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Abstract

In this thesis, interferometric distance measurements with chirped laser light from a

frequency-shifted feedback laser are demonstrated. With this method, the length mea-

surement process is converted into a frequency measurement process. Compared to other

length measurement principles such as triangulation or time-of-flight measurement, in-

terferometric methods usually have a better length resolution. With the full optical

bandwidth, a length resolution of 0.2mm was achieved. Thereby each peak in the radio-

frequency spectrum was resolved with only one test frequency. If a more time- and

hardware-consuming measurement process were used, in which each peak is resolved with

several test frequencies, the length resolution would be improved even further. Since this

principle provides a high length resolution for small-area electronic circuits, it is an ideal

candidate to build a sensor array for a three-dimensional camera.
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1. Introduction 1

1 Introduction

The development of three-dimensional (3D) cameras emerges rapidly because the field of

possible applications of such cameras increases significantly. The field ranges from low-

cost systems for gaming consoles to person tracking systems in public places, or to high

accuracy systems with detailed 3D models for scientific purposes.

The three basic methods to do distance measurement are triangulation, time-of-flight

measurement and interferometric measurement. In triangulation, the light source and the

camera have known positions and the distance can be determined by calculating the angle

between the lines light source - target and target - camera. An example for triangulation

would be the triangulation based range finder system [1]. Time-of-flight measurements

have higher accuracy. In this method, the time that it takes the light to travel from the

light source to the target and then to the camera is measured. By multiplying this time

with the speed of light, the distance can be calculated. Systems based on this principle are

reported in [2, 3, 4]. Interferometric distance measurement offers best length resolution.

Coherent laser light is sent to a target and the reflected light interferes with light from a

reference.

This thesis shall lay the foundation for developing a 3D sensor with a length resolution

of 0.25mm for distances up to 15m in real time. As a first step only one pixel, so regular

distance measurement, will be developed. But the focus must be on the development of a

system that requires very little hardware so that it can be scaled to a multi-pixel system

easily.

There are different interferometric methods [5, 6]. This thesis will focus on the interfero-

metric principle where chirped light from frequency-shifted feedback (FSF) lasers is used.

FSF lasers are lasers that have a frequency shifting component in the cavity. Hence, the

light gets a frequency shift each round-trip. The development of the FSF lasers and their

theory started in the 1990s [7, 8, 9]. Different operation regimes and self mode-locking

were discovered [10, 11, 12]. Nakamura et al. used a heterodyne beat to perform optical

frequency domain ranging [13, 14]. Nakamura et al. also proposed the moving comb

model [15] to describe the beat signal in dependence of the distance to measure. Detailed

calculations of the coherence of FSF lasers were made by Yatsenko et al. [16].

The measurement technique with unseeded lasers has the disadvantage of a very low

signal-to-noise ratio (SNR). For completeness sake, a possible solution on how to in-

crease the SNR with a seed laser will be mentioned briefly, although this thesis only

focuses on unseeded FSF lasers. Yatsenko et al. proposed a mathematical description of

a seeded FSF laser for distance measurement with higher SNR [17, 18]. The systems with

a phase-modulated seed laser show the best SNR and can be implemented using fiber

lasers [19, 20, 21]. A nice overview can be found in [16].

In Chapter 2, the theoretical background of the measurement process is discussed. In
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the beginning, the focus is to explain why there is a beat signal corresponding to the

length to measure and how to generate the chirped light. Then a mathematical and a

graphical description of the measurement process are explained. With these models, a

possible realization is designed. It shows that a three-dimensional camera with a reso-

lution of 0.25mm and a frame rate suitable for real-time video can be realized with this

measurement principle.

Chapter 3 describes how the laser was built. In the beginning of the assembly, there was

not sufficient gain and so the gain had to be increased. In the end, there are a couple of

pictures of the working laser system.

The measurement results of the laser system are shown in Chapter 4. With the simple

electrical measurement principle of resolving each peak in the radio-frequency (RF) spec-

trum with just one frequency, the resolution was 0.2mm. But when each peak is resolved

with more than one frequency, a (much) higher resolution is possible. Since future mea-

surements will require a smaller optical bandwidth, laser line filters were inserted into the

cavity to reduce the bandwidth. The implications of measurement with a smaller optical

bandwidth are discussed in detail.

In the appendix, there are the detailed calculation of the mathematical model and the

calculations for the stability of the laser cavity.
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2 Theoretical Background

2.1 Principle of distance measurement with chirped laser light

The goal of this section is to explain how one can measure a distance with chirped laser

light. First, there has to be a definition of chirped laser light. In this context, chirped laser

light is a coherent light whose frequency increases (or decreases) with time. In general, it

is the time dependence of the instantaneous frequency. This does not imply a statement

whether this light has a very narrow spectrum or a broad spectrum. The representation

of the very narrow spectrum is easier to display, thus the laser light will be displayed as

a line in the spectrum (if not stated otherwise). One has to keep in mind that this does

not mean that it cannot also have a broad spectrum.

L M
ir

ro
r

Mirror

Chirped

Light Source

Detector

Beam

Splitter

Reference

Arm

Arm for

Measurement

Figure 2.1.: Michelson interferometer

Figure 2.1 shows a Michelson interferometer. There the chirped light is sent to a beam

splitter which splits the light into two arms. The first arm, the reference arm, has a

known length and will always have a mirror at the end. The second arm, the arm for

measurement, contains the length that shall be measured. The length that will be mea-

sured is the difference of the lengths of both arms. In this thesis, a mirror will always be

at the end of this arm. When building an actual device to measure distances (outside a

laboratory), there will be the target instead of the mirror. The light that travels through
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the measurement arm is symbolized with orange lines and the light through the reference

with blue lines.

One wants to maximize the power from the measurement arm at the detector, assuming

that the power from the reference arm will always be high enough, since there will always

be a mirror. If the beam splitter has a reflection of R, the power of the measurement arm

will be proportional to (1 − R)R, because the light has to be transmitted first and then

reflected. This term has to be maximized.

d ((1−R)R)

dR
= 1− 2R = 0

→ R =
1

2
(2.1)

Reference

Arm
Arm for

Measurement

Time   t

Frequencies at

the Detector

f

Δf

Figure 2.2.: Beat Frequency in a Michelson Interferometer

Hence a 50:50 beam splitter transmits the most power from the measurement arm to the

detector. If one assumes the light source creates light with a positive chirp (frequency

increases with time), the measured signal at the detector would look something as shown

in Figure 2.2. Since the reference arm is shorter, its light will arrive before the light from

the other arm does. This time delay will cause a heterodyne beat frequency between the

electric fields of the two arms. This frequency is proportional to path difference between

the two arms. So by measuring this beat frequency, one will also measure the path differ-

ence between the two arms. The length of the reference arm is known. Thus the length

of the measurement arm can be calculated easily.
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2.2 Generation of chirped laser light

As mentioned in the introduction, this thesis will focus on frequency-shifted feedback

(FSF) lasers. A frequency shifted feedback laser is a laser that contains an element in

the cavity that shifts the frequency. Therefore, there is no feedback of a frequency to

itself after one round-trip and so no longitudinal mode can form inside the cavity. Since

the laser has no modes, its spectrum is completely continuous as Nakamura et al. [12]

demonstrated. The lasing starts at the point in the spectrum where noise is amplified and

gets then frequency-shifted with each round-trip.

An acousto-optic modulator (AOM), more exactly an acousto-optic frequency-shifter

(AOFS) which is optimized for frequency-shifting, serves as the devices inside the laser

cavity that shifts the frequency. What an AOFS does, is that the optical wave, the

laser light, gets diffracted at the acoustic wave created in the device. For visible and

near-infrared (NIR) light, the AOM-crystal is usually a glass such as SiO2 or TeO2. The

physical description of this mixing is that the k-vectors of both waves add up and form

a new wave. Since the k-vector is proportional to the frequency, this corresponds to an

addition or a subtraction of the frequencies. Whether there is a frequency up-shift or

down-shift (addition or subtraction) depends on the direction of the optic wave with re-

spect to the acoustic wave. Principally, the light wave is always nearly perpendicular to

the acoustic wave. If a part of the optic wave has the same direction as the acoustic wave,

the resulting light wave will have a lower frequency (frequency down-shift). If a part of

the optic wave has the opposite direction as the acoustic wave, the resulting light wave

will have a higher frequency (frequency up-shift). That can be seen in Figure 2.3.

k (f )A AOM
k (f )A AOM

k
(f )

O,1
in

k
(f

= f )

O,1
out

in

k
(f = f - f )

O,2
out

in
AOM

k
(f )

O,1

in

k
(f

= f )

O,1

out

in

k
(f

= f
+ f

)

O,2
out

in

AOM

Up-Shift Down-Shift

Figure 2.3.: Frequency up-shift and down-shift due to an AOFS

There are two types of AOFS, one that has a standing acoustic wave in it and one that

has a traveling acoustic wave in it. A standing wave can be interpreted as two waves

traveling in opposite direction. Hence with a standing wave AOFS, parts of the resulting

wave will be up-shifted and other parts of the resulting wave will be down-shifted. Since

the FSF laser requires either a frequency up-shift or down-shift but not both, one has to
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choose a traveling wave AOFS.

In a normal laser, there is always the boundary condition that the round-trip length of the

laser cavity is always an integer multiple of the wavelengths in the cavity. This condition

does not apply to FSF lasers because the light in the cavity will be frequency-shifted

each round-trip. So the light of one specific frequency will not give feedback to itself.

It will only influence the neighboring shifted frequency. This leads to the behavior that

modes cannot form in the cavity and the spectrum is completely continuous, as already

mentioned. The other condition of normal lasers that the gain has to exceed the losses,

of course, applies to FSF lasers as well.

One possibility to build an FSF laser is using a linear cavity. The principle setup can be

seen in Figure 2.4.

The lasing medium provides the gain and the AOFS provides the frequency shift. In

M
ir

ro
r

M
ir

ro
r

AOFS

Lasing medium

Output

Figure 2.4.: FSF laser in a linear cavity setup

this setup, the light passes through the AOFS twice each round-trip. Thus the frequency

shift per round-trip is two times the AOM frequency. The undiffracted beam (0th order

diffraction) will exit the cavity and will therefore contribute to the losses. Hence, there are

two beams that can be used as output beams. The light will also pass twice through the

lasing medium and thereby the lasing medium has to provide enough gain to compensate

for all the losses.

Another possibility to build an FSF laser is with a ring cavity. This scheme is shown in

Figure 2.5. Here the light passes only once per round-trip through the AOFS and the

Figure 2.5.: FSF laser in a ring cavity setup

lasing medium. Therefore the frequency shift per round-trip corresponds to the AOM
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frequency. In this setup, the light can travel in both directions. Thus there are again

two possible output beams. If one inserts a Faraday isolator into the cavity, the light

will only be able to travel in one direction and there will only be one output beam. The

disadvantage of the setup with a Faraday isolator is that the threshold power will not drop

but (slightly) increase because of the (small) losses introduced into the cavity. To further

explain this behavior, if there is no lasing, fluorescence will be sent in all directions and

only if enough light is reflected back to the crystal, the lasing will start. But after lasing

has started, the output power will increase faster with more pump power than without

the isolator, because the main energy is only consumed by light in one direction.

2.3 Mathematical description of the system

2.3.1 On mathematical description of the system

In [16], Yatsenko et al. show that in the spectrum, there is something like a source

that produces one single frequency with a constantly varying phase, except for stochastic

changes in this phase. This frequency is shifted after each round-trip and thus behaves

similar to a comb. To get a continuous spectrum, one can image that there are peaks of

other combs in between two comb peaks. The combination of all these combs then forms

the continuous spectrum of the FSF laser.

As an approximation for this system, one can use the moving comb model introduced by

In
te

ns
ity

Frequency

movement with time

Figure 2.6.: Scheme of moving comb model

Nakamura et al. [15]. This model assumes that a comb of frequencies separated by the

frequency shift per round-trip experiences a continuous frequency shift in time. Therefore

the spectrum of the comb will move with time, see Figure 2.6. This is only an approxima-

tion because the chirp in an FSF laser is not continuous but discrete, and the spectrum of

an unseeded FSF laser is continuous but does not consist of a discrete comb. It is math-

ematically easy to describe and delivers good theoretical results corresponding nicely to
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measured results.

2.3.2 Definitions

The chirp rate is constant. The frequency increases by the AOM frequency fAOM each

round-trip (round-trip time TR) in a ring cavity. In a linear cavity, it increases by 2fAOM

each round-trip. The chirp rate � can be defined as � = fAOM

TR
for a linear cavity or

� = 2 fAOM

TR
for a ring cavity. In the following, only a ring cavity will be calculated.

Hence,

� =
fAOM

TR

. (2.2)

For the calculations of the linear cavity refer to the appendix A.1.2. With the chirp, one

can write the phase 'q of mode-index q as

'q (t) =
c0
�

(

t−
q

fAOM

)

+
�

2

(

t−
q

fAOM

)2

+ �q (2.3)

where c0
�
corresponds to starting frequency and �q a constant phase offset for each round-

trip. Accordingly, � is the starting wavelength. And the
(

t− q
fAOM

)

terms guarantee

that the comb peaks are separated by fAOM . Hence, the frequency fq of each mode can

be calculated easily as

fq (t) =
d'q (t)

dt
=

c0
�

+ �

(

t−
q

fAOM

)

. (2.4)

Figure 2.7 shows the linear frequency chirp of the modes over time, where n and p are

integer numbers.

The electric field consists of N modes and can be written as

E (t) =
N
∑

q=1

Eq (t) ei 2�'q(t) (2.5)

where Eq (t) is the amplitude of the mode and is always real. Usually people define a

Gaussian spectral envelope which has to be modeled into this term. The Gaussian en-

velope makes things like a Fourier transform easier and it corresponds nicely with the

measured spectrum. In the following, the shape of the amplitude envelope does not mat-

ter, so the term Eq (t) will not be further defined. It will just be treated as any (arbitrary)

amplitude.

The intensity of the FSF laser can be calculated as

I (t) =
nc0�0
2
∣E (t)∣2 . (2.6)

One of the arms of the Michelson interferometer is longer by L than the other arm. This

fact will result in a time delay of 2L
c0

in one of the electric fields. The intensity after the
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Figure 2.7.: Evolution of frequencies over time in the moving comb model

Michelson interferometer is then

I (t) ∝

∣

∣

∣

∣

� E (t) + � E

(

t−
2L

c0

)∣

∣

∣

∣

2

= �2 ∣E (t)∣2 + ��

∣

∣

∣

∣

E∗ (t) E

(

t−
2L

c0

)

+ E (t) E∗

(

t−
2L

c0

)∣

∣

∣

∣

+ �2
∣

∣

∣

∣

E

(

t−
2L

c0

)∣

∣

∣

∣

2

(2.7)

where � and � are the losses in the two arms.

2.3.3 Analytic results

For a detailed calculation, refer to the appendix A.1.1. At first, the three terms from Eq.

(2.7) are calculated separately. The intensity can then be written as

I(t) ∝ I1(t) + I2(t) + I3(t) . (2.8)

When calculating the first term, one has to remember that the multiplication of a sum

(2.5) with a sum can be written as a sum of sums. Therefore one can define a beat index

p. This beat index just denotes what harmonic of the beat frequencies one refers to. The

result of the first term can be seen in the following equations:

I1(t) = �2 ∣E (t)∣2 = �2
N−1
∑

p=0

N−p
∑

q=1

Eq (t) Eq+p (t) cos (2� (fbeat,1(q, p) t+ 'beat,1(q, p)))

(2.9)

fbeat,1(q, p) =
p

TR

(2.10)

'beat,1(q, p) =
c0
�

p

fAOM

−
�

2

2qp+ p2

(fAOM)2
+ �q − �q+p (2.11)
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The first term is the autocorrelation of the light from the reference arm and so the result

is not surprising. In Figure 2.7, one can see that the modes are separated by 1
TR

. Thus

the resulting beat frequencies are an integer multiple of 1
TR

. The phases have to be an

integer multiple of 2� in order to get constructive interference of all the modes. But that

is, of course, valid for all terms.

For the second term, one can use the same scheme to calculate the beat frequencies.

I2(t) = ��

∣

∣

∣

∣

E∗ (t) E

(

t−
2L

c0

)

+ E (t) E∗

(

t−
2L

c0

)∣

∣

∣

∣

=

= ��

(

N−1
∑

p=0

N−p
∑

q=1

Eq (t) Eq+p

(

t−
2L

c0

)

cos (2� (fbeat,2a(q, p) t+ 'beat,2a(q, p)))

+
N−1
∑

p=0

N−p
∑

q=1

Eq+p (t) Eq

(

t−
2L

c0

)

cos (2� (fbeat,2b(q, p) t+ 'beat,2b(q, p)))

)

(2.12)

fbeat,2a(q, p) =
1

TR

(

p+
2 fAOM

c0
L

)

(2.13)

'beat,2a(q, p) =
2L

�
+

c0
�

p

fAOM

−
�

2

(

(

2L

c0

)2

+
4L

c0

q + p

fAOM

+
2qp+ p2

(fAOM)2

)

+ �q − �q+p

(2.14)

fbeat,2b(q, p) =
1

TR

(

p−
2 fAOM

c0
L

)

(2.15)

'beat,2b(q, p) =
�

2

(

(

2L

c0

)2

+
4L

c0

q + p

fAOM

−
2qp+ p2

(fAOM)2

)

−
2L

�
+

c0
�

p

fAOM

+ �q − �q+p

(2.16)

The results for the beat frequencies show a dependence on the length difference L of the

two arms because the second term is a correlation of the light from both arms. There

is one term that shows length dependence proportional to L, Eq. (2.13), and another

term with a length dependence proportional to −L, Eq. (2.15). Those are the terms that

are most interesting because they contain information on the length L that one wants to

measure.

There is an ambiguity because of the constant offset from the beat index. The unambigu-

ous range L′ is defined as

L′ =
c0

2 fAOM

. (2.17)

That means it is not possible distinguish between L1 = L0 and L2 = L0 + nL′, where n

is an integer. The reason is that L2 would correspond to L1 with a different beat index

(p2 = p1 +n). There is one other thing that one has to keep in mind. The beat index p is

always an integer from −(N−1) to N−1. In the first term I1(t) (and the third term I3(t)),

there is a symmetry and the sums
∑N−1

p=0 and
∑0

p=−(N−1) were transformed to 2
∑N−1

p=0 .

In the second term I2(t), the length L causes an offset for p if L < 0 or L >= L′. Hence,

the exact range of p depends on L. In this thesis, we will restrict ourselves to 0 ≤ L < L′
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without limiting the generality. If one wants to calculate different lengths, one only has

to adapt the beat index p accordingly.

Because of the term p
TR

with the mode index p, there is an ambiguity in frequency,

too. This measurement principle with ambiguity in frequency and length is also called

optical frequency domain ranging. A big advantage of this principle is the constant length

resolution. That means the resolution is constant no matter if one measures 1m or 10km.

The third term is similar to the first one, and the results are:

I3(t) = �2
∣

∣

∣

∣

E

(

t−
2L

c0

)∣

∣

∣

∣

2

= �2
N−1
∑

p=0

N−p
∑

q=1

Eq

(

t−
2L

c0

)

Eq+p

(

t−
2L

c0

)

⋅

⋅ cos (2� (fbeat,3(q, p) t+ 'beat,3(q, p))) (2.18)

fbeat,3(q, p) =
p

TR

(2.19)

'beat,3(q, p) =
c0
�

p

fAOM

−
�

2

(

p

fAOM

4L

c0
+

2qp+ p2

(fAOM)2

)

+ �q − �q+p (2.20)

The third term is again an autocorrelation. In this case, it is the autocorrelation of the

light from the measurement arm. The result is basically the same as the first term, except

for a slightly different phase term due to the different length.

2.3.4 Graphical solution

n-2 n-1 n n+1 n+2

p-2

p-1

p

p+1

p+2

Fr
eq

ue
nc

y 
f /

 1
/T

R

Time t / 1/f
AOM

Figure 2.8.: Resulting frequencies after the Michelson interferometer

Of course, it is necessary to have an exact mathematical solution for the beat frequencies.

However, there is an easy-to-understand graphical solution. As can be seen in Figure 2.7,

the modes are separated by 1
TR

in the frequency domain and by 1
fAOM

in the time domain.

If this light is sent into a Michelson interferometer and the two arms have different length,

the result will be that the same frequencies appear a second time but only shifted in time,
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corresponding to the time difference, as can be seen in Figure 2.8.

The same colors as in Figure 2.1 were used, where blue matches with the reference arm

and orange with the measurement arm. In this figure, n and p are arbitrary integer

numbers. The same issue is handled in Figure 2.9 which is a zoom of the last figure. The

beat frequencies are labeled this time, though.

fbeat,1(p = 0) and fbeat,3(p = 0) are the autocorrelations and are represented with the

n-1 n n+1

p-1

p

p+1

f
beat,2b

(p=2)

f
beat,2a

(p=2)

f
beat,3

(p=2)

f
beat,1

(p=2)

f
beat,2a

(p=1)

f
beat,2b

(p=1)

f
beat,3

(p=1)Fr
eq

ue
nc

y 
f /

 1
/T

R

Time t / 1/f
AOM

f
beat,1

(p=1)

f
beat,2a

(p=1)

f
beat,2b

(p=1)

f
beat,3

(p=1)f
beat,1

(p=1)

Figure 2.9.: Zoom of resulting frequencies after the Michelson interferometer with beat fre-

quencies

color red. As the distance L increases the position of the orange lines will move to the

right. Therefore, fbeat,2a(p = 0) is from a blue line to the next orange line below and it

shows the length dependence of this beat frequency. One can also see the ambiguity quite

clearly. If the orange lines move further to the right, they will collide with the neighboring

blue lines. So it cannot be determined to what blue line an orange line belongs.

fbeat,1(p = 1) and fbeat,3(p = 1) are the correlation of the neighboring lines with the same

color. fbeat,2b(p = 1) is the opposite of fbeat,2a(p = 0) because it has a negative length

dependence. Together they sum up to fbeat,2a(p = 0) + fbeat,2b(p = 1) = fbeat,1(p = 0) =

fbeat,3(p = 0). In the figure, the second harmonics can be seen too. In theory, one can

apply this pattern and easily show higher harmonics, too.

Figure 2.10 shows the resulting beat frequencies in dependence of the distance L. The

frequencies are scaled with 1
TR

, and the length is scaled by the factor L′. One can easily

see the ambiguities in length and in frequency. The same frequencies repeat every L′ in

length, but they also repeat every 1
TR

in the frequency domain (hence, optical frequency

domain ranging).

Since the green and the blue lines are not independent of each other, the ambiguity

is even stronger. If we take just the region from 0 to 1
TR

in the frequency domain and

from 0 to L′ in length, as can be seen in Figure 2.11. Let us consider, we measure the

frequency F0 which on the green line corresponds to the length L0. But we can only
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Figure 2.10.: Resulting beat frequencies versus distance L
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Figure 2.11.: Zoom of resulting beat frequencies versus distance L

measure frequencies, so we do not know if the frequency corresponds to the green or the

blue line. Therefore we might also measure the distance L′ − L0. And if we measure F0,

we will always measure the frequency 1
TR
−F0 too. So we can split our region 0 to 1

TR
and

0 to L′ in four quadrants, each has half the frequency range and half the length of the

original region. So the actual unambiguous range is 1
2TR

in the frequency domain and L′

2

in length.

We have to get rid of the ambiguity too in order to measure absolute distances. We could

try to measure different frequencies for the same lengths by changing the cavity. But

that would require a very complicated laser. Hence, it is not a good option. Another

option would be to change the AOM-frequency. That results in different L′s for different

frequencies which can be seen in Figure 2.12. Then the ambiguity can be resolved by

comparing all possible lengths due to ambiguity of the first AOM-frequency with all

possible lengths due to ambiguity of the second AOM-frequency. Only in one length



2.4. Designing the laser system 14

they will match and that is the correct length. That assumes, of course, that the two

AOM-frequencies are chosen wisely (close to each other). For example, doubling the

AOM-frequency will help only very little to resolve the ambiguity.
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Figure 2.12.: Getting rid of the ambiguity by changing the AOM frequency

2.4 Designing the laser system

Before we can start designing the actual laser system1, we have to think about what we

want to build. The aim is building a laser system that allows to build a 3D-camera with a

resolution of 0.25mm and real-time video frame rate. The distance range is 0 to 15m. The

hardware requirements for each pixel shall be as small as possible. The circuits with the

smallest hardware requirements are comparators. These compare the measured frequency

to a reference frequency and decide if they are the same. The highest frequencies shall

not be too high, and the wavelength shall be detectable with standard silicon photodiodes.

The first decision to make is the type of laser. A titanium:sapphire (Ti:Sa) laser was

chosen because Ti:Sa lasers have a huge bandwidth and are detectable with silicon pho-

todiodes.

The highest frequency to measure was set to 100MHz. And since the unambiguous range

in frequency is 1
2TR

, one could build a laser with 1
TR

= 200MHz. This laser would require

to measure very low frequencies and frequencies over more than eight orders of magnitude,

though. That is not desired. Hence, we build a laser with 1
TR

= 100MHz (TR = 10ns).

Then we could measure either frequencies from 0 to 50MHz, or from 50 to 100MHz. The

latter allows doing the required frequency measurement within just one octave and the

frequencies are not so low that their measurement would take long.

1In this chapter, we will only estimate a feasible system. Therefore small error regarding powers of 2

are neglected, e.g., 1000 ≈ 1024.
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The next decision is the AOFS. AOFS are available from about 10MHz to a couple of

100MHz. The higher the AOFS frequency is, the shorter the unambiguous range in length

is. A shorter unambiguous range requires fewer comparisons with reference frequencies for

the same length resolution and that corresponds to a higher frame rate. A disadvantage

of a shorter unambiguous range and fewer frequency steps is that the ambiguity can only

be resolved for shorter lengths. The longest distance is 15m and therefore rather short,

so that should not cause any problems. Hence, a high AOFS frequency of 300MHz was

chosen. That corresponds to L′ = 0.5m and the unambiguous range L′

2
= 0.25m.

The measured frequency can be assumed to be monochromatic. In order to decide whether

the frequency was measured correctly or not, the frequency has to be compared with a

frequency band. Since the resolution shall be 0.25mm, we have to divide the unambiguous

range in 1024 frequency bands.

When comparing the frequency with the frequency bands, using non-overlapping fre-

Figure 2.13.: Measuring only half as many frequencies through overlap

quency bands (Figure 2.13 a) has disadvantages. If the frequency is just at the border of

two frequency bands, the frequency might not be detected or might be detected for both

neighboring frequency bands. To solve this problem, one can use overlapping frequencies

(Figure 2.13 b). In this scheme, the frequency bands overlap. Their width is thrice as

big and the distance to the neighbor is twice as big. All frequency bands together cover

the whole range and the frequency to measure will definitely be detected. Therefore, only

small errors are possible, when the frequency is at the edge of one of the frequency bands.

Since the distance to the neighbor is twice as big, only half as many frequency bands and

thus comparisons are necessary. Hence, one measurement cycle will be faster.

The distance range Li corresponds to the purple frequency band (only Fi is detected).

The neighbor Li+1/2 is associated with the overlap of the purple and the blue regions (Fi

and Fi+1 are detected). These two patterns alternate for all distance ranges, as can be

seen also for Li+1 (blue region) and Li+3/2 (blue and green region). A disadvantage of this

scheme is that it requires slightly more hardware.

When applying this scheme we will need 512 frequency bands, and thus comparisons. The

whole frequency range was from 50 to 100MHz. Therefore, one frequency band will have
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a width of 50MHz
512

≈ 100kHz.

The next thing we need to estimate is the required optical bandwidth. In general, the

more optical bandwidth there is, the smaller the bandwidth of the beat signal will be.

That fact can be seen as that more lines interfere with each other and the beat will be

defined more precisely. So, we want as much bandwidth as possible.

There is one downside, though. In the laser system discussed in this thesis, noise is mixed

with noise and the resulting beat signal contains the length information. Obviously, the

signal to noise ratio (SNR) will be very low. There are ways to increase the SNR with a

seed laser and phase-modulation, as proposed by Yatsenko et al. [18]. But for this scheme,

the light for each measurement has to be created. Therefore after the generation one has

to wait for the light to cover the whole bandwidth. So, the more bandwidth one uses, the

longer one will have to wait and that will result in a slower measurement process. In this

thesis, we will still just treat the unseeded laser system. But since the final system will

contain a seed laser with phase-modulation, too, we have to take that in consideration

when estimating the resulting frame rate.

Δfbeat =
2

TRN ′
(2.21)

Eq. (2.21) corresponds to Eq. (37) of [18]. TRN
′ corresponds to the Gaussian width,

assuming Gaussian spectral amplitude distribution. We can approximate them as cavity

round-trip time times number of round-trips in the cavity. Our beat signal must be

smaller than 100kHz with a repetition (cavity) frequency of 100MHz. Therefore, we will

need about 2000 round-trips in the cavity.2

If we assume an AOM frequency of 300MHz and 2000 round-trips, that results in an optical

bandwidth of 600GHz. At a wavelength of 780nm, a bandwidth of 600GHz corresponds to

about 1.2nm. But 1000 round-trips will probably already be enough. That would result

in a bandwidth of 300GHz or 0.6nm (at 780nm).

In order to calculate how long a measurement cycle will last, we need to know how long

the electrical measurement will take. We have to distinguish between frequencies with a

resolution of 100kHz. Let us imagine, we want to discriminate 68.2MHz from 68.3MHz.

One could count the number of cycles of the frequency to measure. During a time of 1
100kHz

= 10�s, one would count either 682 or 683. Hence one can distinguish the frequencies. But

if one miscounts because of noise on the signal, another (wrong) signal will be detected.

Therefore, it is smart to count for a longer duration. For example, if the time is set to

20�s, one has to miscount at least twice to detect another signal. Note: The durations

mentioned here are all just theoretical and can only be seen as estimates. When building

the actual circuits, one has to measure the exact durations depending on the noise level.

If we build the laser for 1000 round-trips of light in the cavity, we have to wait for 10�s

before we can start the electrical measurement. After another 10�s, the measurement cycle

for one frequency is completed. Thus, checking one distance (for one AOM frequency)

2If we use a narrow bandwidth seed, the bandwidth of the beat will decrease. Then, the beat signal can

be treated as being monochromatic, as previously assumed.
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takes 20�s. We have to check 512 frequencies in the unambiguous range. After that we

can change the AOM frequency and recheck the 512 frequencies in order to resolve the

ambiguity. Over all, we have to check 1024 frequencies which will take about 20ms. That

results in a frame rate of the camera of about 50 frames per second. If we build the

laser system more conservatively for 2000 round-trips of light in the cavity and electrical

measurement duration of 20�s, measuring the 1024 frequencies will take 40ms which will

result in a frame rate of 25 frames per second.
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3 FSF Laser

3.1 Equipment

Most of the equipment needed was available at the Institute of Photonics. As pump laser,

we used a Verdi-V5 from Coherent. We had two different Ti:Sa crystals. The first was

2.0mm long and the second 2.9mm. High reflecting mirrors for 800nm were available.

The only thing that had to be ordered was the AOFS. The MT300-B20A0.5-800 from

the company AA Opto-Electronic with parameters listed below was chosen.

∙ 700-950nm, linear polarization

∙ optical transmission: >98%

∙ carrier frequency 300MHz ± 10MHz

∙ aperture 0.5x2mm2

∙ recommended beam diameter 0.3mm

∙ rise time 160ns/mm

∙ maximum RF power 1.5W

∙ diffraction efficiency

– >80% (typically 85%) at 300MHz

– >70% (typically 75%) in the range from 290 to 310MHz

3.2 Measuring the AOFS efficiency

The efficiency of the AOFS has a big impact on the FSF laser. The higher the efficiency

is, the less gain is needed to get lasing. That implies of course, for an AOFS with poor

efficiency one will need very high gain to get lasing. Therefore we measured the efficiency

of the AOFS to get an idea of how much gain we will need.

The efficiency of an AOFS is defined as

Efficiency in % = 100
Optical power in 1st order diffraction with RF-power

Optical power in 0tℎ order diffraction without RF-power
.

In order to measure the efficiency, a laser had to be built. The setup can be seen in Figure

3.1. Already using the Ti:Sa crystal in this setup has the advantage that the wavelength
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Figure 3.1.: Setup to measure the AOFS efficiency

is (approximately) the same as the wavelength that will be produced by the FSF laser.

At first, the transmission (”Optical power in 0tℎ order diffraction without RF-power”)

was measured. Then the AOFS was turned on and the optical power in the 1st order

diffraction was measured.

The highest measured efficiency was at an RF power of 1.5W and was 67%, as can be

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

10

20

30

40

50

60

70

80

Ef
fic

ie
nc

y 
/ 

%

RF Power / W

Figure 3.2.: Measured AOFS efficiency in dependence of the RF power

seen in Figure 3.2. That means that we will lose about one third of all photons each

round-trip at the AOFS. Unfortunately, we could not reach the 80% that were promised

by AA Opto-Electronic. One can easily extrapolate from the graph that if we were to turn

up the RF power to more than 1.5W, we would observe higher efficiencies. But higher

powers could damage the transducer in the AOFS and thus we are limited to 67%.

Note: In future systems, one should think about the required frequency. The lower the

attenuation of the acoustic wave in the AOFS is, the higher the AOFS efficiency will

be. The attenuation of an acoustic wave in a solid is proportional to the square of the

frequency, as described in Eq. (3.83) of [23]. So the higher the frequency is, the higher the

attenuation is and therefore the lower the efficiency is. There are AOFSs with efficiencies
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higher than 90% available at about 100MHz. Hence, less gain will be needed with such

an AOFS, and the laser threshold will drop.

3.3 Too little gain

When building a laser and if one does not know if there is enough gain to reach the lasing

threshold, there is the problem that if the laser is not lasing, it will be tough to find

the problem. One could align everything perfectly but if the gain does not suffice, there

will be no lasing. Or one could have misaligned something, so there is no lasing. To

solve this problem, one can build an auxiliary cavity that has to be similar to the FSF

laser cavity. This means that the stability zones have to overlap and one could use iris

apertures to match the beam of the FSF laser with the one of the auxiliary cavity. The

principle alignment of the auxiliary cavity built for the FSF laser can be seen in Figure 3.3.

The Ti:Sa crystal is aligned under Brewster angle and thus the laser will produce light

Length / mm

CM1 - CM2 50

CM2 - M1 42

M1 - CM3 1315

CM3 - CM4 430

CM4 - M2 420

M2 - M3 235

M3 - M4 120

M4 - M5 800

M5 - M6 40

M6 - CM1 415

Sum 3867

Figure 3.3.: Auxiliary cavity to align the beam path

with horizontal polarization. The two curved mirrors around the crystal (CM1, CM2)

have both a focal length of 25mm and are transparent for the pump light at 532nm. The

aperture in the AOFS is rather small and in order to reach high AOFS efficiencies, a small

beam diameter is required. Therefore the beam has to be focused into the AOFS. The

focal length of the curved mirrors CM3 and CM4 is 200mm. The 2.9mm Ti:Sa crystal

was chosen. The crystal of the AOFS is made of tellurium dioxide and is 30mm thick.

In the next step, one must check if the laser is actually stable. Therefore, we can have a

look at the stability zones of Figure 3.4.

Both the crystal and the AOFS have to be close to the focal point of the curved mirrors.

Hence, the distance Crystal-CM2 was chosen as 24.3mm and the distance AOFS-CM4

as 200mm. The other two lengths in the focal regions (CM1-Crystal, CM3-AOFS) were

varied. The stability for every variation of the two lengths was calculated with the ABCD-

matrix formalism described in Chapter A.2.

One can see the two stability zones. Since we want to focus the beam into the Ti:Sa and

the AOFS crystal, we need to choose lengths that are close to the focal lengths of the

curved mirrors. The dependence on the length CM3-AOFS is weaker than that of CM1-

Crystal because the focal length of CM3 is longer than that of CM1. Therefore, we set the
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Figure 3.4.: Stability zones of the laser

distance CM3-AOFS to 200mm and look at the stability in dependence of CM1-Crystal,

as can be seen in Figure 3.5.

Theoretically, the laser will be stable if the calculated stability is greater than zero. In
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Figure 3.5.: Stability of the laser in dependence of CM1-Crystal

order to get a stable laser cavity, practice showed that the stability with this calculation

should be greater than 0.7, though. The stability range is bigger than 0.5mm and thus

not too small. Hence, it is possible to build the laser.

After the ring cavity was built, the distances between the curved mirrors and the crystals
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(Ti:Sa, AOFS) were optimized. The calculations of the stability zones showed that the

distances between the AOFS and its curved mirrors can be slightly increased without

significantly changing the laser stability. Hence, it was possible to change the alignment

from a regular ring laser to an FSF laser by only moving the AOFS and tilting its two

curved mirrors. Additionally, a Faraday isolator (FI) was inserted into the cavity. Since

the two polarizers of the FI only introduced loss, we decided to use the Ti:Sa crystal

oriented under Brewster angle as the polarizer. The Brewster angle favors horizontal

polarization because the losses for vertical polarization are significantly higher. Hence,

the FI was stripped of its polarizers. The so obtained setup can be seen in Figure 3.6.

Unfortunately, due to the low AOFS diffraction efficiency the gain did not suffice to get

Figure 3.6.: Cavity of the FSF laser

lasing in our early experiments. In order to find ways to increase the gain, the absorption

of the Ti:Sa crystal was measured. Therefore, the optical power of the pump light was

measured in front of the crystal and after the crystal. The results can be seen in Figure

3.7.

Saturation of the crystal is not yet visible but the 3mm crystal absorbs significantly more
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Figure 3.7.: Pump-light absorption of the Ti:Sa crystals

than the 2.0mm crystal. Most Ti:Sa laser oscillators work with an absorption in the order
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of 70%. This fact would indicate that the 2.9mm crystal is the preferred choice.

The next interesting quantity is the pump profile in the crystal. To characterize the beam

profile, a CCD (Charge-Coupled Device) camera was mounted on a translation stage with

micrometer precision. The Ti:Sa crystal was then replaced by the camera which allows

measuring the beam profile. The result can be seen in Figure 3.8.

The beam is focused a Gaussian width 2w of about 40�m. It is obviously not possible
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Figure 3.8.: Beam profile of the pump mode at the position of the Ti:Sa crystal

to measure the beam profile of the laser mode, because when measuring in the cavity

there would be no lasing. Therefore, one can only numerically calculate the mode size

in the crystal. Numerical simulations of the beam profile showed a Gaussian width 2w

of about 20�m. The laser box was previously used for a femtosecond-pulse generation

and soft-aperture Kerr-lens mode locking requires a bigger the pump mode then would be

required for continuous-wave (CW) operation. That means for the CW FSF laser that if

the pump mode can be decreased in the crystal, the laser mode would stay the same but

would experience more gain. The easiest way to achieve a smaller pump mode is to use

bigger pump beam. If the beam is twice as big, the focal spot will be half as big.

Hence, the next step was to build a telescope to increase the pump beam diameter by a

factor of two. A concave lens with a focal length of -50mm and a convex lens with a focal

length of 100mm were used for the telescope. Since the 2.9mm crystal absorbs more light,

it used in the FSF laser. After the new parts were incorporated into the laser, it finally

lased.

The output of the FSF laser was collimated with a lens, as shown in Figure 3.6. The

collimated beam was then sent to the Michelson interferometer consisting of a beam

splitter and two high-reflecting mirrors. One of the mirrors was mounted on a translation

stage. A photodiode was placed at the output of the Michelson interferometer and the

RF-spectrum was measured.
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3.4 Photos of the laser

Figure 3.9.: Laser oscillator near the crystal

Figure 3.9 shows the FSF laser near the crystal. The output of the Verdi has to pass

a periscope to change the polarization from vertical to horizontal. Afterwards the light

passes through the mentioned telescope before it is focused into the crystal. Both curved

mirrors which can be seen in Figure 3.9 are transparent for 532nm (pump wavelength)

and therefore most of the transmitted pump light is not reflected into the cavity but stays

in the laser box where it is absorbed by a beam dump. The infrared beam of the FSF

laser leaves the laser box through the hole on the bottom of the picture and come back

through the other hole, close to the pump beam.

Outside the laser box, the exiting infrared beam is reflected so that it is parallel to the

entering beam and then it enters Figure 3.10 on the left side. First, it passes through

the FI before it gets focused into the AOFS. The first-order diffracted beam is reflected

back into the laser box and the zeroth-order diffracted beam is collimated with a lens

before entering the Michelson interferometer (purple line). The beam splitter (BS) splits

the beam. Both beams are reflected with high-reflecting mirror and get combined at the

other side of the BS. This combined beam is then directed to the photodiode (PD) where

the RF spectrum can be observed.
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Figure 3.10.: Laser and Michelson interferometer
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4 Measurement

This chapter focuses on measuring the optical properties of the laser described in the

previous chapter, the RF spectrum with the beat signal, and on measuring distances.

Additionally, two laser line filters1 were inserted into the cavity to force the FSF laser to

operate in a narrow wavelength range.

The optical properties of the laser line filters can be seen in Table 4.1. If a laser line

Transmission �C / nm FWHM / nm

Semrock LL01-780-12.5 > 97% 780 3

LOT Oriel LLF785-12.5 > 97% 785 2-3

Table 4.1.: Optical properties of the laser line filters

filter gets tilted, the transmission wavelength will decrease. The longest transmission

wavelength is achieved when the beam is perpendicular to the surface of the laser line

filter. Hence, the center wavelength of the FSF laser can be tuned by tilting the filter. It

is even possible to tilt both filters in a way that lasing is possible with both of them in

the cavity.

4.1 Optical properties
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Figure 4.1.: Optical output power in dependence of the pump power for various filters

In Figure 4.1, we can see the dependence of the output power from the pump power. A

Coherent Fieldmaster with a LM-10 HTD head was used for the power measurement. The

threshold without any filter is obviously the lowest. We can also see that the transmission

1Laser line filters are narrow bandpass filters with peak transmission greater than 95%.
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of the Semrock Filter is higher than that of the LOT Oriel Filter because the threshold

of the Semrock is significantly lower.

In Figure 4.2, we can see the normalized spectra of the FSF laser for various filters. A
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Figure 4.2.: Optical spectrum for various filters

Yokogawa AQ-6315A Optical Spectrum Analyzer was used to measure the optical spec-

trum. Of course, the spectrum without any filter is the broadest. The spectrum without

any laser line filter can be shifted by tilting the AOFS because there is a wavelength

dependence of the diffraction in the AOFS. So, when the AOFS gets tilted, another wave-

length will have optimal alignment in the cavity.

The laser line filters reduce the spectral bandwidth drastically. In the following chapter,

we will see what influence this bandwidth reduction has on the measured RF signal.

4.2 Measurement without a laser line filter

Figure 4.3 shows the normalized optical spectrum for various pump powers. The spectra,

measured with a resolution of 2pm, are not as smooth as the ones with a laser line

filters because without a laser line filter, the losses over the lasing range are similar and

the actual output power depends on the spectral gain of the Ti:Sa crystal. The central

wavelength shifts slightly to longer wavelengths for higher pump powers. The full width

half maximum (FWHM) stays nearly independent of the pump power and is about 3nm.

This width is defined by the gain and losses of the cavity. The central wavelength of the

peak can be tuned with the AOM because the diffraction angle of the light depends on

the wavelength. Hence, when tilting the AOM, another wavelength will be better aligned.

In Figure 2.8, the resulting beat frequencies were shown in dependence of the distance.

For one fixed distance, the spectrum has peaks every 1
TR

and in between two of those
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Figure 4.3.: Optical spectrum of the FSF laser without a laser line lilter

peaks, there are two peaks whose positions depend on the distance. The RF spectrum in

the laser setup was measured with a photodiode and the Rohde&Schwarz FSP - Spectrum

Analyzer 9kHz . . . 30 GHz (see 4.4). The measured spectrum matches the predicted
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Figure 4.4.: RF spectrum of the beat frequencies of the FSF laser without a laser line filter

from 0 to 500MHz

spectrum nicely. The spectrum repeats itself every 75-80MHz. The exact value will be

discussed later in this chapter. The peaks that correspond to the repetition rate ( 1
TR

) are

always the central peaks in the groups of these three peaks. The other two peaks are the

length-dependent beat signals.

Note: The spectrum analyzer has to operate at frequencies greater than 9kHz, and the

peak at 0Hz corresponds to the LO feedthrough. Additionally, a DC-blocker with a cut-off
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frequency of 10MHz was used. Thus, the absolute spectral value for frequencies below

10MHz is not correct as can be observed in the spectrum. Another important fact is that

the noise level of the analyzer depends on the frequency resolution. So, different noise

levels do not mean another setup, it is just another frequency resolution in the spectrum

analyzer. If the frequency resolution is in the order of the width of the peaks, as in Figure

4.4, the peak height will vary every sweep. With higher resolution, this problem vanishes.

In Chapter 2.3.4, it was discussed to use the frequency range from 1
2TR

to 1
TR

(= repetition
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Figure 4.5.: RF spectrum of the beat frequencies of the FSF laser without a laser line filter

from 68 to 86MHz

rate). In Figure 4.5, the spectrum near the repetition rate can be seen. The central peak

corresponds to the repetition rate. The left peak represents the green or blue line in

Figure 2.11 below the repetition rate and shows the length dependence. The right peak

also shows the length dependence but it is not in the discussed frequency range.

The peak that represents the repetition rate consists of two different contributions, as

can be seen in Figure 4.6. The first has a width of about 30kHz and is 25dB above noise

level. The second is a sharp resonance with a width of only a couple of kHz that is 65dB

above noise level. Hence, the repetition rate is 76.652MHz and that corresponds to a

round-trip time of 13.05ns. The cavity round-trip length

Lopt = c0TR = 3.911m (4.1)

matches the measured length of the resonator of 3.867m (Figure 3.3) nicely, considering

different refractive indices in the Ti:Sa crystal, the AOFS and the FI. The repetition rate

of about 76MHz implies that frequency steps of about 76kHz are required. With the

principle shown in Figure 2.13, a frequency resolution of about 38kHz can be reached
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Figure 4.6.: RF spectrum of the peak of the beat frequency corresponding to the repetition

rate of the FSF laser without a laser line filter

which corresponds to the desired accuracy of 0.25mm.

The peak that shows the length dependence of Figure 4.7 has a (total) width of about
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Figure 4.7.: RF spectrum of the length-dependent peak of the beat frequency of the FSF laser

without a laser line filter

30kHz and is about 25dB above noise level. Thus, a frequency resolution of 30kHz instead

of 38kHz would be possible. The smaller frequency resolution would result in a length
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resolution of about 0.2mm. When the micrometer screw was turned slightly, the change

in distance was always observed in a shift of the whole peak. The limiting factors for the

length resolution are the resolution of the RF spectrum analyzer and the noise on the

signal. That implies that it is theoretically possible to measure distances with a higher

accuracy. But this will be more time and hardware demanding because each peak has to

be resolved with multiple measurements instead of one single measurement.

In the setup, the reference arm had a length Lref of about 77cm and the measurement

arm Lm had a length of about 31cm. The length difference L = Lm − Lref is therefore

about -46cm. The interferometrically measured length

L = −
69.406MHz

76.652MHz
L′ = −0.90547

2.99792458 ⋅ 108m/s

2 ⋅ 300MHz
= −45.24cm (4.2)

is obviously more accurate than the measurement with a ruler.

4.2.1 Different pump powers

In this chapter, the influence of the pump power onto the measurement will be discussed.

Figure 4.8 shows the spectra of the beat signals from 0 to 500MHz which do not show
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Figure 4.8.: RF spectrum of the beat frequencies of the FSF laser without a laser line filter

from 0 to 500MHz for two different pump powers

any significant difference for different pump powers. Because of the lower output power

of the FSF laser, the beat signals are obviously weaker in magnitude.

A more detailed analysis of the first group of three peaks shows only a different magni-

tude but no other influence on the repetition rate peak or the beat signals containing the

length dependence, as can be seen in Figure 4.9.
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Figure 4.9.: RF spectrum of the beat frequencies of the FSF laser without a laser line filter

from 68 to 86MHz for two different pump powers

The length-dependent peak in Figure 4.10 exhibits only a lower magnitude for a lower

pump power.

The peak corresponding to the repetition rate in Figure 4.11 shows that, too, but it also
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Figure 4.10.: RF spectrum of the length-dependent peak of the beat frequency of the FSF

laser without a laser line filter for two different pump powers

shows no sharp resonant peak for the lower pump power. It is at present not yet clear

why the resonance vanishes but it might have something to do with the cavity length

fluctuations described by Yatsenko et al. [18]. In Figure 4 of [18], the influence of the

cavity-length fluctuations on the resulting RF signal is shown. For no fluctuations, only

a sharp resonance is visible. With increasing fluctuations, a broad noise curve starts

consuming the peak until at some point the peak vanishes.
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Figure 4.11.: RF spectrum of the peak of the beat frequency corresponding to the repetition

rate of the FSF laser without a laser line filter for two different pump powers

4.2.2 Different distances
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Figure 4.12.: RF spectrum of the beat frequencies of the FSF laser without a laser line filter

from 0 to 500MHz for two different distances

One of the mirrors of the Michelson interferometer was mounted on a translation stage.

In this chapter, an aluminum plate was put at the end of the table and so it was moved

by the thickness of the plate.
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Figure 4.12 shows the RF spectrum for the two different lengths. As expected, the repe-

tition rate peaks did not shift but the length-dependent peaks shifted.

Figure 4.13 illustrates this behavior even more explicitly. The central peak is at the same

68 70 72 74 76 78 80 82 84 86

-110

-100

-90

-80

-70

-60

RF
 P

ow
er

 /
 d

Bm

Beat Frequency / MHz

 Distance 1
 Distance 2

Figure 4.13.: RF spectrum of the beat frequencies of the FSF laser without a laser line filter

from 68 to 86MHz for two different distances

position for both distances. But the other two peaks have moved about 0.7MHz closer

to the central peak for the second distance. As already mentioned, the different height of

the beat signals is due to the measurement process of the RF spectrum analyzer.
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Figure 4.14.: RF spectrum of the beat frequencies of the FSF laser without a laser line filter

near the peaks for two different distances. The left panel corresponds to the

length-dependent peak and the right to the repetition rate.
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A detailed analysis of the RF spectrum of the beat signals can be seen in Figure 4.14.

The repetition rate peaks match each other very well. The peaks that exhibit length

dependence have similar shape and width. In the following, these peaks are used to

measure the thickness of the aluminum plate.

In Chapter 4.1, the length of the first distance was measured to be L1 = −45.24cm. The

second peak has a central frequency of 70.952MHz and that results in a length

L2 = −
70.952MHz

76.652MHz
L′ = −0.92564

2.99792458 ⋅ 108m/s

2 ⋅ 300MHz
= −46.25cm . (4.3)

The thickness of the aluminum plate is therefore

d = L1 − L2 = 1.01cm . (4.4)

4.3 Reducing the optical bandwidth with a laser line filter

As mentioned in Chapter 2.4 in the discussion of Eq. (2.21), Yatsenko et al. [18] showed

a dependence of the width of the RF beat signals from the optical bandwidth. The more

optical bandwidth, the narrower the RF beat signal will be. Since a spectrally narrow

beat signal is desired, a large optical bandwidth seems to be the goal. That is valid for

unseeded FSF lasers.

As mentioned in Chapter 2.4, the SNR of the measurement with unseeded FSF laser is

very low. If one uses a phase-modulated seed laser, as proposed in [18], the SNR will

increase drastically. The disadvantage is that before one can check if a certain frequency

exists in the RF spectrum, one has to do a phase modulation on the seed laser with this

frequency. Then one has to wait for this light to fill the whole optical spectrum, before

the electrical frequency comparison can be made. Thus, the more optical bandwidth one

has, the longer one has to wait for the light to fill the whole optical spectrum. That will

reduce the frame rate of the desired 3D video.

Since the relation of the optical bandwidth with the RF bandwidth of the beat signals will

become important, the following chapters will investigate this relation in the experimental

setup.

4.4 Measurement with the Semrock laser line filter

The Semrock Laser Line Filter was inserted into the cavity of the FSF laser. With the

filter, the optical spectrum was reduced from 3nm to 0.15nm. Figure 4.15 exhibits the

optical spectrum for three different pump powers. The losses in the cavity are dominated

by the filter, thus the position of the central wavelength and the FWHM of the optical

spectrum do not show a dependence of the pump power. By tilting the filter, its central

wavelength can be tuned. This might lead to a bad alignment, as can be seen as the green
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Figure 4.15.: Optical spectrum of the FSF laser with the Semrock laser line filter

line. The implications of such a bad alignment will be discussed in Chapter 4.4.2.

In Figure 4.16, the RF spectrum can be observed. It has its usual shape but the peaks
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Figure 4.16.: RF spectrum of the beat frequencies of the FSF laser with the Semrock laser line

filter from 0 to 500MHz

are broader than those without the filter. This fact is even better illustrated in Figure

4.17, where the repetition rate peak and its neighboring frequencies can be seen. The

width of the RF beat signal with a narrow optical bandwidth is significantly bigger than

that with a broad optical bandwidth.

Figure 4.18 exhibits a more detailed spectral analysis of the peaks. The width of the

repetition rate peak increased to about 2MHz. Since the width without a filter was 30kHz,

the width increased by a factor of about 70. The peak that shows the length dependence

was also 30kHz and changed to about 2MHz, too. When measuring the distance with the

scheme discussed in this thesis, one can either resolve each peak with just one frequency

or with multiple frequencies. If one were to resolve with just frequency, the resolution
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Figure 4.17.: RF spectrum of the beat frequencies of the FSF laser with the Semrock laser line

filter from 68 to 86MHz

would reduce with spectrally broad peaks. For example, the increase in RF bandwidth of

a factor of 70 would result in a resolution that is 70 times worse and that would correspond

to a resolution of about 14mm. If one were to resolve each peak with multiple frequencies,

higher resolutions would be possible. But, as already mentioned, it would require more

time and more hardware.
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Figure 4.18.: RF spectrum of the beat frequencies of the FSF laser with the Semrock laser line

filter near the peaks. The left panel corresponds to the length-dependent peak

and the right to the repetition rate.
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4.4.1 Different distances
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Figure 4.19.: RF spectrum of the beat frequencies of the FSF laser with the Semrock laser line

filter from 68 to 86MHz for two different distances

For different distances, the repetition rate peaks stay unchanged. The beat signals with

the laser line filter that exhibit the length dependence shifted by the same frequency as

the ones without the filter, as can be seen in Figure 4.19 or more clearly in Figure 4.20.
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Figure 4.20.: RF spectrum of the beat frequencies of the FSF laser with the Semrock laser line

filter near the peaks for two different distances. The left panel corresponds to

the length-dependent peak and the right to the repetition rate.
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Since the length resolution for resolving with one frequency is about 14mm and the length

difference was 10.1cm, the two peaks overlap slightly. Although it is possible to reach a

length resolution of about 0.2mm with the last line filter, too, one can easily imagine

that the measurement process will be more complicated, more time consuming, and more

hardware demanding.

4.4.2 Badly aligned filter

As mentioned before, if the laser line filter is poorly aligned, as can be seen from the green

line of Figure 4.15, the optical spectrum can have more than one peak. The implications

of such an optical spectrum will be shown in this chapter.

Figure 4.21 exhibits the RF spectrum where each peak contains side peaks. Figure 4.22
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Figure 4.21.: RF spectrum of the beat frequencies of the FSF laser with the badly aligned

Semrock laser line filter from 68 to 86MHz for two different distances

shows these side peaks with more detail. It is at the moment not yet clear what causes

this RF spectrum. The most likely interpretation of what is happening is that the beat

signals of one peak in the optical spectrum interfere with the beat signals of the other

peak. This leads to this peculiar RF spectrum.

The side peaks make a detection of the correct frequency more difficult. Hence, it is

advisable to work with a nice optical spectrum in order to get an easily interpretable RF

spectrum.
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Figure 4.22.: RF spectrum of the beat frequencies of the FSF laser with the badly aligned

Semrock laser line filter near the peaks for two different distances. The left panel

corresponds to the length-dependent peak and the right to the repetition rate.

4.5 Measurement with the LOT Oriel laser line filter
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Figure 4.23.: Optical spectrum of the FSF laser with the LOT Oriel laser line filter

The LOT Oriel Laser Line Filter was inserted into the cavity of the FSF laser, and this

resulted in an optical bandwidth of 0.17nm. Figure 4.23 shows the optical spectrum for

three different pump powers. The losses in the cavity are again dominated by the filter,

thus the position of the central wavelength and the FWHM of the optical spectrum do

not show a dependence on the pump power. Of course, the central wavelength of the filter

can again be tuned by tilting it.

The RF spectrum of Figure 4.24 looks, as was to be expected, very similar to the one
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with the Semrock Filter of Figure 4.17. The same is valid for the RF spectrum of Figure

4.24.

A more detailed picture of the peaks, Figure 4.25, exhibits a peak width of about 1MHz
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Figure 4.24.: RF spectrum of the beat frequencies of the FSF laser with the LOT Oriel laser

line filter from 68 to 86MHz
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Figure 4.25.: RF spectrum of the beat frequencies of the FSF laser with the LOT Oriel laser

line filter near the peaks. The left panel corresponds to the length-dependent

peak and the right to the repetition rate.

which is only half of the width observed with the Semrock filter. This is due to a larger

optical bandwidth and steeper edges of the optical spectrum. If one chooses to detect

only whole peaks, the spectral width of 1MHz would correspond to a length resolution of

7mm. Again, it is still possible to get a better length resolution with more hardware and

time demanding measurements.
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4.5.1 Different distances
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Figure 4.26.: RF spectrum of the beat frequencies of the FSF laser with the LOT Oriel laser

line filter from 68 to 86MHz for two different distances

As can be seen in Figure 4.26 and more clearly in Figure 4.27, the two length-dependent

peaks do not overlap due to the distance difference of about 10mm and a length resolution

of about 7mm.
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Figure 4.27.: RF spectrum of the beat frequencies of the FSF laser with the LOT Oriel laser

line filter near the peaks for two different distances. The left panel corresponds

to the length-dependent peak and the right to the repetition rate.
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4.6 Measurement with the combination of the Semrock and

LOT Oriel laser line filter

Unfortunately, the two laser line filters resulted in similar optical bandwidths of the FSF

laser. But it is possible to put both filters in the cavity. They have to be tilted in a

way that their transmission bandwidths overlap. At some point, the overlap of the filters

will produce the broadest spectrum. If one then increases the tilt angle of the filters, the

optical bandwidth will start to decrease. Hence, it will be possible to tune the optical

bandwidth (in a certain range). This is shown in this chapter.

Figure 4.28 shows the optical spectrum of two combinations. Combination 2 shows an
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Figure 4.28.: Optical spectrum of the FSF laser with a combination of the Semrock and the

LOT Oriel laser line filter

optical spectrum that is broader than that of each single laser line filter. That is due to

the transmission of the combination of both filters which is broader in this case.

Figure 4.29 shows exactly what had to be expected. If the optical spectrum is broader,

the RF spectrum will be smaller. Therefore the RF spectrum of Combination 1 is the

broadest and the spectrum of Combination 2 is significantly narrower.

In order to estimate the length resolution for the two combinations, one needs more

detailed graphs of the RF spectrum, such as the one in Figure 4.30. The peaks of Com-

bination 1 have a width of nearly 2MHz which would result in a length resolution of

about 14mm. Combination 2 has narrower peaks of about 0.4MHz width. This would

correspond to a length resolution of 2.8mm.
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Figure 4.29.: RF spectrum of the beat frequencies of the FSF laser for two combinations of

the Semrock and the LOT Oriel laser line filter from 68 to 86MHz
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Figure 4.30.: RF spectrum of the beat frequencies of the FSF laser for two combinations of

the Semrock and the LOT Oriel laser line filter near the peaks. The left panel

corresponds to the length-dependent peak and the right to the repetition rate.
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5 Summary and Outlook

The theory of the Moving Comb Model proved to be a very useful tool for calculating the

resulting beat frequencies. Its graphical solution provides a very intuitive way to describe

the underlying physics. With this model, the ambiguity of OFDR becomes obvious.

Changing the AOFS frequency provides a useful tool to get rid of the ambiguity. One of

the big advantages of OFDR is that the length resolution is independent of the length

which is measured. That means if the length resolution is 0.25mm, it will stay 0.25mm,

no matter if 1m or 10km are measured. The mathematical solution allows calculating the

distance from the resulting beat frequencies easily.

One problem remains, though. The more accurately a distance is measured, the longer

it will take and the less it is allowed to move during the measurement process. Hence,

a more precise measurement will allow only very slow moving objects to be detected.

For example, increasing the precision by a factor of 2 requires twice as many frequency

comparisons and will therefore take twice as long. It will also mean the distance that

is changed can only change half as much during one measurement process. Thus, the

maximum velocity of an object that can be detected will drop by a factor of 4. One has

to find a compromise between accuracy and what moving objects to detect.

The laser in this thesis used an AOM with a frequency of 300MHz. Since the attenuation

of an acoustic wave in tellurium dioxide increases exponentially with the frequency, lower

AOM frequencies are better for laser with smaller gain. But smaller AOM frequencies

increase the unambiguous range. Hence, the unambiguous range has to be divided into

more frequency bands in order to get the same length resolution. The measurement of

more frequencies takes longer and therefore a lower AOM frequency not only requires

more precise hardware due to the narrower frequency bands, but it will also cause the

whole measurement cycle to take longer. That results in a lower frame rate. Hence, the

solution for future developments should be a laser with higher gain so that AOMs with

high frequencies can be used.

The measurements without a laser line filter showed a resolution of 0.2mm when each

peak in the RF spectrum was resolved with only one test frequency. That was below the

goal of 0.25mm. Unfortunately, the SNR of this measurement principle was very poor.

The measurement only worked with mirrors but not with a sheet of paper. To solve this

problem, one can use a phase-modulated seed laser as proposed by Yatsenko et al. [18].

This scheme requires creating the phase-modulated light according to the frequency that

shall be detected. After creation one has to wait for the light with the phase-modulation

frequency to fill up the whole spectrum before one can start the electronic measurement

of the frequency. Hence, the broader the spectrum is the longer one will have to wait and

thus the lower the frame rate of the measurement will be.

That was the reason why measurements with laser line filters were done in order to reduce
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the optical bandwidth. The measurement showed broader peaks in the RF spectrum as

predicted by Yatsenko et al. In order to get the same length resolution, the broader peaks

will require a more time-consuming and hardware-demanding measurement. But with the

seed laser, the bandwidth of the peaks should decrease due to the smaller bandwidth of

the seed laser. Then it should be possible to reach a resolution of 0.25mm with an optical

bandwidth of less than 1nm.
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A Appendix

A.1 The moving comb model

This section treats the moving comb model that was introduced in Chapter 2.3.

A.1.1 Ring cavity

At first we want to start again with the definitions:

Chirp rate: � =
fAOM

TR

(A.1)

Phase of mode q: 'q (t) =
c0
�

(
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Frequency of mode q: fq (t) =
d'q (t)

dt
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(A.3)

Electric field: E (t) =
N
∑

q=1

Eq (t) ei 2�'q(t) Eq(t) ∈ ℜ (A.4)

Intensity: I (t) =
nc0�0
2
∣E (t)∣2 (A.5)

We can calculate the intensity after the Michelson interferometer with the two dampings

� and � of the two arms as follows:
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I1 (t) = �2 ∣E (t)∣2 (A.7)
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In the following calculation, we will always encounter products of sums from Eq. (A.4).

Let us first define a substitution:

ℰi = Ei (t) ei 2�'i(t) (A.10)

Since there are only discrete frequencies present, the result will only contain discrete beat

frequencies. We can define a beat index p. It states which terms have to be multiplied.
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If p = 0, only terms with the same index will be multiplied. If p = 1, only terms with a

difference of one in their index will be multiplied, and so on. This scheme can be seen in

Table A.1. Of course, negative values for p are also possible, when the index of the left

...
...

ℰ3 ← p = 0 → ℰ3

ℰ2 ← p = 0 → ℰ2

ℰ1 ← p = 0 → ℰ1

...
...

↗

ℰ3 ← p = 1 ℰ3

↗

ℰ2 ← p = 1 ℰ2

↗

ℰ1 ← p = 1 ℰ1

...
...

↗

ℰ3 p = 2 ℰ3

↙ ↗

ℰ2 p = 2 ℰ2

↙

ℰ1 ℰ1

Table A.1.: Pattern for calculating the product of a sum with a sum

column is bigger than that of the right column. In Eq. (A.4) we can see that there are

N round-trips in the cavity. Hence, N beat signals will exist. In the autocorrelations of

terms I1(t) and I3(t), the beat index p fulfills the following inequality, 0 ≤ p ≤ N − 1. In

the term I2(t), we will encounter a length dependence. This length dependence will cause

different beat index values. The number of beat indices does not change, but for example

they could start at −N/2 instead of 0.

In the following, we will apply this scheme to the three terms.

A.1.1.1 Term I1(t)
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We can see that the first term can be decomposed into cosines. The higher the beat in-

dex, the fewer modes interfere and therefore the weaker the beat signal will be (neglecting

amplitude dependence). In the following, we will have a closer look at the phase term

'q (t)− 'q+p (t).
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A.1.1.2 Term I2(t)

We will use the pattern from the previous chapter to calculate the second term. As already

mentioned, the values of the beat index p depend on L. Overall there have to be N terms.

If we use 0 ≤ p ≤ N − 1, that will corresponds to 0 ≤ L ≤ c0/(2 fAOM).
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This term can be decomposed into two cosines. We will investigate their phases in more

detail in the following.
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If we define L′ as in Chapter 2.3.3, we can write the beat frequencies as
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The cosine is an even function, thus cos (−x) = cos (x) holds, and we can also calculate
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A.1.1.3 Term I3(t)

The third term is again an autocorrelation and thus similar to the first term.
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A.1.2 Linear cavity

In the linear cavity, the light passes twice through the AOFS each round-trip. Therefore

the chirp rate will be twice as big.

Chirp rate: � =
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(A.29)
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Frequency of mode q: fq (t) =
d'q (t)
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Electric field: E (t) =
N
∑

q=1

Eq (t) ei 2�'q(t) Eq(t) ∈ ℜ (A.32)

Intensity: I (t) =
nc0�0
2
∣E (t)∣2 (A.33)
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The general description of the intensity after the Michelson interferometer is the same as

for the ring cavity case.
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I1 (t) = �2 ∣E (t)∣2 (A.35)
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A.1.2.1 Term I1(t)

The intensity calculation look the same as the ring cavity, too.
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But the phase term looks different from the ring cavity case.
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A.1.2.2 Term I2(t)
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This term can be decomposed into two cosines. The difference to the ring cavity case is

again only apparent in the phase terms.
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If we define again L′, we can write the beat frequencies as
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Again, we change the sign and so we get
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A.1.2.3 Term I3(t)
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A.2 Laser stability simulations

In [24], Siegman explains the ABCD formalism in ray optics. The basic idea is to assign

a matrix to every part that the light ray passes. We do not want to go into detail of

the theory. In the following only the most important results are described. In order to

Distance d in Air

(

1 d

0 1

)

Distance d in Medium n

(

1 d
n

0 1

)

Lens (Curved Mirror) with Focal Length f

(

1 0

− 1
f

1

)

Table A.2.: ABCD Matrices of Various Optical Elements

calculate the ABCD matrix of a sequence of optical elements, one must only multiply the

matrices. There is also a stability condition. It states that the absolute value of the trace

must be smaller than 2. That can be written as

−1 <
1

2
(A+D) < 1 with the ABCD matrix

(

A B

C D

)

. (A.55)

In order to calculate the stability of a laser cavity, one only needs to multiply all corre-

sponding ABCD matrices for one round-trip and check if the condition is fulfilled.

A.2.1 Laser stability with one parameter

The stability check was implemented in Matlab and the following shows the source code.

clear all;

close all;

% define range and step size of the unknown

x = 22:0.001:27;

% create array for stability

y = zeros(size(x));

for i=1:length(x)

% define focal lengths and refractive indices

f_Cry = 25;

f_AOM = 200;

n_Cry = 1.76;

n_AOM = 2.3;

% assign value for the unknown

Cm1Cry = x(i);
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% define length values

Cry = 2.9;

CryCm2 = 24.3;

Cm2Cm3 = 1357;

Cm3AOM = 200;

AOM = 30;

AOMCm4 = 200;

Cm4Cm1 = 2030;

% multiply matrices

erg = [1 0; -1/f_Cry 1] * [1 Cm1Cry; 0 1];

erg = erg * [1 Cry/n_Cry; 0 1];

erg = erg * [1 CryCm2; 0 1];

erg = erg * [1 0; -1/f_Cry 1];

erg = erg * [1 Cm2Cm3; 0 1];

erg = erg * [1 0; -1/f_AOM 1];

erg = erg * [1 Cm3AOM; 0 1];

erg = erg * [1 AOM/n_AOM; 0 1];

erg = erg * [1 AOMCm4; 0 1];

erg = erg * [1 0; -1/f_AOM 1];

erg = erg * [1 Cm4Cm1; 0 1];

% calculate half of the trace

stab = 1/2 * (erg(1,1) + erg(2,2));

% squaring makes comparison easier

stab = stabˆ2;

% check stability

if (stab < 1)

y(i) = 1 - stab;

else

y(i) = 0;

end

end

% graphical output

plot(x, y, ’b’, ’LineWidth’, 3);

xlabel(’CM1 - Crystal / mm’, ’FontSize’, 16);

ylabel(’Stability’, ’FontSize’, 16);

set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0.03 1 0.97]);
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A.2.2 Laser stability zones

The source to get a two-dimensional plot for the stability zones is an extention of the
previous source code.

clear all;

close all;

% define range and step size of the unknowns

x = 20:0.01:30;

y = 180:0.1:280;

% create array for stability

z = zeros(length(x), length(y));

for i=1:length(x)

for j=1:length(y)

% define focal lengths and refractive indices

f_Cry = 25;

f_AOM = 200;

n_Cry = 1.76;

n_AOM = 2.3;

% define length values

Cm1Cry = x(i); % assign value for the first unknown

Cry = 2.9;

CryCm2 = 24.3;

Cm2Cm3 = 1357;

Cm3AOM = y(j); % assign value for the second unknown

AOM = 30;

AOMCm4 = 200;

Cm4Cm1 = 2030;

% multiply matrices

erg = [1 0; -1/f_Cry 1] * [1 Cm1Cry; 0 1];

erg = erg * [1 Cry/n_Cry; 0 1];

erg = erg * [1 CryCm2; 0 1];

erg = erg * [1 0; -1/f_Cry 1];

erg = erg * [1 Cm2Cm3; 0 1];

erg = erg * [1 0; -1/f_AOM 1];

erg = erg * [1 Cm3AOM; 0 1];

erg = erg * [1 AOM/n_AOM; 0 1];

erg = erg * [1 AOMCm4; 0 1];

erg = erg * [1 0; -1/f_AOM 1];

erg = erg * [1 Cm4Cm1; 0 1];

% calculate half of the trace

stab = 1/2 * (erg(1,1) + erg(2,2));

% squaring makes comparison easier

stab = stabˆ2;
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% check stability

if (stab < 1)

z(i, j) = 1 - stab;

else

z(i, j) = 0;

end

end

end

% graphical output

surf(x, y, z’, ’EdgeColor’, ’none’, ’FaceColor’, ’interp’, ’FaceLighting’, ’phong’);

set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0.03 1 0.97]);

view([0 90]);

xlabel(’CM1 - Crystal / mm’, ’FontSize’, 16);

ylabel(’CM3 - AOM / mm’, ’FontSize’, 16);

zlabel(’Stability’, ’FontSize’, 16);
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