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Martingale convergence avoiding the upcrossing inequality

Michael Hofbauer-Tsiflakos

ABSTRACT The covering of martingale convergence in todays probability
textbooks begins justifiably with the formulation of the powerful
upcrossing inequality. It is the tool to prove almost sure convergence for
L1-bounded martingales. Once this is established one may impose stronger
porperties, containing L1-boundedness, such as uniform integrability, on
martingales, in order to achieve additional convergence results.
This thesis shows that it is possible to prove almost sure convergence for
L1-bounded martingales in three different ways without using the
upcrossing inequality at all. The fact of various intakes unveils the
possibility to derive a deeper understanding of martingale theory and its
connection with other mathematical branches.
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1 Prelude

The first section is divided in two parts: The first exams convergence of
uniform integrable sequences of random variables, the second discusses the
issue of stopping times. Both are of great importance for the martingale
theory to follow. Most of the information gathered here does not appear in
undergradued courses and thus needs to be mentioned explicitly. In order
to keep the interested reader focused, we will omit everydays measure and
probability theory knowledge and, if required, refer to it in the appendix.

1.1 Notation and Preassumptions

Every math writer, acknowledged or not, develops his/her own semantic
style while absorbing literature. Even though the majority of
mathematicians understand the correspondence between, say,
Xn converges to X, a.e. for ω ∈ Ω and Xn

a.s.−−→ X, it adds a personal note
using one or the other. Consequently, we want to outline some expressions
and assumptions that will be used throughout this thesis.

Conventions
Unless otherwise stated, all random variables are defined on a probability
space (Ω,F ,P). Mark the bold letter E as the expected value operator.

Sometimes a sequence of random variables or a stochastic process (Xn)n∈N
maybe alternately noted as (fn)n∈N, if, for instance, the theorem using
(fn)n∈N is of measure theoretic origin.

Let (fn)n∈N ∈ H be a sequence of random variables having property A. We
then say: A holds for fn, ∀ n ∈ N, ⇔ A holds for fn, ∀ fn ∈ H.

The notation Lp, 1 ≤ p ≤ ∞, is always an abbreviation of Lp(Ω,F ,P).

Denote by (Lp, ‖ · ‖p), the seminormed vector space of pth power integrable
functions and (Lp, ‖ · ‖p) as the resulting normed vector space by defining
Lp := Lp/N and N := ker(‖ · ‖p).

If G is a (sub-)σ-Algebra we write Lp(G) to emphasize the underlying
(sub-)σ-Algebra.

Convergence Distinctions
We say a sequence of random variables (Xn)n∈N converges in (the strong
sense in) Lp to X if, Xn, X ∈ Lp, ∀ n ∈ N, and

lim
n→∞

‖Xn −X‖p → 0.

We say a sequence of random variables (Xn)n∈N converges in the p-norm
if, Xn, X ∈ Lp, ∀ n ∈ N, and

lim
n→∞

‖Xn‖p = ‖X‖p.
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1.2 Uniform Integrability

A property of a set of random variables H that will lead to further proofs
is uniform integrability.

Definition 1.1 (Uniform Integrability 1). Let H be a subset of the
space L1(Ω,F ,P). One says that H is a uniformly integrable collection of
random variables, if

lim
c→∞

sup
f∈H

∫
{|f |≥c}

|f | dP→ 0.

Another possible definition of uniform integrability requires the notation of
certain parts of a random variable f :

f c(ω) =


f(ω) for |f(ω)| ≤ c
0 for f(ω) > c
0 for f(ω) < −c

We put fc = f − f c and achieve

Definition 1.2 (Uniform Integrability 2). H is uniformly integrable
if and only if for every ε > 0, exists a number c such that ‖fc‖1 < ε for
every function f ∈ H.

Example 1.3. Since E[|fi|] <∞, i = {1, . . . , n}, each finite sequence
f1, . . . , fn ∈ L1(Ω,F ,P) fulfills the hypothesis of uniform integrability.

Example 1.4. Suppose that (Xn)n≥1 is a sequence of random variables,
with a random variable Y ∈ Lp(Ω,F ,P), 1 ≤ p <∞, dominating the Xn,
i.e., |Xn| ≤ Y . Then {|Xn|p} is uniformly integrable as a consequence of
the dominating convergence theorem of Lebesgue [A.1].
Alternatively, one could show this result by the following chain:
|Xn| ≤ Y ⇒ |Xn|p ≤ Y p ⇒ [|Xn| ≤ c] ⊆ [Y ≤ c]⇒

∫
{|Xn|≤c} |Xn|p dP ≤∫

{Y≤c} Y
p dP < ε, for c large enough.

Throughout this section we will derive additional conditions, necessary for
later martingale proofs, that will also help us to show E1.4 in a different
way. The next theorem states an equivalence assertion to uniform
integrability:

Theorem 1.5. Let H be a subset of L1. Then H is uniformly integrable if
and only if the following conditions are realized:

(a) The expectations E[|f |], f ∈ H, are uniformly bounded.
(b) ∀ ε > 0, ∃ δ > 0, so that ∀ A ∈ F with P(A) ≤ δ∫

A
|f | dP ≤ ε, ∀ f ∈ H.
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Proof. ⇒:
To establish the necessity of conditions (a) and (b), we note that, for every
integrable function f and every set A ∈ F :∫

A
|f | dP ≤ cP(A) + E[|fc|].

Supposing that H is uniformly integrable, choose c large enough so that

E[|fc|] < ε/2, ∀ f ∈ H. (1.1)

Set A = Ω in (1.1) and (a) follows. By choosing δ = ε/2c we have proven
the validity of (b).
⇐:
Conversely, supposing that properties (a) and (b) are satisfied and given
ε > 0, associate with it some δ > 0 satisfying (b) and take
c = supf∈HE[|f |]/δ, a finite quantity in view of (a). Apply formula (1.1),
taking for A the set

{
|f | ≥ c

}
, whose probability is less than δ in view of

the inequality

P[|f | ≥ c] ≤ 1
c
E[|f |].

We obtain the inequality∫
{|f |≥c}

|f | dP ≤ ε, ∀ f ∈ H,

and H is thus uniformly integrable.

Remark 1.6. Point (b) in T1.5 is nothing else but the absolute continuity
property, in a probability space, stated for the function f .

Remark 1.7. One be ensured that limc→∞P[f ≥ c] = 0 does not
necessarily yield uniform boundedness of E[|f |]: Suppose X ≥ 1 and
P[X ≥ x] = 1

x . The distribution function of this example is FX(x) = 1− 1
x

and hence E[|X|] =
∫∞

1 P[X ≥ x] dx =
∫∞

1
1
x dx = lnx |∞1 =∞, but

limx→∞P[X ≥ x] = 0.

Obviously, uniform integrability encapsules uniform boundedness. We can
use this information to derive a generalization of Lebesgue’s dominating
convergence theorem [A.1], namely, the convergence theorem of Vitali.
Before, we first state

Lemma 1.8. Let H ⊆ Lp, 1 ≤ p <∞. Then supf∈H ‖f‖p <∞ if and only
if ∀ ε > 0, ∃ E ∈ F with

∫
Ec |f |p dP < ε, ∀ f ∈ H.
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Proof. ⇒:
Choose E := {f ≤ c} with c > 0 big enough so that

∫
{|f |>c} |f |

p dP < ε.
⇐:
Take Ec = ∅, then

∫
Ec |f |p dP = 0, ∀ f ∈ H, and hence supf∈H ‖f‖p <∞.

For p = 1, supf∈H ‖f‖p <∞, states condition T1.5(a). Determined to give
a neat proof of the Vitali theorem we interwine one of Riesz’ theorems.

Theorem 1.9 (Riesz 1928). Let (fn)n≥1, f ∈ Lp, 1 ≤ p <∞. Then the
following two assertions are equivalent:

(a) limn→∞ ‖fn − f‖p → 0.

(b) fn
P−→ f and limn→∞ ‖fn‖p = ‖f‖p.

Proof. ⇒:
By the inequality chain

P({|fn − f | ≥ ε}) ≤
∫
{|fn−f |≥ε}

∣∣∣∣fn − fε

∣∣∣∣p dP
≤
∫

Ω

∣∣∣∣fn − fε

∣∣∣∣p dP = ε−p‖fn − f‖p
n→∞−−−→ 0,

convergence in probability of fn to f follows.
For 1 ≤ p <∞ the lower triangle inequality gives∣∣‖fn‖p − ‖f‖p∣∣ ≤ ‖fn − f‖p
and therefore limn→∞ ‖fn‖p = ‖f‖p.
⇐:
One way to show this is to use Pratt’s theorem (1960). More on this has,
i.e., Elstrodt [13, p. 261]. For our purposes this direction is void.

Note that T1.9(b) implies T1.9(a) also if fn
a.s.−−→ f . The opposite does

not hold.

Theorem 1.10 (Vitali 1907). Let (fn)n≥1, f ∈ Lp, 1 ≤ p <∞. Then the
following assertions are equivalent:

(a) limn→∞ ‖fn − f‖p → 0.

(b) (I) fn
P−→ f

(II) ∀ ε > 0,∃ E ∈ F with∫
Ec

|fn|p dP < ε, ∀ n ∈ N.

(III) ∀ ε > 0, ∃ δ > 0, so that ∀ A ∈ F with P(A) ≤ δ,∫
A
|fn|p dP < ε, ∀ n ∈ N.
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A sequence of functions (fn)n≥1 ∈ Lp with properties (II) and (III) is said
to be uniformly integrable in the p-norm. According to T1.5 and L1.8 we
have encountered this case for p = 1 already.

Proof. ⇒:
Let us suppose first that fn converges to f in Lp. We take advantage of
the inequality |fn|p − |f |p ≤ |fn − f |p to achieve

‖fn‖p ≤ ‖f‖p + ‖fn − f‖p, ∀ n ∈ N.

As it appears supn∈N ‖fn‖p <∞ and L1.8 implies (II). On the other hand,
let us choose an integer N such that ‖fn − f‖p ≤ ε/2 for every n > N , and
a number δ such that the inequality P(A) ≤ δ implies

∫
A |g|

p dP ≤ ε/2,
when g ranges over the finite collection consisting of the functions
{f1, . . . , fN , f}. It follows then that∫

A
|fn|p dP ≤

∫
A
|f |p dP +

∫
A
|fn − f |p dP ≤ ε,

for every n when P(A) is less than δ, and condition (III) is verified.
⇐:
Conversely, let at first fn converge to f almost surely. For every ε > 0 we
choose an E ∈ F according to (II) and a δ > 0 according to (III). Due to
Egorov’s theorem [A.3] there exists a measurable set B ⊂ E with
P(E \B) < δ, so that (fn|B)n≥1 converges uniformly to f |B.
Applying inequality

|f + g|p ≤ (2 max(|f | , |g|))p ≤ 2p(|f |p + |g|p)

we estimate∫
Ω
|fn − f |p dP ≤

2p
∫
Ec

(|fn|p + |f |p) dP + 2p
∫
E\B

(|fn|p + |f |p) dP +
∫
B
|fn − f |p dP.

(1.2)

Due to Fatou’s lemma [A.4]∫
Ec

|f |p dP ≤ lim inf
n→∞

∫
Ec

|fn|p dP ≤ ε,

∫
E\B
|f |p dP ≤ lim inf

n→∞

∫
E\B
|fn|p dP ≤ ε.

The first two members on the right side of (1.2) are together < 2p+1ε.
Since (fn|B)n≥1 converge uniformly to f |B, the third member is also < ε
for every n ≥ n(ε), and so (a) follows.
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Now let fn converge to f in probability only. Suppose that there is a δ > 0
and a subsequence (fnk

)k≥1 with

‖fnk
− f‖p ≥ δ, ∀ k ∈ N. (1.3)

We assume that fnk
converges a.s. to f since every subsequence fnk

, for
every sequence fn that converges in probability to f , has an a.s.
convergent subsequence to the same limit [A.5]. Using the same steps for
fnk

as we did before for the a.s. convergent sequence fn we achieve

lim
k→∞

‖fnk
− f‖p → 0,

in contrary to (1.3) and the theorem is proven.

Like indicated before, we can use T1.10 to reverse Lebesgue’s theorem
[A.1]: Knowing that a sequence fn of integrable random variables
converges in Lp, leads to the property of uniform integrability for the fn
and thus to uniform boundedness.

1.2.1 The La Valleé Poussin Theorem

Coming up next is the theorem of La Valleé Poussin, which clarifies
another equivalent condition for a set of functions H being uniformly
integrable. This theorem comes with a conventional proof given by Meyer
in [29, p. 19]. An alternative, shorter proof can be found in [B.1].

Theorem 1.11 (La Valleé Poussin 1937). Let H be a subset of L1.
The following properties are equivalent:

(1) H is uniformly integrable.
(2) There exists a function G(t) defined on R+, which is positive,

increasing and convex1, such that

lim
t→+∞

G(t)
t

= +∞,

and
sup
f∈H

E[G ◦ |f |] < +∞. (1.4)

Proof. (2) ⇒ (1):
Given an ε > 0, put a = M/ε, where M := supf∈HE[G ◦ |f |]. Choose a
number c so large that G(t)/t ≥ a for t ≥ c.
We then have |f | ≤ (G ◦ |f |)/a on the set {|f | ≥ c} and consequently∫

{|f |≥c}
|f | dP ≤ 1

a

∫
{|f |≥c}

(G ◦ |f |) dP ≤ 1
a
M = ε

1Convexity of f is not used in the proof
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for each function f ∈ H. D1.2 is thus verified.
(1) ⇒ (2):
We establish the converse implication by constructing a function G(t) of
the form

∫ t
0 g(u) du, where g denotes an increasing function, tending to

+∞ with t, which has a constant value gn on each interval [n, n+ 1),
n ∈ N. Put, for each f ∈ H,

an(f) = P {|f | > n}

Let us take g0 = 0; we have

E[G ◦ |f |] =
∫ ∞

0
G(|f |)dP

=
∞∑
n=1

∫
{n≤|f |<n+1}

g(|f |)P[n ≤ |f | < n+ 1], set gn :=
∫
{n≤|f |<n+1}

g(|f |),

≤ g1P[1 ≤ |f | < 2] + (g1 + g2)P[2 ≤ |f | < 3] + . . . =
∞∑
n=1

gnan(f).

It remains to show that one may choose coefficients gn, which tend to
infinity with n, such that the sum

∑
n gnan(f) is uniformly bounded.

Choose a sequence cn, which increases to infinity, such that

sup
f∈H

∫
{|f |≥cn}

|f | dP ≤ 2−n,

which is possible by the virtue of uniform integrability. Then

2−n ≥ sup
f∈H

∫
{|f |≥cn}

|f | dP

≥
∫
{cn<|f |≤cn+1}

cn dP +
∫
{cn+1<|f |≤cn+2}

cn + 1 dP + . . .

=
∞∑

m=cn

mP[m < |f | ≤ m+ 1] ≥
∞∑

m=cn

P[|f | > m] =
∞∑

m=cn

am(f).

It follows that the sum
∑

n

∑∞
cn
am(f) is uniformly bounded for f ∈ H.

But this sum is of the form
∑

m gmam(f), gm denoting the number of
integers n such that cn ≤ m. This proves the assertion.

Remark 1.12. The fact, that the sums
∑

n

∑∞
cn
am(f) and

∑
m gmam(f),

are of the same form might not be obvious for the inexperienced eye.
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To verify this relationship we write the addends of the first sum explicitly(
P[|f | > c1] + . . .+ P[|f | > c1 + i] + . . .

)
+ . . .

.

.

.(
P[|f | > ck] + . . .+ P[|f | > ck + j] + . . .

)
+ . . . , i, k, j ∈ N

Now we pick out the integers of the sequence cn that satisfy the equality
cn = 1, n ∈ N. Let’s say there are g1,1 of them and thus P[|f | > 1] appears
g1,1 times. In addition to this we add all the integers of the sequence cn
that obey the inequality cn < 1, say g1,2, to g1,1 and set g1 := g1,1 + g1,2.
The reader might notice that this turn was a bit inaccurately, because
although we have g1 times P[|f | > 1] , substituting every number in the set
of integers that fulfills cn < 1 with 1 in the probability brackets, would
result altogether in a higher probability. But this is not crucial for the
convergence of our important sum. It should just display its setup.

Remark 1.13. A function G(t), that satisfies the condition of T1.11, is
tp. Applying it to (1.4), we see that every bounded subset H ⊂ Lp, p > 1,
is uniformly integrable.

Remark 1.14. Reconsider E1.4, where a sequence of random variables
(Xn)n∈N was bounded by an element of Lp, 1 ≤ p <∞, ∀ n ∈ N. Due to
|Xn| ≤ Y , ∀ n ∈ N, it follows by an easy transformation that
supn∈N E[|Xn|p] ≤ E[Y p]. For p ≥ 2, with G(t) = tp, this satisfies condition
(2) of T1.11 and the sequence (Xn)n∈N is thus uniformly integrable.

Example 1.15. An example of a L1-bounded subset of functions that is
not uniformly integrable would be H := {fn = n1[0, 1

n
]}. For n > c, it is∫

{|fn|>c}
|fn| dP = 1,

and obviously

lim
c→∞

sup
n∈N

∫
{|fn|>c}

|fn| dP = 1.

A contradiction to definition D1.2 of uniform integrability.

1.2.2 The Dunford-Pettis Theorem

Theorem T1.16, also referred to as the compactness criterion of
Dunford-Pettis, reveils a convergence property of a subset H ⊂ L1 just by
using its property of uniform integrability.
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Theorem 1.16 (Dunford-Pettis 1953). Let H be a subset of the space
L1. The following properties are equivalent:

(1) H is uniformly integrable.
(2) H is relatively compact in L1 in the weak topology σ(L1, L∞).
(3) Every sequence of elements of H contains a subsequence that

converges in the sense of the topology σ(L1, L∞).

We will prove the implications of (1) ⇒ (2) and (2) ⇒ (3), because the
opposite directions are not relevant for the results to come.

Proof. (1) ⇒ (2):
Let A be an ultrafilter on H. For each function f ∈ H, each set E ∈ F , put

If (E) =
∫
E
f dP.

From the relation |If (E)| ≤ E[|f |], and condition (a) of T1.5, the numbers
If (E) are uniformly bounded. The limit

I(E) = lim
A
If (E)

thus exists for every E ∈ F . Since I(
⋃
nAn) =

∑
n I(An), for disjoint An,

I is a measure. Condition T1.5(b) says that ∀ ε > 0, ∃ δ > 0, such that
P(E) ≤ δ implies |I(E)| < ε; We obtain an absolutely continuous measure
I with respect to P. By the theorem of Radon-Nikodym [A.8], there exists
a function φ ∈ L1 such that for every measurable subset E:

I(E) =
∫
E
φ dP.

Now
lim
A

∫
E
f dP =

∫
E
φ dP,

holds and assertion (2) will be established if we show that A converges to
φ in the weak topology. Evidently

lim
A

E[f · g] = E[φ · g], ∀ g ∈ L∞.

The function g ∈ L∞ is a finite linear combination of indicator functions of
sets. The assertion is proven if we remark that g ∈ L∞ is a uniform limit
of such functions.
(2) ⇒ (3):
Let (fn)n∈N be a sequence of elements of L1, whose classes belong to H.
Denote by T the σ-field generated by the functions fn, and by T0 the
smallest collection of subsets of Ω, closed under (

⋃
,C ), which contain the

sets of the form {fn < a : n ∈ N, a ∈ Q}.
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It is easily verified that T0 is a countable collection, which generates the
σ-field T , i.e., T = σ((fn)n∈N) = σ({fn < a, n ∈ N, a ∈ Q}) = σ(T0). By
means of the diagonal procedure, extract from the sequence (fn) a
subsequence (fnk

)k∈N, such that the integrals∫
E
fnk

dP, E ∈ T0

have a limit when k →∞. We shall show that the sequence (fnk
) is weakly

convergent. It suffices for this, according to assertion (2), to show that this
sequence has a single limit point in L1. Let φ and φ∗ be two limit points.
These two functions are a.s. equal to T -measurable functions and in order
to establish their a.s. equality, it thus suffices to show, due to [A.2], that∫

E
φ dP =

∫
E
φ∗ dP, ∀ E ∈ T .

Now this equality holds for E ∈ T0. Denote by M the collection of subsets
E ∈ T for which this equality is true. It follows from Lebesgue’s theorem
that M is closed under passage to the monotone limits, and from [A.14]
that M = T . Thus φ = φ∗ a.s., and the theorem is established.

Remark 1.17. The original proof of T1.16 was given by Dunford and
Pettis in [12, p. 458] and uses results of weakly convergent
Cauchy-sequences in Banach-spaces. To reformulate it here would
definitely exceed the frame of this thesis. This much shorter proof here is
due to Meyer [29, p. 20]. The appendix includes a more modern proof
[B.3], which can be also found in Kallenberg [23, p. 46].

We will conclude this section with a theorem about the convex hull of a
uniform integrable set H.

Theorem 1.18. Let H be a uniformly integrable subset of L1. Its closed
convex hull is also uniformly integrable.

Proof. Let f, g ∈ H. Set C := supf∈H
∫

Ω |f | dP and derive

P(|f | > c) ≤ C

c
, ∀ f ∈ H.

Due to the uniform integrability of f , there exists ∀ ε > 0 a δ > 0, so that
∀ A ∈ F with P[A] < δ: ∫

A
|f | dP < ε.
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We choose P[|f | > c] < δ
2 ∧P[|g| > c] < δ

2 and observe that

[|αf + (1− α)g| > c] ⊆ [α |f |+ (1− α) |g| > c] ⊆ [|f | > c] ∪ [|g| > c],

and
P([|f | > c] ∪ [|g| > c]) < δ.

This implies∫
{|αf+(1−α)g>c|}

|f | dP < ε ∧
∫
{|αf+(1−α)g>c|}

|g| dP < ε⇒∫
{|αf+(1−α)g>c|}

|αf + (1− α)g| dP < 2ε.
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1.3 Stopping Times

The concept of stopping times gives us the power to filter certain
information out of a process (Xn)n∈T. Before we give an initial explanation
of what exactly a stopping time is, we need to equip ourselves with a few
new measure theoretic terms. Our main results in later sections are proven
for the discrete index set N, which will also be the index set of choice for
stopping times here. Let (Ω,F) be a measurable space and let (Ft)t∈N be a
family of sub-σ-fields of F such that the relation s ≤ t implies Fs ⊂ Ft.
We say that (Ft) is an increasing family of sub-σ-fields of F , and we call
Ft, for each t ∈ N, the σ-fields of events prior to t. An increasing family of
sub-σ-fields (Ft) is oftenly also called a filtration of F on a given index set
T.

Definition 1.19. Let (Xt)t∈N be a stochastic process defined on a
probability space (Ω,F ,P) and let (Ft)t∈N be a filtration of F . The
process (Xt) is said to be adapted to the family (Ft) if Xt is Ft-measurable
for every t ∈ N.

The smallest filtration with respect to which Xt can be adapted is the
induced filtration σ({Xs : s ≤ t}).
The situation of a gambler gives an intuitively description of stopping
times. Suppose now that we interpret the index set T as a time set and
each event A ∈ F as a possible event to occur. Say that the gambler awaits
a certain event with agony and notes the time T (ω) when the event
appears for the first time. The set {ω : T (ω) ≤ t} can then be paraphrased
as the event, which occurs if and only if the gamblers wish takes place at
least one time at the instant t. From this comes the following definition.

Definition 1.20. Let (Ω,F) be a measurable space, and let (Ft)t∈N be a
filtration of F . A positive random variable T defined on Ω is said to be a
stopping time of the family (Ft) if T satisfies the following property:

{T = t} ∈ Ft, ∀ t ∈ N.

Retrieving the gamblers example we could say that the desired events that
have to take place before a time instant t do surely belong to the σ-field
Ft, which contains all the possible events that have occured prior to time t.

Remark 1.21. Every random variable equal to a constant is a stopping
time.

Definition 1.22. Let T be a stopping time relative to the family of
σ-fields (Ft)t∈N. We denote by FT the collection of events A ∈ F∞, where
F∞ is defined as σ(

⋃∞
n=1Fn), such that

A ∩ {T = t} ∈ Ft, ∀ t ∈ N.
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It is easy to verify that FT constitutes a σ-field and for T = t the σ-field
Ft is recovered. One could associate FT with the set of events known at
time T .

Lemma 1.23. Let S and T be two stopping times. Then
(a) S ∧ T , S ∨ T and S + T are stopping times.
(b) T is FT measurable.

Proof. Straight forward.

The exploration of stopping times continuous with a few lemmatas.

Lemma 1.24. Let T be a stopping time and S an FT -measurable random
variable such that S ≥ T . S is then a stopping time.

Proof. Since {S ≤ t} ⊆ FT , {S ≤ t} ∩ {T ≤ t} ∈ Ft. Note that the
intersection is equal to {S ≤ t}.

Lemma 1.25. Let S and T be two stopping times and let A be an element
of FS. We then have

A ∩ {S ≤ T} ∈ FT .

Proof. In order to verify that

A ∩ {S ≤ T} ∩ {T ≤ t} ∈ FT , ∀ t ∈ N,

it suffices to write the left-hand side in the form

[A ∩ {S ≤ t}] ∩ {T ≤ t} ∩ {S ∧ t ≤ T ∧ t} .

Each of these three events belongs to Ft. The first, by reason of the
relation A ∈ FS ; the second, from the fact that T is a stopping time; the
third, finally, follows from the fact that S ∧ t and T ∧ t are Ft-measurable.

Lemma 1.26. Let S and T be two stopping times such that S ≤ T . We
then have FS ⊂ FT

Proof. Let A ∈ FS . From L1.25 we have

A = A ∩ {S ≤ T} ∈ FT .

A very important example of stopping times is that of first hitting times.
A profitable gambler is interested at which time his budget will increase to
a desired amount a, rather than asking how often his budget will raise and
drop to a in one night.

14



Theorem 1.27. Let (Xt) be a real-valued stochastic process and assume
that every Ft is complete. Then, for every Borel-subset A,

DA(ω) =
{

inf {t : Xt(ω) ∈ A}
+∞, if the above set is empty

is a stopping time.

Proof. We encounter no difficulties in the discrete case.

In the first case of T1.27 DA is bounded stopping time. If the event A
never occurs the stopping time DA becomes unbounded. Most results on
stopping times connected with stochastic processes are stated for bounded
stopping times first. It requires further properties of a stochastic process to
prove the same results for unbounded stopping times.

Definition 1.28. A stochastic process (Xt) stopped at time T is denoted
as XT . Analogously XT

n = Xn∧T .

We call the readers attention not to mix the two notations XT 6= XT up.
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2 Martingales

The term martingale corresponds to a stochastic process with certain
properties. Compared to other probability topics, the field of martingale
theory, like its name, is rather new. The term martingale first surfaced in a
work of Ville 1939 [37] who refers to systems of play as martingales.
Almost ten years later, 1948, the mathematical probability community
began to use the term martingale consistently. The first people studying
sequences with martingale properties were Bernstein, Lévy and
Kolmogorov in the 1930s. The so-called father of martingale theory is
Joseph Leo Doob2. He revolutionised probability theory with his book
Stochastic Processes [11], that was first published in 1953. He took
advantage of the martingale process to generalize and reformulate
probabilistic results like Kolmogorov’s inequality, the strong law of large
numbers or the lemma of Borel-Cantelli. In the same manner he invented
a martingale framework, which is still the number one reference for any
serious person who wants to pursue investigation on martingales. Through
the last decades martingale theorey has been immensely developed in
theoretic and practical aspects. Though, it shouldn’t be a suprise that a
huge quantity of probability textbooks have already covered the
fundamental principles of martingales. But, what they all have in common
is that their approach to main convergence results follow the same path.
We will take advantage of the general properties of a martingale and state
different proofs for various theorems.
In order to understand them completely we have to get through the basics
of martingale theory first.

2.1 Basics

Let T be an ordered index set by a relation ≤. We will use the
abbreviation X to denote the process (Xt)t∈T and Xt for the value of the
process X at the instant t. Conventionally, the process will be defined on a
probability space (Ω,F ,P) with values in R.

Definition 2.1 (Martingale). Let X be a stochastic process, adapted
to a filtration (Ft)t∈T of F . Then X is said to be a martingale if the
following two conditions hold:
(1) Every variable Xt is integrable: E[|Xt|] <∞, ∀ t ∈ T
(2) For every pair of elements s, t ∈ T such that s ≤ t, we have

E[Xt|Fs] = Xs a.s. (2.1)

2Cincinnati, Ohio 27.10.1910− 07.06.2004
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Our index set T will from now on be linked with N. Such a martingale is
also called a discrete martingale. It should be mentioned that we don’t
deal with martingales X with continuous index sets, since if these
martingales have the property of right-continuity the proofs of our main
theorems translate flawlessly into the continuous case.

If equation (2.1) gets substituted with E[Xt|Fs] ≤ Xs

(resp. E[Xt|Fs] ≥ Xs), the process X is called a supermartingale (resp.
submartingale).

The second condition of D2.1 leads to alternative martingale definitions.
Rewrite (2.1) with

E[Xn+1|Fn] = Xn. (2.2)

Integrating this equation and using the defining property of conditional
expectation gives∫

A
E[Xn+1|Fn] dP =

∫
A
Xn+1 dP =

∫
A
Xn dP, ∀ A ∈ Fn. (2.3)

The equation of the second two members of (2.3) is also oftenly replacing
condition (2) in D2.1. Raising the index n by 1 in (2.2) results in∫

A
Xn+2 dP =

∫
A
Xn+1 dP, ∀ A ∈ Fn+1. (2.4)

Since (Fn) are a filtration (2.4) can be modified with (2.3) into∫
A
Xn+k dP = . . . =

∫
A
Xn+1 dP =

∫
A
Xn dP, ∀ A ∈ Fn, k ∈ N, (2.5)

which is the same as
E[Xn+k|Fn] = Xn. (2.6)

Setting A = Ω gives
E[X1] = E[X2] = . . . . (2.7)

If we substract E[Xn|Fn] on both sides of (2.2), use the measurability and
adaptedness of X along with the linearity of the expected value we get

E[Xn+1 −Xn|Fn] = 0. (2.8)

Setting Xn+1 −Xn =: ∆n, one can derive a fourth version of the
martingale property D2.1(2) just by using the process differences.

Remark 2.2. Due to its integrability and adaptation, a martingale (resp.
supermatingale, submartingale) X is an element of L1(Ω,F ,P). However,
limn→∞Xn may not be included in L1(Ω,F ,P).

Remark 2.3. Since every Xn is Fn-measurable and the (Fn)n∈N are
nested, Xn is also measurable F . A fact that we used in point R2.2 tacitly.
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An interesting observation refers to the application of certain functions f
on a martingale X that maintains most of its properties.

Theorem 2.4. Let X be a martingale and f a convex function defined on
R such that f(X) is integrable. Then f(X) is a submartingale.

Proof. The proof comes very easy using Jensen’s inequality for conditional
expectations [A.10] for convex functions:

f(Xn) = f(E[Xn+1|Fn]) ≤ E[f(Xn+1)|Fn].

For concave f in T2.4, f(X) is a supermartingale. If X is already a
supermartingale (resp. submartingale) an application of a concave (resp.
convex) mapping f on X does not change this. A popular convex mapping
is the absolute value |.|p , p ∈ [1,∞).

We have come to the point to show some examples.

Example 2.5. A martingale represents the perfect role model for a fair
gambling game. Suppose that Xn stands for the gamblers budget at time
n. Now, if X obeys the martingale conditions, (2.6) holds and that means
that the expected budget at some instant after time n must be the same as
the budget at time n. Another interpretation would be that the expected
gain from one time instant to the other should be 0 (2.8). The filtration
(Fn)n∈N can be seen as the information, for instance, possible outcomes, a
gambler at a certain point of time has. Measurability of X ensures the
gambler that the information is accessible. Finally, the integrability of X
asserts that infinite budget cannot be expected at any time.

Example 2.6. X is a supermartingale if and only if −X is a
submartingale.

Example 2.7. Let X and Y be two martingales (resp. supermartingales)
with the same filtration and a, b two constants (resp. non-negative
constants). Then aX + bY is a martingale (resp. a supermartingale) and
X ∧ Y is a supermartingale.

Example 2.8. Let Y be an integrable random variable and set

Xn = E[Y |Fn].

Then X is a martingale. Indeed, due to the law of iterated expectations we
have

E[Xn+1|Fn] = E[E[Y |Fn+1]|Fn] = E[Y |Fn] = Xn.

Note, that a martingale is called closable or closed in Lp, p ≥ 1, if for
Y ∈ Lp, Xn = E[Y |Fn] holds ∀ n ∈ N.
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Example 2.9. Consider the probability space ([0, 1),B[0,1), λ), with λ
being the Lebesgue measure on the Borel-σ-Algebra of the half-open unit
interval. We define the finite σ-Algebra generated by all dyadic intervals of
[0, 1) of length 2−j , j ∈ N, by

Aj := σ([0, 2−j ], . . . , [k2−j , (k+1)2−j), . . . , [(2−j−1)2−j , 1)]), k = 0, 1, . . . , 2j−1.

Obviously, (Aj)j∈N ⊂ B[0,1) is a filtration. Then (Xj)j∈N := 2j1[0,2−j), is a
martingale. Since the sets [k2−j , (k + 1)2−j) are a disjoint partition of
[0, 1), every A ∈ Aj consists of a finite disjoint union of such sets. If
[0, 2−j) ⊂ A, we have∫

A
Xj+1 dλ =

∫
Ω

2j+11A∩[0,2−(j+1)) dλ = 2j+12−(j+1) = 2j2−j

=
∫

Ω
2j1A∩[0,2−j) dλ =

∫
A
Xj dλ

and, if [0.2−j) 6⊂ A,∫
A
Xj+1 dλ =

∫
A

2j+11[0,2−(j+1)) dλ = 0 =
∫
A

2j1[0,2−j) dλ =
∫
A
Xj dλ.

Example 2.10. Suppose that the stochastic process (Zn)n∈N represents
the size of a population at time n and let (pj)j∈N be a probability
distribution, also called reproduction distribution, that gives the chance for
each entity of n-th generation having j descendants. Additionally, let each
entities life duration be one time instant. If an entity is born at time n, it
dies at time n+ 1 and its descendants begin their life at the time n+ 1.
The stochastic process (Zn)n∈N together with its reproduction distribution
(pj)j∈N forms a Markov-chain with transition matrix T = (pij)i,j∈N and
transition probabilites

pij = P[Zn+1 = j|Zn = i] = p
∗(i)
j .

Such a process is called Galton-Watson-process. Let (Xnk)n,k≥1, be an
independent array of identically distributed random variables standing for
the progeny of the k-th entity of n-th generation. Link each Xnk with
reproduction distribution (pj)j∈N and set

Zn =
Zn−1∑
k=1

Xnk. (2.9)

Assume now that Z0 and (Xnk)n,k≥1 along with a sequence of probability
measures Pi, i ∈ N, where i denotes the entities at the beginning (Z0 = i),
are defined on a measurable space (Ω,F).
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This basic setup manifested in

(Ω,F , (Pi)i∈N, (Xnk)n,k≥1, (Zn)n∈N)

is called the standard Galton-Watson-process modell. For more details see
Alsmeyer [1].
Set E[Xnk] = µ, 0 < µ <∞, F0 := σ(Z0) and
Fn := σ(Z0, Xjk, 1 ≤ j ≤ n, k ≥ 1). Fn contains the information of every
possible sequence of reproduction of each entity until time n. A commonly
investigated stochastic process is Zn weighted by the reciprocal of its
expectation3, namely

Wn =
Zn
µn
.

We will show that W is a martingale. (Fn)n∈N is obviously a filtration and
Zn, defined as is (2.9), is Fn-measurable, which leads to Fn-measurability
of the Wn. The expected value of W being 1, ∀ n ∈ N, the only thing left
to show is the martingale property (2.1): At first notice that the entities
Xn+1,k of the (n+ 1)-th generation are independent of Fn. Then

E[Wn+1|Fn] =
1

µn+1
E[Zn+1|Fn]

=
1

µn+1
E[

Zn∑
k=1

Xn+1,k|Fn]

=
1

µn+1

Zn∑
k=1

E[Xn+1,k]

=
1

µn+1

Zn∑
k=1

µ =
Znµ

µn+1
=
Zn
µn

= Wn

and W is martingale.

Example 2.11. Let (Ω,F ,P) be a probability space, let ν be a finite
measure on F and let (Fn)n∈N be a filtration. Suppose that ν is absolutely
continuous with respect to P [A.7] when they are both restricted on Fn.
The Radon-Nikodym theorem [A.8] yields that there exists a derivative Xn

of ν with respect to P when both are restricted to Fn. Xn is a function
measurable Fn and integrable with respect to P, and it satisfies∫

A
Xn dP = ν(A), A ∈ Fn.

If A ∈ Fn, then A ∈ Fn+1 as well, so that
∫
AXn dP = ν(A) =

∫
AXn+1 dP,

which gives (2.1) and thus X is a martingale.

3To see that E[Zn] = µn follows by properties of the generating function of pj , consult
[1, p. 6]

20



2.2 Transformations

Definition 2.12. A process X is said to be predictable if X0 is
F0-measurable and for every t > 0 each Xt is Ft−1-measurable.

This dry definition will become rather juicy when we connect it with
gambling. Consider X as the fortune of a gambler with Xn being
Fn = σ(Fk, k ≤ n)-measurable for every n. That means that the gamblers
fortune at point n depends only on the n-plays being played until then.
Suppose now that our gambler is cautious and just bets unit stakes at each
play. The gain between each gamble would be ∆n := Xn −Xn−1. Now a
second gambler, who is known as a specialist in choosing the right stakes,
adivces the first gambler how to modify his bets in order to increase his
fortune. Say, the random variable Wn is the wager the first gambler bets at
the n-th round. The variable Wn depends only on the first (n− 1)-plays
and is thus predictable. It would be unlogical, for us, to bet on the n-th
game and to be in posession of its outcome. After the consulting of the
second gambler, the first one wins Wn∆n per game. The total return for
the first gambler after n games is

Zn = W0∆0 +W1∆1 + . . .+Wn∆n.

An elementary example to illustrate this formula would be a coin tossing
game. Just associate with the ∆n the usual Bernoulli trials.

Definition 2.13. Let V and X be two processes, the first predictable and
the second one adapted. Then the process

Zn = V0X0 + V1(X1 −X0) + . . .+ Vn(Xn −Xn−1).

is called the transform of X by V , and denoted by Z = V ·X

If T is a stopping time, X an adapted process, the stopped process XT is
the transformation of X by Vn = 1{n≤T}.

2.3 The Doob Decomposition

Suppose that X is an adapted process with E[|Xn|] <∞, ∀ n ∈ N. Define
the random variables Yn, An, recursively, by induction, in the following
manner:

Y0 = X0 A0 = 0
Y1 = Y0 + (X1 −E[X1|F0]) A1 = X0 −E[X1|F0]
· ·
· ·
· ·
Yn = Yn−1 + (Xn −E[Xn|Fn−1]) An = An−1 + (Xn−1 −E[Xn|Fn−1])

(2.10)
We summarize our first observations in the next Lemma.
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Lemma 2.14. Let X be an adapted, integrable process and Y , A two
processes defined as in (2.10).

(a) X = Y - A.
(b) Y is a martingale.
(c) A is a predictable process.

Proof. (a):
This will be proven by induction:

Base case (n = 0): X0 = X0 − 0.
Induction hypothesis: Xn = Yn −An, holds for some n ∈ N.
Induction step:

Yn+1 −An+1 = Yn +Xn+1 −E[Xn+1|Fn]−An −Xn + E[Xn+1|Fn]
= Yn −An +Xn+1 −Xn

= Xn +Xn+1 −Xn = Xn+1.

(b):
Adaptation and integrability follow immediately. We add that

E[Yn+1|Fn] = E[Yn|Fn] + E[Xn+1|Fn]−E[E[Xn+1|Fn]|Fn] = Yn.

(c):
We use the induction principle again:

Base case (n = 0): A0 = 0 is trivially F0-measurable.
Induction hypothesis: The An are Fn−1-measurable.
Induction step:

An+1 = An︸︷︷︸
Fn−1−measurable

+ (Xn −E[Xn+1|Fn])︸ ︷︷ ︸
Fn-measurable

⇒ An+1 is Fn −measurable.

And the lemma is proven.

Inspired by this result we can state a stronger one, namely, the Doob
decomposition.

Theorem 2.15 (Doob Decomposition). Let X be an adapted,
integrable process. Then X can be decomposed as

X = Y −A

Where Y is a martingale, A a predictable process such that A0 = 0. This
decomposition is unique. It is called the Doob decomposition of X.
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Proof. Setting Y and A as in (2.10) only uniqueness is left to prove.
Assume there exists a second decomposition so that X = Y −A = Y ′ −A′.
According to the definition M = Y − Y ′ = A−A′ is a predictable
martingale with M0 = 0. The martingale property means
E[Mn+1|Fn] = Mn, the predictability that E[Mn+1|Fn] = Mn+1, hence
Mn+1 = Mn = . . . = M0 = 0 almost surely, which implies Y = Y ′ and
A = A′.

Remark 2.16. If we replace X in the Doob decomposition with a
supermartingale, E[Xn−1 −Xn|Fn] > 0 holds, which means that a positive
quantity is being added constantely to the An of (2.10). We consequently
follow that An ≤ An+1 and a process with this property is called an
increasing process.

Remark 2.17. The Doob decomposition gives uniqueness even if the
predictable process A is non-increasing. To assert uniqueness without
predictability would be wrong as predictability was needed to prove the
uniqueness of the Doob decomposition.

Actually, the Doob decomposition could have been proven in a later
segment of this thesis. Even though the placement seems to interrupt the
thought process of the reader, it should be assured that the Doob
decomposition will be needed in later proofs and, because of its premise,
doesn’t require deep martingale theory. This is the main reason why it was
put right after the martingale basics.

2.4 Doob’s Optional Sampling

A martingale X can cover a wide spectrum of information. An observant
shall be interested when a particular event occurs for the first time. We
learned to model this with a stopping time T , the desired event being XT .
Another observant might focus on a whole family of events X(Ti)i∈I . The
question is, if the martingale (resp. supermartingale, submartingale)
property (2.1) still holds if we insert two different stopping times, say,
Ti ≤ Tj . For our purposes we will restrict ourselves to bounded stopping
times.

Theorem 2.18. Let X be a martingale (resp. supermartingale,
submartingale) and V a non-negative process which is predictable. If the
random variables (V ·X)n are integrable, the transformed process V ·X is
a martingale (resp. supermartingale, submartingale).
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Proof. Examine that

E[(V ·X)n+1 − (V ·X)n|Fn] = E[Vn+1(Xn+1 −Xn)|Fn]
= Vn+1E[Xn+1 −Xn|Fn],

since V is predictable. If X is a martingale the second factor in the last
member is 0 and V ·X is a martingale. If X is a supermartingale the last
member is ≤ 0, since V ≥ 0. Thus V ·X is a supermartingale.

Remark 2.19. Reconsider the predictable process W , which represented
the gamblers wager. Such a sequence is also called a betting system.
Instantly, W satisfies the conditions of T2.18 and thus gives it a spicy
interpretation: If X is a fair game then an arbitrary change of the stakes
at each time n does not change its fairness. A game is called subfair if X is
a supermatingale and superfair if X is a submartingale. Equivalently, a
subfair game remains a subfair and a superfair game remains a superfair
game. The stake advisor from p. 20 obviously becomes a fraud.

Lemma 2.20. Let X be a martingale (resp. supermartingale,
submartingale), and T be a bounded stopping time. Then the stopped
process XT is a martingale (resp. supermartingale, submartingale).

Proof. In the preceding theorem take Vn = 1{n≤T}, so that XT
n = (V ·X)n.

Predictability of 1{n≤T} follows by

[T ≥ n]c = [T < n] = [T ≤ n− 1] ∈ Fn−1.

Note for integrability that:
∣∣XT

n

∣∣ ≤ |X0|+ . . .+ |Xn|.

As mentioned before, this version of the theorem refers to bounded
stopping times only.

The fact, that we can model a stopped process XT as a transformation
helps us to prove Doob’s optional sample theorem in an elegant way. We
also include the standard proof of the optional sampling theorem as
alternate proof in order to see the advantage of shortness the proof using
transformations has.

Theorem 2.21 (Optional Sampling). Let X be a supermartingale
(resp. martingale), and let S and T be two bounded stopping times such
that S ≤ T . Then XS and XT are integrable and we have

E[XT |FS ] ≤ XS a.s. (2.11)

(= in the martingale case).
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Proof - 1st version. The martingale case follows from the supermartingale
case applied to X and −X. Set Vn = 1{S<n≤T}, a positive and predictable
process, and Y = V ·X. According to T2.18 Y is a supermartingale.
Suppose now that S ≤ T ≤ k, k ∈ N, we then have

Yk = (1{S<T} ·X)k
= 1{S<0≤T}X0 + 1{S<1≤T}(X1 −X0) + . . .+ 1{S<k≤T}(Xk −Xk−1)

= (XS+1 −XS) + . . .+ (XT −XT−1) = XT −XS .

Applying the expected value on both sides and using the supermartingale
property of Y gives E[Yk] = E[XT −XS ] ≤ 0. Denote by SA(ω) = S(ω),
ω ∈ A, and SA(ω) = +∞, ω ∈ Ac. Let A ∈ FS , and apply the preceding
reasoning to S′ = SA ∧ k, T ′ = TA ∧ k. The desired inequality∫
A(XT −XS) dP ≤ 0 results.

Proof - 2nd version. Step 1: Assume 0 ≤ T − S ≤ 1.
In this case

{S < T}∩{S = j} = {T > j}∩{S = j} = {T ≤ j}c∩{S = j} ∈ Fj , j ∈ N.

We see, because of (2.1) for supermartingales and T − S ≤ 1 that∫
Ω
XS dP =

∫
{T=S}

XS dP +
N−1∑
j=1

∫
{S<T}∩{S=j}

Xj dP

≥
∫
{T=S}

XT dP +
N−1∑
j=1

∫
{S<T}∩{S=j}

Xj+1 dP

=
∫
{T=S}

XT dP +
∫
{S<T}

XT dP

=
∫

Ω
XT dP

Step 2: If S ≤ T ≤ N we introduce (at most N) random variables
ρj := T ∧ (S + j), j = 0, ..., k ≤ N . By L1.23 these are stopping times.
For some k ≤ N we get S = ρ0 ≤ ... ≤ ρk = T , while ρl+1 − ρl ≤ 1,
l = 0, ..., N − 1. Repeating step 1 from above k times yields∫

Ω
XS dP =

∫
Ω
Xρ0 dP ≥ ... ≥

∫
Ω
Xρk

dP =
∫

Ω
XT dP.

Note that, due to D1.20 and L1.25, for any A ∈ FS the function
ρ := ρA := S1A + T1Ac is a bounded stopping time:

{ρ ≤ j} = (A ∩ {S ≤ j}) ∪ (Ac ∩ {T ≤ j}) ∈ Fj .
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Since ρ ≤ T , ∫
Ω
XS1A +XT1Ac dP =

∫
Ω
Xρ dP ≥

∫
Ω
XT dP

yields
∫
AXS dP ≥

∫
AXT dP, ∀ A ∈ FS .

Example 2.22. If the process M is a Martingale and T a stopping time
such that MT is integrable, it is in general not true that E[MT ] = E[M0].

Let (ξn)n∈N be a sequence of i.i.d. Bernoulli trials, i.e.,
P[ξ0 = −1] = P[ξ0 = +1] = 1

2 . Let Fn = σ(ξ0, . . . , ξn) and
Mn = ξ0 + . . .+ ξn. Then (Mn)n∈N is a martingale with respect to the
filtration (Fn)n∈N.
Define

T (ω) := min {n ∈ N : Mn(ω) = 1} .

This is a stopping time and one can show that T <∞ almost surely.
Hence, MT = 1 almost surely and MT is integrable. But
E[MT ] = 1 6= 0 = E[M0].

The example shows that plain integrability of MT doesn’t imply
E[MT |F0] = M0. Indeed, this would imply E[MT ] = E[E[MT |F0]] = E[M0]
and we just saw that this is false in general. Truly, under the
preassumptions of the optional sampling theorem T2.21 the boundedness
property of the stopping times can not be omitted.

2.5 The Maximal Inequality

Definition 2.23. Let X be any process. Then we set
‖X‖p := supn∈N ‖Xn‖p, 1 ≤ p ≤ ∞. A process X such that ‖X‖p <∞ is
said to be bounded in Lp.

This definition allows us to use a shorthanded notation for bounded
processes.
Through the last decades many textbooks concerned with martingale
theory include the maximal inequality. Basically, it is convinient to state
the inequality for submartingales, because the inequality chain used in its
proof becomes very clear. We will swim against the main stream, by
swaping the maximum operator with the supremum one, in order to get a
hold of the whole process, and prove the maximal inequality for
supermartingales and martingales. This exchange makes it somehow funny
for us to still call it maximal inequality. The validity of this inequality
remains unbroken for submartingales.
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Theorem 2.24 (Maximal Inequality). Let X be a supermartingale, c
a positive constant. Then

P[sup
n∈N
|Xn| ≥ c] ≤ A

‖X‖1
c

, with (2.12)

(1) A = 1 if X ≤ 0, X ≥ 0 or X is a martingale.
(2) A = 3 if X is a supermartingale.

Proof. For arbitrary k ∈ N set

T (ω) = inf {n : n ≤ k, Xn(ω) ≥ c} .

If no such n exists, we set T (ω) = k. We see that T is a bounded stopping
time and apply the optional sampling theorem on X to get E[X0] ≥ E[XT ].
If Xn ≥ c for some n ≤ k, we have XT ≥ c. Otherwise XT = Xk.
Accordingly, by splitting E[XT ] in two integrals, we estimate

E[X0] ≥ E[XT ] ≥
∫
{supn≤k Xn≥c}

c dP +
∫
{supn≤k Xn<c}

Xk dP,

which leads to

E[X0] +
∫
{supn≤k Xn<c}

(−Xk) dP ≥ cP[sup
n≤k

Xn ≥ c]. (2.13)

Due to ∫
{supn≤k Xn<c}

(−Xk) dP ≤ E[X−k ] ≤ sup
k∈N

E[X−k ],

and

cP[sup
n≤k

Xn ≥ c] ≤ cP[sup
n∈N

Xn ≥ c]

≤
∫
{supn∈N Xn≥c}

sup
n∈N

Xn dP ≤
∫
{supn∈N Xn≥c}

X0 dP,

we derive (2.14)

cP[sup
n∈N

Xn ≥ c] ≤ E[X0] + sup
k∈N

E[X−k ] ≤ 2‖X‖1. (2.14)

Note that we have proven the theorem with A = 1 in case of X ≥ 0, since
this implies disappearence of the member supk∈N E[X−k ] in (2.14). To deal
with negative values we modify the above stopping time into

T (ω) = inf {n : n ≤ k, Xn(ω) ≤ −c} .
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Again, if no such n exists, T (ω) = k. We apply the optional sampling
theorem again and get E[XT ] ≥ E[Xk], which implies, as above

E[Xk] ≤ E[XT ] ≤ −cP[ inf
n≤k

Xn ≤ −c] +
∫
{infn≤k Xn>−c}

XT dP.

Multiplying the inequality with (−1) and substracting∫
{infn≤k Xn>−c}(−XT ) dP gives

cP[ inf
n≤k

Xn ≤ −c] ≤
∫
{infn≤k Xn≤−c}

(−XT ) dP

≤
∫
{infn≤k Xn≤−c}

(−Xk) dP ≤ E[X−k ] ≤ ‖X‖1.

With the help of inequality

cP[ inf
n≤k

Xn ≤ −c] ≤ cP[ inf
n∈N

Xn ≤ −c] ≤
∫
{infn∈N Xn≤−c}

(−Xk) dP

we deduce the case for n ∈ N

cP[ inf
n∈N

Xn ≤ −c] ≤
∫
{infn∈N Xn≤−c}

(−Xk) dP ≤ sup
k∈N

E[X−k ] ≤ ‖X‖1.

(2.15)
We get (2.12), with A = 1, for the case X ≤ 0, and also for the martingale
case, since − |X| is a negative supermartingale. Adding (2.14) and (2.15)
we find in the general case

cP[sup
n∈N
|Xn| ≥ c] ≤ E[X0] + 2 sup

k∈N
E[X−k ] ≤ 3‖X‖1. (2.16)

Note that the proof of the maximal inequality holds the two sharper
inequalites (2.14) and (2.15), which are specially interesting and will be
used repeatedly. In some particular applications, these inequalities are
needed in their conditional form. We derive them by claiming that if X is
a supermartingale and PA is the conditional probability

PA[B] =
P[A ∩B]

P[A]
, (A ∈ F0, B ∈ F , P[A] > 0)

on Ω then X is still a supermartingale for PA. Now, set X? := supn∈NXn

and apply (2.14) to PA instead of P.
It appears that

cPA[X? ≥ c] = c
P[[X? ≥ c] ∩ A]

P[A]
≤
∫

Ω
X0 dPA + sup

k∈N

∫
Ω
X−k dPA

=
1

P[A]
(
∫
A
X0 dP + sup

k∈N

∫
A
X−k dP).
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We apply the theorem of conditional expectation [A.9]: Since
1{X?≥c} ∈ L1(Ω,F ,P) and F0 is a subsigma Algebra of F , there exists a
F0-measurable function E[1{X?≥c}|F0] = P[X? ≥ c|F0] with∫

A
1{X?≥c} dP =

∫
A

P[X? ≥ c|F0] dP, ∀ A ∈ F0.

Using
∫
A 1{X?≥c} dP = P[[X? ≥ c] ∩ A], ∀ A ∈ F0, we estimate∫
A
cP[X? ≥ c|F0] dP ≤

∫
A
X0 dP + sup

k∈N

∫
A
X−k dP, ∀ A ∈ F0.

Now X0 and X−k lie both in L1(Ω,F ,P) and we can apply the theorem of
conditional expectation again, getting∫
A
cP[X? ≥ c|F0] dP ≤

∫
A

E[X0|F0] dP + sup
k∈N

∫
A

E[X−k |F0] dP, ∀ A ∈ F0.

(2.17)
Finally, we apply [A.2] to the left side and to the first member on the right
side of (2.17) and simplify to

cP[X? ≥ c|F0] ≤ X0 + sup
k∈N

E[X−k |F0].

2.6 The Lp inequality

We already discovered in R2.2 that a martingale X lies in L1. If
additionally E[|X|p] <∞, 1 ≤ p ≤ ∞, holds, X is an element of Lp. The
theorem this section is dedicated to, simplifies Lp-convergence results of
martingales. Oftenly it is referred to as Doob’s inequality.

Theorem 2.25 (Doob Inequality). Let 1
p + 1

q = 1, 1 < p, q <∞, and
let X be a non-negative submartingale such that

sup
n∈N

E[(Xn)p] <∞. (2.18)

The random variable supn∈NXn then belongs to Lp, and we have

‖ sup
n∈N

Xn‖p ≤ q sup
n∈N
‖Xn‖p. (2.19)

Proof. Due to T1.11 of La Valleé Poussin the random variables (Xn) are
uniformly integrable for every n ∈ N, so that limn→∞Xn = X∞ <∞
almost surely.
Let F : [0,+∞)→ R+ be an increasing, convex and continuous function,
with F (0) = 0. Using Jensen’s inequality, the continuity of F and Fatou’s
lemma [A.4] we establish

F (E[lim inf
n→∞

Xn]) ≤ E[F (lim inf
n→∞

Xn)]

= E[lim inf
n→∞

F (Xn)] ≤ lim inf
n→∞

E[F (Xn)].
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Putting F (y) = yp yields E[(X∞)p] ≤ lim inf
n→∞

E[(Xn)p] <∞ and X∞ ∈ Lp.
If we modify the proof of T2.24 for non-negative submartingales, it holds
for (2.14) that

P[sup
n∈N

Xn ≥ c] ≤
1
c

∫
{supn∈N Xn≥c}

Xk dP (2.20)

Set Y = supn∈NXn and L(y) = P[Y ≥ y]. Using a change of variable, we
get

E[F (Y )] =
∫

Ω
F (Y ) dP(ω) =

∫ ∞
0

F (y) dP[Y < y] = −
∫ ∞

0
F (y) dL(y).

Now we partially integrate the last member, use (2.20) and Fubini’s
theorem [A.6], so that

E[F (Y )] = −
∫ ∞

0
F (y) dL(y) = − lim

x→∞
F (y)L(y)|x0 +

∫ ∞
0

L(y)dF (y)

≤
∫ ∞

0
L(y) dF (y) ≤

∫ ∞
0

(
1
y

∫
{Y≥y}

X∞ dP) dF (y)

=
∫

Ω
X∞(

∫ Y

0

1
y
dF (y)) dP = E[X∞

∫ Y

0

1
y
dF (y)]. (2.20)

Let us now take F (y) = yp. We get due to Hölder’s inequality [A.11]

E[Y p] ≤ p

p− 1
E[X∞Y p−1] ≤ p

p− 1
‖X∞‖p‖Y p−1‖q. (2.21)

Since ‖Y p−1‖q = (E[Y
(p−1)p

p−1 ])
1
q = (E[Y p])

1
q = ‖Y ‖

p
q
p and p

p−1 = q, dividing

(2.21) by ‖Y ‖
p
q
p , gives

‖ sup
n∈N

Xn‖p ≤ q‖X∞‖p,

and supn∈NXn ∈ Lp. From |Xn −X∞| ≤ 2 supn∈NXn, we get
‖Xn −X∞‖p ≤ 2‖ supn∈NXn‖p <∞.
By the dominated convergence theorem ‖Xn −X∞‖p → 0.
Finally, ‖X∞‖p ≤ ‖X∞ −Xn‖p + supn∈N ‖Xn‖p yields
‖X∞‖p = supn∈N ‖Xn‖p and (2.19) is verified.
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2.6.1 The weak-Lp space

This section provides a different method of deducing a sharper Doob’s
inequality by stating it as a special case of the famous interpolation
theorem of Marcinkiewicz. In order to make it sharper we have to be more
generous towards the preassumptions.

A random variable f is in the space weak-Lp(Ω,F ,P), 1 ≤ p <∞, denoted
by Lpw(Ω,F ,P) = Lpw, if there is a positive constant A such that

P[|f | > t] ≤ Ap

tp
, ∀ t > 0. (2.22)

The best constant A for this inequality is the Lpw-norm of f , set as

‖f‖p,w = inf
{
A| P[|f | > t] ≤ Ap

tp
, ∀ t > 0

}
= sup

t>0

{
t(P[|f | > t])1/p

}
.

The space L∞w is defined as the collection of random variables for which
(2.22) holds for some constant A, for all p ≥ 1, and for all t > 0.
Let us now assert some basic properties of Lpw and its interaction with Lp.

Proposition 2.26. (1) Lpw is a linear space.
(2) For 1 ≤ p <∞, the space Lp is a subset of Lpw, i.e. Lp ⊆ Lpw.
(3) For p =∞, the space L∞ coincides with L∞w , i.e. L∞ = L∞w .

Proof. (1):
Let f, g ∈ Lpw and choose arbitrary non-negative constants α, β. Then for
all t > 0,

[|αf + βg| > t] ⊂
[
|f | > t

2 |α|

]
∪
[
|g| > t

2 |β|

]
,

and thus Lpw is a linear space.
(2):
If f ∈ Lp, then for all t > 0,

P[|f | > t] ≤ E[|f |p]
tp

=
‖f‖pp
tp

,

by Markov’s inequality ([12], p.110). Therefore f ∈ Lpw and ‖f‖p = ‖f‖p,w.
(3):
If f ∈ L∞w and t > A, then P[|f | > t] = 0 and f ∈ L∞ follows. On the
other hand, if f ∈ L∞ then (2.22) holds with A = ‖f‖∞ and f ∈ L∞w . Thus
L∞w = L∞ and ‖ · ‖p,w = ‖ · ‖p.

Remark 2.27. Consider L1
(
(0, 1),B(0,1), λ

)
. An example for a function

that lies in L1
w, but not in L1 would be f(x) := 1

x , x ∈ (0, 1).

31



Indeed, check that∫
(0,1)

f dλ = +∞, but ‖f‖p,w = sup
t>0

{
tP[|f | > t]

}
= 1.

Examples for p > 1 can be constructed in the same manner.

However, the term norm for ‖ · ‖p,w does not seem to be accurate as the
following example for p = 1 shows.

Example 2.28. Consider L1
(
(0, 1),B(0,1), λ

)
. Set f(x) := x and

g(x) := 1− x, x ∈ (0, 1). Evaluate that

‖f + g‖p,w = 1 6≤ 1
2

= ‖f‖p,w + ‖g‖p,w,

and hence, that the triangle inequality is not satisfied.

2.6.2 Quasi-linear maps

Definition 2.29. (1) A map T : Lp → Lq, 1 ≤ p, q ≤ ∞, is quasi-linear if
there exists a positive constant C such that for all f, g ∈ Lp

|T (f + g)| ≤ C(|T (f)|+ |T (g)|), for a.e. ω ∈ Ω.

(2) A quasi-linear map T : Lp → Lq is of strong type (p, q) if there exists
a positive constant Mp,q such that

‖T (f)‖q ≤Mp,q‖f‖p, ∀ f ∈ Lp.

(3) A quasi-linear map T : Lp → Lqw is of weak type (p, q) if there exists a
positive constant Np,q such that

‖T (f)‖q,w ≤ Np,q‖f‖p, ∀ f ∈ Lp.

When p = q set Mp,q = Mp and Np,q = Np.

Example 2.30. Suppose that (fn)n∈N is a non-negative submartingale
with supn∈N ‖fn‖∞ <∞. Set T := supn∈N(·). We assert that the map

T : L∞ → L∞ T : L1 → L1
w

is quasi-linear. Additionally, we want to show that the first one is of strong
type (∞,∞) and the second one is of weak type (1, 1).
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Proof. Verify that for (fn)n∈N ∈ L∞ ⊂ L1, exists a positive constant C
such that

| sup
i,j∈N

(fi + fj)| ≤ | sup
i∈N

(fi) + sup
j∈N

(fj)|

≤ C(| sup
i∈N

(fi)|+ | sup
j∈N

(fj)|), for a.e. ω ∈ Ω.

This shows that the above map is quasi-linear.
Now due to our assumption supn∈N ‖fn‖∞ <∞, T : L∞ → L∞ is trivially
of type (∞,∞). To see that T : L1 → L1

w is of weak type (1, 1), consult the
help of the maximum inequality (2.12) for the non-negative submartingale
case and notice that

‖ sup
n∈N

(fn)‖1,w = sup
t>0

{
t(P[sup

n∈N
(fn) > t])

}
≤ sup

n∈N
‖fn‖1 = ‖f‖1

holds.

2.6.3 The Marcinkiewicz Interpolation Theorem

For our purpose, it is sufficient to formulate a certain version of the
Marcinkiewicz theorem deduced from its general case.

Theorem 2.31 (Marcinkiewicz 1939). Define the map T by

T : L∞ → L∞ T : L1 → L1
w.

Let T satisfy the following conditions:
(1) T is quasi-linear
(2) T is of strong type (∞,∞)
(3) T is of weak type (1, 1)

Then
‖T (f)‖p ≤ Ap‖f‖p, ∀ f ∈ L1 ∩ Lp

where Ap is a positive constant, depended on p, and p ∈ (1,+∞).

Proof. See [9, p. 392].

Taking T = supn∈N(·) and with the preassumptions of E2.30 we derive
that T satisfies the conditions of the stated Marcinkiewicz theorem.
However, our assumption supn∈N ‖fn‖∞ <∞ is stronger than
supn∈N E[(Xn)p] <∞, which was made in T2.25 to proof Doob’s
inequality. Nevertheless, the inequality of the outcome

‖ sup
n∈N

(fn)‖p ≤ Ap‖fn‖p, ∀ fn ∈ L1 ∩ Lp,

is sharper than Doob’s inequality (2.19).
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3 Martingale Convergence

Through the last decades, since Doobs Stochastic Processes [11], the
statements of martingale convergence theorems have been unified to a
large degree. The majority of math text books covering martingale
convergence follow a certain pattern of theorems, which begins with the
formulation of the upcrossing inequality. It has become the standard tool
to proof the main convergence theorem of sub/supermartingales. The idea
behind it is pretty simple: Suppose that Xn → X in R and X ∈ (a, b),
a, b ∈ R. There exists an N > 0 such that Xn ∈ (a, b) for n ≥ N , meaning
that only finitely many fluctuations of Xn between (−∞, a] and [b,+∞)
can happen. Now assume that Xn doesn’t have a limit. Then
X = lim infn→∞Xn < lim supn→∞Xn = X. Let (X,X) ⊃ (a, b). In that
case exists a subsequence (Xnk

) with Xnk
> b and a subsequence (Xmk

)
with Xmk

< a for infinitely many k. Hence there are infinitely many
fluctuations of Xn over the intervall (a, b). We conclude that convergence
of the sequence Xn is equivalent of having only finitely many upcrossings
from below value a to above value b, with a < X < b, ∀ a, b ∈ R.
In a probability context we would deal with a L1-bounded martingale
(resp. sub/supermartingale) X and define a set
D := {lim infn→∞Xn < a < b < lim supn→∞Xn}. Since X is L1-bounded
the upcrossing theorem says that only finitely many upcrossings can
happen which implies that P(D) = 0 so that X converges almost surely.
The usual wide-spreaded convergence chain consists of three theorems and
the upcrossing inequality:

Theorem u© (Upcrossing Inequality) Let X be a submartingale and
let U be the number of upcrossing of [a, b], a, b ∈ R, by a sample sequence
X1, . . . , Xn. Then

E[U ] ≤ E[|Xn|] + |a|
b− a

.

Theorem n© (Convergence theorem for submartingales) Let X be
a submartingale with supn∈N E[|Xn|] <∞. Then X converges almost
surely to an integrable random variable Y .

Theorem o© (Convergence theorem for uniformly integrable
submartingales) Let X be a uniformly integrable submartingale. Then X
converges almost surely and in L1.

Theorem s© (Convergence theorem for closed martingales) Let
X be a martingale closed by a random variable Y ∈ Lp, p ≥ 1, in Lp. Then
X converges almost surely and in Lp.

Due to E2.6, if X is a submartingale, −X is a supermartingale and
theorems u©, n©, o© have a valid analogous form for supermartingales.
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The order is essential. u© is used to proof n©, n© is used and proof o© and
o© is used to proof s©.

The last passage portrayed is:

u© → n© → o© → s©

A full arrow denotes usage of the theorem to the left of the arrow in the
proof of the theorem that is pointed on.
Our main interest is to show how n© can be proved without using u©. For
that, we will examine two different approaches: One, being proving n©
directly without using u© and the other, by reversing the above stated
theorem pattern in beginning with proving s©, following o© and ending
with n©. Because the main focus of this thesis is the alternative approach
of n© we will deduce it for martingales and easily use an extension to proof
the same result for sub/supermartingales.

3.1 Historical facts about martingale convergence theorems

The first proof of convergence theorem n© was given by Doob [10, p. 460]
in 1939. Even though the upcrossing inequality u© was not used, the idea
of the proof comes very close to the proof with upcrossings. However, the
very first proof of martingale convergence concerned closed martingales: A
martingale X of the form Xn = E[Y |Fn], ∀ n ∈ N, where Y ∈ L1 converges
almost surely and in L1. This was shown in a slightly differnt form by
Jessen [20] 1934 and Lévy [27] 1935. Jessen proved the case where
Fn = σ(Z1, . . . , Zn) with the components of process Z being mutually
independent with a common distribution, each distributed uniformly in the
interval [0, 1]. By that time, Lévy had read Jessen’s theorem and proved a
few months later the case with Y = 1A, A being a point set, and the same
filtration but with no distributional restrictions towards the conditioning
process Z. As for the proof of this theorem given today, it is not really
different from the extremely simple one that Lévy proposed to Jessen, in
the case of increasing filtrations and of set indexes. A sketch of this
correspondence has Bru [5, p. 3]. An execution of this sketch in a modern
way proof can be found in Billingsley [2, p. 116].
It is a matter of fact that in the mid 30s probability theory was not yet
established as a branch of mathematics but rather under investigation.
Probabilistic terms and notation of that time differ from those in the
present. Doob’s definition of a martingale in his paper of 1940 [10, p. 460]
was the following:
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Let t vary in any simple ordered set, and let {xt} be a family of chance
variables. We shall say that chance variables have the property ε if
whenever t1 < · · · < tn+1

E[xt1 , · · · , xtn ;xtn+1 ] = xtn , (3.1)

with probability 1 ... the xt are measurable functions defined on a space Ω,
on certain sets of which a measure function is defined.

The notation for conditional expectation was adopted from Kolmogrov’s
Foundations of the Theory of Probability [25]. At that time, Doob, did not
recognize the impact such a process could have. Later, in 1948, Doob
started to give this concept the name martingale, which he borrowed from
Ville’s paper [37] of 1939. Jessen, who had by 1946 put his work of 1934
in a fully measure-probabilistic context [21] showed that almost sure
convergence of an L1-bounded martingale could also be achieved by
considering a sequence of derivatives fn, implicitly identified as a
martingale, of ηn with respect to µn, where ηn is a signed measure and µn
a measure, both restricted to a sub-σ-algebra Fn. We have covered an
identification of a martingale being a derivative of absolute continuous
measures in E2.11. Since the idea of proving almost sure convergence for a
sequence of densities evolved of the convergence of closed martingales,
Jessen was able to carry over the closeness property for the density
sequence f . Thus, the convergence of f is a special case of the convergence
of a closed martingale. A treatment of this will be shown in the next
section in R3.5. It was possible for Jessen to be less restrictive on his
preassumptions of his theorem and reformulated it in [22] 1948, which
Doob included and developed in his great treatise of 1953 [11].
After 1953, Moy, 1954, extended the term of conditional expectation to
Bochner-integrable random variables [31]. Mathematicians like Chatterji,
Scalora, C. Ionescu Tulcea and A. Ionescu Tulcea, began to study
convergence behaviour of martingales who take their values in arbitrary
Banach spaces and could obtain identical convergence results comparing to
the real case [36, 32, 8, 6, 7]. Their approach to convergence was more
functional analytic based as they set E[·|Fn] to be a bounded linear
operator Tn on Lp(B), B being the Banach-space the random variables of
Lp(B) are valued in. A complete collection of these convergence theorems
was published by Chatterji in 1960 [7]. Afterwards, 1965, Billingsley
rearranged in his book about ergodic theory and information a similar
proof of almost sure convergence for L1-closed martingales in the real case
[2, p. 116], which was regiven in a paper of Chatterji two years later [8, p
.57]. Finally, 1970, the french probabilist Meyer modified Billingsley’s
proof to start a different approach to martingale convergence, avoiding the
upcrossing inequality, by inverting the convergence pattern, going

s© → o© → n©.
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At first, we will prove theorem n© directly using Doob’s and Jessen’s
original proofs and follow with Meyer’s convergence pattern.

3.2 Doob’s proof

In his original paper [10, p. 460], Doob stated that a martingale converges
almost surely if limn→∞E[|Xn|] = K <∞, K an integer, holds. In newer
textbooks, like Billingsley [3, p. 490] or Schilling [33, p. 192], the
condition is replaced by supn∈N E[|Xn|] <∞, which is equivalent to the
first one if X is a martingale. Before formulating his martingale
convergence theorem Doob postulated the maximal inequality T2.24 [10,
p. 458], which serves as a tool for proofs of the whole paper. The maximal
inequality itself is proven exactly the same way as Doob did 13 years later
in Stochastic Processes [11, p. 315]. Regarding the convergence theorem of
martingales, both proofs of Doob show that the probability of having
infinite many upcrossings is zero. In contrast to the proof, which uses the
uprossing inequality, Doobs very first proof does not explicitly estimate a
martingales sample paths but rather express them in sets with an asigned
probability. A sketch of Doob’s first proof for closable martingales can be
found in Meyer [30, p. 74].

Theorem 3.1 (Doob 1940). Let X be a martingale. If
limn→∞E[|Xn|] = K <∞ holds, then X converges almost surely to an
integrable random variable Y .

Proof. Suppose there are two numbers a < b and define a set
D := [lim infn→∞Xn < a < b < lim supn→∞Xn] assuming a positive
probability η. Set An1 :=

{
sup0≤j≤n1

Xj ≥ b
}

and choose the integer n1 so
large that P[D ∩An1 ] > η(1− 3−1) holds. In the same manner define a set
An2 := {infn1≤j≤n2 Xj ≤ a} and choose the integer n2 so large that
P[D ∩An1 ∩An2 ] > η(1− 3−1 − 3−2) holds. Inductively, choose a sequence
of integers (nj)j∈N such that

P[D ∩An1 ∩An2 ∩ · · · ∩Anj ] > η(1− 3−1 − 3−2 − · · · − 3−j)

holds. Obviously, if r is odd Anr =
{

supnr−1≤j≤nr
Xj ≥ b

}
and if r is even

Anr =
{

infnr−1≤j≤nr Xj ≤ a
}

. Define a set Λn :=
⋂n
j=1Anj and estimate

that

P[Λn] > P[D ∩ Λn] > η
(
1−

∞∑
i=1

1
3i
)

=
η

2
.
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Now, if m ≥ 2r, m ∈ N, use the fact that X is a martingale and the
conditional expectation property to evaluate

bP[Λ2r−1] = bP[An1 ∩ · · · ∩An2r−1 ]

≤
∫

Λ2r−1

Xj dP, j ∈ {n2r−2, ..., n2r−1}

=
∫

Λ2r−1

E[Xm|Fj ] dP =
∫

Λ2r−1

Xm dP.

Notice that this is nothing else but an application of inequality (2.15) of
the maximal inequality proof. In the same way, one can show that

aP[Λ2r] ≥
∫

Λ2r

Xm dP.

For Mr := Λ2r−1\Λ2r∫
Mr

Xm dP ≥ bP[Λ2r−1]− aP[Λ2r] = (b− a)P[Λ2r−1] + aP[Mr].

Since Λ2r ⊆ Λ2r−1 the Mr are disjunct, and if m is sufficiently large

q∑
r=1

∫
Mr

Xm dP ≥ (b− a)
q∑
r=1

P[Λ2r−1] + a

q∑
r=1

P[Mr] ≥ (b− a)q
η

2
− |a|.

But in this case

K = lim
n→∞

E[|Xn|] ≥
∫

Ω
|Xm| dP

≥
q∑
r=1

∫
Mr

Xm dP ≥ (b− a)q
η

2
− |a| ,

which is impossible to hold ∀ q ∈ N, due to our assumption K <∞, unless
P[D] = η = 0. This means exactly that Xn

a.s.−−→ Y . By Fatou’s lemma
E[lim infn→∞ |Xn|] ≤ lim infn→∞E[|Xn|] < K and Y is integrable.
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3.3 Jessen’s proof

Consider the probability space (Ω,F ,P) with a filtration (Fn)n∈N and let
η be a σ-finite signed measure on this space. Write for Pn respectively ηn
the restriction of P respectively η to the sub-σ-algebra Fn. Assume that
Pn is absolutely continuous on Fn with respect to ηn and let Xn be the
density of ηn relative to Pn. Additionally, define F∞ := σ(

⋃∞
n=1Fn). We

have shown in E2.11 that in this case the densities Xn form a martingale.
The theorem of Jessen states that the limit of the density sequence Xn

exists almost surely and hence the almost sure convergence of the
martingale X. In Jessens original proof the probability measure P was
replaced by a σ-finite measure µ. This proof here follows
Hewitt-Stromberg [18, p. 369].

Theorem 3.2 (Jessen 1948). Let P∞ and η∞ be P and η restricted to
F∞. Then both functions

X = lim sup
n→∞

Xn X = lim inf
n→∞

Xn

are derivatives of η∞ with respect to P∞. Thus: limn→∞Xn exists almost
surely and the P∞-singular part of η∞ is confined to the set
{ω ∈ Ω : limn→∞Xn(ω) = ±∞}.

In perspective of the preassumption of having a density X∞ for A ∈ F∞
we can use E2.11, the theorem of conditional expectation [A.9] and [A.2]
to assert that X∞ closes the martingale X, ergo, Xn = E[X∞|Fn],
∀ n ∈ N. This last sentence is here for plain information and will be shown
with all necessary details in R3.5.

Proof. Let a be a real number. In this proof write La := {ω ∈ Ω : X ≤ a}
and Ga :=

{
ω ∈ Ω : X ≥ a

}
. In view of [A.15], it suffices to prove

η {La ∩A} ≤ aP {La ∩A} (3.2)

and

η {Ga ∩A} ≥ aP {Ga ∩A} (3.3)

for all A ∈ F∞. Note, that the conditions of [A.15] are already obtained
since

{ω ∈ Ω : X ≥ a} ⊂
{
ω ∈ Ω : X ≥ a

}
and {

ω ∈ Ω : X ≤ a
}
⊂ {ω ∈ Ω : X ≤ a}.
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Let (an)n≥1 be a strictly decreasing sequence of real numbers with limit a.
For n ∈ N set

Hn :=
{
ω ∈ Ω : inf

n∈N
{Xn+1, Xn+2, ...} < an

}
Hn,1 :=

{
ω ∈ Ω : Xn+1 < an

}
and

Hn,p :=
{
ω ∈ Ω : min

n∈N
{Xn+1, ..., Xn+p−1} ≥ an, Xn+p < an

}
.

It is clear that Hn,p ∈ Fn+p, that (Hn,p)p≥1 is a pairwise disjoint family,
that Hn =

⋃∞
p=1Hn,p and that La =

⋂∞
n=1Hn. Let A be any set in the

algebra
⋃∞
n=1Fn, so that A ∈

⋂∞
n=n0

Fn for some n0. The set Hn,p ∩A is in
Fn+p for n ≥ n0 and p ≥ 1. We assemble all of these facts to write

η(Hn ∩A) =
∞∑
p=1

η(Hn,p ∩A) =
∞∑
p=1

ηn+p(Hn,p ∩A)

≤
∞∑
p=1

anPn+p(Hn,p ∩A) = anP(Hn ∩A), (3.4)

for all n ≥ n0. Since (H1 ∩A) ⊃ (H2 ∩A) ⊃ · · · and
La ∩A =

⋂∞
n=1(Hn ∩A), we can take the limit in (3.4) to write

η(La ∩A) = lim
n→∞

η(Hn ∩A) ≤ lim
n→∞

anP(Hn ∩A) = aP(La ∩A).

and due to the fact that η is σ-finite on F1 we have obtained inequality
(3.2) for all A ∈

⋃∞
n=1Fn.

To see that (3.2) is valid for all A ∈ F∞ let (Gn)n≥1 be a disjoint family of
sets in F1 such that Ω =

⋃∞
n=1Gn. Let νn be the set function on

⋃∞
n=1Fn

defined by
νn(A) = aP(Gn ∩ La ∩A)− η(Gn ∩ La ∩A).

A routine computation shows that νn is a countably additive,
non-negative, finite-valued measure on the algebra

⋃∞
n=1Fn. Let ν be the

set function
∑∞

n=1 νn, which is also defined only on
⋃∞
n=1Fn. It is easy to

see that ν is a non-negative, countably additive, finite measure on⋃∞
n=1Fn. Now, ν admits a unique countably additive extension over the

σ-algebra F∞. All this implies that (3.2) holds not only for A ∈
⋃∞
n=1Fn

but for all A ∈ F∞. Inequality (3.3) is proven the exact same way. Hence
X converges almost surely.
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3.4 Meyer’s proof

The third way to proof theorem n© is by inversion of the usual convergence
pattern, so instead of going n© → o© → s© we will go s© → o© → n©.
Meyer sketched it, 1970, nonpedagogically in [30, p. 30].

3.4.1 Convergence of closable martingales

Definition 3.3. A martingale X is said to be closed in Lp, 1 ≤ p <∞, by
a random variable Y if Y ∈ Lp and Xn = E[Y |Fn], for every n ∈ N.

If Y closes X so does E[Y |F∞].

In E2.8 we reckoned that a process X defined by Xn = E[Y |Fn] for an
integrable variable Y is a martingale.

For a filtration (Fn)n∈N we define once again σ(
⋃∞
n=0Fn) := F∞.

Obviously Fn ⊂ F∞ for all n ∈ N.

Theorem 3.4. Let X be a martingale, closed in Lp, 1 ≤ p <∞, by a
random variable Y . Then X converges a.s. and in Lp to E[Y |F∞].
X∞ = limn→∞Xn is the only F∞-measurable random variable, which
closes X in L1, so that the extended martingale property Xn = E[X∞|Fn]
holds.

This is an extension of theorem s©.

Proof. We start with the case p = 1, and the assumption that F = F∞.
Denote by H the set

H :=
{
Y ∈ L1 : Xn = E[Y |Fn] n→∞→ Y a.s. and in L1

}
.

Our goal is to identify H with L1 so that no matter which Y ∈ L1 closes
X, the convergence a.s. and in L1 for X holds.
If n ≥ k, due to (2.1), D3.3 and Fk ⊆ Fn-measurablility of Y

Xn = E[Xn+1|Fn] = E[E[Y |Fn+1]|Fn] = E[Y |Fn] = Y,

and L1(Fk) ∈ H for every finite k. Now
⋃
k∈N L1(Fk) is dense in

L1(F∞) = L1(F) and in order to prove that H = L1(F) we just have to
show that H is closed.
Say Z ∈ H. Then there exists a sequence (Zn) ∈ H with ‖Z − Zn‖1 ≤ 2−n.
Set Xn,k := E[Zk|Fn] and let Z close the martingale X.
Verify by

E[Xn+1−Xn+1,k|Fn] = E[E[Z−Zk|Fn+1]|Fn] = E[Z−Zk|Fn] = Xn−Xn,k,

that Xn −Xn,k is a martingale (this would also follow by E2.7, since the
difference of two martingales is again a martingale). We can now apply the
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maximal inequality T2.24 on Xn −Xn,k and estimate, with Jensen’s
inequality for conditional expectations [A.10],

P[sup
n∈N
|Xn −Xn,k| >

1
k

] ≤ k sup
n∈N
‖Xn −Xn,k‖1

= k sup
n∈N
‖E[Z − Zk|Fn]‖1

= k sup
n∈N

∫
Ω
|E[Z − Zk|Fn]| dP

≤ k sup
n∈N

∫
Ω

E[|Z − Zk| |Fn] dP

= k sup
n∈N

E[E[|Z − Zk| |Fn]] = k sup
n∈N

E[|Z − Zk|]

= k‖Z − Zk‖1 ≤
k

2k
.

If we set Ak :=
{

supn∈N |Xn −Xn,k| > 1
k

}
and sum over P[Ak] we see, by

applying the ratio test, that

∞∑
k=0

P[Ak] <
∞∑
k=0

k

2k
<∞

and the first Borel-Cantelli lemma [A.13] states that
P[lim supk→∞Ak] = 0, which implies that Xn,k converges uniformly in n to
Xn, for almost every ω ∈ Ω. In that matter, the limit of X is preserved
under uniform convergence in n and X converges almost surely to Z.
Next we have to prove the L1 convergence of X to Z and thus we estimate

‖Z −Xn‖1 ≤ ‖Z − Zk‖1 + ‖Zk −Xn,k‖1 + ‖Xn,k −Xn‖1
≤ 2−k + ‖Zk −Xn,k‖1 + ‖Xn,k −Xn‖1.

Now, the second member of the last inequality is definitely smaller than
2−k for n large enough since Zk ∈ H and this implies ‖Zk −Xn,k‖1 → 0.
For the last member follows

‖Xn,k −Xn‖1 =
∫

Ω
|E[Zk − Z|Fn]| dP

≤
∫

Ω
E[|Zk − Z| |Fn] dP = E[E[|Zk − Z| |Fn]]

= E[|Zk − Z|] = ‖Zk − Z‖1 ≤ 2−k

and so ‖Z −Xn‖1 ≤ 3 · 2−k, for n large enough. Thus convergence of X to
Z in L1 follows and we have proven that H is closed. This settles the case
p = 1, F = F∞. If p = 1, F 6= F∞, and Y ∈ L1(F) closes X, apply the
above results to (Ω,F∞,P), and the random variable E[Y |F∞] which
closes Xn on this space.
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Finally, if Y ∈ Lp, p > 1, we have

‖X‖p = sup
n∈N
‖Xn‖p = sup

n∈N
‖E[Y |Fn]‖p

= sup
n∈N

(
∫

Ω
|E[Y |Fn]|p dP)

1
p ≤ sup

n∈N
(
∫

Ω
E[|Y |p |Fn] dP)

1
p

= sup
n∈N

(E[E[|Y |p |Fn]])
1
p = sup

n∈N
(E[|Y |p])

1
p = ‖Y ‖p.

and due to T2.25 we have ‖ supn∈N |Xn| ‖p ≤ q‖Y ‖p. Therefore
dominating convergence of X takes place in Lp and the limit X∞ exists
almost surely since X is uniformly integrable by Vitali’s T1.10 and hence
uniformly bounded in L1. The last sentence of the theorem is obvious: If
Y is F∞-measurable, then X∞ = E[Y |F∞] = Y . Now X∞ ∈ L1 closes X
so that Xn = E[X∞|Fn], for every n ∈ N.

Remark 3.5. Assume a probability measure P on F∞ and let η be a
signed measure, which is absolutely continuous with respect to P on F∞.
Let Xn be the density of ηn with respect to Pn, where ηn and Pn are η
and P both restricted to Fn. Recalling E2.11 the density sequence X is a
martingale and under the present hypothesis

ηn(A) =
∫
A
Xn dP =

∫
A
X∞ dP = η∞(A), ∀ A ∈ Fn.

Due to the existence of conditional expectation E[X∞|Fn] and [A.2]

Xn = E[X∞|Fn], ∀ n ∈ N.

According to the previous T3.4, Xn = E[X∞|Fn] converges almost surely
to E[X∞|F∞] = X∞ as n tends to infinity and Jessen’s theorem becomes a
special case of T3.4.

3.4.2 Convergence of uniformly integrable martingales

Closability of a martingale X implies strong convergence properties and
because of the resulting boundedness of X in Lp, 1 ≤ p <∞, we can link it
directly with uniform integrability, which we discussed detailed in section 1.

Theorem 3.6. (1) A martingale X is closable in L1 if and only if it is
uniformly integrable.

(2) A martingale X is closable in Lp (p > 1) if and only if it is bounded
in Lp.

This corresponds extensively to theorem o©.
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Proof. (1) ⇒:
If a martingale X is closable in L1, then it converges a.s. and in L1 and
due to T1.10 is uniformly integrable.
(1) ⇐:
Conversely, if X is uniformly integrable, the compactness criterion of
Dunford-Pettis T1.16 reveils that every sequence of the martingale X
contains a subsequence Xnk

, which converges weakly in L1 to some
random variable Z ∈ L1. Otherwisely stated, for Z ∈ L1:

lim
k→∞

∫
A
Xnk

dP =
∫
A
Z dP, ∀ A ∈ F .

Now take A ∈ Fm and nk > m, then

E[Xnk
|Fm] = Xm ⇔

∫
A
Xnk

dP =
∫
A
Xm dP

⇔ lim
k→∞

∫
A
Xnk

dP =
∫
A
Z dP =

∫
A
Xm dP

⇔ E[Z|Fm] = Xm,

and thus X is closed by Z in L1.
(2) ⇒:
Suppose now that X is closed in Lp, then X is obviously bounded in Lp.
(2) ⇐:
If X is bounded in Lp the theorem of la Valleé Poussin T1.11 yields that
X is uniformly integrable and due to the previous statement (1) in this
theorem it is also closable in L1. It follows that X converges a.s. to a
closable variable X∞. In order, for X, to be closable in Lp we still have to
show that X∞ ∈ Lp. Since X is bounded n Lp, this is easily deduced by
Fatou’s lemma [A.4] ‖X∞‖p ≤ lim infn→∞ ‖Xn‖p <∞ and it follows that
X∞ closes the martingale.

3.4.3 Convergence of L1-bounded martingales

3.4.4 The Krickeberg Decomposition Lemma

The following lemma shortens the proof for a much deeper result, namely,
a.s. convergence for L1-bounded martingales. It is called the Krickeberg
decomposition lemma.

Lemma 3.7 (Krickeberg Decomposition). A martingale X is
bounded in L1 if and only if it can be written as a difference of two positive
martingales M (1)

n and M (2)
n

Xn = M (1)
n −M (2)

n .
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Proof. ⇐:
If M (1)

n and M
(2)
n are two positive martingales they are obviously

L1-bounded and so are their differences.
⇒:
Set X+ the positive and X− the negative part of the process X. We then
decompse X as:

Xn = X+
n −X−n .

Set Ym,n := E[X+
m|Fn] for m ≥ n and check that

Ym+1,n = E[X+
m+1|Fn] = E[E[X+

m+1|Fm]|Fn] ≥ E[X+
m|Fn] = Ym,n,

which implies that Ym,n is monotonically increasing in m.
Take M (1)

n := limm→∞ Ym,n. We will show that M (1)
n is a martingale. First,

verify that due to the monotone convergence theorem [A.16] and the
boundedness assumption on X that

E[M (1)
n ] = E[ lim

m→∞
Ym,n] = lim

m→∞
E[Ym,n]

= lim
m→∞

E[E[X+
m|Fn]] = lim

m→∞
E[X+

m] <∞.

Thus Ym,n converges almost surely to an integrable random variable M (1)
n .

Because of its definition M
(1)
n is Fn-measurable and the martingale

condition (2.1) is proven by using the monotone convergence theorem for
conditional expectations

E[M (1)
n+1|Fn] = E[ lim

m→∞
E[X+

m|Fn+1]|Fn]

= lim
m→∞

E[X+
m|Fn+1|Fn] = lim

m→∞
Ym,n = M (1)

n .

Setting Zm,n := E[X−m|Fn], M (2)
n := limm→∞ Zm,n and following the same

steps as above yields that M (2)
n is a martingale too. The last step will show

that X is the difference of M (1)
n and M

(2)
n :

M (1)
n −M (2)

n = lim
m→∞

Ym,n − lim
m→∞

Zm,n = lim
m→∞

Ym,n − Zm,n

= lim
m→∞

E[X+
m −X−m|Fn] = lim

m→∞
E[Xm|Fn] = Xn.

Our efforts have paid-off as we are about to witness the highly anticipated
convergence theorem for L1-bounded martingales. The proof of this
theorem doesn’t appear in standard math books. However, we are more
than happy to be able to formulate it here.

Theorem 3.8. Any L1-bounded martingale X converges a.s. to an a.s.
random variable.
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This is the desired theorem n©.

Proof. According to the Krickeberg decomposition it suffices to prove this
theorem for a positive martingale X.
Let N be an integer and set

T = inf
m∈N
{m : Xm ≥ N}

and denote by Y the martingale X stopped at time T , i.e. Y = XT .
We will observe XT on the sets {T <∞} and {T =∞}.
Suppose that XT is only defined on {T <∞} and set XT = 0 on {T =∞}.
We remark that XT is integrable, since
E[XT ] ≤ lim infn→∞E[XT∧n] = E[X0], due to Fatou’s lemma and the
optional sampling theorem T2.21. Y is dominated by the integrable
random variable N ∨XT , since Yn ≤ N for n < T , Yn = XT for n ≥ T .
Therefore Y is uniformly integrable and T3.6 and T3.4 yield that Y
converges a.s. to an integrable random variable.
Let’s focus on X being defined on the set {T =∞}. Fix an ω ∈ {T =∞}:
Then Xn(ω) = Yn(ω), for every n ∈ N and every fixed ω ∈ {T =∞}, and
thus X also converges a.s. on this set. Note that if X is L1-bounded, X∞
is not only finite, but also integrable due Fatou’s lemma [A.4].

This concludes Meyers proof.

3.5 Convergence of L1-bounded supermartingales

It is possible to extend T3.8 to sub/supermartingales not interfering,
again, with the upcrossing inequality u©.

Theorem 3.9. Let X be a supermartingale such that supn∈N E[X−n ] <∞.
Then X converges a.s. to an a.s. random variable.

Proof. Without restriction of generality we assume that X0 = 0. Since
E[X0] ≥ E[Xn] ≥ −E[X−n ], E[Xn] remains bounded, and so does
E[|Xn|] = E[Xn] + 2E[X−n ]. Consider Doob’s decomposition X = M −A,
where A is increasing with A0 = 0, M = X +A is a martingale. We have
M−n ≤ X−n , therefore E[M−n ] remains bounded. Since E[Mn] = E[M0] = 0,
E[|Mn|] = 2E[M−n ], and M is L1-bounded. According to T3.8,
M converges a.s. to an integrable random variable. On the other hand, An
increases, and E[An] = E[Mn]−E[Xn] remains bounded, therefore An
converges a.s. to an integrable random variable.

To prove the L1 and a.s. convergence of an uniformly integrable
supermartingale comes very easy now. Due to T1.10 we can extend our
result to convergence in Lp, 1 ≤ p <∞.
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Theorem 3.10. Let X be an uniformly integrable supermartingale. Then
X converges in Lp and a.s.

Proof. Combine T1.5 with T3.9 and T1.10.

3.6 Comparison of the proofs

If someone reads a comparison test about distinct electronic devices, the
reader may not be necessarily interested in a product specific detailed
description but rather in an overview or rating of each tested product. Due
to that, the products that were tested here are the various proofs of the
martingale convergence theorem n©. Our testing criteria are

I Expenditure.

II Common ground of the proofs without upcrossings with the standard
proof using upcrossings.

We are going to review Doob’s, Jessen’s and Meyer’s proof.

I Expenditure

(a) Doob’s proof
For a complete understanding it is sufficient to study the
martingale section 2 of this thesis. None of the appendix or
section 1 related results on uniformly integrability is needed.

(b) Jessen’s proof
This proof requires a certain flexibility towards measure theory,
especially for density functions of two absolute continuous
measures. A mathematician with a profound measure theoretic
background won’t have trouble getting through the details
without reading any of the preceding sections. Without this
knowledge but with comprehension of section 1 and 2 this proof
should be outfigurable.

(c) Meyer’s proof
Now this proof is definitely the hardest and longest of the three,
considering the number of theorems needed that are proved
previously. Knowledge about section 1, 2 and the appendix is
unavoidable. Its kind of a bee, which knows the easiest way in
the garden to access the blossom with the sweetest pollen but
instead of approaching it directly the bee chooses a path full of
wild and exotic blossoms, which seem to have magical taste,
that provoke its appetite to fly on such unknown paths even
more. Needless to say that the sweetest pollen became even
sweeter. Expenditure reaches its maximum.
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II Common ground of the proofs without upcrossings with the standard
proof using upcrossings.

(a) Doob’s proof
Certainly the one with the highest similarity to the standard
proof using upcrossings.

(b) Jessen’s proof
An access that does not explicitly point to the proof with
upcrossings but more implicitly and from a set-theoretic point
of view.

(c) Meyer’s proof
Probably the one with the smallest intersection.

By reviewing the three proofs it seems that Doob’s and Jessen’s proof
oppose, in terms of length and expenditure, the one Meyer postponed.
Deciding which proof one prefers as an alternative choice one with an
affinity towards probability theory should go with Doob. If someone
belongs more to the measure theoretic camp the proof of Jessen will serve
well. It has to be mentioned that the standard proof of theorem n© is by
far the one with the least amount of difficulty comparing the rest. For a
quick understanding of martingale almost sure convergence the proof with
upcrossings is definitely the best choice. Though, for mathematicians eager
to expand their knowledge of tools used to show martingale convergence,
the proof of Jessen and especially the proof of Meyer cannot be neglected.
The arsenal of math needed to proof theorem n© the way Meyer did is of
great importance for any mathematician.
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A Measure and Probability Prequisites

This appendix provides basic statements about measure and probability
theory. Most of them are formulated for random variables being defined on
a probability space (Ω,F ,P), the rest for measurable variables on an
arbitrary measure space (X,A, µ). Since a probability space is a special
case of a measure space, the results below, which are stated for measure
spaces also hold for probability spaces.
To emphasize the measure theoretic deduction of assertions given for
probability spaces we sometimes write

∫
ΩX dP instead of E[X].

All results listed here accompanied with lots of deeper and exciting
information can be found in [13, 3, 9, 14, 17, 24, 23, 33].

Theorem A.1 (Lebesgue 1910). Let fn, f : Ω→ R, n ∈ N, be
measurable und let limn→∞ fn = f almost surely. Further assume that
there exists a function g ∈M+, such that |fn| ≤ g almost surely, for all
n ∈ N. Then f and fn are integrable, ∀ n ∈ N, and

lim
n→∞

∫
Ω
fn dP =

∫
Ω
f dP

and
lim
n→∞

∫
Ω
|fn − f | dP = 0.

Lemma A.2. Two random variables f, g both integrable and measurable
on a sub-σ-algebra G are almost surely equal, f = g, if and only if∫

A
f dP =

∫
A
g dP, ∀ A ∈ G.

Theorem A.3 (Egorov 1911). Let (fn)n≥1 be a sequence of random
variables and let limn→∞ fn = f almost surely, where f is a random
variable. Then (fn)n≥1 converges almost uniformly to f .

Lemma A.4 (Fatou 1911). If (fn)n≥1 is a sequence of measurable
functions then ∫

Ω
lim inf
n→∞

fn dP ≤ lim inf
n→∞

∫
Ω
fn dP.

Theorem A.5 (Riesz 1910). If a sequence of random variables (fn)n≥1

converges in probability to a random variable f , then there exists a
subsequence (fnk

)k≥1, that converges almost surely to f .
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Theorem A.6 (Fubini 1907). Let (X,A, µ) and (Y,B, ν) be two σ-finite
measure spaces and denote with (X × Y,A⊗ B, µ⊗ ν) the product measure
space. If f : X × Y → R is µ⊗ ν-integrable, then

(1) f(x, ·) is ν-integrable for µ-a.e. y ∈ Y .
(2) f(·, y) is µ-integrable for ν-a.e. x ∈ X.
(3) The functions

x→
∫
Y
f(x, y) dν resp. y →

∫
X
f(x, y) dµ

are µ-integrable resp. ν-integrable.
(4) ∫

X×Y
f(x, y) d(µ⊗ ν) =

∫
X

(∫
Y
f(x, y) dν

)
dµ

=
∫
Y

(∫
X
f(x, y) dµ

)
dν.

Definition A.7 (Absolute Continuity of Measures). It µ, ν are two
measures on the same measurable space, then µ is said to be absolutely
continuous with respect to ν, or dominated by ν, if for every A ∈ A:
µ(A) = 0⇒ ν(A) = 0. This is written as µ� ν.

Theorem A.8 (Radon-Nikodým). Let (X,A, µ) be a σ-finite measure
space, ν a signed measure on A and ν � µ. Then ν has a density in respect
to µ, thus, there exists a quasiintegrable function f : X → R, such that

ν(A) =
∫
A
f dµ, ∀ A ∈ A,

and f is µ-a.e. uniquely determined. If ν is a measure f can be choosen
≥ 0.

Theorem A.9 (Conditional Expectation). Let (Ω,F ,P) be a
probability space, Y a random variable with E[|Y |] <∞ and G a
sub-σ-algebra of F . Then there exists a G-measurable function E[Y |G],
such that ∫

A
Y dP =

∫
A

E[Y |G] dP, ∀ A ∈ G,

holds almost surely.

Theorem A.10 (Jensen Inequality for conditional expectation).
Let (Ω,F ,P) be a probability space, G a sub-σ-algebra of F , Y an
integrable random variable and φ : R→ R a convex function. Then

φ (E[Y |G]) ≤ E[φ (Y ) |G],

holds almost surely.
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Theorem A.11 (Hölder Inequality 1889). Let (X,A, µ) be a measure
space, f, g : X → R two measurable functions and 1 ≤ p, q ≤ ∞, 1

p + 1
q = 1.

Then ∫
X
|fg| dµ ≤

(∫
X
|f |p dµ

)1/p(∫
X
|g|q dµ

)1/q

.

Theorem A.12 (Markov Inequality). Let (Ω,F ,P) be a probability
space, Y a random variable and k ∈ N. Then

P[|Y | ≥ α] ≤ 1
αk

E[|Y |k].

Lemma A.13 (Borell-Cantelli). Let (Ω,F ,P) be a probability space.
If
∑∞

n=1 P(An) converges, then P(lim supn→∞An) = 0.

Theorem A.14 (Halmos 1950). Let C be a field and M a monotone
class that contains C. Then this implies σ(C) ⊂M.

Lemma A.15. Let g be an extended real-valued, F-measurable function on
Ω. For each a ∈ R, let Ga = {ω ∈ Ω : g(ω) ≥ a} and
La = {ω ∈ Ω : g(ω) ≤ a}. The function g is a derivative of η with respect
to µ if and only if the following conditions obtain:

(1) for every a ∈ R and every A ∈ F , we have

η(Ga ∩A) ≥ aµ(Ga ∩A),

(2) for every a ∈ R and every A ∈ F , we have

η(La ∩A) ≤ aµ(La ∩A).

Theorem A.16 (Levi 1906). For every increasing sequence (fn)n∈N of
positive measurable functions holds∫

Ω
( lim
n→∞

fn) dP = lim
n→∞

∫
Ω
fn dP.
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B Alternative Proofs

The interested reader will find here some alternative proofs to theorems of
the text.

Theorem B.1 (La Valleé Poussin 1937). Let H be a subset of L1.
The following properties are equivalent:

(1) H is uniformly integrable.
(2) There exists a function G(t) defined on R+, which is positive,

increasing and convex4, such that

lim
t→+∞

G(t)
t

= +∞,

and
sup
f∈H

E[G ◦ |f |] < +∞.

Proof. (1) ⇒ (2):
Without loss of generality assume that f ≥ 0. Uniform integrability of f
means that

∀ n ∈ N, ∃ c̃n: sup
f∈H

∫
{f≥c̃n}

f dP ≤ 2−n.

Set cn := c̃n ∨ n. This sequence cn diverges to infinity and we get

∞∑
n=0

∫
{f≥cn}

f dP =
∞∑
n=0

∞∑
m=cn

∫
{m≤f<m+1}

f dP

≤
∞∑
n=0

∞∑
m=cn

mP[m ≤ f < m+ 1]

=
∞∑
m=0

mP[m ≤ f < m+ 1]
∞∑

n:cn≤m
1, set g(m) :=

∞∑
n:cn≤m

1,

=
∞∑
m=0

mg(m)P[m ≤ f < m+ 1].

Of course limm→∞ g(m) =∞ and this implies limm→∞
mg(m)
m =∞. Now

set G(m) := mg(m), then

∞ >

∞∑
m=0

G(m)P[m ≤ f < m+ 1]

=
∫

Ω

∞∑
m=0

G(m)1[m,m+1)f(ω) dP = E[G(f)],

4Convexity of f is not used in the proof
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with G(z) =
∑∞

m=0G(m)1[m,m+1)(z).

An even shorter proof of implication (1)⇒ (3) of Dunford-Pettis’ theorem
T1.16 can be shown by using the following theorem:

Theorem B.2. Any L2-bounded sequence has a subsequence that
converges weakly in L2.

Theorem B.3 (Dunford-Pettis 1953). Every uniformly integrable
sequence of random variables has a subsequence that converges weakly in
L1.

Proof. Let X be uniformly integrable. Define Xk
n := Xn1{|Xn|≤k} and note

by ∫
Ω

∣∣Xn1{|Xn|≤k}
∣∣2 dP =

∫
{|Xn|≤k}

|Xn|2 dP ≤ k2P[|Xn| ≤ k] <∞,

that (Xk
n)n∈N is L2-bounded for each k ∈ N. By B.2 and a diagonalization

argument, there exists a subsequence and some random variables
η1, η2, η3, . . . such that for each k, Xk

nr
→ ηk, holds weakly in L2 and

because of inclusion also in L1, as r tends to infinity.
Now, by Fatou’s lemma [A.4], ‖ηk − ηl‖1 ≤ lim infr→∞ ‖Xk

nr
−X l

nr
‖1, and

due to uniform integrability D1.1, the right-hand side tends to 0 as
k, l→∞. Thus the sequence (ηn)n∈N is Cauchy in L1 and so, it converges
in L1 towards some ξ. Take γ ∈ L∞, let µ be the weak limit of Xnr and
note that for any n, k ∈ N

E[γ(Xn − µ)] ≤ ‖γ‖∞ sup
n
‖Xn −Xk

nr
‖1 + E[γ(Xk

nr
− ηk)] + ‖γ‖∞‖ηk − µ‖1.

Taking lim sup on both sides as n→∞ the second term on the right-hand
side vanishes. Then taking k →∞ lets the first term on the right-hand
side vanish because of uniform integrability of the sequence X. It also lets
the last term disappear: ∀ ε > 0 exists an integer N(ε) such that
‖Xn −Xk

n‖1 and ‖ξ − ηk‖1 are both smaller than ε for k ≥ N and thus
µ = ξ, which leads to the assertion.
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