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Abstract

The thesis is carried out in the field of satellite-based active remote sensing of the
earth’s surface using measurements of scattered radiation in the microwave domain.

Due to the capabilities of microwaves to partially penetrate vegetation, the existence
of a vegetation-coverage above a soil-surface introduces additional contributions
to the measured backscattered radiation. These contributions are both a benefit
and a hindrance since on the one hand they contain valuable information on the
vegetation-coverage that are hardly accessible by any other means, while on the
other hand they act as a disturbance when studying the properties of the underlying
soil-surface. At the present time, most investigations treat the effects of a vegetation-
coverage on microwave backscatter measurements via a zero-order expansion of the
radiative transfer equation in the scattering coefficient κs of the vegetation-layer.
While this has been proven to give reasonably good agreement for measurements
incorporating sparse vegetation, higher order scattering effects might give considerable
contributions to the measured signal for more dense coverages like full-grown agri-
cultural fields or forests. Since at the time of this investigation no general method
on how to consistently evaluate higher order scattering contributions has been avail-
able, the main target of the following thesis is to develop a method for including
(first-order) multiple-scattering effects, focussing on an analytic representation of the
scattered radiation in order to allow reasonably fast processing of large datasets.

First, a short review on the successive orders of scattering approximation of
the scalar radiative transfer equation is given, highlighting the requirements and
constraints of the method. The presented representations of the individual scattering-
contributions are kept in a general form suitable for bistatic calculations. The zero-order
approximation of this series-expansion is the so-called ω − τ−model that has widely
been used in previous studies to account for vegetation-corrections.
Next, the first-order multiple scattering contribution is investigated in great detail
and a method for analytic evaluation of the appearing integrals for specific
representations of the vegetation scattering phase-function p̂ and the surface
bidirectional reflectance distribution function BRDF is presented. The introduced
method remains applicable for any combination of p̂ and BRDF as long as they can be
represented (or approximated) in terms of a power-series in the cosine of a generalized
scattering-angle. Chapter 3 then provides a literature-review of possible analytic
functions that are both applicable to the method of evaluating first-order contributions
as developed in Chapter 2 and have a suitable shape to be used for approximating
scattering distribution functions. Finally, some simulation-results are provided in
Chapter 4 to show the dynamics of monostatic- and bistatic scattered radiation and
the effects of multiple-scattering contributions with respect to changes in the main
parameters for a given set of scattering distributions (p̂ and BRDF ).





Kurzfassung

Der folgende Text befasst sich mit der Beschreibung von satellitengestützten Beobach-
tungen der Erdoberfläche durch Messung der Streuung elektromagnetischer Strahlung
im Mikrowellenbereich.

Aufgrund der Tatsache dass Vegetation im Mikrowellenbereich als teilweise transparent
betrachtet werden muss, beinhaltet das gestreute Signal einer vegetationsbehafteten
Oberfläche sowohl Anteile des Untergrunds, als auch Anteile welche durch Streuung
an der Vegetation hervorgerufen werden. Diese Beiträge enthalten einerseits wertvolle
Informationen über die Vegetation, fungieren jedoch andererseits als Störung bei der
Ermittlung der Eigenschaften des Untergrunds. Aufgrund der hohen Komplexität der
Berechnung von vielfachstreueffekten wurden Vegetationskorrekturen meist in Form
einer Reihenentwicklung der Strahlungstransport-Gleichung im Streukoeffizienten κs
verwendet, in welcher sämtliche Vielfachstreueffekte als vernachlässigbar angenommen
wurden. Während diese Näherung für dünne Vegetationsschichten gute Überein-
stimungen liefert, können Vielfachstreueffekte für dichtere Vegetation wie zum Beispiel
Wald oder Agrarflächen nicht mehr vernachlässigbare Beiträge liefern. Da zum Zeit-
punkt der Verfassung dieser Arbeit keine Methode zur konsistenten Berücksichtigung
von Vielfachstreueffekten bekannt war, wurde der Fokus der folgenden Abhandlung auf
die Entwicklung einer Methode zur Berechnung von Streueffekten erster-Ordnung in
Form einer allgemein anwendbaren, analytischen Lösung gelegt.

Zu Beginn wird die Reihenentwicklung der Strahlungstransport-Gleichung im Streu-
koeffizienten des Vegetations-Layers wiederholt und die wesentlichen Bedingungen zur
Anwendbarkeit dieser Näherung werden dargelegt. Die präsentierten Darstellungen der
einzelnen Beiträge sind dabei allgemein gehalten, und sind somit auch zur Berechnung
bistatischer Messungen geeignet. Die Vernachlässigung sämtlicher vielfachstreu-Beiträge
führt zum sogenannten ω− τ−Modell welches weithin zur Berechnung von Vegetations-
korrekturen verwended wurde.
Anschließend folgt eine detaillierte Abhandlung zur analytischen Berechnung der
Beiträge erster Ordnung für allgemeine Streuphasenfunktionen p̂ und Bidirektionale
Reflektanzverteilungsfunktion BRDF . Die entwickelte Methode ist für beliebige
kombinationen von p̂ und BRDF anwendbar, solange die verwendeten Funktionen als
Potenzreihen im Cosinus eines verallgemeinerten Streuwinkels darstellbar (approximier-
bar) sind. Eine Auflistung möglicher Funktionen welche sowohl als fit-Funktionen für
Streuverteilungen als auch zur Ermittlung der Beiträte erster-Ordnung über die zuvor
eingeführte Methode geeignet sind ist in Kapitel 3 gegeben. Abschließend werden in
Kapitel 4 einige Simulationen dargestellt um die Dynamik vom monostatischen- und
bistatischen Messungen und die Effekte der Beiträge erster-Ordnung zu illustrieren.
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1. Introduction

Satellite based observations of the earth’s surface using microwave radar
measurements have been widely used to provide global-scale biophysical parameters
like soil-moisture, vegetation biomass, etc.. Considering the temporal dynamics of
the gained estimates, such measurements provide a basis for monitoring of drought,
desertification and various other effects that are assumed to be crucial indicators of
climate-change.

The retrieval process leading from actual measurements of (currently mostly
monostatic) scattered intensity to the final model-parameter however is affected
by various assumptions that are necessary in order to be able to describe the
complicated measurement-setup within a reasonably simple theoretical framework.

To name a few obvious examples:

Surface-scattering dependencies:

• effective roughness of the soil surface in the considered frequency range

• penetration depth of the signal

→ homogeneity of the soil-layer

→ consideration of a subsurface dielectric profile

• response of the scattered intensity to a change in dielectric properties

• etc.

Vegetation-scattering dependencies:

• percentage of vegetation-coverage within the radar footprint

• composition of the individual vegetation constituents

• scattering characteristics of the vegetation constituents

→ homogenity of the vegetation-layer

→ dielectric properties of the vegetation constituents

• etc.

1



1. Introduction

Within current remote-sensing retrieval models, most of the dependencies are either
addressed via empirical relations or modelled theoretically by applying extensive
simplifications.

The reason for this stems mainly from the following limitations:

1) most of the dependencies are only barely explored due to a lack of available
measurements in the specific frequency range used within the experiments

2) the overall specification of the problem suffers from under-determination since
mostly only monostatic observations from a single satellite are used within
the retrieval-process. Without simultaneous acquisition of auxiliary data,
the properties of the soil-surface and the state of the vegetation-coverage can
only be specified via empirical relations or by incorporating assumptions that
appear reasonable for the region of interest.

3) global-scale retrieval models generally allow only a limited complexity due to
computational limitations because of the immense amount of data that has to
be processed in reasonable times

The intention of the following thesis is therefore to provide a reasonably simple
theoretical framework for modelling the effects induced by a vegetative coverage
above a rough soil-surface for observations in the microwave domain. The focus of
the investigation hereby is not the discussion on actual parametrization of real soil-
and vegetation samples, but rather the development of a general method that is
capable of evaluating the scattered intensity for given combinations of soil- and
vegetation characteristics. The provided model is therefore not limited to the
microwave-domain, but could equally well be used for describing completely different
setups to which a treatment via the successive orders of scattering approximation
of the Radiative Transfer Equation can be applied. However, since the intention
of this thesis originates from studies in the field of microwave remote sensing, the
nomenclature will mostly follow the remote-sensing terminology.

2



2. A Scattering Model for Vegetated
Terrain

2.1. Vegetation in the Microwave Domain

Incident
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iat

ion
0θ

Figure 2.1.: Schematic illustration of the considered geometry.

Fig.2.1 shows a schematic illustration of the problem-geometry we are dealing with
in the following, consisting of a rough surface covered by various types of vegetation
that is illuminated by a beam of radiation at frequencies in the microwave domain.

In order to be able to formulate a reasonably simple model for the scattered radiation
of a vegetation-covered surface, the description of both the vegetation and the soil-
surface has to be carried out in a drastically simplified manner.

For scatterometer-observations using radiation in the microwave band (8-18GHz)
it has been shown by Attema and Ulaby in 1978 that moderately dense vegetation
can successfully be modelled as a water-cloud [1]. The underlying assumption
hereby is, that moderate vegetation in the microwave domain has a low scattering
coefficient1 (κs << 1), leading to the fact that multiply scattered radiation within
the canopy is assumed to be negligible.

1The scattering coefficient describes the fraction of radiation that is being scattered (as opposed
to being absorbed or undergoing no interaction at all) when a beam of radiation impinges on
a vegetation-constituent.

3



2. A Scattering Model for Vegetated Terrain

In other words, using this assumption, one considers only the following contributions
when calculating the scattered radiation:

• radiation scattered directly from the ground surface
(attenuated due to the absorptive properties of the vegetation-layer)

• radiation scattered once within the vegetation layer
(again attenuated while propagating through the vegetation-layer)

Thus, all terms that involve intermediate scattering-events within the vegetation
layer are neglected.

Even though this approach is a rather extreme simplification of the description
of vegetation, it proved very successful when deriving surface soil-moisture over
moderately vegetated terrain and was therefore implemented in numerous retrieval
algorithms for active remote sensing observations [2].

However, as soon as the vegetation density increases or vegetation-constituents such
as stems and trunks become more dominant, the assumption that intermediate
scattering events yield negligible contributions is no longer justified as can be seen
from the discussions in [3, 4, 5].

Consideration of multiple scattering effects however is an ongoing research field.
The reason for this is mainly twofold:
First, there is a lack of reasonably simple models that are capable of accounting for
first- and higher order scattering effects with a feasible computational effort, and
second, there is a great lack of availability of the parameters that would be needed
in order to fully parametrize the multiple-scattering problem since a consideration
of multiple scattering contributions requires knowledge on the bistatic scattering
characteristics of both the surface and the vegetation layer.

Within this thesis, it will be shown that first-order scattering effects can be expressed
in an analytical manner by assuming certain reasonable restrictions on the functions
used to describe the bistatic scattering distributions.

The gained solution for the first-order contributions is kept in a very general way,
allowing it to be used for a great variety of possible scattering distributions.

The second problem, namely the specification of possible candidates for scattering
distributions as well as their parametrization will then briefly be addressed in section
3. A detailed discussion on possible model-parametrizations that might be applied
to certain types of vegetation or terrain however is beyond the scope of this thesis
and is intended to be conducted within further investigations.

The method for evaluating the first-order interaction contribution which is at the
core of this thesis was already published at the OSA Journal of Applied Optics. The
resulting paper [6] is attached in Appendix B.

4



2.2. Radiative Transfer Solution for Two-Layered Media

2.2. Radiative Transfer Solution for Two-Layered
Media

Within the following chapter, the formulation of a Radiative Transfer Model
describing the scattered radiation from a uniformly illuminated rough surface
covered by a tenuous distribution of particulate media is reviewed.

For detailed information on the origin of the presented formulas the reader is referred
to the preceding project thesis [7] in which the derivation of the successive orders of
scattering approximation to the Radiative Transfer Equation is presented in great
detail. The following section therefore serves just as a listing of results that are
important for subsequent discussions. A survey of the used symbols and definitions
is given in Appendix A.1.

In order to be able to treat the problem of a vegetation covered soil-surface, the
initially very complicated problem is simplified drastically as shown in Fig.2.2, i.e.:
it is assumed that the vegetation-cover can be described (for radiation within the
microwave domain) as a homogeneous layer of particulate scattering- and absorbing
media [1] described by a scattering coefficient κs and an extinction coefficient κex
together with a scattering phase-function that accounts for the directionality of the
scattered radiation.

⇒ homogeneous vegetation-layer

rough ground surface

Figure 2.2.: Idealization of the problem geometry. (image taken from [7])

If we now consider a beam of radiative Intensity I, propagating within such a
scattering- and absorbing media2, the equation governing the attenuation of the
intensity along it’s ray-path is given by3:
(Detailed derivations and explanations can be found in [8], [9] or numerous other
books covering the formulation of Radiative Transfer Theory)

cos(θ)∂If (r,Ω)
∂r

= −κexIf (r,Ω) + κs

∫∫
Ω′=4π

If (r,Ω′)p̂(Ω′ → Ω)dΩ′ (2.1)

r . . . distance within the object θ . . . incidence-angle
Ω . . . incident-direction Ω ≡ (θ, φ) dΩ = sin(θ)dθdφ . . . differential solid angle
If . . . intensity at frequency f p̂(Ω′ → Ω) . . . scattering phase function
κex . . . extinction-coefficient κs . . . scattering-coefficient

2Since the following discussion focusses on active remote sensing, the emission-properties of the
media are assumed to give an negligible contribution to the measured signal.

3dr denotes the penetration depth within the object, i.e. dr = cos(θ) ds ⇒ ∂I
∂s

= cos(θ) ∂I
∂r

(The problem geometry is illustrated in Fig.2.3 )

5



2. A Scattering Model for Vegetated Terrain

Applying the assumption that the scattering-coefficient is small (κs << 1), the in-
tensity emerging from the top of the canopy Iem in direction of the detector Ωem
can be found in terms of a series-expansion in κs, leading to a solution of the form:

cloud-model︷ ︸︸ ︷ 1storder interaction︷ ︸︸ ︷
Itot(Ωem) = Is(Ωem) + Iv(Ωem) + Isv(Ωem) + Ivs(Ωem) + Isvs(Ωem)︸ ︷︷ ︸

∝κs

+O(κ2
s) (2.2)

The above representation of the solution to the Radiative Transfer Equation is
usually referred to as successive orders of scattering series, since each appearing
term (Is, Iv, Isv, Ivs, Isvs) represents a contribution due to a specific scattering event.
The exact form of the appearing contributions and the assumptions used within
the derivation is summarized briefly within the following section. The term Isvs
represents a 2nd-order scattering event and will therefore be omitted in the following.

2.2.1. Individual Contributions

iθ
exθ

exitin
g 

radiatio
n

)
exI(

vegetation-layer
)sΩ→(Ωp̂,ex, κsκ

z
y

x
= 0z

d−=z

uθ

0θ

dθ

θincident radiation
)

inc
I(

dr

dsθ

))sΩ→(ΩBRDF(ground surface

Figure 2.3.: Illustration of the used variables and problem-geometry as applied in
the solution of the Radiative Transfer Equation. (image taken from [7])

The definition of the used variables is shown in Fig.2.3. In order to be able to
introduce the boundary condition of a reflecting surface, the Radiative Transfer
Equation (Eq. 2.1) is split into a set of two coupled integro-differential equations,
one for upwelling and one for downwelling radiation. [7]

This separation is achieved by splitting the
radiative intensity into an upwelling and down-
welling part via:

I+(θu, φ) = If (θu, φ) θu ∈
[
0, π2

]
I−(θd, φ) = If (π − θd, φ) θd ∈

[π
2 , 0

]
The resulting representation of Eq.2.1 in terms
of an upwelling angle θu and a downwelling angle
θd (measured counter-clockwise) is given by:

dθ

uθ

θ
2
π,0∈θ

, π2
π∈θ

dθ−π=θ

uθ=θ
dθ

Figure 2.4.: Separation of up-and
downwelling angles
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2.2. Radiative Transfer Solution for Two-Layered Media

µu
∂I+(µu)

∂r
+ κexI

+(µu) = F+(µd) µu ∈ [1, 0] (2.3)

−µd
∂I−(µd)
∂r

+ κexI
−(µd) = F−(µd) µd ∈ [0, 1] (2.4)

with µu = cos(θu), µd = cos(θd) and:

F±(µu
d

) = κs

2π∫
φ′=0

1∫
µ′=0

[
I+(µ′)p̂(µ′ → ±µu

d
)+I−(µ′)p̂(−µ′ → ±µu

d
)
]
dµ′dφ′ (2.5)

Even though the right hand sides of Eq.2.3 and Eq.2.4 still contain the unknown
up- and downwelling intensities I±(µu

d
), the above equations can be used as a

starting-point for deriving a successive orders of scattering series for the upwelling
radiation by solving the equations with the assumption that the source-terms F±(µu

d
)

are known a priori. Using the method of variation of constants to solve the
inhomogeneous differential equations, one arrives at the following "formal" solutions:

I+(z, µu) = I+(−d, µu)e−
κex
µu

(z+d) +
z∫
−d

1
µu
e−

κex
µu

(z−z′)F+(z′, µu)dz′ (2.6)

I−(z, µd) = I−(0, µd)e
κex
µd

z +
0∫
z

1
µd
e
−κexµd (z−z′)

F−(z′, µd)dz′ (2.7)

The necessary boundary conditions to specify the appearing boundary-terms
I+(−d, µu, φ) and I−(0, µu, φ) can now be introduced by assuming that the top of
the vegetation-canopy is uniformly illuminated at a single incidence-angle
µ0 = cos(θ0) and furthermore that radiation impinging on the ground surface is
reflected upwards according to a given Bidirectional Reflectance Distribution Func-
tion BRDF (Ω→ Ωs).

The used boundary-conditions are thus given by:

I−(0, θd) = Iincδ(µd − µ0)δ(φd − φ0) (2.8)

I+(−d, µu) =
2π∫

φ=0

1∫
µd=0

µd BRDF (−µd → µu) I−(−d, µd) dµddφ (2.9)

Once the boundary-conditions have been specified, a series-expansion of the
upwelling radiation with respect to the scattering coefficient κs can be obtained by
successively inserting the representations Eq.2.6 and 2.7 into the unknown source-
terms F±(µ d

u
) and sorting the appearing terms with respect to κs.
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2. A Scattering Model for Vegetated Terrain

The individual contributions appearing in the successive orders of scattering
expansion of the upwelling intensity when considering only first order interaction
events are given by:

τ hereby denotes the Optical Depth of the canopy, which has been introduced as:

τ = κexd (2.10)

Surface-Contribution:
Radiation scattered once by the ground-surface sIincI

At a distance z ∈ [−d, 0] within the canopy:

I+
s (z, µ0, µex) = Iinc e

−κexdµ0 e−
κex(z+d)
µex µ0 BRDF (−µ0 → µex)

At the top of the canopy (z = 0):

I+
s (µ0, µex) = Iinc e

− τ
µ0 e−

τ
µex µ0 BRDF (−µ0 → µex) (2.11)

Volume-Contribution
Radiation scattered once by the vegetation-canopy incI vI

At a distance z ∈ [−d, 0] within the canopy:

I+
v (Ω) = Iinc ω

µ0

µ0 + µex

(
e−

κexz
µ0 − e−

κexd
µ0 e−

κex(z+d)
µex

)
p̂(−µ0 → µex)

At the top of the canopy (z = 0):

I+
v (Ω) = Iinc ω

µ0

µ0 + µex

(
1− e−

τ
µ0 e−

τ
µex

)
p̂(−µ0 → µex) (2.12)

Surface-Volume-Contribution
Radiation scattered first by the surface, and then
by the vegetation-canopy

incI svI

At a distance z ∈ [−d, 0] within the canopy:

I+
sv = Iinc ω e

−κexdµ0 µ0

2π∫
0

1∫
0

µ′

µex − µ′
(
e−

κex(z+d)
µex −e−

κex(z+d)
µ′

)
BRDF (−µ0 → µ′)p̂(µ′ → µex)dµ′dφ′

At the top of the canopy (z = 0):

I+
sv = Iinc ω e

− τ
µ0 µ0

2π∫
0

1∫
0

µ′

µex − µ′
(
e−

τ
µex − e−

τ
µ′
)
BRDF (−µ0 → µ′)p̂(µ′ → µex)dµ′dφ′ (2.13)
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2.2. Radiative Transfer Solution for Two-Layered Media

Volume-Surface-Contribution
Radiation scattered first by the vegetation-canopy,
and then by the surface.

incI vsI

At a distance z ∈ [−d, 0] within the canopy:

I+
vs = Iinc ω e

−κex(d+z)
µex µ0

2π∫
0

1∫
0

µ′

µ0 − µ′
(
e−

κexd
µ0 −e−

κexd

µ′
)
p̂(−µ0 → −µ′)BRDF (−µ′ → µex) dµ′dφ′

At the top of the canopy (z = 0):

I+
vs = Iinc ω e

− τ
µex µ0

2π∫
0

1∫
0

µ′

µ0 − µ′
(
e−

τ
µ0−e−

τ
µ′
)
p̂(−µ0 → −µ′)BRDF (−µ′ → µex) dµ′dφ′

(2.14)

As one can see from the above equations, both the direct surface term (Eq. 2.11)
and the direct volume term (Eq. 2.12) are already given explicitly if the vegetation
scattering phase-function p̂ and the Bidirectional Reflectance Distribution Function
BRDF of the underlying ground surface are known.

Furthermore, considering the monostatic case (i.e. θex = θ0 and φex = φ0 + π),
this means that a simple qualitative description of the backscattering properties
is sufficient as long as a zero-order approximation is used, and one does not have
to bother on the bistatic scattering properties of both the surface and the vege-
tation layer. However, as soon as higher order interaction-terms become relevant,
knowledge on the bistatic scattering distributions is necessary in order to solve the
remaining integrals in the surface-volume and volume-surface contribution.

As already mentioned, unfortunately very sparse information on how to analytically
approximate the bistatic scattering characteristics of vegetation- and rough soil
surfaces in the microwave region is currently available. To overcome this
problem, it will be shown in the following that the first-order interaction
integrals can be solved analytically by expressing the surface- and vegetation
scattering distributions as polynomial expansions in the scattering angle. In section
2.4, it will then be proven that such polynomial approximations exist for a wide
range of possible analytic distribution functions that can be used to approximate
the scattering behaviour of both the ground-surface and the vegetation coverage.

In chapter 3, a listing of possible analytic functions that might be used as
fit-functions to given bistatic measurements is provided together with their
polynomial expansions as needed in order to evaluate the associated first-order
interaction contribution.
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2. A Scattering Model for Vegetated Terrain

2.3. An Analytic Solution to the Interaction Term

From Eq.2.13 and Eq.2.14 one can see, that the remaining integrals that have to be
solved are given by:

Surface-Volume Term:

F svint(µ0, µex) =
2π∫
0

1∫
0

µ′

µex − µ′
(
e−

τ
µex − e−

τ
µ′
)
BRDF (−µ0 → µ′)p̂(µ′ → µex) dµ′dφ′ (2.15)

Volume-Surface Term:

F vsint(µ0, µex) =
2π∫
0

1∫
0

µ′

µ0 − µ′
(
e−

τ
µ0 − e−

τ
µ′
)
BRDF (−µ′ → µex)p̂(−µ0 → −µ′) dµ′dφ′ (2.16)

In the following we restrict ourselves to BRDF and volume-phase functions obeying
reciprocity, and use the following identities to find that the remaining integrals are
actually related via a simple change of variables.

A function is said to be reciprocal if it is invariant under a change of incoming and
outgoing directions.

In Fig.2.5 and Fig.2.6 the geometry for the reciprocity conditions of both the BRDF
and p̂ is shown. It is important to notice that for the BRDF we have to distinguish
between upwelling and downwelling radiation since each scattering event transforms
downwelling to upwelling radiation and their angular description is different
according to the separation introduced in Fig.2.4 .

dµ−) =dθ−π) = cos(iθ= cos(iµ

sθ

dθ

iθ

uθ

sθ̃ iθ̃

dθ uθ

uµ) =uθ) = cos(sθ= cos(sµ

)uµ→dµ−(BRDF) =sµ→iµ(BRDF

uµ−) =π+uθ) = cos(iθ̃= cos(iµ̃

)dµ→uµ−(BRDF) =sµ̃→iµ(˜BRDF

dµ) =dθ−π) = cos(2sθ̃= cos(sµ̃

Figure 2.5.: Illustration of the reciprocity of the BRDF .
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2.3. An Analytic Solution to the Interaction Term

From Fig. 2.5 we can thus deduce that the reciprocity condition for the BRDF is
given by:

BRDF (−µd → µu) = BRDF (−µu → µd) (2.17)

For p̂ we do not need to consider such a transformation since for both volume-
surface and surface-volume interaction contributions the volume-scattering is either
(upwelling) → (upwelling) or (downwelling) → (downwelling).

iθ

sθ iθ̃

sθ̃

)sµ→iµ(p̂ )iµ→ −sµ−(p) = ˆsµ̃→iµ(˜p̂

Figure 2.6.: Illustration of the reciprocity of p̂.

Thus, the reciprocity condition for p̂ is given by:

p̂(µi → µs) = p̂(−µs → −µi) (2.18)

Inserting those conditions in Eq. 2.15 and Eq. 2.16 we find:

⇒ F svint(µ0, µex) = F vsint(µex, µ0) := Fint(µ0, µex) (2.19)

In order to solve the remaining integral, we will assume that the following
(approximately finite) series-expansion is known:∫ 2π

0
BRDF (−µ0 → µ)p̂(µ→ µex) dφ ≈

Nmax∑
n=0

fn(µ0, µex) µn (2.20)

The existence of the expansion-coefficients fn and methods of it’s evaluation will be
discussed in section 2.4.

Expanding the product of the BRDF and p̂ in terms of a series as defined in
Eq.(2.20), the integral simplifies to:

Fint(µ0, µex) =
Nmax∑
n=0

fn(µ0, µex)
{[
e−

τ
µex

∫ 1

0

(µ′)n+1

µex − µ′
dµ′
]
−
[∫ 1

0

(µ′)n+1

µex − µ′
e
− τ
µ′ dµ′

]}

=
Nmax∑
n=0

fn(µ0, µex)
[
e−

τ
µexA(n+ 1)−B(n+ 1)

]
(2.21)

Where the remaining integrals A(N), B(N) are given by:

A(N) =
∫ 1

0

(µ′)N

µex − µ′
dµ′ B(N) =

∫ 1

0

(µ′)N

µex − µ′
e
− τ
µ′ dµ′ (2.22)
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2. A Scattering Model for Vegetated Terrain

In order to solve those integrals, we expand the fraction within the integrals as
follows: (the validity can readily be proven by means of complete induction)

(µ′)N

µex − µ′
= µNex
µex − µ′

−
N∑
k=1

µN−kex (µ′)k−1 (2.23)

Inserting this expansion, we are thus left with:

A(N) =
∫ 1

0

µNex
µex − µ′

dµ′︸ ︷︷ ︸
A1

−
N∑
k=1

∫ 1

0
µN−kex (µ′)k−1dµ′︸ ︷︷ ︸

A2

(2.24)

B(N) =
∫ 1

0

µNex
µex − µ′

e
− τ
µ′ dµ′︸ ︷︷ ︸

B1

−
N∑
k=1

∫ 1

0
µN−kex (µ′)k−1e

− τ
µ′ dµ′︸ ︷︷ ︸

B2

(2.25)

A1 :

Before solving the integral A1, we notice that the integrand encounters a
singularity for µ′ = µex. Since µex ∈ (0, 1), we know that this singularity is
definitely located within the integration-interval, and therefore the value of the
integral is only meaningful in terms of its Cauchy Principal Value (see Appendix
A.2.1). Thus, we write:

1∫
0

µNex
µex − µ′

dµ′ ⇒ lim
ε→0

 µex−ε∫
0

µNex
µex − µ′

dµ′ +
1∫

µex+ε

µNex
µex − µ′

dµ′


In order to evaluate the limit, we first have to find the general solution to the integral
which is readily obtained via:

∫
µNex

µex − µ′
dµ′ =

∣∣∣∣∣ u = µex − µ′

du = −dµ′
= −µNex

∫ 1
u
du = −µNex ln(u) = −µNex ln(µex − µ′)

Inserting this solution in the definition of the Cauchy Principal Value we find:

−
1∫

0

µNex
µex − µ′

dµ′ = lim
ε→0

(
− µNex

[
ln(ε)− ln(µex)

]
− µNex

[
ln(µex − 1)− ln(−ε)

])

= µNex

(
ln(µex)− ln(µex − 1)

)
+ µNex lim

ε→0

(
ln(−ε)− ln(ε)

)

12



2.3. An Analytic Solution to the Interaction Term

Using the fact that ln(−ε) = ln(−1) + ln(ε), the limit can directly be evaluated, and
therefore we find:

−
1∫

0

µNex
µex − µ′

dµ′ = µNex

(
ln(µex)− ln(µex − 1) + ln(−1)

)
= µNex

(
ln(µex)− ln(1− µex)

)
= µNex ln

(
µex

1− µex

)

A2:

The second integral A2 can directly be evaluated, and we get:∫ 1

0
µN−kex (µ′)k−1dµ′ = µN−kex

µ′k

k

∣∣∣1
µ′=0

= µN−kex

k

Thus, a solution to A(N) is given by:

A[N ] = µNex ln
(

µex
1− µex

)
−

N∑
k=1

µN−kex

k
= µNex

[
ln
(

µex
1− µex

)
−

N∑
k=1

µ−kex
k

]
(2.26)

B1:

A solution for the B1-integral can again be obtained in terms of its Cauchy principal
value as follows:∫ 1

0

µNex
µex − µ′

e
− τ
µ′ dµ′ = µNex

∫ 1

0

1
µex − µ′

e
− τ
µ′ dµ′

Since the integrand already looks quite similar to an exponential integral
(see Eq.(A.3)), we try to split the multiplier, i.e.:

1
µex − µ′

= − 1
µ′

+X ⇒ X = µ0
µ′(µex − µ′)

⇒ B1 = −µNex−
1∫

0

1
µ′
e
− τ
µ′ dµ′

︸ ︷︷ ︸
µNexEi(−τ)

−µNex−
1∫

0

(
− µex
µ′(µex − µ′)

)
e
− τ
µ′ dµ′

In order to solve the remaining integral, we try to identify it as Ei(f(x)), thus we

13



2. A Scattering Model for Vegetated Terrain

search for a function f(x) that satisfies (see Eq.(A.2)): 4

df(µ′)
dµ′

= − µex
µ′(µex − µ′)

f(µ′)

Using the Ansatz f(µ′) = eg(µ
′) ⇒ df(µ′)

dµ′ = f(µ′) dg(µ′)
dµ′ , the equation can

directly be solved to yield:

dg(µ′)
dµ′

= − µex
µ′(µex − µ′)

= − 1
µ′

+ 1
µ′ − µex

⇒ g(µ′) = − ln(µ′) + ln(µ′ − µex) ⇒ f(µ′) = µ′ − µex
µ′

= 1− µex
µ′

It shall be noted here that the found candidate f(µ′) is not unique since
multiplying the gained result with an arbitrary constant will still lead to the same
multiplier. Therefore we can shape the function such that it fits to the argument of
the exponential-function as appearing in the B1-integral (i.e.: τ

µ′ ) by choosing:

f̃(µ′) = τ

µex
f(µ′) = τ

µex
− τ

µ′
⇒ we still have: f̃ ′

f̃
= − µex

µ′(µex − µ′)

Using f̃(µ′) we can now finally transform the integral to the desired shape:

B1 : µexEi(−τ)− µex−
1∫

0

(
− µex
µ′(µex − µ′)

)
e
− τ
µ′ dµ′ =

µexEi(−τ)− µex e−
τ
µex −

1∫
0

(
− µex
µ′(µex − µ′)

)
e

τ
µex
− τ
µ′ dµ′

In order to identify this integral as exponential integral function, we have to check
the necessary conditions as derived in Eq.(A.4) which are readily shown to be true:

lim
µ′→0

(
τ

µex
− τ

µ′

)
→ −∞ lim

µ′→1

(
τ

µex
− τ

µ′

)
= τ

µex
− τ ∈ R

4The negative sign in the multiplier is introduced since otherwise we would get f(µ′) = µ′

µ′−µex
which can not directly be related to the argument of the exponential function as appearing
in the integral. The reason for this choice will be more evident when the identification of the
integral as Ei(f(x)) is carried out.
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2.3. An Analytic Solution to the Interaction Term

Thus, we can identify the integral as Ei(f̃(1)) with f̃(µ′) = τ
µex
− τ

µ′ , and so the
Cauchy principal value of the integral B1 is finally given by:

−
1∫

0

µNex
µex − µ′

e
− τ
µ′ dµ′ = µNexEi(−τ)− µNexe

− τ
µexEi

(
τ

µex
− τ
)

= µNex

[
Ei(−τ)− e−

τ
µexEi

(
τ

µex
− τ
)]

B2 :

The B2-integral can now be identified as a generalized exponential-integral-function
En(x) which is defined in the NIST Handbook of Mathematical Functions [10] as:

En(x) := −
∞∫

1

e−xt

tn
dt for x > 0 (2.27)

The identification can be performed via:

−
1∫

0

µN−kex (µ′)k−1e
− τ
µ′ dµ′ = µN−kex −

1∫
0

(µ′)k−1e
− τ
µ′ dµ′ =

∣∣∣∣∣ u = 1
µ′

dµ′ = −µ′2du

= −µN−kex −
1∫
∞

(µ′)k+1e−τudu = µN−kex −
∞∫

1

e−τu

uk+1 du

= µN−kex Ek+1(τ)

Thus, combining the results, a solution to B(N) is given by:

B(N) = µNex

[
Ei(−τ)− e−

τ
µexEi

(
τ

µex
− τ
)
−

N∑
k=1

µ−kex Ek+1(τ)
]

(2.28)

Inserting the obtained solutions for A(N) and B(N) into Eq.(2.21), the general
solution to the interaction-integral Fint is given by:
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2. A Scattering Model for Vegetated Terrain

Fint(µ0, µex) =
∞∑
n=0

fn(µ0, µex) µn+1
ex

[
e−

τ
µex ln

(
µex

1− µex

)
− Ei(−τ) + e−

τ
µexEi

(
τ

µex
− τ
)

+
n+1∑
k=1

µ−kex

(
Ek+1(τ)− e−

τ
µex

k

)]
(2.29)

Fint(µ0, µex) =µex

( ∞∑
n=0

fn(µ0, µex)µnex

)[
e−

τ
µex ln

(
µex

1− µex

)
− Ei(−τ) + e−

τ
µexEi

(
τ

µex
− τ
)]

+
∞∑
n=0

fn(µ0, µex)
n+1∑
k=1

µn+1−k
ex

(
Ek+1(τ)− e−

τ
µex

k

)
(2.30)

Finally, the interaction-term is given by:

I+
int(µ0, µex) = I+

sv(µ0, µex) + I+
vs(µ0, µex) (2.31)

= Iinc µ0 ω
[
e−

τ
µ0 Fint(µ0, µex) + e−

τ
µex Fint(µex, µ0)

]
(2.32)

Moreover, if we are only interested in monostatic measurements (i.e. µ0 = µex), the
calculation of the interaction-term simplifies drastically and we find:

I+
int(µ0) = 2Iinc µ0 ωe

− τ
µ0 Fint(µ0, µ0) (2.33)
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2.4. Evaluation of the fn coefficients

2.4. Evaluation of the fn coefficients

2.4.1. Existence of the fn coefficients

The existence of the expansion coefficients for arbitrary choices of scattering
distributions is not ensured. However, it can be shown that as long as one can
express the distributions in terms of a series-expansion in a generalized scattering
angle, the coefficients exist and can in principle always be calculated.

The generalized scattering angle Θx is defined as the generalized scalar
product between an incoming (̂i) and an outgoing (ŝ) direction as shown below:

î
ŝ

x

y

z

sφ
iφ

sθ0θ

0θ−π=iθ

î =

sin(θi) cos(φi)
sin(θi) sin(φi)

cos(θi)

 (2.34)

ŝ =

sin(θs) cos(φs)
sin(θs) sin(φs)

cos(θs)

 (2.35)

cos(Θx) = îT Mx · ŝ with Mx =

ax 0 0
0 bx 0
0 0 cx

 (2.36)

⇒ cos(Θx) = ax cos(θi) cos(θs) + sin(θi) sin(θs) [bx cos(φi) cos(φs) + cx sin(φi) sin(φs)]

The diagonal elements (ax, bx, cx) of the weighting-matrix Mx are hereby to be seen
as fitting parameters that allow consideration of off-specular and anisotropic effects
as proposed e.g. in [11]. For ax = bx = cx = 1 the generalized scattering angle
reduced to the standard scattering angle given by:

cos(Θ) = cos(θi) cos(θs) + sin(θi) sin(θs) cos(φi − φs) (2.37)

In the following, it will now be proven that as long as both the phase function p̂
and the BRDF can be represented in terms of a power-series expansion in terms of
a generalized scattering angle cos(Θx), the expansion-coefficients fn from Eq. 2.20
exist and can in principle always be calculated.5

5For the sake of simplicity, we will restrict ourselves to functions that can be represented utilizing
a single coefficient matrix Mx, however the following prove can easily be adapted to work also
for power series containing multiple choices for Mx
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2. A Scattering Model for Vegetated Terrain

In order to prove the above statement, we assume that the following representations
exist and the coefficients pn and bn are known:

p̂ ∼
∞∑
n=0

pn cos(Θ1)n BRDF ∼
∞∑
n=0

bn cos(Θ2)n (2.38)

In order to be able to evaluate the φs-integral of Eq. 2.20, we first have to find a
convenient representation of the product of (p̂ ·BRDF ).

Expanding cos(Θx)n, we find:

cos(Θx)n =

ãx cos(θs) + sin(θs) {b̃x cos(φs) + c̃x sin(φx)}︸ ︷︷ ︸
Ωx


n

(2.39)

=
n∑
k=0

(
n
k

)
[ãx cos(θs)]n−k sin(θs)k Ωkx (2.40)

Now that cos(Θx)n has been expressed in terms of a series, we can use the following
summation-identity to gain a convenient representation for the phase-function p̂:

∞∑
n=0

n∑
k=0

an,k =
∞∑
k=0

∞∑
n=k

an,k (2.41)

Therefore, applying the above identity, we find:

p̂ ∼
∞∑
n=0

pn cos(Θ1)n =
∞∑
n=0

n∑
k=0

pn

(
n
k

)
[ã1 cos(θs)]n−k sin(θs)k Ωk1

=
∞∑
k=0

sin(θs)k Ωk1
∞∑
n=k

pn

(
n
k

)
[ã1 cos(θs)]n−k︸ ︷︷ ︸

pseries(k)

(2.42)

=
∞∑
k=0

sin(θs)k Ωkx pseries(k) (2.43)

and similarly for the BRDF we get:

BRDF ∼
∞∑
n=0

bn cos(Θ2)n =
∞∑
k=0

sin(θs)k Ωk2 bseries(k) (2.44)

Since we are interested in finding a representation of the product between the BRDF
and p̂, we can now use the Cauchy-product formula to express the product of two
infinite sums which is given by [12]:( ∞∑

p=0
ap

)( ∞∑
q=0

bq

)
=
∞∑
n=0

cn with cn =
n∑
k=0

(ak bn−k) (2.45)
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Thus, using the above formula, we find:

p̂ ·BRDF =
∞∑
n=0

n∑
k=0

sin(θs)n Ωk1 Ωn−k2 pseries(k) bseries(n− k) (2.46)

Now that we have found a convenient representation for BRDF · p̂, we can di-
rectly evaluate the azimuthal integral as necessary to obtain the fn coefficients in
Eq. 2.20 since the φs-dependency is expressed exclusively via products of powers of
Ω1,2 which have been defined previously as:

Ωx = b̃x cos(φs) + c̃x sin(φs) (2.47)

Thus, we found that the integral of Eq. 2.20 can be represented via:∫ 2π

0
p̂ ·BRDF dφs =

∞∑
n=0

n∑
k=0

sin(θs)n pseries(k) bseries(n− k)
∫ 2π

0
Ωk1 Ωn−k2 dφs

(2.48)

where the remaining integrals left to solve are given by:

∫ 2π

0
Ωk1 Ωn−k2 dφs =

∫ 2π

0

[
b̃1 cos(φs) + c̃1 sin(φs)

]k [
b̃2 cos(φs) + c̃2 sin(φs)

]n−k
dφs

(2.49)

Providing a general solution for the above integral is rather tedious. However, in
order to prove that the series-expansion coefficients of Eq. 2.20 exist in principle, it
is sufficient to show that the integral vanishes if n is odd. The reason for this can
directly be seen by looking at the summand of Eq. 2.48. Noticing that pseries(k)
as well as bseries(n− k) are already in the desired shape, namely they only contain
powers of cos(θs), we only have to ensure that we can express the multiplier sin(θs)n
in terms of powers of cos(θs) in order to be able to read out the fn coefficients. This
however is only possible if n is an even number, since only then we can use:

sin(θs)2n =
[
1− cos(θs)2]n (2.50)

to express the whole summand in terms of powers of cos(θs).

Thus, what is left to show is, that the following integral vanishes for odd n:

I =
∫ 2π

0
[b̃1 cos(φs) + c̃1 sin(φs)]k[b̃2 cos(φs) + c̃2 sin(φs)]n−kdφs (2.51)

Now, if n is odd, we have:

• k . . . odd ⇒ n− k . . . even

• k . . . even ⇒ n− k . . . odd
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2. A Scattering Model for Vegetated Terrain

Therefore, multiplying out the brackets, we end up with a sum containing only
integrals of powers of trigonometric functions of the form:

•
∫ 2π

0 sin(φs)idφs with i...odd

•
∫ 2π

0 cos(φs)idφs with i...odd

•
∫ 2π

0 sin(φs)i cos(φs)jdφs with i+ j...odd

As shown in Appendix A.3.1, all those integrals can be shown to equal zero, which
consequently completes the prove that the fn-coefficients of any pair of functions
that are expressible as power-series of a generalized scattering angle exist and can
(in principle) be calculated.
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2.4. Evaluation of the fn coefficients

2.4.2. An Algorithm for Coefficient Retrieval

In the preceding prove for the existence of the coefficients, we found that by
expanding both p̂ and the BRDF , we can express the integral Eq. 2.20 in terms of
simple integrals of the form:∫ 2π

0 cos(φs)ndφs ,
∫ 2π

0 sin(φs)ndφs ,
∫ 2π

0 sin(φs)n cos(φs)mdφs

As shown in Appendix A.3.1, all those integrals can be evaluated analytically and
the solutions are given by:

∫ 2π

0
cos(φs)ndφ =

∫ 2π

0
sin(φs)ndφ =


2π
2n

(
n
n
2

)
if n . . . even

0 else

(2.52)

∫ 2π

0
cos(x)n sin(x)mdx =


2π

2n2m
∑n
k=0

(
n
k

)(
m

n+m
2 − k

)
(−1)m+k−n2 if n, m. . . even

0 else
(2.53)

The coefficients can now easily be extracted by performing the following steps
(indicated in pseudo-code):

1) Expand the integrand of Eq.2.20 such that all φ-dependent terms are isolated.

– fPoly = EXPAND[ BRDF * p ]

2) Use the above formulas to substitute the appearing integrals in the φ-averaged
product. (One has to be careful in here since terms that are independent of φ
have to be multiplied by

∫ 2π
0 dφ = 2π !)

– fPoly = 2π * fPoly

– fPoly = REPLACE[ fPoly , cos(φ)n, sin(φ)n → Eq.2.52
2π

cos(φ)n sin(φ)m → Eq.2.53
2π ]

3) Since from the discussion in Sec.2.4.1 we know that only even powers of
sin(θs)n will appear within the resulting series, express them in terms of
powers of cos(θs) and expand the resulting series such that all cos(θs)n-terms
are isolated.

– fPoly = REPLACE[ fPoly , sin(θs)n →
[
1− cos(θs)2]n/2 ]

4) Collect the coefficients for cos(θs)n
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3. Phase Functions

In the following, a list of possible scattering distributions is given along with their
representation in terms of a series-expansion applicable for evaluating the fn
coefficients with an algorithm as suggested in Chapter 2.4.2.

Within the listing, the following notation is used:
Pn(x) nth Legendre Polynomial

Ωi = (θi , φi) with θ0 := π − θi
(
dΩi = sin(θi)dθidφi

)
Incidence Angles

Ωs = (θs , φs)
(
dΩs = sin(θs)dθsdφs

)
Emergent Angles

î · ŝ = cos(Θ) = cos(θi) cos(θs) + sin(θi) sin(θs) cos(φi − φs) Scattering Angle
îmirr · ŝ = cos(Θ′) = − cos(θi) cos(θs) + sin(θi) sin(θs) cos(φi − φs) Reflection Angle

An illustration of the used angles is shown in the beginning of Section 2.4.1.
îmirr hereby denotes the mirrored incident direction, i.e. îmirr(θ, φ) = î(π− θ, φ)

3.1. Volume-Scattering Phase Functions

The volume-scattering phase functions describe the scattering characteristics of a
constituent of the covering layer within all possible directions. It can be seen as the
probability for scattering in a specific direction.

All phase-functions presented in the following are therefore normalized via:∫ 2π

0

∫ π

0
p̂(Θ) sin(θs)dθs dφs = 1 (3.1)

This normalization coincides with the used form of the radiative transfer equation as
given in Eq.2.1. Within other literature however, also an alternative normalization-
convention, namely

∫
4π p dΩ = 4π is common. To emphasize the use of Eq.3.1 as

normalization-condition, a symbol with a hat, i.e. p̂ is used within this text.

22



3.1. Volume-Scattering Phase Functions

3.1.1. The Asymmetry Parameter g

An important quantity for classifying phase-functions is the so-called asymmetry
parameter g which is defined as:

g = 〈cos(Θ)〉 :=
∫ 2π

0

∫ π

0
cos(Θ) p̂

(
cos(Θ)

)
sin(θs) dθsdφs

It is used for characterizing the directionality of the phase-function, since:

g = −1: for entirely backward-scattering phase-functions

g = 0: for equally forward- and backward-scattering phase-functions

g = 1: for entirely forward-scattering phase-functions

For phase-functions that are only dependent on the scattering angle cos(Θ),
the asymmetry-parameter can be expressed very conveniently by noticing that we
can (without loss of generality) arrange the coordinate-system such that θi = 0:

cos(Θ)
∣∣
θi→0 =

[
cos(θi) cos(θs) + sin(θi) sin(θs) cos(φi − φs)

]∣∣
θi→0 = cos(θs)

Therefore we find:

g =
∫ 2π

0

∫ π

0
cos(θs) p̂

(
cos(θs)

)
sin(θs) dθsdφs (3.2)

= 2π
π∫

0

cos(θs)p̂(cos(θs)) sin(θs)dθs = 2π
∫ 1

−1
µs p̂(µs)dµs (3.3)

Moreover, if the expansion of the phase-function in terms of Legendre-polynomials
of the scattering angle cos(Θ) is known, the asymmetry-parameter is directly related
to the 1st expansion-coefficient of the Legendre-series as shown below:
Starting from Eq. 3.3, we have:

p̂(cos(Θ)) :=
∞∑
n=0

coef(n)Pn(cos(Θ)) ⇒

g = 2π
1∫
−1

µs p̂(µs) dµs

= 2π
∞∑
n=0

coef(n)
1∫
−1

Pn(µs) µs dµs = 2π
∞∑
n=0

coef(n)
1∫
−1

Pn(µ) P1(µ) dµ

︸ ︷︷ ︸
2

2n+1 δn,1

= 2π
∞∑
n=0

coef(n) 2
2n+ 1δn,1 = 4π

3 coef(1) (3.4)
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3. Phase Functions

3.1.2. The Isotropic Phase Function:

If the media is assumed to scatter isotropically in all directions, we simply have:

p̂(Θ) = 1
4π ⇒ g = 0

3.1.3. The Rayleigh Phase Function:

The Rayleigh phase-function is the
scattering distribution that originates
from the description of scattering by
spheres that are small compared to the
wavelength of the incident radiation. It
is given by: [13]

p̂(Θ) = 3
16π

(
1 + cos(Θ)2)

Since it is symmetric with respect to
scattering in forward- and backward
direction, the asymmetry-factor is
again equal to 0.

Isotropic Rayleigh

incident
direction

Figure 3.1.: Illustration of the Isotropic-
and Rayleigh phase function

It’s representation via Legendre-polynomials is furthermore directly given by:

p̂(Θ) = 3
16π

[
4
3P0(cos(Θ)) + 2

3P2(cos(Θ))
]

3.1.4. The Forward-Scattering Phase Function

If the media is assumed to scatter entirely in the forward-direction (g = 1), the
associated phase-function can be formulated via delta-functions, i.e.:1

p̂(Θ) = 1
sin(θs)

δ(θi − θs)δ(φi − φs) = δ(µi − µs)δ(φi − φs)

Since the integrals in Eq.2.13 and Eq.2.14 can directly be evaluated using the above
phase-function, it’s approximation in terms of Legendre-polynomials is omitted.

1The additional 1
sin(θ) -factor appears due to the formulation of the delta-functions in a spherical

coordinate system.
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3.1. Volume-Scattering Phase Functions

3.1.5. Henyey Greenstein Phase Function
A function that has been widely
used as a single-parameter, analytic
phase-function for the description of
anisotropic volume-scattering effects is
the is the so-called Henyey-Greenstein
phase function [14], given by:

p̂(t,Θ) = 1
4π

1− t2

(1 + t2 − 2t cos(Θ))3/2

= 1
4π

∞∑
n=1

tn(2n+ 1)Pn(cos(Θ))

The parameter t hereby is equivalent
to the asymmetry parameter g of the
phase-function which can directly be
seen by evaluating the first coefficient of
the Legendre-expansion and comparing
it with Eq. 3.4.

incident
direction

= 0t

2.= 0t

4.= 0t

5.= 0t

Figure 3.2.: Henyey-Greenstein function

For t = 0, the Henyey-Greenstein phase-function reduces to the Isotropic phase
function. In order to be able to describe more complex scattering characteristics, a
combination of two or more Henyey-Greenstein "lobes" can be used as proposed. See
for example [15] where a so-called "Two-term Henyey-Greenstein phase function" is
introduced in order to adequately describe the scattering-distribution of seawater.

3.1.6. Henyey Greenstein Rayleigh Phase Function

As shown by [16] the Rayleigh- and
Henyey Greenstein phase function can
be combined such that for t = 0
the distribution equals the Rayleigh-
distribution, while for t > 0 the
distribution becomes more and more
forward-oriented. The asymmetry-
parameter of this function is now no
longer equal to the function-parameter,
but related via:

g = 3t(6t2 + 5)
40π(t2 + 2)

incident
direction

= 0t

2.= 0t

4.= 0t

5.= 0t

Figure 3.3.: HG-Rayleigh function
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3. Phase Functions

The Henyey-Greenstein Rayleigh function and it’s expansion in terms of Legendre-
polynomials is given by:

p̂(t,Θ) = 8π
2 + t2

p̂Rayleigh ∗ p̂HG = 3
8π

1
2 + t2

(1− t2)
(
1 + cos(Θ)2)

(1 + t2 − 2t cos(Θ))3/2

=
∞∑
n=0

pn(t)Pn(cos(Θ))

with

pn(t) = 3
8π

1
2 + t2

[
n(n− 1)
2n− 1 tn−2 + (n+ 2)(n+ 1)

2n+ 3 tn+2 + (n+ 1)2

2n+ 3 tn + 5n2 − 1
2n− 1 t

n

]

3.1.7. Gaussian Peak

The Gaussian Peak phase function has
widely been used in modelling the
scattering behaviour of vegetation for
millimetre-waves [17, 18, 19]. It is given
by:

p̂(Θ, β) = 1
4π

(
2
β

)2
e
−Θ2
β2

≈
N∑
n=0

pn(β)Pn(cos(Θ))

incident
direction

9.= 0β

7.= 0β

5.= 0β

Figure 3.4.: Gaussian peak

Even though the Henyey-Greenstein- and related functions are much more suitable
because they can directly be expressed via a Legendre-series, also the expansion-
coefficients for the Gaussian peak phase-function can be evaluated analytically. They
turn out to be given by:

pn = 2n+ 1
2

1
4π

(
2
β

)2 N∑
m=0

am ξ(m,n)
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3.1. Volume-Scattering Phase Functions

with

am = β e−
m2β2

4
√
π(1 + δm,0)

Re
[
erf
(
π

β
+ imβ

2

)]
and

ξ(m,n) =


2 if m = n = 0

− 1
4
m Γ(m+n

2 )Γ(m−n−1
2 )

Γ(m−n+2
2 )Γ(m+n+3

2 ) if m+ n . . . even

0 else

Since the derivation of the above expansion is not straight forward, it is addressed
briefly in Appendix A.3.2.

3.1.8. Gegenbauer Kernel Phase Function

The Gegenbauer-Kernel (GK) phase function proposed by Reynolds and McCormick
[20] is a two-parameter phase function similar to the Henyey-Greenstein phase
function mentioned above, but with an additional parameter α > − 1

2 that allows
a wide variety of scattering distributions to be approximated. For α = 1/2 the
GK phase function reduces to the Henyey Greenstein phase function. In terms of
application, it has for example been used to approximate the scattering behaviour
of human blood at optical wavelengths [21].

p̂(Θ, β) = 1
π

αg[
(1 + g)2α − (1− g)2α

] (
1− g2)2α

[1 + g2 − 2g cos(Θ)](α+1) (3.5)

= 1
π

αg
(
1− g2)α[

(1 + g)2α − (1− g)2α
] ∞∑
n=0

(
1 + n

α

)
gn C(α)

n (cos(Θ)) (3.6)

Where C(α)
n (x) denote the Gegenbauer (or Ultraspherical)-polynomials [10].
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3. Phase Functions

3.2. Surface-BRDF’s

The Bidirectional Reflectance Distribution Function which is used to describe the
scattering properties of the soil-surface is defined via:

BRDF (Ωi → Ωs) = Scattered Intensity in direction Ωs
Incident Power per unit illuminated area = dIs(Ωs)

Ii(Ωi) cos(θi)dΩi
(3.7)

In order to be physically consistent (and applicable to the method for evaluation
of the interaction-term), a BRDF has to obey the following constraints:

Reciprocity:
(Source and detector can be interchanged without altering the BRDF)

BRDF (Ωi → Ωs) = BRDF (Ωs → Ωi) (3.8)

The validity of reciprocity for flat surfaces relates back to the validity of the
reciprocity principle of electromagnetism. A detailed discussion can be found in [22].

For arbitrary structured surfaces this principle might in general be violated, but
as has been shown by Snyder [23], under the assumption that the surface can be
described as a collection of elements that itself obey reciprocity, the reciprocity of the
structured surface is maintained. Moreover Leroy [24] showed that the measurement
setup itself might induce non-reciprocal behaviour and presented a method on how
to distinguish whether the assumption of reciprocity for a certain setup is reasonable
or not. Throughout this text, the reciprocity condition is considered to be fulfilled.

Positivity:

BRDF (Ωi → Ωs) ≥ 0 (3.9)

The necessity of a positive BRDF is directly evident from it’s definition and the
fact that both intensity and power are positive quantities.

Energy Conservation:∫ 2π

0

∫ π
2

0
BRDF (Ωi → Ωs) cos(θ) sin(θ)dθdφ = R(Ωi) ≤ 1 (3.10)

R(Ωi) hereby denotes the Directional Hemispherical Reflectance of the surface, i.e.
the fraction of radiation that is scattered into the upper hemisphere from radiation
impinging at a single incidence-angle.2

The above statement will in the following be derived briefly. A more general
discussion can be found for example in [25].

2The fraction of radiation being absorbed by the surface is then given by (1−R(Ωi))
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3.2. Surface-BRDF’s

Connection between Hemispherical Reflectance and the BRDF:

For the sake of compactness, the angular dependency of variables will be omitted in
the following calculation. Furthermore we use the notation dΩ = cos(θ)dθdφ.

To consider only radiation impinging from a single direction, we define the incident
intensity via:

Ii = I0
sin(θi)

δ(θi − θ0)δ(φi − φ0) (3.11)

where I0 is a constant and δ denotes the Dirac-delta function.

Denoting the incident/scattered power per unit illuminated area by Φi/Φs we know:

dIs = BRDF dΦi with dΦi = Ii cos(θi)dΩi (3.12)

and similarly, for the scattered power per unit area we have:

dΦs = Is cos(θs)dΩs (3.13)

Finally, the Directional Hemispherical Reflectance is defined via:

R = Φs
Φi

(3.14)

where Φs denotes the scattered power per unit area into the upper hemisphere and
Φi is the total incident power per unit area. Clearly we have R ≤ 1 since the
scattered power must be less or equal than the incident power.

Φi can now easily be calculated inserting the definition of Ii:

Φi =
∫

2π
Ii cos(θi)dΩi = I0 cos(θ0)

Using Eq. 3.11 and Eq. 3.12, the scattered power into the upper hemisphere is
given by:

Φs =
∫

2π
Is cos(θs)dΩs =

∫
2π

∫
2π
BRDF Ii cos(θi) cos(θs)dΩidΩs (3.15)

=
∫

2π
BRDF I0 cos(θ0) cos(θs)dΩs (3.16)

Using the definition of hemispherical Reflectance we thus find:

Φs = R Φi (3.17)∫
2π
BRDF �����I0 cos(θ0) cos(θs)dΩs = R�����I0 cos(θ0)

⇒ R =
∫

2π
BRDF cos(θs)dΩs � (3.18)
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3. Phase Functions

When dealing with real surfaces, the associated BRDF has to account for numerous
characteristics which can be summarized coarsely as:

• Geometric properties (Roughness, Topology) • Dielectric Properties

In general those effects are presumably coupled in a complex way. Theoretical
approaches for modelling the BRDF of a general rough surface usually assume
certain statistical properties of the surface-roughness together with the knowledge
of roughness-parameters such as the correlation-length λ and the rms-height (root
mean square-height). The most general approach utilizing this method is possibly
the Integral Equation Model (IEM) [26] and it’s numerous generalizations available
within literature. While the IEM is capable of accurately simulating the BRDF of a
surface with known λ and rms-height, relating those parameters to
observable properties of natural surfaces can be a challenging task, since for example
the ’roughness’-characteristics in the microwave-domain might be very different from
the ’roughness’-characteristics as retrieved from optical observations.

In order to evaluate the first-order scattering contributions using the method of
chapter 2.3, the BRDF is desirably given by an analytic function that can easily be
expanded as power-series of the cosine of the scattering angle.

Since the BRDF-functions as provided by models such as the IEM usually have very
complex angular dependencies, the following list provides possible analytic functions
that can be used to approximate the BRDF in a suitable way.

3.2.1. Ideally Rough (Lambertian) Surface:

An ideally rough surface is a
surface that appears equally bright
in all directions.
Within the literature, such a sur-
face is usually referred to as a Lam-
bertian surface. The corresponding
BRDF consequently is a constant,
i.e.:

incident direction

Figure 3.5.: Lambertian BRDF

BRDF (Θ′) = R0

π
with R0 ∈ [0, 1]

R0 is hereby usually called the diffuse albedo, or diffuse reflection-coefficient.
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3.2. Surface-BRDF’s

3.2.2. Cosine Lobes (Phong Model)

One of the most easy models to
mimic directional behaviour of a
surface is the so-called cosine-lobe-
(or Phong-)model which was first
proposed by Phong as a shading-
function for rendering of computer-
graphics [27]. Hereby, the scattering
behaviour of a surface is modelled
as a peak in specular direction,
described via powers of the cosine
of the scattering-angle.

= 1L
= 5L

= 10L
= 15L

incident
direction

Figure 3.6.: Cosine lobes of power L

From [12] chapter (7.23) we find for the expansion in terms of Legendre-polynomials:

BRDF (Θ′, L) = Max[cos(Θ′), 0]L

=
∞∑
n=0

[
(2n+ 1)

2n
Γ (L+ 1) Γ

(
L−n+3

2
)

2Γ (L− n+ 2) Γ
(
L+n+3

2
)] Pn(cos(Θ′))

For integer L this can be further simplified to:

BRDF (Θ′, L) = Max[cos(Θ′), 0]L

=
√
π L! 2−(L+2)

∞∑
n=0

[
(1 + 2n)

Γ
(
L−n+2

2
)

Γ
(
L+n+3

2
)] Pn(cos(Θ′))

3.2.3. Generalized Cosine Lobes (Lafortune Model)

In order to have a more realistic
approximation of the scattering-
behaviour of natural surfaces,
Lafortune [11] introduced a gener-
alization of the cosine-lobe model,
based on the introduction of a
generalized scattering angle Θlaf .
Using this approach, it is possible
to include non-linear behaviour
of the BRDF while still using the
simple representation of the BRDF
as a cosine-lobe.

incident direction

incident direction

incident
direction

in
cid

en
t

d
irection

Cosine-lobe
(n=5)

 Lafortune-lobe
(n=5, a=-0.8, b=1, c=1)

Figure 3.7.: Comparison Lafortune/Cosine-lobe
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3. Phase Functions

The generalized scattering angle that is used within the Lafortune-model has already
been introduced in Chapter 2.4.1 and is given by:

cos(Θlaf ) = a cos(θi) cos(θs) + sin(θi) sin(θs) [b cos(φi) cos(φs) + c sin(φi) sin(φs)]

where a, b and c are constants.

The definition of the BRDF is then completely similar to that of the ordinary cosine-
lobes, since the proposed method for the evaluation of the interaction-term works
equally well when using a generalized scattering angle.

BRDF (Θlaf , L) = Max[cos(Θlaf ), 0]L

=
∞∑
n=0

[
(2n+ 1)

2n
Γ (L+ 1) Γ

(
L−n+3

2
)

2Γ (L− n+ 2) Γ
(
L+n+3

2
)] Pn(cos(Θlaf ))

As an illustrative example of the possibilities of using such a generalization, Fig.3.7
shows a comparison between an ordinary cosine-lobe3 and a Lafortune-lobe with
(a=-0.8, b=1, c=-1). The effect of using such a modified scattering angle is, that
the hemispherical reflectance associated with the BRDF increases as the scattering-
angle increases. More details on the possibilities of the Lafortune-model and it’s
specification can be found in [11].

3.3. Further possibilities

While using the concept of a generalized cosine-lobe to approximate BRDF’s already
allows a wide range of modelling possibilities, it shall be noted in here that the
concept of applying a generalized scattering angle is not restricted to cosine-lobes.

In fact, any of the functions introduced within this chapter can be defined with
respect to a generalized scattering angle. As shown in Chapter 2.4.1, the presented
method for evaluating the interaction-term remains applicable.

Furthermore, the use of linear-combinations of approximation functions together
with the concept of generalized scattering angles allows consideration of a wide
range of possible scattering behaviours.

To visualize the main idea behind this concept, Fig.3.3 shows 4 Henyey-Greenstein
phase-functions (p̂I−p̂IV ) (dashed lines) together with the combined phase-function
(p̂comb) (solid line) resulting from a linear-combination of the form:

p̂comb = wI ∗ p̂I + wII ∗ p̂II + wIII ∗ p̂III + wIV ∗ p̂IV (3.19)

with equal weighting-factors wI = wII = wIII = wIV = 0.25
3 An ordinary cosine-lobe is equal to a Lafortune-lobe with a=b=c=1
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3.3. Further possibilities

The parameters of the 4 Henyey-Greenstein phase-functions are chosen as follows:

I© t = 0.5 a = [−1., 1., 1.] (forward-peak)

II© t = 0.5 a = [1., 1., 1.] (upward-specular-peak)

III© t = −0.5 a = [−1., 1., 1.] (backward-peak)

IV© t = −0.5 a = [1., 1., 1.] (downward-specular-peak)

incident-

direction

incident-direction

in
cid

ent-

d
irection

I

IV

III II

IIV

III II

IIV

III II

◦= 450θ
◦= 450θ

◦= 450θ

Figure 3.8.: Linear combination of generalized Henyey-Greenstein phase-functions

As one can infer from the appearance of pII and pIII in Fig.3.3, this concept can
also be used to turn previously introduced volume-scattering phase-functions (like
for example the Henyey-Greenstein
phase-function) into possible approx-
imation functions for BRDFs. This
is indicated in the figure aside,
showing a linear-combination of two
Henyey-Greenstein phase-functions
at θ0 = (25, 64)[deg].

The used parameters are given by:

a1 = [1, 1, 1] t1 = 0.5
a2 = [−1, 1, 1] t2 = −0.3

incident direction

in
cid

ent
d
irection

Figure 3.9.: Linear combination of BRDFs
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4. Simulation results

The theoretical developments presented in the previous chapters are currently being
implemented as a python-module that will be made public as soon as it is fully docu-
mented and made more user-friendly.1 The python-module will allow evaluating the
bistatic first-order radiative transfer solutions based on given input of approximate
scattering distribution-functions for both the vegetative coverage and the underlying
soil-surface.

All following plots are generated using the already existing code. The results are
intended to show the capabilities of the model as well as some basic results on the
behaviour of the scattered radiation to changes on the optical depth τ , the single
scattering albedo ω and the choice of the distribution functions.

Since it is most common within satellite based remote sensing applications to express
the backscattered radiation in terms of the so-called backscattering-coefficient σ0,
it’s relation to the backscattered intensity If is briefly addressed in the following
section.

4.1. Connection between Is and σ0

In [28] it is shown that the relation between the bistatic scattering coefficient σ0
and the BRDF of the observed scene is given by2

σ0(θ0, θs) = 4π BRDF (θ0, θs) cos(θ0) cos(θs) (4.1)

For impinging radiation incoming from a single direction as defined in Eq.3.11, the
scattered intensity Is can be calculated via:

Is(θ0, θs) =
∫
2π

BRDF (θi, θs)Ii(θ0) cos(θi)dΩi = I0 BRDF (θ0, θs) cos(θ0)

Inserting the above result, we thus have:

σ0(θ0, θs) = 4π
(
Is(θ0, θs)

I0

)
cos(θs) (4.2)

1The source-code will be hosted at https://github.com/TUW-GEO/rt1
2For the sake of compactness, the azimuthal dependencies of σ0 and the BRDF have been
suppressed.
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4.2. Example specification

4.2. Example specification

4.2.1. Surface parametrization

To be able to use a function as an approximation function for the BRDF, one has to
take care on the associated hemispherical reflectance R(θ0). To get an idea on the
magnitude of R(θ0), we can use the fact that the hemispherical reflectance can be
related to the directional emissivity ε(θ, φ) of a soil surface via Kirchhoff’s law [29]:

R(θ) = 1− ε(θ) (4.3)

For horizontal polarized radiation in the microwave-range, directional emissivities
are found in the range of 0.7−0.9 and decrease with increasing incidence-angle [30].

To model such a behaviour within the presented example, the BRDF is
approximated using a generalized Henyey-Greenstein phase function with the
parameters of the generalized scattering angle set to: a = diag(−0.6, 1, 1).
Furthermore, in order to gain comparable results, the functions are normalized with
respect to the nadir hemispherical reflectance R(0) (see Eq. 4.4), and multiplied
by a normalization-factor of NR = 0.15 to get the magnitude of the hemispherical
reflectance in a reasonable range.
Since the general hemispherical
reflectance R(θ0) that is associated
with the Henyey-Greenstein phase-
function when being used as BRDF
has a complicated dependency
on the incidence-angle, the plot
aside shows a numerical evaluation
of R(θ0) over the considered
incidence-angle range.

t = 0.5

t = 0.2

t = 0.7

To illustrate the resulting function, Figure 4.1 shows polar-plots of the used BRDF
for the considered asymmetry-parameters at incidence-angles θ0 = (15, 35, 55, 75)[deg].

2.= 0t 5.= 0t 7.= 0t

Figure 4.1.: Henyey Greenstein function used as BRDF approximation function
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4. Simulation results

The nadir hemispherical reflectance associated with a Henyey-Greenstein phase-
function can be evaluated analytically (see Appendix A.3.3) and is given by:
(a1 denotes the first of the scattering-angle-parameters a = diag(a1, a2, a3))

R(0) =
(1− t2)

[
1 + t(t+ a1)−

√(
1 + t2

)(
1 + 2a1t+ t2

)]
2 a2

1 t
2
√

1 + 2a1t+ t2
(4.4)

4.2.2. Covering layer parametrization

For the description of the scattering properties of the covering layer, three different
choices of scattering-distribution functions are selected:

• Choice 1: Rayleigh Phase Function

• Choice 2: Isotropic Phase Function

• Choice 3: Henyey-Greenstein Rayleigh Phase Function

– Asymmetry-parameters: t = 0.2 and t = 0.4

In order to fully parametrize the covering layer, we additionally need to specify the
single scattering albedo ω and the optical depth τ .

Investigations of Kurum et.al [31] show that the single scattering albedo of forests
can be as high as 0.6 at L-band. The optical depth can range from 0 for a bare
surface to values higher than 1 for a densely forested region.

Within the presented example, the following values have been used:

ω = 0.4 and τ ∈ [0.01, 0.1, 0.3, 0.5, 0.7, 0.9]

Isotropic Rayleigh Henyey Greenstein Rayleigh

4.= 0t

2.= 0t

incident

direction

incident

direction

incident

direction

Figure 4.2.: Illustration of volume scattering phase functions
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4.3. Example Results

4.3. Example Results

4.3.1. Plot descriptions

Within the following sections, some results of the above specified example are shown.
For clarity, the plots are grouped as indicated in the list below which provides an
overview on the specifications of the plots.

• Bistatic scattering distributions

- The plots show the bistatic scattering coefficient σ0(θ, φ) (as defined
in Eq. 4.2) in linear scale for θs ∈ (0, π/2) , φs ∈ (0, π) at two different
incidence-angles θi = 15 and 55 degrees.

- The surface anisotropy parameter is set to 0.5 for all plots

- The optical depth τ is set to τ = 0.7 for all plots

- The aim of the visualizations is to provide a qualitative visual impression
of the resulting magnitudes of the individual contributions for bistatic
measurement configurations.

• Tau variations

- Plots show the monostatic (i.e. θ0 = θs , φs = φi + π ) backscat-
tering coefficient σ0 both with and without the interaction-term in dB
for θ0 ∈ (0, π/2)

- Each plot shows the variations of σ0 with respect to changes in the optical
depth tau for the values τ ∈ [0.01, 0.1, 0.3, 0.5, 0.7, 0.9]

- The plots reveal the impact of the optical depth and the surface-anisotropy
parameter on the so-called cross-over angle, which is defined as the incidence-
angle at which the σ0 curves of a developing (low τ) and full grown veg-
etation canopy (high τ) cross over [32].

• Contributions

- Plots show the monostatic (i.e. θ0 = θs , φs = φi + π ) backscattering
coefficient contributions in dB as well as its fractional contributions to
the total signal for θ0 ∈ (0, π/2)

- The parametrization is identical to the "tau-variation" plots

- The plots are intended to reveal the composition of the total backscat-
tering coefficient that remains hidden in the "tau-variation" plots.
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4. Simulation results

4.3.2. Bistatic scattering distributions
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d
irection

incident

direction
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t

d
irection

incident

direction

0θ

total scattered radiation volume contribution

surface contribution interaction contribution

= 15 [deg]0θ = 55 [deg]0θ

= 15 [deg]0θ = 55 [deg]0θ

Isotropic

Rayleigh

Figure 4.3.: Illustration of the bistatic scattering coefficient σ0(θ, φ) = 4π cos(θ) I(θ,φ)
Iinc
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Henyey Greenstein (t=0.2)

Henyey Greenstein (t=0.4)

Figure 4.4.: Illustration of the bistatic scattering coefficient σ0(θ, φ) = 4π cos(θ) I(θ,φ)
Iinc
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4. Simulation results

4.3.3. Tau variations (Isotropic)

with first-order contribution0σ

without multiple scattering0σ

Figure 4.5.: Surface asymmetry-parameter = 0.2

with first-order contribution0σ

without multiple scattering0σ

Figure 4.6.: Surface asymmetry-parameter = 0.5
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4.3. Example Results

with first-order contribution0σ

without multiple scattering0σ

Figure 4.7.: Surface asymmetry-parameter = 0.7

4.3.4. Tau variations (Rayleigh)

with first-order contribution0σ

without multiple scattering0σ

Figure 4.8.: Surface asymmetry-parameter = 0.2
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4. Simulation results

with first-order contribution0σ

without multiple scattering0σ

Figure 4.9.: Surface asymmetry-parameter = 0.5

with first-order contribution0σ

without multiple scattering0σ

Figure 4.10.: Surface asymmetry-parameter = 0.7
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4.3. Example Results

4.3.5. Tau variations (Henyey Greenstein t = 0.2)

with first-order contribution0σ

without multiple scattering0σ

Figure 4.11.: Surface asymmetry-parameter = 0.2

with first-order contribution0σ

without multiple scattering0σ

Figure 4.12.: Surface asymmetry-parameter = 0.5
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4. Simulation results

with first-order contribution0σ

without multiple scattering0σ

Figure 4.13.: Surface asymmetry-parameter = 0.7

4.3.6. Tau variations (Henyey Greenstein t = 0.4)

with first-order contribution0σ

without multiple scattering0σ

Figure 4.14.: Surface asymmetry-parameter = 0.2
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4.3. Example Results

with first-order contribution0σ

without multiple scattering0σ

Figure 4.15.: Surface asymmetry-parameter = 0.5

with first-order contribution0σ

without multiple scattering0σ

Figure 4.16.: Surface asymmetry-parameter = 0.7
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4. Simulation results

4.3.7. Contributions (Isotropic)

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.17.: Surface asymmetry-parameter = 0.2

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.18.: Surface asymmetry-parameter = 0.5

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.19.: Surface asymmetry-parameter = 0.7

46



4.3. Example Results

4.3.8. Contributions (Rayleigh)

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.20.: Surface asymmetry-parameter = 0.2

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.21.: Surface asymmetry-parameter = 0.5

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.22.: Surface asymmetry-parameter = 0.7
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4. Simulation results

4.3.9. Contributions (Henyey Greenstein t = 0.2)

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.23.: Surface asymmetry-parameter = 0.2

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.24.: Surface asymmetry-parameter = 0.5

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.25.: Surface asymmetry-parameter = 0.7
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4.3. Example Results

4.3.10. Contributions (Henyey Greenstein t = 0.4)

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.26.: Surface asymmetry-parameter = 0.2

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.27.: Surface asymmetry-parameter = 0.5

interaction-contribution

volume-contribution

surface-contribution

optical depth

Figure 4.28.: Surface asymmetry-parameter = 0.7
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A. Appendix

A.1. Used symbols and definitions

Symbol Unit Definition Reference

r [m] Vertical distance within the covering layer Fig.2.3

d [m] Total height of the covering layer Fig.2.3

Ω – Placeholder for function-arguments (θ, φ) -
f(Ω) = f(θ, φ)

θi, φi [deg] Polar- and azimuth angle of incident (i)- and exiting (ex)- Fig.2.3
θex, φex radiation in a right-handed spherical coordinate system

θ0 [deg] Zenith-angle of the incident radiation Fig.2.3
θ0 = π − θi

µx [1] Cosine of the corresponding angle -
µx = cos(θx)

dΩ [sr] Differential solid angle -
dΩ = sin(θ) dθ dφ

κs [m−1] Scattering coefficient [33]
= Scattering cross section per unit volume

κa [m−1] Absorption coefficient [33]
= Absorption cross section per unit volume

κex [m−1] Extinction coefficient [33]
= Extinction cross section per unit volume

κex = κs + κa

τ [1] Optical depth Eq.2.10
τ = κex d

ω [1] Single scattering albedo -
ω = κs

κex
= κs

κs+κa
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A.1. Used symbols and definitions

Symbol Unit Definition Reference

If
[

W
m2 sr Hz

]
Specific Intensity [33]
If = dP

cos(θ) dAill dΩ df

dP ... Power flowing through the illuminated area dAill
df ... considered frequency-interval

cos(θ) ... cosine of the incidence-angle θ

I+ [
W

m2 sr Hz

]
Upwelling specific intensity Fig.2.4

I−
[

W
m2 sr Hz

]
Downwelling specific intensity Fig.2.4

σ0() [1] Bistatic scattering coefficient Sec.4.1

σ0(θ0, θs) = 4π
(
Is(θ0,θs)

I0

)
cos(θs)

BRDF ()
[
sr−1] Bidirectional reflectance distribution function Sec.3.2

BRDF (µi → µex) := fr(θi, φi, θex, φex) [25]
with µi = cos(θi) and µex = cos(θex)

fr(θi, φi, θex, φex) = dIex(θex,φex)
Ii(θi,φi) cos(θi) dΩi

R() [1] Directional hemispherical reflectance Sec.3.2

R(θi, φi) =
2π∫
0

π/2∫
0
BRDF (θi, φi, θs, φs) cos(θs) sin(θs)θs, φs)dθsdφs [25]

In the nomenclature of [25] we have: R(θi, φi) = ρ(θi, φi, 2π)

g [1] Asymmetry parameter Sec.3.1.1

p̂()
[
sr−1] Scattering phase function Sec.3.1

= Normalized differential scattering cross section [33]
p̂(Ωi → Ωex) = p̂(θi, φi, θex, φex)

The normalization of the scattering phase function within
this text differs from [33], i.e. we use:

∫
4π p̂ dΩ = 1

Ei() [1] Exponential integral function Sec.A.2.2

Ei(x) := −
x∫
−∞

et
t dt for x > 0 [10]

En() [1] Generalized exponential integral function Eq.2.27

En(x) := −
∞∫
1

e−xt

tn dt for x > 0 [10]
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A. Appendix

A.2. Mathematical Methods

A.2.1. Cauchy Principal Value:

In the following we will not go into details on the definition and justification of the
Cauchy Principal Value, but only state it’s main properties and relations needed
to follow the presented solution-approaches. (for more detailed information see
Chapter 11.7, Page 512 of [12]).

The reason for introducing the notion of the Cauchy Principal Value is, that we
have to solve a definite integral from a to b where the integrand f(x) encounters
a first-order pole at f(c) with c ∈ (a, b). Since integrating a such a function will
certainly lead to a diverging outcome, a meaningful value can only be assigned to
such an integral by evaluating it’s Cauchy Principal Value. The basic idea behind
this procedure is, to split the integral at the location of the pole and write:

b∫
a

f(x)dx = lim
ε→0

c−ε∫
a

f(x)dx+ lim
ε→0

b∫
c+ε

f(x)dx

The two appearing limits on the right side will again both diverge. However in
some cases the limits diverge similarly but with opposite signs, and by performing
both limits simultaneously, the divergences cancel each other and a solution can be
obtained. Since a proper solution to the integral would require the individual limits
to be convergent, the solution obtained by performing the limits simultaneously is
called the Cauchy Principal Value of the integral.

The definition of the Cauchy Principal Value as taken from Page 6 of the NIST
Handbook of Mathematical Functions [10] is therefore given by:

Let c ∈ (a, b) and assume that
∫ c−ε
a

f(x)dx and
∫ b
c+ε f(x)dx exist when

0 < ε < min(c− a, b− c), but not necessarily when ε = 0.

Then we define the Cauchy Principal Value of the integral
∫ b
a
f(x)dx via:

−
b∫
a

f(x)dx = lim
ε→0+

 c−ε∫
a

f(x)dx+
b∫

c+ε

f(x)dx
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A.2. Mathematical Methods

A.2.2. Exponential Integral Function Ei(x)

The Exponential Integral Function is defined as follows:1

Ei(x) := −
x∫

−∞

et

t
dt for x > 0 (A.1)

A representation of the Exponential Integral Function with an arbitrary argument
is then given by:

Ei (f(x)) = −
f(x)∫
−∞

et

t
dt =

∣∣∣∣∣ t = f(u)

dt = f ′(u)du
= −

x∫
−∞

f ′(u)
f(u) e

f(u)du (A.2)

Since in the calculations we encounter integrals with limits (0, 1), they can be ex-
pressed in terms of the Exponential Integral via:

−
1∫

0

e−
τ
µ

µ
dµ =

∣∣∣∣∣ u = − τ
µ

dµ = τ
u2 du

= −−
−τ∫
−∞

eu

u
du = −Ei(−τ) (A.3)

Furthermore in the general case we have:

−
1∫

0

ef(x) f
′(x)
f(x) dx =

∣∣∣∣∣ u = f(x)

dx = 1
f ′(x)du

= −
f(1)∫
f(0)

eu

u
du = Ei(f(1)) if limx→0 f(x) = −∞

limx→1 f(1) ∈ R

(A.4)

1Notice that since the integrand encounters a singularity at x = 0, the value of the integral is
given by means of its Cauchy Principal Value
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A. Appendix

A.3. Auxiliary Calculations

A.3.1. Solutions for Chapter 2.4.1 and 2.4.2

In the following it will be shown that:

∫ 2π

0
cos(x)ndx =

 2π
2n

(
n
n/2

)
if n . . . even

0 if n . . . odd
(A.5)

In order to solve the integral we use the complex representation of cos(x). Therefore
we find for the integrand:

cos(x)n = 1
2n
(
eix + e−ix

)n = 1
2n

n∑
k=0

(
n
k

)
eikxei(n−k)x = 1

2n
n∑
k=0

(
n
k

)
ei(2k−n)x

Inserting the representation we are thus left with:∫ 2π

0
cos(x)ndx = 1

2n
n∑
k=0

(
n
k

)∫ 2π

0
ei(2k−n)xdx

= 1
2n

n∑
k=0

(
n
k

)[
ei(2k−n)x

i(2k − n)

] ∣∣∣∣∣
2π

x=0

= 1
2n

n∑
k=0

(
n
k

)[
ei2π(2k−n) − 1
i(2k − n)

]
(A.6)

Since we know that:

ei2πn = cos(2πn) + i sin(2πn) = 1 ∀n ∈ N (A.7)

the numerator of the summand in Eq. A.6 is zero. However, if 2k − n = 0 also the
denominator vanishes and we are left with an indeterminate form which we have to
evaluate separately. Since the indeterminate form is 0

0 , we can use l’Hôpital’s rule
to find the correct value, i.e.:

lim
N→0

[
ei2πN − 1
i N

]
= lim
N→0

[
2π i ei2πN

i

]
= 2π (A.8)

Therefore we find for the summand:[
ei2π(2k−n) − 1
i(2k − n)

]
=
{

2π for 2k = n
0 else (A.9)

Since the condition 2k = n can only be fulfilled if n is an even number, the above
statement already proves that the integral vanishes if n is odd. Inserting it in the
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A.3. Auxiliary Calculations

sum, only a single term, namely k = n
2 remains, and thus the solution is given by:

∫ 2π

0
cos(x)ndx =

 2π
2n

(
n
n/2

)
if n . . . even

0 else
� (A.10)

The same trick can similarly be used to show that the above solution is also valid
for sin(x)n, i.e.:

∫ 2π

0
sin(x)ndx ==

 2π
2n

(
n
n/2

)
if n . . . even

0 else
(A.11)

Here we use the completely similar representation:

sin(x)n = 1
(2i)n (eix − e−ix)n = 1

(2i)n
n∑
k=0

(
n
k

)
(−1)n−k ei(2k−n)x (A.12)

Consequently we find for the integral:∫ 2π

0
sin(x)ndx = 1

(2i)n
n∑
k=0

(
n
k

)
(−1)n−k e

i(2k−n)2π − 1
i(2k − n) (A.13)

=


(−1)

n
2

in
2π
2n

(
n
n/2

)
if n . . . even

0 else

=

 2π
2n

(
n
n/2

)
if n . . . even

0 else
�

where the last equality follows directly from the fact that n is an even number.

Finally, we have to show that:

∫ 2π

0
sin(x)n cos(x)mdx =


2π

2n2m
∑n
k=0

(
n
k

)(
m

n+m
2 − k

)
(−1)m+k−n2 if n and m. . . even

0 else
(A.14)

Again, the prove follows the same concept as before. Thus, after expressing the
sine’s and cosine’s in terms of complex exponentials, applying the binomial theorem
and integrating the resulting exponential function, we are left with:
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A. Appendix

∫ 2π

0
cos(x)n sin(x)mdx = 1

2n2m im

n∑
k=0

m∑
j=0

(
n
k

)(
m
j

)
(−1)m−j e

2π i (2k+2j−n−m) − 1
2k + 2j − n−m

(A.15)

from the above representation we can again directly see that the summand is only
nonzero if 2k+2j−n−m = 0. Therefore we can conclude thatm+nmust be an even
number. Furthermore the multiplier 1

im indicates that the solution of the integral
is complex for m. . . odd which of course cannot be true since we are integrating the
product of two real-valued (non-singular) functions from 0 to 2π. Therefore we can
conclude (without further investigation) that m itself (and consequently n itself)
must actually be an even number.

With this insight, all that’s left to do is finding the root of the denominator which
is given by j = n+m

2 − k and using the insight from before that:

e2π i N − 1
N

=
{

2π for N = 0
0 else (A.16)

Inserting the above finding (i.e. evaluating the j-sum) we therefore find:

∫ 2π

0
cos(x)n sin(x)mdx =


2π

2n2m
∑n
k=0

(
n
k

)(
m

n+m
2 − k

)
(−1)m+k−n2 if n and m. . . even

0 else
(A.17)

�

A.3.2. Legendre-expansion of the Gaussian Peak

In the following the main steps for the calculation of the Legendre-expansion coef-
ficients for the Gaussian peak phase function are presented.

Thus, in the following we are interested in evaluating:

p̂(Θ) = 1
4π

(
2
β

)2
e
−Θ2
β2 ≈

N∑
n=0

pnPn[cos(Θ)] (A.18)
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From the general form of a Legendre-expansion, we know:

pn = 2n+ 1
2

∫ π

0
p̂(Θ)Pn[cos(Θ)] sin(Θ)dΘ

= 2n+ 1
2

1
4π

(
2
β

)2 ∫ π

0
e
−Θ2
β2 Pn[cos(Θ)] sin(Θ)dΘ (A.19)

In order to be able to find an analytic solution to this integral, we notice that the
Gaussian peak phase function is an even function. Since we are only interested
in the values of the phase-function in the interval Θ ∈ (0, π), we can evaluate the
Fourier-expansion of it’s periodic continuation, and the resulting expansion will only
contain cosine-terms, i.e. we can write:

e
−Θ2
β2 =̂

∞∑
m=0

am cos(mΘ) for Θ ∈ (0, π) (A.20)

where the expansion-coefficients are given by:

am = 2
(1 + δn,0)π

∫ π

0
e
−Θ2
β2 cos(mΘ)dΘ (A.21)

In order to solve the above integral we will transform it such that it can be recognized
as a shifted Error-function erf(x) which is defined via:

erf(x) = 2√
π

∫ x

0
e−t

2
dt (A.22)

Thus, using the representation of the cosine in terms of complex exponential
functions we find: 2

2
∫ π

0
e
−Θ2
β2 cos(mΘ)dΘ = e−

m2β2
4

∫ π

0

[
e−( Θ

β −
imβ

2 )2

+ e−( Θ
β + imβ

2 )2]
dΘ (A.23)

⇒
{
u = Θ

β
− imβ

2 v = Θ
β

+ imβ

2

}
⇒

= e−
m2β2

4

[∫ u1

u0

e−u
2
β du+

∫ v1

v0

e−v
2
β dv

]
=
√
π

2 β e−
m2β2

4

[
erf
(
π

β
− imβ

2

)
+ erf

(
π

β
+ imβ

2

)]
=
√
π β e−

m2β2
4 Re

[
erf
(
π

β
+ imβ

2

)]
2A derivation of the identity used for the last equality can be found in [34], i.e.:

Re
[
erf(a+ ib)

]
= erf(a+ib)+erf(a−ib)

2
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A. Appendix

and therefore, the Fourier-coefficients are given by:

am = β e−
m2β2

4
√
π(1 + δn,0)

Re
[
erf
(
π

β
+ imβ

2

)]
(A.24)

Now that the Fourier-coefficients are found, we can go on evaluating the coefficients
of the Legendre-expansion by inserting the expansion in Eq. A.19:

pn = 2n+ 1
2

1
4π

(
2
β

)2 ∫ π

0
e
−Θ2
β2 Pn[cos(Θ)] sin(Θ)dΘ (A.25)

= 2n+ 1
2

1
4π

(
2
β

)2 ∞∑
m=0

am

∫ π

0
cos(m Θ)Pn[cos(Θ)] sin(Θ)dΘ

= 2n+ 1
2

1
4π

(
2
β

)2 ∞∑
m=0

am

∫ 1

−1
Tm(x)Pn(x)dx

where Tm(x) denote the Chebyshev-polynomials (and the substitution x = cos(Θ)
has been applied). Since the Chebyshev-polynomials Tn(x) as well as the Legendre-
polynomials Pn(x) are polynomial of order n, and the above integral basically
represents the Legendre-expansion coefficients of the Chebyshev-polynomials, the
integral must vanish vor all n > m due to the orthogonality-property of the Legendre-
polynomials. Therefore the upper boundary of the sum actually only extends till
the number of coefficients included in the Legendre-expansion (N), and we have:

pn = 2n+ 1
2

1
4π

(
2
β

)2 N∑
m=0

am

∫ 1

−1
Tm(x)Pn(x)dx (A.26)

The remaining integral can once again be evaluated analytically (the major steps of
the derivation can be found here: [35]) and is given by:

ξ(m,n) :=
∫ 1

−1
Tm(x)Pn(x)dx =


2 if m = n = 0

− 1
4
m Γ(m+n

2 )Γ(m−n−1
2 )

Γ(m−n+2
2 )Γ(m+n+3

2 ) if m+ n . . . even

0 else
(A.27)

Using this result, the Legendre-expansion coefficients are finally found as:

pn = 2n+ 1
2

1
4π

(
2
β

)2 N∑
m=0

am ξ(m,n) (A.28)
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A.3. Auxiliary Calculations

A.3.3. Nadir hemispherical reflectance of Henyey-Greenstein
Function

Since we are interested in the nadir (i.e. θs = 0) hemispherical reflectance, the
generalized scattering angle is drastically simplified and reduces to:

cos(Θ) := a cos(θi) cos(θs) + sin(θi) sin(θs) [b cos(φi) cos(φs) + c sin(φi) sin(φs)]

⇒ cos(Θ)
∣∣∣
θs=0

= a cos(θi) (A.29)

Therefore, the Henyey-Greenstein function at θs = 0 is given by:

HG = 1
4π

1− t2

[1 + t2 − 2ta cos(θi)]3/2
= 1

4π
1− t2

[1 + t2 + 2ta cos(θ0)]3/2
(A.30)

Consequently, using Eq.3.10, the associated hemispherical reflectance at θs = 0 is
given by:

R(0) = 1
4π

∫ 2π

0

∫ π/2

0

1− t2

1 + t2 + 2ta cos(θ) cos(θ) sin(θ)dθdφ (A.31)

Evaluating the φ-integral and substituting µ = cos(θ), the Integral reduces to:

R(0) = 1
2

∫ 1

0

(1− t2)µ
1 + t2 + 2ta µdµ (A.32)

With the substitution u = 1 + t2 + 2atµ, the integral directly reduces to a sum of
elementary integrals, i.e.:

R(0) = (1− t2)
8a2t2

1+t2+2at∫
1+t2

[
u−

1
2 − (1 + t2) u− 3

2

]

= (1− t2)
8a2t2

[
2
√
u+ 2(1 + t2)√

u

] ∣∣∣∣∣
1+t2+2at

1+t2

= (1− t2)
4a2t2

[
(1 + t2) + u√

u

] ∣∣∣∣∣
1+t2+2at

1+t2
= (1− t2)

4a2t2

[
2 + 2t2 + 2at√

1 + t2 + 2at
− 2 + 2t2√

1 + t2

]

= (1− t2)
2a2t2

[
(1 + t2 + at)

√
1 + t2 − (1 + t2)

√
1 + t2 + 2at√

1 + t2 + 2at
√

1 + t2

]

= (1− t2)
2a2t2

[
(1 + t2 + at)����(1 + t2)−����(1 + t2)

√
(1 + t2 + 2at)(1 + t2)√

1 + t2 + 2at����(1 + t2)

]

= (1− t2)
2a2t2

[
(1 + t2 + at)−

√
(1 + t2 + 2at)(1 + t2)√

1 + t2 + 2at

]
(A.33)
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1. INTRODUCTION

The formulation of an approximate analytic radiative-transfer
model to calculate the radiation scattered by a rough surface
covered by a tenuous distribution of particulate media (also re-
ferred to as “turbid media”) as illustrated in Fig. 1 is discussed.
Our motivation for investigating the possibility for deriving an
analytical solution for first-order interaction problems stems
from studies in the field of satellite-based microwave remote
sensing. The effects induced by a vegetative coverage of a soil
surface on the backscatter in the microwave domain are com-
monly treated via a zero-order approximation of the solution to
the radiative transfer equation (RTE) [1–5]. However, first- and
higher-order interaction contributions are either added via em-
pirically driven correction terms or assumed to be negligible to
omit the high computational effort and furthermore to circum-
vent the problem of under-determination since the required
bistatic scattering properties of the vegetative coverage and
the soil surface are generally rarely known. In the following,
it is shown that, by using approximate analytic functions to
represent the bistatic scattering properties, an approximation
of the first-order contributions can be gained with reasonable
computational effort, providing a consistent estimate of neces-
sary corrections (applied to microwave backscatter observa-
tions) in the retrieval of soil and vegetation characteristics.
For the sake of generality, the scattering distributions of the
surface and the covering layer are defined as general functions.

To clarify the appearing equations, the representation of
the solution to the RTE in terms of a series expansion in
the scattering coefficient κs of the covering layer (following
Fung [6] and Ulaby et al. [7]), based on the assumption that
the covering layer can be considered as a weakly scattering
medium, is reviewed. The zero-order approximation to this
expansion is the widely known ω − τ (or water-cloud) model
as used in the remote sensing community [8]. In Section 3,
the general solution to the first-order interaction contribution
is presented in detail. Since the solution is based on an
expansion of the azimuthally averaged product of the bidirec-
tional reflectance distribution function (BRDF) and the scatter-
ing-phase function p̂ of the covering layer, the existence of
those expansion coefficients is briefly discussed in Section 4.

2. SUCCESSIVE ORDERS OF SCATTERING
APPROXIMATION TO THE RTE

A. Separation of the RTE
The well-known RTE [9], governing the alteration of a beam of
specific intensity I f �r;Ω� propagating within a scattering and
absorbing media described via:

• an extinction coefficient κex
• a scattering coefficient κs along with
• a scattering phase function p̂�Ωi → Ωs� describing the

directionality of the scattered radiation,
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is given by (neglecting the emission contributions)

cos�θ�∂I f �r;Ω�
∂r

� −κexI f �r;Ω�

� κs

ZZ
Ω 0�4π

I f �r;Ω 0�p̂�Ω 0 →Ω�dΩ 0; (1)

where p̂�Ωi → Ωs� has to obey the normalization conditionZ
2π

0

Z
π

0
p̂�Ωi → Ω 0� sin�θ 0�dθ 0dϕ 0 � 1: (2)

Ω � �θ;ϕ� hereby denotes the pair of polar and azimuthal
angles, and dΩ� sin�θ�dθdϕ denotes the differential solid angle.

In order to increase the readability, the radial and azimuthal
dependency will be suppressed in the following as long as their
appearance is clearly deducible.

Noting that the integral appearing in Eq. (1) can be written
(without loss of generality) asZ

π

θ 0�0

I f �θ 0�p̂�θ 0 → θ� sin�θ 0�dθ 0

�
Z

π∕2

θ 0�0

�I f �θ 0�p̂�θ 0 → θ� sin�θ 0�

� I f �π − θ 0�p̂�π − θ 0 → θ� sin�θ 0��dθ 0; (3)

one can perform a separation of the RTE into a set of two
coupled equations by splitting the specific intensity into an
upwelling and downwelling part and introducing the upwelling
and downwelling angle as illustrated in Fig. 2

upwelling gradiation: If θ ∈ �0; π∕2�
θu ≔ θ and I��θu�≔ I f �θu�; (4)

downwelling radiation: If θ ∈ �π∕2; π�
θd ≔ π − θ and I−�θd �≔ I f �π − θd �: (5)

Writing Eq. (1) separately for θ ∈ �0; π∕2� and θ ∈ �π∕2; π�,
inserting the integral representation Eq. (3), and introducing
the new angles as defined in Eqs. (4) and (5) as well as the
specific notation for upwelling and downwelling radiation, one
finds the following separation of the RTE (with the shorthand
notation μ � cos�θ�):

θ ∈ �0;π∕2�: μu
∂I��μu�

∂r
� κexI��μu� � F��μu�; (6)

θ ∈ �π∕2; π�: − μd
∂I −�μd �

∂r
� κexI−�μd � � F −�μd �; (7)

where the source functions F��μ� are given by

F��μ� � κs

Z
2π

0

Z
1

0

�I��μ 0�p̂�μ 0 → �μ�

� I−�μ 0�p̂�−μ 0 → �μ��dμ 0dϕ 0: (8)

This set of coupled integro-differential equations can now
be used as a starting point for calculating the backscattered
radiation from a uniformly illuminated rough surface covered
by a layer of scattering and absorbing material.

B. Problem Geometry and Boundary Conditions
In the following subsection, the problem geometry and boun-
dary conditions are specified. As illustrated in Fig. 3, we con-
sider a rough surface separating a homogeneous ground layer
from a volume layer of depth d containing a scattering and
absorbing media.

The top of the volume layer is assumed to be uniformly
illuminated with an incident intensity I inc incoming from a
single incidence direction Ωi � �θi ;ϕi�. Thus, the boundary
condition at z � 0 can be written as

I −�z � 0; μd � � I incδ�μd − μ0�δ�ϕd − ϕi�; (9)

where δ�x − x0� denotes the Dirac-delta function.
The scattering properties of the surface are described by

means of BRDF�Ωi → Ωs�, relating the downwelling inten-
sity incident on the ground surface to the upwelling intensity
emerging from the ground surface, i.e.,

I��z � −d ; μu� �
Z

2π

0

Z
1

0

I −�z � −d ; μ 0�

× BRDF�−μ 0 → μu�μ 0dμ 0dϕ: (10)

For physical consistency, the BRDF has to be normalized viaZ
2π

0

Z
π∕2

0

BRDF�θi → θ 0� cos�θ 0�

× sin�θ 0�dθ 0dϕ 0 � ρ�θi ;ϕi� ≤ 1; (11)

Fig. 1. Schematic illustration of the model geometry and the indi-
vidual contributions considered in the calculated intensity.

Fig. 2. Angles introduced in the separation of the RTE. Fig. 3. Illustration of the problem geometry.
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where ρ�θi ;ϕi� is the directional-hemispherical reflectance [10],
describing the fraction of radiation being re-scattered into the
upper hemisphere.

Furthermore, in the following, both the volume scattering
phase function and the BRDF are assumed to obey reciprocity:

BRDF�θi → θs� � BRDF�θs → θi�; (12)

p̂�θi → θs� � p̂�θs → θi�: (13)

C. Formulation of the Scattering Series
Since Eqs. (6) and (7) still contain the unknown source terms
F��μ�, which contain integrals of the desired upwelling and
downwelling intensities I��μ�, solving this set of equations
directly is generally not possible. Therefore, we restrict the
following discussion to a weakly scattering volume layer
�κs ≪ 1�, and assume contributions of O�κ2s � to be negligible.
Thus, we seek an expansion of the solution in terms of a power
series in κs.

In order to generate such a series, we will first generate a
formal solution by considering the source terms F��μ� to be
known functions. Doing so, one can directly solve Eqs. (6)
and (7) by using the method of variation of constants, which
leads to the following formal solutions for upwelling and
downwelling radiation:

I��z;μu� � I��−d ;μu�exp
�
−
κex
μu

�z� d �
�

�
Z

z

−d

1

μu
exp

�
−
κex
μu

�z − z 0�
�
F��z 0;μu�dz 0; (14)

I−�z; μd � � I −�0; μd � exp
�
κex
μd

z
�

�
Z

0

z

1

μd
exp

�
κex
μd

�z − z 0�
�
F −�z 0; μd �dz 0: (15)

Inserting the boundary conditions Eqs. (9) and (10) for the
appearing boundary terms I��−d ; μu� and I −�0; μd �, a first-
order expansion of the solution for the upwelling radiation
I��μu� in terms of κs can be found by successively inserting
the gained solutions in the source terms Eq. (8) and neglecting
all terms of O�κ2s � or higher. Performing the calculation, one
arrives at the following representation for the upwelling
radiation:

I��z; μu� � I�surf � �I�vol � I�int � I�svs�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
terms proportional to κs

�O�κ2s �: (16)

Assuming the interaction coefficients of the volume layer
(κs ; κex) to be uniform within the volume layer, the first-order
contributions to the upwelling radiation at the top of the layer
(i.e., z � 0) in direction Ωex � �μex;ϕex� are found to be given
by the surface contribution

I�surf �μ0; μex� � I inc exp
�
−
τ

μ0
−

τ

μex

�
μ0BRDF�−μ0 → μex�;

(17)

the volume contribution

I�vol�μ0;μex� �
I incωμ0
μ0� μex

�
1 − exp

�
−
τ

μ0
−

τ

μex

��
p̂�−μ0 → μex�;

(18)

and the first-order interaction contribution

I�int�μ0; μex� � I incμ0ω
�
exp

�
−

τ

μex

�
F int�μ0; μex�

� exp

�
−
τ

μ0

�
F int�μex; μ0�

�
; (19)

where the remaining interaction integral F int is given by

F int�μ0; μex� �
Z

2π

0

Z
1

0

μ 0

μ0 − μ
0

�
exp

�
−
τ

μ0

�
− exp

�
−
τ

μ 0

��

× p̂�μ0 → μ 0�BRDF�−μ 0 → μex�dμ 0dϕ 0; (20)

and the following quantities have been introduced:

Single Scattering Albedo: ω � κs
κex

; (21)

Optical Depth: τ � κexd : (22)

The third first-order contribution appearing in Eq. (16) de-
noted by I svs would describe radiation that has been scattered
once by the volume layer and twice by the surface. Even though
this contribution is also directly proportional to κs, its contri-
bution will not be considered in the following since it is a
second-order surface scattering contribution. Validation of the
negligibility of this contribution has to be done with respect to
the considered problem specifications using, e.g., numerical
simulations. (For microwave scattering from forest canopies,
this can be seen, for example, from the simulations in [11].)

3. GENERAL ANALYTIC SOLUTION TO THE
FIRST-ORDER INTERACTION CONTRIBUTION

In the following, it will be shown that an analytic solution to
the remaining integral of the interaction contribution can be
found by assuming that the following series expansion of the
ϕ-averaged product of the BRDF and the volume scattering
phase function p̂ exists and that the functions f n of this expan-
sion are knownZ

2π

0
p̂�μ0 → μs�BRDF�−μs → μex�dϕs �

X∞
n�0

f n�μ0; μex�μns :

(23)

Inserting the expansion of Eq. (23) in Eq. (20), the integral
simplifies to

F int�μ0;μex��
X∞
n�0

f n�μ0;μex��exp�−τ∕μ0�A�n�1�−B�n�1��;

(24)

where the remaining integrals A�N � and B�N � are given by

A�N � �
Z

1

0

�μ 0�N
μ0 − μ

0 dμ
0; (25)

B�N � �
Z

1

0

�μ 0�N
μ0 − μ

0 exp�−τ∕μ 0�dμ 0: (26)
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Since both integrals encounter a singularity at μ 0 � μ0,
which is certainly located on the integration path since
μ0 ∈ �0; 1�, a meaningful solution will be obtained in the
following by means of the Cauchy principal value.

For a function f �x� encountering a singularity at
x0 ∈ �a; b�, the Cauchy principal value is defined by [12]

P
Z

b

a
f �x�dx � lim

ϵ→0

�Z
x0−ϵ

a
f �x�dx �

Z
b

x0�ϵ
f �x�dx

�
:

(27)

In order to find a solution to the integrals Eqs. (25) and
(26), we notice that we can expand the term �μ 0�N∕
�μ0 − μ 0� appearing in the integrands as

�μ 0�N
μ0 − μ

0 �
μN0

μ0 − μ
0 −

XN
k�1

μN−k
0 �μ 0�k−1: (28)

Inserting this expansion in Eqs. (25) and (26) leads to

A�N � �
Z

1

0

μN0
μ0 − μ

0 dμ
0 −

XN
k�1

Z
1

0

μN−k
0 �μ 0�k−1dμ 0; (29)

B�N � �
Z

1

0

μN0
μ0 − μ

0 exp�−τ∕μ 0�dμ 0

−
XN
k�1

Z
1

0

μN−k
0 �μ 0�k−1 exp�−τ∕μ 0�dμ 0: (30)

As shown in Appendix A.1, the Cauchy principal values of
the remaining integrals are found to be given by

P
Z

1

0

μN0
μ0 − μ

0 dμ
0 � μN0 ln

�
μ0

1 − μ0

�
; (31)

Z
1

0

μN−k
0 �μ 0�k−1dμ 0 � μN−k

0

k
; (32)

P
Z

1

0

μN0
μ0 − μ

0 exp�−τ∕μ 0�dμ 0 � μN0 �Ei�−τ� − exp�−τ∕μ0�

× Ei�τ∕μ0 − τ��; (33)

P
Z

1

0

μN−k
0 �μ 0�k−1 exp�−τ∕μ 0�dμ 0 � μN−k

0 Ek�1�τ�; (34)

where Ei�x� denotes the exponential integral function, and
En�x� denotes the generalized exponential integral.

Inserting Eqs. (31)–(34) in Eqs. (29) and (30), analytic
solutions for the integrals A�N � and B�N � are given by

A�N � � μN0

�
ln

�
μ0

1 − μ0

�
−
XN
k�1

μ−k0
k

�
; (35)

B�N � � μN0

�
Ei�−τ� − exp�−τ∕μ0�Ei�τ∕μ0 − τ�

−
XN
k�1

Ek�1�τ�
μk0

�
: (36)

Finally, inserting Eqs. (35) and (36) in Eq. (24), an analytic
representation of the interaction integral can be given by

F int�μ0; μex� �
X∞
n�0

f n�μ0; μex�μn�1
0

�
exp�−τ∕μ0� ln

�
μ0

1 − μ0

�

− Ei�−τ� � exp�−τ∕μ0�Ei�τ∕μ0 − τ�

�
Xn�1

k�1

μ−k0

�
Ek�1�τ� −

exp�−τ∕μ0�
k

��
: (37)

4. ON THE EXISTENCE OF THE EXPANSION
COEFFICIENTS

The existence of the f n coefficients Eq. (23) as needed to com-
pute Eq. (37) is in general not assured. If, however, the phase
function p̂ and the BRDF can be expressed in terms of a power
series of a generalized scalar product �îTMj · ŝ� between an in-
coming (î) and an outgoing (ŝ) vector as stated below, it will be
shown in the following that the coefficients can (in principle)
always be computed (îT denotes the transpose of the vector î).

Using spherical coordinates, we have

î �

0
B@

sin�θi� cos�ϕi�
sin�θi� sin�ϕi�

cos�θi�

1
CA ŝ �

0
B@

sin�θs� cos�ϕs�
sin�θs� sin�ϕs�

cos�θs�

1
CA; (38)

cos�Θ̃i� � îTMi · ŝ with Mj �

0
B@

ai 0 0

0 bi 0

0 0 ci

1
CA; (39)

and, therefore,

cos�Θ̃i� � îTMi · ŝ � ai cos�θi� cos�θs�
� sin�θi� sin�θs��bi cos�ϕi� cos�ϕs�
� ci sin�ϕi� sin�ϕs��: (40)

The diagonal elements �ai; bi; ci� of the weighting matrix
Mi are hereby seen as fitting parameters that allow considera-
tion of off-specular and anisotropic effects as proposed in [13].

Assuming that both p̂ and the BRDF can be represented as a
power series in a generalized scattering angle cos �Θ̃i�n, we have

p̂ ∼
X∞
n�0

pn cos �Θ̃1�n BRDF ∼
X∞
n�0

bn cos �Θ̃2�n: (41)

Expanding cos �Θ̃i�n in the above representations, the series
can be written as (with b̃i � bi cos�ϕi� and c̃i � ci sin�ϕi�)

p̂ ∼
X∞
n�0

fαn � βn�b̃1 cos�ϕs� � c̃1 sin�ϕs��ng; (42)

BRDF ∼
X∞
n�0

fγn � ηn�b̃2 cos�ϕs� � c̃2 sin�ϕs��ng; (43)

where the coefficients αn; βn; γn, and ηn can furthermore be
represented as a series of the form

αn�
X
i
�αn�i cos�θs�i βn� sin�θs�n

X
i
�βn�i cos�θs�i ; (44)

γn �
X
i
�γn�i cos �θs�i ηn � sin �θs�n

X
i
�ηn�i cos �θs�i :

(45)
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For the sake of compactness, the dependencies of the coef-
ficients �αn�i ; �βn�i ; �γn�i ; �ηn�i on the incoming and outgoing
directions �θ1;2;ϕ1;2� are not mentioned explicitly. If the func-
tions are defined as in Eq. (23), the angles would correspond to
�θ1;ϕ1� � �θex;ϕex� and �θ2;ϕ2� � �θ0;ϕ0�.

Using the above representations Eqs. (42) and (43), the
product between the BRDF and the volume scattering phase
function can be expanded by rearranging the double series (also
referred to as Cauchy-product formula) [14], i.e., �P∞

p�0 ap�
�P∞

q�0 bq� �
P∞

n�0 cn with cn �
Pn

k�0�akbn−k�,

BRDF · p̂ �
X∞
n�0

Xn
k�0

fαn−kγk

� βn−kγk �b̃1 cos�ϕs� � c̃1 sin�ϕs��n−k

� ηkαn−k�b̃2 cos�ϕs� � c̃2 sin�ϕs��k

� ηkβn−k �b̃1 cos�ϕs� � c̃1 sin�ϕs��n−k

× �b̃2 cos�ϕs� � c̃2 sin�ϕs��kg: (46)

Integrating the above representation with respect to ϕs, we
find for the appearing integralsZ

2π

0

�b̃1 cos�ϕs� � c̃1 sin�ϕs��ndϕs

�≠ 0 if n…even

0 if n…odd
;

(47)

Z
2π

0

�b̃1 cos�ϕs� � c̃1 sin�ϕs��k

× �b̃2 cos�ϕs� � c̃2 sin�ϕs��n−kdϕs

�
≠ 0 if n…even
0 if n…odd

:

(48)

Applying this result to the representation Eq. (46), one can
see that in the ϕs-integrated product only even coefficients of
βn and ηn or products of the form β�even�η�even� or β�odd�η�odd�
appear. In terms of the θs dependency of the residual terms,
we thus find from Eqs. (44) and (45) that they all consist
of either powers of cos�θs� or even powers of sin�θs�, which
can consequently always be represented in terms of cos�θs�
using sin �θs�2n � �1 − cos �θs�2�n.

This therefore proves that the ϕs-integrated product of the
BRDF and p̂ as given in Eq. (41) can always be represented
in terms of a series expansion in cos�θs�, ensuring the existence
of the f n coefficients needed to compute Eq. (37).

A few well-known analytic phase functions obeying this
criterion are the isotropic phase function, the Rayleigh phase
function, the Henyey–Greenstein and combined Henyey–
Greenstein–Rayleigh phase function [15,16], as well as the Mie
scattering phase function in terms of a power series expansion
as proposed in [17] or general approximated phase functions
using, for example, the G-δ-L method as proposed in [18].
Therein, a solution for the δ part of the phase function can
readily be found since the integral Eq. (20) can directly be
solved for p̂�μ 0 → μex� ∝ δ�μ 0 − μex�δ�ϕ 0 − ϕex�.

Furthermore, possible analytic BRDF are, for example,
given by the ideal diffuse (Lambert) BRDF, arbitrary cosine lobe
models [19], or the Lafortune model [13].

Examples using a Rayleigh and a Henyey–Greenstein phase
function for the volume scattering phase function as well as a
cosine lobe for the BRDF are given in Appendix A.2.

5. CONCLUSION

It has been shown that the first-order correction to the scattered
signal originating from a rough surface covered by a tenuous
distribution of particulate media can be evaluated analytically
by using approximate functions to represent the surface BRDF
and the scattering-phase function of the covering layer.

The gained solution remains applicable for arbitrary choices
of surface and covering layer properties as long as the azimu-
thally averaged product of the used BRDF and the scattering-
phase function can be represented in terms of a power series in
the scattering angle. Moreover, in Section 4, it was proven that
such a representation is always possible as long as the BRDF
and the scattering-phase function can be expressed as a power
series in a generalized scalar product between an incoming and
an outgoing direction.

Therefore, the method is capable of providing a consistent,
analytical solution to the first-order interaction contribution of
the successive orders of scattering approximation to the RTE
for a wide range of possible choices for the scattering character-
istics of both the surface and covering layers.

APPENDIX A

A. EXPLICIT SOLUTIONS FOR THE APPEARING
INTERACTION INTEGRALS
1. Calculation of Eq. (31)
In order to find the principal value of Eq. (31), we first notice
that the antiderivative of the integrand is given byZ

μN0
μ0 − μ

0 dμ
0 � −μN0 ln�μ0 − μ 0� � const: (A1)

Inserting this result in the definition of the principal value in
Eq. (27), we find

P
Z

1

0

μN0
μ0 − μ

0 dμ
0 � μN0 limϵ→0

�ln�μ0� � ln�−ϵ�

− ln�μ0 − 1� − ln�ϵ��: (A2)

Using the identities ln�a · b�1� � ln�a� � ln�b�, we find
that the limit can readily be evaluated. Thus, the solution to
the integral is given by

P
Z

1

0

μN0
μ0 − μ

0 dμ
0 � μN0 limϵ→0

�ln�−ϵμ0� − ln�ϵ�μ0 − 1���

� μN0 limϵ→0

�
ln

�
−ϵμ0

ϵ�μ0 − 1�

��

� μN0 ln

�
μ0

1 − μ0

�
:

2. Calculation of Eq. (33)
A solution to Eq. (33) can only be given in terms of the
exponential integral function Ei�x�, which is defined in [12] as
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Ei�x� � P
Z

x

−∞

exp�t�
t

dt with x > 0: (A3)

To identify the integrand as an exponential integral, we split
the appearing fraction as follows:

1

μ0 − μ
0 �

1

μ 0 �
μ0

μ 0�μ0 − μ 0� : (A4)

Inserting this representation, we find

P
Z

1

0

μN0
μ0 − μ

0 exp�−τ∕μ 0�dμ 0 � μN0 P
Z

1

0

exp�−τ∕μ 0�
μ 0 dμ 0

� μN0 P
Z

1

0

μ0 exp�−τ∕μ 0�
μ 0�μ0 − μ 0� :

(A5)

The first integral can now directly be interpreted as Ei�−τ�
by substituting t � −τ∕μ 0, i.e.,

P
Z

1

0

exp�−τ∕μ 0�
μ 0 dμ 0 �

				 t � −τ∕μ 0

dμ 0 � τ∕t2d t

� P
Z

−τ

−∞

exp�t�
t

dt � Ei�−τ�: (A6)

In order to find the necessary substitution for the second
integral, we notice that

P
Z

1

0

exp�f �x�� f �x�
0

f �x� dx

� P
Z

f �1�

f �0�

et

t
dt � Ei�f �1�� if

�
f �0� � −∞
f �1� ∈ R

;

a possible candidate for a function f �μ 0�, which can be used to
identify the second integral of Eq. (A5), is given by

f �μ 0� � τ

μ 0 −
τ

μ0
⇒

f 0�μ 0�
f �μ 0� � −

μ0
μ 0�μ0 − μ 0� : (A7)

Using this function, we therefore find

P
Z

1

0

μ0
μ 0�μ0 − μ 0� exp�−τ∕μ 0�

� − exp

�
−
τ

μ0

�
P
Z

1

0

�
−

μ0
μ 0�μ0 − μ 0�

�
exp

�
−
τ

μ 0 �
τ

μ0

�

� − exp

�
−
τ

μ0

�
Ei
�
τ −

τ

μ0

�
: (A8)

Combining the results of Eqs. (A6) and (A8), we thus find

P
Z

1

0

μN0
μ0 − μ

0 exp

�
−
τ

μ0

�
dμ 0

� μN0

�
Ei�−τ� − exp

�
−
τ

μ0

�
Ei
�
τ −

τ

μ0

��
: (A9)

3. Calculation of Eq. (34)
A solution to Eq. (34) can similarly be given in terms of the
generalized exponential integral function En�x�, which is defined
in [12] as

En�x� � P
Z

∞

1

exp�−xt�
tn

dt: (A10)

The identification of the integral as a generalized exponential
integral function can readily be performed via

P
Z

1

0

μN−k
0 �μ 0�k−1 exp�−τ∕μ 0�dμ 0 �

				 t � �μ 0�−1
dμ 0 � −d t∕t2

� μN−k
0 P

Z
∞

1

exp�−τt�
tk�1

dt � μN−k
0 Ek�1�τ� (A11)

B. Example
In the following, two examples are shown. First, the volume
scattering phase function and the BRDF are given by the
Rayleigh phase function in Eq. (A12) and a cosine lobe imple-
mented using a 10 coefficient Legendre series approximation
given in Eq. (A13)

p̂�θi ; θs� �
3

16π
�1� cos �Θ�2�; (A12)

BRDF�θi ; θs� � Max�cos �Θ 0�5; 0�

�
X∞
n�0

�2n� 1�15 ffiffiffi
π

p

16Γ
�
7−n
2

�
Γ
�
8�n
2

�Pn�cos�Θ 0�� (A13)

with

cos�Θ� � cos�θi� cos�θs� � sin�θi� sin�θs� cos�ϕi − ϕs�;
(A14)

cos�Θ 0� � − cos�θi� cos�θs� � sin�θi� sin�θs� cos�ϕi − ϕs�.
(A15)

For the second example, the scattering distribution of
the volume has been changed from the equally forward-
and backward-scattering Rayleigh distribution to a primarily
forward-scattering Henyey–Greenstein phase function in
Eq. (A16) with an asymmetry factor of t � 0.7, which has
been implemented using a 20 coefficient Legendre series given
in Eq. (A17). The used functions are illustrated in Fig. 4, and
the resulting distributions are shown in Figs. 5–8.

Fig. 4. Illustration of the scattering distributions in Eqs. (A12),
(A13), and (A16) as used in their following examples.
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p̂�θi ; θs� �
1

4π

1 − t2

�1� t2 − 2t cos�Θ��3∕2 (A16)

� 1

4π

X∞
n�0

�2n� 1�tnPn�cos�Θ��: (A17)

In the first example, one can see that the interaction con-
tribution is much more significant for the backscattered

radiation since the volume contribution is merely negligible
for a primarily forward-scattering coverage, and the surface
contribution of a cosine lobe decreases rapidly with increasing
incidence angle.

Funding. Seventh Framework Programme (FP7)
(606971).

REFERENCES
1. R. Bindlish and A. P. Barros, “Parameterization of vegetation back-

scatter in radar-based, soil moisture estimation,” Remote Sens.
Environ. 76, 130–137 (2001).

2. O. Taconet, D. Vidal-Madjar, C. Emblanch, and M. Normand, “Taking
into account vegetation effects to estimate soil moisture from C-band
radar measurements,” Remote Sens. Environ. 56, 52–56 (1996).

3. J. Alvarez-Mozos, J. Casali, M. Gonzalez-Audicana, and N. Verhoest,
“Assessment of the operational applicability of RADARSAT-1 data for
surface soil moisture estimation,” IEEE Trans. Geosci. Remote Sens.
44, 913–924 (2006).

4. H. Lievens and N. Verhoest, “On the retrieval of soil moisture in wheat
fields from L-band SAR based on water cloud modeling, the IEM, and
effective roughness parameters,” IEEE Geosci. Remote Sens. Lett. 8,
740–744 (2011).

Fig. 5. Visualization of the resulting contributions in Eqs. (17)–(19)
to the scattered intensity in linear scale as a function of the outgoing
direction �θex;ϕex� using the phase functions of Fig. 4’s Example 1 with
θ0 � 45°; τ � 0.7, and ω � 0.3.

Fig. 6. Visualization of the resulting contributions in Eqs. (17)–(19)
to the scattered intensity in linear scale as a function of the outgoing
direction �θex;ϕex� using the phase functions of Fig. 4’s Example 2 with
θ0 � 45°; τ � 0.7, and ω � 0.3.

Fig. 7. Illustration of the backscattering contributions [Eqs. (17)–(19)
with θex � θ0 and ϕex � π] in decibel scale using the phase functions of
Fig. 4’s Example 1 with τ � 0.7 and ω � 0.3.

Fig. 8. Illustration of the backscattering contributions [Eqs. (17)–(19)
with θex � θ0 and ϕex � π] in decibel scale using the phase functions of
Fig. 4’s Example 2 with τ � 0.7 and ω � 0.3.

Research Article Vol. 55, No. 20 / July 10 2016 / Applied Optics 5385



5. W. T. Crow, W. Wagner, and V. Naeimi, “The impact of radar inci-
dence angle on soil-moisture-retrieval skill,” IEEE Geosci. Remote
Sens. Lett. 7, 501–505 (2010).

6. A. Fung, Microwave Scattering and Emission Models and Their
Applications (Artech House, 1994).

7. F. Ulaby, R. Moore, and A. Fung,Microwave Remote Sensing (Artech
House, 1986), Vol. 3.

8. E. P. W. Attema and F. T. Ulaby, “Vegetation modeled as a water
cloud,” Radio Sci. 13, 357–364 (1978).

9. S. Chandrasekhar, Radiative Transfer (Clarendon, 1950).
10. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and

T. Limperis, Geometric Considerations and Nomenclature for
Reflectance, (National Bureau of Standards, 1977).

11. P. Liang, L. E. Pierce, and M. Moghaddam, “Radiative transfer model
for microwave bistatic scattering from forest canopies,” IEEE Trans.
Geosci. Remote Sens. 43, 2470–2483 (2005).

12. F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST
Handbook of Mathematical Functions, 1st ed. (Cambridge University,
2010).

13. E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, “Non-
linear approximation of reflectance functions,” in Proceedings of
Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH) (ACM/Addison-Wesley, 1997), pp. 117–126.

14. G. Arfken, H. Weber, and F. Harris, Mathematical Methods for
Physicists, 7th ed. (Elsevier, 2013).

15. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,”
Astrophys. J. 93, 70–83 (1941).

16. Q. Liu and F. Weng, “Combined Henyey–Greenstein and Rayleigh
phase function,” Appl. Opt. 45, 7475–7479 (2006).

17. M. A. Box, “Power series expansion of the Mie scattering phase
function,” Aust. J. Phys. 36, 701–706 (1983).

18. Q. Yin and S. Luo, “An approximation frame of the particle scattering
phase function with a delta function and a Legendre polynomial
series,” in Light, Energy and the Environment (Optical Society of
America, 2015), paper EW3A.3.

19. B. T. Phong, “Illumination for computer generated pictures,” ACM
Commun. 18, 311–317 (1975).

5386 Vol. 55, No. 20 / July 10 2016 / Applied Optics Research Article



Bibliography

[1] E. P. W. Attema and Fawwaz T. Ulaby. Vegetation modeled as a water
cloud. Radio Science, 13(2):357–364, 1978. ISSN 1944-799X. doi: 10.1029/
RS013i002p00357. URL http://dx.doi.org/10.1029/RS013i002p00357.

[2] Brian W. Barrett, Edward Dwyer, and Pádraig Whelan. Soil moisture re-
trieval from active spaceborne microwave observations: An evaluation of cur-
rent techniques. Remote Sensing, 1(3):210–242, 2009. ISSN 2072-4292. doi:
10.3390/rs1030210. URL http://www.mdpi.com/2072-4292/1/3/210.

[3] G. Macelloni, S. Paloscia, P. Pampaloni, F. Marliani, and M. Gai. The rela-
tionship between the backscattering coefficient and the biomass of narrow and
broad leaf crops. IEEE Transactions on Geoscience and Remote Sensing, 39
(4):873–884, Apr 2001. ISSN 0196-2892. doi: 10.1109/36.917914.

[4] M. Kurum, R. H. Lang, P. E. O’Neill, A. T. Joseph, T. J. Jackson, and M. H.
Cosh. A first-order radiative transfer model for microwave radiometry of forest
canopies at l-band. IEEE Transactions on Geoscience and Remote Sensing, 49
(9):3167–3179, Sept 2011. ISSN 0196-2892. doi: 10.1109/TGRS.2010.2091139.

[5] M. Kurum, P. O’Neill, and R. Lang. Effective albedo of vegetated terrain at
l-band. In Microwave Radiometry and Remote Sensing of the Environment
(MicroRad), 2012 12th Specialist Meeting on, pages 1–4, March 2012. doi:
10.1109/MicroRad.2012.6185252.

[6] Raphael Quast and Wolfgang Wagner. Analytical solution for first-order scat-
tering in bistatic radiative transfer interaction problems of layered media.
Appl. Opt., 55(20):5379–5386, Jul 2016. doi: 10.1364/AO.55.005379. URL
http://ao.osa.org/abstract.cfm?URI=ao-55-20-5379.

[7] Raphael Quast, Wolfgang Wagner, and F.J.Mahringer. Formulation of the
successive orders of scattering series for the radiative transfer equation applied
to 2-layered media. (TU Wien Project Thesis), 2015.

[8] S. Chandrasekhar. Radiative Transfer. Clarendon Press, 1950.

[9] F.T. Ulaby, R.K. Moore, and A.K. Fung. Microwave Remote Sensing (Vol.
1-3). Artech House, 1986.

[10] Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark.

68

http://dx.doi.org/10.1029/RS013i002p00357
http://www.mdpi.com/2072-4292/1/3/210
http://ao.osa.org/abstract.cfm?URI=ao-55-20-5379


Bibliography

NIST Handbook of Mathematical Functions 1st Edition. Cambridge University
Press, 2010. ISBN 0521140633, 9780521140638.

[11] E.P.F. Lafortune, S.C. Foo, K.E. Torrance, and D.P. Greenberg. Non-linear
approximation of reflectance functions. Proceedings of SIGGRAPH’97, pages
117–126, 1997.

[12] G.B. Arfken, H.J. Weber, and F.E. Harris. Mathematical Methods for Physicists
7th Edition. Elsevier Academic Press, 2013. ISBN 9780123846556.

[13] G.E. Thomas and K. Stamnes. Radiative Transfer in the Atmosphere
and Ocean. Atmospheric and space science. Cambridge University Press,
2002. ISBN 9780521890618. URL https://books.google.at/books?id=
DxR2nEp0CUIC.

[14] L. G. Henyey and J. L. Greenstein. Diffuse radiation in the galaxy. Astrophysical
Journal, 93:70–83, Jan 1941. doi: 10.1086/144246.

[15] Vladimir I. Haltrin. One-parameter two-term henyey-greenstein phase func-
tion for light scattering in seawater. Appl. Opt., 41(6):1022–1028, Feb 2002.
doi: 10.1364/AO.41.001022. URL http://ao.osa.org/abstract.cfm?URI=
ao-41-6-1022.

[16] Quanhua Liu and Fuzhong Weng. Combined henyey-greenstein and rayleigh
phase function. Appl. Opt., 45(28):7475–7479, Oct 2006. doi: 10.1364/AO.45.
007475. URL http://ao.osa.org/abstract.cfm?URI=ao-45-28-7475.

[17] T. R. Fernandes, R. F. S. Caldeirinha, M. O. Al-nuaimi, and J. Richter. Radia-
tive energy transfer based model for radiowave propagation in inhomogeneous
forests. In IEEE Vehicular Technology Conference, pages 1–5, Sept 2006. doi:
10.1109/VTCF.2006.54.

[18] J. Richter, M. Al-Nuaimi, and R. Caldeirinha. Phase function measurement
for modelling radiowave attenuation and scatter in vegetation based on the
theory of radiative energy transfer. In Personal, Indoor and Mobile Radio
Communications, 2002. The 13th IEEE International Symposium on, volume 1,
pages 146–150 vol.1, Sept 2002. doi: 10.1109/PIMRC.2002.1046678.

[19] F. K. Schwering, E. J. Violette, and R. H. Espeland. Millimeter-wave prop-
agation in vegetation: experiments and theory. IEEE Transactions on Geo-
science and Remote Sensing, 26(3):355–367, May 1988. ISSN 0196-2892. doi:
10.1109/36.3037.

[20] L. O. Reynolds and N. J. McCormick. Approximate two-parameter phase func-
tion for light scattering. J. Opt. Soc. Am., 70(10):1206–1212, Oct 1980. doi:
10.1364/JOSA.70.001206. URL http://www.osapublishing.org/abstract.
cfm?URI=josa-70-10-1206.

69

https://books.google.at/books?id=DxR2nEp0CUIC
https://books.google.at/books?id=DxR2nEp0CUIC
http://ao.osa.org/abstract.cfm?URI=ao-41-6-1022
http://ao.osa.org/abstract.cfm?URI=ao-41-6-1022
http://ao.osa.org/abstract.cfm?URI=ao-45-28-7475
http://www.osapublishing.org/abstract.cfm?URI=josa-70-10-1206
http://www.osapublishing.org/abstract.cfm?URI=josa-70-10-1206


Bibliography

[21] Martin Hammer, Anna N Yaroslavsky, and Dietrich Schweitzer. A scattering
phase function for blood with physiological haematocrit. Physics in Medicine
and Biology, 46(3):N65, 2001. URL http://stacks.iop.org/0031-9155/46/
i=3/a=402.

[22] Jean-Jacques Greffet and Manuel Nieto-Vesperinas. Field theory for gener-
alized bidirectional reflectivity: derivation of helmholtz’s reciprocity princi-
ple and kirchhoff’s law. J. Opt. Soc. Am. A, 15(10):2735–2744, Oct 1998.
doi: 10.1364/JOSAA.15.002735. URL http://josaa.osa.org/abstract.
cfm?URI=josaa-15-10-2735.

[23] W. C. Snyder. Reciprocity of the bidirectional reflectance distribution function
(brdf) in measurements and models of structured surfaces. IEEE Transactions
on Geoscience and Remote Sensing, 36(2):685–691, Mar 1998. ISSN 0196-2892.
doi: 10.1109/36.662750.

[24] Marc Leroy. Deviation from reciprocity in bidirectional reflectance. Journal of
Geophysical Research: Atmospheres, 106(D11):11917–11923, 2001. ISSN 2156-
2202. doi: 10.1029/2000JD900667.

[25] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.
Geometric considerations and nomenclature for reflectance. National Bureau
of Standards, 1977.

[26] Hung-Wei Lee, Kun-Shan Chen, Jeng Chuan Wang, Tzong-Dar Wu, Jong-
Sen Lee, and J. C. Shi. Extension of advanced integral equation model for
calculations of fully polarimetric scattering coefficient from rough surface. In
2007 IEEE International Geoscience and Remote Sensing Symposium, pages
73–76, July 2007. doi: 10.1109/IGARSS.2007.4422733.

[27] Bui Tuong Phong. Illumination for computer generated pictures. Commu-
nications of the ACM, 18(6):311–317, June 1975. ISSN 0001-0782. doi:
10.1145/360825.360839.

[28] K. Tomiyasu. Relationship between and measurement of differential scattering
coefficient ( sigma;0) and bidirectional reflectance distribution function (brdf).
IEEE Transactions on Geoscience and Remote Sensing, 26(5):660–665, Sep
1988. ISSN 0196-2892. doi: 10.1109/36.7692.

[29] Fred E. Nicodemus. Directional reflectance and emissivity of an opaque surface.
Appl. Opt., 4(7):767–775, Jul 1965. doi: 10.1364/AO.4.000767. URL http:
//ao.osa.org/abstract.cfm?URI=ao-4-7-767.

[30] A. Monerris, A. Camps, and M. Vall-llossera. Empirical determination of the
soil emissivity at l-band: Effects of soil moisture, soil roughness, vine canopy,
and topography. In 2007 IEEE International Geoscience and Remote Sensing
Symposium, pages 1110–1113, July 2007. doi: 10.1109/IGARSS.2007.4422996.

70

http://stacks.iop.org/0031-9155/46/i=3/a=402
http://stacks.iop.org/0031-9155/46/i=3/a=402
http://josaa.osa.org/abstract.cfm?URI=josaa-15-10-2735
http://josaa.osa.org/abstract.cfm?URI=josaa-15-10-2735
http://ao.osa.org/abstract.cfm?URI=ao-4-7-767
http://ao.osa.org/abstract.cfm?URI=ao-4-7-767


Bibliography

[31] Mehmet Kurum, Peggy E. O’Neill, Roger H. Lang, Alicia T. Joseph,
Michael H. Cosh, and Thomas J. Jackson. Effective tree scattering and
opacity at l-band. Remote Sensing of Environment, 118:1 – 9, 2012. ISSN
0034-4257. doi: http://dx.doi.org/10.1016/j.rse.2011.10.024. URL //www.
sciencedirect.com/science/article/pii/S0034425711003816.

[32] Z. Bartalis, V. Naeimi, S. Hasenauer, and W. Wagner. Ascat soil moisture
product handbook. ascat soil moisture report series, no. 15,. Institute of Pho-
togrammetry and Remote Sensing, Vienna University of Technolog, 2008.

[33] Leung Tsang, Jin Au Kong, and Kung-Hau Ding. Scattering of Electromagnetic
Waves: Theories and Applications. John Wiley & Sons, 2000.

[34] Sanjar Abrarov and Brendan Quine. A rational approximation for efficient
computation of the voigt function in quantitative spectroscopy. Journal of
Mathematics Research, 7(2):163, 2015. ISSN 1916-9809. doi: 10.5539/jmr.
v7n2p163.

[35] J. M. Closed form for an orthogonal polynomial integral? MathOverflow. URL
http://mathoverflow.net/q/33613. URL:http://mathoverflow.net/q/33613
(version: 2014-05-13).

71

//www.sciencedirect.com/science/article/pii/S0034425711003816
//www.sciencedirect.com/science/article/pii/S0034425711003816
http://mathoverflow.net/q/33613

	Introduction
	A Scattering Model for Vegetated Terrain
	Vegetation in the Microwave Domain
	Radiative Transfer Solution for Two-Layered Media
	Individual Contributions

	An Analytic Solution to the Interaction Term
	Evaluation of the fn coefficients
	Existence of the fn coefficients
	An Algorithm for Coefficient Retrieval


	Phase Functions
	Volume-Scattering Phase Functions
	The Asymmetry Parameter g
	The Isotropic Phase Function:
	The Rayleigh Phase Function:
	The Forward-Scattering Phase Function
	Henyey Greenstein Phase Function
	Henyey Greenstein Rayleigh Phase Function
	Gaussian Peak
	Gegenbauer Kernel Phase Function

	Surface-BRDF's
	Ideally Rough (Lambertian) Surface:
	Cosine Lobes (Phong Model)
	Generalized Cosine Lobes (Lafortune Model)

	Further possibilities

	Simulation results
	Connection between Is and 0
	Example specification
	Surface parametrization
	Covering layer parametrization

	Example Results
	Plot descriptions
	Bistatic scattering distributions
	Tau variations (Isotropic)
	Tau variations (Rayleigh)
	Tau variations (Henyey Greenstein t=0.2)
	Tau variations (Henyey Greenstein t=0.4)
	Contributions (Isotropic)
	Contributions (Rayleigh)
	Contributions (Henyey Greenstein t=0.2)
	Contributions (Henyey Greenstein t=0.4)


	Appendix
	Used symbols and definitions
	Mathematical Methods
	Cauchy Principal Value:
	Exponential Integral Function Ei(x)

	Auxiliary Calculations
	Solutions for Chapter 2.4.1 and 2.4.2
	Legendre-expansion of the Gaussian Peak
	Nadir hemispherical reflectance of Henyey-Greenstein Function


	Published Paper
	References

