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A B S T R A C T

In this thesis we try to detect the possible impact of market sentiment and
other exogenous variables, on corporate bond yields. After an Introduc-
tion that will analyse the available data, we will elaborate on some theory
behind the techniques used to predict the future bond yields and the sen-
timent scores in general. We then talk about the general approach used
for generating and comparing the forecasts. The final step will be to use
four different approaches to try to predict the bond yields, based on their
own history, sentiment scores and other explanatory variables. Starting with
ARMA-GARCH and STAR models we will then take a look at recurrent neu-
ral network models. After introducing and using the Long short-term mem-
ory neural networks [12] we will apply the recently developed "Dual-Stage
Attention-Based Recurrent Neural Network" [14] and measure its predictive
power for the bond market.
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1
I N T R O D U C T I O N

"I used to think that if there was reincarnation, I wanted to come back as the presi-
dent, or the pope, or as a .400 baseball hitter. But now I would like to come back as 
the bond market. You can intimidate everybody.", James Carville, political advi-
sor to President Clinton once said. This statement certainly can’t be boldly 
used out of its context, but still shows the influence t he b ond m arket can 
have on markets and politics.
Often escaping broader media coverage, the bond market hides major pre-
dictive power, especially for real estate and equity markets. It is a great 
predictor of future economic activity and future inflation levels. All this cor-
relations are clear and proven many times, but give rise to a question that 
hasn’t been clearly answered yet.

Can we predict the bond market?

This question will be the main pillar this thesis is built upon.
The name bond, will be used as an acronym for corporate bond throughout 
this thesis. We define corporate bonds as all bonds excluding those, issued 
by governments in their own or any other currency, and those issued by 
supranational organisations (such as the European Bank for Reconstruction 
and Development (EBRD)).

The first chapter introduces the data available and tries to find exogenous 
variables that influence the bond prices. After examining the dependencies 
between those variables, the data will be checked for seasonality and sta-
tionarity.
Chapter 2 introduces some basic concepts that we will need in order to in-
troduce our models later, that in turn will be used to predict the bond price 
movement.
After outlining the exact steps taken to predict those movements in Chap-
ter 3, Chapter 4 introduces the 4 models used.
The first model will be a slight variation of the widely used ARMA-GARCH 
model, which allows for one external regressor. Secondly we will look at 
the smooth transition autoregressive (STAR) model, which again will yield 
a forecasts, which is a linear function of the past bond price 
movements, but will allow for different regimes. Those regimes will 
again depend on an external variable and could potentially model times 
of decisive events for bonds. In the section about available data we will 
also see a possible example of such a decisive event. The STAR and the 
ARMA-GARCH model, both delivering linear forecasts, should serve as a 
benchmark for the later introduced models belonging to the class of neural 
networks, that are capable of delivering non-linear forecasts. The compar-
ison between the benchmark models and the two neural network models, 
should show, how much benefit can be drawn from the theoretical ability
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to pick up non-linear dependencies over longer time horizons, or if these 
methods even yield inferior results.
After introducing the various models, we will start to choose the hyper-
parameters for the various models, that will yield the best forecasts. The 
hyperparameters will be chosen in three different ways, first w e w ill deter-
mine them for every single bond, then we determine the hyperparameters 
that yield the best average result for a group of bonds belonging to the same 
company, and lastly we choose a single set of hyperparameters that yields 
the best average result for all bonds in our dataset. In Chapter 5 we 
then use these pa-rameter sets to conduct three predictions per model, one 
for every different approach of choosing our hyperparameters. This way 
we can theoretically account for company-wise patterns in the bond 
development with multiple parameter sets, or prevent over-fitting when 
using the single parameter set for all bonds.
Chapter 5 will also contain a section with results of the Diebold Mariano 
Test applied to our models pairwise and then will summarize the observed 
outcomes.
Chapter 6 finally puts t he results into perspective, outlines other possible 
forecasting strategies and concludes the thesis.

dataset : The historical sentiment data of the provider StockPulse used 
in this thesis, was made available free of charge by the company PS-Quant 
in the course of a research project conducted by them. As sentiment and 
bond data can in most cases only be obtained from contractors at a not 
negligible fee, I am very thankful for that contribution.
This data was complemented by other valuable information as seen later in 
this introduction. Nevertheless the following problems occurred:

• The time series length for the bond data was often too short to make
a statistically reasonable forecast.

• The size of overlap of the different explanatory time series with the
bond prices again was too short in many cases, further reducing the
relevant data set

This leaves us with 91 datasets, with at least 800 entries for all of the vari-
ables. For a translation between the dataset numbers and the ISIN numbers,
that uniquely identify the bonds, please consult Table A.1 of the Appendix.

spread : In this thesis, our goal will be to predict the spread change of
numerous bonds. To start ahead we will first build the basis to define that
term.
The yield of a bond is the amount of money an investor will realize on one
bond. As yield spread, or just spread, we will understand the difference
between the yields of some bond, and the relatively risk-free U.S.Treasury
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bonds’ yield. At the current day t, the yield of a risk-free bond that matures
in n days, is calculated via the Svensson-Model [11] as follows:

0 1zt(n) = βt +βt ∗
1− e−n/τ1

t

n/τ1
t

+ β2
t ∗
(1− e−n/τ1

t

n/τ1
t
− e−n/τ1

t
)

+β3
t ∗
(1− e−n/τ2

t

n/τ2
t
− e−n/τ2

t
)

0 1 2 3With parameters βt , βt , βt , βt , τt
1 and τt

2, that are estimated and published 

Spread usually does not stay the same, but widens and tightens, depending 
on a number of factors, including supply and demand, the risk associated 
with the emitting company and the overall state of the economy. Because 
yield embodies a relationship between the particular bond and a compa-
rable treasury bond, it may get influenced by circumstances affecting the 
company, or the risk free treasury bond, or both at the same time.
Now that it is clear what we wan to predict, we want to introduce the set of 
explanatory variables available.

sentiment , also market sentiment, is the general predominant view of 
investors on the future price development in a market. Contrarian investors 
believe that extreme market sentiment is a sign of impending market moves 
into the opposite direction of what sentiment predicted. But unfortunately 
things are not so clear-cut, as market moves also influence the sentiment. Of 
the four most popular ways to calculate sentiment listed below, we will 
use sentiment data generated by the 2nd approach to complement our 
dataset.

• financial market data: There are several financial indicators that can
be used to measure investor sentiment. A very popular approach is
to look at the CBOE’s Volatility Index (VIX), but there are many other
possible factors to look at, such as the Price/Earnings Ratio, high yield
bond returns or the TED spread (difference between the interest rates
on interbank loans and on short-term U.S. government debt).

• textual data: Using information provided in newspapers, blogs, so-
cial networks or media platforms, is a obvious way to get sentiment
information. What is less obvious is how this data is used to create
sentiment scores. Counting certain positive and negative words, is a
widely used approach, but recently also machine learning algorithms
have been proposed to extract sentiment out of textual data.

1 The ecb’s parameters can be accessed via https://www.ecb.europa.eu/stats/financial_

markets_and_interest_rates/euro_area_yield_curves/html/index.en.html, the FED’s
via https://www.quandl.com/data/FED/PARAMS-US-Treasury-BETA-and-TAU-Parameters

0

daily by the Federal Reserve (FED) for U.S. treasury bonds as used in this thesis, 
and the European Central bank for AAA-rated euro area central government 
bonds1. Let zt(n) be the yield, at the current day t, of some bond that matures in 
n days. The spread for this bond is ∆t = (zt(n) − zt

0(n)). The value of interest 
for us will be the spread change yt = ∆t − ∆t−1 between two consecutive days.

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.quandl.com/data/FED/PARAMS-US-Treasury-BETA-and-TAU-Parameters
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• internet search behaviour: With the rise of search engines, there is
plenty of data available, for example via Google Trends 2. As with the
previous example, there are several ways of using this data to generate
a sentiment score, for example by determining words with negative
and positive influence as done in [15].

• non-economic data: The last and least popular approach is to use non
market related data to generate sentiment scores. The literature sug-
gests using anything from dates of sports events to weather data in
order to predict market moves.

We from now on will refer to the general form of textual sentiment as dis-
cussed above as sentiment. Another more specific form of sentiment, the
buzz will be introduced later. Sentiment usually can be calculated using
three different approaches. The "statistical approach", the "grammar ap-
proach" and the "machine learning approach". Below we want to give a
rough and by no means complete overview on how those methods work.

1. For the statistical approach, news articles are scanned for words with
positive and negative connotation. Those words are counted and given
weights, which then yield the sentiment score

2. Most methods exploiting grammar in sentiment analysis make use of
Hidden Markov Models, or Conditional Random fields.

3. The deep learning model creates a representation of entire sentences
based on the sentence structure. It computes the sentiment taking into
account the syntax of the phrases, not only the words used. This way,
the model is more robust and not as easily fooled as other models.
One could for example use an LSTM-network [12] to implement this
idea as done in [7].

The sentiment data used in this thesis, was generated using the statistical
approach.

buzz refers information created by the investor itself. The investor is
emitter and receiver of the information. By expressing postures and opin-
ions online, a social media buzz is generated. We will use the word buzz as
the volume of that chatter throughout the internet.
Buzz can be seen as a proxy for investors attention and probably is as im-
portant as the message and thus the global sentiment or mood itself. More
precisely, the buzz used here is a relative measure for the current volume
of messages compared to the average exponentially smoothed volume, and
therefore makes different titles comparable based on buzz.

stock prices tend to exhibit stronger volatility, and react stronger to
news than bond prices. This might give us extra explanation power in our
quest to predict the spread change. The stock prices are the closing prices

2 To be found at:https://trends.google.de/trends/

https://trends.google.de/trends/
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adjusted for stock splits and dividends, for each day, and were drawn from 
Yahoo Finance 3.

job market data and earnings releases : One of the most impor-
tant events for the bond market, is the U.S. Labour Department’s report. 
It includes information about all aspects of the job market, including un-
employment rate, the number of jobs added or lost, average hourly wages 
and how the various sectors performed (manufacturing, etc.). The report is 
recurring on the first Friday of every month. I ts importance cannot be un-
derstated. It is due to central position of the job market to the economy. To 
see two examples for the cross correlation of the spread change, that shows 
a very similar behavior for all datasets, see Figure 1.1 .
Another important factor for the bonds issued by a company, are the com-
pany’s quarterly earnings reports (ER). They shed light on the current over-
all performance of the company, and include guidance for the next quarter. 
Both those events combined will be called news from now on.
Analysing the content and modelling the data provided by those reports, 
might give additional advantage. We however will settle for the date this re-
leases occur, as it still shows some notable correlation to the spread change. 
Data for the news is drawn directly from the various bond emitting com-
pany’s websites and from the "United States Department of Labour’s home-
page 4. The news events enter the data as a column of flags, highlighting 
the relevant days, and as a column counting the days that have passed since 
the last news release.

Figure 1.1: The cross correlation of the spread change and the days that passed
since the job market report of bond 1(left) and bond 68(right)

time to maturity indicates the time remaining until the end of the
contract. This means this variable is declining every timestep until it finally
hits 0.
As with the other datasets, we also tested time to maturity for correlation to
the spread change. Both, the spearman’s rho and the kendall’s tau test, as
implemented in cor.test of the core R package, did show p-values of under
0.05 for 45 of our 91 datasets. This suggests that the null hypothesis of no

3 To be found online at https://finance.yahoo.com/.
4 To be found online at https://www.bls.gov.

https://finance.yahoo.com/
https://www.bls.gov
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correlation might be untrue for those datasets.
Checking for correlations between mean-corrected values of the spread 
change and time to maturity, there are still 39 datasets with p-values of un-
der 0.05. When taking the squares of those mean-corrected spread change 
values, the correlation to time to maturity gets even stronger, with now 82 
datasets with small p-values. Interestingly, among the 9 bonds with rela-
tively low correlation, there are all (3) bonds of the company "Societe Gen-
erale Group" that we have in our dataset, but no bonds of "Deutsche Bank 
AG", which constitute the biggest part of the dataset.

lagged spread change is the original spread change series, shifted 
backwards in time. To identify dependencies of the lagged to the original 
series, we consider the autocorrelation function, that identifies correla-
tions at various time lags. Figure 1.2 are typical examples of the acfs of our 
data samples. All of them exhibit significant correlation at a lag of approxi-
mately 19. Note that the news flag in our data sample recurs at a time lag of 
about 19 days. This is due to monthly recurring job market news, and the 
fact that days, for which not all of the data is available, are not included in 
our sample, making the average month in our samples about 19 days long.

Figure 1.2: ACF and PACF of the spread change of dataset number 21(left) and
16(right)

relationships : After having introduced numerous possible explana-
tory variables, we want to check their relationship to the spread change
and the lagged spread change, as well as the relationships between each
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other. The relationship to the one-day lagged spread change will also be of
relevance, as that is the time horizon, that we will predict into the future.
The interdependence of the exogenous variables can provide us of a better
understanding of the data and identify redundant information.

From generated scatterplots, containing one explanatory variable and the
lagged spread change at a time, it was obvious, that only one of the available
variables, namely the news, had noticeable non-trivial significant impact
on the spread change. Apart from that there was no observable pattern
evident across different companies. The correlation between news and the
spread change is visible in Figure 1.3. The only bonds that do not show this
behaviour, are the bonds of data sets number 75 and 68.
Figure 1.3 shows that the spread change is more volatile shortly before
and after news releases. Note that the second cluster of increased volatility,
about 20 days after the news release, corresponds to the days before the
next release.

Figure 1.3: Boxplots for dataset nr. 4 and 13

Unsuprisingly there is also a correlation between the buzz and the sen-
timent. Looking at Figure 1.4 we observe that in periods of high buzz, the
sentiment is more volatile. This can be intuitively explained by the fact, that
strongly positive or strongly negative events tend to get more attention than
neutral events, which we associate with a sentiment of around zero.

Figure 1.4: The scatterplot of buzz against sentiment for bonds 25 and 65

For bonds belonging to the same company the plots are obviously similar.
This does accord with the observations made in the next paragraph. There
we will see that the spreadchange of bonds of the same company behave
similarly. This fact is illustrated in Figure 1.5

With the goal in mind, to predict the spread-change of our 91 bonds, we
want to take a closer look at the spread change data generated.



10 introduction

Figure 1.5: The scatterplot of sentiment against lagged spread change for two
bonds for Deutsche Bank AG

seasonality : As expected, the 91 time series exhibit no mean but in 
some cases some sort of seasonality as seen in Figure 1.6. What can be 
observed is, that bonds issued by the same company, show large 
volatilities at approximately the same times of the year, for several 
subsequent years. The direction of the price moves for those periods 
however seems to be ran-dom. Upon further inspection, most of those 
events can be identified as the cyclical earnings- and job-data-reports, 
described above, that occur at approximately the same time every month, 
respectively quarter.

stationarity : After dealing with mean and seasonality we proceed with 
testing our null hypothesis of stationarity. We use a modified version of the 
test which was first introduced by Priestley-Subba Rao (PSR) in [9]. The 
modified PSR-test for stationarity is examining how homogeneous a set of 
spectral density function (SDF) estimates are across time and was adjusted 
by William Constantine to prevent bias of the estimators. The p-values of the 
test of stationarity are below 10−7 for all but 5 bonds in our dataset. Bonds of 
the data sets: 65, 68, 69, 70, and 75 still got negligibly small p-values of order
 10−2 which lets us reject stationarity.

In Chapter 4 we will still try to model this time series via an ARMA-
GARCH model, theoretically requiring stationarity. As a result we expect 
some correlation to be left when checking the residuals afterwards.

The above observations show that there is at best very little correlation 
between the spread change and any of the explaining variables. This is sup-
ported by the efficient market hypothesis, which states that stock prices are 
a function of information and rational expectations, and that newly revealed 
information about an asset’s prospects is almost immediately priced-in. It 
would suggest, that the correlation between an asset’s price change and rel-
evant information appears with no, or almost no time-lag and can therefore 
not be used for predicting future price changes.
However we will further pursue our strategy, as even the slightest correla-
tions, and the hopefully resulting advantage in the hit rate of our predic-
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Figure 1.6: seasonal plots of the spread change of bonds issued by Deutsche Bank
(left column) and by BNP Paribas (rigth column)

tions over random predictions, could be beneficially exploited in trading
strategies. With random predictions we mean randomly choosing −1 or 1
as our predictions, achieving a hit rate of 0.5, as explained in Chapter 3. Fur-
thermore using several explanatory variables at once to predict the spread
change could yield satisfactory results, even when the correlations of the
single variables to the spread change are negligible.





2
P R E L I M I N A RY

Before starting with the theory of time series models, we want to cite some
conceptcs, needed throughout this thesis.

Definition 2.1. A process (Xt)t∈Z is said to be (weakly) stationary [3] if

• E(Xt
2) < ∞    ∀t ∈ Z

•     

• Cov(Xt, Xs) = Cov(Xt+k, Xs+k)    ∀t, s, k ∈ Z

Definition 2.2. Let (Xt)t∈Z be a process and             be the cumulative distribution 
function of the joint distribution of                                               , then the process is called strictly 
stationary [3] if

  

• E(εt) = 0   

• Corr(εt, εs) = 0 

• V(εt) = σ2 < ∞  

it is called strong white noise if

Note that white noise is stationary.

time series models In this paragraph we want to study several meth-
ods used to model the movement of time series. The probably simplest way
to do so, is to model the current value xt of the time series as being only
dependent of its own past values.

Definition 2.4. An autoregressive(AR) model of order p is defined as follows:

Xt = c +
p

∑
i=1

φiXt−i + εt,

where c, φ1, . . . , φp are real valued parameters, (εt)t∈Z is white noise and (Xt)t∈Z

is the process of interest. [3].

E(Xt) = E(Xs)    ∀t, s ∈ Z 

Ft1,...,tn 

(Xt1 , . . . , Xtn ) 

∀n ∈N, ti ∈ Z, k ∈ Z

∀t ∈ Z

∀t, s ∈ Z, t 6= s

∀t ∈ Z

• (εt)t∈Z is iid.

• E(εt) = 0 ∀t ∈ Z

• V(εt) = σ2 < ∞ ∀t ∈ Z

Definition 2.3. A process (εt)t∈Z is called white noise [3] if it satisfies the fol-
lowing:

Ft1,...,tn = Ft1+k,...,tn+k
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Another similar concept is called the moving average model. It consist of 
an output variable that depends linearly on the current and various past 
values of a white noise process.

Definition 2 .5. The moving average (MA) model of order q is defined as:

Xt = c +
q

∑
i=1

θiεt−i,

where (Xt)t∈Z is a process, (εt)t∈Z is a white noise process and the parameters of
the model are the mean c and θ1, . . . , θq [3].

The next model combines the above seen concepts. Autoregressive mov-
ing average (ARMA) models describe a process (Xt)t∈Z via an autoregres-
sive and a moving average part. With an optional external regressor added,
we will call it an ARMAX model.

Definition 2.6. An ARMAX model of order (p, q) with an external regressor is
defined as:

Xt = c +
p

∑
i=1

φiXt−i + εt +
q

∑
i=1

θiεt−i + ζνt

where φ1, . . . , φp are the autoregressive parameters, θ1, . . . , θq are the moving aver-
age parameters, c, ζ are constants, εt, εt−1, . . . are white noise error terms, νt is an 
optional external regressor and (Xt)t∈Z the process to be modelled [3].

We will now define the autoregressive conditional heteroskedasticity(ARCH) 
model [3], a common model for the variance of a given time series:

Definition 2.7. A time series (Xt)t∈Z is called an ARCH series if:

Xt = σtεt

where (εt)t∈Z is a strong white noise and for σt we have:

σ2
t = α0 +

q

∑
i=1

αiX2
t−i

where α0 > 0 and αi ≥ 0, i > 0 [3].

The generalisation of this model, the generalised autoregressive condi-
tional heteroscedasticity (GARCH) model as found in [3], is defined as fol-
lows:

Definition 2.8. A time series (Xt)t∈Z is called GARCH series of order (p, q) if it
follows:

Xt = σtεt

where (εt)t∈Z is a strong white noise process, and

σt
2 = α0 +

p

∑
i=1

αiXt
2
−i +

q

∑
j=1

β jσt
2
−j

where α0, . . . , αp, β1, . . . , βq are non-negative real numbers with α0 > 0,
αp > 0, and βq > 0.
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Before starting with another concept we cite an important result [3]

Theorem 2.1. If we have

q

∑
i=1

αi +
p

∑
j=1

β j < 1

where

The interconnection structure of the net is determined by the weigths wji, 
i, j = 1, 2 . . . , n.
Input neurons are units without predecessors, i.e. neuron j is called an input 
neuron, if wji = 0  ∀i. Similarly output neurons are units without successors, i.e. 
neuron j is a output neuron if wij = 0  ∀i.
Input, respectively output neurons serve as an input-, output-interface for 
the whole network.

We say there is a path from neuron i to neuron j if there exist non-zero 
weights (wk1k0 , wk2k1 , . . . , wkuku−1 ) with ku = j and k0 = i.

A feedforward neural network is a network without circles or loops, i.e. there 
does not exist a path from one neuron to itself. This implies that in a feed-
forward network information is only flowing in one direction.
A feedforward network defines a function which maps the activation of the 
input neurons to the activation of the output neurons. Suppose that the first ni
neurons are the input neurons and that the last n0 neurons are the output

• aj is the output of neuron j, which is also called activation

• φj : R 7→ R is the activation function

• wji ∈ R are some weights

• bj ∈ R is called threshold or bias.

aj = φj(
n

∑
i=1

wjiai + bj), j = 1, . . . n

then the unique strictly stationary process that satisfies the equalities of definition 
2.8 is white noise.

2.1 neural networks

We now want to cite some basic terms and definitions related to 
artificial neural networks. We however do not give the most general 
definition here, and refer the interested reader to [13]. A neural network 
(NN) is a collection of interconnected units called neurons. The output 
of each unit is a non-linear function of a weighted sum of the output of 
the other units. Suppose we have n units, then the output of the j-th unit 
is given by:
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f : Rni 7→ Rn0

φ(x) =

{
1 for x > 0

0 for x ≤ 0

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

Another often used function is covered by the following definition.

Definition 2.11. The logistic function f is defined as:

f (x) =
M

1 + exp(−k(x− x0))

where M ∈ R,  k ∈ R,  x0 ∈ R.

Note that the function's graph is a sigmoid where: x0 is the x-value of the 
sigmoid curve’s midpoint, M is the curve’s maximum and k is its steepness. 
Setting L = 1,  k = 1,  x0 ∈ R we get:

Definition 2.12. The sigmoid function S is defined by:

S(x) =
1

1 + exp(−x)
=

exp(x)
exp(x) + 1

A generalization of the logistic for multidimensional input is the softmax
function. It however is no activation function!

Note that for the neurons with a heaviside function as activation function
the output is zero if the net input (∑i

n
=1 wjiai + bj) is negative. This explains

the term "threshold" for the parameter bj. A single neuron with the heavi-
side function as activation function is called perceptron.
What follows is a function that we will use a lot throughout this thesis.

Definition 2.10. The hyperbolic tangent function tanh is given as:

neurons and define x = (a1, a2, . . . , ani ) and ŷ = (an−n0+1, an−n0+2, . . . , an) 
then the net gives a non-linear function:

x 7→ ŷ

Often one considers a feedforward NN which consists of so-called layers.
The set of neurons {1, 2, . . . , n} is partitioned into subsets Ik ⊂ {1, 2, . . . , n},
k = 1, 2, . . . , m called layers. The first layer I1, called the input layer, con-
tains the input neurons and the last layer Im, called the output layer, con-
tains the output neurons. The other (m− 2) layers are the so-called hidden
layers. Furthermore there exist only connections from one layer to the fol-
lowing layer, i.e. if i ∈ Ik then wji = 0, ∀j ∈/ Ik+1.

common activation functions The below listed functions are often
used as activation functions in neural nets

Definition 2.9. The heaviside function is given as:



2.1 neural networks 17

Definition 2.13. The softmax function is defined by:

σ : Rm 7→ [0, 1]m

σ(x)j =
exp(zj)

∑i
m
=1 exp(zi)

j = 1, . . . , m

t = t + 1

if t > T

t = 1

end

wj
(
i
k+1)

= wj
(
i
k) − α

∂E(t)
∂wji

, j = 1, . . . n, i = 0, . . . , n

The above update is repeated until the weights converge or a prior given
number of complete cycles through the sample (1, . . . , T) have been per-
formed. Such a cycle through the sample is called an epoch. Of course only
weights wji are updated, that are not a priori set equal to zero. The design
parameter α is also called the learning rate. Usually taking values below
0.1, the learning rate should be chosen small enough to ensure that the min-
ima can be found, but big enough to ensure reasonably fast progress. As
the learning algorithm proceeds, we will slowly adjust the learning rate, to
help the algorithm to converge.

We note that it takes as an argument a m-dimensional vector of real val-
ues and yields a m-dimensional vector of values between 0 and 1 that sum
to 1. This function will be used to calculate weights later.

For the following discussion we set wj0 = bj and hence consider the thresh-
olds as weights.
The aim of the network is to approximate a function f 0 by choosing opti-
mal weights wji. Typically the function f 0 is unknown and one has only a
sample of input, output pairs (xt, yt)t=1,...,T. The goal then is to find weights
such that the outputs ŷt = f (xt) of the net match the target values yt as
close as possible.
The network error E(t) is a measure for the distance between the out-
put f (xt) and the target yt. Often the mean squared error is used, i.e.
E(t) = n

1
0
( f (xt)− yt)>( f (xt)− yt)

The estimation respectively the learning of the weights is often performed
via an iterative schema called learning rule.

learning rule : One widely used class of algorithms to update the
weights, the stochastic gradient descent (SGD), relies on the method of gra-
dient descent by Newton. It is often used in combination with Backprop-
agation (BP), an efficient technique that computes gradients via the chain
rule. For this method, we view the error E as a function of the weights wij
and use gradient descent to minimize the error.
The weights are recursively updated as follows:
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mini batch : The process of presenting data to the neural network, check-
ing the outcome by calculating the error and updating the weights of the 
network, is called supervised learning or simply training.
Using SGD for training the neural network models does give rise to two 
problems:

• Updating the weights each time data is presented to the network is
computationally intensive

• The frequent updates can result in volatile model parameters which
make it hard for the learning algorithm to find a minimum.

These problems are tackled by the so calles mini batch stochastic gradient
descent. This algorithm collects a subset of input output pairs into a so-
called batch with an a priori given batch size. Then the network error of
this batch is computed as the sum over the network errors of the pairs in
the batch. Next the weights are updated according to the gradient of the
error of the batch.
This eliminates the first problem of the SGD, as the weights are updated
far less often. The second problem also gets eliminated which results in
smoother convergence. However the mini batch approach has its own down-
sides:

• The relatively low noise of the weight updates, compared to standard
SGD, makes it more likely for the algorithm to land at a saddle point
that it cannot "escape" from.

• Also due to the smoother updates, the learning algorithm may con-
verge slower than with standard SGD.

Regarding to [2], faster convergence has been observed if the order in which 
the mini batches are visited is changed for each epoch. Later when training 
our models we will therefore shuffle our training sample before grouping it 
into batches. Our goal will be to find a  good batch size that leaves us with 
the upsides of both those techniques while limiting the downsides and then 
choose a number of epochs that leaves us with reasonable computational 
time, and prevents "overfitting".

the adam optimisation algorithm : Apart from the mini batch 
SGD, we will also use a more recently developed algorithm, the adaptive 
moment estimation (Adam) optimizer [8]. It uses different adaptive learn-
ing rates for every weight in the neural network. Those learning rates are 
computed from estimates of the first and second moment of the gradient gk 
at iteration step k.
Lets get more precise. The goal is to minimize

E
[

bE  
atch(W)

]
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where W is a vector of the network’s weights and Ebatch = ∑t∈batch E(t) and  
batch is a randomly chosen subset of {1, . . . , T} of size Tb. Note that the 
stochasticity comes from the evaluation at random minibatches (sub-
samples) of datapoints.
 The algorithm in every iteration updates the exponential moving average 
(EMA) of the gradient (mk) and the EMA of the squared gradient (vk), where 
hyperparameters β1, β2 ∈ [0, 1) steer the exponential decay rates of the mov-
ing averages. These moving averages serve as estimates for the mean and 
the 2nd moment of the gradient. The starting values of the two estimates 
however are chosen to be 0-vectors which makes the estimates biased to-
wards 0. This effect will be countered by correcting the estimates, yielding 
the bias corrected estimates m̃k and ṽk.
We will explain only the calculation of the corrected estimate for the second 
moment, as the calculation for the corrected first moment estimate follows 
the same steps. Note that we have:

E(vk) = E( v + (1− )g2)

= E
(β

β

2

2(

k

β

−

2

1

vk−2 + (1

β2

− β

k

2)gk
2
−1) + (1− β2)gk

2)
(= . . .

= E (1− β2)
k−1

∑
i=0

βi
2gk

2
−i

)

= E(gk
2)(1− β2)

k−1

∑
i=0

βi
2 + ζ

k
2= E(gk

2)(1− β2)
1−
−

β

β1 2

= E(gk
2)(1− βk

2) + ζ

where ζ = 0 if the true second moment E(gk
2
−i) is constant. If not, ζ can 

still be kept small since we can choose β2 such that the EMA assigns small 
weights to gradients that lie too far in the past. For β2 however, the paper 
suggests picking relatively high values in order to achieve fast convergence. 
From the above equations we conclude that the corrected estimate for the
moving average of the 2nd moment is ṽk = vk(1 − βk

2). Remember that we 
have to correct the estimate because we initialize the running average with 
zeros.
Algorithm 1 does shortly outline the procedure to update our weights. Note 
that all operations are vectorwise.
The authors of the paper proposed the following choices for the parameters, 
which we will adopt for this thesis:
α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8.
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Algorithm 1 : The Adam algorithm
Data :

• α (stepsize)

• β1, β2 ∈ [0, 1) (exponential decay parameters)

• objective function Ebatch(W), with parameter vector W

• initial vector of network weights W0

Result : updated network weights
m0 ← 0 (initialize 1st moment vector) 
v0 ← 0 (initialize 2nd moment vector) 
while not converged do

k ←     k + 1
←
←

gk 
mk 

vk←

∇W
         (             )

β1mk−1 + (1 − β1)gk

m̃k←
ṽk←
←

end
return    

W(k)

    W(k
          
    )    

Ebatch

Ebatch W(k-1)   

W(k)

W(k)    √√√√W(k−1) − αm̃k/
√

ṽk + ε
vk/(1 − βk

2) (bias-corrected second moment estimate)
mk/(1 − βk

1) (bias-corrected first moment estimate)
β1vk−1 + (1 − β2)gk

2

In this thesis the task is to predict the spread change given the infor-
mation up to a certain time. We consider two time series y1, . . . , yT and 
x1, . . . , xT where yt are the spread changes and xt is the time series which 
contains our exogenous variables.
The aim is to predict the value yt of the output series at time t, given present 
and past values of the exogenous variables xt, xt−1, . . . , xt−P+1, where the 
number P is called time horizon. To this end we use specially structured 
NNs which are designed to "respect" the time series nature of the data. The 
network is split into P identical subnets. The activations of the previous 
subnet together with xt−P+k is the input to the k-th subnet. The prediction for 
yt then is (part of) the combined outputs of the generated subnets, or the 
output of the last subnet, as depicted in the following picture:
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Figure 2.1: Subnets of a network

The subnets are identical, i.e. they have the same network structure and 
the same weights. Therefore such nets can also be represented by a recurrent 
net, where the outputs are fed back as inputs with a (time) delay :

Figure 2.2: A recurrent unit

In Chapter 4 we will consider two ANNs of this kind, the LSTM network 
and the DA-RNN network.
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3
T H E A P P R O A C H

3.1 overview

When thinking of forecasting time series, the first thing that naturally comes
to ones mind, are ARMA models. An autoregressive moving average model
of order (P, Q) as seen in Chapter 2 is easy to apply as theory and practical
implementations are readily at hand. Two of the methods we will use for
prediction are non-linear models, one is based on the ARMA, one on the
AR model, but both allow for external regressors. The other two models we
will be using, belong to the class of artificial neural networks. By comparing
the results generated by those 4 networks, we want to see and quantify the
advantage we get, by using more complex models, and to what extent any
of those models can reach our goal, namely to predict the movements of the
spread change correctly.

3.2 randomizing

For the neural networks, we use batches to train the model. This batches will
be randomly shuffled, meaning that they do not necessarily succeed each
other as they do in the time series. This step is undertaken because faster
convergence has been observed if the order in which the mini-batches are
visited is changed for each epoch, which can be reasonably efficient if the
training set holds in computer memory [2].

3.3 comparison

Our final goal will be to predict several one-day-ahead forecasts for each
bond and model and compare them. The reason we pick to predict one day
is due to the fact that predicting more days ahead while attaining usable
result is unequally harder. As discussed below, the number of forecasts will
be 20% of the according data sample. With the calculated forecasts at hand,
we will calculate their error and check, whether the forecast has the same
sign as the actual series, or not. This leads us to our first error measure
which is called the hit rate:

1
m

m

∑
i=1

|sign(xi) + sign(x̂i)|
2

where xi are the observed values, x̂i our forecasts and m the number of
forecasts generated for the concerning bond. When we later calculate the
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hit rate for a number of bonds, we do this by taking the mean of the hit
rates calculated bond-wise with the above formula.
Predicting the direction of the yield movement correctly, would be of great
importance in real world applications.
Apart from the direction, we want to know how much our forecast differs
from the actual value. Therefore we will also look at the root mean squared
error (RMSE)

m

∑
i=1

√
(xi − x̂i)2

m
,

where xi are the correct values, x̂i are the predicted values and m is the
number of one-day forecasts made.

The third tool that we will use in order to compare our models will be
the Diebold-Mariano Test [5]. It tests whether two forecasts have the same
predictive power or are significantly different from each other.
Let ei = xi − ya

i and ri = xi − yb
i be the residuals per time step for the

forecasts produced by method A: Ya = (ya
1, ya

2, . . . , ya
m) and the forecasts

produced by metod B: Yb = (yb
1, yb

2, . . . , yb
m), where X = (x1, x2, . . . , xm)

are the observed values of that series. Further let d̄i = 1
m ∑m

i=1 di and set
di = e2

i − r2
i .

The null hypothesis of equal predictive accuracy of the forecasts, is:

E(di) = µ = 0.

To test for this hypothesis the Diebold-Mariano test (DM) computes

γk =
1
m

m

∑
i=k+1

(di − d̄)(di−k − d̄) = ˆCov(di, di−k)

to finally get the test statistic:

DM =
d̄√

(γ0 + 2 ∑h−1
k=1 γk)/m

with h going to infinity. It is common practice to choose h = m
1
3 + 1 how-

ever.
In the paper it is shown that under the null hypothesis, asymptotically we
have: DM ∼ N(0, 1). Therefore we reject the null hypothesis of equal pre-
dictability at the 5% level if |DM| > 1.96.
In Chapter 5 will apply this test to pairs of forecasts stemming from differ-
ent models.
We will also test for the alternative null hypothesis: "method B is less ac-
curate than method A" and "method B is more accurate than method A",
corresponding to E(di) = µ < 0 and E(di) = µ > 0 respectively. Thus the
null hypothesis gets rejected when DM > 1.64 in the first, and DM < 1.64
in the second case.
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Now that we have introduced the various types of data that is available,
we want to get more precise. When speaking of data we mean daily data,
for 5 trading days per week. Out of computational-power restrictions we
limit this thesis to daily, rather than hourly data. As outlined in [10] intra
day stock market data can be very valuable, especially when news about
a possible takeover, acquisition or merger [MRG] are circulated. In a 10

minute window, starting with the minute of the news alert about an MRG
event, significant stock price drifts can be observed. Although bonds are
traded much less frequently than stocks, this may also be true for bonds,
but is not further examined here.
The data set consists of 91 bonds. Those are the bonds remaining after select-
ing only bonds with at least 800 days of data of all in Chapter 1 mentioned
types. Every dataset is then split into a training-, a validation- and a test-set
according to the ratio: (40%/40%/20%).
The following procedure will be applied to all bonds to try to predict the
bond’s spread changes:

1. Choosing Hyperparameters

• Train the model on the first 40% of the data

• Make one day forecasts for the datapoints of the next 40% of
the data. Compare those forecasts with the given spread changes
and adjust the model’s hyperparameters that achieve the highest
hit rate. In case the hit rates of two hyperparameter choices are
similar, choose the hyperparameters achieving the lowest RMSE.

2. Forecasting

• Train the model with the chosen hyperparameters on the first
80% of the data

• Make one day ahead forecasts, predicting the datapoints in the
remaining 20% of the data.

For choosing the hyperparameters, we train and test the model on the first
80% of the data and leave the last 20% untouched in order to prevent over-
fitting. Those last 20% are also not shown to the model when training it for
the final forecast, and are only used to calculate the model error E.
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T H E M O D E L S

4.1 arma-garch

Due to the recurring short periods of high volatility, it is natural to try mod-
elling the time series via an ARMA process with GARCH errors(ARMA-
GARCH). But to verify the applicability of this model, we first fit an ARIMA
sequence, and use the Ljung-Box test to check the residuals and the squared
residuals of this ARIMA model for autocorrelations.
For non-squared residuals the hypothesis of independently distributed resid-
uals gets rejected for all but 3 datasets (23, 68, 69), having p-values bigger
than 0.05 (0.39, 0.40, 0.60). For the squared residuals only dataset 76 seems
to have no noteworthy correlations with a p-value of approximately 0.12.

Given the the availability of additional explanatory variables, we will use a
modified ARMA-GARCH model that allows for external regressors.

Definition 4.1. A process (Xt)t∈Z follows an ARMA-GARCH model with an
external regressor νt, if it is an ARMA process with errors εt that satisfy:

εt = ztσt,

where (zt)t∈Z is an iid process with zero mean and unit variance and σt is the
conditional variance that satisfies the modified GARCH equation:

σ2
t = c + ζνt +

q

∑
j=1

αjε
2
t−j +

p

∑
j=1

β jσt−j,

where c, ζ, α1, . . . , αq and β1, . . . , βp are constants. As is the case with the variance
term, we also admit an external regressor in the ARMAX process as in definition
2.6.

the implementation of the model was done in R using the rugarch
package 1.
As the variables containing information about the news events, showed by
far the strongest correlation to the spread change, we will try to exploit this
relationship. Therefore we selected the variable marking 2 days prior and
two days after a news event with an entry 1 as our first exogenous variable.
We will then also use the sentiment variable, to subsequently compare the
results of using either of them.
For this model the following hyperparameters need to be chosen:

• ARMA orders P and Q

1 To be found online at https://cran.r-project.org/web/packages/rugarch/rugarch.pdf/.

https://cran.r-project.org/web/packages/rugarch/rugarch.pdf/
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• GARCH orders p and q

We now want to loop through a set of predetermined parameter combina-
tions, fit our ARMA-GARCH model on the validation set, perform forecasts
and find the combination of hyperparameters whose forecasts give us the
best hit rate. This procedure will be repeated for every of the 91 datasets,
for every of our two chosen explanatory variables and every of our two
approaches on using external data. We determine the set of possible param-
eters as: P ∈ {4, 5, 6}, Q ∈ {4, 5, 6}, p ∈ {2, 3} and q ∈ {2, 3}.

We start by using the exogenous data in the variance.
Using news as exogenous data, the achieved results are very poor with the
best performing parameter combination P:4, Q:5, p:3, q:3, achieving a hit
rate of 0.498738, meaning the model’s result is not different from a random
draw. When choosing the sentiment instead of the news data, the best hit

Figure 4.1: Plots showing the hit rates achieved by hyperparameter combinations
containing the respective parameters, when using news as exogenous 
data in the variance

rate 0.5104407 gets achieved by P:4, Q:5, p:2, q:3. Figure 4.1 and Figure 4.2
show, that choosing higher ARMA and GARCH orders, does not necessar-
ily lead to better results. Also there seems to be little correlation between
the selected orders and the hit rate, apart from the order P = 4, which is
involved in the best hitrate and stands out in our boxplot for the sentiment.

After looking at hyperparameters and their performance for all datasets
simultaneously, we now want to look at groups of bonds issued by the same
company. We hope to get an improved forecasting performance from choos-
ing the same set of hyperparameters for those groups, without running the
risk of overfitting, which we would do by determining different hyperpa-
rameters for every bond in our sample. In Chapter 1 we saw that bonds of
the same company exhibit similar behaviour, which supports this approach.



4.1 arma-garch 31

Figure 4.2: Plots showing the hit rates achieved by hyperparameter combinations
containing the respective parameters, when using sentiment as exoge-
nous data in the variance

p q p q hit rate company

5 5 2 3 0.55072 Intesa Sanpaolo SPA

6 4 3 3 0.53544 Societe Generale Group

4 5 2 3 0.52631 BNP Paribas

5 5 3 2 0.52238 Adidas

4 5 3 2 0.50815 Deutsche Bank AG

Table 4.2: Top Hyperparameter Choices when using Sentiment

Table 4.2 and Table 4.4 show the best hit rates for every company and the
used hyperparameters. There are notable differences in the predictability of
the companies, with "Deutsche Bank AG" the hardest to predict. We also
note, that the fact that these hit rates are much higher, than those achieved
above without grouping, is due to the smaller set of bonds that receive indi-
vidual hyperparameters. Looking at the exogenous variables, there seems
to be no clear better choice, with the sentiment performing slightly better.

We now want to consider the best hyperparameter choices for every
dataset separately. Table 4.6 shows that the hit rates increase dramatically
and that the datasets with the best hit rates do not coincide for the two
exogenous variables. This is true not only for 3, but the top 7 data sets. In
Chapter 5 we will see whether or not, determining the hyperparameters for
every dataset individually, will lead to overfitting.
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p q p q hit rate company

6 4 3 3 0.54888 Societe Generale Group

4 5 2 3 0.53899 Intesa Sanpaolo SPA

6 4 2 3 0.53409 Adidas

5 4 2 2 0.52445 BNP Paribas

4 4 3 2 0.51094 Deutsche Bank AG

Table 4.4: Top Hyperparameter Choices when using News

Figure 4.3: Number of Times the different Hyperparameters were chosen when
using News as the Explanatory Variable

As expected, picking a higher ARMA-GARCH order, does not necessar-
ily improve the average hit rate, when using either of the explanatory vari-
ables. For the case of utilizing the news variable Figure 4.3 illustrates this
behaviour.

variable dataset nr. p q p q hit rate

Sentiment 4 4 6 3 3 0.64012

76 4 4 2 3 0.62864

81 5 5 2 2 0.61388

News 70 6 4 3 3 0.64634

74 5 5 2 2 0.61604

55 5 5 2 3 0.61338

Table 4.6: Top 3 Hit Rate Results
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What follows is the same proceeding as above, this time using the
exogenous variable in the mean.
Using news as exogenous data, the achieved results again are very poor
with the best performing parameter combination P:6, Q:4, p:3, q:2, achieving
a hit rate of 0.462893, which is not better than a random draw.

Figure 4.4: Plots showing the hit rates achieved by hyperparameter combinations
containing the respective parameters, when using news as exogenous 
data in the mean

When choosing the sentiment instead of the news data, the best hit rate
0.4618602 gets achieved by P:6, Q:5, p:3, q:3.
Those results are both significantly lower as was the case when using the
exogenous variables in the variance.
Figure 4.4 and Figure 4.5 show, that in the case of an external regressor in
the mean, choosing higher ARMA orders, seems to lead to slightly better
results, which cannot be observed for the GARCH orders.

Again we now want to look at sets of hyperparameters for the bonds
grouped by the emitting companies. In Table 4.8 and Table 4.10 we see the
results for the companies. It is again evident that with this model bonds of
"Deutsche Bank AG" are the hardest to predict, while for the others, no clear
pattern is observable. The exogenous variable news seems to give us slightly
less explanatory power than we got when using the ARMA-GARCH model
with the external regressor in the variance term, the contrary is true for the
exogenous variable sentiment.

Again we want to consider the best parameter choices for every single
dataset. Table 4.12 shows that the hit rates increase dramatically and that
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Figure 4.5: Plots showing the hit rates achieved by hyperparameter combinations
containing the respective parameters, when using sentiment as exoge-
nous data in the mean

the datasets with the best hitrates do partly coincide for the two exogenous
variables, in contrast to what we observed for the exogenous variable in the
variance. Out of the first 6 datasets, 4 coincide.
In Chapter 5 we will see whether or not, determining the hyperparameters
for every dataset individually, will lead to overfitting.

As expected, picking a higher ARMA-GARCH order, does not necessar-
ily improve the average hit rate, when using either of the explanatory vari-
ables. For the case of utilizing the news variable Figure 4.6 illustrates this
behaviour.
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p q p q hit rate company

4 6 2 3 0.57801 Adidas

4 4 3 2 0.52923 Societe Generale Group

6 5 2 3 0.52520 Intesa Sanpaolo SPA

6 6 3 2 0.52506 BNP Paribas

6 4 3 3 0.51182 Deutsche Bank AG

Table 4.8: Top Hyperparameter Choices when using Sentiment

p q p q hit rate company

4 5 2 3 0.53817 Intesa Sanpaolo SPA

6 4 3 3 0.53594 BNP Paribas

4 6 2 2 0.53192 Adidas

6 6 3 2 0.52821 Societe Generale Group

6 5 2 2 0.50870 Deutsche Bank AG

Table 4.10: Top Hyperparameter Choices when using News

4.2 star

Another model that makes use of an exogenous variable, is the smooth
transition autoregressive(STAR) model. It is an extension of the AR model
2.4, that allows the parameters of the AR model to change depending on
an exogenous "transition" variable. It can be thought of as a set of arbitrary
many AR models, of which one will be chosen, depending on the threshold
or transition variable Zt and the parameters γ and th.

variable dataset nr. p q p q hit rate

Sentiment 74 5 4 2 3 0.61071

65 4 4 2 2 0.60744

88 6 5 2 3 0.60417

News 74 5 4 2 3 0.63571

21 6 6 2 3 0.62376

88 6 4 3 2 0.609375

Table 4.12: Top 3 Hit Rate Results
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Figure 4.6: Number of Times the different Hyperparameters were chosen when
using News as the Explanatory Variable

Definition 4.2. A process (Xt)t∈Z follows a STAR model if:

Xt+s =(φ1 + φ10Xt + φ11Xt−1 + . . . + φ1 pXt−p)(1− G(Zt, γ, th))+
(4.1)

(φ2 + φ20Xt + φ21Xt−1 + . . . + φ2 pXt−p)G(Zt, γ, th) + εt+s (4.2)

holds for the parameters p, φ1, φ2, φ1i, φ2 j, ∀0 ≤ i ≤ mH ∀0 ≤ j ≤ mL aswell
as for the transition function G(Zt, γ, th) that is bounded between 0 and 1, a
white noise sequence εt, the exogenous transition variable Zt and the real valued
parameters th and γ > 0.

For the function G(Zt, γ, th) several choices are possible, the most popular
are first and second order logistic functions. We will use the first order lo-
gistic function. Note that using Definition 2.13 we have G(Zt, γ, th) = f (Zt)

where γ corresponds to k, th corresponds to x0 and we set L = 1 in order
to achieve a maximum value of 1.

the implementation of STAR models was done in R using the tsDyn
package 2. The procedure to find a suitable model is, to first choose an ex-
ogenous sequence, and then to estimate the parameters. In our example, we
perform the estimation of the model by using the BFGS algorithm [4], with
the analytical gradient.
As with the ARMA-GARCH model we will try to use sentiment and news
as exogenous variables. We select the news variable counting the days

2 To be found online at https://cran.r-project.org/web/packages/tsDyn/index.html.

https://cran.r-project.org/web/packages/tsDyn/index.html
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passed since the last news event as our first, and the sentiment as our sec-
ond variable, and subsequently compare the results of using either of them.
For this model the following hyperparameters need to be chosen:

• mH, the autoregressive order of the "high" regime

• mL, the autoregressive order of the "low" regime

We now want to loop through a set of predetermined hyperparameter com-
binations, fit our STAR model on the validation set, perform forecasts and
find the combination of hyperparameters whose forecasts give us the best
hit rate. For every of our 91 datasets, and both our explanatory variables,
this procedure will be repeated. We determine the set of possible parame-
ters as: mH ∈ {4, 5, 6} and mL ∈ {4, 5, 6}.
Using news as exogenous data, the achieved results were good, with the
best performing parameter combination mH:4, mL:4, achieving a hit rate of
0.5292783.

Figure 4.7: Boxplot showing the hitrates achieved with news as an explanatory
variable for the 9 chosen parameter combinations.

When choosing the sentiment instead of the news data, the best hit rate
0.5419361 gets achieved by mH:5, mL:6. As with the ARMA-GARCH model,
it is clearly above the hit rate of the news data. Figure 4.7 shows, that using
news, the preferred mL-order is 4, whereas there is no clear pattern visible
for the results for different mH-orders. This means that lower autoregressive
orders can result in better hit rates, rather than the intuitively chosen higher
ones. The situation is the opposite with sentiment, where higher mL-orders
tend to yield better hit rates. Here also higher mH-orders seem to improve
the outcome.

The next step of the validation process will be to take a look at hyperpa-
rameters for groups of bonds issued by the same company. Again we hope
to get an improved forecasting performance from choosing the same set of
hyperparameters for those groups.
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Figure 4.8: Boxplot showing the hitrates achieved with sentiment as an explanatory
variable for the 9 chosen parameter combinations.

mh ml hit rate company

4 4 0.55996 Intesa Sanpaolo SPA

6 5 0.63888 Societe Generale Group

6 6 0.57378 BNP Paribas

5 6 0.54896 Adidas

6 5 0.54976 Deutsche Bank AG

Table 4.14: Top Hyperparameter Choices when using Sentiment

Table 4.14 and Table 4.16 show the best hit rates for every company and
the used hyperparameters. As in the section about the ARMA-GARCH
models, we see a notable higher predictability for "Societe Generale", with
"Adidas" and "BNP Paribas" being far behind. "Deutsche Bank" again seems
to be hard to predict, but as the average hit rate is higher now, the results
are still very strong.
This approach again yields higher hit rates as when taking one set of hy-
perparameters for all bonds, which is due to the smaller set of hit rates we
calculate the average of when choosing the parameters.
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mh ml hit rate company

6 6 0.60555 Societe Generale Group

4 4 0.56677 BNP Paribas

4 5 0.55621 Adidas

4 4 0.54216 Deutsche Bank AG

4 4 0.51009 Intesa Sanpaolo SPA

Table 4.16: Top Hyperparameter Choices when using News

Figure 4.9: Number of times the different hyperparameters were chosen when us-
ing news (right) and sentiment (left) as the explanatory variable

The last step of validation will be to find the best parameter choices for
every single dataset, without any grouping. Table 4.18 shows that the hit
rates increased a lot compared to above. In contrast to the ARMA-GARCH
model, a lot of well performing datasets coincide for the two exogenous
variables.
Again, a higher ARMA-GARCH order, does not necessarily improve the
average hit rate, when using either of the explanatory variables. In our ex-
ample, there are no clearly preferred parameters. See Figure 4.9 to observe
this behaviour.

variable dataset nr. mh ml hit rate

Sentiment 53 6 6 0.66760

51 6 6 0.65697

76 6 6 0.65206

News 74 4 6 0.66424

75 4 5 0.66423

76 4 4 0.66398

Table 4.18: Top 3 Hit Rate Results
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4.3 lstm

In this section we will introduce the ’long short-term memory network’ 
(LSTM). It belongs to the class of artificial neural networks (ANN).

vanishing/exploding gradients : In [6] Hochreiter showed that for 
"Backpropagation Through Time"(BPTT) and "Real-Time Recurrent Learn-
ing"(RTRL) by Robinson and Fallside[1] the weights of the ANN are not 
all equally valued, meaning the updates the weights wij receive, are pro-
portional on the gradient of the error function with respect to the current 
weight in each iteration of training. This results in problems when choosing 
the weights via backpropagation, as wij can have too big or too little impact 
on the gradient of the error function. This leads to ’blowing up’(exponential 
growth) or ’vanishing’ (exponential decrease) of the gradients. With too 
large gradiendts, we will hardly find a  value for weights that yield a  satis-
factory error, whereas with too small gradients, the search for a satisfactory 
result will be considerably slower.

solution : This problem gets eliminated with the concept of long-short-
term networks, first introduced in [12]. It is a novel recurrent network ar-
chitecture with a gradient based learning algorithm. LSTM can bridge time 
intervals of over 1000 steps, in case of noisy sequences, without loosing the 
ability to capture short term events.
It consists of units, called memory cells. Those units build an artificial neu-
ral network and are called LSTM-Networks. The difference to conventional 
artificial neural networks lies in the nature of the LSTM-units compared to 
nodes of standard neural network. A node as described in Chapter 2 does 
contain an activation and an activation function. A memory cell j, of a LSTM 
network with m inputs and n cells, however consists of the following parts:

1. input gate: It protects the cells stored information. Its activation fol-
lows the equality:

ain
j (t) = σ(

m

∑
k=1

win
jk xk(t) +

n

∑
u=1

vin
juau(t− 1) + bin

j︸ ︷︷ ︸
netin

j (t)

)

2. output gate: It protects other cells from irrelevant input. Its activation
follows:

aout
j (t) = σ(

m

∑
k=1

wout
jk xk(t) +

n

∑
u=1

vout
ju au(t− 1) + bout

j︸ ︷︷ ︸
netout

j (t)

)

3. forget gate: controls how much of the previous cell state will be for-

gotten: a f
j (t) = σ(

m

∑
k=1

w f
jkxk(t) +

n

∑
u=1

v f
juau(t− 1) + b f

j︸ ︷︷ ︸
net f

j (t)

)
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4. internal cell state: which follows:

aj
state(t) = aj

f  aj
state(t − 1)

+ ai
j
n(t)  tanh(

m

∑
k=1

wstate
jk xk(t) +

n

∑
u=1

vstate
ju au(t− 1) + bstate

j︸ ︷︷ ︸
netstate

j (t)

)

5. cell output: that is computed with the help of the gates via:

j
out(t)  tanh(aj

stateaj(t) = a                              (t)),

where σ is the sigmoid function 2.14, x(t) ∈ Rm for 1 ≤ t ≤ T is some
exogenous input, and vi

ju, wi
jk, bi

j ∈ R with i ∈ {"out", "in", "f", "state"}, are
the parameters to learn.
We can see that the gates are "conventional" neurons as seen in the feedfor-
ward neural network, but get some past values of the cell’s output. The cell
state even uses its own time delayed outputs as inputs. This interpretation
leads us to Figure 4.10, depicting a single LSTM-cell.

Figure 4.10: Architecture of a single LSTM-cell

The equations for the entire LSTM network with n hidden units, and an 
input vector x(t) ∈ Rm for 1 ≤ t ≤ T, can be described with the following 
equations.

1. ain(t) = σ(W inx(t) + Vina(t− 1) + bin︸ ︷︷ ︸
netin(t)

) ∈ Rn
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2. aout(t) = σ(Woutx(t) + Vouta(t− 1) + bout︸ ︷︷ ︸
netout(t)

) ∈ Rn

3. a f (t) = σ(W f x(t) + V f a(t− 1) + b f︸ ︷︷ ︸
net f (t)

) ∈ Rn

4.

5. a(t) = aout(t)  tanh(astate(t)) ∈ Rn,

where σ is the sigmoid function 2.14, x(t) ∈ Rm, W i ∈ Rn×m, Vi ∈ Rn×n 

and bi ∈ Rn. Note that the gates of a LSTM-unit are conventional artificial 
neurons. For another graphical representation of a single LSTM-cell see Fig-
ure 4.11.

Strictly speaking the above network is a LSTM-network with a forget 
gate, as this concept was added later. It has been observed that long contin-
uous input streams, without explicitly marked ends at which the network’s 
internal states can be reset, can make the states to grow indefinitely. To 
circumvent this problem, in [12] this variant of the LSTM network was pre-
sented, introducing the forget gate. It controls how much information from 
the previous cell state should be forgotten. Also note that the forget gate is 
computed just like the input and the output gate and therefore is a neuron 
of an ordinary feedforward neural network.
Another variant of the LSTM network would be to replace a(t − 1) with 
astate(t − 1) for the first three equations above. This allows the gates to have 
a look at the cell state, motivating the name Peephole LSTM. We will how-
ever no longer pursue this approach.

Figure 4.11: Structure of a single LSTM-cell

astate(t) =

a f (t) astate(t− 1) + ain(t) tanh(︸Wstatex t Vstatea t− 1 bstat︸e︷︷( ) + ( ) +

netstate(t)

) ∈ Rn
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1
|N| ∑

t∈N
(ŷt − yt)2

with N being the indices of our random batch, |N| being the batch size, ŷt
being the predicted and yt the observed value.

3 To be found online at http://pytorch.org/.

the implementation of an LSTM network has been performed in the 
Pytorch environment of Python3.
In order to produce a sequence of outputs (d(1), . . . , d(P − 1)), the LSTM 
network processes a sequence of inputs (x(1), . . . , x(P − 1)). The architec-
ture of the LSTM network which we use is displayed in Figure 4.12 . We use 
one or two hidden layers where each of these layers consists of n LSTM 
units. n is called the hidden size.
Our goal is to compute a prediction ŷ(t) for the spread change y(t). To this 
end we use our explanatory variables x(t) ∈ Rm, where x(t) also contains 
the lagged spread change y(t − 1). To compute the prediction we present 
the sequence of the last (P − 1) values of x, i.e. (x(t − P + 2), . . . , x(t)) to 
the LSTM network and get a sequence of n-dimensional outputs
(d(t − P + 2), . . . , d(t)). The prediction finally is a linear combination of  
these outputs:

ŷ(t) = M>d + b,

where d = (d(t − P + 2)>, . . . , d(t)>)> ∈ R(P−1)n, M ∈ R(P−1)n, b ∈ R.

We use minibatch stochastic gradient descent (SGD), together with the 
Adam optimizer [8] 2.1 for the training. As the objective function we 
chose the mean squared error:

http://pytorch.org/
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We now want to tackle the selection of the hyperparemeters for our model,
which are:

1. learning rate α

2. decay rates for the Adam optimizer β1, β2

3. number of epochs

4. batch size

5. numer of hidden layers

6. hidden size n

7. time horizon P

8. set of exogenous variables

For the selection of hyperparameters 1 − 7 all available exogenous vari-
ables will be used as input. After choosing the hyperparameters 1 − 7 we 
will determine the set of exogenous variables that delivers the best predic-
tive power. To do that, we will use the predetermined hyperparameters 1 − 
7 and different combinations of exogenous variables in order to make 
predictions with our LSTM model. For every of the possible combinations of 
exogenous variables we will create a set of predictions. The set of ex-
planatory variables that was used to make the set of predictions having the 
best average hit rate will get selected, and will later be used for our final 
predictions.
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Figure 4.12: LSTM network architecture
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Very good results could be achieved with a learningrate starting with 0.01.
For the decay rate we did adopt the widely used choice: β1 = 0.9, β2 = 0.999,
which we will also use for the DA-RNN network below.
With these hyperparameters fixed, the remaining ones were determined by
validation. This process consisted of first predetermining a certain range
of possible hyperparameters to choose from, training the model with those
hyperparameters, generating forecasts and subsequently comparing the hit
rates, achieved by the different hyperparameter settings. The possible hyper-
parameter ranges were picked as: number of hidden layers ∈ {1, 2}, hidden
size ∈ {16, 32, 64, 128}, batch size ∈ {16, 32, 64}, time horizon ∈ {16, 32, 64}.
For validating the network, we made use of all avaliable variables
The best result, was achieved with 2 hidden layers. Using: batch size 64, hid-
den size 16 and a time horizon of 8 the computation resulted in a hit rate
of 0.5280215 with a RMSE of 0.1314439. When pursuing trading strategies
making use of those results, the benefits of a slightly higher hit rate may
outweigh the costs of extra computational power by far. As we have only
restricted computational resources at hand, the increase of the hit rate does
not justify the extra time needed to train the model in our case. That is why
we will not pursue testing models with more than 2 hidden layers.

As the two layer model outperformed the one layer model, we will use
the former to conduct our final forecasts. We still want to see the differences
between those two models and did validate them separately. We will start
our analysis with the one layer model. The top three parameter choices
were:

batch size hidden size time horizon rmse hit rate

32 16 64 2.4696204 0.5239922

64 64 16 3.5238382 0.5232146

16 128 16 1.9893613 0.5214029

Table 4.20: Top 3 Hyperparameter Choices

The performance for all other parameter settings not belonging to the top
3, was significantly worse. We will additionally consult boxplots for every
parameter, showing the distribution of the hit rate for different parameter
values, to make our final parameter choice.

Figure 4.13 shows, that results for our data get worse with increasing
batch size and confirms our intuitive assumption that the model gets more
accurate with a higher hidden size, as it is able to pick up more correlations.
We however have to be cautious and should refrain from assuming this
holds for arbitrary models and arbitrary hidden sizes. The lower average
hit rate at hidden size 128 shows that high hidden sizes can lead to overfit-
ting or very slow learning models that would need much more epochs to
train in order to perform good results. The lower left part of Figure 4.13 de-
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Figure 4.13: Plots for the different hyperparameters of the LSTM network with 1

hidden layer

livers more surprising insights. An increasing time horizon seems to have a
negative influence on our hit rate. Again this behaviour might change with
an higher number of epochs, and shouldn’t be generalized. Finally the fig-
ure reveales the superiority of the best 3 results for this model, having a low
error combined with a good predictive performance.
This motivates the following parameter choice: batch size = 16, hidden size
= 128, time horizon = 16, as this is a top 3 result with only slight worse hit
rate but better RMSE values compared to the other 2 results.
Increasing the number of layers to 2, the plots of Figure 4.14 look fairly sim-
ilar to the results for the one layer model. The parameter setting achieving
by far the best values (batch size 64, hidden size 16,time horizon 8), will be
used for the final forecast.

Until now, we did look at the results when choosing a certain hyper-
parameter set for all datasets in our sample. As with the ARMA-GARCH
model, we now want to group the bonds into batches of the same company.
Table 4.22 reveals a higher predictability of Societe Generale with our LSTM
model. Earlier we observed similar behaviour when applying the ARMA-
GARCH model. The top 10 parameter choices for this company result in
higher hit rates than any of the other companies achieved.

batch hidden size p hit rate company

32 128 32 0.70897 Societe Generale

16 16 16 0.55394 Intesa Sanpaolo

16 64 16 0.54514 Adidas

16 16 8 0.53064 Deutsche Bank

64 32 32 0.52925 BNP Paribas

Table 4.22: Top Hyperparameter Choices per Company
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Figure 4.14: Plots for the different hyperparameters of the LSTM network with 2

hidden layers

As in the ARMA-GARCH case, we now proceed with looking at the best
parameters for every dataset individually. Table 4.24 depicts the top 3 hit
rates, notably resulting from data of 2 bonds of Societe Generale and 1 of
Deutsche Bank. The lowest hit rate is 0.52559, which is still well above the
0.5 mark.

dataset nr. batch size hidden size p hit rate

66 16 128 32 0.787582

65 64 32 8 0.758993

21 16 128 32 0.701205

Table 4.24: Top 3 Hit Rate Results

Figure 4.15 promotes a high number of hidden nodes and shows some
ambiguity concerning the time horizon to choose. This shows again, that
choosing a model that can potentially capture more information, is not al-
ways preferable. It is also evident that smaller batch sizes perform better on
average.

Figure 4.15: Number of Times the different Hyperparameters were chosen

With the parameters chosen, we want to take another look at the exoge-
nous variables. The readily configured model, gives us a tool to measure
the different variables’ prediction power, complementing the methods we
did apply in Chapter 1.
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Figure 4.16: Boxplot of different hyperparameters and the achieved hit rates of fore-
casts that make use of those hyperparameters, using 1 (left) resp. 2

layers (right)

Figure 4.16 plots the hit rates resulting of the set of hyperparameters
determined above, and a set of explanatory variables. All combinations of
explanatory variables were trained, and the resulting hit rates are plotted
for all variables that were used for the respective forecast. It shows that only
the time to maturity differs significantly from the other exogenous variables,
as it seems to bring no advantage to our forecast model at an average hit
rate of approximately 0.5 for forecasts resulting from hyperparameter com-
binations that contain time to maturity. The figure also shows that the result
for the 2 layer model is very similar, but contains some more outliers.
The top result for this validaion uses the following exogenous variables:

• One Layer:

• days passed since news

• stock price

• sentiment

• buzz

• Two Layers:

• days passed since news

• news flag

• stock price

• sentiment

• maturity

achieving a hit rate of 0.5258298 with a RMSE of 0.4412404 and 0.5283924
with a RMSE of 0.1575366. Note that the relatively poor RMSE value can
be explained by the very low number of epochs trained to conduct the
validation (5).
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4.4 da-rnn

The next model will take the idea implemented in the LSTM network one 
step further. In order to acurrately predict longer time series, the Dual-Stage 
Attention-Based Recurrent Neural Network introduced in [14] is split into 
two parts. First an input attention mechanism selects the relevant driving 
series, then a temporal attention mechanism selects relevant states across 
the time steps of our time horizon P. For a more detailed description please 
refer to [14]
For this section let us select a subseries of length (P-1) of our input time 
series X, which has n components, i. e.: X = (x1, x2, . . . , xn) with xk =
(xk, xk, . . . x(

k
P−1))

> ∈ RP−1 and xt =(x, xt2, . . . , xtn) ∈ Rn. Like we did with the 
LSTM-network, we will iterate through the series, always look-
ing at chunks of size (P-1), predicting the P-th value. This means that we will 
use P − 1 values of our n exogenous time series Xt := (xt-P+1, . . . , xt−1) and 
values of our target series Yt := (yt-P+1, . . . , yt−1) to predict our target yt , more 
precisely, given Xt and Yt we want to find a non-linear mapping that yields 
yˆt ∈ R which will be our prediction for yt.
What follows are the computation steps done to find our forecast value for 
t = P.

the encoder with input attention is the first m echanism o ur n 
exogenous datapoints (xt

1, xt
2, . . . , xt

n) will pass through at time step t of a 
total of P-1 steps. The aim is to learn a mapping from xt to ht

enc at time step t, 
where ht

enc ∈ Rmenc 
is the output of the Encoder. The input attention layer is

iattt
k = vi

>
atttanh(Miatt(ht

en
−

c
1; st

en
−

c
1) + Wiatt xk), 1 ≤ k ≤ n

where viatt ∈ RP−1, Miatt ∈ R(P−1)×2menc 
and Wiatt ∈ R(P−1)×(P−1) are pa-

rameters to be learned and st
en
−

c
1 is the cell state of the encoder at time t − 1 as 

introduced below.
We want the weights to sum to 1, and therefore apply the softmax function 
to our weights:

αt = σ(iattt)

with αt ∈ Rn. The weight αt measures the importance of the k-th exogenous 
series at time t. In other words, it determines the amount of attention the 
various driving series get at time t.
Our weight adjusted input series

x̃t = (α1
t x1

t , α2
t x2

t , . . . , αn
t xn

t )

will be now put into the Encoder LSTM unit f enc as defined below to learn 
the mapping:

henc
t = f enc(henc

t−1, x̃t),
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yielding our new output ht
enc, that will be forwarded to the temporal 

attention layer, which we discuss later.

the encoder will be an LSTM unit with forget gate (a gated recurrent
unit (GRU) would be possible aswell), that maps the weigthed input x̃t ∈ Rn

and the last encoder output  ht
en
−

c
1 ∈ Rmenc 

to the new encoder output:

henc
t = f enc(henc

t−1, x̃t).

The equations for the encoder unit are as follows:

f enc
t = σ(Menc

f (henc
t−1; x̃t) + benc

f ) (4.3)

ienc
t = σ(Menc

i (henc
t−1; x̃t) + benc

i ) (4.4)

oenc
t = σ(Menc

o (henc
t−1; x̃t) + benc

o ) (4.5)

senc
t = ft � senc

t−1 + ienc
t � tanh(Menc

s (henc
t−1; x̃t) + benc

s ) (4.6)

henc
t = oenc

t � tanh(senc
t ) (4.7)

where σ is the sigmoid function (see:2.14), � is the elementwise multi-
plication operator and (ht

en
−

c
1; x̃t) is the concatenation of ht

en
−

c
1 and x̃t. The 

following parameters have to be learned:
Menc

f , Menc
i Menc

o , Menc
s ∈ Rmenc×(menc+n), benc

f , benc
i , benc

o , benc
s ∈ Rmenc

.

the temporal attention layer takes as input the outputs of

ct =
P

∑
k=1

βk
t henc

k .

Combining the given target series (y1, y2, . . . , yP−1) with ct−1:

ỹt−1 = M(yt−1, ct−1) + b

the encoder he
k
nc k = 1, . . . , P and the previous output ht

de
−

c
1 and cell state

st
de
−

c
1 of the decoder, which will be discussed below. It generates attention 

weights, using, like the input attention layer, a perceptron:

βt = σ(tattt)

As βt measures the importance of the k-th encoder output, we compute the 
weighted sum of the encoder outputs, called the context vector as:

k

tattt
k = vtatttanh(Mtatt(ht

de
−

c
1; st

de
−

c
1) + Wtatthe

k
nc), 1 ≤ k ≤ P− 1

where (ht
de
−

c
1; st

de
−

c
1) ∈ R2mdec

and the parameters to learn are: vtatt ∈ Rmenc
,

Wtatt ∈ Rmenc×menc
, and Mtatt ∈ Rmenc×2mdec

. Again the softmax function is
applied in order to get weights that sum to 1:
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where M ∈ Rmenc+1 and b ∈ R have to be learned, we get ỹt−1 which will
be fed to the decoder LSTM unit:

hdec
t = f enc(hdec

t−1, ỹt−1)

the decoder , just like the encoder, will be a LSTM unit. This choice
is made because LSTM networks can pick up long term dependencies. The
decoder is determined through the following equalities:

f dec
t = σ(Mdec

f (hdec
t−1; ỹt) + bdec

f ) (4.8)

idec
t = σ(Mdec

i (hdec
t−1; ỹt) + bdec

i ) (4.9)

odec
t = σ(Mdec

o (hdec
t−1; ỹt) + bdec

o ) (4.10)

sdec
t = f dec

t � sdec
t−1 + idec

t � tanh(Mdec
s (hdec

t−1; ỹt) + bdec
s ) (4.11)

hdec
t = odec

t � tanh(sdec
t ) (4.12)

where Mdec
f , Mdec

i , Mdec
o , Mdec

s ∈ Rmdec×(mdec+1), bdec
f , bdec

i , bdec
o , bdec

s ∈ Rmdec
again

are the parameters to be learned.

the final prediction is made after P steps based on the context vec-
tor cP and the decoder’s last output hd

P
ec via:

ŷP = F(y1, y2, . . . , yP−1, x1, x2, . . . , xP−1) = v(M(hd
P

ec; cP) + b1) + b2

with M ∈ Rmdec×(mdec+menc), b1 ∈ Rmdec 
, v ∈ Rmdec 

, b2 ∈ R. This gives us 
the final p rediction result.

the implementation of the DA-RNN was also done in the Pytorch 
environment of Python.
In [14] it is suggested to use minibatch stochastic gradient descent (SGD), 
together with the Adam optimizer [8] 2.1. As the objective function we 
chose the mean squared error:

1
|N| ∑

t∈N
(ŷt − yt)2,

with N being the indices of our random batch, |N| being the batch size,
yt being the observed value and ŷt the predicted value, that we obtain when 
iterating through our input series of length T, by choosing a new set of 2(P − 1) 
input values (Yt; Xt) = (yt-P+1, . . . , yt−1, xt-P+1, . . . , xt−1) to train our DARNN 
with, every iteration step.
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Now that the theoretical steps are clear, we have to choose the following
hyperparemeters for our model:

1. learning rate α

2. decay rates for the Adam optimizer β1, β2

3. number of epochs

4. batch size

5. hidden size encoder menc

6. hidden size decoder mdec

7. time horizon P

8. set of exogenous variables

As we did in the case of the LSTM network, we will use all available ex-
ogenous variables as input to our DA-RNN network to select the hyperpa-
rameters 1 − 7. After choosing the hyperparameters 1 − 7 we will determine 
the set of exogenous variables that delivers the best predictive power. To do 
that, we will use the predetermined hyperparameters 1 − 7 and different 
combinations of exogenous variables in order to make predictions with our 
DA-RNN model. For every of the possible combinations of exogenous vari-
ables we will create a set of predictions. The set of explanatory variables that 
was used to make the set of predictions having the best average hit rate will 
get selected, and will later be used for our final predictions.
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Figure 4.17: DARNN network architecture as depicted in [14]
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Very good results could be achieved with a learningrate of 0.001, the same
as proposed by [14]. For the decay rate we did adopt the widely used choice,
also promoted by the paper: β1 = 0.9, β2 = 0.999.
Having chosen these parameters, the remaining were determined by vali-
dation, as we did with the LSTM network. Validation was performed by
predetermining a certain range of possible hyperparameters and subse-
quently comparing the hit rate, achieved by those parameters. The param-
eters were chosen from the following values: hidden-size-encoder=hidden-
size-decoder ∈ {16, 32, 64, 128}, batch size ∈ {16, 32, 64}, time horizon ∈
{8, 16, 32}. Again we used all avaliable exogenous variables to create the
forecasts for the validation. The results of this procedure can be found in
Table 4.26.

Having only limited computational power at hand, we did choose to train
for 10 epochs for each set of parameters.
Figure 4.18 shows the superiority of batch size 32 and time horizon 32. For
the size of the hidden layer, 64 seems to be favourable over 32, having less
extreme outliers. Still hidden size 32 performs very well. The scatterplot
of 4.18 shows 3 hyperparameter combinations with particularly low RMSE
and hit rate. Those three settings all have batch size = 64, encoder-hidden
size = decoder-hidden size = 16 with different time horizons. We therefore
want to avoid this combination when forecasting.
Overall this reaffirms our initial parameter choice batch size = 32, hidden
size = 32, time horizon = 32.

Figure 4.18: Plots for the different hyperparameters of the DARNN network
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batch size enc . hidden dec . hidden p hit rate rmse

16 128 128 16 0.5092329 0.12809159

16 128 128 32 0.5196336 0.12710984

16 128 128 8 0.5178164 0.12734542

16 16 16 16 0.4981329 0.12644286

16 16 16 32 0.5190069 0.12669691

16 16 16 8 0.5009622 0.12652369

16 32 32 16 0.4905435 0.12568201

16 32 32 32 0.5211490 0.12598749

16 32 32 8 0.5209427 0.12611606

16 64 64 16 0.5150160 0.12591947

16 64 64 32 0.4995970 0.12800953

16 64 64 8 0.5269891 0.12630757

32 128 128 16 0.5045390 0.12771633

32 128 128 32 0.5222186 0.12756327

32 128 128 8 0.4865873 0.12735061

32 16 16 16 0.5178320 0.13138074

32 16 16 32 0.5192870 0.13328291

32 16 16 8 0.5060917 0.12866176

32 32 32 16 0.5242650 0.12832887

32 32 32 32 0.5295936 0.12907853

32 32 32 8 0.5047755 0.12966824

32 64 64 16 0.5200272 0.12621104

32 64 64 32 0.5246299 0.12744733

32 64 64 8 0.5080341 0.12766874

64 128 128 16 0.5135664 0.12793636

64 128 128 32 0.5155894 0.13022309

64 128 128 8 0.4978564 0.12779212

64 16 16 16 0.5012983 0.14104587

64 16 16 32 0.5143426 0.14725137

64 16 16 8 0.4946430 0.14730916

64 32 32 16 0.5100088 0.13444198

64 32 32 32 0.5022187 0.13035002

64 32 32 8 0.5145185 0.13153710

64 64 64 16 0.5271541 0.13028287

64 64 64 32 0.5056857 0.13022848

64 64 64 8 0.5104524 0.12894283

Table 4.26: Results for the different parameter combinations for the DARNN net-
work
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As we did with the ARMA-GARCH model, we now consider groups of
bond issued by the same company and choose hyperparameters seperately
for every group. Table 4.28 shows the best average hit rate achieved for
certain parameter choices. It is evident that Societe Generale Group stands
out. This is not just an outlier, but a clear pattern, as the top 15 parameter
choices for this company perform better than any other top choice of any
other company. At the same time, certain parameter choices result in hit
rates being far worse than any of the hit rates achieved by other companies.
Again, we observe that the hit rate improves dramatically, when grouping
the bond by the issuer, as we calculate the average hit rate of a smaller set
of bonds

batch enc . hidden dec . hidden p hit rate company

16 128 128 32 0.70897 Societe Generale

32 16 16 8 0.54514 Adidas

64 64 64 16 0.53791 Deutsche Bank

64 32 32 16 0.53514 Intesa Sanpaolo

16 32 32 32 0.53301 BNP Paribas

Table 4.28: Top Hyperparameter Choices per Company

The last step is to select the best performing set of hyperparameters for
every single bond. Figure 4.19 shows that a lower batch size is generally
preferred. A bigger hidden size, on average also results in higher hit rates,
which a surprisingly is not the case for our time horizon P. Again, this
result does not rule out the possibility of getting better average hit rates
with a greater time horizon P. As the computational cost rises strongly when
increasing P, we might just not have trained enough epochs to see this effect.
Note however that those results resemble those of the LSTM network above.

Figure 4.19: Number of times certain hyperparameters were chosen

Before running the forecast, we want to have another look at the given
explanatory variables. In chapter 1 we analyzed their correlation, stationar-
ity and seasonality, but were not able to determine their predictive power
in a non-linear model. This is exactely what we will look at now. By apply-
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ing the model to all possible permutations of our exogenous variables, and
then checking the resulting hit rate, we will identify their contributions to
our forecasts.
The model with the highest achieved hit rate, used the following hyperpa-
rameters:

• news (flag)

• stock

• sentiment

• maturity

and scored a hit rate of 0.5227508 with a RMSE of 0.1540045.
Figure 4.20 plots the hit rates for sets of hyperparameters, all of them con-
taining the indicated varaible to be found on the y-axis. We can see that
the time to maturity performed the worst with the stock price being the
most important contributor to our forecast result. We however shouldn’t
rely solely on this result, as there could be favourable combinations includ-
ing variables that scored low on this boxplot.

Figure 4.20: Boxplot of different hyperparameters and the achieved hit rate

Keeping in mind, that we have two variables in the dataset that are re-
lated to the news events, one counting the days passed and one marking
the news report dates with a 1 entry. This means using them both for pre-
diction may not be necessary or will even result in less predictive power.
Figure 4.21 (left) shows the resulting hit rate and RMSE when using all pos-
sible combinations of explanatory variables conatining the flag variable and
the "days passed" variable. We can observe that there are no noticeable pat-
terns highlighting differences between using either of them, apart from the
best result for the flag variable being slightly better. Interestingly the best
and the second best result uses not only "dayspassed" instead of the flag
variable, but also does not make use of the variable containing the stock
prices, in contradiction to the interpretation of the boxplot.
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Another pair of variables should be taken care of, namely the sentiment and
the buzz. Showing slight correlation, as seen in Chapter 1, we expect no ad-
ditional benefit from using both of them. Figure 4.21 (right) shows, that
using the buzz, we can expect a larger varaince of the RMSE, whereas the
sentiment delivers the top two results, encouraging the use of the sentiment
as an explanatory variable.

Figure 4.21: Left: Results when using all possible combinations of hyperparame-
ters, including the different flag prameters. Right: Results for all possi-
ble combinations, first including buzz, then the sentiment.
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R E S U LT S

Being now acquainted with the different modelling approaches and hav-
ing set the hyperparameters, we will now take a look at the results. As
mentioned in Chapter 3, our final results are the forecasts, generated after
training the respective models on 80% of the available data, and then gen-
erating 1-step forecasts for the remaining 20% of the data.

5.1 arma-garch model

Validation showed that when choosing a single parameter set for all the
bonds, and when grouping them company-wise, the model including the
exogenous parameter in the variance did perform subtly better. That is why
we will use this method for our final forecasts. We would expect the other
variant of the ARMA-GARCH model to yield highly similar results, as was
evident during parameter selection.
Of the two exogenous variables we chose the sentiment, as it did lead us to
slightly better results, but again note that the news variable would probably
lead to very similar results.

one-parameter set : Generating forecasts with the exogenous variable
sentiment, based on the set of hyperparameters for all our 91 bonds, as cho-
sen in Chapter 4 ((P, Q, p, q) = (4, 5, 2, 3)), we get an average hit rate of
0.54906 with an average RMSE of 0.20707. This is an exceptional good re-
sult. What is even more remarkable, is that the forecasts of ARMA-GARCH
models are themselves linear. In fact they are ARMA models, which differ
from standard ARMA forecasts only in the computation of the parameters.

company-wise grouping : This setting quite surprisingly achieved an
even higher average hit rate of 0.55166 at an RMSE of 0.18664. Figure 5.1
highlights the very small amount of variance in the hit rate of all three
different approaches.

seperate training : Again we now consider the results, when forecast-
ing every bond with its own parameter set. This resulted in an average hit
rate of 0.54989 with an average RMSE of 0.1953974, indicating that choosing
individual parameters for every set, does not lead to any extra predictive
power in this case. Figure 5.1 illustrates all three results, and highlights their
similarity.
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Figure 5.1: Hit Rate plotted against the RMSE for the three different approaches "in-
dividual parameter", "company parameter" and "one parameter" (l.t.r.)

5.2 star model

one-parameter set : The forecasts with the exogenous variable senti-
ment, based on the set of hyperparameters for all our 91 bonds, as chosen
in Chapter 4 ((mH, mL) = (5, 6)), we get an average hit rate of 0.53399 with
an average RMSE of 0.18934. This is the worst result until now, but still
clearly beats a random draw from [0, 1]. Remember that given the threshold
variable Zt, the forecasts inside the continuously many regimes are still a
linear function of the current and past values of the time series. A property
the two neural network models do not possess.

company-wise grouping : In contrast to the good result obtained dur-
ing validation, this approach yields a much lower hit rate of 0.53297 at an
RMSE of 0.18978. Note that this hit rate is slightly below the one observed
with the one-parameter approach.

seperate training : Considering the results when forecasting every
bond with its own parameter set, we get a very similar average hit rate of
0.53324 with an average RMSE of 0.18917, indicating that choosing individ-
ual parameters for every set, does not lead to any extra predictive power in
this case, but even leads to worse hit rates compared to the one-parameter
approach. Figure 5.2 illustrates all three results, and again highlights their
similarity.

Figure 5.2: Hit Rate plotted against the RMSE for the three different approaches "in-
dividual parameter", "company parameter" and "one parameter" (l.t.r.)
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5.3 lstm network

one-parameter set : We will begin this section with the results we an-
ticipate to be the worst, namely those with one set of hyperparameters for
all data sets.
In the previous chapter we did argue why the choice: batch size = 64, hid-
den size = 16, P = 8 with 2 hidden layers and the exogenous variables "days
passed since news", "news flag", "stock price", "sentiment" and "maturity",
is reasonable. We did train this LSTM network for 200 epochs, and got a
hit rate of 0.519609 with an RMSE of 0.28174. This is better than a random
draw from [0, 1] and therefore a satisfying result.
Remember, that when we decided to prefer 2 hidden layers over 1 during
validation, the differences in the outcomes of those two models were very
minor. Several hyperparameter choices for the 2 layer model performed
only slightly, if at all better than the 1 layer counterpart. This is why we
did also train a 1 layer model with the same set of hyperparameters and
explanatory variables to compare the results. In accordance to the valida-
tion findings, assuming only insignificant advantage of the 2 layer model,
we got a hit rate of 0.51966 with an RMSE of 0.26102, even very slightly
outperforming the 2 layer model.

company-wise grouping : Proceeding with grouping those bonds, is-
sued by the same company, and training them with the same parameters,
we get a hit rate of 0.51395 with a RMSE of 0.25695. While the RMSE de-
creased, also the hit rate did so, making this model perform worse than the
previous one. As supported by the next paragraph, this model is not only a
theoretical compromise, but also its’ outcomes lie in the middle of our three
approaches.

seperate training : At Validation, the model with separate hyperpa-
rameters for every bond, performed by far the best, concerning both hit rate
and RMSE. Predicting out of sample however, exposed the weakness of this
approach. While during training we could achieve stellar results, the out of
sample forecasts were the worst of the three approaches undertaken, with
a hit rate of 0.50909 and a RMSE of 0.27949.
See Figure 5.3 and note that the variation in the hit rate decreases very
slightly, when only one parameter set is used for all bonds.
It has to be noted that this model resulted in memory shortage for some big
datasets (24, 29, 35 , 40, 47,60, 63, 64, 71, 81, 90), in turn resulting to a cal-
culation abortion. Those datasets have been trained on a reduced training
sample that has been cropped, removing the first 20% of its entries. This was
done for all three approaches, thus did not result in any bias. The problem
could probably have been avoided using a stronger, more recent computer.
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Figure 5.3: Hit Rate plotted against the RMSE for the three different approaches "in-
dividual parameter", "company parameter" and "one parameter" (l.t.r.)

5.4 darnn network

one-parameter set : The more complex structure of this model, seems
to bear fruit. Compared to the same parameter approach but using the
LSTM model, the hit rate 0.533411 with the RMSE 0.16726 constitutes a
strong improvement. The time needed to train the two models was roughly
the same. On the machine available to train this model however, we got the
same error as we did when training the LSTM model, alluding insufficient
memory. As with the LSTM model, we did trim the training set of those
bonds, again for all three approaches.

company-wise grouping : A still very good hit rate of 0.515637 with
a RMSE of 0.20301 was observed when using hyperparameters per group.
Strongly resembling the outcome of the LSTM network, we again observe
an impairing hit rate, the less grouping and thus averaging takes place,
when choosing our hyperparameters.

seperate training : It seems as the DARNN behaves very similar to
the LSTM nework, only on a slightly higher level of hit rates. For training
our model with separate parameters for every dataset we could score a hit
rate of 0.515169 and a RMSE of 0.20426
Note that the same behaviour as that of the LSTM model, can be observed
for the hit rates. When looking at Figure 5.4, we can see a decreasing of the
hit rate’s varaince for the one-parameter approach.

Figure 5.4: Hit Rate plotted against the RMSE for the three different approaches "in-
dividual parameter", "company parameter" and "one parameter" (l.t.r.)
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5.5 residual diagnostics :

A Residual et in forecasting is the difference between the one-step prediction
and the observed value at that time et = yt − ŷt. Residuals should have the
following two properties:

• The residuals are uncorrelated

• The residuals have zero mean

If there is correlation between residuals, then there is information left in
them, which should have been used for forecasting. In case the residuals
do not have zero mean, then the forecasts are biased. In any of these two
cases, the forecasting method can be improved to produce more accurate
predictions.
We will analyse the residuals coming from the best performing sub method
of each method, (for these sub methods see: Table 5.2), and check them for
bias and correlation. This analysis is done separately for each bond in the
dataset. In order to check for correlation, the Ljung-Box test was performed.
If there was evidence for correlation, the autocorrelation function was in-
spected to identify possible lags at which correlation occurs.

bias was very minor if existent. For all four methods, there were no
bonds for which the mean of the residuals was greater than 0.1, and there
was a maximum of two bonds per method that had a mean of residuals be-
tween 0.1 and 0.05. Furthermore the mean was in some cases positive and
in some cases negative, with no conspicuous patterns observable.

correlation was observable to a different extent for the four methods.
The residuals of the STAR model were the least correlated, with 62 bonds
yielding p-values of above 0.05, which let’s us conclude that the residuals
for those bonds are not distinguishable from a white noise process. The re-
maining bonds for this models, showed relevant correlation at lag 19. This
means that the STAR model did not make use of all the information pro-
vided. Lag 19 indicates that the influence of the job market data wasn’t fully
covered by the model’s predictions.
For the ARMA-GARCH model, there were 59 bonds with p-values above
0.05. The correlation of the remaining residuals occur at lag 19 and in two
cases at lag 3.
The residuals of the LSTM model behave different. Not only are there more
bonds where the residuals show correlation (50), but the correlations occur
at different lags, with no lags standing out strongly. Only at lag 19 correla-
tions occur a bit more frequently than at other time lags.
The DARNN surprisingly performed worst with 53 bonds with p-values be-
low 0.05, meaning that for only 38 bonds the 0-hypothesis of independence
wasn’t rejected. As was the case with the LSTM’s residuals, correlation oc-
curs at different lags, and correlations at lag 19 were a little more frequent.
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The varying residual behaviour of the two neural networks suggests that
they have for various bonds picked up different dependencies, that were
not actually present in the spread change time series. This might be the
result of the optimization algorithm reaching saddle points. As we used
the mini-batch gradient descent (Chapter 2), the chances of getting trapped
at such saddle points are elevated. With the computational power at hand,
reducing the batch size however makes computation in reasonable time, im-
possible .
The correlations at lag 19 on the other hand show that the information the
news variable delivered, wasn’t fully exploited in all of the models. This
is no surprise for the ARMA-GARCH and the STAR model, as the news
variable wasn’t part of the input for those models, but the LSTM and the
DARNN theoretically could have used this information.

5.6 diebold mariano test :

Having analysed the two neural network models on their own, we now
want to apply the Diebold Mariano test Chapter 3, to see whether the dif-
ference in the predictive power between the four models, is significant. We
will apply the test to the results coming from the one-parameter approach,
as it did perform the best overall.
Lets keep in mind that the 0-hypothesis of the DM test is, that the two meth-
ods have the same forecast accuracy. Out of curiosity, we also compare the
other 2 approaches’ results for the LSTM and the DARNN model.

lstm – darnn First we did apply the test to the results coming from
individual parameters. This resulted in 73 bonds with a p-value of under
0.05 indicating that the 0-hypotheses of equal predictive power gets rejected
in those cases.
Next the DM test was executed on the DARNN and the LSTM model, result-
ing from grouping the bonds. There were 70 bonds with a p-value smaller
than our 0.05 threshold. Conducting the same procedure on the results com-
ing form the model with only one parameter we observed 67 bonds with
p-values below the threshold.
To summarize one can say, the more grouping is done concerning the choice
of the hyperparameters, the more similar the predictive power of the two
models get. Note that more grouping also results in better overall predictive
power for both models.
We then tested for the alternative 0-hypotheses that the DARNN forecasts
are less accurate than the LSTM forecasts and that the DARNN forecasts are
more accurate than the LSTM forecasts, which yielded 66 p-values of under
0.05 and 1 such p-value respectively for results coming from individual pa-
rameters. For company-wise grouping we got 66 and 2 small p-values and
for the one-parameter approach we got 70 and 7 such values. This suggests
that the forecasts coming from the DARNN model are more accurate than
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those coming from the LSTM model for all three approaches of choosing
the hyperparameter set.

arma garch – darnn Comparing the ARMA GARCH model to the
DARNN, we get different results, with now only 77 companies with a p-
value smaller than 0.05. This means that for about 85% of our bonds, the
DARNN and the ARMA-GARCH model deliver significantly different fore-
casts. That the forecasts of the LSTM and the DARNN have more similar
forecast accuracy as the ARMA GARCH and the DARNN seems intuitive,
as the DARNN makes use of the LSTM network.
We again tested for alternative 0-hypotheses. Testing the 0-hypothesis: "Fore-
casts from the ARMA-GARCH model are less accurate than those coming
from the DARNN model" yielded 6 p-values of under 0.05 whereas "Fore-
casts from the ARMA-GARCH model are more accurate than those coming
from the DARNN model" yielded 20 such p-values when choosing the one-
parameter approach. This result suggests that the DARNN forecasts are
better for more bonds, but note that it does this with relatively small signifi-
cance. Table 5.2 shows the lower RMSE of the DARNN model, which could
explain this finding.

arma garch – lstm The DM test for the ARMA-GARCH and the
LSTM model, resulted in 56 bonds small p-values, making those two mod-
els’ forecasts’ accuracies’ similarity the highest detected between all pairs
of models.
Testing for the hypothesis that forecasts of the ARMA-GARCH model are
worse than those coming from the LSTM model resulted in 59 p-values of
under 0.05. Testing for the hypothesis that forecasts of the ARMA-GARCH
model are better than those coming from the LSTM model resulted in 5

p-values of under 0.05. This would mean that for most bonds the ARMA-
GARCH model’s forecasts outperform those of the LSTM model.

star – darnn 57 values under 0.05 were found. This means that the
forecasts produced by this two models are approximately as similar as those
of the ARMA-GARCH and the LSTM model.
The alternative hypothesis that the STAR model’s forecasts are less accu-
rate results in 26 p-values of under 0.05 whereas the hypothesis that the
STAR model’s forecasts are more accurate yields 35 such p-values. Thus the
DARNN model’s forecasts seem to have better accuracy in some cases, but
for the majority of bonds no clear statement on better or worse accuracy of
either of the two models can be made.

star – lstm 59 values under 0.05 were found. This means that the re-
sults of the DM test for these two models are very close to the results for
the previous pair of models, namely the DARNN and the STAR model.
There were 36 p-values of under 0.05 for the hypothesis that the STAR
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model’s forecast are less accurate than the LSTM model’s forecasts, and
11 such p-values for the hypothesis that they are achieve greater accuracy.

star – arma garch For the STAR and the ARMA GARCH model, we
anticipate highly similar forecasting accuracy, as they both evolved from
ARMA models. In fact for 60 bonds, the forecasts yielded a p-value smaller
than 0.05. Thus about 34% of the bonds delivered similar forecasts.
The tests for the alternative hypotheses that the STAR model’s forecasts
have better accuracy resulted in 10 p-values of under 0.05 whereas the test
that the STAR model’s forecasts are less accurate resulted in 9 such p-values.
This result is the least significant. It shows that for the majority of bonds,
non of these two models is clearly better than the other.

5.7 summary

The best results of each method are summarized in Table 5.2 and Figure 5.5.

model sub-model rmse hit rate

ARMA-GARCH company-wise 0.18664 0.55166

STAR one-parameter 0.18934 0.53399

DARNN one-parameter 0.16726 0.533411

LSTM one-parameter 0.28174 0.519609

Table 5.2: Summary of the results

With the DARNN, our most sophisticated and just recently developed 
model on the third place concerning the hit rate, a lot of questions arise. Es-
pecially given the success of this model when applied to different machine 
learning tasks. Regarding the RMSE however, the DARNN model did out-
perform the other methods with distinctly lower RMSE values.
The results also show the unexpected good forecasting power of the ARMA-
GARCH models with their forecasts being linear, once the ARMA parame-
ters are chosen.
The Diebold Mariano test results are summarized in                 . Note that the 
two models evolving from AR-processes reject the 0-hypothesis of the same 
forecast accuracy in 66% of the cases, and the two neural network models 
even in 74% of the cases.

Table 5.4
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model

A.-G. 65 62 6 7 85 22 11 66 10 0

STAR 40 65 12 29 63 38 0 10 66 11

DARNN 76 74 8 0 38 63 29 22 85 7

LSTM 0 8 74 76 12 65 40 6 62 65

LSTM DARNN STAR A.-G.

Table 5.4: Summary of the DM test results, depicting for every pair of modles the
% of cases that we rejected the 0-hypothesis of less, equal and greater
predictive power of the model in the regarding row to the model in the
regarding column

Figure 5.5: Hit rates of the best results of each method





6
C O N C L U S I O N

6.1 results

After trying different approaches with different data, one is inclined to be-
lieve that the price changes in the bond market remain almost unpredictable.
With all of our models performing better than a random draw from [0, 1], it
should however still be possible to beat the market, by implementing trad-
ing strategies that exploit this extra knowledge.
Nevertheless the significance of the results should not be overestimated,
given the relative small amount of bond data used to perform the forecasts.
With bonds issued by companies from a wider variety of markets, the re-
sult may have been slightly different, due to possible correlations to other
exogenous variables, not detected with our data sets, or due to the limited
computational power available.
The lack of computational power did not so much affect the ARMA-GARCH
and the STAR model’s forecasts, as the convergence criteria were reached
there, giving fairly good results, but did probably affect the two artificial
neural networks which were trained a maximum of 10 hours per set of 91

bonds. Apart from the limited time the models were trained and limita-
tions concerning the choice of the hyperparameters, we saw that for some
bonds and hyperparameters we ran out of memory, making the desired
calculations impossible altogether. The rise of machine learning does not
by chance coincide with the rapid development of CPU and GPU speeds.
Usual settings for working with LSTM networks involve a cluster with mul-
tiple cores, that are training the model for several hours.
But we could also observe, that given those limited resources, the ANN
models, are no guarantee for better results, putting into perspective the de-
mand fore extra computational force.
We should also keep in mind that the list of ANN methods used in this
thesis is by no means exhaustive and that there is a multitude of possible
variants of the ANN models used.

6.2 prospective

For future work on the prediction of bond prices, modelling the information
contained in earnings releases and job market reports, could provide valu-
able information. Furthermore including the release dates of other macroe-
conomic data provided by central banks and in a second step modelling the
data released at this dates, could lead to even higher prediction accuracy.
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Talking about improved predictive power, we should keep in mind that
there are a lot of highly random factors that have not been considered in
this thesis but influence the market greatly. The recent U.S. election for
example exposed the major influence its outcome has on markets, and at
the same time showed how hard it is to predict this outcome. Some might
even render such political events unpredictable but the rise of social media,
and the digitalisation of our communication in general, might change this
in the near future, providing an even broader and diverse range of data that
can potentially be exploited for modelling the bond market.
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A P P E N D I X





A
A P P E N D I X

number isin company name size

1 DE000A1ML0D9 Adidas AG 1172

2 DE000DB2KU80 Deutsche Bank AG 845

3 DE000DB2KUU4 Deutsche Bank AG 829

4 DE000DB2KX53 Deutsche Bank AG 801

5 DE000DB2KX61 Deutsche Bank AG 802

6 DE000DB2KXL7 Deutsche Bank AG 970

7 DE000DB2KYG5 Deutsche Bank AG 804

8 DE000DB5DBR8 Deutsche Bank AG 924

9 DE000DB5DCV8 Deutsche Bank AG 871

10 DE000DB5DDN3 Deutsche Bank AG 815

11 DE000DB5DDP8 Deutsche Bank AG 805

12 DE000DB5DDQ6 Deutsche Bank AG 815

13 DE000DB5DDT0 Deutsche Bank AG 800

14 DE000DB5DEF7 Deutsche Bank AG 955

15 DE000DB5DEK7 Deutsche Bank AG 978

16 DE000DB5DFA5 Deutsche Bank AG 984

17 DE000DB5DFB3 Deutsche Bank AG 848

18 DE000DB7UP56 Deutsche Bank AG 992

19 DE000DB7UQ22 Deutsche Bank AG 832

20 DE000DB7UQT2 Deutsche Bank AG 821

21 DE000DB7URS2 Deutsche Bank AG 841

22 DE000DB7XLA7 Deutsche Bank AG 828

23 DE000DB7XMJ6 Deutsche Bank AG 808

24 DE000DB7XMQ1 Deutsche Bank AG 810

25 DE000DB7XMZ2 Deutsche Bank AG 868

26 DE000DB7XNB1 Deutsche Bank AG 915

27 DE000DB7XNC9 Deutsche Bank AG 889

28 DE000DB7XNM8 Deutsche Bank AG 923

29 DE000DB7XNR7 Deutsche Bank AG 952

30 DE000DB7XNS5 Deutsche Bank AG 960

31 DE000DB7XNT3 Deutsche Bank AG 961
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number isin company name size

32 DE000DB7XNW7 Deutsche Bank AG 994

33 DE000DB7XNX5 Deutsche Bank AG 967

34 DE000DB7XNZ0 Deutsche Bank AG 998

35 DE000DB7XPA8 Deutsche Bank AG 1001

36 DE000DB7XPB6 Deutsche Bank AG 802

37 DE000DB7XPC4 Deutsche Bank AG 880

38 DE000DB7XPD2 Deutsche Bank AG 1001

39 DE000DB7XPE0 Deutsche Bank AG 1001

40 DE000DB7XPF7 Deutsche Bank AG 827

41 DE000DB7XPL5 Deutsche Bank AG 996

42 DE000DB7XPU6 Deutsche Bank AG 891

43 DE000DB9ZDH0 Deutsche Bank AG 1040

44 DE000DB9ZDL2 Deutsche Bank AG 1041

45 DE000DB9ZDP3 Deutsche Bank AG 803

46 DE000DB9ZDT5 Deutsche Bank AG 821

47 DE000DB9ZEQ9 Deutsche Bank AG 1017

48 DE000DB9ZEU1 Deutsche Bank AG 833

49 DE000DB9ZEZ0 Deutsche Bank AG 843

50 DE000DB9ZFN3 Deutsche Bank AG 847

51 DE000DB9ZGD2 Deutsche Bank AG 863

52 DE000DB9ZGR2 Deutsche Bank AG 865

53 DE000DB9ZHR0 Deutsche Bank AG 889

54 DE000DB9ZHY6 Deutsche Bank AG 875

55 DE000DB9ZJZ9 Deutsche Bank AG 895

56 DE000DB9ZKJ1 Deutsche Bank AG 900

57 DE000DB9ZLE0 Deutsche Bank AG 954

58 DE000DB9ZLQ4 Deutsche Bank AG 964

59 DE000DB9ZLX0 Deutsche Bank AG 976

60 DE000DB9ZMM1 Deutsche Bank AG 995

61 DE000DB9ZMU4 Deutsche Bank AG 994

62 DE000DB9ZNB2 Deutsche Bank AG 1007

63 DE000DB9ZNY4 Deutsche Bank AG 1012

64 DE000DB9ZQA7 Deutsche Bank AG 1027

65 DE000DB9ZSE5 Deutsche Bank AG 1007

66 FR0010782664 Societe Generale Group 805

67 FR0010785543 Societe Generale Group 802

68 FR0010859967 BNP Paribas 1191
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number isin company name size

69 FR0010988873 BNP Paribas 1191

70 FR0011056126 Societe Generale Group 807

71 FR0011059930 BNP Paribas 855

72 FR0011075167 BNP Paribas 1056

73 FR0011082676 BNP Paribas 1030

74 FR0011129873 BNP Paribas 1163

75 FR0011137611 BNP Paribas 1191

76 FR0011160779 BNP Paribas 1029

77 FR0011164862 BNP Paribas 1054

78 FR0011203165 BNP Paribas 1014

79 FR0011253665 BNP Paribas 825

80 FR0011417583 BNP Paribas 859

81 FR0011470921 BNP Paribas 899

82 IT0004537251 Intesa Sanpaolo SPA 919

83 IT0004594658 Intesa Sanpaolo SPA 801

84 IT0004695018 Intesa Sanpaolo SPA 899

85 IT0004703952 Intesa Sanpaolo SPA 1050

86 IT0004717333 Intesa Sanpaolo SPA 1050

87 IT0004806615 Intesa Sanpaolo SPA 1035

88 IT0004808710 Intesa Sanpaolo SPA 801

89 IT0004814098 Intesa Sanpaolo SPA 999

90 IT0004814973 Intesa Sanpaolo SPA 814

91 IT0004839251 Intesa Sanpaolo SPA 1029

Table A.1: Information on the datasets used in this thesis
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