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Deutsche Kurzfassung

Diese Dissertation befasst sich mit der Modellierung und der Vorhersage multivariater Zeitrei-

hen mit einer großen Querschnittsdimension. Heutzutage betont die steigende Verfügbarkeit

hochdimensionaler Daten die Notwendigkeit für die Anwendung und Entwicklung von Metho-

diken, um deren Informationsgehalt analysieren und erfassen zu können. Es ist hinreichend

bekannt, dass Standardmethoden wie zum Beispiel Vektorautoregressive Modelle mit Exoge-

nen Variablen (VARX Modelle) dem Fluch der Dimensionalität unterliegen, einem Begriff, der

von Richard Bellman geprägt wurde. Das bedeutet im Fall unrestringierter VARX Modelle,

dass die Anzahl der zu schätzenden Parameter mit zunehmender Zahl an endogenen Variablen

quadratisch zunimmt. Eine Möglichkeit, diese Problematik zu umgehen oder abzuschwächen,

besteht in der Verwendung von Modellen, die die Dimension des Parameterraums reduzieren.

Im Rahmen dieser Dissertation werden zwei dieser Methoden beleuchtet, die als Faktorenana-

lyse zusammengefasst werden können, nämlich die Hauptkomponentenanalyse (PCA, aus dem

englischen principal component analysis) und die reduced rank regression analysis (RRRA).

Im Falle der PCA wird eine Matrix von beobachteten Variablen durch eine Matrix nied-

rigerer Dimension so approximiert, dass die Höhe der erklärten Varianz maximiert wird. Die

Lösung zu diesem Optimierungsproblem erhält man mithilfe einer Eigenwertzerlegung der Ko-

varianzmatrix der gegebenen hochdimensionalen Datenmatrix.

RRRA hingegen zerlegt die Koeffizientenmatrix eines linearen Regressionsmodells mit dem Ziel,

diese durch eine Matrix von gegebener niedrigerer Dimension so anzunähern, dass möglichst

viel der Variation der abhängigen Variablen erklärt wird. Die Schätzung eines solchen Modells

basiert auf einer Singulärwertzerlegung der Koeffizientenmatrix.

Dennoch kann sich die Interpretation eines Faktormodells bei großer Variablenzahl trotz

der deutlichen Reduktion der Parameteranzahl als schwierig herausstellen. Weiters könnten

sehr kleine Einträge in einer Ladungsmatrix, deren Schätzung auf Stichprobendaten beruht,

verschmierte Nullen des ’wahren’ Modells sein. Diese Überlegungen stellen die wesentlichen
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Deutsche Kurzfassung

Beweggründe für die Entwicklung von restringierten Faktormodellen mit dünn besetzten La-

dungsmatrizen dar.

Oft existiert in empirischen Anwendungen zusätzliche a priori Information über die Struktur

eines Faktormodells, welche voraussetzt, dass manche Faktoren nicht auf alle Variablen laden.

Das bedeutet auch, dass man in so einem Fall bereits eine Vorstellung hinsichtlich der Inter-

pretation der (latenten) Faktoren hat.

Als Beispiel für ein derartiges Vorwissen, mithilfe dessen man eine solch dünn besetzte La-

dungsmatrix definiert, kann die Zugehörigkeit meherer Aktien zu zwei verschiedenen Branchen

genannt werden. Hier kann man vereinfachend zwei Faktoren zugrundelegen, die jeweils eine der

Branchen repräsentieren. In solch einem Fall postuliert man, dass die erste Spalte der Ladungs-

matrix nur in jenen Zeilen Einträge ungleich Null enthält, die den Aktien der ersten Branche

zugeordnet sind, und die zweite Spalte umgekehrt. Kann eine Ladungsmatrix jedoch vollständig

in unabhängige Blöcke zerlegt werden, so besteht keine Notwendigkeit der Durchführung einer

restringierten PCA, da ein unrestringiertes Modell für jede Targetgruppe getrennt berechnet

werden kann. Daher beschränkt sich die eigentliche Anwendung dieser restringierter Modelle

auf jene Fälle, in denen die Ladungsmatrix nicht gänzlich in einzelne Blöcke zerfällt. Aktien

der Branchen Telekommunikation und Technologie eines Aktienindex können als praktisches

Beispiel für die eben beschriebene Struktur einer Ladungsmatrix herangezogen werden. Es

kann davon ausgegangen werden, dass einige der Aktien beiden Branchen zugeordnet werden

können, wohingegen die meisten Aktien jeweils als nur zu einem der beiden Faktoren zugehörig

klassifiziert werden.

Das Hauptaugenmerk dieser Dissertation liegt in der Entwicklung und Schätzung der zuvor

genannten Techniken, die die Dimension des Parameterraums reduzieren, unter Berücksichtigung

von zusätzlichen, a priori festgelegten Null-Restriktion an entsprechenden Positionen der La-

dungsmatrizen. Es werden Optimierungsaufgaben mit Restriktionen definiert, die im unrestrin-

gierten Fall die herkömmliche Hauptkomponentenlösung oder reduced rank regression Lösung

ergeben. Diese Probleme werden numerisch effizient gelöst und der Aspekt der Eindeutigkeit

der erhaltenen Lösung wird analysiert. Außerdem wird sowohl für die PCA als auch für die

RRRA ein Vorhersagemodell in Kombination mit einem auf Informationskriterien beruhenden

Inputselektionsalgorithmus definiert.

Zum Abschluss werden anhand einer empirischen Anwendung auf Finanzzeitreihen die out-of-

sample Modellanpassung und die Portfoliowertentwicklung des restringierten Hauptkomponen-

tenmodells mit jener des unrestringierten verglichen.
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Abstract

This thesis is concerned with the modeling and forecasting of multivariate time series with a

large cross-sectional dimension. Nowadays, the increasing availability of high dimensional data

sets underlines the necessity of applying and developing methodologies in order to analyze and

administrate this huge number of variables. It is well known, that the number of parameters of

standard methods such as, for example, Vector Autoregressive Models with Exogenous Vari-

ables (VARX models) are subject to the curse of dimensionality, an expression that was coined

by Richard Bellman. This means in the case of unrestricted VARX models that the number

of parameters, that have to be estimated, increases quadratically when additional endogenous

variables are added to the model. One way to overcome this problem is given by models reduc-

ing the dimensionality of the parameter space. In this framework two of these methods, which

can be summarized as factor analysis, are highlighted, namely principal component analysis

(PCA) and reduced rank regression analysis (RRRA).

In the case of PCA a matrix of observed variables is approximated by a matrix of lower

dimension in such a way, that the amount of explained variance is maximized. The solution

to this optimization problem is obtained with the help of the eigenvalue decomposition of the

covariance matrix of the data.

RRRA is a technique that decomposes the coefficient matrix of a linear regression model with

the aim of getting a coefficient matrix of a fixed lower rank than the original one and explaining

as much variation of the response variables as possible. Estimation of this model class is related

to a singular value decomposition.

Nevertheless, despite of a clear reduction of the number of parameters in factor models,

interpretation can still be a difficult issue, if the number of response variables is relatively

large. Moreover, small values in the loadings matrix of a factor model, whose estimation is

based on sample data, could be blurred zeros of the ’true’ model. These aspects form the main

motivation for developing restricted factor models with sparse matrices of loadings.
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Abstract

In many cases of empirical applications exists additional a priori knowledge about the structure

of a factor model, implying that some factors do not load on every variable. This also means

that one has already a certain idea about the interpretation of the (latent) factors.

As an example for such a preknowledge defining a sparse loadings matrix, a set of assets be-

longing to two different branches may be considered. Then 2 factors can be expected where

each factor is representing one of the branches. In such a case it could be postulated that the

first column of the loadings matrix has just entries unequal to zero on those positions belonging

to the assets of the first branch and zeros elsewhere, and column 2 the other way round. How-

ever, if the sparse loadings matrix of a PCA model can be decomposed entirely into separate

blocks, there is no need for a restricted PCA model because an unrestricted model could be

estimated for each target group separately. Thus, the main challenge consists in the estimation

of models with overlapping zero blocks that cannot be decomposed entirely. As a practical

example the assets of the branches telecommunication and technology of an equity index could

be considered. It is natural that some assets can be assigned to both branches, whereas most

of them can be classified as belonging to just one of the two branches.

The main focus of this thesis lies in developing and estimating the above mentioned dimension-

reducing techniques with additional, a priori defined zero restrictions on certain entries of the

corresponding loadings matrix. Optimization problems with restrictions, that lead in the un-

restricted case to conventional PCA resp. RRRA, are defined and solved in a numerically

efficient way. Furthermore, the aspect of uniqueness of the obtained result is analyzed and

a forecasting model in combination with an input selection algorithm related to information

criteria is stated both for the restricted principal component model and the restricted reduced

rank regression model.

Finally, an empirical application to financial time series is presented comparing the out-of-

sample fit and the performance values of a restricted versus an unrestricted principal component

forecasting model.
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Chapter 1

Introduction

Analysis and forecasting of high dimensional time series is a very important issue in areas

such as finance, macroeconometrics or signal processing. As an example the huge quantity of

assets or other financial instruments such as equities, currencies or commodities or the anal-

ysis of the behavior of consumers can be mentioned. One tool for modeling and analyzing

multivariate time series is given by autoregressive models (with exogenous variables), called

AR(X) models. The problem, that arises when using this model class, is called the curse of

dimensionality. This means, that the number of parameters, which have to be estimated, de-

pends in a quadratic way on the number of variables. Although a common way is to select

appropriate subsets of the large number of variables and build smaller models, one runs the

risk of overfitting, which is addressed by White [79] as the problem of data snooping.

So the need for dimension reduction becomes obvious. In the last century several methods

have been developed for this purpose. Nowadays principal component analysis (PCA) and fac-

tor analysis are widely used techniques in data processing and reduction of dimensionality. The

former can be interpreted as a generalized form of factor models, where the error component

is correlated (no idiosyncrasy). Being aware of the fact, that different objectives are pursued

when using principal component models resp. factor models, both will be addressed as factor

models in this thesis.

Factor models were invented at the beginning of the twentieth century. Spearman [66] and

Burt [11] applied these type of models in the area of psychology analyzing mental ability tests.

The idea was then to find one common factor called general intelligence that should drive the

outcome of the individual questions in such tests. Thurstone [74] generalized this framework

by allowing for more than one factors.

A further generalization has been made by Geweke [31], Sargent and Sims [62], Brillinger [10]

1



1 Introduction

and Engle and Watson [22] by using factor models in a time series context, which are called

dynamic factor models.

With the so called approximate factor model or generalized static factor model Chamberlain

and Rothschild [14] and Chamberlain [13] developed a new type of factor model by dropping

the assumption of idiosyncrasy of the errors.

An overview on the classical factor model with idiosyncratic noise can be found in Maxwell

and Lawley [50].

Nearly at the same time as the classical factor model was introduced, PCA was proposed by

Pearson [56] and Hotelling [42] who analyzed biological relationships with this method. Pearson

used PCA as a statistical tool for dimension reduction of multivariate data, whereas Hotelling

generalized this approach to random variables instead of samples. A wider application of PCA

has become possible in the last quarter of last century because of the increasing use of compu-

tational systems. This method is also known asKarhunen -Loéve transform in signal processing.

Reduced rank regression models were first developed by Anderson [4], who estimated a

model by the maximum likelihood method assuming a lower rank of the matrix of coefficients

in a linear model and multivariate normal distribution of the noise component. He distin-

guishes between the economic variables Y , which are used as dependent variables, and the

noneconomic predictor variables X, that can be manipulated. Izenman [43] was the first who

used the terminology reduced rank regression and he examined this model class besides Robin-

son [61] and Davies and Tso [18] in more detail. Further development of these models was

proposed by Tsay and Tiao [76] and Ahn and Reinsel [1] who applied reduced rank regression

in a stationary time series context. Johanson [44] estimated cointegrated reduced rank models

and Stoica and Viberg [70] used this method in the area of signal processing. A quite com-

prehensive summary on reduced rank models was written by Reinsel and Velu [60] in 1998.

Properties of the obtained estimators in the case, when the assumed rank of the coefficient

matrix is misspecified, have been analyzed by Anderson [6].

Recent work by Forni et al. [25] and Forni and Lippi [28], Stock and Watson [68] and Forni

et al. [27] explores the generalized dynamic factor model (GDFM), which is a dynamic factor

model that replaces the uncorrelatedness of the noise components by a weak dependence. A

generalization to state space and ARMA systems has been found by Zinner [82].

Although, in the case of a huge number of variables there are still many coefficients, which

have to be estimated. For example, if a set of 50 assets is analyzed and 5 factors are specified,

solely 250 parameters have to be estimated to get the so called loadings matrix, which defines

the relationship between the variables and the latent factors. Moreover, it is quite a difficult

2



1.1 Summary of obtained results

issue to interpret so many coefficients at a time in spite of the wide spread application of factor

rotation, which enhances interpretability. This underlines the need for a more parsimonious

model which will be the main aim of this thesis.

The idea presented here consists in imposing certain zero restrictions on predefined positions

of the matrix of loadings, especially in the case of PCA and reduced rank regression models.

This is one essential difference to existing literature, because up to now algorithms were devel-

oped, that find these zeros themselves, and no subjective a priori knowledge is available. As

examples for existing research Jolliffe, Trendafilov and Uddin [46], Zou, Hastie and Tibshirani

[85], d’Aspremont et al. [17] and [16] or Leng and Wang [51] can be mentioned. But practi-

tioners often have an idea or the experience about the structure of such a loadings matrix. For

example, in finance the fifty assets of the Euro STOXX 50 Price Index may depend on several

factors, where one could be called the overall market and the others consist of the different

branches, to which the assets belong to. So it is natural to use this additional information if it

is available.

A further aspect, that distinguishes this work from other available literature, is the fact, that

obtaining a structured loadings matrix is not the only focus. Apart from that, forecasting mod-

els for the response variables will be defined, estimated and evaluated. Of course the in-sample

residual statistics will be worse than those of the unrestricted model, but out-of-sample an

improvement of the goodness of fit of the models can be expected for certain reasons explained

later on.

1.1 Summary of obtained results

In this thesis a simple and transparent but efficient algorithm (in terms of calculation time)

is developed that satisfies the condition of obtaining a reasonable solution of a novel type of

restricted principal component and reduced rank models. It is based on the idea of alternating

least squares (ALS) and produces a sparse factor loadings matrix with a priori defined zero

entries as desired, that cannot be reached by conventional methods such as factor rotation.

Thus, interpretability can be enhanced in comparison with an unrestricted model provided

that the definition of the structure of the loadings matrix is reasonable.

As already stated previously, further use of these models as forecasting models, in combination

with an input selection algorithm related to the Akaike and Schwarz information criterion, is

not common as current literature mainly limits itself to constructing sparse matrices of loadings.

The proposed procedure is tested empirically with financial data, whereby the weekly returns

of 14 world indices are chosen as response variables. Moreover, 17 inputs explaining the status

of the economy and influencing the target variables, have been selected in order to generate

future forecasts. The results of this research show via the comparison of a restricted PCA
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1 Introduction

model with an unrestricted one, that the restricted models can outperform the unrestricted

ones in the sense of

∙ featuring better out-of-sample model statistics such as R2 or Hitrate

∙ showing the tendency of producing better portfolio values if a simple long/short single

asset strategy is applied.

1.2 Guide to the thesis

In the following sections of the present chapter a few comments on notation and terminology

are made for better understanding. The unrestricted PCA model with its assumptions and

properties will be explained in chapter 2. The main results of this thesis will be stated in

chapter 3, where additional zero restrictions are imposed on the loadings matrix of a principal

component model. An objective function for getting an optimal solution for restricted PCA

similar to one of those defined in Okamoto [54] will be given and an algorithm for estimation of

the free parameters is presented. In chapter 4 a two-step forecasting procedure for (unrestricted)

PCA models as well as for restricted PCA models will be described. Moreover, an input subset

selection algorithm similar to the one proposed by An and Gu [3] is introduced.

Reduced rank factor models will be pointed out in chapter 5. Analogous restrictions as in the

case of PCA will be imposed on this model class in chapter 6. Chapter 7 contains a direct

formulation of an unrestricted resp. a restricted reduced rank forecasting model for predicting

the variables of interest.

Empirical results on real financial data concerning restricted principal component models are

presented in chapter 8. Conclusions and further points of discussion are mentioned in chapter

9.

1.3 Notation and terminology

Let yt be the realization of a N - dimensional random vector observed at instant in time

t (t = 1, . . . , T ). Then a matrix of observations Y = (y1, ..., yT )
′ ∈ ℝT×N can be built,

containing the relevant time series data, also called targets, responses, dependent variables or

output variables further on. The transposition of a matrix is marked as (.)′. k denotes the

dimension of the factor space, which leads to a factor matrix F = (f1, ..., fT )
′ of dimension

T × k. If not stated otherwise, X = (x1, . . . , xT )
′ ∈ ℝT×s refers to the matrix of exogenous or

explanatory variables.

Big letters are used for matrices, small ones for vectors. Ir refers to the r × r identity matrix
( 1 ... 0
...
. . .

...
0 ... 1

)

. If the dimension of Ir is obvious, the subindex r can also be dropped for the

convenience of the reader.
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1.4 General framework of factor models

Estimators are flagged with .̂ and X̄ = 1
T

∑T
i=1 xi denotes the arithmetic mean vector of a

sample matrix X = (x1, . . . , xT )
′

.

O(k) denotes the set of orthogonal matrices of order k, which means that for any k× k matrix

B ∈ O(k) the equality B′B = BB′ = Ik is valid.

With rk(B) it is referred to the rank of a matrix B. trace(B) stands for the trace of a square

matrix B, which is calculated as the sum of its diagonal elements. The notation card(x) or

card(B) counts the number of nonzero elements in a vector x or in a matrix B, respectively.

1.4 General framework of factor models

A model of the form

yt = Lft + �t, t = 1, . . . , T (1.1)

where the original variables yt and the noise �t have length N , the factors ft are of length

k < N and the so called loadings matrix L is of dimension N × k, is called a static factor

model applied in a time series context. The loadings matrix L as well as the factor scores ft

are unknown and therefore they are called latent variables. In a more compact way equation

(1.1) can be reformulated as

Y = FL′ + �, (1.2)

with Y = (y1, . . . , yT )
′, F = (f1, . . . , fT )

′ and � = (�1, . . . , �T )
′. So a large number of target

variables summarized in a matrix Y are approximated by a linear combination of a smaller

number of factors F . The information loss obtained through this approximation is contained in

�. So the objective of building factor models is to approximate the original variables by lower

dimensional factors in such a way, that the information loss is minimized.

Of course, such a model is not identifiable, if no additional assumptions on the parameters are

made, because there are much more unknown parameters than known values. The different

assumptions, that are made on the model classes, which are within the scope of this thesis, are

explained in detail in the following chapters.

Before applying such a method to data one has to think about the reasonability of doing that.

Naturally, the data should be homogenous, which could be expressed mathematically as having

a nondiagonal covariance matrix. This can be tested with a chi-square test called Bartlett’s

test of sphericity. On the other hand there should not be too much dependency between the

data, measured by the Kaiser - Meyer - Olkin criterion. This test is also known as measure of

sampling adequacy and measures the relationship between correlations and partial correlations.

Having decided that a factor model is adequate for describing the data, one has to choose the

number of factors k. Several methods are known that should give at least a hint about how to

select the size of k. The näıvest way would be to try in an enumerative way several possible

values and choose the number so, that the resulting model is the most satisfactory one.
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1 Introduction

A bit more elaborate is the so called Kaiser criterion, that suggest to take as many factors

as there are eigenvalues of the correlation matrix of the data Y larger than one. The idea

behind this criterion comes from PCA and can be explained by the fact, that the itℎ eigenvalue

of the correlation matrix defines the percentage of variance, explained by the itℎ principal

component. So there should be explained at least as much variance as can be explained by one

of the variables itself.

With the scree test another well known method can be named, that determines the optimal

number of factors in a graphical way with a line plot. It was first mentioned by Cattell [12] in

1966. Therefore the eigenvalues have to be ordered in terms of declining order of magnitude

and then they are plotted componentwise. The number of factors is chosen by a method, which

is also called elbow criterion and is demonstrated in figure 1.1.

Using some example data shows, that the decisions made on the different criteria are not always

the same. In the case of the Kaiser criterion, 2 factors would be selected whereas the scree

test suggests to select 3 factors. So these criteria give the user some hint about the size of k,

but in the end the scientist has to choose with the help of his knowledge and experience the

appropriate number of factors.

1 2 3 4 5 6 7

0
1

2
3

4

Scree Test

number of eigenvalues

ei
ge

nv
al

ue
s

’elbow’

3 factors are chosen

Kaiser criteria

Figure 1.1: Example of a scree test in order to determine the number of factors in a factor
model.
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Chapter 2

Principal component analysis

Nowadays principal component analysis (PCA) is a widespread technique, applied in different

disciplines of science, where high dimensional data sets are available and have to be analyzed.

This methodology is quite famous last but not least because of its simple closed-form solution,

described in the following sections.

2.1 The model

In the last century various ways of definitions and interpretations of principal components of

a random vector as well as of a sample have been found.

Before pointing out the characteristics of a principal component model and its solutions, a few

well known results of matrix theory will be recalled.

Given a square matrix A ∈ ℂN×N , the (nonunique) solutions �1, . . . , �N ∈ ℂ resp. 
1, . . . , 
N ∕=
0 ∈ ℂN of the system of equations

A
 = �
 resp. (A− �IN )
 = 0

are called the eigenvalues respectively eigenvectors of the matrix A.

Lemma 2.1.1. Let A be a real, symmetric N × N matrix and let Λ =

(
�1 0

...
0 �N

)

and

Γ = (
1, . . . , 
N ) be the joint matrix of eigenvalues and eigenvectors, respectively.

Then

AΓ = ΓΛ and Γ
′

Γ = IN

and the diagonal elements of Λ are the roots of the determinental equation

∣A− �iIN ∣ = 0 i = 1, . . . , N.
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2 Principal component analysis

When restricting the elements in Λ so, that �1 ≥ �2 ≥ . . . ≥ �N , the matrix Λ is determined

uniquely and Γ is determined uniquely except for postmultiplication by a matrix of orthogonal

block matrices T :

T =

⎛

⎜
⎜
⎝

T1 0
. . .

0 Tr

⎞

⎟
⎟
⎠

, (2.1)

where Ti, i = 1, . . . , r, are orthogonal matrices of order mi, r denotes the number of distinct

eigenvalues of A and mi their multiplicity.

If rank(A) = k, there exist k nonzero eigenvalues. Another property of such an eigenvalue

decomposition is, that in the case of a symmetric, real matrix A all eigenvalues are real values.

Moreover, eigenvectors corresponding to different eigenvalues are pairwise orthogonal. If A is

additionally a positive (semi)definite matrix, then all eigenvalues are even positive (or zero),

real values.

So when performing an eigenvalue decomposition of Σ, the covariance matrix of a N -

dimensional random vector y, this results in a set of N nonnegative eigenvalues �1 ≥ �2 ≥
. . . ≥ �N ≥ 0 and a corresponding set of orthonormal eigenvectors 
1, . . . , 
N associated with

�1, . . . , �N , respectively.

For a set of eigenvalues {�1, . . . , �N} of a symmetric, positive definite matrix Σ with the

property �1 ≥ �2 ≥ . . . ≥ �N ≥ 0, the eigenvalue �i is called the itℎ largest eigenvalue

of Σ. For any k = 1, . . . , N , the set of eigenvectors {
1, . . . , 
k} associated with the eigen-

values {�1, . . . , �k} is called first k eigenvectors and {
N , 
N−1, . . . , 
N−k+1} associated with

{�N , �N−1, . . . , �N−k+1} last k eigenvectors, respectively.

With the help of these results principal components of a sample as well as of a random

vector can be defined.

Definition 1

For any vector of observations yt ∈ ℝN at instant in time t (t ∈ {1, . . . , T}) with mean

�̂ = 1
T

∑T
t=1 yt and for 
̂1, . . . , 
̂N being a set of N eigenvectors of its covariance matrix Σ̂ =

1
T

∑T
t=1(yt − �̂)(yt − �̂)′, the scalar

vj = 
̂j
′

(yt − �̂), j = 1, . . . , N (2.2)

is called the jtℎ sample principal component of yt.
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2.1 The model

Definition 2

For any N -dimensional random vector y with mean � = E(y) and for 
1, . . . , 
N being a set of

N eigenvectors of its covariance matrix Σ = E(y − �)(y − �)′, the random variable

vj = 

′

j(y − �), j = 1, . . . , N (2.3)

is called the jtℎ principal component of y.

For means of simplicity, just the random version of principal components will be considered

in this chapter, which can be seen as generalization of principal components of a sample. This

issue can be deducted easily when considering the following:

Let Y = (y1, . . . , yT )
′ be a given T ×N sample matrix, which can be regarded as simple data

matrix, and define a random N × 1 vector y by the probability distribution

Pr{y = yt} =
1

T
for t = 1, . . . , T.

Then the sample principal components of yt, t = 1, . . . , T , are the ttℎ values taken by the

principal components of the random vector y.

With the help of the definitions of the sample mean vector and the sample covariance ma-

trix stated above this aspect can be proved easily, which is shown in more detail in [54]. Thus

the following results are not only valid for random variables but also for samples.

For means of simplicity y is assumed to be centered from now on (i.e. ynew = yold−E(yold)

and �new = 0). This means geometrically that a non centered random variable is translated

so, that its mean is a zero vector. Such a translation leaves the eigenvalues and eigenvectors

of the covariance matrix unchanged. Then the following equalities hold in matrix notation:

ΣΓ = ΓΛ, Γ′Γ = IN , Λ =

(
�1 0

. . .
0 �N

)

(2.4)

and

v = Γ′y, (2.5)

where

v =

⎡

⎢
⎢
⎢
⎢
⎣

v1

v2
...

vN

⎤

⎥
⎥
⎥
⎥
⎦

.

When using all N eigenvectors of Σ, y can be reproduced exactly from the principal compo-
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2 Principal component analysis

nents by multiplying the principal components with the transpose of the matrix of eigenvectors

of Σ:

y = Γv = ΓΓ′y. (2.6)

The idea of reducing the possibly high dimensional random vector y to a lower dimensional

space consists of neglecting those eigenvalues, which are small in order of magnitude compared

to the others, and take just the first k important eigenvalues and eigenvectors.

Let Γ = [Γ1Γ2] and Λ =
(

Λ1 0
0 Λ2

)

, where Λ1 =

(
�1 0

. . .
0 �k

)

contains the first k eigenvalues

and Λ2 the last n − k eigenvalues respectively. In the same way the matrix Γ is devided into

Γ1 = [
1, . . . , 
k] and Γ2 = [
k+1, . . . , 
N ]. Formally the construction of a factor model with

the help of principal components can be stated as follows:

y = ΓΓ′y = [Γ1Γ2]

[

Γ1
′

Γ2
′

]

y

= Γ1
︸︷︷︸

L

Γ
′

1y
︸︷︷︸

f

+Γ2Γ
′
2y

︸ ︷︷ ︸

�

= Lf + �, (2.7)

which has the same functional form as equation (1.1). The reason why and in which context

this decomposition of Σ is optimal, will be the central topic of section 2.2.

So PCA results in a set of uncorrelated factors and a matrix of loadings L with pairwise

orthogonal columns. The amount of variance explained by each principal component can be

deduced from the equation

Γ′ΣΓ = Λ.

This means that the variance of the first principal component is var(v1) = 

′

1Σ
1 = �1 and

thus the percentage of explained variance can be defined as

�1

�1 + . . .+ �N
, (2.8)

where �1 + . . . + �N stands for the whole variance of the multivariate variables. Taking into

account the first k eigenvectors, the explained variance can be defined as
∑k

i=1 �i, k = 1, . . . , N .

Again a formula for the percentage of explained variance can be defined, according to equation

(2.8):
∑k

i=1 �i
∑N

i=1 �i

, k = 1, . . . , N. (2.9)

Apart from the methods explained in section 1.4, this measure of explained variance may give

a hint, how to choose the number of principal components. One may select as many principal

components, which are necessary to reach at least a certain level of explained variance, e.g. 90%.

10



2.2 Optimality of principal components

Because of its property of orthogonality, PCA can also be interpreted as a process of finding

sequentially a new orthogonal basis for the original variables so, that their variance is maxi-

mized. This means that first v1 is calculated, which has maximal variance under all variables,

that are in the space of y and that have unit length. Next v2 is found, which has maximal

variance among all variables, that are linear combinations of y with length 1, and which are

orthogonal to v1. This second principal component is also identical with the first principal

component of the error component y1 = y − 
1

′

1y. Then the next principal component is

obtained by requiring that it is orthogonal to v1 and v2 with unit length and that it maximizes

the variance in y2 = y1 − 
2

′

2y1. This procedure can be continued until all N principal com-

ponents are identified.

It was already defined before, that the random variable y will be mean adjusted so that

the resulting variable has mean zero. What about the variances? If y is standardized, which

means that each component of y has variance 1, the covariance matrix Σ will be replaced by

the correlation matrix of y, say R. This means that each variable has the same weight in

the optimization process and of course the eigenvalues of Σ and R are not identical. If the

correlation matrix is used, the contribution of the jtℎ principal component to the total variation

is given by
�j

∑N
i=1 �i

=
�j

N
.

In the same way the variance explained by the first k eigenvectors , k = 1, . . . , N , can be

described by the formula
∑k

i=1 �i

N
.

2.2 Optimality of principal components

The by now well known method of principal components may be obtained through different

definitions and interpretations. Okamoto [54] classifies among the existing literature three types

of objective functions, which lead as a result to the calculation of principal components and

which will be described in more detail in this section. Firstly, he mentions Variation Optimality ,

which is one of the most used interpretations of principal components. This approach is also

important in existing literature, when additional restrictions are imposed on the matrix of

loadings. Secondly, the minimization of the so called Information Loss gives as a result principal

components. This proposal together with a predefined structure of the loadings matrix will be

the scope of research in this thesis (see chapter 3). Thirdly, principal components are obtained

by defining the Correlation Optimality . This idea has not been investigated further in the

context of additional restrictions on the model up to now in literature.
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2 Principal component analysis

2.2.1 Variation optimality

At first a few definitions and lemmas are needed to formulate the principal theorem of this

section.

The quotient

RA(x) =
x′Ax

x′x

with a square Matrix A ∈ ℝN×N and a N × 1 vector x is called the Rayleigh quotient .

This quotient is strongly related to eigenvalues in the case of a Hermitian matrix A and their

relationship is stated in the following two lemmas.

Lemma 2.2.1. Let x be a real vector of dimension N and let A be a real, symmetric N ×N

matrix. Then

sup
x

RA(x) = sup
x

x′Ax

x′x
= �1(A),

where sup denotes the supremum over all vectors x ∈ ℝN . This supremum is attained iff x is

a first eigenvector of A.

Similarly, the following formula is valid:

inf
x

RA(x) = inf
x

x′Ax

x′x
= �N (A),

where inf denotes the infimum over all vectors x ∈ ℝN . Dually, the infimum is attained iff x

is last eigenvector of A.

Lemma 2.2.2. For any k = 1, . . . , N − 1, let {
1, . . . , 
k} be a set of first k eigenvectors of a

real, symmetric N ×N matrix A. Then

sup
x: 


′

ix=0
i=1,...,k

x′Ax

x′x
= �k+1(A).

The supremum is attained iff x is the eigenvector of A, which is associated with �k+1(A).

On the other hand, if {
N−k+1, . . . , 
N} is a set of last k eigenvectors of A, then

inf
x: 


′

ix=0
i=N−k+1,...,N

x′Ax

x′x
= �N−k(A).

Again, the infimum is attained iff x is an eigenvector of A, associated with the eigenvalue

�N−k(A).

With the help of these lemmas, the following theorem can be stated.
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2.2 Optimality of principal components

Theorem 2.2.1. Let y be a real valued random vector of dimension N and consider the fol-

lowing optimization problem:

max

∈ℝN

V ar(
′y)

s.t. 
′
 = 1.

Then the solution 
 is given by the first eigenvector 
1 of Σ, which is the covariance matrix of

y.

Theorem 2.2.2. Let {
1, . . . , 
k} be a set of first k eigenvectors of Σ for fixed k = 1, . . . , N−1.

The solution to the problem

max

∈ℝN

V ar(
′y)

s.t. 
′
 = 1

Cov(
′y, 

′

iy) = 0 i = 1, . . . , k

is given by that eigenvector, that is associated with �k+1 and that is orthogonal to {
1, . . . , 
k}.

With the help of these theorems the optimal procedure for finding sequentially N×1 vectors


, that maximize the Rayleigh quotient, can be defined. So first the eigenvector corresponding

to the first eigenvalue �1 will be selected. Next the eigenvector associated with �2 is chosen,

then the one related to �3 and so on.

The next step consists of maximizing variation in a multivariate setup. This means, that

instead of finding k vectors {
1, . . . , 
k} subsequently, they should be optimized in one opti-

mization process. Therefore a new matrix-valued objective function has to be defined.

Before mentioning two theorems, that give solutions to the problem of maximizing variation

in a multivariate context, a lemma has to be stated in each case. Their proofs can be found in

[54].

Lemma 2.2.3. Let A be a nonnegative definite matrix of dimension N × N and let X ∈
ℝN×k (k ≤ N) be a matrix, whose columns have length 1, i.e.

X ′X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 ∗ . . . ∗
∗ 1

. . .
...

...
. . .

. . . ∗
∗ . . . ∗ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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2 Principal component analysis

The off-diagonal elements of X ′X, marked with an asterisk, can have any arbitrary value in

ℝ. Then the following property is fulfilled:

∣X ′AX∣ ≤
k∏

i=1

�i, (2.10)

where ∣.∣ stands for the determinant of the given matrix and �i denotes the itℎ eigenvalue of A,

i = 1, . . . , k.

If rk(A) ≥ k, a necessary and sufficient condition for the equality sign in equation (2.10) is

given by

X = ΓkQ,

where Γk ∈ ℝN×k is a matrix of first k eigenvectors of A and Q ∈ O(k). O(k) is the set of all

orthogonal matrices of order k, that is of all matrixes O with the property O′O = OO′ = Ik.

With the help of this lemma the following theorem follows immediately with X = B and

A = Σ = Cov(y) :

Theorem 2.2.3. For fixed k ∈ 1, . . . , N the solution of the optimization problem

max
B∈ℝN×k

∣V ar(B′y)∣

s.t. B′B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 ∗ . . . ∗
∗ 1

. . .
...

...
. . .

. . . ∗
∗ . . . ∗ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

is given by B = ΓkQ, where the notation as well as the meaning of the parameters are explained

in lemma 2.2.3.

Another possibility for defining an objective function, that results in principal components

as its solution, is given by theorem 2.2.4.

Lemma 2.2.4. Let X be an orthogonal N × k matrix with k ≤ N , i.e. X ′X = Ik. Then the

following inequality holds:

�i(X
′AX) ≤ �i(A) for any i = 1, . . . , k, (2.11)

where �i(X
′AX) and �i(A) denote the itℎ eigenvalue of X ′AX and A, respectively.

A necessary and sufficient condition for obtaining equality in equation (2.11) for all i simulta-
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neously is, that

X = ΓkQ,

where Γk and Q are defined as in lemma 2.2.3.

Theorem 2.2.4. For fixed k ∈ {1, . . . , N}, the solution to the optimization problem

max
B∈ℝN×k

{�1, . . . , �k} simultaneously

s.t. {�1, . . . , �k} are the eigenvalues of V ar(B′y)

B′B = Ik

is given by B = ΓkQ as in theorem 2.2.3.

Note, that in theorem 2.2.4 a more restrictive side condition is needed compared to theorem

2.2.3. The aim here is not to maximize the determinant of the covariance matrix of the prin-

cipal components, which is the product of its eigenvalues, but to maximize all the eigenvalues

simultaneously. So for two matrices B1 and B2 the natural order B1 < B2 is valid, if for their

eigenvalues {�1(B1), . . . , �k(B1)} resp. {�1(B2), . . . , �k(B2)} in decreasing order of magnitude

the following inequalities hold:

�1(B1) < �1(B2), . . . , �k(B1) < �k(B2).

So in all three cases objective functions are given, that result in an eigenvalue decomposition

of the Covariance matrix of y. These solutions are always unique except for rotation with an

orthogonal matrix Q.

2.2.2 Information loss optimality

Another category of objective functions, that gives as a result principal components, is mea-

suring the loss of information, when reducing the dimensionality of the variables. The idea

here is to approximate a given random N × 1 vector y by a linear combination Ax of a k × 1

random vector x with an unknown coefficient matrix A ∈ ℝN×k. For k < N , the information

loss can be defined as a function of the mean square error matrix E(y−Ax)(y−Ax)′, whereby

its N eigenvalues are of special interest.

In 1964 Rao ([57]) proposes the following theorem:

Theorem 2.2.5 (Rao). Let k = 1, . . . , N be fixed. The solution of the problem

min
A,B

∥E(y −AB′y)(y −AB′y)′∥2F , (2.12)
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2 Principal component analysis

where A and B are real N × k matrices and ∥.∥F denotes the Frobenius norm, is given by

AB′y = 
1v1 + . . .+ 
kvk =

= 
1

′

1y + . . .+ 
k

′

ky

= Γ1Γ
′

1y, (2.13)

where Γ1 is defined as in equation (2.7). {
1, . . . , 
k} are the first k eigenvectors of the covari-

ance matrix Σ and {v1, . . . , vk} denote the first k principal components.

The minimum of the objective function in equation (2.12) is given by �2
k+1 + . . . + �2

N , where

{�k+1, . . . , �N} denotes the set of the last N − k eigenvalues of Σ.

Note, that here x is explicitly assumed to be a linear combination of y. Moreover, the

matrix B in equation (2.12) is the same as the one in theorem 2.2.3 and in theorem 2.2.4.

Thus, the equality A = B = ΓkQ with Q ∈ O(k) holds.

Just one year later, Darroch [15] published a similar theorem, replacing the matrix norm

in equation (2.12) by another function of the eigenvalues of a matrix: the trace.

Theorem 2.2.6 (Darroch). Let again k ∈ {1, . . . , N} be fixed. y and x are N - dimensional

respectively k - dimensional random vectors.

The minimization problem

min
Ax∈ℝN×1

trace(E(y −Ax)(y −Ax)′) (2.14)

with A ∈ ℝN×k has again the solution

Ax = 
1v1 + . . .+ 
kvk =

= 
1

′

1y + . . .+ 
k

′

ky

= Γ1Γ
′

1y, (2.15)

where Γ1 and 
i, i = 1, . . . , k, are defined as in the previous theorem.

In Darroch’s theorem x is assumed to be arbitrary, although in the optimal solution it is

again a function of the original random vector y.

The most general theorem, deriving principal components as a solution of an optimization

problem, that describes the loss of information of a lower dimensional approximation, dates

from 1968 and was proposed by Okamoto and Kanazawa [55].

In order to prove this main theorem of the optimality of principal components in the sense

of the loss of information the following two lemmas are required.
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2.2 Optimality of principal components

Lemma 2.2.5. Let M be a real nonnegative definite matrix of dimension N×N . A real valued

function f(M) is strictly increasing, i.e. f(M1) ≥ f(M2) if M1 ≥ M2 and f(M1) > f(M2)

if additionally M1 ∕= M2, and invariant under orthogonal transformations, i.e. f(Q′MQ) =

f(M) for any orthogonal matrix Q, if and only if f(M) can be written as a function of the

eigenvalues {�1(M), . . . , �N (M)} of M arranged in decreasing order of magnitude, which is

strictly increasing in each argument, i.e. f(M) = g(�1(M), . . . , �N (M)).

As an example for such a function f(M) the trace of a matrix trace(M) or the Frobenius

norm ∥M∥F can be mentioned.

Lemma 2.2.6. Let M , N and M − N be real, symmetric and nonnegative definite matrices

and rk(N) ≤ k.

Then the following properties are fulfilled:

∙
�i(M −N) ≥ �k+i(M) for any i (2.16)

and �j(M) = 0 for j > N .

∙ A necessary and sufficient condition for getting equality in equation (2.16) simultaneously

for all i is given by

N = �1(M)
1

′

1 + . . . + �k(M)
k

′

k,

where �i(M) and �i(M−N) denote the itℎ eigenvalue of M and M−N , respectively. {
1, . . . , 
k}
stands for the set of first k eigenvalues of M .

Theorem 2.2.7 (Okamoto and Kanazawa). Let k ∈ {1, . . . , N} be fixed. y and x are random

N × 1 respectively k × 1 vectors. Now, consider the following problem:

min
Ax∈ℝN×1

{�1(A, x), . . . , �k(A, x)} simultaneously

s.t. {�1(A, x), . . . , �k(A, x)} are the eigenvalues of E(y −Ax)(y −Ax)′,

where the coefficient matrix A is of dimension N × k and the eigenvalues �i(A, x), i = 1, . . . , k,

are given as functions of the matrix A and of the random vector x.

Then the optimal approximation Ax of y is the same as in theorem 2.2.6.

Proof. The purpose of minimizing all the eigenvalues of E(y − Ax)(y − Ax)′ simultaneously

can be reformulated as

min
A,x

{
f1(A, x) = f

(
E(y −Ax)(y −Ax)′

)}
(2.17)

with a real valued function f defined on the set of real nonnegative definite matrices as stated

in lemma 2.2.5. Now it can be seen easily that the above theorem reduces to the one of Rao
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2 Principal component analysis

for f(.) = ∥.∥F and to the one of Darroch if f(.) = trace(.).

If the rank of Σ is smaller than k, the solution is trivial. So let rk(Σ) be r > k from now on.

Without loss of generality x can be assumed to have a covariance matrix of the form Exx′ = Ik.

If Eyx′ =: B the joint covariance matrix of (y′, x′)′ is given by

Σ1 =

(

Σ B

B′ Ik

)

≥ 0

Thus the Schur complement of Ik in Σ1, Σ − BB′, has to be nonnegative definite as well, i.e.

Σ−BB′ ≥ 0.

Now the argument of the objective function can be modified further, namely

E(y −Ax)(y −Ax)′ = Σ−BB′ + (A−B)(A−B)′ ≥ Σ−BB′. (2.18)

According to the definition of f the following inequality must hold:

f1(A, x) = f(E(y −Ax)(y −Ax)′) ≥ f(Σ−BB′) = f2(B) (2.19)

and equality is obtained if and only if A = B. So for A = B equally f2(B) = f(Σ−BB′) can

be minimized with respect to B.

Because of the fact, that f is an increasing function of the eigenvalues of its argument, the

optimum is obtained if the eigenvalues are simultaneously minimized. Applying lemma 2.2.6

gives

�i(Σ−BB′) ≥ �k+i(Σ) ∀i (2.20)

and

�i(Σ−BB′) = �k+i(Σ) ⇔ BB′ = �1(Σ)v1v
′
1 + . . .+ �k(Σ)
k


′
k, (2.21)

where Γ = (
1, . . . , 
N ) is the matrix of eigenvectors of Σ related to the eigenvalues of Σ given

in the diagonal of Λ =

(
�1 0

. . .
0 �N

)

. Now BB′ can be reformulated in a more compact way as

BB′ = ΓΛ
1

2

(

Ik 0

0 0

)

Λ
1

2V ′

Therefore f2(B) is minimized by choosing the matrix B as

B = ΓΛ
1

2

1

(

Q1

0

)

,

where Λ1 is defined equally to Λ but with ones in the diagonal on the positions where Λ

18



2.2 Optimality of principal components

has zeros and Q1 is a k × k orthogonal matrix. Note, that the minimum of F2 is given by

f(�k+1
k+1

′
k+1 + . . . + �N
N
′N ), which is a function of the last N − k eigenvalues of Σ.

This matrix B is equal to the matrix A minimizing the original objective function f1(A, x). If

a matrix H is defined as H := ΓΛ
− 1

2

1

(

Q1

0

)

and a vector v as v := H ′y, then ΣH = A and

H ′A = Ik are valid. The existence of a unique random vector x which satisfies the conditions

Exx′ = Ik and Eyx′ = B has still to be proved. It is easy to see that the solution to x in order

to minimize f1) in equation (2.19) is given by v, because

Evv′ = EH ′yy′H = H ′ΣH = H ′A = Ik

and

Eyv′ = Eyy′H = ΣH = A = B.

The uniqueness of x = v follows from

E(v − x)(v − x)′ = Evv′ − Evx′ − Exv′ + Exx′ = Ik − EH ′yx′ − Exy′H + Ik =

= Ik −H ′A−A′H + Ik = Ik − Ik − Ik + Ik = 0.

Thus, f1(A, x) is minimized by

Ax = ΓΛ
1

2

1

(

Q1

0

)[

ΓΛ
− 1

2

1

(

Q1

0

)]′

y = Γ

(

Ik 0

0 0

)

Γ′y = 
1

′
1y + . . .+ 
k


′
ky.

□

One of the differences of this approach to the former one described in section 2.2.1 is the fact,

that here a model is presented, that can be used directly in a forecasting context, and the setup

as factor model becomes evident. Variation optimality leads to an optimal loadings matrix,

called B, but there is no direct way of obtaining forecasts ŷ for the target variables. However,

within the information loss framework it becomes clear, that the principal components are

obtained by premultiplying the original variables with a coefficient matrix B′. To get forecasts

ŷ of y, these principal components have to be multiplied by another matrix of coefficients A,

which is equal to B. So, if k is chosen equal to N , no information loss would occur and the

variables could be explained exactly by their principal components.

2.2.3 Correlation optimality

The third approach, that gives principal components as a result of an optimization problem, is

given trough the so called correlation optimality.
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2 Principal component analysis

Definition 3

The multiple correlation coefficient is a measure of the linear dependence between a one -

dimensional random variable y and a certain k × 1 random vector x. Let E(y) = 0 and

E(x) = 0 and denote the common covariance matrix of y and x by

Σ̃ =

(

�11Σ12

Σ21Σ22

)

,

where �11 ∈ ℝ, Σ12 and Σ21 ∈ ℝ1×k resp. ℝk×1 and Σ22 ∈ ℝk×k. Then the multiple coefficient

of correlation R(y, x) is defined as the square root of

R2(y, x) =
E(yx)[V ar(x)]−1E(xy)

V ar(y)
=

Σ12Σ
−1
22 Σ21

�11
.

It is easy to see, that the coefficient of correlation is invariant under any nonsingular linear

transformation of x.

To state the main theorem of this section, the following lemma is needed before.

Lemma 2.2.7. Let y and x be N - dimensional respectively k - dimensional random vectors

with the properties:

E(y) = 0, E(x) = 0, E(yy′) = Σ, E(xx′) = Ik, and E(yx′) = A.

For k ≤ N , �1 ≥ . . . ≥ �k > 0 are the first k eigenvalues of Σ and {
1, . . . , 
k} a set of first k

eigenvectors of Σ associated with {�1, . . . , �k}.
Then the existence of a matrix Q ∈ O(k) such that

A = (�0.5
1 
1, . . . , �

0.5
k 
k)Q

and

x = Q′(
1/�
0.5
1 , . . . , 
k/�

0.5
k )′y

is a necessary and sufficient condition, that the equality

AA′ = �1
1

′

1 + . . .+ �k
k

′

k = Γ1Λ1Γ
′

1

holds.

Now the main theorem of Okamoto [54] concerning Correlation Optimality can be stated.
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2.2 Optimality of principal components

Theorem 2.2.8. For a fixed k ∈ {1, . . . , N} assume that E(y) = 0 and rk(Σ) = E(yy′) ≥ k.

The problem

max
x∈ℝk

N∑

i=1

V ar(yi)R
2(yi, x) (2.22)

s.t. E(x) = 0, (2.23)

where R denotes the multiple coefficient of correlation, has the solution

x = T (v1, . . . , vk)
′ = Tv

with a regular k × k matrix T and v = (v1, . . . , vk)
′ denotes the matrix of first k principal

components of Σ.

Proof. Since

R2(yi, x) =
E(yix)[V ar(x)]−1E(xyi)

V ar(yi)
,

the objective function in equation (2.22) can be written as

N∑

i=1

V ar(yi)R
2(yi, x) =

N∑

i=1

E(yix)[V ar(x)]−1E(xyi).

The coefficient of correlation is invariant under any nonsingular transformation and therefore

V ar(x) = Ik can be assumed without loss of generality. This reduces the objective function to

N∑

i=1

E(yix)[V ar(x)]−1E(xyi) =

N∑

i=1

E(yix)E(xyi) = trace(AA′),

if E(yx′) =: A.

Since V ar(y −Ax) = Σ−AA′ is nonnegativ definite, we deduce from lemma 2.2.6 that

trace(Σ−AA′) =

N∑

i=1

�i(Σ−AA′) ≥
N∑

i=1

�k+i(Σ) =

N∑

i=k+1

�i(Σ).

Moreover, trace(Σ−AA′) = trace(Σ)− trace(AA′) =
∑N

i=1 �i(Σ)− trace(AA′).

Hence,

trace(AA′) ≤
k∑

i=1

�i(Σ) (2.24)
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2 Principal component analysis

and the equality sign holds for

AA′ = �1
1

′

1 + . . .+ �k
k

′

k = Γ1Λ1Γ
′

1. (2.25)

Because of lemma 2.2.7 the optimal solution of our problem is given by

x = Q′(
1/�
0.5
1 , . . . , 
k/�

0.5
k )′y =

= Q′(v1/�
0.5
1 , . . . , vk/�

0.5
k )′

= Q′Λ−0.5
1 Γ

′

1 = Q′Λ−0.5
1 v.

Taking into account that we restricted x before so that V ar(x) = Ik, all solutions for x are

given by

x = T (v1, . . . , vk)
′ = Tv

with a nonsingular matrix T ∈ ℝk×k.

□

Thus the approach of Correlation Optimality is another alternative for defining an optimization

problem, which leads to principal components as a result. It has to be taken into account that

here the orthogonality of the principal components and of the loadings matrix is lost, if T is

chosen nonorthogonal. When x is chosen as Tv with a regular matrix T , then the matrix of

loadings A has to be set equal to Γ1T
−1 to get the same optimum as in the orthogonal case.

Among the three approaches mentioned in this section Correlation Optimality is the least

popular one and it has not been applied in relation with additional restrictions up to now.

2.3 Identifiability and rotation techniques

In section 2.2 it was shown, that principal components are found by performing an eigenvalue

decomposition. So as already described on page 7 f. there occurs the first indeterminacy by

the eigenvalue calculation itself. If 
 is an eigenvector of A, then all multiples c
 (c ∈ ℝ) are

also eigenvectors of A. Therefore the eigenvectors are standardized so, that they have length

1, i.e. 
′
 = 1. Then there is still the possibility to change the signs of the eigenvector, which

is often solved in numerical computations by making its first nonzero entry positive.

According to the finite-dimensional spectral theorem normal matrices A with the property

AA′ = A′A with eigenvalues in ℝ can be diagonalized. As a special case all symmetric ma-

trices are normal and thus there exists for every symmetric real matrix A a real orthogonal

matrix Γ such that D = Γ′AΓ is a diagonal matrix. This means, the algebraic multiplicity of

each eigenvalue, which is the multiplicity of a root of the characteristic polynomial, has to be
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2.3 Identifiability and rotation techniques

equal to the geometric multiplicity, which is the dimension of the space that is spanned by the

eigenvectors, which are associated with such a multiple eigenvalue. So in spite of choosing the

eigenvectors of length 1 with their first entry positive, the eigenvectors are not unique in the

case of multiplicities larger that 1. As stated on page 8, all matrices Γ̃ obtained by postmulti-

plication of Γ with a matrix of orthogonal block matrices Ti are feasible matrices of eigenvectors.

The second source of indeterminacy was mentioned in section 2.2. In all three cases of

optimality of principal components the loadings matrix A is always obtained uniquely up to

an orthogonal rotation matrix Q. So using the notation of the equations (2.4) and (2.7) the

following equalities hold:

Σ = ΓΛΓ′ = Γ1Λ1Γ
′

1 + Γ2Λ2Γ
′

2 =

= Γ1Λ1Γ
′

1 +Σ� =

= Γ1QΛ1Q
′Γ

′

1 +Σ�

= Γ̃1Λ1Γ̃
′

1 +Σ�

with Γ̃1 = Γ1Q and Q is an orthogonal k × k matrix. This orthogonal matrix Q should not be

mistaken with the orthogonal matrix T before. In the former case T rotates the eigenvectors

so, that the resulting matrix is still a solution for an eigenvalue decomposition, whereas Q

rotates the eigenvectors so, that a new orthogonal basis ΓQ for Σ is found, which explains the

same amount of variance as Γ, but this new basis is not necessarily a solution to the eigenvalue

problem in equation (2.4). The set of feasible matrices T is a subset of the set of possible ma-

trices Q and that’s why it is sufficient to have a closer look at rotation matrices and rotation

techniques of principal components or of factor models in general.

The question, that arises now, is how to choose the loadings matrix Γ1 and thus the prin-

cipal components Γ
′

1y in the infinite number of possible matrices. A possible answer lies in

the interpretation of the result. The loadings matrix often lacks interpretability. Even for an

advanced mathematician it is a difficult task to analyze for example a data set with 20 vari-

ables and 5 principal components, which would result in a loadings matrix with 100 entries.

To overcome this problem, there exist several ways in literature to rotate the loadings matrix

with a matrix in such a way that the factor loadings become more interpretable. This means

that the aim is to get a more structured matrix of loadings, which makes the model easier to

understand. So one may desire to obtain in each column a few large values and the others

should be comparably small. So an interpretation for each factor can be found more easily by

taking into account just the few variables that are correlated highly with the corresponding

factors. Another way of defining structuredness may consist of finding for each variable (i.e.

in each row of the loadings matrix) one factor, on which it loads high, and on the rest of the
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2 Principal component analysis

factors it should load as low as possible.

Definition 4

A real matrix R ∈ ℝk×k is called a rotation matrix, if the following properties are fulfilled:

∙ the length of vectors and the angle between them remain unchanged, i.e.

∀ x, y ∈ ℝ
k : ⟨Rx,Rx⟩ = ⟨x, x⟩

⟨Rx,Ry⟩ = ⟨x, y⟩

∙ the orientation remains unchanged, i.e. ∣R∣ = 1.

Thus a rotation matrix is an orthogonal matrix, whose determinant is 1.

As an example for such orthogonal rotation methods varimax rotation, equimax rotation

and quartimax rotation can be named among others.

Sometimes such an orthogonal rotation may not be satisfactory. Consider for example the

graphic in figure 2.2. It shows the coordinates of the loadings matrix corresponding to the

orthogonal factors F1 and F2 for 7 variables, which are illustrated by the small black arrows.

The two factors are represented by the orthogonal coordinate axes. Because of the acute angle

between these arrows, an orthogonal rotation may not lead to the required result concerning

interpretability. If the orthogonality of the factors is not needed, a linear transformation of the

loadings matrix can be performed.

Definition 5

The premultiplication of a vector x ∈ ℝk with a real nonsingular matrix R ∈ ℝk×k is called a

linear transformation or oblique rotation of the vector x, i.e. x′ = Rx. In general, the length

of the transformed vectors and the angles between them have changed in comparison with the

original ones.

Remark. In literature such a linear transformation is often called an oblique rotation and

therefore the classical rotation will be called orthogonal rotation further on to stress the or-

thogonality of the matrix. When not specifying a certain type of rotation, just the terminology

rotation will be used.

In figure 2.2 the red arrows indicate the new, oblique factors after rotation and it is obvious,

that interpretation is easier than when applying an orthogonal rotation at the cost of obtaining

correlated factors. Promax rotation, oblimin rotation or procrustes rotation are a few examples
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Figure 2.1: Example of an (orthogonal) varimax rotation in the case of 2 factors

of oblique rotation methods.

The following two methods are well known procedures for an orthogonal respectively oblique

rotation technique of a loadings matrix and that’s why they are described in more detail here.

2.3.1 Varimax rotation

This type of orthogonal rotation was developed by Kaiser [49] in 1958 and modified by Horst

[41] in 1965. It seeks to rotate the factors in such a way, that the sum of the deviations of the

squared entries of the loadings matrix to its corresponding column means is maximized.

Denote with Γ̃1 ∈ ℝN×k an unrotated matrix of loadings and with 
ir the element in the itℎ

row and the rtℎ column of the matrix of loadings Γ1 = Γ̃1R, which is obtained by rotation of

Γ̃1 with an orthogonal k × k matrix R. Moreover, a scalar dr can be defined as

dr =
N∑

i=1


2ir.
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Figure 2.2: Example of an (oblique) promax rotation in the case of 2 factors

Then the maximization problem, that gives as a result the rotation matrix of varimax rotation,

can be described by

max
R∈ℝk×k

k∑

r=1

[
N∑

i=1

(


2ir −
dr
N

)2
]

s.t. R′R = Ik.

Due to this procedure some very high values and some very small values are obtained in each

column and thus interpretation becomes easier.

2.3.2 Promax rotation

In contrast to varimax rotation, promax rotation of Hendrickson and White [39] is an oblique

rotation. Here the structure of the loadings matrix is simplified further at the expense of

correlated factors. Promax rotation starts with a varimax rotation resulting in a loadings

matrix Γ1. Next a Matrix S is defined whose entries are given by

sir = ∣
j−1
ir ∣
ir, (2.26)

where j is some integer that is larger than 1 and in empirical applications normally chosen

smaller or equal to 4. The elements sir have the same sign as 
ir and the same absolute value

as 
jir.

Then the factors should be rotated with a regular matrix R in such a way, that for each
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2.4 Criticism

r = 1, . . . , k the rtℎ column of the matrix product Γ1R is as similar as possible to the rtℎ

column of S in a least square sense.

Thus the (oblique) rotation matrix R is given by

R = (Γ
′

1Γ1)
−1Γ

′

1S. (2.27)

As a consequence the covariance matrix of the factors Σf can be calculated by

Σf = (R′R)−1, (2.28)

which is different from Ik because of j being larger than 1. If the variances of the factors should

still be equal to 1, it is feasible to rescale the rotation matrix R in an adequate manner.

Having a look at the definitions of the two rotation methods, it is obvious that they are not

adequate if there is a notably dominating first factor. In this case it seems more reasonable to

exclude this first factor from rotation and rotate just the remaining k−1 columns of the factor

matrix.

2.4 Criticism

Up to now the structure of principal component models and its derivation have been described

in detail in this chapter. To sum up, the following properties of principal components can be

mentioned:

Principal component analysis (PCA)

∙ reduces the number of observed variables to a smaller number of principal components,

which account for most of the variance of the observed variables. Components, which

account for maximal variance, are retained while other components accounting for a small

amount of variance are not retained. The amount of variance, that is explained by each

component, is measured by the eigenvalues of the covariance matrix of the data.

∙ should be applied when (subsets of) variables are highly correlated.

∙ needs no underlying probability distribution of the data beyond the second moments;

therefore it is called a non-parametric method.

∙ minimizes in the case of a given sample of observations the sum of the squared perpen-

dicular distances to the space spanned by the principal components.

∙ becomes better interpretable when rotating the obtained solution in a suitable way.
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2 Principal component analysis

What are the disadvantages or drawbacks of PCA? Which further improvements can be made?

One may claim, that the data and the principal components are just connected in a linear way.

To overcome that, nonlinear methods like kernel PCA have been developed (see [2]), which is

out of the scope of this thesis. The absence of a probability distribution can both be interpreted

as weakness or as strength of the method.

As already mentioned in section 2.3, one of the main difficulties of an unrotated PCA solu-

tion lies in the unability of interpreting the results in the case of high dimensional data. So

rotation should ensure that afterwards there are a few large values in the matrix of loadings

and that the others are small and thus unimportant. But what happens, if there is a priori

knowledge available about the structure of the principal component model. An experienced

scientist or economist or whatever may know, which variables load on which factor, if the

meaning of the individual factors is clear.1 For example, if an asset manager wants to ana-

lyze 20 assets, where 10 belong to the branch of technology and the others to the branch of

telecommunications, it seems reasonable to define a first factor representing the market and

two other factors containing the information of the two sectors mentioned before. Then one

may assume, that the return2 of an asset of the technology group may be a linear combination

of the market return and some ’average return’ of the technology sector, but it may not depend

on the price movements of the telecommunications branch. Such a time series, measuring the

average return3 of a sector, can be interpreted as a sector index. The independence of a target

variable on a factor can be forced by restricting the corresponding element of the loadings

matrix to zero. Of course, the insample goodness of fit of the restricted model will be worse

than the unrestricted one, but the forecasts of such a restricted model may be even better, if

the true underlying model has the proposed structure with exact zeros in its matrix of loadings.

Setting such zero restrictions on the loadings matrix of a factor model will be called sparse

factor model from now on. The model, its properties and estimation methods will be the

central topics of chapter 3.

1The usual rotated PCA solution may, for example, give already hints on the meaning of the factors.
2A return is calculated as relative difference of e.g. asset prices over time. Denoting with pt the price of an

asset at time t, the return of this asset at time t, rt, is calculated as rt = (pt − pt−1)/pt−1.
3The use of ’average’ does not imply, that the factor has to be calculated as arithmetic mean of different time

series. More sophisticated ways of aggregating the information in the data are imaginable, when interpreting a
factor.
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Chapter 3

Sparse principal component analysis

Before going more into detail, an explanation about the meaning of the term sparse principal

component analysis will be given. In literature the term ’sparse’ refers to a coefficient matrix,

that is used to build linear combinations either of the original variables or of the principal

components, that has many zero entries and a few that are unequal zero.

Thurstone [75] suggested in 1947 five criteria to define a simple structure of a matrix of loadings.

According to these criteria, a loadings matrix is simple if

∙ each row contains at least one element, that is zero

∙ in each column the number of zeros is larger or equal to the number of columns k

∙ for any pair of factors there are some variables with zero loadings on one factor and

significant loadings on the other factor

∙ for any pair of factors there is a large proportion of zero loadings, if the number of factors

is not too small

∙ for any pair of factors there are only a few variables with large loadings on both factors.

Nevertheless, the understanding of sparseness here in this thesis is slightly different from the

one of Thurstone and will be explained in more detail later on.

The degree of sparsity addresses the number of elements that are not zero. Especially

in small restricted PCA models the degree of sparsity can be quite large compared to bigger

models taking into account the overall number of parameters. Such a sparse matrix Γ1 may
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3 Sparse principal component analysis

look like

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 f2 f3

y1 ∗ ∗ 0

y2 ∗ ∗ 0

y3 ∗ ∗ 0

y4 ∗ 0 ∗
y5 ∗ 0 ∗
y6 ∗ 0 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

An asterisk denotes the nonzero elements in the matrix. This would mean, that the variables 1

to 4 depend on the first and on the second factor, whereas variables 5 and 6 depend on the first

and on the third factor. Note, that here the first factor can be interpreted as general factor

or market factor, which explains all the variables, in contradiction to the criteria defined by

Thurstone. Nevertheless, in practical applications it may make sense and the simplicity of the

structure is not affected a lot if all variables load on that factor.

If the loadings matrix of a set of variables can be decomposed entirely in single blocks, a PCA

for the variables of each block can be performed separately and no restricted PCA is necessary.

For example, if Γ′
1 is assumed to be of the form

⎛

⎜
⎝

∗ ∗ ∗ 0 0 0 0 0 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗

⎞

⎟
⎠

,

one would carry out a PCA for the variables 1 to 3, a second one for the variables 4 to 7 and

another one for the variables 8 to 10.

As described in section 2.3 the entries of a matrix of loadings are in general not zero, but

there exists the possibility to rotate the factors and thus the loadings matrix so, that (nearly)

exact zeros are obtained. With varimax or promax rotation, which are explained before, it will

not be possible to get exact zeros. The following section shows an algorithm, that performs

such an oblique rotation to (nearly) zeros.

3.1 Oblique rotation based on a pattern matrix

In practice it’s often desirable to rotate the loadings matrix Γ1 ∈ ℝN×k in such a way that

a-priori specified elements will be or at least will come close to zero. Therefore a pattern matrix

has to be constructed, that contains zeros to define restricted elements and ones otherwise. In

the case of a 8 × 3 loadings matrix the rtℎ row of the transpose of such a pattern matrix P
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3.1 Oblique rotation based on a pattern matrix

could be defined by

p′ = [1 0 1 1 0 0 1 1]

The aim is now to find a transformation matrix S ∈ ℝk×k, so that the rotated loadings matrix

Γ∗
1 = Γ1S has values equal or near zero on those positions, where the pattern matrix has zero

entries.

To get small values in the above specified positions of the rotated loadings matrix, an opti-

mization problem can be defined, that chooses S in such a way, that the sum of squares of

the restricted elements of each column of Γ∗
1 is minimized subject to the sum of squares of all

elements being held constant.

Therefore matrices Γ1,r are defined that would in the above example be of the form

Γ′
1,r =

⎛

⎜
⎝

∗ 0 ∗ ∗ 0 0 ∗ ∗
∗ 0 ∗ ∗ 0 0 ∗ ∗
∗ 0 ∗ ∗ 0 0 ∗ ∗

⎞

⎟
⎠ ,

where asterisks define the original values of the loadings matrix Γ1. It’s obvious that multipli-

cation of Γ1,r with the rtℎ column of the rotation matrix sr produces zero values in the desired

positions.

Minimizing the objective function, that models the criteria stated above, is equal to maximizing

the sum of squares of the unrestricted elements subject to the sum of squares of all elements

being held constant for all columns r = 1, . . . , k.

This leads to the following optimization problem:

max
sr

[s′r(Γ
′
1,rΓ1,r)sr]

s.t. s′r(Γ
′
1Γ1)sr = 
′r
r,

where 
r indicates the rtℎ column of the loadings matrix Γ1. The maximization problem can

be reformulated by use of a Lagrange multiplier:

max
sr,�r

[(

s′r(Γ
′
1,rΓ1,r)sr

)

− �r ∗
(

s′r(Γ
′
1Γ1)sr − 
′r
r

)]

. (3.1)

Thus the following derivatives have to be set equal to zero for all r = 1, . . . , k:

∂

∂sr
[s′r(Γ

′
1,rΓ1,r)sr − �rs

′
r(Γ

′
1Γ1)sr] = 0.

∂

∂�r
[�r(s

′
r(Γ

′
1Γ1)sr − 
′r
r)] = 0
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3 Sparse principal component analysis

Solving the first of the above equations we get

(Γ′
1,rΓ1,r)sr = �r(Γ

′
1Γ1)sr. (3.2)

The second one results as expected in the side condition. Equation (3.2) can be rewritten as

Hrsr = �rsr, (3.3)

where Hr = (Γ′
1Γ1)

−1(Γ′
1,rΓ1,r).

This defines an eigenvalue problem and in order to maximize the objective function in equa-

tion (3.1), �r has to be the largest eigenvalue of Hr and sr the eigenvector corresponding to

the optimal �r. This becomes clearer if equation (3.2) is premultiplied by sr. Apparently �r

can be seen as the ratio of sr(Γ
′
1,rΓ1,r)sr to sr(Γ

′
1Γ1)sr, which should be as large as possible.

If the rtℎ column of the pattern matrix has exactly k− 1 zeros, the optimal �r is 1. In the case

of more than k − 1 zeros the Lagrange multiplier reaches a value between 0 and 1.

Due to the facts, that the eigenvalues of symmetric matrices can be calculated more easily

and the numeric advantage of getting real eigenvalues in the case of symmetric matrices, it

seems reasonable to transform Hr into a symmetric matrix by decomposing Γ′
1Γ1 as TT ′ with

lower triangular matrices T. This can be reached by means of a QR decomposition. Now we

define a matrix

Wr = T−1(Γ′
1,rΓ1,r)T

′−1, (3.4)

which is symmetric. Moreover, Wr has the same latent roots �r as Hr and T ′−1ur = sr, where

ur denotes the latent vector of Wr.

The procedure described in this section is one of the well known rotation techniques in

literature. But how good does it work? To analyze that aspect, the basic aim of sparse factor

rotation will be recalled with the help of an example.

Example So let Γ1 be a general 7× 3 loadings matrix shown in table 3.1. Then the aim is

to find an oblique rotation matrix R, whose columns are not vectors of zeros, so that Γ1R is

sparse. Firstly, a boundary of 0.015 is chosen to restrict all elements in this loadings matrix,

that are smaller than this value, to zero. According to Thurstones criteria for simplicity, the

obtained matrix is still not simple, but afterwards another example with harder restrictions

will be given.
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3.1 Oblique rotation based on a pattern matrix

PC1 PC2 PC3

y1 0.0194 0.6141 −0.0012
y2 −0.0015 0.0093 0.9986
y3 0.8323 −0.1106 0.0059
y4 0.3620 0.0533 −0.0152
y5 −0.0052 0.4540 0.0335
y6 0.0701 0.6320 −0.0361
y7 0.4135 0.0457 0.0116

Table 3.1: Example of a loadings matrix rotated with varimax

PC1 PC2 PC3

y1 0.0264 0.5296 −0.0011

y2 0.0000 0.0000 0.9985

y3 0.8309 −0.4963 −0.0035

y4 0.3625 −0.1267 −0.0192

y5 0.0000 0.4006 0.0337
y6 0.0773 0.5212 −0.0366

y7 0.4141 −0.1584 +0.0070

Table 3.2: Example of a loadings matrix after rotation based on a pattern matrix

Thus the following equality should hold:

Γ1R = Γ1

⎛

⎜
⎝

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ 0

0 0 ∗
∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗
∗ ∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.5)

The result of the above described oblique rotation is shown in table 3.2. What happens? The

first two columns are rotated as expected and zeros are obtained in the desired positions. But

the third column has no exact zeros in the a priori defined positions.

Let equation (3.5) be written as a system of equations for each column of the loadings
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3 Sparse principal component analysis

matrix. Then the following system is obtained:

0.0194r13 + 0.6141r23 − 0.0012r33 = 0

0.8323r13 − 0.1106r23 + 0.0059r33 = 0 (3.6)

0.4135r13 + 0.0457r23 + 0.0116r33 = 0.

In general, this system of equations will be nonsingular and thus the only vector (r13, r23, r33)
′

that fulfills equation (3.6) exactly, would be (0, 0, 0)′, according to basic results of linear al-

gebra. But this is no feasible solution and thus the algorithm described above gives some

approximation as a solution. On the other hand, the first two columns of the matrix of load-

ings have less than k = 3 zeros, namely 2 and 1, respectively. In the case of the first principal

component the kernel1 of the matrix of coefficients is one - dimensional, because the corre-

sponding system of equation consists of 2 (in general) linear independent equations. That’s

why the first vector of the rotation matrix is up to its sign equal to the vector of the null

space, that has length one.2 If the number of zeros in a column is k − 2 as in the second

column of the matrix of loadings, where just 1 restriction is set, the null space of the corre-

sponding matrix of coefficients is two - dimensional. The second column of the rotation matrix

also has length 1 and is built as a linear combination of two vectors of the null space. Now it

is easy to conduct, that in the case of more than k zeros, no exact zeros can be generated either.

To summarize these considerations, the oblique rotation technique presented in this section

just gives exact zeros if the number of zeros in each column is less than or equal to k−1, which

can be deduced from simple results of algebra. However, if k or more zeros are desired, which

is the interesting case in practise, just small values can be achieved and there is no rule about

the closeness of them to zero.

This is quite unsatisfactory and thus the aim of this thesis is to find another algorithm,

that is more restrictive and that gives exact zeros, if more than k − 1 entries are restricted in

a column of the matrix of loadings.

3.2 Historical review

First a historical overview will be given about the research that has been done in the last few

decades on the topic of sparse principal component analysis. There are mainly found two types

of restricting formulations. One type is founded according to the formulation of a maximization

1The kernel of a matrix is also called null space.
2This can be verified easily by performing a singular value decomposition Γ1 = UDV ′ and taking the ktℎ

column of V .
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problem, where the variance of the principal components is maximized, as described in section

2.2.1. The other one is related to the minimization of the loss of information, similar to the

optimization model specified in section 2.2.2. As already mentioned earlier, there does not

exist work on restricted PCA in the context of correlation optimality in literature up to now

(see also section 2.2.3).

3.2.1 Variance based formulations

In 2000 Jolliffe and Uddin [47] developed the so called simplified component technique, which is

abbreviated as SCoT. It can be seen as an alternative to rotated principal components. SCoT

maximizes the variance of the principal components as in theorem 2.2.2, but with an additional

penalty function, which is a multiple of one of the simplicity criteria of rotation such as e.g.

varimax.

Just three years later, Jolliffe et al. [46] proposed a modified principal component tech-

nique based on the LASSO . Here LASSO stands for Least Absolute Shrinkage and Selection

Operator. This method was introduced by Tibshirani [77] in 1996 in combination with regres-

sion analysis and sets a boundary to the sum of absolute values of the coefficients. This L1

type restriction may cause that some of the coefficients of the loadings matrix are estimated

as zero. The methodology of Jolliffe et al. is known as SCoTLASS and the name stresses the

enhancement of SCoT by adding an additional LASSO restriction:

max

i∈ℝN

V ar(
′iy) successively for all i = 1, . . . , k

s.t. 
′i
i = 1


′i
j = 0 for all j < i ≤ k

N∑

l=1


li ≤ t

for some tuning parameter t. If t < 1 no solution will be obtained, whereas if t = 1 exactly

1 element will be unequal zero in each column. Whenever t is chosen larger or equal to
√
N ,

the optimization problem results in the unrestricted PCA solution and for values of t between

1 and
√
N the number of zeros will vary between 0 and N − 1. This is an algorithm, that

produces exact zeros. But it has the disadvantage of many local optima in optimization and

high computational costs.

In 2007 D’Aspremont, Ghaoui, Jordan and Lanckriet [17] found a direct formulation for
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3 Sparse principal component analysis

sparse PCA using semidefinite programming. They define an optimization problem

max

i∈ℝN

V ar(
′iy) successively for all i = 1, . . . , k

s.t. 
′i
i = 1


′i
j = 0 for all j < i ≤ k

card(
i) ≤ m,

where card(
i) stands for the number of elements in 
i, that are different from zero, and m is a

sparsity controlling parameter. This problem above is NP-hard3 and that’s why a semidefinite

relaxation of it is derived, that contains a weaker but convex side condition:

max
Γ∈ℝN×N

trace(ΣΓ)

s.t. trace(Γ) = 1

1′∣Γ∣1 ≤ m

Γ′Γ = IN

Γ ર 0,

where 1 stands for a N - dimensional vector of ones and ∣Γ∣ denotes a matrix whose elements

are the absolute values of Γ. Thus the cardinality or L0 norm constraint is replaced by one

using the L1 norm.

If the optimal solution of the problem above is denoted by Γ∗ = (
∗1 , . . . , 

∗
N ), then the first

dominating sparse eigenvector 
∗1 is retained. Then the optimization algorithm is run again

with Σ − (
∗
′

1 Σ
∗1)

∗
1


∗′
1 instead of Σ. Then again the dominant sparse vector is retained as

second sparse eigenvector and so on. Now the procedure is iterated until a certain stopping

criterion is fulfilled. This approach of sparse PCA is called DSPCA.

D’Aspremont, Bach and Ghaoui [16] found in 2008 another way of defining and solving a

sparse PCA problem. They start with the objective function

max

: ∣∣
∣∣≤1


′Σ
 − � card(
) (3.7)

with the sparsity controlling parameter � ∈ ℝ, which should be always smaller than Σ11
4. The

3nondeterministic polynomial-time hard
4Σ11 denotes the element in the first row and the first column of Σ. This upper boundary ensures, that the

value of the objective function will stay positive.
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larger �, the sparser will be the vector z. Σ is the covariance matrix of y and for further

computation it will be decomposed as Σ = S′S with S ∈ ℝN×N .

So this function can be seen as Lagrange function, where the Rayleigh quotient is maximized

and constraints are set on the number of nonzero elements of the vector z. Then they refor-

mulate the problem in equation (3.7) to a nonconvex optimization problem

max
x: ∣∣x∣∣=1

N∑

i=1

[(s′ix)
2 − �]+, (3.8)

where si denotes the itℎ column of the matrix S, x ∈ ℝN and

[�]+ :=

⎧

⎨

⎩

� if � ≥ 0

0 if � ≤ 0.

Next a semidefinite, convex relaxation of equation (3.8) is proposed, that can be solved with a

greedy algorithm of total complexity O(N3). Defining X = xx′ and Bi = sis
′
i − �IN , then the

final convex optimization problem is given by

max
X,Pi

N∑

i=1

trace(PiBi)

s.t. trace(X) = 1

X ર 0

X ર Pi ર 0,

where Pi is a positive semidefinite matrix and the optimal value of its objective function is an

upper bound on the nonconvex problem.

Another similar, but more general approach was suggested by Journée, Nesterov, Richtárik

and Sepulchre [48]. Their research is based on single factor models as well as on multifactor

models. They formulate both L0 and L1 type penalty terms in the objective function. So

when building a single unit sparse PCA model with the cardinality as penalty function, the

methodology proposed by D’Aspremont, Bach and Ghaoui [16] is obtained.

The initial formulations of the optimization problems lead to nonconvex functions which are

computationally intractable. Thus these functions are rewritten as convex optimization prob-

lems on a compact set, whose dimension is much smaller than the original one. So apart from

making optimization easier the dimension of the search space decreases substantially. Table

3.3 opposes the original, nonconvex optimization problems and their convex reformulations for

all 4 cases. Details about how they are derived, can be read in [48]. In the formulas Y is
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3 Sparse principal component analysis

assumed to be any rectangular data matrix of dimension T ×N with sample covariance matrix

Σ = Y ′Y . N is a k × k diagonal matrix with positive entries �1, . . . , �k in the diagonal

N =

⎛

⎜
⎜
⎝

�1 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ �k

⎞

⎟
⎟
⎠

,

which is set to the identity matrix Ik in the empirical work of Journée et al. Moreover, simple

first-order methods for solving the optimization problems are proposed, which give stationary

points as a solution. The goal of attaining a local maximizer is in general unattainable. This

methodology is called generalized power method.

3.2.2 Formulations based on the loss of information

In contrast to the variance based formulations there exists the second class of restricted PCA

problems, which focuses on the loss of information when approximating a matrix by another

of lower rank. One of the main research in that area was done by Zou, Hastie and Tibshirani

[85] in 2006. Given a sample matrix Y = (y1, . . . , yT )
′ ∈ ℝT×N , they define the following

optimization problem:

min
A,B∈ℝN×k

T∑

i=1

∣∣yi −AB′yi∣∣2 + �

k∑

j=1

∣∣bj ∣∣2 +
k∑

j=1

�1,j∣∣bj ∣∣1

s.t. A′A = Ik.

This problem can be rewritten as

min
A,B∈ℝN×k

∣∣Y − Y BA′∣∣2F + �
k∑

j=1

∣∣bj ∣∣2 +
k∑

j=1

�1,j∣∣bj ∣∣1 (3.9)

s.t. A′A = Ik.

which shows the similarity to the unrestricted approach proposed by Darroch (see page 16).

Note, that there are two addends in the objective function. Firstly, there is the ridge penalty,

which is not used to penalize the regression coefficients, but to ensure the reconstructions of

the principal components. Secondly, a LASSO penalty term is added, which should control

the sparseness of the N × k matrix of loadings B. As can be seen from the above objective

function, different values for �1,j are allowed in each column of the loadings matrix.

Zou et al. propose an algorithm called SPCA (sparse PCA), which consists of iterations between

the estimation of A and B. Basically, estimation reduces to generalized regression problems,
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original problem convex reformulation optimal 


L1, single max

:
′
≤1

√

′Σ
 − �∣∣
∣∣1 max

x: x′x=1

N∑

i=1
[∣y′ix∣ − �]2+ 
∗i =

sign(y′ix)[∣y
′

ix∣−�]+
√

N
∑

k=1

[∣y′
k
x∣−�]2

+

L0, single max

:
′
≤1


′Σ
 − �∣∣
∣∣0 max
x: x′x=1

N∑

i=1
[(y′ix)

2 − �]+ 
∗i =
[sign((y′ix)

2−�)]+y′ix
√

N
∑

k=1

[sign((y′
k
x)2−�)]+(y′

k
x)2

L1, multi max
Γ: diag(Γ′Γ)=Ik
X: X′X=Ik

trace(X ′Y ΓN)− �
k∑

j=1

N∑

i=1
∣
ij∣ max

X: X′X=Ik

k∑

j=1

N∑

i=1
[�j ∣y′ixj∣ − �]2+ 
∗ij =

sign(y′ixj)[�j ∣y′ixj ∣−�]+
√

N
∑

k=1

[�j ∣y′kxj ∣−�]2
+

L0, multi max
Γ: diag(Γ′Γ)=Ik
X: X′X=Ik

trace(diag(X ′Y ΓN)2)− �∣∣Γ∣∣0 max
X: X′X=Ik

k∑

j=1

N∑

i=1
[(�jy

′
ixj)

2 − �]+ 
∗ij =
[sign((�jy

′

ixj)
2−�)]+�jy

′

ixj
√

N
∑

k=1

[sign((�jy′kxj)2−�)]+�2
j (y

′

k
xj)2

Table 3.3: Sparse PCA formulations of Journée et al. [48]
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which are solved by algorithms called LARS and elastic net (LARS-EN). The former was

introduced in 2004 by Efron et al. [21] solving LASSO regression models, that penalize the

coefficients of a regression model by adding a L1 penalty term to the regression. In spite of

wide acceptance and affirmation of the LASSO procedure, it has several drawbacks such as

the inability of selecting more variables than there are observation available, which can be

a problem if applied to e.g. microarray data. To overcome this limitation Zou and Hastie

[84] generalized in 2005 the LASSO regression to the elastic net regression, which is a convex

combination of the ridge penalty and the LASSO penalty. The estimate �̂EN is given by

�̂EN = (1 + �2)argmin
�

∣∣y −
p
∑

j=1

xj�j∣∣2 + �2

p
∑

j=1

∣∣�j ∣∣2 + �1∣∣�j ∣∣1,

where y is a vector of dimension T , X = (x1, . . . , xp) is a T ×p matrix of explanatory variables,

� = (�1, . . . , �p)
′ is the vector of regression coefficients and �1 and �2 are nonnegative values

in ℝ.

Note, that in the optimization problem stated in equation (3.9) A and B do not have to be

equal as in the unrestricted case and that the orthogonality of the principal components BY

is not required anymore.

Two years later Shen and Huang [64] introduced another sparse PCA model given by the

objective function

min
u,v

∣∣Y − uv′∣∣2F + P�(v),

where Y ∈ ℝT×N is a given data matrix and u and v are T - and N -dimensional vectors,

respectively. P�(v) =
∑N

j=1 p�(∣vj ∣) is a penalty term with a positive tuning parameter �, for

which three different types of penalty functions are suggested: the soft thresholding penalty or

LASSO penalty, the hard tresholding penalty and the SCAD penalty5, which can be seen as a

combination of the previous two types of thresholding.

Setting (Y ′u)j =: ỹ and defining (x)+ := max(x, 0), the individual penalty functions p�(∣vj ∣)
and the estimates of vj, which will be denoted by v̂j , are given by

∙ soft thresholding: p�(∣vj ∣) = 2�∣vj ∣

v̂j = ℎsoft� (ỹ) = sign(ỹ)(∣ỹ∣ − �)+

∙ hard thresholding: p�(∣vj ∣) = �2I(∣vj ∣ ∕= 0)

v̂j = ℎℎard� (ỹ) = I(∣ỹ∣ > �)ỹ

5SCAD stands for smoothly clipped absolute deviation
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∙ SCAD penalty: p�(∣vj ∣) = 2�∣vj ∣I(∣vj ∣ ≤ �)− v2j−2a�∣vj ∣+�2

a−1 I(� < ∣vj∣ ≤ a�) + (a+ 1)�2I(∣vj ∣ > a�)

v̂j = ℎSCAD
� (ỹ) =

⎧

⎨

⎩

sign(ỹ)(∣ỹ∣ − �)+ if ∣ỹ∣ ≤ 2�

(a−1)ỹ−sign(ỹ)a�
a−2 if 2� ≤ ∣ỹ∣ ≤ a�

ỹ if ∣ỹ∣ > a�

,

where a is an additional tuning parameter, that takes values larger than 2. If Bayesian

risk should be minimized, a value of 3.7 is recommended in the literature of Fan and Li

[23].

By using one of the above penalty functions and an iterative algorithm called sPCA - rSVD,

that calculates the vectors u and v in an alternating way, a sparse v̂ is obtained, that is scaled

so, that it has length 1. After obtaining this first component, the residual matrix Y1 = Y − ûv̂′

has to be built and the same algorithm is applied to Y1, if a further component is desired. One

may proceed in a similar way, if more than two components should be calculated.

If the parameter � is set to zero in the penalty function, this methodology reduces to the

alternating least squares algorithm (ALS) of Gabriel and Zamir [29] in order to calculate the

singular value decomposition of a sample matrix Y . Moreover, this procedure can be extended

easily by adding further penalty functions.

They also introduce a measure for the cumulative percentage of explained variance (CPEV ),

which is given by
trace(Y ′

kYk)

trace(Y ′Y )
,

where Yk denotes the projection of Y on the k-dimensional subspace spanned by the first k

sparse loadings vectors Vk = (v̂1, . . . , v̂k). Thus Yk is given by

Yk = Y Vk(V
′
kVk)

−1Vk.

This procedure gives k sparse loading vectors, that depend on Y only through Y ′Y and thus

it can be applied also in the case, when just the covariance matrix is given. Nevertheless, it

will not be possible to calculate sparse principal components in such a case, which is essential

for the purpose of this thesis. Take also into account, that here it is also not required, that the

principal components are linear combinations of the data Y . Thus, another property of unre-

stricted principal components is dropped besides the loss of orthogonality, which is common

among all research done on sparse PCA.

Another group of researches, proposing a sparse PCA model and new estimates in 2009,
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3 Sparse principal component analysis

consists of Leng and Wang [51]. They reformulate and generalize the SPCA model of Zou et

al. (see page 38) in two ways.

Firstly, a method called simple adaptive sparse principal component analysis (SASPCA) is

proposed. It incorporates an adaptive LASSO penalty term, which has been suggested by Zou

[83] in 2006, in the SPCA model:

min
A,B∈ℝN×k

1

T

T∑

i=1

∣∣yi −AB′yi∣∣2 +
N∑

i=1

k∑

j=1

�ij ∣bij ∣ (3.10)

s.t. A′A = Ik,

where B =

(
b11 ⋅⋅⋅ b1k
...

...
bN1 ⋅⋅⋅ bNk

)

. Thus, different shrinkage coefficients can be used for different entries

of the matrix of loadings and a quite flexible way for controlling the level of sparsity is obtained.

The parameter matrices A and B are calculated by applying a singular value decomposition and

least angle regression (LARS) developed by Efron et al. [21] in 2004 iteratively. A BIC6 type

criterion is proposed for setting the tuning parameters. Because of the practical infeasibility

of tuning so many shrinkage parameters simultaneously, the simplification

�ij =
�j

∣b̃ij ∣

with ∣b̃ij∣ being the absolute value of the ij - element in the loadings matrix of the unrestricted

PCA, can be made, which reduces the tuning parameter selection to choosing just k values �j,

j = 1, . . . , k. Leng and Wang [51] show, that with this method the important coefficients can

be selected consistently and with high efficiency.

Secondly, within the general adaptive sparse principal component analysis (GASPCA) the least

squares objective function of SPCA is replaced by a generalized least squares objective function,

which improves the finite sample performance. If the zeros and nonzeros of the loadings matrix

are not well separated, the estimates of SPCA may be poor. To overcome this problem, one of

the iteration steps can be modified. According to simple linear algebra, the objective function

in equation (3.10) is for fixed A equivalent to the following objective function

min
A,B∈ℝN×k

k∑

j=1

{

1

T

T∑

i=1

(a′jyi − b′jyi)
2 +

N∑

i=1

�ij ∣bij∣
}

(3.11)

up to a constant, where (a1, . . . , ak) and (b1, . . . , bk) are the k columns of A and B, respectively.

6BIC stands for the Bayesian information criterion, which is also called Schwarz information criterion. It
should prevent estimation from overfitting by adding a penalty term to a function of the value of the maximized
likelihood L: BIC = −2L + k lnT . k denotes the number of parameters, that have to be estimated, and T
stands for the number of observations.
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3.3 The model

Now, this problem can again be rewritten as

min
A,B∈ℝN×k

k∑

j=1

{

(aj − bj)
′Σ(aj − bj) +

N∑

i=1

�ij∣bij ∣
}

with the sample covariance matrix Σ of Y = (y1, . . . , yT )
′. The idea of GASPCA consists of

replacing the covariance matrix Σ by a positive definite matrix Ω̃ with probabilistic limit Ω,

which is a positive definite matrix referred to as kernel matrix, so that the following optimization

problem arises:

min
A,B∈ℝN×k

k∑

j=1

{

(aj − bj)
′Ω̃(aj − bj) +

N∑

i=1

�ij ∣bij ∣
}

. (3.12)

The authors suggest to choose Ω̃ as cov−1(b̃j), which is the inverse of the covariance matrix of

the unrestricted solution for the jtℎ column of B. Unfortunately, no simple formula exists for

calculating this expression and so a bootstrapping method is proposed in order to calculate an

estimator ˆcov−1(b̃j).

3.3 The model

All the existing methodologies of the literature, which are summarized in the previous section,

adopt a different approach to sparse principal component models. They have in common,

that no information about the structure of the factor loadings matrix is available and thus

the zero positions in the loadings matrix are determined in an automated way. However, in

this framework a priori knowledge of the structure of the matrix of loadings exists, and this

information will be considered in the estimation. The number of zeros in at least one column of

the loadings matrix has to be k or larger than k in order to obtain a restricted PCA model that

can not be obtained by simple rotation or transformation. The reason for formulating such

sparse models is due to better interpretability of the model and enhancement of the precision

of the estimation. In some practical applications a sparse PCA model can be more adequate

than an unrestricted one.

Moreover, as can also be seen from existing literature, the property of orthogonality of the

principal components as well as of the matrix of loadings is not assumed anymore, because

this would restrict the space spanned by the principal components excessively and it does

not seem reasonable from the interpretation point of view. For reasons of identifiability, the

principal components will be scaled so, that they have unit length. This assumption follows

from the following considerations. As a special case of linear transformations the factors can

be premultiplied by any diagonal matrix R =

(
r1 ⋅⋅⋅ 0
...
. . .

...
0 ⋅⋅⋅ rk

)

with ri ∕= 0 for all i = 1, . . . , k and at

least one diagonal element has to be different from 1. If the matrix of loadings is postmultiplied
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3 Sparse principal component analysis

by the inverse of R, the latent variables AR−1RB′yt = AB′yt stay the same and thus no real

additional solution is obtained.

As already described earlier, the N × T dimensional data matrix Y = (y1, . . . , yT )
′ should be

approximated by a lower dimensional matrix Ŷ of rank k ≤ N

Ŷ = Y BA′ or ŷt = AB′yt, for t = 1, . . . , T, (3.13)

with rk(A) = rk(B) = k. In the existing literature - with exception of the research done by

Shen and Huang [64] - zero restrictions are just set to the matrix B, which is used to calculate

the principal components as a linear combination of the original variables Y . Thus, the aim of

the authors is to define principal components or factors, that are linear combination of just a

few (selected) variables and not of all the variables. Shen and Huang are the only ones, who

set the restriction on that matrix, that builds linear combinations of the restricted factors.

However, these factors are in general not in the space spanned by the original variables Y . In

this thesis zero restriction will also be set just to the matrix A, because the focus here does

not lie merely in the calculation of principal components, but also in the prediction of the

data. Moreover, even future values for the data should be forecasted and thus constraints on

B would not be that meaningful. This will become clearer in section 4. However, the most

convincing reason for setting restrictions on A and not on B is the fact, that the model should

be interpretable after estimation. For example, an asset of a US company should depend on

the movement of the American market, which is represented by one of the factors, and not on

the Asian one, which may be another factor. So the prediction of the target variables should

consist of the linear combination of just a few selected factors and not of all.

Another aspect, that changes in the case of restricted PCA, is the fact, that the coefficient

matrices A and B need not be equal anymore. Equality would imply, that exact zeros would

be on the same positions in the two matrices of loadings. On the other hand the equality was

not forced in the case of the unrestricted PCA, but it was just the result of the optimization

problems described in section 2.2. When writing down the model equations componentwise

and taking into account, that the orthogonality assumption is dropped in the restricted PCA

model, it becomes obvious, that there is no reason to enforce the equality of A and B.

As already mentioned before, the main interest of this thesis lies in restricted PCA models,

which have k or more zeros in at least one column of their loadings matrix. In all the cases

with less than k zeros in each column of the matrix of loadings, simple rotation with a regular

matrix can produce the desired zeros, which has already be described in the example on page 32.

All these considerations together with the a priori information about the structure of the

matrix of loadings as well as the purpose of using these restricted PCA models as forecasting
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models lead to the following new definition of a sparse PCA model:

min
A,B∈ℝN×k

T∑

t=1

∣∣yt −AB′yt
︸︷︷︸

ft

∣∣2 (3.14)

s.t. Ψ vec(A′) = 0

or in matrix notation

min
A,B∈ℝN×k

∣∣Y − Y B
︸︷︷︸

F

A′∣∣2F (3.15)

s.t. Ψ vec(A′) = 0,

where Ψ is a predefined sparse matrix of 0/1 entries, defining the positions of vec(A′), which

are restricted to zero. The number of zeros in the loadings matrix is equal to the number of

rows in Ψ. Let ds denote the degree of sparsity, which is defined as the number of elements in

the loadings matrix that are not restricted to zero. Then Ψ is of dimension ℝ(Nk−ds)×(Nk).

vec(.) stands for the vec operator, that stacks the column vectors of a matrix one below the

other. Thus, a one in the (N(j − 1) + i)tℎ column of the matrix Ψ in any of its rows means

that aij , the element in the itℎ row and the jtℎ column of A, is restricted to be zero.

The joint covariance matrix of Y and F is given by

Σ1 =

⎛

⎜
⎜
⎜
⎜
⎝

Σ ΣB

B′Σ B′ΣB

⎞

⎟
⎟
⎟
⎟
⎠

=:

(

Σ B̃

B̃′ C̃

)

≥ 0.

This matrix Σ1 is positive semidefinite, and thus the Schur complement of B′ΣB in Σ1,

which is Σ− B̃C̃−1B̃′ = Σ− ΣB(B′ΣB)−1B′Σ, also has to be positive semidefinite.

Since

1

T
�′� =

1

T
(Y − Y BA′)′(Y − Y BA′) =

= Σ− ΣB
︸︷︷︸

B̃

A′ −AB′Σ
︸︷︷︸

B̃′

+AB′ΣB
︸ ︷︷ ︸

C̃

A′ =

= Σ− B̃C̃−1B̃′ + (AC̃
1

2 − B̃C̃− 1

2 )(AC̃
1

2 − B̃C̃− 1

2 )′ ≥ (3.16)

≥ Σ− B̃C̃−1B̃′ ≥ 0.

Equality in equation (3.16) is obtained for AC̃ = B̃ or AB′ΣB = ΣB, which is the case if

B = A(A′A)−1 = (A′)+. (A′)+ is the Moore-Penrose pseudoinverse of A′.
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3 Sparse principal component analysis

Thus instead of minimizing trace((Y −FA′)′(Y −FA′)) as given in equation (3.15) equally

trace(Σ− B̃C̃−1B̃′) with AC̃ = B̃ can be minimized.

This leads to

min
B̃∈ℝN×k

trace(Σ − B̃C̃−1B̃′) = min
A,B̃∈ℝN×k

trace(Σ−AC̃A′) =

= min
A,B̃∈ℝN×k

trace(Σ)− trace(AC̃A′)

= min
A,B∈ℝN×k

trace(Σ)− trace(AB′ΣBA′)

= min
A,B∈ℝN×k

trace(Σ)− trace(ΣBA′). (3.17)

The solution Â of the optimization problem in equation (3.17) is equal to the one of the

following maximization problem:

max
A∈ℝN×k

trace(ΣA(A′A)−1A′)

s.t. Ψ vec(A′) = 0,

which leads to the optimum B̂ = Â(Â′Â)−1 = (Â′)+.

Obviously, the objective function of the optimization problem above is nonlinear and nei-

ther concave nor convex. So it cannot be expected to get a global optimum or a closed form

solution. Of course, some ’black box’ algorithm can compute a local optimum, but that is not

the goal of this thesis. Here rather attention will be payed to develop a transparent simple al-

gorithm for obtaining a reasonable solution of the problem of interest. Running this procedure

for several sets of different starting values should ensure the quality of the solution.

3.4 Numerical solution

The sparse PCA problem in equation (3.15) based on the minimization of the loss of information

can be described by the following system of equations:

Y = Y BA′ + � s.t. Ψ vec(A′) = 0. (3.18)

If B would be known in equation (3.18), a usual least squares estimate with restrictions on

vec(A′) could be performed to get an estimate Â for A. For this problem a closed-form solution
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3.4 Numerical solution

exists. So rewrite equation (3.18) as univariate model

vec(Y )
︸ ︷︷ ︸

Ỹ

= (IN ⊗ (Y B))
︸ ︷︷ ︸

F̃

vec(A′)
︸ ︷︷ ︸

ã

+ vec(�)
︸ ︷︷ ︸

�̃

s.t. Ψ vec(A′) = 0, (3.19)

which can be simplified as

Ỹ = F̃ ã+ �̃ s.t. Ψ ã = 0. (3.20)

The symbol ⊗ is known as Kronecker product, that concatenates a rectangular matrix G =(
g11 ⋅⋅⋅ g1n
...

...
gm1 ⋅⋅⋅ gmn

)

of dimension m× n and a r × q matrix H to a matrix of dimension mr × nq in

the following way:

G⊗H =

⎛

⎜
⎝

g11H ⋅ ⋅ ⋅ g1nH
...

...
gm1H ⋅ ⋅ ⋅ gmnH

⎞

⎟
⎠ .

Denoting by â the unrestricted least squares estimator of the model Ỹ = F̃ a + �̃, the

constrained least squares solution for the estimator of ã is given by

ˆ̃a = â− (F̃ ′F̃ )−1Ψ′[Ψ(F̃ ′F̃ )−1Ψ′]−1Ψâ.

On the other hand, if A would be known, equation (3.18) can be postmultiplied by the

Moore-Penrose pseudoinverse (A′)+. Then Y (A′)+ has to be regressed on Y , which gives an

estimate B̂ = (A′)+ = A(A′A)−1, which is equal to the solution that was obtained before, when

building the derivatives of the optimization problem.

Now it seems natural to alternate these two least squares steps to get final estimates for A

and B. So an initial estimate for B, say B1, is needed which is first held fixed. One may choose

the unrestricted loadings matrix as a starting value for B, but, as the empirical examples later

on show, any random matrix can be taken and convergence properties are still unchanged. Af-

terwards a constrained estimate A1 can be calculated as described above. In the next step the

obtained A1 is fixed and a new estimate B2 is calculated as the Moore-Penrose pseudoinverse

of A1. Next B2 is rescaled, so that the columns of Y B have length 1 and so on.

Because of performing just linear regressions in each step, it is clear, that this algorithm con-

verges monotonically. Defining
∑T

t=1 ∣∣yt−AB′yt∣∣2 as function f(A,B), the following inequalities

must hold:

f(A1, B1) ≥ f(A1, B2) ≥ f(A2, B2) ≥ f(A2, B3) ≥ . . . ,

which ensures, that the above defined alternating least squares algorithm converges, because f

is bounded below by the value of the objective function of the unrestricted solution, which has

no sparsity constraints. If fk stands for the value of the objective function in the ktℎ iteration,

47



3 Sparse principal component analysis

a possible common stopping criterion of the algorithm proposed here, is, that the value of the

objective function in iteration step k changes relatively to the value obtained in iteration step

k − 1 less than a certain threshold � :

fk − fk−1

fk−1
< �.

In the empirical applications of this thesis another stopping criterion is used, that is also

considering the stability of the solution, which is measured by a function of the coefficients.

Let Ak and Ak+1 be two consecutive sparse loadings matrices, ds the degree of sparsity and

� a threshold for convergence as defined above. Then an alternative stopping criterion can be

defined by

∣∣Ak −Ak−1∣∣2F < ds �,

where ds is just a scaling parameter taking into account the number of free parameters in A.

Finally, when applying this methodology with a set of m different starting values B1
i ,

i = 1, . . . ,m, a reasonable solution can be calculated. Obviously, the finally obtained estimate

for A is a sparse loadings matrix, whereas B is just sparse if A is an orthogonal matrix, which

is not the case in general. This coincides exactly with the requirements on the sparse PCA

problem, that were defined previously.

Furthermore, the question about uniqueness of the obtained solution arises. Which con-

ditions have to be met, so that a with a regular matrix transformed loadings matrix is still

a solution to the restricted PCA problem? In the case of usual PCA without restrictions the

equality

BA′ = (BS−1)(SA′) =: B̃Ã′

holds for all regular matrices S of full rank k.

When imposing restrictions on the PCA model, not only the equality Ŷ = Y BA′ = Y B̃Ã′ has

to hold, but also the additional condition that

Ψvec(Ã′) = Ψ vec(SA′) = 0. (3.21)

Because of

vec(SA′) = (A⊗ Ik)vec(S),

where Ik defines the k × k identity matrix, equation (3.21) can be written as

Ψ(A⊗ Ik)vec(S) = 0. (3.22)
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Thus in the restricted case of PCA the solution is unique up to a regular matrix S, whose

vectorized form vec(S) is in the kernel of the map Ψ(A⊗ Ik).

Another way of interpretation is obtained if equation (3.21) is rewritten as

Ψ(IN ⊗ S)vec(A′) = 0. (3.23)

So when splitting Ψ = [Ψ1 . . .ΨN ] into N blocks , whereby Ψi denotes the itℎ block of Ψ that

contains those coefficients of the matrix of restrictions with which the itℎ row of A is multiplied,

the equation above can be simplified to

[Ψ1S Ψ2S . . . ΨNS]vec(A′) = 0. (3.24)

That means that for any feasible regular matrix S the vector vec(A′) lies not only in the kernel

of Ψ = [Ψ1 . . .ΨN ] but also in the kernel of [Ψ1S . . . ΨNS].

Moreover, it has to be mentioned that, when applying the proposed methodology without

restrictions on A, a rotated solution of usual PCA is obtained and the equality AB′ = ΓΓ′

for the unrestricted loadings matrix Γ holds, which again points out the reasonability of this

algorithm.
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Chapter 4

Forecasting with PCA and sparse

PCA models

4.1 The forecast model

As already mentioned earlier, the focus of this thesis does not merely lie in obtaining a restricted

matrix of loadings but in building a model, which is able to calculate forecasts for future values

of a time series. The basic sparse PCA model, which is the solution to the optimization problem

given in equation (3.14), is as follows:

yt = At̃B
′
t̃
yt

︸︷︷︸

ft

+�t for t = 1, . . . , t̃ and t̃ ≤ T (4.1)

s.t. Ψ vec(A′
t̃) = 0.

The index t̃ in At̃ and Bt̃ indicates, that data up to time point t̃ is used for calculating these

matrices of rank k. It is up to the practitioner to decide whether to choose a moving or an

extending window in the calculation. So one may select data from 1 to t̃ in the first step, then

data from 2 to t̃+1, next from 3 to t̃+2 and so on, which is called rolling or moving window.

Another possibility consists of taking data from 1 to t̃, then from 1 to t̃ + 1, next from 1 to

t̃+ 2, which means that the number of data points increases by 1 in each step.

To calculate a single forecast based on a (restricted) PCA model for a particular instant in

time t̃+ 1 based on the data up to t̃ the following procedure can be applied.

First a PCA model as in equation (4.1) has to be build to obtain a (sparse) loadings matrix

At̃ and the factors ft = B′
t̃
yt. As can be seen in the subscripts the dynamic of the model is

represented by the factors ft. Due to the fact, that strong correlation between the loadings

matrices of subsequent points in time has been found in empirical applications, the forecast of

At̃ is chosen as naive forecast Ât̃+1 = At̃ in this work. Thus the focus lies solely in forecasting
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4 Forecasting with PCA and sparse PCA models

the factors f̂t̃+1∣t̃ based on the information available at t̃. Once the forecasts of the principal

components f̂t̃+1∣t̃ are calculated, the forecasts of the original variates yt̃+1∣t̃ can be computed

by the formula

ŷt̃+1∣t̃ = Ât̃+1∣t̃ f̂t̃+1∣t̃ = At̃f̂t̃+1∣t̃. (4.2)

There are numerous ways of building forecasting models for the factors. As an example vector

autoregressive models with exogenous variables (VARX models) are chosen in the empirical

work of this thesis with a special input selection algorithm based on the one proposed by An

and Gu [3], which are described in the next two sections in more detail.

4.2 VARX models

Vector autoregressive models with exogenous variables of order p are a special type of multi-

variate linear models, that take into account lags of the targeted variable up to a maximum

lag p as well as a set of s exogenous variables xt = (x1t, x2t, . . . , xst)
′ in order to explain the

output variable. This vector xt contains values of variables at time t or prior to t and (xt) is

supposed to be a stationary process in the sense of weak stationarity with mean �x. Because of

calculating a VARX model for the factors in this thesis, the dependent variable will be called

ft = (f1t, f2t, . . . , fkt)
′ in this context. So the following model will be considered:

ft = c+A1ft−1 +A2ft−2 + . . . +Apft−p +Bxt−1 + et, t = 1, . . . , T (4.3)

or more compactly as

A(z)ft = c+Bxt−1 + et, t = 1, . . . , T (4.4)

where c ∈ ℝk denotes a constant vector, Ai are real coefficient matrices of dimension k × k

(i = 1, . . . , p) and et is the k dimensional noise vector at time t, which is a white noise process,

i.e. E(et) = 0, E(ese
′
t) = 0 for s ∕= t and E(ete

′
t) = Σe with a positive definite matrix Σe.

The impact of the exogenous variables xt is given through the coefficient matrix B ∈ ℝk×s.

Moreover, et is required to be independent of the exogenous variables xs for all s smaller than

t. A(z) is a lag polynomial which is given by A(z) =
∑p

i=0 −Aiz
i with A0 = −Ik and Ap ∕= 0.

z can be interpreted as complex variable or as backward shift operator, whereby the latter is

defined as:

z{ft∣t ∈ ℤ} = {ft−1∣t ∈ ℤ},

where {ft∣t ∈ ℤ} is the series of factor values. Because of

ft = A(z)−1(c+Bxt−1 + et), t = 1, . . . , T (4.5)
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the convergence of the Taylor series expansion of A(z)−1 about the point 0 in an area that

contains the unit circle has to be guaranteed, which can be reached if the stability condition

∣A(z)∣ ∕= 0 for all ∣z∣ ≤ 1 holds.

There exist basically three ways of estimating the unknown parameters c, A1, . . . , Ap, B and

Σe. One would be to estimate them by ordinary least squares which minimizes the residual

sum of squares of equation (4.3). The predicted value for ft+1 based on information known at

time t can be easily calculated by

f̂t+1∣t = ĉ+ Â1ft + Â2ft−1 + . . .+ Âpft−p+1 + B̂xt, (4.6)

where .̂ denotes the estimated OLS parameters.

The second possibility for estimating equation (4.3) would be to estimate the autoregressive

part of the equation by maximum likelihood (ML) with the help of a Kalman filter and regress

then the remaining error vector on the exogenous variables xt−1.

Thirdly, the Yule Walker equations are another approach to get parameter estimates for a

VARX model. This methodology is widespread and one of the most popular ones in practice.

All these estimation methods have similar asymptotic properties and they differ mainly in their

finite sample behavior. Details concerning VARX models and their estimation can be found

for example in [52].

4.3 Inputselection

In finance as well as in other scientific applications there exists a huge universe of explanatory

variables, which can be used as exogenous variables when using not only the target time series’

own history. It’s quite a difficult task to select a subset of those variables, that explains the

targets in a satisfying way, because

∙ economical data are often not very informative concerning the target

∙ the a priori info about the choice of variables is uncertain; in practice one often has to

select among a huge number of candidate inputs.

In any case a preselection has to be performed based on prior knowledge, which could be based

on economic relationships in the case of financial forecasting. But even if it would be done by

one of the top economists he/she will not be able to define a manageable set of input variables

because of the complexity of the markets.1

Thus a way for further reduction of the number of possible candidates has to be applied often

1And if one is able to do that, he/she will not tell others and thus the problem of reducing the number of
variables is still present.

53



4 Forecasting with PCA and sparse PCA models

in empirical work. One possibility to do that is to select a subset of the inputs according to

statistical criteria to get a feasible number of input variables for the prediction of each factor.

Therefore an algorithm based on information criteria similar to that introduced by An and Gu

[3] is applied here. The algorithm will be explained for a univariate model first and at the end

a generalization to multivariate models is given.

The model under consideration is

fj = x�j + uj (4.7)

where fj denotes the jtℎ column of the factor matrix, x = (x1, . . . , xs) is the T × s matrix

of explanatory variables, �j the least squares estimator and uj the white noise error process.

The matrix x consists of s candidates of predictor variables and it is not distinguished here

between autoregressive terms and exogenous variables. To simplify notation the index j will

be omitted from now on. Note, that for forecasting the factor at instant in time t̃+1 based on

the information available at t̃, which will be called f̂t̃+1∣t̃ just data up to time t̃ can be used.

That’s why the matrix of explanatory variables x in equation (4.7) has to contain only data

up to the point in time t̃ − 1 or earlier when estimating the parameter vector �, say �̂. Then

the forecasts are calculated as f̂t̃+1∣t̃ = xnew�̂ with xnew containing the variables in x shifted 1

period ahead, i.e. xnew contains information up to t̃. Otherwise calculating a forecast would

not be possible.

The aim is now to find those variables in x that have predictive power. Let us assume that

there exists a true model

f = x(Ik)�(Ik) + u (4.8)

with Ik = (i1, . . . , ik) is the index set of the k true predictor variables. Then x(Ik) =

(xi1 , . . . , xik) and �(Ik) = (�i1 . . . �ik). Suppose that x′(Ik)x(Ik) is not singular, then the least

squares estimator of �(Ik) is given by

�̂(Ik) = (x′(Ik)x(Ik))
−1x′(Ik)f (4.9)

and the corresponding mean squared error (MSE) is equal to the residual sum of squares (RSS)

divided by the number of observations T :

MSE(Ik) =
1

T
(f − x(Ik)�̂(Ik))

′(f − x(Ik)�̂(Ik))

=
1

T
(∥f∥ − f ′x(Ik)(x

′(Ik)x(Ik))
−1x′(Ik)f), (4.10)
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4.3 Inputselection

where ∥.∥ indicates the L2 norm.

Choosing another index set Jl = (j1, . . . , jl) instead of Ik leads to a different estimator �̂(Jl) and

the mean squared error denoted by MSE(Jl) will be calculated analogous to equation (4.10).

Altogether there are 2s − 1 possible subsets of the s possible predictor variables (x1, . . . , xs).

Model selection can be accomplished by means of information criteria as the Akaike Information

Criterion (AIC) or the Bayesian Information Criterion (BIC) , which is also called Schwarz

Information Criterion.

These are defined as

AIC(Jl) = logMSE(Jl) +
2l

T
(4.11)

and

BIC(Jl) = logMSE(Jl) +
l log T

T
, (4.12)

where l = 0, . . . , s, 1 ≤ j1 < . . . < jl ≤ s and T denotes the number of observations over

time in f and x, respectively. It is intuitively clear, that the number of possible models, that

have to be compared (2s − 1), is often far too high in practical applications and represents one

of the main disadvantages of this approach. The risk of overfitting is not negligible if many

hypothesis are tested in comparison to a relatively small sample size.

Thus a search algorithm has to be found that evaluates just the promising subsets of the whole

input space and neglects those that seem to lead to bad results or that are dispensable.

The procedure of comparing the explanatory power of all different subsets of the available

inputs can also be structured in the following way:

Step1 For each l from 0 to s find out the index set J∗
l satisfying

MSE(J∗
l ) = min

Jl
MSE(Jl), l = 0, . . . , s. (4.13)

where ‘min’ stands for the minimum value of MSE(Jl) over all Jl having l elements

belonging to the complete set Js = {1, . . . , s}.

Step2 Let J∗
0 = ∅, MSE(∅) = log ∥f∥2 =∑T

t=1 f
2
t for f = (f1, . . . , fT )

′ and

BIC(l) = logMSE(J∗
l ) +

l log T

T
, l = 0, . . . , s. (4.14)

This leads to a series ⟨BIC(0), . . . , BIC(s)⟩. The aim is then to find that l and thus that

J∗
l , that produces the minimal BIC value in equation (4.14) above.
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4 Forecasting with PCA and sparse PCA models

It is obvious, that this two-step procedure is an exhaustive search, calculating the mean

squared error of all the 2s − 1 subsets.

In order to search just a subset of the power set of possible input candidates, An and Gu [3]

considered similar to the algorithm above the following two steps, which will be presented in the

next two subsections. There the procedure of obtaining an optimal subset with l explanatory

variables, J∗
l , in Step1 is replaced by an approximation.

4.3.1 Forward and backward search

Definition 6 (Forward order)

A set Ml with elements {m1, . . . ,ml} ⊂ {1, . . . , s} is called forward order index set, if M0 = ∅
and Ml = {m1, . . . ,ml} is defined inductively by

RSS(Ml) = inf
j∈Mc

l−1

(RSS(Ml−1 ∪ {j})) , l = 1, . . . , s,

where M c = Js∖M denotes the complement set of M and RSS(Ml) the residual sum of

squares of the model obtained when explaining the dependent variable by those input variables

indicated by Ml.

Definition 7 (Backward order)

A set Nl with elements {n1, . . . , nl} ⊂ {1, . . . , s} is called backward order index set, if Ns = Js

and Nl = {n1, . . . , nl} is defined inductively by

RSS(Nl−1) = inf
j∈Nl

RSS(Nl∖{j}), l = s, s− 1, . . . , 2

with N0 = ∅ and RSS(Nl−1) is in an analogous way the residual sum of squares of the model

obtained when explaining the dependent variable by those input variables indicated by Nl−1.

If we are using Ml instead of Jl, we face the following optimization problem:

BICF (M
∗
l ) = min

l=0,...,s
BICF (Ml) = min

l=0,...,s
logRSS(Ml) +

l log T

T
. (4.15)

Thus an optimal index set M∗
l is obtained by applying the so called forward method as the

subscript F in BICF (M
∗
l ) already indicates.

If we use on the other hand Nl instead of Jl, we have

BICB(N
∗
l ) = min

l=0,...,s
BICB(Nl) = min

l=0,...,s
logRSS(Nl) +

l log T

T
. (4.16)

Finding the optimal index set that minimizes the series < BICB(Nl) > over all l = 0, . . . , s is
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4.3 Inputselection

called backward method accordingly and is marked with a B in the subscript.

Since an analogous procedure can be run by using AIC instead of BIC, we can distinguish

between the AICF , AICB , BICF and BICB methods.

The advantage of these approaches lies obviously in a considerable reduction of the number of

candidate sets that have to be taken into account, namely only s(s + 1)/2 in comparison to

2s − 1 in the case of an exhaustive search, especially for large s2. Nevertheless, it has to be

mentioned, that the solution will in general only be a suboptimal one, if not all possible subsets

of the available inputs are used.

4.3.2 The fast step procedure

Based on the subset J∗
l selected by the forward or the backward search described above the

following modifications of this index set are possible in the fast step procedure (FSP):

∙ If J∗
l ∕= Js a variable that has not been chosen yet can be added.

∙ If J∗
l ∕= ∅ a variable that has already been chosen can be dropped.

The decision of adding a variable to the currently chosen subset or deleting it from it is

based on comparing the values of the information criteria AIC resp. BIC of equation (4.11)

and (4.12) of the so created subsets.

Thus the following iterative procedure has to be carried out:

1. If in the forward or backward search the optimal subset was found with l elements, set

k = l.

2. Build the union sets Jk+1 = Jk ∪ {k0} ∀k0 ∈ Jc
k, where Jc

k denotes the complement set

of Jk in the overall index set Js = (1, . . . , s). If at least in one case the new index set Jk+1

leads to an AIC or BIC value less than the one of Jk, find that variable k∗0 and thus that

index set J∗
k+1 that produces the minimal value for the respective information criterion.

3. Build all sets Jk−1 = Jk∖{k0} ∀k0 ∈ Jk. If at least in one case the new index set Jk−1

leads to an AIC or BIC value less than the one of Jk, find that variable k∗0 and thus that

index set J∗
k−1 that produces the minimal value for the respective information criterion.

4. If any of the in 2. and 3. calculated subsets Jk+1 or Jk−1 yielded a further reduction

of the AIC resp. BIC, it’s overall minimum defines which variable should be added or

dropped. So if the smallest value was achieved by adding a variable k∗0 to the index set

2This is exactly the interesting case because for small s no subset selection has to be performed.
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4 Forecasting with PCA and sparse PCA models

Jk, set k = k + 1 and J∗
k+1 = Jk ∪ {k∗0}. However, if a reduction of the information

criterion is obtained by dropping a variable k∗0 of the index set Jk, set k = k − 1 and

J∗
k−1 = Jk∖{k∗0}.

5. As long as a decrease of the information criterion was reached go to 2. by using the

criterion value of J∗
k+1 resp. J∗

k−1 as basis of comparison. If no further reduction can be

achieved, stop the iteration.

Consistency results of the forward search, the backward search and the FSP can be found

in An and Gu ([3]).
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Chapter 5

Reduced rank regression model

In the present chapter another class of a factor model will be presented, namely the reduced

rank regression model. Before going more into detail, a short introduction on multivariate

linear regression models will be given, which serve as a basis for the model class of interest.

5.1 The multivariate linear regression model

A multivariate linear regression model seeks to relate a set of N responses yt, t = 1, . . . , T to

a set of s explanatory variables xt in a linear way:

yt = Cxt + �t, (5.1)

where �t is a N dimensional random error vector with E(�t) = 0 and cov(�t) = Σ�, which

is a N × N positive definite covariance matrix. An important assumption is the stochastic

independence between the errors and the regressors, i.e. E(�tx
′
t) = 0. C ∈ ℝN×s stands for

the matrix of regression coefficients, that have to be estimated. Stacking all T observations

of yt and xt in a matrix, the resulting matrices are Y = (y1, . . . , yT )
′ ∈ ℝT×N and X =

(x1, . . . , xT )
′ ∈ ℝT×s. With the help of these matrices, equation (5.1) can be rewritten in a

more compact notation as

Y = XC ′ + �, (5.2)

where � = (�1, . . . , �T )
′.

Moreover, the inequality N + s ≤ T should hold and the noise vectors should be independent

for different points in time, i.e. E(�s�t) = 0 for s ∕= t. Further it is assumed that X is of

full rank s < T , which is a sufficient condition to ensure the uniqueness of the least squares

solution.

The unknown parameters of such a multivariate linear regression model, namely C and Σ�,

can be estimated by the least squares (LS) or the maximum likelihood (ML) method. In the
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5 Reduced rank regression model

former case the expression

∥Y −XC ′∥2F = trace[(Y −XC ′)′(Y −XC ′)] = trace[�′�] (5.3)

is minimized which leads to the following least squares estimator for the parameter matrix C:

Ĉ = Y ′X(X ′X)−1. (5.4)

In the case of the maximum likelihood method some distributional assumptions have to be

made. The errors �t are assumed to be multivariate normal distributed, i.e. �t ∼ N (0,Σ�) and

the predictor variables xt are known vectors.

Maximizing the likelihood

L(�) = (2�)−
NT
2 ∣Σ�∣−

T
2 exp

[

− 1

2
trace(Σ−1

� �′�)
]

is equivalent to minimizing

trace(Σ−1
� ��′) = trace

(

Σ
− 1

2
� (Y −XC ′)′(Y −XC ′)Σ

− 1

2
�

)

. (5.5)

The derivative of the expression in equation (5.5) with respect to C yields the same solution

for Ĉ as obtained in equation (5.4) for the least squares case.

Nevertheless, if no possible relations between the dependent variables are taken into account,

there is no difference between estimating the multivariate linear equations jointly or separately.

This can be seen from the fact, that the jtℎ column of Ĉ, say Ĉ(j), is calculated as

Ĉ(j) = Y ′
(j)X(X ′X)−1,

where Y(j) denotes the jtℎ column of Y . This means, that each dependent variable could be

regressed separately on X, and thus the multivariate model contains no new information in

comparison with the univariate multiple regression model. Moreover, as already mentioned in

the introduction, a more parsimonious model would be more desirable both from the estimation

and the interpretation point of view. The number of parameters contained in the matrix C

alone is N × s, which can become quite large easily. As a consequence estimation accuracy

suffers and inference becomes difficult.

Due to these disadvantages of multivariate linear models it seems reasonable under certain

circumstances to set restrictions on the model in order to reduce the number of the parameters

and to capture possible correlations between the response variables. One possibility how to do

that is presented in the following sections.
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5.2 The reduced rank model

5.2 The reduced rank model

An example for a more parsimonious model than the multivariate linear regression model

presented in the previous section is the reduced rank regression model. A convenient form for

the one step ahead prediction is as follows:

yt = AB′xt−1
︸ ︷︷ ︸

ft

+�t = Cxt−1 + �t, (5.6)

where, for t = 1, . . . , T , yt ∈ ℝN is the dependent variable, xt−1 ∈ ℝs is a vector of exogenous

variables, A ∈ ℝN×k, B ∈ ℝs×k and C ∈ ℝN×s are matrices of unknown parameters of the

model and �t ∈ ℝN is a white noise error process. The coefficient matrices A, B and C are all

matrices of rank k ≤ min(N, s). For convenience of notation let us assume that k < N ≤ s,

although the methodology also works for N > s. Note, that here the vector of explanatory

variables at time t − 1, xt−1, is already used, which contains just values of variables prior to

time t and thus the model incorporates the possibility of calculating forecasts. Moreover, the

similarity of equation (5.6) describing a reduced rank model to equation (3.13) stating the

properties of a PCA model has to be mentioned. They are distinguished by the fact, that PCA

builds linear combinations of the target vector itself and reduced rank analysis approximates

the dependent variables by another vector of explanatory variables, whereby in both cases the

resulting approximation Ŷ = (ŷ1, . . . , ŷT )
′ is of lower rank k < N .

Using again a more compact notation, the reduced rank factor model can be written as

Y = XB
︸︷︷︸

F

A′ + � = XC ′ + �, (5.7)

where the target matrix Y = (y1, . . . , yT )
′ is a real matrix of dimension T ×N , the matrix of

exogenous variables X = (x0, . . . , xT−1)
′ is a T×s matrix and the noise matrix � = (�1, . . . , �T )

′

is of dimension T ×N .

When interpreting A as a factor loadings matrix and defining XB as the factor matrix F , a

special type of a factor model as described in section 1.4 is obtained. However, here the error

terms are not required to be orthogonal.

In other words, we face a linear model with N−k linear restrictions on the regression coefficient

matrix C = AB′:

l′iC = 0, i = 1, . . . , N − k, (5.8)

where l1, . . . , lN−k are generally unknown a priori. One of the practical aspects justifying such

restrictions is given by the fact, that the number of parameters, that has to be estimated in a

linear model, can become quite large for increasing N or s. Thus a more parsimonious structure

of the model is often desirable. Moreover, estimation becomes more precise if the number of
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5 Reduced rank regression model

parameters is reduced for a fixed sample size and in some situation a reduced rank model may

capture the characteristics of the ’true model’ in a better way.

5.3 Estimation

In order to estimate a reduced rank model as given in equation (5.7) the parameter values

of A, B and Σ�, the covariance matrix of �, have to be determined. Analogously to the

indeterminacy of Γ1 in section 2.3 the coefficient matrices A and B are not identifiable without

further restrictions. This means that for any nonsingular1 matrix S ∈ ℝk×k and the linear

transformations Ã = AS′ and B̃ = BS−1 the equality B̃Ã′ = BS−1 SA′ = BA′ holds. Thus

the number of parameters, that have to be estimated in a reduced rank model, is given by

k(N + s− k), which is in general much smaller than the Ns parameters of the full rank linear

regression model.

In order to derive a unique solution for the estimates of A and B the following lemma is needed,

which follows immediately from theorem 2.2.4:

Lemma 5.3.1. Let A be a symmetric matrix of dimension N ×N and let the eigenvalues of

A be arranged in decreasing order of magnitude by �1 ≥ . . . ≥ �N . Let 
1, . . . , 
N denote the

corresponding eigenvectors.

Then the supremum of
∑k

i=1 X
′
iAXi = tr(X ′AX) over all matrices X with orthogonal columns

(X1, . . . ,Xk) and k ≤ N is attained for Xi = 
i, i = 1, . . . , k, and is equal to
∑k

i=1 �i.

By dint of the above theorem the Householder-Young Theorem can be stated, which is a

well known result of PCA that has already been mentioned before (see [60]):

Theorem 5.3.1. Let C be a N×s matrix of rank N . Then the minimum of tr[(C−P )(C−P )′]

over all N × s matrices P with rank k ≤ N is attained when P = Γ1Γ
′
1C, where Γ1 ∈ ℝN×k

contains those normalized eigenvectors of CC ′, that belong to the k largest eigenvalues of CC ′.

Proof. Let P = QR′ with Q ∈ ℝN×k and R ∈ ℝs×k and, without loss of generality, let us

assume that Q is orthonormal which gives Q′Q = Ik. Minimizing tr[(C−QR′)(C−QR′)′] over

R for a given Q yields the least squares solution R̂ = C ′Q(Q′Q)−1 = C ′Q. Substituting this

expression in the objective function and applying some basic matrix rules gives

tr[(C − P )(C − P )′] = tr[(C −QQ′C)(C −QQ′C)′] =

tr[CC ′(IN −QQ′)] = tr[CC ′]− tr[Q′CC ′Q]. (5.9)

1In the case of reduced rank models the coefficient matrices need not be orthogonal and thus any regular
matrix S can be postmultiplied to get another feasible solution.

62



5.3 Estimation

Minimizing equation (5.9) with respect to Q is equivalent to

max
Q

tr[Q′CC ′Q]

s.t. Q′Q = Ik.

By setting CC ′ = A lemma 5.3.1 can be applied and thus minimization is achieved when

choosing the columns of Q as the eigenvectors of the matrix CC ′ belonging to the k largest

eigenvalues.

□

Due to the fact that the positive square roots of the eigenvalues of a matrix CC ′ are the

singular values of the matrix C, the above calculations can be reduced to a singular value

decomposition of the matrix C.

In general a matrix C ∈ ℝN×s of rank N1 can be decomposed as V ΛU ′, where V = (v1, . . . , vN1
)

is an orthogonal matrix of dimensionN×N1 such that V ′V = IN1
, U = (u1, . . . , uN1

) ∈ ℝs×N1 is

also orthogonal such that U ′U = IN1
and Λ = diag(�1, . . . , �N1

) with �2
1 ≥ �2

2 ≥ . . . ≥ �2
N1

> 0

stating the nonnegative and nonzero eigenvalues of CC ′. Then for i = 1, . . . , N1 the columns

vi are normalized eigenvectors of CC ′ belonging to the eigenvalues �2
i and ui =

1
�i
C ′vi.

So when minimizing tr[(C − P )(C − P )′] = tr[(V ΛU ′ − QR′)(V ΛU ′ − QR′)′] over all N × s

matrices P with rank k < N1 in theorem 5.3.1, Q is given by V(k) = (v1, . . . , vk) and R

by C ′Q = C ′V(k) = UΛV ′V(k) = (�1u1, . . . , �kuk) ≡ U(k)Λ(k) with U(k) = (u1, . . . , uk) and

Λ(k) = diag(�1, . . . , �k).

Thus the rank k approximation of aN×smatrix C = V ΛU ′ is given by P = QR′ = V(k)Λ(k)U
′
(k)

where the index (k) denotes that part of the singular value decomposition that belongs to the

k largest singular values of C. This approach will be called the direct approach, because the

estimators for the coefficient matrices A and B are obtained directly by the singular value

decomposition of the (full rank) least squares estimator Ĉ.

Furthermore, the minimum of tr[(V ΛU ′−QR′)(V ΛU ′−QR′)′] = tr[(Λ−V ′V(k)Λ(k)U
′
(k)U)(Λ−

V ′V(k)Λ(k)U
′
(k)U)′] results in

∑N
i=k+1 �

2
i .

A generalization of theorem 5.3.1 is given by the following theorem:

Theorem 5.3.2. Let Z = (Y,X) be the joint matrix of the target matrix Y and the matrix of

explanatory variables X with dimension T × (N + s). Let the mean vector of Z, �Z ∈ ℝN+s,

be 0 and its covariance matrix be

cov(Z) =

(
Σ ΣY X

ΣXY ΣXX

)

,

where ΣXX is required to be nonsingular.
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5 Reduced rank regression model

Then for any positive definite matrix Ω ∈ ℝN×N , matrices Â(k) ∈ ℝN×k and B̂(k) ∈ ℝs×k with

k ≤ min(N, s) exist, which minimize

trace[Ω
1

2 (Y −XBA′)′(Y −XBA′)Ω
1

2 ]. (5.10)

They are given by

Â(k) = Ω− 1

2 (v1, . . . , vk) = Ω− 1

2V(k)

B̂(k) = Σ−1
XXΣXYΩ

1

2V(k),

where V(k) = (v1, . . . , vk) is the matrix of the k largest eigenvectors of the matrix Ω
1

2ΣY XΣ−1
XXΣXY Ω

1

2

belonging to the eigenvalues (�2
1, . . . , �

2
k).

Proof. Equation (5.10) can be rewritten as

trace[Ω1/2(Σ−AB′ΣXY − ΣY XBA′ +AB′ΣXXBA′)Ω1/2] =

= trace[Ω1/2(Σ− ΣY XΣ−1
XXΣXY )Ω

1/2]+

+ trace[Ω1/2(ΣY XΣ
−1/2
XX −AB′Σ

1/2
XX)(ΣY XΣ

−1/2
XX −AB′Σ

1/2
XX)′Ω1/2].

Minimizing it with respect to A and B means minimizing the last line of the above equa-

tion, which can be done easily with the help of the results of theorem 5.3.1. If C is set as

Ω1/2ΣY XΣ
−1/2
XX and P as Ω1/2AB′Σ

1/2
XX , the quantities Q and R of the previous theorem are

given as

Q = Ω1/2Â(k) and R = Σ
1/2
XXB̂(k).

The minimum of the objective function in equation (5.10) is then given by trace(ΣΩ)−∑k
i=1 �

2
i .

□

Hence, the optimal low rank approximation of C is given by

Ĉ(k) = Â(k)B̂
′
(k) = Ω−1/2V(k)V

′
(k)Ω

1/2ΣY XΣ−1
XX = PΩΣY XΣ−1

XX ,

where PΩ is an idempotent but not necessarily symmetric matrix. The above equation also

shows, that for k = N the optimal matrix Ĉ(N) is equal to the full rank least squares estimator

Ĉ.

Nevertheless, it is a well known result, that there is no advantage compared to single linear

regression models if a multivariate regression model is estimated by ordinary least squares

(OLS) with a coefficient matrix of full rank k = N . The reasonability for estimation in a

multivariate framework is apparent when for example additional rank restrictions are imposed

on the parameter matrix C. It has already been mentioned before, that the decomposition of
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C into matrices A and B of rank k is just unique except for transformations with a regular

matrix. So the multiplication of Ã = AS with B̃′ = S−1B′ with a regular matrix S of rank k

yields the same solution AB′. Moreover, in theorem 5.3.2 the normalization of the eigenvectors

has been required, which means that V ′
(k)V(k) = Ik. This last restriction is equivalent to the

normalization of the parameter matrices A and B in the following way:

B′ΣXXB =

⎛

⎜
⎜
⎝

�2
1 ⋅ ⋅ ⋅ 0

...
. . .

...
0 ⋅ ⋅ ⋅ �2

k

⎞

⎟
⎟
⎠

and A′ΩA = Ik. (5.11)

Another remark worth noting here is the fact, that in theorem 5.3.1 the optimal matrix

R was obtained for a given Q and then the optimal Q was calculated. This is equivalent to

deriving first B in terms of A and afterwards the optimal matrix A.

Conversely, one could fix B before, calculate an optimal A based on B and then derive the

matrix B. Considering the model stated in equation (5.6), the model could be interpreted in

the following way:

yt = A(B′xt−1) + �t = Aft + �t, (5.12)

where ft represents a factor process and A can be seen as its matrix of loadings.

Assuming that ft = B′xt−1 is given, the matrix A can be calculated by regressing yt on ft:

Â = ΣY XB(B′ΣXXB)−1. (5.13)

Substituting this ordinary least squares estimator in equation (5.10) of theorem 5.3.2 and

making use of the equality trace(UV ) = trace(V U) for all matrices U ∈ ℝm×n and V ∈ ℝn×m,

the objective function used there simplifies to

trace[ΣΩ]− trace[(B′ΣXXB)−1B′ΣXY ΩΣY XB]. (5.14)

As shown in Reinsel and Velu [60] on page 32, the optimum is achieved when choosing the

columns of Σ
1/2
XXB as the eigenvectors corresponding to the k largest eigenvectors of

Σ
−1/2
XX ΣXY ΩΣY XΣ

−1/2
XX .

Hence here the eigenvectors of CC ′ are needed for deriving an explicit solution for the compo-

nent matrices A and B whereas when fixing A first the eigenvectors of C ′C are required.

Going back to the original task of estimating the parameters A and B in the reduced rank

model

yt = AB′xt−1 + �t = Cxt−1 + �t, t = 1, . . . , T
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where the �t are independent with zero mean vector and positive definite covariance matrix Σ�,

one may consider the methodology described in theorem 5.3.2 similar to the approach used for

canonical correlation analysis. With the choice Ω = Σ−1 it can be interpreted as follows.

First the above equation will be premultiplied with Σ−1/2 which leads to a standardized matrix

of observations as response variable:

Σ−1/2yt = Σ−1/2AB′xt−1 +Σ−1/2�t =

= Σ−1/2CΣ
1/2
XXΣ

−1/2
XX xt−1 +Σ−1/2�t, t = 1, . . . , T.

Rewriting this model in a more compact way gives

Y Σ−1/2 = XΣ
−1/2
XX Σ

1/2
XXC ′Σ−1/2 + �Σ−1/2

or

Y (s) = X(s)Σ
1/2
XXC ′Σ−1/2 + �Σ−1/2,

where Y (s) = Y Σ−1/2 andX(s) = XΣ
−1/2
XX are the standardized response and predictor matrices

respectively.

Denoting by Σ
1/2
XXĈ ′Σ−1/2 the least squares estimator of the above regression, this matrix can

be decomposed in analogy to the direct approach by means of a singular value decomposition

Σ
1/2
XX Ĉ ′Σ−1/2 = UΛV ′.

Note, that here U , Λ and V are different from the ones obtained in the direct approach. Again

just the k largest singular values Λ(k) and the corresponding left and right singular vectors U(k)

and V(k) are retained.

Then the final rank k estimator for C is

Ĉ(k) = Σ1/2V(k)Λ(k)U
′
(k)Σ

−1/2
XX . (5.15)

Because of modifying the principal equation before reducing the rank of its regressor matrix,

this methodology is called the indirect procedure.

For the previously chosen matrix Ω = Σ−1 Rao [58] has shown an even stronger result for

the solutions A(k) and B(k) minimizing the objective function in theorem 5.3.2. He proves that

for this specific choice of Ω the obtained coefficient matrices minimize even all the eigenvalues

of the matrix given in equation (5.10) simultaneously.

Another possible choice for Ω could be Σ̃−1
� , which is the inverse of the maximum likelihood
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5.3 Estimation

estimate of the error covariance matrix of the unrestricted model, that is given by

Σ̃� =
1

T
(Y − C̃X)′(Y − C̃X),

where C̃ denotes the full rank estimate for the overall coefficient matrix. Robinson [61] showed

that with this choice for Ω the optimal component estimates in equation (5.10) are the maxi-

mum likelihood estimates under the assumption, that the noise �t is Gaussian, i.e. independent

and identically normal distributed (iidN ) with mean vector zero and covariance Σ�.

So maximum likelihood estimation is another possibility to calculate estimates for the param-

eters of a reduced rank model. Therefore the slightly modified log-likelihood function, which

is given by

logL(C,Σ�) =
T

2

[

log ∣Σ−1
� ∣ − trace

(

Σ−1
�

1

T
(Y − CX)′(Y − CX)

)]

, (5.16)

has to be maximized. ∣.∣ stands for the determinant of the matrix. Irrelevant constants, that do

not depend on C or Σ�, have been removed in equation (5.16) for means of simplicity. If Σ� is

unknown, its maximum likelihood solution is Σ̃� =
1
T (Y −CX)′(Y −CX). When substituting

this expression in the above equation and writing C as AB′, it can be simplified further to

logL(A,B, Σ̂�) = −T

2

[

log

∣
∣
∣
∣

1

T
(Y −AB′X)′(Y −AB′X)

∣
∣
∣
∣
+N

]

. (5.17)

Obviously, the maximum of equation (5.17) is obtained if

∣
∣
∣
∣

1

T
(Y −AB′X)′(Y −AB′X)

∣
∣
∣
∣

(5.18)

is minimized.

A well known result from algebra is that all the eigenvalues of a positive definite matrix A1 are

positive and therefore the determinant ∣A1∣, which is the product of these eigenvalues, has to

be positive too. Taking into account furthermore, that the equality ∣A1A2∣ = ∣A1∣ ∣A2∣ holds
for two matrices A1 and A2 of appropriate dimension, the objective function

∣
∣
∣
∣
Σ̃−1
�

1

T
(Y −AB′X)′(Y −AB′X)

∣
∣
∣
∣

(5.19)

yields the same optimal rank deficient matrices as the expression in equation (5.18). Σ̃−1
�

denotes again the maximum likelihood estimator for the covariance matrix of the innovations

in the case of a full rank coefficient matrix C, which is a fixed positive definite matrix, so that

∣Σ̃−1
� ∣ is a positive value.
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5 Reduced rank regression model

If 1
T (Y −AB′X)′(Y −AB′X) is rewritten as

1

T
(Y −AB′X)′(Y −AB′X) =

1

T

(

Y − C̃X + (C̃ −AB′)X
)′ (

Y − C̃X + (C̃ −AB′)X
)

=

=
1

T

(

Y − C̃X
)′ (

Y − C̃X
)

+
1

T

(

C̃ −AB′
)′

X ′X
(

C̃ −AB′
)

=

= Σ̃� +
(

C̃ −AB′
)′

ΣXX

(

C̃ −AB′
)

the expression
∣
∣
∣Σ̃−1

�
1
T (Y −AB′X)′(Y −AB′X)

∣
∣
∣ can be modified as

∣
∣
∣
∣
IN + Σ̃−1

�

(

C̃ −AB′
)′

ΣXX

(

C̃ −AB′
)
∣
∣
∣
∣
=

N∏

i=1

(1 + �2i ),

where IN is the N ×N identity matrix and �2i , i = 1, . . . , N , are the eigenvalues of the matrix

Σ̃−1
�

(

C̃ −AB′
)′

ΣXX

(

C̃ −AB′
)

. Hence, minimizing the objective function in equation (5.19)

is equivalent to minimize simultaneously all the eigenvalues of

Σ̃−1/2
�

(

C̃ −AB′
)′

ΣXX

(

C̃ −AB′
)

Σ̃−1/2
� =: (C(∗) − P )′(C(∗) − P )

with C(∗) = Σ̃
−1/2
� C̃Σ

1/2
XX and P = Σ̃

−1/2
� AB′Σ

1/2
XX . In analogy to lemma 2.2.6 a similar result

can be stated for singular values instead of eigenvalues in order to derive the minimum of the

expression above:

Lemma 5.3.2. For a rank N matrix C(∗) ∈ ℝN×s and a matrix P ∈ ℝN×s of rank k ≤ N the

following inequality holds for any i:

�i(C
(∗) − P ) ≥ �k+i(C

(∗)),

where �i(C
(∗)) denotes the itℎ largest singular value of C(∗) and �k+i(C

(∗)) = 0 for k+ i ≥ N .

The equality is attained iff P is defined as the best rank k approximation of C(∗), i.e. for the sin-

gular value decomposition of C(∗) = V ΛU ′ its approximation P is given as V(k)Λ(k)U
′
(k), where

the subscript (k) indicates again that just the first k singular values and their corresponding

left and right singular vectors are used.

According to the above lemma the required minimum of (C(∗) − P )′(C(∗) − P ) is achieved

if P is chosen as best rank k approximation of C(∗), i.e. for Σ̃
−1/2
� C̃Σ

1/2
XX = V ΛU ′ it is given by

P = V(k)Λ(k)U
′
(k) = V(k)V

′
(k)C

(∗) = V(k)V
′
(k)Σ̃

−1/2
� C̃Σ

1/2
XX =: Σ̃−1/2

� Ã(k)B̃
′
(k)Σ

1/2
XX .
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5.4 Further specifications

Thus the maximum likelihood estimate C̃(k) of rank k can be calculated as

C̃(k) = Ã(k)B̃
′
(k) = Σ̃1/2

� V(k)V
′
(k)Σ̃

−1/2
� C̃, (5.20)

which gives the same optimal solution as theorem 5.3.2 with Ω = Σ̃−1
� . Because of the equality

of the full rank ML estimator C̃ and the full rank least squares estimator Ĉ, the recently de-

duced rank k approximation gives also the best approximation of the least squares estimator Ĉ.

Under the assumption that the noise �t is independent and identically normal distributed with

mean vector 0 and covariance matrix Σ�, these maximum likelihood estimates C̃(k) = Ã(k)B̃
′
(k)

are proven to be asymptotically efficient.

Note furthermore, that in equation (5.8) N−k (unknown) restrictions l′iC(k) = 0 are defined

for i = 1, . . . , N − k, which can be seen as the complementary problem. The estimates above

can be used now to write down l′i explicitly:

l′i = v′iΩ
1/2 for i = 1, . . . , N − k.

With the help of this definition equation (5.8) can be restated as

l′iC(k) = v′iΩ
1/2C(k) = v′iΩ

1/2Ω−1/2V(k)B(k) = 0 for i = 1, . . . , N − k,

because of the orthogonality of the eigenvectors {v1, . . . , vN}, what proves the validity of the

choice of l′i.

Another aspect, that should be mentioned, is the fact that the choice of Ω = Σ−1 or Ω = Σ−1
�

leads to different parameter estimates Â(k) and B̂(k) respectively Ã(k) and B̃(k). Nevertheless,

the final result for the optimal low rank coefficient matrix C(k) stays the same, i.e.

Ĉ(k) = Â(k)B̂(k) = Ã(k)B̃(k) = C̃(k).

5.4 Further specifications

In literature there exist various ways of generalization or adaption of reduced rank regression

models as presented here. One possibility consists of allowing for autoregressive errors. An-

other example would be the model class of reduced rank autoregressive models that try to find

a low rank approximation of the coefficient matrix of a vector autoregressive (VAR) model. Or

one may impose rank restrictions on seemingly unrelated regression (SURE) models. All these

models are explained in more detail in Reinsel and Velu [60].
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5 Reduced rank regression model

However, in this thesis more emphasis will be given again on possible zero restrictions

imposed on the parameters of the model in a similar way as presented in chapter 3 for the case

of the principal component model. Details concerning this aspect are described in the following

chapter.
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Chapter 6

Sparse reduced rank regression

model

The aim of this chapter consists of defining a sparse reduced rank regression model and propos-

ing an estimation methodology similar to the one explained in chapter 3.4 for PCA models.

As principal component models can be seen as a special case of reduced rank models it seems

to suggest itself to choose a similar way of proceeding as in the former case.

6.1 The model

A sparse reduced rank regression model is a reduced rank model which has zero restrictions

incorporated. The sparseness is defined here in the same sense as in the former explanations,

namely by imposing zero restriction on the coefficient matrix L of equation (1.1).

This means that the model of interest is of the form

yt = Cxt−1 + �t = AB′xt−1
︸ ︷︷ ︸

ft

+�t = Aft + �t, (6.1)

s.t. Ψ vec(A′) = 0,

where yt ∈ ℝN , xt−1 ∈ ℝs and C is a rank k matrix that can be expressed as the product

of a sparse matrix A ∈ ℝN×k with a regular matrix B′ ∈ ℝk×s which are both of full rank

k < min(N, s).

6.2 Estimation of the sparse reduced rank model

Taking into account the estimation of the unrestricted model as described in section 5.3, it is

obvious that the solution obtained through the singular value decomposition does not lead to
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6 Sparse reduced rank regression model

the desired result of obtaining a sparse estimate for the parameter matrix A, that obeys certain

optimality conditions. Although the original full rank coefficient matrix C can be estimated

with least squares under consideration of additional zero restrictions of certain entries of this

matrix, the zeros cannot be retained when approximating C by a lower rank approximation

neglecting the smallest singular values in the decomposition. Thus another approach has to be

adopted to incorporate additional sparsity constraints.

It can be seen easily that the reduced rank model is nonlinear in the parameter matrices

A and B. Nevertheless, according to the remark mentioned on page 65, its structure can be

regarded as bilinear which allows for certain computational simplifications.

To induce the idea behind the algorithm that estimates such restricted reduced rank models,

an alternative for estimating the unrestricted model is described first. Therefore the objective

function

trace[Ω
1

2 (Y −XBA′)′(Y −XBA′)Ω
1

2 ], (6.2)

that minimizes the sum of the weighted squared error of the model, will be considered again.

The first order equations obtained when building the first partial derivatives of the objective

function of equation (6.2) with respect to A and B and setting them equal to zero are given by

ΣY XB −AB′ΣXXB = 0 (6.3)

and

A′ΩΣY X − (A′ΩA)B′ΣXX = 0. (6.4)

Hence as already previously observed (see equation (5.13)) equation (6.3) states that the solu-

tion for A depending on B is given by

A = ΣY XB(B′ΣXXB)−1. (6.5)

In the same way equation (6.4) leads to an estimator for B depending on A, namely

B = Σ−1
XXΣXY ΩA(A

′ΩA)−1. (6.6)

As already described in equation (5.11) some normalization conditions have to be imposed on

the parameter matrices A and B to ensure the uniqueness of the obtained result. So A′ΩA = Ik

has to be valid and the itℎ element in the diagonal of B′ΣXXB has to be equal to �2
i , which

denotes the itℎ eigenvalue of the matrix Ω
1

2ΣY XΣ−1
XXΣXY Ω

1

2 for i = 1, . . . , k. The off-diagonal

elements of B′ΣXXB are zero.

Substituting these restrictions into the equations (6.5) and (6.6), they can be simplified further
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6.2 Estimation of the sparse reduced rank model

to

A = ΣY XB

⎛

⎜
⎜
⎜
⎝

1
�2
1

⋅ ⋅ ⋅ 0

...
. . .

...

0 ⋅ ⋅ ⋅ 1
�2
k

⎞

⎟
⎟
⎟
⎠

(6.7)

and

B = Σ−1
XXΣXY ΩA. (6.8)

The above equations indicate again that A can be calculated in terms of B and vice versa. Thus

it is self-evident to estimate these parameter matrices iteratively which leads to a procedure

that is similar to the one known as partial least squares estimation (PLS) in literature. The

difference between these methodologies lies in the manner of factor extraction. In the case

of reduced rank regression the aim is to select factors that account for as much variation of

the response variable Y as possible without taking into account the variation of the predictor

variables X. However, partial least squares regression selects factors of X and Y that have

maximum covariance.

Taking all these considerations into account, additional restrictions on the parameter matrix

A will be imposed by applying a similar methodology as described before. Therefore equation

(6.1) will be restated in a more compact way as

Y = XBA′ + � = FA′ + � (6.9)

s.t. Ψ vec(A′) = 0,

where the variables have the same meaning as in the previous equations and Ψ is defined in

such a way, that the resulting coefficient matrix Â has zero restrictions on certain predefined

positions.

Now let G ∈ ℝm×n and H ∈ ℝr×q be two arbitrary matrices. Then vec(.) denotes again the

vec operator, that stacks the columns of the matrix G = [g1, . . . , gn] with gi = (g1i, . . . , gmi)
′

into a vector vec(G) = (g11, g21, . . . , gm1, g12, . . . , gmn)
′, and G⊗H characterizes the Kronecker

product of two matrices G and H as described on page 47, that results in a matrix of dimension

mr × nq. Further matrix rules based on the vec operator and the Kronecker product can be

found in the appendix.

With the help of these two operators equation (6.9) can be reformulated as

vec(Y ) = (IN ⊗XB)vec(A′) + vec(�) (6.10)
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6 Sparse reduced rank regression model

or as

vec(Y ) = (A⊗X)vec(B) + vec(�). (6.11)

Now suppose that linear restrictions for the parameter matrix A are given as

vec(A′) = RA�A + rA, (6.12)

where the vector �A denotes an unrestricted vector of unknown parameters and RA and rA are

predefined by the practitioner and therefore assumed as known.

Note, that an alternative way of notation for defining restrictions for the vector vec(A′) is given

by Ψ vec(A′) = c which is equivalent to the one that is defined here. Assuming that the first p

columns of Ψ are linearly independent the matrix Ψ and the vector vec(A′) can be partitioned

in such a way that the equations of the restrictions can be written as

[Ψ1 Ψ2]

[

vec(A′)1

vec(A′)2

]

= Ψ1vec(A
′)1 +Ψ2vec(A

′)2 = c,

where Ψ1 contains the first p columns of Ψ. So choosing RA =

[

−Ψ−1
1 Ψ2

I

]

, �A = vec(A′)2 and

rA =

[

Ψ−1
1 c

0

]

this approach leads to the same equations of restrictions.

For the purpose of defining zero restrictions in A the vector c and thus rA are both vectors of

zeros and thus equation (6.12) simplifies to

vec(A′) = RA�A, (6.13)

where �A contains exactly those elements of vec(A′), that are not zero. The optimization

problem of interest for the estimation of A and a known matrix B can now be restated as

vec(Y ) = (IN ⊗XB)vec(A′) + vec(�)

s.t. vec(A′) = RA�A,

or as

vec(Y ) = (IN ⊗XB)RA�A + vec(�) = X̃�A + vec(�). (6.14)

Then the ordinary least squares estimate of �A for given B and RA is obtained by

�̂A(B) = (X̃ ′X̃)−1X̃ ′vec(Y ) =
[
R′

A(IN ⊗B′X ′XB)RA

]−1
R′

A(IN ⊗B′X ′)vec(Y )

=
[
R′

A(IN ⊗B′ΣXXB)RA

]−1
R′

Avec(B
′ΣXY ).

74



6.2 Estimation of the sparse reduced rank model

Substituting this estimate �̂A in equation (6.13) gives then the restricted estimator for vec(A′)

resp. A:
ˆvec(A′)(B) = RA�̂A(B). (6.15)

On the other hand, if A is known, an estimate for B can be obtained due to the following

considerations. Equation (6.11) shows that vec(B) can be estimated by a simple least squares

estimate, i.e.

v̂ec(B)(A) =
[
(A⊗X)′(A⊗X)

]−1
(A⊗X)′vec(Y )

=
[
(A′A)−1 ⊗ (X ′X)−1

]
vec(X ′Y A) = vec

(
(X ′X)−1X ′Y A(A′A)−1

)
. (6.16)

Thus,

B̂(A) = (X ′X)−1X ′Y A(A′A)−1 = Σ−1
XXΣXY

[
A+
]′
. (6.17)

So basically a similar result as in the case of PCA is found. When setting X := Y as it is the

case in the principal component model, the same estimator B̂ as in section 3.4 will be obtained.

Note, that the above result will also be obtained, when equation (6.9) is postmultiplied with

the transpose of the Moore Penrose Pseudoinverse A+ = (A′A)−1A′ and then the coefficient

matrix B of the resulting equation is estimated by the method of ordinary least squares.

Instead of estimating the above equation with ordinary least squares one may prefer a

weighted or generalized least squares estimator, which has in general a smaller asymptotic

covariance matrix in the sense of the ordering of positive semidefinite matrices1. So instead of

optimizing the sum of squared errors given by

f (1)(A,B) = trace[(Y −XBA′)′(Y −XBA′)]

an objective function as in equation (6.2) could be considered:

f (2)(A,B) = trace[Ω
1

2 (Y −XBA′)′(Y −XBA′)Ω
1

2 ], (6.18)

which is equivalent to a system of equations given by

Y Ω
1

2 = XBA′Ω
1

2 + �̃. (6.19)

The optimal estimator of B has already been given in equation (6.6) due to the fact, that

no additional restrictions have been added. Solely the factor A′ΩA cannot be assumed to be

1For two given positive semidefinite matrices A ≥ 0 and B ≥ 0 of the same dimension A has the property to
be smaller then B, i.e. B ≥ A if B − A ≥ 0.
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6 Sparse reduced rank regression model

equal to the k × k identity matrix Ik as in the unrestricted case, because further restrictions

are imposed on A, and thus the last term cannot be dropped.

Restating equation (6.19) with the help of the vec operator and adding the restriction vec(A′) =

RA�A gives

(Ω
1

2 ⊗ IN )vec(Y ) = (Ω
1

2 ⊗XB)RA�A + vec(�̃). (6.20)

The optimal parameter estimate �̂A(B) is then given by

�̂A(B) =
[
R′

A(Ω⊗B′ΣXXB)RA

]−1
R′

Avec(B
′ΣXY Ω). (6.21)

Premultiplying this estimate for �A with RA gives the final weighted least squares estimate for

vec(A′) resp. after resizing for A, which will be called Â(B).

Based on these two estimates Â(B) and B̂(A) an iterative procedure can be applied for

obtaining the final estimates. So an arbitrary matrix of starting values for B̂(1) has to be

defined, which can for example be the unrestricted estimate of the reduced rank regression

model. Next, for i ≥ 2

vec(Â(i)) = RA�̂A

(

B̂(i−1)
)

and

B̂(i) = Σ−1
XXΣXYΩÂ

(i)

[(

Â(i)
)′

ΩÂ(i)

]−1

= (6.22)

= Σ−1
XXΣXY

[(

Â(i)
)+
]′

(6.23)

are calculated iteratively. Note, that

[(

Â(i)
)′

ΩÂ(i)

]−1 (

Â(i)
)′

Ω can also be regarded as pseu-

doinverse
(

Â(i)
)+

of Â(i) as the main property Â(i)
(

Â(i)
)+

Â(i) = Â(i) is fulfilled.

Furthermore, in each step of the iteration the estimators have to be rescaled in an appropriate

way, whereby the normalization conditions of the unrestricted model (see page 65) are not

suitable anymore. For the same reasons as in the case of the restricted PCA model the orthog-

onality of the loadings matrix A can not be required anymore, if additional zero restrictions on

this matrix of coefficients are present. So the same restrictions as for restricted PCA models

are defined, namely that the columns of the factor matrix F = XB have length 1.

Again the question of identifiability arises. Similar to the arguments given on page 48 for

the case of restricted principal component models, conditions can be given for a regular matrix

S, that have to be met in order to guarantee the optimality of Ã′ = SA′. Therefore, the
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6.2 Estimation of the sparse reduced rank model

transformation S has to fulfill for a given matrix of restrictions Ψ the following equations:

Ψ(A⊗ Ik)vec(S) = 0 (6.24)

or

Ψ(IN ⊗ S)vec(A′) = 0. (6.25)

Finally, the iteration stops when the relative change of the objective function is beyond a

certain threshold � . If f
(j)
k denotes for j ∈ 1, 2 the value of f (1) or f (2) in the ktℎ iteration, a

stopping criterion for the algorithm proposed here, is given by:

f
(j)
k − f

(j)
k−1

f
(j)
k−1

< �.

This type of iteration again leads in the case of ordinary least squares estimation as well as in

the case of generalized least squares estimation to monotone convergence, which means that

f (j)(Â(2), B̂(1)) ≥ f (j)(Â(2), B̂(2)) ≥ f (j)(Â(3), B̂(2)) ≥ f (j)(Â(3), B̂(3)) ≥ . . . , j = 1, 2.

This property ensures, that the above defined alternating least squares algorithm converges,

because f (1) resp. f (2) are bounded below by the values of the (weighted) sum of squared

errors of the unrestricted reduced rank regression model. Nevertheless, it could not be proofed,

whether the obtained solution is even a local minimum or not.
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Chapter 7

Forecasting in reduced rank

regression models

As already mentioned in the introduction, the main aim of this thesis is to propose forecasting

models relying on restricted PCA and reduced rank models. The way how to proceed in the

latter case is obvious. As the equation of interest is already stated in a dynamic way as

yt = AB′xt−1 + �t, t = 1, . . . , T

one may define the predictor ŷt̃+1∣t̃ for instance in time t̃+1 based on data available until t̃ as

ŷt̃+1∣t̃ = Ât̃+1∣t̃ B̂′
t̃+1

∣t̃ xt̃.

Here again the same settings on the dimensionality of the parameters as in chapter 5 are made.

When assuming that the forecasts for the parameter matrices Ât̃+1∣t̃ resp. B̂t̃+1∣t̃ at time t̃+1

are the naive forecasts Ât̃ resp. B̂t̃, the final estimate for ŷt̃+1∣t̃ is given immediately by

ŷt̃+1∣t̃ = Ât̃B̂
′
t̃
xt̃. (7.1)

Although the number of parameters is already reduced by imposing additional zero restriction

in the reduced rank forecasting model, one may try to reduce them even further by doing

input selection on the s-dimensional vector xt. So if one variable is skipped in xt the number

of parameters to estimate in B is reduced by k. This means that a significant reduction in

the number of parameters to be estimated can still be achieved by carrying out additionally

variable selection. In section 4.3 a methodology proposed by An and Gu [3] was already de-

scribed that selects a subset of possible candidates of inputs due to information criteria such

as the AIC or the BIC. They measure the tradeoff between the mean square error of the model

and the number of free parameters used in the estimation of AB′ in relation to the sample
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7 Forecasting in reduced rank regression models

size. In the case of unrestricted reduced rank models this number of parameters nu(N, k, p)

is equal to nk + kp − k2 because of the possible rotation of the loadings matrix with an or-

thogonal matrix. When estimating a restricted reduced rank model, this number is given by

nr(N, k, p) = Nk − a+ kp − k, where a denotes the overall number of zero restrictions in the

matrix of loadings and here just k has to be subtracted because an orthogonal rotation of the

loadings matrix is not possible anymore since the structure of zeros in A would be destroyed.

As already mentioned earlier, this property of reduced rank models has to be reduced in the

restricted case to requiring the length of the columns of the factors ∥ft∥ = ∥B′xt∥ = 1. If in the

case of input selection the number of input variables is reduced from p to a subset of cardinality

p1, the above formulas for nu(N, k, p) and nr(N, k, p) have to be updated accordingly.

Now the way to incorporate the methodology of An and Gu [3] in this framework is straightfor-

ward. For every possible k, which should be larger than 2 in the restricted case to ensure that

every dependent variable is explained by at least one factor, calculate a reduced rank model

with the predefined zero restrictions.
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Chapter 8

Empirics

Factor models are a standard tool in financial econometrics. As two popular examples the

capital asset pricing model (CAPM) and the arbitrage pricing theory (APT) can be mentioned.

In this thesis a PCA model and a sparse PCA model as described in the chapters 2 and 3 are

implemented and tested with financial time series, namely with equities.

The question that arises is how to measure the goodness of fit of the restricted factor models

and how to compare these models with the unrestricted ones. Therefore two definitions will be

given before.

Definition 8 (In-sample Period)

Concerning parameter estimation the in-sample period is the historical time span in which the

data used for creating and calibrating the econometrical models are observed.

Definition 9 (Out-of-sample Period)

The out-of-sample period is the time span following the in-sample period until the present,

in which forecasts are generated based on the parameter estimates obtained in the in-sample

period.

Naturally, it is impossible to improve the in-sample results of the unrestricted models

when imposing additional restrictions. Nevertheless, out-of-sample an outperformance of the

unrestricted model can be expected if, for example, the ’true model’ has zeros on certain

positions of its loadings matrix. In the following two sections two possibilities will be given

for measuring the out-of-sample goodness of fit of the forecasting models that can be used to

compare the results of the unrestricted models with those of the restricted ones. Firstly, a

posteriori model statistics can be calculated and secondly, a portfolio evaluation can be done

in order to carry out model selection or model evaluation.
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8 Empirics

8.1 A posteriori analysis of the model

In order to calculate such model statistics the relative differences of the targets of a model,

yt̃+1 = (yt̃+1,1, . . . , y ˜t+1,N )′, have to be compared with the out-of-sample forecasts ŷt̃+1∣t̃ =

(ŷt̃+1,1∣t̃, . . . , ŷt̃+1,N ∣t̃)′ with t̃ < T . The former vector contains the returns of the target price

time series as entries which are calculated as yt̃,i =
pt̃,i

pt̃−1,i
− 1 with close prices pt̃,i for target

i at instant in time t̃. Choosing a window length of T1 for the estimation of the parameters,

forecasts can be generated for the time period between T1 + 1 and T + 1. In a next step the

forecasts for the instants in time from T1 + 1 to T can be compared with the observations of

the target for this time span.

The statistics taken into account in this thesis for model evaluation are the following:

Hit: An out-of-sample hit can be defined as ℎitt+1,i = sign(yt+1,i ŷt+1,i∣t), whereby 1 means

that the forecasts shows the same direction as the target and −1 vice versa.

Hitrate: The hitrate measures the average number of hits in a certain period of time. Thus it can

be stated as ℎitratei =
1

T−T1

∑T
t=T1+1 ℎitt,i.

R2: In analogy to the in-sample coefficient of determination the out-of-sample coefficient

of determination can be expressed as R2
i = cor(yi, ŷi)

2 ∗ sign(cor(yi, ŷi)) where yi =

(yT1+1,i, . . . , yT,i)
′ and ŷi = (ŷT1+1,i∣T1, . . . , ŷT,i∣T − 1)′ are defined as target resp. fore-

cast vector for the itℎ security and cor(.) stands for the Pearson’s coefficient of correlation.

Note, that the out-of-sample R2 need not be in the interval [0; 1] because geometrically

speaking no orthogonality between the forecast and the error vector can be assumed.

In order to account for the possibility, that the angle between the target and the fore-

cast vector can also be larger than 90 degrees, the squared coefficient of correlation is

multiplied additionally with its sign.

8.2 Portfolio evaluation

The three criteria described in the previous section are all based on a certain loss function and

thus may not be adequate in this context. Another possibility for evaluating out of sample

forecasts of a financial forecasting model, which may be more meaningful, consists in calculating

a portfolio evaluation. Therefore the possibility of considering a single- or a multi-asset portfolio

exists. A single asset portfolio can be evaluated for each target separately by defining the

following investment rules. If the forecast for the next day has a positive sign, a long position

is taken. On the other hand, if next days forecast is negative, one may hold a short position.

This strategy allows the portfolio value to increase although the value of the underlying financial

instrument is falling.

One of the famous approaches for a multiple portfolio optimization is based on the portfolio
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8.3 World equities

theory proposed by Markowitz [53] in 1952. For deriving optimal portfolio weights for the

individual financial instruments, the following objective function has to be minimized:

min
wt∈ℝN

− w′
tŷt∣t− 1 + � w′

tΣ̂twt

s.t.

N∑

i=1

wt,i = 0,

where wt is a N -dimensional vector of portfolio weights for instant in time t, � is the so called

risk aversion factor, a coefficient punishing risky assets in the optimization. Σ̂t is a risk matrix

predicted for time t that can, for example, be chosen as historic covariance matrix of the er-

rors of the forecast model or alternatively it could be modeled by a generalized autoregressive

conditional heteroscedasticity (GARCH) model.

Because of the fact, that the forecasting accuracy of point forecasts of financial forecast-

ing models in general is quite poor and multivariate portfolio optimization as defined above

includes additional tuning or uncertainty parameters, namely the choice of the risk aversion

factor � and of the predicted risk matrix Σ̂t, within the framework of this thesis just single

asset portfolios will be considered as model evaluation criterion.

Furthermore, portfolio statistics can be calculated in order to evaluate different performance

curves, which are the graphs of the portfolio values over time. Therefore measures such as

total return, annualized return, annualized volatility, Sharpe ratio or maximum drawdown are

famous criteria for analyzing the performance of financial products.

8.3 World equities

This data set contains 14 of the leading world indices from 2005-07-29 to 2008-09-12. For the

empirical research Bloomberg is chosen as a data provider and the Bloomberg Tickers of the

targets and their explanations are given in table 8.11.

Their discrete weekly returns calculated as yi,t =
pi,t

pi,t−1
− 1 with close prices pi,t for target

i at instant in time t are shown in figure 8.1. The volatility of the returns increases a lot after

the news about the bankruptcy of Lehman Brothers on September 15tℎ in 2008 spread around,

which contradicts the desired assumption of homoscedasticity of econometric time series. Such

extraordinary events are far off predictability and therefore the period after September 12tℎ,

2008 will not be included in further calculations.

In table 8.2 the summary statistics of the equities data are listed. Descriptive statistics such

as the quartiles, the mean and distributional measures can be found there. This statistics as

1The data were provided by C-Quadrat, Vienna.
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8 Empirics

Bloomberg Ticker Field Description

1 DAX Index PX LAST German Stock Index (30 selected German blue chip stocks)

2 SPX Index PX LAST Standard and Poor’s (S&P) 500 Index (capitalization-weighted
index of 500 stocks representing all major industries)

3 SMI Index PX LAST Swiss Market Index (capitalization-weighted index of the
20 largest and most liquid stocks of the SPI universe)

4 NDX Index PX LAST NASDAQ 100 Index (modified capitalization-weighted
index of the 100 largest and most active non-financial
domestic and international issues listed on the NASDAQ)

5 SX5E Index PX LAST EURO STOXX 50 Price Index (free-float market
capitalization-weighted index of 50 European blue-chip
stocks from those countries participating in the EMU)

6 UKX Index PX LAST FTSE 100 Index (capitalization-weighted index of the
100 most highly capitalized companies traded on the
London Stock Exchange)

7 CAC Index PX LAST CAC 40 Index (narrow-based, modified capitalization-
weighted index of 40 companies listed on the Paris Bourse)

8 AEX Index PX LAST AEX Index (free-float adjusted market capitalization-
weighted index of the leading Dutch stocks traded on the
Amsterdam Exchange)

9 INDU Index PX LAST Dow Jones Industrial Average Index (price-weighted
average of 30 blue-chip stocks that are generally the leaders
in their industry)

10 IBEX Index PX LAST IBEX 35 Index (official index of the Spanish
Continuous Market comprised of the 35 most liquid stocks
traded on the Continuous market)

11 E100 Index PX LAST FTSE Eurotop 100 Index (modified capitalization-weighted
index of the most actively traded and highly capitalized
stocks in the pan-European markets)

12 BEL20 Index PX LAST BEL 20 Index (modified capitalization-weighted index of
the 20 most capitalized and liquid Belgian stocks that are
traded on the Brussels Stock Exchange)

13 SPTSX60 Index PX LAST S&P/Toronto Stock Exchange 60 Index( capitalization-
weighted index consisting of 60 of the largest and most
liquid stocks listed on the Toronto Stock Exchange)

14 RTY Index PX LAST Russell 2000 Index (is comprised of the smallest 2000
companies in the Russell 3000 Index, representing
approximately 8% of the Russell 3000 total market
capitalization)

Table 8.1: Bloomberg Tickers, Fields and Description of some of the most important world
equities used in this empirical application.
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Figure 8.1: weekly returns of world equities from 2005-07-29 to 2008-09-12.
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DAX S&P SMI Nasdaq Eurostoxx FTSE100 CAC40

min −0.0680 −0.0541 −0.0573 −0.0811 −0.0552 −0.0702 −0.0638
1st quantile −0.0105 −0.0100 −0.0101 −0.0116 −0.0117 −0.0099 −0.0122
median 0.0048 0.0015 0.0037 0.0017 0.0023 0.0015 0.0025
3rd quantile 0.0172 0.0122 0.0123 0.0164 0.0153 0.0136 0.0156
max 0.0580 0.0487 0.0545 0.0603 0.0520 0.0447 0.0485
mean 0.0022 0.0006 0.0013 0.0010 0.0009 0.0010 0.0009
skewness −0.3863 −0.3303 −0.3576 −0.3299 −0.3983 −0.5312 −0.3830
kurtosis 3.2026 3.3715 3.7185 3.5074 3.0789 3.8820 3.0568

AEX DJ Indust. IBEX35 Eurotop100 Belgium20 Canada Russel

min −0.0659 −0.0440 −0.0555 −0.0585 −0.0815 −0.0710 −0.0701
1st quantile −0.0122 −0.0093 −0.0077 −0.0102 −0.0106 −0.0056 −0.0138
median 0.0023 0.0018 0.0044 0.0014 0.0030 0.0046 0.0025
3rd quantile 0.0141 0.0133 0.0150 0.0122 0.0148 0.0141 0.0189
max 0.0657 0.0439 0.0488 0.0487 0.0572 0.0457 0.0608
mean 0.0009 0.0006 0.0018 0.0007 0.0013 0.0024 0.0012
skewness −0.3319 −0.3203 −0.5003 −0.3692 −0.6946 −0.7840 −0.2462
kurtosis 3.4800 2.9222 3.2443 3.3607 4.1322 4.4949 2.9886

Table 8.2: Descriptive statistics of the equities data on a weekly basis from 2005-07-29 to
2008-09-12

well as the histograms in figure 8.2 indicate, that one has to be careful when working with

financial data because the often required assumption of normal distribution is not always met.

The data often show a leptokurtic distribution which means that in comparison with a normal

distribution it has higher peaks and so called fat tails.

Another problematic characteristic of financial data consists in the presence of a unit root.

Therefore the autocorrelation functions of the data are given in figure 8.3, which show no severe

problems in the data analyzed here. Moreover, the Augmented Dickey Fuller Test (ADF Test)

rejects for all targets the null hypothesis of the presence of a unit root.

In order to estimate restricted factor models, as explained in the previous chapters, a

pattern matrix has to be defined a priori, that marks the restricted positions of the loadings

matrix with zeros. Here the matrix given in table 8.3 is used, which interprets the first factor

as European market and the second one as American market. Therefore the European indices

load (mainly) on the first factor and the others on the second one. Solely, FTSE 100 loads on

both factors because it shows a slightly different behavior than the other European indices and

contains partly also assets from other non European countries. Thus, the pattern matrix shows

the required structure of not being decomposed entirely in block matrices and of restricting at

least k = 2 elements in each column to zero, which can not be reached by simple orthogonal

rotation.

86



8.3 World equities

DAX

F
re

qu
en

cy

−0.06 −0.02 0.02 0.06

0
10

20

S&P

F
re

qu
en

cy

−0.04 0.00 0.02 0.04

0
10

20
30

SMI

F
re

qu
en

cy

−0.06 −0.02 0.02 0.04

0
10

25

Nasdaq

F
re

qu
en

cy

−0.05 0.00 0.05

0
20

40

Eurostoxx

F
re

qu
en

cy

−0.06 −0.02 0.02 0.04

0
10

20

FTSE100
F

re
qu

en
cy

−0.06 −0.02 0.02

0
10

20
30

CAC40

F
re

qu
en

cy

−0.06 −0.02 0.02 0.04

0
10

20

AEX

F
re

qu
en

cy

−0.06 −0.02 0.02 0.06

0
10

20
30

DJ Industrial

F
re

qu
en

cy

−0.04 −0.02 0.00 0.02 0.04

0
10

20
30

IBEX35

F
re

qu
en

cy

−0.06 −0.02 0.02 0.04

0
10

20

Eurotop100

F
re

qu
en

cy

−0.06 −0.02 0.02 0.04
0

10
20

30

Belgium20

F
re

qu
en

cy

−0.05 0.00 0.05

0
10

20
30

Canada

F
re

qu
en

cy

−0.08 −0.04 0.00 0.04

0
10

20
30

Russel

F
re

qu
en

cy

−0.08 −0.04 0.00 0.04

0
5

15

Figure 8.2: histograms of the weekly returns of the equities data from 2005-07-29 to 2008-09-12
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Figure 8.3: autocorrelation function of the weekly returns of the equities data from 2005-07-29
to 2008-09-12
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EU US

DAX 1 0
S&P 0 1
SMI 1 0
Nasdaq 0 1
Eurostoxx 1 0
FTSE100 1 1
CAC40 1 0
AEX 1 0
DJ Industrial 0 1
IBEX35 1 0
Eurotop100 1 0
Belgium20 1 0
Canada 0 1
Russel 0 1

Table 8.3: Pattern matrix for the world equities data defining the positions of the loadings
matrix which are restricted to be zero in the estimation.

Apart from the dependent variables described above also input variables have to be selected

and assigned to the different factors. Therefore the variables which can be seen in table 8.4

have been chosen and attributed to the European and American market respectively, which will

also be the explanation of the factors later on. The original list of inputs has been reduced to

this 17 final variables by means of a cluster and correlation analysis and variables with extreme

outliers have been skipped. So the list of possible explanatory variables consists of an intercept,

lags 1 to 4 of the lagged dependent variable (4 autoregressive variables) and lags 1 to 4 of the

17 exogenous variables. But not all of these variables are used for calculating the forecast. As

described in section 4.3 a subset selection algorithm is applied to reduce the number of inputs

further.

8.3.1 Results

Based on the 14 indices and the 17 inputs described in this section an unrestricted and a

restricted principal components model have been estimated. As rolling window size 80 obser-

vations have been chosen in the estimation. The number of selected inputs in each estimation

step has been forced to be between 2 and 10 and is shown in figure 8.4 and 8.5 for both model

types.

In table 8.5 an example for an unrestricted (first two columns) versus a restricted (columns

3 and 4) loadings matrix is presented. In the restricted case exact zeros are obtained on the
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8.3 World equities

Bloomberg Ticker EU US Description

1 USDJPY Curncy 1 1 USD-JPY exchange rate (amount of Japanese
Yen for 1 US Dollar)

2 EURUSD Curncy 1 1 EUR-USD exchange rate (amount of US Dollars
for 1 Euro)

3 SX8P Index 1 0 DJ Stoxx sector index technology

4 SX4P Index 1 0 DJ Stoxx sector index chemicals

5 SX6P Index 1 0 DJ Stoxx sector index utilities

6 SX7P Index 1 0 DJ Stoxx sector index banks

7 EUR001M Index 1 0 EU 1-month yield curve

8 EUR012M Index 1 0 EU 12-months yield curve

9 RX1 Comdty 1 0 Eurobund future with a 10-year maturity

10 CL1 Comdty 1 1 crude oil future

11 GC1 Comdty 1 1 gold future

12 VDAX Index 1 0 German volatility index

13 TY1 Comdty 0 1 US 10-years treasury note

14 MOODCAVG Index 0 1 Moody’s rating and risk analysis index
(lagged 1 day)

15 US0012M Index 0 1 US 12-months yield curve

16 USSWAP2 CMPL Curncy 0 1 2-year vanilla interest rate swap

17 USSWAP5 CMPL Curncy 0 1 5-year vanilla interest rate swap

Table 8.4: List of exogenous inputs used for forecasting with their assignment to European and
US-based indices. A ’1’ in the columns ’EU’ or ’US’ means, that the corresponding input may
have predictive power for forecasting the behavior of the European resp. US market and a ’0’
vice versa. The data is available from 1999-01-01 up to the present.
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Figure 8.4: Number of selected inputs over time for each principal component for the (unre-
stricted) principal component forecast model.
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Figure 8.5: Number of selected inputs over time for each modified principal component for the
restricted principal component forecast model.

PC 1 PC 2 PC 1restr PC 2restr

DAX 0.3413 −0.0377 0.2080 0.0000
S&P 0.0279 0.4221 0.0000 −0.1950
SMI 0.2500 0.0830 0.1923 0.0000
Nasdaq 0.0163 0.5028 0.0000 −0.2229
Eurostoxx 0.3422 −0.0199 0.2163 0.0000
FTSE100 0.3004 0.0062 0.1822 −0.0161
CAC40 0.3497 0.0158 0.2334 0.0000
AEX 0.3199 0.0393 0.2203 0.0000
DJ Industrial 0.0450 0.3861 0.0000 −0.1885
IBEX35 0.3400 −0.0630 0.1996 0.0000
Eurotop100 0.3193 −0.0067 0.2056 0.0000
Belgium20 0.3420 0.0272 0.2334 0.0000
Canada 0.2123 0.0326 0.0000 −0.1399
Russel −0.0805 0.6353 0.0000 −0.2234

Table 8.5: Example for an unrestricted and a restricted loadings matrix on 2008-09-12.

specified positions of the loadings matrix whereas the unrestricted loadings matrix has just

small values in the according positions. To enhance comparability, the loadings matrix of the

unrestricted model is rotated by an orthogonal varimax rotation as described in section 2.3.

The final out of sample statistics of this analysis can be found in the tables 8.6 and

8.7. There it can be seen that on average the restricted PCA model outperforms the un-

restricted one in the sense of a higher average portfolio value starting from a value of 100 on

2007 − 02 − 02(140.96 compared to 133.11). The mean of the R2 statistics is in both cases
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DAX S&P SMI Nasdaq Eurostoxx FTSE100 CAC40

R2 0.0301 −0.0002 0.0083 0.00 0.0265 0.0197 0.0177
Skewness 0.31 −0.05 0.11 −0.25 0.32 0.10 0.25
Kurtosis 2.37 2.25 2.33 2.38 2.35 2.64 2.40
Jarque Bera 0.26 0.37 0.42 0.33 0.23 0.74 0.35
ADF 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Hitrate 0.52 0.51 0.58 0.56 0.51 0.60 0.50
Portfolio value 139.66 118.93 120.01 150.47 134.74 139.22 127.23

AEX DJ Industrial IBEX35 Eurotop100 Belgium20 Canada Russel

R2 0.029 0.0002 0.0134 0.0231 0.0104 0.0257 −0.001
Skewness 0.23 −0.12 0.29 0.29 0.32 −0.35 −0.09
Kurtosis 2.52 2.18 2.93 2.29 2.52 2.9 2.78
Jarque Bera 0.47 0.28 0.55 0.23 0.32 0.41 0.87
ADF 0.01 0.02 0.01 0.01 0.01 0.02 0.01
Hitrate 0.48 0.56 0.56 0.51 0.52 0.65 0.48
Portfolio value 146.67 115.3 123.58 136.3 131.89 171.6 107.91

Table 8.6: Out-of-sample model statistics of the unrestricted PCA model based on a window
length of 80 weekly datapoints for generating 1-step ahead forecasts from 2007-02-09 to 2008-
09-12.

similar (0.0121 in the restricted case vs. 0.0145 in the unrestricted one). The restricted model

also has a slightly higher average hitrate of 55.87% in comparison to 53.91% for the unrestricted

PCA model. For both model types the null hypothesis of normality of the residuals, tested

by the Jarque Bera test, cannot be rejected on a confidence level of � = 0.05, whereas the

Augmented Dickey Fuller (ADF) Test rejects the null hypothesis of the presence of a unit root

of the residuals in all cases, if the same confidence level of 0.05 is assumed.

In figure 8.6 the performance curves for all 14 indices from 2007-02-02 to 2008-09-12 can be

found. The increase in performance of the European indices is quite promising at the begin-

ning whereas the American ones start performing well in October 2007. The graphic also shows

that is quite a difficult issue calculating real out-of-sample econometrical forecasting models

that perform well also on the short run at every instant in time. Nevertheless, in the author’s

opinion it is possible to obtain good results on a long-term basis, that can outperform actively

managed portfolios.

To round up the results obtained for the restricted and the unrestricted model of the world

equities models, another comparison is given here, that takes just the last 30 weeks before 2008-

09-12 into account. There the average performance of the restricted model is again clearly better

than the one of the unrestricted PCA model (122.10 vs. 109.72), if 100 is chosen as a starting

value on 2008−02−15 for all securities. Also the hitrate of the restricted model indicates with
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DAX S&P SMI Nasdaq Eurostoxx FTSE100 CAC40

R2 0.0180 0.0040 0.0100 0.0104 0.0167 0.0216 0.0086
Skewness 0.35 -0.06 0.27 -0.36 0.40 -0.02 0.36
Kurtosis 2.77 2.34 2.36 2.74 2.57 2.50 2.68
Jarque Bera 0.38 0.45 0.30 0.36 0.24 0.65 0.33
ADF 0.01 0.02 0.01 0.01 0.01 0.01 0.01
Hitrate 0.56 0.54 0.60 0.58 0.55 0.63 0.54
Portfolio value 141.24 132.11 123.78 172.47 141.07 149.68 136.09

AEX DJ Industrial IBEX35 Eurotop100 Belgium20 Canada Russel

R2 0.0235 0.0093 0.0109 0.0198 0.0078 0.0079 0.0009
Skewness 0.23 -0.02 0.28 0.31 0.32 -0.46 -0.11
Kurtosis 2.61 2.13 2.78 2.35 2.43 3.31 2.76
Jarque Bera 0.54 0.26 0.53 0.25 0.28 0.19 0.83
ADF 0.01 0.02 0.01 0.01 0.01 0.01 0.01
Hitrate 0.51 0.56 0.57 0.55 0.52 0.61 0.51
Portfolio value 143.33 133.17 128.28 140.57 139.82 156.17 135.68

Table 8.7: Out-of-sample model statistics of the restricted PCA model based on a window
length of 80 weekly datapoints for generating 1-step ahead forecasts from 2007-02-09 to 2008-
09-12.
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Figure 8.6: Performance curves for all 14 indices from 2007-02-02 to 2008-09-12 based on
forecasts calculated with a restricted principal component forecast model. For the European
indices solid lines are used and for the American ones dashed lines.
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DAX S&P SMI Nasdaq Eurostoxx FTSE100 CAC40

R2 0.0448 -0.0204 0.0031 -0.0220 0.0381 0.0947 0.0410
Skewness 0.53 0.03 0.09 -0.05 0.34 -0.08 0.31
Kurtosis 2.29 2.05 1.91 2.17 1.93 2.63 2.08
Jarque Bera 0.37 0.57 0.47 0.65 0.37 0.90 0.47
ADF 0.13 0.52 0.21 0.37 0.15 0.35 0.30
Hitrate 0.50 0.33 0.53 0.50 0.57 0.67 0.53
Portfolio value 110.91 87.42 102.05 100.84 111.93 124.37 113.46

AEX DJ Industrial IBEX35 Eurotop100 Belgium20 Canada Russel

R2 0.1338 -0.0210 0.0782 0.0554 0.0373 0.1097 -0.0495
Skewness 0.11 -0.09 0.33 0.30 0.11 -0.24 -0.10
Kurtosis 1.93 1.97 2.05 1.89 2.11 3.25 2.28
Jarque Bera 0.48 0.51 0.43 0.37 0.59 0.83 0.71
ADF 0.42 0.53 0.19 0.26 0.34 0.30 0.45
Hitrate 0.57 0.40 0.53 0.53 0.50 0.77 0.47
Portfolio value 130.63 85.13 114.87 115.94 115.31 133.38 89.83

Table 8.8: Out-of-sample model statistics of the unrestricted PCA model based on a window
length of 80 weekly datapoints for generating 1-step ahead forecasts from 2008-02-22 to 2008-
09-12 (a period of 30 weeks).

a mean of 60.24% a considerable improvement against the unrestricted one (52.86%). What

seems a bit surprising here is the fact, that the average R2 of the restricted model is worse than

the one of the unrestricted model (0.0187 vs. 0.0374). Nevertheless, it has to be taken into

account, that no point forecasts are considered in the portfolio evaluation for several reasons

mentioned before, and that’s why less importance may be given to this statistical measure in

this context.

Last but not least some performance statistics of the performance curves of the restricted

principal component models and of the indices as a benchmark are summarized in the tables

8.10 and 8.11, respectively. In the sense of generated returns the long/short strategy of the

restricted PCA forecasts outperforms clearly the indices themselves whereby the annualized

volatility of these two groups of variables are very similar. Smaller drawdowns as well as

much higher Sharpe ratios underline furthermore the meaningfulness of the obtained restricted

forecasts in combination with the proposed portfolio strategy.
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DAX S&P SMI Nasdaq Eurostoxx FTSE100 CAC40

R2 0.0084 0.0015 0.0008 0.0036 0.0079 0.0531 0.0081
Skewness 0.39 0.03 0.22 -0.09 0.27 -0.11 0.29
Kurtosis 2.44 2.16 2.03 2.41 2.12 2.79 2.23
Jarque Bera 0.56 0.64 0.49 0.79 0.51 0.95 0.56
ADF 0.13 0.59 0.16 0.44 0.15 0.35 0.25
Hitrate 0.57 0.50 0.60 0.63 0.63 0.70 0.60
Portfolio value 114.91 113.76 118.32 133.58 119.37 127.38 119.82

AEX DJ Industrial IBEX35 Eurotop100 Belgium20 Canada Russel

R2 0.0917 0.0017 0.0250 0.0228 0.0141 0.0236 0.0001
Skewness 0.07 0.10 0.23 0.21 0.07 -0.16 -0.44
Kurtosis 2.35 1.94 2.19 2.02 1.98 3.23 2.60
Jarque Bera 0.76 0.49 0.58 0.49 0.51 0.90 0.56
ADF 0.31 0.62 0.31 0.22 0.38 0.46 0.52
Hitrate 0.63 0.57 0.60 0.60 0.57 0.67 0.57
Portfolio value 134.21 111.11 123.72 124.10 126.82 124.87 117.45

Table 8.9: Out-of-sample model statistics of the restricted PCA model based on a window
length of 80 weekly datapoints for generating 1-step ahead forecasts from 2008-02-22 to 2008-
09-12 (a period of 30 weeks).

DAX S&P SMI Nasdaq Eurostoxx FTSE100 CAC40

Total return % 41.24 32.11 23.78 72.47 41.07 49.68 36.09
Total return p.a. % 23.86 18.83 14.14 40.18 23.77 28.39 21.04
Volatility p.a. % 18.16 16.19 17.29 19.25 17.85 16.67 19.32
Sharpe ratio 1.2 1.04 0.7 1.98 1.22 1.58 0.99
Max. % loss 1 week -4.97 -4.87 -5.45 -5.65 -4.8 -3.6 -5.39
Max. % loss 5 weeks -10.47 -7.16 -8.48 -6.58 -10.82 -9.55 -13.74
Max. % loss 20 weeks -17.95 -7.19 -18.1 -5.66 -14.01 -15.83 -14.48
Max. drawdown % 18.9 9.35 18.74 9.92 15 17.77 16.98

AEX DJ Indust. IBEX35 Eurotop100 Belgium20 Canada Russel

Total return % 43.33 33.17 28.28 40.57 39.82 56.17 35.68
Total return p.a. % 24.99 19.42 16.69 23.49 23.09 31.82 20.81
Volatility p.a. % 19.19 16.25 18.64 16.84 20.43 15.88 19.93
Sharpe ratio 1.2 1.07 0.79 1.28 1.03 1.88 0.94
Max. % loss 1 week -4.32 -4.39 -5.08 -3.92 -5.19 -4.57 -6.08
Max. % loss 5 weeks -10.49 -7.81 -9.73 -9.66 -13.35 -5.26 -9.86
Max. % loss 20 weeks -19.59 -4.92 -14.57 -15.86 -14.03 -1.66 -11.82
Max. drawdown % 23.08 8.55 18.89 17.11 20.04 5.53 14.77

Table 8.10: Performance statistics of the performance curves obtained of the restricted PCA
model in combination with a simple one asset long/short strategy based on data from 2007-02-
02 to 2008-09-12.

94



8.3 World equities

DAX S&P SMI Nasdaq Eurostoxx FTSE100 CAC40

Total return % -9.45 -13.58 -22.08 -1.72 -22.48 -14.17 -23.68
Ttotal return p.a. % -5.97 -8.65 -14.33 -1.07 -14.59 -9.03 -15.42
Volatility p.a. % 18.44 16.36 17.3 19.9 18.03 17.04 19.43
Sharpe ratio -0.43 -0.65 -0.94 -0.15 -0.92 -0.65 -0.9
Max. % loss 1 week -6.8 -5.41 -5.73 -8.11 -5.52 -7.02 -6.38
Max. % loss 5 weeks -14.82 -10.36 -11.34 -15.28 -13.86 -10.92 -14.92
Max. % loss 20 weeks -19.49 -16.1 -20.43 -21.91 -20.5 -15.85 -20.75
Max. drawdown % 24.29 20.64 30.35 22.87 30.09 22.16 33.52

AEX DJ Indust. IBEX35 Eurotop100 Belgium20 Canada Russel

Total return % -21.16 -9.73 -22 -23.03 -31.65 1.73 -11.02
Ttotal return p.a. % -13.7 -6.15 -14.27 -14.98 -21.01 1.07 -6.98
Volatility p.a. % 19.4 16.46 18.7 17.01 20.46 16.39 20.13
Sharpe ratio -0.81 -0.5 -0.87 -1 -1.12 -0.06 -0.45
Max. % loss 1 week -6.59 -4.4 -5.55 -5.85 -8.15 -7.1 -7.01
Max. % loss 5 weeks -16.92 -10.68 -14.05 -11.96 -19.59 -9.07 -12.35
Max. % loss 20 weeks -21.04 -13.44 -20 -21.22 -23.67 -9.91 -19.3
Max. drawdown % 30.61 21.23 29.6 29.75 37.69 14.58 22.86

Table 8.11: Performance statistics of the indices themselves as a benchmark from 2007-02-02
to 2008-09-12.
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Chapter 9

Conclusion and extensions

The main parts of this thesis are devoted to the development of sparse principal components

and reduced rank regression models. Therefore the unrestricted model classes are presented first

and then similar objective functions as in the classical case are defined in order to estimate

the unknown parameters, whereby restrictions are imposed on the corresponding matrix of

loadings. Based on this specifications an adaptive least squares algorithm is presented as a

solution to this optimization problems that works for both model types.

These sparse factor models are used further as forecasting models, whereby for restricted PCA

a two-step procedure is necessary and for restricted RRRA a direct approach can be chosen.

The problematic of inputselection for the choice of exogenous or autoregressive variables is

done with the help of an algorithm similar to the one proposed by An and Gu [3], which is

based on information criteria such as AIC and/or BIC.

Finally, the directional forecasts of a sparse principal component model for financial instruments

are employed in an empirical study in a simple single asset portfolio long/short strategy. The

obtained results show that the restricted forecasting model for the 14 indices

∙ enhances interpretability of the factors

∙ outperforms the unrestricted model in terms of better out-of-sample model statistics for

most of the analyzed targets

∙ produces higher portfolio values than the forecasts of the unrestricted models.

It is more or less surprising, that post - statistics such as the R2 give no reliable hint about the

quality of the financial forecasts for usage in a portfolio, as even models with not so good R2

values can bring out a good performance. Nevertheless, the ability of econometric models of

generating good point forecasts in finance is limited and therefore one should not impose too

much weight on this criterion.

Furthermore, it is shown that the out-of-sample Hitrate contributes in a positive way to the
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performance. However, some examples in chapter 8 demonstrate, that even with a Hitrate of

50 percent, which comes close to throwing a coin, one can generate persistently a good perfor-

mance, if the timing of the signals is right.

Comparing finally the portfolio statistics of the proposed portfolios with their targets, a mani-

fest improvement over the indices themselves can be observed, and therefore utilizations of such

restricted forecasts in some areas of the wide range of financial products such as e.g. exchange

traded funds (ETFs), which are basically index trackers, can be suggested.

Besides the topics analyzed in the framework of this thesis, there are still a number of

open problems or questions which are a matter of future research. In the sequel some of them,

which are of interest to the author, are pointed out. Firstly, the procedure gives no indication

about the correctness of the assumptions of sparseness as preknowledge is postulated. So the

development of statistical tests regarding the meaningfulness of the determined structure of

the loadings matrix is up to future research.

Next, modifications of existing sparse principal components techniques explained in section 3.2

such as SPCA in order to obtain a sparse loadings matrix A instead of B (see equation (3.13))

would be interesting. To obtain comparability between my technique and others based on the

LASSO, the penalty coefficients of the LASSO components have to be set individually for each

element in the loadings matrix separately with an accordingly high value for certain position,

where zeros should be enforced.

Theoretically one may also consider new optimization technologies solving the nonlinear opti-

mization problem in equation (3.17), which is neither convex nor concave. But this proceeding

with a so called ’black box’ as a solver was not within the scope of this thesis.
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Appendix A

Vector and matrix algebra

As several operators and derivatives applied to vectors or matrices are used in the framework

of this thesis, a few well known definitions and results will be summarized in the following

sections.

A.1 Derivatives

Let A, B, C and D be matrices of appropriate dimension where the entries of A = (aij) may be

functions of a real value t where indicated. Defining y and x as vectors of appropriate lengths,

then

∂x′y

∂x
= y

∂x′Ax

∂x
= (A+A′)x

The derivatives of a matrix A with respect to t or its entries aij are

∂A

∂t
=

(
∂aij
∂t

)

resp.
∂A

∂aij
= eie

′
j ,

where ei = (0, . . . , 0, 1
︸︷︷︸

i

, 0, . . . , 0)′ resp. ej = (0, . . . , 0, 1
︸︷︷︸

j

, 0, . . . , 0)′ are the itℎ resp. jtℎ

canonical basis vectors.

Similarly,
∂A′

∂aij
= eje

′
i

and the product rule is given by

∂AB

∂t
=

∂A

∂t
B +A

∂B

∂t
.
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Let f(A) be a differentiable, real valued function of the entries aij of A. Then the differentiation

of f with respect to the matrix A can be stated as

∂f

∂A
=

(
∂f

∂aij

)

.

The chain rule for a function g(U) = g(f(A)) is of the form

∂g(U)

∂aij
=

∂g(f(A))

∂aij
= trace

[(
∂g(U)

∂U

)′ ∂f(A)

∂aij

]

.

For square matrices A the following equalities hold:

∂trace(A)

∂t
= trace

(
∂A

∂t

)

for the trace

∂A−1

∂t
= −A−1∂A

∂t
A−1 for the inverse

∂log(∣A∣)
∂t

= trace

(

A−1 ∂A

∂t

)

for the logarithmic determinant

of a matrix.

For first, second and higher order derivatives with respect to a matrix A the following rules are

valid:

∂trace(A)

∂A
= I

∂trace(BA)

∂A
= B′

∂trace(BAC)

∂A
= B′C ′ ∂trace(BA′C)

∂A
= CB

∂trace(B ⊗A)

∂A
= trace(B)I

∂trace(A⊗A)

∂A
= 2trace(A)I

∂trace(A′BA)

∂A
= (B +B′)A

∂trace(ABA)

∂A
= A′B′ +B′A′

∂trace(BACA)

∂A
= B′A′C ′ +C ′A′B′ ∂trace(C ′A′DAC)

∂A
= D′ACC ′ +DACC ′

∂trace(BACA′D)

∂A
= B′D′AC ′ +DBAC

∂trace(Ak)

∂A
= k(Ak−1)′

Other useful matrix derivatives are

∂∣A∣
∂A

= ∣A∣
(
A−1

)′ ∂∣CAD∣
∂A

= ∣CAD∣
(
A−1

)′

∂trace(BA−1C)

∂A
= −(A−1CBA−1)′

∂∣∣A∣∣2F
∂A

= 2A
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A.2 Kronecker and vec Operator

∂x′Ay

∂A
= xy′

∂x′A′y

∂A
= yx′

∂x′A′BAy

∂A
= B′Axy′ +BAyx′

∂(Ax+ y)′B(Ax+ y)

∂A
= (B +B′)(Ax+ y)x′

A.2 Kronecker and vec Operator

As already stated on page 47, the symbol ⊗ is known as Kronecker product, that concatenates a

rectangular matrix G =

(
g11 ⋅⋅⋅ g1n
...

...
gm1 ⋅⋅⋅ gmn

)

of dimension m×n and a r×q matrix H =

(
ℎ11 ⋅⋅⋅ ℎ1q

...
...

gr1 ⋅⋅⋅ grq

)

to a matrix of dimension mr × nq in the following way:

G⊗H =

⎛

⎜
⎝

g11H ⋅ ⋅ ⋅ g1nH
...

...
gm1H ⋅ ⋅ ⋅ gmnH

⎞

⎟
⎠ .

Let A, B, C and D be matrices of appropriate dimension and � and � are constants. Then

the Kronecker product can be characterized by the following properties:

A⊗B ∕= B ⊗A in general rk(A⊗B) = rk(A)rk(B)

A⊗ (B + C) = A⊗B +A⊗ C A⊗ (B ⊗ C) = (A⊗B)⊗C

�A⊗ �B = ��(A⊗B) (A⊗B)′ = A′ ⊗B′

(A⊗B)(C ⊗D) = AC ⊗BD (A⊗B)−1 = A−1 ⊗B−1

(A⊗B)+ = A+ ⊗B+ trace(A⊗B) = trace(A)trace(B)

Another operator used frequently in this thesis is the vec operator. Applied to a matrix

A = (a1, . . . , aN ) it stacks the columns of A into a vector vec(A) = (a′1, . . . , a
′
N )′. For matrices

A, B and C and a constant � the properties of the vec operator include

vec(BAC) = (C ′ ⊗B)vec(A) vec(A +B) = vec(A) + vec(B)

trace(A′B) = vec(A)′vec(B) vec(�A) = �vec(A)
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a posteriori model statistics, 81

AIC, see Akaike Information Criterion

Akaike Information Criterion, 55

ALS algorithm, see alternating least squares

algorithm

alternating least squares algorithm, 41

An algorithm

backward order, 56

fast step procedure, 57

forward order, 56

Bayesian Information Criterion, 42, 55

BIC, see Bayesian Information Criterion

cardinality, 36

correlation optimality, 11, 19

CPEV, see cumulative percentage of explained

variance

cumulative percentage of explained variance,

41

degree of sparsity, 45

derivative

with respect to a matrix, 99

with respect to a vector, 99

DSPCA, 36

eigenvalue, 7

itℎ largest eigenvalue, 8

eigenvector, 7

first k eigenvectors, 8

last k eigenvectors, 8

factor model, 5

sparse factor model, 28

GASPCA, 42

generalized power method, 38

in-sample period, 81

Kronecker product, 47, 73, 101

LARS, 42

LASSO, see least absolute shrinkage and se-

lection operator

least absolute shrinkage and selection opera-

tor, 35

linear transformation, 24

loss of information, 11, 15

mean squared error, 54

Moore-Penrose pseudoinverse, 45

multiple correlation coefficient, 20

multivariate linear regression model, 59

null space, 34

optimality of principal components, 11

out-of-sample period, 81

partial least squares, 73

PCA, see principal component analysis

performance curves, 83

PLS, see partial least squares

portfolio evaluation, 82

principal component, 9

sample principal component, 8

principal component analysis, 7
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kernel PCA, 28

sparse PCA, 29

Rayleigh quotient, 12

reduced rank regression, 61

indirect procedure, 66

restricted estimation, 71

rotation

oblique rotation, 24

orthogonal rotation, 24

promax rotation, 26

rotation matrix, 24

varimax rotation, 25

RRR, see reduced rank regression

SASPCA, 42

SCAD penalty, 40

Schwarz Information Criterion, see Bayes In-

formation Criterion

SCoT, see simplified component technique

SCoTLASS, 35

simplified component technique, 35

SPCA, 38

sPCA - rSVD, 41

variation optimality, 11

VARX model, 52

vec operator, 45, 73, 101
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