
D I S S E R T A T I O N

High-level compiler support for
timing analysis

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften unter der Leitung von

Univ. Prof. Dipl.-Inf. Dr. rer. nat. Jens Knoop
E185/1

Institut für Computersprachen

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Adrian Prantl
Matr.-Nr.: 0025274

adrian@complang.tuwien.ac.at
Neustiftgasse 45/12

1070 Wien

Wien, am 16. Mai 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Um robuste eingebettete Systeme zu entwerfen, ist die Analyse der Ausfüh-
rungszeit von großer Bedeutung. Ziel der vorliegenden Dissertation ist es einen
Weg aufzuzeigen, wie das Zeitverhalten von Computerprogrammen mit geringst-
möglicher Unterstützung von menschlicher Seite untersucht werden kann. Um
möglichst straffe, aber sichere Schranken für die Ausführungszeit eines Programms
zu erhalten, sind exakte Informationen über dessen Kontroll- und Datenfluss
notwendig. Bisweilen wird diese Information von Hand gesammelt und an das
übersetzte Binärprogramm annotiert. Im letzten Jahrzehnt konnte ein deutlicher
Trend festgestellt werden, diesen Vorgang durch den Einsatz statischer Program-
manalysen zu automatisieren. Da das Problem im Allgemeinen jedoch unlösbar
ist, werden manuelle Annotationen wohl immer vonnöten sein. Akzeptiert man
diese Tatsache, so ist es unumgänglich, diesen mühsamen und fehlerbehafteten
Vorgang so einfach und sicher wie möglich zu machen.

Wie die Sicherheit ist auch Leistung ein zentraler Punkt, wenn eingebet-
tete Systeme in großen Stückzahlen produziert werden sollen. Während sich
die durchschnittliche Leistung vor allem auf den Stromverbrauch auswirkt, so
ist die Leistung im schlechtestmöglichen Fall (Worst-case-Performance) der be-
stimmende Faktor eines Echtzeitsystems: Eine höhere Worst-case-Performance
bewirkt, dass das System kosteneffizienter dimensioniert werden kann, wodurch
die Produktionskosten gesenkt werden, ohne die Sicherheit zu gefährden. Daher
ist in diesem Bereich auch die Verbindung von Zeitanalyse und Programmop-
timierungen eine der Kernaufgaben der Forschung. Ziel soll jedoch nicht sein,
den hochoptimierten Binärcode, wie er von einem Compiler erzeugt wird, von
Programmieren annotieren zu lassen. Ziel ist vielmehr, Kontrollflussannotatio-
nen bereits auf Quelltextebene durchzuführen und diese Informationen dann
gemeinsam mit dem Programm durch die Optimierungsschritte zu führen und
entsprechend zu transformieren.

In dieser Arbeit zeigen wir (1) einen Weg, das Annotationsniveau von der
Maschinensprache auf die Quelltextebene anzuheben, um Annotationen auf
der Abstraktionsebene der Programmiersprache zu präsentieren. Weiters (2)
stellen wir auf dem Quelltext arbeitende statische Programmanalysen vor, mit
denen die Notwendigkeit, Annotationen manuell vornehemen zu müssen, auf ein
Mindestmaß reduziert werden kann. Damit (3) präsentieren wir eine portable
Lösung für die oben genannten Probleme, die mit minimalem Aufwand auf
andere Zielarchitekturen übertragen werden kann.

Die Teilnahme an der WCET Tool Challenge 2008 hat bestätigt, dass un-
ser Ansatz mit anderen Implementierungen konkurrenzfähig ist, insbesondere
in Bezug auf die automatische Kontrollflussanalyse. Damit, dass unsere Im-
plementierung eine Teilmenge von C++ unterstützt, greifen wir auch einen

i

KURZFASSUNG ii

aufkommenden Trend für eingebettete Systeme auf, in denen C nach wie vor
die vorherrschende Programmiersprache ist, jedoch nach und nach durch C++
abgelöst wird.

Abstract

Timing analysis is an important prerequisite for the design of robust embedded
systems. The purpose of this thesis is to show how to analyze the timing of
computer programs with as little human assistance as possible. In order to get
tight and safe bounds for the timing of a program, precise information about its
control flow and data flow is needed. Traditionally, this information is collected
by hand and annotated to the binary program. The last decade showed a trend
to automate much of this work by employing static analyses. However, due to
the theoretical intractability of the general problem, manual input is still and
will aways be necessary. Once we acknowledge the need for manual annotations,
it is important to make this cumbersome and error-prone process as easy and
safe as possible.

Performance is also a critical issue for systems that are produced in large quan-
tities. While the average performance has an influence on power consumption,
the worst-case performance is what is critical for a real-time system: A better
worst-case performance means that the hardware can be dimensioned more cost-
effective, thus lowering production costs, without sacrificing safety. The main
research question is therefore how to adequately combine code optimizations
and timing analysis. We do not intend to force the programmer to manually
annotate control flow information to highly optimized code produced by the
compiler. Instead, flow annotations should be made at the source code level and
be transformed alongside the program during the optimization phase.

In this thesis we (1) show how to lift the annotation level from the machine
code to the source code, which is the adequate and more natural representation
for the programmer, and (2) reduce the need for manual annotations by using
static analysis at the source code level, thus (3) providing a portable solution
to the problems mentioned above that is largely independent from the target
architecture.

By entering the implementation into the WCET Tool Challenge 2008 we
demonstrated that this approach is on par with competing approaches, especially
with respect to automatic control flow and data flow analysis. With our imple-
mentation we also embrace a continuing trend in the embedded systems market,
by supporting a subset of C++ instead of just C, which is still the prevailing
programming language in this field.

iii

ABSTRACT iv

[Disclaimer: All trademarks are the property of their respective owners.]

Acknowledgements

I am very grateful to my advisor Jens Knoop, who has been highly encouraging
and supportive throughout the last four years. It was his enthusiasm that
sparked my interest in program analysis in the first place. I would like to thank
Björn Lisper for reviewing this thesis and for insightful discussions on previous
WCET Workshops. I would like to thank Markus Schordan for many hours we
spent discussing and hacking SATIrE and also for encouraging me to work on
what later would become Termite. I am also thankful to Raimund Kirner, who
was the principal investigator of the CoSTA project; many ideas presented in this
thesis were formed during discussions with him. I am also grateful to Albrecht
Kadlec, who was very supportive and shared many insights from his industry
experience. I am very grateful to Gergő Bárány who implemented the connection
of PAG and ROSE that later became the basis of SATIrE, the points-to analysis
and the melmac compiler. He also helped me many times with the debugging
of analyzers and his intimate knowledge of ROSE internals. Markus Triska
implemented the clpfd constraint solver library for SWI-Prolog and repeatedly
helped me understand more about constraint logic programming. Finally, I
would like to thank my colleagues Florian Brandner and Dietmar Ebner for the
great time we had working at the laboratory.

All this would not have been possible without the love and support of
Margarita and my daughter Luise.

Funding. This work was partially funded by the Austrian Science Fund (FWF)
within the research project “Compiler-Support for Timing Analysis” (CoSTA)
under contract �P18925-N13, and the research project “Integrating European
Timing Analysis Technology” (ALL-TIMES) under contract �215068 funded
by the 7th framework programme of the European Commission.

v

Contents

Kurzfassung i

Abstract iii

Acknowledgements v

List of Figures viii

List of Tables ix

1 Overview 1
1.1 State of the art analyzers and languages 2

1.1.1 Tree-based WCET analysis 3
1.1.2 Path-based WCET analysis 4
1.1.3 IPET-based WCET analysis 5
1.1.4 Measurement-based WCET analysis 8
1.1.5 Other annotation concepts 9
1.1.6 Other directions for control flow analysis 9
1.1.7 Comparison and summary 10

1.2 Objectives and contributions . 11
1.2.1 Practical aspects . 12

1.3 Outline of this thesis . 13

2 Introducing TuBound 15
2.1 Preliminaries: Flow information 15
2.2 Design goals . 17
2.3 The Architecture of TuBound . 18
2.4 The work flow of TuBound . 20

2.4.1 Start-up and annotation 20
2.4.2 Program optimization and WCET annotation transformation 22
2.4.3 Compilation and WCET calculation 23

2.5 The annotation language of TuBound 23
2.5.1 Annotation syntax and source code integration 23

3 Static analysis 27
3.1 An interprocedural interval analysis 27

3.1.1 Arithmetic in the interval lattice 28
3.2 Analyzing loop bounds . 33

3.2.1 Single loops . 33

vi

CONTENTS vii

3.3 Analysis of whole loop nests . 35
3.3.1 Example . 36

4 Flawless annotations and analyses 38
4.1 Automatic testing of a data-flow analysis 38

4.1.1 Preparing test cases . 38
4.2 Assertion-carrying code work flow 39
4.3 Checkable assertions . 41

4.3.1 Notation . 41
4.3.2 Assertions for universally valid properties 42
4.3.3 Assertions for existentially valid information 43
4.3.4 May, must, and conservative approximations 44
4.3.5 From analysis results to assertions 46

4.4 Interprocedural ACC . 50
4.5 The trusted annotation base . 51

4.5.1 Lifting environmental information to the program layer . 51
4.5.2 Shrinking and verifying the trusted annotation base . . . 51
4.5.3 Sharpening the time bounds 53

4.6 Implementation details . 55

5 Transforming flow constraints 59
5.1 Classification of optimizations . 59
5.2 Defining transformation rules . 60
5.3 Designing a new work flow . 63
5.4 Implementation in TuBound . 65

5.4.1 Transformation rules examples 65
5.4.2 A hierarchical naming scheme for AST scopes 66
5.4.3 Extensions . 69

6 The implementation environment 70
6.1 SATIrE . 70
6.2 Termite . 71

6.2.1 The Termite term representation 71
6.2.2 Using Termite for a standalone process 71
6.2.3 Invoking Termite as part of a SATIrE analyzer 75
6.2.4 A logical data structure for AST traversals 75

6.3 wcetC code generation . 77
6.4 Analysis-guided loop unrolling 78

7 Evaluation 79
7.1 Flow Problems from the WCET Tool Challenge 2008 79
7.2 Loop analysis with model checking 82
7.3 Flow transformation benchmarks 84

8 Conclusions and perspectives 86

Bibliography 88

Curriculum Vitae 101

List of Figures

2.1 Control flow graph with frequency information on the edges . . . 16
2.2 The collaboration of TuBound’s components 19
2.3 Finding flow constraints with TuBound 21
2.4 WCET constraints before and after loop unrolling 24
2.5 Three annotations carrying the same information 25
2.6 Grammar of annotations . 26

3.1 Lattice for constant propagation 28
3.2 Extended lattice for integer interval analysis 29
3.3 Constraint translation for the + operator 35

4.1 The work flow of assertion-carrying code 40
4.2 Optimistic versus pessimistic approximations 42
4.3 Universal properties . 42
4.4 Existential properties . 43
4.5 Conservative approximation for a live variable analysis (may) . . 45
4.6 Conservative approximation for a dead variable analysis (must) . 45
4.7 Dynamically recomputing some bit-vector problems 49
4.8 Backward-directed data flow problems 50
4.9 Calling contexts and merged interval information 52
4.10 Excerpt from the ACC generator 56
4.11 Code containing two trusted loop annotations 57
4.12 Outer loop annotation verified and tightened, inner loop trans-

formed for checking . 58

5.1 Example: Loop interchange . 62
5.2 Workflow of the source-to-source high-level compiler 64
5.3 Flow transformation specification for loop interchange 66
5.4 Example from the transformation rules: loop unrolling 67
5.5 Example from the transformation rules: loop fusion 67
5.6 The node naming scheme in action 68

6.1 Termite usage scenarios . 72
6.2 Packing a zipper that points to node c 77

7.1 Benchmark results for the Mälardalen benchmarks 85
7.2 Benchmark results for the fixed-point DSPstone benchmarks . . 85

viii

List of Tables

1.1 Comparison of different WCET analysis systems 10

3.1 Specification of the interval analysis 29
3.2 Deriving the loop parameters . 34
3.3 Deriving the constraints . 35

4.1 Signatures of typical textbook analyses 46
4.2 Lifting environmental information 52

5.1 Classification of common program transformations 60
5.2 Flow annotations before and after loop unrolling 68

7.1 Problem group 2: TM Interrupt Handler 81
7.2 Problem group 3: Hit Trigger Interrupt Handler 81
7.3 Problem group 4: TC Execution Task 81
7.4 Problem group 6, a–c: Monitoring Task, no errors 81
7.5 Problem group 6, d–e: Monitoring Task, some errors 81
7.6 Number of bounded loops in the Mälardalen benchmarks 83

ix

Chapter 1

Overview

In our every-day lives there occur many situations in which we trust ourselves to
an embedded computer system. Although these computers are generally designed
to become invisible to the unsuspecting passerby, it is important to keep in
mind that every time we ride cars, board trains or aircraft, or are exposed to
medical equipment it is very likely that these are largely controlled by computer
software. To put this into perspective, of course, embedded systems are in no way
restricted to being used only in such expensive high-end products: In terms of
volume, embedded microprocessors and microcontrollers make up > 98% of the
total number of shipped units [as of 2001, see FFY04]. What should be obvious,
however, is that all of the above examples have in common that malfunctions
can have severe consequences, and potentially even endanger human lives. It is
therefore imperative to ensure the correct functioning of such systems.

The key to designing robust embedded systems is to guarantee that the
behaviour of the system always meets the specification. Typically, embedded
systems perform a set of tasks in a periodical fashion and do so in close interaction
with a (physical) environment. It is the software engineer’s responsibility to
ensure the correctness of the computer programs that perform these tasks. It
is important that correctness here not only concerns the results of calculations
performed by a program, but includes also non-functional properties, most
importantly correct timing. It is the embedded system’s interaction with the
environment which often calls for real-time constraints. In a typical configuration,
multiple tasks share resources like the processor and are periodically called
according to a schedule. One way to contain the complexity of the overall design
is to make the schedule static and calculate it off-line beforehand. The necessary
schedulability analysis can only be performed once the timing characteristics of
each task are known. The most important timing characteristic in this context
is the worst-case execution time (WCET). Analogously there exist also the
average-case (ACET) and best-case execution times (BCET). The average time
is mostly of interest to reason about the expected real-world performance of a
program and is thus used in pertinent benchmarks. Applications for the best-
case execution time are not as numerous, but when interacting with peripheral
devices that exhibit initialization delays it can be necessary to guarantee that a
program does not finish too early before performing particular I/O operations.
It is worth noting that best-case timing analysis can be seen as the dual problem

1

CHAPTER 1. OVERVIEW 2

to worst-case timing analysis and can be performed by cleverly inverting the
objective function of a worst-case timing analysis.

There are two ways to approach the timing analysis problem. Static analyses
use the semantics of the programming language to safely approximate the
behaviour of a program without actually executing it. Measurement-based
techniques use specially prepared test data to observe the worst-case execution
time in a series of measured executions of the program [WEE+08; WKRP08].
In this thesis a static timing analysis work-flow is considered. Intuitively, static
WCET analysis is performed by searching for the most expensive path from the
start to the end of the control flow graph (CFG) of the analyzed program. This
search can be broken down into two independent steps:

High-level: Identification of feasible paths in the CFG via control flow analysis
and user feedback.

Low-level: Calculation of the costs (= the execution time) of each of these
paths.

High-level timing analysis gathers all information that can be used to identify
the set of feasible paths as precisely as possible. It is important to keep in
mind that the CFG is generally a cyclic graph and thus contains infinite paths.
Cycles in the CFG can arise from loop constructs, goto statements and recursive
function calls. It is the task of high-level analysis to prove that every execution
of these program constructs will terminate and to supply bounds for the number
of iterations of each cycle in the CFG. For this reason the first part of this work
focuses on the static analysis of loops (cf. Chapter 3).

In some cases, the static analysis may not be able to yield a satisfying result.
It is well known that it is not generally possible to prove termination of a
program, not only due to the halting problem but also because the termination
conditions are not necessarily part of the program; loops can depend on input
data or on interaction with other parts of the run-time environment. To fill this
gap, it is thus necessary to aid the static analysis by manually annotating the
program. The second part of this work therefore explores mechanisms to improve
the handling of manual annotations, by providing user-friendly annotation at
the source-code level (cf. Chapter 5).

To derive a proper cost model for the instructions in the CFG a precise model
of the target hardware (including processor pipeline and memory hierarchy) is
needed [SP10]. It is important to note that the costs for instructions are generally
not constant, but are influenced by the execution history (imagine the influence
of the contents of the data memory cache) which can lead to a counter-intuitive
behaviour, commonly called timing anomalies [KKP10a]. Hardware modelling
is a broad field of research and is beyond the scope of this work. Since it is so
closely tied to a specific platform, this step will subsequently be called low-level
WCET analysis.

1.1 State of the art analyzers and languages
This section gives an overview of both pioneering and state-of-the-art WCET
analysis systems and their annotation languages. Focusing on the annotation
language is important since a major goal of this work is to increase the usability

CHAPTER 1. OVERVIEW 3

for the programmers who are performing WCET analysis of their programs.
More information about the respective systems and languages is also available
in two dedicated survey articles [WEE+08; KKP+10b].

1.1.1 Tree-based WCET analysis
In the early days of WCET analysis, researchers used a syntax-directed approach
to compute an upper bound for the execution time of a program [PS97]. In this
approach the execution time of instructions on the target hardware is typically
modelled with static costs. The program can then be decomposed into blocks of
instructions, branches of alternatives and loops or recursions. In the next step,
an upper bound n for each loop trip count is needed. Then, each loop is unrolled
n times, forming a sequence of repeated loop bodies. After this preprocess, the
modelled cost is substituted for each instruction to form a summation expression.
Each branch is replaced with an instance of the max function. The resulting
expression is then evaluated, yielding an upper bound for the program’s execution
time.

While a dynamic cost model could be incorporated, the drawback of tree-
based WCET bound calculation is that infeasible paths cannot easily be excluded
from the bound computation, thus leading to a potentially large overestimation.
For this reason most newer WCET analyses left this approach for an IPET-based
one (cf. Section 1.1.3).

Real-Time Euclid (University of Toronto)

Real-time Euclid is one of the pioneering programming languages with explicit
real-time support [KS86]. The language was extended to allow the specification
of upper bounds for loops, either in terms of iterations or in absolute real-time
units which are the smallest granularity of time used by the WCET analysis.
In order to ensure that programs are analyzable the language features only a
subset of the full Euclid language. Real-time Euclid is no longer maintained.

Modula/R (Vienna University of Technology)

Similar in spirit to Real-time Euclid, the Modula/R language is a real-time
oriented version of Modula-2 with extensions tailored for timing and memory
consumption analysis [Vrc92; Vrc94]. The extended syntax allows the user to
annotate control flow using loop bounds and generic scoped markers. The
Modula/R compiler has an option to check the validity of the annotations at
runtime.

SPARK Ada (University of York)

SPARK Ada is a subset of Ada 83 originally targeted to program verification
which was subsequently adopted for WCET analysis [CBW94; CBW96]. The
SPARK language uses a special comment syntax to embed annotations into the
program. The annotation language allows the user to specify multiple behaviours
for a function that is called in different contexts and/or with different input
values. The WCET bound calculation is done via a tree-based approach that
works with graph-rewriting rules to find the most expensive path through the
program.

CHAPTER 1. OVERVIEW 4

TAS (University of Texas at Austin)

The Timing Analysis System (TAS) is a set of tools based on the C programming
language [Che87; MACT89]. The general workflow is a four stage process.
First, the “annotate” tool analyzes the C language argument program and
produces C code that is annotated with default assumptions about the dynamic
program behaviour. Next, a modified C compiler translates the annotated C
program into annotated assembler code. Using the source code annotations, the
compiler produces a script skeleton in the Timing Analysis Language (TAL).
User assistance is required to manually refine the TAL-script skeleton of the
previous step. A graphical user interface is provided to aid the user. Finally, the
“timetool”, interprets the refined TAL-script to perform the actual WCET bound
calculation on the assembler code of the argument. In this process, the TAL
script thereby effectively acts as a program that calculates the WCET bound.
This approach is often called timing schema in the literature.

Timing Tool (University of Washington)

The Timing Tool is unique in that it makes the annotating of a program an
interactive process [Sha89; PS91]. The Timing Tool supports a subset of the C
language and addresses MC68010-based SUN workstations as target platform.
The tool allows the user to interactively specify “software timing property”-
annotations at the source code level. In a typical Timing Tool session, the user is
shown the source code and requested by the tool to specify both upper and lower
bounds for loops. The WCET bound calculation is then done with a tree-based
timing schema approach.

1.1.2 Path-based WCET analysis
Having experienced the limitations of tree-based WCET analysis, it became
clear to the research community that the specification of infeasible paths was
one of the weak points. Path-based annotation languages and WCET analyzers
seek to overcome this limitation by making the path a first-class object in the
control-flow analysis and specification.

PL and IDL (University of Washington)

The Path Language (PL) and the Information Description Language (IDL)
are WCET annotation languages designed to specify (in)feasible paths in a
program [Par92; Par93]. PL uses a bounded regular expression syntax to
describe patterns representing sets of paths. In contrast to the minimal syntax
of PL, which consists merely of regular expressions, its sister-language IDL is a
more practically oriented language that introduces special language constructs
for often needed kinds of information like loop bounds or, for instance, the fact
that two locations always occur on a path together.

Although PL and IDL are the only annotation languages that allow to
explicitly describe the execution order of code blocks—a feature that could prove
very relevant with respect to cache modelling WCET analysis—their success was
hampered; probably by the difficulties to concisely express relative execution
frequencies [KKP+10b].

CHAPTER 1. OVERVIEW 5

Path-based research prototype (Florida State University)

The research prototype originating at Florida State University is unique in that
it is the only running implementation of the path-based approach to WCET
bound computation [HSR+00; HW02]. The system includes cache and pipeline
analysis. Loop analysis is performed on the intermediate code generated by
the compiler [vpo, see ADR98] and works by extracting equation systems from
the loop conditions that are subsequently solved by a symbolic algebra package.
Infeasible paths can be singled out by a branch constraint analysis which detects
dependencies between blocks that allow to statically determine the outcome
of branch tests for specific paths. Current research is underway to adopt the
algorithms towards providing quality-of-service (QOS) information for soft real-
time systems [WEE+08].

1.1.3 IPET-based WCET analysis
While path-based annotation languages and analyzers allow to precisely model
feasible paths and explicitly specify the execution order of basic blocks, they
are not as convenient when it comes to expressing control flow with a relative
point of reference, like an encompassing loop. Systems that use the implicit path
enumeration technique (IPET) [LM95; PS97] excel at this: The control flow is
modelled by a system of linear constraints that express how often certain edges
in the control flow graph are executed relative to arbitrary other edges. This
constraint system is then presented to an integer linear programming (ILP) solver
together with an objective function which then returns the maximal execution
time. Cache and pipeline analysis is typically performed on a basic-block level
thus yielding static costs for each basic block. The majority of WCET analyzers
and research prototypes built around the year 2000 and later uses an IPET-based
approach.

aiT (AbsInt GmbH)

The aiT WCET analyzer is a commercial product developed by AbsInt
Angewandte Informatik GmbH, Saarbrücken, and is available for different
hardware architectures including ARM7, Motorola Star12/HCS12, and Pow-
erPC 555 [FHT03; Fer04; HF05; Abs10a]. Analysis-wise, aiT features a value
analysis to predict jump targets and a cache and pipeline analysis. Apart from
that, the user can provide annotations in the AIS language. The tool operates on
the binary level, and therefore supports object code annotations, like, e. g., jump
targets, to reconstruct the CFG. By using debug information for the mapping,
annotations can also be specified at the source code level. However, there is no
guarantee that a direct mapping will always be possible. The AIS language also
offers annotation variables (register variables) for annotating context-sensitive
information. Any annotation can make assignments to these variables, which
can later be checked for specific values. The values of annotation variables are
taken into account by the abstract interpretation when analyzing the program.

Bound-T (Tidorum Ltd)

Bound-T is a commercial WCET analysis tool originally developed at Space
Systems Finland Ltd and now marketed by Tidorum Ltd [HLS00; HLS05].

CHAPTER 1. OVERVIEW 6

Bound-T operates on the object code level and relies on debug information
and user-provided annotations. The analysis process comprises four stages,
including call-graph construction, loop-bound computation, user annotation of
missing loop-bounds and WCET bound calculation. The first stage performs a
control-flow analysis of the argument program and constructs its call graph. In
the second stage, each loop body is analyzed by rewriting individual statements
into Presburger arithmetic, a decidable subset of integer arithmetic. The imple-
mentation uses the Omega framework provided by the University of Maryland.
By expressing each loop body as composition of decidable formulæ, it is possible
to compute the increment values of loop counters and based thereon bounds
for all counter-based loops. The third stage involves user-assistance for loops
which could not automatically be bounded in the second stage. Bound-T emits a
warning for each missing bound, together with the context of the loop in question.
For such loops, the user is prompted to provide an assertion which specifies
the missing bound. The fourth stage performs the WCET bound computation,
which is done bottom-up on the call graph. The call graph has to be acyclic.
The WCET calculation is then performed by transforming the flow information
and the program structure into an ILP problem which is subsequently passed to
the lp_solve tool [BDEN10].

Chronos (National University of Singapore)

The Chronos WCET analysis tool is based on the processor models of Sim-
pleScalar, a cycle-accurate architectural simulator [LLMR07; ALE02]. Its
strengths lie in the modelling of microarchitectural features like out-of-order
execution and dynamic global branch prediction. Chronos does not have an anno-
tation language of its own, but allows the user to directly specify constraints for
basic blocks in the format of the external CPLEX ILP solver [IBM10]. Chronos
also features an automatic infeasible path analysis.

Heptane (IRISA, Rennes)

The Heptane tool combines two different WCET bound calculation methods, one
based on C source code and one based on machine code [CP01]. Loop bounds
and absolute time bounds for procedures can be annotated by the user. For this
purpose, the C syntax was extended with additional constructs. Optimizations,
however, potentially invalidate information annotated at source code level. Thus,
Heptane also supports machine code annotations, which are to be provided in a
separate XML file. Heptane has models for branch prediction instruction caches
and a pipeline.

Hume (University of St. Andrews)

The EU-funded Embounded project applies cost metrics to the functional pro-
gramming language Hume [HDF+05; HBH+07]. The Hume language consists
of purely functional “boxes” which are interconnected via communication wires.
The source code is compiled into the Schopenhauer high-level intermediate rep-
resentation; on this representation a type-based “amortized cost analysis” is
performed. The output of this analysis is a set of constraints that describe the
behaviour of the low-level byte code. The cost of each byte-code instruction is

CHAPTER 1. OVERVIEW 7

statically determined by invoking the aiT tool once per byte-code instruction and
target hardware. By applying the instruction costs and solving the constraint
system a WCET bound is calculated.

Otawa (IRIT, Toulouse)

The Open Tool for Adaptive WCET Analysis (Otawa) is a framework for building
research WCET analyzers, and is available under a free software license [CS06;
dMBCS08; BCN+08]. It provides WCET analysis using IPET and is targeted
towards binary programs. Static program analysis is provided by the source-level
oRange analyzer which extracts loop bounds and infeasible paths from the input
program. In Otawa, annotations can either be specified in the Flow Fact XML
format (FFX) which is an XML representation of flow information, or in the
Flow Facts File Format (F4) which is a simpler textual format with a more
compact syntax.

Sweet (Mälardalen University)

The Swedish Execution-Time Tool (Sweet) is a research prototype combining
control flow analysis of C programs and WCET bound computation for the ARM9
and NEC V850E processors [EE00; EES02; ESG+07; GEL+09]. Recent versions
of Sweet are based on the ALF intermediate representation, which is a target-
independent language at an abstraction level close to the C language. In Sweet
there are several ways to compute infeasible paths and loop bounds, including a
combination of program slicing and value analysis but also a technique called
“abstract execution” that works by executing the source program symbolically.
The timing analysis backend models the pipeline for traces by interfacing with
cycle-accurate processor simulators.

Wcc (Dortmund University of Technology)

The Wcc compiler is a WCET-aware C compiler focusing on producing an
executable that is optimized for a minimal WCET [FLT06; LCFM09; LM09].
The compiler allows for source-level control flow annotations. A distinctive
feature of Wcc is a component called the “flow fact manager” that is in charge
of keeping all control flow information up to date during the whole compilation
process. The Wcc compiler also includes a polyhedral loop model which is
the basis for both loop optimizations and loop analysis. Optimizations are
either carried out on a high-level intermediate representation (ICD-C) or on
a machine-near representation (LLIR). The compiler outputs annotations and
code for the Infineon TriCore TC1796, which can then be analyzed by a separate
tool like aiT.

wcetC (Vienna University of Technology)

The tool chain surrounding the CalcWCETC167 tool uses the wcetC language
as input language [Kir01; Kir02; Kir08]. wcetC is a C dialect extended by
constructs needed to annotate timing information. The distinctive feature of
the tool chain is that the compiler (an extended version of GCC 2.7) correctly
transforms all control flow annotations from source-code to machine-code level.

CHAPTER 1. OVERVIEW 8

The wcetC tool chain does not include any additional control-flow analyses or
data-flow analyses.

1.1.4 Measurement-based WCET analysis
The biggest challenge for the correctness of static WCET analysis is the accuracy
of the theoretical model of the target hardware, since it makes or breaks the
accuracy of the calculated bound. Any errors in the specification or the modelling,
any deviations in the implementation of later generations of the used processor,
can render any prediction of the WCET inaccurate. Dynamic (measurement-
based) WCET analysis tackles this problem by instrumenting the actual target
hardware to get accurate time values. However, the gained accuracy is traded
for an entirely new problem: It is now necessary to find input data to the target
program that triggers the actual worst-case path, otherwise the safety of the
measured timings cannot be guaranteed.

Measurement-based research prototype (Chalmers University of Tech-
nology)

The research prototype developed at Chalmers University of Technology uses a
WCET bound calculation backend that is based on a cycle-accurate simulation
of the target processor [LS99a; LS99b; LS99c]. In order to contain the state
space the simulation is performed symbolically where possible. To prohibit
the repeated simulation of identical path segments, path-merging is performed.
The tool contains a data-cache analysis for a certain class of “predictable” data
structures. Further, the tool can perform program transformations to eliminate
timing anomalies [WKPR05] in the machine code.

RapiTime (Rapita Systems Ltd)

RapiTime is a commercial product developed by Rapita Systems Ltd., York,
that combines measurements of the execution-time on the actual target hardware
with path analysis to calculate a WCET bound estimate for programs written
in C and Ada [BCP03; RAP06]. RapiTime is an extension of the probabilistic
WCET analysis developed at the University of York. The measurement passes
are controlled by test data that has to be supplied by the user. Annotations are
used to identify sensible points for the instrumentation necessary for execution
time measurements.

SymTA/P (TU Braunschweig)

SymTA/P is a measurement-based WCET analysis tool tailored to microcon-
trollers [WSE02; SE06]. It features static analyses for the behaviour of instruction
and data caches. The framework was also adapted to estimate the power con-
sumed by a program running on the target hardware. For the execution time
measurements traces called “single feasible paths” are identified by a static
analysis.

CHAPTER 1. OVERVIEW 9

Measurement-based research prototype (Vienna University of Tech-
nology)

The research prototype from Vienna University of Technology combines auto-
matic generation of test data with execution time measurements [WRKP05].
To minimize the number of measurement runs, the program is automatically
partitioned according to the results of a static analysis. The tool currently does
not make use of an annotation language.

1.1.5 Other annotation concepts
Assertion language (Mälardalen University)

This assertion language is a model for a generic annotation language with a
broad field of applications [Lis05; KKP+10b]. In principle it can be used to
describe quite different aspects of program behaviour. In particular, it can
be used to describe flow constraints for WCET analysis, though it was not
specifically designed for this purpose. The assertion language is derived from
the existing assertion language used in Floyd/Hoare-style logic [Flo67; Hoa69],
which is extended by a notion of time and the inclusion of execution counters.
Moreover, in the assertion language assertions are no longer necessarily tied to a
single program location.

Symbolic annotations and discrete loops (Vienna University of Tech-
nology)

Discrete loops are a generalized variant of for-loops [Bli94]. In addition to the
parameters of a standard for-loop, in a discreet loop, the programmer can specify
constraints that symbolically describe the possible values the iteration variable
can take in the immediately following loop iteration. These constraints can
either be validated at compile-time or—if that is not possible—at run-time.

The seamless integration of annotation and programming language is an
appealing feature; still, discrete loops, which have been proposed for the Ada
language have yet to find their way into other programming languages.

1.1.6 Other directions for control flow analysis
Invariant generation (Microsoft Research)

Symbolic bounds describing the asymptotic complexity of programs can also be
used as input to WCET bound analysis [GJK09]. Especially in concert with SMT
solvers, invariant generation techniques have become increasingly powerful in the
recent past. Control-flow constraints (invariants) can be gathered via an abstract
interpretation and contribute to construct a state transition system similar to
the control flow automata used by model checking software. Complexity bounds
can then be found by proving hypotheses on these transition systems using an
off-the-shelf SMT solver.

Recurrence relations (Complutense University of Madrid)

Symbolic complexity bounds can also be found by reformulating loop invariants as
recurrence relations [AAGP08]. It is possible to approximate recurrence relations

CHAPTER 1. OVERVIEW 10

System CFA WCETA Annotations Optim. Reference
Euclid — tree srclang — [KS86]
Modula/R — tree srclang — [Vrc92]
SPARK Ada — tree srclang — [CBW94]
TAS — tree bin,ext — [Che87]
Timing Tool — tree interactive — [Sha89]
PL/IDL — path src — [Par92]
Florida interm. path — — [HSR+00]
aiT bin ILP src+bin — [FHT03]
Bound-T bin ILP bin,ext — [HLS00]
Chronos — ILP src,ext — [LLMR07]
Heptane — ILP srclang+bin — [CP01]
Hume interm. ILP — high-level [HDF+05]
Otawa src ILP src,ext — [CS06]
Sweet interm. ILP src — [EE00]
Wcc interm. ILP src backend [FLT06]
wcetC — ILP srclang backend [Kir01]
Chalmers bin simul. — — [LS99a]
RapiTime — measure — — [BCP03]
SymTA/P src measure — — [WSE02]
Vienna — measure — — [WRKP05]
TuBound src ILP src high-level [PSK08], hic!

Table 1.1: Comparison of different WCET analysis systems

by a non-recursive “closed form”, which is generally an upper bound. This upper
bound formulation represents a symbolic bound to the original program.

1.1.7 Comparison and summary
A summarizing comparison of the presented WCET analysis systems and anno-
tation languages is given in Table 1.1. The first column “System” of Table 1.1
gives the name of the tool(-chain) or language. In the second column “CFA” the
abstraction level of the control flow analysis performed by the tool is noted, where
applicable: The options are none [—], binary/object code [bin], the compiler’s
intermediate representation [interm.] and the source code level [src]. In column
three “WCETA” the method of WCET calculation employed by the tool is stated.
In column four “Annotations” the supported level of annotations is stated: The
options include being extensions of the programming language [srclang], being
embedded in the source code as comments or pragma declarations [src], referring
to the object code or the final binary [bin]. If the annotations are located in an
external file, this is also mentioned [ext]. The second-to-last column “Optim.”
states whether the tool chain can perform optimizations of the program code and
on which abstraction level they are performed ([high-level] or in the compiler’s
[backend]).

Following this table some general design trends in WCET analyzers became
obvious: The most obvious one is the move towards an ILP-based backend, as

CHAPTER 1. OVERVIEW 11

already discussed in Section 1.1.3. The majority of newer WCET analyzers also
provide some kind of control flow analysis (CFA). There seems to be no consensus
regarding the abstraction level to use for performing the CFA. The choice of
abstraction level also comes into play if an optimization stage is available. If the
CFA is performed before the program optimizations, i. e., on a higher abstraction
level, then any alterations of the control flow introduced by the optimizer need
to be taken into account. Providing CFA is important to reduce the amount
of manual annotations needed for the WCET analysis. Not only does this save
time by lifting the burden from the programmer, it is also important to minimize
the amount of trusted information the result is based on, thus increasing the
likelihood of a correct WCET bound. For the remaining annotations, there is a
trend towards moving annotations into the source code. While earlier systems
advocated extensions of the syntax of the programming language, a less invasive
annotation mechanism using a special comment syntax seems to be preferred
by most newer tools. A plausible explanation for this is the move towards
using off-the-shelf compilers which are not open for adaptions by the WCET
community.

What becomes obvious from this analysis is that the landscape of WCET
analyzers is quite heterogeneous, especially in respect to control flow analysis,
annotation level and support of optimizations. In response to this situation a
number of efforts were undertaken to increase the comparability of tools and the
cooperation between research groups:

1. The WCET Tool Challenge was initiated in 2006 [Gus06]. A detailed
report was recently published in the International Journal on Software
Tools for Technology Transfer [Tan09]. The success from the first tool
challenge was the incentive to continue the effort in 2008 with the second
WCET Tool Challenge [HGB+08].

2. Backed by funding from the 7th Framework Programme of the European
Commission, the research project ALL-TIMES was commenced. The
goal of this project is to increase the interoperability of academic and
commercial WCET analysis tools [GLS+08; UGoT+10].

The following section details how the work presented in this thesis integrates
with the current landscape of WCET analyzers and where it goes further to
advance the state of the art.

1.2 Objectives and contributions
The goal of this work is to prove that by making information from the source
code available to WCET analysis, both precision and usability can be improved
significantly. Not only should static analyses be able to harness the information
present in the source code, programmers (who are guiding the automatic analysis)
should also be much more productive when, instead of annotating the object
code, they can make annotations at the same abstraction level they are writing
programs, i. e., at the source code. It is important to ensure that the source-level
support does not come at the expense of safety and portability. The feasibility
of the approach needs to be demonstrated in a realistic environment.

CHAPTER 1. OVERVIEW 12

Provided with the study of state-of-the-art WCET analysis systems sum-
marized in Table 1.1, the following requirements can be identified for a WCET
analyzer to be competitive:

1. Control-flow analysis must be available and must be as powerful as possible.

2. Annotations must be available at the source-code level and before the
compilation.

3. The resulting code must be optimized for the worst case behaviour; mini-
mizing the WCET.

4. The WCET bound calculation must support constraints on basic blocks
and paths.

However, there are more objectives that are special to this thesis that go
beyond recreating work already present in existing analysis systems:

5. Due to advancements in compiler technology and increasing processing
power, there is an emerging trend to move away from using C towards
using C++ to program embedded systems. Our tool encourages this move
by providing support for a sensible subset of C++.

6. Annotations are generated automatically whenever possible. If it is neces-
sary to fall back to manual annotations, their correctness is verified, if that
is possible. Annotations are always safely transformed to the assembler
language level.

7. We turn WCET analysis and manual annotating into an iterative process
of progressive refinement, as described below.

In traditional WCET analysis systems, the user annotates the program after
compilation, often at the assembler or object code level. The goal of this work
is in fact to make annotating and analysis an interwoven and iterative process.
The results of automatic analyses are annotated to the source code, where they
can be reviewed by the programmer, who can then decide whether to refine them
by hand. In this respect, optimizations performed by the compiler have the
unfavorable property of altering the control flow of the program. This is in direct
conflict with annotations, whose sole purpose is the description of control flow
properties. By making annotations subject to a conjoint transformation together
with the program optimizations, this problem can be overcome. In order to
provide this as a lightweight addition to the tool chain, the key ingredient here
are source-to-source transformations: By carrying out the transformation step
on the source code level, the system is remains portable to other architectures,
as long as the target’s compiler is instructed to perform a direct translation to
machine code.

1.2.1 Practical aspects
The algorithms described in this thesis have been implemented by using and
extending the SATIrE framework [Vie10b] and the Rose compiler [Law10] for
the high-level parts and CalcWCETC167 [Vie10a] and GCC [Fre10] as low-level
backends. This work resulted in a new WCET analysis software called TuBound.

CHAPTER 1. OVERVIEW 13

All program transformations and many of the analyses are implemented on
a term-based representation of the C++ abstract syntax tree. As a result of
this work a Prolog support library called Termite [Vie10c] originated, which is
included in newer SATIrE releases.

The success of the approach was demonstrated by entering TuBound into
the WCET Tool Challenge 2008, where the capabilities of the analyzer were
compared and benchmarked against several other WCET analyzers. The feedback
from the WCET analysis community was generally positive; in the course of
the EU FP7-project “ALL-TIMES” our project partners encouraged providing
interfaces to TuBound’s static analyses. As a direct result, we incorporated all
analyses available in TuBound into the SATIrE distribution which is available
under a free software license. Towards the end of the ALL-TIMES project these
analyses are now available to aiT, RapiTime, and Sweet. The connection with
aiT is realized by generating annotations in aiT’s annotation language AIS.
Similarly an annotation generator for RapiTime exists. Sweet is connected via
the melmac compiler [Bár10], an ALF (the intermediate representation used by
Sweet [GEL+09]) backend for SATIrE.

1.3 Outline of this thesis
The following list of chapters gives an outline of this thesis and points to relevant
publications that originated from this work:

• Chapter 1 provides a gentle introduction to the field of worst-case execution
time analysis, and a survey of WCET analysis methods and tools. We first
treated this topic within the paper “WCET Analysis: The Annotation
Language Challenge” presented at WCET 2007 [KKP+07]. This has led
to the article “Beyond Loop Bounds: Comparing Annotation Languages
for Worst-Case Execution Time Analysis”, published in a special issue of
the Journal on Software and System Modeling (Springer) [KKP+10b].

• In Chapter 2 the general architecture of TuBound is described. This has
led to the paper “TuBound – A Conceptually New Tool for Worst-Case
Execution Time Analysis” presented at WCET 2008 [PSK08].

• The algorithms and the theory behind the static analyses implemented
within TuBound are described in Chapter 3. The paper “Constraint
solving for high-level WCET analysis”, based on this work, was presented
at WLPE 2008 [PKST08].

• In the first part of Chapter 4 the methods used to ensure the correctness
of the analysis implementations are detailed. The technique of “Per-
sistent Analysis Results” was presented at the 26th meeting of the Ger-
man Gesellschaft für Informatik e.V., Fachgruppe „Programmiersprachen
und Rechenkonzepte“ [PKS09]. The second part deals with the ramifica-
tions of applying this technique to manual annotations—the paper “From
trusted annotations to verified knowledge” was presented at WCET 2009
[PKK+09].

• In Chapter 5 we discuss the problems caused by compiler optimizations
and present source-to-source transformations as a portable solution. This

CHAPTER 1. OVERVIEW 14

includes the automatic transformation of flow information. The underly-
ing idea “The CoSTA Transformer: Integrating Optimizing Compilation
and WCET Flow Facts Transformation” was presented at the 14th Kol-
loquium „Programmiersprachen und Grundlagen der Programmierung
(KPS ’07)“ [Pra07b]. The fully-fledged approach was later described in
the article “Transforming Flow Information during Code Optimization
for Timing Analysis” published in the Journal on Real-Time Systems
(Springer) [KPP10].

• Chapter 6 serves as a collection of technical details regarding the imple-
mentation of TuBound and its interdependence with the SATIrE program
analysis framework.

• Chapter 7 gathers benchmark results demonstrating the power of our
approach. Among others, this chapter also contains more detailed results
from the WCET Tool Challenge than published in the paper “WCET Tool
Challenge 2008: Report” from WCET 2008 [HGB+08].

• Chapter 8 concludes this thesis by summarizing notable contributions and
pointing to collaborative work that originated from it. Finally it also
provides an outlook into worthwhile directions for future extensions.

In the following chapter, we will start by introducing terminology used all
throughout thesis.

Chapter 2

Introducing TuBound

2.1 Preliminaries: Flow information
All of the concepts presented in this thesis are centred around the handling of
flow information. We define flow information to include any kind of control
or data flow information that can be used to describe the feasible paths in a
program. Since the actual feasible paths are only a subset of the set of paths
represented by the program’s control flow graph, we will also use the term
flow constraints synonymously for flow information. Flow information exists
in various degrees of abstraction ranging from value restrictions of variables
down to explicit execution counts of certain paths. Loop and recursion bounds
comprise essential flow information, without which a timing analysis is rendered
impossible. A detailed taxonomy of all the possible kinds of flow information is
published in a dedicated survey paper [KKP+08].

Flow information can have originating sources: If the information can be
found via a static analysis of the program, then it is inherently defined by the
program itself and obviously valid. In practise it is, however, often necessary
to let the user provide additional flow information in the form of annotations.
Such information is per definition unverified and must be trusted. In some cases
(if an automatic analysis was just not strong enough) it is, however, possible to
validate such information (cf. Chapter 4 [PKK+09]). Annotations can also serve
as a convenient way to implement persistent storage medium for the results of a
static analysis. It is therefore of advantage that a tool has a solid support for
annotations. A detailed survey of a broad range of WCET analysis tools and
their respective annotation languages can be found in [KKP+07].

It was already mentioned that there exists a wealth of different types of flow
information. One way to categorize these types is to introduce a hierarchy of
flow information, based on its originating location in the chain of timing analysis
steps. At the lowest level, flow information consists of cumulative frequency
information for all execution paths of the analyzed program. To visualize this,
the control flow graph can be imagined as a flow system where the flow of the
unique start node and end node is 1. If the timing analysis assumes a constant
machine model (where the execution time of one instruction is independent of
the execution history), path information can be efficiently stored as execution
frequencies of edges in the CFG, as shown in Figure 2.1. If the underlying

15

CHAPTER 2. INTRODUCING TUBOUND 16

if (b)

n = 0; n = 32;

do {
...

} while(--n > 0)
m · [0 . . . n]

m

k = m− l l = m− k

k l

m

Figure 2.1: Control flow graph with frequency information on the edges

machine model uses dynamic costs (this is brought about by the introduction of
pipelines, caches or other shared resources, such as multiple-issue CPUs) it is
advantageous to store the frequency information for longer paths and also include
other information, such as on mutually exclusive paths. Since the amount of
data in this case is much larger it becomes more important to introduce new
abstractions such as execution traces [FFY04; WA08].

In order to calculate upper bounds for the particular execution frequencies, a
majority of WCET analyzers use integer linear programming (ILP) to maximize
a system of flow constraints (IPET, cf. Section 1.1.3). Other approaches, based
either on regular expressions or graph rewriting could obviously not prevail
in more recent analyzers. For this reason linear flow constraints constitute a
de facto standard as a low-level representation of flow information. They also
dominate the annotation language of TuBound (cf. Section 2.5).

In our TuBound implementation, we use several levels of flow information,
produced and consumed by different analysis steps:

• A points-to analysis generates sets of aliasing pointers.

• An interval analysis uses this information to yield value-ranges for all
variables, which are used by

• multiple loop analyses that generate upper bounds for loop iterations as
well as more complex flow constraints.

CHAPTER 2. INTRODUCING TUBOUND 17

With the exception of the points-to analysis, these steps are decoupled such
that the analysis information can be written as annotations to the source code.
This flexibility is the basis for the flow information transformation described in
Chapter 5.

2.2 Design goals
In this chapter we provide an overview of the architecture and components of the
TuBound WCET analyzer software. This description extends on an introductory
paper previously published at the WCET’08 workshop [PSK08].

As established in Section 1.1.7, static WCET analysis is typically implemented
by the implicit path enumeration technique (IPET) which works by searching for
the longest path in the interprocedural control flow graph (ICFG). This search
space is described by a set of flow constraints (also called flow facts), which
include, e. g., upper bounds for loops and relative frequencies of branches. Flow
constraints can generally be determined by statically analyzing the program.
However, there are many cases where a tool has to rely on annotations that are
provided by the programmer, be it because of the imprecision of the analyses,
or due to the fact that information about the execution environment inherently
has no representation in the programming language [KKP+08]. An example for
this is a loop whose iteration count depends on input data. Current WCET
analysis tools, as they are used by industry and in academia, therefore allow the
user to annotate the machine code with flow constraints. A central idea behind
TuBound is to lift the annotation level from machine code to source code and to
smoothly close the gap between source code annotations and machine-specific
WCET analysis. We argue that providing high-level annotation support at the
source code level has several benefits:

• Convenience and ease: For the user, annotating the source code is generally
easier and less demanding than annotating the assembler output of the
compiler.

• Reuse and portability: Source code annotations, which specify hardware-
independent behaviour, can directly be reused when the program is ported
to another target hardware.

• Feedback and tuning: Source code annotations can be used to present the
results of static analyses to the programmer for inspection and further
manual refinement.

These benefits, however can only be materialized, if the actual longest-path
search of the WCET calculation can still be performed on the machine code that
will be executed on the target hardware. Compiler optimizations thus represent
an obstacle to using source code annotations, as they can change the control
flow of the program and hence invalidate annotations.

In TuBound, this is taken care of by transforming flow constraints according
to the performed optimizations. Technically, this is achieved by a special flow
constraint transformer, which is a core component of TuBound. The technological
basis for this component are source-to-source transformations. Therefore, our

CHAPTER 2. INTRODUCING TUBOUND 18

overall approach is retargetable to other WCET tools; currently we are using
CalcWCETC167.

From the tool developer’s point of view, this source-based approach offers
the advantage that analyses can use high-level information that is present in
the source code, but would be lost during the lowering to an intermediate
representation. A typical example for such information is the differentiation
between bounded array accesses and unbounded pointer dereference operations.
Moreover, since the output of a source-based analysis is again annotated source
code, this approach allows to create a feedback loop where the user can run the
static analysis and fill in the annotations where the analysis failed to produce
satisfactory results. Afterwards, the analysis can be rerun with the enriched
annotations to produce even tighter estimates.

2.3 The Architecture of TuBound
TuBound was built by integrating several components that were developed
independently of each other. The majority of the components are designed to
operate on source code. This decision was motivated by gains in flexibility for
both tool developers and users.

The architecture and work flow of TuBound is summarized in Figure 2.2. The
connecting glue between the components is the Static Analysis Tool Integration
Engine (SATIrE) [Sch07a; Vie10b]. With SATIrE it is possible to specify data
flow analyzers with the Program Analyzer Generator (PAG) [Mar98] and run
them on C++ programs, using the infrastructure of the Rose compiler [Law10].
SATIrE transforms programs into its own intermediate representation, which is
an interprocedural control-flow graph (ICFG) based on the abstract syntax tree
(AST) exported by Rose. An external term representation of the AST can be
exported and read by SATIrE. This term representation is generated by a traversal
of the AST and contains all information that is necessary to correctly unparse
the program. This information is very fine-grained and includes in particular line
and column information of the respective expressions. Additionally the terms
are annotated with the results of any preceding static analysis. The key feature,
however, is the syntax of the term representation. It is designed carefully to
match the syntax of Prolog terms. In this form it can be manipulated as and
by a Prolog program very easily. A similar approach of using Prolog terms to
represent the AST of a program is used in the JTransformer framework for the
Java language [Uni10].

The Rose compiler [Law10] is a source-to-source transformation framework
that includes the EDG (Edison Design Group) C++ front end, a loop optimizer
and a C++ unparser [SQ03]. The loop optimizer was ported from the Fortran D
compiler. In TuBound we are using the front end and the high-level loop optimizer
that is part of Rose. In the course of this work we also adopted the clang front
end from the LLVM project [LLV10] to be used as an alternative to the EDG’s
one (cf. Section 6.2.2). The Program Analyzer Generator (PAG) [Mar98; Abs10b]
by AbsInt Angewandte Informatik GmbH allows the specification of data flow
analyses in a specialized functional language. Using PAG, we implemented
a variable interval analysis for TuBound. To operate on the external term
representation of the AST that SATIrE can export and import, we developed the
Prolog library Termite [Vie10c]. We implemented our own term-based loop bound

CHAPTER 2. INTRODUCING TUBOUND 19

C++ source code

EDG C++
front-end

Points-to analysis (C++/PAG)

Interval analysis (PAG)

Loop bound analysis (Prolog)

Fortran D loop optimizer

Flow constraint transformation

Rose C++
back-end

C++ source code
with annotations

GCC
compiler
(modified)

Assembler with
annotations CalcWCETC167

Control-flow analysis (SATIrE)

Optimization

Compilation & WCET calculation

Worst-case
execution time

Figure 2.2: The collaboration of TuBound’s components

CHAPTER 2. INTRODUCING TUBOUND 20

analyzer with the help of the Termite library (cf. Section 3.2.1). We are using a
customized unparser to generate annotated source code. CalcWCETC167 [Vie10a]
is a tool that performs WCET analysis for the Infineon C167 micro-controller.
CalcWCETC167 expects annotated C167 assembler code as input. The tool is
complemented by a customized version of the GNU C compiler that translates
annotated C sources into annotated assembler code for the C167 micro-controller.

2.4 The work flow of TuBound
Conceptually, the work flow of analyzing a program with TuBound comprises
three stages:

2.4.1 Start-up and annotation
Parsing. In the first phase, the source code of the program is parsed by the
EDG C++ front end that is integrated into the Rose compiler or, alternatively,
by the clang front end. Rose then creates a C++ data structure of the AST
and performs consistency checks to verify its integrity. The AST is traversed by
SATIrE to generate the interprocedural control flow graph (ICFG), an amalgam
of call graph and intra-procedural CFG [SP81].

Points-to analysis. Based on the ICFG of the AST, a points-to analysis is
performed. This analysis is unification-based [Ste96] with extensions similar to
work of Lattner et al. [LLA07]. The points-to graphs resulting from this analysis
are available to all subsequent steps via a query interface [Bár09].

Interval analysis. The ICFG data structure is also the interface for the PAG-
based interval analysis that calculates the possible variable value ranges at all
program locations. The interval analysis operates on a normalized representation
of the source code that is generated during the creation of the ICFG. The
interval analysis is formulated as an interprocedural data-flow problem and is a
preprocess of the loop bounding algorithm, which is otherwise unable to analyze
iteration counts that depend on variable values that stem from different calling
contexts (context-sensitive analysis). Once the interval analysis converges to a
fixed point, the results are mapped back to the AST.

Loop Bound Analysis. The next step is the loop bound analysis. This
analysis operates on the external term representation of SATIrE. We exploit this
fact with our loop bound analysis which is written entirely in Prolog. Our loop
bounding algorithm exploits several features of Prolog: To calculate loop bounds,
a symbolic equation is constructed, which is then solved by a set of rules. It is
thus possible for identical variables with unknown, but constant values to cancel
each other out. For example, in the code

for (p = buf; p < buf+8; p++)

the symbolic equation is bound = buf+8−buf
1 . The right-hand side expression

can then be reduced by term rewriting rules implemented in the loop bound
analysis. The loop bounding algorithm also checks that the iteration variable

CHAPTER 2. INTRODUCING TUBOUND 21

Original program Annotations generated by TuBound

1 int main()
2 {
3 int i,j;
4 for (i=0; i<100; i++)
5 {
6 for (j=0; j<i; j++)
7 {
8 // body
9 }
10 }
11 }

1 int main() {
2 #pragma wcet_marker(m1)
3 int i;
4 int j;
5 for (i=0; i<100; i++) {
6 #pragma wcet_constraint(
7 m2=<m1*100)
8 #pragma wcet_marker(m2)
9 #pragma wcet_loopbound(100)
10 for (j=0; j<i; j++) {
11 #pragma wcet_constraint(
12 m3=<m_1*4950)
13 #pragma wcet_marker(m3)
14 #pragma wcet_loopbound(99)
15 // body
16 }
17 }
18 return 0;
19 }

Figure 2.3: Finding flow constraints with TuBound

is not modified inside the loop body. This is implemented with a control flow-
insensitive analysis [Muc97] that ensures that the iteration variable does not
occur at the left-hand side of an expression inside the loop body and its address
is never referenced within its scope.

In the case of nested loops with non-quadratic iteration spaces, loop bounds
alone would lead to an unnecessary overestimation of the WCET. In our al-
gorithm, we are using constraint logic programming to yield generalized flow
constraints that describe the iteration space more accurately. An example is
shown in Figure 2.3. The nested loop in the example has a triangular iteration
space, where the innermost basic block is executed n · n−1

2 = 4950 times. Our
analyzer finds the following equation system for this loop nest:

m3 =
99∑
n=0

m3.n({i := n}) (2.1)

m3.n(i) = n = i (2.2)
m2 = m1 · 100 (2.3)

The equations are constructed with the help of an environment that consists
of the assignments of variables at the current iteration. The variable m1 stands
for the execution count of the main() function, m2 for the count of the outer
loop, and m3 for the count of the innermost loop relative to the function entry.
The variables m3.n describe count of the innermost loop relative to the loop
entry for the nth iteration of the outer loop. Equation 2.1 describes the value of i
for each iteration of the outer loop, running from 0 . . . 99. Equation 2.2 describes

CHAPTER 2. INTRODUCING TUBOUND 22

the generic behaviour of the inner loop, stating that its iteration count is equal
to the value of n in the current environment, where the current environment
merely consists of the variable i. The final Equation 2.3 describes the behaviour
of the outer loop.

The use of constraint logic programming allows for a lightweight implementa-
tion that does not rely on additional tools. In earlier work, Healy et al. [HSR+00]
used analysis data to feed an external symbolic algebra system that solves the
equation systems for loop bounds. More details on our use of constraint logic
programming can be found in Section 3.3.

Eventually, the results of the loop bound analysis are inserted into the term
representation as annotations of the source code. We use the #pragma directive
to attach annotations to basic blocks. The annotations consist of markers, scopes,
loop bounds and generic constraints. Markers are used to provide unique names
for each basic block, which can then be referred to by constraints. Constraints
are inequalities that express relationships between the execution frequencies of
basic blocks. Loop bounds are declared within a loop body and denote an upper
bound for the execution count of the loop relative to the loop entry. Scopes are
a means to limit the area of validity of markers, allowing for example to express
relationships that are local to a sub-graph of the ICFG.

2.4.2 Program optimization and WCET annotation trans-
formation

The flow constraint transformation phase is concerned with program sources
that are already annotated with WCET constraints, stemming from either an
earlier analysis pass or a human. WCET constraints describe the control flow
of the program in order to reduce the search space for feasible paths. During
the compilation, however, optimizations are performed that modify the control
flow. This concerns for example optimizations like loop unrolling, loop fusion
and inlining, whereas others like constant folding and strength reduction do not
affect the control flow graph. To guarantee the correctness of the annotations
of the program sources, we either have to disable these control-flow modifying
optimizations and sacrifice performance or transform the annotations accordingly.
To achieve the latter, we implemented a transformation component for flow
constraints.

A large number of CFG-altering optimizations are loop transformations. For
this reason, we based our implementation on the Fortran D loop optimizer that is
part of Rose. Keeping optimizations of interest separate from the compiler, our
transformation framework is very flexible and also portable to other optimizers.
The input to the flow constraint transformation is an optimization trace, consist-
ing of a list of all transformations the optimizer applied to the program, and a set
of rules that describe the correct constraint update for each optimization. The
concept of using an optimization trace can be applied to any existing compiler.
The rules need to be written only once per optimization/compiler pair. The rules,
as well as the transformation of the flow constraints are written in Prolog and
operate on the term representation of the AST. As a matter of fact, the syntax
used to express the flow constraints is identical to that of Prolog terms, too,
thus rendering the manipulation of flow constraints very easy. Figure 2.4 gives
an example of such a transformation. We currently have rules implementing
loop blocking, loop fusion and loop unrolling. With all support predicates, the

CHAPTER 2. INTRODUCING TUBOUND 23

definitions of the rules range from 2 (loop fusion) to 25 (loop unrolling) lines of
Prolog [Pra07b].

2.4.3 Compilation and WCET calculation
As indicated by the dashed arrow in Figure 2.2, the users are free to inspect the
annotated source code at this point. If they chose to manually refine the analysis
results they are free to do so. It is also possible to restart the automatic analyses
at this point, such that they can make use of any newly added information.

Compilation to assembler code. The annotated source code resulting from
the previous stage is now converted into the slightly different syntax of the
wcetC-language that is expected by the compiler [Kir02]. This is a version
of the GNU C Compiler (GCC) that is customized to parse wcetC and to
guarantee preservation of all flow constraints and their validity on their way to
the C167 machine language level. The output of this customized GCC version is
annotated assembler code.

WCET calculation. CalcWCETC167 reads the annotated assembler code
that is produced by the customized GCC and generates the control flow graph
of every function. CalcWCETC167 implements the IPET method and contains
timing tables for the instruction set and memory of the supported hardware
configurations which are used to construct a system of inequalities describing
the weighted control flow graph of each function. The weights of the edges
correspond to the execution time of each basic block. This system of inequalities
is then used as input for an integer linear programming (ILP) solver that searches
for the longest path through the weighted CFG. The resulting information can
then be mapped back to the assembler code and can optionally also be associated
with the original source code [Vie10a].

2.5 The annotation language of TuBound
Annotations in TuBound serve two purposes: Firstly, they provide a programmer-
friendly user interface to support the timing analysis with domain-specific knowl-
edge; secondly, they are a textual intermediate representation for results auto-
matically generated by the static program analysis component. Since the result
of the static analysis is attached to the program source code, the programmer
can inspect it and then decide precisely where to manually refine the annotations,
thus keeping the amount of human intervention at a minimum.

2.5.1 Annotation syntax and source code integration
TuBound uses the #pragma directive to embed annotations into C++ sources.
With this mechanism, it is possible to place an annotation at each sequence
point of the program. In its current version, annotations comprise the following
four types:

1. Loop bounds are the most basic type of annotation available in TuBound.
For a successful timing analysis it is mandatory that every loop construct

CHAPTER 2. INTRODUCING TUBOUND 24

Original annotated program

1 int* f(int* a)
2 {
3 int i;
4 #pragma wcet_marker(m_func)
5 for (i = 0; i < 48; i += 1) {
6 #pragma wcet_loopbound(48)
7 #pragma wcet_marker(m_for)
8 if (test(a[i])) {
9 #pragma wcet_marker(m_if)
10 // Domain-specific knowledge
11 #pragma wcet_constraint(m_if =< m_for/4)
12
13 a[i]++;
14 }
15 }
16 return a;
17 }

After loop unrolling by factor 2

1 int *f(int *a)
2 {
3 int i;
4 for (i = 0; i <= 47; i += 2) {
5 #pragma wcet_marker(m_f_1_1)
6 #pragma wcet_loopbound(24)
7 if ((test(a[i]))) {
8 #pragma wcet_marker(m_f_1_1_1)
9 #pragma wcet_constraint(m_f_1_1_1+m_f_1_1_2=<m_f_1_1/2)
10 a[i]++;
11 }
12 if ((test(a[1 + i]))) {
13 #pragma wcet_marker(m_f_1_1_2)
14 #pragma wcet_constraint(m_f_1_1_1+m_f_1_1_2=<m_f_1_1/2)
15 a[1 + i]++;
16 }
17 }
18 return a;
19 }

Figure 2.4: Prolog terms everywhere: WCET constraints before and after loop
unrolling

CHAPTER 2. INTRODUCING TUBOUND 25

1 { // block b1
2 # pragma wcet_marker(m1)
3 do { // block b2
4 // Variant A: Generic constraint
5 # pragma wcet_marker(m2)
6 # pragma wcet_constraint(m2 =< m1*42)
7
8 // Variant B: Constraint with scoped marker
9 # pragma wcet_marker(m3)
10 # pragma wcet_scope(m3)
11 # pragma wcet_constraint(m3 =< 42)
12
13 // Variant C: Loopbound
14 # pragma wcet_loopbound(0..42)
15 ...
16 } while (!done);
17 }

Figure 2.5: Three annotations (lines 5–6, 9–11 and 14) carrying the same
information

contains such an annotation. Loop bound annotations can be located
anywhere inside the scope of the loop body. They always refer to the
directly enclosing loop construct.
Loop bounds provide an upper and lower bound for the number of times a
loop is executed in relation to the number of times the block right before
the loop entry is executed. By convention the special loop bound of −1 is
used to indicate an infinite (main)loop.

2. Markers are a type of annotation closely related to labels to identify
addressable units in the program. A marker creates a symbolic name for
a block that can be used in constraint specifications. A marker is always
associated with a scope, defaulting to the global scope.

3. Constraints are the most generic and powerful annotation kind supported by
TuBound. They allow to express arbitrary relations between the execution
counts of blocks, referred to by markers.

4. (Marker)scope declarations are syntactic sugar to reduce the amount of
typing when performing annotation manually. Consider the two blocks
b1 and b2 in Figure 2.5: In a constraint expression, an occurrence of the
marker m3, which has the scope b2 is equivalent to the expression m2/m1,
where m2 and m1 are global markers.

Figure 2.5 shows an example utilizing three different types of annotations to
express the same fact that the loop construct is executed up to 42 times upon
entering the parent scope. It is important to note that both scoped markers
and loop bound annotations exist only as a convenience notation to increase
readability for the programmer. Both types of annotations are syntactic sugar
and are translated to constraint inequalities with global markers before the final

CHAPTER 2. INTRODUCING TUBOUND 26

〈Annotation〉 → 〈Loopbound〉 | 〈Marker〉 | 〈Constraint〉 | 〈Scope〉
〈Loopbound〉 → wcet_loopbound(〈Expr〉..〈Expr〉)
〈Marker〉 → wcet_marker(〈Marker〉)
〈Constraint〉 → wcet_constraint(〈Expr〉 〈RelOp〉 〈Expr〉)
〈Scope〉 → wcet_scope(〈Marker〉)
〈Expr〉 → 〈Expr〉〈BinOp〉〈Expr〉 | 〈UnOp〉〈Expr〉 | 〈NaturalNumber〉
〈Rel〉 → 〈Rel〉〈BinOp〉〈Rel〉 | 〈UnOp〉〈Rel〉 | 〈NaturalNumber〉 |
〈Marker〉

〈BinOp〉 → + | - | * | / | ** | mod
〈UnOp〉 → + | -
〈Marker〉 → [a-z]([a-z]|[A-Z]|[0-9]|_)∗
〈NaturalNumber〉 → 〈Digit〉 | 〈Digit〉〈NaturalNumber〉
〈Digit〉 → [0-9]
〈RelOp〉 → < | > | =< | >=

Figure 2.6: Grammar of annotations

WCET computation. The static loop analyses in TuBound generate both loop
bound annotations and constraints with global markers. The formal BNF-style
grammar of annotation pragma declarations is given in Figure 2.6.

Chapter 3

Static analysis

In this chapter we describe in detail the static analyses that were developed to
support our approach. These include an interval analysis and two kinds of loop
bound analyses for unnested and nested loops, respectively. Interval and loop
analyses differ in their method of operation; while the first one is a control-flow-
sensitive data-flow problem the latter two are control-flow-insensitive analyses.
This difference is also reflected in the implementations. For data-flow analysis
the functional specification language (FuLa/OptLa) of the Program Analyzer
Generator (PAG) was the language of choice, whereas the loop analyses were
implemented with the help of the Termite library in Prolog (cf. Section 6.2).
This also enabled the use of methods from the world of constraint logic program-
ming. More details regarding the implementation can be found in Chapter 6.
Considering the dependencies between the analyses, the interval analysis can
be viewed as an important prerequisite for the subsequent loop analyses. This
is also the reason why the loop analyses do not need to follow the control flow
because the analysis result of the preceding analysis already encodes all the
necessary information.

Parts of this chapter were published in an earlier research paper [PKST08].
Starting with version 0.8.6, the described analyses are included in the SATIrE
distribution.

3.1 An interprocedural interval analysis
The purpose of an interval analysis is to associate each variable with a value
interval for each location within its scope. This interval contains all values
the variable can take at the given location, regardless through which path the
location was reached in the execution context. A first treatise on interval analysis,
then also called value range propagation, was done by Harrison [Har77]. Interval
analysis is also used as running example in the seminal article on abstract
interpretation by Cousot and Cousot [CC77]. While interval analysis can also
be extended to floating point arithmetic [Gou01], loops depending on floating
point decision variables are rarely encountered in typical embedded code. For
this reason, this text focuses on integer arithmetic.

Interval analysis is most fittingly specified as an interprocedural data-flow
problem, using the extensions provided by the theory of abstract interpretation.

27

CHAPTER 3. STATIC ANALYSIS 28

>

−∞ . . . −2 −1 0

⊥

1 2 . . . +∞

Figure 3.1: Lattice for constant propagation

The variant described here is an extension of the constant propagation analysis
specified in the book by Nielson, Nielson and Hankin [NNH99]. The design
parameters are sketched in Table 3.1. Just like constant propagation, interval
analysis is a forward-directed data-flow problem. The carrier lattice of the
analysis is extended to pairs of integers representing the value interval of each
integer variable. To further illustrate this, Figure 3.1 shows the “flat” lattice
used for constant propagation. The extended lattice used for interval analysis
is shown in Figure 3.2. The two elements of the pairs denote the lower and
upper bounds of each variable: In constant propagation a join of two different
values inevitably results in >. With the deeper structure of the interval analysis
lattice, the interval is widened to encompass the whole range of values of all
joined intervals. If one bound of the interval is unknown, it is reported as ±∞;
due to the modulo arithmetic implemented in CPUs this is equivalent to the
minimum and maximum value that is representable by the underlying data type.
The ⊥ element of the lattice means that a value has not yet been calculated,
whereas > represents an unknown bound, which is equivalent to (−∞,+∞)
respectively ±MAXINT. The transfer functions for each statement capture the
ramifications of the statement on the State lattice by abstractly interpreting the
statement with interval arithmetic. This detail is hidden in the function AItvl
which is described in detail in Section 3.1.1. At a control-flow join, the combine
function is applied pairwise for each variable and merges the interval information
coming from different incoming branches. The widening operator, which is used
to speed up the fixed-point search, is defined very aggressively, and can be used
to fine-tune the trade-off between analysis speed and analysis precision. The
transfer functions for conditional branches return different results for the true
and false edges. Since we focus on the C language family, we can also make some
assumptions about other data types as well: If the branch condition statically
evaluates to either (1, 1) or (0, 0), the state for the other branch is set to ⊥, such
that dead code can not influence the analysis result for live branches.

3.1.1 Arithmetic in the interval lattice
Definitions for standard arithmetic operators, like +,−, ∗, / on intervals can be
found in the literature [AH74]. In this section, we show how to extend these
definitions to account for the > element, infinite bounds and the specifics of C
and C++. Furthermore, we also give approximations for typical bit-wise and
comparison operators. To this end, we define for each (binary) operator ◦ a
corresponding operator �, taking two intervals with possibly infinite bounds

CHAPTER 3. STATIC ANALYSIS 29

Direction: forward
Lattice: State = (V ar → (Z−∞,Z∞),v,t,u,⊥, λx . (−∞,∞))

Init: λx . (−∞,∞)
Combine: λ(amin, amax)(bmin, bmax) . (min(amin, bmin),max(amax, bmax))
Widening: λ(amin, amax)(bmin, bmax) . (cmin, cmax)

where cmin =
{
amin if amin = bmin
−∞ otherwise

cmax =
{
amax if amax = bmax
∞ otherwise

Transfer: [x := a]l : f Itvll (σ) =
{
⊥ if σ = ⊥
σ[x 7→ AItvlJaKσ] otherwise

[if (c)]ledge : f Itvll (σ) =


⊥ if σ = ⊥
⊥ if [AItvlJaKσ] = edge

f Itvll′ (σ), [c]l′ otherwise
where
AItvlJxKσ = σ(x)
AItvlJnKσ = (n, n)
AItvlJa op bKσ = AItvlJaKσ op AItvlJbKσ

Table 3.1: Specification of the interval analysis

⊥

(+∞,+∞). . .(2, 2)

(2, 3)(1, 2)

(1, 3)(0, 2)

(1, 1)(0, 0)

(0, 1)(−1, 0)

(−1, 1)

> ≡ (−∞,+∞)

(−2, 0)

(−1,−1)(−2,−2)

(−2,−1)(−3,−2)

. . .

. . .(−∞,−∞)

Figure 3.2: Extended lattice for integer interval analysis

CHAPTER 3. STATIC ANALYSIS 30

as arguments and return an interval which is an upper and lower bound to the
operator applied to all pairs i, j out of the two intervals:

(amin, amax)� (bmin, bmax) = (rmin, rmax)
where

rmin ≤ min(R)
rmax ≥ max(R)
R = {i � j | i ∈ [amin . . . amax], j ∈ [bmin . . . bmax]}

For the purpose of the interval analysis, we are satisfied with a safe over- or
under-approximation of the operator’s effect that is within a certain error margin.
As a notational convention, the shorthand a will be used as a placeholder for a
tuple (amin, amax).

Arithmetic operators

In the following definitions for the ⊕ and 	 operators, the approximation is
precise, i. e., the error is actually zero:

a⊕ b = (amin + bmin, amax + bmax)
a	 b = (amin − bmax, amax − bmin)

For these operators the monotonicity property x < y ⇒ x±c < y±c holds. It
is therefore safe to compute the bounds by applying the operator to the extreme
values. In the case of ⊕ and 	 it is not necessary to make any extra provisions
for infinite values; if the lower or upper bound overflows the corresponding
bound the result is interpreted as ±∞. For the multiplication operator we can
additionally exploit the fact that the zero element1 neutralizes any other operand
regardless of its value. This way it is possible to “reanimate” values that were
previously reported as >.

(0, 0)� b = (0, 0)
a� (0, 0) = (0, 0)

a� b =
(
min(amin · bmin, amin · bmax, amax · bmin, amax · bmax),
max(amin · bmin, amin · bmax, amax · bmin, amax · bmax)

)
In contrast to multiplication, integer division is not commutative. It is,

however, still monotone. The extreme values are those where the divisor is
closest to zero. For C and C++, the result of a division by zero is undefined
[WG110; JTC10]:

a� b =



(
min(amin/bmax, amax/bmin, amax/bmax),
max(amin/bmin, amin/bmax)

)
if bmax < 0(

min(amin/bmax, amin/bmin),
max(amin/bmax, amax/bmin, amax/bmax)

)
if bmin > 0

> otherwise
1Actually in the modular arithmetic implemented in computer languages, e. g., Z2n−1 there

exists more than one zero element.

CHAPTER 3. STATIC ANALYSIS 31

The following definition of the modulus operator is no longer precise. We
can, however, increase the precision slightly by including a special case for the
zero element and the neutral element:

a % a = 1 if amin = amax

a % (1, 1) = a

a % b =

 (0, x− 1) if sgn(amin) = sgn(amax), bmin > 0
(1− x, 0) if sgn(amin) = sgn(amax), bmin < 0
(1− x, x− 1) otherwise

where x = max(|bmin|, |bmax|)

Bit-wise operators

For the bit-wise shift operators, it is impossible to predict the outcome of a shift
operation with negative operands. For C and C++ the standard leaves the result
of left-shifting a negative number undefined, whereas the result of right-shifting
a negative number is defined as implementation-specific. If the right operand
is negative, the result is also undefined. The left-shift operators in C and C++
always perform a bit-wise shift filling new bits with zero [WG110; JTC10]:

a � b =
{
> if amin < 0 or bmin < 0
(amin � bmin, amax � bmax) otherwise

a � b =
{
> if amin < 0 or bmin < 0
(amin � bmax, amax � bmin) otherwise

For some bit-wise operations we can exploit the fact that in the two’s
complement representation of −1 all bits are set to one. The helper function
nextpow2(x) calculates the next-higher power of two for a given integer. The
notation a > 0 is shorthand for (amin > 0 and amax > 0). Next we present the
approximations for the bit-wise and, or and xor operations.
Bit-wise and:

a & (0, 0) = (0, 0)
(0, 0) & b = (0, 0)

a & (−1,−1) = a

(−1,−1) & b = b

a & b =

 (0, max(amax, bmax)) if a ≥ 0 and b ≥ 0
(−x, 0) if a < 0 and b < 0
(−x, max(amax, bmax)) otherwise

where x = nextpow2(|min(amin, bmin)|)

CHAPTER 3. STATIC ANALYSIS 32

Bit-wise inclusive or:

a� (0, 0) = a

(0, 0) � b = b

a� (−1,−1) = (−1,−1)
(−1,−1) � b = (−1,−1)

a� b =
{

(0, x− 1) if a ≥ 0 and b ≥ 0
(−x, x− 1) otherwise

where x = nextpow2(max(|amin|, |amax|, |bmin|, |bmax|))

Bit-wise exclusive or:

a7 a = (0, 0)

a7 b =
{

(0, x− 1) if sgn(amin) = sgn(amax) = sgn(bmin) = sgn(bmax)
(−x, x− 1) otherwise

where x = nextpow2(max(|amin|, |amax|) | max(|bmin|, |bmax|))

Comparison operators

Comparison operators are important to support because they are typically used
in branch decisions. The following definition approximates the behaviour of the
equality operator:

a == b =

 amin = bmin if amin = amax and bmin = bmax
false if amax < bmin or amin > bmax
> otherwise

Dually, we obtain the definition for the inequality operator:

a != b =

 amin 6= bmin if amin = amax and bmin = bmax
true if amax < bmin or amin > bmax
> otherwise

The following definitions for relative comparison are arguably more straightfor-
ward to define and also more precise than most of the bit-wise operations:

a < b =

 true if amax < bmin
false if amin ≥ bmax
> otherwise

a ≤ b =

 true if amax ≤ bmin
false if amin > bmax
> otherwise

a > b =

 true if amin > bmax
false if amax ≤ bmin
> otherwise

a ≥ b =

 true if amin ≥ bmax
false if amax < bmin
> otherwise

CHAPTER 3. STATIC ANALYSIS 33

This concludes the definitions of operations in the interval arithmetic. In
the C language family there exist a couple more operators, including Boolean
operations, like && and ||. These can be defined analogously to their bit-wise
counterparts. The largest other group are assignment operators, like +=, which
also share the definitions with the regular operators. Pre/post increment and
decrement operators can be treated like a +=1 expression. The result of the
sizeof()-operator can be evaluated statically, by the compiler front end.

What has been omitted from this discussion so far is the handling of pointers.
In the actual implementation, the results from a unification-based points-to
analysis are available [Ste96; Bár09]. To take this additional information into
account, the pointer dereferencing operator is implemented via a lookup into
the points-to database. Similar considerations apply to the member selection
operators “.” and “→”.

In the future, the accuracy of the interval analysis can further be improved
by increasing the memory and run-time budget: It can be modified to report
a set of possible intervals instead of one merged interval for each variable. In
order to reduce the number of necessary sets, several compression strategies can
be used. A simple strategy is to always merge the two sets that are closest to
each other. A more intricate strategy is to also store strides for each set, such as
in the set of even numbers between 1 and 10 (stride 2).

3.2 Analyzing loop bounds
3.2.1 Single loops
The loop bound analysis is a control flow insensitive analysis that builds upon
the results of the above interval analysis. The analysis takes as input an iteration-
variable based loop L, variable intervals, and context information, such as the
scope of the iteration variable i. The preceding interval analysis is technically
not a strict requirement, however, it serves as a means to significantly increase
the precision of the resulting bounds.

Definition. An iteration-variable based loops contains

• an (optional) initialization statement [i := start]l1 ,

• one or more exit conjunctive conditions [(i rel end1) ∧ . . .]l2 ,

• a monotone iteration step statement [i := i± step]l3 ,

where i is an integer variable (that is not a field member) with a scope(i) ⊇ L.
Further, as a safety condition, there must be no statement s ∈ L \ {l1, l2, l3}
where i is modified (such as an assignment or increment statement). Also, no
pointer may point to the address of i.

The single loop bound analysis works on all iteration-variable based loops,
where the step size is either strictly positive or strictly negative:

sgn(stepmin) = sgn(stepmax)

CHAPTER 3. STATIC ANALYSIS 34

rel exprmin exprmax exprstep

i < end: start end step
i ≤ end: start end + 1 step
i > end: end start step
i ≥ end: end start − 1 step

Table 3.2: Deriving the loop parameters

The result of the analysis is an upper bound n for the number of times the loop
entry is executed in relation to its direct predecessor statements p outside of the
loop, where excnt(s) denotes the execution count of statement s:∑

p∈pred(entry)\L

excnt(p) ≤ n · excnt(entry)

Since the discrete function described by the iteration step statement is monotone
and its gradient is constant, we can set up the following equation for the loop
bound:

n = exprmax − exprmin
|exprstep|

where exprmin, exprmax are lower and upper bounds for i, whereas exprstep is
the minimum step size of i on a path through the loop L. We call these values
loop parameters. To derive the loop parameters, it is necessary to examine the
relational operator of the exit condition, which must be one of <,>,≤,≥.

As shown in Table 3.2, the assignment of exprmin and exprmax depends
on the direction (= sign of the step size) of the loop. In our implementation,
concrete values of the loop parameters are calculated in two phases:

1. Simplify. In this phase, algebraic identities are exploited to simplify the
expression (exprmax − exprmin)/exprstep. This is implemented by a set of
rewrite rules that are applied to the expression until a fixed point is reached.
This simplification operates on purely symbolic expressions and disregards
the analyzed intervals of variables. It can, however, use the information
that an expression is loop invariant or constant, i. e., no variable occurring
in it appears on the left-hand side of any statement in L.

2. Evaluate. Using the results of the interval analysis as state, we can evaluate
the simplified expression using interval arithmetic (AItvl , cf. Table 3.1).
The return value is an interval (m,n) where n is the upper bound for the
iteration count of the loop L.

Lower loop bounds are constructed analogously, by swapping exprmin and
exprmax . During the evaluation phase it is important to use the right interval
bounds: When we want to derive upper loop bounds, we need to take the lower
interval bound for exprmin , and the upper interval bound for exprmax . For lower
loop bounds, this situation is reversed.

The complexity of this algorithm is bounded by the number of exit conditions
in the loop, the depth of the exprmin , exprmax , and exprstep expressions and the
number of rules in the simplification term rewriting system. Implementing the

CHAPTER 3. STATIC ANALYSIS 35

Direction Init Test Step
up I #>= InitExpr I #=< TestExpr (I-InitExpr) mod
down I #=< InitExpr I #>= TestExpr å StepExpr #= 0

Table 3.3: Deriving the constraints

1 expr_constr(add_op(E1, E2, _, _, _), Map, Expr) :-
2 expr_constr(E1, Map, Expr1),
3 expr_constr(E2, Map, Expr2),
4 Expr #= Expr1 + Expr2.

Figure 3.3: Constraint translation for the + operator

analysis for the source code level does not only increase the precision (because
we can use type information), but serves to improve the performance as well:
Approaches operating on the machine language level [CM07; HLS05] need to
reconstruct the loop’s iteration variable from the data flow beforehand.

3.3 Analysis of whole loop nests
TuBound contains an implementation of a loop-bound algorithm that works
for nested loops. If the iteration space described by the iteration variables is
rectangular or cuboid-shaped, the resulting bounds will be optimal, i. e., precise.
Often, however, the iteration variables of nested loops depend on each other,
forming, e. g., a triangular iteration space. Loop bounds would then be an
overestimation of the iteration space, describing the enclosing rectangle. It is
thus desirable to formulate more general flow constraints in addition to loop
bounds. The flow constraints we are generating describe the execution counts
of the loop bodies in relation to the scope containing the outermost loop. Our
constraint analysis works by transforming the whole loop nest into finite domain
logic constraints.

Each loop in the loop nest must be iteration-variable based. In contrast to the
traditional loop bound analysis, a few additional restrictions are imposed on the
loop: The step size must be loop invariant. When the loop has a stride greater
than 1 (|step| > 1), start should be constant (remember the loop parameters
as described in Table 3.2). Otherwise the results produced by the analysis
will be an overestimation which is bounded by the term startmax − startmin.
Furthermore, the exit test expression must either test for ≤ or ≥. The expression
exprmin < exprmax can be transformed into the equivalent exprmin ≤ exprmax−1,
just as exprmax > exprmin can be transformed into exprmax ≥ exprmin + 1.

The algorithm works recursively, beginning with the outermost loop. First, a
new logic variable I is created that is associated with the iteration variable. Then,
the initialization, exit condition and iteration step statements are translated
into constraints, as sketched in Table 3.3. The remaining arithmetic expres-
sions, InitExpr, TestExpr, and StepExpr are then recursively translated into
corresponding constraints. Figure 3.3 shows how the + operator (the expression
add_op in the AST) is translated into a constraint: In line 2 and 3, the con-

CHAPTER 3. STATIC ANALYSIS 36

straints describing the operands E1 and E2 are collected, which are then used to
define the main constraint that describes the actual addition (line 4). The Map
variable holds the interval analysis results to generate constraints for variable
AST nodes.

After the constraints are determined, the constraint solver finds the number
of possible combinations of all iteration variables that were encountered so far.
Since explicit enumeration of all solutions can be prohibitively expensive, we
added a new labeling option upto_in to our constraint solver (library(clpfd),
included with SWI-Prolog [Wie03; TNW08]), which can be used to count the
number of possible instantiations if all remaining constraints are trivial.2 With
this method, the running time and memory consumption of the solver no longer
depends on the size of the iteration space.

The resulting n is then an upper bound for the number of times the current
(= innermost regarded) loop is executed relative to the scope containing the
outermost loop. If the constraint analysis is applied to a single loop only, the
resulting constraint degenerates into a loop bound. By using this approach,
we can leverage a great deal of features from our constraint solver for the loop
analysis:

• The order in which the constraints are posted does not influence the
behaviour of the solver.

• The termination of the constraint solver is guaranteed.

• The strategy of the solver can be customized through labeling options to
improve its efficiency (cf. Section 3.3.1).

• Through the implicit enumeration of the iteration space the results are
generally more precise than those of the traditional loop bound analysis.

Since much of the complexity is offloaded into the constraint solver, the imple-
mentation is very concise and easy to maintain.

3.3.1 Example
We illustrate the general principle using the following loop nest, for which we
want to determine the number of times the inner loop is executed:

1 for (i = 0; i < 10; ++i)
2 for (j = i; j > 0; j -= 2)

By translating the loop nest accordingly, we get the following constraint program:

1 I #>= 0, I #< 10, I mod 1 #= 0,
2 J #=< I, J #> 0, (J-I) mod 2 #= 0,
3 findall((I,J),labeling([], [I,J]), IS),
4 length(IS, IterationCount).

By solving the constraint system, we explicitly enumerate the iteration space IS
described by (i, j):

2This excludes operations like mod, where the solver currently falls back to computing the
whole iteration space.

CHAPTER 3. STATIC ANALYSIS 37

1 [(1, 1),
2 (2, 2),
3 (3, 1), (3, 3),
4 (4, 2), (4, 4),
5 (5, 1), (5, 3), (5, 5),
6 (6, 2), (6, 4), (6, 6),
7 (7, 1), (7, 3), (7, 5), (7, 7),
8 (8, 2), (8, 4), (8, 6), (8, 8),
9 (9, 1), (9, 3), (9, 5), (9, 7), (9, 9)]

The number of pairs in the iteration space is then an upper bound for the
innermost loop body. In our case, exactly 25 times. For larger bounds, explicit
enumeration of all solutions is infeasible. With the help of the upto_in labeling
option we can directly count the number of possible instantiations. Thus we
can reduce or avoid explicit enumeration in many cases. The following example
demonstrates that this even works with very large numbers:

I #>= 0, I #=< 10000,
J #>= 0, J #=< 500,
labeling([upto_in(IterationCount)], [I,J]).

This directly yields IterationCount = 5010501.

Chapter 4

Obtaining flawless
annotations and analyses

4.1 Automatic testing of a data-flow analysis
It is well known that the correctness of a program is not only a matter of
proving the soundness of the underlying algorithm but in practise mostly one of
thoroughly testing of the implementation [Fet88]. This is especially important
for compiler construction, since a bug in the compiler can introduce unwanted
behaviour in every program that is translated with it. Production compilers like
the GCC therefore ship with a huge test suite that every version has to pass
before it can be released. These test suites, however, typically consist of small
programs that are created to target one specific behaviour of the compiler at
a time. In fact most of these test programs are extracted examples from bug
reports contributed by frustrated users. When it comes to the testing of a static
analysis it would make more sense to directly test correctness of the analysis
results rather than the correct behaviour of programs that were transformed
because of an analysis result.

In this chapter we show how to achieve this by transforming the program:
Given a static analysis that generates a pre- and a post-condition for the
statements in a program, that program can be transformed to assert the respective
conditions before and after every statement. The program can then be executed
to see whether any of the assertions fire (dynamic). It is even possible to pass
the program to a model checker to formally verify the correctness of the asserted
conditions (static). It is thus possible to reuse existing test cases and transform
them into tests for a whole new purpose. This enables a smart reuse of an
already existing test suite.

4.1.1 Preparing test cases
The method described above is already a major improvement for the author of a
static analysis. In practise some test cases need to be preprocessed to ensure a
better coverage. Typical test-suite programs are fragments that were extracted
from more complex programs and thus often lack an entry-function main(argc,
argv). We thus need to generate an artificial main function that calls the other

38

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 39

functions in the test module. To generate all the function calls it is important
to adhere the calling conventions of the other functions in the module. For
parameterless functions, this is easily achieved, otherwise it is necessary to fake
input values depending on the function signature. To gain maximum function
coverage, a naïve main-function would call every other function in the module.
Since we want to test multiple combinations of input values, it pays off to take
the call graph into account to reduce the overall number of function calls. By
calculating the transitive closure of the call graph, a minimal set of connected
components can be identified. One call to the first node of each cluster of
functions guarantees that every function is reachable from the main function.

Once the test cases are preprocessed to constitute full executable programs
on their own, the only missing ingredient is the assertion generating source-to-
source transformation. In the next section we discuss several routes to introduce
automatic assertion generation into the compilation process.

4.2 Assertion-carrying code work flow
In the following, we will refer to code that is outfitted with automatically inserted
assertions as assertion-carrying code (ACC). This name was selected because
the idea of ACC is similar in spirit with proof-carrying code [Nec97]. Figure 4.1
highlights the work flow of ACC. It shows how ACC fits into the compilation
process. Steps I and II initiate the process by transforming the information
gained from an analyzer into dynamic assertions that are embedded into the
program code of some program Π:

I. Perform a series of (potentially complex and expensive) analyses on Π.

II. Transform analysis results into assertions and attach those to the program
itself.

Besides informing the user about certain aspects of the run-time behaviour of
the program, ACC can be subject to other analyzers extending the behaviour
information further. Moreover, at any step, the ACC can be passed on to the
compiler to proceed with compiling it and to generate executable code. Transfor-
mations applied by the various stages of the compiler, in particular its optimizer
stage, can directly refer to this information without need to (re-)compute it;
thus speeding up the compilation process.

How ACC can be used to create a feedback loop by making previously found
information available to a source-to-source analyzer is also shown in Figure 4.1.
This makes up the third and fourth step of the complete workflow:
III. Feed the ACC of a source program to the analyzer, thereby obtaining a

new ACC, with possibly extended behaviour information.

IV. Stop analyzing the ACC and pass it on to the compiler.
We already saw how ACC is useful to inform the user on certain aspects of the
run-time behaviour of a program and can easily be reused and exploited by other
program analyses typically applied throughout the compilation process. Next we
demonstrate how to prepare ACC, which is the precondition for the final step:
V. Automatically check analysis results with static or dynamic verifiers.

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 40

Source Code

void f(int num_elem) {
int i = ++num_elem;
...

Analyzer 1

Analyzer n

Assertion GeneratorII

void f(int num_elem) {
assert(num_elem == 42);
int i = ++num_elem;
assert(i == 43 && ...);

. . .

Compiler to
machine code

Executable
program

V.
Dynamic or
static
validation

Fail—
error found

Nothing found

I

. . .

IV

Traditional
workflow

III. Reusing
stored analy-
sis results

Figure 4.1: The work flow of assertion-carrying code

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 41

4.3 Checkable assertions
Intuitively, the results of a program analysis provide information about the possi-
ble states of the underlying program at the various program points. Considering
the two points immediately before and after the execution of a statement, this
information can be thought of in terms of a pre- and a post-condition describing
a property of the program states which may be valid immediately before and
after executing this statement. In analogy to (valid) Hoare-assertions [Hoa69],
we write

{P} Q {R},

where P is the precondition of a program fragment Q and R a post-condition
capturing the effect of Q with respect to P . The expressions P and R are
assertions which ensure a certain property of program Q. In the same fashion
the results of a program analysis attached to a statement can also be considered
assertions about the program state at this location. Some programming languages
offer an integrated concept of assertions: ANSI C in terms of the assert-macro
and Eiffel in terms of contracts. These language-provided assertions can be
automatically checked at run-time and are useful for security checks. In the
following we present our approach of how to represent analysis results such that
they bear the flavour of assertions, which can then be subject of static (off-line)
verification and dynamic (on-line) testing.

To this end we define the ACC program transformation that modifies the
analysis information attached to a program such that the attached analysis
information can be used like an assertion. It is worth noting that this does
not affect the semantics of the program (provided the analysis information
is correct), while offering the advantage of having the analysis information
immediately available. An implementation might even be organized to directly
output assertions and skipping the intermediate step of outputting plain analysis
information. In our approach, we distinguish assertions addressing universally
and existentially valid program properties. Using the programming language C
as the source language for our demonstration, we will show next how to express
the two kinds of assertions for this setting.

4.3.1 Notation
We use the following notational conventions: The letter σ denotes the perfect,
precise analysis summary. A summary is associated with a certain location l in
the program and consists of multiple similar properties pi. The implemented
analyzer, however, actually returns an approximation σ̃. Depending on the
policy, we can distinguish two ways of approximating analysis information:

• Optimistic analyses over-approximate the summary by computing a super-
set of the precise properties.

• Pessimistic analyses under-approximate the summary by computing a
subset of the precise properties.

This is illustrated by Figure 4.2, which depicts a typical lattice of analysis results:
At the top, the most optimistic (and utterly useless) approximation >, containing
all properties is shown. The (useful) optimistic approximation σ̃opt contains
all correct properties pi and a few false positives qi. In the centre, the precise

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 42

>

σ̃opt = {p1 . . . pn, q1, q2}

σ = {p1, p2, p3, . . . pn}

σ̃pess = {p1, p3, pn−1}

⊥

(all properties)

(optimistic approximation)

(precise solution)

(pessimistic approximation)

(no properties)

Figure 4.2: Optimistic versus pessimistic approximations

assert(p) Analysis summary: {must(p)}l :

π1(p) π2(p)
. . . (p) πi(p)

Figure 4.3: Universal properties: p holds on all paths πi reaching l. The assertion
tests whether the analysis was conservative (or safe).

analysis summary σ is shown. Below, we have a pessimistic approximation σ̃pess
that is a strict subset of σ. The most pessimistic result is the empty set, or the
bottom element of the lattice, ⊥.

In order to automatically generate assertions, we use a mapping function
f : (l, σ̃) 7→ Expr to convert an analysis summary and location pair into an
assertion expression.

4.3.2 Assertions for universally valid properties
Intuitively, a property p is universally valid at a location l if it is valid, regardless
along which path the location l was reached from. Pessimistic program analyses
computing universally valid information are commonly called must-analyses
[NNH99; Hec77]. Figure 4.3 serves as an illustrative example.

Universally valid properties can be specified in terms of an assertion by testing
for the respective analysis information. This way a failed assertion indicates a
faulty analysis result. This is illustrated by the following example:

Example 1. Constant Propagation is a typical must-analysis. For each lo-
cation l, it yields universally valid information in terms of expression-constant
pairs (expr , c) meaning that at the location l, the expression expr is always

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 43

assert(pC2 , . . . , pCn) Analysis summary: {may(p1)}l :

π1(p1) π2 . . . πi

Figure 4.4: Existential properties: p1 holds for at least one of the paths pi. The
assertion tests whether the analysis was conservative (or complete).

equal to the constant value c. In the C programming language, the assertion
assert(expr == c) placed at l expresses this information.

According to [ALSU07], we define:

Definition 1. A universally valid analysis summary σ̃ is conservative (or safe)
if it does not contain any false positives, such that σ̃ ⊆ σ.

Using the notion of safety, Example 1 can be generalized to any universal
information as summarized in Observation 1, which follows immediately from
the definition.

Observation 1. If an analysis summary σ̃ reports a property p to be universally
valid at a location l, a statement assert(f(p)) inserted at l will succeed if σ̃ is
a conservative (safe) approximation of σ (with f being a mapping function from
the analysis domain to the source language, cf. Section 4.3.5). If the assertion
fails, we know that p /∈ σ and therefore σ̃ is not a safe approximation of σ.

4.3.3 Assertions for existentially valid information
A property is said to be existentially valid at a location l if it is valid on at
least one path reaching l. Optimistic program analyses computing existentially
valid information are commonly called may-analyses. Figure 4.4 serves as an
illustrative example.

Since existentially valid information need not hold along all paths, an assertion
addressing such a property cannot directly test for it the way it would for universal
information; the assertion would be executed every time the location is passed,
however, the analyzed properties would hold only for some of these executions,
if any at all.1 This is because assertions naturally test for universal properties.

1There are two reasons why this might happen: (1) The relevant path is incidentally never
reached during the program execution. (2) The approximation σ̃ introduced false positives.

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 44

Definition 2. An existentially valid analysis summary σ̃, consisting of proper-
ties p̃i calculated by a may-analysis, is conservative (or complete) iff it contains
all valid properties pi ∈ σ, such that σ̃ ⊇ σ.

A conservative summary returned by an (optimistic) may-analysis implies
that any properties pj which are not part of the analysis summary can never
hold for any program execution. This, again, is universal information that can
be tested for with assertions. Instead of considering the existential properties
pi ∈ σ̃ the complementary information pCj /∈ σ̃ is a universal property that can
be checked as other universal properties. Observation 2 now follows immediately
from Definition 2:

Observation 2. If an (optimistic) may-analysis summary σ̃ reports a property
p to be existentially valid at location l, a sequence of statements assert(f(pCj))
for all other pj /∈ σ̃ of the same type as p will succeed, if σ̃ is a conservative
(complete) approximation of σ. If any of the assertions fail, we know that σ̃ does
not contain all valid results and therefore σ̃ is not a conservative approximation
of σ.

The following example shows how to apply this idea to an alias analysis:

Example 2. A may-alias analysis yields multiple disjoint sets {A1, . . . , An}
where each Aj is a set {a1, . . . , an | addr(ai) = addr(ai+1), i < n} of potentially
aliasing pointer variables. In the C language, each set in such a summary can
be transformed into the assertion assert(a1 != b1 && a1 != b2 && ...&& an
!= bn), where bj 6= ai are all remaining pointer variables. For a program with m
pointer variables and a summary describing n variables as potentially aliased via
pointers, the assertion consists of m · n comparisons. Under the assumption that
the number of aliasing pointer variables is a very limited in typical programs,
this approach is feasible in practise.

Pessimistic existential and optimistic universal analyses

In the case of pessimistic existential analyses, it is not generally possible to
transform the analysis summary into assertions, because there are no assumptions
about the completeness of the summary. It is, however, still possible to provide
positive feedback (a witness [ZP08]) during testing by stating that what the
analysis found actually occurred during program execution. The same applies
for optimistic universal analyses.

4.3.4 May, must, and conservative approximations
The relationship between safety and completeness, existential and universal
information is shown in the Venn diagram in Figure 4.5. It depicts the analysis
result set for live variables (existential) and the dual problem of dead variables
(universal). The rectangular area is the space defined by the carrier set. The
small area σ is the set of variables that actually are live in one path to the
exit node. The larger area σ̃ is the conservative approximation returned by our
analysis. The whole area surrounding σ marks the dual information: All variables
that are dead on all paths to the exit node. Here we can see that a conservative

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 45

May be live

Must be dead

σ

σ̃ (conservative)

greater precision

Entire carrier set

Figure 4.5: Conservative approximation for a live variable analysis (may)

May be live

Must be dead

σC σσ

σ̃ (conservative)

greater precision

Entire carrier set

Figure 4.6: Conservative approximation for a dead variable analysis (must)

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 46

Analysis Direction Type Summary (σ)
Available Expressions forward must

{
(v, e)

}
, v ∈ VarSym, e ∈ Expr

Constant Propagation forward must
{

(v, c)
}
, v ∈ VarSym, c ∈ Int

Must-alias Analysis forward must
{
{pi}

}
, pi ∈ PtrSym

May-alias Analysis forward may
{
{pi}

}
, pi ∈ PtrSym

Reaching Definitions forward may
{

(v, l)
}
, v ∈ VarSym, l ∈ Loc

Very Busy Expressions backward must {e}, e ∈ Expr
Live Variables backward may {v}, v ∈ VarSym

Table 4.1: Signatures of typical textbook analyses

may-analysis enlarges the area σ̃ by reporting more values than necessary. A
conservative (dual) must-analysis would shrink the remaining area, moving the
dashed border in the same direction, by reporting fewer values than theoretically
possible. To stress this point, Figure 4.6 shows a conservative approximation
in the dual (must-be-)dead variable analysis. For a precise analysis the areas σ
and σ̃ would be identical.

4.3.5 From analysis results to assertions
The function f is used to map an analysis summary into an assertion. This
function has to be defined for every analysis. In this section we show how
to design such a mapping function. Often this translation is straightforward,
as we saw in the examples used in the previous section, where we were able
to conveniently translate the analysis result into a testable expression of the
source language. These analyses are the natural candidates for ACC, we will
subsequently call them first-class candidates.

Table 4.1 shows the signatures of typical textbook data-flow analyses [NNH99]:
For each analysis the characteristics such as data flow direction and quantification
of the analysis result are given. The carrier set of each analysis is given in column
3. The data types used in these sets include variable symbols (VarSym), source
language expressions symbols (Expr), pointer variable symbols (PtrSym) and
labels to code locations (Loc).

We will now show how to define a mapping function for each of these
analyses. To this end we provide a function f : (l, σ̃) 7→ Expr which maps a
pair of code location and analysis summary to generated source code (written
out in typewriter font) to be inserted at that location l. The helper functions
defs and uses return the list of variables that are defined and used by node
l, respectively. The mapping functions for Very Busy Expressions and Live
Variables differentiate between σ̃pre and σ̃post denoting the analysis summary of
just before and after node l. For better legibility this detail is omitted in the
other mapping function definitions.

Available Expressions analyzes which expressions e have been computed at
a program point l and can be made available in a new variable v. The
mapping function generates an assertion that the contents of that variable
v is equal to the expression e:

f(l, σ̃) 7→ ∀(v, e) ∈ σ̃ : assert(v==e)

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 47

Constant Propagation tracks whether the value stored in a variable v is a
constant c. The mapping function generates an assertion that v is equal
to c:

f(l, σ̃) 7→ ∀(v, c) ∈ σ̃ : assert(v==c)

Must-alias Analysis yields sets of pointer variables that point to the same
memory location. The mapping function generates an assertion that the
values of all pointers in each set is equal:

f(l, σ̃) 7→
∀P ∈ σ̃ :
∀pi, pj ∈ P : assert(pi==pj)

May-alias Analysis yields sets of all pointer variables that potentially point
to the same memory location. The mapping function covers two cases:
The first one asserts that no pointer from the may-alias sets aliases with
the remaining pointers or with pointers from other may-alias sets. The
second case asserts that the values of all remaining pointers variables are
distinct:

f(l, σ̃) 7→
∀Pi ∈ σ̃ :
∀pi ∈ Pi :
∀qj ∈ PtrSym \ Pi : assert(pi 6= qj)

∀qi, qj ∈ PtrSym \
⋃
σ̃ : assert(qj 6= pi)

Reaching Definitions analyzes which assignments may have been made at a
location. The dual information is that a definition was definitely overwrit-
ten when the current location is reached. To encode this information in
an assertion, the mapping function introduces a flag carrying the informa-
tion that a certain definition is valid. The flag is reset when a variable
is redefined. The assertions compare all the flags against the analysis
summary:

f(atinit,_) 7→ defined =−→0
f(l, σ̃) 7→
∀v′ ∈ defs(l) :

defined[(v′, l)] = 1
∀l′ ∈ Loc \ l : defined[(v′, l′)] = 0

∀(v, l′) ∈ (VarSym × Loc) \ σ̃ : assert(!defined[(v, l′)])

Very Busy Expressions analyzes which expressions will definitely be used in
the future. An expression is very busy if it is always going to be used before
any of its variables are redefined. The mapping function introduces a busy-
flag for each expression which is initialized to zero at the program entry
point. The flag is toggled whenever an expression changes its busy-status at
the current location l. For each location an assertion is generated, stating
that no variable that is redefined (defs(l)) there could have been part of
a very busy expression unless it was used by the current statement itself
(uses(l)). The function VarSym(e) returns all variable symbols occurring

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 48

in the expression e. Finally, at the exit node it is asserted that no very
busy expressions remain:

f(atinit,_) 7→ busy =−→0
f(atexit,_) 7→ assert(busy==−→0)
f(l, σ̃) 7→
∀e ∈ σ̃post \ σ̃pre : busy[e] = 1
∀e ∈ σ̃pre \ σ̃post : busy[e] = 0
∀e ∈ Expr :

if (defs(l) ∈ VarSym(e) ∧VarSym(e) ∩ uses(l) = ∅)
assert(!busy[e])

Live Variables yields all variables that may be used in the future. The mapping
function for Live Variables was designed with the method introduced in
Section 4.3.3. It operates on the dual universal problem of definitely dead
variables.

f(atinit,_) 7→ dead =−→0
f(l, σ̃) 7→
∀v ∈ σ̃post \ σ̃pre : dead[v] = 1
∀v ∈ σ̃pre \ σ̃post : dead[v] = 0
∀v ∈ uses(l) : assert(dead[v]==−→0)

The last three examples represent second-class candidates for ACC, which
share the common characteristic that the analyzed information is not directly
accessible from the programming language. A remedy for this situation is to
introduce flags into the program that carry the analysis information. This way
the transformed program dynamically recomputes the analysis information and
again has the analyzed information accessible from the programming language
as is the case with first-class candidates.

To perform such a “dynamic data-flow analysis” it generally suffices to toggle
corresponding flags once a certain condition is fulfilled at runtime. There is
naturally no need to define merge operators, as there is only a single execution
path (at least for single-threaded programs). We will now show how to apply
this to the two kinds of analyses:

• For universal problems, the assertions generated by the mapping function
have to check that the summary computed at runtime is a superset of the
static analysis summary σ̃.

• For optimistic existential problems, the assertions have to check for the
dual (and universal) property that the summary computed live is a subset
of the complementary static analysis summary σ̃C .

Figure 4.7 illustrates this by encoding both may and must-information into
dynamically computed flags. At the location l, the assertions test whether the
computed information is a sub- or super-set of the analyzed information.

While this ACC representation for second-class candidates is sufficient to test
the safety of the analyzer, it is not particularly efficient as data store: A second
analysis run (cf. Figure 4.1) will not be able to recover the information. Judging
from Table 4.1 the decision whether a particular analysis is a first-class candidate

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 49

flags = 〈0,0,0,0〉

p2

flags[p0] = 1 flags[p3] = 1

assert(flags⊇ 〈0 0 1 0〉);
assert(flags⊆ 〈0 1 0 0〉);

{must(p2),
may(p0 ∧ p2 ∧ p3)}l :

p3 p3

p0 p3

Figure 4.7: Dynamically recomputing some bit-vector problems

for ACC is obviously correlated with the direction of the analysis and type of
analyzed information. This is easily explained: When a program is executed, it is
always executed in the forward direction, thus restricting the types of properties
that can be computed dynamically. Additionally, it also depends on the degree
of reflection of the source language. Analyses that compute information that is
readily available from within the code are more likely to be first-class candidates
for ACC. The following table summarizes the fitness of first-class and second-class
candidates for the different usage scenarios of ACC:

Analysis Testing Storage Retrieval
First-class candidate 3 3 3
Second-class candidate 3 3

Assertions for backwards-directed analyses

We already mentioned that backwards-directed analyses inherently are second-
class candidates. Backwards-directed analyses compute information that is valid
for some (existential) or all (universal) paths leading from the current point
to the end of the program. These analyses operate on a reversed control flow
graph and yield summaries that contain “predictions” about the (potential)
future of the program execution. Examples for backward analyses are Very
Busy Expressions (universal) and Live Variables (existential). Naturally these
properties cannot be asserted at just one single location. Here we can apply
the same trick we already used for the results of may-analyses: By introducing
flags representing the state of the carrier set, the predictions of the analysis are
embedded into the program. The flags are toggled whenever the corresponding
analysis result changes. For example, a flag fi, which corresponds to property pi
in the analysis result, is set to zero whenever pi ∈ σ̃post but pi /∈ σ̃pre. To verify
the correctness of the predictions, assertions are inserted along each path leading
from the current location to the exit node. This is visualized in Figure 4.8 where
the property p1 is found to come true somewhere after location l. Therefore

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 50

flags = −→0

flags[p1] = 1)l : {must(p1),
may(p1, p2)}

flags[p1] = 0 flags[p1, p2] = 0

assert(flags == −→0)atexit:

p1 p1 p1 ∧ p2

Figure 4.8: Backward-directed data flow problems

the flag for p1 is set at l. To assert that this prediction was actually true, an
assertion at the exit node verifies that the flag for p1 was really cleared again.
Further examples for mapping functions are given in Section 4.3.5, page 47.

4.4 Interprocedural ACC
ACC is particularly powerful when combined with interprocedural analyses.
In this section we highlight how to extend ACC inter-procedurally, by taking
context information tethered to call strings into account. Intuitively, call strings
allow to keep call contexts up to a predefined depth n (= length of the call string)
separate [SP81; Muc97]. To account for context-sensitivity in assertion-carrying
code, several options are available:

1. Introducing an implicit call-string argument to every function call that
keeps track of the current context. On machine code level this can be
implemented efficiently by using the return address on the stack, similar
to the way call-graph-based profiling information is generated [GKM82].
For source-to-source analyzers this has a slight impact on performance
and the dynamic memory footprint caused by additional bookkeeping. As
an illustrating example, the ACC for an interprocedural interval analysis
with call string length 1 and its merged (context-insensitive) counterpart
is given in Figure 4.9: Here the current execution context is stored in
the global variable __context which is updated upon function entry as
suggested with the call to __update_context(). In the example CS_F and
CS_H are used for representing the call-strings emanating from the calls to
function f and h respectively. This particular implementation is not yet
thread-safe but serves to illustrate our purpose.

2. Generating explicit copies of the deepest n functions in the expanded call
graph. While this transformation is likely to increase execution speed, it
has the drawback of increasing the code size significantly.

Both methods involve a slight refactoring of the original program. While a less
invasive method would seem preferable, it has to be noted that, because of the

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 51

more precise analysis information, the modified program also carries an increased
potential for subsequent optimizations—this is comparable to inlining.

4.5 The trusted annotation base
In the previous sections we showed how to automatically generate assertion-
carrying code (ACC), a technique that can be used to quickly get to a flawless
analysis implementation. In this section, we will show how ACC can also be
applied to improve the quality of manual annotations.

Manual annotations introduce an obvious risk into the WCET analysis work-
flow. Not only is it very expensive to use software engineers’ hours to perform
control flow analysis by hand—it is also inherently error-prone. In fact all
annotations that stem from an unknown source have to be trusted as they have
the potential to introduce errors into the WCET analysis result. An important
goal for us is therefore to shrink this trusted annotation base to keep the influence
of trusted sources at a controlled minimum. We pursue this goal by transforming
the trusted annotation base into a verified annotation base. Formal verification
techniques can be used to transform trusted information into verified knowledge.
We can often do this because it is often cheaper to verify the correctness of
a result than computing it from scratch. Later on, we also discuss how these
techniques can be applied to improve the precision of the verified annotations.
This section extends on a paper previously published at the WCET’09 workshop
[PKK+09].

4.5.1 Lifting environmental information to the program
layer

Step zero in shrinking the trusted annotation base is actually to make as much
information as possible automatically analyzable. Not only does this save
time—it can also serve to increase the reliability of the code by making im-
plicit assumptions explicit. Table 4.2 shows an example of this technique
[KKP+08]. If we assume that only the environment dictates that the return
value of read_from_sensor() is in the interval [0,47], the upper loop bound
of 48 would not be found by any analysis. On the left side, the information
was thus annotated. Once the information is made part of the program (as
shown on the right side of Table 4.2) the loop bound information can be easily
inferred by the WCET analyzer. This example shows how to write programs in
an analyzable fashion.

4.5.2 Shrinking and verifying the trusted annotation base
The automatic computation of bounds by current approaches to WCET analysis
is a step towards keeping the trusted annotation base small. In our approach we
go a step further to shrinking the trusted annotation base. In practise, we often
succeed to empty it completely.

A key observation is that a user-provided bound—which the automatic
analyses were unable to compute—cannot be checked by them either. But this
would be necessary in order to move it a posteriori from the trusted annotation
base to the verified knowledge base. Hence, verifying the correctness of the

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 52

1 int g(int x) {
2 int r;
3
4 /*[ACC]*/ __update_context(CS_G); // update call string
5 /*[ACC]*/ switch(__context) { // pre-info
6 /*[ACC]*/ case CS_F: assert(x >= 0 && x <= 0); break;
7 /*[ACC]*/ case CS_H: assert(x >= 42 && x <= 42); break;
8 /*[ACC]*/ default: assert(false);
9 /*[ACC]*/ }
10 /*[ACC]*/ assert(x >= 0 && x <= 42); // merged pre-info
11
12 r = x + x;
13
14 /*[ACC]*/ switch(__context) { // post-info
15 /*[ACC]*/ case CS_F: assert(x >= 0 && x <= 0
16 /*[ACC]*/ && r >= 0 && r <= 0); break;
17 /*[ACC]*/ case CS_H: assert(x >= 42 && x <= 42
18 /*[ACC]*/ && r >= 84 && x <= 84); break;
19 /*[ACC]*/ default: assert(false);
20 /*[ACC]*/ } // merged post-info
21 /*[ACC]*/ assert(x >= 0 && x <= 42 && r >= 0 && r <= 84);
22
23 return r;
24 }
25
26 int f(int x) {
27 /*[ACC]*/ __update_context(CS_F); // update call string
28 return g(0);
29 }
30
31 int h(int x) {
32 /*[ACC]*/ __update_context(CS_H); // update call string
33 return g(42);
34 }

Figure 4.9: Calling contexts and merged interval information

before after

1 int c = read_from_sensor();
2 while (c >= 0) {
3 #pragma wcet_loopbound(0..48)
4 c--;
5 ...

1 int c = read_from_sensor();
2 if (c < 48) {
3 while (c >= 0) {
4 c--;
5 ...
6 } else error_handler();
7 }

Table 4.2: Lifting environmental information

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 53

corresponding user annotation requires another, more powerful and usually
computationally more costly approach. For example, there are many algorithms
for constant propagation, detecting different classes of constants at different costs,
such as copy constants, linear constants, simple constants, conditional constants,
up to finite constants [Muc97]. This provides evidence for the variety of available
choices for analyses using the example of constant propagation. While some of
these algorithms might in fact well be able to verify a user annotation, none of
these algorithms is especially prepared and suited for solely verifying a data-flow
fact at a particularly chosen program location, a so-called data-flow query. This
is because these algorithms are exhaustive in nature. They are designed to
analyze whole programs. They are not focused towards deciding a data-flow
query, which is the domain of demand-driven program analyses [DGS97; HRS95].
As for the more expressive variants of constant propagation and folding, however,
demand-driven variants of program analyses are often not available.

In our approach, we thus propose to use model checking for the a poste-
riori verification of user-provided annotations. Model checking is tailored for
the verification of data-flow queries. Moreover, the development of software
model checkers made tremendous progress in the past few years and they are
now available off-the-shelf, such as Blast [BHJM07] and CBMC [CKL04]. In
our experiments reported in Section 7.2 we used CBMC, which was already
successfully used to provide loop bounds in the context of measurement-based
WCET analysis [RPW08].

4.5.3 Sharpening the time bounds
We now introduce an effective approach to come up with a safe and even tight
bound, if existing, which does not even rely on any user interaction. Fundamental
for this are the two algorithms binary tightening and binary widening and their
coordinated interaction. The point of this coordination is to make sure that
model checking is applied with care as it is computationally expensive.

Binary tightening

Suppose a loop bound has been proven safe, e. g., by verifying a user-provided
bound by model checking or by a program analysis. Typically, this bound will
not be tight, especially if it was user-provided. Users tend to generously err
on the side of caution when manually providing a bound, in order to avoid
sacrificing safety. This suggests the following iterative approach to tighten the
bound, which is an application of the classical pattern of the binary search
algorithm, thus called binary tightening in our scenario.

Let b0 denote the value of the initial bound, which is assumed to be safe.
Per definition b0 is a positive integer. Then we call procedure binaryTightening
with the interval [0 . . . b0] as argument, where binaryTightening([low . . . high]) is
defined as shown in Algorithm 1. Obviously, binaryTightening terminates. If it
returns false, a safe bound tighter than that of the initial bound b0 could not be
established. Otherwise it returns the value b, which is the least safe bound. This
means b is tight. If it is smaller than b0, we succeeded to sharpen the bound.

Note that it is not essential to invoke binaryT ightening with an interval
whose high value has been proven to be safe. Obviously, this does not affect
termination of binaryT ightening. If binaryT ightening returns a value of m

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 54

Algorithm 1 Binary tightening

m←
⌈

low+high
2

⌉
if ModelCheck(Is m a safe bound?) then
if low = m then
return m

if low = m− 1 then
if ModelCheck(Is low a safe bound?) then
return low

else
return m

else
return binaryTightening([low . . .m])

else
if high = m then
return false

if high = m+ 1 then
if ModelCheck(Is high a safe bound?) then
return high

else
return false

else
return binaryTightening([m. . . high])

smaller than the initial value of high, then this value is the tight safe bound of
this loop relative to the precision of the model checker that is used. If it returns
false, then the initial value of high finally has to be model checked for safety.
In the positive case, it is the tight safe bound. In the negative case, it is not a
safe bound at all and must be removed from the annotation base.

Binary widening

We will now describe how to proceed if a safe bound is not known a priori. If
a safe bound (of reasonable size) exists, binary widening will find one, without
any further user interaction.

Binary widening is dual to binary tightening. It is operating like a risk-aware
roulette player, who exclusively bets on 50% chances like red and black. Following
this strategy, in principle, any loss can be flattened by doubling the bet the
next game. In reality, the maximum bet allowed by the casino or the limited
monetary resources of the gambler, whichever is lower, prevent this strategy
from working in reality. Nonetheless, such an externally given limit is also what
prevents the binary widening algorithm from avoid looping if no safe bound
exists: The implementation shown in Algorithm 2 comes up with a safe bound,
if one exists, and terminates, if the size of the bound is too big to induce a useful
WCET bound, or does not exist at all. This directly corresponds to the limit set
by a casino for a maximum bet.

Let b0 be an arbitrary number, b0 ≥ 1, and let limit be the maximum value for
a safe bound considered reasonable. Then we call procedure binaryWidening with

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 55

Algorithm 2 Binary widening
if b > limit then
return false

else
if ModelCheck(is b a safe bound?) then
return b

else
return binaryWidening(2 · b, limit)

b0 and limit as arguments, where binaryWidening(b, limit) is defined as shown in
Algorithm 2. Obviously, binaryWidening terminates.2 If it returns false, at most
an unreasonably large bound exists, if at all. Otherwise, it returns value b, which
is a safe bound. The rationale behind this approach is the following: If a safe
bound exists, but exceeds a predefined threshold, it can be considered practically
useless. In fact, this scenario might indicate a programming error and should thus
be reported to the programmer for inspection. A more refined approach might
set this threshold in a more sophisticated way, by using application dependent
information, such as a coarse estimate of the execution time of a single execution
of the loop and a limit on the overall execution time budgeted for this loop.

Coordinating binary widening and tightening.

Once a safe bound has been determined using binary widening, binary tightening
can be used to compute the uniquely determined safe and tight bound. Because
of the exponential or rather logarithmic behaviour in the growth of the arguments
for binary widening and tightening, model checking is called moderately often.
This is the key for the practicality of our approach, which we implemented within
TuBound (cf. Chapter 2). The results of practical experiments we conducted with
the prototype implementation are promising. They are reported in Section 7.2.

4.6 Implementation details
The interfacing with the model checker necessary for the binary widening/tighten-
ing algorithms is implemented by means of a dedicated Termite source-to-source
transformer (cf. Section 6.2). This requires the assertion-carrying code trans-
formation described in Section 4.3 to translate user-provided annotations into
assert() statements. On while-loops the transformer works by locating the first
occurrence of a wcet_trusted_loopbound(Lower..Upper) annotation in the
program source and then proceeds to rewrite the encompassing loop as illustrated
in the example of Figures 4.11 and 4.12. An excerpt of the source-to-source
transformer is given in Figure 4.10.3 For simplicity and uniformity we assume
that all loops are structured. In our implementation unstructured goto loops are
thus transformed into while loops where possible. This is done in a pre-pass by

2In practise, the model checker might run out of memory before verifying a bound, if it is
too large, or may take too much time for completing the check.

3For better readability, the extra arguments containing file location and other bookkeeping
information are replaced by “. . . ”.

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 56

1 assertions(..., Statement, AssertedStatement) :-
2 Statement = while_stmt(Test, basic_block(Stmts, ...), ...),
3 get_annot(Stmts, wcet_trusted_loopbound(Lower..Upper), _),
4
5 var_decl(unsigned_int, ’_bound’, 0, ..., CounterDecl),
6 var_ref_exp(’_bound’, unsigned_int, Counter),
7 plusplus_expr_stmt(Counter, ..., Count),
8 build_expr_stmt(
9 assert((Counter =< Upper) && (Counter >= Lower)),
10 ..., CounterAssert),
11
12 AssertedStatement =
13 basic_block([CounterDecl,
14 while_stmt(Test, basic_block([Count|Stmts], ...),

...),
15 CounterAssert], ...).

Figure 4.10: Excerpt from the ACC generator

another Termite transformer. If such a transformation is not possible, the loop
cannot be analyzed.

Surrounding the loop statement, a new compound statement is generated,
which accommodates the declaration of a new unsigned counter variable which
is initialized to zero upon entering the loop. Inside the loop, an increment
statement of the counter is inserted at the very first location. After the loop, an
assertion is generated which states that the count is at most of value N , where
this value is taken from the annotation.

The application of the transformer is controlled by a driver, which calls
the transformer for every trusted annotation contained in the source code.
Depending on the result of the model checker and the coordinated application
of the algorithms for binary widening and tightening, the value and the status
of each annotation is updated. In the positive case, this means the status is
changed from trusted annotation to verified knowledge, and the value of the
originally trusted bound is replaced by the now verified, possibly sharper, bound.
Figure 4.12 shows a snapshot of processing the janne_complex benchmark. In
this figure, the outer loop was already tightened to a smaller interval (line 4),
whereas the inner loop is prepared for another run of the model checker, by
introducing the new counter variable _bound (lines 9, 20–21).

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 57

. . .

1 int complex(int a, int b)
2 {
3 while(a < 30) {
4 #pragma wcet_trusted_loopbound(0..30)
5 while(b < a) {
6 #pragma wcet_trusted_loopbound(0..30)
7 if (b > 5)
8 b = b * 3;
9 else
10 b = b + 2;
11 if (b >= 10 && b <= 12)
12 a = a + 10;
13 else
14 a = a + 1;
15 }
16 a = a + 2;
17 b = b - 10;
18 }
19 return 1;
20 }

. . .

Figure 4.11: Code containing two trusted loop annotations

CHAPTER 4. FLAWLESS ANNOTATIONS AND ANALYSES 58

. . .

1 int complex(int a, int b)
2 {
3 while(a < 30) {
4 #pragma wcet_loopbound(0..16)
5 {
6 unsigned int _bound = 0;
7 while(b < a){
8 #pragma wcet_trusted_loopbound(0..30)
9 ++_bound;
10
11 if (b > 5)
12 b = b * 3;
13 else
14 b = b + 2;
15 if (b >= 10 && b <= 12)
16 a = a + 10;
17 else
18 a = a + 1;
19 }
20 assert(_bound >= 0
21 && _bound <= 30U);
22 }
23 a = a + 2;
24 b = b - 10;
25 }
26 return 1;
27 }

. . .

Figure 4.12: Outer loop annotation verified and tightened, inner loop transformed
for checking

Chapter 5

Transforming flow
constraints

As indicated in Chapter 1, compiler optimizations are root to several problematic
issues when it comes to timing-critical embedded systems:

First there is the issue of the optimization target. An off-the-shelf compiler
generally offers only one of two options: Optimize for the (average) execution
speed or optimize for the minimal size of the executable. For a real-time system,
the average-case performance is not the main point of interest—although it con-
tributes to making the system more energy efficient. The targeted optimization
goal should obviously be the worst-case performance. Sadly, there are only few
compilers that offer this [LM09].

The second issue is with annotations. We already established that not only
annotation support is generally necessary, but also that the source code is a more
suitable target to perform automatic control flow analysis on. The gathered
information (be it manually or automatically) now needs to be transformed
alongside the code and should be available at the machine code level without
any loss of correctness and, when possible, without any degradation in quality.

In this chapter, we first investigate compiler optimizations and their effect on
flow information. Then we continue to design a language to concisely describe
how to transform annotations. Finally, we will show how to apply this language
to describe flow information updates for several types of loop optimizations. In
Chapter 7, results from the Mälardalen and DSPstone benchmark suites are
shown. Research results related to this chapter are published in the Journal on
Real-Time Systems [KPP10].

5.1 Classification of optimizations
Depending on the types of optimizations that are performed by the compiler,
different requirements are imposed on the flow constraint transformer. To
illustrate this, we categorize the transformations by their effects on the control
flow graph (CFG) and the annotation semantics. In general, we can distinguish
three kinds of transformations, classifying whether they always/never/sometimes
modify the shape of the control flow graph and affect other aspects of the
annotated information.

59

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 60

Affects
Optimization CFG Labels Constraints
Loop Unrolling maybe no yes
Loop Blocking yes yes yes
Loop Fusion yes yes yes
Loop Interchange no* yes yes
(*Remember that in this case the shape of the graph remains
the same—only the contents of the nodes changes)

Table 5.1: Classification of common program transformations

These other aspects can be broken down in two categories: The first one
concerns the location of the annotation. If a program transformation alters the
CFG, e. g., by fusing two loops of identical iteration space into a single new
loop, it is necessary to update the location of the annotations. In a source-based
annotation language this could be achieved by physically moving them to the
newly created loop.

The other aspect concerns the contents of the annotations: If a loop is
unrolled by a factor that is a integer divisor of the iteration count, the locations
of the basic blocks in the CFG will not necessarily change, but the information
described by the contained annotations has to be adjusted accordingly.

5.2 Defining transformation rules
Recalling Section 2.5, there are four types of annotations available in TuBound:
Loop bounds, markers, constraints and scopes. Of these, however, only markers
and constraints are canonical. Loop bounds exist mostly for convenience pur-
poses and are syntactic sugar for a constraint-marker combination.1 The same
considerations apply for scopes as well, which again are syntactic sugar for an
(albeit longer) marker-constraint combination (cf. Section 2.5). For this reason
we will mostly deal with constraints and markers in this section. We also restrict
our considerations to linear flow constraints.

In the annotation language, markers are associated with flow. In the control
flow graph (CFG), flow can either be associated with nodes or edges. In compiler
literature nodes are usually holding the instructions, whereas program analyzers
often use control flow automata where nodes denote the state of the machine
between executing instructions. In the following we will use a representation
where nodes are instructions and flow is associated with edges. The constraint
system consists of flow variables fe—one for each edge e—that are described by
a set of inequalities. To slim down this representation it is sufficient to generate
only one flow variable per basic block, since sequences of instructions (basic
blocks) always share the same flow. Markers are translated into flow variables
via their name (cf. Section 5.4.2). In its current form the TuBound annotation
language uses the location of a marker in the source code to reference basic

1A loop bound (l, u) can be translated into a marker entry (placed before the loop entry), a
marker body (placed at the top of the loop body) and a constraint 〈l·entry ≤ body ≤ u·entry〉.

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 61

blocks. In the future, edge-markers like, for instance, loop back edges could be
supported by introducing reserved names.

In this chapter we define rules that describe how to transform annotations
consisting of loop bounds, markers and constraint terms according to an opti-
mization trace. We start by introducing the vocabulary needed in these rules:
Loop bounds can be transformed simply by updating the lower and upper bound.
For markers every necessary operation can be expressed by either renaming,
deleting, or introducing new markers. For constraints we additionally need more
fine-grained operations, as discussed below.

Control-flow-altering compiler optimizations delete and insert edges (and
nodes) in the transformed CFG (henceforth called CFG′). Since these optimiza-
tions need to preserve the semantics of the original program, the total flow of
the program (on a per-basic-block level) typically remains the same. However, it
will be differently distributed. For our flow constraint transformation rules we
therefore need to deal with two scenarios [KPP10]:

1. The flow fe at an edge e can be split into flow at multiple edges e′i in the
optimized program. In this case each occurrence 〈n ·fe〉 of a linearly scaled
marker (=flow variable) in a constraint expression is transformed into the
sum of multiple scaled variables f ′ei .

〈n · fe〉 −→ 〈n1 · fe′1〉+ 〈n2 · fe′2〉+ . . .

2. Conversely, the control flow of several edges ei can be merged into one
edge e′, which implies that we need one transformation for each edge ei,

〈n · fei〉 −→ 〈[nlhs . . . nrhs] · fe′〉

where nlhs is used on the left-hand-side of a ≤ or < constraint and nrhs is
used on the right-hand-side and vice versa with ≥, >.

With the help of these operations (typically combinations thereof) we can model
all types of linear flow constraint transformations. A transformation is called
safe if each flow variable fe is transformed into a new set of flow variables fe′

i
,

〈n · fe〉 −→
∑

e′
i
∈CFG′

[nlhs . . . nrhs] · fe′
i

such that ∑
e′
i
∈CFG′

nlhs · fe′
i
≤ n · fe ≤

∑
e′
i
∈CFG′

nrhs · fe′
i

�

The term ∑
e′
i
∈CFG′

|nlhs − nrhs| · fe′
i

describes the precision of a transformation rule.

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 62

Original program Loop-interchanged program′

for (i = 0; i < 8; ++i) {
// l1
for (j = 0; j < n; ++j) {

// l2
if (even(i))

// then
...

else ...

for (j = 0; j < n; ++j) {
// l1
for (i = 0; i < 8; ++i) {

// l2
if (even(i))

// then
...

else ...

Loop bounds Loop bounds′

〈l1, 8 . . . 8〉 〈l1,1 . . .4〉
〈l2, 1 . . . 4〉 〈l2, 8 . . . 8〉

Constraints Constraints′

fl1 ≤ 8
fthen ≤ fl1 · 2
fl1 ≤ fthen · 2

fl2/4 ≤ 8
fthen ≤ fl2/1 · 2
fl2/4 ≤ fthen · 2

Figure 5.1: Example: Loop interchange

Example. Loop interchange is a loop optimization that alters the iteration
pattern of two nested loops. Figure 5.1 shows the effect of interchanging the
loops l1 and l2 in an example program. The flow transformation rules for loop
interchange are (cf. Section 5.4.1, and Figure 5.3) defined as follows: The loop
bounds (lo1 . . . up1) for l1 and (lo2 . . . up2) for l2 are interchanged:

〈l1, lo1 . . . up1 〉 −→ 〈l2, lo1 . . . up1 〉

〈l2, lo2 . . . up2 〉 −→ 〈l1, lo2 . . . up2 〉

The flow variable referring to the outer loop body needs to be transformed as
well:

〈n · fl1〉 −→ 〈[1/up2 . . . 1/lo2] · fl2〉

In the above rule, the flow variable referencing the outer loop body is replaced by
one referencing the inner loop body. Since the inner loop body is executed more
often than the original outer loop body, the flow variable is scaled by the lower
or upper loop bound of the new outer loop, respectively. This is highlighted
with colour in Figure 5.1. Since the flow of the innermost loop body remains the
same after the interchange, it is not necessary to transform it.

The effect of these rules on actual flow constraints is shown in the lower part
of Figure 5.1. Loop bounds are given as pairs of loop name and lower. . . upper
bound. The first constraint describes that the outer loop body is executed up to 8
times. The second and third constraints describe that the then-block is executed
exactly half as many times as l2 is entered. Since the flow transformation rules
are not precise, this information is weakened by the transformation. Nevertheless,
the information is safe.

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 63

5.3 Designing a new work flow
Earlier proof-of-concept implementations of flow constraint transformation frame-
works were performed in the following compiler systems:

1. The earliest implementation we are aware of is the co-transformer, which
uses optimization traces generated by the compiler to transform the flow
information separately from the program [EEA98]. This is facilitated
by an optimization description language (ODL) that describes the code
optimizations performed by the compiler.

2. A second implementation was done inside the GNU C Compiler (GCC)
version 2.7.2 [Kir03]. This implementation could only show some basic
capabilities of a flow constraint transformation framework, since at the
time, GCC 2.7.2 implemented only a small number of code transformations
that would change the control flow of the compiled program.

3. In more recent work, flow constraint transformation was also integrated
into the Wcc compiler, which is also able to perform WCET-aware code
optimizations [Sch07b]. The Wcc compiler implements transformations
for annotations supported by the WCET analysis tool aiT.

The last two of the above implementations tightly integrate the handling
and transformation of flow information with the compiler. Such an approach
involves a deep understanding of the compiler internals and is only feasible
when it is integrated with the main development branch of the compiler. Our
experiences with the GCC implementation showed that maintaining the handling
of flow constraints as an add-on patch can be very time-consuming. These
complications inspired us to the development of a more portable solution, thereby
taking the concept of the co-transformer to a higher level: Considering that
not every optimizing transformation alters the control flow graph (think of
local optimizations like expression rewriting), the optimizations can be divided
into two groups, control-flow-invariant and control-flow-modifying. A majority
of the control-flow-modifying transformations are loop optimizations [Kir03],
which can be implemented effectively as source-to-source transformations. This
approach is traditionally taken by Fortran compilers [AK02], but also by recent
versions of GCC, which are using a near-source internal representation to perform
high-level loop optimizations [PCB+06]. By carrying out control-flow-modifying
optimizations as source-to-source transformations, the subsequent target compiler
needs only to perform a direct translation to machine code, leaving the control
flow intact. It is still safe to apply control-flow-invariant transformations in the
target compiler.2

The prototypical work-flow of the high-level source-to-source compiler is
shown in Figure 5.2 [Pra07b]: In the first step [1. Unweave], annotations and
source code are separated. Each annotation is associated with a unique label
that identifies its location in the source code. This way the optimizer need not
be aware of the placement or contents of annotations. In the second step [2.
Optimize], the source-to-source optimization is performed. The optimizer needs

2In current compiler systems like GCC or LLVM this can be achieved by starting with
the -O0 optimization level and manually enabling safe transformations using the respective
command line flags.

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 64

C++ with Annotations

1. Unweave

C++ sources Annotations

2. Optimize Optimization
trace

3. Transform

Optimized
C++

Transformed
annotations

4. Weave

C++ with annotations

C++ with
annotations

High-level
compiler

C++ with
annotations

Low-level compiler

Machine code

Figure 5.2: Workflow of the source-to-source high-level compiler

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 65

to generate a trace of the performed program transformations. The optimization
trace together with the original annotations is the input for the flow information
transformation engine [3. Transform]. This engine contains a rule base describing
the flow constraint update for each type of optimization. These rules need to be
specified only once for each program transformation that is implemented in the
optimizer. In the final step, the transformed annotations are merged with the
transformed source code [4. Weave].

5.4 Implementation in TuBound
The TuBound WCET analysis tool contains an implementation of this source-to-
source work flow, based on a C++ port of the Fortran D loop optimizer included
with the Rose [QSMK04] compiler. Even though many of the performed high-
level optimizations target the average-case execution time instead of the worst
case, our measurements indicate a positive effect also on the analyzed worst-case
performance of the optimized programs [Pra07a; PSK08; KPP10]. A detailed
account on these benchmarks is given in Section 7.3.

5.4.1 Transformation rules examples
While the source-to-source infrastructure is targeting a subset of C++, the
low-level compiler and rest of the tool chain is currently restricted to C as input
language. The analysis results (loop bounds, flow constraints) found by TuBound
are annotated into the source code as #pragma directives. The concrete syntax
of these annotations is designed such that each annotation is also a legal Prolog
term. This makes it possible to use Prolog as specification language for the flow
information update rules.

Figure 5.3 shows the rules for loop interchange: Processing the optimizations
in the trace, these rules are applied to each annotation. The first two arguments
contain information from the optimization trace (the labels of the interchanged
loops Loop1 and Loop2). The third argument is the list of all annotations before
the transformation. This is followed by the annotation to be transformed: An
annotation is associated with a location (a marker) and a body: Valid bodies are
loop bounds, constraints and marker names. Markers are labels of basic blocks
or specific edges in the CFG and follow a unique hierarchical naming scheme
that encodes the location in the abstract syntax tree of the program. The last
argument is unified with a list of annotations generated by the transformation
rule. The first two clauses in Figure 5.3 swap the loop bounds of the interchanged
loops. The third clause updates flow constraints The helper predicate replace
is used to replace all occurrences of Loop1 on the left-hand-side with Loop2
divided by its lower loop bound and vice versa. After the rules are applied, the
resulting constraints are normalized to remove the division operator and allow
further processing by other tools.

Figure 5.4 shows an excerpt of the rules we implemented for loop unrolling.
The rules in this example are parametrized with the label of the unrolled loop
body and the unroll factor. They are written in Prolog and are applied to each
annotation of the original program. The first rule updates the loop bounds
according to the unroll factor k, whereas the second rule clones constraints
for each unrolled basic block in the loop body. The program on the right of

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 66

1 % loop interchange
2 % -----------------
3 % interchanged(+Loop1, +Loop2, +Annotations, +OldAnnotation,
4 % -NewAnnotations)
5 %
6 interchanged(Loop1, Loop2, _,
7 annotation(Loop1, wcet_loopbound(Lo..Up)),
8 [annotation(Loop2, wcet_loopbound(Lo..Up))]).
9
10 interchanged(Loop1, Loop2, _,
11 annotation(Loop2, wcet_loopbound(Lo..Up)),
12 [annotation(Loop1, wcet_loopbound(Lo..Up))]).
13
14 interchanged(Loop1, Loop2, Annotations,
15 annotation(M, wcet_constraint(Lhs=<Rhs)),
16 [annotation(M, wcet_constraint(Lhs1=<Rhs1))]) :-
17 member(annotation(Loop2, wcet_loopbound(Lo..Up)),
18 Annotations),
19 replace(Lhs, Loop1, Loop2/Up, Lhs1),
20 replace(Rhs, Loop1, Loop2/Lo, Rhs1).

Figure 5.3: Flow transformation specification for loop interchange

Table 5.2 shows the effect of applying these rules to the program on the left: In
the example, the for loop is unrolled with a factor 2, which means that the control
flow is now equally distributed over the two copies of the original loop body.
This is reflected in the updated constraints (note that the original marker names
have been replaced by generic ones), where the marker m_if is replaced by the
sum of the two new if-blocks f_1_1_1 and f_1_1_2, whereas the right-hand side
m_for/4 was replaced by (f_1_1 · 2)/4, which was then simplified to f_1_1/2.
This last replacement was necessary because the unrolled for loop is executed
half as often as the original loop. Finally, the loop bound of the unrolled loop
was updated to 48/2 = 24.

Figure 5.5 shows the only rule necessary to implement loop fusion. The idea
is that annotations referencing the second loop, M_fused, are merged into the
first and only loop remaining after the optimization, M_orig.

5.4.2 A hierarchical naming scheme for AST scopes
When annotations are sent through the transformation rules, they are detached
from the source code. The mapping from annotations to source code locations is
achieved by a hierarchical naming system. This way, we can even refer to nodes
that are not present in the original program. The name of a node is derived from
its location in the AST in the following way: From the function root-node, which
by convention is called like the function name, we concatenate the number of
each child scope starting with 1 and separated by an underscore. As an example,
Figure 5.6 shows a function and the derived names for each scope.

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 67

1 % loop unrolling
2 % --------------
3 unrolled(M, K, _, annotation(M, wcet_loopbound(Lo..Up)),
4 [annotation(M, wcet_loopbound(Lo1..Up1))]) :-
5 Lo1 is floor(Lo/K),
6 Up1 is ceiling(Up/K).
7
8 unrolled(M_Loop, K, _, annotation(M_Annot, wcet_constraint(Term)),

9 NewAnnots) :-
10 replace(Term, M_Loop, M_Loop*K, Term1),
11 (nested_in(M_Annot, M_Loop)
12 -> list_from_to(1, K, Ns),
13 M_AnnotBase = M_Annot,
14 maplist(unroll_clone(M_AnnotBase, M_Annot, Term1, Ns), Ns,

NewAnnots) ;
15 NewAnnots = [annotation(M_Annot, wcet_constraint(Term1))]).
16
17 unroll_clone(M_AnnotBase, M_Annot, ConstrTerm, Ns, N, NewAnnot) :-

18 atomic_list_concat([M_AnnotBase, ’_’, N], M_clone), % Pos. of
Constr

19 sumterm(M_AnnotBase, Ns, M_sum), % New ConstrTerm
20 replace(ConstrTerm, M_Annot, M_sum, ConstrTerm1),
21 NewAnnot = annotation(M_clone, wcet_constraint(ConstrTerm1)).

Figure 5.4: Example from the transformation rules: loop unrolling

1 % loop fusion
2 % --------------
3 fused(M_orig, M_fused, _, annotation(M_orig, Annot),
4 [annotation(M_fused, Annot)]).

Figure 5.5: Example from the transformation rules: loop fusion

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 68

Original user-annotated program After 2× loop unrolling

int* f(int* a)
{

int i;
#pragma wcet_marker(m_func)

for (i = 0; i < 48; i += 1) {
#pragma wcet_loopbound(48..48)
#pragma wcet_marker(m_for)

if (test(a[i])) {
#pragma wcet_marker(m_if)
#pragma wcet_constraint(

m_if=<m_for/4)
a[i]++;

}
}
return a;

}

int *f(int *a)
{

int i;
for (i = 0; i <= 47; i += 2) {

#pragma wcet_marker(f_1_1)
#pragma wcet_loopbound(24..24)

if ((test(a[i]))) {
#pragma wcet_marker(f_1_1_1)
#pragma wcet_constraint(

f_1_1_1+f_1_1_2=<f_1_1/2)
a[i]++;

}
if ((test(a[1 + i]))) {

#pragma wcet_marker(f_1_1_2)
#pragma wcet_constraint(

f_1_1_1+f_1_1_2=<f_1_1/2)
a[1 + i]++;

}
}
return a;

}

Table 5.2: Flow annotations before and after loop unrolling

f



f_1



f_1_1

 f_1_1_1


f_1_2


f_2



1 int f() {
2 if (A) {
3 while (B) {
4 // f_1_1_1
5 }
6 }
7 else {
8 // f_1_2
9 }
10 // f
11 if (C) {
12 // f_2
13 }
14 }

Figure 5.6: The node naming scheme in action

CHAPTER 5. TRANSFORMING FLOW CONSTRAINTS 69

5.4.3 Extensions
The current implementation of the flow constraint transformation rules allows
only markers and integer values as part of flow constraints. In the future this
could be extended to allow other kinds of symbolic expressions, such as function
parameters or variable values, to be used within flow constraints. This way, it
would become possible to derive parametric WCET bounds [AAG+07].

Currently we use a notation where flow variables represent the global flow
of a program location. To get the most benefit from inter-procedural flow
information, the syntax of the flow information has to be extended to support
call contexts [KKP+08]. Typical inter-procedural code optimizations that require
the update of inter-procedural flow information are procedure cloning [LFMT08]
or procedure inlining.

Chapter 6

The implementation
environment

6.1 SATIrE
All of the algorithms presented in this thesis are implemented in the SATIrE
source-to-source program analysis framework. The SATIrE framework started
as a connection of the Rose compiler and the Program Analyzer Generator
(PAG) and is developed at Vienna University of Technology. Rose is a C++
to C++ compiler developed at Lawrence Livermore National Laboratory that
provides a C++ object representation of the abstract syntax tree and a line-and-
column precise unparser [Law10]. PAG is developed at AbsInt GmbH and takes
a specification for a program analyzer and generates C code that performs the
fixed-point search [Abs10b]. The specification uses a special-purpose functional
language called OPTLA1. The main contribution of SATIrE is the construction
of an interprocedural control flow graph (ICFG) which is achieved by connecting
the nodes in the abstract syntax tree (AST) provided by Rose. Since early
in 2009, SATIrE was extended by other components such as Termite (described
in Section 6.2). Now, many of the analyses written with SATIrE (such as the
interval and loop bound analyses) are also distributed together with it in the
same package.

To get a better grasp of what is available under the SATIrE hood, we will
now dissect TuBound into its components and describe which parts of SATIrE
they are using. Recalling the structure of TuBound shown in Figure 2.2 on
page 19, every component that operates on the high-level language representation
is connected to SATIrE.

SATIrE’s points-to analysis is written in C++ and operates directly on the
ICFG constructed by SATIrE. The interval analysis is written in FuLa; SATIrE
is responsible for connecting the ICFG with the analyzer generated by PAG.
The information from the points-to analysis is available via the foreign function
interface in FuLa. All results from the interval analysis are stored in the ICFG,
using Rose’s attribute mechanism. In a typical automated TuBound session,
the AST is then exported in the Termite format. This format, which retains all

1OPTLA again is based on the FuLA functional language.

70

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 71

PAG analysis information and also condensed points-to information, is described
next.

6.2 Termite
The TERM Iteration and Transformation Environment (Termite) is a Prolog
library that allows easy manipulation and analysis of C++ programs [Vie10c]. It
is particularly well suited for specifying source-to-source program transformations,
static program analyses and program visualizations. Termite builds upon the
intermediate representation of SATIrE.

6.2.1 The Termite term representation
To fully support the work flow, we extended SATIrE to export an external term
representation of the abstract syntax tree (AST) of a C++ program. This term
representation contains all information that is necessary to correctly unparse the
program, including line and column information of every expression. The terms
are also annotated with the results of any preceding PAG analysis. The syntax
of the term representation is designed to match the syntax of Prolog terms. This
allows to very naturally manipulate it by Prolog programs.

Depending on the desired architecture there are several ways to integrate
Termite into the work flow of a larger tool chain. For a flexible recombination
of several analyses and/or transformations it is best to treat Termite programs
as interpreted scripts that read/write AST terms from the standard input and
output. If performance and stability are sought for, it is also possible to call
Termite programs transparently from a SATIrE analyzer. A complete overview
of all combinations possible is shown in Figure 6.1.

6.2.2 Using Termite for a standalone process
The most flexible and convenient way to work with the Termite library is by
using it to define filter operations on streams of source code. This way one
can follow the UNIX tradition of having a collection of small self-contained
programs that can be combined to create larger work flows. Depending on the
expected input and generated output, several types of Termite programs can be
distinguished. Typical examples are:

A source-to-source transformer is a program that reads in an AST, then
performs some transformation and outputs the transformed AST. (Example:
loop unrolling)

An analyzer is a program that reads in an AST, performs some analysis and
outputs the analysis result as attributes of the AST. (Example: loop bound
analysis)

A visualization is a program that reads in an AST and outputs a visualization,
e. g., in a GUI window or a PostScript file. (Example: Call-graph →
Graphviz (DOT))

A source generator is a program that reads in a specification and outputs an
AST in termite format.

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 72

Source code

EDG C, C++ front end

Rose compiler

SATIrE Analyzer

Termite program

clang C, Objective
C front end

SATIrE

Rose Unparser

Termite Unparser

Source code

Rose IR c2term

Figure 6.1: Termite usage scenarios

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 73

A compiler is a program that translates an AST into a different language, e. g.,
melmac [Bár10] or wcetcc (cf. Section 6.3).

In order to generate a Termite term from one or more source files a compiler
front end must be invoked. Two possibilities are supported and available in
the SATIrE distribution: The commercial EDG front end, and the open-source
clang front end. Next, we discuss the differences between the two.

EDG C/C++ front end from the Rose compiler

If SATIrE is configured with the Rose connection enabled2, conversion tools
are available to translate source code to term files and vice versa. To translate
source code into a Termite term we developed the c2term program:

> c2term

Usage:
c2term [FRONTEND OPTIONS] [--dot] [--pdf] src1.c src2.cpp ...

[-o termfile.pl]
Parse one or more source files and convert them into a
TERMITE file. Header files will be included in the term
representation.

Options:
[FRONTEND OPTIONS] will be passed to the C/C++ frontend.

-o, --output <termfile.pl>
Write the output to <termifile.pl> instead of stdout.

--dot
Create a dotty graph of the syntax tree.

--pdf
Create a PDF printout of the syntax tree.

This program was built against SATIrE 0.8.6-rc2,
please report bugs to adrian@complang.tuwien.ac.at.

The c2term program invokes the commercial EDG C++ front end embedded
into the Rose compiler to parse one or more source files. The abstract syntax
tree is then translated into the Rose intermediate representation which in turn
is converted into the textual term serialization. The program passes additional
options to the EDG front end.

The reverse direction is managed by the term2c conversion utility. It works by
reading in a term file and then rebuilding the Rose intermediate representation.
Finally, this data structure is passed to the Rose unparser. The EDG front end
is not involved in this step any more.

2Rose must be installed separately beforehand from http://www.rosecompiler.org

http://www.rosecompiler.org

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 74

> term2c

Usage: term2c [OPTION]... [FILE.term]
Unparse a term file to its original source representation.

Options:
-o, --output sourcefile.c

If specified, the contents of all files will be concatenated
into the sourcefile.

-s, --suffix ’.suffix’ Default: ’.unparsed’
Use the original file names with the additional suffix.

-d, --dir DIRECTORY
Create the unparsed files in DIRECTORY.

--dot
Create a dotty graph of the syntax tree.

--pdf
Create a PDF printout of the syntax tree.

This program was built against SATIrE 0.8.6-rc2,
please report bugs to adrian@complang.tuwien.ac.at.

Since both converters use standard input and output per default it is possible
to concatenate multiple Termite programs with the help of UNIX pipes. This
way it is possible to build new chains of program transformations or analyzers
on the fly without having to recompile the whole project.

Example:

c2term a.c b.c | ./transform1.pl | term2c -s ’.transformed’

In this example pipeline, two C source file are joined into one project which is
dumped to a stream in the Termite format. The stream is then transformed
by a Prolog program. Finally the two source files are unparsed by the term2c
converter with the new suffix “.transformed” attached to the file names.

Using the clang C/Objective C front end

While the commercial EDG front end offers a high-quality C++ parser, license
restrictions encumber its free distribution together with other tools. Most notably,
the Rose compiler redistributes only a 32-bit precompiled binary version of the
EDG front end. It is, however, possible to buy other licenses from the Edison
Design Group.

If C++ support is not needed, there is a free alternative available from the
LLVM compiler project. Designed especially for use with LLVM a front end
for C-like languages called clang is published under a BSD-style license. The
clang front end can be downloaded at http://clang.llvm.org/. The front

http://clang.llvm.org/

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 75

end is written in C++ and creates an intermediate representation very similar
to that of Rose and therefore makes it a good candidate to replace the EDG
front end in SATIrE. The C99 and Objective C languages are supported very
well by clang. Support for C++ is in progress; at the time of writing clang,
which is written in a subset of C++, was already able to compile itself.

In order to connect SATIrE with the clang front end, we decided to take the
route via the Termite representation. This way, the front end is cleanly decoupled
from the rest of the system and uses the Termite terms as a stable interface. The
Termite term generator is implemented as a pass over the clang intermediate
representation and is available via the -emit-term command line option. The
term generator is not integrated with upstream clang, but distributed as a patch
against a current SVN version together with SATIrE.

To build the clang front end for use with SATIrE, a special make clang
target is available at the top level which fetches the needed version of clang
from the subversion repository, applies the patch, and compiles and installs the
patched front end to $prefix/bin.

Unparsing Termite terms without SATIrE

The term2c always writes its output to one or several files, using the file names
embedded in the file_info nodes in the Termite representation. This is some-
times too heavyweight, for instance, when only a few expressions should be
unparsed for debugging purposes. For these occasions an independent term→ C
converter is implemented in pure Prolog and available both in the Termite library
and as a stand-alone script. The predicate is called unparse/1 and expects a
Termite term as argument.

6.2.3 Invoking Termite as part of a SATIrE analyzer
If execution speed is an issue, the steps of writing the Termite representation
to disk (or a pipe) and parsing the terms (which, when output as a text, are
significantly larger than the original source files) can be optimized away. If
SATIrE is configured with SWI-Prolog support enabled, the term representation
will be built in memory using the external interface of an embedded SWI-Prolog
interpreter. Using this in-memory term, a Termite program can be executed
without leaving the current process. The resulting term can again be translated
to the Rose intermediate representation directly from memory using the SWI-
Prolog interface.

Using this work flow, the whole analyzer (or transformer, . . .) can be
distributed as a single self-contained executable.

6.2.4 A logical data structure for AST traversals
The Termite interface is designed to facilitate the analysis and transformation of
abstract syntax trees. The most important and fundamental operation for these
applications is to traverse the AST in a meaningful fashion. The requirements
for a meaningful traversal are that it must allow to

I. recognize specific patterns,

II. freely inspect the context of the current node, and

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 76

III. modify the AST during the traversal.

Requirement (I) was the main motivation to choose Prolog as implementation
language. Prolog has language-level support for pattern matching and thus
already saves much implementation effort compared to functionally similar
traversal implementations written in C++ (most notably the Rose compiler
whose intermediate representation formed the basis for the Termite terms).

The transformed_with/6-predicate provides efficient AST traversals that
recursively visit every node in any order and call a visitor goal. The goal

transformed_with(Node, Transformation, Order, Info, InfoT, NodeT)

traverses an AST Node according to Order and calls the goal Transformation
at each sub-node. Transformation is expected to implement the interface

transformed(Info, InfoT, Node, NodeT)

Info can be used by Transformation to pass any data between nodes. Order
must be either preorder or postorder. InfoT and NodeT are unified with the
result of the transformation.

This interface satisfies requirements (I) and (III) but has the drawback that
the transformation predicate only sees the current node and its children at a
time. It is completely ignorant of the parent or siblings of the current node. In a
C++ implementation this problem would be solved by passing a pointer to the
parent node. In a language lacking mutable data structures this is not possible
without violating requirement (III).

A zipper [Hue97] is a functional data structure that allows to bidirectionally
navigate through lists. By combining this idea with that of difference lists [SS94]
it is possible to design a logical data structure that also adheres to requirement
(II). Similar to the functional zipper, a context is attached to the data structure,
storing the current location in the tree. However, similar to logical difference
lists, the current node is replaced by a variable that is also part of the context
data structure. This way the current node can be replaced by unifying this
variable with a new node. Figure 6.2 illustrates how this data structure can be
applied to a binary tree: In this example we want to visit node c, which is found
somewhere in the middle of a larger tree. First, c and its children are cut off
from its parents. This extraction process leaves a gap in the parent tree where
the visited node and its children were originally. A copy of the parent tree with
the gap replaced by a logic variable is stored as context. The variable is also
explicitly stored in the context such that it is easily accessible. Further, the
path taken downwards in the tree is stored in the context. In a balanced binary
tree, the space requirement for this is logarithmic in the number of elements.
In a typical AST, however, most nodes are stored in sequential lists (such as
compound statements), which can be expressed as n-ary nodes, thus reducing
the space needed to store the path to a node even further. The interfaces exposes
predicates like down/3, up/3, top/2, left/3 and right/3, but also more specific
ones like goto_function/3. There is also next_tdlr/2, which visits the next
node in a top-down-left-to-right fashion. This can be used to implement preorder
and postorder traversals. Using this interface the parents of every node are just
one call to up/2 away.

1 down(zipper(X,Ctx), N, zipper(Child,[down(X1,Gap,N)|Ctx])) :-

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 77

a

b c

d e

zipper(c(d,e), [down(a(b, Gap), Gap, 2)])

c

d e

, Context = down(a

b Gap

, Gap, right)

Figure 6.2: Packing a zipper that points to node c

2 X =.. List,
3 replace_nth(List, N, Gap, Child, List1),
4 X1 =.. List1.
5
6 up(zipper(X,[down(Parent,Gap,_)|Ctx]), zipper(Parent,Ctx)) :-
7 X = Gap.

6.3 wcetC code generation
The wcetC language is an extension of the ANSI C programming language
[Kir02]. It is used as the output language for TuBound and the input language
of CalcWCETC167. It is not possible to use the Rose unparser to generate
wcetC syntax, therefore a specialized backend called wcetcc exists for this
purpose. This backend reuses the Termite unparser to do most of its work, but
replaces the code generation for those AST nodes that contain syntax extensions
in wcetC. In practise this affects all loop and compound statements. For each
compound statement (such as a loop body) the list of child nodes is processed
in the following order:

1. Scope declarations are transformed into WCET_SCOPE blocks.

2. Variable declarations are emitted.

3. Marker declarations are emitted.

4. The implicit marker of the current compound statement is declared (cf. Sec-
tion 5.4.2).

5. The remaining nodes are recursively unparsed, while skipping any remaining
annotation nodes in the current compound statement.

CHAPTER 6. THE IMPLEMENTATION ENVIRONMENT 78

6. After the closing curly brace, all flow constraints are translated into
WCET_CONSTRAINTs. This translation is also done recursively and consists
mostly of the renaming of some operators.

Due to the different handling of scopes, the output of wcetcc is not column-exact
any more. The wcetcc backend was successfully tested with the Mälardalen and
DSPstone as well as the DEBIE benchmarks.

6.4 Analysis-guided loop unrolling
Most of the information that is needed for WCET analysis is about the iteration
behaviour of loops. Since loop information is also crucial for many optimizations
it is only natural to make all this information also available to the optimizer.
Prototypical for other optimizations, we implemented a version of loop unrolling
that is guided by loop bound annotations in the source code. When the worst-
case behaviour is used as optimization target, it is sufficient to implement only
a basic version of loop unrolling: First of all, in the WCET sense, loop unrolling
is only beneficial when the unroll factor is statically known to be a divisor of the
loop trip count. This is because in most cases, compensation code introduced
for the remaining loop iterations potentially increases the WCET.

The loop unrolling process is controlled by a maximum unroll factor kmax.
Each loop with a loop bound of bmin = bmax is then unrolled by the largest
possible n, where n ∈ [1 . . . k], n mod b ≡ 0. This way, it is never necessary to
generate any compensation code. Loop unrolling is only applied to innermost
loops.

Chapter 7

Evaluation

In this chapter we set out to prove the practicability of our approach by using
standardized benchmarks to assess the algorithms presented in this thesis and
their respective implementations. This chapter is made up of three sections.
Each of them focuses on one specific part of the TuBound implementation.
Section 7.1 investigates and discusses the flow analysis results from the WCET
Tool Challenge 2008 which were produced by the ’08 version of the static
analyses presented in Chapter 3. In Section 7.2 we analyze the effects of using
model checkers to reduce the trusted annotation base as described in Chapter 4.
Finally, Section 7.3 details the effects of program optimizations on the analyzed
worst-case execution time, as discussed in Chapter 5.

7.1 Flow Problems from the WCET Tool Chal-
lenge 2008

The WCET Tool Challenge 2008 was a continuation of the first Tool Challenge
held in 2006 and organized by the ARTIST2 Network of Excellence on Embedded
Systems Design funded by the European Commission within the 7th Framework
Programme [Tan09; HGB+08]. In total there were six contenders, both industrial
and academic (cf. Table 1.1 on page 10): Bound-T (Tidorum Ltd), MTime
(Measurement-based research prototype of Vienna University of Technology),
Otawa (IRIT, Toulouse), RapiTime (Rapita Systems Ltd), TuBound (Vienna
University of Technology) and Wcc (Dortmund University of Technology).
Learning from problems at the previous instance of the Tool Challenge, two new
additions to the rules were made to increase the comparability of the results,
namely

1. the introduction of a common target hardware platform (ARM-based),

2. the introduction of hardware-independent flow analysis problems.

For practical reasons (an ARM backend of CalcWCETC167 was not available)
we chose to report WCET analysis results only for the C167 platform. Since
these results were not comparable to the timings reported by the other con-
tenders, we will focus on the hardware-independent flow analysis problems in this
section. Neither MTime (measurement-based, [WRKP05]) nor RapiTime (also

79

CHAPTER 7. EVALUATION 80

measurement-based, [RAP06]) had the infrastructure to answer flow analysis
questions at the time of the WCET Tool Challenge 2008. For this reason, they
are omitted from the tables. The detailed results from the Tool Challenge can
be found at the official wiki.1

The main benchmark used in the Tool Challenge was the DEBIE-1 control
software which was provided by Space Systems Finland Ltd (SSF) for this specific
purpose. Tables 7.1–7.5 show the flow analysis results for the debie1-benchmark.
The DEBIE-1 is a satellite instrument for measuring impacts of micro-meteoroids
and small space debris [KDM+01]. The DEBIE-1 instrument was successfully
launched into orbit aboard the PROBA I satellite in 2001. Its mostly-identical
successor DEBIE-2 is installed on the ESA Columbus module which is now a part
of the International Space Station. The code of the debie1-benchmark consists
of about 10 000 lines of C code, driven by an infinite loop that is entered from
the main() function. The actual I/O with the A/D converters reporting the
sensor data was replaced by a test harness that systematically triggers interesting
constellations in the driver code. Typical flow problems posed questions such
as the maximum number of times a certain function or C macro is executed for
each time another encompassing function is entered.

To answer these questions we used only the source-code-based parts of the
TuBound tool chain. In the first steps all the static analyses are performed.
Beginning from the encompassing function given in the problem description, a
constraint logic program is constructed in the same way ILP constraints are
formulated for classical WCET analysis (cf. Section1.1.3, [KKP+10b]) that, when
solved, yields the maximum number of times the label in question is executed
[Pra09].

Of the total six problem groups there were four with flow problems associated:
The Telemetry (TM) Interrupt [2] is triggered when a transmission over the I/O
channels is completed. The Hit Trigger Interrupt [3] is responsible for handling
an impact event. The TeleCommand (TC) interrupt [4] is triggered whenever a
complete word is received over the I/O channel. The periodic monitor task [6]
performs housekeeping activities such as the measurement of voltage levels and
the computation of checksums to detect radiation-related memory errors. It
invokes an error handler if necessary.

Tables 7.1–7.5 contain the flow analysis results for all participants of the
Challenge. The name of the tool is given in the first column. In the second
column the compiler used by the tool is noted. Technically—at least speaking
for TuBound—invoking the compiler is not strictly necessary to answer the
Challenge questions. In the following columns, the answers for the questions
found by the respective tools are given as upper and lower bounds in the form
low . . . up. Empty cells [—] mean that a tool could not compute an answer. In
problem 2a-F1, the tools reporting 0 . . . 0 were correct, as the problem asked for
the execution count of an infeasible path. The cases where TuBound reported
the most precise results are highlighted in green colour. Since the 2008 version
of TuBound could not compute lower bounds (this feature was not present until
late in 2009) it always reported 0 for the lower bound.

From this comparison we can see that the overall flow analysis performance of
TuBound is quite competitive with that of the other tools. The most interesting

1http://www.mrtc.mdh.se/projects/WCC08/doku.php

http://www.mrtc.mdh.se/projects/WCC08/doku.php

CHAPTER 7. EVALUATION 81

Tool Compiler 2a-F1 2b-F1 2c-F1
Bound-T gcc-if07 0 . . . 0 1 . . . 1 1 . . . 1
Otawa 0 . . . 1 1 . . . 1 1 . . . 1
TuBound gcc-c16x 0 . . . 1 0 . . . 1 0 . . . 1
Wcc Wcc 0 . . . 0 1 . . . 1 1 . . . 1

Table 7.1: Problem group 2: TM Interrupt Handler

Tool Compiler 3a-F1 3a-F2 3b-F1 3c-F1
Bound-T gcc-if07 0 . . . 12 — — 0 . . . 150
Otawa 0 . . . 12 1 . . . 1 0 . . . 12 0 . . . 156
TuBound gcc-c16x 0 . . . 156 0 . . . 5 0 . . . 156 0 . . . 156
Wcc Wcc 0 . . . 12 0 . . . 0 0 . . . 123 0 . . . 150

Table 7.2: Problem group 3: Hit Trigger Interrupt Handler

Tool Compiler 4a-F1
Bound-T gcc-if07 0 . . . 32
Otawa —
TuBound gcc-c16x 0 . . . 32
Wcc Wcc 0 . . . 38

Table 7.3: Problem group 4: TC Execution Task

Tool Compiler 6a-F1 6a-F2 6b-F1 6c-F1
Bound-T gcc-if07 0 . . . 18 0 . . . 0 0 . . . 20 0 . . . 58
Otawa — — — —
TuBound gcc-c16x — 0 . . . 8 — —
Wcc Wcc 0 . . . 18 0 . . . 0 0 . . . 36 0 . . . 360

Table 7.4: Problem group 6, a–c: Monitoring Task, no errors

Tool Compiler 6d-F1 6e-F1 6e-F2
Bound-T gcc-if07 0 . . . 8 0 . . . 2295 0 . . . 8
Otawa — — —
TuBound gcc-c16x 0 . . . 8 — 0 . . . 8
Wcc Wcc 0 . . . 12 0 . . . 2295 0 . . . 12

Table 7.5: Problem group 6, d–e: Monitoring Task, some errors

CHAPTER 7. EVALUATION 82

result from the benchmarks is that there is no tool that is consistently better
than any other. For example, when compared to Wcc, the results reported by
TuBound for the benchmarks 3a-F1 and 3c-F1 are largely overestimated. On
the other hand, the TuBound results for 4a-F1, 6d-F1 and 6e-F2 are consistently
better than those of Wcc. Otawa produced much better results than TuBound
for benchmarks 3a–3c, but failed to produce results for the benchmark groups 4–6.
While the commercial product Bound-T produced very good bounds for most
benchmarks, it could not yield results for benchmarks 3a-F2 and 3a-F1—problems
that Otawa, TuBound and Wcc could solve.

The enhancements of TuBound that were added throughout the year 2009,
including improved flow analysis by incorporating model checking into the work
flow are discussed in the following section.

7.2 Loop analysis with model checking
In this section we show how the concert of model checking and binary widening/-
narrowing can improve the results from a classical loop analysis. We implemented
our approach as an extension of TuBound and applied the extended version to the
well-known Mälardalen WCET benchmark suite. As a baseline for comparison we
used the 2008 version of TuBound, as it was used for the WCET Tool Challenge
2008, later on referred to as the basic version of TuBound. Our experiments were
guided by two questions: “Can the number of automatically bounded loops be
increased significantly?” and “How expensive is the process?”. The benchmarks
were performed on a 3 GHz Intel Xeon processor running 64-bit Linux. The
model checker used was CBMC 2.9, which we applied to testing loop bounds up
to the size of 213 = 8192 using a timeout of 120 seconds and a maximum unroll
factor of 213 + 12 The compress and whet benchmarks contained unstructured
goto loops; as indicated in Section 4.6 these were automatically converted into
do-while loops beforehand by a separate Termite transformation.

Our findings are summarized in Table 7.6. The third column of this table
shows the number of loops that can be bounded by the basic version of TuBound;
column four shows the total number of loops the extended version of TuBound
was able to bound. It is important to note that the model checker was only
invoked for benchmarks where at least one loop could not be bounded by the
basic version of TuBound. The last column shows the accumulated runtime of
the model checker.

Comparing columns three and four reveals the superiority of the extended
version of TuBound over its basic variant. The extended version raises the total
number of bounded loops from 77% to 85%. Considering column five, it can be
seen that the model checker terminates quickly on small problems but that the
runtime and space requirements can increase to practically infeasible amounts
on problems suffering from the state explosion problem. Such a behaviour
can be triggered if the initialization values which are part of the majority of
the Mälardalen benchmarks are manually invalidated by introducing a faux
dependency on, for instance, argc. This demonstrates that model checking is
to be used with care or the model checker be fed with additional information
guiding and simplifying the verification task.

2This setting controls the depth of loop analysis in the model checker.

CHAPTER 7. EVALUATION 83

TuBound
basic + model checking

Benchmark Loops bounded/out of bounded/out of Runtime
bs 1 0/1 1/1 0.03s
janne_complex 2 0/2 2/2 0.18s
nsichneu 1 0/1 1/1 5.59s
statemate 1 0/1 1/1 0.06s
qsort-exam 6 0/6 4/6 0.02s
fft1 11 6/11 9/11 0.43s
minver 17 16/17 17/17 0.06s
duff 2 1/2 1/2 ∼ 0s
whet 11 10/11 10/11 ∼ 0s
adpcm 18 15/18 15/18 timeout
compress 8 2/8 2/8 timeout
fir 2 1/2 1/2 timeout
insertsort 2 0/2 0/2 timeout
lms 10 6/10 6/10 timeout
select 4 0/4 0/4 timeout
bsort100 3 3/3 3/3 –
cnt 4 4/4 4/4 –
cover 3 3/3 3/3 –
crc 3 3/3 3/3 –
edn 12 12/12 12/12 –
expint 3 3/3 3/3 –
fdct 2 2/2 2/2 –
fibcall 1 1/1 1/1 –
jfdctint 3 3/3 3/3 –
lcdnum 1 1/1 1/1 –
ludcmp 11 11/11 11/11 –
matmult 5 5/5 5/5 –
ndes 12 12/12 12/12 –
ns 4 4/4 4/4 –
qurt 1 1/1 1/1 –
sqrt 1 1/1 1/1 –
st 5 5/5 5/5 –
recursion 0 –/– –/– –
Total 170 131/170 144/170 –

Table 7.6: Number of bounded loops in the Mälardalen benchmarks

CHAPTER 7. EVALUATION 84

7.3 Flow transformation benchmarks
The results reported in Figure 7.1 and 7.2 indicate the potential of high-level
loop optimizations. Figure 7.1 shows results for the standardized set of WCET
analysis benchmarks collected by Mälardalen University [Mä10a]. In Figure 7.2
results for the fixed-point version of the DSPstone [ŽVSM94] benchmarks are
shown.

Using the benchmarks that could be fully analyzed (and automatically
annotated at the source code level) by an unassisted TuBound, the diagram
shows the WCET bound for several combinations of optimizations. The WCET
bound calculation was done using the CalcWCETC167 back end of TuBound.
From left to right each diagram shows four columns for each benchmark:

1. WCET bound of the unoptimized program.

2. WCET of the high-level loop optimized program.

3. WCET with low-level control-flow insensitive optimizations.

4. WCET when combining both types of optimizations.

Each value is normalized by the WCET bound of the unoptimized program
(column 1). Loop optimizations are performed by the source-to-source optimizer
which uses the upper and lower loop bound information found by TuBound.
Therefore the applied loop optimizations improve the analyzed WCET in most
cases. The low-level optimizations are performed by the target compiler and
do not alter the control flow any more. In the last group of bars the average
performance impact is shown: For each of the four categories, the bars represent
the geometric mean of the scaled execution speed of each of the benchmarks.

The benchmarks indicate that the potential for optimizations is significant.
It is important to keep in mind that high-level loop optimizations (loop unrolling,
fusion, interchange, splitting), usually target the average-case performance. For
this reason it is important to keep an eye on the optimization parameters. It
is, for instance, counterproductive to perform loop unrolling with an unroll
factor that divides the actual trip count of a loop with a remainder since the
compensation code necessary for the remaining iterations would in fact decrease
the worst-case performance. For this reason, we specialized the loop unrolling
algorithm to become WCET-aware, as described in Section 6.4.

Outliers like whet furthermore show that careful selection of the different
optimization phases is very important. This process, however, can be supported
by an automatic WCET analysis, which can be used to guide the optimizer by
judging the improvement of a program transformation [LM09].

CHAPTER 7. EVALUATION 85

0%

20%

40%

60%

80%

100%

bs bsort100

cnt
cover

crc edn
expint

fdct
fibcall

janne_complex

jfdctint

lcdnum

ludcmp

matmult

minver

ndes
ns nsichneu

qurt
recursion

statemate

sqrt
st whet

[geom. avg.]

Unoptimized (1) Loops only (2)
Low-level only (3) Loops and low-level (4)

Figure 7.1: Benchmark results for the Mälardalen benchmarks (Vertical bars
show analyzed WCET relative to the unoptimized program)

0%

20%

40%

60%

80%

100%

biquad_N_sections

biquad_one_section

complex_multiply

complex_update

convolution

dot_product

fir fir2dim
lms

mat1x3

matrix1

matrix2

n_complex_updates

n_real_updates

real_update

[geom. avg.]

Unoptimized (1) Loops only (2)
Low-level only (3) Loops and low-level (4)

Figure 7.2: Benchmark results for the fixed-point DSPstone benchmarks (Vertical
bars show analyzed WCET relative to the unoptimized program)

Chapter 8

Conclusions and
perspectives

In this thesis we set out to show that it is possible to lift both control-flow
analysis and program annotations to the source code level without sacrificing the
performance of executables or the accuracy of WCET analysis. To demonstrate
this new concept we implemented the WCET analyzer TuBound, which followed
a radical approach of performing control-flow analysis on the source code level
and compiler optimizations as source-to-source transformations. We further
included support for fully embedded annotations in the source code without
sacrificing accuracy: Source code annotations are transformed alongside the
compiler optimizations using a generic and portable flow constraint transformer.
In many cases the correctness of annotations can even be checked by employing
external tools for formal program verification.

To answer the question whether we could reach our goal of demonstrating
the usefulness of such an approach, we found the following indicators pointing
towards success:

• With the initial presentation of the TuBound source-to-source concept at
the WCET Workshop 2008 we demonstrated the general feasibility of our
platform-independent approach.

• With the participation in the WCET Tool Challenge 2008 we were able to
make the step from a proof-of-concept implementation towards becoming
a viable contributor to the WCET community. The interest expressed by
several of our partners in the ALL-TIMES1 project in interfacing with our
static analyses can be seen as a confirmation of this transition.

• With funding from the ALL-TIMES project we were able to provide inter-
faces for three of our partners’ tools, all implemented by the ALL-TIMES
team at Vienna University of Technology: For AbsInt’s aiT [Abs10a], we
provide a backend that is capable of generating annotations in the AIS
language. Rapita Systems’ RapiTime [Rap10] is connected via an abstract
source location interface. The connection with Mälardalen University’s

1ALL-TIMES is a multilateral research project funded by the 7th framework programme of
the European Commission, http://www.all-times.org.

86

http://www.all-times.org

CHAPTER 8. CONCLUSIONS AND PERSPECTIVES 87

Sweet [Mä10b] builds upon the Termite-based melmac compiler, which
generates annotated code in the ALF intermediate representation.

• Apart from the ALL-TIMES project we also found the opportunity to
cooperate with the authors of the Otawa tool and the oRange control flow
analyzer from the Institut de Recherche en Informatique de Toulouse (IRIT):
In a joint bilateral French-Austrian Amadeus/Amadée project funded by
both the Égide scientific exchange service of the MAEE2 and MESR3 in
France and the scientific cooperation programme (WTZ) of the OEAD4

in Austria, “Trends in Timing Analysis: Uniform WCET Annotation
Language” we cooperate on developing a flow annotation language which
can serve as a community standard.

Regarding future work, we outline streams of research which we consider
particularly important and rewarding based on experiences with our approach:
Firstly, as already indicated in the previous chapters, there is still room to
further improve the quality of the static analyses presented in this thesis. Future
extensions to the presented algorithms may either incorporate more expensive
but powerful techniques, or go towards supporting more language features, such
as templates.

Secondly, on a conceptual level, an important direction for future research is
the extension towards using symbolic expressions in annotations and control flow
analysis. Symbolic expressions are already used internally by the loop bound
analysis. By making them visible to the outside, users would gain a valuable
tool to write generic and more reusable annotations.

Additionally, the control flow analysis could be expanded to become less loop-
centric. Currently, no WCET analysis tool exists that could answer questions like
the relative execution frequencies of certain branches in a program. However, the
answers to such questions often have a critical impact on the analyzed WCET.

Finally, our results for the flow information transformation benchmarks in
Chapter 7.3 indicated a lot of potential for WCET-aware optimizations. In
order to further increase the performance of embedded code, it would be most
rewarding to investigate new types of optimizations specifically targeting the
worst-case performance. Since this involves reconsidering all cost metrics typically
applied by a compiler, this opens a broad field of research on its own.

2French Ministry of Foreign and European Affairs (Ministère des Affaires Étrangères et
Européennes)

3French Ministry for Higher Education and Research (Ministère de l’Enseignement Supérieur
et de la Recherche)

4Austrian Exchange Service (Österreichischer Austauschdienst) of the Federal Ministry of
Science and Research (Bundesministerium für Wissenschaft und Forschung)

Bibliography

[AAG+07] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and
Damiano Zanardini. Cost Analysis of Java Bytecode. In Rocco De
Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer
Science, pages 157–172. Springer, 2007. Cited on page 69.

[AAGP08] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla.
Automatic inference of upper bounds for recurrence relations in
cost analysis. In María Alpuente and Germán Vidal, editors, SAS,
volume 5079 of Lecture Notes in Computer Science, pages 221–237.
Springer, 2008. Cited on page 9.

[Abs10a] AbsInt Angewandte Informatik GmbH. aiT. Web page (http:
//www.absint.com/ait/), 2010. Cited on pages 5 and 86.

[Abs10b] AbsInt Angewandte Informatik GmbH. The program analyzer
generator PAG. Web page (http://www.absint.com/pag/), 2010.
Cited on pages 18 and 70.

[ADR98] Andrew Appel, Jack Davidson, and Norman Ramsey. The Zephyr
Compiler Infrastructure. Technical report, Princeton University and
University of Virginia, November 1998. Cited on page 5.

[AH74] Götz Alefeld and Jürgen Herzberger. Einführung in die Intervall-
rechnung, volume 12 of Reihe Informatik. B. I.-Wissenschaftsverlag,
Mannheim – Wien – Zürich, 1974. Cited on page 28.

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann Publishers, Inc., 2002. ISBN
1-55860-286-0. Cited on page 63.

[ALE02] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An in-
frastructure for computer system modeling. Computer, 35(2):59–67,
2002. http://www.simplescalar.com/. Cited on page 6.

[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: principles, techniques and tools. Pearson Education,
second edition, 2007. Cited on page 43.

[Bár09] Gergő Bárány. SATIrE within ALL-TIMES: Improving Timing Tech-
nology with Source Code Analysis. In Jens Knoop and Adrian Prantl,
editors, 15. Kolloquium „Programmiersprachen und Grundlagen der
Programmierung (KPS ’09)“, number 2009-X-1 in Schriftenreihe

88

http://www.absint.com/ait/
http://www.absint.com/ait/
http://www.absint.com/pag/
http://www.simplescalar.com/

BIBLIOGRAPHY 89

des Instituts für Computersprachen, pages 27–37. Technische Uni-
versität Wien, October 2009. Cited on pages 20 and 33.

[Bár10] Gergő Bárány. melmac. Web page (http://www.complang.tuwien.
ac.at/gergo/melmac/), 2010. Cited on pages 13 and 73.

[BCN+08] Clément Ballabriga, Hugues Cassé, Fadia Nemer, Christine
Rochange, and Pascal Sainrat. OTAWA Online Program Docu-
mentation. University of Toulouse, France, http://www.otawa.fr/,
2008. Cited on page 7.

[BCP03] Guillem Bernat, Antoine Colin, and Stefan M. Petters. pWCET, a
Tool for Probabilistic WCET Analysis of Real-Time Systems. In 3rd
International Workshop on Worst-Case Execution Time Analysis
(WCET 2003), pages 21–38, 2003. Cited on pages 8 and 10.

[BDEN10] Michel Berkelaar, Jeroen Dirks, Kjell Eikland, and Peter Notebaert.
lp_solve, a Mixed Integer Linear Programming (MILP) solver.
Web page (http://lpsolve.sourceforge.net/), 2010. Cited on
page 6.

[BHJM07] Dirk Beyer, Thomas Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast. International Journal on Software
Tools for Technology Transfer (STTT), 9(5-6):505–525, October
2007. Cited on page 53.

[Bli94] Johann Blieberger. Discrete loops and worst case performance.
Computer Languages, 20(3):193–212, 1994. Cited on page 9.

[CBW94] Roderick Chapman, Alan Burns, and Andy Wellings. Integrated
program proof and worst-case timing analysis of SPARK Ada. In
Proc. ACM Workshop on Language, Compiler and Tool Support for
Real-time Systems, pages K1–K11, June 1994. Cited on pages 3
and 10.

[CBW96] Roderick Chapman, Alan Burns, and Andy Wellings. Combining
static worst-case timing analysis and program proof. Real-Time
Systems, 11(2):145–171, 1996. Cited on page 3.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY. Cited on page 27.

[Che87] Moyer Chen. A Timing Analysis Language – (TAL). Dept. of
Computer Science, University of Texas, Austin, TX, USA, 1987.
Programmer’s Manual. Cited on pages 4 and 10.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ANSI-C programs. In Kurt Jensen and Andreas Podelski,
editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer
Science, pages 168–176. Springer, 2004. Cited on page 53.

http://www.complang.tuwien.ac.at/gergo/melmac/
http://www.complang.tuwien.ac.at/gergo/melmac/
http://lpsolve.sourceforge.net/

BIBLIOGRAPHY 90

[CM07] Christoph Cullmann and Florian Martin. Data-Flow Based Detec-
tion of Loop Bounds. In Rochange [Roc07]. Cited on page 35.

[CP01] Antoine Colin and Isabelle Puaut. A modular and retargetable
framework for tree-based WCET analysis. In Proc. 13th Euromicro
Conference on Real-Time Systems, pages 37–44, Delft, Netherland,
June 2001. Technical University of Delft. Cited on pages 6 and 10.

[CS06] Hugues Cassé and Pascal Sainrat. OTAWA, a framework for ex-
perimenting WCET computations. In European Congress on Em-
bedded Real-Time Software (ERTS), Toulouse, 25/01/06-27/01/06,
http://www.see.asso.fr, January 2006. Société de l’Electricité, de
l’Electronique et des Technologies de l’Information et de la Commu-
nication (SEE). 8 pages. Cited on pages 7 and 10.

[DGS97] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practi-
cal framework for demand-driven interprocedural data flow analy-
sis. ACM Transactions on Programming Languages and Systems,
19(6):992–1030, 1997. Cited on page 53.

[dMBCS08] Marianne de Michiel, Armelle Bonenfant, Hugues Cassé, and Pas-
cal Sainrat. Static loop bound analysis of C programs based on
flow analysis and abstract interpretation. In IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), Kaohsiung, Taiwan, 25/08/2008-27/08/2008,
pages 161–168, http://www.computer.org, August 2008. IEEE Com-
puter Society. Cited on page 7.

[EE00] Jakob Engblom and Andreas Ermedahl. Modeling complex flows
for worst-case execution time analysis. In Proceedings 21st IEEE
Real-Time Systems Symposium (RTSS), Orlando, Florida, USA,
Dec. 2000. Cited on pages 7 and 10.

[EEA98] Jakob Engblom, Andreas Ermedahl, and Peter Altenbernd. Facil-
itating worst-case execution time analysis for optimized code. In
Proc. 10th Euromicro Real-Time Workshop, Berlin, Germany, June
1998. Cited on page 63.

[EES02] Andreas Ermedahl, Jakob Engblom, and Friedhelm Stappert. A
unified flow information language for WCET analysis. In Proc. 2nd
International Workshop on Worst Case Execution Time Analysis.
Technical University of Vienna, Austria, June 2002. Cited on page 7.

[ESG+07] Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan
Bygde, and Björn Lisper. Loop bound analysis based on a com-
bination of program slicing, abstract interpretation, and invariant
analysis. In Rochange [Roc07]. Cited on page 7.

[Fer04] Christian Ferdinand. Worst case execution time prediction by
static program analysis. 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004), 03:125a, 2004. Cited on
page 5.

BIBLIOGRAPHY 91

[Fet88] James H. Fetzer. Program verification: the very idea. Communica-
tions of the ACM, 31(9):1048–1063, 1988. Cited on page 38.

[FFY04] Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded
Computing: A VLIW Approach to Architecture, Compilers and
Tools. Morgan Kaufmann, December 2004. Cited on pages 1 and 16.

[FHT03] Christian Ferdinand, Reinhold Heckmann, and Henrik Theiling.
Convenient user annotations for a WCET tool. In Proc. 3rd Inter-
national Workshop on Worst-Case Execution Time Analysis, pages
17–20, Porto, Portugal, July 2003. Cited on pages 5 and 10.

[Flo67] Robert Floyd. Assigning Meaning to Programs. In Proc. of AMS
Symposia in Applied Mathematics, pages 19–32, 1967. Cited on
page 9.

[FLT06] Heiko Falk, Paul Lokuciejewski, and Henrik Theiling. Design of
a WCET-aware C compiler. In Frank Mueller, editor, 6th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, July
4, 2006, Dresden, Germany, volume 06902 of Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006. Cited on
pages 7 and 10.

[Fre10] Free Software Foundation (FSF). GCC, the GNU Compiler Collec-
tion. Web page (http://gcc.gnu.org/), 2010. Cited on page 12.

[GEL+09] Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sand-
berg, and Linus Källberg. ALF – A Language for WCET Flow
Analysis. In Niklas Holsti, editor, 9th Intl. Workshop on Worst-
Case Execution Time Analysis, WCET 2009, Dublin, Ireland, July
1-3, 2009, volume 09004 of Dagstuhl Seminar Proceedings. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany, 2009. Cited
on pages 7 and 13.

[GJK09] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refine-
ment and progress invariants for bound analysis. In Michael Hind
and Amer Diwan, editors, PLDI, pages 375–385. ACM, 2009. Cited
on page 9.

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick.
gprof: a call graph execution profiler (with retrospective). In
Kathryn S. McKinley, editor, Best of PLDI, pages 49–57. ACM,
1982. Cited on page 50.

[GLS+08] Jan Gustafsson, Björn Lisper, Markus Schordan, Christian Ferdi-
nand, Peter Gliwa, Marek Jersak, and Guillem Bernat. ALL-TIMES
– A European Project on Integrating Timing Technology. In Margaria
and Steffen [MS08], pages 445–459. Cited on page 11.

[Gou01] Eric Goubault. Static analyses of the precision of floating-point
operations. In Patrick Cousot, editor, SAS, volume 2126 of Lecture
Notes in Computer Science, pages 234–259. Springer, 2001. Cited
on page 27.

http://gcc.gnu.org/

BIBLIOGRAPHY 92

[Gus06] Jan Gustafsson. The WCET tool challenge 2006. In Preliminary
Proceedings 2nd Int. IEEE Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, pages 248–249,
Paphos, Cyprus, November 2006. Cited on page 11.

[Har77] William H. Harrison. Compiler Analysis of the Value Ranges for
Variables. IEEE Transactions on Software Engineering, 3(3):243–
250, 1977. Cited on page 27.

[HBH+07] Christoph A. Herrmann, Armelle Bonenfant, Kevin Hammond, Stef-
fen Jost, Hans-Wolfgang Loidl, and Robert F. Pointon. Automatic
amortised worst-case execution time analysis. In Rochange [Roc07].
Cited on page 6.

[HDF+05] Kevin Hammond, Roy Dyckhoff, Christian Ferdinand, Reinhold
Heckmann, Martin Hofmann, Steffen Jost, Hans-Wolfgang Loidl,
Greg Michaelson, Robert F. Pointon, Norman Scaife, Jocelyn Sérot,
and Andy Wallace. The Embounded project (project start paper).
In Marko C. J. D. van Eekelen, editor, Trends in Functional Pro-
gramming, volume 6 of Trends in Functional Programming, pages
195–210. Intellect, 2005. Cited on pages 6 and 10.

[Hec77] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier,
North-Holland, 1977. Cited on page 42.

[HF05] Reinhold Heckmann and Christian Ferdinand. Combining automatic
analysis and user annotations for successful worst-case execution
time prediction. In Embedded World 2005 Conference, Nürnberg,
Germany, Feb. 2005. Cited on page 5.

[HGB+08] Niklas Holsti, Jan Gustafsson, Guillem Bernat (eds.), Clément
Ballabriga, Armelle Bonenfant, Roman Bourgade, Hugues Cassé,
Daniel Cordes, Albrecht Kadlec, Raimund Kirner, Jens Knoop,
Paul Lokuciejewski, Nicholas Merriam, Marianne de Michiel, Adrian
Prantl, Bernhard Rieder, Christine Rochange, Pascal Sainrat, and
Markus Schordan. WCET Tool Challenge 2008: Report. In 8th
International Workshop on Worst-Case Execution Time Analysis
(WCET 2008), pages 149–171, Prague, Czech Republic, July 2-4
2008. Österreichische Computer Gesellschaft. ISBN: 978-3-85403-
237-3. Cited on pages 11, 14, and 79.

[HLS00] Niklas Holsti, Thomas Långbacka, and Sami Saarinen. Worst-case
execution time analysis for digital signal processors. In European
Signal Processing Conference 2000 (EUSIPCO 2000), 2000. Cited
on pages 5 and 10.

[HLS05] Niklas Holsti, Thomas Långbacka, and Sami Saarinen. Bound-T
timing analysis tool User Manual. Tidorum Ltd, 2005. Cited on
pages 5 and 35.

[Hoa69] Charles A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969. Cited on pages 9
and 41.

BIBLIOGRAPHY 93

[HRS95] Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand inter-
procedural dataflow analysis. In Proceedings 3rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-3),
pages 104–115, 1995. Cited on page 53.

[HSR+00] Christopher A. Healy, Mikael Sjodin, Viresh Rustagi, David B.
Whalley, and Robert van Engelen. Supporting timing analysis
by automatic bounding of loop iterations. Real-Time Systems,
18(2/3):129–156, 2000. Cited on pages 5, 10, and 22.

[Hue97] Gérard P. Huet. The zipper. Journal of Functional Programming,
7(5):549–554, 1997. Cited on page 76.

[HW02] Christopher A. Healy and David B. Whalley. Automatic detection
and exploitation of branch constraints for timing analysis. IEEE
Transactions on Software Engineering, 28:763–781, 2002. Cited on
page 5.

[IBM10] IBM. IBM ILOG CPLEX—High-performance mathematical pro-
gramming engine. Web page (http://www.ibm.com/software/
integration/optimization/cplex/), 2010. Cited on page 6.

[JTC10] JTC1/SC22/WG21. Working Draft, Standard for Programming Lan-
guage C++, 2010-02-16. Web page (http://www.open-std.org/
JTC1/SC22/WG21/docs/papers/2010/n3035.pdf), 2010. Cited on
pages 30 and 31.

[KDM+01] J. Kuitunen, G. Drolshagen, J. A. M. McDonnell, H. Svedhem,
M. Leese, H. Mannermaa, M. Kaipiainen, and V. Sipinen. DEBIE
– first standard in-situ debris monitoring instrument. In Huguette
Sawaya-Lacoste, editor, Proceedings of the Third European Confer-
ence on Space Debris, 19–21 March 2001, Darmstadt, Germany,
volume ESA SP-473, Vol. 1, pages 185–190, Noordwijk, Netherlands,
10 2001. ESA Publications Division. ISBN 92-9092-733-X. Cited
on page 80.

[Kir01] Raimund Kirner. User’s Manual – WCET-Analysis Framework
based on wcetC. Vienna University of Technology, Vienna, Austria,
0.0.3 edition, July 2001. available at http://www.vmars.tuwien.
ac.at/~raimund/calc_wcet/. Cited on pages 7 and 10.

[Kir02] Raimund Kirner. The programming language wcetC. Technical
report, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2002. Cited on
pages 7, 23, and 77.

[Kir03] Raimund Kirner. Extending Optimising Compilation to Support
Worst-Case Execution Time Analysis. PhD thesis, Technische Uni-
versität Wien, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, May 2003.
Cited on page 63.

[Kir08] Raimund Kirner. Compiler Support for Timing Analysis of Opti-
mized Code: Precise Timing Analysis of Machine Code with Con-
venient Annotation of Source Code. VDM Verlag, Germany, July
2008. ISBN: 978-3-8364-6883-1. Cited on page 7.

http://www.ibm.com/software/integration/optimization/cplex/
http://www.ibm.com/software/integration/optimization/cplex/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3035.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3035.pdf
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

BIBLIOGRAPHY 94

[KKP+07] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan,
and Ingomar Wenzel. WCET Analysis: The Annotation Language
Challenge. In Christine Rochange, editor, Proceedings of the 7th
International Workshop on Worst-Case Execution Time (WCET)
Analysis, pages 83–99, Pisa, Italy, 2007. Institut de Recherche en
Informatique de Toulouse. Cited on pages 13 and 15.

[KKP+08] Raimund Kirner, Albrecht Kadlec, Peter Puschner, Adrian Prantl,
Markus Schordan, and Jens Knoop. Towards a common wcet
annotation language: Essential ingredients. In 8th International
Workshop on Worst-Case Execution Time Analysis (WCET 2008),
pages 53–65, Prague, Czech Republic, July 2-4 2008. Österreichische
Computer Gesellschaft. ISBN: 978-3-85403-237-3. Cited on pages 15,
17, 51, and 69.

[KKP10a] Albrecht Kadlec, Raimund Kirner, and Peter Puschner. Avoiding
timing anomalies using code transformations. In Proceedings of the
13th IEEE International Symposium on Object/component/service-
oriented Real-time distributed computing (ISORC 2010), Carmona,
Spain, May 2010. Cited on page 2.

[KKP+10b] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan,
and Albrecht Kadlec. Beyond loop bounds: Comparing annotation
languages for worst-case execution time analysis. Software and
System Modeling, 2010. (online edition). Cited on pages 3, 4, 9, 13,
and 80.

[KPP10] Raimund Kirner, Peter Puschner, and Adrian Prantl. Transforming
flow information during code optimization for timing analysis. Real-
Time Systems, 2010. (online edition). Cited on pages 14, 59, 61,
and 65.

[KS86] Eugene Klingerman and Alexander D. Stoyenko. Real-time euclid:
A language for reliable real-time systems. IEEE Transactions on
Software Engineering, 12(9):941–989, Sep. 1986. Cited on pages 3
and 10.

[Law10] Lawrence Livermore National Laboratory. The Rose Compiler. Web
page (http://www.rosecompiler.org/), 2010. Cited on pages 12,
18, and 70.

[LCFM09] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel.
A fast and precise static loop analysis based on abstract interpreta-
tion, program slicing and polytope models. In CGO, pages 136–146.
IEEE Computer Society, 2009. Cited on page 7.

[LFMT08] Paul Lokuciejewski, Heiko Falk, Peter Marwedel, and Henrik Theil-
ing. WCET-driven, code-size critical procedure cloning. In Proc.
11th International Workshop on Software and Compilers for Em-
bedded Systems, pages 21–30, Munich, Germany, Mar. 2008. Cited
on page 69.

http://www.rosecompiler.org/

BIBLIOGRAPHY 95

[Lis05] Björn Lisper. Ideas for annotation language(s). Technical report,
Department of Computer Science and Engineering, Mälardalen
University, October 25, 2005. Cited on page 9.

[LLA07] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making
Context-Sensitive Points-to Analysis with Heap Cloning Practi-
cal For The Real World. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’07), San Diego, California, June 2007. Cited on page 20.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudury.
Chronos: A timing analyzer for embedded software. Science of
Computer Programming, 69(1-3):56–67, 2007. http://www.comp.
nus.edu.sg/~rpembed/chronos. Cited on pages 6 and 10.

[LLV10] The LLVM Project. clang: a C language family frontend for LLVM.
Web page (http://clang.llvm.org/), 2010. Cited on page 18.

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of
embedded software using implicit path enumeration. In Proceedings
32nd ACM/IEEE Design Automation Conference, pages 456–461,
June 1995. Cited on page 5.

[LM09] Paul Lokuciejewski and Peter Marwedel. Combining Worst-Case
Timing Models, Loop Unrolling, and Static Loop Analysis for WCET
Minimization. In The 21st Euromicro Conference on Real-Time
Systems (ECRTS), pages 35–44, Dublin / Ireland, July 2009. IEEE
Computer Society. Cited on pages 7, 59, and 84.

[LS99a] Thomas Lundqvist and Per Stenström. An integrated path and
timing analysis method based on cycle-level symbolic execution.
Real-Time Systems, 17(2-3):183–207, 1999. Cited on pages 8 and 10.

[LS99b] Thomas Lundqvist and Per Stenström. A method to improve the
estimated worst-case performance of data caching. In RTCSA, pages
255–262. IEEE Computer Society, 1999. Cited on page 8.

[LS99c] Thomas Lundqvist and Per Stenström. Timing anomalies in dynam-
ically scheduled microprocessors. Real-Time Systems Symposium,
IEEE International, 0:12, 1999. Cited on page 8.

[MACT89] Aloysius K. Mok, Prasanna Amerasinghe, Moyer Chen, and Kam-
torn Tantisirivat. Evaluating tight execution time bounds of pro-
grams by annotations. In Proc. 6th IEEE Workshop on Real-Time
Operating Systems and Software, pages 74–80, Pittsburgh, PA, USA,
May 1989. Cited on page 4.

[Mar98] Florian Martin. PAG – an efficient program analyzer generator.
International Journal on Software Tools for Technology Transfer,
2(1):46–67, 1998. Cited on page 18.

[MS08] Tiziana Margaria and Bernhard Steffen, editors. Leveraging Ap-
plications of Formal Methods, Verification and Validation, Third
International Symposium, ISoLA 2008, Porto Sani, Greece, October

http://www.comp.nus.edu.sg/~rpembed/chronos
http://www.comp.nus.edu.sg/~rpembed/chronos
http://clang.llvm.org/

BIBLIOGRAPHY 96

13-15, 2008. Proceedings, volume 17 of Communications in Com-
puter and Information Science. Springer, 2008. Cited on pages 91
and 100.

[Muc97] Steven S. Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann Publishers, Inc., 1997. ISBN 1-55860-320-4.
Cited on pages 21, 50, and 53.

[Mä10a] Mälardalen University. Benchmarks for WCET Analysis. http://
www.mrtc.mdh.se/projects/wcet/benchmarks.html, 2010. Cited
on page 84.

[Mä10b] Mälardalen University. SWEET (SWEdish Execution Time
tool). Web page (http://www.mrtc.mdh.se/projects/wcet/
sweet.html), 2010. Cited on page 87.

[Nec97] George C. Necula. Proof-carrying code. In POPL ’97: Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 106–119, New York, NY, USA, 1997.
ACM. Cited on page 39.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag Berlin Heidelberg New York,
1999. Cited on pages 28, 42, and 46.

[Par92] Chang Yun Park. Predicting Deterministic Execution Times of
Real-Time Programs. PhD thesis, University of Washington, Seattle,
USA, 1992. TR 92-08-02. Cited on pages 4 and 10.

[Par93] Chang Yun Park. Predicting program execution times by analyzing
static and dynamic program paths. Real-Time Systems, 5(1):31–62,
1993. Cited on page 4.

[PCB+06] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal,
Georges-André Silber, and Nicolas Vasilache. GRAPHITE: Loop
optimizations based on the polyhedral model for GCC. In Proc. of
the 4th GCC Developer’s Summit, pages 179–198, June 2006. Cited
on page 63.

[PKK+09] Adrian Prantl, Jens Knoop, Raimund Kirner, Albrecht Kadlec, and
Markus Schordan. From trusted annotations to verified knowledge.
In Proceedings of the 9th International Workshop on Worst-Case
Execution Time Analysis (WCET 2009), pages 39–49, Dublin, Ire-
land, June 2009. Österreichische Computer Gesellschaft. ISBN:
978-3-85403-252-6. Cited on pages 13, 15, and 51.

[PKS09] Adrian Prantl, Jens Knoop, and Markus Schordan. Persis-
tent analysis results. In Michael Hanus and Bernd Braßel, edi-
tors, 26. Workshop der „GI-Fachgruppe Programmiersprachen und
Rechenkonzepte“, number 0915 in Technische Berichte des Instituts
für Informatik, pages 87–98, Olshausenstr. 40, D – 24098 Kiel, 2009.
Institut für Informatik der Christian-Albrechts-Universität zu Kiel.
Cited on page 13.

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html

BIBLIOGRAPHY 97

[PKST08] Adrian Prantl, Jens Knoop, Markus Schordan, and Markus Triska.
Constraint solving for high-level WCET analysis. In The 18th
Workshop on Logic-based methods in Programming Environments
(WLPE 2008), pages 77–89, Udine, Italy, December 2008. Cited on
pages 13 and 27.

[Pra07a] Adrian Prantl. Source-to-Source Transformations for WCET Anal-
ysis: The CoSTA Approach. In Michael Hanus and Bernd Braßel,
editors, 24. Workshop der „GI-Fachgruppe Programmiersprachen
und Rechenkonzepte“, number 0707 in Technische Berichte des Insti-
tuts für Informatik, pages 51–60, Olshausenstr. 40, D – 24098 Kiel,
2007. Institut für Informatik der Christian-Albrechts-Universität zu
Kiel. Cited on page 65.

[Pra07b] Adrian Prantl. The CoSTA Transformer: Integrating Optimizing
Compilation and WCET Flow Facts Transformation. In Walter
Dosch, Clemens Grelck, and Anette Stümpel, editors, 14. Kollo-
quium „Programmiersprachen und Grundlagen der Programmierung
(KPS ’07)“, number A-07-07 in Schriftenreihe A, pages 172–177.
Institute für Informatik und Mathematik der Universität zu Lübeck,
2007. Cited on pages 14, 23, and 63.

[Pra09] Adrian Prantl. Towards a static profiler. In Jens Knoop and
Adrian Prantl, editors, 15. Kolloquium „Programmiersprachen und
Grundlagen der Programmierung (KPS ’09)“, number 2009-X-1 in
Schriftenreihe des Instituts für Computersprachen, page 230, Maria
Taferl, Austria, October 2009. Technische Universität Wien. Cited
on page 80.

[PS91] Chang Y. Park and Alan C. Shaw. Experiments with a program
timing tool based on a source-level timing schema. Computer,
24(5):48–57, May 1991. Cited on page 4.

[PS97] Peter Puschner and Anton V. Schedl. Computing maximum task
execution times – a graph-based approach. Journal of Real-Time
Systems, 13:67–91, 1997. Cited on pages 3 and 5.

[PSK08] Adrian Prantl, Markus Schordan, and Jens Knoop. TuBound – A
Conceptually New Tool for Worst-Case Execution Time Analysis.
In 8th International Workshop on Worst-Case Execution Time
Analysis (WCET 2008), pages 141–148, Prague, Czech Republic,
2008. Österreichische Computer Gesellschaft. ISBN: 978-3-85403-
237-3. Cited on pages 10, 13, 17, and 65.

[QSMK04] Daniel J. Quinlan, Markus Schordan, Brian Miller, and Markus
Kowarschik. Parallel object-oriented framework optimization. Con-
currency and Computation: Practice and Experience, 16(2-3):293–
302, 2004. Cited on page 65.

[RAP06] RAPITA Systems Ltd. Worst-case execution time analysis. White
Paper (Automotive), Rev. 1.32, 21st Sep. 2006. Cited on pages 8
and 80.

BIBLIOGRAPHY 98

[Rap10] Rapita Systems Ltd. RapiTime On Target Timing Analysis. Web
page (http://www.rapitasystems.com/rapitime/), 2010. Cited
on page 86.

[Roc07] Christine Rochange, editor. 7th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, Pisa, Italy, July 3, 2007, volume
07002 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2007. Cited on pages 90 and 92.

[RPW08] Bernhard Rieder, Peter P. Puschner, and Ingomar Wenzel. Using
model checking to derive loop bounds of general loops within ANSI-
C applications for measurement based WCET analysis. In WISES,
pages 1–7. IEEE, 2008. Cited on page 53.

[Sch07a] Markus Schordan. Combining tools and languages for static analysis
and optimization of high-level abstractions. Proceedings 24th Work-
shop of „GI-Fachgruppe Programmiersprachen und Rechenkonzepte“.
Technical Report, Christian-Albrechts-Universität zu Kiel, 2007.
Cited on page 18.

[Sch07b] Daniel Schulte. Flow Facts für WCET-optimierende Compiler:
Modellierung und Transformation. VDM Verlag, Germany, July
2007. ISBN: 978-3836448130. Cited on page 63.

[SE06] Jan Staschulat and Rolf Ernst. Worst case timing analysis of input
dependent data cache behavior. In ECRTS, pages 227–236. IEEE
Computer Society, 2006. Cited on page 8.

[Sha89] Alan C. Shaw. Reasoning about time in higher level language
software. IEEE Transactions on Software Engineering, 15(7):875–
889, July 1989. Cited on pages 4 and 10.

[SP81] Micha Sharir and Amir Pnueli. Two approaches to inter-procedural
data-flow analysis. In Steven S. Muchnick and Neil D. Jones, editors,
Program Flow Analysis: Theory and Applications. Prentice-Hall,
1981. Cited on pages 20 and 50.

[SP10] Marc Schlickling and Markus Pister. Semi-automatic derivation
of timing models for wcet analysis. In LCTES ’10: Proceedings
of the ACM SIGPLAN/SIGBED 2010 conference on Languages,
compilers, and tools for embedded systems, pages 67–76, New York,
NY, USA, 2010. ACM. Cited on page 2.

[SQ03] Markus Schordan and Daniel J. Quinlan. A source-to-source ar-
chitecture for user-defined optimizations. In László Böszörményi
and Peter Schojer, editors, JMLC, volume 2789 of Lecture Notes in
Computer Science, pages 214–223. Springer, 2003. Cited on page 18.

[SS94] Leon Sterling and Ehud Y. Shapiro. The Art of Prolog – Advanced
Programming Techniques, 2nd Ed. MIT Press, 1994. Cited on
page 76.

http://www.rapitasystems.com/rapitime/

BIBLIOGRAPHY 99

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In
POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 32–41, New
York, NY, USA, 1996. ACM. Cited on pages 20 and 33.

[Tan09] Lili Tan. The worst-case execution time tool challenge 2006. Inter-
national Journal on Software Tools for Technology Transfer (STTT),
11(2):133–152, 2009. Cited on pages 11 and 79.

[TNW08] Markus Triska, Ulrich Neumerkel, and Jan Wielemaker. A gener-
alised finite domain constraint solver for SWI-Prolog. In Sibylle
Schwarz, editor, In Proceedings of the 22nd Workshop on (Con-
straint) Logic Programming (WLP 2008), pages 89–91, 2008. Cited
on page 36.

[UGoT+10] Mälardalen University, AbsInt Angewandte Informatik GmbH, Vi-
enna University of Technology, Gliwa GmbH, Symtavision GmbH,
and Rapita Systems Ltd. The All-TIMES project. Web page
(http://www.all-times.org), 2010. 2007 through 2010, funded
by the 7th EU R&D Framework Programme as research project
“Integrating European Timing Analysis Technology” (ALL-TIMES)
under contract No 215068. Cited on page 11.

[Uni10] University of Bonn. The JTransformer framework. http://
roots.iai.uni-bonn.de/research/jtransformer/, 2010. Cited
on page 18.

[Vie10a] Vienna University of Technology. The CalcWCET167 tool. Web
page (http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/),
2010. Cited on pages 12, 20, and 23.

[Vie10b] Vienna University of Technology. The static analysis tool integration
engine SATIrE. Web page (http://www.complang.tuwien.ac.at/
markus/satire/), 2010. Cited on pages 12 and 18.

[Vie10c] Vienna University of Technology. The term manipulation library Ter-
mite. Web page (http://www.complang.tuwien.ac.at/adrian/
termite/), 2010. Cited on pages 13, 18, and 71.

[Vrc92] Alexander Vrchoticky. Modula/R – Language Definition. Technical
Report 02/1992, Technische Universität Wien, Institut für Tech-
nische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, Mar.
1992. Cited on pages 3 and 10.

[Vrc94] Alexander Vrchoticky. Compilation support for fine-grained execu-
tion time analysis. In Proc. ACM SIGPLAN Workshop on Language,
Compiler and Tool Support for Real-Time Systems, Orlando FL,
June 1994. Cited on page 3.

[WA08] Jack Whitham and Neil Audsley. Forming Virtual Traces for WCET
Analysis and Reduction. In Proc. RTCSA, pages 377–386, 2008.
Cited on page 16.

http://www.all-times.org
http://roots.iai.uni-bonn.de/research/jtransformer/
http://roots.iai.uni-bonn.de/research/jtransformer/
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.complang.tuwien.ac.at/markus/satire/
http://www.complang.tuwien.ac.at/markus/satire/
http://www.complang.tuwien.ac.at/adrian/termite/
http://www.complang.tuwien.ac.at/adrian/termite/

BIBLIOGRAPHY 100

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckman, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per Stenstrom. The
worst-case execution time problem – overview of methods and survey
of tools. ACM Transactions on Embedded Computing Systems
(TECS), 7(3), Apr. 2008. Cited on pages 2, 3, and 5.

[WG110] WG14/N1124. Committee Draft – May 6, 2005 – ISO/IEC
9899:TC2. Web page (http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1124.pdf), 2010. Cited on pages 30 and 31.

[Wie03] Jan Wielemaker. An overview of the SWI-Prolog programming
environment. In Proceedings of the 13th Int. Workshop on Logic
Programming Environments (WLPE 2003), pages 10–16, December
2003. Cited on page 36.

[WKPR05] Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard
Rieder. Principles of timing anomalies in superscalar processors. In
Proceedings 5th International Conference on Quality Software, Sep.
2005. Cited on page 8.

[WKRP08] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter P.
Puschner. Measurement-based timing analysis. In Margaria and
Steffen [MS08], pages 430–444. Cited on page 2.

[WRKP05] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter P.
Puschner. Automatic timing model generation by cfg partitioning
and model checking. In DATE, pages 606–611. IEEE Computer
Society, 2005. Cited on pages 9, 10, and 79.

[WSE02] Fabian Wolf, Jan Staschulat, and Rolf Ernst. Associative caches in
formal software timing analysis. In DAC ’02: Proceedings of the
39th annual Design Automation Conference, pages 622–627, New
York, NY, USA, 2002. ACM. Cited on pages 8 and 10.

[ZP08] Anna Zaks and Amir Pnueli. Covac: Compiler validation by program
analysis of the cross-product. In Jorge Cuéllar, T. S. E. Maibaum,
and Kaisa Sere, editors, FM, volume 5014 of Lecture Notes in
Computer Science, pages 35–51. Springer, 2008. Cited on page 44.

[ŽVSM94] Vojin Živojnović, Juan Martínez Velarde, Christian Schläger, and
Heinrich Meyr. DSPstone: A DSP-Oriented Benchmarking Method-
ology. In Proceedings of the International Conference on Signal
Processing and Technology (ICSPAT), Dallas, October 1994. Cited
on page 84.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

Curriculum Vitae

Personal Data

Name Adrian Prantl

Date of Birth Aug. 10, 1982

Citizenship Austria

Home Address Neustiftgasse 45/12
A-1070 Wien
Austria

Affiliation

Institute of Computer Languages
Vienna University of Technology
Argentinierstraße 8 / E185.1
1040 Vienna, Austria

Phone: +43-1-58801-58521
Fax: +43-1-58801-18598

E-Mail: adrian@complang.tuwien.ac.at
WWW: http://www.complang.tuwien.ac.at/adrian

Employment

2010 – ongoing Institute of Computer Languages / Vienna University of Technology
Research Assistant in the EU-FP7-funded project “ALL-TIMES: Integrating
European Timing Analysis Technology”.

2006 – 2010 Institute of Computer Languages / Vienna University of Technology
Research Assistant in the FWF-funded project “Compiler Support for Timing
Analysis (CoSTA)”.

2005 – 2006 Christian Doppler Laboratory “Compilation Techniques for Embedded Processors”
/ OnDemand Microelectronics (paid master’s thesis)
Design and implementation of a compiler infrastructure for the 24-bit Ilvy VLIW
Processor, including ports of GCC, Binutils and GDB.

2006 OnDemand Microelectronics (freelance)
An implementation of the compiler for the 32-Bit Chili VLIW Processor, based
on my previous design.

2004 – 2006 Student Assistant (Tutor) at Vienna University of Technology for the courses
Functional Programming and Compiler Construction.

Education
2006 – ongoing PhD student at Vienna University of Technology

Expected graduation in 2010
Thesis topic: High-level compiler support for timing analysis
Supervisor: Prof. Jens Knoop

2000 – 2006 Computer Science at Vienna University of Technology
Graduated with honors as “Dipl.-Ing.” (M. Sc. equivalent)
Master’s Thesis: Creating a GCC back end for a VLIW-architecture
Supervisor: Prof. Andreas Krall

1992 – 2000 Bundesgymnasium Leoben I (Secondary school)
Graduated with honors (“Matura”)

Summer Schools
International Summer School on Advances in Programming Languages
25th–28th August, 2009
Heriot-Watt University, Edinburgh, Scotland

Research interests
My research interests include compiler construction, program optimizations, source-to-source

transformers, static program analysis, code generators, logic-oriented and functional programming
languages, real-time systems and worst-case execution time analysis.

Activities Referee for the following scientific conferences and journals: CC’08, ICS’09,
LCTES’09, PACT’09, PLDI’09, JSA.
Co-Editor of the KPS’09 Proceedings

Research Projects and cooperation
2010 – ongoing ALL-TIMES: Integrating European Timing Analysis Technology

Project funded by the European Commission’s 7th Framework Programme
on Research, Technological Development and Demonstration under contract
� 215068.

2009 – ongoing Trends in Timing Analysis: Uniform WCET Annotation Language
Cooperation with Institut de Recherche en Informatique de Toulouse (IRIT)
Bilateral French-Austrian (Amadée) Project

2006 – 2010 CoSTA: Compiler Support for Timing Analysis
Project funded by the Austrian Science Fund (Fonds zur Förderung der wissen-
schaftlichen Forschung) under contract � P18925-N13.

Software
TuBound (main author): A tool for worst-case execution time (WCET) analysis that

features source-to-source program transformations and static program analysis.
Built upon Termite and SATIrE.

Termite (main author): A Prolog library to transform and analyze abstract syntax trees
of C/C++ programs.
http://www.complang.tuwien.ac.at/adrian/termite

SATIrE (co-author): Static analysis tool integration engine. Combines the abstract syntax
tree of the ROSE compiler (from LLNL) and the Program Analyzer Generator
(from AbsInt) to facilitate source-based static analysis of C/C++ programs.
http://www.complang.tuwien.ac.at/satire

Publications

[1] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht Kadlec. Beyond
loop bounds: Comparing annotation languages for worst-case execution time analysis. Software
and System Modeling, 2010. doi: http://dx.doi.org/10.1007/s10270-010-0161-0. (online edition).

[2] Raimund Kirner, Peter Puschner, and Adrian Prantl. Transforming flow information during
code optimization for timing analysis. Real-Time Systems, 2010. doi: http://dx.doi.org/10.
1007/s11241-010-9091-8. (online edition).

[3] Adrian Prantl. Towards a static profiler. In Jens Knoop and Adrian Prantl, editors, 15. Kol-
loquium „Programmiersprachen und Grundlagen der Programmierung (KPS ’09)“, number
2009-X-1 in Schriftenreihe des Instituts für Computersprachen, page 230, Maria Taferl, Austria,
October 2009. Technische Universität Wien.

[4] Adrian Prantl, Jens Knoop, Raimund Kirner, Albrecht Kadlec, and Markus Schordan. From
trusted annotations to verified knowledge. In Proceedings of the 9th International Workshop
on Worst-Case Execution Time Analysis (WCET 2009), pages 39–49, Dublin, Ireland, June
2009. Österreichische Computer Gesellschaft. ISBN: 978-3-85403-252-6.

[5] Adrian Prantl, Jens Knoop, Markus Schordan, and Markus Triska. Constraint solving for
high-level WCET analysis. In The 18th Workshop on Logic-based methods in Programming
Environments (WLPE 2008), pages 77–89, Udine, Italy, December 2008.

[6] Adrian Prantl, Markus Schordan, and Jens Knoop. TuBound – A Conceptually New Tool for
Worst-Case Execution Time Analysis. In 8th International Workshop on Worst-Case Execution
Time Analysis (WCET 2008), pages 141–148, Prague, Czech Republic, 2008. Österreichische
Computer Gesellschaft. ISBN: 978-3-85403-237-3.

[7] Niklas Holsti, Jan Gustafsson, Guillem Bernat (eds.), Clément Ballabriga, Armelle Bonenfant,
Roman Bourgade, Hugues Cassé, Daniel Cordes, Albrecht Kadlec, Raimund Kirner, Jens
Knoop, Paul Lokuciejewski, Nicholas Merriam, Marianne de Michiel, Adrian Prantl, Bernhard
Rieder, Christine Rochange, Pascal Sainrat, and Markus Schordan. WCET Tool Challenge 2008:

Report. In 8th International Workshop on Worst-Case Execution Time Analysis (WCET 2008),
pages 149–171, Prague, Czech Republic, July 2-4 2008. Österreichische Computer Gesellschaft.
ISBN: 978-3-85403-237-3.

[8] Raimund Kirner, Albrecht Kadlec, Peter Puschner, Adrian Prantl, Markus Schordan, and
Jens Knoop. Towards a common wcet annotation language: Essential ingredients. In 8th
International Workshop on Worst-Case Execution Time Analysis (WCET 2008), pages 53–
65, Prague, Czech Republic, July 2-4 2008. Österreichische Computer Gesellschaft. ISBN:
978-3-85403-237-3.

[9] Adrian Prantl. The CoSTA Transformer: Integrating Optimizing Compilation and WCET
Flow Facts Transformation. In Walter Dosch, Clemens Grelck, and Anette Stümpel, editors,
14. Kolloquium „Programmiersprachen und Grundlagen der Programmierung (KPS ’07)“,
number A-07-07 in Schriftenreihe A, pages 172–177. Institute für Informatik und Mathematik
der Universität zu Lübeck, 2007.

[10] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Ingomar Wenzel. WCET
Analysis: The Annotation Language Challenge. In Christine Rochange, editor, Proceedings
of the 7th International Workshop on Worst-Case Execution Time (WCET) Analysis, pages
83–99, Pisa, Italy, 2007. Institut de Recherche en Informatique de Toulouse.

[11] Adrian Prantl. Source-to-Source Transformations for WCET Analysis: The CoSTA Approach.
In Michael Hanus and Bernd Braßel, editors, 24. Workshop der „GI-Fachgruppe Program-
miersprachen und Rechenkonzepte“, number 0707 in Technische Berichte des Instituts für
Informatik, pages 51–60, Olshausenstr. 40, D – 24098 Kiel, 2007. Institut für Informatik der
Christian-Albrechts-Universität zu Kiel.

[12] Adrian Prantl. Creating a GCC back end for a VLIW-architecture. Master’s thesis, Vienna
University of Technology, May 2006.

	Kurzfassung
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Overview
	State of the art analyzers and languages
	Tree-based WCET analysis
	Path-based WCET analysis
	IPET-based WCET analysis
	Measurement-based WCET analysis
	Other annotation concepts
	Other directions for control flow analysis
	Comparison and summary

	Objectives and contributions
	Practical aspects

	Outline of this thesis

	Introducing TuBound
	Preliminaries: Flow information
	Design goals
	The Architecture of TuBound
	The work flow of TuBound
	Start-up and annotation
	Program optimization and WCET annotation transformation
	Compilation and WCET calculation

	The annotation language of TuBound
	Annotation syntax and source code integration

	Static analysis
	An interprocedural interval analysis
	Arithmetic in the interval lattice

	Analyzing loop bounds
	Single loops

	Analysis of whole loop nests
	Example

	Flawless annotations and analyses
	Automatic testing of a data-flow analysis
	Preparing test cases

	Assertion-carrying code work flow
	Checkable assertions
	Notation
	Assertions for universally valid properties
	Assertions for existentially valid information
	May, must, and conservative approximations
	From analysis results to assertions

	Interprocedural ACC
	The trusted annotation base
	Lifting environmental information to the program layer
	Shrinking and verifying the trusted annotation base
	Sharpening the time bounds

	Implementation details

	Transforming flow constraints
	Classification of optimizations
	Defining transformation rules
	Designing a new work flow
	Implementation in TuBound
	Transformation rules examples
	A hierarchical naming scheme for AST scopes
	Extensions

	The implementation environment
	SATIrE
	Termite
	The Termite term representation
	Using Termite for a standalone process
	Invoking Termite as part of a SATIrE analyzer
	A logical data structure for AST traversals

	wcetC code generation
	Analysis-guided loop unrolling

	Evaluation
	Flow Problems from the WCET Tool Challenge 2008
	Loop analysis with model checking
	Flow transformation benchmarks

	Conclusions and perspectives
	Bibliography
	Curriculum Vitae

