, kleine Ybbs, Saalach	vergriffen
49	Beiträge zur Wasserversorgung, Abwasserreinigung, Gewässerschutz und Abfallwirtschaft (1982) o. UnivProf. DrIng. W. v.d. Emde zum 60. Geburtstag	vergriffen
50	Kulturtechnik und Wasserwirtschaft - heute (1982) Teil 4	vergriffen
51	Sicherung der Wasserversorgung in der Zukunft (1983) 18. ÖWWV-Seminar, Ottenstein 1983	vergriffen
52	Thermische Beeinflussung des Grundwassers (1983) ÖWWV-Fortbildungskurs, 1983	vergriffen

53	Planung und Betrieb von Regenentlastungsanlagen (1984) ÖWWV-Fortbildungskurs, 1984	vergriffen
54	Sonderabfall und Gewässerschutz (1984)	
	19. ÖWWV-Seminar, Gmunden 1984	vergriffen
55	Naturnahes Regulierungskonzept "Pram" (1984)	26
56	Blähschlamm beim Belebungsverfahren (1985) ÖWWV-Fortbildungskurs, 1985	vergriffen
57	Chemie in der Wassergütewirtschaft (1985) ÖWWV-Fortbildungskurs, 1985	vergriffen
58	Klärschlamm - Verwertung und Ablagerung (1985) 20. ÖWWV-Seminar, Ottenstein 1985	vergriffen
59	Wasserkraftnutzung an der Thaya (1985) Pelikan B.	23
60	Seminar "Wasser - Umwelt - Raumordnung" (1985)	16
61	Gewässerschutz im Wandel der Zeit Ziele und Maßnahmen zu ihrer Verwirklichung (1985) Fleckseder, H.	vergriffen
62	Anaerobe Abwasserreinigung (1985) Kroiss H.	vergriffen
63	Kleine Belebungsanlagen mit einem Anschlußwert bis 500 Einwohnergleichwerte (1985) Begert A.	vergriffen
64	Belüftungssysteme beim Belebungsverfahren (1986) ÖWWV-Fortbildungskurs, 1986	vergriffen
65	Planung und Betrieb von Behandlungsanlagen für Industrieabw 21. ÖWWV-Seminar, Ottenstein 1986	ässer (1986) vergriffen
66	Ausspracheseminar Grundwasserschutz in Österreich (1986) ÖWWV-Fortbildungskurs, 1986	29
67	Kulturtechnik und Wasserwirtschaft heute (5) (1986)	vergriffen

68	Zur mathematischen Modellierung der Abflußentstehung an Hänge Schmid B.H.	en (1 986)
69	Nitrifikation - Denitrifikation (1987) ÖWWV-Fortbildungskurs, 1987	vergriffen
70	Flußbau und Fischerei (1987)	vergriffen
71	Wasserversorgungung und Abwasserreinigung in kleinen Verhältni 22. ÖWWV-Seminar, Ottenstein 1987	issen (1987) vergriffen
72	Wasserwirtschaft und Lebensschutz (1987) Wurzer E.	vergriffen
73	Anaerobe Abwasserreinigung Grundlagen und großtechnische Erfahrung (1988) ÖWWV-Fortbildungskurs, 1988	vergriffen
74	Wasserbau und Wasserwirtschaft im Alpenraum aus historischer S	icht (1 988) 22
75	Wechselbeziehungen zwischen Land-, Forst und Wasserwirtschaft (ÖWWV-Fortbildungskurs, 1988	(1988) vergriffen
76	Gefährdung des Grundwassers durch Altlasten (1988) 23. ÖWWV-Seminar, Ottenstein 1988	vergriffen
77	Kulturtechnik und Wasserwirtschaft heute (6) (1987)	vergriffen
78	Wasserwirtschaftliche Planung bei mehrfacher Zielsetzung (1988) Nachtnebel, H.P.	25
79	Hydraulik offener Gerinne (1989) Symposium, 1989	vergriffen
80	Untersuchung der Fischaufstiegshilfe bei der Stauhaltung im Gießgang Greifenstein (1988) Jungwirth M., Schmutz S.	vergriffen
81	Biologische Abwasserreinigung (1989) ÖWWV-Fortbildungskurs, 1989, TU-Wien	vergriffen
82	Klärschlammentsorgung (1989) 24. ÖWWV-Seminar, Ottenstein 1989	vergriffen

83	Viruskontamination der Umwelt und Verfahren der Kontrolle (1990) 2. Symposium	18
84	Schadstofffragen in der Wasserwirtschaft (1989) ÖWWV-Fortbildungskurs 1989, TU-Wien	29
85	Schlußbericht zum Forschungsvorhaben Trinkwasseraufbereitung mit Ultraschall, Projekt Abschnitt I (1989)	1.0
	Frischherz H.; Benes E.; Ernst J.; Haber F.; Stuckart W.	18
86	Umfassende Betrachtung der Erosions- und Sedimentationsproblema Summer W.	tik (1989) 25
87	Großräumige Lösungen in der Wasserversorgung (1990) 25. ÖWWV-Seminar, Ottenstein 1990	vergriffen
00		8
88	Revitalisierung von Fließgewässern (1990) Beiträge zum Workshop Scharfling, 1989	vergriffen
89	Kulturtechnik und Wasserwirtschaft heute (1990) Teil 9	vergriffen
90	A Study on Kinematic Cascades (1990) Schmid B.H.	18
91	Snowmelt Simulation in Rugged Terrain - The Gap Between Point and Catchment Scale Approaches (1990) Blöschl G.	18
92	Dateninterpretation und ihre Bedeutung für Grundwasserströmungsmodelle (1990) Blaschke A.P. nicht	erschienen
93	Decision Support Systeme für die Grundwasserwirtschaft unter Verwendung geografischer Informationssysteme (1990) Fürst J.	18
94	Schlußbericht zum Forschungsvorhaben Trinkwasseraufbereitung mit Ultraschall; Projekt-Abschnitt 1990 (1990) Frischherz H., Benes E., Stuckhart W., Ilmer A., Gröschl M., Bolek W.	18
95	Anaerobe Abwasserreinigung - Ein Modell zur Berechnung und Darstellung der maßgebenden chemischen Parameter (1991) Svardal K	22

96	EDV-Einsatz auf Abwasserreinigungsanlagen (1991) ÖWWV-Fortbildungskurs 1991, TU-Wien	29
97	Entfernung von Phosphorverbindungen bei der Abwasserreinigung (19 ÖWWV-Fortbildungskurs 1991, TU-Wien	991) 25
98	Auswirkungen der Wasserrechtsgesetznovelle 1990 auf Behörden, Planer und Betreiber kommunaler Abwasserreinigungsanlagen - aus technischer, rechtlicher und wirtschaftlicher Sicht (1991) 26. ÖWWV-Seminar, Ottenstein 1991	36
99	Geruchsemissionen aus Abwasserreinigungsanlagen (1991) ÖWWV-Fortbildungskurs 1991,	22
100	Anpassung von Kläranlagen an den Stand der Technik (1992) ÖWWV-Fortbildungskurs 1992, TU-Wien	vergriffen
101	Umweltbezogene Planung wasserbaulicher Maßnahmen an Fließgewässern (1992) Pelikan B.	18
102	Erfassung hydrometeorologischer Elemente in Österreich im Hinblick auf den Wasserhaushalt (1992) Behr O.	i.V.
103	Wasser- und Abfallwirtschaft in dünn besiedelten Gebieten (1992) 27. ÖWWV-Seminar Ottenstein 1992	36
104	Virus Contamination of the Environment (1992) Methods and Control	vergriffen
105	Fließgewässer und ihre Ökologie (1993) ÖWAV-Fortbildungskurs 1992, TU-Wien	22
106	Festlegung einer Dotierwassermenge über Dotationsversuche (1992) Mader H.	22
107	Wasserrechtsgesetznovelle 1990 und neue Emissionsverordnungen (1990 Vorträge anläßlich der UTEC 1992	92) 29
108	Chemische Analytik für einen zeitgemäßen Gewässerschutz (1992) Vorträge anläßlich der UTEC 1992	29
109	Kulturtechnik und Wasserwirtschaft heute (1994) Teil 10 - Beiträge zum Seminar an der Universität für Bodenkultur im November 1994	i.V.

110	Bemessung u. Betrieb von Kläranlagen zur Stickstoffentfernung (1993 ÖWAV-Seminar 1993, TU-Wien	36
111	Wasserreserven in Österreich - Schutz und Nutzung in Gegenwart und Zukunft (1993) 28. ÖWAV-Seminar Ottenstein 1993	vergriffen
112	Contamination of the Environment by Viruses and Methods of Contro	l (1993) 18
113	Wasserkraft () O.UnivProf. DiplIng. Dr.techn. S. Radler anläßlich seiner Emeritierung	vergriffen
114	Klärwärter-Grundkurs (1994) 2. Auflage 1994	vergriffen
115	Beitrag zur Reduzierung der Abwasseremissionen der Bleicherei beim Sulfatverfahren (1994) Urban W.	
	ISBN 3-85234-001-2	22
116	Eigenüberwachung von Abwasserreinigungsanlagen für den Gewässerschutz (1994) ÖWAV-Seminar 1994, TU-Wien ISBN 3-85234-002-0	25
117	Abwasserreinigungskonzepte - Internationaler Erfahrungsaustausch über neue Entwicklungen (1995) ÖWAV-Seminar 1994, TU Wien)
	ISBN 3-85234-003-9	25
118	3 Jahre WRG-Novelle (1994) 29. ÖWAV-Seminar: Ottenstein 1994 ISBN 3-85234-004-7	19
119	Landeskulturelle Wasserwirtschaft (1994) anläßlich der Emeritierung von o.UnivProf. DiplIng. Dr. H. Supersperg	vergriffen
120	Gewässerbetreuungskonzepte - Stand und Perspektiven (1994) Beiträge zur Tagung an der BOKU 1994	
	ISBN 3-85234-010-1	32
121	Generelle Entwässerungsplanung im Siedlungsraum (1996) ÖWAV-Seminar 1995, TU Wien	20
	ISBN 3-85234-011-X	29

122	Bedeutung von geowissenschaftlicher Zusatzinformation für die Schätzung der Transmissivitätsverteilung in einem Aquifer (1994 Kupfersberger H.) 18
123	Modellierung und Regionalisierung der Grundwassermengenbildung und des Bodenwasserhaushaltes (1994)	
	Holzmann, H.	22
124	Pflanzenkläranlagen - Stand der Technik, Zukunftsaspekte (1995)	
	ÖWAV-Seminar, BOKU Wien ISBN 3-85234-014-4	22
125	Abwasserreinigung - Probleme bei der praktischen Umsetzung des Wasserrechtsgesetzes, (1995)	
	ÖWAV-Seminar 1995, TU-Wien ISBN 3-85234-015-2	32
126	Konfliktfeld Landwirtschaft - Wasserwirtschaft (1995) 30. ÖWAV-Seminar, Ottenstein 1995	
	ISBN 3-85234-016-0	29
127	Alte und neue Summenparameter (1995)	
	ÖWAV-Seminar 1995, TU-Wien ISBN 3-85234-017-9	29
128	Viruskontamination der Umwelt und Verfahren der Kontrolle	
	(deutsch oder englisch) (1995) 4. Symposium Univ.Prof.Dr. R. Walter	
	ISBN 3-85234-019-5	0
129	Einfluß von Indirekteinleitungen auf Planung und Betrieb von Abwasseranlagen (1996)	
	ÖWAV-Seminar 1996, TU-Wien ISBN 3-85234-020-9	ergriffen
130	Zentrale und dezentrale Abwasserreinigung (1996)	
	31. ÖWAV-Seminar, Ottenstein 1996 ISBN 3-85234-021-7	36
	10011 0 00231 021 7	50
131	Methoden der Planung und Berechnung des Kanalisationssystems (1996) ÖWAV-Seminar 1996, BOKU-Wien)
	ISBN 3-85234-022-5	29

132	Scale and Scaling in Hydrology (1996) Blöschl G.	
		vergriffen
133	Kulturtechnik und Wasserwirtschaft heute (11) (1996) Integrale Interpretation eines zeitgemäßen Gewässerschutzes ISBN 3-85234-024-0	12
134	Ein Beitrag zur Charakterisierung von Belüftungssystemen für die biologische Abwasserreinigung nach dem Belebungsverfahren mit Sauerstoffzufuhrmessungen (1996)	12
	Frey W. ISBN 3-85234-025-X	22
135	Nitrifikation im Belebungsverfahren bei maßgebendem Industrieabwassereinfluß (1996) Nowak O. ISBN 3-85234-026-8	36
136	1. Wassertechnisches Seminar (1996) Nebenprodukte von Desinfektion und Oxidation bei der Trinkwasseraufbere ISBN 3-85234-027-6	eitung i.V.
137	Modellanwendung bei Planung und Betrieb von Belebungsanlagen (199 ÖWAV - Seminar 1997, TU-Wien ISBN 3-85234-028-4	97) 32
138	Nitrifikationshemmung bei kommunaler Abwasserreinigung (1997) Schweighofer P. ISBN 3-85234-029-2	25
139	Ein Beitrag zu Verständnis und Anwendung aerober Selektoren für die Blähschlammvermeidung (1997) Prendl L. ISBN 3-85234-030-6	22
140	Auswirkungen eines Kläranlagenablaufes auf abflußschwache Vorflute Beispiel der Kläranlage Mödling und des Krottenbaches (1997) Franz A.	
	ISBN 3-85234-031-4	25
141	Neue Entwicklungen in der Abwassertechnik (1997) ÖWAV - Seminar 1997, TU-Wien ISBN 3-85234-032-2	36

142	Kulturtechnik und Wasserwirtschaft heute (11) (1997) Abfallwirtschaft und Altlastensanierung morgen	
	ISBN 3-85234-033-0	18
143	Abwasserbeseitigung und Wasserversorgung in Wien (1997) Eine ökonomische Beurteilung der Einnahmen, Ausgaben und Kosten Kosz M. ISBN 3-85234-034-9	22
	ISBN 3-83234-034-9	22
144	Raum-Zeitliche Variabilitäten im Geschiebehaushalt und dessen Beeinflussung am Beispiel der Drau (1997) Habersack H.	
	ISBN 3-85234-035-7	29
145	Fortbildungskurs: Biologische Abwasserreinigung (1998) ÖWAV - Seminar 1998, TU-Wien	
	ISBN 3-85234-036-5	40
146	2. Wassertechnisches Seminar (1998) Desinfektion in der Trinkwasseraufbereitung	
	ISBN 3-85234-037-3	i.V.
147	Eigenüberwachung und Fremdüberwachung bei Kläranlagen (1998) 32. ÖWAV-Seminar, Linz 1998 ISBN 3-85234-038-1	36
	ISDN 3-03234-030-1	30
148	Grundwasserdynamik (1998) ISBN 3-85234-039-C	36
149	Die Tradition in der Kulturtechnik (1998) Kastanek F.	
	Simulationsanwendung bei der Störung durch poröses Medium (1998) Loiskandl W.	
	ISBN 3-85234-040-4	22
150	Auswirkungen von Niederschlagsereignissen und der Schneeschmelze auf Karstquellen (1998)	
	Steinkellner M.	
	ISBN 3-85234-041-1	36
151	Experiences with soil erotion models (1998) ISBN 3-85234-042-X	29

152	Ein Beitrag zur Optimierung der Stickstoffentfernung in zweistufigen Belebungsanlagen (1998) Dornhofer K.	
	ISBN 3-85234-043-8	25
153	Hormonell aktive Substanzen in der Umwelt (1998)	
	ÖWAV / UBA Seminar 1998, BOKU Wien	
	ISBN 3-58234-044-6	vergriffen
154	Erfassung, Bewertung und Sanierung von Kanalisationen (1998) ÖWAV Seminar 1999, BOKU Wien	
	ISBN 3-8523-045-4	29
155	Nährstoffbewirtschaftung und Wassergüte im Donauraum (1999)	
	ÖWAV - Seminar 1999, TU-Wien	
	ISBN 3-85234-046-2	32
156	Der spektrale Absorptionskoeffizient zur Bestimmung der organisch Abwasserbelastung (1999)	ien
	UV-Seminar 1998, Duisburg ISBN 3-85234-047-0	22
157	Bedeutung und Steuerung von Nährstoff- und Schwermetallflüssen des Abwassers (1999) Zessner M. ISBN 3-85234-048-9	25
158	Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der Abfallwirtschaft (1999) Rechberger H.	
	ISBN 3-85234-049-7	vergriffen
159	Sicherheit und Gesundheitsschutz auf Abwasseranlagen und deren Evaluierung (2000) ÖWAV – Seminar 2000, TU-Wien	
	ISBN 3-85234-050-0	22
160	Auswirkungen von Klimaänderungen auf die Hydrologie alpiner Einzugsgebiete (2000)	
	Hebenstreit K. ISBN 3-85234-051-9	25

161	Innovative Messtechnik in der Wasserwirtschaft (2000) Präsentation eines Forschungsprojektes	
	ÖWAV – Seminar 2000, BOKU – Wien	
	ISBN 3-85234-052-7	vergriffen
162	Sickerwasser und Oberflächenabdichtung auf	
	Reaktordeponien (2000)	
	ÖWAV - Seminar 2000, Wirtschaftskammer Wien	
	ISBN 3-85234-053-5	25
163	Abfall- und Abwasserentsorgung in kleinen Verhältnissen (2000)	
	ÖWAV - Seminar 2000, Ottenstein	
	ISBN 3-85234-054-3	25
164	Niederschlag-Abfluss-Modellierung – Simulation und Prognose (2000))
	ÖWAV-Seminar 2000, TU Wien	
	ISBN 3-85234-055-1	i.V.
165	Mehrdimensionale Abflussmodellierung am Beispiel der Lafnitz (200 Habersack, H. / Mayr, P. / Girlinger, R. / Schneglberger, St.	0)
	ISBN 3-85234-056-x	25
166	Anpassung von Kläranlagen – Planung und Betrieb (2001)	
	ÖWAV-Seminar 2001, TU Wien	
	ISBN 3-85234-057-8	40
167	Bepflanzte Bodenfilter zur weitergehenden Reinigung von Oberfläch	enwasser
	und Kläranlagenabläufen (2001)	
	Laber J.	
	ISBN 3-85234-058-6	25
168	Kanalbetrieb und Niederschlagsbehandlung (2001)	
	ÖWAV-Seminar 2001, BOKU Wien.	
	ISBN 3-85234-059-4	29
169	Development of a Simulation Tool for Subsurface Flow Constructed	
	(Entwicklung eines Simulationsmodells für bepflanzte Bodenfilter) (2	001)
	Langergraber G.	
	ISBN 3-85234-060-8	25
170	Simulation von Niederschlagszeitreihen mittels stochastischer Prozes	s-modelle
	unter Berücksichtigung der Skaleninvarianz (2001)	
	Bogner	• • •
	ISBN 3-85234-061-6	i.V.
171	Sewage Sludge Disposal – Sustainable and/or Reliable Solutions (2001)	1)
	ÖWAV / EWA Workshop 2001, TU-Wien	
	ISBN 3-85234-062-4	25

172	Stickstoffentfernung mit Biofiltern (2002) Nikolavcic B.	
	ISBN 3-85234-063-2	30
173	Anaerobe Abwasserreinigung: Beeinflussende Faktoren der Versäuerung Zitronesäurefabrikabwassers (2002) Moser D.	g eines
	ISBN 3-85234-064-0	20
174	Gewässerschutz bei Entlastungsbauwerken der Mischkanalisation (2002) Fenz R.	
	ISBN 3-85234-065-9	25
175	Wechselwirkung von physikalischen, chemischen und biotischen Prozess aquatischen Systemen (2002) Kreuzinger N.	en in
	ISBN 3-85234-066-7	i.V.
176	Benchmarking in der Abwasserentsorgung (2002) ÖWAV Workshop Februar 2002, TU-Wien	
	ISBN 3-85234-067-5	30
177	Klärschlamm (2002) Möglichkeiten und Verfahren zur Verwertung / Entsorgung ab 2004 ÖWAV Seminar April 2002, Wirtschaftskammer Österreich	
	Schlammbehandlung und Entsorgung ÖWAV / TU – Workshop September 2000, TU-Wien	
	ISBN 3-85234-068-3	30
178	Arzneimittel in der aquatischen Umwelt (2002) ÖWAV Seminar 2002, BOKU Wien	
	ISBN 3-58234-069-1	30
179	Untersuchungen zur Entfernung natürlicher radioaktiver Stoffe aus Trinkwasser und Überblick zu deren Verbreitung in Österreich (2002) Staubmann, K.	
	ISBN 3-85234-070-5	25
180	Zum Fließwiderstandsverhalten flexibler Vegetation (2002) Stephan, U.	
	ISBN 3-85234-071-3	30
181	Understanding and Estimating Floods at the Regional Scale (2002) Merz, R.	
	ISBN 3-85234-072-1	30

182	Kanalmanagement - Neues Schlagwort oder alte Herausforderung? (2003) ÖWAV Seminar 2003, BOKU Wien		
	ISBN 3-85234-073-X	30	
183	Fortbildungsseminar Abwasserentsorgung (2003) ÖWAV Seminar Februar 2003, TU-Wien ISBN 3-85234-074-8	40	
184	Klärschlamm (2003) ÖWAV Seminar November 2003, TU-Wien ISBN 3-85234-075-6	30	
185	Nachhaltige Nutzung von Wasser (2003) Endbericht zu Modul MU11 im Rahmen des Forschungsschwerpunktes "Nach Entwicklung österreichischer Kulturlandschaften" ISBN 3-85234-076-4	nhaltige 30	
186	Inspektion von Kanalisationen (inkl. Umsetzung ÖNORM EN 13508-2) ÖWAV-Informationsveranstaltung 2004, BOKU Wien ISBN 3-85234-077-2	30	
187	Datengewinnung, -verwaltung und -nutzung in der Wassergütewirtschaft ÖWAV Seminar März 2004, TU-Wien ISBN 3-85234-078-0	(2004)	
188	CSB-Elimination in höchstbelasteten Belebungsstufen und ihre Auswirkung auf die Stickstoffelimination von zweistufigen Anlagen unter dem Gesichtspunkt der mathematischen Modellierung (2004) Haider, S.		
	ISBN 3-85234-079-9	30	
189	Beitrag zum Benchmarking von Abwasserreinigungsanlagen (2004) Lindtner, S. ISBN 3-85234-080-2	25	
190	Öffentlichkeitsarbeit auf Kläranlagen (2004) ÖWAV Seminar Juni 2004, St. Pölten ISBN 3-85234-081-0	30	
191	Das Verhalten ausgewählter organischer Spurenstoffe bei der biologische Abwasserreinigung (2004) Clara, M. ISBN 3-85234-082-9	e n 25	
	10D1 J-0J2JT-002-7	۷.	

Band Nr Preis €

192	ÖWAV S	n der Wassergütewirtschaft (2005) eminar Februar 2005, TU Wien 85234-083-7	45
193		nensional numerical modelling of turbulent river flow using al finite volumes (2005)	
	· · · · · · · · · · · · · · · · · · ·	85234-084-5	30
194		rentsorgung im ländlichen Raum (2005) eminar November 2005, BOKU Wien	
	ISBN 3-8	85234-085-3 Preis auf	Anfrage
195	ÖWAV S	erfahrungen moderner Kläranlagen (2006) eminar Februar 2006, TU-Wien	40
	ISBN 3-8	85234-086-1	40
196	ÖWAV-Ir	nagement 2006 – Praxisberichte und Projektergebnisse (2006) nformationsveranstaltung 2006, BOKU	
	ISBN 3-	-85234-087-X	30
197		n der hydrologischen Regionalisierung (2006) eminar 2006, TU Wien	
		-85234-088-8	30
198	Process b Laha, G.	eased regionalisation of low flows (2006)	
		3-85234-089-6 978-3-85234-089-0	30
199		servorhersage – Erfahrungen, Entwicklungen & Realität (2006) eminar 2006, TU Wien)
		3-85234-090-X	
	ISBN-13	978-3-85234-090-6	30
200	(Geostatis	l stream network structure in geostatistical hydrological analyse stische hydrologische Analysen unter Berücksichtigung von	es
	Skalenası Skøien, J.	pekten und Gewässernetzstruktur) (2007)	
		3-85234-091-8	
		978-3-85234-091-3	i.V.

201	Der kombinierte Ansatz, das Wechselspiel zwischen Emission und Immission - Neue Herausforderungen bei Abwasserentsorgung und Gewässerschutz (2007) ÖWAV Februar Seminar 2007, TU-Wien		
	ISBN-13 978-3-85234-093-7	45	
202	Betrieb von Kläranlagen - Grundkurs Neuauflage 2013		
	ISBN-13 978-3-85234-123-1	80	
203	Kanalmanagement 2007 – Unterirdische Kanalsanierung (2007) ÖWAV Infoveranstaltung 17. April 2007 an der BOKU Wien		
	ISBN-13 978-3-85234-095-1	30	
204	Leitungskataster für Trink - und Abwassernetze (2007) ÖWAV Infoveranstaltung 30. Mai 2007, Wien		
	ISBN-13 978-3-85234-096-8	30	
205	Geruchs- und Korrosionsprobleme in der Kanalisation (2007)		
	ÖWAV-Seminar 2007, TU Wien ISBN 978-3-85234-097-5	35	
206	Extreme Abflussereignisse: Dokumentation – Bedeutung –		
	Bestimmungsmethoden (2007)		
	ÖWAV-Seminar 2007, TU Wien	20	
	ISBN 978-3-85234-098-2	30	
207	1. Österreichischer Kleinkläranlagentag (2007)		
	ÖWAV-Seminar 2007, BOKU	•	
	ISBN 978-3-85234-099-9	30	
208	Biologische Abwasserreinigung - Aktuelle Entwicklungen (2008)		
	ÖWAV Februar Seminar 2008, TU-Wien		
	ISBN 978-3-85234-100-2	45	
209	Kanalmanagement 2008 – Betrieb und Mischwasser (2008)		
	ÖWAV Infoveranstaltung 27. März 2008 an der BOKU Wien		
	ISBN 978-3-85234-101-9	30	
210	2. Österreichischer Kleinkläranlagentag (2008)		
	ÖWAV-Seminar 2008, BOKU		
	ISBN 978-3-85234-102-6	30	

211	Zur Kenntnis der Schwefelwasserstoffbildung und -vermeidung in Abwasserdruckleitungen (2008) Saračević E.	
	ISBN 978-3-85234-103-3	30
212	Neue Herausforderungen an die Wassergütewirtschaft (2009) ÖWAV Februar Seminar 2009, TU-Wien ISBN 978-3-85234-104-0	vergriffen
213	Hochwasserentstehung in der nördlichen Grauwackenzone Beobachtung - Messung – Modellierung (2009) Endbericht für Forschungsprojekte im Zeitraum 1990 bis 2008 ISBN: 978-3-85234-105-7	30
214	Linking Land Use to Stream Pollution: Pollutant Dynamics and Management Implications (2009) Yillia, Paul T. ISBN 978-3-85234-106-4	25
215	Kanalmanagement 2009 – Hauskanäle - Von der Planung bis zur Sar (2009) ÖWAV-Seminar 2009, BOKU ISBN 978-3-85234-107-1	nierung 30
216	Hochwässer – Bemessung, Risikoanalyse und Vorhersage (2009) ÖWAV-Seminar 2009, BOKU ISBN 978-3-85234-108-8	30
217	Einsatz der Managementmethode "Benchmarking" in der Wasserve spezifische Aspekte der Implementierung, Anwendbarkeit und Folge (2009) Neunteufel, R. ISBN 978-3-85234-109-5	0 0
218	3. Österreichischer Kleinkläranlagentag (2009) ÖWAV-Seminar 2009, BOKU ISBN 978-3-85234-110-1	30
219	Abwässer aus Gewerbe und Industrie Indirekt- und Direkteinleiter (ÖWAV Februar Seminar 2010, TU-Wien ISBN 978-3-85234-111-8	2010) vergriffen
220	Kanalmanagement 2010 – Grundlagen der Sanierungsplanung (2010 ÖWAV Seminar 1.6.2010, Wien ISBN 978-3-85234-112-5	C

221	Anwendungsbezogene Aspekte der operationellen Durchflussvorhersage (2010) Drabek, U.	
	ISBN 978-3-85234-113-2	50
222	4. Österreichischer Kleinkläranlagentag (2010)	
	ÖWAV Seminar 2010, BOKU Wien	
	ISBN 978-3-85234-114-9	30
223	Kanalmanagement 2011 – Pumpstationen, Mischwasserbehandlung &	
	Vorstellung des ÖWAV-Regelblattes 42 "Unterirdische Kanalsanierung	; —
	Hauskanäle" (2011) ÖWAV Seminar 2.2.2011, BOKU Wien	
	ISBN 978-3-85234-116-3	40
224	Monitoring auf Kläranlagen	
	"Daten erfassen, auswerten und anwenden" (2011)	
	ÖWAV Februar Seminar 2011, TU-Wien	
	ISBN 978-3-85234-117-0	50
225	Kanalmanagement 2012 – Inspektion und Generelle Sanierungsplanung	y von
	Kanalisationen (2012)	
	ÖWAV Seminar 1.2.2012, BOKU Wien	
	ISBN 978-3-85234-118-7	40
226	Standortbestimmung in der Wassergütewirtschaft (2012)	
	ÖWAV Februar Seminar 2012, TU-Wien	
	ISBN 978-3-85234-119-4	50
227	5. Österreichischer Kleinkläranlagentag (2012)	
	ÖWAV Seminar 2012, BOKU Wien	•
	ISBN 978-3-85234-120-0	30
228	Flussgebietsmanagement und Nährstoffe (2013)	
	ÖWAV Februar Seminar 2013, TU-Wien	vanani ffan
	ISBN 978-3-85234-121-7	ergriffen
229	Kanalmanagement 2013 – Betrieb von Kanalisationen - Präsentation de	S
	ÖWAV-Regelblattes 22 (2013)	
	ÖWAV Seminar 9.4.2013, BOKU Wien	
	ISBN 978-3-85234-122-4	40
230	Abwasserreinigung - Werte erhalten, Effizienz steigern und	
	Ressourcen schonen	
	ÖWAV Februar Seminar 2014, TU-Wien	~ ^
	ISBN 978-3-85234- 124-8	50

231	Kanalmanagement 2014 (2014)		
	ÖWAV Seminar 24.4.2014, BOKU Wien ISBN 978-3-85234-125-5	40	
232	NEW: Nährstoffe – Energie – Wasser		
	ÖWAV Februar Seminar 2015, TU-Wien		
	ISBN 978-3-85234- 126-2	45	
233	Kanalmanagement 2015 - ÖWAV-Regelblatt 22 "Betrieb von Kanalisationen"		
	Was bringt es Neues? (2015)		
	ÖWAV Seminar 21.4.2015, Wien		
	ISBN 978-3-85234-127-9	40	
234	Biogasproduktion aus organischen Reststoffen aus der		
	Lebensmittelindustrie (2015)		
	Brooks, L.		
	ISBN 978-3-85234-128-6	30	
235	Schlammfaulung mit erhöhtem Feststoffgehalt –		
	Chancen, Grenzen, Herausforderungen (2015)		
	Reichel, M.		
	ISBN 978-3-85234-129-3	30	
236	Optimierung und Umsetzung des AOP-Verfahrens mit Ozon und		
	Wasserstoffperoxid für eine kleine Einheit der		
	Trinkwasseraufbereitung (2015)		
	Bletterie, U.		
	ISBN 978-3-85234-130-9	30	
237	Geruchsemissionen aus Abwasseranlagen		
	ÖWAV Seminar 2015, TU-Wien		
	ISBN 978-3-85234-131-6	30	
238	Abwasserwirtschaft im ländlichen Raum		
	ÖWAV Seminar 2015, BOKU Wien		
	ISBN 978-3-85234-133-0	30	
239	Neues aus der Mess-, Steuer- und Regelungstechnik		
	ÖWAV Seminar 2016, TU-Wien		
	ISBN 978-3-85234- 134-7	45	
240	20 Jahre Kanalmanagement (2016)		
	ÖWAV Seminar 31.3.2016, Wien		
	ISBN 978-3-85234-135-4	4(

Preis € Band Nr

Die Bände sind zu beziehen bei:

www.wau.boku.ac.at/wienmit.html

Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft der Technischen Universität Wien Karlsplatz 13/226, A-1040 Wien, Email: ihager@iwag.tuwien.ac.at

Band: 12, 15, 16, 20, 28, 34, 35, 36, 37, 47, 49, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 69, 73, 81, 82, 84, 95, 96, 97, 98, 99, 100, 105, 107, 108, 110, 114, 116, 117, 121, 125, 127, 129, 130, 134, 135, 137, 138, 139, 140, 141, 143, 145, 147, 152, 153, 155, 156, 157, 158, 159, 161, 162, 166, 171, 172, 173, 174, 175, 176, 177, 178, 183,184, 187, 188, 189, 190, 191, 192,195, 201, 202, 205, 208, 211, 212, 214, 219, 224, 226, 228, 230, 232, 234, 235, 236, 237, 239

Institut für Wasserbau und Ingenieurhydrologie der Technischen Universität Wien Karlsplatz 13/222, A-1040 Wien, Email: sekr223@hydro.tuwien.ac.at

Band: 1, 2, 8, 9, 17, 21, 23, 26, 30, 31, 41, 42, 52, 66, 68, 74, 90, 91, 92, 102, 122, 132, 148, 164, 180,181, 193, 197, 198, 199, 200, 206, 213, 216, 221

Institut für Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau der Universität für Bodenkultur,
Muthgasse 18, A-1190 Wien, Email: christina.mayer@boku.ac.at

<u>Band:</u> 18, 19, 32, 38, 43, 44, 45, 48, 50, 55, 59, 60, 70, 75, 78, 86, 89, 93, 101, 106, 109, 113, 123, 144, 160, 165, 167, 169

Institut für Siedlungswasserbau, Industriewasserwirtschaft und Gewässerschutz der Universität für Bodenkultur,
Muthgasse 18, A-1190 Wien, Email: sig-office@boku.ac.at

Band: 22, 29, 39, 40, 46, 67, 71, 72, 76, 77, 80, 83, 85, 87, 88, 94, 103, 112, 115, 118, 120, 124, 126, 128, 131, 133, 136, 142, 146, 150, 154, 163, 167, 168, 169, 178, 179, 182, 185, 186,194, 196, 203, 204, 207, 209, 210, 215, 217, 218, 220, 222, 223, 225, 227, 229, 231, 233, 238, 240

Institut für Hydraulik und landeskulturelle Wasserwirtschaft der Universität für Bodenkultur

Muthgasse 18, A-1190 Wien, Email: dietmar.fellner@boku.ac.at

Band: 119, 149, 151, 170