
Diplomarbeit

Numerical methods in quantum

propagation

Ausgeführt am Institut für Analysis und Scientific

Computing

der Technischen Universität Wien

unter der Anleitung von:

Univ.-Doz. Dr. Othmar Koch

und Dr. Robert Hammerling
als verantwortlich mitwirkendem Universitätsassistenten

durch
Josef Kamleitner

Schwadorf 3
A-3100 St. Pölten

Mai 2010

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Abstract

The Qprop package is a software library written in C++ and designed to solve
the time-dependent effective 1-particle Schrödinger / Kohn-Sham equations for
an atom interacting with a laser field. The ground state of the atom is (initially)
computed using Qprop with imaginary time propagation. To supplement the
documentation provided with the code, the implementation and performance of
the code have been analyzed and resulting corrections and improvements have
been added.
The already flexibly usable library is therefore combined with a newly developed
front-end program, which is much more powerful than the Qprop examples.
So a wide range of parameter settings and configurations, like the number of
electrons, discretization parameters and laser fields, can be analyzed. The use
of the Qprop package is simplified by self-explanatory XML parameter files
replacing modification of parameters inside the compiled code. Outside the li-
brary also numerical improvements are applied, for instance the introduction
of a “Predictor-Corrector” step in time integration increases the order of the
algorithm from first to second order.
The Qprop library is also further improved and optimized. Up to this work the
time propagation has been realized using a splitting of the Hamiltonian into a
large number of tridiagonal summands in conjunction with the Crank-Nicolson
method. In addition to this propagator the Lanczos method, which is a stan-
dard method of numerical analysis and promises computational advantages, is
implemented and one of these two propagators can be chosen depending on the
problem.
The detailed code analysis is supplemented by a list of the algorithmic im-
provements in conjunction with documentation of their advantages, numerical
comparisons and user guidelines. The present work is also intended as a demon-
stration of how Qprop can be tuned to best suit a particular application.

4

Kurzfassung

Das Qprop Paket ist eine in C++ geschriebene Programmbibliothek für das
Lösen der zeitabhängigen effektiven Einteilchen Schrödinger- / Kohn-Sham-
Gleichungen für Atome in Laserfeld-Wechselwirkung. Der Grundzustand des
Atoms wird (zu Beginn) von Qprop durch imaginäre Zeitpropagation berech-
net. Um die mit dem Code gelieferte Dokumentation zu ergänzen sind die Im-
plementierung und Performance des Codes analysiert und daraus resultierende
Korrekturen und Verbesserungen hinzugefügt worden.
Die bereits flexibel einsetzbare Bibliothek wird deshalb mit einem im Vergleich
zu den Qprop Beispielen sehr viel leistungsfähigeren, neuentwickelten Front-
end-Programm kombiniert. Somit kann eine große Bandbreite an Parameterein-
stellungen und -konfigurationen, wie die Elektronenanzahl, Diskretisierungspa-
rameter und Laserfelder, analysiert werden. Die Handhabung desQprop Pakets
wird durch selbsterklärende XML-Parameterdateien, die Parameteränderungen
im Quellcode ersetzen, vereinfacht. Außerhalb der Bibliothek werden auch nu-
merische Verbesserungen umgesetzt, zum Beispiel erhöht die Einführung eines
“Predictor-Corrector”-Schritts in der Zeitintegration die Ordnung des Algorith-
mus von erster auf zweite Ordnung.
Die Qprop Bibliothek wird auch weiter verbessert und optimiert. Bis zu dieser
Arbeit ist die Zeitpropagation durch das Splitten des Hamiltonoperators in eine
Vielzahl von tridiagonalen Summanden in Verbindung mit der Crank-Nicolson
Methode realisiert worden. Zusätzlich zu diesem Propagator wird die Lanczos
Methode, eine Standardmethode der numerischen linearen Algebra, die rechner-
ische Vorteile verspricht, implementiert, und einer dieser beiden Propagatoren
kann problemabhängig ausgewählt werden.
Die detaillierte Analyse des Codes wird durch eine Liste algorithmischer Verbes-
serungen in Verbindung mit der Dokumentation ihrer Vorteile, numerische Ver-
gleiche und Benutzeranweisungen ergänzt. Die gegenständliche Arbeit soll auch
als Demonstration dafür gesehen werden, wie Qprop am Besten für bestimmte
Anwendungen konfiguriert werden kann.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Structure of this work . 8

2 General analysis of Qprop 9
2.1 Time-dependent Kohn-Sham equations 9
2.2 Expansion into spherical harmonics 10

2.2.1 Expansion of the Hartree potential 12
2.2.2 Krieger-Li-Iafrate (KLI) exchange potential approximation 14
2.2.3 The approximate Hamiltonian 15

2.3 Overview of the propagation algorithm 15
2.3.1 The discretized Hamiltonian 15
2.3.2 Summarizing the discretization 16
2.3.3 Imaginary time propagation 18

3 The Qprop front-end XMLQprop 21
3.1 Intention and purpose of XMLQprop 21
3.2 XMLQprop manual . 22

3.2.1 Paths, compilation and execution 22
3.2.2 Parameter initialization and XML file structure 23
3.2.3 Input and output files and their contents 29
3.2.4 Dynamic parameter loops, algorithms and computation . 31

4 Detailed analysis and improvements 35
4.1 Basic computations and improvements 35

4.1.1 Coefficients class . 35
4.1.2 Potential class . 36
4.1.3 Hamop class . 36
4.1.4 JKtimer class . 37
4.1.5 Backwards compatibility 37
4.1.6 Grid class . 37
4.1.7 Wavefunction class . 38
4.1.8 Lanczos method classes 40
4.1.9 Other improvements . 40

4.2 Split-step Crank-Nicolson propagator 40
4.2.1 Boundary conditions . 40
4.2.2 Imaginary absorbing potential 41
4.2.3 Crank-Nicolson propagator 43

5

6 CONTENTS

5 Lanczos method and “Predictor-Corrector” step 45
5.1 Implementation of Lanczos method 45

5.1.1 Theoretical background of the Lanczos method 45
5.1.2 Matrix of the Hamiltonian for the Kohn-Sham-equations . 48
5.1.3 Algorithm and implementation details 51
5.1.4 Adaptive time stepping and Padé approximation 54

5.2 Introduction of a “Predictor-Corrector” step 54

6 Numerical results 57
6.1 Computation time and discretization parameters 57
6.2 Computation time of algorithm parts 60

6.2.1 C-N propagator . 60
6.2.2 Lanczos method . 61

6.3 Imaginary time propagation . 64
6.3.1 Hydrogen-like atoms . 67
6.3.2 Many-electron atoms . 67
6.3.3 Random initializations . 68

6.4 Real time propagation . 70
6.4.1 Hydrogen-like atoms . 70
6.4.2 Many-electron atoms . 70
6.4.3 Comparison to Lanczos method 71

6.5 Conserved quantities . 74
6.5.1 Norm conservation . 74
6.5.2 Energy conservation . 74

6.6 Time reversibility . 74

7 Conclusions 79
7.1 Theory and Documentation . 79
7.2 Front-end . 79
7.3 Improvements and optimizations 79
7.4 Numerical properties . 80
7.5 Outlook . 80

A Readme 85

B C++ code-lets and XML parameter files 87
B.1 The default parameter file . 87
B.2 XML parsing source code examples 89

B.2.1 Parsing a double precision number parameter 89
B.2.2 Parsing a boolean parameter with default value 89
B.2.3 Parsing a string parameter 90
B.2.4 Parsing an array of integer parameters 90

B.3 Lanczos method source code parts 91
B.3.1 Adaptive step size . 91
B.3.2 Local error estimate . 92

Chapter 1

Introduction

1.1 Motivation

Modern lasers are powerful electromagnetic radiation sources with a frequency
domain covering a wide range from the infrared to the ultraviolet. Many lab-
oratories all over the world achieve laser pulses of intensities of 1016 W

cm2 and
above. The ensuing strong-field phenomena are not accessible through conven-
tional perturbation theory, because the laser field is no longer small compared
to the atomic binding forces in the electron shell. In the non-relativistic regime,
meaning moderate charge states and moderate laser intensities < 1018 W

cm2 , how-
ever, the solution of the time-dependent Schrödinger equation is a possible way
to understand and analyse these strong-field phenomena (tunneling and above-
threshold ionization, high order harmonic generation, nonsequential ionization
pronounced dynamic Stark-shifts and dynamic stabilization (the last is not yet
confirmed experimentally)).
The first approaches in this direction have been applied to one-electron atoms
with the electronic degrees of freedom restricted to the laser polarization direc-
tion and have been limited to qualitative analysis. With increasing computer
power also three-dimensional grids and not only linearly polarized laser fields can
be treated, but due to the “exponential wall” many-electron systems stay nu-
merically inaccessible through the many-body Schrödinger equation [1, 2]. The
density functional theory (DFT), relying on the Hohenberg-Kohn and Runge-
Gross theorems [3, 4], is based on the electron density instead of many-electron
wavefunctions, allowing to treat many-electron systems with linear scaling in
the number of particles. Modern formulations and numerical implementations
rely on the Kohn-Sham equations which are based on this theoretical observa-
tion.
This holds also for the Qprop library package (written in C++) that is the
main topic of this work. Based on a one-electron time-dependent Schrödinger
solver for interaction with linear polarized laser fields [5] the generalized Qprop

library, supporting additionally elliptic polarization and effective many-electron
potentials, has been implemented by D. Bauer et al. and documented in [6, 7].
Results and applications can be found in [8, 9].
The aim of this work is to first analyse and document the (numerical) proper-
ties of the Qprop library. For this purpose, but also for future use as flexible

7

8 CHAPTER 1. INTRODUCTION

input/output (I/O) interface, a front-end is designed and implemented. The
detailed analysis shows several possibilities for improvements and optimiza-
tions that are implemented in the next step, for instance the order-increasing
“Predictor-Corrector” extrapolation step. Finally the Crank-Nicolson time prop-
agator is compared with a standard method of numerical analysis, the newly-
implemented Lanczos method.

1.2 Structure of this work

To give briefly a better idea of the intention, contents and results of this work,
the following chapters are shortly presented in the following overview:

Chapter 1 gives an introduction to the topic of this work.

Chapter 2 presents the theoretical background of the methods used in Qprop: Time
dependent density functional theory and Kohn-Sham equations, (multi-
pole) expansions and approximations, the Hartree and Krieger-Li-Iafrate
exchange-correlation potentials.

Chapter 3 introduces the newly implemented Qprop front-end XMLQprop and
contains a detailed manual of this program and the XML (Extensible
Markup Language) parameter file specifications.

Chapter 4 describes the most important and the newly implemented C++ classes,
points out several improvements to Qprop and gives a detailed analysis
of the applied numerical methods.

Chapter 5 presents the main innovations added to Qprop in the course of this work:
The additional possibility to use Lanczos method instead of the stan-
dard Crank-Nicolson propagator and the introduction of a “Predictor-
Corrector” step to improve the order of the numerical method.

Chapter 6 reviews the obtained numerical results. The computational effort and
accuracy of the different methods and parameter settings are analysed
and compared.

Chapter 7 sums up the main results of this work.

Chapter 2

General analysis of Qprop

This chapter summarizes the general approach of Qprop for the solution of the
time-dependent Schrödinger and Kohn-Sham equations. Therefore this chapter
mainly merges the information of [6] and [7], but also answers questions that
are left open in these two sources.

2.1 Time-dependent Kohn-Sham equations

In the following, Hartree atomic units (a.u.) will be used and the factor 1
c
is

already included in the vector potential A, unless stated otherwise. Table 2.1
shows the values of important constants in a.u. and SI units.
The linear time-dependent Schrödinger equation for a general non-relativistic
N-particle quantum system is stated as

i
∂Ψ(r, t)

∂t
= HΨ(r, t), (2.1)

with the wave-function Ψ : R3N × R → C and the Hamiltonian H acting as a
linear operator on the wave-function Ψ. For a single electron the Hamiltonian
H reads

H = H(r, t) =
1

2
[p+A(r, t)]

2
+ V (r, t) =

1

2
[−i∇+A(r, t)]

2
+ V (r, t). (2.2)

The extension to many-electron systems is straightforward, but even the two-
electron system (atom) exposed to strong laser fields treated in full dimension

dimension name sym. a.u. SI
charge elementary charge e0 1 1.60218× 10−19 C
mass electron rest mass me 1 9.10938× 10−31 kg
ang. mom. Planck’s red. constant ~ 1 1.05457× 10−34 J s
length Bohr radius a0 1 5.29177× 10−11 m
energy Hartree energy Eh 1 27.211 eV
time t0 1 2.41888× 10−17 s

Table 2.1: atomic units

9

10 CHAPTER 2. GENERAL ANALYSIS OF QPROP

reaches the limits of current supercomputers [1, 2]. The main problem is that
the wave-function of many-electron systems depends on 3N spatial coordinates,
if N is the number of electrons in the system. Thus, the space R3N would need
to be covered by a discrete grid, leading to a number of grid points growing
exponentially with the number of electrons (“exponential wall”). For instance
neon with 10 electrons and 10 discretization points for each dimension would
need 1030 grid points, exceeding current and future computational capacities by
several orders of magnitude.
Applying time-dependent density functional theory (TDDFT), formulated by
the Kohn-Sham equations (2.6) below, instead reduces the numerical effort dra-
matically as compared to the time-dependent Schrödinger equation (2.1). Den-
sity functional theory is based on the Hohenberg-Kohn (steady-state) and the
Runge-Gross (time-dependent) theorems, stating that the potential and thus
the Hamiltonian H (without any external potentials) is a functional of the den-
sity n(r, t) only [3, 4].
The electron density is reconstructed from the Kohn-Sham orbitals ψi : R

3×R→
C by

n(r, t) =

N∑

i=1

|ψi(r, t)|2. (2.3)

Additionally the Kohn-Sham Hamiltonian HKS, depending on the Kohn-Sham
orbitals via the scalar potential Vee, is given by

Vee = Vee(r, t) = Vee [ψ1, . . . , ψN] (r, t), (2.4)

HKS = HKS(r, t) =
1

2
[p+A(r, t)]2 + V (r, t) + Vee(r, t). (2.5)

This yields the time-dependent Kohn-Sham equations

i
∂ψi(r, t)

∂t
= HKS(ψ1, . . . , ψN , r, t)ψi(r, t), (2.6)

ψi(r, 0) = ψ0
i , i = 1, . . . , N, (2.7)

where actually the Hamiltonian depends nonlinearly on the orbitals.
This set of partial differential equations describes the same electron density as
the many-electron Schrödinger equation, but is computationally tractable even
for large N. Note that for the single electron system, the Kohn-Sham equation
(2.6) is comparable to the original problem (2.1), if only one Kohn-Sham orbital
is used and identified with the physical orbital.

2.2 Expansion into spherical harmonics

Each Kohn-Sham orbital can be expanded into spherical harmonics

ψi(r, ϑ, φ, t) =
1

r

∞∑

ℓ=0

ℓ∑

m=−ℓ

Φiℓm(r, t)Y m
ℓ (ϑ, φ). (2.8)

Assume that the applied laser field is linearly polarized along the z-axis and that
the initial orbitals have well defined magnetic quantum numbers mi, then mi

2.2. EXPANSION INTO SPHERICAL HARMONICS 11

remains a “good” quantum number and therefore all other magnetic quantum
numbers in the sum can be neglected:

ψi(r, ϑ, φ, t) =
1

r

∞∑

ℓ=0

Φiℓmi
(r, t)Y mi

ℓ (ϑ, φ). (2.9)

For the numerical treatment only a finite number of ℓ’s can be included, therefore
all ℓ greater than ℓmax = L− 1 for a given L ∈ N are neglected:

ψi(r, ϑ, φ, t) =
1

r

ℓmax∑

ℓ=0

Φiℓmi
(r, t)Y mi

ℓ (ϑ, φ). (2.10)

L has to be chosen carefully and depends on the problem, especially on the
intensity of the laser field.

For further simplification and to ease numerical treatment, also the Hamiltonian
is approximated and expanded into spherical harmonics. By rewriting equation
(2.5) in a different gauge we obtain

HKS = HKS(r, t) = −
1

2
∇2 + VI(t) + V (r) + Vee(r, t), (2.11)

with VI(t) being the interaction with the electromagnetic field in dipole approx-
imation for linear polarization in z-direction

VI(t) = −iA(t)
∂

∂z
+

A(t)2

2︸ ︷︷ ︸
neglected in Qprop

+zE(t), (2.12)

with the vector potential A(t) and the electric field E(t) of the laser pulse, both
in z-direction.
The other terms in equation (2.11) are the central-field Coulomb potential V (r)
of the nucleus (atomic core) and the Kohn-Sham effective potential Vee(r, t)
expanded into multipole functions V j

ee(r, t), j = 0, 1, 2:

Vee = Vee(r, t) = V 0
ee(r, t)+V

1
ee(r, t) cos(ϑ)+V

2
ee(r, t)

3 cos2(ϑ)− 1

2
+ . . . , (2.13)

where terms beyond the quadrupole are neglected in Qprop. Note that in (2.13)
the multipole functions are defined using the spherical harmonics without the
normalization pre-factors.

A finite set of non-linear differential equations for the radial orbitals Φiℓmi
(r, t)

is then obtained by inserting (2.10)–(2.13) and

V ℓ
eff(r) := V (r) +

ℓ(ℓ+ 1)

2r2
(2.14)

12 CHAPTER 2. GENERAL ANALYSIS OF QPROP

into equation (2.6)

i
∂Φiℓmi

(r,t)

∂t
=

(
− 1

2
∂2

∂r2
+ V ℓ

eff(r)
)

Φiℓmi
(r, t)

− iA(t)r
∑

ℓ′ 〈Y mi

ℓ | cosϑ|Y mi

ℓ′ 〉 ∂
∂r

1
r

Φiℓ′mi
(r, t)

+ iA(t)
∑

ℓ′

〈
Y mi

ℓ | sinϑ ∂
∂ϑ
|Y mi

ℓ′

〉
1
r

Φiℓ′mi
(r, t)

+ rE(t)
∑

ℓ′ 〈Y mi

ℓ | cosϑ|Y mi

ℓ′ 〉 Φiℓ′mi
(r, t)

+
∑

ℓ′

〈
Y mi

ℓ |V ≤2
ee (r, t)|Y mi

ℓ′

〉
Φiℓ′mi

(r, t),

i = 1, . . . , N, ℓ = 0, . . . , L− 1.

(2.15)

Due to the truncation of the multipole expansion of the Kohn-Sham potential
Vee, only a few of the matrix elements in equation (2.15) are non-zero. To
express the contributing matrix elements explicitly, we define:

Definition 2.1. Coefficients cℓm, tℓm, pℓm and qℓm

cℓm :=

√
(ℓ+ 1)2 −m2

(2ℓ+ 1)(2ℓ+ 3)
, (2.16)

tℓm := (ℓ+ 1)

√
(ℓ+ 1)2 −m2

(2ℓ+ 1)(2ℓ+ 3)
= (ℓ+ 1)cℓm, (2.17)

pℓm :=
ℓ(ℓ+ 1)− 3m2

(2ℓ− 1)(2ℓ+ 3)
, (2.18)

qℓm :=
3

2(2ℓ+ 3)

√
[(ℓ + 1)2 −m2][(ℓ + 2)2 −m2]

(2ℓ+ 1)(2ℓ+ 5)
. (2.19)

Thus, we obtain: 〈
Y mi

ℓ | cosϑ|Y mi

ℓ±1

〉
= cℓ− 1

2
± 1

2
,mi

, (2.20)

〈
Y mi

ℓ | sinϑ
∂

∂ϑ
|Y mi

ℓ±1

〉
= ±tℓ− 1

2
± 1

2
,mi

, (2.21)

〈
Y mi

ℓ |
3 cos2(ϑ)− 1

2
|Y mi

ℓ

〉
= pℓmi

, (2.22)

〈
Y mi

ℓ |
3 cos2(ϑ)− 1

2
|Y mi

ℓ±2

〉
= qℓ−1±1,mi

. (2.23)

The V j
ee(r, t) terms of the expansion of the Kohn-Sham potential Vee(r, t) (2.13)

consist each of the Hartree part U j and the exchange-correlation part V j
xc. In

the following sections these parts are explained.

2.2.1 Expansion of the Hartree potential

The Hartree potential U is defined as

U(r, t) =

∫

R3

n(r′, t)

‖r− r′‖d
3r′ (2.24)

2.2. EXPANSION INTO SPHERICAL HARMONICS 13

and expanded into spherical harmonics analogously to the Kohn-Sham potential
in (2.13). Then the corresponding multipole terms are

U j =

∫ ∞

0

r
j
<

r
j+1
>

2

N∑

i=1

Λ̃j
ii(r

′, t)dr′, (2.25)

with

r< := min(r, r′), (2.26)

and

r> := max(r, r′). (2.27)

Up to the quadrupole term, for j = 0, 1, 2, the terms Λ̃j
ii(r, t) are

Λ̃0
ii(r, t) =

∑

ℓ

Φiℓmi
(r, t)Φiℓmi

(r, t) =
∑

ℓ

|Φiℓmi
(r, t)|2, (2.28)

Λ̃1
ii(r, t) =

∑

ℓ

(
cℓ−1,mi

Φi,ℓ−1,mi
(r, t) + cℓmi

Φi,ℓ+1,mi
(r, t)

)
Φiℓmi

(r, t), (2.29)

Λ̃2
ii(r, t) =

∑

ℓ

(
qℓ−2,mi

Φi,ℓ−2,mi
+ pℓmi

Φiℓmi
+ qℓmi

Φi,ℓ+2,mi

)
Φiℓmi

, (2.30)

with the coefficients of Definition 2.1, and with terms Λ, Θ and Ξ defined as
follows:

Λ(r, t) = 2

N∑

i=1

Λ̃0
ii(r, t), (2.31)

Θ(r, t) = 2
N∑

i=1

Λ̃1
ii(r, t), (2.32)

Ξ(r, t) = 2

N∑

i=1

Λ̃2
ii(r, t). (2.33)

Putting the equations (2.25)–(2.33) together, the multipole terms of the Hartree
potential read

U0 =

∫ ∞

0

1

r>
Λ(r′, t)dr′, (2.34)

U1 =

∫ ∞

0

r<

r2>
Θ(r′, t)dr′, (2.35)

U2 =

∫ ∞

0

r2<
r3>

Ξ(r′, t)dr′. (2.36)

14 CHAPTER 2. GENERAL ANALYSIS OF QPROP

2.2.2 Krieger-Li-Iafrate (KLI) exchange potential approx-

imation

In DFT, there is a variety of approximations to the exchange-correlation poten-
tial Vxc. In Qprop the Krieger-Li-Iafrate (KLI) approximation is implemented.
The KLI potential V KLI

x consists of the local Slater exchange potential V S
x and

a residual term Ṽx

Vxc(r, t) ≈ V KLI
x (r, t) = V S

x (r, t) + Ṽx(r, t). (2.37)

In this section, the time dependence will not be stated explicitly for better
readability and because all terms depend on the same time variable t. The
KLI potential is an approximation to the optimized effective potential (OEP).
The OEP is implicitly defined by an integral equation, but this equation is
numerically not well treatable. The simplified integral equation for the KLI
potential is

V KLI
x (r) = V S

x (r) +

N−1∑

i=1

|ψi(r)|2
n(r)

∫

R3

|ψi(r
′)|2
(
V KLI
x (r′)− uxi(r′)

)
d3r′, (2.38)

with the Slater potential defined as

V S
x (r) =

N−1∑

i=1

|ψi(r)|2
n(r)

uxi(r). (2.39)

Here, uxi(r) is given by

uxi(r) =
1

ψi(r)

δEx[{ψk(r)}]
δψi(r)

= −
N∑

k=1

ψk(r)

ψi(r)

∫

R3

ψi(r
′)ψk(r

′)

‖r− r′‖ d3r′, (2.40)

with the set of Kohn-Sham orbitals {ψk(r)} = {ψk(r)|k = 1, . . . , N} and the
exchange energy Ex,

Ex[{ψk}] = −
N∑

i=1

N∑

j=1

∫

R3

∫

R3

ψi(r)ψj(r
′)ψj(r)ψi(r

′)

‖r− r′‖ d3r′d3r. (2.41)

Applying the integral operator defined for a function f ∈ L2 by

〈f〉j :=
∫

R3

f(r)|ψj(r)|2d3r (2.42)

to both sides of the integral equation (2.38), yields the matrix equation (2.44)
below for the coefficients Qi,

Qi :=
〈
V KLI
x − uxi

〉
, (2.43)

N−1∑

i=1

(δji −Mji)Qi =
〈
V S
x − uxi

〉
, (2.44)

2.3. OVERVIEW OF THE PROPAGATION ALGORITHM 15

with the symmetric matrix Mji given by

Mji =

∫

R3

|ψj(r)|2|ψi(r)|2
n(r)

d3r. (2.45)

It can be shown that QN is equal to 0, therefore the N th term is neglected in
some of the sums above. The solution of (2.44) provides all necessary coefficients
such that the right-hand side of (2.38) is explicitly known as well as the KLI
potential V KLI

x .
In Qprop only the monopole term V KLI,0

x of the potential is computed, this is
sufficient if most of the electrons stay inside the atomic shell and the deviation
from spherical symmetry remains small.

2.2.3 The approximate Hamiltonian

To summarize the results and approximations of Section 2.2 we observe that
the set of differential equations integrated in Qprop is

i
∂Φi.mi

(r, t)

∂t
= HKS(r, t)Φi.mi

(r, t), (2.46)

with the approximate Hamiltonian (semidiscretized: discrete ℓ, continuous r, t)

HKS = Hat +Hmix +H(1)
ang +H(2)

ang +H(3)
ang, (2.47)

with the parts

Hat = δℓℓ′

(
−1

2

∂2

∂r2
+ V ℓ

eff(r) + V 0
ee(r, t) + pℓmi

V 2
ee(r, t)

)
, (2.48)

Hmix = −iA(t) (δℓ−1,ℓ′cℓ−1,mi
+ δℓ+1,ℓ′cℓmi

)
∂

∂r
, (2.49)

H(1)
ang = iA(t) (δℓ−1,ℓ′tℓ−1,mi

− δℓ+1,ℓ′tℓmi
) , (2.50)

H(2)
ang =

(
rE(t) + V 1

ee(r, t)
)
(δℓ−1,ℓ′cℓ−1,mi

+ δℓ+1,ℓ′cℓmi
) , (2.51)

H(3)
ang = V 2

ee(r, t) (δℓ−2,ℓ′qℓ−2,mi
+ δℓ+2,ℓ′qℓmi

) , (2.52)

where δ is the Kronecker delta.

2.3 Overview of the propagation algorithm

2.3.1 The discretized Hamiltonian

Based on the approximate Hamiltonian (2.47) and Kohn-Sham orbitals (2.10)
already discrete in ℓ- and m- space, only the radial discretization has to be
specified. This discretization is given on an equidistant grid

rir =
ir

nr

rmax, ir = 0, . . . , nr, (2.53)

where the wavefunction value at the point r = 0 is not stored, because the
wavefunction is zero there. In general all properties of the wavefunction at r = 0
are taken into account, if necessary. Internally, however, the index ix = ir − 1

16 CHAPTER 2. GENERAL ANALYSIS OF QPROP

starts at 0 and ends at nx − 1 = nr − 1, as it is standard in C++. This means
that the radial wavefunction values are stored in the interval [∆r, rmax] with a
step width

∆r =
rmax

nr

, (2.54)

as a complex valued one dimensional arrayΦ in the wavefunction class (Section
4.1.7). The grid class (Section 4.1.6) offers mapping functions which map the
indices for the Kohn-Sham orbital (i = iz + 1), for the angular momentum
(ℓ = iy) and the radial position (ir = ix + 1) to the general index ı via

ı = ((izny) + iynx) + ix, (2.55)

with all indices starting at zero in this equation (i and ir start at one and
are only used in theory, but not in the implementation). This means that the
components of the discrete vector Φ as discretization of the wavefunction at a
certain time t are

Φı(t) = Φiℓmi
(rir , t). (2.56)

The discrete Hamiltonian acts on this vector depending on the time propagation
algorithm. In the standard propagation mode using a Crank-Nicolson approxi-
mation (Section 4.2.3) the Hamiltonian parts (2.47),(2.48)–(2.52) are split into
2 × 2 matrices that are calculated and applied consecutively. In the Lanczos
method propagation mode the whole Hamiltonian is computed and stored in a
sparse matrix format (see Section 5.1.2) and then applied using Lanczos method.
All the potentials occurring in the Hamiltonian (2.47) are realized as discrete
vectors with values at the same radial points as the wavefunciton itself. An
overview on the discretization and approximation steps is given in the following
Section 2.3.2. The differential operators, where also boundary conditions mat-
ter, are the subject of Section 4.2.1, while the additionally introduced imaginary
absorbing potential is described in Section 4.2.2.

2.3.2 Summarizing the discretization

As conclusion of this chapter a short summary of the approximation and dis-
cretization steps in Qprop is given, starting with the continuous partial differ-
ential equation (PDE) and finishing with the propagator being discrete in space
and time. While the time has been an arbitrary real number up to now, from
now on it is assumed to be in the interval [0, T] for a positive real number T .
This is the interval where the solution is computed. The range of commonly
(unless stated otherwise) used variables and parameters are listed in Table 2.2.

a) Continuous PDE-problem

For the Kohn-Sham orbitals

ψi :

{
R3 × [0, T] → C

(r, t) 7→ ψi(r, t)
, ∀i, (2.57)

ψi(., t) ∈ L2(R3,C), ∀t, i, (2.58)

2.3. OVERVIEW OF THE PROPAGATION ALGORITHM 17

variable or index range remark
r R3

r R+ r = ‖r‖
r 0,∆r, . . . , rmax discrete grid
ϑ [−π, π]
φ [0, 2π]
t [0, T]
t 0,∆t, . . . , T discrete grid, ∆t = h

i 1, . . . , N
iz 0, . . . , nz − 1 iz = i− 1, nz = N

ℓ 0, . . . , ℓmax ℓmax = L− 1, ny = L

iy 0, . . . , ℓmax iy = ℓ

ir 0, . . . , nr

ix 0, . . . , nx − 1 ix = ir − 1, nx = nr

ı 0, . . . , nznynx − 1 ı = ((izny) + iynx) + ix

Table 2.2: Range of variables and parameters

the Kohn-Sham equations are

i
∂ψi(r, t)

∂t
= HKS(ψ1, . . . , ψN , r, t)ψi(r, t), (2.59)

ψi(r, 0) = ψ0
i , ∀i. (2.60)

b) Spherically discrete, radially and temporally continuous PDE-
problem

Both the orbitals and the Hamiltonian are expanded into spherical harmonics
and only the first L angular momenta with ℓ = 0, . . . , ℓmax = L − 1) are taken
into account. This yields the following spherically discrete orbitals

Φiℓmi
(r, t) :

{
R+ × [0, T] → C

(r, t) 7→ Φiℓmi
(r, t)

, ∀i, ℓ, (2.61)

Φiℓmi
(r, t) ∈ L2(R,C), ∀t, i, ℓ, (2.62)

and equations

i
∂Φi.mi

(r, t)

∂t
= HKS(Φ1.m1

, . . . ,ΦN.mN
, r, t)Φi.mi

(r, t), ∀i, (2.63)

Φiℓmi
(r, 0) = Φ0

iℓmi
, ∀i, ℓ. (2.64)

c) Spatially discrete, temporally continuous ODE-problem

By additional discretization in radial direction, for the fully discretized orbitals

Φı :

{
[0, T] → C

t 7→ Φı(t)
, ∀ı, (2.65)

Φ(t) ∈ C
nznynx , ∀t, (2.66)

18 CHAPTER 2. GENERAL ANALYSIS OF QPROP

the following ordinary differential equation (ODE) is obtained

i
∂Φ(t)

∂t
= HKS(Φ(t), r, t)Φ(t), (2.67)

Φ(0) = Φ0. (2.68)

d) Discrete time propagator

Finally also the time is discretized by a numerical propagator

Unum(t+ h, t, Vee(Φ(t))) :

{
Cnznynx → Cnznynx

Φ(t) 7→ Φ(t+ h)
, ∀t, (2.69)

computing the discrete orbitals Φ for all discrete time grid points starting at
zero

Φ(t+ h) = Unum(t+ h, t, Vee(Φ(t)))Φ(t), (2.70)

Φ(0) = Φ0, (2.71)

with time step size h = ∆t. This scheme is used in the standard propagation
mode. As described in Section 5.2 in detail, the structure of the propagator
changes with the introduction of a “Predictor-Corrector” step to

Φ̃(t+ h) = Unum (t+ h, t, Vee(Φ(t)))Φ(t), (2.72)

Φ(t+ h) = Unum

(
t+ h, t,

Vee(Φ(t)) + Vee(Φ̃(t+ h))

2

)
Φ(t), (2.73)

Φ(0) = Φ0, (2.74)

where (2.72) is the “Predictor” and (2.73) the “Corrector” step.

2.3.3 Imaginary time propagation

The Qprop package and the implemented numerical methods of quantum prop-
agation are designed to solve the time-dependent Schrödinger / Kohn-Sham
equations for an atom interacting with an external laser field. As starting point
of this computed time evolution an initial state is necessary, but in most cases
not available in closed form. Often, this initial state is the ground state of the
unperturbed quantum system (external fields equal to zero). Many numerical
methods computing the ground state of an atom are based on the fact that the
total energy of the ground state is minimal. One of these methods is applied
in Qprop, where the real time propagator is used to compute the ground state
via the so-called imaginary time propagation.
The imaginary time propagation simply replaces the real time step h = ∆t by
the imaginary time step h = −i∆t.
For the linear one-particle Schrdinger equation, with the wavefunction Ψ(r, 0)
at time equal to zero expanded into eigenstates ψ0

n(r) of the Hamiltonian with
eigenvaluesEn (superposition principle), the wavefunction at positive time reads

Ψ(r, t) =
∑

n

an exp (−iEnt)ψ
0
n(r). (2.75)

2.3. OVERVIEW OF THE PROPAGATION ALGORITHM 19

The propagation by one imaginary time step yields

Ψ(r, h = −i∆t) =
∑

n

an exp (−En∆t)ψ
0
n(r). (2.76)

For a negative ground state energy En0
< 0 the corresponding eigenstate ψ0

n0
(r)

explodes fastest. Therefore propagation of an initial guess (even random) wave-
function by many imaginary time steps and wavefunction re-normalization after
each of these consecutive steps converges to the ground state ψ0

n0
(r).

Although theoretical results for the non-linear case are not clear, it is possible
to use this imaginary time propagation also in the case of several Kohn-Sham
orbitals. The Pauli exclusion principle is satisfied by performing Gram-Schmidt
orthogonalization in each imaginary time step.

20 CHAPTER 2. GENERAL ANALYSIS OF QPROP

Chapter 3

The Qprop front-end

XMLQprop

3.1 Intention and purpose of XMLQprop

The Qprop package consists of both the Qprop library and some example
programs using this library. These example programs demonstrate the compu-
tation of the imaginary and real time propagation of hydrogen and neon as well
as some other possible applications of Qprop like ionization calculations.
Nearly the whole Qprop package source code is written in C++, only a small
number of C and Fortran functions is used, mainly from external libraries such
as LAPACK and BLAS.
While the Qprop library is written in an object oriented programming style,
the examples only show how the library should be used, but the spectrum of
covered problems is limited. For instance all variables and parameters are set
inside the source code, in some cases by using global variables. This is sufficient
to illustrate the interfaces of the Qprop library and to solve some special prob-
lems, but for a detailed analysis of the Qprop code much more flexible software
is necessary.
This led to the development of the program XMLQprop (originally called np,
the acronym for “new program”) as flexible front-end for the Qprop library
and basis for the results obtained in this work. Several goals should be achieved
by XMLQprop:

1. To enable a detailed analysis of the Qprop library and its abilities. There-
fore the program has to be able to solve a set of problems contained in
the original Qprop examples.

2. To provide the solution of problems to the Qprop library and only negli-
gibly induce overhead in CPU-time and memory requirements. Improve-
ments of Qprop are to be done directly in the library, not outside in the
front-end XMLQprop.

3. To remove parameter definitions from the source code. The parameters
are defined in an XML-file, such that the program can solve different
problems, specified only by these XML-files, without re-compilation.

21

22 CHAPTER 3. THE QPROP FRONT-END XMLQPROP

4. To remove global variables, such that only use of local variables is suffi-
cient.

5. To replace the former globally defined functions for potentials by subtypes
of a newly defined class potential. Using dynamic binding for these sub-
types depending on XML-file parameters enables highest flexibility with
respect to the used potentials.

6. To provide the ability to solve one problem with a variety of spatial and
temporal discretization parameters and the possibility to vary additional
parameters like the laser field intensity. The results for the different pa-
rameters should be summarized for easy comparison.

7. To add the possibility to time the CPU-time that is consumed by Qprop

for solving the problems posed by these different varied parameters.

8. To produce several output files, containing details on each solved problem,
a summary of loops over various parameters and of computation times of
the different parts of Qprop.

9. To achieve a high re-usability of the program code. Therefore it should
be designed using object oriented programming paradigms.

10. To use standard solutions in the form of standard libraries for standard
problems, for instance LAPACK and BLAS for linear algebra and Xerces-
C for XML parsing.

11. To design the program to run on several platforms independently of the
system type.

12. To add extensive documentation for the code by comments inside the
source code as well as by the manual given in Section 3.2 and the README-
file in Appendix A.

3.2 XMLQprop manual

The program XMLQprop is a non-interactive C++-program using the Qprop

library and an additional Dynpar class to achieve the goals defined in Section
3.1 above. Furthermore, the standard C++ libraries, the LAPACK, BLAS,
f2c/g2c, expokit and Xerces-C libraries are included.
The structure of the program is very simple, it consists of two main parts:
First the information from the XML parameter file is read in and then the part
performing all computations and outputs follows.

3.2.1 Paths, compilation and execution

In the qprop/src/xmlqpropdirectory all data immediately used by the program
are contained. The program’s source code is located in the xmlqprop.cc C++
source file, the XML parameter files are contained in the param sub-directory
and output files are written into the res sub-directory.
The Makefile contains all path inclusions and library links necessary for com-
pilation of the program. Before make compiles the code properly, it has to be

3.2. XMLQPROP MANUAL 23

ensured, that all necessary libraries (including development files in some cases)
are installed at the system (see Appendix A). Especially the delivered expokit

library has to be previously compiled.
Depending on whether the f2c or the g2c library is used, make has to be called
by make (if the f2c library is located in a directory that is included for linking by
default) or make xmlqprop 64 (if the g2c library is contained in the /usr/lib64
directory as it is common for 64 bit systems). For other installations with dif-
ferent f2c/g2c library paths, the Makefile has to be changed such that this
library is linked. If the f2c library is not installed on the system the f2c library
version in the directory libf2c (located in the same directory as Qprop) can
be compiled calling make in this directory (see also Appendix A). Then make

xmlqprop c has to be called to compile the program properly.
To execute XMLQprop using a parameter file paramfile1.xml (located in
the param subdirectory) the following statement has to be entered on the com-
mand line: ./xmlqprop paramfile1. Note that the .xml file extension has
to be omitted as well as the param directory name. To run the application in
background with niceness 10 (such that other applications of standard priority
do not slow down significantly) the shell script xqs (acronym for XMLQprop-
shell-script) may be called via sh ./xqs paramfile1. The output is then piped
into res/paramfile1.out and the error output into res/paramfile1.err.

In the following sections the two main parts of the program XMLQprop will
be described in detail.
In Section 3.2.2 the first part, reading in the XML parameter file information,
will be explained as well as the meaning of the parameters and their implica-
tions for the program.
Section 3.2.3 does not describe any parts of the program but the input and
output files and their contents.
For an overview of the program as a black-box algorithm, meaning that only the
input parameters and the results are of interest, these two sections are sufficient.
To get detailed information on how the program works, the description of the al-
gorithmic and computational second part of the program (Section 3.2.4) should
also be perused.

3.2.2 Parameter initialization and XML file structure

Before the initialization of parameters as defined in the XML parameter file,
most of the variables and pointer variables used in the main program are de-
clared, only a few of them are also initialized using default values.
Then the number of arguments is checked. This has to be equal to 2, meaning
that one variable, the parameter file name, is specified. If this is not the case,
the user is informed how to call the program correctly.
Otherwise, if the number of variables is correct, the program continues with
the XML DOM (Document Object Model) parser block. First, the XML DOM
parser is initialized, then the program to open the parameter file with the user-
specified name. If the file exists and can be opened, the program starts to parse
the XML parameter file to initialize the parameter values. Otherwise respective
error messages are returned.
Corresponding to the XML specifications there is only one root element, called
params. The content of this element is in between the start-tag <params> and

24 CHAPTER 3. THE QPROP FRONT-END XMLQPROP

the end-tag </params>. The same structure is also valid for the child elements
in the content of the root element, they consist of the start-tag, their content,
and the end-tag. All elements may have child elements and their number is not
limited.
The root element owns four child elements (these are 1. static params, 2.
dynamic params, 3. init params and 4. lanczos params), each summarizing
parameters of different meaning. Their child elements are the parameters and
arrays of parameters. Because XMLQprop searches only for element names
and does not classify by the parent elements, the names of elements in the root,
the first and the second level have to be pairwise different. This is only a weak
restriction because of the limited number of parameters as compared to the
number of possible element names, but it enables to introduce new classes of
parameters to increase the clarity of the structure. For instance the initialization
parameter layer init params was introduced during the program development
because of the increasing number of parameters describing wave-function ini-
tialization.
The third level of child elements is only used for array elements, therefore it is
no problem if their names are identical to elements of other arrays, because the
program only searches for the array’s, the parent element’s, name.
An example for a parameter file is shown in the Appendix, Section B.1. To
distinguish between integer and double parameters having integer values, the
latter ones have a “.0” added. The meaning of the parameters and their effects
on the behaviour of the program XMLQprop is described in the following list.

1. static params

realtimemode 0 for imaginary time propagation, 1 for real time propagation. If imaginary
time propagation is selected, the parameters extrapolate, numtisranget
and all init params, except i initmode are neglected or not used and
have therefore no effect. Otherwise, if real time propagation is selected,
i initmode is obsolete.

hydrogenlike 0 for many-electron atoms, 1 for one-electron atoms/ions like the hydro-
gen atom. The extrapolate and i slateronly parameters are neglected
for hydrogen-like atoms, because the “Predictor-Corrector” extrapolation
step and the KLI potential are only meaningful for many-electron atoms.

extrapolate 1 if the “Predictor-Corrector” extrapolation step should be performed, 0
otherwise. Only useful in real time propagation mode for many-electron
atoms.

numtisranget 0 means that the parameter range t stands for T , the length of the time
interval [0, T] that is computed using enough steps of length h = ∆t (the
number of steps depends on the length of the time interval). 1 means,
on the other hand, that range t stands for the number of time steps
of length h = ∆t that are computed, such that the length of the time
interval depends on the number of steps (T =range t∆t). In imaginary
time propagation mode this parameter is ignored and the program always
behaves as if it were 1, because only a stationary solution is to be computed
after a number of steps and this does not have anything to do with a time
interval. For real time propagation mode this parameter is mostly set

3.2. XMLQPROP MANUAL 25

equal to 0 because the main intention is to compute the solution within
a time interval for different temporal discretization step size. Setting the
parameter equal to 1 in real time mode is useful if one wants to test the
time reversibility of the algorithm by performing only one step forward
and one step back afterwards.

lanczos 0 for using the standard Crank-Nicolson time propagation, 1 for using
the newly implemented Lanczos propagation algorithm. Naturally, if this
parameter is 0, then all lanczos params are neglected.

i v is an old parameter for switching additional output on (value 1) and off
(value 0). The usage of this parameter in XMLQprop is very limited.

i slateronly is a parameter important for the computation of the KLI potential (2.37)
and therefore only used for many-electron atoms. If it is 0 the matrix
equation (2.44) is solved, otherwise, if it is 1, only the Slater potential
is used. For atoms with a single orbital, like helium, only i slateronly

equal to 1 is possible.

dimens 34 for linear polarization (standard value within this work) and 44 for
circular polarization of the laser field.

n orb stands for the number of Kohn-Sham-orbitals N . Internally the enumer-
ation of the Kohn-Sham-orbitals is done by the so-called z-index iz, such
that n orb is also called nz (see Table 2.2). The degener, ms, ells and
really propagate arrays below, describing the Kohn-Sham-orbitals indi-
vidually, are of length n orb.

n ang mom stands for the number of included angular momenta, this is the constant L
as defined in Section 2.2, defining the upper limit ℓmax = L−1 in equation
(2.10). The higher n ang mom, the finer is the angular disretization. Inter-
nally ℓ is implemented as the so-called y-index iy, n ang mom is therefore
also called ny (see also Table 2.2).

degener is an array of length n orb defining the degeneracy of each Kohn-Sham-
orbital. For most orbitals it is to be chosen equal 2, because the electron
density is assumed to be spin-unpolarized. For the ground state of neon,
for example, where the closed shells are spherically symmetric, it is also
possible to treat all 2p-electrons by one Kohn-Sham-orbital with degener-
acy 6.

ms is an array whose ith element defines the magnetic quantum number mi

of the ith Kohn-Sham-orbital.

ells is an array whose ith element defines the initial angular momentum quan-
tum number ℓ of the ith Kohn-Sham-orbital. It is used for the initialization
of the Kohn-Sham orbitals as hydrogenic orbitals, but due to imaginary
and further real time propagation the orbital wavefunctions cover all in-
cluded ℓ’s from 0 to ℓmax, they are not fixed to the values given in the
ells parameter array.

really propagate is an array defining which Kohn-Sham-orbitals should be frozen (value 0)
and which should be propagated (value 1). In this work always all orbitals

26 CHAPTER 3. THE QPROP FRONT-END XMLQPROP

are propagated. If only the outer shell is of interest, the inner shell orbitals
may be frozen to reduce the computation time.

nuclear charge is the charge of the atom’s nucleus in atomic units (terms of unit charge
e).

imagpot ampl sets the amplitude Aimag of the imaginary absorbing potential (4.13) at
the outer radial boundary. A standard value is 100.

imagpot inner border The inner border, where the imaginary absorbing potential starts. In
detail this parameter defines the ratio rabs

rmax
in equation (4.13) below.

2. dynamic params

range x is the radial range covered by the spatial discretization points, correspond-
ing to the maximal radius rmax that is treated within the computation such
that the electron density outside the sphere of radius rmax is neglected.
Depending on the size of the electron shells, this parameter should be
chosen in the area of 10 to several hundred atomic units.

range t Normally this parameter defines the length of the time interval [0, T] in
which the solution should be computed. For imaginary time propagation
or if the parameter numtisranget is 1, range t stands for the number of
time steps to be computed.

n outputs stands for the maximal number of outputs, i.e. how often additional in-
formation (orbital energies, etc.) is computed, displayed and written to
the output files. These computations are not necessary at each time step
but have non-negligible numerical effort. Especially for small time steps
it is sufficient and useful to choose n outputs much less than the number
of time steps. If this parameter is greater than the number of time steps,
the additional computations and output are performed each time step.

The following dynamic parameters correspond to Dynpar-class instances that
are initialized using the child element parameters i, f, a and b. The Dynpar-
class realizes dynamic parameters, starting at an initial value (v0 =i), returning
the next value (vj+1 = bvj + a) by the member function next() until the final

value (f) is reached. The member function p(j) returns the value vj . iSf is
allowed, the class recognizes if the parameter values increase or decrease and
after the values go beyond / below the final value, NaN is returned. So loops
over all Dynpar-class parameter values can be terminated if NaN is returned.
To avoid infinite loops it has only to be assured that the iteration increases the
parameter value if i≤f and decreases it if i>f. Using only one parameter value
can be realized by setting i=f and, for example, b= 2.

dx is the spatial radial discretization step width ∆r in atomic units as a
dynamic parameter. The quotient of range x over dx gives the number of
radial discretization points nr = nx.

dt is the time step size ∆t in atomic units as a dynamic parameter.

intens is the intensity of the laser field as a dynamic parameter.

3.2. XMLQPROP MANUAL 27

3. init params

i initmode is an integer value defining the Kohn-Sham orbital initialization mode
for imaginary time propagation. If this parameter is 1, the Kohn-Sham
orbitals are initialized with random numbers, otherwise, if it is 2, the
Kohn-Sham orbitals are initialized using the hydrogen orbitals. In the
real time propagation mode this parameter is neglected.

The following initialization parameters are only used in the real time propaga-
tion mode and describe the properties of the ground state wave-function used
for initialization at t = 0.

filenamepart ini is used in real time propagation mode to define the input file name of
the file containing the initial wave-function. If multiinit (described be-
low) is 0, then a single file, named ./res/[filenamepart ini].dat (if
filenamepart ini is default this means ./res/default.dat), is used
for initialization for all different dynamic parameter sets.
If multiinit is 1, then a different file is used for wave-function ini-
tialization depending on the specific dynamic parameter set. The file-
name is therefore specified similar to the imaginary time propagation final
wavefunction output filename "./res/%s %s i%g dx%g dt%g.dat" with
filenamepart ini replacing the first %s, “if” replacing the second %s

and the dynamic parameter values for intensity, spatial and temporal step
width replacing the three %g’s.
If multiinit is 2 the initial wavefunction files differ only for different dx,
their names depend neither on intens nor on dt. Therefore the filename is
defined by "./res/%s%g.dat"with the %s replaced by filenamepart ini

and the %g replaced by the current dx value.

multiinit specifies, whether one general (value 0) or multiple specific files, depending
on the dynamic parameter values (value 1 or 2), are used for the initial-
ization of the wave-function in real time propagation mode.
If 0, all initialization parameters that are described below specify the
properties of the initial wave-function, that is to be read in from the file.
Otherwise, if not 0, the initialization parameter dx ini is replaced by the
dynamic parameter value dx. The difference between value 1 and 2 lies
only in the parameter file names as mentioned above in the description of
filenamepart ini.

n orb ini stands for the number of Kohn-Sham orbitals N in the initial wave-
function.

n ang mom ini stands for the number of included angular momenta L in the initial wave-
function

range x ini is the maximal radius rmax of the spatial discretization area of the initial
wave-function.

dx ini is the radial discretization parameter ∆r of the initial wave-function

After the initial wave-function is read in from the file it is transformed from
the initial coordinate space to the real time propagation mode coordinate space

28 CHAPTER 3. THE QPROP FRONT-END XMLQPROP

(trivial transformation for multiinit= 1). In space the transformation is piece-
wise linear, in the other coordinates (orbital and angular momentum), as well
as in space, previously undefined domains are initialized with 0 and values in
cut off domain parts are simply neglected.

4. lanczos params

These parameters are only considered in the Lanczos propagation mode, other-
wise they are neglected.

adaptive if 0, exactly one step using the Lanczos method is performed each time
step (as defined by the dynamic parameter dt). If 1, the adaptive step
width control is switched on and the step width for the Lanczos method is
individually chosen inside each time step as defined by dt. Depending on
the problem and the step width dt, up to several hundred adaptive steps
are performed within one time step of length dt (see also mxstep).

hermitian specifies whether the matrix of the Hamiltonian is Hermitian (value 1)
or not (value 0). If the matrix is not Hermitian, the Arnoldi method
is used instead of the Lanczos method, leading to additional numerical
effort. Additionally, in this case, it is not possible to use the memory
saving Lanczos implementation of the Expokit memsave-class instead of
the Expokit-class (the parameter memsave is ignored) and furthermore the
memory requirement for storing the Hamiltonian matrix (in compressed
sparse column (CSC) instead of Hermitian CSC (HCSC) format) nearly
doubles.

memsave if 0 the standard Lanczos / Arnoldi method implementation is used, oth-
erwise, if 1, the memory saving Lanczos implementation is used. This
implementation allows to use only the memory for three vectors of length
L × nr. In the standard version max dim krylov of these vectors (or up
to two more, depending on the parameter adaptive) consume memory.
The disadvantage of the memory saving version is that the vectors have to
be recomputed, but not the inner products. So the number of operations
increases, but does not double, while the memory requirement is reduced
significantly especially for large max dim krylov.

dx order specifies the order of the approximation of the differential operators in the
Hamiltonian by the Hamiltonian matrix. If 2, the standard explicit second
order approximation is used, otherwise (value 4) the explicit fourth order
approximation is used. Different values result in a warning and the use of
the 2nd order version. Up to now Numerov and Simpson approximation,
as used in the non-Lanczos-method mode, are not implemented, because
this would require a newly implemented matrix class with an internally
split Hamiltonian matrix (for instance using Cholesky decomposition and
HCSC matrices).

max dim krylov is the maximal dimension of the Krylov space used by the Lanczos /
Arnoldi method. This is the main parameter for the specification of ac-
curacy and numerical effort of the method, especially in the non-adaptive
case. Useful values lie in the region of 10 to 40, depending on the specific
problem.

3.2. XMLQPROP MANUAL 29

loc tol defines the local tolerance for the Lanczos method. This parameter is
important for the so-called “happy breakdown” as well as for the adaptive
step size in the Lanczos method implementation. If it is lower than eps,√
eps is chosen instead.

mxstep is the maximal number of (adaptive) steps in which the given fixed step
is divided for the Lanczos method. A typical number is several hundreds.
This parameter value should not be much bigger, otherwise the Hamilto-
nian matrix is not updated frequently enough. On the other hand, if it
is much less than this, the adaptive step algorithm cannot work properly.
If mxstep is exceeded, a warning is displayed because then not the whole
time interval is computed, the computation stops after mxstep steps. Thus
this parameter cannot be used to influence the adaptive step selection, it
is only important to check whether it works in a useful way.

mxreject determines how often a proposed time step size can be rejected before a
step is performed. This parameter is commonly chosen equal to 1000 and
in normal operation conditions it should not be reached. But at certain
points of the time interval this upper limit for resizing the step size may
help to avoid infinite loops such that the adaptive algorithm can go over
such difficult points where it would slow down or even stop otherwise.

pade deg controls the degree of the Padé approximation of the matrix exponential
exp (−iτT) in the Lanczos / Arnoldi method. The standard value is 6.
For rather large max dim krylov this value should also be increased.

lanczos delta This parameter is important for the adaptive step size selection, the local
error is enforced to be lower than (lanczos delta) × (time step size)
× (the tolerance loc tol) for the current step size to be accepted. The
typical value is 1.2.

lanczos gamma also plays an important role for the adaptive time stepping. To calcu-
late the next step size that is expected to be the best (in the beginning,
after a successful step or a step size rejection), a certain formula using
lanczos gamma as a kind of step size reduction factor is applied. The
typical recommended value is around 0.9 [10].

3.2.3 Input and output files and their contents

In this section the structure and contents of input and output files (except the
XML parameter file) will be briefly described.

Initial and final wavefunction files

These files store the initial and final wavefunction of the calculation. There are
no format strings in the file, each line consists of the real part, followed by the
imaginary part of a complex number. These complex numbers are the wave-
function values and the numbering of the lines corresponds to the numbering of
the elements as provided by the grid class.
By the first base string "./res/%s %s i%g dx%g dt%g.dat" the filename is in
principle defined, the first “%s” is replaced by the XML parameter file name and
the second one by the identifier string. All possible identifier strings are listed

30 CHAPTER 3. THE QPROP FRONT-END XMLQPROP

identifier string meaning
ii imaginary initial wavefunction
if imaginary final wavefunction
ri real time initial wavefunction
rf real time final wavefunction
io imaginary observation file
ro real time observation file
sum summary file

atiming the all parts timing file
ptiming the propagation timing file

Table 3.1: File identifier strings

in Table 3.1 The “%g”s are replaced by the values of the intensity, the spatial
and the time step size.
In imaginary time propagation mode the wavefunction is initialized by the pro-
gram XMLQprop and written to the inital wavefunction file, after the compu-
tation the final wavefunction is written to the final wavefunction file. In real
time propagation the behaviour for the input file depends on the multiinit

parameter (see also description of multiinit and filenamepart ini above).
If it is 0 only one wavefunction file, whose name is defined in the parameter
file, is loaded and the wavefunction transformed to the current grid is written
into an initial wavefunction file. Otherwise pairwise distinct wavefunctions are
loaded from wavefunction files named dynamic parameter dependent and no
other initial wavefunction files are created. For the final wavefunction the real
time propagation mode does the same as the imaginary propagation mode.
For input the function init(grid,file*,...) and for output the function
dump to file sh(grid,file*,...) are used, both are wavefunction class
members.

Observation file

The observation file starts with a comment line that describes the contents of
the columns. This header line depends on the real / imaginary time propagation
mode. The file name is also based on the first base string and the file identifier
strings are listed in Table 3.1.

Summary file

The summary file summarizes all information about the final state after the time
propagation for the different combinations of dynamic parameters. It contains
a header line, in the first three columns there are the dynamic parameter values,
followed by the total energy, the wavefunction norm and the overall computation
time for this dynamic parameter set.
Because there is only one summary file per XML parameter file and this does
not depend on the values of the dynamic parameters, its name is created by the
second base string "./res/%s %s li%d lx%d lt%d.dat". The place holders for
the string have the same function as for the first base string, they stand for the
XML parameter file name and the file identifier, that is sum in this case. The

3.2. XMLQPROP MANUAL 31

“%d”s stand for the number of different dynamic parameters in intensity, space
and time.

Timing files

The front-end XMLQprop times several parts of the computation, and the
results of these timings are stored into the “all parts” and the propagation
timing files, named corresponding to the internally used class instance names
atimer and ptimer of the JKtimer class (see Section 4.1.4). In the “all parts”
file nearly all computational steps in the inner (time discretization) loop are
resolved, but this timer does not go into called functions, only their CPU time
consumption is measured. For the propagation algorithm this is not sufficient,
therefore the ptimer instance is passed to the propagate function and internally
parts of the algorithm are timed.
The name of the file, besides the file identifier (Table 3.1), corresponds to that
of the summary file. In the file there is no header, the lines correspond to the
parameter sets as in the summary file and the columns correspond to the timed
parts as they are at best determined directly out of the source code. This is
clear, because timing beyond the summarized time of the summary file is only
necessary for direct optimization or evaluation of source code parts.

3.2.4 Dynamic parameter loops, algorithms and compu-

tation

After parsing the XML parameter file and initializing the corresponding param-
eter sets, the second and main part of the program XMLQprop starts.
This part consists of three big loops over the dynamic intensity, space and time
parameters. The latter, inner loops are nested into the first, outer loops. Addi-
tionally there is some initialization before and some finalization after each loop.
The description of the program part consists of the description of the loops, can
be seen as a sort of algorithm description and follows now.

Intensity loop

initializations before Directly after parsing the XML-file as described in
Section 3.2.2 above, the maximal ℓ andm quantum numbers are determined and
the Coefficients class (Section 4.1.1) instance coeff is initialized. Afterwards,
immediately before the loop over the dynamic intensity parameter starts, the
summary file, the “atiming” and “ptiming” files are opened. While the summary
file summarizes the total final energy, the wavefunction norm and the computa-
tion time for each combination of the three dynamic parameters, the “atiming”
file lists the computation time for program parts in the program XMLQprop

(for instance the propagate(...), calculate kli zero(...) and other func-
tions) and the “ptiming” file lists the computation time for the different parts
of the propagation algorithm. In all cases the computation time is provided by
the JKtimer class (see Section 4.1.4).

the loop The computations inside the loop consist of the radial spatial dis-
cretization loop, the initializations before and the finalizations after this loop,

32 CHAPTER 3. THE QPROP FRONT-END XMLQPROP

all described in the next paragraph.

finalizations afterwards After the intensity loop the three files that were
opened before it are closed and allocated variables (for instance hamilton and
coeff) are deleted. Finally, before the program terminates, the message “fin-
ished loops over parameters :)” is displayed.

Radial spatial discretization loop

The potential pot of class Potential is initialized before the loop and the cur-
rent laser field intensity is displayed. The computations inside the loop consist
of the time discretization / step size loop, the initializations before and the
finalizations afterwards, all described in the next paragraph. After the radial
spatial discretization loop the allocated potential pot is deleted.

Time discretization / step size loop

Here, inside the inner loop, but also before it, where various initializations are
performed, especially for all variables that depend on space, but not on time
discretization, lie the main parts of the program.

initializations before After the radial discretization parameter and the num-
ber of spatial discretization points are computed and displayed several class in-
stances are initialized: The grid g (of class grid), the Hamiltonian hamilton (of
class Hamop, representing the static potential and the laser field potential pot),
the static potential staticpot (of class wavefunction), and, in case of Lanczos
mode, also the double precision arrays realstaticpot and expimagstaticpot

as well as the Expokit-implementing class instance (expo, cexpo or mexpo, de-
pending on the memsave and hermitian parameters). Furthermore the wave-
function wf (of class wavefunction) is initialized. In the case of many-electron
atoms the Hartree and exchange correlation potentials are also initialized and, if
the “Predictor-Corrector” step is to be performed, also the additionally required
intermediate value potentials and wavefunctions.

the loop First the current step size is displayed and the timers as well as the
expimagstaticpot are initialized. Then the program is split by an if-statement
into the real time propagation and the imaginary propagation part. After these
two parts the results are written into the summary and the timing files and the
timers are deleted.
For both the real and imaginary time propagation first the number of time
steps is computed and displayed, the same is done for the number of out-
puts. Then in both cases the wavefunction is initialized: For the imaginary
time propagation with random numbers or hydrogenic orbitals depending on
i initmode, for the real time propagation the data is read in from files, de-
pending on the multiinit parameter, and transformed to the current grid using
the transform grid lin(...) function provided by the wavefunction class.
Then the initial wavefunction is written to a file and the time step size as well
as the starting time is set, in both modi, before the observation file (the main

3.2. XMLQPROP MANUAL 33

output file) is opened and a header is written into it.
Then again, the program splits into two branches, one for hydrogen-like atoms
and one for many-electron atoms. After this splitting the observation file is
closed and the final wavefunction is written into a file.
All four inner program branches have the same structure, a for-loop over the in-
dex of the time steps, with only slight differences depending on the realtimemode
and hydrogenlike parameters. This time step loop can be characterized by
three main parts: potential computation, wavefunction propagation and output.
First the Hartree and exchange correlation potentials are calculated, clearly only
in the many-electron case. Then the propagation over the time step is done using
the propagate function corresponding to the hydrogenlike and Lanczos param-
eters. In the Lanczos propagation mode the imaginary potential is not applied
within the propagate function, but by calling the apply imagpot function of
the wavefunction class. If a “Predictor-Corrector” is performed the calculation
of the potentials and the propagation (with the corrected potentials) is done a
second time. Then the time variable t is updated in the real time mode while
the wavefunction is normalized in the imaginary time propagation mode. After
the propagation part the output part follows, but this last part is not called in
each cycle of the for-loop, it is only run n outputs times. First all relevant data
for the output are computed, these are several energies and the norm of the
wavefunction. Additionally the current time and time step index are contained
in the output on the screen and in the observation file.

finalizations afterwards Compared to the initializations before this loop
the finalization afterwards is very short, only a few explicitly allocated class
instances and arrays are deallocated using the delete statement.

34 CHAPTER 3. THE QPROP FRONT-END XMLQPROP

Chapter 4

Detailed analysis and

improvements

Although some observations supplementing the Qprop manuals have been ex-
plained in Chapter 2, the standard references to the algorithms underlying the
Qprop code are [6] and [7]. In contrast to this general information only little
detailed analysis of the Qprop code has been previously available. So the first
main target was to give this detailed analysis of the Qprop code, as it will be
done in the following. The basis (Chapter 2) as well as the tool (XMLQprop,
see Chapter 3) have already been described, now the results, as well as the
improvements that were implemented based on these results, will be discussed.

4.1 Basic computations and improvements

4.1.1 Coefficients class

In Qprop the coefficients cℓm, tℓm, pℓm and qℓm, defined in Definition 2.1, equa-
tions (2.16)–(2.19), are used for many computations.
Therefore the Coefficients class is introduced, implementing the computation
of all necessary coefficients when initialized at the beginning of the program and
offering get-functions to use the coefficients’ values in arbitrary computations.
To support old programs that use Qprop and do not initialize this class the old
interfaces are retained (Section 4.1.5) and specific Coefficients-subclasses are
used for these properties.
In previous versions of Qprop these coefficients are computed on demand. Their
values are computed each time immediately before their usage. Although there
is some optimization, like computation outside of loops, in general the imple-
mentation concerning these coefficients has still left a lot of further optimization
potential. Additionally the readability of the code is improved when using the
coefficients’ names instead of their definitions. A further advantage is that the
coefficient computation is only implemented once reducing the probability of an
error in the formula.

35

36 CHAPTER 4. DETAILED ANALYSIS AND IMPROVEMENTS

4.1.2 Potential class

In the examples provided with Qprop version 1.6 the external laser field and in-
ternal atomic potentials are defined by several functions in a source file named
potentials.cc. This file also contains the parameters of the potentials as
global variables. Inside the example programs, for instance hydrogen re.cc

these global variable values are set inside the source code.
This type of implementation has many disadvantages. To change the initial-
ization of the global parameters, such that they are read in from a parameter
file, would be one simple improvement because then the program does not have
to be recompiled when using different parameters. But then the code still has
to be compiled for potentials of different shapes that cannot be described by
these parameters, for instance if one wants to use a potential ramp and also a
sine-shaped potential. For these cases it would be possible to introduce further
parameters and if statements inside the function returning the strength of the
potential for a radial position. But for this solution it would be very difficult to
add further different potentials.
Therefore another way is chosen in this work, enabling an arbitrary num-
ber of different potentials in an easy way. A new class Potential is intro-
duced. This class offers all necessary functions formerly defined in the included
potentials.cc file as virtual functions. A certain potential is then a subtype
of the Potential class where these virtual functions are implemented.

4.1.3 Hamop class

The hamop class (uncapitalised) in Qprop version 1.6 is the link between the
globally defined potential functions from potentials.cc and their use in the
Qprop library, for instance in the propagate(...) functions. The imple-
mentation of this class uses function pointers to the globally defined potential
functions. This approach is not only suboptimal because of the use of global
functions, the concept of function pointers is also incompatible with non-static
class member functions and does therefore not work with the Potential class
solution.
Thus, it has been necessary to implement a new Hamop class (capitalised) as
a first step. Its two subclasses Hamop ptr and Hamop pot copy the function
pointer properties of the hamop class in the first (ptr for pointer) and imple-
ment the link to the Potential class in the second case (pot for potential).
To ensure full backwards compatibility a second step has to be performed, to
replace the hamop class by the Hamop ptr class is not sufficient, because then
the function interfaces cannot be kept unchanged. Here, the main problem is,
that the concept of function pointers is very inflexible and static as already
mentioned above. The only possibility and therefore the chosen solution was to
pass the function pointers, pointing at functions of arbitrary names, to global
functions with a fixed naming. The only restriction herein is that it is only
possible to use one old hamop class instance at the same time. This is more a
theoretical restriction, because “at the same time” means the parallel use of at
least two wavefunction class member functions to which different hamop class
instances are passed as parameters. In contrast to this, consecutive use of dif-
ferent hamop class instances, that may be in memory at the same time, a more
likely scenario, cause no problems, because the global functions are updated at

4.1. BASIC COMPUTATIONS AND IMPROVEMENTS 37

each function call.

4.1.4 JKtimer class

To be able to measure the CPU-time required by the different parts of the
program, the JKtimer class is introduced. An instance timer has to be cre-
ated. The clock is started by the function timer->stop t(-1), by calling
timer->stop t(m) the m’th partial time (internally called “lap” like in sports
timing) is stopped. The function timer->get dt(m) then returns the arith-
metic average of the m’th part’s time requirement. The use of this class is an
easy way to measure the timings of algorithm parts and requires only negligible
additional effort.

4.1.5 Backwards compatibility

All improvements and extensions in Qprop are implemented ensuring back-
wards compatibility. This means that all programs that are using Qprop in an
older version are able to use the Qprop library in the new enhanced version.
The old function interfaces refer internally to the new, overloaded function in-
terfaces. When calling via the old function interfaces, some new functionality is
not available. For instance instead of the fully implemented JKtimer class only
a dummy class, without any functionality, is used in between, or the coefficients
in the Coefficients class are initialized each time propagate(...) is called.
This is no disadvantage, because the numerical effort of the new version is lower
in general and the programs designed for the old Qprop version have no use
for the additional features.
In addition, some extra overloaded function interfaces (for propagate(...),
for example) are introduced. This offers the possibility to use only a part of
the new improvements, for instance timing is very important in this work for
analyzing the numerical effort, but for other purposes this function may be ob-
solete. In general everyone can choose the interfaces being most useful for a
certain problem using a powerful base implementation.

4.1.6 Grid class

One of the basic classes in Qprop is the grid class. If stores and provides
information about the polarization of the laser field (function dimens(), value
34 for linear, 44 for circular polarization) and the (spatial) discretization grid.
The class was originally used to describe Cartesian coordinates x, y, and z

that correspond to the coordinates r, ℓ and the Kohn-Sham orbital index i.
Internally the variable and function names remained unchanged, therefore the
internally used indices ix, iy and iz mean index in r, index in ℓ and index i of
the Kohn-Sham orbital. In addition the starting index has to be taken care of,
which internally is always zero (see Section 2.3, Table 2.2). The discretization
parameter (step size) in radial direction is also part of the grid class (variable
delta x). The corresponding variables for y and z as well as the offset variables
are obsolete in Qprop.
This very important class is not very complex. Thus, only the index mapping
functions computing the general index (2.55) are optimized, all other parts are
trivial from the numerical point of view and left no margin for improvements.

38 CHAPTER 4. DETAILED ANALYSIS AND IMPROVEMENTS

4.1.7 Wavefunction class

The wavefunction class is the substantial and most comprehensive part of the
Qprop library, it contains practically all functions with appreciable computa-
tional effort. Therefore it was clear to concentrate on this class to optimize
Qprop and eliminate possible errors. Additional functions and interfaces were
also introduced to facilitate optimal usability of the class and further several
comments were added to improve the readability of the source code, too. In the
following the most important changes, improvements, optimizations, corrections
and amendments are discussed.

1. Constants
In the wavefunction.ccfile some constants have been defined (by #define
OOS 1.0/6.0, for instance). This sort of definition as fractions can eas-
ily be improved by replacing the definition with the floating point value
(#define OOS 0.166666666666666667) such that no division is performed
any more. The use of the floating point representation M SQRT2 of the
square root of 2 instead of sqrt(2) achieves even a higher reduction of
necessary computations.

2. Initialization
As additional options it is now possible to initialize a wavefunction either
by passing a complex array and its length as parameters or by passing a
pointer to a wavefunction.

3. Operators, get, set and other trivial functions
The new function clone() returns a deep copy of a wavefunction, null()
a zero-valued wavefunction of the same size. The functions realpart()

and imagpart() return the element-wise real respectively imaginary part
of the wavefunction, while array() returns the pointer to the complex
array that stores the wavefunction values. The standard get and set func-
tions getentry(...) and setentry(...) should be used rarely and
carefully.

4. Linear grid transformation
A rather simple but powerful function is transform grid lin(...), al-
lowing the change of the grid each wavefunction is based on by a piece-
wise linear transformation. Previously only the function regrid(...)

has been available, allowing to add or remove orbitals, outer angular mo-
menta and outer radial discretization points. This enables to extend or
reduce the grid size, but not to change the radial discretization parame-
ter ∆r. If an initial ground state wavefunction on a defined grid is given
and for real time propagation a finer grid is required or a coarser grid is
sufficient, this is a serious problem. Its solution is the already mentioned
transform grid lin(...) function. It uses a spline defined by the initial
grid points and maps the values of this spline to the new grid. If the grid
area is extended, the additional points in this region are initialized with
zero, as it is the case in regrid(...).

5. Exchange-correlation potential computation functions
To compute the exchange-correlation potential, three types of functions

4.1. BASIC COMPUTATIONS AND IMPROVEMENTS 39

are used: the first type computes the underlying vectors Λ, Θ and Ξ (2.31)–
(2.33), the second the Hartree potential multipole terms U j (2.34)–(2.36)
and the third the KLI potential monopole term V KLI

x (2.37).
All these functions of all three types were investigated for errors and
optimization possibilities. For the potential computation functions and
calculate Lambda(...) no changes were necessary. The remaining func-
tions calculate Theta(...) and calculate Xi(...) were both cor-
rected and improved and additionally the use of the Coefficients class
was implemented for further optimization.

6. Propagate-interface
Several new interfaces are added to the propagate(...) function. The
propagate(...) function interfaces select one of the three private func-
tions do muller... depending on the laser polarization (linear or circular,
defined by parameter dimens-function grid.dimens()) and on whether
the atom has one or more electrons (parameter hydrogenlike). The pri-
vate interfaces were changed such that the Coefficients and JKtimer

classes (see Sections 4.1.1 and 4.1.4) are additionally passed and that
the new Hamop class is used instead of the hamop class (see Section 4.1.3).
These private interfaces can be changed without losing backwards compat-
ibility, because they are not visible from outside the class, but the original
public propagate(...) function interface has to be kept untouched to
enable the use of the actual Qprop library in older programs (see also
Section 4.1.5). These original public interfaces, as well as all newly intro-
duced more common public function interfaces, call the most general new
public interface where the private interface is selected and finally called.
This allows the user to choose the best option for his application from a
number of interfaces.

7. Private propagate functions

(a) do muller ellm(. . .)
This function computes the propagation for circular polarized laser
fields that are not the main topic of this work, which concentrates on
linear polarized laser fields. Therefore only a few optimizations for
some constant terms have been implemented.

(b) do muller general tddft(. . .)
As mentioned above the interface is extended by the additional pa-
rameters of Coefficients and JKtimer class. The main improve-
ments in this function are therefore in the context of these classes.
The huge amount of coefficient calculations is changed to accessing
the coefficient’s value in the memory via the Coefficients class.
Before and after each step the CPU time consumption is measured
and stored by the JKtimer class.

(c) do muller ell(. . .)
In this function that is used for hydrogen-like atoms, the same opti-
mizations and improvements as in do muller general tddft(...)

are realized. Note, that the fact has to be taken into account that,
due to the lower complexity of this function as compared to the many-
electron one (only one orbital, therefore there are no orbital-orbital-
interactions), the numbering of timed parts is not the same.

40 CHAPTER 4. DETAILED ANALYSIS AND IMPROVEMENTS

4.1.8 Lanczos method classes

The new Expokit, Expokit memsave, CSCmatrix and HCSCmatrix classes imple-
ment the Lanczos method as an additional option and improvement of Qprop.
These classes are described in Section 5.1.

4.1.9 Other improvements

All other and further improvements and optimizations concerning Qprop, as
the introduction of a “Predictor-Corrector” step, are implemented within the
new Qprop front-end XMLQprop and described in the corresponding Chapter
3 (front-end) and Section 5.2 (“Predictor-Corrector”).

4.2 Split-step Crank-Nicolson propagator

4.2.1 Boundary conditions

For the parts of the Hamilton operator linking orbitals with ∆ℓ = 1, 2 (H
(i)
ang, i =

1, 2, 3, Hmix, see Section 2.2.3, equations (2.47) and (2.48)–(2.52), for definition
and explanation) there are only the trivial homogeneous Dirichlet boundary
conditions in ℓ and no boundary conditions in space, because these terms operate
on each spatial point independently. They are diagonal in r-space.
For the parts Hmix and Hat of the Hamiltonian, containing spatial derivatives,
spatial boundary conditions have to be chosen carefully.
The second radial derivative is computed using the operator −2M−1

2 ∆2 with
M2 and ∆2 defined as

M2 := −1

6

10 1 0 . . . 0

1 10 1
. . .

...

0 1 10
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 10

, (4.1)

∆2 :=
1

h2

−2 1 0 . . . 0

1 −2 1
. . .

...

0 1 −2 . . . 0
...

. . .
. . .

. . . 1
0 . . . 0 1 −2

. (4.2)

This operator gives the so-called Numerov approximation to the second deriva-
tive and is of fourth order:

f ′′ = −2M−1
2 ∆2f +O(h4). (4.3)

At the origin (r = 0) the Coulomb potential for ℓ = 0 gives

Φ′′
i0mi

(r = 0, t) = −2ZΦ′
i0mi

(r = 0, t) 6= 0, ∀i. (4.4)

4.2. SPLIT-STEP CRANK-NICOLSON PROPAGATOR 41

By modifying the upper left elements of both M2 and ∆2, equation (4.4) can
be realized without losing the Hermiticity of the operator:

(M̃2)1,1 := −2
(
1 +

h2

12
(∆̃2)1,1

)
, (4.5)

(∆̃2)1,1 := − 2

h2

(
1− Zh

12− 10Zh

)
. (4.6)

For the other boundary r = rmax + ∆r and the origin for ℓ 6= 0, the operator
is not modified, assuming a vanishing wavefunction outside r = rmax (at r =
rmax +∆r) and at the origin for l 6= 0.
The first derivative is computed using the Simpson operator M−1

1 ∆1 with M1

and ∆1 defined as

M1 :=
1

6

4 1 0 . . . 0

1 4 1
. . .

...

0 1 4
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 4

, (4.7)

∆1 :=
1

2h

0 1 0 . . . 0

−1 0 1
. . .

...

0 −1 0
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 −1 0

. (4.8)

This operator gives the so-called Simpson approximation to the first derivative
and is of fourth order:

f ′ =M−1
1 ∆1f +O(h4). (4.9)

By modifying the upper left and lower right elements of both M1 and ∆1 anti-
Hermiticity of (4.9) is ensured [5]:

(M̃1)1,1 := (M̃1)nr ,nr
:=

1

6

(
2 +
√
3
)
, (4.10)

(∆̃1)1,1 := 1
2h

(√
3− 2

)
,

(∆̃1)nr ,nr
:= 1

2h

(
2−
√
3
)
.

(4.11)

4.2.2 Imaginary absorbing potential

The well-understood Dirichlet boundary conditions as discussed in Section 4.2.1
may cause the problem of non-physical reflections at the outer boundary (r =
rmax). Increasing rmax could solve this problem only to a certain extent and
increases the computational effort dramatically.
One standard solution is to introduce an imaginary absorbing potential that

42 CHAPTER 4. DETAILED ANALYSIS AND IMPROVEMENTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rel. radius r / r
max

V
im

a
g
 /
 (

iA
im

a
g
)

imaginary absorbing potential

original imag. pot.
new imag. pot., r

abs
/r

max
=0.9

Figure 4.1: The imaginary absorbing potential

becomes strongly absorbing near r = rmax and has only negligible strength
inside the orbitals. The transition in between has to be at least of 5th order if
4th order methods are used. The implementation in Qprop version 1.6 uses an
imaginary absorbing potential defined as follows:

Vimag(r, t) = Vimag(r) = iAimag

(
r − ∆r

2

rmax

)16

. (4.12)

This potential is non-zero for all spatial points although the potential is very
small for small r. For a further reduction of the influence of this imaginary
absorbing potential in the inner region an additional XML-file parameter, the
imaginary potential inner border imagpot inner border, also called rabs, is
introduced as well as the parameter imagpot ampl defining the amplitude of the
imaginary absorbing potential Aimag. The constructors and imagpot functions
of the Potential subtypes are adopted, such that the new and more flexible
imaginary absorbing potential is computed by

Vimag(r, t) = Vimag(r) =

{
0, r < rabs,

iAimag

(
r−∆r

2
−rabs

rmax−rabs

)16
, rabs ≤ r ≤ rmax.

(4.13)

The function stays smooth enough and has no direct influence for r < rabs. For
rabs = 0 the originally used potential is obtained because then equation (4.13)
is equivalent to equation (4.12). For illustration the originally used imaginary
absorbing potential and the new version (with rabs

rmax
= 0.9) are shown in Figure

4.1.

4.2. SPLIT-STEP CRANK-NICOLSON PROPAGATOR 43

4.2.3 Crank-Nicolson propagator

For an explicitly time-dependent Hamiltonian, such that ∂tΦ(t) = H(t)Φ(t),
the exact propagator U(t+ h, h), defined as

Φ(t+ h) = U(t+ h, t)Φ(t), (4.14)

can be approximated (of second order for a linear, time-dependent Hamiltonian)
by

U(t+ h, t) ≈ exp

(
−ihH

(
t+

h

2

))
. (4.15)

The implicit time dependence of the Hamiltonian (it also depends on the Kohn-
Sham orbitals) does not allow to evaluate all parts of the Hamiltonian (2.47)
at the time point t + h

2 in our case. Some can only be evaluated at t, several
are evaluated at t+ h to optimize the propagation for more than one time step,
where the right-hand terms of the previous time step meet the left-hand terms
of the current time step. In summary, the propagator is approximated by the
following product

Usplit(t+ h, t) =
∏L

ℓ=3 exp
(
−ih2H

(3)
ang,L−l(t)

)
×

× ∏L

ℓ=2 exp
(
−ih2H

(1+2)
ang,L−l(t)

)
exp

(
−ih2Hmix,L−l(t)

)
×

× exp
(
−ih2Hat(t)

)
×

×
∏L−2

ℓ=0
exp

(
−ih2Hmix,l(t+ h)

)
exp

(
−ih2H

(1+2)

ang,l
(t+ h∗)

)
×

× ∏L−3

ℓ=0
exp

(
−ih2H

(3)

ang,l
(t)
)

(4.16)
with t+ h∗ = t + h as argument in A(t) and E(t) and t + h∗ = t as argument
in V 1

ee(t). It is clear, that for these evaluation points, being different to those in
equation (4.15), order 2 cannot be expected any more. This is also shown by the
numerical results, Chapter 6, and can be improved by a “Predictor-Corrector”
step (see Section 5.2).
The next step is to approximate the exponentials in equation (4.16) by unitary
Crank-Nicolson (abbreviated C-N) approximants of second order

UC−N(t+ h, t) =

(
1+ i

h

2
H

)−1(
1− i

h

2
H

)
= exp (−ihH) + O(h3). (4.17)

With

R =

(
1+ i

h

4
H(1+2)

ang

)−1(
1− i

h

4
H(1+2)

ang

)
, (4.18)

X± = 1± i
h

4
Hmix, (4.19)

Q± = 1± i
h

2
Hat, (4.20)

Z =

(
1+ i

h

4
H(3)

ang

)−1(
1− i

h

4
H(3)

ang

)
(4.21)

and equation (4.16) the C-N approximation (4.17) becomes

UC−N(t+ h, t) =
∏

ℓ

Z
∏

ℓ

(
RX−1

+ X−

)
Q−1

+ Q−

∏

ℓ

(
X−1

+ X−R
)∏

ℓ

Z. (4.22)

44 CHAPTER 4. DETAILED ANALYSIS AND IMPROVEMENTS

The X and Q matrix products are further simplified [6]:

X−1
+ X− = BTY −1

+ Y−B, (4.23)

Q−1
+ Q− = W−1

+ W−, (4.24)

finally leading to the representation (4.25) of the C-N propagator as it is applied
internally in the Qprop code:

UC−N(t+ h, t) =
∏

ℓ

Z
∏

ℓ

(
RBTY −1

+ Y−B
)
W−1

+ W−

∏

ℓ

(
BTY −1

+ Y−BR
)∏

ℓ

Z.

(4.25)

Chapter 5

Lanczos method and

“Predictor-Corrector” step

5.1 Implementation of Lanczos method

For a Hamiltonian H given as a matrix H(t) and the wavefunction given as
complex vector valued function Φ(t), Lanczos method computes

Φ(t+ h) = e−ihH(t+h∗

2)Φ(t) (5.1)

with t+ h∗

2 = t+ h
2 as argument in time-dependent parts of the HamiltonianH(t)

that do not depend on the wavefunction (like A(t) and E(t)), while t+ h∗

2 = t as
argument in all parts of the Hamiltonian H(t) that depend on the wavefunction
(Vee).

5.1.1 Theoretical background of the Lanczos method

Lanczos method is a Krylov subspace method that does not compute the full
matrix exponential exp (−ihH), but only its action exp (−ihH) v on a vector v.
To describe the method, first the Krylov subspace and the Lanczos basis are
defined:

Definition 5.1. Krylov subspace
Let H ∈ CN×N be an Hermitian matrix, and let v ∈ CN\{0} be a vector. The
mth Krylov subspace of CN with respect to H and v is

Km (H, v) = span
(
v,Hv,H2v, . . . , Hm−1v

)
, (5.2)

that is the space of all polynomials of H up to degree m− 1 acting on the vector
v.

Definition 5.2. Lanczos basis
The ordered Lanczos basis (v1, v2, . . . , vm) is the orthonormal basis of the mth

Krylov subspace of CN with respect to H and v built by Gram-Schmidt orthog-
onalization:

v1 := v
‖v‖ ,

vk+1 :=
Hvk−

∑k
j=1 τjkvj

τk+1,k
, k = 1, 2, . . . ,m− 1,

(5.3)

45

46
CHAPTER 5. LANCZOS METHOD AND “PREDICTOR-CORRECTOR”

STEP

with

τjk = vTjHvk, 1 ≤ j ≤ k, k = 2, 3, . . . ,m

τk+1,k = ‖Hvk −
∑k

j=1 τjkvj‖, k = 1, 2, . . . ,m− 1,

τjk = 0, j > k + 1, k = 1, 2, . . . ,m.

(5.4)

If τk+1,k = 0 for k = k0 := min {κ|τκ+1,κ = 0} < m − 1 the process terminates
(“happy breakdown”) and the Lanczos basis consists only of the first k0 basis
vectors (v1, v2, . . . , vk0

) and the dimension of the mth Krylov subspace of CN

with respect to H and v is equal to k0.

The last statement in the Definition 5.2 above yields the following lemma 5.1:

Lemma 5.1. “happy breakdown”
If τk+1,k = 0 for k = k0 := min {κ|τκ+1,κ = 0} < m− 1 then:

• The process terminates (“happy breakdown”)

• The Lanczos basis consists only of the first k0 basis vectors (v1, v2, . . . , vk0
).

• The dimension of the mth Krylov subspace of CN with respect to H and v
is equal to k0.

• The Lanczos method (approximation (5.10)) is exact for analytic functions
f(H) of the Hamiltonian, in particular for the exponential function (5.11).

Subsequently, we will use the following definitions:

Definition 5.3. Vm, Tm, ej

Vm := (v1| . . . |vm) ∈ CN×m,

Tm := (τjk) ∈ Cm×m,

eTj := (0, . . . , 0, 1, 0, . . . , 0) , the j-th unit vector in Cm.

(5.5)

Going one step further than m the following equation holds:

HVm = VmTm + τm+1,mvm+1e
T

m, (5.6)

and this equation also holds if no further step can be performed, because then
the terms containing indices m+ 1 are assumed to be equal to 0.
Multiplication of equation (5.6) by V H

m from the left side implies, due to or-
thonormality of the Lanczos basis,

Tm = V
T

mHVm. (5.7)

Equation (5.7) shows that Tm is an Hermitian matrix. Because of this property
and the third equation (5.4), Tm is also a tridiagonal matrix.
Thus the Gram-Schmidt orthogonalization iteration equations (5.3) simplify to

v1 = v
‖v‖ ,

vk+1 =
Hvk−

∑
k
j=k−1

τjkvj

τk+1,k
, k = 1, 2, . . . ,m− 1.

(5.8)

Definitions 5.1–5.3 and equations (5.2)–(5.8) already allow to implement an al-
gorithm as described in Section 5.1.3 to compute Vm and Tm in the standard

5.1. IMPLEMENTATION OF LANCZOS METHOD 47

version of Lanczos iteration. For larger m the practical implementation may
suffer from error propagation and the loss of orthogonality due to rounding er-
rors. This may be improved by (selective) reorthogonalization (see [11]), but is
not applied here, because m is assumed to be small.
Definitions 5.1–5.3 and equations (5.2)–(5.7) also hold for non-Hermitian ma-
trices H and are implemented by the Arnoldi process (see Section 5.1.3).
Based on equations (5.6) and (5.7) the following lemma is easily proven [12]:

Lemma 5.2. Let H be an Hermitian matrix and v a vector of unit norm.
(a) If all eigenvalues (λj , j = 1, . . . , N) of H are in the interval [a, b], then so
are those of Tm.
(b) For every polynomial pm−1 of degree at most m− 1, it holds that

pm−1(H)v = Vmpm−1(Tm)e1. (5.9)

Lemma 5.2 and the diagonalization of H = U
T

diag(λj)U in combination with
a complex valued function f : [a, b] → C gives an approximation to f(H) =

U
T

diag(f(λj))U :

f(H)v ≈ Vmf(Tm)e1. (5.10)

For the matrix exponential this approximation reads

e−ihHv ≈ Vme−ihTme1. (5.11)

Using the scaling and squaring method in combination with Padé approximation
for the exponential e−ihTm is the first choice for the implementation of this
approximation (see [13], Sections 5.1.3 and 5.1.4).
The following optimality results and error bounds for the Lanczos method are
also given in [12]:

Theorem 5.3. Optimality of the Lanczos method
Let f be a complex-valued function defined on an interval [a, b] that contains
the eigenvalues of the Hermitian matrix H, and let v be a vector of unit norm.
Then, the error of the Lanczos approximation to f(H)v is bounded by

‖Vmf(Tm)e1 − f(H)v‖ ≤ 2 inf
pm−1∈Pm−1

max
x∈[a,b]

|pm−1(x)− f(x)|, (5.12)

where the infimum is taken over all polynomials of degree at most m− 1.

Theorem 5.4. Eventual superlinear error decay
Let H be an Hermitian matrix all of whose eigenvalues are in the interval [a, b],
and let v be a vector of unit Euclidean norm. Then, the error of the Lanczos
method (5.11) is bounded by

‖Vme−ihTme1 − e−ihHv‖ ≤ 8
(
e1−(

ω
2m)2 ω

2m

)m
, m ≥ ω (5.13)

with ω = h(b−a)
2 .

48
CHAPTER 5. LANCZOS METHOD AND “PREDICTOR-CORRECTOR”

STEP

5.1.2 Matrix of the Hamiltonian for the Kohn-Sham-equations

Before the Lanczos method can be applied, the matrix of the Hamiltonian is
assembled. While the Hamiltonian is split into several parts for the standard
C-N method (see Section 4.2), here the full matrix is assembled and stored.

Because storing a full (nx × ny × nz)
2
matrix would exceed memory capacities

by several orders of magnitude, two improvements (three if the Hamiltonian is
Hermitian) are made:

1. The Hamiltonian is diagonal in the Kohn-Sham orbital space and there-
fore acting independently on each Kohn-Sham orbital. This fact reduces
the memory requirement by a factor of n−1

z , because the nz Hamiltonian

matrices of dimension (nx × ny)
2
can be applied consecutively, each on its

corresponding orbital, and not the whole Hamiltonian matrix of dimension
(nx × ny × nz)

2
has to be in memory.

2. The nz Hamiltonian matrices are block-quint-diagonal each (or less, if
ny < 3). The ℓ-Blocks are again only quint-diagonal, tridiagonal or di-
agonal. Using a sparse matrix format, like the CSC (compressed sparse

column) format chosen here, the memory requirement of the (nx × ny)
2
di-

mensional matrix is reduced to ndiagonals×(nx × ny) and therefore depends
only linearly and no longer quadratically on the discretization parameters.

3. Normally the Hamiltonian is Hermitian. The non-Hermitian imaginary
absorbing potential (as described in Section 4.2.2) is applied separately in
the Lanczos method mode to preserve the Hermiticity of the Hamiltonian.
Thus, only the diagonal and the elements below have to be saved in the
CSC format (leading to the HCSC (Hermitian CSC) format) reducing the
memory requirement further by nearly one half.

The three-level structure of the Hamiltonian matrix as roughly described above
will now be stated more precisely.
The matrix of the Hamiltonian H is a block-diagonal matrix of nz blocks Hi of
size (nx × ny)

2,

H =

H1 0 · · · 0

0 H2
. . .

...
...

. . .
. . . 0

0 · · · 0 Hnz

. (5.14)

5.1. IMPLEMENTATION OF LANCZOS METHOD 49

Each Hi block acts on the corresponding ith Kohn-Sham orbital and consists of
several Dℓ1ℓ2 -blocks forming a block-quint-diagonal matrix:

Hi =

D00 D01 D02 0 · · · · · · 0

D10 D11 D12 D13
. . .

. . .
...

D20 D21 D22 D23
. . .

. . .
...

0 D31 D32 D33
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . Dny−2,ny−1

...
. . .

. . .
. . .

. . .
. . . Dny−2,ny−1

0 · · · · · · 0 Dny−1,ny−3 Dny−1,ny−2 Dny−1,ny−1

,

(5.15)
with each D-block depending on the Kohn-Sham-orbital index i

Dℓ1ℓ2 = (Dℓ1ℓ2)i . (5.16)

These D-blocks couple the different ℓ-states within each Kohn-Sham-orbital and
there are three types of D-blocks depending on

|∆ℓ| = |ℓ2 − ℓ1| ∈ {0, 1, 2} . (5.17)

|∆ℓ| = 0 corresponds with the blocks on the diagonal

Dℓℓ = Hat = −
1

2
∂2r + V ℓ

eff + V 0
ee + pℓmi

V 2
ee, (5.18)

with all variables and operators in discretized form and vectors as diagonal
matrices. In detail this means that

De2
ℓℓ =

1
h2
x
+ V ℓ

eff(r1)

+V 0
ee(r1)

+pℓmi
V 2
ee(r1)

 − 1

2h2
x

0 · · · 0

− 1
2h2

x

. . . − 1
2h2

x

. . .
...

0 − 1
2h2

x

. . .
. . . 0

...
. . .

. . .
. . . − 1

2h2
x

0 · · · 0 − 1
2h2

x

1
h2
x
+ V ℓ

eff(rnx
)

+V 0
ee(rnx

)
+pℓmi

V 2
ee(rnx

)

(5.19)

50
CHAPTER 5. LANCZOS METHOD AND “PREDICTOR-CORRECTOR”

STEP

for the second order approximation of the differential operator and

De4
ℓℓ =

5
4h2

x
+ V ℓ

eff(r1)

+V 0
ee(r1)

+pℓmi
V 2
ee(r1)

 − 2

3h2
x

1
24h2

x
0 · · ·

− 2
3h2

x

5
4h2

x
+ V ℓ

eff(r2)

+V 0
ee(r2)

+pℓmi
V 2
ee(r2)

 − 2

3h2
x

1
24h2

x

. . .

1
24h2

x
− 2

3h2
x

. . . − 2
3h2

x

. . .

0 1
24h2

x
− 2

3h2
x

. . .
. . .

...
. . .

. . .
. . .

. . .

(5.20)

for the fourth order approximation of the differential operator.

On the super- (∆ℓ = 1) and sub- (∆ℓ = −1) -diagonal the D-blocks are

Dℓ,ℓ±1 = −iA(t)cℓmi
∂r +

(
rixE(t)cℓmi

+ V 1
ee(rix)cℓmi

∓ i
A(t)tℓmi

rix

)

ix=1,...,nx

,

(5.21)

with all variables and operators in discretized form and vectors as diagonal
matrices. In detail this means that

De2
ℓ,ℓ±1 =

r1E(t)cℓmi

+V 1
ee(r1)cℓmi

∓iA(t)tℓmi

r1

 −i cℓmi

2hx
A(t) 0 · · · 0

i
cℓmi

2hx
A(t)

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −i cℓmi

2hx
A(t)

0 · · · 0 i
cℓmi

2hx
A(t)

rnx
E(tcℓmi

)
+V 1

ee(rnx
)cℓmi

∓iA(t)tℓmi

rnx

(5.22)

5.1. IMPLEMENTATION OF LANCZOS METHOD 51

for the second order approximation of the differential operator and

De4
ℓ,ℓ±1 =

r1E(t)cℓmi

+V 1
ee(r1)cℓmi

∓iA(t)tℓmi

r1

 −i 2cℓmi

3hx
A(t) i

cℓmi

12hx
A(t) 0 · · ·

i
2cℓmi

3hx
A(t)

r2E(t)cℓmi

+V 1
ee(r2)cℓmi

∓iA(t)tℓmi

r2

 −i 2cℓmi

3hx
A(t) i

cℓmi

12hx
A(t)

. . .

−i cℓmi

12hx
A(t) i

2cℓmi

3hx
A(t)

. . . −i 2cℓmi

3hx
A(t)

. . .

0 −i cℓmi

12hx
A(t) i

2cℓmi

3hx
A(t)

. . .
. . .

...
. . .

. . .
. . .

. . .

(5.23)
for the fourth order approximation of the differential operator.
The blocks on the 2 and −2 diagonal have a simpler structure, they are diagonal
and contain only the term V 2

ee,

Dℓ,ℓ±2 = qℓmi
V 2
ee (5.24)

with all variables and operators in discretized form and vectors as diagonal
matrices. In detail this means that

Dℓ,ℓ±2 =

qℓmi
V 2
ee(r1) 0 · · · 0

0 qℓmi
V 2
ee(r2)

. . .
...

...
. . .

. . . 0
0 · · · 0 qℓmi

V 2
ee(rnx

)

. (5.25)

Naturally this expression does not depend on the differential operator approxi-
mation because this term is derivative-free.

A further extension of the matrix of the Hamiltonian presented above is straight
forward. Higher exchange-correlation potential multipole terms, different dif-
ferential operator approximations and several electromagnetic field gauges can
be included and implemented in the HCSC and CSC matrix class construc-
tor functions. In contrast to the standard C-N method no changes in the
propagate(...) algorithm are necessary.

5.1.3 Algorithm and implementation details

The implementation of the Lanczos method for computing the matrix exponen-
tial is based on expokit, a software package for computing matrix exponentials
[10]. The expokit package is written in FORTRAN using a special interface for
the main subroutine calls such that the package could not be simply included
into the C++ based Qprop library. To change only the interface is no option,
because then the matrix classes (CSCmatrix and HCSCmatrix) could not be used
directly for matrix-vector computations. On the other hand the effort to rewrite
all required expokit parts in C++ would be too high and would contradict the
goal to use library functions if possible.

52
CHAPTER 5. LANCZOS METHOD AND “PREDICTOR-CORRECTOR”

STEP

In this situation the best option is to rewrite the main algorithm in C++ tai-
lored to the requirements of the Qprop package and to use the expokit, BLAS
and LAPACK functions that are also used by the original expokit implemen-
tation. An additional advantage of this approach is that the new C++ source
code is much more readable than the old Fortran implementation that uses lots
of GOTO statements. The Lanczos and Arnoldi algorithms are now implemented
in the Expokit class, the Lanczos version with lower memory requirements in
the Expokit memsave class.
To propagate the wavefunction, the Expokit.propagate(...) function is called
as the wavefunction.propagate(...) in the standard C-N version, and the
same holds for the memory saving version (Expokit memsave.propagate(...)).
For both versions of the Lanczos algorithm the propagate function works as
follows.

Algorithm 5.1. Expokit.propagate(...)

some initialization
begin for loop for iz over all Kohn-Sham orbitals

initialize p as the ithz Kohn-Sham orbital wavefunction
initialize the corresponding Hamiltonian matrix Hi

call zexpv(p) to compute exp(−ihHi)p using Lanczos/Arnoldi method
write p into the wavefunction as new Kohn-Sham orbital data

end for loop

The function zexpv(p) implements the Lanczos/Arnoldi process similarly to the
Algorithm 3.1 in [10]. The only significant difference is that similarly Algorithm
5.2 implements different methods that are chosen depending on the Lanczos
parameters (hermitian/non-hermitian and adaptive/fixed step size).

Algorithm 5.2. Expokit.zexpv(complex* v)

some initialization
begin loop until tnow = tout, mxstep repeats at maximum

compute β and the first basis vector;
if(adaptive)
if(hermitian)
Lanczos loop for adaptive step computes Tm, Vm;

else
Arnoldi loop for adaptive step computes Tm, Vm;

end if
else
if(hermitian)
Lanczos loop for fixed step computes Tm, Vm;

else
Arnoldi loop for fixed step computes Tm, Vm;

end if
end if
Tm∗ = −i ∗ sgn(h);
if(adaptive)
begin do loop
compute the adaptive stepsize τ ;
f = exp(τTm)e1;
compute the local error estimate err loc;

5.1. IMPLEMENTATION OF LANCZOS METHOD 53

end do loop, while err loc> δ ∗ τ ∗ tol, mxreject repeats at maximum
v = β ∗ Vm ∗ f ;

else
τ = tout − tnow;
f = exp(τTm)e1;
v = β ∗ Vm ∗ f ;

end if
tnow+ = τ ;

end loop

Algorithm 5.2 is nearly the same in the Expokit memsave class, the differences
are that only Lanczos is possible (no Arnoldi), only two column vectors of Vm
are stored at the same time (plus an additional temporary vector) and that the
Lanczos loop has to be performed a second time (without computing Tm again)
when v is computed.
Now the Lanczos and Arnoldi loops will be presented in detail, while the adap-
tive time step computation algorithm as well as the Padé approximation are
discussed in Section 5.1.4.

Algorithm 5.3. Lanczos loop
input: H, v, output: β, Vm, Tm;
β = ‖v‖;
Vm(0, :) = v

β
;

for(j = 0;j < m;j ++){
p = H ∗ Vm(j, :);
if(j > 0) p− = Tm(j, j − 1) ∗ Vm(j − 1, :);
Tm(j, j) = Vm(j, :)H ∗ p;
p− = Tm(j, j) ∗ Vm(j, :);
if(j + 1 < m){
Tm(j + 1, j) = ‖p‖;
Tm(j, j + 1) = Tm(j + 1, j)H;
if(|Tm(j + 1, j)| < tol ∗ ‖H‖){
output: ”happy breakdown :)”;
hbd=true;
Tm(j + 1, j) = 0;
Tm(j, j + 1) = 0;
break;
}
Vm(j + 1, :) = p

Tm(j+1,j) ;

}
}
Algorithm 5.4. Arnoldi loop
input: H, v, output: β, Vm, Tm;
β = ‖v‖;
Vm(0, :) = v

β
;

for(j = 0;j < m;j ++){
p = H ∗ Vm(j, :);
for(i = 0;i < j;i++){
Tm(i, j) = Vm(i, :)H ∗ p;

54
CHAPTER 5. LANCZOS METHOD AND “PREDICTOR-CORRECTOR”

STEP

p− = Tm(i, j) ∗ Vm(i, :);
}
if(j + 1 < m){
Tm(j + 1, j) = ‖p‖;
if(|Tm(j + 1, j)| < tol ∗ ‖H‖){
output: ”happy breakdown :)”;
hbd=true;
Tm(j + 1, j) = 0;
Tm(j, j + 1) = 0;
break;
}
Vm(j + 1, :) = p

Tm(j+1,j) ;

}
}

5.1.4 Adaptive time stepping and Padé approximation

The algorithms and source code details for the adaptive time stepping can be
found in Appendix B.3.1. The first step size depends mainly on the norm of
the matrix of the Hamiltonian ‖H‖, while each consecutive step size depends
mainly on the previous one, the local error estimate err loc and a shrinking
factor (parameter lanczos gamma). In both cases the tolerance tol and the
dimension of the Krylov subspace play also an important role.
The step size τ is then used to compute the matrix exponential exp(τTm) with
the scaling and squaring method using Padé approximation. The matrix expo-
nential is scaled to exp(τTm

2s), with 2s of the same order of magnitude as ‖τTm‖.
The scaled exponential is approximated by Padé approximants (rational func-
tions) and then the approximation is squared s times to get an approximation
of the original exponential. A detailed review of this method can be found in
[13], for example.
Finally, the local error estimate is computed to decide whether the Padé ap-
proximation’s accuracy is sufficient or if the step size has to be further reduced.
For the source code and details see Appendix B.3.2.

5.2 Introduction of a “Predictor-Corrector” step

As already mentioned in Section 4.2.3, the approximation (4.16) cannot be ex-
pected to be of second order, because the time evaluation points do not corre-
spond to a half time step as proposed in equation (4.15). The numerical results
in Chapter 6 show that the approximation is only of first order because of this
choice of evaluation points. In contrast to this, the next approximation step by
the C-N propagator is of second order, for Lanczos method even higher order
can be achieved. Thus, one order of the algorithm is lost by the evaluation of
the implicitly time dependent Hamiltonian, and it was one of the main goals of
this work to remove this problem and gain one order of magnitude.
As equation (4.15) shows, the Hamiltonian should be evaluated at t+ h

2 instead
of t. The problem is now that the Hamiltonian is not only depending explicitly
on time, but does also depend on the Kohn-Sham orbitals via the exchange-
correlation potential. So the Hamiltonian at t+ h

2 cannot be computed directly

5.2. INTRODUCTION OF A “PREDICTOR-CORRECTOR” STEP 55

or exactly, but it can be approximated. First, it is assumed that the Hamiltonian
varies only slowly compared to the time step size. Then

H

(
t+

h

2

)
=
H(t) +H(t+ h)

2
+O(h3) (5.26)

holds for such a Hamiltonian H . But H(t+h) is also not explicitly available and
therefore an additional approximation has to be made. Therefore the propaga-
tion is split into two parts, where each part has the same effort as the standard
propagation algorithm of first order. In the first part the Kohn-Sham orbitals
at t+ h are computed using the standard algorithm

Φ̃(t+ h) = Unum (t+ h, t, Vee(Φ(t)))Φ(t) (5.27)

where Unum(t+h, t, Vee(Φ(t))) is the numerical implementation of the C-N prop-
agator or Lanczos method with all implicit terms depending on Φ(t), this is the
so-called “Predictor” step. Then, in the second part, the following “Corrector”
step is performed:

Φ(t+ h) = Unum

(
t+ h, t,

Vee(Φ(t)) + Vee(Φ̃(t+ h))

2

)
Φ(t), (5.28)

where all implicit terms are approximated by the mean value of their approx-
imations at t and t + h. The explicitly time dependent terms are evaluated
as before, at t and t + h for the C-N and at t + h

2 for the Lanczos method
propagator. Using this “Predictor-Corrector” step approximation, the numeri-
cal results (in Chapter 6) show that the algorithm is of second order in time at
an approximately doubled numerical effort.

56
CHAPTER 5. LANCZOS METHOD AND “PREDICTOR-CORRECTOR”

STEP

Chapter 6

Numerical results

In this chapter the computational and numerical properties of Qprop are anal-
ysed. The main focus will be on the order with respect to the discretization
parameters, on the comparison of the standard Crank-Nicolson (C-N) propaga-
tor to the Lanczos method (Lanczos2 for second order and Lanczos4 for fourth
order spatial differential operator approximation) and on the advantages of the
“Predictor-Corrector” (PC) step.
In general one can expect that the accuracy and numerical effort of the algo-
rithms grow (and the errors decrease) with increasing rmax, nr and L = ℓmax

and decreasing ∆r and ∆t = h. In the following, the concept of order will
be used to refer to such dependencies, where it will be clear from the context
whether the asymptotics are meant with respect to increase or decrease of a
certain quantity.

All relative (error) quantities are dimension-less by definition (ǫ = |Enum−Eexact|
|Eexact|

for the relative energy error) and the “exact” value is the result of the same
numerical computation at superior accuracy (finer grid) if no exact value is ex-
plicitly available. All absolute quantities are of dimension atomic units, except
the computation/CPU time that is measured in seconds. This allows to omit
the units in this Chapter because they should be clear from the context unless
stated otherwise.

6.1 Computation time and discretization param-

eters

The computation time depends linearly on both the space discretization param-
eter ∆r and the time discretization parameter ∆t = h, as shown in Figures
6.1–6.4.
Additionally the numerical effort depends also linearly on the number of orbitals
N (number of possibly occupied orbitals).
The dependence on the number of angular momenta L (number of possible quan-
tum numbers ℓ) is not as strict, especially for L lower than 3 some exchange
and correlation effects between orbitals with ∆ℓ = ±2 (and ∆ℓ = ±1 for L < 2)
do not occur for the applied approximation (2.10). For a neon atom, where L
has to be at least equal to 2, the almost linear dependence is shown in Figure
6.5.

57

58 CHAPTER 6. NUMERICAL RESULTS

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

∆t [a.u.]

C
P

U
 t

im
e

 [
s
]

H real time propagation

CPU time (C−N)

order 1

Figure 6.1: Computation time for hydrogen vs. ∆t = h

Real time propagation of hydrogen, C-N propagator, L = 4, rmax = 100,
∆r = 1

200 .

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

∆r [a.u.]

C
P

U
 t

im
e

 [
s
]

H real time propagation

CPU time (C−N)

order 1

Figure 6.2: Computation time for hydrogen vs. ∆r
Real time propagation of hydrogen, C-N propagator, L = 4, rmax = 100,

∆t = 1
4096 .

6.1. COMPUTATION TIME AND DISCRETIZATION PARAMETERS 59

10
−3

10
−2

10
−1

10
5

10
6

10
7

Ne real time propagation

∆r [a.u.]

C
P

U
 t

im
e

 [
s
]

CPU time (C−N)

order 1

Figure 6.3: Computation time for neon vs. ∆r
Real time propagation of neon, C-N propagator.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

∆t [a.u.]

C
P

U
 t

im
e

 [
s
]

Ne real time propagation

C−N

order 1

C−N+PC

order 1

Lanczos
2

order 1

Lanczos
2
+PC

order 1

Lanczos
4

order 1

Lanczos
4
+PC

order 1

Figure 6.4: Computation time for neon vs. ∆t = h

Real time propagation of neon, L = 6, rmax = 100, ∆r = 1
50 .

60 CHAPTER 6. NUMERICAL RESULTS

2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

L

C
P

U
 t

im
e

 [
s
]

Ne real time propagation

CPU time (C−N)

CPU time (Lanczos
4
)

Figure 6.5: Computation time for neon vs. L
Real time propagation of neon, rmax = 100, ∆r = 1

50 , ∆t =
1

1024 .

6.2 Computation time of algorithm parts

6.2.1 C-N propagator

Timing of all parts

In Figures 6.6–6.9 the CPU time requirement of all substantial parts of the
Qprop propagation algorithm is compared. For small L (Figure 6.6) the most
time is consumed by the computation of the KLI exchange-correlation poten-
tial V KLI

x , while the other parts of the Hamiltonian consume only little CPU
time. The computational effort of the propagate(...) function, applying the
Hamiltonian to the wavefunction, becomes more important for larger L, as can
be seen in Figure 6.7. For most computations L has to be rather large for
sufficient accuracy, therefore optimization of the propagate(...) function is a
main goal of this work. The normalization of the wavefunction that is done after
each propagation step in imaginary time propagation takes also a non-negligible
part of the CPU time. The effort to compute the energies is of the same order
of magnitude too, but not mentioned here because it is not done each, typically
only each tenth or hundredth step, and therefore this part is negligible.
For real time propagation the time fractions are of comparable size, apart from
the normalization that is neither necessary nor useful, see Figures 6.8 and 6.9.
Additionally, these two figures both show that the “Predictor-Corrector” step
requires 50% of the numerical effort. This means that this step increases the
numerical effort by a factor of 2 as compared to the standard propagation with-
out the “Predictor-Corrector” step (this latter case is not explicitly shown, be-
cause the corresponding pie plot would simply stay the same, but without the

6.2. COMPUTATION TIME OF ALGORITHM PARTS 61

1%< 1%

66%
1%
< 1%

22%

10%

Λ

U
0

V
x

KLI

Θ

U
1

propagate

normalize

Figure 6.6: Computation time fractions for imaginary time propagation
Imaginary time propagation of neon, L = 2, rmax = 100, ∆r = 1

400 .

“Predictor-Corrector” step part and the percentage of all other parts doubled).

The propagator parts timing

As equation (4.25) shows, the C-N propagator consists of many parts that are
applied to the wavefunction consecutively. The Figures 6.10 and 6.11 show
the effort of these parts, again for small and large L. In the first case the Z
matrix, linking orbitals with ∆ℓ = ±2, is neglected and therefore consumes
no CPU time. But also in the second case its time fraction is only small,
most of the effort is required for the terms linking orbitals with ∆ℓ = ±1 (Y±)
and containing differential operators (W±). In both cases the parts where an
inversion is necessary are dominating the other parts.
The described Figures 6.10 and 6.11 show the timing data for imaginary time
propagation. The figures for real time propagation are nearly identical and are
therefore not shown.

6.2.2 Lanczos method

Timing of all parts

For the Lanczos method the timing of all parts is identical to the timing of all
parts for the C-N propagator, except the propagate(...) function, that is dif-
ferent and therefore consumes a different amount of CPU time. The comparison
of the Lanczos method and the C-N propagator concerning numerical effort and
accuracy will be given in Section 6.4.3.

62 CHAPTER 6. NUMERICAL RESULTS

1%

14%

4%

< 1%

6%

< 1%

53%

22%

 < 1%
Λ

U
0

V
x

KLI

Θ

U
1

Ξ

U
2

propagate

normalize

Figure 6.7: Computation time fractions for imaginary time propagation
Imaginary time propagation of neon, L = 10, rmax = 100, ∆r = 1

400 .

< 1%

37%

< 1% 50%

12%

Λ

U
0

V
x

KLI

Θ

U
1

Pred−Corr

propagate

Figure 6.8: Computation time fractions for real time propagation
Real time propagation of neon with “Predictor-Corrector” step, L = 2,

rmax = 100, ∆r = 1
400 .

6.2. COMPUTATION TIME OF ALGORITHM PARTS 63

< 1%
11%

2%
< 1%

3%
< 1%

50%

32%

Λ

U
0

V
x

KLI

Θ

U
1

Ξ

U
2

Pred−Corr

propagate

Figure 6.9: Computation time fractions for real time propagation
Real time propagation of neon with “Predictor-Corrector” step, L = 8,

rmax = 100, ∆r = 1
400 .

< 1%

19%

7%

11%

3%

5%
15%

3%

7%

11%

19%

Z

R

Y
−

Y
+

−1

B
T

W
−

W
+

−1

B

Y
−

Y
+

−1

R

Z

Figure 6.10: Computation time fractions for C-N propagator (4.25)
Imaginary time propagation of neon, L = 2, rmax = 100, ∆r = 1

400 .

64 CHAPTER 6. NUMERICAL RESULTS

4%

17%

5%

9%

2%

6%

15%

2%

5%

10%

19%

4%

Z

R

Y
−

Y
+

−1

B
T

W
−

W
+

−1

B

Y
−

Y
+

−1

R

Z

Figure 6.11: Computation time fractions for C-N propagator (4.25)
Imaginary time propagation of neon, L = 10, rmax = 100, ∆r = 1

400 .

The propagator parts timing

The Lanczos method consists of far fewer parts, only 5 have non-negligible con-
tributions. These are the initialization of the matrix of the Hamiltonian (5.14)
and the determination of its norm, the computation of the Lanczos basis (5.3),
the Padé approximation of the exponential function and the final multiplica-
tion.
First results (Figure 6.12) have shown a rather high CPU time consumption
of the final multiplication (implemented using standard C++ for loops), for
some parameter settings even higher than for the computation of the Lanczos
basis that is expected to require the most numerical effort. Due to this fact
the storage of the Lanczos basis has been changed to enable the use of the
matrix-vector-multiplication BLAS subroutine zgemv(...) in a new branch of
the Qprop library. This reduces the numerical effort of the Lanczos method by
about 10%. Thus, the part for the final multiplication is much smaller in Figure
6.13 showing the results for the improved algorithm. For propagation of other
atoms like neon the CPU time requirement of the parts do not differ very much,
as can be seen in Figure 6.14. This figure shows additionally the reduction of
numerical effort compared to the old branch using C++ loops.

6.3 Imaginary time propagation

For imaginary time propagation the accuracy of the resulting ground state wave-
function depends mainly and heavily on the grid. The grid has to cover the
whole space where non-negligible electron density occurs, therefore rmax and

6.3. IMAGINARY TIME PROPAGATION 65

7%
< 1%

80%

< 1%

12%

matrix initialization

matrix norm

Lanczos basis

Padé approximation

final multiplication

Figure 6.12: Computation time fractions for Lanczos method propagator
Real time propagation of helium, L = 4, rmax = 100, ∆r = 1

400 , dx order= 4,
max dim krylov= 16, C++ loops used for final multiplication.

8%
< 1%

89%

< 1%2%

matrix initialization

matrix norm

Lanczos basis

Padé approximation

final multiplication

Figure 6.13: Computation time fractions for Lanczos method propagator
Real time propagation of helium, L = 4, rmax = 100, ∆r = 1

400 , dx order= 4,
max dim krylov= 16, BLAS routine used for final multiplication.

66 CHAPTER 6. NUMERICAL RESULTS

8%
< 1%

81%

< 1%
3%

matrix initialization

matrix norm

Lanczos basis

Padé approximation

final multiplication

Figure 6.14: Computation time fractions for Lanczos method propagator
Real time propagation of neon, L = 6, rmax = 100, ∆r = 1

50 , dx order= 4,
max dim krylov= 20, BLAS routine used for final multiplication compared to
100% represented by the total CPU time for the old branch using C++ loops

for final multiplication.

6.3. IMAGINARY TIME PROPAGATION 67

10
−3

10
−2

10
−1

10
0

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

∆r [a.u.]

re
l.
 e

n
e

rg
y
 e

rr
o

r

H imaginary time propagation

relative ground state energy error (C−N)

order 4

Figure 6.15: Energy error over space discretization parameter ∆r
for a hydrogen atom, C-N propagator, rmax = 100, ∆t = 1

16 .

L = ℓmax+1 have to be chosen sufficiently large (ℓmax has to be greater than or
equal to the maximal angular momentum of physical orbitals that are occupied
in ground state, for example 1 for neon because of the p-orbitals). This condi-
tion guarantees that the accuracy depends on the mesh width ∆r of 4th order
for both hydrogen-like as well as many-electron atoms.

6.3.1 Hydrogen-like atoms

As an example for single electron atoms/ions hydrogen is investigated. This
element shows a nearly perfect 4th order dependence of the relative energy
error on the space discretization parameter ∆r as can be seen in Figure 6.15.

6.3.2 Many-electron atoms

Figure 6.16 visualises the convergence of the wavefunction towards the ground
state for carbon. The symmetric distribution of p-electrons (two thirds for each
2p-orbital) shows a faster convergence than the asymmetric distribution that
corresponds to Hund’s rules.
Neon serves as an example for the determination of the order for many-electron
atoms. Figure 6.17 shows, as for hydrogen before, also 4th order dependence of
the relative energy error on ∆r.
For spherically symmetric (including all closed-shell) atoms like hydrogen, he-
lium or neon it is sufficient to include only the angular momenta that are nec-
essary to describe the initial hydrogenic orbitals (L = 1 for helium, L = 2 for
neon) because of the spherical symmetry that removes the ℓ-coupling (Hmix and

H
(1,2,3)
ang are zero, compare equations (2.48)–(2.52)). Therefore it makes no sense

68 CHAPTER 6. NUMERICAL RESULTS

0 200 400 600 800 1000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

time step i
t

re
l.
 e

n
e

rg
y
 e

rr
o

r

C−N C imaginary time propagation

relative ground state energy error, symm., L=2

relative ground state energy error, Hund, L=2

relative ground state energy error, Hund, L=6

Figure 6.16: Convergence of the ground state energy approximation
Energy error over time step it for imaginary time propagation of a carbon

atom. Comparison of convergence between symmetrically distributed
p-electrons (legend: symm.) and the p-electron distribution corresponding to
Hund’s rules (legend: Hund) with different L = ℓmax − 1. Further parameters:

rmax = 100, ∆r = 1
200 , nt = 1000 steps, ∆t = h = 1

16 .

to include higher ℓ states in the ground state calculation of closed shell atoms.
For atoms with partially filled shells this is no longer the case if the electrons
are distributed non-symmetrical as corresponding to Hund’s rules. Here, Fig-
ure 6.18 shows an exponential error decay for increasing L until the region of
round-off errors is reached. For the carbon atom, L ≥ Lmin = 2 is necessary,
and, because of the rapidly decreasing error level, L should be chosen such that
the angular momentum disretization error lies below other discretization errors.
Thus, for most applications involving carbon, L = Lmin +2 = 4 is sufficient. In
general, L = Lmin + 2 or L = Lmin + 4, depending on the required accuracy, is
sufficient.

6.3.3 Random initializations

The standard method of initializing the Kohn-Sham orbitals for imaginary time
propagation is to use the exact hydrogenic orbitals, but it is also possible to
use random numbers. Figure 6.19 shows that the orbitals converge for both
initialization modes to the ground state. It is clear that for hydrogen the ini-
tialization with hydrogenic orbitals is already exact, such that the round-off
errors due to discretization and energy computation are shown in this case. For
many-electron atoms like helium both initialization modes converge faster than
the hydrogen random number initializations and the difference between the two
initialization modes is much smaller. The random number initialization requires

6.3. IMAGINARY TIME PROPAGATION 69

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆r [a.u.]

re
l.
 e

n
e

rg
y
 e

rr
o

r

Ne real time propagation

relative ground state energy error (C−N)

order 4

relative ground state energy error (Lanczos
2
)

order 4

Figure 6.17: Ground state energy error over ∆r
Imaginary time propagation of a neon atom, rmax = 100, nt = 2000 steps,

∆t = 1
8 .

2 3 4 5 6 7 8 9 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

L

re
l.
 e

n
e

rg
y
 e

rr
o

r

C imaginary time propagation

relative ground state energy error (C−N)

Figure 6.18: Angular momentum discretization parameter L dependence
Energy error over angular momentum discretization parameter L for
imaginary time propagation of a carbon atom, rmax = 100, ∆r = 1

200 ,
nt = 1000 steps, ∆t = 1

16 .

70 CHAPTER 6. NUMERICAL RESULTS

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

10
10

re
l.
 e

n
e

rg
y
 e

rr
o

r

time step i
t

H and He imaginary time propagation

exact H orbitals for H initialization

random number initialization for H ground state

exact H orbitals for He initialization

random number initialization for He ground state

Figure 6.19: Convergence of the ground state energy approximation
Energy error over time step it for imaginary time propagation of a hydrogen
and a helium atom. Comparison of convergence between initialization with
hydrogenic orbitals and with random numbers, rmax = 100, ∆rH = 1

400 ,
∆rHe =

1
100 , nt = 1000 steps, ∆t = 1

16 .

only 40 additional steps (approximately 10 percent of the number of steps) to
reach the same accuracy level as the hydrogenic initialization.

6.4 Real time propagation

6.4.1 Hydrogen-like atoms

For hydrogen the global discrete propagation error depends quadratically on the
time step size ∆t = h, see Figure 6.20. The hydrogen real time propagation
algorithm benefits from the fact that the Hamiltonian explicitly only depends
on time and is therefore known for all times because it does not depend on the
electron density at all. For many-electron atoms this is no longer the case.

6.4.2 Many-electron atoms

In many-electron atoms the electrons interact with each other and therefore
the Hamiltonian in the Kohn-Sham equations depends on the electron density.
This causes an implicit time dependence of the Hamiltonian. Using the same
algorithm as for hydrogen before and additionally evaluating the time dependent
exchange-correlation part of the Hamiltonian only at the starting point of the
actual time propagation interval reduces the order of the algorithm to 1.

6.4. REAL TIME PROPAGATION 71

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

∆t [a.u.]

re
l.
 e

n
e

rg
y
 e

rr
o

r

H real time propagation

relative energy error (C−N)

order 2

Figure 6.20: Energy error over ∆t = h

for a hydrogen atom in real time propagation at T = 20, ∆r = 0.02.

“Predictor-corrector” extrapolation step

This can be improved by a “Predictor-corrector” extrapolation step as explained
in Section 5.2.
The results are shown in Figure 6.21. The order of the algorithm is raised to
2 by this predictor-corrector step, while the numerical effort only doubles. The
dependence on the spatial discretization parameter ∆r is of order 4, see Figure
6.22.

6.4.3 Comparison to Lanczos method

Figures 6.23–6.24 show the relative energy error over required CPU time. Thus,
the lower the error and the CPU time consumption is, the higher is the per-
formance of the algorithm. It is clear, that it cannot be expected, that the
differences between the C-N propagator and Lanczos method are not the same
for all atoms and parameter sets, therefore a selection of different atoms and
parameter sets is presented.
For a rather coarse grid (∆r = 0.16) in helium real time propagation the stan-
dard C-N propagator is advantageous, the grid is even not fine enough to let the
“Predictor-Corrector” step play an important role. In this setting the Lanczos
method is orders of magnitude worse, see Figure 6.23.
For a neon atom with a finer grid (∆r = 0.04, Figure 6.24) the situation changes,
here the Lanczos method achieves better accuracy at more CPU time consump-
tion, while the C-N propagator is optimal for fast computation at an only slightly
increased error level.

72 CHAPTER 6. NUMERICAL RESULTS

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

10
4

10
6

dt [a.u.]

a
b

s
.

e
n

e
rg

y
 e

rr
o

r
[a

.u
.]

Ne real time propagation

absolute energy error (C−N)

order 1

absolute energy error (C−N+PC)

order 2

Figure 6.21: “Predictor-Corrector”: energy error over ∆t = h

for a neon atom in real time propagation at T = 10, with and without
“Predictor-Corrector” extrapolation step.

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

∆r [a.u.]

re
l.
 e

n
e

rg
y
 e

rr
o

r

Ne real time propagation

relative energy error (C−N+PC)

order 4

Figure 6.22: Energy error over space discretization parameter ∆r
for a neon atom in real time propagation at T = 100, ∆t = h = 1

512 .

6.4. REAL TIME PROPAGATION 73

10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

CPU time [s]

re
l.
 e

n
e

rg
y
 e

rr
o

r

He real time propagation

C−N

C−N+PC

Lanczos
2

Lanczos
2
+PC

Lanczos
4

Lanczos
4
+PC

Figure 6.23: Relative energy error over CPU time
for a helium atom in real time propagation at T = 20, ∆r = 0.16.

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

CPU time [s]

re
l.
 e

n
e

rg
y
 e

rr
o

r

Ne real time propagation

C−N

Lanczos
2

Lanczos
4

Figure 6.24: Relative energy error over CPU time
for a neon atom in real time propagation at T = 20, ∆r = 0.04.

74 CHAPTER 6. NUMERICAL RESULTS

6.5 Conserved quantities

The conservation of norm and energy are important properties of a propagator.
Therefore numerical tests are run for both quantities for the C-N as well as the
Lanczos method propagator.
It is clear that both properties are only valid for the real time propagation, for
imaginary time propagation they make no sense. In imaginary time propagation
mode the norm is not conserved by definition and therefore the wavefunction
is normalized after each propagation step. The energy, on the other hand, con-
verges to the best approximation in imaginary time propagation.
Starting with the ground state in real time propagation without any external
field, both the norm and the energy of the wavefunction have to be conserved.
With an external field the norm still has to be conserved, as long as the field is
weak enough such that the part of the wavefunction which is absorbed by the
imaginary absorbing potential (ionization) is negligible.
After a previously interacting laser field is switched off, the energy and norm
have to be conserved again.

6.5.1 Norm conservation

Figures 6.25 and 6.26 illustrate the results for a helium atom. First, the ex-
ternal fields are zero for all time, where the Lanczos method keeps the relative
deviation from norm 2 within 10−12 as compared to the initial deviation. The
C-N propagator shows a slight drift such that the conservation of norm is about
two orders of magnitude worse.
With an external laser field turned on within the period [0, 60], the Lanczos
method still conserves the norm at nearly the same accuracy as without a field,
while the C-N propagator suffers increasing deviations after the end of the pulse
that reach up to a relative level of about 10−7, which are five orders of magni-
tude more than for the Lanczos method.
The Lanczos implementation seems preferable in this respect.

6.5.2 Energy conservation

The results for a helium atom are shown in Figures 6.27–6.29. Comparing Fig-
ure 6.27 (C-N) with Figure 6.28 (Lanczos method) the Lanczos method shows
an approximately two orders of magnitude reduced energy deviation if the laser
field intensity is zero.
For a non-zero laser pulse in the time interval [0, 60] and the external electro-
magnetic field being zero for t > 60 the situation changes (see Figure 6.29),
especially directly after the laser pulse the Lanczos method shows increased
deviations as compared to the relatively constant C-N propagator.

6.6 Time reversibility

The reversibility of the algorithm is tested by going one step forward in time
and then going this step back again. A reversible algorithm has to reproduce
the initial wavefunction, especially its norm and energy. But even a “perfect”

6.6. TIME REVERSIBILITY 75

0 20 40 60 80 100
10

−11

10
−10

re
l.
 e

rr
o

r

time t [a.u.]

He real time propagation

relative deviation from norm 2 (C−N+PC)

relative deviation from norm 2 (Lanczos+PC)

Figure 6.25: Relative norm deviation
for a helium atom without external fields, comparison of C-N and Lanczos

propagator, both with PC step, time interval [0, 100], ∆t = h = 1
128 ,

rmax = 100, ∆r = 1
400 .

0 20 40 60 80 100
10

−11

10
−10

10
−9

10
−8

10
−7

re
l.
 e

rr
o

r

time t [a.u.]

He real time propagation

relative deviation from norm 2 (C−N+PC)

relative deviation from norm 2 (Lanczos+PC)

Figure 6.26: Relative norm deviation
for a helium atom with external laser field (I = 5 · 1012, period [0, 60]),

comparison of C-N and Lanczos propagator, both with PC step, time interval
[0, 100], ∆t = h = 1

128 , rmax = 100, ∆r = 1
400 .

76 CHAPTER 6. NUMERICAL RESULTS

0 20 40 60 80 100
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−8

time t [a.u.]

a
b

s
.

e
n

e
rg

y
 d

e
v
ia

ti
o

n
 [

a
.u

.]

C−N He real time propagation

relative deviation from ground state energy

Figure 6.27: C-N energy deviation for a helium atom
with “Predictor-Corrector” C-N propagator without external fields, time

interval [0, 100], ∆t = h = 1
128 , rmax = 100, ∆r = 1

400 .

0 20 40 60 80 100
−1

0

1

2

3

4

5
x 10

−12

time t [a.u.]

a
b

s
.

e
n

e
rg

y
 d

e
v
ia

ti
o

n
 [

a
.u

.]

Lanczos He real time propagation

relative deviation from ground state energy

Figure 6.28: Lanczos energy deviation for a helium atom
with “Predictor-Corrector” Lanczos method propagator with fixed step size
and without external fields, time interval [0, 100], ∆t = h = 1

128 , rmax = 100,
∆r = 1

400 .

6.6. TIME REVERSIBILITY 77

60 65 70 75 80 85 90 95 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

time [a.u.]

re
l.
 e

n
e

rg
y
 e

rr
o

r

He real time propagation

C−N

C−N+PC

Lanczos
2

Lanczos
2
+PC

Lanczos
4

Lanczos
4
+PC

Figure 6.29: Energy deviation for a helium atom after laser pulse
for different propagators, time interval [60, 100], ∆t = h = 1

128 , rmax = 100,
∆r = 1

100 .

algorithm is affected by round-off errors, such that one can only expect very
low errors of order of magnitude eps, where eps denotes the relative machine
accuracy. For all algorithms (C-N and Lanczos, with and without “Predictor-
Corrector” step) the relative energy error as well as the error of the wavefunction
norm for hydrogen and neon stays below 10−14.

78 CHAPTER 6. NUMERICAL RESULTS

Chapter 7

Conclusions

7.1 Theory and Documentation

The theory and implementation details of Qprop are presented and analysed
in its entirety. The documentation within this work on the one hand gives an
idea how to handle Qprop and apply it to a given problem, on the other hand
it shows how the Qprop library works and what its numerical properties are.
Additionally the README file (Appendix A) provides a simple guideline for
the installation of the Qprop software on personal computers and computer
systems.

7.2 Front-end

The new Qprop front-end XMLQprop is implemented and described in Chap-
ter 3. It enables to apply the Qprop library to a wide range of problems without
neither re-compilation nor new implementation. Therefore the front-end and its
easily understandable XML-parameter file interface facilitate getting into the
use of Qprop. But there are also advantages for the experienced user because
the code can be easily extended to further problems due to the object oriented
implementation of Qprop and its front-end.

7.3 Improvements and optimizations

Not only a front-end is added to Qprop, the library is also improved by adding
additional classes for an object-oriented treatment of external laser field poten-
tials, for the timing of the programs parts as well as for the pre-computation
and storage of several coefficients that are often used by the library. The exist-
ing classes are further optimized, besides the reduction of numerical effort and
error correction the readability of the source code was improved and comments
for better understanding were added at several points in the source code.

79

80 CHAPTER 7. CONCLUSIONS

7.4 Numerical properties

The numerical results of Qprop show lots of interesting effects. The first is the
order reduction in time discretization (from order 2 to 1) when going from the
single electron atom (hydrogen) to many-electron atoms like neon due to the
non-linearity of the many-body problem. This is resolved by the introduction of
a “Predictor-Corrector” step bringing the order back from 1 to 2 while increasing
the numerical effort by a factor of 2.
Imaginary time propagation is only an additional option of the code to compute
initial ground state wavefunctions. Here the orbitals converge very fast and with
high accuracy to the ground state energy level, even if they are initialized with
random numbers. While for spherically symmetric electron shells the choice of
ℓmax is very simple, the computation of the carbon ground state corresponding
to Hund’s rules shows exponential error decay for increasing ℓmax.
The implementation of Lanczos method enables further the comparison of two
different propagators. Being nearly equivalent in imaginary time propagation
where the numerical effort and energy error levels are very low in general as
compared to real time propagation, many differences can be found for real time
propagation and different parameter settings. For standard applications the
standard C-N propagator seems to be preferable, but the Lanczos method is
advantageous in norm- and partially in energy-conservation. The flexibility of
the Lanczos method in adding higher multipole terms and different differential
operator discretizations as well as several electromagnetic field gauges should
also be mentioned in this context.
On the bottom line it cannot be decided in general which propagator is the
best for all applications, it depends on the posed problem and parameter sets
(the latter depends on required accuracy and available computational power).
But the detailed results in Chapter 6 should help to choose the best-suited
propagator for many individual applications.

7.5 Outlook

This work represents one step in the development of Qprop. Although it might
be a big step, it will not be the last one, there is a lot of place left for further
development. One future step may be the inclusion of higher order exchange
correlation potential multipole terms, which is facilitated by the Lanczos method
implementation. Additionally the spin of electrons may also be treated as well as
further laser field polarizations. To increase the performance for modern multi-
core CPUs and other parallel computing systems the propagate algorithm can
be parallelized. These and other further upgrades would enable to extend the
field of possible applications.

List of Figures

4.1 The imaginary absorbing potential 42

6.1 Computation time for hydrogen vs. ∆t = h 58
6.2 Computation time for hydrogen vs. ∆r 58
6.3 Computation time for neon vs. ∆r 59
6.4 Computation time for neon vs. ∆t = h 59
6.5 Computation time for neon vs. L 60
6.6 Computation time fractions for imaginary time propagation . . . 61
6.7 Computation time fractions for imaginary time propagation . . . 62
6.8 Computation time fractions for real time propagation 62
6.9 Computation time fractions for real time propagation 63
6.10 Computation time fractions for C-N propagator (4.25) 63
6.11 Computation time fractions for C-N propagator (4.25) 64
6.12 Computation time fractions for Lanczos method propagator . . . 65
6.13 Computation time fractions for Lanczos method propagator . . . 65
6.14 Computation time fractions for Lanczos method propagator . . . 66
6.15 Energy error over space discretization parameter ∆r 67
6.16 Convergence of the ground state energy approximation 68
6.17 Ground state energy error over ∆r 69
6.18 Angular momentum discretization parameter L dependence . . . 69
6.19 Convergence of the ground state energy approximation 70
6.20 Energy error over ∆t = h . 71
6.21 “Predictor-Corrector”: energy error over ∆t = h 72
6.22 Energy error over space discretization parameter ∆r 72
6.23 Relative energy error over CPU time 73
6.24 Relative energy error over CPU time 73
6.25 Relative norm deviation . 75
6.26 Relative norm deviation . 75
6.27 C-N energy deviation for a helium atom 76
6.28 Lanczos energy deviation for a helium atom 76
6.29 Energy deviation for a helium atom after laser pulse 77

81

82 LIST OF FIGURES

List of Tables

2.1 atomic units . 9
2.2 Range of variables and parameters 17

3.1 File identifier strings . 30

83

84 LIST OF TABLES

Appendix A

Readme

The following README.txt file was added to Qprop to facilitate the installation
of the package by a step-by-step installation and compilation guide:

README and quick installation guide for the qprop version as implemented

in the diploma thesis of Josef Kamleitner

1. Install libraries

First the libraries "lapack", "blas" and "xerces-c" have to be installed.

If possible, install the "f2c" or "g2c" library!

2. Unpack the qprop zip file or check out the repository

After this step there should be a "trunk" directory (maybe inside "da"

directory) that contains at least directories named "expokit", "libf2c"

and "qprop".

3. Make supporting libraries

Change to the "libf2c" library and type "make".

Change to the "expokit/fortran" directory and type "make".

Now the file "expokit.o" should be in this directory.

4. Edit qprop library makefile

Change to the "qprop" directory and edit the ROOT entry in "GNUmakefile.tmpl"

such that it points to the current (the "qprop" directory).

5. Compile qprop and the front-end xmlqprop

85

86 APPENDIX A. README

Change to the "qprop/src/xmlqprop" directory and type "make xmlqprop c"

6. The front-end xmlqprop and the qprop library should now work properly.

To start computations using the xml parameter file "default.xml" type

"./xmlqprop default".

To start the computations in background, type "sh ./xqs default".

Appendix B

C++ code-lets and XML

parameter files

B.1 The default parameter file

The XML parameter file default.xml shows the structure of the XML param-
eter files. The parameter values below describe imaginary time propagation for
the neon atom:

<!-- this is the default parameter file ←֓
→֒ (values for a neon atom)-->

<params>

<static params>

<realtimemode>0</realtimemode>

<hydrogenlike>0</hydrogenlike>

<extrapolate>0</extrapolate>

<numtisranget>0</numtisranget>

<lanczos>0</lanczos>

<i v>1</i v>

<i slateronly>0</i slateronly>

<dimens>34</dimens>

<n orb>3</n orb>

<n ang mom>2</n ang mom>

<degener>

<d1>2</d1>

<d2>2</d2>

<d3>6</d3></degener>

<ms>

<d1>0</d1>

<d2>0</d2>

<d3>0</d3></ms>

<ells>

<d1>0</d1>

<d2>0</d2>

<d3>1</d3></ells>

87

88 APPENDIX B. C++ CODE-LETS AND XML PARAMETER FILES

<really propagate>

<d1>1</d1>

<d2>1</d2>

<d3>1</d3></really propagate>

<nuclear charge>10.0</nuclear charge>

<imagpot ampl>100.0</imagpot ampl>

<imagpot inner border>0.0</imagpot inner border>

</static params>

<dynamic params>

<range x>100.0</range x>

<range t>100.0</range t>

<n outputs>200</n outputs>

<dx>

<i>0.16</i>

<f>0.0025</f>

<a>0

0.5</dx>

<dt>

<i>1.0</i>

<f>1.0e-4</f>

<a>0

0.5</dt>

<intens>

<i>0.0</i>

<f>0.0</f>

<a>2.0

2.0</intens>

</dynamic params>

<init params>

<i initmode>2</i initmode>

<filenamepart ini>np ground neon</filenamepart ini>

<multiinit>0</multiinit>

<n orb ini>3</n orb ini>

<n ang mom ini>2</n ang mom ini>

<range x ini>100.0</range x ini>

<dx ini>0.0025</dx ini>

</init params>

<lanczos params>

<adaptive>0</adaptive>

<hermitian>1</hermitian>

<dx order>2</dx order>

<max dim krylov>16</max dim krylov>

<loc tol>1.0e-14</loc tol>

<mxstep>500</mxstep>

<mxreject>1000</mxreject>

<pade deg>6</pade deg>

<lanczos delta>1.2</lanczos delta>

<lanczos gamma>0.9</lanczos gamma>

</lanczos params>

</params>

B.2. XML PARSING SOURCE CODE EXAMPLES 89

B.2 XML parsing source code examples

The following source code examples show the most important cases how to parse
parameters of different types like doubles, booleans, strings, arrays of integers
and parsing with default values for backwards compatibility. Other possible
cases like parsing floats, for example, can be easily derived from the provided
examples.
The types of the read-in parameters are self-explanatory, the doc is of type
DOMDocument*, aNode and rootNode of type DOMNode* and aNodeList of type
DOMNodeList*. Furthermore the parser parser of type XercesDOMParser* is
used as well as static functions belonging to the XMLString-class.
All these special classes and types are defined and implemented within the
Xerces-C library.

B.2.1 Parsing a double precision number parameter

The following example illustrates how a double precision parameter is parsed.

aNode=doc->getElementsByTagName(XMLString::transcode("range x")) ←֓
→֒ ->item(0);

sscanf(XMLString::transcode(aNode->getTextContent()), ←֓
→֒ "%lf",&rangex);

cout << "rangex = " << rangex << endl;

In the first line the first element of the document doc with tag name range x is
assigned to the node aNode. In the second line the text content of this node is
transcoded from the XMLString to char type and scanned as double precision
number into the variable rangex. Finally the value of the read-in parameter is
displayed on the screen as information to the user.

B.2.2 Parsing a boolean parameter with default value

The following example illustrates how a boolean parameter is parsed. Addition-
ally this implementation shows how to treat XML-file parameters that are added
in the future without losing compatibility to older parameter files. Therefore
it is checked whether the parameter exists and, if not, a default value is used.
Otherwise the standard procedure is applied.

aNodeList=doc->getElementsByTagName(←֓
→֒ XMLString::transcode("lanczos"));

if(aNodeList->getLength()==0){
cout << "WARNING: error reading lanczos from XML-file, ←֓
→֒ setting default value!" << endl;

lanczos=false;

cout << "standard propagation mode selected (no Lanczos)" ←֓
→֒ << endl;

}else{
aNode=aNodeList->item(0);

sscanf(XMLString::transcode(aNode->getTextContent()), ←֓
→֒ "%d",&tempint);

90 APPENDIX B. C++ CODE-LETS AND XML PARAMETER FILES

if(tempint){
lanczos=true;

cout << "Lanczos propagation mode selected" << endl;

}else{
lanczos=false;

cout << "standard propagation mode selected (no Lanczos)" ←֓
→֒ << endl;

}
}

In the first line, all elements of the document doc with tag name lanczos are
assigned to the node list aNodeList. In the if-statement it is checked whether
this node list is empty (length equal to 0). For an empty node list there is no
Lanczos element in the document and therefore a warning is displayed and the
default value lanczos=false is set. Otherwise, if the Lanczos method parame-
ter is defined within the XML-file, its value is scanned by the sscanf statement
out of the transcoded text content of the node into the temporary integer vari-
able tempint. Depending on the value of tempint, the variable lanczos is set
(true for 1 and false for 0). Corresponding user information is displayed for
each case.

B.2.3 Parsing a string parameter

The following example illustrates how a string parameter is parsed.

aNode=doc->getElementsByTagName(←֓
→֒ XMLString::transcode("filenamepart ini"))->item(0);

sprintf(cstr fname wf ini, ←֓
→֒ "./res/%s.dat",XMLString::transcode(aNode->getTextContent()));

cout << "cstr fname wf ini = ’" ←֓
→֒ << cstr fname wf ini << "’" << endl;

The first element of the document doc with tag name filenamepart ini is
assigned to the node aNode in the first line. In the second line the text content
of this node is transcoded from the XMLString to char type and printed into the
cstr fname wf ini variable as defined by the format string ./res/%s.dat. Fi-
nally the value of the read-in parameter is displayed on the screen as information
to the user.

B.2.4 Parsing an array of integer parameters

By the example of the really propagate-parameter, consisting of norb integer
values really propagate[i], the parsing of an array of integers is illustrated.

aNode=doc->getElementsByTagName(←֓
→֒ XMLString::transcode("really propagate"))->item(0);

aNodeList=aNode->getChildNodes();

cout << "really propagate: (";

for(i=0;i<norb;i++){
sscanf(XMLString::transcode(aNodeList->item(2*i+1) ←֓

B.3. LANCZOS METHOD SOURCE CODE PARTS 91

→֒ ->getTextContent()), "%d",&really propagate[i]);

cout << really propagate[i]<< " ";

}
cout << ")" << endl;

The first element of the document doc with tag name really propagate is
assigned to the node aNode in the first line. Then the child nodes of this node
are put into the node list aNodeList in the second line, before the output and
the for-loop starts. The cout statements printing brackets and spaces are only
used to format the output for the user. Important is the for-loop over all indices
i from 0 to norb−1 in which the items, corresponding to the ith parameter ar-
ray element, are selected from the list and their content is transformed via the
transcode and sscanf function into a corresponding integer variable.

B.3 Lanczos method source code parts

The main parts of the Lanczos method are explained in detail in Section 5.1.3,
the adaptive time stepping and Padé approximation in Section 5.1.4. There the
computation of the adaptive time step size and the local error estimate was only
roughly described and will subsequently be explained in more detail including
source code parts.

B.3.1 Adaptive step size

The first step size is computed by the function init step(...) from beta

(beta is the norm of v), anorm (anorm is the norm of H), the tolerance tol and
the dimension m of the Krylov subspace.

template<class M> double Expokit<M>::init step(double beta){
return this->trans step(1/anorm*pow(tol*pow((m+1)/M E,m+1) ←֓
→֒ *sqrt(2*M PI*(m+1))/4.0/beta/anorm,1.0/(double)m));

}

The next proposed step size depends on the previous one (t step), the local
error estimate err loc, the shrinking factor gamma and the tolerance tol.

template<class M> double Expokit<M> ←֓
→֒ ::next step(double t step,double err loc){

return this->trans step(gamma*t step ←֓
→֒ *pow(t step*tol/err loc,1.0/(double)m));

}

Inside the adaptive step size functions given above, the originally estimated
step size is transformed using the following function trans step. This is a
rounding function whose result is a decimal number with only the first two dig-
its being non-zero. It is used to avoid very small remaining step sizes.

template<class M> double Expokit<M>::trans step(double tau){
double p ←֓

92 APPENDIX B. C++ CODE-LETS AND XML PARAMETER FILES

→֒ =exp((rint(log(tau)/M LN10-sqrt(0.1))-1.0)*M LN10);

tau=floor(tau/p + 0.55) * p;

return tau;

}

B.3.2 Local error estimate

The following codelet implements computation of the local truncation error es-
timate for the Padé approximation within the Lanczos method.

double avnorm=this->norm2(V m[m],n);

double p1 = abs(f[m]) * beta;

double p2 = abs(f[mp1]) * beta * avnorm;

if (p1>10.0*p2){
err loc = p2;

}else{
if (p1>p2){
err loc = (p1*p2)/(p1-p2);

}else{
err loc = p1;

}
}

The three cases (selected by the if clauses) are, according to [10]:

1. small step size, quick convergence.

2. slow convergence.

3. asymptotic convergence.

Bibliography

[1] J. S. Parker, L.R. Moore, and K.T. Taylor. Accurate computational meth-
ods for two-electron atom-laser interactions. Optics-Express, 8:436–441,
2001.

[2] A. Bandrauk and A. Chelkowski. On laser Coulomb explosion imaging of
proton motion. Chem. Phys. Letters, 336:518–522, 2001.

[3] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136(3B):B864, 1964.

[4] E. Runge and E. K. U. Gross. Density-functional theory for time-dependent
systems. Phys. Rev. Lett., 52(12):997, Mar 1984.

[5] H. G. Muller. An efficient propagation scheme for the time-dependent
schrdinger equation in the velocity gauge. Laser Physics, 9(1):138–148,
1999.

[6] D. Bauer. Qprop manual I. www.qprop.de, 2005.

[7] D. Bauer and P. Koval. QPROP: A Schrödinger-solver for intense laser-
atom interaction. Comput. Phys. Commun., 174(5):396, 2006.

[8] L. Schimka. Interaction of atoms with laser fields; Time-Dependent Density
Functional Theory and QPROP software, 2008.

[9] R. Hammerling. TDDFT-Generalized kick perturbations and monitoring
observables for calculation of excitation energies. Philosophical Magazine,
88:2817, 2008.

[10] R. B. Sidje. Expokit: A software package for computing matrix exponen-
tials. ACM Trans. Math. Software, 24(1):130–156, 1998.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore, 3rd edition, 1996.

[12] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Mod-
els and Numerical Analysis. Zurich Lectures in Advanced Mathematics.
European Mathematical Society, Zurich, 2008.

[13] N. J. Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005.

[14] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration.
Springer-Verlag, Berlin–Heidelberg–New York, 2002.

93

	Introduction
	Motivation
	Structure of this work

	General analysis of Qprop
	Time-dependent Kohn-Sham equations
	Expansion into spherical harmonics
	Expansion of the Hartree potential
	Krieger-Li-Iafrate (KLI) exchange potential approximation
	The approximate Hamiltonian

	Overview of the propagation algorithm
	The discretized Hamiltonian
	Summarizing the discretization
	Imaginary time propagation

	The Qprop front-end XMLQprop
	Intention and purpose of XMLQprop
	XMLQprop manual
	Paths, compilation and execution
	Parameter initialization and XML file structure
	Input and output files and their contents
	Dynamic parameter loops, algorithms and computation

	Detailed analysis and improvements
	Basic computations and improvements
	Coefficients class
	Potential class
	Hamop class
	JKtimer class
	Backwards compatibility
	Grid class
	Wavefunction class
	Lanczos method classes
	Other improvements

	Split-step Crank-Nicolson propagator
	Boundary conditions
	Imaginary absorbing potential
	Crank-Nicolson propagator

	Lanczos method and ``Predictor-Corrector'' step
	Implementation of Lanczos method
	Theoretical background of the Lanczos method
	Matrix of the Hamiltonian for the Kohn-Sham-equations
	Algorithm and implementation details
	Adaptive time stepping and Padé approximation

	Introduction of a ``Predictor-Corrector'' step

	Numerical results
	Computation time and discretization parameters
	Computation time of algorithm parts
	C-N propagator
	Lanczos method

	Imaginary time propagation
	Hydrogen-like atoms
	Many-electron atoms
	Random initializations

	Real time propagation
	Hydrogen-like atoms
	Many-electron atoms
	Comparison to Lanczos method

	Conserved quantities
	Norm conservation
	Energy conservation

	Time reversibility

	Conclusions
	Theory and Documentation
	Front-end
	Improvements and optimizations
	Numerical properties
	Outlook

	Readme
	C++ code-lets and XML parameter files
	The default parameter file
	XML parsing source code examples
	Parsing a double precision number parameter
	Parsing a boolean parameter with default value
	Parsing a string parameter
	Parsing an array of integer parameters

	Lanczos method source code parts
	Adaptive step size
	Local error estimate

