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Matrikelnummer: 1026262

Scheugasse 6/13+14, 1100 Wien

unter der Anleitung von

Priv.-Doz. Dipl.-Ing. Dr.techn. Bernhard Scheichl

E322 - Institut für Strömungsmechanik und Wärmeübertragung

begutachtet von

em. Univ.-Prof. Dipl-Ing. Dr.techn. Alfred Kluwick
E322 - Institut für Strömungsmechanik und Wärmeübertragung, TU Wien
BA-Hochhaus, Getreidemarkt 9, 1060 Wien

Prof. Pwt Evans, BSc, PhD, DSc, CEng, FIMechE
Tribology and Contact Mechanics Group
Cardiff School of Engineering, Cardiff University, Cardiff, CF24 3AA

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





Diese Arbeit wurde von der Europäischen Kommission im Rahmen des MINILUBES-Projekt (FP7

Marie Curie ITN Netzwerk 216011-2) sowie von der ”Österreichischen Forschungsförderungsge-

sellschaft” (FFG) im Rahmen des COMET K2 (Stipendium Nr. 824187 und 849109) unterstützt. Sie

wurde beim ”Österreichischen Exzellenzzentrum für Tribologie” durchgeführt.

Ich nehme zur Kenntnis, dass ich zur Drucklegung meiner Arbeit unter der Bezeichnung

Dissertation

nur mit Bewilligung der Prüfungskommission berechtigt bin.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grundsätzen für wis-

senschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwendeten Hilfsmittel,

insbesondere die zugrunde gelegte Literatur, sind in dieser Arbeit genannt und aufgelistet. Die aus

den Quellen wörtlich entnommenen Stellen, sind als solche kenntlich gemacht. Das Thema dieser

Arbeit wurde von mir bisher weder im In- noch Ausland einer Beurteilerin/einem Beurteiler zur Be-

gutachtung in irgendeiner Form als Prüfungsarbeit vorgelegt. Diese Arbeit stimmt mit der von den

Begutachterinnen/Begutachtern beurteilten Arbeit überein.

Wien,
Unterschrift





Dekanat der Fakultät für Maschinenwesen und Betriebswissenschaften

DISSERTATION

Advanced description of the micro-flow in
tribo-systems involving porous media on the

example of self-lubricated bearings

carried out for the purpose of obtaining the degree of
Doctor technicae (Dr. techn.), submitted at TU Wien,
Faculty of Mechanical and Industrial Engineering, by

Ioana–Adina NEACŞU
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Kurzfassung

In dieser Arbeit wird ein neuartiger und vollständiger Ansatz präsentiert, der unter an-
derem, die Beschreibung von Kavitation in hydrodynamisch laufenden Sintergleitla-
gern ermöglicht. Das massenerhaltende Modell koppelt die Reynoldsgleichung für den
Schmierfilm mit dem Gesetz von Darcy für den Materialtransport durch den porösen
Werkstoff. Das resultierende Gleichungssystem wird mittels finiter Differenzen diskre-
tisiert und unter Ausnutzung einer künstlichen Druck-Dichte Beziehung iterativ gelöst.

Weiters wird eine umfangreiche numerische Analyse durchgeführt, in der die Haupt-
parameter über einen großen Wertebereich variiert werden. Es wird beobachtet, dass
die Fluidsättigung im Punkt der Wiederbildung des Schmierfilms eine Diskontinuität
aufweist, die unabhängig von der Normallast auftritt. Um die Anwendbarkeitsgrenzen
des Ansatzes auszuloten, werden auch Extremfälle von sehr niedrigen und hohen La-
gerlasten sowie kurzen/langen und hochporösen/(beinahe) massiven Lagern untersucht.
Konvergierte Lösungen ergeben sich für relative Exzentrizitäten von bis zu 0, 9, wobei
um diesen Wert interessanterweise für den Fall eines sehr permeabeln Lagersitzes die
Reibzahl ansteigt, entgegen der sonstigen Tendenz zu deren Abnahme. Schließlich wer-
den die aus den Simulationen erhaltenen Ergebnisse mit experimentellen Messungen an
industriell gefertigten Lagern verglichen.

Dazu war die Implementierung eines präzisen Interpolationsschemas notwendig, mit
dem aus der im Realsystem aufgebrachten Last schon im Vorhinein die relative Exzen-
trizität ermittelt werden kann. Die numerisch berechneten Werte für die Reibzahl spie-
geln den Trend der experimentell bestimmten qualitativ sehr gut wieder, wobei erstere
jedoch vorwiegend unter den gemessenen liegen.
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Abstract

A new and comprehensive approach for describing, amongst others, cavitation in porous
journal bearings operating under the regime of hydrodynamic lubrication is presented.
The mass-conservative model couples the Reynolds equation for the fluid film with the
Darcy’s law for flow through porous media. The resulting system of equations is dis-
cretized using finite differences and solved iteratively by introducing an advantageous
artificial pressure-density relation.

An extensive numerical analysis where the governing parameters are varied along a
wide range of values is carried out. It is found that at the point of film reformation the
fluid saturation will exhibit a discontinuity, which does not depend on the applied load.
In order to determine the limits of applicability of this approach, specific investigations
aim at evaluating the extreme cases of relatively low and high bearing loads and very
long/short as well as highly porous/(almost) massive bearings. Converged solutions are
obtained for values of the eccentricity ratio of up to 0.9 and interestingly, for the case
of very permeable seat the friction coefficient is seen to increase around this value, in
contrast with the otherwise seen decreasing trend.

Finally, the results obtained by simulations are compared with measurements per-
formed on real-life bearings. This was achieved by an accurate interpolation scheme,
which was able to predict the eccentricity ratio corresponding to the experimentally im-
posed load. The numerically calculated values of the friction coefficient are found to
reproduce the experimentally obtained ones satisfactorily well in terms of overall trends,
yet the former lie predominantly below the measured ones.
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CHAPTER 1
Introduction

Porous journal bearings are a type of bearings used for load support in mechanical ap-
plications where external supply of oil is not possible or difficult. Their porous seat
acts as a oil reservoir which stores lubricant in between operating cycles. Their partic-
ular maintenance-free operation mechanism has drawn attention in the field since they
were first used in 1925 [1], and thus, a lot of experimental but also theoretical work
was dedicated to the subject [2]. Among many interesting aspects of the functioning of
such bearings constitutes the phenomenon of cavitation, a discontinuity in the lubricant
film that otherwise separates the shaft and the bearing. Many steps have been taken
in computational theory to develop a reliable method for the prediction of cavitation
(see extended review by [3]), but each came with a shortcoming. The difficulty in tack-
ling this problem lies in the fact that cavitation is regarded as a free-boundary problem,
meaning that its inception and termination occur at initially unknown locations. More-
over, from a computational point of view, cavitation is usually accompanied by steep
pressure gradients, which make it difficult to handle.

Reynolds theory for flow in thin films represents a milestone in the field, and the
equation with the same name is the most widely used when studying bearing flow.
However, cavitation was recognized as a limitation of his theory, and therefore, the
subsequent work was based on attaching appropriate boundary conditions in order to
account for cavitation. Jakobson, Floberg and Olsson [4, 5] were the first to devise a
mass conservative theory that came to be known as the JFO model. In their model they
imposed a vanishing pressure gradient at inception (previously formulated by Swift–
Stieber), but the condition at film reformation arises from an adequate mass balance at
the interfaces full fluid film–cavitated region, when assuming that a fraction of the liq-
uid is transported within the cavitated area. This however leads to a discontinuity in the
pressure, which numerically poses a lot of difficulties. Elrod [6] succeeded to overcome
this difficulty by applying the JFO model into a modified Reynolds equation valid for
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both continuous and ruptured film. It then became known as the universal cavitation
algorithm, and was applied in many studies [7–9], even if his initial method showed
some stability problems. These individual contributions bring us to the current state of
research in this field. Important steps were taken, but the need to gain a deeper under-
standing of the flow behaviour in such systems is still apparent. We will therefore aim
in this work to describe in, while simple, a precise self-consistent manner the physical
mechanisms involved in cavitation formation in porous bearings.

In details, we will investigate the case of a porous bearing encapsulated in a solid
case, which undergoes a type of cavitation akin to vaporous cavitation. The employed
model assumes that the occurred discontinuity is a region in the lubrication gap where
a two-phase homogeneous mixture of vapour and oil develops after a sudden pressure
drop occurred. Here, the lubricant pressure remains constant at the lubricant specific
cavitation pressure, but the ratio oil–vapour varies. On the other hand, the porous seat is
considered free of cavitation We use two distinct equations to describe this coupled sys-
tem: the Reynolds equation, and a 3–dimensional Darcy’s law which governs the flow
through the porous medium. These are then discretized and an advanced iterative nu-
merical scheme is used to solve the coupled system. The vast amount of the influencing
parameters are reduced to a set of non-dimensional groups which describe exclusively
the system, and favour compact parametric studies.

A preliminary analysis focused solely on the study of the gap pressure and the satu-
ration of the lubricant in the cavitation region shows that a spontaneous recondensation
(saturation jump) seems inevitable. We try to elucidate whether this is true for all con-
figurations, or under certain limits this phenomenon ceases to occur. The core results
are provided by an extended parameter study where the limitations of the theory, and
possibly those of the numerical scheme, are investigated. It turns out that existence of
solutions is tightly related to the loading conditions and particular geometrical config-
uration, including bearing permeability. Additionally, based on the five independent
system parameters we studied a distinguished limit, namely the case of a very thin bear-
ing seat, but in the same time of a very large permeability. The obtained results are
compared with the ones found in literature, albeit available only for the case of an in-
finitely long bearing. In agreement with literature, we find that below a certain critical
value of the chosen design parameter (Sommerfeld number) hydrodynamic lubrication
can not be sustained. Interestingly, this limit appears to differ in the two approaches,
which lead us to believe that cavitation plays an essential role.

As a side result, we used the performed parameter study to replicate experimental
measurements. Based on the already calculated data points, we were able to predict
the specific eccentricity ratio which would return the load value imposed beforehand in
experiments, for a bearing operating in steady state and when all the other parameters
are known. This bridged the gap between theory and experiments, without the need of
further simplifications (e.g. infinitely long or narrow bearing).
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CHAPTER 2
Theory of lubrication including

cavitation

We start by introducing the meaning and the context in which lubrication is encountered.
Here the fundamental theory of lubrication will be presented, along with its application
in journal bearings, and the specific conditions required by a porous journal bearing.
Secondly, as a major part of the subsequent analysis, we will review the essential studies
found in literature concerning the tackling of cavitation, a phenomenon affecting the
lubrication of journal bearings, but which has not yet been fully understood.

2.1 Tribology and lubrication
Tribology is a relatively new branch of science, as it was coined only in the 1960’s by
Tabor [10], yet its effects are known since early civilizations. According to its defini-
tion, ”tribology is the science and technology of interacting surfaces in relative motion
and of related practices”. Direct contact between solid moving surfaces induces a high
friction, and ultimately wear of the parts. The goals of tribology are to minimize the
effects of wear and material loss, such that the energy consumption is lower, while the
efficiency is increased. Introducing a thin layer of either gas, liquid or solid, in between
the two moving parts keeps the surfaces separated and direct contact is avoided. This is
essentially the concept of lubrication, and the introduced third medium is referred to as
the lubricant. The role of the latter is to assure smooth movement of the surfaces, carry
the applied load, but also contribute to a better heat dissipation, help reduce noise and
prevent corrosion.

Failure of the film lubrication can occur in time as a result of the poor quality of
the lubricant itself, which under high temperature may degrade, so that the initial load
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carrying capacity is greatly diminished. The lubricant performance is highly dependent
on its chemical composition and physical properties, so understanding the lubricant
behaviour is crucial to the study of the fluid flow.

Before continuing our explanation on the lubricant flow, we mention that, for the
sake of consistency, tildes are reserved for denoting dimensional quantities.

Viscosity, a property that describes the fluid resistance to flow, or better said to shear-
ing is the essential quantity characterizing the flow. Shear and viscosity are explained
by means of the configuration depicted in Fig. 2.1a), where a layer of liquid fills the gap
between a stationary plate and a moving one (fluid velocity is ũ). The fluid particles will
move parallel to the two plates, and the resulting velocity profile is a linear one, varying
between 0 and ũ. Assuming that the fluid film is composed of an infinite number of
thin layers of liquid, the friction between them is the resistance force to motion. The
required force to move the upper plate is therefore:

F ∝ Ã ũ/h̃, (2.1)

where Ã is the wetted area and h̃ the film thickness. The proportionality constant in
Eq. 2.1 is different for every fluid, and it is called the dynamic viscosity, η̃, so that
Eq. 2.1 can be rewritten as

F̃ = η̃ Ã ũ/h̃. (2.2)

Rearranging one obtains that the dynamic viscosity is the ratio between the shear stress
and the shear velocity:

η̃ = F/Ã︸︷︷︸
shear stress

/ ũ/h̃︸︷︷︸
shear rate

(2.3)

and η̃ is measured in Pa·s. Apart from the dynamic viscosity, one can encounter in
engineering applications the kinematic viscosity ν̃, which is nothing else but the ratio
of the dynamic viscosity to the fluid density ν̃ = η̃/ρ̃.

The differential form of Eq. 2.3 was proposed by Newton and it has the form:

τ̃ = η̃
∂ũ

∂ỹ
. (2.4)

This equation is valid for a multitude of mineral oils and shear rates of up to 105−106 s−1

[11]. Fluids respecting the generalisation of this relation within the tensor calculus
of continuum mechanics for a shear-rate-independent η̃ are referred to as Newtonian
fluids, while those exhibiting strong deviations are termed non-Newtonian fluids. A
representation of a typical dependency of the viscosity on the shear–rate is given in
Fig. 2.1b), where viscosity is seen to drop abruptly with the shear rate, a characteristic
of non-Newtonian behaviour. Examples of non-Newtonian are synovial fluid, water–oil
emulsions or polymer–thickened oils.

Viscosity changes with temperature, and in the case of compressible fluids, also with
the applied pressure. High shearing can induce large temperature variations, such that
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(a) (b)

Figure 2.1: (a) Newtonian-fluid flow between two plates, (b) viscosity shear-rate de-
pendence

the viscosity is reduced. This is why in engineering applications it is common to use the
viscosity index of the lubricant (VI), which is a measure of the change in viscosity with
temperature:

VI = 100
ν̃1 − ν̃0
ν̃1 − ν̃2

(2.5)

where ν̃0 denotes the oil’s kinematic viscosity at 40◦C and ν̃1,2 are the values of viscosity
at 40◦C for reference oils of VI = 0 and VI = 100 respectively, having the same viscosity
at 100◦C as the oil whose VI is to be determined. The lower the VI, the greater is the
change in viscosity with temperature. Equations for viscosity-temperature dependency
are available, although some arise from empirical methods. Among several available
(see Crouch [12]), we mention Ubbelohde-Walther’s equation for strictly Newtonian
liquid, as a satisfactory accurate method:

lg lg(ν̃ + f) = a− b lg T̃ . (2.6)

Here ν̃ is measured in [mm2/s], f is a correction factor, T̃ [K] the temperature, and
a and b lubricant-specific constants fixed by empirical correlations. With this type of
relation one can estimate the viscosity of a lubricant at a specific temperature, when two
viscosity measurements are already provided.

.
There is no standard recipe for assuring a perfect lubrication process as the applica-

tions and operating conditions in which lubrication is required vary greatly. Lubrication
engineering therefore focuses on studying the effectiveness of lubrication films and how
they can be improved. Most of the times, the lubricant involved is a fluid (oil, grease,
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gas), in which case, the lubrication problem reduces to the analysis of very thin films.
While the characteristic scale of fluid films are much smaller than the other dimensions
involved in the system (commonly the surface gap is in the range 1–100 µm), some
local scales may also play a role. We refer here to the surface microscopic asperities
that, under certain conditions (i.e. high applied loads) will have a height comparable
to the one of the film thickness. The various types of operating conditions present in
moving machinery have an enormous impact on the effectiveness of the lubrication. If,
for example, the employed lubricant is too thin to carry the applied load, film failure
will occur, leading to extreme friction and wear of the surfaces. On the other hand,
the chemical composition of the lubricant can exhibit different behaviour when used on
one material surface or another. These physical and chemical interactions are of high
interest in tribology, and through the years, various scientists have developed a way to
quantify the frictional behaviour between lubricated sliding contacts. Ultimately, four
lubrication regimes have been identified in literature:

• boundary lubrication, when there is little (or no) lubricant present and a lot of
contact between the surfaces,

• mixed lubrication, when the load is partially supported by the asperities, partially
by the lubricant itself,

• hydrodynamic lubrication when the surfaces are completely separated and the
load is carried entirely by the lubricant and

• elastohydrodynamic lubrication when the fluid film is very thin, but the load is
very high, such that elastic deformations of the surfaces can occur.

These regimes are identified by plotting the friction over the film parameters like
speed ũ, load w̃, viscosity η̃, or the most commonly known Stribeck number defined
as St = ũη̃/w̃. This type of representation is known as the Stribeck curve [13, 14], and
it originates from a series of experiments conducted by the author on liquid lubricated
surfaces in relative motion. He found that there exists a certain combination of operating
conditions that lead to a minimum friction coefficient. Such a behaviour is reproduced
in Fig. 2.2 and deserves a critical review as follows.

The zone of minimum friction identified on both curves may be interpreted as the
transition from the fully hydrodynamic regime and the regimes where asperities come
in contact. Ideally, a lubricated contact should exhibit a rapid transition to full hydrody-
namic regime (such that the surface wear is minimum), but a slow increase in the friction
coefficient along the hydrodynamic branch. The transition between the different lubri-
cation regimes is greatly influenced by the viscosity, and the effects of an increasing
viscosity are represented via the dashed line in Fig. 2.2. If the viscosity increases, the
two surfaces are pushed apart earlier as a lower speed is required for flow, and the slope
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Figure 2.2: Change in friction as a function of the Stribeck number St = ũη̃/w̃ and the
effect of increasing viscosity

of the hydrodynamic branch increases. The three regimes depicted here may not always
appear in the sequence shown. If the applied load is high enough to produce local elastic
deformations, elastic-hydrodynamic lubrication occurs and the Stribeck curve is altered.

2.1.1 Journal bearings
One of the most widely known application for lubrication are bearings. Journal bearings
are mechanical systems used in a variety of applications like automotive and household
device, and which are composed of a rotating shaft mounted inside a stationary bush
(hollow cylinder). The very small interstice in between the two main parts is then filled
with oil or grease so that a pressure builds up in the lubricant film and can support the
applied load. The film pressure is maintained either through an external pump (hydro-
static), or by the rotation of the loaded shaft which pressurizes the fluid in between two
surfaces (hydrodynamic). Figure 2.3 a) shows a schematic representation of a hydrody-
namic bearing (cross-section through the x̃− ỹ plane) where the scale of the lubrication
gap was purposely exaggerated . The geometric quantities describing the bearing are its
inner radius r̃b (diameter d̃ = 2r̃b) and wall thickness λ̃, its width l̃. If a load w̃ is ap-
plied, the rotating shaft will be displaced from its original position by an eccentricity ẽ.
At high enough shaft rotational speeds ω̃, a convergent lubricant gap will form, provid-
ing the hydrodynamic pressure for balancing w̃. The line of centres does not coincide
with the line of the applied load, but it is displaced by an angle ψ, known as the attitude
angle.
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(a) (b)

Figure 2.3: Journal bearing: (a) characteristic geometric quantities, (b) detail of the
lubrication gap

An intuitive measure of the load is obtained when the geometrical distance ẽ is
divided by the radial clearance c̃ = r̃b− r̃s, where r̃s represents the shaft radius, yielding
ε = ẽ/c̃, the eccentricity ratio. The non-dimensional ε can take any value between
[0,1], and its two limiting cases are when the bearing and shaft are concentric ε = 0,
expressing an unloaded bearing, and when they are in direct contact ε = 1.

A good lubrication process relies on the proper understanding of the flow occurring
at the film gap and in order to understand the quantities involved, we represent a detailed
section of the journal lubrication gap in Fig. 2.3 b). As the displaced lubricant moves
through the gap with the velocity ũ it first passes through a convergent gap bounded by a
minimum film height h̃min, and afterwards flowing in a divergent gap. This pressuriza-
tion of the fluid in the convergent gap between the surfaces is termed the wedge effect,
and the resulting lubricant pressure profile is the crucial quantity that need to be deter-
mined. The problem would appear more complex if a fundamental simplification of the
scales involved would not be applied: the slender-gap approximation, which states that
the characteristic scale of the gap (described by the clearance c̃) is much smaller than
the characteristic scale of the bearing (represented by either r̃b, r̃s). If we introduce the
aspect ratio ε = c̃/r̃b then the slender-gap approximation is:

ε� 1. (2.7)

This implies that the pressure does not vary across the film, i.e. in ỹ-direction,
and moreover that the curvature effects can be neglected. Under this assumption, if
the circumferential position in the gap is given by θ = x̃/r̃b (θ ∈ [0, 2π]), the film
thickness h̃ at any point can be approximated by:
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h̃ ∼ c̃(1 + εcosθ), (2.8)

a θ-symmetric distribution, with the minimum value occurring at θ = π. The discontin-
uous layer of lubricant depicted in the divergent area of the bearing in Fig. 2.3 a) is a
topic discussed in Sect. 2.3. In what follows, the governing equation applicable to the
gap and the bearing essential quantities are presented.

2.1.2 Reynolds equation in the lubrication gap
In bearing design the most interesting parameter is the bearing load capacity, which
describes the ability of the bearing to carry the applied load. This can be estimated
by integrating the pressure in the lubricant film. In this sense, the theory developed
by O. Reynolds in 1886 [15] for the flow in thin films is of fundamental importance
for hydrodynamic bearings. He derived an equation for the pressure starting from the
equilibrium and continuity conditions for an infinitesimal fluid element and explained
the generation of a viscous fluid layer in between two surfaces moving relatively to one
another. The full derivation of the Reynolds equation is widely available and thus will
not be detailed here. However, its most general form will be presented below.

The conditions under which the Reynolds equation can be applied are as follows:

• the slender-gap approximation (Eq. 2.7) is valid, hence only small variations
of the pressure, density and viscosity across the gap; this is referred to as the
Reynolds limit;

• inertia neglected Re ε2 � 1, where Re denotes the Reynolds number Re = ũl̃/ν̃
and the flow is laminar;

• no slip at the solid/lubricant interface;

• the fluid exhibits a Newtonian behaviour.

Using the geometrical quantities shown in Fig. 2.3 a), Reynolds equation is written
in its most general form:

∂

∂x̃

(
ρ̃h̃3

12η̃

∂p̃

∂x̃

)
+

∂

∂z̃

(
ρ̃h̃3

12η̃

∂p̃

∂z̃

)
=
∂

∂x̃

(
ρ̃h̃(ũs + ũb)

2

)
+

∂

∂z̃

(
ρ̃h̃(ṽs + ṽb)

2

)
+

ρ̃(w̃s − w̃b)− ρ̃ũs
∂h̃

∂x̃
− ρ̃ṽs

∂h̃

∂z̃
+ h̃

∂ρ̃

∂t
(2.9)

Here ũ, ṽ, w̃ are the surface velocities in the x̃, ỹ, z̃ directions and the subscripts s, b
denote the surfaces at which the quantities are measured (in the case of a bearing, the

9



shaft and journal surfaces, respectively). The two terms on the left hand side of Eq. 2.9
are due to the pressure gradients in the lubricant film, and are called Poiseuille terms,
while the first two terms on the right arise due to the motions of the bounding surfaces,
and are called the Couette terms. The remaining two terms on the right hand side are
the squeeze term (for the case when the surfaces are pushed closer to one another), and
the flow contribution arising from a local time rate of density, respectively. In standard
journal bearings only sliding motion is present, so the surface velocities in ỹ direction
are 0, and the corresponding terms can be neglected. The surface speed in x̃ direction
can be averaged as ũ = (ũs + ũb)/2. Using this simplifications, and considering only
the steady-state case and pure tangential motion, the Reynolds equation is given in a
more simple form as:

∂

∂x̃

(
ρ̃h̃3

η̃

∂p̃

∂x̃

)
+

∂

∂z̃

(
ρ̃h̃3

η̃

∂p̃

∂z̃

)
= 12ũ

∂(ρ̃h̃)

∂x̃
(2.10)

The solution of the Reynolds equation is the film pressure p̃, yet manipulation of the
full Reynolds equation is difficult, and numerical solutions are usually more easy to
be obtained. However, for the case of pure hydrodynamic lubrication, where the fluid
properties (e.g. density) do not vary significantly, three journal bearing approximations
are available, all of which are presented below.

Closed-form solutions of the Reynolds equation

The subsequent solutions are useful for many bearings where the lubricant can be as-
sumed as incompressible, namely the liquid density is taken as constant ρ̃ = const.
Hence, the load-carrying capacity w̃ of a journal bearing depends essentially on the ec-
centricity of the displaced journal, the rotational speed, fluid viscosity and the geometry
of the bearing (radius, width, clearance):

w̃ = f(ẽ, ω̃, η̃, r̃b, l̃, c̃) (2.11)

The simplifications consist of reducing the bearing geometry in such a way that the ma-
jor part of the flow contributing to the lubrication process occurs only in one dimension,
or assuming the idealised case of an almost concentric bearing-shaft pair.

1) The infinitely-wide journal bearing approximation considers that the width of the
bearing l̃ is much larger than its diameter d̃ = 2r̃b. This implies that the major part of
the flow occurs in the circumferential direction, and the axial flow is so small that it can
be neglected. In terms of the Reynolds equation, the second term on the left hand side
in Eq. 2.10 drops out and the corresponding equation is:

∂

∂x̃

(
h̃3
∂p̃

∂x̃

)
= 6η̃ũ

∂h̃

∂x̃
(2.12)
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By using Sommerfeld’s substitution [16] and the circumferential coordinate θ = x̃/r̃b
one can obtain a solution in a closed form:

p̃ = 6
η̃ũr̃b
c̃2

[
6ε sinθ(2 + εcosθ)

(2 + ε2)(1 + εcosθ)2

]
. (2.13)

The friction force due to the shearing of the lubricant is then given by:

f̃f =

∫ 2π

0

(
h̃

2r̃b

dp̃
dθ

+
η̃r̃bω̃

h̃

)
dθ (2.14)

2) The Ocvirk approximation assumes a short-width bearing, d̃ � l̃, such that the first
term in Eq. 2.10 can be neglected. The agreement with this approximation increases for
d̃/l̃ > 2. The pressure distribution is now given by:

p̃ =
6πω̃η̃

c̃2
εsinθ

(1 + εcosθ)3

(
l̃2

4
− z2

)
(2.15)

In both cases the force per unit width can be easily obtained by integrating the pressure
over the bearing area:

w̃x =

∫ π

0

p̃r̃b sinθ dθ, w̃y = −
∫ π

0

p̃r̃b cosθ dθ

w̃ =
√
w̃2
x + w̃2

y

(2.16)

3) Finally, Petroff [17] assumed ideal operating conditions: lightly loaded bearing
such that the shaft and the bearing are almost concentric, the gap is fully filled with liq-
uid and no leakage occurs. Under these conditions he derived a straightforward relation
for the frictional moment in bearings:

m̃f =
η̃l̃π2d̃3ω̃

2c̃
(2.17)

This approach along with 1) and 2) work reasonable well for their specific cases, but
very often such simplifications are not applicable. Therefore, numerical solutions are
still necessary in order to calculate the pressure in the lubricant.

2.1.3 Frictional behaviour of journal bearings
The ultimate goal in solving the Reynolds equation (either the reduced or full geometry)
is to obtain a pressure profile, which, by integration provides the two forces occurring in
the bearing: the load and the friction force. The ratio of these two is in fact the friction
coefficient µ, one of the most important performance parameter for the journal bearing:

µ =
f̃f
w̃
. (2.18)
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Figure 2.4: Results according to Cameron [18]: normalized friction coefficient r̃b/c̃µ
vs. the inverse of the Sommerfeld’s number 1/∆ for various aspect ratios B = 2r̃b/l̃

Even if the supplied lubricant prevents dry friction (direct contact between bearing and
shaft), the bearing friction (due to shearing) should be kept at a minimum level. This
can be achieved by either improved geometry, material or lubricant type. Engineers
use the friction coefficient in order to quantify the change in the frictional behaviour in
journal bearings, and here, the classical Stribeck curve (see Fig. 2.2) proves a very useful
approach. Another parameter used in this kind of representation is the Sommerfeld
number (or duty parameter) defined as ∆ = w̃/(η̃ũl̃)(c̃/r̃b)

2. The lubrication regimes
described in Sect. 2.1 represent typical behaviour for lubricated pairs, however, in some
situations not all identified branches can be simultaneously seen on the Stribeck curve.

A fundamental formula for calculating the friction coefficient in bearings was given
in 1949 by Cameron and Wood [18], and it was obtained for the case 2r̃b = l̃ and
the assumption that the viscosity is constant along the bearing. It relates the friction
coefficient and Sommerfeld number as follows:

µ
r̃b
c̃

=
1

∆

2π√
1− ε2

+
ε

2
sinψ. (2.19)

Their results show that the curves r̃bc̃/µ vs. 1/∆ obtained for various values of a defined
aspect ratio of B = 2r̃b/l̃ are parallel to the line describing the case of a lightly loaded
bearing (Petroff’s solution), as seen in Fig. 2.4. As B is increased, the lines are further
displaced from the concentric case, apart from the region near 1/∆→ 0.
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(a) (b)

Figure 2.5: Porous bearing: (a) oil circulation from/into the porous seat, (b) metallo-
graphic sample of a cross-section of a porous bearing. (Source: GKN Sinter Metals)

2.2 Self lubricating bearings

Self lubricating bearings operate in a similar manner as classical journal bearings, yet
without the need of an external source of lubricant. Sintered bearings are a category
of self lubricating bearings which are able to store the necessary amount of lubricant
within their porous seat. The characteristic porosity of the seat (φ, the ratio between the
cumulated volume of the pores and the total volume) is controlled during the sintering
process and it usually amounts to 10-40% of the total bearing volume [19].

The basic principle behind the functioning of these type of bearings is that their
porous seat acts as a reservoir of the fluid necessary to achieve a cohesive film of lubri-
cant filling the slender interstice separating the shaft from the seat. In the loaded part
of the bearing the lubricant is pushed into the porous channels of the seat, while in the
unloaded part oil will be drawn from the pores, contributing in refilling the lubrication
gap [20], as depicted in Fig. 2.5 a). This mechanism of oil circulation has been demon-
strated experimentally in the above mentioned study by impregnating the bearing with
a coloured oil and wrapping it in a felt cylinder impregnated with uncoloured oil. Peri-
odic re-impregnation is not necessary since the bearing remains filled with liquid. This
represents an advantage for applications where the access to the bearing is restricted
or not possible. Moreover, porous bearings offer more flexibility in manufacturing as
compared to standard solid bearings, as their composition and their porosity degree can
be decided according to the desired operating conditions.

In contrast to their simple operation and maintenance, the flow through the porous
structure is rather complex. The porous network consists of highly interconnected mi-
croscopic channels of random distribution (Fig. 2.5 b) that cannot be described in an
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exact manner. Darcy’s classical experiment [21] on water flow though sand beds gives
a proportionality relation between the total volume of fluid percolating a filter bed and
the pressure drop across its length. His theory holds as long as the flow is laminar and
the flow velocities are rather low. In differential form, it writes:

q̃ = − Φ̃
η̃
∇p̃, (2.20)

where q̃ is the seepage velocity, as termed by Scheidegger [22], ∇p̃ the pressure gra-
dient. Φ̃, the permeability, expresses the ability of a porous medium to allow fluid to
pass through. The validity of the Darcy’s law has been verified by means of experi-
ments [23, 24], but also theoretical (see derivation by Whitaker [25]).

However, an accurate estimation of the permeability entering Darcy’s law has not
yet been established since merely its measurement poses difficulties. On the other hand,
the scalar porosity φ can be measured much more easily, but an accurate relationship
between Φ̃ and φ is not yet available. A number of semi-empirical expressions and
theories were proposed in this sense, among which the one advanced by Kozeny [26]
remains the most widely known. His approach is based on the rough assumption that the
porous medium is equivalent to a set of thin circular channels exhibiting varying area
cross-sections embedded in a rigid matrix. The equation he derived expresses the de-
pendence of the permeability on the specific overall surface area of the porous medium
Sa:

Φ̃ =
cφ3

S2
a

. (2.21)

c is referred to as the ’Kozeny constant’ and it varies with shape (e.g. for a circle c = 0.5,
for a strip c = 2/3). However, the accuracy of this theory was never fully proven, as
studies like the ones by Childs and Collis-George [27] criticize that high deviations from
the theory are likely to occur.

Nevertheless, Darcy’s law constitutes a fundamental law in earth sciences, particu-
larly in hydrogeology, as long as the flow remains laminar. The latter condition is widely
assumed in the case of porous journal bearings, and so, Darcy’s law was applied many
times in the simulation of the flow through porous bearings [9,19,28,29]. The classical
Darcy equation was extended by Brinkmann [30], where the viscous shear effects are
considered, and later on when inertial effects were included, via the Darcy-Forchheimer
law [31].

2.2.1 Particularities of porous journal bearings
The interest the industry has shown in porous journal bearings (PJBs) encouraged a
lot of research in this field. Apart from the multitude of experiments conducted on
PJBs, [32–34] to mention just a few, several authors have dedicated to the theoreti-
cal analysis of porous bearings, in particular to accurately describe the flow through
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the porous matrix and find the most appropriate boundary condition at the interface
lubricant–porous matrix (see [35] and the references therein). The analysis made by
Cameron and Morgan [19] is worth mentioning as a fundamental development in the
study of porous bearings. The authors took on the assumption of a narrow seat, i.e.
l̃/d̃→ 0 and offered an analytical solution which was also verified experimentally [36].
Their analysis showed that there exists a threshold (in the lubrication of short porous
bearings) beyond which hydrodynamic lubrication cannot be achieved. The critical
limit is identified by plotting the calculated friction coefficient versus the Sommerfeld
number for different values of the design parameter, defined as a function of the bearing
wall thickness (λ̃), clearance and permeability:

Ψ =
Φ̃ λ̃

c̃3
. (2.22)

Regarding the obtaining of the friction coefficient, the derivation of Eq. 2.19 shows it to
be universally valid for solid and porous bearings and any geometry having l̃/r̃b = O(1).
The results of this strategy for various design parameter values Ψ are illustrated in
Fig. 2.6 a), along with the solution for a solid bearing Ψ = 0. For high values of the
Sommerfeld number the results collapse on the same line, and one cannot distinguish
between the bearing types. As ∆ decreases, the friction coefficient increases dramati-
cally, specifically at a critical point ∆c which varies according to Ψ. The region of very
high friction coefficients corresponds to the case of highly loaded bearings, when the
film thickness in the lubrication gap becomes comparable to the height of the surface
asperities. However, before the sharp increase, µ will first exhibit a minimum, local-
ized at ∆min, which is actually of more interest from the design point of view. These
findings demonstrate the importance of the design parameter and the implied limita-
tions to the full hydrodynamic lubrication. The involved equations have been further
improved by Rouleau [37], who argued that the initial solution could not satisfy an ar-
bitrary boundary condition at z̃ = l̃/2, and Murti [38] who extended the theory as to
solve the same problem but with arbitrary wall thickness. In any case, the findings by
Morgan and Cameron [19] [36] provide valuable insight on the fundamental principles
of lubrication in PJBs.

2.2.2 Highly loaded porous bearings
When the load acting on the shaft is very large, the lubricant layer between the surfaces
becomes so small such that its thickness is comparable with the height of the surface
asperities. In this situation asperity contact will take place and therefore hydrodynamic
lubrication is no longer possible. In plain (solid) bearings this issue is mathematically
dealt with by applying various techniques (e.g. stochastic, deterministic or homoge-
nization [39]) aimed at approximating the film thickness in the region ε → 1. Porous
bearings on the other hand, exhibit very smooth surfaces, such that roughness effects are
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(a) (b)

Figure 2.6: Results by Cameron [36] for various values of the design parameter Ψ:
(a) friction coefficient vs. the inverse of Sommerfeld number, (b) attitude angle vs. the
eccentricity ratio

not an issue when high loads are applied. An example of a surface profile of a porous
bearing is given in Fig. 2.7, where two measurements of a representative porous bear-
ing were taken before and after operation. There the recorded valleys in the roughness
correspond to the depth of the pores, and no other roughness peaks are observed. After
15 hours of operation the average roughness decreases by 25%. This can be explained
in the following manner: direct contact between the bearing and the shaft can generate
the effect of pore closure, at least at the upper surface. The effect is that the surface per-
meability can be reduced, as is the porosity (exemplified by Fig. 2.7). This ultimately
affects the design parameter Ψ and implicitly the minimum So that can be achieved so
that the design curves in Fig. 2.6 a) are not valid. The lack of lubricant sufficient to
separate the surfaces can occur also during start-up and interrupted operation, as there
is not enough lubricant in the gap to support the applied load.

Another particularity of PJBs is the resulting attitude angle at varying loads. Using
the earlier formula provided by Cameron, (Eq. 2.19), the attitude angle is easily calcu-
lated for the same set of design parameters as in [36] and in the same approximation,
l̃/d̃→ 0, and is represented in Fig. 2.6 b). The dependency of ψ on ε is drastically atten-
uated when Ψ increases, up to such a high value of Ψ that they become independent. For
a solid bearing and under a maximum load ε = 1, the line of centres will be perfectly
aligned with the line of the applied load, i.e. ψ = 0, as in the perfectly concentric case
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(a)

(b)

Figure 2.7: Example of the surface profile of a porous bearing measured on a length
of 5 mm on the inner diameter of the bearing (a) before operation, (b) after 15 hours of
operation under a load of 1 N/mm2. The recorded irregular crevices are the pores of the
bearing surface, which, after a regular operation cycle are either diminished or closed
completely. The roughness parameters Ra,Rz,Rmax are used to quantify the changes
in the profile. (Image source: GKN Sintered metals)
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ε = 0. On the other hand, this behaviour is never encountered when the eccentricity of
a porous bearing approaches 1. In this case, the flow arising through the pores of the
porous matrix (even for very low values of Ψ) is enough to displace the journal from the
perfectly concentric position.

2.3 Discontinuities in the fluid film
We have seen that by means of Reynolds theory one can estimate the pressure distri-
bution and load capacity in a journal bearing, the essential quantities in bearing design.
However, this theory has its shortcomings, as it is strictly valid for an assumed fully
coherent fluid film, like in the case of quite low values of the eccentricity ratio ε ≤ 0.5.
In reality, the lubricant often exhibits an almost discontinuous phase change from the
initial liquid phase, when the hydrodynamic pressure drops significantly in the diver-
gent part of the lubrication gap, even below the ambient pressure. As a result, in the
divergent zone of the lubrication gap a discontinuity in form of a gas or vapour cavity
will occur, as depicted already in Fig. 2.3 a) but not clarified so far. This discontinuity
associated with the sudden pressure decrease is referred to as cavitation.

Since this limitation of the Reynolds theory was recognized, many authors have tried
to elucidate the mechanisms and characteristics of this phenomenon. The particular in-
terest in tribological systems is due to the fact that these systems are usually subject to
high tangential shear and abrupt changes of pressure which ultimately favor film rup-
ture. The dynamics of the cavity is very complex and can therefore shape as traveling,
vibratory or fixed cavities, as Swales [40] first categorized them. Another way of distin-
guishing between the various types of cavities is by their composition, i.e. whether they
contain vapor, gas or a combination of the two. A quite lucid categorisation of these
mechanisms was provided by Dowson and Taylor [41] and also Braun [42]:

(i) gaseous cavitation assumes the penetration of quite large amounts of gas (air)
from the surroundings, thus favouring film rupture from the surface and accompa-
nying the formation of a bubble or cavity as the pressure falls below the saturation
pressure;

(ii) pseudo-cavitation as a form of gaseous cavitation, when an existing cavity bubble
expands due to a further decrease of the lubricant pressure;

(iii) vaporous cavitation occurs when the lubricant pressure falls below the vapour
pressure such that an inner partial vaporization takes place, leading to a mixture
phase composed of liquid (containing dissolved gases), and vapour (containing
released gases). Assuming that the process is an isothermal, thermodynamically
stable one, and that the dissolved gases occur as tiny colliding bubbles, the cavi-
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tation region can be viewed as a homogeneous two-phase mixture exhibiting very
small pressure changes, and essentially p̃ = const.

It was shown experimentally that vaporous and gaseous cavitation may occur in bear-
ings [41, 43, 44] under both steady state and dynamic loading conditions, however cap-
turing the exact position at which the lubricant film ruptures remains a difficult task to
accomplish. From a theoretical point of view the situation is not much different either,
as many scientists have tried to find the most appropriate boundary condition which
connects the fully liquid area to the cavitating one and accurately predict the cavitation
boundaries. The earliest efforts in both directions are marked by the symposia “Cavita-
tion in real liquid“ organized in Michigan 1962 and the “1st Leeds-Lyon Symposium“ in
1974, yet it is safe to say that the issue of cavitation has not been satisfactorily elucidated
yet. Nevertheless, several theoretical models have contributed to a better understanding
of the phenomenon. These are reviewed in the following section.

2.3.1 Review of cavitation boundary conditions
Reynolds famous equation was initially solved by Sommerfeld [16], who used a trigono-
metric substitution for obtaining analytical solutions. The result is an anti-symmetric
pressure distribution along the circumferential coordinate θ, as depicted in Fig. 2.8. The
negative pressures in the region π − 2π however, are not physically realistic. This led
to an even more simplistic way of accessing for the occurrence of cavitation, namely
by keeping the gap pressure constant in the regions where the solution of the Reynolds
equation predicts lower ones otherwise. In other words, in the area of subambient pres-
sures, originating at the point of minimum film thickness, the lubricant pressure p̃ will
automatically be set to p̃cav, no matter how low p̃cav would be. Gümbel [45] accounted
for film rupture by stating that cavitation occurs very close to the location of the min-
imum film thickness, at a prescribed constant pressure p̃cav . However, this so-called
half-Sommerfeld or Gümbel boundary condition is incorrect insofar as it does not re-
spect continuity of mass. Hence, a more suitable boundary condition would have to
provide the continuity of the mass flux across the liquid-mixture interface. Assuming
that only a fraction ϕ of the gap height carries the liquid (the remaining one being filled
with cavitated lubricant) and taking ρ̃m, ρ̃l as the densities in the cavitated (mixture) and
liquid regime, respectively, a more general condition respecting continuity (see [46])
reads:

1

r̃

∂p̃

∂θ̃
− r̃ ∂p̃

∂z̃

dθ
dz̃

=
6Ũ η̃

h̃2
[1− 2ϕ− (1− ϕ)S] , S :=

ρ̃m
ρ̃l

(2.23)

More importantly, condition 2.23 holds for both inception and termination of cavitation,
while inside the cavitation region the hereby introduced lubricant saturation S (0 <
S ≤ 1) becomes the dependent variable in regions where the gradient of p̃ is 0.
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Figure 2.8: Pressure distribution along the circumferential coordinate of a journal bear-
ing: different cavitation models

Swift and Stieber [47, 48], although working independently, considered that the in-
ception of cavitation is conditioned by vanishing pressure gradient and restricted the
pressure in the cavitation region to p̃cav:

dp̃
dx̃

=
dp̃
dỹ

= 0, p̃ = p̃cav. (2.24)

This is also commonly referred to as Reynolds boundary condition and derived from
Eq. 2.23 when a continuous entrainment of gas is assumed, ϕ = 0 and S = 1. In the
divergent area of the bearing the flow is assumed to break down into layered streamers
of gas and liquid across the bearing width (see Fig. 2.10 a), and the flow to be driven
solely by the rotational movement of the shaft, such that only the Couette contribution
remains active . Although this condition works well at moderate loads [49], it does not
properly handle film reformation [50] nor can accept sub-ambient pressures. In 1963
Taylor [51] performed several experiments on cavitation in narrow passages where he
was particularly interested in measuring the position of the meniscus of the cavitation
bubble. His experiments showed that cavitation has the appearance of a separated flow,
where the lubricant moves above and/or below the cavity, and is triggered by a pressure
gradient upstream of the meniscus. Taylor pointed out that in fact, two types of cavi-
tation can be identified. The first one does not consider the effects of surface tension,
while the second type, separation cavitation, is strongly affected by surface tension. In
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the latter case, the flow is two dimensional and the fluid is carried under and/or the
air cavities, see Fig. 2.9. He considered that the number of streamers in the divergent
region is controlled by the non-dimensional capillary number Ca, a ratio between the
sliding velocity ũ, fluid viscosity η̃ and surface tension, t̃: Ca = η̃ ũ/t̃. While Taylor’s

(a) (b)

Figure 2.9: Cavitation fingers according to experiments by Taylor: (a) Ca = 0.03 many
thin streamlets, (b) Ca = 2.2 few, wide streamlets

separation theory can accommodate subatmospheric pressures, it neglects the influence
of the sub-cavity pressures upstreams of the cavitated regions, i.e. the pressure an oil
can withstand before cavitating. On contrast, Floberg [52, 53] showed that sub-cavity
pressures affect the extent of cavitation: when the number of streamers is decreased,
the position of the cavitation-film interface moves downstream. In his theory the cav-
ity extends the transverse section of gap and the flow is carried between the cavities.
Additionally, the cavity is filled almost entirely with air and no net mass flow enters
the cavitation bubble. Based on these assumptions Floberg formulated a condition that
governs both the upstream and downstream cavitation boundary, by setting S = 0 and
ϕ = 0 in Eq. 2.23:

1

r̃

∂p̃

∂θ
− r̃ ∂p̃

∂z̃

dθ
dz̃

=
6Ũ η̃

h̃2
, (2.25)

In his analysis he was able to calculate the number of streamers on unit width based on
the minimum sub-cavity pressure. Braun [42] studied Swift and Stieber model, separa-
tion theory and Floberg’s model and concluded that out of all three proposed cavitation
conditions, the latter reflects best the experimental findings.

Surface tension, gravity and fluid inertia effects were considered by Coyne and El-
rod [54,55], in a study where they determine the rupture of the liquid-gas interface from
a fixed point on a stationary surface. Cavitation develops as a single bubble which is be-
ing swept away on the opposing moving surface, like the one represented in Fig. 2.10 b).
The authors assumed a quadratic tangential velocity profile across the film and used the
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Navier-Stokes equations to describe the flow upstream of the rupture point. Two bound-
ary conditions were then derived to match the upstream Reynolds pressure with the one
from the separating film. The first one, when the inertia and gravity forces are neglected,
reads:

dp̃
dx̃

=
6η̃Ũ

h̃2

(
1− 2

h̃∞

h̃

)
, (2.26)

where h̃∞ represents the asymptotic film thickness downstream, and is function of the
liquid-gas surface tension and the viscous forces. The second boundary condition re-
lated the pressure to the radius of curvature at the separation point R0, the surface ten-
sion t̃ and the pressure change upstream of the cavity:

p̃ = − T

R0

+ δp̃. (2.27)

Separated–flow models use the continuity of mass flux to define the cavitation in-
terface. This, however, is not sufficient as mass at a liquid/gas boundary should be
preserved in both the cavitation region and perpendicular to the boundary. The seminal
work of Jakobsson-Floberg-Olson [4, 5] is the first theory (known as the JFO theory) to
respect conservation of mass across the whole bearing. They assumed that film rupture
occurs when the pressure falls below the respective saturation pressure, forming thin
layers of lubricant that extend fully to both neighbouring surfaces of the clearance gap
(see Fig. 2.10 a). In fact, experimental images taken by Cole and Hughes [56] support
very well the JFO theory. In the cavitation region the fluid is transported through a
Couette-type flow, such that the pressure is constant throughout. The boundary condi-
tions for cavitation inception are set to vanishing pressure gradients as in Eq.2.24. At
inception and reformation continuity is respected by:

q̃θ,i∆z − q̃z,i∆θ = q̃cav∆z, (2.28)

where i = 1, 2 are the upstream and downstream positions of the mass fluxes q̃. This fi-
nally leads to a differential equation which provides a relation between the pressure
gradient and the corresponding film thickness (see Eq. 2.23). Thereby the strictly
mass-preserving JFO model completes a self-consistent theory of lubrication within the
Reynolds limit.

2.3.2 Numerical algorithms for implementing cavitation
As computational power increased over time, so did the interest in solving cavitation
by means of numerical methods. The JFO theory was applied many times, due to its
robustness and its ability to predict the shape of cavitation. Many algorithms were
therefore developed for its implementation in numerical programs, and few of what we
consider the most representative ones will be reviewed below.
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(a) (b)

Figure 2.10: Film rupture models: (a) Reynolds boundary condition, (b) separation
acording to Coyne and Elrod [54, 55]

Elrod and Adams [57] and later on Elrod [6] successfully solved a modified Reynolds
equation with imposed JFO conditions. Their simple approach was based on introducing
in the Reynolds differential equation a switch function that accounts for the presence of
cavitation and preserves the continuity of mass on the entire flow domain. A cavitation
index g has the role of switching between the two regimes (cavitated and non-cavitated
flow) and it is defined as a function of θ∗, the density ratio of the liquid and cavitated
region (θ∗ = ρ̃l/ρ̃c): {

g(θ∗) = 1, p̃ ≥ p̃cav, ρ ≥ ρc

g(θ∗) = 0, p̃ ≤ p̃cav, ρ ≤ ρc.
(2.29)

Under the assumption that in the cavitated region only a fraction of the film gap is
occupied, the resulting modified Reynolds equation is governed by θ∗ and the void frac-
tion in the liquid is 1 − θ∗. The lubricant pressure and the density are related via the
isothermal bulk modulus of the fluid (or expansion coefficient), βl = ρ̃l∂p̃/∂ρ̃l, which
by integration for a constant βl leads to a relationship p̃–p̃cav:

p̃ = p̃cav + βl lnθ. (2.30)

The algorithm showed encouraging results when applied in the case of a slider bearing
and grooved journal bearings. However, while this model worked well for compressible
cases, it proved to become unstable when incompressible cases were considered. The
authors used an alternating-direct-implicit method (ADI), but they admitted that the
encountered instabilities suggest the need to search for a more direct form of solving
the system.

Vijayaraghavan and Keith [8] attempted to improve Elrod’s algorithm by directly
coupling the switch function g with the bulk modulus βl so that gβl = ∂p̃/∂θ∗ and p̃ =
p̃cav + gβllnθ∗. Similar with Elrod, they obtained a new modified Reynolds equation,
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Figure 2.11: Comparison of circumferential non-dimensional pressure profiles of
a submerged journal bearing at a location 1/5 l̃/d̃ from the centerline: Elrod [6]
vs.Ṽijayaraghavan et. al. [8] Reference non-dimensional cavitation pressure taken at -1.
The location of the cavitation region agrees well in both methods. (Image source [8])

an elliptical partial differential equation in the full fluid zone, and hyperbolic otherwise
as only the Couette component was at play. The discretisation of the θ∗ dependent
Reynolds equation consisted of central differences for any point in the full fluid film
and upwind differences for the cavitated region. Also, they argued that compressibility
effects should not be neglected in the cavitated region, as was done by Elrod. For
this, they introduced an artificial viscosity function in the shear flow equation. The
authors compared their results with the initial Elrod algorithm and found satisfactory
agreement between pressure profiles of journal bearings (see Fig. 2.11). However, in
order to use Elrod’s algorithm a rather empirical adjustments of the bulk modulus must
be made. Vijayaraghavan’s et. al. merely aimed at refining the algorithm, and for the
sake of comparison they have used the data already provided by Elrod, and no discussion
regarding the value of βl was made.

Brewe [7] focused on simulating cavitation in both steady and dynamically loaded
journal bearings by using the conservative algorithm of Elrod. He obtained excellent
agreement with experimental data given by Jakobsson and Floberg [58] for steady cav-
itation, but his results showed a significant discrepance, partially attributted to thermal
effects, when compared with the ones of Jacobson and Hamrock [59]. Also, the authors
mention that at eccentricites as high as 0.98, numerical instabilities were encountered.
In a more recent study, Fesanghary et. al. [60] presented a new switching function for
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the Elrod’s algorithm, which increases the convergence rate with up to 61% and is less
prone to instabilities.

The multitude of models that applied the JFO theory in Elrod’s algorithm (for a more
extensive list of references see [61]), rendered this type of approach the state-of-the-art
in the simulation of cavitation in hydrodynamic bearings, regardless of the reported
numerical instabilities. The algorithm was mostly applied to grooved journal bearings,
slider bearings or textured bearings, and less to the case of porous journal bearings. The
work of Meurisse et. al. [9] is however, a good example of the latter application. They
applied the mass conservative approach assuming that there is no side leakage and no
air entrainment into the bearing and calculated the oil exchange between the gap, porous
matrix and the surrounding environment.

2.4 Thermo-physical properties of adopted lubricants
Choosing the right type of lubricant for the specific tribologic application can be a cru-
cial task. One must take into account various factors including operation environment,
lifetime, and the load-carrying capacity. Apart from the role in reducing friction and
wear, in some cases lubricants are also required to prevent over-heating of the neigh-
bouring surfaces or to prevent corrosion. All these issues have been thoroughly inves-
tigated in research, with the final scope of tailoring novel lubricants with outstanding
tribological properties.

Most lubrication oils are composed of a base oil and a multitude of additives that
enhance the specific desired properties. They can be grouped into various categories
like liquids, semi-solids, solids, gaseous or based on the origin of the substance used,
i.e. renewable or non-renewable [62]. Moreover, their degree of biodegradability is also
taken into account, such that a lower impact on the environment can be achieved. Most
common properties of lubricants are viscosity, viscosity-temperature behaviour, thermal
stability, lubricity and volatility.

In 2001, ionic liquids (ILs) were proposed as viable candidates for lubrication ap-
plications. Ionic liquids are organic salts whose melting temperature is below 100◦C.
Tests have shown that they exhibit an interesting low wear rate when used as lubricants.
Additionally, their properties can be chemically altered and modelled as to adapt to
specific application necessities [63], [64]. Apart from this, they exhibit good thermal
stability and a weak dependence of the viscosity on temperature, such that relations like
Eq. 2.6 can predict the viscosity change satisfactorily. It is known that in journal bear-
ings the vapour pressure of the lubricant plays an important role in the development of
cavitation. In this respect, ionic liquids showed interesting attributes: very low vapour
pressures (which in addition means a correspondingly reduced tendency to evaporate
over time). At room temperature, the vapour pressures of ILs are almost impossible
to be detected. For example, Zaitsau [65] recorded vapour pressures in the range of
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10−2– 10−1 Pa at 450–530K under standard conditions, i.e. rather moderate lubrica-
tion pressures These are specified below by the adopted values of the reference pressure
(p̃ref ).

These promising features lead to an increased interest of industry into choosing
ILs as prospective lubricants, but also the present work into the investigation of their
possible applications. Apart from the advantageous thermo-physical properties, ILs
appear to be suitable for the specific operating conditions of porous journal bearing.
Here the most simple ones are used though:

• Newtonian rheology;

• T̃ = const and therefore η̃ = const across gap justified by relatively weak dissipa-
tion at moderate shaft speeds due to

• loads/pressures relatively moderate.
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CHAPTER 3
Analysis of self-lubricated systems with

a porous reservoir

In this chapter we present the premises of the novel cavitation model that we employ
in the present work. We note that the flow in the journal bearing exhibits two forms of
appearance, where the interaction between the two associated regions preserves the con-
tinuity of mass. In the current configuration, cavitation develops as a stable two-phase
regime and expands in both axial and circumferential direction. Our main concern is
with the determination of the gap pressure, including the formation of cavitation, un-
der various load regimes. The number of input independent variables in the resulting
system is rather large, and therefore, dimensional analysis is used to reduce the system
to an equivalent, more economical form. In this way functional relationships between
input variables are derived, which serve to systematically analyse the system behaviour
under various conditions. Finally, we present one application of the dimensional analy-
sis: the study of a thin bearing of infinite permeability, as a limiting case of the standard
configuration, for which the two initial flow regions decouple.

3.1 Motivation
Since their introduction in industry as self-lubricating mechanisms for supporting load,
the demand for porous journal bearings has increased greatly. The experimental and
theoretical studies presented in Ch. 2 are merely a small fraction of the available lit-
erature, yet are considered the pioneering works in the field. Nonetheless, a thorough
self-consistent analysis of the arising lubrication problem is still not available, and there-
fore, the need of in-depth fundamental research is apparent. The present work aims at
refining some of the scientific efforts made so far, particularly to avoid issues arising
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from non-rational modelling of the involved physics and to bring in a new efficient nu-
merical strategy that copes with cavitation of an incompressible lubricant for porous
journal bearings.

3.2 Adopted cavitation model
Porous journal bearings are usually encapsulated in solid metal casings, which means
that lubricant cannot leak from the sinter to the exterior, and that entrainment of air
from the outside is not possible. Under these conditions, we can safely assume the
complete insulation of the exterior surfaces of the bearing. Moreover, the oil rings that
usually form at the edges of the lubrication gap prevent the air to enter into it. These
specific conditions point to the occurrence of a cavitation mechanism as described in
Sect. 2.3 (iii), and referred to as vaporous cavitation. Here cavitation initiates when
the lubricant pressure drops from p̃ down to the respective vapour pressure, p̃c. The
cavitation region then comprises a two-phase homogeneous mixture of oil and vapour
of varying concentrations, where no individual bubbles can be detected. By neglecting
any dissolved gas in the liquid, the pressure is equal to p̃c all throughout the cavitation
area. Curvature effects like the Gibbs-Thomson variation of the vapour pressure across a
curved surface are also neglected. In addition, we assume that the two surfaces adjacent
to the gap take on the same temperature, and that the lubricant temperature increase due
to viscous dissipation is negligible small.

In this formulation of the cavitation mechanism we deal with a lubricant undergoing
an isothermal process of change of state, from an one-phase regime (fully liquid) to a
two-phase regime (cavitation, mixture). The first regime is characterized by a uniform
density ρ̃l incompressible liquid, while the two-phase regime contains parts liquid of
density ρ̃l and parts vapour described by the density ρ̃v. Here we define the lubricant
saturation as:

S =
ρ̃m
ρ̃l
, (3.1)

which achieves a minimum value if the mixture density ρ̃m contains only vapour of ρ̃v.
However, this limiting case is not considered, as we definitely disregard complete va-
porization. In fact, in (porous) journal bearings preference is given to lubricants with
low tendency to evaporate, which encourages the formulation of the cavitation mech-
anism addressed in Sect. 2.3 (vaporization), and accordingly, in this employed model.
It results that S can only take positive values below 1 and satisfies the relations for the
mass and volumetric compositions of a fluid particle:

S = αl/xl = αl + (ρ̃v/ρ̃l)(1− αl) = [xl + (ρ̃l/ρ̃v)(1− xl)]−1, (3.2)

with αl, xl denoting the volumetric and mass fractions of the liquid phase.
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The specific surface topography of porous journal bearings described by a random
distribution of small and large pores is treated here in a homogenized manner. This
means that no microscopic surface effects are considered, and that the sinter pore dis-
tribution is incorporated by means of the permeability tensor Φ. Assuming that the
sinter material is orthotropic in the radial, circumferential and axial directions of the
bearing, Φ is a symmetric tensor represented by three diagonal components Φ(r, θ, z).
The lubricant flow is then governed by the material bulk properties, which implies the
classical no-slip condition at the stationary surface of the gap. Applying a micro-slip
at the porous surface appears to have very small effects on the lubrication pressure, as
studied in [66]. We neglect any elastic deflection of the bush, as porous journal bearings
commonly operate under low to moderate loads and adopt the fundamental assumptions
of the Reynolds lubrication theory (see Sect.2.1.2). Hence, the lubricant pressure in the
gap (denoted by p̃r from now on) is obtained by a modification of the Reynolds equa-
tion, and relies on the incorporation of an artificial relationship between the introduced
saturation S and the lubricant pressure p̃r. In particular, p̃r − S is controlled by a so-
called compressibility factor β in order to insure smooth transition from the one-phase
to the two-phase regime. This process is reproduced on the phase diagram in Fig. 3.1.
The arrow attached to the solid curve describes the resultant isothermal change of state
of the lubricant passing the onset of vaporization, p̃r = p̃r(ρ̃). Film reformation occurs
at a previously unknown location and is characterized by the increase of S to 1. The
lubricant pressure is a function of the varying lubricant density but inside the two-phase
region it remains at a constant level given by the cavitation pressure, p̃c.

Finally, in what concerns the fluid flow through the sinter matrix, we exclude the
extension of the cavitation region beyond the limits of the lubrication gap. Essentially,
the sinter matrix is cavitation-free, and the governing pressure p̃d satisfies:

p̃d > p̃c, (3.3)

a specification adopted in [9] and proven in [46].

3.3 Geometry of the investigated system
The specific way of operation of porous journal bearings was explained in Ch. 2.4, how-
ever let us revisit in more detail the quantities involved. The investigated system is given
in Fig. 3.2, where r̃, θ and z̃ denote the radial, circumferential and axial coordinates. The
seat consists of a hollow cylinder of inner radius r̃b, a wall thickness λ̃ and a length l̃.
The porous seat is characterized by the porosity φ̃ and a reference permeability Φ̃ref .
Inside the bearing a shaft of radius r̃s rotates with ω̃ around the circumferential direc-
tion θ. The radial clearance between the seat and the shaft defined as c̃ = r̃b − r̃s is
assumed to be entirely filled with a lubricant of viscosity η̃ and density ρ̃.
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Figure 3.1: Phase diagram

When the load w̃ is applied on the bearing and the shaft is rotating, a conver-
gent/divergent gap will form, creating the “wedge“ effect that lifts and displaces the
shaft eccentrically (with a distance ẽ) from the center of the bearing. In the loaded part
of the bearing the hydrodynamic pressure, p̃r, lower than the pressure in the unloaded
part, carries the load w̃ applied on the shaft. The pressure difference between the two
areas causes the lubricant to circulate through the pores of the seat, and ultimately to
provide with the necessary amount of lubricant for the build-up of the fluid film in the
gap.

As a result of the eccentric displacement of the journal, the thickness of the fluid
film is not constant, but varies along θ and is dependent on ẽ. As a first assumption for
the theoretical model, any axial tilt of the shaft is neglected such that Eq. 2.8 applies for
the film thickness h̃ and the maximum value that h̃ can take is the available clearance c̃.

The location of the journal is measured by the attitude angle ψ, which is the angle
formed by a line passing through the center of both the bearing and shaft, and the line
describing the direction of the applied load. ψ is a function of the speed of rotation and
of the load. Finally, we consider that the system is symmetric with respect to the axial
coordinate, such that only half of the bearing is enough for the pressure calculation.

The configuration described herein summarizes all the parameters that play a role
in the lubrication process of a porous journal bearing. The physical assumptions that
formulate the specific conditions for cavitation formation in the chosen geometry will
be presented in the following section.
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Figure 3.2: Journal bearing: notations used for the geometrical quantities

3.4 Dimensional analysis
The problem presented so far involves a high number of input variables, as a total of 9
physical quantities determines the complete lubrication problem. The pressures in the
two lubrication regions, film gap p̃r and sinter matrix, p̃d, depend on:

[p̃r, p̃d] = [fr, fd](c̃, r̃b, l̃, λ̃, Φ̃ref , ω̃, ẽ, η̃, p̃c), (3.4)

with fr, fd to be obtained by testing. It is therefore more advantageous to reduce the
number of input variables to a smaller number of non-dimensional parameters, which
can ease the subsequent numerical/theoretical investigations. In dimensional analysis,
one method to do so is to apply the Buckingham-π theorem [67]. This states that for
n number of input dimensional variables, one can extract p = n − m dimensionless
quantities denoted Πk, k = 1 . . . p, where m is the rank of the dimensional matrix. If
the complete set of dimensional quantities has been correctly identified, the solution of
the system is of the form:

Π = f(Π1,Π2, . . .Πp). (3.5)

The choice of independent variable is not unique, as the Buckingham π theorem yields
merely the number of the dimensionless quantities governing the equation, and not nec-
essarily their explicit form.

In our case n = 9 and the resulting dimensional matrix expressed via the conven-
tional base dimensions [L, T,M ] -[length, time, inertial mass] is of the form:

D =


c̃ r̃b l̃ λ̃ Φ̃ref ω̃ ẽ η̃ p̃c

L 1 1 1 1 2 0 1 −1 −1
T 0 · · · 0 −1 0 −1 −2
M 0 · · · 0 0 0 1 1

 (3.6)
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The rank of D yields m = 3, such that the system is reduced to a number n−m = 6
non dimensional parameters, given in Tab. 3.1. p̃r is defined as the usual reference
pressure and is the sole quantity that entails the lubricant specific characteristic viscosity
η̃ and the operation shaft speed ω̃. K is a function of the surface permeability Φ̃ref and
highly sensitive to the gap radial clearance c̃ (cubic inverse proportional). The choice
of the squared length c̃3/r̃s rather than λ̃2 in K reflects the strong coupling between the
two flow regions. Γ and Λ are chosen to represent aspect ratios specific to the chosen
geometry. Although a dependent variable, the film thickness can be expressed in non-
dimensional form by the leading order relationship

H(θ) = h̃/c̃ = 1 + ε cosθ. (3.7)

To complete the non-dimensionalisation of the system, the radial and axial coordi-
nates r̃, z̃ are parametrized by r = r̃/r̃s and z = l̃/2. The latter respects the assumption
made in Sect. 3.3 that the considered problem is symmetric with respect to the z̃-axis.
Finally, when p̃r, p̃d are made non-dimensional with pref , Eq. 3.4 is replaced by

p̃r 6 ω̃ η̃ r̃s/c̃
2 reference pressure

ε ẽ/c̃ eccentricity ratio
Γ (2 r̃s/l̃)

2 aspect ratio
Λ λ̃/r̃s thickness ratio
K 12 Φ̃ref r̃s/c̃

3 permeability parameter
PC p̃c/p̃ref cavitation pressure
So w̃/(p̃ref r̃sl̃) Sommerfeld number

Table 3.1: Reference pressure and non-dimensional groups

[PR, PD] = [FR, FD](ε, Γ,K,Λ, PC), (3.8)

The advantage of Eq. 3.8 lies in the possibility to systematically vary in numerical
calculations the 5 non-dimensional parameters and asses the limitations and specific
behaviour that they enforce. This is studied thoroughly in Ch. 4.5.

3.5 Governing equations and boundary conditions
The classical theory developed by O. Reynolds in 1886 (see Sect. 2.1.2) is the most
rigorous approach for the calculation of the fluid pressure in thin fluid film gaps. We
will modify the standard Reynolds equation in order to accommodate the formation of
cavitation according to the mechanism described above. Regarding the second flow
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region, namely the sinter matrix, Darcy’s classical law will be applied, as its deriva-
tions (Brinkman, Forchheimer) are rather phenomenological. The coupling of these two
equations yields a closed system of equations describing the posed lubrication problem
which returns the pressure distribution through the system. The steps of this approach
are explained in the following paragraphs, where the non-dimensional quantities ob-
tained in Sect. 3.4 are used.

The flow through the lubrication gap The modified Reynolds equation is written in
non-dimensional form as:

∂

∂θ

(
H3∂PR

∂θ

)
+ Γ

∂

∂z

(
H3∂PR

∂z

)
=
∂(HS)

∂θ
− vD,r. (3.9)

The terms on the left hand side of Eq. 3.9 represent the known Poiseuille contribution to
the gap flow while the first term on the right hand side represents the Couette flow. The
rightmost term in Eq. 3.9 accounts for the inflow from the porous seat, with the negative
sign giving the flow direction. In the two-phase regime Eq. 3.9 is governed solely by
the right hand side, as the right hand terms completely vanish. This requires a smooth
S − PR relationship so as to overcome the sudden transition. The imposed empirical
relation S = S(PR) entails the switching between the one- and two-phase flow regime
and the limit of perfectly incompressible flow behaviour is reached when:

S = S(PR) :

{
S ≡ 1, PR > PC ,

0 < S < 1, PR ≡ PC .
(3.10)

Additionally, the pressure is bounded from below by PC such that PR > PC . This
formulation is more general than the Elrod’s original algorithm, as it does not rely on
the choice of a fluid property (bulk modulus), and no additional variable is introduced.
The appropriate boundary conditions for Eq. 3.9 are given by periodicity in θ, symmetry
with respect to z = 0, and the prescription of the ambient pressure at the edge of the
lubrication gap z = 1:

PR
∣∣
θ=0

= PR
∣∣
θ=2π

,
∂PR
∂θ

∣∣
θ=0

=
∂PR
∂θ

∣∣
θ=2π

,

∂PR
∂z

∣∣
z=0

= 0, PR
∣∣
z=1

= 0.

(3.11)

The flow through the sinter matrix The second flow region is governed by the
Darcy’s law ( Eq. 2.20). Applying the law of mass conservation for an incompress-
ible fluid for the Darcy flux q:

∇p̃ · q = 0, (3.12)
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it results that the flow through the sinter matrix is described by the Laplace’s equation

∆p̃ = 0. (3.13)

Assuming that the material permeability is orthotropic, Eq. 3.13 is written in cylindrical
coordinates as

1

r

∂

∂r

(
r Φr

∂PD
∂r

)
+

1

r2
∂

∂θ

(
Φθ

∂PD
∂θ

)
+ Γ

∂

∂z

(
Φz

∂PD
∂z

)
= 0 . (3.14)

Here Φr, θ, z(r, θ, z) are the components of the permeability tensor Φ, when made non-
dimensional with an appropriate reference value Φ̃ref . In the case of homogeneous and
isotropic permeability, Φr, θ, z(r, θ, z) are identified with unity. Also, PD is a function of
the three spatial coordinates, PD(r, θ, z) and is constrained by the boundary conditions
of periodicity in θ, symmetry in axial direction z, and external insulation:

PD
∣∣
θ=0

= PD
∣∣
θ=2π

,

∂PD
∂θ

∣∣∣∣
θ=0

=
∂PD
∂θ

∣∣∣∣
θ=2π

,

∂PD
∂z

∣∣∣∣
z=0

=
∂PD
∂z

∣∣∣∣
z=1

=
∂PD
∂r

∣∣∣∣
r=1+Λ

= 0 .

(3.15)

We impose that at the boundary between the fluid film and the porous seat the two
pressures are equal:

r = 1 : PR = PD, (3.16)

a condition which is valid as long as the characteristic scale of the porous surface (e.g.
pore diameter or distance between pores) is sufficiently small when compared to the gap
height, which otherwise would require a homogenization process. The final coupling
between the two regions is given by:

vD,r = K
∂PD
∂r

. (3.17)

The boundaries of the cavitation region are not known in advance, rendering the lu-
brication problem a free-surface problem. The general approach to this issue (as seen
in Sect. 2.3) is associating specific boundary conditions to the Reynolds equation. The
very basic Gúmbel condition, although reported to deliver deviations for the load capac-
ity of about 15% ( [41]) as compared to more refined models, is clearly not a solution as
it violates the continuity of mass. We therefore consider it necessary to impose a con-
dition which requires a zero net mass flux across the cavitation interface, like Eq. 2.25,
applied by Floberg in his analysis [53]. On the other hand, in the case of a vaporous
cavitation, as the one adopted in this work, the earlier Reynolds boundary condition of
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vanishing pressure gradient (Eq. 2.24) applies only at the stage of inception, and not
at film reformation. The reason is because the two governing quantities, the pressure
and saturation, terminate in a discontinuity, as a result of the anticipated spontaneous
recondensation. This is why the termination of the cavitation area should definitely be
accompanied by a more rational condition to support the associated jump. These being
said, the system of equations formed by Eqs. 3.9 and Eq. 3.14 is supplemented with the
following conditions.

Onset of cavitation: PR = PC ,
∂PR
∂θ

=
∂PR
∂z

= 0;

recondensation: PR = PC ,
∂PR
∂θ
− Γ ∂PR

∂z

dθ
dz

=
1− S
H2

,

(3.18)

which is essentially the JFO condition.
Notwithstanding its simplicity, the presented model brings on the following novel

points:

• the inclusion of vaporous cavitation by considering the cavitated region a homo-
geneous two-phase mixture;

• a smooth transition between the fully liquid and cavitated regime via an advanta-
geous empirical relation S(PR);

• a lower bounding of the lubrication pressure by the cavitation pressure PR ≥ PC ;

• an inevitable spontaneous recondensation in steady-state porous bearings, due to
their periodic geometry.

3.6 The case of highly permeable seat K � 1

Using the dimensional analysis for the reduction of the original number of inputs to a
smaller number of governing parameters brings on an additional advantage. It eases the
identification of limiting processes, which can be thoroughly studied by considering the
marginal values for the non-dimensional inputs. For example, very narrow or long bear-
ings can be studied by taking the aspect ratio Γ � 1 or Γ � 1, respectively. However,
more interesting situations occur when the two flow regions of the bearing decouple,
and a single equation is sufficient to describe the flow. This is the case when one as-
sumes a bearing having a very narrow (thin) but at the same time highly permeable seat.
The first prerequisite implies that Λ � 1, and, furthermore very weak variations of the
permeability components across the thickness of the seat, while the second assumption
renders K � 1. Let

K̂ = KΛ = O(1) (3.19)
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be the quantity which characterizes this limiting process. The original pressure compo-
nents PR and PD are now described by the approximations:

PR ∼ P̂0(θ, z) + o(1) (3.20)

PD ∼ P̂0(θ, z) + Λ2P̂2(r̂, θ, z) +O(Λ3) (3.21)

with r̂ = (r − 1)/Λ. The original Reynolds Eq. 3.9 now becomes

∂

∂θ

[
(H3 + K̂Φθ)

∂P̂

∂θ

]
+ Γ

∂

∂z

[
(H3 + K̂Φz)

∂P̂

∂z

]
=
∂(HS)

∂θ
. (3.22)

The problem is closed by adopting the same specifications as in Eq. 3.10. Herein P̂
depends on the azimuthal angle θ and symmetrically on the axial direction z, non-
dimensional with l̃/2, of the gap, apart from the remaining governing parameters Γ , ε,
K̂, and PC . Furthermore, H := h̃/c̃ is the non-dimensional film thickness, Φθ,z denotes
the non-dimensional permeability components of the sinter matrix in the azimuthal and
the axial direction, respectively, when Φ̃ref is considered as a reference, and S repre-
sents the lubricant saturation, i.e., the ratio between the density of the two-phase mixture
and the one of the liquid phase. In contrast to the full simulations, here insulation and
vanishing pressure at the edge of the bearing cannot be satisfied simultaneously since
this would require a separate treatment of square regions in the seat close to z = 1. As a
result, here the bearing allows for a local oil flux through its edges, but still giving zero
net flux.

A related problem was studied by Cameron [36], neglecting cavitation and assum-
ing an isotropic and homogeneous permeability, yet yielding an analytical solution for
infinitely long/short bearings. Nevertheless, the thus reduced problem, Eq. 3.22, not
only drastically eases the systematic investigation of the bearing operation, but allows
correct qualitative insight.
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CHAPTER 4
Numerical study

In the first part of this chapter we present the numerical discretisation scheme and the
algorithm used for solving the theoretical model. This is achieved by discretising the
equations using second-order accuracy finite differences and iterating for converged so-
lutions. We then search for the most suitable numerical parameters which yield satisfac-
tory numerical results. Specifically, the parametrization of the PR − S relationship and
the admissible values of the compressibility parameter β provide with stable and fast
converging solutions. Once these parameters are fixed, we run calculations for a stan-
dard bearing configuration: there, typical pressure and saturation distributions show the
extent of the cavitation region and how this is affected by the variation of the eccentric-
ity ratio. The non dimensional load, friction coefficient and attitude angle are part of the
solution and are given as functions of K and ε. The analysis of the results is completed
by an extended parameter database, which not only gives preliminary indications on the
range of admissible input parameters to yield converged solutions, but also serves to the
extraction of an empirical relation between the non-dimensional parameters, to be used
further on for the experimental validation of the model. Finally, results for the case of
highly permeable seat described in Sect. 3.6 are presented.

4.1 Discretisation and iterative scheme
The physical model described by Eqs. 3.9–3.14 requires conservation of mass at the
interface between the liquid and the two-phase mixture. This is satisfied when a con-
servative finite-differences discretisation is employed. The system of equations can be
written in matrix form as

AR · S = BR,

AD · PD = BD,
(4.1)
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so that the dependent variables in the Reynolds and Darcy’s equations are S and PD,
respectively. All discrete points are calculated on an orthogonal mesh which contains
uniformly distributed grid points, but with variable number of nodes in the orthogonal
directions r, θ, z. The grid spacing between nodes are ∆θ and ∆z for θ and z, respec-
tively. The common notations North, South, East, West (N,S,E,W ) are used for the
r, z directions, supplemented with Front, Back (F,B) points for the θ direction. A
typical grid stencil for the discretisation of the two-dimensional Reynolds equation (in
θ − z) is depicted in Fig. 4.1). Upper-case symbols denote values located at the actual
grid point while lower-case points are evaluated half-way the grid points, ∆θ/2, ∆z/2.

The employed discretisation scheme for both Reynolds and Darcy equation is a com-
bination of central differences–for the inner grid points–and forward/backward differences–
required at the boundaries–of second order accuracy. The discretised terms are ex-
plained below.

Reynold’s equation For the equation pertaining to the lubricant gap we first perform
a linearisation of the initial equation, such that the dependent variable is the lubricant
saturation, S. To this end, if we consider that superscripts indicate the i-th iterated
discrete approximation of S and PR, a change of variable and pressure approximation
yields the linearisation of PR:

∂PR
∂θ

=
∂PR
∂S

∂S

∂θ
∂PR
∂z

=
∂PR
∂S

∂S

∂z

P i+1
R = P i

R + ∆PR


⇒ P i+1

R = P i
R +

∂P i
R

∂Si
∆S. (4.2)

The derivatives in θ and z of the pressure PR according to Eq. 4.2 are

∂PR
i+1

∂θ
=
∂PR

i

∂Si
∂Si+1

∂θ
+
∂2P i

R

∂Si2
∂Si

∂θ
(Si+1 − Si), (4.3)

∂P i+1
R

∂z
=
∂P i

R

∂Si
∂Si+1

∂z
+
∂2P i

R

∂Si2
∂Si

∂z
(Si+1 − Si). (4.4)

These new terms are now introduced in the initial Reynolds equation (3.9), so as to yield
the sought linearisation:

∂

∂θ

{
H3

[
∂P i

R

∂Si
∂Si+1

∂θ
+
∂2P i

R

∂Si2
∂Si

∂θ
(Si+1 − Si)

]}
+

+Γ
∂

∂z

{
H3

[
∂P i

R

∂Si
∂Si+1

∂z
+
∂2P i

R

∂Si2
∂Si

∂z
(Si+1 − Si)

]}
=

=
∂(Si+1H)

∂θ
−K∂PD

∂r
,

(4.5)
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Figure 4.1: Grid of the mapped coordinates: single index one grid point away, double
indexes two grid points away, lower-case indexes at half grid point; Eq. 3.9 and 3.14 to
be satisfied at center point C

which can be written in a more compact form when the local (conservative) coefficients
of S are denoted by Rθ, Rθθ, Rz and Rzz:

Rθ = H3∂P
i
R

∂Si
, Rθθ = H3∂

2P i
R

∂Si2
∂Si

∂θ
,

Rz = ΓH3∂P
i
R

∂Si
, Rzz = ΓH3∂

2P i
R

∂Si2
∂Si

∂z
.

(4.6)

Finally we obtain the linearised equation that is to be discretised:

∂

∂θ

(
Rθ
∂Si+1

∂θ
+RθθS

i+1 − Si+1H

)
+

∂

∂z

(
Rz
∂Si+1

∂z
+RzzS

i+1

)
=

−K∂PD
∂r

+
∂

∂θ

(
RθθS

i
)

+
∂

∂z

(
RzzS

i
)
.

(4.7)

Let us consider the first equivalent Poiseuille term in θ-direction of Eq. 4.7 and
neglect for the time being the iteration indices i, i+1. The outer differential is discretised
by a central-differences scheme:

∂

∂θ

(
Rθ
∂S

∂θ

)
=

(
Rθ
∂S

∂θ

)f
−
(
Rθ
∂S

∂θ

)b
∆θ

. (4.8)
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Employing once more a central discretisation, the inner differentials are developed as
follows: (

Rθ
∂S

∂θ

)f
= Rf

θ

SF − SC

∆θ
and

(
Rθ
∂S

∂θ

)b
= Rb

θ

SC − SB

∆θ
. (4.9)

The coefficients Rf
θ and Rb

θ are evaluated at intermediate locations (half grid points), by
averaging:

Rf
θ =

1

2

(
Rc
θ +Rf

θ

)
, Rb

θ =
1

2

(
Rc
θ +Rb

θ

)
. (4.10)

Combining 4.8 and 4.9 gives:

∂

∂θ

(
Rθ
∂S

∂θ

)
=

Rf
θ S

F − (Rf
θ +Rb

θ)S
C +Rb

θ S
B

∆θ2
. (4.11)

In a similar way we obtain the discretisation of the equivalent ”Poiseuille term“ in z di-
rection:

∂

∂z

(
Rz
∂S

∂z

)
=

Rf
z S

F − (Rf
z +Rb

z)S
C +Rb

z S
B

∆z2
. (4.12)

The second term in 4.7 is discretised using a direct central-differences scheme:

∂

∂θ

(
RθθS

)
=
RF
θθ S

F −RB
θθ S

B

∆θ
, (4.13)

and in the same way for the z-direction:

∂

∂z

(
RzzS

)
=
RF
zz S

F −RB
zz S

B

∆z
. (4.14)

In order to achieve a smooth transition between the original conservative scheme and the
advective operator on the right hand side of Eq. 3.9, we employ a backward differences
scheme for the wedge term ∂θ(HS). This insures that any possible instabilities like grid
oscillations are avoided:

∂

∂θ
(−SH) =

SBHB − SC HC

∆θ
. (4.15)

Summarizing the discretised terms one can identify the coefficients of the saturation S:(
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(4.16)
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while the right hand side is

BR = −K∂PD
∂r

+
∂

∂θ
(RθθSi) +

∂

∂z

(
RzzS

i
)

(4.17)

Given the boundary conditions from Sect. 3.5 we now finalize the discrete system by
numerically implementing the boundary conditions. Let j = 1 . . . J and k = 1 . . . K
denote the domain bounded by [0, 2π] in θ and [0, 1] in z, be the corresponding grid
sizes. Ambient pressure at the edge of the bearing, PR

∣∣
z=1

= 0 becomes in terms of S

Sj,K = 1− PC
2β
. (4.18)

The symmetry line at z = 0(k = 1) is prescribed by setting the second order accuracy
forward difference of S to 0:

− 3Sj,1 + 4Sj,2 − Sj,3 = 0. (4.19)

Periodicity in θ is equally valid for the lubricant saturation, S, and is enforced by
considering in the numerical scheme additional grid points, schematically represented
in Fig. 4.2. Left and right from the θ stencil we formally identify neighbouring grid
points, denoted by −P and +P for the previous and upcoming grid, respectively. For
enforcing equal gradients on the 0 and 2π boundaries additional 3 grid points are re-
quired: −P1,−P2,−P3, while for prescribing Sθ=0 = Sθ=2π only one point is required.
In this way

S(C) − S(+P ) = 0, (4.20)

and the continuity of the derivative is enforced by:

− 3S(C) + 4S(B) − S(BB) − 3S(−P1) + 4S(−P2) − S(−P3) = 0. (4.21)

The components AFR, A
B
R, A

E
R, A

W
R , A

C
R represent the diagonal elements of the Ja-

cobian. The resulting system matrix consists on average of 0.1% non-zero elements (see
Fig. 4.3 a) for an example 8 × 8 matrix), which numerically is easy to manipulate and
store.

41



Figure 4.2: Grid points considered for the implementation of periodic boundary condi-
tions

(a) (b)

Figure 4.3: Typical sparse Jacobian: distribution of non–zero entries and their total
number (nz) for (a) AR, (b) AD
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Darcy’s law Similar steps are performed for the discretisation of the terms in Eq. 3.14.
The outer derivatives are approximated as:

1

r

∂

∂r

(
rΦr

∂PD
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(4.22)

while the inner derivatives are:
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(4.23)

For the sake of simplicity we denote

Dr = rΦr, Dθ = Φθ, Dz = ΓΦz. (4.24)

Finally, by combining the inner and outer derivatives one obtains:
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(4.25)
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The coefficients of PD are:(
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(4.26)

These occupy a sparse pattern represented in Fig. 4.3 b). The mesh size of 6 × 6 ×
6 considered for the exemplified matrix yields 880 non-zero elements in the system
matrix. The computation cost is therefore much higher than for the Reynolds equation,
not surprisingly since the Darcy’s equation is 3-dimensional.

The challenge of the numerical scheme is formulating the most suitable pressure-
saturation relationship which would stabilize the steep transition between the phases.
In the previous work of Elrod-Adams [6, 57], the pressure-density relationship used
related the two quantities by the liquid bulk-modulus, a property which measures the
compressibility of the medium. They used an alternating-direction implicit scheme in
order to obtain steady-state solutions. This approach was stable as long as the value
of the compressibility was kept finite, meaning that incompressible solutions could not
be achieved. Moreover, their method was applied to tapered slider bearings, in which
case the boundaries of the discontinuous phase were fixed by the geometry grooves,
and did not occur spontaneously, as in the case of a circular journal bearing. We took
on a different approach by using a technique referred to as “annealing”, an analogy
to the mechanical process of a high temperature heated metal cooled down at a low
rate. From a numerical point of view, simulated annealing is an optimization tech-
nique that finds the global optimum of a system, avoiding solutions that would render
only local minima/maxima [68] . Here we modify the initial Elrod-Adams scheme and
solve the steady-state problem in a direct iterative scheme, for the incompressible case.
The isothermal compressibility ∂S/∂PR is controlled by β, a positive non-dimensional
quantity (β > 0). This then enters in the artificial PR − S relationship by

PR−PC =
√

1/βn + β2(S − 1)2n0 +β(S−1)n0 , n ≥ 4 , n0 = 1, 3, 5, . . . , (4.27)
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such that the incompressible limit is reached when β →∞:

1

βn
→ 0 :

PR − PC
2β

(S − 1)n0 and S → 1. (4.28)

The quantity PR − PC is taken as positive throughout, and large values are encoun-
tered outside of the cavitation region. A plain linear variation of β with each iteration
proved a too harsh choice, and a more refined relationship was needed. We therefore
implemented the relationship which favours fast convergence:

β = βmin + (βmax − βmin) tanh[0.04(i− 1)], (4.29)

with βmin and βmax to be fixed by trial and error.
The very core of the iterative algorithm is the switching between solving the Reynolds

and Darcy problem. First, the Darcy’s equation is solved. This yields a initial value for
PD,1 and thus, vD,r. Then, at i = 1 the iterative loop starts and its step is incremented
every time with 1. By employing the linearisation by S = Si of the Reynolds equation,
i.e. 4.7, we obtain an approximation of Si+1. This, together with vD,r feeds into the
initial Reynolds problem 3.9 and PR,i+1 is calculated on the basis of Eq. 4.27. PD,i+1

is updated according to 3.17, and i is increased with 1. We consider to have reached
a stable solution when the Euclidean norm between two consecutive values of PR are
below u, the machine precision:

||PR, i+1 − PR, i||2
||PR, i+1||2

<
√

u. (4.30)

Other types of norms can also be considered, however, using the Euclidean norm avoids
the possible difficulties in the convergence due to round-off errors, while being sensitive
enough to the very small variations of PR inside the cavitation region.

Moreover, the solution of the Reynolds equation is stabilized by employing under-
relaxation according to

PR,i = %PR,i−1 + (1− %)PR,i , 0 < % < 1 . (4.31)

That is, only the fractions % (under relaxation factor) of the updated approximations Si
and PR,i feed into the discretised Reynolds problem, to be solved for the consecutive
update Si+1, and the convergence criterion, respectively.

This advanced numerical scheme proves to handle the numerical instabilities due to
the expected saturation discontinuity well enough. The proper mesh resolution together
with the upwind (backwards in θ) discretisation of the advective term and the iterative
adjustment of the PR–S relationship avoids typical grid oscillations.
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4.2 Parameter study: general case
In this section we present the first results of the numerical algorithm employed. The
choice of the input parameters (both geometrical and numerical ones) which define the
general case is explained below.

4.2.1 Set-up of the input parameters
The numerical approach to solving the system presented in Sect. 3.2 is based on the arti-
ficial pressure-density relationship given by Eq. 4.27. The parametrisation of the PR−S
relation is depicted in Fig. 4.4, where βmax and n are varied. Already β = 30 appears to
be sufficiently high for reaching the incompressible limit. Larger values of β increase
the speed of convergence towards the solution, however, experience has shown that high
values also render the occurrence of instabilities in the iteration process. The parameter
n has no physical meaning, but it is used to smooth the transition of PR around S = 1.
In fact, the stability of the scheme depends not only on the choice of βmax but also on
the under relaxation factor %. For this reason, an overview of the convergence domain
can be obtained when βmax and % are systematically varied in a parameter study, but
in the same time keeping all the other input parameters fixed. Figure 4.5 shows the
number of iterations required to reach a converged solution (imposed numerical toler-
ance uc = 10−8), for two values of ε = 0.1, 0.8, when evaluated by means of the L2

norm. A value of 0 indicates the inability to reach a numerical converged solution.The
results vary greatly with ε: for low eccentricities (Fig. 4.5 a)) the choices of % and βmax
appear to have only a very small influence on the speed of convergence and moreover,
all parameters combinations yield converged solutions. In the case of higher eccentric-
ity (Fig. 4.5 b)), less than a half of the parameter space given by % shows converged
solutions. The conclusion of this study is that 0.9 ≤ % ≤ 1, and βmax < 12 are viable
choices for obtaining stable converged solutions.

Based on the results presented so far, we are now able to define a set of standard nu-
merical parameters which will be used in the upcoming simulations and which we con-
sider will bring the best results in terms in stability and convergence, given in Tab. 4.1.

Strong variations in the stability of the calculation definitely occur when extreme
values of one or more of the 5 non-dimensional groups are employed, which may induce
other effects not considered initially by the assumed physics. However, for this and
the upcoming studies, unless stated otherwise, the standard set of geometrical/physical
parameters defined in Tab. 4.2 will be used. The geometrical aspect ratios Γ , Λ as well
as the coupling parameter K are chosen based on real industrial bearing geometries,
while the parameter related to the operation conditions, PC , corresponds to moderate
rotational speeds and a measured viscosity of an oil commonly used in the lubrication
of the chosen industrial bearing. Also, we assume that the permeability of the sinter is
isotropic and homogeneous.
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(a) (b)

Figure 4.4: Parametrisation of the PR − S relationship: (a) different values of the
compressibility parameter β, (b) fixed β = 8 and different values of the parameter n

(a) (b)

Figure 4.5: Convergence study for %, βmax: number of iterations needed to reach a
converged solution versus %, βmax for: (a) ε = 0.1, (b) ε = 0.8 at a tolerance of uc =
10−8; convergence criteria based on the L2 norm

4.2.2 Typical pressure and saturation distribution

The results of the calculations performed with the standard parameters from Tab. 4.2
yield the spatial distributions of the lubricant pressure in the gap and its saturation. As
a first insight into the flow behaviour under different loads, we consider two values of
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n n0 βmin βmax %
4 1 2 8 0.95

Table 4.1: Standard numerical parameters

r̃b [mm] l̃b [mm] λ̃b [mm] c̃ [µm] ω̃ [min−1] Φ̃b [m2] η̃ [Pa s] p̃c[Pa]
4 11 3.75 8 2000 1.8 ·10−14 0.065 0.01
Γ K Λ PC
0.52 0.64 0.93 -0.0049

Table 4.2: Standard input parameters used in the calculation: dimensional inputs and
their equivalent non-dimensional groups

the eccentricity ratio, namely ε = 0.1, 0.6. The resulting typical distributions for these
values are depicted in Fig. 4.6,4.7, where two views for each case are shown. In both
cases it is seen that cavitation initiates at the location of the minimum film thickness,
around θ = π, where on the one hand, PR reaches its minimum value, PC , and on the
other hand S drops below 1. The extent of the cavitation in axial direction (z) varies
with ε, so that for a value of ε = 0.6 the cavitated flow region spans until almost the
edge of the bearing z = 1. When the load is increased, the drop in pressure becomes
more abrupt and in the same time S takes on considerably smaller values. The latter
implies that under higher loads the mixture region contains more vapour as compared
to the case of low load.

We remark a recurring behaviour in the saturation distribution around θ = 2π, where
S exhibits a sudden jump to the value of the fully liquid phase. This discontinuity
turns out to be present in every configuration studied (also in the subsequent numerical
study), and can thus be safely considered as inevitable. Fig. 4.8 depicts the pressure of
the lubricant passing through the sinter matrix, for the same standard configuration and
taken at the bearing symmetry line z = 0. Its value across the radial direction decreases
slightly from the one of PR in the loaded area of the lubrication gap (r = 1, θ ∈ [0, π]),
while exhibiting a slight increase from PC in the unloaded area ( θ ∈ [π, 2π]), the latter
in agreement with the assumptions put forward in Sect. 3.2. The maximum of PD is
displaced towards π with the higher eccentricity ratio and shows a more abrupt drop
around π.
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(a)

(b)

Figure 4.6: Numerical results for the standard parameters: non-dimensional pressure
distribution in the lubrication gap for: (a) ε = 0.1, (b) ε = 0.6
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(a)

(b)

Figure 4.7: Numerical results for the standard parameters: lubricant saturation for:
(a) ε = 0.1, (b) ε = 0.6
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(a)

(b)

Figure 4.8: Numerical results for the standard parameters: non-dimensional sinter pres-
sure taken at the bearing line of symmetry z = 0 for: (a) ε = 0.1, (b) ε = 0.6

4.2.3 Influence of K and ε

The variation of the eccentricity ratio, although providing with valuable knowledge re-
garding cavitation, is not enough to establish the performance of a certain configuration.
We therefore proceeded with the variation of the coupling parameter K and extend the
range of values for ε. Solutions are obtained only up to a value of ε situated near 0.9, as
by exceeding this value we encounter a failure of convergence. The limits for K were
chosen in such as way as to obtain a clear distinction between the values at which they
are held constant.

In Fig. 4.9 the initial set-up is plotted for several distinct values of the coupling pa-
rameter K (for the same values of the eccentricity ratios), however this time by plotting
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Figure 4.9: Pressure distribution in the lubrication gap at the symmetry line z = 0 for
distinct values of K and: (a) ε = 0.1, (b) ε = 0.6

the values of PR at the symmetry plane z = 0. This type of representation is useful in-
sofar as it provides straightforward information regarding whether cavitation occurred.
An increase in K of one order of magnitude can be the result of either increased perme-
ability, smaller radial clearance or a combination of both. The effect of a significantly
higher K is a lower PR in the loaded area, which is explained by the reduced load car-
rying capacity of very permeable bearings as the lubricant escapes much easier through
the pores of the matrix. It is interesting that for lower loads and high values of the cou-
pling parameter cavitation does not appear to develop, as hinted by PR > PC over θ.
This points to the existence of a certain threshold for K, depending of ε, beyond which
cavitation ceases to occur. This threshold is further identified by tracking the minimum
pressure occurring in the lubrication gap for each combination of parameters ε–K. Fig-
ure 4.10 depicts solely the configurations for which the minimum pressure encountered
is larger than the cavitation pressure: PRmin > PC , indicating the fact that the lubricant
does not cavitate. Particularly, we remark from Fig. 4.10 that only a narrow constellation
of parameters ε–K delimited by ε ∈ [0.001−0.15] is not affected by cavitation. Plotting
the minimum PR for ε > 0.15 would collapse on a single horizontal line corresponding
to PC , and are therefore not represented here.

The following curves in Fig. 4.11–4.13 are obtained by cubic interpolation of the
calculated data points. From Fig. 4.11 a) one detects how changing the value of K
affects the attitude angle ψ in dependence of ε, which is varied between 0 and 0.9. The
(expected) range π < ψ ≤ 3π/2 reflects the occurrence of the pressure maximum and
of cavitation in the, respectively, convergent (0 < θπ) and divergent (π < θ < 2π) parts
of the bearing. In the case of an almost solid bearing (K = 0.001), ψ exhibits a major
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Figure 4.10: Minimum pressure in the lubrication gap vs. K for distinct values of ε

change when ε is varied in its entire range, bounded by 0 and 1. We remark that for
more porous bearings, this change is not so drastic, and the curve globally flattens. On
the contrary, ψ attains smaller values the smaller K is in the limit ε → 0, though we
concede that the then intersecting curves can locally be hardly distinguished from each
other.

Next, the variation of So is plotted in Fig. 4.11 b), where one can see that he load
capacity generally decreases for increasing values of K. The impact of its variation on
the load is more pronounced for lower values of K and medium to high values of ε.
Finally, as K becomes quite large, the bearing loses its capacity of carrying the load.

The frictional characteristics of the standard configuration are put in evidence by
plotting µ over ε and K. This type of representation contributes to the design of porous
journal bearings as it can point out the optimum set-up which yields to suitably low
friction coefficients. Fig. 4.12 and 4.13 depict these results, and due to the different
scales involved, are resolved into two regions. In the case of µ vs. ε (Fig. 4.12), the
friction coefficient shows an overall decreasing trend, with an abrupt decrease in the
region ε ∈ [0, 0.02]. In contrast, near ε = 0.8, and for higher values of K, µ appears
to increase slightly. The lack of data points beyond ε = 0.85 in the case of K = 5
indicates that for the respective configuration no converged solutions were obtained.

For fixed values of ε, the friction coefficient µ is seen to increase almost linearly
when K is increased, at an almost constant slope for a fixed value of ε (see Fig. 4.13).
Interestingly, varying the coupling parameter has comparatively little effect on the evo-
lution of µ considering that K spans a rather wide range of values.
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Figure 4.11: (a) Attitude angle ψ, (b) Sommerfeld number So vs. eccentricity ratio ε
for various values of the permeability parameter K
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Figure 4.12: Variation of the friction coefficient µ with the eccentricity ratio ε resolved
into two regions: (a) ε ∈ [0, 0.1], (b) ε ∈ [0.1, 0.9]
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Figure 4.13: Variation of the friction coefficient µ with the coupling factor K resolved
into two regions of ε: (a) low values of ε and (b) high values of ε

4.3 Extended parametric study
A more complete analysis involves an extensive parameter study where all the 5 non-
dimensional parameters are gradually varied. This will not only provide with the lim-
itations and specific behaviour of the bearing under various conditions, but as we will
see in Ch. 5.4, it enables a strategy to approximate the bearing load beforehand, as the
load is merely a result of the calculation, and not a direct input. We build a structured
database which consists of a large number of calculations for all the parameter combina-
tions given by the ranges of Γ, ε,K,Λ and PC , given in Tab. 4.3. One may remark that
the maximum value of ε in the database is 0.8. This is due to the increased sensitivity
of the calculation as ε→ 1 on the other 4 involved parameters. While for middle range
values of Γ,K,Λ and PC we can obtain converged solutions for up to ε = 0.9 (as seen in
Sect. 4.2.3), this cannot be achieved for all Γ,K,Λ and PC . Even so, the data contained
in the database provides with valuable input on the general tendencies and characteristic
behaviour of the solutions by examining the change of the Sommerfeld number, So.

Γ ε K Λ PC
[0.3,10] [0.005, 0.8] [0.01, 20] [0.4, 1.6] [-102, -10−5]

Table 4.3: Computation domain for the parameter study

A total of 206976 configurations were calculated. The ranges of the parameter val-
ues are chosen so as to approach the limits for which the current theory becomes in-
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sufficient without proper extra handling. This in fact is the first output of the database,
as the lack of data points in the resulting 5-dimensional matrix indicates loss of solu-
tion. Due to the very high amount of data, we look at the results obtained for four types
of geometries and assessing the friction coefficients and Sommerfeld number when the
two essential parameters, ε and K are varied. As a necessary remark, here the analysed
friction coefficient represents a normalized value of the original quantity of the form:
µn = µ r̃b/c̃.

Secondly, the results shown in Sect. 4.2.2 suggested that the saturation jump may be
a recurrent behaviour in all configurations. In order to asses the validity of this statement
by means of the calculated database, we resort to plotting saturation curves at the bearing
symmetry line z = 0, versus the circumferential coordinate θ, for cases where cavitation
occurs. Knowing that varying the eccentricity ratio affects the most the evolution of the
saturation in the cavitation area, we plot the saturation for two values of ε and, in turn,
the lower and upper limits of the parameters which make-up the database domain. It
turns out that only Γ and K have a relevant influence on the way saturation progresses,
as explained in the section below.

Short vs. long width bearing In a first instance we extract the data points corre-
sponding to a short (narrow) width bearing of Γ = 5 and compare them to a long width
bearing of Γ = 0.3. The evolution of µn and So over the eccentricity ratio and various
values of the coupling parameter K are shown in Fig. 4.14 and Fig. 4.15, respectively.
In both cases Λ = 0.8 and PC = −0.001.

A long width bearing shows considerable lower friction coefficients than a short
width one, and has an increase of an approximately factor 3 in load capacity. In fact,
a variable permeability in short bearings is of interest only for highly loaded bearings,
in this case ε > 0.5 At high values of K and ε however the loss of solution is re-
marked to occur earlier than ε = 0.8, suggested by the lack of data points. In terms of
the saturation jump, the distinction between long- and short-width bearing is shown in
Fig. 4.16 a). For a short width bearing under moderate loading (ε = 0.3, Γ = 10), the
cavitation area is restricted to a narrow region around θ = 3π/2, while for the case of a
long bearing, it spans on almost half of the circumference of the bearing. In the case of
higher loading however, the curves lie more closely to each other.

A more interesting behaviour is the smoothing out of the otherwise sharp transition
of S near θ = 2π for the case of high load and high coupling parameter (ε = 0.7, K =
20). In fact, the case K = 20 is associated with noticeably smaller cavitation regions,
also for small eccentricity ratios.

Thin seat vs. thick seat bearing The second direction for evaluating the data con-
tained in the database is to check whether the thickness of the porous seat plays any
role into the frictional behaviour. In the same manner as above, we plot the normalized
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Figure 4.14: Normalized friction coefficient µn vs. ε for (a) short width bearing Γ = 5
and (b) long width bearing Γ = 0.3. In both cases Λ = 0.8, PC = −0.001
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Figure 4.15: Sommerfeld number So vs. ε for (a) short width bearing Γ = 5 and
(b) long width bearing Γ = 0.3. In both cases Λ = 0.8, PC = −0.001

friction coefficient and Sommerfeld number vs. the eccentricity ratio, and the results are
seen in Fig. 4.17. The curves lie very closely to one another, indicating no significant
distinction between the case of a thin or thick bearing seat, apart from an apparent of
loss of solution for the particular case of a thin, but permeable seat, Λ = 0.3, K = 5. We
therefore continue with selecting a broader domain around this case, namely Λ = 0.4
and K = 20 and plot the sought quantities for various values of the aspect ratio.
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Figure 4.16: Lubricant saturation plotted at the symmetry line z = 0 over the circumfer-
ential coordinate θ, for two distinct values of the eccentricity ratio and (a) two limiting
values of the aspect ratio Γ and (b) two limiting values of the coupling parameter K.
Otherwise stated, the input parameters are: Γ = 0.9, K = 0.5, Λ = 0.8, PC = −0.001

Figure 4.18 shows the limitation of the database, namely the particular combination
of parameters for which solutions cannot be achieved. Only a few of the calculated con-
figurations yielded converged solutions, with the maximum reached eccentricity ratio
being ε = 0.6, corresponding to a very permeable thin-seat, short-width bearing. These
numerical results demonstrate that the case K � 1, Λ� 1 cannot be calculated by the
classical lubrication approach used so far. Here the reduced Eq. 3.22 is applicable. The
numerical results obtained for this case are shown in the upcoming Sect. 4.5.

4.4 Anisotropic permeability distribution
The results presented so far were obtained for configurations where the permeability
was considered isotropic. This is however not true in reality, as the pressure applied in
the manufacturing processes of sintered bearings cannot be perfectly equally distributed
throughout ( [69]). The variation in permeability can therefore be a function of the
bearing design parameters [70], in our case Γ and Λ. In this section we will vary the
permeability tensor Φ and look at its effects on the friction coefficient and load capacity
for various geometries.

The first strategy pursued here is to vary the diagonal components of the perme-
ability tensor. We therefore choose 3 particular distributions, where in each case the
permeability in one direction is much greater than the one in the other 2 directions and
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Figure 4.17: (a) Normalized friction coefficient µn and (b) Sommerfeld number So vs.
ε for a thin seat bearing Λ = 0.3 (continuous line) and a thick seat bearing Λ = 1.6
(dashed line). In both cases Γ = 1, PC = −0.001
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Figure 4.18: (a) Non dimensional friction coefficient and (b) Sommerfeld number vs.
the eccentricity ratio for Λ = 0.4, K = 20, PC = −0.001

compare the resulting friction coefficients with the isotropic case. The proposed distri-
butions are as follows:

Φ1 =

1 0 0
0 1 0
0 0 10

 ; Φ2 =

1 0 0
0 10 0
0 0 1

 ; Φ3 =

10 0 0
0 1 0
0 0 1

 , (4.32)
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Figure 4.19: Friction coefficients for a non-homogeneous permeability distribution for
(a) thin, long bearing Λ = 0.5, Γ = 0.5, (b) thin, short bearing Λ = 0.5, Γ = 3, (c)
thick, long bearing Λ = 2, Γ = 0.5, (d) thick, short bearing Λ = 2, Γ = 3

For this purpose Λ takes on the values 0.5, 2, corresponding to a thin and thick porous
seat, respectively, while Γ = 0.5, 3, the cases of a short and long width bearing. K is
kept constant atK = 1 and PC = −0.046. The results of this study are presented below.

From Fig. 4.19 one can observe an overall trend: a dominant radial permeabil-
ity (Φr = 10, Φθ = 1, Φz = 1) performs better from the point of view of frictional
coefficient as it seen to lie below the other 3 curves. The separation from the isotropic
curve of narrow bearings is more pronounced for medium to high loads (ε > 0.5), as
seen in Fig. 4.19 b), d). For the same configurations, at low loads one can see that the
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4 curves are very close to one another, in contrast with the case of long bearing cases
(Fig. 4.19 a), c)).

Next, we employ a more complex permeability variation through the seat by apply-
ing a sinusoidal function which governs its variation. The parametrized two-dimensional
function defines the permeability variation in the circumferential and radial direction,
and is of the form

Φ(r, θ) =

[
1 + (1− Φc)

arctan(Jθ cos(nθ))− arctan Jθ
2 arctan Jθ

]
·[

arctan[JrΛ(1− λc)]− arctan[Jr(r − 1− Λλc)]
arctan[JrΛ(1− λc)]− arctan(−JrΛλc)

]
,

(4.33)

where the parameters Φc, Jθ, n, Jr and λc control as follows, the permeability of the
compressed areas in multiples of Φ̃r, the sharpness of the transition in θ direction, pro-
file multiplicity, sharpness of the r-transition and depth of compressed areas in multi-
ples of Λ. Although Eq. 4.33 allows for a multitude of combinations of the permeability
distribution, we chose for this study only 4 particular ones. The combinations of pa-
rameters used are given in Tab. 4.4 and shown graphically in Fig. 4.20. Profiles a), b)
depict distributions with an even and odd number of multiplicities, while in c) we vary
the permeability of the compressed areas, and in d) the compression in radial direction
(pointing to a permeability variation at the inner surface of the seat). We thus applied

Set Φc Jθ n Jr λc
(a) 0.1 10 2 30 0.8
(b) 0.1 10 3 30 0.8
(c) 0.7 10 2 30 0.8
(d) 0.1 10 2 30 0.2

Table 4.4: Parameters used for the sinusoidal permeability bearing

these profiles to a bearing with Γ = 0.5, Λ = 2, PC = −0.0046, and only varied the
usual parameters ε and K. The results obtained for these 4 types of permeability distri-
butions are given in Fig. 4.21 in comparison with the case Φr = Φθ = Φz for K = 1 and
for higher values of K in Tab. 4.5. Even if mostly small deviations from the constant
case can be observed, the distinction between a two-fold multiplicity (a) and a three-
fold one (b) is apparent in both friction coefficient and load capacity representations.
Interestingly, for high values ofK (see Tab. 4.5) a 3-fold multiplicity of the bearing per-
meability yields a decrease in the friction coefficient, even more, in comparison with the
constant case. Also, varying the permeability only near the inner bearing surface (d),
rather than throughout its whole thickness (a), (b) considerably lowers the bearing’s
capacity of carrying the load.
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(a) (b) (c) (d)

Figure 4.20: Sinusoidal permeability distributions in radial-circumferential direction
corresponding to the parameters given in Tab. 4.4

(a) (b)

Figure 4.21: Results obtained for the sinusoidal permeability case where K = 1:
(a) friction coefficient vs. eccentricity ratio and (b) Sommerfeld number vs. eccentricity
ratio, compared to the homogeneous case

To sum up, multi-directional variations of the permeability clearly affect the fric-
tional behaviour of porous journal bearings. Definite rules regarding which is the most
advantageous distribution cannot be established, yet one can concede that a controlled
permeability distribution serves in bearing design.

4.5 The case of highly permeable seat: K � 1

The theoretical background of a highly permeable thin seat, K � 1, Λ � 1, was
covered in Sect. 3.6. We now solve numerically the accompanying modified Reynolds
equation 3.22 following the same discretisation scheme as for the full Reynolds equa-
tion, and examine the results when the key quantity K̂ = KΛ is varied.
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Constant Sinus (a) Sinus (b) Sinus (c) Sinus (d)
ε K = 2 K = 5 K = 2 K = 5 K = 2 K = 5 K = 2 K = 5 K = 2 K = 5

0.1 0.036 0.054 0.045 0.081 0.035 0.050 0.038 0.059 0.056 0.108
0.2 0.021 0.031 0.027 0.041 0.020 0.028 0.022 0.033 0.031 0.054
0.3 0.015 0.023 0.019 0.031 0.014 0.02 0.016 0.025 0.023 0.038
0.4 0.012 0.019 0.015 0.026 0.011 0.016 0.013 0.02 0.018 0.032
0.5 0.011 0.017 0.013 0.022 0.009 0.013 0.011 0.018 0.016 0.028
0.6 0.01 0.015 0.012 0.020 0.008 0.012 0.01 0.016 0.014 0.025
0.7 0.009 0.015 0.011 0.019 0.007 0.011 0.01 0.016 0.013 0.024
0.8 0.01 0.016 0.011 0.020 0.007 0.011 0.01 0.016 0.013 0.025
0.9 0.012 NA 0.012 NA 0.009 NA 0.012 NA 0.016 NA

Table 4.5: Friction coefficients for the sinusoidal permeability distributions for large
value of the coupling parameter K

The original set of 5 governing parameters is now condensed into : Γ, ε, K̂, PC . The
subsequent numerical calculations are performed for a bearing with Γ = 0.9 and PC =
−0.01, and an assumed constant and isotropic permeability, such that Φθ = Φz = 1. ε
takes the usual values between 0 and 1, while K̂ is varied sequentially from 10−1 to 102.
The outcome of this study is given in Fig. 4.22 where values of µn are plotted against
the inverse of the Sommerfeld number So and the eccentricity ratio ε, respectively.

It results that the representation µn vs. 1/So shows the same characteristics as the
curves obtained by Cameron [36] and already shown in Fig. 2.6. The curves show
what Cameron et al. stated in their paper: above a certain threshold of the Sommerfeld
number, Soc say, hydrodynamic lubrication cannot be sustained, and as a result friction
increases abruptly. The curves in Fig. 4.22 a) show two asymptotes: they collapse onto
a single straight line as 1/So becomes very small and reveal that µn varies with (Soc–
So)1/2 as the value of So approaches Soc. On the same common asymptote lies also
Petroff’s friction for lightly loaded bearings (see Eq. 2.17). When represented vs. ε,
one remarks the asymptotic behaviour of µn around both ε→ 0 and ε→ 1. Due to the
modified pressure coefficients in Eq. 3.22 shown in Sect. 3.6 is it possible to achieve a
solution for the case ε → 1. Also, the friction coefficient reaches its minimum around
ε ∈ [0.6, 0.75], which is not the case for the standard set-up.

In what concerns the occurrence of cavitation, Fig. 4.23 depicts the minimum pres-
sure P̂ recorded for each combination of ε-K̂. Should PC be encountered at any point
in the θ-z space, one will consider that for the specific constellation of parameters, the
lubricant has cavitated. The spectrum defined by Fig. 4.23 shows that the cavitation-free
region (P̂>PC) is comprised in the region of low eccentricities and high values of K̂.
For the case of an unloaded bearing ε → 0 the lubricant remains in a fully liquid state
regardless of the value K̂ attains.
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In the closely related study presented in Ch.2.4, Fig. 2.6, Cameron et. al. [36] repro-
duced these theoretical friction curves by an analytical solution for the narrow bearing,
where cavitation was neglected. A correspondingly simplified theoretical description
can be obtained, allowing a fully analytical solution for the case of an infinitely long
bearing and an approximative one for a finite-width porous bearing, as shown in [71]
(where the same values for the key parameter Ψ are considered). In what follows, we
aim at verifying Cameron and co-workers’ approach.

Equation (3.22) allows for the variation of K̂, which is essentially equivalent to Ψ as
K̂ = 12Ψ. The permeability is taken as isotropic and homogeneous, so that Cθ = Cz=
const. The results of these strategies are shown in Fig. 4.24, where the theoretical re-
sults by Cameron et al. [36] are represented by straight lines, and the data obtained
numerically by Sect. 3.6 are marked by dashed lines.

By comparing the two methods one can remark that the associated critical values
of 1/∆ appear to be largely shifted. In our approach, the curves lie closer to one an-
other, and for the cases Ψ→ 0 the critical values of 1/∆ almost collapse. This can
be explained by the fact that at high eccentricity ratios (or for 1/∆→ 0) the cavitating
regime has a greater impact on the pressure distribution, especially when we consider
the limit of a solid bearing, whereas the approach by Cameron et al. does not include
any cavitation effects. However, a main source for the discrepancy between their and
our results is the fact that the assumptions in Sect. 3.6 are incompatible with the di-
mensions of the industrial bearings we assumed, see Tab. 4.2. Nevertheless, the thus
reduced problem, Eq. (3.22), not only drastically eases the systematic investigation of

(a) (b)

Figure 4.22: Numerical results for the case K � 1: normalized friction coefficient
vs. inverse of the Sommerfeld number for: (a) distinct values of K̂ and (b) vs. the
eccentricity ratio ε
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Figure 4.23: Numerical results for the case K � 1: minimum pressure in the lubricant
gap P̂ vs. the modified coupling parameter K̂ and the eccentricity ratio ε

the bearing operation, but allows correct qualitative insight. For instance, the increase of
the friction coefficient for a given load at increased permeability indicates the reduction
of the load capacity found in tests, see, e.g., [33].

Figure 4.24: Comparison of friction coefficients calculated according to Cameron et
al. [36] (continuous lines, see also Fig. 2.6) and Eq. 3.22 (dashed lines) for Γ = 1
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CHAPTER 5
Experimental validation of the model

The bearing behaviour predicted by the numerical simulations presented so far provides
the basis for the experimental investigations within this chapter. In particular, we focus
on the validation of the calculated friction coefficient by measurements based on a set of
industrial bearing samples, impregnated with lubricants which differ distinctly by their
nominal viscosities. As key operating conditions, the surrounding temperatures are
varied, as well as both the rotational speed and loading of the bearing. The conversion
between the eccentricity ratio and the applied load is made via a numerical interpolation
scheme using the points stored in the database calculated in the previous chapter.

5.1 General motivation and purpose
The interest in porous bearings is reflected by the multitude of experiments available
in literature. Many tests, however, were carried out on specifically designed bearings,
rather than “real-life” ones. What we wish to achieve with our new in-house measure-
ments is to evaluate industrial bearings, which, due to their geometrical imperfections
stemming from the manufacturing process, increase the relative errors in measurements.
Moreover, the experimental procedure should comply with real-life operating condi-
tions, and consequently with (as much as possible) the assumptions taken by the theo-
retical model. Re-iterating the latter, we deal with four main idealizations on which the
computation scheme is based on:

(i) the assumption of stationary operation in a regime of predominantly hydrody-
namic lubrication (neglect of pronounced mixed lubrication) throughout;

(ii) cavitation dealt with as the emergence of a homogeneous two-phase regime of the
lubricant;
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(iii) a strictly Newtonian rheology of the liquid and the partially vaporous lubricant;

(iv) the neglect of imperfections/roughness of the seat and journal surfaces forming
the gap and their associated wear (presumed run-in).

Run-in refers to the adjustment of the originally rough contacting surfaces, eventually
achieving their conformal fit on the roughness scale (see [72]). Hence, running-in ef-
fects can only be simulated here by unsteady variations of the operation temperature,
i.e., the viscosity of the lubricant simultaneously with those of the shaft speed at a
given bearing load. Nevertheless, the comparison experiments-simulations focuses on
the hydrodynamic branch of the Stribeck-type curves. In this sense, the experimental
data used for the comparison with simulated results are taken after a run-in operation
of 16 hrs., which proved sufficient for obtaining a periodic (quasi-static) hysteresis of
the Stribeck-type curves. However, one must concede that even under the (assumed)
absence of surface degradation, simulating running-in in this manner probably does not
sufficiently resemble the associated real-life situation. In the same spirit, more efforts
toward the understanding of quasi-static, transient, and finally even fully unsteady vari-
ations of parameters such as the lubricant temperature under correspondingly varying
external conditions seem expedient. Having in mind this potential deficiency regarding
issues (i) and (iii), in a first step we investigate the agreement between numerically and
experimentally obtained friction coefficients for lubricants essentially distinguished by
their viscosities at low to medium applied loads.

5.2 Experimental set-up and method of data evaluation
The experimental measurements were performed on a custom-made test rig for precision
bearings (see Fig. 5.1). Its specific design allows the programming of a multitude of test
procedures and the automatic recording and analysis of the test temperature, the shaft
rotational speed, the normal load and the friction torque. The set-up is explained in the
following paragraph.

With the aid of a chuck, a shaft can be (interchangeably) installed on a spindle
mounted with precision roller bearings (max. concentricity deviation of 2 µm, rota-
tional speed up to 18,000 min−1). The free end of the shaft (typical diameter range
4–12 mm) is fitted with the test bearing in a holder. A torsion measurement device
based on essentially frictionless air bearings integrated into the loading mechanism al-
lows the measurement of the friction torque in the test bearing. The maximum allowed
radial loading is 200 N. The bearing holder can be fitted to the bearing externally, inde-
pendent of the test device, and prepared for the test run. It is compatible with numerous
bearing dimensions and geometries via a set of adapters that allow simple assembly
of the bearing–shaft pairing as well as installation in the test device. Variants of the
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Figure 5.1: Porous bearings experimental test rig: main components

mount provide initial cooling, output-regulated heating, temperature measurement and
monitoring of the lubrication conditions.

Spherical iron bearings of a uniform porosity of 20% (as specified by the manu-
facturer) and thus assumed uniform permeability were used. The permeability of the
porous seat was measured using the method presented in [73], where on one side of the
porous medium (bearing), compressed air is supplied, and the pressure drop through the
medium is measured. More detailed work regarding the accuracy of the permeability
value would include variations with viscosity and pressure difference, and correlations
available between permeability and porosity, as already discussed in Sect. 2.2. However,
since this topic is beyond the scope of this study, the values measured via the method
mentioned above are considered sufficiently accurate compared to other input uncer-
tainties used for the numerical calculations. Moreover, the local permeability entering
Darcy’s law is then viewed as isotropic and a scalar function of local porosity. The
assumption (iv) is well supported by Fig. 2.7, shown previously in Sect. 2.2.2, where
the roughness profile of a representative porous bearing is depicted. Even before oper-
ation (no run-in, new condition) an Ra-value of only 0.96 µm is measured, while after
15 hrs. of operation under a load of 1 N/mm2 we find Ra

.
= 0.73 µm. These values

account mainly for the depths of the surface pores, which are rather isolated and by a
factor of about 10 smaller in diameter. However, the surface elevations, then referred
to as roughness, are very smooth: their basic wavelengths are much larger than the typ-
ical pore depth, its amplitudes comparable to the typical pore diameter. A typical gap
interstice of about 5 µm justifies the treatment of porosity in a homogenized manner as
usual in the literature and in the underlying theoretical model. Furthermore, this shows
that a typical mixed-film regime as provoked by small-scale roughness is not of concern
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Sample 1 2 3 4 5 6 7 8
η̃ (40 ◦C) [mm2/s] 18 18 46 46 100 100 460 460

Φ̃ [10−15m2] 2.9 2.74 2.8 2.83 2.89 2.96 2.89 2.97
c̃d [µm] 11 10.3 10.7 11 11.7 11 11 11.7

Table 5.1: Experimental matrix

Oil PAO 18 PAO 46 PAO 100 PAO 460
a 9.09 8.31 7.84 6.99
b 3.6 3.24 3.02 2.63
f 0.7

Table 5.2: Lubricant parameters used in the Ubbelohde-Walther relationship

here. Simultaneously, the large-scale waviness of the surface raises some doubts on the
validity of presuming a regime of perfect bulk or hydrodynamic lubrication, controlled
only by the nominal gap geometry.

The samples were impregnated with four polyalphaolefin (PAO) base oils of varying
viscosities. For statistical reasons, each of the four lubricants was used to fill two bearing
samples: the eight resulting samples are referred to as Samples 1–8 hereafter. Before
performing the experimental tests, we measured the bearing and shaft diameters for
each sample (by means of a calliper) in order to estimate the available clearance. The
resulting experimental matrix is given in Tab. 5.1.

During the experimental tests, the temperature change in the system was measured
through a thermocouple mounted on the bearing surface at a depth of 1 mm. The mea-
sured temperature was used for calculating the equivalent lubricant viscosity by apply-
ing the logarithmic relationship for Newtonian liquids introduced by Walther (see Eq.2.6
in Chapter 2.4), for which the lubricant-specific constants a and b are fixed by empirical
correlations and given in Tab. 5.2.

Since ρ̃ is known, one so obtains the rotational speed–temperature relationship (ω̃–
T̃ ) used in the numerical calculations and the method outlined above, which makes
it possible to build up the system of non-dimensional parameters. Such typical val-
ues are given in Tab. 5.3 for the bearing Sample 1 and the lubricant viscosity taken at
3000 min−1.

An approach based on the non-dimensionalisation cf. Sect. 3.4 pursued in the fol-
lowing eases the evaluation of experiments by the numerical analysis in a systematic
manner: first, the limitations and characteristics of the bearing operation under the as-
sumptions made are treated accurately by a directed variation of the five parameters on

70



r̃s [mm] l̃ [mm] λ̃ [mm] ω̃ [min−1] p̃c [Pa] p̃ref [MPa]
4.0 11.0 3.75 3000 10−3 20.8

Γ Λ K PC
0.5289 0.9375 0.8367 −0.0048

Table 5.3: Typical values of non-dimensional groups for test configuration Sample 1

the governing the system; secondly, a strategy to approximate the imposed load in terms
of So and reproduce the testing conditions (prior to the calculation) is developed. The
numerical steps required for this end are envisaged next.

The validation of the numerical simulations consists of comparing the calculated
values of µ with measured ones. These can be obtained as the output of Eq. 3.8, re-
written in the form:

[µ, ε] = [Fa, Fb](Γ,Λ,K, So, PC), (5.1)

an empirical relationship “modelling” the experiment with the dependent variables serv-
ing as input quantities and thus to be evaluated by the testing procedure in a straightfor-
ward manner. However, some preparatory steps have to be performed so that the results
can also be replicated numerically, according to the underlying theoretical model: the
simulations employ the eccentricity ε as the central input parameter (its values are var-
ied conveniently between 0 and 1) and give So, which represents the applied load w̃,
and µ as an output (via integration of the pressure p̃ and the shear stresses acting on
the shaft). That is, Eq. 5.1 is only manageable in inverted form, then to be evaluated
numerically by means of an efficient interpolation scheme.

More precisely, for a sufficiently large set of values of the physical input parameters
relevant to the bearings considered, the equivalent 4 non-dimensional parameters Γ , Λ,
K, and PC (which only varies weakly) were calculated in Sect. 4.3. An accordingly
large number of simulations generated the corresponding values of So, and the data
points referring to those five quantities were stored in a database. The latter has to be
large enough to not only cover all configurations of interest here but also allow for a
sufficiently accurate (with respect to the method of data interpolation described below)
estimate of the value of So that corresponds to a targeted value of w̃. For a given con-
figuration described by values of the last four parameters and those of So neighbouring
the targeted one, we look up all the associated values of ε. Interpolating these accord-
ingly gives a new value of ε, feeding into a further simulation run that finally yields a
value of So to be compared with the targeted one. Our experience is that they differ by
no more than 5%, so further iterations by additional runs are only required in extreme
situations referring to points in the five-parameter space close to its boundary. In this
manner, µ is calculated with satisfactory accuracy for a given load, according to Eq. 5.1.
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Figure 5.2: (a) Measured temperatures during experiments under a bearing load of
100 N and (b) the equivalent kinematic viscosities using the Ubbelohde–Walther equa-
tion for the same configuration

5.3 Results and Discussion: Simulations versus
Experiments

Both the dynamic and kinematic viscosities of the selected lubricants cover a wide range
of values. For this reason, we expect markedly different thermal behaviour from one lu-
bricant to another. A representative graph of such a temperature variation is shown
in Fig. 5.2 a), where the lubricant temperature is plotted over the rotational speed ω̃
(specifically, the acceleration ramp during one Stribeck standard run as described above)
and for an applied load of 100 N. The marker points represent average values between
consecutive measurements of the same configuration, and the error bars are symmet-
ric distributions of the standard deviation error calculated from the results for the two
different samples. The temperature of the lubricant with the lowest viscosity (PAO 18)
remains almost constant, while the most viscous lubricant (PAO 460) shows an increase
of approximately 30◦C. By applying Eq. 2.6 we can now estimate the variation of the
viscosity with the rotational speed, and visualize the results in Fig. 5.2 b). Since the
error of temperature measurements is so small, it is not replicated in the viscosity data.
As expected, a variation of 5◦C between the start and the end of the experiment (e.g. for
PAO 18) will not have a major effect on the viscosity. However, in the case of PAO 460
the viscosity changes dramatically.

By applying the interpolation technique described above and including the temper-
ature variation, we are able to obtain the main input required by the simulations which
follows the operating conditions, namely the eccentricity ratio. Its variation over the
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Figure 5.3: Interpolated eccentricity ratios over rotational speed for a constant load of
100 N.

rotational speed for a fixed load of 100 N is shown in Fig. 5.3. As expected, very thin
lubricants operate at higher eccentricity ratios as they cannot support the applied load
as well as thicker ones do. Again, the small error of measuring the temperature that
propagates into the viscosity data entering the simulation and therefore the interpolation
scheme is not taken into account.

5.3.1 Comparison with full simulations

The minimum value for ω̃ used in the numerical calculations was chosen such that an
appropriate comparison between experimentally and computationally obtained results
should take into account only points that refer to a well-marked hydrodynamic regime.
During a Stribeck run, the transition from the usual start-up mixed-lubrication regime
to the hydrodynamic one occurs at low rotational speeds, with the exact value varying
with the operating conditions and bearing type. Porous bearings can generally be as-
sumed to have well-calibrated surfaces, which is also reflected in the roughness profiles
in Fig. 2.7, so we estimate that surface roughness plays a minor role in the lubrica-
tion process. By realistically assuming a relatively fast transition to the hydrodynamic
regime, we calculate the Stribeck curves over a range of 500–3000 min−1.

Figure 5.4 shows the comparison between the friction coefficient µ obtained for the
two sets of data, plotted over the rotational speed ω̃. The experimental data points are
depicted as markers, distinct for each load, and represent averaged values of six mea-
surements: three repetitions for each of the two samples impregnated with one of the
four oils. Each averaged data point is accompanied by an error bar of the standard devi-
ation between these six measurements, and the average values of the standard deviation
is given in Tab. 5.4. The lines represent the numerically calculated friction coefficients.
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Figure 5.4: Stribeck curves for the lubricants (a) PAO 18, (b) PAO 46, (c) PAO 100
and (d) PAO 460. Markers represent experimentally obtained values, while lines depict
numerical results. Error bars accompany each measured point, with the mean standard
deviation for each configuration given in Tab.5.4

Configuration PAO 18 PAO 46 PAO 100 PAO 460
50 N 100 N 50 N 100 N 50 N 100 N 50 N 100 N

SDmean 0.0088 0.0164 0.0144 0.0108 0.0093 0.0054 0.0085 0.0054

Table 5.4: Mean standard deviation (SDmean) for each tested configuration
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Figure 5.5: Normalized friction coefficients vs. the reciprocal Sommerfeld number for
the lubricants (a) PAO 18, (b) PAO 46, (c) PAO 100 and (d) PAO 460. Markers represent
experimentally obtained values, while lines depict numerical results
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Let us first look at the curves representing the experimental data for increasing ro-
tational shaft speed. In the case of PAO 18, the rather mild increase of the friction co-
efficient starting at the beginning of the test phase (500 min−1) corresponds to a regime
where mixed friction still prevails, although classically one already expects developed
hydrodynamic lubrication here. This reflects partial and unsteady contact between the
shaft and the bearing, in agreement with our conclusions drawn from the surface mea-
surements and affecting the description of lubrication on the scales given by the nominal
geometry. For more viscous lubricants (PAO 46, PAO 100), it appears that the points
in the same region are characterized by better separation of the surfaces, even from the
beginning of the test run on, so that the effect of mixed lubrication is drastically re-
duced. Finally, the viscosity of PAO 460 is sufficiently high to support the applied load
by increasing the friction coefficient according to a pronounced hydrodynamic regime.
These observations are valid at both loads for all the lubricants.

Higher loads result in lower friction coefficients, meaning a better performance of
the selected bearings. The minimum/maximum values for all µ-data sets in Fig. 5.4 ap-
pear to correspond to 500 and 3000 min−1, respectively, except in the case of PAO 460.
There the maximum of µ is located around 1500 min−1 and is followed by a slight
decrease with increasing ω̃. This is explained as follows: after 1500 min−1, the temper-
ature in the oil continues to increase, which corresponds to a decrease in viscosity. Thus
the lubricant in the pores is thinned, promoting its exchange between the gap and the
bush and subsequently lubrication, ultimately lowering the friction coefficient. Along
with the other trends found experimentally, this particular one is reproduced well by
the calculated data. However, since the model (currently) does not include (possible)
non-Newtonian thinning, this specific reduction of µn is less pronounced.

Even if we expected that the simulated results produce lower friction coefficients as
they rely on the assumption of perfect hydrodynamic lubrication, they are considerably
lower than the experimentally obtained ones. This offset between the two sets of data is
present throughout, and it does not appear to change with viscosity or the applied load.
The same offset is visible even when we plot the Stribeck curves for the same data in the
classical non-dimensional manner with the Stribeck number 1/So as the abscissa: see
Fig. 5.5. The curves obtained numerically collapse onto one line, which only states that
µn is a function of So solely for a fixed bearing geometry and a given oil. Its validity
assesses the conditions under which the Stribeck curve can be viewed as universal and
other effects discarded so far are insignificant. Consequently, the discrepancy as quanti-
fied by the offsets (having a pronounced constant contribution) is due to physical effects
apparently not taken into account in the simulations and the dimensional analysis rather
than only due to uncertainties in the input data. The aforementioned kind of persistent
“background” mixed lubrication is definitely a candidate phenomenon for explaining
the offsets.
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We draw the following conclusions: perfect hydrodynamic lubrication is never fully
established; the associated regime in the Stribeck curves matches that of typical mixed
lubrication for sufficiently small Stribeck numbers; the regime of elastohydrodynamic
lubrication is shifted to even much smaller ones. However, our concern in this study is
with the first regime only.

We are now interested in determining which type of correlation exists between ex-
perimental friction coefficients µexp and the simulated ones µsim. For this reason, for
each set of data we extract five values of µ taken at distinct rotational speeds ω̃ = 1000,
1500, 2000, 2500, and 3000 min−1 for all the bearing samples and both loads (50 N,
100 N). In this way we obtain 90 points, which are represented in Fig. 5.6. The major-
ity of points rests on a band-type cluster that marks a definite correlation between the
two data sets. The large experimental values of PAO 460 at 50 N are isolated from all
the other points. Using Pearson’s product-moment correlation coefficient [74], we find
that the correlation coefficient is 0.9239. Even if the data points are strongly correlated,
the discrepancy between the two data sets cannot be neglected. Below we present the
possible reasons for these deviations.

Figure 5.6: Correlations between measured µexp- and calculated µsim-values for the
friction coefficients. Temperature: 25◦C.

Perfect agreement between simulation and experimental data is usually very difficult
to achieve. There are many influences that can affect the course of an experimental test.
First, the accuracy of the geometrical properties of the samples cannot be guaranteed:
the value of the sinter permeability is measured under standard conditions for air, yet
the oil may exhibit a different behaviour mostly due to capillary effects for a partially
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r̃b l̃ λ̃ c̃ Φ̃ η̃ (40◦C) P × V
[m] [m] [m] [µm] [m2] [Pa s] [N/mm2× m/s]

0.0095 0.0254 0.003 20.3 6.24 × 10−14 0.12 0.08

Table 5.5: Input parameters for the measurements performed by Cameron et al. [36]

saturated matrix when considered under real-life conditions. Also, a non-homogeneous
permeability distribution in the sinter (much larger circumferential or axial components
than the radial one) can affect the friction behaviour. Any manufacturing imperfection
of the sample has a more pronounced effect during measurements in small bearings,
such as the ones used here, rather than in larger ones. Secondly, thermal effects have
not been considered. After a 16-hour running-in of the samples, where the temperature
increased and decreased successively, the value of the clearance measured before the
test may have changed. The final point, but possibly the one with the highest impact,
is the question whether the bearing and the shaft are not perfectly aligned. In this case,
the lubrication film does not extend along the whole length of the bearing, and at one
side of the bearing the clearance is much smaller than on the other. This produces an
additional torque in the system. Nevertheless, misalignment does not necessarily mean
direct contact of the surfaces. If that were the case, an uneven wear mark would be seen
on the bearing surface.

5.4 Comparison with established theoretical/empirical
results

An extension of the validation is performed by comparing simulated data with experi-
mental results available in literature. For this purpose we have selected the data obtained
by Cameron and co-workers [19,36]: they tested sintered iron bearings exhibiting a con-
trolled porosity. There the experimental technique was to maintain the product between
the applied load per unit area (P = w̃/(r̃bl̃)) and speed (V = ω̃r̃b) at a constant level
(P V = const). The starting speed ω̃ = 720 min−1 was decreased to ω̃ = 50 min−1

while the load was progressively increased from ≈ 30 N to ≈ 420 N. The authors men-
tion that this procedure led to a steady temperature increase of 15◦C above room tem-
perature, which we can assume would lead to a constant lubricant viscosity. Moreover,
in order to ensure that the lubrication gap remains filled with enough oil, the bearing
was supplied with oil from an external source. The experimental parameters are given
in Tab. 5.5.

Figure 5.7 shows the results of this comparison where µn from Eq. 2.19 is plotted
over the inverse of the Sommerfeld duty parameter ∆, see Eq. (2.19). One can clearly
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Figure 5.7: Friction curve obtained experimentally by Cameron et al. [36] vs. numerical
calculations for the same configuration

see that the two sets of data agree well. The lower part of the graph corresponds to
high loads and low rotational speeds, a more sensitive configuration for the numerical
calculations, and therefore the true minimum of 1/∆ cannot be achieved.

Cameron et al. [36] obtained excellent agreement between their experimental results
and a theoretical approach they obtained by applying a certain correction factor (see re-
sults in Sect. 4.5), yet this value was found by examining solid bearings, a procedure
which apparently must be seriously questioned here. On the other hand, our full, i.e.,
finite-width, calculations do not imply any additional approximations, yet they predict
distinct trends with likewise good agreement when compared to the two sets of experi-
mental data (in-house measurements by Cameron et al., cf. Fig. 5.7). Here one must first
take into account that their experimental technique was different from the one taken up
in the present study. As a result, a steady temperature increase was obtained, unlike the
observed increase in our measurements. Secondly, even in the case of bearing similarity
(i.e., similar aspect ratios), the samples considered in literature are large, whereas our
in-house measurements are performed on small industrial/real-life bearings. Such small
geometries are more sensitive to relative geometrical errors and uncertainties concern-
ing the test rig. During operation, any misalignment between the shaft and the bearing
will accentuate the deviation from the ideal full hydrodynamic regime. However, this
cannot be checked beforehand in our experiments. Finally, the continuous supply of oil
in Cameron and co-workers’ experiments ensures a well-lubricated gap but definitely
does not correspond to the majority of real-life operating conditions of porous bearings.
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CHAPTER 6
Conclusions

A new mass-conservative model for predicting vaporous cavitation in sintered bearings
was presented. The governing equations were solved numerically, and the results were
ultimately compared with experimental data. Since measurements of the phenomenon
of cavitation are scarce in literature, we resorted to validating our model by compar-
ing simulated friction coefficients with measured ones. Altogether, we believe that our
contributions to the subject can be distinguished as follows:

Theoretical contribution: The adopted description of the cavitation development
is consistent with the particular way of operation of porous journal bearings, where
vaporization appears to be the mechanism which triggers the film discontinuity. The
two-phase mixture describing the cavitation region is governed by the lubricant satura-
tion. All relevant physical processes are taken into account by an appropriate coupling
between the steady state Reynolds equation and Darcy flow, with the specification that
both the onset of cavitation and film reformation are to be described by the Jakobsson-
Floberg-Olsson condition. We believe that this approach was sufficient for capturing
the essential phenomena occurring in a sintered bearing, without oversimplifying the
process and considering the length scales involved in such a system. Furthermore, the
resulting non-dimensional parameters characterizing the lubrication problem proved to
be very useful not only to the numerical analysis but also to the experimental validation.

Numerical contribution: In contrast with other approaches, the proposed numerical
scheme required relative little computational effort and time, yet was able to overcome
the sudden change in pressure at the point of cavitation inception. By using an artifi-
cial pressure-density relation controlled by an annealing parameter we could reduce the
compressibility to a desired level while by parametrizing the relation we were able to
obtain a stable and fast converging numerical scheme. The results gathered from the
numerical calculations are, among others, the lubrication pressure and saturation, fric-
tion coefficient and load bearing capacity. The parameter range that could be studied
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via the proposed numerical scheme was rather large, hence an effective approach was to
build a structured database which could be analysed in a more systematic manner. The
lack of points in the database indicated the specific conditions, or the combinations of
parameters which could not be calculated, or for which a converged solution was not
obtained.

Plotting the friction coefficient versus the eccentricity ratio showed the effect of
cavitation, namely of a reduction in friction coefficient due to the reduced pressure in
the cavitation region. Also, plots of the Sommerfeld number versus the eccentricity ratio
indicated, from the design point of view, which geometrical aspect ratios give the best
results. A very thick/thin bearing seat does not show any visible impact of the frictional
behaviour, possibly due to the very simple model of percolation through porous media
of the Darcy law. On the other hand, very long bearings have a much higher load bearing
capacity than the shorter ones. By numerical simulations we were able to predict the
threshold in the eccentricity ratio below which cavitation does not occur. Furthermore,
an interesting behaviour was observed in the cases of high loads and high values of the
coupling parameter: an apparent increase in the friction number, unlike the decreasing
trend observed previously. Without a doubt the most notable finding of the numerical
simulation is the fact that at the point of recondensation, a saturation jump occurs. A
more detailed look into the behaviour of the saturation under various combinations of
parameters revealed that the observed jump is greatly attenuated for very high coupling
parameters.

Varying the permeability of the porous seat yielded promising results insofar as con-
trolling the spatial distribution of the grains (and thus the permeability) alters the fric-
tional behavior, even if only for certain configurations. The studied profiles show that
a non-homogeneous permeability is of greater importance in cases where the bearing
operates under lower loads.

Experimental contribution: We performed tests in order to assess the Stribeck curves
of porous journal bearings, originally obtained by numerical simulations, through vary-
ing the key parameters that characterize the steady-state performance of the bearings.

To this end, a previously unappreciated systematic evaluation of the Stribeck rela-
tionship by dimensional analysis was carried out. It results that the sought quantities
characterizing the lubrication problem can be expressed in terms of five independent
non-dimensional quantities. This procedure eased the construction of a vast database of
calculated points from which a targeted eccentricity ratio could be extracted by interpo-
lation.

The qualitative comparison between the experimental data and the numerical ones
showed strong correlations between the data points, though an observed offset seems to
be present in all configurations, which interestingly is almost independent of the applied
load, operating speed, or lubricant used. On the other hand, highly encouraging results
were obtained when calculations are compared with results found in literature.
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Finally, a database that was initially small, yet appropriate for moderate loads and
corresponding eccentricities, could be dynamically increased via the terminal simula-
tion runs required by the interpolation technique to provide an efficient way for refining
the latter in terms of accuracy. This is definitely useful for future efforts. The following
issues are identified as the potential main sources for the observed discrepancy between
calculated and measured friction coefficients for a given bearing, lubricant, and load.
They should therefore deserve primary attention in a revised simulation model (num-
bers indicate priority):

(1) mixed lubrication, corroborated by the measurements of the surface topography;

(2) the possible shaft/seat misalignment should be accounted for in terms of a genuine
three-dimensional rather than axially aligned gap geometry;

(3) non-Newtonian effects such as shear-thinning (for sufficiently high rotational speeds)
and piezo-viscosity (less likely here than for very high loads);

(4) a possibly underestimated degree of anisotropy of the porosity and hence the per-
meability, due to the manufacturing process, could provide an additional cause.
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APPENDIX A
Notational conventions

Dimensionless quantities are used throughout the thesis, as they conveniently parametrise
the employed equations and simplify the analysis. To differentiate between non-dimensional
and dimensional, the latter are marked by the use of tilde ( ·̃ ). Non-dimensional groups
(and quantities) are predominantly, written in upper-case characters. The symbols and
notations used in this work are given below in the Nomenclature section.
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Nomenclature

c̃ Radial clearance between shaft and bearing (m)

d̃ Bearing diameter (m)

ẽ Bearing eccentricity (m)

f̃f Friction force in the lubrication gap (N)

g Cavitation index

h̃ Fluid film thickness (m)

H Non-dimensional film thickness

h̃min Minimum film thickness (m)

i Iteration step

l̃ Bearing width (m)

m̃f Bearing frictional torque (N ·m)

p̃ Pressure in the fluid film (Pa)

p Number of possible independent non-dimensional groups in an equation

p̃cav Cavitation pressure (Pa)

p̃d Darcy pressure through the sinter matrix (Pa)

PD Non-dimensional Darcy sinter pressure

p̃r Reynolds lubricant pressure in the gap (Pa)

PR Non-dimensional Reynolds lubrication pressure
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p̃ref Lubricant reference pressure (Pa)

P̂ Non-dimensional gap pressure for the case K � 1

r̃b Bearing inner radius (m)

r̂ Re-scaled coordinate for the case K � 1

r̃s Shaft radius (m)

r, θ, z Cylindrical coordinates

S Lubricant saturation

Sa Specific area of porous medium (m2)

t̃ Surface tension of liquid (N/m)

T̃ Temperature (K)

ũ, ṽ, w̃ Fluid velocity in x̃, ỹ, z̃ coordinates, respectively (m/s)

vD,r Inflow of lubricant from the sintered seat

V Sliding speed of shaft (m/s)

w̃ Applied load (N/m2)

w̃x, w̃y Force per unit width (N/m2)

xl Mass fraction of the liquid phase

x̃, ỹ, z̃ Cartesian coordinates (m)

αl Volumetric fraction of the liquid phase

β Artificial compressibility

βl Bulk modulus of the lubricant (Pa)

∆θ,∆z Mesh spacing in θ and z directions, respectively

η̃ Dynamic viscosity of the fluid (Pa · s)

ε Bearing eccentricity ratio

λ̃ Bearing wall thickness (m)

µ Bearing friction coefficient
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µexp Experimental (measured) friction coefficient

µn Normalized friction coefficient

µsim Calculated (simulated) friction coefficient

ν̃ Kinematic viscosity of the fluid (m2/s)

ω̃ Shaft rotational speed (min−1)

Φ Permeability tensor

φ Characteristic porosity

ψ Bearing attitude angle

ϕ̃ Permeability of porous medium (m2)

Π1,2,...,p Independent non-dimensional groups, Pi-groups

Φ̃ref Reference permeability (m2)

Φr,θ,z Non-dimensional permeability directional components

ρ̃ Fuid density (kg/m3)

% Under-relaxation factor

ρ̃l Density of liquid phase (kg/m3)

ρ̃m Mixture density (kg/m3)

ρ̃v Density of the vapour state (kg/m3)

θ∗ Fractional film content

ϕ Fraction of the gap carrying the liquid lubricant

u Machine precision (= 2.2 · 10−16 in MATLAB)

uc Numerical tolerance of the calculation

Dimensionless groups

K̂ Governing parameter for the case K � 1, = K · Λ

B Bearing diameter-to-length ratio
2r̃b

l̃
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∆ Sommerfeld number
w̃

η̃ũl̃

c̃

r̃2b

ε Aspect ratio of the gap c̃/r̃b

ε Eccentricity ratio
ẽ

c̃

Γ Bearing aspect ratio
(

2 r̃s

l̃

)2

K Permeability parameter 12 Φ̃ref
r̃s
c̃3

Λ Bearing thickness ratio
λ̃

r̃s

PC Cavitation pressure
p̃c
p̃ref

Ψ Bearing design parameter
Φ̃ λ̃

c̃3

Re Reynolds number
ũl̃

ν̃

So Sommerfeld number
w̃

p̃ref r̃sl̃

St Stribeck number
ũη̃

w̃
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