
Diplomarbeit

Monitoring of Alpine Snow
Conditions Using C-Band SAR

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

066 421 Geodäsie und Geoinformation

eingereicht von

Claudio Navacchi
Matrikelnummer 01326246

ausgeführt am Department für Geodäsie und Geoinformation
der Fakultät für Mathematik und Geoinformation

Betreuung:
Betreuer: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Wagner
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Bernhard Bauer-Marschallinger

Wien, 14.12.2018 ——————————————
(Unterschrift Verfasser)

——————————————
(Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Declaration

I declare that I have written this thesis under the auspices of the Department of Geodesy
and Geoinformation by myself without any help or assistance of others. External liter-
ature, which was used to clarify the content, or provided data sources for research are
clearly cited and attributed. This work has not been presented to any other testing
authority before.

Date: 14.12.2018 Signature: ———————



Abstract

The cryosphere is an essential part of the Earth’s climate system, even more in the light of
climate change actively impacting the extent of polar ice caps, glaciers and snow. Regions
in interaction with these parts of the cryosphere must adapt to challenging conditions,
as slight changes in temperature can have irreversible consequences. Informations about
the state of a snow pack and ongoing processes within can be a valuable aid, e.g. for
avalanche risk management, hydrological run-off models and tourism development.

This thesis focuses on revealing connections between various snow parameters, e.g. grain
size, snow height or snow wetness, and high-resolution C-band SAR backscatter from
ESA’s Sentinel missions. Water has a very significant effect in the C-band for different
states of aggregation (e.g., solid, liquid) offering a profound physical basis for investigating
these relationships in alpine areas with a vast variety of snow conditions. For this case
study, an alpine region covering parts of North and South Tyrol, was chosen. Data was
acquired for a timespan of over two years, from summer 2015 to autumn 2017.

Well-known states of C-band backscatter like sigma naught, which can be related to
backscatter from a unit area on ground, hinder a comparison with in-situ snow data
due to the influence of different observation geometries. To overcome this, alternative
representations of backscatter, like normalised backscatter, either being normalised by
incidence angle or by performing a radiometric (terrain flattening) normalisation, are
presented in this work. In the former case, linear regression and a novel approach, the
piecewise linear percentile slope method, which takes the backscatter distribution of each
orbit into account, were used. C-band backscatter was not only analysed as a single band,
but also by including cross-polarisation ratios and change detection benefiting from a new
method for an automatic, pixel-based reference image selection.

Overall, normalised backscatter by means of linear regression and VH polarisation ap-
peared as the best setup, when correlating these data with in-situ snow measurements.
Results were enhanced by spatial and temporal filtering of backscatter data leading to a
partial increase in correlation by nearly 0.2. The most meaningful and consistent corre-
lation of -0.64 was found with respect to maximum snow wetness, followed by air tem-
perature (-0.59). Snow height was characterised by the highest correlation (0.67), but
its significance is questionable. Concerning snow wetness, change detection performed
best, when taking pixels at coldest conditions as reference values into account. Derived
maps indicating wet and dry snow could offer useful information for run-off models and
for determining fragile snow packs.



Zusammenfassung

Die Kryosphäre ist ein essenzieller Teil des Klimasystems der Erde und gewinnt an Be-
deutung, da der Klimawandel die Existenz der Polkappen, Gletscher und einer anhal-
tenden Schneebedeckung bedroht. Regionen, welche sich mit der Kryosphäre in Interak-
tion befinden, müssen sich an die herausfordernden Gegebenheiten anpassen, da kleinste
Änderungen der Temperatur unumkehrbare Folgen haben können. Informationen über
den Zustand einer Schneedecke und die darin ablaufenden Prozesse können für Lawinen-
warndienste, hydrologische Abflussmodelle und Tourismusentwicklung als Unterstützung
dienen.

Diese Arbeit konzentriert sich darauf, Beziehungen zwischen Schneeparametern, wie z.B.
Korngröße, Schneehöhe oder Schneenässe, mit einer hochaufgelösten C-Band SAR Rück-
streuung von ESA’s Sentinel Missionen zu untersuchen. Der signifikante Einfluss von
Wasser in verschiedenen Aggregatzuständen (z.B. flüssig, fest) auf Rückstreuung im C-
Band stellt eine fundierte, physikalische Grundlage für die Erforschung dieser Beziehun-
gen dar. Alpine Gebiete ermöglichen eine solche Analyse aufgrund einer Vielzahl von
Schneebedingungen . Im Rahmen dieser Arbeit erstreckt sich das ausgewählte Testgebiet
hauptsächlich über die alpine Region Nord- und Südtirol. Die Zeitspanne der Daten-
verfügbarkeit beträgt zwei Jahre, vom Sommer 2015 bis zum Herbst 2017.

C-Band Rückstreuung bezogen auf Sigma Null, das sich auf die Rückstreuung von einer
Einheitsfläche über Grund bezieht, erschwert den Vergleich mit In-situ Schneedaten, da es
von Gelände- und Aufnahmevariationen beeinflusst wird. Um dieser Einschränkung ent-
gegenzuwirken, kann auf andere Darstellungen der Rückstreuung übergegangen werden,
z.B. normalisierte Rückstreuung, welche einerseits bezüglich des Einfallswinkels normal-
isiert werden kann, oder auch durch eine radiometrische Normalisierung durch Gelände-
einebnung. Für den ersten Fall wurde lineare Regression und ein neuer Ansatz, die
stückweise lineare Perzentil Methode, welche die Rückstreuungsverteilung eines jeden
Orbits in Betracht zieht, verwendet. C-Band Rückstreuung wurde zudem nicht nur in
Einzelaufnahmen analysiert, sondern auch als Kreuz-Polarisationsverhältnis und mithilfe
von Veränderungsdetektion, die von einer neuartigen Methodik der automatisierten, pixel-
basierten Referenzbildsuche profitiert.

Die höchsten Korrelationen mit Messungen von Schneeparametern konnten in Bezug auf
die normalisierte Rückstreuung basierend auf linearer Regression und VH Polarisation
gefunden werden. Zudem konnten unerwünschte Einflüsse in den Rückstreuungsdaten
durch räumliche und zeitliche Filterung gedämpft werden, was zu einer um bis zu 0.2
verbesserten Korrelation führte. Die maximale Schneenässe zeichnete sich durch die
fundierteste Korrelation (-0.64) aus, gefolgt von Lufttemperatur (-0.59). Schneehöhe



hatte die höchste Korrelation (0.67), welche aber aufgrund ihrer Signifikanz in Frage
zu stellen ist. Die Veränderungsdetektion lieferte die besten Ergebnisse bezüglich nasser
Schneekartierung, indem Rückstreuung bei den kältesten Bedingungen als Referenz in Be-
tracht gezogen wurde. Abgeleitete Darstellungen, die auf nassen oder trockenen Schnee
hinweisen, bieten hilfreiche Informationen für Abflussmodelle und für die Detektion brüch-
iger Schneedecken.
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Symbols

β radar brightness

β0 beta nought, backscatter
from a unit area in slant range

σ0 sigma nought, backscatter
from a unit area on ground

γ0

gamma nought, backscatter
from a unit area on ground,
but projected into a plane
perpendicular to slant range

γ0
rtf

radiometrically adjusted γ0 by
means of terrain flattening

θ
incidence angle, i.e. the projected
local incidence angle

θref
reference incidence angle for
normalisation

σ0
norm normalised sigma nought

σ40
LR

sigma nought normalised by
means of linear regression
at θref = 40◦

σ40
PLPS

sigma nought normalised with
the piecewise linear percentile
slope method at θref = 40◦

κs scattering coefficient

κe extinction coefficient

ω single scattering albedo

τ optical depth

Θ scattering angle

t
directional scattering
parameter for the
Henyey–Greenstein function

nBRDF
normalisation factor of
the BRDF

SD snow height/depth

LA number of layers

AT air temperature

GS mean grain size

SW mean snow wetness

SH mean snow hardness

ĜS maximum grain size

ŜW maximum snow wetness

ŜH maximum snow hardness
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Chapter 1

Introduction

1.1 Motivation

Aperture synthesis in radar imaging has allowed the acquisition of high-resolution earth
observation data. This data is commonly referred to as synthetic aperture radar (SAR)
imagery (Moreira et al., 2013). Due to its high sensitivity to water, C-band SAR is an
indispensable way of monitoring land and water surfaces from space. This enables a broad
range of applications, such as monitoring soil moisture (e.g., Bauer-Marschallinger, Free-
man, et al., 2018), crop fields (e.g., Nicolas Baghdadi et al., 2017), floodings (e.g., Twele
et al., 2016), marine oil slicks (e.g., Najoui et al., 2018), sea-ice (e.g., Moen et al., 2015)
and, being the focus of this thesis, snow mapping (e.g., Nagler, Rott, et al., 2016). Recent
satellite missions were funded in cooperation of the European Commission (EC) and the
European Space Agency (ESA), contractually residing within the Copernicus programme.
Within the framework of this Earth observation programme, the radar mission Sentinel-1
was initiated to provide high-resolution C-band SAR data along with an unprecedented
temporal repeatability.

Accordingly, these satellite data offer a suitable basis for monitoring snow parameters
with a high temporal variability, as it is the case for water movements inside a snow
pack (Singh et al., 1997) or grain variations dependent on the type of snow metamor-
phism (Sommerfeld and LaChapelle, 1970). Meteorological measurement stations, which
observe air temperature, surface temperature and precipitation (rain- and snowfall) do
not suffice to fully describe ongoing processes and states of the snow pack. Therefore,
it is necessary to consider a more precise description of a snow pack, e.g. by means of
snow profile measurements. Due to the efforts of various avalanche warning services, e.g.
Lawinenwarndienst Tirol (LAWIS Tirol), historic snow profile data is available for the
recent past and data acquisition will continue in future. Surveyors measure relevant snow
parameters, such as snow wetness, grain size, snow temperature and snow hardness, pri-
marily with a focus on avalanche risk studies. This data is also extremely valuable when

10
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set into relation with C-band SAR backscatter data. To the knowledge of the author, no
recent studies have taken place to compare field measurements with C-band SAR data,
which should offer additional and valuable insights due to a higher spatial resolution com-
pared to older studies (e.g., Nagler and Rott, 2000; Longepe et al., 2009). Quantifying
these insights in terms of mathematical and physical relations, extensive snow parame-
ters derived from C-band SAR should enable the possibility to support run-off models,
avalanche warning services and climate change studies.

1.2 Aim

Past studies have shown that it is possible to map snow parameters with C-band SAR, but
either under certain limitations or with the aid of other SAR data, e.g. other frequency
bands or fully polarised SAR data. These studies emphasised defining semi-empirical
models to derive a certain snow parameter, be it snow wetness (Shi and Dozier, 1995) or
grain size (Shi and Dozier, 2000b). However, Sentinel-1 SAR data is clearly limited in
terms of applying such models, as Sentinel-1 only operates at C-band and fully-polarised
data is commonly not available. Therefore, this study relies on a data-based approach,
without focusing specifically on a physical model. Light should be shed on relations
between snow parameters, which are represented by the measured snow profile data of
LAWIS Tirol, and C-band backscatter data given by Sentinel-1A/B. Results should then
indicate, which relations are worth to be investigated further concerning snow parameter
retrieval. In summary, the key research question that this thesis seeks to address, is the
following: Is there an interdependency between certain snow parameters and C-band SAR
backscatter? If so, how can these insights be applied or be helpful for monitoring alpine
snow conditions?

1.3 Outline

This thesis starts with a brief revision of relevant literature to present the current state
of the art in this research area and the aforementioned topics, i.e. C-band SAR backscat-
ter and satellite missions (Sec. 2.1), theoretical models to describe backscatter from
snow (Sec. 2.2), existing snow parameter retrieval algorithms (Sec. 2.3) and backscatter
normalisation methods (Sec. 2.4). The region of interest and data characteristics are
described in Chapter 3 for both backscatter and snow profile measurements. Backscat-
tering behaviour in terms of different snow parameters is exploited on a semi-empirical
basis via a sensitivity analysis in Chapter 4. Then, C-band SAR backscatter method
advancements are introduced in Chapter 5 reducing the incidence angle dependency of
backscatter with the assistance of a novel backscatter normalisation method or by radio-
metric terrain flattening as proposed in Small (2011). Additionally, an improved, profound
reference image selection process, given its fundamental importance for change detection,
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is suggested. The outcome of all backscatter enhancement methods is brought together,
related to snow profile data and discussed in Chapter 6. Finally, Chapter 7 summarises
and concludes the results of this work, followed by an outlook to draw attention to future
research questions (Ch. 8).



Chapter 2

State of the Art

Understanding the theory of C-band SAR interactions with a snow pack is essential and
shall therefore be reviewed in this chapter. Relevant literature should clarify the cur-
rent status of research regarding this relationship, beginning with an explanation of C-
band SAR (Sec. 2.1), subsequently introducing theoretical models (Sec. 2.2) as well as
snow parameter retrieval (Sec. 2.3) and finally presenting different methods to normalise
backscatter (Sec. 2.4).

2.1 C-Band SAR

2.1.1 History

Further to the groundbreaking achievements by Carl A. Wiley (Wiley, 1985), the inven-
tor of the Synthetic Aperture Radar (SAR), the age of spaceborne SAR missions began
with the launch of the first operational L-band SAR satellite, Seasat, in 1978. C-band
spaceborne SAR was initiated by the first remote sensing satellites from ESA, the Eu-
ropean Remote Sensing Satellites (ERS-1 and ERS-2, 30 m spatial resolution) launched
in 1991 and 1995, respectively. Both exceeded their operational lifetime by many years,
supplying users with valuable information about changes at land and sea. The orbit
constellation made it possible to monitor terrain variations through interferometric SAR
(InSAR). ENVISAT/ASAR (2002-2012) was another milestone in the history of C-band
SAR with a novel antenna technology allowing a flexible steering of the beam. Other
long-lasting and very successful C-band SAR satellite missions were RADARSAT-1 and
RADARSAT-2, with the latter one still ongoing (Moreira et al., 2013). Within the frame
of the Copernicus programme (European Commission, 2017), essential services have been
defined (e.g., atmosphere and land monitoring). This has led to the design of the Sen-
tinel satellite missions using both optical and radar instruments. Focusing on C-band
SAR radars, Sentinel-1A and Sentinel-1B launched in April 2014 and April 2016 and
circuit the Earth in a near-polar, sun-synchronous orbit (ESA, 2018). In near future, a

13
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RADARSAT follow-on mission, the RADARSAT Constellation Mission (RCM), is sched-
uled to lift-off in 2019 with the aim of successfully continuing the history of C-band SAR
(Canadian Space Agency, 2018).

2.1.2 Sentinel-1

Since the launch of both Sentinel-1 satellites, a vast amount of data (1 TB/day) has been
collected offering a significant potential for maritime security, sea-ice mapping, flood map-
ping, applications concerning forestry, agriculture and water management, land-surface
monitoring (i.e. surface motion) and research. The C-band antennas of the Sentinel-1
satellites operate at 5.405 GHz and offer dual polarmetric SAR (VV, VH, HV, HH), which
is of great relevance for agricultural purposes. Both twin satellites are 180◦ apart from
each other in their orbital plane resulting in a revisit time of six days at the equator
and one to three days in mid-latitudes (e.g. European Alps). Different imaging modes
(Stripmap (SM), Interferometric Wide swath (IW), Extra-Wide swath (EW) and Wave
mode (WV)) are available and allow the aquisition of data with a spatial resolution up to
5 m × 5 m (SM mode). Swath widths can range from 80 km (SM mode) to 400 km (EW
mode) (European Space Agency, 2018).

The IW mode is the most common used mode over land surfaces and utilises the Terrain
Observation with Progressive Scans SAR (TOPSAR) technique (De Zan and Guarnieri,
2006). Here, the swath is split into three sub-swaths and the beam is steered in range and
azimuth (backward to forward) to achieve a homogeneous image quality (uniform Signal-
to-Noise ratio) at an expense of a lower spatial resolution in azimuthal direction. In a next
step, SAR data is detected, multi-looked and projected to ground range (GRD). However,
in contrast to a single look complex image (SLC), no phase information is available in the
GRD data. GRD data is available in full (FR), medium (MR) and high resolution (HR).
The spatial resolution of a GRD product is dependent on the chosen mode leading to a
pixel spacing of 10 m when operating in IW mode.

2.1.3 Concepts and Characteristics

The C-band is a part of the electromagnetic spectrum (∼4 GHz to 8 GHz) used for WiFi
devices, satellite communication systems and weather radar systems (ITU, 2018). Due
to its day, night and all-weather applicability, it is also a favourable frequency range in
Earth observation. Electromagnetic waves in the optical domain do not penetrate clouds
and are therefore restricted in areas with frequent cloud cover, like mountainous regions.
In addition, C-band is most sensitive to water, because it covers the maximum dielectric
loss within the relaxation spectrum of water, i.e. the resonance frequency of the H20
molecule. Advantageously, dry snow and ice behave inversely, with ice having a very low
complex part of the dielectric constant (< 10−3) at C-band (Wagner and Quast, 2015).
Thus the high dielectrical contrast between dry and wet snow underlines the possibility
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of mapping wet snow with C-band SAR.

The concept of SAR is based on a side looking acquisition of a coherent radar mounted on
air- or spaceborne platforms. Amplitude and phase information from continuously trans-
mitted and received coherent pulses are stored and evaluated by means of the Doppler
shift, which is also known as the Doppler beam sharpening method. In other words, the
phase information of an object enables to construct a so called synthetic aperture, which
is equal to the path length travelled by the satellite while the object was observed. This
makes it possible to overcome drawbacks of a side looking radar regarding the resolution
in azimuth, which is influenced by the orbit height and antenna length. Using SAR fa-
cilitates an azimuth resolution half of the antenna length, independent of the distance to
the sensed object. For a more detailed description and an excellent tutorial on SAR, the
interested reader is referred to Moreira et al. (2013).

2.2 Theoretical Models

The fundamental theory behind all models describing the interaction of electromagnetic
(EM) waves with media is based on the radiative transfer equation (RTE). It states, that
radiation passing a medium can lose energy due to absorption and scattering (both to-
gether forming the extinction part of the equation) or can gain energy due to emission. The
broad applicability of this theory covers scientific disciplines such as atmospheric science
(e.g., Smith, 1970), astrophyics (e.g., Rybicki and Lightman, 2008) and remote sensing
(e.g., Quast and Wagner, 2016). Remote sensing uses RTE in a twofold way, namely
either for the passive case with a focus in brightness temperature (Picard, Brucker, et al.,
2012), or for the active case concentrating on backscatter (Picard, Sandells, and Löwe,
2018). Since Sentinel-1 gathers data through an active measurement principle, the latter
form of the RTE in conjunction with other theories (e.g. Quasi-crystalline approximation
with coherent potential (QCA-CP)) will be presented here.

An exemplary drawing of an EM wave impinging on a multi-layered snow pack is given in
Fig. 5.2. Scattering occurs at the air-snow interface, which is commonly neglected dur-
ing modelling (small term for dry snow), within the snow pack and at the snow-ground
interface.
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Figure 2.1: Interaction of radiation with a multi-layered snow pack. The first order intensity
sums up as the direct backscattered intensity from the volume Iv and surface Is, and the indirect
backscattered intensity originating from surface-volume Isv and volume-surface Ivs scattering.

2.2.1 Conventional RT (CRT)

The conventional radiative transfer equation reads as below (cf., Quast and Wagner, 2016;
Shih et al., 1997):

cos(θ)
∂I(z, φ, θ)

∂z
= −κeI(z, φ, θ) + κe ω

∫ 2π

0

dφ′
∫ π

0

dθ′sin(θ′)P (φ′, θ′, φ, θ) I(z, φ′, θ′)

(2.1)
In general, Eq. 2.1 is formulated as a matrix equation, where I is the 4 × 1 stokes
vector fully describing the polarimetric properties of the specific intensity and P the phase
matrix, which defines the relation of the incident (azimuth angle φ′ and zenith angle θ′)
and scattered radiation (φ and θ). For small particles (relative to the sensor wavelength),
P is given by the Rayleigh Phase matrix. ω is the single-scattering albedo and is the
ratio between the scattering coefficient κs and extinction coefficient κe. Consequently, ω
states how much loss of energy is due to scattering and and how much due to absorption
(ω ∈ [0, 1]).
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To solve the differential-integral Eq. 2.1 for I by approximation, numerical methods are
applied. In Shih et al. (1997), Eq. 2.1 is transformed into a system of first-order differential
equations and is then solved using an eigenanalysis. Some approaches, also known as
Matrix Doubling methods, go further and reformulate the problem as a superposition of
infinite layers, each characterised by an infinitesimal optical depth ∆τ , albedo ω and a
single scatter phase matrix P (cf. Fung and Eom, 1981). An analytical solution of Eq.
2.1 does not exist, but Quast and Wagner (2016) present a first-order approximation by
neglecting higher terms of a series expansion in κs. This is only valid under the assumption
of a weakly scattering medium (κs � 1).

2.2.2 Dense Media RT (DMRT)

In case of a dense medium, where multiple scattering and a higher dielectric contrast
between the dense and the background medium is present, one has to find a different
formulation of radiative transfer parameters. Tsang, Ding, and Wen (1992) define these
parameters for a dense medium consisting of particles with different sizes and permittivi-
ties. Under these circumstances, coherent scattering has to be taken into account, which
is commonly described by the Quasi-crystalline approximation with coherent potential
(QCA-CP) model. It is a conjunction of scattering equations linked through a coherent
potential and states that it is more suitable to describe the background medium using an
effective propagation constant K as the amount of particles increases. The relationship
between different particles can be represented by a pair-distribution function, which de-
fines the interaction capability. An analytical solution of the pair distribution function is
given by the sticky particles model underlining the tendency that particles form clusters
and bonds, thus acting as one scattering object (Tsang, Kong, et al., 2004).

The DMRT equation resembles the CRT equation very much and only discerns in terms
ω and κs. In DMRT it is also assumed that grains are small, thus the application of the
Rayleigh Phase matrix is legitimate (cf. Tsang and Kong, 2004). Moreover, the way of
retrieving the backscattered intensities is also very similar, but often multiple layers with
different properties are introduced. This snow pack stratification complicates a model in-
version, since a coupled set of DMRT equations (one for each layer) linked via boundary
conditions has to be solved (Shih et al., 1997). As for CRT theory, matrix doubling is
a favourable way of resolving these equations as confirmed by Du, Shi, and Rott (2010).
They show a remarkable difference of backscatter at VV and VH polarisation for both
particle shapes and snow stratification, whereas the latter one is due to multiple scatter-
ing. In recent work, Picard, Sandells, and Löwe (2018) have summarised different variants
of the DMRT theory and have undertaken a model benchmarking.
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2.3 Snow Parameter Retrieval

Naturally, theoretical model simulations can agree with measurements in certain cases,
but commonly both mismatch, since measurements vary with the spatial resolution of the
sensor and are often prone to random and systematic errors, or theoretical models are
not able to fully describe the ongoing processes. Additionally, very complex theoretical
models would need representative and extensive data for all input parameters to be able
to invert the model. Assumptions, parameter fixing (always use the same value for a pa-
rameter, e.g. the same surface type for a region), parameter aggregation (one parameter
represents others) often help to overcome the problem of measured parameter availability
and invertibility of the model. These issues and approaches also apply to snow parameter
retrieval and mapping. Many studies set up semi-empirical models with the assistance
of theoretical insights. In the following, methods for retrieving various kinds of snow
parameters with a primary focus on C-band SAR are shown.

Shi and Dozier (2000a) and Shi and Dozier (2000b) presented a semi-empirical modelling
strategy to estimate snow density (and ground properties) with SIR-C’s L-band sensor
and snow depth and particle size with SIR-C’s X/C-band sensor. The former makes use of
the relation between backscatter in VV and HH polarisation, since it is strongly governed
by dielectric and roughness properties of the surface. Changes in incidence angles and
wavelength shifts are related to dielectric properties of the snow pack, which therefore
enable a retrieval of snow density. In their companion work (Shi and Dozier, 2000b), this
methodology helps to fix unknown parameters (e.g. surface roughness and snow density).
The therein introduced first-order, polarimetric model aims to describe the co-polarised,
total backscatter as a sum of a air-volume, volume, volume-ground and ground backscat-
tering term. Most terms were simulated by varying ground and snow properties and
subsequently replaced by semi-empirical formulae, where the coefficients were found by a
multivariate regression analysis. This physically-based model builds upon many simpli-
fications and is surely affected by a significant error propagation, but seems to perform
well for the measurement configuration of SIR-C.

Snow water equivalence (SWE) can be inferred from snow density and snow depth. A
very simple approach to estimate SWE uses a linear model with airborne C-band SAR
data from EMISAR as input, but is still dependent on ground-truth data (Arslan et al.,
1999). Similarly, Bernier and Fortin (1998) show that SWE is linearly correlated with
thermal resistance, which reflects the sensitivity of soil temperature to changes of the air
temperature and is solely dependent on the snow density and snow depth via an empirical
formula. However, the retrieval is limited to a shallow snow pack covering frozen soil in a
flat area. Very recent studies exploit the possibilities of mapping SWE with C-band SAR
data from Sentinel-1, based on the cross-polarisation ratio, i.e. the ratio between VH and
VV polarised backscatter (De Lannoy et al., 2018).
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How to derive snow wetness as a quantitative parameter, namely as snow liquid water
content, with C-band SAR at VV and HH polarisation is explained in Shi, Dozier, and
Rott (1993) and Shi and Dozier (1995). A simplified physical model describes the total
backscatter returned by a wet snow covered area as a sum of volume backscattering and
surface backscattering at the air-snow interface.

Further methods use the advantageous absorption properties of water at C-band frequen-
cies and focus on change detection rather than explicitly estimating liquid water content.
The foundation for this approach was laid by Nagler and Rott (2000) followed by their
recent work (Nagler, Rott, et al., 2016). To do so, a reference image has to be selected
first. Different approaches were followed in past publications: choosing a dry, snow-free
backscatter image, a backscatter image sensed at very cold, freezing conditions, or an
average of multiple reference images to reduce speckle (Nagler and Rott, 2000; Nagler,
Rott, et al., 2016; Bernier and Fortin, 1998). The former two aim to extract wet snow,
whereas the latter one focuses on describing a dry snow pack in terms of the SWE. In the
next step regarding wet snow mapping, an image preferably sensed during a snowmelt
period is then directly related to the selected reference image. Applying a threshold on
the difference between both results in a wet snow map. The original idea of applying
one threshold (e.g. -2 dB in Nagler and Rott, 2000 or -3 dB in Longepe et al., 2009),
was enhanced by Magagi and Bernier (2003), defining a threshold per incidence angle
range. The advantage of relying on a relative comparison is that surface scattering and
effects due to terrain variations mainly cancel out. Surface scattering is assumed to be
approximately constant, because the land cover buried under a snow pack is likely to have
a steady behaviour (except run-off from snowmelt), i.e. no vegetation is involved. More
advanced change detection algorithms to map wet snow were developed by Koskinen,
Pulliainen, and Hallikainen (1997) and Nagler, Rott, et al. (2016). The former investigate
forested areas covered by wet snow in terms of different tree types and two reference im-
ages (before and after the snowmelt season), whereas Nagler, Rott, et al. (2016) suggest a
combination of VV and VH polarisation to increase the reliability of wet snow mapping.
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2.4 Backscatter Normalisation

Backscatter normalisation is about the elimination of the dependency of backscatter on
incidence angles. In literature, various approaches for this have been presented. For
instance, one can apply Lambert’s law of optics,

σ0
norm = σ0 1

cosβ(θ)
(2.2)

where σ0 is the measurement at a given incidence angle θ, σ0
norm the normalised backscatter

(per unit area) and β the order of the cosine. However, this assumes that the backscatter
distribution follows the cosine law and that the illuminated area can be characterised as
a Lambertian surface (Lievens et al., 2011). For normalising σ0 with respect to a given
reference angle θref one can use

σ0
norm = σ0 cosβ(θref )

cosβ(θ)
(2.3)

One can easily see that Eq. 2.3 is equal to Eq. 2.2 for θref = 0 ◦. For both, β has to be
adjusted according to the polarisation and landcover type in different studies, including
agricultural monitoring (Shimada, 2005), wetlands mapping (Baghdadi et al., 2001) and
being very relevant for this thesis, snow mapping (Shi, Dozier, and Rott, 1994).

Diverse remote sensing satellite systems collecting multiangle data made it possible to
apply data-driven normalisation techniques. Some of those techniques rely on a high
temporal resolution (i.e. having enough data) or a special measurement configuration.
A simplified, linear relation between θ and σ0 serves as a basic assumption to normalise
the backscatter via a known slope and intercept parameter. Scatterometers, such as
ERS-SCAT or A-SCAT, allow for a direct (i.e. in one overpass) computation of these
parameters, since the same area is measured three times in a for-, mid and aftbeam
(Naeimi, Scipal, et al., 2009). For other sensors like ASAR on ENVISAT, data is used to
estimate the slope and intercept based on a linear regression (LR). The slope parameter
offers interesting insights on vegetation, land cover (Sabel et al., 2010) and changes with
the phenological cycle (Wagner, Lemoine, et al., 1999). Regarding Sentinel-1, it is more
difficult to estimate the slope due to a shorter time of operation and a smaller range of
incidence angles covered by the measurements resulting from the chosen orbital config-
uration. Recent attempts were taken in the direction of resampling Sentinel-1 data to
500 m and to estimate the slope parameter through a multivariate linear regression model
by taking the sensitivity of backscatter, which is expressed by the ratio of the 95th and
5th percentile, and mean backscatter into account (Bauer-Marschallinger, Freeman, et al.,
2018). However, high-resolution backscatter normalisation (e.g. for Sentinel-1) is still an
open research topic.
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Beside backscatter normalisation with respect to θ, radiometric normalisation is also
essential to ensure comparability. This can either be a calibration of the measured signal
(e.g. using calibration constants) or a more complex procedure like radiometric terrain
flattening. The latter one mainly aims to radiometrically adjust layover-affected areas,
which is shown in Small (2011) and Frey et al. (2013), and will be discussed in more detail
in Section 5.1.1.
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Region of Interest and Data Sets

All data have been gathered for a region in the Austrian Alps, which is described in more
detail in Section 3.1. The following sections provide an overview for the used C-band SAR
satellite data (Subsec. 3.2.1), snow profile data (Subsec. 3.2.2) and meteorological data
(Subsec. 3.2.3). In addition the relationship of various snow parameters are analysed too
(Sec. 3.3).

3.1 Region of Interest

Instead of broadening the geographic scope, it was found to be more feasible to consider
two winter seasons instead of one. Based on the availability of snow profile and satellite
data, the chosen time span ranges from July 2015 to September 2017. This time span
could offer an interesting comparison of both winters, due to the fact that Sentinel-1B
delivers data from September 2016 onwards and could demonstrate if the additional data
adds valuable information. The same region of interest as in previous works (e.g. Nagler,
Rott, et al., 2016; Nagler and Rott, 2000; Navacchi, 2016) was chosen for this thesis,
which is justified in Section 3.1.1. To reveal trends and support any analysis later on, a
brief overview of past weather conditions will be given in Section 3.1.2.

3.1.1 Study Area

The chosen region covers the western part of North Tyrol and a small northern part of
South Tyrol and relates to the tile “E048N015T1” of the Equi7 Grid system (Bauer-
Marschallinger, Sabel, and Wagner, 2014). It includes mountain massives such as the
“Lechtaler Alpen”, “Pitztaler Alpen”, “Ötztaler Alpen”, “Karwendel” and “Silvretta”. The
highest peak is the ”Wildspitze” (3768 m a.s.l.), in the “Ötztaler Alpen”. Coniferous
species are the main tree type governing the forests of this region. In contrast to moun-
tainous and forested terrain, agricultural and pastoral areas and small villages seam most
of the valleys. Industry is mainly located around the regional capital city of North Tyrol,

22
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Innsbruck. The permanent settlement region is about 12% of the area covered by North
Tyrol, being the lowest of all nine Austrian provinces (Wikipedia, 2018). According to
the Corine Land Cover map1, the distribution of the most important land cover types is
set out in Table 3.1.

Table 3.1: Corine Land Cover types within the area of the Equi7 tile “E048N015T1”.

Type Percentage [%]
Coniferous forest 30

Natural grasslands 18
Bare rocks 13

Sparsely vegetated areas 13
Moors and heathland 6

Pastures 6
Mixed forest 4

Glaciers and perpetual snow 2
Discontinuous urban fabric 2

Complex cultivation patterns 1
Fruit trees and berry plantations 1

As one can imagine from the above description, the whole area is highly attractive for
winter and summer tourism. Tourism is a very important economic driver for the region,
demanding investments and necessary maintenance of ski slopes, hiking trails and tourist
accommodation, impacting on the natural landscape. Information about the state of snow
packs can therefore be very useful to assist the former task. Given the land cover diversity
in the table above, this region seems to be perfectly suitable for investigating the outlined
relationship in Section 1.2.

3.1.2 Weather Conditions

At the beginning of the chosen time span in July and August 2015, a maximum in tem-
peratures was reached with respect to climatologic history. This hot weather period was
interrupted in mid-September by colder temperatures, intense precipitation and snowfall
at 1000 m a.s.l. November and December 2015 exhibit high temperatures and precipita-
tion of 50-100% below average. In higher altitudes, temperature was 7 ◦C above the mean
and even the risk of forest fires was present.

1see https://land.copernicus.eu/pan-european/corine-land-cover

https://land.copernicus.eu/pan-european/corine-land-cover
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Figure 3.1: Region of interest shown in an equirectangular grid (WGS 84). The Equi7 Grid at
level T1 (100 km × 100 km) is shown on top. The tile “E048N015T1” used in this case study
is highlighted in bold red. The text overlay illustrates the five meteorological weather stations
within the tile ( c©Google Earth, Landsat/Copernicus).
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2016 started as 2015 had finished, but with a lot of snow on mountains due to more pre-
cipitation. Regions at lower elevations suffered still from the absence of a longer lasting
snow pack. At the end of April 2016, cold temperatures and snowfall led to a second onset
of winter creating issues in agricultural areas. A very wet and rainy May was followed
by one of the hottest June in history, with a peak temperature of 35 ◦C in Innsbruck and
70% more precipitation than usual. Heavy rainfall and thunderstorms led to mudslides
and flooded areas in July and August 2016. Less precipitation and cloudy weather char-
acterised the subsequent months and a few colder days enforced snowfall in lower elevated
regions. In November and December 2016 temperatures were above the mean and less
snowfall prevented a longer lasting snow pack below 1000− 1400 m a.s.l.

2017 began with one of the coldest months, having temperatures of 3 ◦C below the average
in mountainous regions above 1500 m a.s.l. The lowest temperature (−30 ◦C) was mea-
sured at the “Pitztaler Gletscher” (3440 m a.s.l.). In general, snow heights increased due
to the accumulation of fresh snow being 25-50% above usual levels in January. Sunny con-
ditions and a 4 ◦C higher temperature than the yearly mean marked the hottest March
since the beginning of recordings. Despite an increase in precipitation, fresh snowfall
was about 50% lower than usual. April 2017 brought cold weather with snowfall in the
mountains at the end of the month. From June onwards, temperatures increased rapidly
(3 ◦C above the mean) with hot and humid conditions in July and August 2017. Finally,
September 2017 concludes the chosen time span with rainy, cloudy and cold weather,
which led to snowfall above 1400 m a.s.l.

A visual overview of past weather conditions represented by the measured meteorological
data of station “Flughafen Innsbruck” is given in Figure 3.2 showing some of the weather
extremes mentioned above. Weather summary information was retrieved from the climate
monitoring tool of ZAMG2.

2see https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring

https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring
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Figure 3.2: Precipitation and maximum temperature data measured by the station “Flughafen
Innsbruck” from July 1st, 2015 to October 1st, 2017 (data source: https://www.wetteronline.at).

3.2 Data Set Descriptions

3.2.1 Sentinel-1 Data and Pre-Processing

The satellite data used in this thesis is Level-1 IW GRDH raw data from Sentinel-1A/B
and is hosted by the Earth Observation Data Centre for Water Resources Monitoring
(EODC)3, which receives Sentinel-1, Sentinel-2 and Sentinel-3 data from ESA’s data hubs.
This data on the EODC storage is linked to the Vienna Scientific Cluster 3 (VSC-3)4, a
supercomputer capable of processing in parallel significant amounts of Earth observation
data. The SAR Geophysical Retrieval Toolbox (SGRT) (Naeimi, Elefante, et al., 2016),
which internally makes use of the Sentinel Application Platform (SNAP)5, served as a
primary tool for preprocessing the Level-1 IW GRDH raw data on the VSC-3. As a
result, the following products were available:

• Sigma naught σ0: All data concerning this type of backscatter representation were
processed considering the following steps:

1. If available, an update of the orbit state vectors in the metadata (only approx-
imate orbit state vectors are included in the raw files) using precise orbit data
was done (Apply-Orbit-File6).

3see https://www.eodc.eu
4see http://vsc.ac.at/systems/vsc-3
5see http://step.esa.int/main/toolboxes/snap
6terms written in this style are related to commands of the Graphical Processing Tool (GPT) of SNAP

https://www.wetteronline.at
https://www.eodc.eu
http://vsc.ac.at/systems/vsc-3
http://step.esa.int/main/toolboxes/snap
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2. Low backscatter from shallow or flat surfaces (e.g. lakes, rivers or streets) is
often affected by a certain amount of additive noise. This is due to movements
of electrons being dependent on temperature, also known as “Thermal Noise”
(Park et al., 2018, p. 1556), which has been corrected for
(ThermalNoiseRemoval).

3. Radiometric Calibration of digital pixel values (Calibration).

4. To reduce speckle, multi-looking was performed (Multilooking).

5. Geometric terrain correction and orthorectification based on the SRTM v.4.17

digital elevation model (DEM) (90 m spatial resolution) had been the final SAR
processing step before all outputs were resampled to the Equi7 Grid.

However, this processing chain could not fully account for all errors in the data.
Some σ0

V H images had to be deleted, because of remaining scalloping artefacts,
which could arise from an inaccurate doppler centroid mean frequency estimation
(Elizavetin, 2018). This resulted in 705 σ0

V V and 670 σ0
V H images.

• Projected local incidence angle θ: θ images are auxiliary products and are
used implicitly in the processing chain described above (e.g. backscatter coefficient
transformations). θ is the local incidence angle (LIA), which is the angle between the
surface normal and the incidence radiation, projected into the range plane (PLIA).

• Terrain flattened gamma naught γ0
rtf : The processing chainline to produce γ0

rtf

differs from σ0 in terms of an additionally radiometric terrain flattening step before
geometric terrain correction is performed. After quality checks, the number of valid
γ0
rtf images resulted in 699 γ0

rtf,V V and 670 γ0
rtf,V H images, respectively.

A brief description about different backscatter representations and radiometric terrain
flattening will be given in Section 5.1.1.

7data source used by SNAP : http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
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3.2.2 Snow Profile Data

To be able to expand the research related to interactions of C-band SAR with snow, de-
tailed data about the structure of a snow pack is indispensable. LAWIS Tirol8 offers such
data. Using a crowdsourcing approach, qualified users can measure certain snow proper-
ties and enter the data through a web interface into a database. However, due to data
access restrictions, snow profiles were only available in PNG or PDF format. Therefore,
every snow profile had to be digitised semi-automatically.

First, all data provided by a snow profile is explained. The following enumeration refers
to Figure 3.3 and conveys the possibilities of working with these data.

1. The name/title of the snow profile

2. Information about the person who collected the data (“Name”, “E-Mail”) and the
measurement timestamp (“Aufnahmedatum”)

3. The following fields constitute the sub-header of a snow profile: the location (“Ort”),
subregion (“Subregion”), region (“Region”), country (“Land”), geographical coordi-
nates (“Lat./Long.”), elevation a.s.l. (“Seehöhe”), incline (“Hangneigung”), aspect
(“Exposition”), wind speed (“Windgeschw.”), wind direction (“Windrichtung”), air
temperature (“Lufttemperatur”), precipitation (“Niederschlag”, i.e. snow, rain, ...),
precipitation intensity (“Intensität”, i.e. weak, moderate, strong), sky condition
(“Bewölkung”, i.e. cloudiness index from 0 to 8) and snow profile class (“Schneepro-
filklasse”). These metadata fields provide detailed information about the surround-
ings of a snow profile and other properties

4. In this section of a snow profile, all symbols related to the grain structure of a snow
layer are defined (e.g. fresh snow (“Neuschnee”), decomposed/fragmented grains
(“Filziger Schnee”), rounded grains (“Rundkörnig”), ...). Approximately, 10-11
grain types have been defined by LAWIS Tirol

5. Two dials assisting the visual interpretation of (10), (14), (15) and (16) are shown in
this part. The upper one represents air and snow temperature ranging from −22 ◦C
to 0 ◦C and the lower one snow hardness ranging from 0 to 1000 Newton (or above
related to ice)

6. Snow height in cm

7. Snow wetness ranging from 1 (dry) to 5 (very wet)

8. First and second order grain type according to (4)

9. Grain size in mm

8see https://lawine.tirol.gv.at

https://lawine.tirol.gv.at
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10. Snow hardness ranging from 1 (fist, very soft) to 6 (ice, compacted)

11. Rivets represent the borderline condition. The more rivets, the more disadvanta-
geous is the assessment of this layer

12. Stability tests offer information about the sliding conditions of a layer due to external
pressure (skies, shovels, ...)

13. Additional notes

14. Air temperature

15. Visualisation of snow hardness in Newton (cf. (5))

16. Snow temperatures in ◦C (cf. (5))

Parameters/parts only being of interest for specific avalanche services or derived from
others were neglected for further analysis: (11), (12), (13) and (15). For any additional
information, the reader is redirected to the documentation of the snow profile web tool
(LAWIS Tirol, 2016).
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Figure 3.3: Snowprofile ”Ballunspitze” containing data, which was compiled at 11:50 LT on
December 17th, 2015. The marked numbers refer to different sections of the snowprofile and are
described in more detail in Section 3.2.2.
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3.2.3 Meteorological Data

Meteorological data (i.e. precipitation and maximum temperature) was needed to se-
lect an appropriate reference image (cf. Sec. 5.1.3) for change detection and to assist
interpretations concerning the above mentioned data sets. Therefore, WetterOnline9, a
service distributing historic weather data of stations (“Idalpe”, “Flughafen Innsbruck”,
“Zugspitze”, “Patscherkofel”, “Obergurgl” and “Reschenpass”), which are intersected by
the region of interest, was found to provide suitable auxiliary data. Data availability
from station “Obergurgl” is limited as there is no data for summer 2017. All stations are
depicted in Figure 3.1.

3.3 Snow Parameter Analysis

This section focuses on analysing the different aspects of the snow profile data. First, an
overview of the measurement locations is given in Figure 3.4. In total, 312 snow profiles
are within the region of interest. It can be seen that most measurements were taken in
winter and spring, also having a broad spatial distribution. Snow profiles registered in
winter form clusters at places that can be easily reached, such as ski slopes and glaciers
used for skiing (e.g. “Pitztaler Gletscher” and “Obergurgl”).

Next, relationships between various snow parameters and patterns in the data are being in-
vestigated. This analysis is accompanied by relevant literature to support interpretations
and to see if gained insights agree with theory. One has to be careful when interpret-
ing correlations, since spatial autocorrelations are evident (e.g. fewer measurements at
higher elevations). Fig. 3.5 initiates this analysis with a comparison of grain size to snow
temperature. Each data point is further colourised by the classified grain type, in this
case the following three have been chosen: melt-freeze crust (“Schmelzkruste”), rounded
grains (“Rundkörnig”) and depth hoar (“Tiefenreif”). It can be seen that an increase
in snow temperature has a positive correlation with grain size. Furthermore, all grain
types cover a broad range of snow temperatures, which is not thought to be primarily an
issue of measurement accuracy, rather a subject to snow metamorphism. In this process,
water vapour diffusion is caused by a present temperature gradient. Different types of
snow metamorphism play an important role in bond formation and grain enlargement,
e.g. firnification, equi-temperature or melt-freeze metamorphism. According to Fig. 3.5,
the largest grains can be found, when depth hoar is present. This is a sign of an ongoing
temperature-gradient metamorphism within an aged snow pack, resulting in large depth
hoar crystals (Sommerfeld and LaChapelle, 1970; Giddings and LaChapelle, 1962). Other
comparisons, such as relating the grain size at the top layer of the snow pack with air
temperature, did not show any correlation.

9see https://www.wetteronline.at

https://www.wetteronline.at
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Figure 3.4: Locations of all snow profile measurements taken in the period July 2015 - September
2017, where each colour is related to a month. The extent is related to the tile “E048N015T1”
in the Equi7 Grid system (basemap: c©Google Earth, Landsat/Copernicus).



Chapter 3. Region of Interest and Data Sets 33

−20 −15 −10 −5 0

Snow temperature [◦C]

0

2

4

6

8

10

G
ra

in
si

ze
[m

m
]

Other
Melt-freeze crust
Rounded grains
Depth hoar

Figure 3.5: Grain size related to snow temperature for a selection of grain types: depth hoar
(red), rounded grains (blue), melt-freeze crust (yellow) and others (grey).

C-band SAR backscatter is very sensitive to the next snow parameter being investigated,
namely snow wetness. Field measurements only contain a discrete and subjective clas-
sification of snow wetness as mentioned in Section 3.2.2. Figure 3.6 depicts the driest,
moistest and wettest condition of the snow pack in relation with the relative snow height
(a) and snow temperature (b). One can see, that in Fig. 3.6 (a) dry snow (class 1) can
be mainly found in the middle and upper part, moist snow (class 3) is dominant in the
upper and lower part and very wet snow (class 5) has a higher probability of being in
the upper part. The wetness in the upper part could be caused by rainfall or solar radi-
ation (Jamieson, 2006). Yet, very wet snow only occurred 12 times in the data, whereas
dry snow occurred 12,000 times, diminishing the reliability of class 5. Figure 3.6 (b)
nicely shows that class 5 is only present at snow temperatures of around 0 ◦C, class 3
covers a broader range of temperatures, but also being centered at 0 ◦C and class 1 has a
left-skewed distribution centered at ∼ −1 ◦C.
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Figure 3.6: Snow wetness classes (1 (dry) to 5 (very wet)) compared to relative snow height (a)
(0 stands for the bottom of the snow pack, 1 for the top) and to snow temperature (b).
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Figure 3.7: Distribution of relative snow height (a) and snow temperature (b) shown for three
different grain types: melt forms, decomposed snow and fresh snow.

Figure 3.7 (a) confirms that fresh snow is mainly located at the top of the snow pack,
similar to decomposed snow also, with the latter having a larger deviation and reaching
down to the middle part of the snow pack. Melt forms are present in the lower part, being
buried under other snow types. These melt-freeze crusts or melt forms beneath layers of
less dense snow increase the likelihood of avalanches (Jamieson, 2006). One can identify
a strong relation between warmer snow temperatures and melt forms in Figure 3.7 (b),
implying that this grain type mainly occurs around −1 ◦C/0 ◦C. Fresh and decomposed
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Figure 3.8: Distribution of air temperature
shown for three different grain types located
at the top snow layer: melt forms, decomposed
snow and fresh snow.
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Figure 3.9: Distribution of six classes related
to snow hardness (cf. Subsec. 3.2.2) shown for
three different grain types: melt forms, decom-
posed snow and fresh snow.

snow overlap and can’t be distinguished well, which could be explained by previous melt
and freeze cycles causing snow to decompose.

Distributions of grain types at the top snow layer are more distinctive in Figure 3.8
than in Figure 3.7 (b), which includes all layers of the snow pack. Comparing both his-
tograms in terms of their kurtosis, it can be concluded that temperature gradients are
mainly influencing the structure of the grain. Another noteworthy parameter to investi-
gate is snow hardness. The vertical distribution turns out to be very similar to Figure
3.7 and is strongly related to the grain type, which is shown in Figure 3.9. Fresh snow
is very fluffy, thus easy to penetrate, followed by decomposed snow. Melt forms compose
a harder medium, but are still characterised by a larger deviation and cover nearly all
hardness categories.
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Some of the parameters analysed before have the major disadvantage of not being objec-
tively measured but instead being related to a subjective scala dependent on the surveyor.
This drawback relates in particular to snow hardness and snow wetness. The former im-
plies to be related to snow density, not only by its name, but also by the way its measured.
Different objects, such as a fist, fingers, a pencil or a knife, are used to exert a force on the
snow layer and to test its penetrability (LAWIS Tirol, 2016). Some additional notes (cf.
(13) in Subsec. 3.2.2) contain valuable information about snow density measurements at
different snow depths, which enables to correlate snow hardness and snow density. Figure
3.10 shows a linear relation between the two. A vague trend of larger uncertainties or
larger deviations with respect to the fitted line is present at lower snow hardness values.
This could imply, that snow hardness measurement methods like a fist or fingers are more
dependent on the surveyor than for instance a pencil or a knife. Additionally, it could be
the case, that the former are not suitable to relate lower snow hardness with snow density.
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Figure 3.10: Relationship between snow hardness and snow density (blue dots) approximated
with a linear model (black line). The distribution of snow densities for each snow hardness value
is delineated by a boxplot.
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Sensitivity Analysis

The focus of this chapter is a sensitivity analysis to estimate the impact of snow parameters
on C-band SAR backscatter. The setup of a simplified first-order radiative transfer model,
in terms of describing the scattered radiation from a single-layer snow pack covering rough
terrain, will be introduced in Section 4.1. Then, the model is fed with available snow profile
measurements to show which snow parameters are of significant influence (Sec. 4.2).

4.1 Methodology

4.1.1 Theoretical Model

A first-order solution for bistatic radiative transfer problems has been presented in recent
work (Quast and Wagner, 2016). It aims to model the total radar scattering and its
contributions (volume, surface and interaction term) from a one-layered medium above
a certain ground surface. Regarding the measurement configuration of Sentinel-1, only
the monostatic case, i.e. backscattering into the same direction, is relevant. It is a
non-polarimetric model, thus relations between different polarisations can’t be analysed.
Moreover, the model is provided as a user-friendly Python package named RT1 1, which
enables an analysis of scattering by combining different surface and volume scatterers.
The scattering properties of volumes and surfaces are defined via a series expansion in
cos(Θ)n, where n is the order and Θ the scattering angle. Within the mathematical repre-
sentation of Θ, three weighting factors can be used to simulate scattering being dependent
on the orientation of the incoming and outgoing beam in azimuth. This is referred to as
anisotropic scattering. The expansion serves as an approximation of the volume phase
function and Bidirectional Reflectance Distribution Function (BRDF) allowed by a few
analytical functions (e.g., Rayleigh Phase function, Henyey–Greenstein phase function,
cosine lobe function). These functions define specific scattering characteristics like di-
rectional scattering (i.e., scattering in a preferred direction), which is introduced as an

1see https://github.com/TUW-GEO/rt1
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asymmetric factor t for the Henyey–Greenstein function, or the structure of the scattering
lobe by using a cosine lobe model at a given order. In RT1, it is also possible to formulate
scattering as a linear combination of different surface or volume scattering functions.

As already mentioned in Section 2.2, two additional parameters are needed to define
the propagation of radiation through a volume, namely the optical depth τ and single-
scattering albedo ω. Both can be related to snow conditions (e.g. snow depth, grain size,
...) using DMRT and other model formulations. More detailed instructions of how to
compute τ and ω can be found in Appendix A.

4.1.2 Semi-empirical Model

To test the sensitivity of C-band backscatter with respect to changing snow parameters,
surface backscatter has to be decoupled from volume backscatter over time. An example
of a major impact on surface backscatter is a melting snow pack, which increases the
liquid water content of the surface. Surface roughness is another important parameter
and both are primarily governing the radar response from ground. An empirical model
presented in Oh, Sarabandi, and Ulaby (1992) suggests that an increase of soil moisture
or surface roughness leads to a higher backscatter. If one of both is dominant, it decreases
the sensitivity of the second one. This fact can be used to define surface parameters being
approximately time-invariant.

With a focus on a smaller alpine subregion near the meteorological station “Obergurgl”,
surrounding points of the same land cover type were carefully picked with the visual aid
of an RGB orthophoto (cf. Fig. 4.1). Two land cover types are dominant in the vicinity
of Obergurgl, namely alpine meadows and rocky areas. For both of the classes about
30 points were selected while ensuring that the points cover a broad range of incidence
angles. The result of the selection is visualised in Figure 4.1.
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Figure 4.1: Overview map to show the picked points representing each land cover type, rocky
areas (black dots) and alpine meadows (green dots). The meteorological measurement station
“Obergurgl” is marked as a red dot (basemap: Orthofoto Tirol WMS, accessed on Oct. 19th,
2018, URL: https://gis.tirol.gv.at/arcgis/services/Service Public/orthofoto/MapServer/WMSServer?

request=GetCapabilities&service=WMS).

https://gis.tirol.gv.at/arcgis/services/Service_Public/orthofoto/MapServer/WMSServer?request=GetCapabilities&service=WMS
https://gis.tirol.gv.at/arcgis/services/Service_Public/orthofoto/MapServer/WMSServer?request=GetCapabilities&service=WMS
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The mean backscatter along with the precipitation data in Figure 4.2 delineate the vari-
ability of backscatter for both land cover types. Data was taken from the summer months
July, August and September in 2016, which are assumed to be mostly snow-free. Backscat-
ter from rocky areas is very stable over time, since it is less influenced by vegetation,
precipitation and azimuthal looking directions (ascending or descending orbits) than over
alpine meadows. A higher soil moisture resulting from previous precipitation events and
senescence of vegetation could be a reasonable explanation for the behaviour of backscat-
ter from alpine meadows. At the beginning of the chosen period, rocky areas seem to
be still covered by wet snow due to the low backscatter value. Therefore, σ0 data of
the selected rocky area points from mid-July until the end of September was taken as a
reference dataset to describe stable surface backscatter being less influenced by exterior
impacts like a wet snow pack or rain.
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Figure 4.2: Mean backscatter for rocky areas and alpine meadows in comparison to measured
precipitation data at station “Obergurgl”.

In a next step, the theoretical model RT1 model was fitted to these measurements. This
model was defined without a volume contribution (very low τ) and a Henyey-Greenstein
function as a surface scatterer. Hence, the fit, i.e. the least squares adjustment, was per-
formed on the directional parameter t and the normalisation factor nBRDF of the BRDF.
Averaging the fitted parameters over time resulted in t = 0.2 and nBRDF = 0.08, which
corresponds to a high backscatter level (low nBRDF) and a slight forward scattering (low
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and positive t).

This semi-empirical, surface scattering model can now assist a sensitivity analysis for
different snow packs above a rocky surface. The RT1 model is extended by a volume
scatterer based on a Rayleigh phase function, τ and ω. As already stated in previous sec-
tions, RT1 is a first-order scattering model based on the assumption of a low scattering
coefficient κs and it is not feasible to be used for describing a wet snow pack, since com-
pletely different scattering mechanisms are involved (cf. Sec. 2.3). To ensure that neither
principle is violated, the selection of snow profiles is limited to dry snow packs (all wetness
classes are 1). In addition, the stickiness is ignored, because it is a parameter which can
hardly be derived from snow profile measurements (Picard, Sandells, and Löwe, 2018).
An estimation of the fractional volume fvol is possible according to the linear relation
with snow hardness rsnow in Fig. 3.10:

fvol =
450

5 · 917
rsnow (4.1)

where 917 kg/m3 is the density of pure ice. Finally, an ”ice-air” dielectric model is used
for the micro-structure of the dry snow layer, where the dielectric constant of the snow
grains and the background are set to εp = εice and εb = εair, respectively.

4.2 Estimated Backscatter Sensitivity to Dry Snow

Parameters

By plugging the snow profile data into the model following the aforementioned restric-
tions, simulated backscatter was related to four snow pack parameters: snow height,
grain size, snow temperature and snow density (derived from snow hardness) (Fig. 4.3).
The backscatter was simulated for θ = 40◦, since it will serve as the reference angle for
backscatter normalisation later on. According to this model, simulated backscatter shows
no relation to snow height, snow temperature and snow density at all. The only snow
parameter having an approximate second order correlation with backscatter is grain size
(Fig. 4.3 (d)). The RGB colouring conveys the obvious fact, that the higher the total
backscatter, the higher the contribution from volume scattering as surface scattering re-
mains constant. Despite the positive correlation with grain size, all possible backscatter
values are within the range of approximately 2 dB, which is governed by a changing snow
pack. However, changes in surface conditions are completely neglected. This implies, that
it will be very demanding or even impossible to find a correlation by simply comparing
such snow parameters to backscatter. Approaches such as change detection or a cross po-
larisation ratio could offer a more reliable way to find a profound relation. However, one
has to keep in mind, that coherent scattering is neglected in the herein first-order model
simulations, which is thought to have a non-negligible impact on backscatter, when larger
grains and wet snow are present. Therefore, it would be necessary to solve it by taking
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all aspects of DMRT theory into account (Du, Shi, and Rott, 2010). Focusing on Figure
4.3, an increase in stickiness (e.g. to 0.2) would elevate the highest possible backscatter
level from -6 dB to -2 dB.
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Figure 4.3: Simulated backscatter σ0 for observed snow profile data at θ = 40◦ compared to
four different snow parameters: snow density (a), snow height (b), snow temperature (c) and
grain size (d). The RGB colour refers to the fraction of the scattered intensity from the surface
Isurf (red), volume Ivol (green) and interaction Iint (blue) to the total intensity. Since surface
scattering is clearly dominating and for visualisation purposes, Ivol and Iint were scaled by a
factor of two.



Chapter 5

C-Band SAR Method Advancements

This chapter focuses on enhancing existing approaches to normalise backscatter (Subsec.
5.1.1, and 5.1.2) and reliably selecting reference images based on meteorological data in
an automatised way. A benchmarking between the herein presented methods is performed
in Section 5.2. This is necessary to assess the feasibility of the suggested advancements
to relate them to snow parameter data later on.

5.1 Methodology

5.1.1 Radiometric Terrain Flattening

Radiometric terrain flattening is a relatively new approach to represent backscatter as γ0,
but additionally correcting for terrain, i.e. regions affected by layover and foreshortening
(Small, 2011). Although Small (2011) includes detailed instructions of this methodology,
essential steps and insights are summarised here, since the very method is available within
SNAP and was used to process the data for this study.

Figure 5.1 illustrates the different reference unit areas used for normalising the observed
radar backscatter β, the radar brightness. Beta nought can be normalised by using:

β0 =
β

Aβ
(5.1)

However, β0 is expressed in the slant range geometry, which is not a useful representation
of backscatter, since it is not bound to an Earth model. An ellipsoid model or, better
yet, a DEM can add spatial information to transform beta nought into a georeferenced
quantity, for instance sigma nought σ0 and gamma nought γ0.

σ0 = β0Aβ
Aσ

= β0sinθ (5.2)

43
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γ0 = β0Aβ
Aγ

= β0tanθ (5.3)

Hereby, θ might be the incidence angle derived from an ellipsoid model or from a DEM,
which is then referred to as the local incidence angle, because the computation is based
on the local neighbourhood.

Aβ

Aσ

Aγ

Aβ Aσ Aγ

θ

θ

θ

δr

δa δg

δp

Figure 5.1: Normalisation areas related to the different backscatter representations β0, σ0 and
γ0. θ is the incidence angle, Aβ the reference area in slant range, Aσ the reference area on ground
and Aγ the reference area perpendicular to the looking direction. The extents of these areas are
defined by means of the range resolution δr, azimuth resolution δa, ground range resolution δg
and projected ground range resolution δp (Redrawn from Small (2011), from Fig. 2).

The radiometric normalisation methods above fail to include the illuminated area of the
radar beam and to model the one-to-many and many-to-one relationship between the
slant and ground range geometry appropriately, as they just rely on θ. The novelty of
methods from Small (2011) tries to overcome these issues and gives preference to an es-
timate of the illuminated area instead of applying an incidence angle normalisation. At
first, the proposed algorithm starts to integrate the local illuminated area by traversing
a DEM. This area is estimated in a plane perpendicular to the slant range, thus yield-
ing a reference area for retrieving a better estimate of γ0. Its extent is defined by two
triangular terrain facets, which include the neighbouring terrain heights at a given grid
point, projected into this plane. Afterwards, each area grid point in the DEM geometry
(easting E and northing N) is mapped to a related grid point in radar geometry (range r
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and azimuth a). Overlapping area grid points are summed up, as it is the case in layover
and foreshorting regions:

Aγ(r, a)← Aγ(r, a) + Aγ(r, a)(E,N) (5.4)

Shadow regions are ignored and masked during the whole procedure. To smoothen the
distribution of the area grid in radar geometry, bilinear resampling is applied. Finally,
γ0
rtf can be calculated in radar geometry as given below:

γ0
rtf (r, a) = Kγ

β0(r, a)

Âγ(r, a)
(5.5)

where Kγ is a calibration factor and

Âγ(r, a) =
Aγ(r, a)

Aβ
(5.6)

an area factor estimate.

5.1.2 Piecewise Linear Percentile Slope (PLPS)

Backscatter normalisation with respect to the incidence angle θ is another way to over-
come the influence of terrain, and even land cover to a certain extent (cf. Sec. 2.4). A
trustful linkage of backscatter and in-situ measurements at different sites is hindered by
the dependency of backscatter on incidence angles. Two ways of solving this problem
are at hand: A simplified physical model is able to describe this relation, or backscatter
normalisation is performed with respect to a certain reference angle θref . For this study,
the second option is chosen to be investigated further, since the physical-based models
presented in Section 2.3 can’t be applied to single frequency data at VV and VH polarisa-
tion. Moreover, as Section 2.4 already conveyed, incidence angle normalisation techniques
for high-resolution backscatter data are still an open question in research, which makes
it most interesting to examine the potential of new methods within the frame this study.

Eq. 2.2 seems to be a simple approach, but is characterised by a loss of generality due
to the order of the cosine being sensible to land cover, which will be even worse for high-
resolution data. Moreover, simply performing a linear regression to compute the slope of
Sentinel-1 backscatter data such as for ASAR, where a lot of measurements at different
incidence angles have been collected over the years, is also not thought to perform reliable
enough for Sentinel-1 backscatter data. It is often the case, that data is only available
from two orbits and therefore a slope estimation is ill-posed. Another issue is the sepa-
ration of both orbits along θ. A large separation is preferred, since a larger range of θ is
covered and extrapolation becomes less of an issue. To further minimise the necessity of
extrapolation, θref = 40 ◦ seems to be an appropriate choice for the reference angle as the
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mean value of θ tends to be around 40 ◦. Orbits are close to 40 ◦ in flat regions and 40 ◦

is approximately in the center of distinctively separated orbits in steep terrain.

The idea of the herein presented methodology is to discretise the backscatter distribution
per orbit, instead of relying only on one single slope estimate for all orbits. Percentiles
are thought to be the best choice for sampling the distribution, since they offer to derive
a slope being dependent on the given backscatter distribution at a given θ and are less
influenced by outliers. However, a linear regression between equal percentiles and their
related θ does not work for a complex behaviour of backscatter with θ, i.e. a non-linear
behaviour. This issue can be solved by going one step further in discretisation and con-
nect each pair of neighbouring percentiles. Following the points in Figure 5.2, the steps
of this procedure are:

1. First, the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of backscatter are
calculated for each orbit over the whole time period. For θ, the mean value is used
instead of the percentiles.

2. To account for the case where a point (or the reference angle) in the θ-σ0 space is
not between two orbits, extrapolation is done. Hence, so called “virtual” orbits are
constructed by using the slope of the closest pair of the 50th percentiles (median).
This is done according to a given minimum and maximum θ and the percentiles
of the adjacent orbits are extrapolated, once for the lower and once for the upper
“virtual” orbit.

3. Next, the backscatter values at θref are determined for each percentile with respect
to the closest orbits of a lower and higher θ.

4. Having the distribution and the reference backscatter values, normalisation can be
initiated. For each θ-σ0 pair, the same procedure as in (3) is repeated. Again,
backscatter values are computed in between the neighbouring percentiles, but this
time with respect to θ.

5. From the set of these synthetic backscatter values, the closest and adjacent two
(σ0

upper and σ0
lower) are directly related to the actual measurement σ0 as expressed in

the following formula:

mnorm =
σ0 − σ0

lower

σ0
upper − σ0

lower

(5.7)

6. Eq. 5.7 defines the normalisation factor mnorm, which is used in the final step, the
actual normalisation of σ0:

σ0
norm = mnorm · (σ0

upper, ref − σ0
lower, ref) + σ0

lower, ref (5.8)

σ0
upper, ref and σ0

lower, ref are the respective adjacent, synthetic backscatter values com-
puted for θref in step (3). These are directly known from step (5), where the indices
of the neighbouring percentiles were calculated and stored.
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Backscatter values above the 95th or below the 5th percentile are normalised with respect
to the first and second closest synthetic backscatter value and are not declared as outliers,
because they could be caused by special and, for some pixels, rare events (e.g. very low
backscatter due to wet snow). Additionally, extrapolation is only allowed to a certain
extent. As one can imagine, an estimate of a slope becomes poorer the closer all orbits
are and the less all orbits cover the whole range of θ (cf. App. B). Therefore, pixels
where the difference between θ and the closest orbit is larger than the difference between
the lowest and highest orbit, are masked and ignored during the normalisation procedure.
Figure 5.6 (d) illustrates the applicability of the PLPS backscatter normalisation method
when being compared to the original backscatter data in Figure 5.6 (a).
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Figure 5.2: Overview of the necessary steps needed for normalising backscatter with the PLPS
method. Measurements are shown in yellow, blue and red (relative S-1 orbit numbers 15, 117 and
168). For each orbit, the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentile (:) are computed
and connected to form a line covering the whole range of incidence angles. The slope of the 50th

percentile defines extrapolated lines, which are depicted as dashed lines. Vertical cuts intersect
the lines at the reference incidence angle and at the measurement (•) to retrieve representative
backscatter values to normalise backscatter in a final step.
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5.1.3 Synthetic Reference Image Selection for Change Detection

The herein presented reference image selection is inspired by Nagler and Rott (2000)
and Nagler, Rott, et al. (2016) to separate the backscatter of a snow pack from surface
backscatter. In addition, the selection is explicitly assisted by continuously measured
weather data as introduced in Section 3.2.3. Past studies relied on a selection of one
image, which is reasonable for a smaller test site. However, as this thesis aims to compare
backscatter measurements with snow profile data on a larger scale, a selection of a refer-
ence backscatter value is thought to be most reliable at pixel level. To detect the most
appropriate backscatter values in a time series, meteorological data has to be interpolated
at each pixel.

The interpolation of the given weather data has to be adapted according to the spatial
behaviour of the climate variable, i.e. the daily maximum temperature and accumulated
precipitation. In mountainous regions, changes of the former are highly correlated with
height (cf. Fig. C.1 in Appendix), whereas the latter is mainly driven by a variation of
the horizontal position. Hence, instead of taking advantage of a simple linear relation,
as it is the case for height and maximum temperatures, interpolation of precipitation has
to be handled differently. A well-known method allowing a 2D interpolation of such type
of data is Inverse Distance Weighting (IDW) (Shepard, 1968). It is based on a weighted
average of n (precipitation) measurements pi and the weights are defined with respect to
the euclidean distance (di) between the point of interest (POI) and the location of the
measurement.

pPOI =

n∑
i=0

1
di
pi

n∑
i=0

1
di

(5.9)

In Eq. 5.9 pi (for Station i) is a weighted average similar to IWD and instead of focusing
on a single measurement at a given time, measurements are averaged over past times. The
spatial distance is replaced by the temporal difference of the current and past timestamp:

pi =

t∑
j=t−k

1
t−j+1

pi,j

t∑
j=t−k

1
t−j+1

(5.10)

where t is the current timestamp and k the amount of temporal neighbours in the past.
Eq. 5.10 should yield a value, which represents averaged, past precipitation conditions,
to enable a description of the longer lasting influence of soil moisture or a snow pack
infiltrated by rainfall.
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Zugspitze (S1)

Flughafen Innsbruck (S2)

Patscherkofel (S3)

Reschenpass (S4)

Idalpe (S5)

d1
d2

d3

d5

d4

Figure 5.3: Sketch of the IDW method to interpolate precipitation data at a location of in-
terest (yellow dot). Data from five stations (“Zugspitze” (S1), “Flughafen Innsbruck” (S2),
“Patscherkofel” (S3), “Reschenpass” (S4) and “Idalpe” (S5)) are taken into account. Two pre-
cipitation time series are compared, one acquired at station “Reschenpass” and one interpolated
by using all data.

Figure 5.3 illustrates this interpolation procedure for the chosen Equi7 Grid tile and the
five meteorological measurement stations. Missing data can be overcome, since only one
measurement per timestamp is needed, as a minimum.

A selection of a reference backscatter image should then be accomplished with the aid of
the interpolated meteorological data for three different use cases (words written in italic
represent an abbreviation for a synthetic reference image selection method):

• minimum temperatures per pixel → coldest

• minimum precipitation per pixel and minimum temperatures overall → driest

• maximum temperatures per pixel and minimum precipitation overall → hottest

The coupling of both weather parameters for the last two points is not fully done on a
pixel basis to avoid undesired, disturbing patterns. Additionally, randomness and speckle
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in the backscatter data could be reduced by averaging the top synthetic reference images
for each of the settings above. Of course, this should be only done for those images, which
seem to be visually appropriate for being taken into account as a reference image, i.e. no
areas with low backscatter values due to snowmelt are present in mountainous terrain.

5.2 Method Benchmarking

5.2.1 Backscatter Representation

So far, two ways to normalise high-resolution backscatter with respect to θ have been
presented. Either a linear regression can be performed to tilt each σ0 according to the
estimated slope or normalisation is based on the PLPS method. As no “true” reference
data is available, both methods demand a comparison. Figure 5.4 shows an orbit-wise
distribution of σ0 for one pixel along with a linear (a) and a PLPS model (b). It is very
rare that a pixel is covered by four orbits, which is only achieved for small regions at
the edge of the Equi7 Grid tile of interest, and is therefore very important to judge the
applicability of both methods. Figure 5.4 (a) conveys that a linear regression approach
works well, but Figure 5.4 (b) clearly surpasses (a) in terms of the backscatter distribution
at 40◦. This is mainly due to the adjusted arrangement of the normalised backscatter by
means of the percentiles of neighbouring orbits.
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(a) Backscatter normalisation with linear regression (black line).
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(b) Backscatter normalisation with PLPS (percentile colour gradient from turquoise to purple).

Figure 5.4: Comparison of σ0
norm for two backscatter normalisation methods, LR (a) and PLPS

(b). All parameters are estimated for the whole time series of σ0 for one pixel (x=4803458 m,
y=1587908 m in Equi7 Grid coordinates).
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From now on, normalised backscatter will be denoted as σ40
PLPS for the PLPS method and

σ40
LR for the LR method. Both normalised backscatter representations are compared to σ0

backscatter as time series in Figure 5.5. σ0 is clearly affected by the viewing geometry
resulting in a strong variation of backscatter for each measurement. The proposed nor-
malisation methods appear to correct this influence well, thus reducing the variance, but
still preserving essential information about the seasonal cycle of backscatter. As already
underlined by Figure 5.4, σ40

PLPS has a lower variance than σ40
LR.

2015-10-15 2016-01-02 2016-03-22 2016-06-09 2016-08-28 2016-11-15 2017-02-03 2017-04-24 2017-07-12 2017-09-30
Time

−25

−20

−15

−10

−5

0

B
ac

ks
ca

tt
er

in
g

co
ef

fic
ie

nt
[d

B
]

σ0 σ40
LR σ40

PLPS

Figure 5.5: Comparison of σ0 to both normalised backscatter representations, σ40
PLPS and σ40

LR

(VV polarisation). The depicted time series refers to one pixel and ranges from October 15th,
2015 to September 30th, 2015 (x=4803458 m, y=1587908 m in Equi7 Grid coordinates).

The comparison in Figure 5.6 suggests that all methods are able to correct for terrain.
Steep, bright areas affected by layover and foreshortening are clearly visible in Figure 5.6
(a), whereas, the effect of varying terrain has diminished in Figures 5.6 (b), (c) and (d).
Moreover, lower backscatter values, primarily caused by snowmelt, become visually more
obvious. As the results imply that all methods perform equally well, an inter-comparison
for reviewing the differences in more detail is proceeded later on. It has to be noted, that
the radiometric terrain flattening algorithm in Small (2011) is the only method, which
corrects problematic regions in a rigorous (model-driven) way. Therefore, it intuitively
seems to be the backscatter representation to favour, however, at an expense of a higher
computation time and the disadvantage of another necessary step to normalise data with
respect to the remaining incidence angle behaviour.
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(a) σ0 backscatter image
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(b) γ0
rtf backscatter image
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(c) σ40
LR backscatter image
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(d) σ40
PLPS backscatter image

Figure 5.6: Comparison of σ0, γ0
rtf , σ40

LR and σ40
PLPS in VV polarisation over mountainous terrain

for an acquisition on June 27th, 2017. γ0
rtf masks areas characterised by radar shadow, whereas

σ40
LR and σ40

PLPS exclude pixels with an unfavourable orbit distribution. The spatial extent of
the depicted region is shown in (a). The red outer box represents the boundaries of the Equi7
tile “E048N015T1” and the red inner box depicts the extent shown in the figures above.
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Finally, a spatial comparison of the difference between σ40
PLPS and σ0

LR (b), γ0
rtf and σ40

LR

(c) and γ0
rtf and σ40

PLPS (d) is displayed in Figure 5.7. Residuals in Figure 5.7 (b) clearly
outline the terrain in Figure 5.7 (a), which means that σ40

PLPS is sensitive regarding the
arrangement of the orbits. This was revealed by a similar analysis as depicted in Figure
5.4. On slopes facing the sensor, the distribution is much more favourable, as some orbits
are close to 40◦. Figure 5.7 (d) confirms this, since residuals are close to zero for south-east
looking slopes. On the other hand, slopes looking in the opposite direction have orbits
resulting in low and high incidence angles. As an example, two of three orbits are in
the lower range of θ, but their backscatter distribution is still separated distinctively due
to higher backscatter at lower incidence angles. This causes σ40

PLPS to significantly differ
from σ40

LR.

Figure 5.7 (c) conveys a clear impression in terms of limiting the terrain influence, whereas
this is not the case for Figure 5.7 (d). Large residuals are present at areas affected by
layover, which is taken care of by the radiometric terrain flattening method. In summary,
σ40
LR is ought to be preferred in general, but σ40

PLPS is superior as long as the spreading of
the orbits along θ is adequate.
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(a) PLIA image and residual subregion for (b),
(c), (d) in red
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Figure 5.7: Comparison of all residuals after difference formation σ40
LR, σ40

PLPS and γ0
rtf with each

other. The depicted residuals result after shifting the distribution with respect to the mean.
The images in VV polarisation show an acquisition on May 27th, 2016 for a subregion marked
in (a).
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5.2.2 Feasibility of Reference Image Synthesis

The synthetic reference image generation is based on linear interpolation of the tem-
perature data and on spatiotemporal IWD interpolation of the precipitation data. The
performance of both methods is validated by setting simulated and measured data at a
meteorological measurement site in relation with each other over time (i.e. by ignoring
the station of interest during interpolation). The following tables list statistical mea-
sures such as the RMSE, pearson correlation and spearman correlation for interpolating
temperature (Tab. 5.1) and precipitation (Tab. 5.2).

Table 5.1: Maximum temperature statistics (in ◦C) from July 1st, 2015 to September 30th, 2017

Station RMSE Pearson R Spearman R
Flughafen Innsbruck 5.9 0.84 0.84

Patscherkofel 1.7 0.98 0.98
Zugspitze 2.7 0.96 0.95

Reschenpass 3.5 0.92 0.92
Idalpe 2.0 0.99 0.99

Table 5.2: Precipitation statistics (in mm) from July 1st, 2015 to September 30th, 2017

Station RMSE Pearson R Spearman R
Flughafen Innsbruck 7.3 0.81 0.87

Patscherkofel 4.7 0.79 0.82
Zugspitze 7.8 0.53 0.72

Reschenpass 4.5 0.66 0.58
Idalpe 3.6 0.76 0.82

As the interpolation of temperature data follows the behaviour of temperature (usually)
decreasing with altitude, the chosen model is sufficient and good agreement is given in
Tab. 5.1. Station “Flughafen Innsbruck”, which is located in “Inntal”, performs worst
in Tab. 5.1, since its temperature changes may be triggered by other variables than just
height. Station “Zugspitze” is the only station north of the “Inntal” valley, thus different
weather phenomena compared to the southern part of the Alps could take place. This is
confirmed by a weak correlation and a high RMSE in Tab. 5.2. Moreover, the significant
gap between Pearson and Spearman correlation in Tab. 5.2 points out that there are
remaining non-linear systematics in the data, which can not be modelled correctly with the
IDW method. In terms for both variables, “Idalpe” can be simulated best. This analysis
should only expound the possibilities of both methods, but regarding the selection of the
synthetic reference image only relative changes in the time series are relevant, whereas
absolute values are not important.
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For the aforementioned use cases in Section 5.1.3, the primary choices for the synthetic
reference image selections are shown in Figure 5.8. Further, Figure 5.8 (a) assists the
visualisation of minimum temperature in Figure 5.8 (b) (coldest synthetic reference image)
with temporal information. Three selections took place, one for the upper part, one for
most of the lower part and one for the highest regions. Unfortunately, the full coverage
is not given on January 18th, 2017, when the coldest conditions were prevalent. Figure
5.8 (c) and (d) use a combination of both temperature and precipitation data. Figure
5.8 (c) is the result of the IDW method followed by choosing the minimum interpolated
precipitation values in the time series at overall minimum temperature (dryest synthetic
reference image). Station “Zugspitze” appears to have measured precipitation more often,
which is not restricted to be zero regarding minimum values, as temporal averaging is
performed in addition (cf. Subsec. 5.1.3). Figure 5.8 (d) is constructed in a similar way,
but this time maximum temperature and overall minimum precipitation are chosen as
criteria to approximate a snow-free reference image selection (hottest synthetic reference
image). The resulting impact of each synthetic reference image on change detection is not
clear at this point, but will be finally discussed in Chapter 6.
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(a) Selection time stamps of backscatter images
for case (b).
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(b) Temperature conditions for the coldest syn-
thetic reference image.
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(c) Precipitation conditions for the dryest syn-
thetic reference image.
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(d) Temperature conditions for the hottest syn-
thetic reference image.

Figure 5.8: Comparison of the interpolated weather data for all three different synthetic reference
image selection methods (relative S-1 orbit number 117). Coordinates are given in the Equi7
Grid system.



Chapter 6

Results and Discussion

The previous chapters covered theoretical and empirical relationships between snow pa-
rameters and backscatter (Ch. 4) and demonstrated new approaches to represent backscat-
ter (Ch. 5). Hitherto, relationships between various backscatter and snow parameter
representations are still unclear, but shall be investigated in this chapter. Not only σ0,
γ0
rtf , σ40

PLPS and σ40
LR will be investigated (Sec. 6.1), also change detection (Sec. 6.4) and

the cross-polarisation ratio (Sec. 6.3) are of great interest (cf. Sec. 2.3). Remaining ob-
scurities shall be eliminated with the aid of a time series analysis, which compares snow
parameter and C-band SAR backscatter variations over time (Sec. 6.5). As a temporal
criteria, snow pack measurements being closest in time to the satellite acquisition, were
selected for all further investigations.

6.1 Correlations of C-Band SAR Backscatter and

Snow Parameters

First, overall statistics can be calculated by relating the aforementioned backscatter vari-
ables σ0, γ0

rtf , σ
40
PLPS and σ40

LR for each polarisation, VV and VH, to a representative
parameter of the snow pack. Snow profile parameters given for each snow pack layer,
e.g. grain size or snow wetness, have to be aggregated by using for instance the mean or
maximum value. This has led to a selection of the following snow parameters:

• air temperature (AT )

• number of layers (LA)

• snow height/depth (SD)

• maximum grain size (ĜS)

• maximum snow wetness (ŜW )

• maximum snow hardness (ŜH)

• mean grain size (GS)

• mean snow hardness (SH)

• mean snow wetness (SW )
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Unfortunately, due to a lack of data availability, reducing the significance of any correla-
tion, snow temperature data was excluded.

-0.8 0 0.8

rPearson

Figure 6.1: Pearson’s correlation coefficient rPearson resulting from relating backscatter data
to snow parameter data. Visual guidance is given through a colourisation of rPearson, where
negative correlation is coloured as red and positive as blue.
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Figure 6.1 illustrates the overall Pearson’s correlation coefficients rPearson as a matrix.
This metric is a measure of a linear relationship between two variables x and y (Hall,
2015):

rPearson =
Cxy
σxσy

(6.1)

where σx is the standard deviation of x, σy is the standard deviation of y and Cxy is the
covariance between x and y.

By comparing the backscatter representations with each other, one can conclude that
normalised backscatter leads to superior results, with σ40

LR ahead. This follows the ex-
pectations of normalised backscatter being not only less dependent on terrain variations
(that were corrected for in γ0

rtf ), but also on the land cover type. As an example, volume
backscatter becomes more important at higher incidence angles when dense vegetation is
present, which is directly considered by means of linear regression, since the slope tends
to be close to zero (Sabel et al., 2010).

Moreover, VH polarisation has a higher correlation for all snow parameters, which under-
lines the fact of multiple scattering and perhaps also the greater sensitivity with respect
to fluid retention in a snow pack (cf. Appendix D). Snow parameters such as air temper-
ature, maximum snow wetness, mean grain size and mean snow wetness are characterised
by a larger negative correlation, whereas snow height and the number of layers are posi-
tively correlated with backscatter.

However, one has to keep in mind, that all snow parameters influence the backscatter
dynamics in a coupled way. This could be the case for snow parameters with a negative
rPearson, all ought to be dependent on snow wetness (rPearson = −0.47). Thus, as shown
in Section 3.3, larger grains occur when the snow pack contains wet snow or is governed
by past melt-freeze cycles (rPearson = −0.39 for σ40

PLPS,V H). The same is true for air tem-
perature with a maximum correlation of -0.55: the warmer, the higher the probability of
the presence of wet snow. A positive correlation with snow depth (rPearson = 0.43) and
the number of layers (rPearson = 0.31) is meaningful (more volume scattering), but is not
necessarily the only cause of the depicted correlations in Figure 6.1. It could be the case
that these positive correlations are affected by the site and the land cover itself, i.e. the
general level of the surface backscatter.
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Snow hardness is not correlated at all, since all correlations are around 0.1. This is pos-
sibly resulting from the ambiguity in the subjective measurement method itself. There
seems to be a linear relation with snow density at hand (cf. Fig. 3.10), however, there
are larger deviations for lower snow hardness values. This implies a decorrelation of snow
hardness with respect to snow density and backscatter. At low values (dry snow) the
deviation is larger, at high values snow wetness will probably dominate C-band SAR
backscatter.

Additionally, correlations were also reviewed in terms of filtered snow parameter data,
e.g. excluding snow packs classified as wet (i.e. having a focus on dry snow parameters),
using only snow packs covering rocky surfaces (as done in Sec. 4.1.2) or departing both
winters to have results per winter. However, each filtering entailed the disadvantage of
having too few data points to make a significant statement about correlations present.
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6.2 Impact of Spatial Behaviour on C-Band Backscat-

ter and Snow Parameter Correlations

Figure 6.1 includes backscatter values retrieved from a 10 m × 10 m pixel covering the
location of the snow pack measurement. However, this single value retrieval can be unre-
liable due to the influence of speckle and the snow profile measurement procedure, which
impacts on the snow pack structure. Therefore, it is also interesting to examine the
behaviour of correlation over space, i.e. by taking a certain neighbourhood around the
measurement site into account. An average of all backscatter values in the linear domain
can be used to aggregate the data. This is done in Figure 6.2 for σ40

LR,V H, as it shows
the highest correlations in Figure 6.1. Neighbours are defined as the amount of pixels
in one dimension being next to the measurement location, thus 1 means an average over
9 pixels, 2 an average over 25 pixels, 3 an average over 49 pixels, and so on. Different
snow parameters yield different correlation curves, but most of them seem to agree well on
the spatial dependency. Important snow pack parameters like grain size or snow wetness
have a slight peak for 2 or 3 neighbours. In metric units, averaging is performed over a
50 m × 50 m and 70 m × 70 m region, respectively. This increase in correlation may be
either due to a reduction of speckle or the simplified snow parameter itself is acting on
a different catchment area and should be considered when correlating backscatter with
snow parameters.
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Figure 6.2: rPearson in dependency on the neighbourhood (in pixel units) taken into account for
averaging. Different curves are plotted for a subset of snow parameters.
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6.3 Correlations between Cross-Polarisation Ratios

and Snow Parameters

Relationships between C-Band backscatter and snow parameters can be also investigated
by considering the polarimetric properties of backscatter in terms of the cross-polarisation
ratio. Effects like terrain variations should cancel out, but a dependency on incidence
angles persists, except when properly corrected by backscatter normalisation. σ40

PLPS

has a very weak correlation, whereas, interestingly, σ40
LR performs well (cross-polarised

backscatter is denoted as CR). Compared to Figure 6.1, correlations with respect to
snow wetness are still present (rPearson = −0.41), but not as prevalent as before. In this
evaluation, mean grain size is dominant with a negative correlation of -0.49. However,
this is not in agreement with theoretic considerations. As grain sizes increase, volume
scattering should become more important and therefore, due to multiple scattering, VH
backscatter should increase too. Consequently, the ratio between VH and VV should
increase with increasing grain sizes (i.e. a positive correlation is expected). A correlation
seems to be present, even if it is negative, and will be studied in more detail in Sec. 6.5
with the aid of time series analysis. The slight positive correlation of snow height and
the number of layers agrees with theory in terms of volume scattering, but its significance
does not allow to draw any conclusions.

-0.8 0 0.8

rPearson

Figure 6.3: Correlations of cross-polarised backscatter data and various snow parameters ex-
pressed as rPearson (three neighbours included).



Chapter 6. Results and Discussion 65

6.4 Correlations between Backscatter Changes and

Snow Parameters

Another approach to relate a backscatter value of a snow covered pixel to a reference
backscatter value is known as change detection. This relation is expressed as a difference
between the former and latter backscatter value (backscattering difference) and is denoted
with ·̃ for a certain backscatter representation. Three different ways to define a reference
image based on meteorological data have been presented in Section 5.1.3. In this section,
their feasibility for the change detection method will be investigated. Similarly as for the
previous sections, correlations are shown in a matrix (Fig. 6.4), where all plots contain
rPearson within a neighbourhood of three pixels.

As would be expected based on the earlier results, correlations increased significantly
by ∼ 0.2 (as shown in Figure 6.4 (a)) when taking three neighbours into account instead
of none (Fig. 6.1). Figure 6.4 (c) shows the use of the dryest synthetic reference image
and visually conveys the worst performance with highest correlations around -0.5. Atten-
tion is drawn to the fact that the usage of this criteria likely selects backscatter values
not being available under the coldest conditions possible, since the pixel-wise focus is on
minimum precipitation.

Compared to Figure 6.4 (a), correlations with air temperature diminish (|rPearson| < 0.3),
but snow parameters such as maximum snow wetness (rPearson = −0.64), mean snow wet-
ness (rPearson = −0.6) or mean grain size (rPearson = −0.54) become more concise. Snow
height has a high positive rPearson of 0.67 in Figure 6.4 (d), which can be explained to
some extent by recognising that the therein used reference image is likely the only snow-
free image. Thus, the backscattering difference may yield a larger sensitivity towards
snow height, but this is more thought of being a spurious correlation. Maximum snow
wetness has a larger negative correlation of around -0.64 and even lower being present in
all figures. In addition, the difference formation causes terrain and surface variations to
become less of an issue. Hence, all backscatter representations with respect to maximum
snow wetness lead to a correlation in the same order of magnitude, being most concisely
visible in Figure 6.4 (b). Because of this, the simpler construction of the synthetic refer-
ence image and the best negative correlation, the coldest synthetic reference image in VH
polarisation is thought to be the most appropriate one to detect wet snow.
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-0.8 0 0.8

rPearson

(a) rPearson as in Fig. 6.1, but considering three
neighbours instead of none.

(b) rPearson for backscattering differences using
the coldest reference image.

(c) rPearson for backscattering differences using
the dryest synthetic reference image.

(d) rPearson for backscattering differences using
the hottest synthetic reference image.

Figure 6.4: Correlation matrices containing rPearson for each backscattering difference and snow
parameter combination, except (a), which focuses on backscattering coefficients. All rPearson are
based on three neighbours. For each method, only the best result fulfilling the specific criteria
was taken as a synthetic reference image.
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This last insight can further be used to map these backscattering differences along with
the other gathered findings. Figure 6.5 provides a view of backscattering differences σ̃0

V H ,
the most simple representation of backscatter. Values above zero were masked.

Just depicting differences below zero without any spatial filtering results in a noisy im-
age (Fig. 6.5 (c)). Results improve as one applies spatial filtering (Fig. 6.5 (b), two
neighbours) and both, spatial and temporal averaging (Fig. 6.5 (a), two neighbours, two
best reference image results). Figure 6.5 (d), showing σ̃0

V H based on the hottest synthetic
reference image, also conveys a nice impression but tends to be noisier in none snow cov-
ered areas. Maps indicating wet snow were also created with an averaging based on three
neighbours, as it showed good statistics before, but it turned out to be too coarse and too
much information is lost. Figure 6.5 (a) shows the distinctiveness of σ̃0

V H at most, thus
this configuration is stated to be the most promising for mapping wet snow.
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(a) Coldest synthetic reference image (two
neighbours in time and space).
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(b) Coldest synthetic reference image (two
neighbours).
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(c) Coldest synthetic reference image.
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(d) Hottest synthetic reference image (two
neighbours).

Figure 6.5: Backscattering differences for σ̃0
V H , different reference images and filtering methods

covering the region around the “Zugspitze”. All σ̃0
V H values above zero are masked. The spatial

extent of the depicted region is shown in (a). The red outer box represents the boundaries of the
Equi7 tile “E048N015T1” and the red inner box depicts the extent shown in the figures above.
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6.5 Snow Parameter and C-Band SAR Backscatter

Time Series Comparison

Further insights can be gained by undertaking a time series analysis of snow and C-band
SAR backscatter parameters over time as shown in Figure 6.6. Having a closer look at
the top time series, less influence by terrain is evident for the normalised backscatter
versions, which line up very well, and for γ0

rtf . Although, there is a profound negative
correlation, air temperature could influence the snow pack on a different temporal scale
than for instance snow wetness (cf. Fig. 6.6 (bottom)).

Snow height and mean grain size are compared to all cross-polarisation ratios in Fig-
ure 6.6 (center). Here, two snow parameters are chosen for comparison, because both are
necessary to explain their impact on polarised backscatter (cf. Sec. 6.3). After difference
formation the effect of terrain seems to be largely eliminated for all backscatter curves,
whereas a slight impact of land cover seems to persist for unnormalised products, since
there is a clear gap between both representations, i.e. normalised and not normalised.
However, this gap could be also a sign of not being able to fully account for the incidence
angle dependency when applying both normalisation methods. With the aid of maximum
snow wetness in Figure 6.6 (bottom) it can be seen that major drops (around the March
27th, 2017 and April 30th, 2017) of the cross-polarisation ratio are caused by wet snow.
VH polarisation is more affected by wet snow than VV, therefore leading to a decrease in
the cross-polarisation ratio (cf. Fig. D.1). As already stated, the negative correlation of
grain sizes with backscatter disagrees with theory and could be due to snow height, snow
wetness and grain size interactions. Starting in January 2017, snow height increases up
to 1 m, which tends to also lead to an increase of the cross-polarisation ratio. The first
drop of the ratio at the beginning of February 2017 could be caused by snowmelt. Even
if the snow pack was classified as dry, the backscattering difference curves support this
statement. Afterwards, a steady phase of snow heights and grain sizes is present, but yet
the aging of the snow pack could be responsible for the slight, continuous increase in the
ratio. Subsequently, both aforementioned snow melt events and the time series concludes
with a recognisable rise of the cross-polarisation ratio. It is close to zero (in dB), meaning
VH is nearly as large as VV backscatter, which is likely to be caused by snow heights
above 2 m or single layers of large grains retaining the influence of the snowmelt period
before.

Finally, Figure 6.6 (bottom) relates maximum snow wetness to backscattering differences,
where satellite and snow profile measurements correspond very well except on January
20th, 2017. A snow pack was classified as wet, not being obviously detected by the
backscattering difference (error of omission). In the case of backscattering differences,
σ̃40

PLPS,V H includes one outlier shortly before March 27th, 2017 and does not align well with
the other backscatter curves.
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Figure 6.6: Time series for all backscattering coefficients at VH polarisation (top), cross-
polarisation ratios (center) and backscattering differences at VH polarisation by using the “cold-
est” synthetic reference image (bottom) (including three neighbours). Following the same order,

AT , SD together with GS, and ŜW are plotted in relation to the backscatter curves.
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6.6 Comparison to Optical Imagery

The discussed enhancements for mapping snow parameters can further be used to relate
these results to an optical image enabling a detection of similar and dissimilar parts, re-
spectively. Optical imagery serving as a reference was offered by the Operational Land
Imager (OLI) sensor onboard of Landsat 8. Figure 6.7 (a) depicts backscattering differ-
ences of γ̃0

rtf,V H with respect to the hottest synthetic reference image. The S-1 acquisition

took place on January 10th, 2017, thus backscatter was sensed in a period of very low
temperatures (cf. Sec. 3.1.2). Two phenomena are evident, when having a closer look
at γ̃0

rtf,V H : First, low γ̃0
rtf,V H values in the valleys could be a sign of wet snow or could

be linked to the absence of vegetation in the backscatter image on January 10th, 2017.
Second, positive γ̃0

rtf,V H values seem to be likely caused by the presence of snow above the
timber line. In these mountainous areas, vegetation becomes less of an issue. It has to
be noted, that the temporal separation between the RGB composite and the backscatter
image is not optimal, since snowfall could have happened in between the acquisitions.
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(a) Filtered (two neighbours) backscattering
difference γ̃0

rtf,V H derived from the hottest ref-

erence images (January 10th, 2017).
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(b) Landsat 8 image (January 25th, 2017).

Figure 6.7: Comparison of γ̃0
rtf,V H with a Landsat 8 OLI false colour image1. The RGB com-

posite consists of the SWIR-band (R), NIR-band (G) and Red-band (B). The spatial extent of
the depicted region is shown in (a). The red outer box represents the boundaries of the Equi7
tile “E048N015T1” and the red inner box depicts the extent shown in the figures above.
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In Figure 6.8 (a), backscattering differences are shown in the same way as in Figure 6.5 (a).
This map is an indication or estimate of wet snow, given by the backscattering difference.
The area covered by the map shows the major glaciers “Gepatschferner” and “Hintereis-
ferner”, and parts of the “Kaunertal”, “Pitztal” and “Ötztal” valley. The snow-covered
areas in Figure 6.8 (c) show a good agreement with snow melt areas, whereas backscat-
tering differences vary significantly within such an area. A few isolated snow fields can
be also detected with some misclassified pixels containing a lower σ̃0

V H as a trade-off.
Furthermore, the backscattering difference image offers a very nice delineation of glacier
snouts and the separation of south- and north-facing slopes.

Figure 6.8 (b) depicts cross-polarisation ratios for normalised backscatter σ40
LR,CR. In

comparison to Figure 6.8 (d), the highest elevated areas are visible as positive σ40
LR,CR val-

ues (neglecting the large temporal separation of both acquisitions) probably being caused
by multiple scattering inside the snow pack. The dark red areas on south-facing slopes
could indicate the presence of liquid water inside the snow pack, since the difference be-
tween VH and VV increases for wet snow (cf. Appendix D).

Both maps (Fig. 6.7 (b) and Fig. 6.8 (a)) indicate the feasibility of mapping dry snow
(and wet snow). However, by just taking the cross-polarisation ratios or backscattering
differences without any guidance of a physical model into account, it is not possible to
quantitatively derive a dry snow parameter, e.g. snow height or grain size.

1data source: U.S. Geological Survey, accessed on November 20th, 2018
2data source: U.S. Geological Survey, accessed on November 20th, 2018
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(a) Filtered (two neighbours) backscattering
difference σ̃0

V H derived from the merged, cold-
est reference images (June 18th, 2017).
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(b) Filtered (two neighbours) cross-polarisation
ratio σ40

LR,CR (January 10th, 2017).
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(c) Landsat 8 image (June 18th, 2017).
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(d) Landsat 8 image (January 25th, 2017).

Figure 6.8: Comparison of σ̃0
V H and σ40

LR,CR with Landsat 8 OLI false colour images2. The RGB
composite consists of the SWIR-band (R), NIR-band (G) and Red-band (B). The area covers
glaciers and the highest peaks in the chosen region of interest (e.g. “Wildspitze”). The spatial
extent of the depicted region is shown in (a). The red outer box represents the boundaries of the
Equi7 tile “E048N015T1” and the red inner box depicts the extent shown in the figures above.
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Summary and Conclusion

In this thesis, a study was performed to identify interdependencies between various snow
parameters and C-band SAR backscatter observations from Sentinel-1. To achieve this
aim, backscatter was modified by means of radiometric normalisation, incidence angle
normalisation, change detection or cross-polarisation ratios. Insights gained from corre-
lating these backscatter representations with snow measurements should then indicate the
feasibility of monitoring alpine snow conditions with C-band SAR.

All datasets were acquired for two winter seasons, 2015/2016 and 2016/2017, within the
geographic scope of the North and South Tyrolean Alps. In-situ snow profile data was
only available as graphics and had to be digitised semi-automatically. An investigation of
relationships between different snow parameters revealed the impact of snow metamor-
phism and temperature on grain sizes and grain types. Moreover, it was found that moist
or wet snow is mainly located in the lower and upper part of the snow pack and that the
largest grains occur when depth hoar is present.

A sensitivity analysis employing theoretical models has shown what influence from snow
pack characteristics on backscatter can be expected at C-band. Here, this was done in
a simplistic way, only using a first-order RT model and not including any higher-order
scattering effects. The herein presented model neglects important parts such as coherent
scattering in a dense media, snow stratification and even surface scattering at the air-snow
interface. This means, the scatter plots in Figure 4.3 likely underestimate the possible
range of values for volume backscatter. Moreover, other studies have drawn attention
to the difficulty of properly defining a stickiness value for a given snow profile. When
increasing the snow stickiness, the possible range of volume backscatter values can range
from 0 dB to 5 dB, however, at an expense of a lower model accuracy as the scattering
coefficient κs increases too. The necessity to take coherent scattering due to larger grains
and snow heights into account, was justified by Figure 6.6 (center). Nevertheless, within
the set of the chosen fixed parameters and all snow profile measurements, grain size is
correlated to C-band backscatter at most in theory.

74
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Among all snow parameters, snow hardness has the least correlation of around 0.1 on
average, possibly due to the way it was measured. Snow height and the number of layers
correlate positively with backscatter, which is plausible, but unrealistic to be the sole
cause for backscatter variations at a scale of 5-10 dB (rPearson = 0.67). Yet, the time
series analysis of cross-polarisation ratios and the comparison with optical imagery seem
to support the influence of snow depth and grain size. Most correlation plots imply that
snow wetness is the most promising snow parameter in terms of negative linear behaviour
with backscatter (rPearson = −0.64). This is emphasised by the time series relating max-
imum snow wetness to backscattering differences (cf. Fig. 6.6). Correlations with grain
sizes seem to perform nearly as good as snow wetness, but a negative correlation of the
observed order contradicts theoretical considerations (rPearson = −0.53). Again, time se-
ries and also snow parameter analysis shed light on this, namely that larger grains occur
more often if the snow layer is wet (or after multiple melt-freeze cycles). An exterior
parameter impacting on the snow pack is air temperature having a negative correlation
(rPearson = −0.59) with backscatter, since snow wetness is mainly driven by a change in
temperature. All snow parameters experienced a larger correlation with VH than with
VV polarised backscatter, underlining the fact that VH polarised backscatter is influenced
by multiple scattering, thus containing more information about the penetrated volume.
However, one has to be aware of not trying to retrieve information from VH polarised
backscatter when close to the noise level.

σ0 backscatter was transformed to a normalised version at θref = 40 ◦ by using linear
regression and a novel methodology, the Piecewise Linear Percentile Slope (PLPS) nor-
malisation. This method makes use of the orbit-wise backscatter distribution for scaling
the distribution at θref in relation to its neighbouring orbits. According to an inter-
comparison, terrain effects seem to be corrected more adequately if linear regression is
applied, as it ought to be more robust concerning critical backscatter distributions at
high and low incidence angles. Yet, the PLPS method is superior if more orbits covering
a broad range of incidence angles are involved. In areas where only two orbits are avail-
able and both are close together in terms of θ, both methods will fail (cf. Fig. B.2 in
Appendix). γ0

rtf revealed striking impressions for a different way to represent backscatter
and correct it in areas affected by layover with a rigorous approach. Still, the incidence
angle dependency regarding specific land cover types is not solved, thus diminishing the
comparability of snow parameter measurements at different sites. This was justified by
most correlation results, where normalised products have shown to better match snow
parameters over time, especially σ40

LR.

Additional advancements for selecting a reliable reference image for change detection
were introduced on a pixel-level, with the aid of meteorological data. Three criteria were
suggested, namely minimum temperature per pixel (coldest synthetic reference image),
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minimum precipiation per pixel and overall minimum temperature (dryest synthetic ref-
erence image), and maximum temperature per pixel and overall minimum precipitation
(hottest synthetic reference image). The first one was found to be the best in terms of
wet snow mapping, shortly followed by the third one, which also revealed promising re-
sults for mapping dry snow. Spatial and temporal (low-pass) filtering using two or three
neighbours in time and space, i.e. selecting more than one synthetic reference image and
averaging over 25 or 49 pixels, limits disturbing effects (e.g. speckle) to a certain extent
and also leads to a meaningful enhancement of image and perhaps parameter retrieval
quality.

To conlude, results suggest there are interdependencies between snow parameters and
C-band SAR backscatter, even if the (linear) correlation is not that high. C-band SAR
backscatter from snow covered areas offers mainly information about water deposits and
wet snow inside a snow pack. Therefore, compared to other snow parameters, maximum
snow wetness has a superior, profound correlation with backscattering differences, which
agrees with other studies (e.g., Nagler and Rott (2000), Nagler, Rott, et al. (2016), and
Magagi and Bernier (2003)). The less significant correlation with mean snow wetness im-
plies that one layer being only weakly moist or moist can already be detected with C-band
SAR. With a focus on wet snow mapping by using change detection, σ0 seems to be suf-
ficient, with the benefit of less computational effort than for instance γ0

rtf . The difference
formation entails the advantage of eliminating the need to select a specific backscatter
representation, because effects varying with location, i.e. land cover and terrain, cancel
out. An incidence angle mask as proposed in Nagler and Rott (2000) is necessary for σ0,
whereas γ0

rtf corrects or masks areas affected by layover or shadow. Consequently, if one
has the capacities to apply radiometric terrain flattening on SAR data, γ0

rtf should be the
preferred way of wet snow mapping.

Even in the absence of liquid water inside a snow pack, C-band SAR backscatter can
provide insights to delineate the extent of dry snow. This becomes evident when using
change detection by means of the hottest reference image (cf. Fig. 6.8 (b)). However,
it is not possible to distinguish the parameters acting on backscatter (e.g. surface, snow
height, grain size) by only taking C-band SAR backscatter data without any auxiliary
data or physical models into account (e.g., Shi and Dozier, 2000a; Shi and Dozier, 2000b).



Chapter 8

Outlook

Naturally, this work opens up further research questions and possibilities as set out below.

Azimuthal effects (e.g. due to ascending and descending orbits) have been neglected
within the frame of this thesis, but cause recognisable variations in backscatter, in partic-
ular having an impact on backscatter normalisation. The PLPS backscatter normalisation
method has shown promising results in areas covered by four orbits and is worth to be
analysed in terms of other applications, for instance soil moisture retrieval in agricultural
areas. However, without having any further backscatter data to supply a reliable normal-
isation, the aforementioned problems regarding the constellation of the orbits will remain.

In-situ data quality is still to be questioned, as some snow parameters, e.g. snow hardness
and snow wetness, may be biased depending on the surveyor. Results might be tuned, if
snow density and snow liquid water content are measured instead. This would also offer
the opportunity to investigate essential snow parameters like SWE. An optimal measure-
ment setup would include frequent acquisitions at the same sites, without destroying the
structure of the snow pack. Whilst demanding to undertake in practice, gathering more
data points by expanding the region of interest in space and time could also help to under-
line the significance of certain correlations or shed light onto relations between different
snow parameters and remote sensing data.

Map quality could be further enhanced by not only merging the top two synthetic refer-
ence image results, but taking more images into account to see if speckle in the reference
image becomes less of an issue. If one wants to focus on areas of lower elevation too, the
coldest synthetic reference image will be the wrong choice, whereas the one at hottest
conditions seems to be more appropriate. Yet, one has to deal with the influence of
vegetation in agricultural areas, e.g. preferring an image sensed in autumn after harvest.
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78 Chapter 8. Outlook

Finally, the approach to map wet snow presented herein makes use of all backscattering
differences below zero and replaces the necessity to define an arbitrary threshold with
spatial and temporal filtering. Such a threshold, commonly being chosen as −2 dB or
−3 dB has been discussed in many works (Nagler and Rott, 2000; Nagler, Rott, et al.,
2016; Longepe et al., 2009; Navacchi, 2016). Moreover, the presented maps most likely
indicating the dry snow extent need to be revised in terms of finding an appropriate criteria
or threshold for separating snow covered from snow-free areas. As a final statement, it
would be interesting to use such maps by means of climate change analysis. Four years of
Sentinel-1 data in cooperation with an increasing amount of snow profile measurements
could for instance assist snow cover, run-off or even glacier retreat analysis.
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Appendices

A DMRT Parameters

This section is devoted to the physical and mathematical formulation of radiative transfer
parameters needed to describe the propagation of an electromagnetic wave within a dense
medium, e.g. a snow pack. First, it is necessary to define the dielectric properties of the
snow pack. The dielectric constant of dry snow εice, wet snow εwet ice and water εwater can
be written as follows (cf. Picard, Brucker, et al., 2012; Tsang, Kong, et al., 2004):

εice = 3.1884 + 0.00091(T − 273) + i(
α

β
+ βν) (A.1)

where

α = (0.00504 + 0.0062Υ)e−22.1Υ

β =
0.0207

T

e
335
T

(e
335
T − 1)2

+ 1.16 · 10−11ν2 + e−9.963+0.0372(T−273.16)

and

Υ =
300

T
− 1

T has to be in ◦C. For wet snow, a simplified relation is described as a mixing of the
dielectric constant of ice εice and water εwater:

εwet ice =
C+ + 2C−
C+ − C−

εwater (A.2)

where

C+ = εice + εwater

C− = (εice − εwater)χ

In this case, χ is the liquid water content. εwater is given by:

εwater = ε2 +
ε1 − ε2
1− i ν

ν2

+
ε0 − ε1
1− i ν

ν1

(A.3)
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where

ε0 = 77.6 + 103.3Υ

ε1 = 0.0671ε0

ε2 = 3.52 + 7.52Υ

ν1 = 20.2− 146.4Υ− 316Υ2

ν2 = 39.8ν1

Next, the scattering properties of a medium are defined based on a mono-disperse QCA-
CP approximation and are described via the effective dielectric constant Eeff, which adds
the relative scattering contribution of the particles to the dielectric constant of the back-
ground εb. This additional term includes the snow fractional volume fvol, the radius of the
particles ap and stickiness parameter ζ, thus correcting for additional scattering effects.
To achieve this, the effective dielectric constant without scattering Eeff0 must be known:

E2
eff0 + Eeff0

(
εs − εb

3
(1− fvol)− εb

)
− εb

εs − 1

3
(1− fvol) = 0 (A.4)

where εs is the dielectric constant of the particles. After solving this quadratic equation
and taking the positive root of Eeff0, one can use it in the formulation below:

Eeff =εb + (Eeff0 − εb)
(

1 + i
2

9
(k0ap)

3
√
Eeff0(εs − εb)+

εs − εb
3Eeff0

(1− fvol)
(1− fvol)

4

(1 + 2fvol − tfvol(1− fvol))2

) (A.5)

where k0 is the wavenumber at the given frequency f and t can be computed using fvol

and ζ:

fvol

12
t2 −

(
ζ +

fvol

1− fvol

)
t+

1 + fvol

2

(1− fvol)2
(A.6)

This time, the appropriate solution for t can be found by taking the conditions stated in
Tsang, Kong, et al. (2004, p. 427) into account.

The extinction coefficient κe and the scattering coefficient κs can then be written as
a composite of all previous parameters:

κe = 2k0imag
(√

Eeff

)
(A.7)

κs =
4

9
k4

0a
3
pfvol

∣∣∣∣∣
εs − εb

1 + εs−εb
3Eeff

(1− fvol)

∣∣∣∣∣

2
(1− fvol)

4

(1 + 2fvol − tfvol(1− fvol))2
(A.8)
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Finally, the the optical depth τ and the single-scattering albedo ω describe volume scat-
tering in a compact way and are as follows:

ω =
κs
κe

(A.9)

τ = κed (A.10)

with d being the height of the snow layer.

B PLPS Examples

Two additional examples visualising σ40
PLPS and σ0 are given in Figure B.1 and B.2. Fig.

B.1 shows backscatter from a glacier clearly reflecting the influence of wet snow as it was
stated in Appendix D, i.e. a larger difference at smaller incidence angles and vice versa.
Consequently, the distribution of σ0 for each orbit is spread into two very distinct parts for
this pixel, because a glacier is covered by snow nearly the whole year. This makes it even
more important to consider the full arrangement of backscatter discretised by percentiles.
An unsuitable example of a backscatter distribution can be found in Figure B.2. Both
available orbits are close together, which prohibits a reliable estimation of the slope, no
matter whether the linear regression or the PLPS method is chosen. Thus, normalisation
becomes problematic the further both orbits are separated from the reference angle.
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Figure B.1: Distribution of σ0 and σ0
norm

for a pixel located at a glacier (“Rettenbach-
ferner”). Strong snowmelt is clearly visible as
low backscatter values, i.e. the 5th and 10th
percentile.
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Figure B.2: Unfavourable conditions for nor-
malising backscatter at a pixel located in the
“Inntal” valley: only two orbits are available
and they are very close to each other.
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Figure C.1: Relation between the height a.s.l. of the stations and their measured temperature
values on December 15th, 2016 (red), April 1st, 2017 (green) and August 15th, 2016 (blue).
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D C-Band SAR Backscatter Sensitivity to Wet Snow

Wet snow was completely neglected in the sensitivity analysis (Ch. 4), since it can be
hardly described with common radiative transfer models. Yet, one can use the defined
land cover points of rocky areas (cf. 4.1) to compare measurement from two different
scenes, one observed during mid-winter and one during the snowmelt season. Figure D.1
includes a comparison of σ0 and γ0

rtf for both dates (June 6th, 2017 and May 24th, 2017)
and with VV (a) and VH (b) polarisation, respectively. To overcome the noisy behaviour
of the data and a misrepresentation of the chosen points, a simple cosine model was fit
to the data assisting a visual interpretation.
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Figure D.1: Comparison of σ0 and γ0
rtf backscatter curves fitted to backscatter measurements

at selected locations belonging to rocky areas. In each plot, measurements from two different
dates, June 6th, 2017 and May 24th, 2017, are set into relation.

It can be seen that γ0
rtf is less dependent on θ than σ0, which underlines the purpose

of radiometric terrain flattening, namely to correct for the impact of terrain on backscat-
ter. The lower backscatter level due to wet snow is evident for the observations in May
and the gap between dry snow and wet snow backscatter is smaller at higher incidence
angles as volume scattering becomes more important. It is not possible to give prefer-
ence to a certain backscatter representation for change detection, both are still dependent
on θ when computing a difference between the backscatter curves in May and January.
The γ0

rtf curves in May, where backscatter is lower at small incidence angles, shows an
unusual behaviour. This could either originate from the class-representative point selec-
tion meaning that some points are snow-free and others not, or because of the terrain
flattening method itself. The former argument is also justified by the larger deviation of
measured backscatter with respect to the fitted backscatter curves in May. Comparing
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Figure D.1 (a) and (b) shows that all curves are shifted by around -10 dB, whereas VH
polarised backscatter experiences a stronger shift. VH backscatter in May is close to or
even beneath the noise floor of Sentinel-1 (−24 dB to −30 dB). This is also emphasised
in Nagler, Rott, et al. (2016).
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