
Automatische Kategorisierung
von e-Commerce Produkten

durch Multimodale Klassifikation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Alper Kirim, BSc
Matrikelnummer 0927700

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, 8. Jänner 2019
Alper Kirim Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Automatic Classification of
e-Commerce Products via
Multimodal Classification

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Alper Kirim, BSc
Registration Number 0927700

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Vienna, 8th January, 2019
Alper Kirim Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Alper Kirim, BSc
Hermann-Bahr-Straße 18 1210 Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Jänner 2019
Alper Kirim

v

Acknowledgements

First and foremost, I would like to thank my thesis advisor Ao.Univ.Prof. Dipl.-Ing.
Dr.techn. Andreas Rauber. Throughout the course of writing this thesis, his thoughtful
comments helped me immensely. Most importantly, I would like to thank him for
developing my appreciation for the scientific research.

I would like to thank my girlfriend Hannah for her continuous support and patience. My
life would be empty, just like the pages of this thesis would have been, if it wasn’t for her.

I would like to thank my parents for supporting me morally and financially throughout
my education. I would like to thank my cousin Hande for being the best cousin possible,
for opening my eyes to fantasy worlds and for proofreading this thesis. I would also like
to thank my uncle Sedat for the moral support.

Last but not least, I would like to thank my friends and former colleagues Paolo and
Patrick for their helpful comments on the various drafts of this thesis and their moral
support.

vii

Kurzfassung

Das Organisieren von Produkten in die Produktkategorien ist ein wesentlicher Bestandteil
der E-Commerce-Anwendungen. Allerdings in einigen Second-Hand-Marktplatzanwendungen,
bei denen Benutzer keine professionellen Verkäufer sind, wird die Eingabe einer Katego-
rie optional gehalten, um die Erstellung der Inserate zu vereinfachen. Diese Elemente
müssen dann von einem internen Team kategorisiert werden, damit sie gefunden werden
können, wenn Suchergebnisse nach Kategorien gefiltert werden. Das Ziel dieser Arbeit
ist es, das Potenzial eines multimodalen Klassifikators als Alternative zu der manuellen
Kategorisierung, die von einem internen Team eines Unternehmens im Second-Hand-
Marktplatz-Geschäft betrieben wird, zu evaluieren. Da einige nicht-professionelle Benutzer
Gegenstände ohne relevanten Text oder mit Bildern von schlechter Qualität auflisten,
wird ein multimodaler Ansatz gewählt, um das System robuster zu machen.

Zunächst wird die Leistung des Inhouse-Teams untersucht. Nach der Analyse und Vor-
verarbeitung der verfügbaren Daten wird ein multimodaler Klassifikator entwickelt und
ausgewertet, der die Leistung des internen Teams erreichte. Neben der Entwicklung und
Evaluierung eines Klassifikators werden mögliche Einsatz- und Überwachungsstrategien
diskutiert.

ix

Abstract

Organising products into product categories is an integral part of e-commerce applica-
tions. However in user-driven secondhand marketplace applications, where users are not
professional sellers, input of a category is kept optional to make the listing process easier.
These items must then be categorized by an in-house team so that they can be found
when search results are filtered by categories. The goal of this thesis is to investigate the
potential of a multimodal classifier as an alternative to the manual categorization done
by an in-house team at a company in the secondhand marketplace business. Since some
non-professional users tend to list items without descriptive text or with bad quality
images, a multimodal approach is chosen to make the system more robust.

Initially performance of the in-house team is evaluated. After analyzing and preprocessing
the available data, a multimodal classifier is developed and evaluated which reaches the
performance of the in-house team. In addition to the development and evaluation of a
classifier, possible deployment and monitoring strategies are discussed.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement & Research Questions 2
1.3 Methodology and Structure . 2

2 Related Work 5
2.1 CRISP-DM Framework . 5
2.2 Item Classification in e-Commerce . 7
2.3 Supervised Learning . 8
2.4 Summary . 20

3 Data Analysis 21
3.1 Domain . 21
3.2 Data Quality Experiment . 22
3.3 Available Resources . 26
3.4 Data Collection . 27
3.5 Data Analysis and Preprocessing . 28
3.6 Evaluation Metrics for the Problem Setting 36
3.7 Summary . 38

4 Modeling and Evaluation 39
4.1 Modeling . 39
4.2 Text Classifier . 39
4.3 Image Classifier . 46
4.4 Modality Fusion . 49
4.5 Uncertainty Functions . 51
4.6 Final Evaluation . 52
4.7 Summary . 54

xiii

5 Conclusions & Future Work 57

List of Figures 59

List of Tables 61

List of Algorithms 63

Bibliography 65

CHAPTER 1
Introduction

1.1 Motivation

Categories in e-commerce websites provide a concise way of filtering provided items contex-
tually. A special case of e-commerce websites is online marketplaces for secondhand items.
Companies in this business offer websites and mobile apps, which, among other features,
let users create an item entry with images and text (mostly a title and a description) and
also pick a category during the process of posting an item entry. To make this process
easier, picking of a category is mostly kept optional. As a result uncategorized product
entries must either be manually categorized by humans or automatically categorized
using machine learning techniques.

There are various challenges in this categorization task. Depending on the granularity
of the category structure, there can be overlapping categories, which makes evaluation
of models more difficult. Additionally text data is noisy, because the users are non-
professional sellers. There are also different success criteria for such categorization tasks
depending on whether the resulting model will be deployed to suggest users a category
during the listing process or to help with subsequent categorization of uncategorized
items by expert editors.

Multimodal classification is particularly suited for item categorization because there are
items where users provide a descriptive title and description but a bad quality image and
vice versa.

With the recent success of Deep Neural Networks (DNN) in image categorization tasks
[He+16a] [KSH12] [Sze+15], the question arises as to whether it is possible to design
a multimodal classifier using a DNN as image classifier to improve accuracy in item
classification tasks.

1

1. Introduction

1.2 Problem Statement & Research Questions

Categorization of the uncategorized products in a company in secondhand marketplace
business is currently done manually by the user support team. As a result of this manual
categorization the available workforce for customer support tickets is decreased.

Advantages of a multimodal classifier architecture with a pretrained neural network for
image classifier component will be investigated to tackle this problem. The multimodal
classifier will use text and image features for the classification. For the image component
of the multimodal classifier advantages and disadvantages of transfer learning will be
evaluated.

The aim of the research is to answer the overarching research question, "To what extent
can a multimodal DNN-based classifier for classification of e-commerce products be
deployed to reduce the manual effort of classifying?". To answer this question we need to
break it down to the following specific questions:

• RQ1: How unique are the categories? If there are overlapping ones how do we
deal with them?

• RQ2: Which preprocessing techniques are useful against noisy text data caused by
input from mobile devices?

• RQ3: How can performance of the classifier be measured for a dataset with
overlapping classes? What kind of evaluation is useful for the given problem
setting?

• RQ4: Are there significant benefits of retraining the last layer or more than
one layer of a model pretrained on ImageNet [Den+09] classes instead of using
predictions for ImageNet classes?

• RQ5: Which fusion method for the image and text modalities is better for the
given problem setting?

• RQ6: What is the best function to determine uncertainty of the multimodal
classifier using probability outputs for the given problem setting?

1.3 Methodology and Structure

CRISP-DM [Cha+00] (Cross Industry Standard Process for Data Mining) will be the
guiding model for tasks that are needed to be performed during the development of the
classifier.

Before going into CRISP-DM related tasks, a theoretical background will be given about
data science projects in general and also more specialized topics that are related to
this thesis in chapter 2. After giving a brief overview about the CRISP-DM model,

2

1.3. Methodology and Structure

state-of-the-art in item classification in e-commerce will be summarized. Furthermore
supervised learning methods and evaluation metrics that will be used in this thesis will
be explained.

According to the CRISP-DM model, the first phase in the lifecycle of a data mining
project is business understanding. In chapter 3, business objectives and requirements
will be analyzed. After the business understanding phase, quality of the data sources
needs to be investigated. There are two possible data sources: items classified by the
support team and items with a provided category by the user. An experiment will be
performed to determine which data source has a higher quality. 5 support team members
will be asked to count the misclassified items in a list that contains equal amount of items
from both data sources. After the data source quality analysis, the data will be collected
from company’s database. In addition to textual data collected from company’s data
warehouse, scripts will be written to automate downloading of images from media servers.
Features will be derived from collected data. Following that, data will be analyzed and
preprocessed, which corresponds to the data preparation phase of CRISP-DM. Following
the analysis and preprocessing of the data, fitting evaluation metrics for the project will
be discussed.

In chapter 4, in which the modeling phase will be handled, various models will be
built and evaluated for each component of the multimodal architecture according to the
defined evaluation metrics. First, the text classifier will be developed. After evaluating
various input representations and preprocessing techniques, transfer learning for the
image classifier will be investigated thoroughly. A state-of-the-art image classifier will
be retrained while varying numbers of layers from the start of the network are frozen
during training. An image classifier without retraining will be also evaluated. After the
preparation of components for text and image modalities, early and late fusion methods
will be compared for the given problem setting. Furthermore, because of overlapping
categories and high precision expectancy, uncertainty functions will be evaluated as
a solution. These functions will determine when the classifier’s prediction should be
accepted. Two uncertainty functions will be constructed and compared against each other.
Finally configuration of the best performing multimodal architecture will be described
and evaluated on the test set.

In the final chapter, research questions that were posed in the first chapter and cor-
responding answers acquired during the subsequent chapters will be summarized. In
addition to these answer, improvements and questions which were beyond the scope of
this thesis will be mentioned as potential future work.

3

CHAPTER 2
Related Work

In this section the guiding methodology CRISP-DM framework and techniques for image
and text categorization that will be used for the implementation of the multimodal
classifier are explained. Special emphasis is given to deep neural networks, since the
main goal of this thesis is to improve classification accuracy with the usage of a deep
neural network for images. Additionally a brief overview of state-of-the-art in product
classification in e-commerce is given.

2.1 CRISP-DM Framework
CRISP-DM is a process which guides data mining projects by defining tasks that are
needed to be performed. These tasks are described in four levels of abstraction from
general to specific: phase, generic task, specialized task, process instance. General tasks
can be mapped to specific ones according to the project. Details can be removed or
added depending on project’s needs.

Since data mining is an iterative process, phases of CRISP-DM have a cyclical nature
(figure 2.1). Obtained results from one task can make it necessary to repeat a task from
a previous phase. Six phases in the CRISP-DM reference model are as follows:

Business Understanding In this phase objectives and requirements of the project are
defined according to business perspective. Building on these definitions a data
mining problem definition is created. A preliminary plan is made according to the
data mining problem definition to accomplish the objectives.

Data Understanding Tasks in this phase ensure that the data is collected and quality
of it is assessed. After collecting, acquired data is described before the initial
exploration of it. After understanding the structure of the data, the quality of the
data is verified, since data can have missing values or contain errors.

5

2. Related Work

Figure 2.1: Phases of CRISP-DM Reference Model

Data Preparation In this phase the data is brought to a form, with which models
should be trained. Firstly, data attributes and rows are selected. This data is then
cleaned. The cleaning process aims to raise the data quality. Clean subset selection
and usage of default values for missing values are some of the techniques that could
be applied for this general task.

Modeling This phase includes selection and building of the model to be applied to
data. Before building the model, test criteria are defined and after building it these
criteria are assessed.

Evaluation While the evaluation in the modeling phase focused on the model itself, in
the evaluation phase the business objectives are assessed.

Deployment This phase includes deployment, monitoring and maintenance of the model.
A final report is generated which summarizes the results obtained in the previous

6

2.2. Item Classification in e-Commerce

phases. Finally the project is reviewed to document the experience gained during
the project.

2.2 Item Classification in e-Commerce

Item classification is a critical task for e-commerce platforms. As this thesis investigates
the advantages of using a deep neural network-based image classifier in a multimodal
classifier for product classification in an e-commerce company, a brief overview of state-
of-the-art for this task is given here. Research teams of big e-commerce companies
investigated various methods to solve this task. Many researchers tried to solve it using
text classification techniques. There were also multimodal learning approaches combining
text and image classifiers.

Kozareva [Koz15] compared four different feature extraction techniques for classifying
products using their titles into 319 categories with 6 levels with a linear classifier.
Categorization was done using title of products on Yahoo!’s shopping platform. Best
result was achieved using word embeddings as input, reaching 0.88 f-score.

Shen, Ruvini, and Sarwar [SRS12] proposed a system with two phases for large scale text
categorization problems. The proposed system uses only title to categorize products in
E-bay’s category hierarchy, which has more than 20000 leaf categories. First phase uses a
simple but scalable classifier which maps products to latent groups. In the second phase
a set of more complex models for finer classification are used to classify the product in
the latent group chosen by the classifier from the first phase. The aim of this approach is
to reduce the class space by first classifying products to latent groups. Authors were able
to improve precision from 72.2% of the hierarchical classifier leveraging eBay category
structure to 75.4% of their two-level classifier.

Sun, Rampalli, Yang, and Doan [Sun+14] developed a system for product classification
called Chimera, which combines hand-crafted rules, machine learning, and crowdsourcing.
Authors used only title of products to classify them into over 5000 product types. Initial
version of the system used only learning-based classifiers and could only achieve 50%
precision and 50% recall. With the addition of hand-crafted rules it could reach 93%
precision for 90% coverage on 2.5 million products. Authors argued that crowdsourcing
can be effectively used to evaluate the performance of the system coupled with in-house
analysts and developers.

Kannan, Talukdar, Rasiwasia, and Ke [Kan+11] combined a text classifier with an
image classifier in a model called Confusion Driven Probabilistic Fusion++ (CPDF++).
Addition of the image predictions led to 12% improvement in accuracy in comparison to
text-only classifier. Initially training starts with only the text classifier. During training
3-way image classifiers are generated according to the confusion matrix of the text
classifier. 3-way image classifiers are between two confusing categories and a background
category which represents all other categories. Amount of 3-way image classifiers is a
hyperparameter of this model.

7

2. Related Work

Although these approaches are promising for complex category structures, they don’t
deal with overlapping categories since all of the category structures in these papers have
a fine granularity. In spite of this difference, some techniques from these approaches
will be integrated in the multimodal classifier in this thesis. Word embeddings will be
evaluated as a potential way to deal with noisy text data. Additionally an image classifier
will be combined with the text classifier to improve the performance. Performance of the
classifier will be further improved by using an uncertainty function combining in-house
analysts with machine learning. The uncertainty function will determine whether the
classifier is confident about it’s decision. The classifier will leave hard-to-classify products
to the user support team. None of the results from the mentioned papers in this section
can be made comparable to the results of this thesis, because none of the mentioned
papers use a publicly available dataset.

2.3 Supervised Learning

Supervised learning is a field of machine learning where a function is learned for given in-
puts and outputs. In this chapter supervised learning techniques that are used throughout
this thesis will be explained.

2.3.1 Evaluation metrics

There are various metrics to evaluate the performance of a classifier. All metrics that are
used in this thesis are defined using the terms in the table 2.1.

Table 2.1: Contingency table for evaluation metric building blocks

Prediction positive Prediction negative
Actual class positive True Positive (TP) False Negative (FN)
Actual class negative False Positive (FP) True Negative (TN)

A common metric is accuracy, which shows how many of the predictions were correct:

Accuracy = TP + TN

TP+TN+FP+FN (2.1)

The complementary metric to accuracy is error rate, which shows how many of the
predictions were false:

Error rate = 1−Accuracy (2.2)

Although accuracy is a good measure for balanced datasets, it might be misleading when
dealing with imbalanced datasets. If a large amount of instances belong to class A,
accuracy will be still very high if the classifier can predict instances of class A correctly
but cannot predict most of the other classes properly. To circumvent this problem, two
extra measures, precision and recall averaged over classes, can be used. Precision and

8

2.3. Supervised Learning

recall of a class x are defined as follows:

Precision(x) = TP

TP + FP
(2.3)

Recall(x) = TP

TP + FN
(2.4)

Precision for a class x shows how many of the the positive predictions of x were correct.
Recall for a class x shows how many of the instances of class x were predicted correctly.

F1-score is a harmonic mean of precision and recall:

F1(x) = 2 · Precision(x) ·Recall(x)
Precision(x) +Recall(x) (2.5)

Since precision, recall and f1-score are metrics for binary classification tasks, they need to
be averaged over classes to obtain a single measure for multiclass classification problems.
These averages can be calculated in two ways:

• Macro: Scores for each class are averaged without weighting.

• Micro: Scores for each class are averaged weighted by their sample count.

In some cases condition for trueness of a prediction can be relaxed. Top-5 accuracy, for
example, accepts a prediction as correct if the instance class is in the top 5 predictions
for that instance.

2.3.2 Deep Neural Networks

Neural networks are computational models that consist of connected artificial neurons.
These basic building stones of neural networks are very loosely based on biological neurons.
Simplest neural network is the perceptron [Ros58] (figure 2.2), which is only one artificial
neuron.

It has inputs xi, weights for these inputs wi and a bias b [Roj13]. Perceptron calculates a
function f(x), which multiplies weights with the corresponding inputs and sums up the
results with the bias.

f(x) =
n∑

i=0
wixi + b. (2.6)

Result of f(x) is fed to an activation function a for classification. A basic example for an
activation function for binary classification is the heaviside step function.

a(f(x)) =
{

0, if f(x) < 0
1, if f(x) ≥ 0

(2.7)

For correct classification, the weights of the perceptron need to be set properly. One
method for finding them is to calculate the error of the network for a given input and

9

2. Related Work

x0

x1

...

xn

b

f(x) Output

w0

w1

wn

Activation function

Figure 2.2: Perceptron

adjust the weights according to that error. Error is defined as the difference between the
correct output T and predicted output of perceptron O.

Err = T −O (2.8)

To minimize the error, value of O must be increased or decreased according to input.
This is achieved through a learning rule (2.9). The magnitude of weight updates for each
example is controlled by the learning rate α.

wt+1
i = wt

i + α · xi · Err (2.9)

The perceptron is a linear classifier, which means that it can only represent linearly
separable functions. In other words, the perceptron can only divide an input space in two
along a boundary [RN03]. For data that is not linearly separable, multi-layer feed-forward
networks can be used. MLPs contain one or more hidden layers, which contain one or
more perceptrons. This allows MLPs to represent more complex functions. Weights of
MLPs can be trained using an algorithm called back-propagation, which is a generalized
version of perceptron training. This algorithm makes use of the gradient of the error
function to calculate a weight update which lowers the error value the most. Since MLPs
contain one or more hidden layers, learning rule needs small adjustments for the output
layer.

wj,i = wj,i + α · aj · Erri · g′(ini) (2.10)

Where ini is the result of applying the function f (defined in equation 2.6) to the output
of the previous layer, aj is the output of neuron j after applying the activation function,
Erri is the error of the neuron i, and g′ is the derivative of the activation function.

10

2.3. Supervised Learning

For connections between other layers a new error term needs to be defined. The main
idea is that each neuron is responsible for some fraction of the error ∆i = Erri · g′(ini)
in each of the output nodes to which it connects. The ∆i values are divided according to
the strength of the connection between the neuron in the hidden layer and the neuron in
the output layer. These values are then propagated back to calculate ∆j values for the
neuron in the hidden layer. The propagation rule for the ∆ values is defined as follows:

∆j = g′(inj)
∑

i

wj,i∆i (2.11)

Algorithm 2.1: Backpropagation algorithm
Input: A multi-layer network network , a set of input/output pairs examples

and a learning rate α
1 repeat
2 foreach e in examples do

// Compute the output for this example
3 O ← FORWARD-PROPAGATION(network, Ie)

// Compute the error
4 Erre ← T e −O

// Update the weights leading to the output layer
5 ∆i ← Erre

i · g′(ini)
6 wj,i ← wj,i + α · aj ·∆i

7 foreach subsequent layer in network do
// Compute the error at each node

8 ∆j ← g′(inj)
∑

iwj,i∆i

// Update the weights leading into the layer
9 wk,j ← wk,j + α · ak ·∆j

10 end
11 end
12 until stopping criteria is fulfilled;
13 return network

Although backpropagation algorithm works well for moderately deep MLPs, after a
certain amount of depth, training the first layers gets very slow. This is called the
vanishing gradient problem. The problem is caused by the gradient, which becomes
smaller as the error is backpropagated to the initial layers of the network. To mitigate
this problem a popular activation function for neural networks called rectified linear
activation unit (ReLU) can be used [LBH15]. For an input x, ReLU is defined as follows:

a(x) = max(0, x) (2.12)

Another commonly used activation function is called softmax. Softmax function is often
used as the output of a classifier, to represent probability distribution over n different

11

2. Related Work

classes [GBC16]. For an input xi, where i denotes the output of a unit out of N units in
a layer, it is defined as follows:

softmax(xi) = exi

ΣN
j=1e

xj
(2.13)

Because the weight updates are done for every input, and gradient of the error function
is used, this algorithm is also called gradient descent algorithm. Rumelhart, Hinton,
and Williams [RHW+88] suggested to use the complete input dataset for calculating
the gradient. However this approach is not efficient for big datasets. To solve this issue,
mini-batch gradient descent is used, which calculates weight updates using a subset of
the dataset as input.

There are various optimization algorithms to accelerate learning with gradient descent.
Momentum algorithm adds an extra momentum term for the weight update:

vt = γvt−1 + (α · aj · Erri · g′(ini))
wj,i = wj,i − vt

(2.14)

where γ is called momentum term and is a hyperparameter of the algorithm. Momentum
term acts like momentum in physics. Solution space has hills and ravines with different
steepness. If gradient is large (in other words a steep slope in solution space), weight
updates get bigger. Momentum algorithm was used to train weights of residual neural
networks [He+16a], which will be used as a component for the image modality in the
multimodal classifier.

For the retraining of the image classifier for the multimodal classifier, Adam algorithm
will be used because it requires less tuning of hyperparameters. Adam algorithm [KB15]
computes individual learning rates for each parameter using estimates of first and second
moment of gradients. First and second moments are calculated as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

(2.15)

where gt is the gradients at timestep t, mt is the estimate of the first moment of the
gradients, vt is the estimate of the second moment of the gradients and β1 and β2 are
hyperparameters that control the exponential decay of the moving averages. The moving
averages are initialized as vectors of 0s and because of that they are biased towards 0,
especially in the beginning of optimization and when β values are close to 1. To alleviate
the bias, bias-corrected versions of mt and vt are used that are calculated as follows:

m̂t = mt

1− βt
1

v̂t = vt

1− βt
2

(2.16)

12

2.3. Supervised Learning

These values are then used for the update rule for the weights:

wt+1 = wt −
α√
v̂t + ε

m̂t (2.17)

Convolutional Neural Networks

A specialized type of neural network are convolutional neural networks. These networks
are very efficient for inputs that have a grid-like topology. Each layer of an MLP multiplies
an input vector with the matrix that contains weights of connections between the current
and the previous layer to calculate the weighted sum of the inputs which are then passed
through an activation function to calculate the output. A neural network is considered
to be a CNN if at least one of the layers uses convolution operation instead of general
matrix multiplication. Instead of multiplying the whole input with a single big weight
matrix, input is transformed by convolving it over filters (also called kernels), which are
weight matrices that are smaller than the input size. Output of this stage goes through
an activation function as in MLP.

Convolution is a mathematical operation, which can be seen as a product of two functions.
Although convolution is formally defined for continuous input, in machine learning
applications the discrete form is used. Additionally most neural network libraries
use cross-correlation instead of convolution, which is a related function of convolution
[GBC16].

For a two-dimensional input, cross-correlation function is defined as follows:

(I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.18)

where I is the input and K is the filter (Fig. 2.3). For the rest of this thesis, cross-
correlation function will be referred to as convolution.

Convolutional layers have advantageous properties. First of all, they have sparse in-
teraction, meaning that outputs of a single neuron are not connected to all neurons in
the next layer, which reduces the required amount of parameters (Fig. 2.4). Secondly,
parameters of filters are shared. Since filters are smaller than the input and are applied to
the whole image by sliding the filter, they can be used to detect many low-level features
in the initial layers, like edges in an image. Lastly, convolutional layers are equivariant to
translation, meaning they are able to detect identical features even if positions of these
features (for example in an image) are changed.

Outputs of the activation functions can further be manipulated by pooling layers, which
replace these values with a summary statistic of the neighbouring outputs. Two common
types of pooling layers are the following:

• Max pooling: outputs maximum of values in a rectangular neighbourhood

13

2. Related Work

Figure 2.3: Convolution with a two-dimensional kernel (from [GBC16])

• Average pooling: outputs average of values in a rectangular neighbourhood

Filters of pooling layers or convolutional layers can move more than one pixel during
calculation of the output. The size of that move is called stride. Max pooling with stride
of 2 is shown in figure 2.5.

Approaches to Image Recognition with Deep Neural Networks

Since 2012 interest in deep neural networks has been growing rapidly thanks to major
improvements in image recognition task results. In this chapter a brief history of image
recognition with deep neural networks is given.

14

2.3. Supervised Learning

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

Figure 2.4: Sparse interaction. Input x3 and the corresponding connections have been
marked. Convolutional layer (top) has less connections than a fully connected layer like
in MLP (bottom)

Figure 2.5: Max pooling applied to a 4× 4 matrix with stride of 2. (from [Kar])

The basic inspiration for Convolutional Neural Networks comes from neuroscience. Neocog-
nitron, proposed by Fukushima and Miyake [FM82], was the first model architecture
inspired by the mammalian visual system. Major advantage of Neocognitron was that it
was not affected by the position shifts and the distortion in shape of the input patterns.

LeCun, Bottou, Bengio, and Haffner [LeC+01] applied CNNs to classify handwritten
digits in checks with 5% test error. This was one of the first successful applications of
CNNs in a production environment.

In 2012 interest in CNNs has risen because of a CNN submitted by Krizhevsky, Sutskever,

15

2. Related Work

and Hinton [KSH12] for the ImageNet ILSVRC challenge which reduced top-5 error
enormously. Their submission had 16% top-5 error which was 10% lower than the
runner-up. From this point on ImageNet ILSVRC challenge has been won by different
CNN-based submissions every year.

Zeiler and Fergus [ZF14] improved the convolutional network proposed by Krizhevsky,
Sutskever, and Hinton and reached first place in ILSVRC 2013. Their main contribution
was a new way of visualizing activations inside a convolutional neural network. Their
findings suggested that the features learned by CNNs are not uninterpretable patterns,
which makes it possible to investigate problems within the model. Additionally, they
have shown that features learned by CNNs have good properties like compositionality,
increasing invariance and class discrimination as activations reach deeper layers.

Oquab, Bottou, Laptev, and Sivic [Oqu+14] showed that CNNs that have been trained
on an image dataset can be successfully applied to a different dataset by only updating
weights in the last layers of the model. This approach is called transfer learning.

Yosinski, Clune, Bengio, and Lipson [Yos+14] explored limits of transfer learning by
inspecting learned features by neurons at different layers in the network. They show two
main issues that negatively affect performance of the retrained network. First issue is
co-adapted layers, that interact with each other in a complex way to detect a feature,
which makes it hard for upper layers to relearn such features when only some of these
layers are transferred. Second issue is the specialization of higher layer features, which
becomes a dominant issue when the dataset for retraining is particularly different from
the dataset on which the base model was trained on. Additionally they showed that
using transferred weights for initial layers and fine-tuning them improved generalization
of the model to the new task better than using random weights and training the model
completely.

Ioffe and Szegedy [IS15] proposed a method called batch-normalization which improved
training speed and overall accuracy of the trained model. The main problem which
batch-normalization is solving is called internal covariate shift. Internal covariate shift
refers to the fact that a small change in weights in an initial layer is amplified in the
successive layers into a big change. In other words, a small change in an initial layer
results in a big change for inputs of layers at the end of the network. To remedy this issue,
at certain points of the network, activations of layers for a mini-batch are normalized to
mean of 0 and variance of 1. To ensure that the representational power of a layer does
not change because of the normalization, two parameters γ and β are introduced to scale
and shift the normalized value. These parameters are learned during training like the
weights of the network. For output of a single neuron xi, where i denotes the sample in a
mini-batch B, this transformation is defined as follows:

x̂i ←
xi − µB√
σ2
B + ε

(2.19)

yi ← γx̂i + β (2.20)

16

2.3. Supervised Learning

Figure 2.6: Inception module (from [Sze+15])

where yi is the transformed input, µB is the mean of values in the mini-batch, σ2
B is the

variance of values in the mini-batch and ε is a constant to ensure numerical stability.
This transformation ensures that changes in initial layer don’t have huge impact for the
layers at the end of the network.

Simonyan and Zisserman [SZ14] evaluated networks of increasing depth with CNNs that
use small 3 × 3 convolution filters. Their results showed that accuracy increases with
depth. Using their results they could develop a model, which won the localization task
of ImageNet Challenge 2014 and was runner-up for the classification task.

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich [Sze+15]
developed a module called inception, which reduces number of parameters drastically.
The inception module consist of 1× 1, 3× 3, 5× 5 convolutions and a 3× 3 max pooling
layer (figure 2.6). This module finds an optimal sparse structure. The module contains
also 1× 1 convolutions before 3× 3 and 5× 5 convolutions and after 3× 3 max pooling
to reduce dimension to keep computational requirements low. Concretely, given an input
for the inception module with size 28× 28× 192 and convolutions with stride 1, a 3× 3
convolution needs 9 times and a 5× 5 convolution needs 25 times more computation for
each filter then a 1× 1 convolution. By using 1× 1 convolutions with lower number of
filters the input size for a convolution with 3× 3 or 5× 5 is reduced (e.g. to 28× 28× 64
instead of 28× 28× 192), which significantly reduces the amount of computation that is
needed. The inception model is a network of inception modules stacked on top of each
other. The network contains two auxiliary classifiers, that are connected to intermediate
layers of the network, to combat the vanishing gradient problem. Gradients of the
auxiliary classifiers are propagated back in a more focused fashion, since they have to go
through less layers.

He, Zhang, Ren, and Sun [He+16a] proposed residual building blocks to combat vanishing
gradient problem and won ILSVRC 2015 classification competition. These blocks contain

17

2. Related Work

Figure 2.7: Originally proposed residual block (left) and improved residual block (right)
(from [He+16b])

an identity function, which adds input of the building block to the output. During
back-propagation, gradients have shortcuts so that they can efficiently reach initial layers
without auxiliary classifiers. This allowed authors to train a network with 1001 layers.
In a following paper, an improved version of the residual block has been proposed, where
the identity function does not go through a rectified linear activation unit [He+16b]
(figure 2.7).

2.3.3 Naive Bayes

Naive Bayes algorithm is a probabilistic approach for classification, which makes use of
Bayes’ theorem. Bayes’ theorem is used to calculate posterior probability P (x|y), which
is defined as probability of x, given y. For example, for two consecutive coin tosses y can
be the probability of the first coin landing face up and x can be the probability of the
second coin landing face up. The posterior probability can be calculated as follows:

P (x|y) = P (y|x) · P (x)
P (y) (2.21)

In this thesis Naive Bayes algorithm will be evaluated for text classification. Every feature
is assumed to be independent of each other. Although the independence assumption is
unrealistic, Naive Bayes classifiers are highly effective in practice [RHT01]. Given the
features a1, a2,..., ad posterior probability of class ci can be calculated with:

P (ci | a1, . . . , ad) =
P (ci) ·

∏d
j=1 P (aj | ci)

P (a1, . . . , ad) (2.22)

18

2.3. Supervised Learning

Since the denominator P (a1, . . . , ad) is constant for each class, it can be removed for
classification purposes. This simplifies the equation to the following:

P (ci | a1, . . . , ad) ∝ P (ci) ·
d∏

j=1
P (aj | ci) (2.23)

Naive Bayes classifiers pick the class with the highest posterior probability for the given
values for the features.

The independence assumption has an undesired side effect. Given a sample with d
features a1, a2, ..., ad, if one of these features aj does not appear in samples of class ci in
the training set, P (aj |ci) becomes 0 which cancels out all other features for that sample.
To avoid having probability of 0, laplace smoothing can be used for categorical data.
Laplace smoothing is performed for each posterior probability with the following formula:

θ̂ji = Nji + 1
Ni + d

(j = 1, . . . , d, i = 1, . . . , n) (2.24)

where θ̂ji is the smoothed variant of P (aj |ci), Nji is the number of times feature aj

appears in a sample of class ci and Ni is the total count of all features for class ci [Sci].

2.3.4 Support Vector Machine

Another technique that will be evaluated for the text classifier is the support vector
machine. SVMs separate feature space with a hyperplane optimally. The separation is
optimal if the hyperplane separating the data has the maximum margin to the closest
data points for two classes it separates (Fig. 2.8).

Core definition of support vector machines allows only binary classification. It is,
however, possible to apply support vector machines to multiclass classification problems
by transforming such problems to multiple binary classification problems using one vs
rest strategy. For a dataset with n classes, n classifiers are trained, where each one
calculates if the input belongs to one specific class or not. The ensemble classifier output
is determined by looking at the results of all binary classifiers and selecting the class with
the highest score. Calculation of optimal hyperplane is done by solving an optimization
problem, which maximizes the distance between hyperplane and the closest data point
for both classes.

Although support vector machines are inherently linear classifiers, it is possible to separate
linearly non-separable data using kernel functions. These functions map the input to
high-dimensional feature space, where the data is linearly separable.

19

2. Related Work

Figure 2.8: The optimal hyperplane and a nonoptimal hyperplane (from [Abe10])

2.4 Summary
In this chapter, related work for this thesis was reviewed. The guiding methodology for
this project, CRISP-DM, has been briefly described. Furthermore, related work about
item classification in e-commerce was summarized. Last but not least, in supervised
learning section, evaluation metrics and supervised learning techniques that will be used
in the upcoming chapters for image and text modalities were explained. In the next
chapter, after describing the domain and the business goal of the project, the available
data will be collected, analysed and prepared for training of the classifiers.

20

CHAPTER 3
Data Analysis

In this chapter the data that will be used for training the classifier will be analyzed and
the problem domain will be explained in detail. First, the domain will be described.
Secondly, data generated by user support team will be compared with data that has been
generated by users of the e-commerce application. After determining which data source
has fewer errors, the data collection process will be described in detail. Lastly, various
preprocessing techniques will be applied on the data to make it ready for the training as
described in CRISP-DM methodology.

3.1 Domain
The data to be used comes from a company in classifieds business, that is active in six
different countries. The company develops an application which is available for iOS,
Android and Web to enable users to buy and sell items. Users can register a new account
or login using Facebook or Google accounts to have access to the main features of the
application. Users have access to the following features in the app:

• Listing an item: Users can list an item by taking a picture, adding title and
description, setting a price and (optionally) setting a category.

• Browsing: Users can browse through a list of items that are being sold at the
current location of the user sorted by distance. Items in the list can be filtered by
category among other options.

• Making offers: Users can make offers on items that have been listed by other
users. An item is considered as sold when both seller and the person making the
offer agree on the price.

• Questions: Users can ask questions to the seller on the page of a listed item.

21

3. Data Analysis

The multimodal classifier’s task is to map items that have not been assigned a category
by the user to one of the 10 main categories. These main categories are:

1. Cars and Motors

2. Baby and Child

3. Electronics

4. Fashion and Accessories

5. Home and Garden

6. Movies, Books and Music

7. Other

8. Pets

9. Services

10. Sport, Leisure and Games

"Other" category can be considered optional for the classification, since it exists only to
provide a safe option for the user if they are unsure.

If users do not set the category of their items, the user support team has to categorize
them manually, which reduces the available workforce enormously. Additionally it is
also intended to assist users during the listing of an item by suggesting categories in the
future. That is why features that are not available before listing an item will not be used.

The business goal of this project is to reduce the amount of manual categorization done by
the user support team. Project will be considered successful from the business perspective
when all or part of the categorization is automated in such a way that the accuracy
of classifier is at least equal to the accuracy of the user support team or normal users
depending on which one is less accurate.

3.2 Data Quality Experiment

To answer the first research question of this thesis RQ1 and to clarify the business and
data mining success criteria, an experiment was performed to compare the error count
of two subsets; one containing items that were categorized by users and the other one
containing items that were categorized by the user support team of the company. Each
subset contains 600 samples, 500 of which were picked randomly and 100 of these 500
samples were added twice to measure indexer consistency. Distribution of the categories
for both subsets is the same.

22

3.2. Data Quality Experiment

Figure 3.1: Web application used for the experiment

The experiment was performed through a web application. On the website a list of
items were shown with image, title, description and the category for each sample as
shown in figure 3.1. Before the real experiment, the web application was tested in a
pilot experiment by the author. After ensuring application stability, 5 members of the
user support team were asked to mark items in the list that were in the wrong category.
They were also told that all the samples were categorized by users to avoid them having
second thoughts during the experiment, since they might have been less likely to mark
samples as wrongly categorized if they were told that the samples might also have been
categorized by the user support team.

Results of the experiment show that the user-categorized samples have substantially less
categorization mistakes than samples that were categorized by the user support team.

Out of 800 items that were in the list only once, 194 items were marked as wrongly
categorized by different indexers. 6 items were marked as wrongly categorized by all
indexers. The distribution of marked items for number of indexers is shown in figure 3.2.

23

3. Data Analysis

Figure 3.2: Marked item count according to the number of indexers that marked them

Figure 3.3: Category distribution of samples that contain substring "coffee machine" in
the title

The high amount of items that have been marked by only some of the indexers show
that categories are not specific enough. Some items can semantically belong to two or
more categories. For example a coffee machine can belong to both "Electronics", "Home
& Garden" and "Other" category. Category distribution of samples in the collected data
for this work (described in detail in section 3.4) that contain "coffee machine" in the title
is shown in figure 3.3. Two possible ways of dealing with overlapping categories will
be investigated in this work. Firstly, since items that can belong to two categories are
correct for both cases, appropriate evaluation metrics will be discussed in section 3.6 for a
system with full coverage. Secondly, uncertainty functions will be evaluated in section 4.5
for a system which trades off coverage for top-1 accuracy by filtering out predictions
about which the classifier is not confident enough.

The number of marked items between indexers were different but the error ratio between

24

3.2. Data Quality Experiment

Figure 3.4: Marked item count by each unique indexer for each categorization subset

user-categorized and user-support team categorized subsets stayed the same, favoring
user-categorized subset as can be seen in figure 3.4.

A possible explanation for the clear error rate difference is the bias caused by the fact
that user support team only categorizes items that have not been assigned a category
by the user. For most items that are easy to categorize, users sets a category, but for
the items that are hard to categorize, more users might tend to post an item without
selecting a category.

Additionally, average number of marked items by the experts (members of user support
team, that evaluated the list of items) were calculated to determine accuracy of user
support team and users. In addition to results for all categories, the results were also
analyzed after removal of the "Other" category. These results are shown in table 3.1 and
3.2.

Categorized by Total samples E1 E2 E3 E4 E5 Avg. marked Accuracy

User support 400 41 26 71 81 29 49.6 87.60%
Users 400 27 13 53 52 16 32.2 91.95%

Table 3.1: Performance related metrics for all categories

Furthermore, precision for each category for both groups have been calculated. A sample
has been considered as marked, if it has been marked by one or more experts. Category
specific results are depicted in table 3.3 and 3.4.

It must also be noted that the indexer consistency was not high. In total, out of 147

25

3. Data Analysis

Categorized by Total samples E1 E2 E3 E4 E5 Avg. marked Accuracy

User support 367 27 25 48 60 23 36.6 90.03%
Users 373 14 12 31 34 10 20.2 94.58%

Table 3.2: Performance-related metrics after removal of the "Other" category

Category Total samples Marked sample count Precision

Baby and Child 33 11 66.67%
Cars and Motors 18 1 94.44%
Electronics 38 11 71.05%
Fashion and Accessories 138 18 86.96%
Home and Garden 77 17 77.92%
Movies, Books and Music 18 11 38.89%
Other 33 28 15.15%
Pets 7 1 85.71%
Services 5 2 60.00%
Sport, Leisure and Games 33 15 54.55%

Table 3.3: Category specific analysis for items categorized by user support team

Category Total samples Marked sample count Precision

Baby and Child 32 9 71.88%
Cars and Motors 25 3 88.00%
Electronics 45 10 77.78%
Fashion and Accessories 134 6 95.52%
Home and Garden 77 6 92.21%
Movies, Books and Music 15 3 80.00%
Other 27 24 11.11%
Pets 7 1 85.71%
Services 5 1 80.00%
Sport, Leisure and Games 33 16 51.52%

Table 3.4: Category specific analysis for items categorized by users

marked items that appeared two times in the list, 97 of them were marked correctly. 50
items were marked only once by different indexers, although they were in the list twice.

3.3 Available Resources

The project will be developed on an Amazon instance of type p2.xlarge, which, at the
time of writing, has the following specs:

26

3.4. Data Collection

• 1 NVIDIA K80 GPU

• 4 virtual CPU cores

• 61 GB RAM

The reason for the choice of instance is the GPU, which speeds up the training of neural
networks tremendously. An extra volume with 500GB free space has been attached to
the instance to store images for training the image classifier.

Main data resource is the data warehouse of the company managed by the IT Operations
team. As data-warehousing solution Amazon Redshift is used. Images will be collected
from media servers of the company with a python script using internally used ids of the
images stored in the data warehouse.

3.4 Data Collection
The dataset was queried from the company’s data warehouse and saved as a csv-file for
further preprocessing. The dataset is limited to 2 million items that were listed in a one
year period sampled randomly from Great Britain. The dataset is limited to this amount
because the developed model will be a proof of concept. It contains only samples that
have been categorized by users, because the quality of this source is higher as shown
in the previous section. Data was gathered from "items" view in the data warehouse
and enriched by joining user information about the seller in "users" view for each item.
User information includes age and gender. User attributes were collected, because they
can act as a helpful prior for item categorization as shown in the next chapter about
preprocessing. The structure of the views is illustrated in figure 3.5.

The columns from both of these views, which were considered to be not relevant for
item classification by the author, were omitted for clarity and confidentiality reasons.
Collected data contains following fields:

• i_id: Unique id of the item, that is assigned after creation of an item entry.

• i_title: Title of the item.

• i_dsc: Description of the item.

• i_title_length: Character count of the title string.

• i_dsc_length: Character count of the description string.

• i_price: Price of the item.

• i_media_ids: Image ids of the item. The ids are stored as a single string seperated
with comma; e.g. "imageid1,imageid2,imageid3".

27

3. Data Analysis

Figure 3.5: Structure of the views that were used for the data collection

• i_user_id: User id of corresponding seller of the item.

• i_category: Category of the item. This is the target variable for the classifier.
Categories are saved as short codes in the database e.g. "ot" for the "Other"
category.

• u_id: Unique id of a user account.

• u_gender: Gender of a user entered in the app.

• u_gender_fb: Gender of the user in the linked Facebook account.

• u_date_of_birth: Date of birth entered by the user in the app.

• u_date_of_birth_fb: Date of birth of the user in the linked Facebook account.

i_id, i_user_id and u_id were used only for data collection and will not be used for
training.

3.5 Data Analysis and Preprocessing
Although some preprocessing was done with the SQL query during the dataset collection,
more preprocessing was needed to make the data ready for training for image and text
classifiers.

28

3.5. Data Analysis and Preprocessing

Along the 10 main categories there are various small categories that are used internally
for a few items, which can not be mapped to any main category. Samples with these
categories have been removed since they are not useful for the classification task at hand,
which reduced the dataset size to 1998680 samples. Additionally subcategory values have
been replaced with corresponding main category values. Distribution of the remaining
categories can be seen in figure 3.6.

Figure 3.6: Size of each category in percentage

It must be noted that the "Other" category is a hard problem for classification, since
many items are categorized as "Other" by users or user support team if they are unsure.
Additionally by definition the "Other" category has no clearly distinguishing features.
This is proven by the low precision values for both users and user support team in section
3.2. Because of these reasons "Other" category was removed from the dataset, which
brought the dataset size down to 1977645.

Text preprocessing for title and description will be handled in the next chapter because
comparisons of model performance for different text preprocessing techniques are needed
to answer RQ2.

Since the prices of the items are determined by users and there is no binding agreement
until both the seller and the buyer agree on the price, some users tend to list items for
fake prices that are astronomically high to get buyers’ attention. This can be easily seen
by looking at price statistics in table 3.5.

These outliers were replaced with the the mean price of items below 0.99 quantile for each
category. After this value replacement statistics turned to acceptable values as shown in
in table 3.6.

29

3. Data Analysis

Category mean std 99% max

Baby and Child 1,237,482.32 289,717,486.79 200.00 99,999,999,999.00
Cars and Motors 1,244,064.89 191,366,659.64 11,500.00 50,000,000,000.00
Electronics 1,106,107.41 247,099,150.62 750.00 99,999,999,999.00
Fashion and Accessories 663,032.88 229,340,669.62 250.00 99,999,999,999.00
Home and Garden 385,316.16 141,875,879.22 500.00 90,000,000,009.00
Movies, Books and Music 18,227.93 3,978,206.93 300.00 999,999,999.00
Pets 6,438,045.16 652,387,585.11 1,150.00 99,999,999,999.00
Services 4,068,625.98 178,341,976.90 2,600.00 10,000,000,000.00
Sport, Leisure and Games 4,368,157.88 600,069,683.08 750.00 99,999,999,999.00

Table 3.5: Price statistics before removal of outliers

mean std 99% max

Baby and Child 13.49 22.60 125.00 200.00
Cars and Motors 937.78 1,544.33 7,990.00 11,500.00
Electronics 91.96 120.54 599.00 750.00
Fashion and Accessories 16.65 27.15 150.00 250.00
Home and Garden 38.46 63.56 350.00 500.00
Movies, Books and Music 14.02 30.70 175.00 300.00
Pets 71.77 140.52 750.00 1,150.00
Services 58.62 187.77 1,234.00 2,600.00
Sport, Leisure and Games 50.84 85.09 450.00 750.00

Table 3.6: Price statistics after removal of outliers

The column "i_media_ids" contains all image ids for one specific item. The values are
stored in the data warehouse as one string. The ids are sorted according to their position
in the string. Only the first image for each sample was downloaded to keep the distribution
of images per category same as the distribution of samples per category. The reason for
downloading the first image is that the users tend to put the most representative photo
as the first one. Additional images are often used to show defects of an item or receipts
to show the buying price. Furthermore an additional feature containing image counts
was added to data. Samples with missing images have been removed which brought the
sample count down to 1977640.

For image classifier of the multimodal classifier ResNet-50 architecture [He+16a] will
be used, since weights of this network trained on ImageNet data are available. For
downloaded images, the same preprocessing described in the residual network paper is
used. No augmentation is done due to amount of collected images and limited resources.
Images were resized with their shorter side equal to 224 and center-cropped into 224x224
squares, which is the input size for ResNet-50 architecture. Per-pixel mean of ImageNet

30

3.5. Data Analysis and Preprocessing

Figure 3.7: Original image (left) and the preprocessed image (right)

images were subtracted from the downloaded images, since the weights of the Resnet-50
model were calculated for these images. Order of color channels were changed from RGB
to BGR because ImageNet models were trained on images with color channels in this
order. Although color channel change and resizing was done before the training of image
classifiers, per-pixel mean subtraction was done on-the-fly during loading of images into
memory during training because it was not possible to store images with negative pixel
values in a space-efficient format like JPEG. Preprocessing for one image is shown in
figure 3.7.

Age of a user is also an important feature, since older users might tend to list items in
certain categories more often than younger users. To calculate an age for each user two
columns about date of birth (u_date_of_birth and u_date_of_birth_fb) were used.
These data are available for only some of the users. Sample counts for different data
sources are listed in table 3.7.

Before calculating the age of users, both sources were analysed for possible errors. Looking
at the distribution of u_date_of_birth shown in figure 3.8, it is clearly visible that there
are anomalies for years 1989 and 1990. On a closer inspection it was found that in year
1989 only December contains errors. On the other hand errors are distributed throughout
1990, with an extreme case in January as shown in figure 3.9. There are approximately
double the amount of birthdates in other months of 1990 in comparison to 1989 and 1991.
A horizontal line at y = 2500 has been drawn to show the distributed error in year 1990

31

3. Data Analysis

Data source Sample count

No age data 1131396
App 512641
Facebook 228219
App & Facebook 105384

Table 3.7: Availability of date of birth data grouped by sources

Figure 3.8: Distribution of birthdates entered in the app

more clearly.

To throw away as little information possible, December of 1989 has been inspected even
further by plotting number of users with birthdays on each day in that month. In
figure 3.10 it can be seen that the amount of users is exceptionally high from 29th till
31st of December.

Although it was not as drastic as with u_date_of_birth data, u_date_of_birth_fb data
had an extreme case as well for year 1970 as shown in figure 3.11.

On a closer inspection the error could be localized to September 1970, specifically to
29th of September as shown in figure 3.12. This case was caused by a bug in a certain
version of the app.

32

3.5. Data Analysis and Preprocessing

Figure 3.9: Distribution of birthdates entered in the app from 1989 till 1991

Figure 3.10: Distribution of birthdates entered in the app in December 1989

33

3. Data Analysis

Figure 3.11: Distribution of birthdates from linked Facebook accounts

Figure 3.12: Distribution of birthdates from linked Facebook accounts in September 1970

34

3.5. Data Analysis and Preprocessing

Figure 3.13: Mismatch statistics between App & Facebook birth years

In addition to these inspections, absolute difference of birth years between two age data
sources for users that have a birth year for App and for Facebook were compared. As
shown in figure 3.13 the birth year for most users match.

For the age calculation, Facebook data was given higher priority than data entered in the
company’s app, assuming Facebook data is more accurate. Users have a better reason to
enter their real date of birth on Facebook, since there is a social incentive, whereas on
an e-commerce app there is not a benefit in entering a correct date of birth for the user.
Age of users that have a birthday in one of the error intervals have been calculated using
the mode of birthdates that do not fall into these intervals. If no birthday is available,
birthday has been set to mode of age distribution as well. Samples with ages above 100
were also mapped to mode of age distribution, since it is highly likely that samples with
e.g. age 118 are fake. Comparison of listings of users with age 18-20 and 38-40 in main
categories shown in figure 3.14 proves that the reasoning behind selecting this feature
holds true. Younger users tend to list more products in ‘Fashion and Accessories’ and
‘Electronics’ categories whereas adult users of age 38-40 are listing more products in
‘Home and Garden’ and ‘Baby and Child’ categories.

The reasoning behind using user age also applies to gender feature. There are two possible
gender data sources in the data warehouse; u_gender, which is entered value by user in

35

3. Data Analysis

Figure 3.14: Comparison of listings of users with age 18-20 and 38-40 in main categories

Data source Sample count

No gender data 356667
App 403187
Facebook 1036871
App & Facebook 180915

Table 3.8: Availability of gender data

the app, and u_gender_fb, which comes from the linked Facebook account. Availability
of gender data is shown in table 3.8.

These two gender columns were merged into one. For cases where u_gender and
u_gender_fb are both available u_gender_fb value was used, because of the social
incentive. It is possible to set gender to three possible values in the app: "male", "female"
and "other". Facebook only provides values "male" and "female" for gender. Remaining
missing values for the merged gender column were replaced with the value "unknown".
Statistics for the merged gender column are shown in table 3.9

3.6 Evaluation Metrics for the Problem Setting
Although there are many standard metrics that have been introduced in section 2.3.1,
only a combination of these metrics is ideal for the problem setting for the available
data. Since the category structure doesn’t have a fine granularity, some items can belong
to more than one category. However in the application it is only possible to pick one

36

3.6. Evaluation Metrics for the Problem Setting

Gender Sample count

female 1166051
male 446537
unknown 356668
other 8379

Table 3.9: Sample counts of each value in merged gender column

category. Because of this limitation users categorize same items in different categories
as demonstrated with the coffee machine example in section 3.2. A coffee machine can
semantically belong to both "Home & Garden" and "Electronics" categories. As result
of this, performance metrics that only consider the label with the highest score do not
represent the actual performance of a classifier trained on the available data.

For the following test set:

Title Category
"Coffee Machine" "Electronics"
"Coffee Machine" "Home & Garden"

if the classifier predicts the category as "Electronics" for both samples, accuracy of
the classifier will be 50% although actual performance is 100%. This problem can be
mitigated by relaxing the top-1 metrics. However just using top-2 accuracy can also be
misleading as well since the classifier can give the highest score to a wrong category for a
coffee machine like "Fashion & Accessories" but still be considered correct.

Since success criteria depend on the performance of user support team measured in the
data quality experiment in section 3.2, which considered the overlapping of the categories
during marking of the items with wrong categories, the appropriate evaluation should
take into consideration that for some items there can be a list of correct solutions. For
this reason top-1 and top-2 accuracy will both be used. Given the results from section 3.2,
for a dataset without samples from the "Other" category, the multimodal classifier can be
considered to be on par with the performance of the user support team for full coverage
if the top-2 accuracy is above 90.03% even if the top-1 accuracy is below 90.03%. A
minimum unweighted average precision of 70.68% will need to be reached as well to
ensure that the model performs well enough for each category, since accuracy can be high
even if the model performs poorly on small categories for unbalanced datasets. This value
has been determined by taking the unweighted average of precision for each category in
category-specific analysis results for items categorized by user support team in table 3.3.
For a system which increases accuracy by lowering coverage based on probability outputs
of the classifier, top-1 accuracy of 90.03% and unweighted average precision of 70.68%
must be reached for it to be considered on par with the user support team.

37

3. Data Analysis

3.7 Summary
At first problem domain has been described. To be able to define the success criteria
for the project, the performance of the user support team needed to be measured. This
has been done by performing a data quality experiment, where average percentage of
wrongly categorized items for two possible sources, items categorized by users and user
support team, have been determined. Furthermore available data have been collected
from the data warehouse and the media servers of the company. These data have been
analyzed and preprocessed so that they are ready to be used as input data for training of
the models in the next chapter. Finally, evaluation metrics for the problem setting have
been defined based on the business goal and the results of the data quality experiment
for use in the next chapter.

38

CHAPTER 4
Modeling and Evaluation

4.1 Modeling
In this chapter various models will be proposed and evaluated for the data mining project.
In the first section development of the text classifier will be described. In addition to
evaluation of text classifiers, various preprocessing techniques and input representations
for text will be compared for the evaluated text classifiers. The second section is dedicated
to the image classifier, where a pretrained image classifier will be retrained for the given
task. Effects of freezing layers at different depths will be compared. Furthermore, in
the third section early and late fusion techniques will be compared for the multimodal
classifier. Lastly, two uncertainty functions for the best performing multimodal classifier
will be evaluated. Uncertainty functions determine which predictions to accept based on
output of the classifier to increase number of correct predictions by lowering the coverage.

4.2 Text Classifier
For comparison of the two fusion techniques a text classifier was needed to generate
predictions for textual features. For categorization of items title and description are
considered to be the main textual features. All other features except images that have
been collected or extracted will be considered as additional features and will not be
used for evaluation of preprocessing techniques or input representations. For late fusion
additional features will be used as input for text classifier and for early fusion they will be
used as input for the whole model. For the text classifier two machine learning techniques
were evaluated:

• Linear SVM

• Multinomial Naive Bayes

39

4. Modeling and Evaluation

For the implementation the following libraries were used:

• scikit-learn 0.19.1 [Ped+11]: for transforming text into vector representations,
model training and evaluation

• PyStemmer 1.3.0 [Bou]: for the fast implementation of the Porter stemmer

• gensim 3.2.0 [ŘS10]: for generating word embeddings

4.2.1 Representation of Text Data

Text features can be represented in various ways. One of the simple representations is
bag-of-words representation, in which a text is represented as a numerical feature vector.
The number of features for each sample is equal to the amount of unique words in the
whole dataset, which is called vocabulary. Each word in a text is represented as a number.
This number can be in its simplest form binary, 1 if a word is in the text and 0 if it is not.
In the case of term-frequency-based representation, the value is equal to the appearance
count of the word in the represented text.

In text data there can be a lot of words that appear in multiple samples belonging to
different classes. Such words are usually less discriminative than words that occur in
only a few samples. However simple term-frequency-based bag-of-words representation
gives same weight to each word. Term frequency-inverse document frequency (in short
tf-idf) is an extension of term-frequency-based representation which gives higher weights
to rare words and lower weights to common words, which are less likely to be useful
for discriminating between classes. Weighting is done with inverse document frequency,
which is calculated as follows:

idf(t, d) = log
nd

1 + df(d, t) (4.1)

where t is the term, d is the document, which is another way of saying text data of a
sample, nd is the total number of documents and df(d, t) is the amount of documents
that contain the term t. Equation for calculating tf-idf for a single term is as follows:

tf -idf(t, d) = tf(t, d) · idf(t, d) (4.2)

where tf(t, d) is the term frequency of term t in doc d.

Another approach for representing text features is word embeddings, where words are
mapped to certain coordinates in a high dimensional vector space by an unsupervised
learning algorithm. The mapping is done in such a way that semantically similar words
are closer to each other in the vector space. For this thesis, continuous bag-of-words
[Mik+13] was used to generate the embeddings. In table 4.1 the 10 most similar words
sorted in descending order according to cosine similarity measure for four words are

40

4.2. Text Classifier

iphone shirt adidas wardrobe

1 iphone7 shir addidas wardrobes
2 iphones shi nike cupboard
3 ipone shirt! fila draws
4 phone shirts puma drawers
5 iphon shirttop lonsdale drawer
6 iphone6 tshirt addias bookcase
7 unlocked shirtjumper adiddas dresser
8 iphobe shirtshort ellesse sideboard
9 64gb shirtdress mckenzie wadrobe
10 lphone lewin lacoste bedroom

Table 4.1: The most similar words for four different words in the embedding space

shown. When looking at the nearest neighbours of common words in the embedding
vector space, it can be seen that the typos and synonyms are nearest neighbours of the
correct word.

To keep the input size constant the technique proposed by Kozareva [Koz15] was used,
where mean of embeddings of all words in the title is used as input. Although in her work
only title of an item is used, in this thesis three input representations were evaluated:

• Mean of embeddings of all words in title

• Mean of embeddings of all words in title and description

• Concatenation of mean of embeddings of all words in title and mean of embeddings
of all words in description

To make our results comparable, context window of size 5 and vector size of 200 are used,
like in Kozareva’s work. Word embeddings have been scaled to values between 0 and
1 for the training of Naive Bayes classifier, because the multinomial distribution used
for multinomial Naive Bayes implementation in scikit-learn can not contain negative
values. In addition to custom trained word embeddings, pretrained word embeddings
were also evaluated for the three input representations. Pretrained vectors trained on
part of Google News dataset [Wor] were used, because of the identical context window
size of 5 and the use of continuous bag-of-words architecture for training.

Cleaned data was split into training, validation and test sets. The split ratio was 80/10/10
for training, validation and test sets respectively. For training and evaluation of classifiers
identical training and validation sets were used. The test set was kept for the evaluation
of final model configuration at the end of the project.

Performance of the classifiers are shown in tables 4.2 and 4.3, where it can be seen that
term-frequency representation is the best for multinomial Naive Bayes while linear SVM

41

4. Modeling and Evaluation

Representation top-1 accuracy top-2 accuracy precision

tf (binary) 83.73% 95.04% 81.41%
tf 84.22% 95.36% 80.84%
tf-idf 81.37% 92.39% 85.12%
Word embeddings
(title only) 57.03% 75.19% 48.54%
Word embeddings
(title & description) 44.33% 65.66% 26.88%
Word embeddings
(concatenated title & description) 59.92% 78.23% 60.12%
Pretrained word embeddings
(title only) 32.50% 64.96% 33.16%
Pretrained word embeddings
(title & description) 29.97% 58.25% 24.58%
Pretrained word embeddings
(concatenated title & description) 34.53% 65.70% 32.84%

Table 4.2: Performance of multinomial Naive Bayes with different input representations

performs best with tf-idf representation. It is also worth noting that both classifiers
performed worse with word embeddings than with other representations. Because
this might have been caused by the dense representation in a vector space with lower
dimensions, an SVM with a non-linear kernel was also considered for training. However
the training time was too long and experiments with a limit on training process delivered
even worse results than the ones with linear SVM. Because of this limitation, a multi-layer
feed-forward neural network with two hidden layers (with 64 neurons per hidden layer,
number of neurons and hidden layers were arbitrarily chosen) was trained instead, to
verify if non-linear models deliver good results with word embeddings. Only custom
word embeddings were used for this evaluation since the classifiers trained on pretrained
word embeddings performed worse than the ones trained on custom word embeddings.
As shown in table 4.4, although the results of these non-linear models were better than
results of the linear SVM and Naive Bayes trained on word embeddings, they weren’t
better than tf-idf representation combined with a linear SVM. It can be hypothesized that
the slight performance drop comes from the information loss caused by taking the mean
of word embeddings which dilutes the important words for classification. Better results
for the concatenated means of title & description in comparison to the representation
without concatenation provide a supporting evidence.

4.2.2 Preprocessing Noisy Text Data

The main problem with textual features in the collected data is noise. The type of noise
that is especially dominant in the given problem setting is usage of different cases for the

42

4.2. Text Classifier

Representation top-1 accuracy top-2 accuracy precision

tf (binary) 85.7% 95.23% 82.15%
tf 85.64% 95.16% 82.07%
tf-idf 86.69% 95.98% 83.98%
Word embeddings
(title only) 81.27% 89.77% 71.98%
Word embeddings
(title & description) 82.85% 92.85% 78.71%
Word embeddings
(concatenated title & description) 83.61% 93.74% 80.08%
Pretrained word embeddings
(title only) 75.16% 84.70% 66.26%
Pretrained word embeddings
(title & description) 76.55% 87.55% 68.01%
Pretrained word embeddings
(concatenated title & description) 78.26% 87.65% 68.92%

Table 4.3: Performance of linear SVM with different input representations

Representation top-1 accuracy top-2 accuracy precision

Title only 84.34% 94.95% 79.58%
Title & description 85.58% 95.69% 81.26%
Concatenated title & description 86.07% 95.91% 81.69%

Table 4.4: Performance of MLP with custom word embeddings

same words like "iPhone"/"iphone". Additionally descriptions of items contain a lot of
information that are not relevant for classification and only increase dimensionality, like
URLs, phone numbers and stopwords.

Although basic data cleaning has been discussed in section 3.5, RQ2 about preprocessing
techniques against noisy text data will be investigated in this section, since performance
of classifiers will be used to justify usefulness of these techniques.

There are many standard techniques that can be used to lower the negative effect of
noise for text classification. For the text classifier, the following preprocessing techniques
were evaluated:

• Lowercase: All tokens are lowercased.

• Stopword removal: A pre-defined list of common words like "the" are removed.

• Normalization of price related tokens, URLs and phone numbers: Special

43

4. Modeling and Evaluation

Preprocessing top-1 accuracy top-2 accuracy precision dimensionality

Baseline 84.22% 95.36% 80.84% 424700
Lowercase 84.32% 95.44% 80.49% 314118
Stopwords 84.45% 95.49% 81.14% 424392
Normalization 84.22% 95.36% 80.56% 397538
Stemming 83.86% 95.11% 80.66% 406618
All 84.1% 95.35% 80.36% 277616

Table 4.5: Preprocessing results for multinomial Naive Bayes classifier

Preprocessing top-1 accuracy top-2 accuracy precision dimensionality

Baseline 86.69% 95.98% 83.98% 424700
Lowercase 86.8% 96.13% 84.14% 314118
Stopwords 86.62% 95.93% 83.87% 424392
Normalization 86.68% 95.98% 83.92% 397538
Stemming 86.42% 95.79% 83.63% 406618
All 86.29% 95.85% 83.45% 277616

Table 4.6: Preprocessing results for linear SVM

tokens are replaced with a common token. E.g. "http://www.example.com" is
replaced with "**URL**".

• Stemming: Tokens are reduced to simpler forms based on certain rules. For
English words, suffixes like "ing" and "s" are removed from the tokens. In this work
Porter stemmer [Por80] is used.

For determining the effectiveness of these techniques, they have been applied to title and
description of samples and classifiers were trained using the representation that achieved
the highest top-1 accuracy on the validation set. In tables 4.5 and 4.6 the results for
multinomial Naive Bayes and linear SVM are shown respectively. Although the effects
are marginal, a clear trend is visible, that just using all preprocessing techniques does not
help. For multinomial Naive Bayes, stopword removal improves the top-1 accuracy the
most, while this performs worse than baseline for linear SVM. Linear SVM with tf-idf
representation and lowercased tokens performed best, already fulfilling success criteria
defined in section 3.6 for a system with full coverage.

4.2.3 Additional Features

In item categorization for e-commerce the research is not focused on feature engineering.
In relevant papers that have been reviewed in literature research, for text-based classifi-
cation only titles of items are used. However there are other features that can improve

44

4.2. Text Classifier

classification performance. In this section advantages of using additional features that
have been collected and extracted for text-based categorization are evaluated for the
linear SVM with tf-idf representation and lowercased tokens. These features are:

• Title length

• Description length

• Price

• User age

• Image count

• User gender

Five numerical features were standardized by removing the mean and scaling to unit
variance. The only categorical feature in the additional features, user gender, was one
hot encoded. One hot encoding adds, for a feature with nominal values, one column for
each possible value of this feature. These columns have values of either 1 (the sample has
the corresponding value for the encoded feature) or 0 (the sample has a different value).
For user gender this transformation looks like the following:

user id user gender

1 male
2 female
3 other
4 female

user id male female other

1 1 0 0
2 0 1 0
3 0 0 1
4 0 1 0

These features have been concatenated with the sparse matrix, which contains the tf-idf
vectors for each sample. Performance metrics are shown in table 4.7.

Inputs top-1 accuracy top-2 accuracy precision

Title+Description 86.8% 96.13% 84.14%
Title+Description+Additional features 86.92% 96.21% 84.3%

Table 4.7: Performance of linear SVM with additional features

Furthermore, tuning was done to find optimal value for the penalty hyperparameter C,
penalty parameter of the error term. If C is set to a high value, a smaller margin will be
used for the hyperplane and vice versa for the smaller values of C. C = 0.5 performed the
best out of seven different values. C values that have been evaluated and their associated
performance are shown in table 4.8.

45

4. Modeling and Evaluation

C top-1 accuracy top-2 accuracy precision

0.1 86.85% 96.19% 84.34%
0.25 87.01% 96.25% 84.50%
0.5 87.01% 96.26% 84.52%
1 86.91% 96.20% 84.26%
5 86.16% 95.74% 83.47%
10 85.82% 95.38% 82.77%
100 82.87% 93.65% 80.58%

Table 4.8: Evaluation of the C hyperparameter for linear SVM with additional features

4.3 Image Classifier

For image modality the ResNet-50 architecture proposed by He, Zhang, Ren, and Sun
[He+16a] is used. Reasons for choosing the architecture are increased speed of convergence
to a good solution because of the identity connections, high accuracy and availability of
pretrained weights on ImageNet dataset. Instead of training the neural network from
scratch, a pretrained ResNet-50 will be retrained for the given task. The retraining of a
classifier is also called transfer learning, because the part of useful knowledge that has
been gained from another task is transferred to another classifier, which is trained to
succeed on a different task. For example features like edges in images are present in
all images containing one or more objects. Initial layers of convolutional networks that
are activated for certain edges can be also used for another task without a significant
performance decrease. These layers are frozen during transfer learning, meaning that the
weights of these layers are not updated during training. The results of this comparison will
be used to answer first part of RQ4 regarding the effectiveness of transfer learning. The
second part of RQ4 will be answered in the next chapter, which deals with investigation
of performance differences between a retrained model versus a pretrained network on
ImageNet as image component in a multimodal classifier. Scripts for training were
implemented using TensorFlow library (version 1.8.0) [Aba+16].

To investigate the effectiveness of transfer learning with ResNet-50 for the given task,
five different models were trained using the same architecture but with different number
of frozen layers. As shown in table 4.9, ResNet architectures can be divided into five
different sections according to the points where the output size changes. These points
were used to define freeze depth for the models. E.g. conv5_x means that all layers
including layers in conv5_x were frozen. Five models will be referred to with their
layer name from this point forward. The relevant configuration for ResNet-50 is under
the column named "50-layer", where each cell shows the size of filters and amount of
filters in the convolutional and pooling layers of the network. E.g. "3× 3, 64" means a
convolutional layer with 64 filters with the size of 3× 3 and "3× 3 max pool, stride 2"
means a max pooling layer with patch size of 3× 3 and stride of 2.

46

4.3. Image Classifier

Because it was not possible to fit all images in memory, images in the training set were
loaded as segments, each segment containing 214 images. Reason for choosing a power of
two for segment size was to have complete mini-batches for each segment. Mini-batch size
for training was 64. To make training faster, the next segment was loaded asynchronously
while the model was getting trained with a segment on GPU. Adam optimizer [KB15]
with suggested hyperparameters (α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8) as in the
associated paper was used to update the trainable weights. Models were trained for five
epochs.

Table 4.9: ResNet architectures (taken from [He+16a]).

Training loss is shown in figure 4.1. Blue lines parallel to y-axis indicate epochs. Validation
loss is shown in figure 4.2. During the training all models except conv5_x overfit on
training set after initial epochs.

Figure 4.1: Training loss of image models Figure 4.2: Validation loss of image models

Already after the first epoch performance metrics of all models on validation set were close
to the best score achieved by these models in the later epochs. Top-1 and top-2 accuracy

47

4. Modeling and Evaluation

and unweighted average precision on validation set are shown in figures 4.3, 4.4 and
4.5 respectively. conv5_x model kept improving only marginally reaching 69.11% top-1
accuracy after five epochs. conv3_x and conv4_x reached their best accuracy of 76.32%
and 76.35% respectively on validation set and overfitted with each epoch after that point.
conv1_x and conv2_x models reached their best top-1 accuracy score on validation set
after third and fourth epoch with 75.69% and 75.8% respectively. Interestingly they
did not reach a better top-1 accuracy than conv3_x or conv4_x although they had
more trainable weights. A possible reason might be the granularity difference between
ImageNet dataset and the dataset for the given task. Categories for the given task
contain objects with many different features while ImageNet categories are more specific,
allowing models to learn robust low level features. These trends were also same for top-2
accuracy and precision on validation set.

Figure 4.3: Top-1 accuracy of image models
on validation set

Figure 4.4: Top-2 accuracy of image models
on validation set

Figure 4.5: Macro-averaged precision of image models on validation set

Since performances of models were similar, average training time per epoch also became
important for comparison. Each model needed a different amount of training time on
average, getting shorter with increased amount of frozen layers in the model. Average
training time per epoch is shown in table 4.10 in [HOURS:MINUTES:SECONDS] format.

48

4.4. Modality Fusion

Model Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Average

conv1 12:57:40 13:33:40 13:38:50 13:20:01 13:20:28 13:22:08
conv2_x 11:22:23 11:14:48 11:19:31 10:51:27 11:04:03 11:10:26
conv3_x 9:18:33 9:14:17 9:18:35 9:11:05 9:09:08 9:14:20
conv4_x 7:15:53 7:18:27 7:18:24 7:22:27 7:31:52 7:21:25
conv5_x 6:31:23 6:27:02 6:31:16 6:38:04 6:37:19 6:33:01

Table 4.10: Training time for each epoch and their average per model

In conclusion, transfer learning with ResNet-50 was investigated for the images of an
e-commerce company in this section. Best top-1 accuracy score was achieved by conv3_x
but the second best model conv4_x was only behind 0.03% in terms of top-1 accuracy.
Considering also the training time, top-2 accuracy and unweighted average precision
score on validation set, it can be said that for the given dataset, conv4_x model had
the best freeze depth for transfer learning. This leads to the hypothesis that having the
last group of convolutional layers in ResNet-50 architecture trainable during training is
enough for the model to adapt well to a new dataset while shortening the training time
by a huge margin. Further research is needed to evaluate whether this rule also applies
to other datasets as well.

4.4 Modality Fusion
In this chapter early and late modality fusion methods are evaluated for the given
problem setting. Since performance of the retrained image model and the pretrained
image model on ImageNet need to be compared as well, four different classifiers in total
will be compared in this section. Based on the best results of evaluated classifiers and
feature representations for text and image modalities, following multimodal classifiers
were trained:

Early Fusion

early_retrained

• Text input: Lowercased text features as tf-idf vectors concatenated with additional
features

• Image input: Output of flattened average-pooling layer before the final feed-forward
layer in retrained ResNet-50

early_imagenet

• Text input: Lowercased text features as tf-idf vectors concatenated with additional
features

49

4. Modeling and Evaluation

• Image input: Output of flattened average-pooling layer before the final feed-forward
layer in ResNet-50 pretrained on 1000 ImageNet classes

Late Fusion

late_retrained

• Text input: Output of linear SVM for each class with lowercased text features as
tf-idf vectors and additional features as input

• Image input: Output of retrained ResNet-50 for each class

late_imagenet

• Text input: Output of linear SVM for each class with lowercased text features as
tf-idf vectors and additional features as input

• Image input: Output of ResNet-50 pretrained on 1000 ImageNet classes

A multiclass perceptron with a softmax output layer has been trained to predict the
correct class using the inputs listed above. As optimizer Adam algorithm was used
with the suggested hyperparameters. Relevant performance metrics of models using the
described fusion techniques are shown in figures 4.6, 4.7, 4.8 and 4.9.

Figure 4.6: Top-1 accuracy of fusion models
on validation set

Figure 4.7: Top-2 accuracy of fusion models
on validation set

As it can be seen in figures for all metrics, late_retrained configuration performed
the best, which is the answer for RQ5. Confusion matrix for this model is shown in
figure 4.10. This confusion matrix was normalized with sample counts of each class
because of the class imbalance. The errors happen between certain categories, which
suggest that these errors are caused by items that can belong to two or more categories.
Because late_trained configuration performed better than all others, it will be used in

50

4.5. Uncertainty Functions

Figure 4.8: Macro-averaged precision of fu-
sion models on validation set

Figure 4.9: Loss of fusion models on valida-
tion set

the next section, in which uncertainty functions will be compared to deal with items that
can belong to two or more categories.

4.5 Uncertainty Functions
Uncertainty functions determine whether the predictions of a model should be accepted
or not. By accepting only predictions where the classifier is confident, it is possible to
increase accuracy by lowering coverage. To increase the accuracy of late_retrained fusion
model and answer RQ6, two uncertainty functions were evaluated:

• Difference between first and second highest prediction probability: Pre-
diction is accepted if the difference between first and the second highest prediction
probability is higher than a decision value.

• Prediction probability threshold: Prediction is accepted if the highest predic-
tion probability is higher than a decision value.

First, outputs of the late_retrained multimodal classifier for each sample were obtained.
Using these class probabilities, performance metrics and coverage were calculated for
both uncertainty functions for different decision values ranging from 0 to 1 with step
size 0.01. Performance metric versus coverage plots for these functions are shown in
figures 4.11, 4.12 and 4.13.

Both functions reached equal top-1 accuracy and precision scores. Although by a small
margin, prediction probability threshold function reached better top-2 accuracy than
difference between first and second highest prediction probability function for coverages
up to 50%.

Prediction probability threshold is a marginally better choice for the given problem
setting, which is the answer for RQ6. Using prediction threshold function, 90.1% top-1

51

4. Modeling and Evaluation

Figure 4.10: Normalized confusion matrix of the best fusion model (late_retrained)

accuracy can be achieved for 94,28% coverage with decision value of 0.54, which fulfils
the success criteria for the system with accuracy-coverage tradeoff defined in section 3.6.

4.6 Final Evaluation

Since this classifier will not have any more hyperparameter adjustments, it was evaluated
on the test set with prediction threshold decision function with decision value set to 0.54.
Results, which fulfil the success criteria for the project, are shown in table 4.11.

top-1 accuracy top-2 accuracy precision coverage

90.23% 97.63% 87.16% 94.23%

Table 4.11: Performance metrics and coverage on test set

Parameters of the whole architecture are as follows:

52

4.6. Final Evaluation

Figure 4.11: Top-1 accuracy with uncer-
tainty functions for different coverages

Figure 4.12: Top-2 accuracy with uncer-
tainty functions for different coverages

Figure 4.13: Precision with uncertainty functions for different coverages

Text classifier

• Features: Title, description, title length, description length, price, image count,
user age, user gender

• Preprocessing: Lowercase for title and description, standardization for numerical
features, one hot encoding for user gender

• Classifier: Linear SVM (C=0.5)

Image classifier

• Features: First image of an item

• Preprocessing: Subtraction of per-pixel mean of ImageNet images, resize with
shorter side equal to 224, center-crop

53

4. Modeling and Evaluation

• Classifier: Retrained ResNet-50 architecture (freeze depth=conv4_x,
optimizer=Adam(α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8))

Fusion

• Features: Output of the text classifier and output of the image classifier

• Preprocessing: Concatenation of the text and image classifier outputs

• Classifier: Multiclass perceptron with a softmax output layer

• Postprocessing: Prediction probability threshold as the uncertainty function with
the decision value of 0.54

Analysis of Results in Business Setting

In 2018, 265292 items were listed without a category every month on average in Great
Britain. Given the fact that the multimodal classifier reached the performance of the
user support team categorizing such items by hand, it can take over this task. Items
can be assigned to the category "Other", if the decision value of 0.54 can’t be reached.
Another option would be to partly automate categorization by leaving items to the user
support team to classify them by hand if decision value of 0.54 can’t be reached. Even in
this case the manual work would be significantly reduced.

The multimodal classifier can also be used for assisting users during listing. However,
considering the performance of the text classifier is not bad and prediction time for the
multimodal classifier is significantly higher because of the image processing, it would be
a better option to use the text classifier for user assistance to keep server response time
low. The multimodal classifier is a better fit for already listed items, where they can be
processed in batches in the background.

The classifier can be monitored by using the business intelligence tool utilized by the
company. To check if there is a significant change in the ratio of items that the classifier
can’t classify, a monthly report can be created for the ratio between the number of items
that couldn’t be classified with a high enough certainty and the total number of items
sent to the classifier. Another possibility would be to evaluate the classifier every month
using the items that have been listed with a category in that month. Since users can still
pick a category during listing, new training data will be available for the retraining of
the multimodal classifier in the future, which will make it possible to combat topic drift.

4.7 Summary
In this section, the modeling and evaluation phase of the multimodal classifier was
described. The development was done for each modality separately. After building the
best classifiers for text and image modalities, four fusion model configurations were
evaluated.

54

4.7. Summary

For the text modality linear SVM and Naive Bayes classifiers were compared using
various text representations. After finding out the best text representations for each text
classifier, preprocessing techniques were evaluated. After determining that linear SVM
outperformed Naive Bayes classifier, effectiveness of using additional features with linear
SVM was evaluated. Development of the text classifier was finished with tuning of the
hyperparameter C.

For the image classifier, effectiveness of transfer learning for ResNet-50 architecture was
investigated. For the given problem, training only the layers after conv3_x layer block
was enough to get the best results.

After training text and image classifiers, early and late fusion techniques were compared.
In addition to the retrained image classifier, configurations with a ResNet-50 image
classifier trained on ImageNet dataset were also evaluated. Out of four configurations
the late fusion classifier with the retrained image classifier performed the best.

Furthermore, to reach the performance of the user support team, uncertainty functions
were evaluated. After finding the ideal decision value for the uncertainty function, the
multimodal classifier was evaluated on the test set. All the evaluation metrics were above
the performance of the user support team. Last but not least, possible deployment and
monitoring strategies were discussed.

55

CHAPTER 5
Conclusions & Future Work

In this work, a multimodal classifier has been built for the item categorization task in an
e-commerce problem setting. All research questions that have been listed in section 1.2
were answered satisfactorily.

RQ1 and RQ3, which dealt with the analysis of the problem domain, were answered by
performing an experiment and analyzing the results. In this experiment accuracy and
precision of categorization done by the user support team and users of the app developed
by an e-commerce company were measured. Five indexers had to go through a list of
categorized items and mark them if they had the wrong category. By looking at the
number of indexers that marked an item as incorrect for each item, it was shown that
categories are overlapping. Most items have only been marked by one or two indexers
instead of all five. To deal with the inherent overlapping of categories, a combination
of metrics were used to define the success criteria for the project. Additionally, two
uncertainty functions were evaluated to increase accuracy by trading coverage for it,
which is also a way of filtering out cases where two categories can be both correct.

RQ2, RQ4, RQ5 and RQ6 that dealt with text preprocessing, transfer learning for
image classification, modality fusion and uncertainty functions respectively, were answered
by analysis of various techniques for the given problem setting. Techniques for text and
image modalities have been investigated separately.

For text, input representations and preprocessing techniques have been investigated by
comparing classification performance of models using these representations and techniques.
Because the main focus of the work was on usage of a convolutional neural network in a
multimodal context, only two learning algorithms have been evaluated for text-based
models; Naive Bayes and linear SVM. Linear SVM with tf-idf representation performed
best, which was further used for multimodal models. Although word embeddings trained
on the collected text data captured the noise like typos well, performance of models using
the mean of these embeddings as input performed worse than models using other input

57

5. Conclusions & Future Work

representations. Further investigation is needed to see if this representation can lead
to better results using a different model which does not lose information by taking the
mean of embeddings.

For image, transfer learning with ResNet-50 architecture was investigated thoroughly.
Five models were retrained, which had different numbers of frozen layers. Blocks of layers
to freeze were determined by looking at the points in the architecture where the output
size changes. Results on validation set showed that having one trainable convolutional
block is enough to achieve the best result for the given problem setting. It remains to
be investigated in future work as to whether this holds true for other datasets with the
same configuration of ResNet-50 training as in this work.

In addition to investigating techniques for text and image models, early and late fusion
techniques were compared. To answer the second part of RQ4, for each fusion technique
two models were trained, one with the best image model retrained with collected data
and one with an image model pretrained on ImageNet data. Late fusion with the best
retrained image model performed best out of the four fusion models. For early and late
fusion, the models with the retrained image model performed better than models with
an image model pretrained on ImageNet in terms of top-1 accuracy.

Last but not least two uncertainty functions were evaluated to boost the performance of
the best performing fusion model. Although the improvement was marginal, prediction
probability threshold performed better for top-2 accuracy than difference between first and
second highest prediction probability as the uncertainty function. For 94,28% coverage
the multimodal classifier reached the success criteria for a system with accuracy-coverage
trade-off on the validation set that has been defined in section 3.6.

After finding out the best configuration for the multimodal classifier, it was evaluated on
the test set. Performance of the model stayed the same, fulfilling the success criteria. It
reached top-1 accuracy of 90.23% and macro-averaged precision of 87.16% for 94.23%
coverage. In addition to the test set evaluation, deployment and monitoring options for
the project were discussed.

In summary, the developed multimodal classifier is able to take over a repetitive task
from the user support team. This will enable them to focus more on tasks that humans
excel at, such as helping users with their problems in the application. By automating
the categorization, a significant gain is achieved from a business perspective.

58

List of Figures

2.1 Phases of CRISP-DM Reference Model . 6
2.2 Perceptron . 10
2.3 Convolution with a two-dimensional kernel (from [GBC16]) 14
2.4 Sparse interaction. Input x3 and the corresponding connections have been

marked. Convolutional layer (top) has less connections than a fully connected
layer like in MLP (bottom) . 15

2.5 Max pooling applied to a 4× 4 matrix with stride of 2. (from [Kar]) . . . 15
2.6 Inception module (from [Sze+15]) . 17
2.7 Originally proposed residual block (left) and improved residual block (right)

(from [He+16b]) . 18
2.8 The optimal hyperplane and a nonoptimal hyperplane (from [Abe10]) . . 20

3.1 Web application used for the experiment 23
3.2 Marked item count according to the number of indexers that marked them 24
3.3 Category distribution of samples that contain substring "coffee machine" in

the title . 24
3.4 Marked item count by each unique indexer for each categorization subset 25
3.5 Structure of the views that were used for the data collection 28
3.6 Size of each category in percentage . 29
3.7 Original image (left) and the preprocessed image (right) 31
3.8 Distribution of birthdates entered in the app 32
3.9 Distribution of birthdates entered in the app from 1989 till 1991 33
3.10 Distribution of birthdates entered in the app in December 1989 33
3.11 Distribution of birthdates from linked Facebook accounts 34
3.12 Distribution of birthdates from linked Facebook accounts in September 1970 34
3.13 Mismatch statistics between App & Facebook birth years 35
3.14 Comparison of listings of users with age 18-20 and 38-40 in main categories 36

4.1 Training loss of image models . 47
4.2 Validation loss of image models . 47
4.3 Top-1 accuracy of image models on validation set 48
4.4 Top-2 accuracy of image models on validation set 48
4.5 Macro-averaged precision of image models on validation set 48

59

4.6 Top-1 accuracy of fusion models on validation set 50
4.7 Top-2 accuracy of fusion models on validation set 50
4.8 Macro-averaged precision of fusion models on validation set 51
4.9 Loss of fusion models on validation set . 51
4.10 Normalized confusion matrix of the best fusion model (late_retrained) . . 52
4.11 Top-1 accuracy with uncertainty functions for different coverages 53
4.12 Top-2 accuracy with uncertainty functions for different coverages 53
4.13 Precision with uncertainty functions for different coverages 53

60

List of Tables

2.1 Contingency table for evaluation metric building blocks 8

3.1 Performance related metrics for all categories 25
3.2 Performance-related metrics after removal of the "Other" category 26
3.3 Category specific analysis for items categorized by user support team . . . 26
3.4 Category specific analysis for items categorized by users 26
3.5 Price statistics before removal of outliers 30
3.6 Price statistics after removal of outliers 30
3.7 Availability of date of birth data grouped by sources 32
3.8 Availability of gender data . 36
3.9 Sample counts of each value in merged gender column 37

4.1 The most similar words for four different words in the embedding space . . 41
4.2 Performance of multinomial Naive Bayes with different input representations 42
4.3 Performance of linear SVM with different input representations 43
4.4 Performance of MLP with custom word embeddings 43
4.5 Preprocessing results for multinomial Naive Bayes classifier 44
4.6 Preprocessing results for linear SVM . 44
4.7 Performance of linear SVM with additional features 45
4.8 Evaluation of the C hyperparameter for linear SVM with additional features 46
4.9 ResNet architectures (taken from [He+16a]). 47
4.10 Training time for each epoch and their average per model 49
4.11 Performance metrics and coverage on test set 52

61

List of Algorithms

2.1 Backpropagation algorithm . 11

63

Bibliography

[Aba+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. “TensorFlow: A System for Large-Scale Machine Learning.” In:
OSDI. Vol. 16. 2016, pp. 265–283.

[Abe10] Shigeo Abe. Support vector machines for pattern classification. Springer,
2010.

[Bou] Richard Boulton. PyStemmer. https://github.com/snowballstem/
pystemmer. Accessed: 2018-05-06.

[Cha+00] Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas
Reinartz, Colin Shearer, and Rudiger Wirth. CRISP-DM 1.0 Step-by-step
data mining guide. Tech. rep. The CRISP-DM consortium, 2000.

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
“Imagenet: A large-scale hierarchical image database”. In: Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255.

[FM82] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition”. In:
Competition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
Press, 2016.

[He+16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep resid-
ual learning for image recognition”. In: Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 770–778.

[He+16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity map-
pings in deep residual networks”. In: Proc. of the European Conference on
Computer Vision, Amsterdam. Springer. 2016, pp. 630–645.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: Proc. of the
International Conference on Machine Learning, Lille. 2015, pp. 448–456.

[Kan+11] Anitha Kannan, Partha Pratim Talukdar, Nikhil Rasiwasia, and Qifa Ke.
“Improving product classification using images”. In: Proc. of the 2011 IEEE
11th International Conference on Data Mining. IEEE. 2011, pp. 310–319.

65

https://github.com/snowballstem/pystemmer
https://github.com/snowballstem/pystemmer

[Kar] Andrej Karpathy. Stanford University CS231n. http://cs231n.github.
io/convolutional-networks/. Accessed: 2018-10-15.

[KB15] Diederik P Kingma and Jimmy Lei Ba. “Adam: A method for stochastic
optimization”. In: Proc. of the 3rd International Conference on Learning
Representations. 2015.

[Koz15] Zornitsa Kozareva. “Everyone Likes Shopping! Multi-class Product Catego-
rization for e-Commerce”. In: Proc. of the 2015 Conference of the North
American Chapter of the ACL. 2015, pp. 1329–1333.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-
cation with deep convolutional neural networks”. In: Proc. of the Advances
in Neural Information Processing Systems. 2012, pp. 1097–1105.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (2015), pp. 436–444.

[LeC+01] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning
Applied to Document Recognition”. In: Intelligent Signal Processing. IEEE
Press, 2001, pp. 306–351.

[Mik+13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
estimation of word representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

[Oqu+14] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. “Learning
and transferring mid-level image representations using convolutional neural
networks”. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition. 2014, pp. 1717–1724.

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python”. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[Por80] Martin F Porter. “An algorithm for suffix stripping”. In: Program 14.3
(1980), pp. 130–137.

[RHT01] Irina Rish, Joseph Hellerstein, and Jayram Thathachar. “An analysis of
data characteristics that affect naive Bayes performance”. In: IBM TJ
Watson Research Center 30 (2001).

[RHW+88] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning
representations by back-propagating errors”. In: Cognitive modeling 5.3
(1988), p. 1.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 2nd ed. Pearson Education, 2003.

[Roj13] Raúl Rojas. Neural networks: a systematic introduction. Springer Science &
Business Media, 2013.

66

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

[Ros58] Frank Rosenblatt. “The perceptron: A probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

[ŘS10] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Modelling
with Large Corpora”. In: Proc. of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Valletta, Malta: ELRA, 2010, pp. 45–50.

[Sci] Scikit-learn documentation for Naive Bayes. http://scikit-learn.
org/stable/modules/naive_bayes.html. Accessed: 2018-11-3.

[SRS12] Dan Shen, Jean-David Ruvini, and Badrul Sarwar. “Large-scale item cate-
gorization for e-commerce”. In: Proc. of the 21st ACM International Con-
ference on Information and Knowledge Management. ACM. 2012, pp. 595–
604.

[Sun+14] Chong Sun, Narasimhan Rampalli, Frank Yang, and AnHai Doan. “Chimera:
Large-scale classification using machine learning, rules, and crowdsourcing”.
In: Proc. of the VLDB Endowment. Vol. 7. 13. VLDB Endowment. 2014,
pp. 1529–1540.

[SZ14] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[Sze+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. “Going deeper with convolutions”. In: Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition. 2015, pp. 1–9.

[Wor] word2vec. https://code.google.com/archive/p/word2vec/.
Accessed: 2018-10-15.

[Yos+14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How trans-
ferable are features in deep neural networks?” In: Advances in neural
information processing systems. 2014, pp. 3320–3328.

[ZF14] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding con-
volutional networks”. In: Proc. of the European Conference on Computer
Vision, Zurich. Springer. 2014, pp. 818–833.

67

http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/modules/naive_bayes.html
https://code.google.com/archive/p/word2vec/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement & Research Questions
	Methodology and Structure

	Related Work
	CRISP-DM Framework
	Item Classification in e-Commerce
	Supervised Learning
	Summary

	Data Analysis
	Domain
	Data Quality Experiment
	Available Resources
	Data Collection
	Data Analysis and Preprocessing
	Evaluation Metrics for the Problem Setting
	Summary

	Modeling and Evaluation
	Modeling
	Text Classifier
	Image Classifier
	Modality Fusion
	Uncertainty Functions
	Final Evaluation
	Summary

	Conclusions & Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

