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Abstract

VMTL (Vienna Modular Termination Laboratory) is a tool for automated termination proof
search for term rewriting systems (TRSs). It is based on the dependency pair (DP) framework.
In this setting an initially given TRS is first transformed into a so-called DP problem which is
then successively simplified using DP-processors until (hopefully) the problem becomes trivial,
which means that termination of the initial TRS has been proved.

Once the DP method has been started, it is not possible any more to go back from DP prob-
lems to corresponding TRSs. Therefore, it is desirable to have strong and flexible preprocessing
mechanisms at hand that simplify the original TRS as much as possible, in a way such that
(non-)termination is preserved, before the DP analysis is started.

In this master’s thesis, we design and implement a preprocessing framework for VMTL, that
allows for a modular integration of direct termination proof methods.

Furthermore, two new approaches for proving termination of TRSs are added, namely Knuth-
Bendix Orderings (KBO) and Semantic Labeling. Both techniques are incorporated as direct
methods and as DP-processors.

In many cases, the proof search of direct methods and DP processors can be modelled ef-
ficiently as a SAT or SMT problem. In order to ease the generation and representation of such
problems, we develop a new SAT/SMT solving toolkit for use within VMTL.

v





Kurzfassung

VMTL (Vienna Modular Termination Laboratory) ist ein Tool zur automatischen Suche von
Terminationsbeweisen für Termersetzungssysteme (TRSs). Die Beweissuche in VMTL basiert
auf dem Dependency Pair (DP) Framework. Dabei wird das auf Termination zu untersuchende
TRS zunächst in das zugehörige sogenannte DP-Problem transformiert, welches dann durch
Anwendung von DP-Prozessoren sukzessive vereinfacht wird, bis das Problem (im besten Fall)
trivial wird, wodurch dann Termination des ursprünglichen TRS bewiesen ist.

Ein Nachteil der DP Methode ist, dass es im Allgemeinen nicht möglich ist, von DP-Pro-
blemen wieder zu den entsprechenden TRSs zurückzukehren. Aus diesem Grund ist es wün-
schenswert, ein flexibles Framework für Preprocessing zur Verfügung zu haben, um bereits
vor der DP-Analyse Vereinfachungen durchführen zu können, die die (Nicht-)Terminations-
eigenschaften des zu untersuchenden TRS bewahren.

Eines der Ziele dieser Arbeit ist der Entwurf und die Implementierung eines solchen Prepro-
cessing Framework auf Basis klassischer (direkter) Terminationsbeweismethoden.

Weiters werden im Zuge dieser Arbeit zwei neue Ansätze für Terminationsbeweismetho-
den implementiert: Knuth-Bendix Orderings (KBO) sowie Semantic Labeling. Beide Techniken
werden sowohl als direkte Methoden wie auch als DP-Prozessoren umgesetzt.

Die Beweissuche vieler Methoden und Prozessoren lässt sich effizient als SAT- oder SMT-
Problem formulieren. In dieser Arbeit entwickeln wir ein neues SAT/SMT-solving Toolkit, wel-
ches innerhalb von VMTL genutzt werden kann, um SAT/SMT-Aufgaben zu formulieren und
zu lösen.

vii
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CHAPTER 1
Overview

This chapter provides a short overview of the tasks and goals of this thesis (Section 1.1) and
discusses how they are approached. In the first section of this chapter, we use some terms
that are not yet defined. These terms will be clarified in the following chapters in detail. The
index also provides a guide to the definitions of the most important terms. Section 1.2 gives an
overview of the remaining chapters in this thesis and describes how they are related.

1.1 Goals of this Thesis

The topic of this master’s thesis is an extension of VMTL by a more flexible control and new
methods. VMTL (Vienna Modular Termination Laboratory, [SG09]) is a termination prover for
term rewriting systems. It was developed at the Institut für Computersprachen at the TU Wien
by Felix Schernhammer.

The main goals of this thesis were:

• Adding support for direct proof methods to VMTL.

• Reworking the strategy language in order to support the new methods.

• Designing and implementing an unified SAT/SMT solving toolkit for use within VMTL.

• Implementing the proof technique of semantic labeling [Zan95] (more specifically root-
labeling [SM08, ST10]) for VMTL.

• Implementing the proof technique of Knuth-Bendix orders [KB70] for VMTL.

• Adding the new techniques as direct methods as well as processors in the dependency pair
framework [AG00, GTSK05].

• Testing and evaluation of the new methods.
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The first step will be the design and implementation of the new framework for direct proof
methods. Here, it is important that context-sensitive rewriting is supported, and that a great
degree of modularity is offered in order to do justice to the term modularity in the name of
VMTL. To this end, an approach similar to the DP processors in the DP framework is used. In
order to allow the users of VMTL to use the new direct methods, it is also necessary to revise
the strategy specification language for VMTL. In this process, a new strategy language based
on XML will be designed and implemented. The use of XML seems very handy in the new
strategy language, as powerful XML parsers for Java (VMTL is implemented in Java) exist, and
XML is very well suited for specifying tree-like structures, as they are needed in the strategy
specification. Furthermore, the use of XSD (XML schema definition) allows to check strategy
files for syntactical and basic logical errors and to notify the user in a user-friendly, human-
readable way.

Another important part of this thesis is the design and implementation of a SAT/SMT solving
toolkit for use in VMTL. This was necessary, because previously there was no unified way to
use SAT solving in VMTL. Therefore, processors requiring SAT solving have to reimplement
functionality such as DIMACS [Dim93] input generation and output parsing, starting of the
SAT solving process, constraint generation etc. all over again, every time. Thus it was desirable
to have a one-stop toolkit that encapsulates all this functionality and in addition offers strong
constraint generation tools. Furthermore, it should be possible to use other back-ends like SMT
solving instead of SAT solving in a (largely) transparent way. If an SMT back-end is used,
special features of SMT should be utilized as well as possible, to make computations efficient.

The first practical use of the newly developed SAT/SMT solving toolkit will be the im-
plementation of the Knuth-Bendix order [KB70] as a direct proof method and as a (CS-)DP
processor. This implementation will mainly rely on the SAT encoding presented in [ZHM09].

Another technique that will be added is called root-labeling [SM08, ST10], a special case
of semantic labeling [Zan95]. Again, the implementation will follow the approach presented
in [SM08] resp. [ST10]. For the implementation of the context-sensitive versions of the direct
proof method and the CS-DP processor, we will generalize the existing techniques.

All in all, the contributions of this thesis are the following:

• VMTL is improved and made more flexible.

• A new versatile SAT/SMT solving toolkit for VMTL is designed and implemented.

• The KBO processor from [ZHM09] is extended to support the CS-DP framework.

• Some of the results from [Zan95] and [SM08] (concerning semantic labeling and root-
labeling) are generalized to the context-sensitive case.

• Tests and evaluation of the new techniques.

2



1.2 Outline of this Document

The thesis is structured in nine chapters. Each chapter begins with an overview of the content
covered in the chapter and an outline of the sections of the chapter.

The following list summarizes the contents of the chapters:

Chapter 1 - Overview
Contains a summary of the goals of this thesis and gives an overview of the structure of
the written part of this thesis.

Chapter 2 - Introduction
Gives a very brief, informal introduction to the formalism of term rewriting and termi-
nation of term rewriting systems. Additionally, various extensions to term rewriting are
presented.

Chapter 3 - Preliminaries
Contains a more in-depth, formal introduction of the concepts presented in Chapter 2.
This chapter also contains the most important definitions and conventions used in the
subsequent chapters and provides the basis for the unified notation used throughout the
thesis.

Chapter 4 - VMTL Prerequisites: Chapter 3
In this chapter we discuss some of the most important features of VMTL, and specify
which kind of extensions are implemented as part of this thesis. Here, the new direct
proof methods and the strategy extension are discussed in detail.

Chapter 5 - The VMTL Sat Solving Facility
This chapter provides an introduction to the VMTL SAT solving facility (VSSF).

Chapter 6 - Semantic Labeling Prerequisites: Chapter 3
Introduces semantic labeling [Zan95] and, as special case thereof, root-labeling [SM08,
ST10]. The existing results are generalized to the context-sensitive case, as basis for the
implementation in VMTL.

Chapter 7 - Knuth-Bendix Order Prerequisites: Chapters 3, 5
Introduces the Knuth-Bendix order [KB70] and the SAT/SMT encoding of the direct
method and DP processor [ZHM09]. The DP processor is extended to the context-
sensitive case for implementation in VMTL.

Chapter 8 - Tests and Benchmarks Prerequisites: Chapters 4, 6, 7
Describes the tests of the new methods and processors and presents a new default strategy
for VMTL.

Chapter 9 - Conclusions Prerequisites: Chapter 8
Summarizes the work of the thesis and provides references to related material.
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The following graph depicts the dependency of the chapters:

Overview Introduction Preliminaries

qqdddddddddddddddddddddd

�� --ZZZZZZZZZZZZZZZZZZZZZZ The VMTL Sat Solving Facility

��
VMTL

--ZZZZZZZZZZZZZZZZZZZZZZ Semantic Labeling

��

Knuth-Bendix Order

qqdddddddddddddddddddddd

Tests and Benchmarks

��
Conclusions
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CHAPTER 2
Introduction

This chapter provides some informal overview of the most important concepts used in this thesis.
We start with a very brief high-level description of term rewriting and termination. After that
we give a short informal introduction to the dependency pair framework. Next, we consider
some more advanced forms of term rewriting like context-sensitive rewriting and conditional
term rewriting.

2.1 Term Rewriting

Term rewriting is a versatile formalism with applications in different fields of computer sci-
ence. Basically, term rewriting describes in a formal way how terms can be replaced by other
terms while maintaining equality in some sense. In term rewriting, the rewrite steps are oriented.
Usually a rewrite step simplifies terms, thus rewrite steps are also called reduction steps. Term
rewriting has a close relation to functional programming. Therefore, it is very well suited for rea-
soning about functional programs and algorithms in general. Other areas where term rewriting
is used are for example formal verification of software and model checking, automatic theorem
proving, logic, algebra etc...

A term rewriting system (TRS) consists of a number of rules, where a rule has a left-hand-
side (lhs) and a right-hand-side (rhs). Both the lhs and rhs are so-called terms. A term can
contain variables, which can be replaced by other terms. Whenever a (instantiation of a) lhs of
a rule in a TRS matches a subterm of some term, this rule can be applied, and the matching
subterm can be replaced by the (instantiation of the) rhs of the rule.

Example 2.1.1.

0+x → x s(x)+y → s(x+y)
x+0 → x x+s(y) → s(x+y)
x∗0 → 0 x∗s(y) → (x∗y)+x

5



This term rewriting system consisting of six rewrite rules can be used to perform addition and
multiplication on natural numbers. Here a number is expressed by means of repeated applica-
tions of the successor function s on the constant 0. For example the number 2 is represented as
s(s(0)). The term representing the multiplication of 2 and 1 would therefore be s(s(0)) ∗ s(0).
Now, the third rule on the right side can be applied, resulting in the term (s(s(0)) ∗ 0) + s(s(0)).
At this point, there are two ways to proceed. Either the third rule on the left side is used or the
second rule on the right side is used. The following tree depicts some possible ways of reaching
a normal form (i.e. a term that cannot be reduced any further).

s(s(0)) ∗ s(0)

��
(s(s(0)) ∗ 0) + s(s(0))

uujjjjjjjjjjj

))TTTTTTTTTTT

0 + s(s(0))

��11111111111111111111 s((s(s(0)) ∗ 0) + s(0))

uujjjjjjjjjjj

,,ZZZZZZZZZZZZZZZZZZZZ

s(0 + s(0))

��

s(s((s(s(0)) ∗ 0) + 0))

uujjjjjjjjjjj

))TTTTTTTTTTT

s(s(0)) + 0

rreeeeeeeeeeeeeeeeeeee s(s((s(s(0))) ∗ 0))

ppbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

s(s(0))

As expected, all paths eventually lead to the same normal form s(s(0)).

Term rewriting allows elegant reasoning over questions asked about systems specified within
the formalism. For example, one could ask about certain properties such as confluence and
termination of the rewrite relation induced by a term rewriting system. Over the years, much
theory has been worked out, that allows formal justification of answers to these questions.

Termination of Term Rewriting Systems

One of the most interesting and most actively explored questions is, whether a certain rewrite
system is terminating or not. A term rewriting system is called terminating (or strongly nor-
malizing, SN), if there is no term which permits an infinite rewrite sequence. In general, this
question is undecidable (because term rewriting is Turing-complete) [BN98]. However, very
powerful techniques have been developed, so today a broad class of term rewriting systems can
be proven terminating (or non-terminating). The most common way of formally proving termi-
nation of term rewriting systems is by finding an order with certain properties (called reduction
order, see Chapter 3.2) on terms, such that for each rule in the TRS, the lhs is greater than the
rhs.

However, in recent years the emphasis of proving termination has shifted from pure formal
considerations to considerations about how automated proving of termination becomes feasi-
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ble. One of the most successful approaches, which is used in almost all competitive termination
provers today (e.g. AProVE [GTSKF04], TTT [KSZM09], VMTL [SG09]), is the so-called de-
pendency pair (DP) framework ([AG00, GTSK05], for a short formal introduction see chapter
3.2). The basic idea of the DP framework is to exploit certain properties of rewrite sequences
starting at minimal non-terminating terms (i.e. terms where all proper subterms are terminat-
ing). By capturing the recursive rewrite structure of the rules (called dependency pairs, which
together with the original rules themselves form a so-called DP problem), it becomes possible
to reason about such sequences. The DP framework is called a framework, because it allows the
definition of so called DP processors that operate on DP problems. DP processors can be applied
consecutively, successively simplifying the DP problems, until at a certain point termination be-
comes immediate. This modularity makes the DP framework very well suited for automated
proof search because many different DP processors were developed, having different charac-
teristics, some of which allow partitioning of DP problems into smaller DP problems (e.g. the
dependency graph processor [GTSK05]) and others making progress in simplifying DP prob-
lems by removing some dependency pairs and/or rewrite rules (e.g. the reduction pair processor
[GTSK05]).

2.2 Context-Sensitive Term Rewriting

Context-sensitive rewriting [Luc98] is a generalization of term rewriting, where it is possible to
restrict the induced rewrite relation by defining at which positions in a term rewrite steps are
allowed to be applied. This makes it very useful for modelling features of functional program-
ming.

Example 2.2.1. Consider the following context-sensitive rewrite system (CS-TRS):

if(true, x, y) → x if(false, x, y) → y
s(x) > s(y) → x > y 0 > y → false

s(x) > 0 → true

Let reduction steps be allowed everywhere, except at the second and third arguments of if terms.
So for example in the term if(s(s(0)) > s(0), s(0) > 0, 0), reduction steps are only allowed at
the first argument of if until eventually the term if(true, s(0) > 0, 0) is reached. Then the first
rule can be applied to obtain s(0) > 0. Now, this term can be further reduced to true.

There are different approaches to proving termination of CS-TRSs. One possibility is to
transform CS-TRSs into TRSs and then to use standard techniques for TRSs. The most simple
transformation is to just ignore the position constraints in the CS-TRS. This method is sound but
of course highly incomplete (i.e. many CS-TRSs that are terminating become non-terminating
by this transformation). It was shown, that there are indeed sound and complete transformations
of CS-TRSs to TRSs [GM99], thus theoretically all methods that work for TRSs also can be
applied for CS-TRSs. However, especially for automated termination proving, in practice it is
more efficient to use new techniques or generalizations of existing techniques that are crafted
specially for termination proofs of CS-TRSs.
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One of the methods that have been successfully adopted for context-sensitive rewriting
is the DP framework (the context-sensitive version being called CS-DP framework [AGL06,
AEF+08]). Most existing DP processors can be generalized to work in this new framework very
easily, so today already quite a big number of CS-DP processors exists.

2.3 Conditional Term Rewriting

Another very useful variant of term rewriting is called conditional term rewriting ([Kap84,
BK86] cf. [Ohl02]). Here, applicability of rewrite rules can depend on one or more condi-
tions. Conditions can be expressed in different ways. A common way is to express conditions in
the formalism of term rewriting, by requiring that some term can be reduced to some other term
(such a conditional term rewriting system (CTRS) is called oriented CTRS).

Example 2.3.1. Consider the following CTRS:

even(s(s(x))) → even(x)
even(s(0)) → false

even(0) → true
odd(x) → true⇐ even(x)→∗ false
odd(x) → false⇐ even(x)→∗ true

Computation of odd(x) is defined only through the computation of even(x). The last two rules
are conditional. The rule odd(x) → true may only be applied, if even(x) can be reduced to
false.

Conditional term rewriting usually requires a different notion of termination than that for
term rewriting or context-sensitive term rewriting. This is because it may be undecidable,
whether a condition holds or not. To this end, the notion of effective termination [Ohl02] was
introduced, where in addition to termination of the rewrite relation it is required that the rewrite
relation is decidable. However, it was shown that in practice this is still not sufficient because,
even though decidable, implementations trying to check whether a condition holds may loop.
Therefore, [LMM05] defines the even stronger notion of operational termination which is what
VMTL proves for CTRSs.

The proof of operational termination can be done in a two-step process. First the CTRS
is transformed into a CS-TRS by means of context-sensitive unravelling [SG10, Sch11]. It is
shown in [SG10, Sch11], that termination of the resulting CS-TRS implies operational termina-
tion of the original CTRS.

8



CHAPTER 3
Preliminaries

This chapter provides an overview and a reference for the most important definitions, notations
and terminology used commonly throughout this thesis. A more in-depth introduction to term
rewriting can be found in [BN98]. This chapter contains four sections: Section 3.1 contains
the most important definitions that are the formal basis for the other sections. Section 3.2 gives
a short introduction to term rewriting and some methods of proving termination. Section 3.3
gives an overview of context-sensitive rewriting and termination methods for context-sensitive
rewriting. The last section gives a short introduction to conditional rewriting.

3.1 Basics

Throughout this thesis X =
{
x, y, z, . . .

}
denotes a fixed, countable infinite set of variables.

Definition 3.1.1 (Signature). A signature is a set F containing function symbols, disjoint from
X . The function ar : F 7→ N0 assigns to each function symbol a fixed arity. The subset of
F containing only the function symbols with arity n in F is denoted as F (n) and is defined as{
f | f ∈ F , ar(f) = n

}
.

Terms are built over function symbols from a signature and variables from X . The set of
terms over a signature F and variables X is defined inductively as follows:

Definition 3.1.2 (Term). Let F be a signature. The set of all terms over function symbols from
F and variables from X is denoted as T (F , X). The set T (F , X) is the smallest set such that

• X ∪ F (0) ⊆ T (F , X)

• f(t1, . . . , tn) ∈ T (F , X) for all t1, . . . , tn ∈ T (F , X) and f ∈ F (n)(n ≥ 1)

Definition 3.1.3 (Root Symbol). The root symbol of a term is the function symbol or variable
occurring outermost. The mapping root : T (F , X) \ X 7→ F ∪ X is used to obtain the root
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symbol of a term. For terms t = f(t1, . . . , tn), root(t) is f for all f ∈ F (n) and for t = c,
root(t) is c for all c ∈ F (0). For variables, the root is the variable itself, i.e. root(x) = x for
all x ∈ X .

Definition 3.1.4 (Subterms, Immediate Subterms). Let t be a term. The set Sub(t) of all sub-
terms of t is defined as the smallest set such that t ∈ Sub(t) and for all terms f(t1, . . . , tn) ∈
Sub(t), Sub(t1) ⊆ Sub(t), . . . , Sub(tn) ⊆ Sub(t). The immediate subterms or argument terms
of a term f(t1, . . . , tn) are the terms t1, . . . , tn.

Definition 3.1.5 (Subterm Relation). The subterm relation is a binary relation on terms denoted
as E, such that for two terms s, t ∈ T (F , X), s E t if and only if s ∈ Sub(t).

The function |t|s is used to count the number of occurrences of some term s in a term t.

Definition 3.1.6. Let t and s be terms in T (F , X). The function |·|· : (T (F , X)×T (F , X)) 7→
N0 is defined as follows.

|t|s =

{
1 if t = s∑n

i=1 |ti|s if t 6= s and t = f(t1, . . . , tn)

A term can be represented as a tree where each node is labeled by a function symbol or a
variable and child nodes represent argument terms.

Example 3.1.7. For example, the term t = f(g(x), f(a, g(g(x)))) corresponds to the following
tree representation:

f
1

qqqqqqq 2
MMMMMMM

g

1.1

f
2.1

qqqqqqq 2.2
MMMMMMM

x a g

2.1.1

g

2.1.1.1

x

Each node in this tree represents a subterm of t. Each subterm of a term t has a position in t.
A position is a (possibly empty) string of integers, describing the path in the tree which leads to
the root symbol of some subterm.

Definition 3.1.8 (Positions). Let t ∈ T (F , X). The set Pos(t) is the set containing all subterm
positions in t. This set is constructed inductively as the smallest set Pos(t) containing ε (called
the root position of t) and if t = f(t1, . . . , tn) then

1π1 ∈ Pos(t), . . . , nπn ∈ Pos(t) for all π1 ∈ Pos(t1), . . . , πn ∈ Pos(tn)
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Notation. For better readability and unambiguity, we will usually use the symbol ’.’ to sepa-
rate single numbers in a position string. For example, the position 123 will (depending on its
supposed meaning) usually be written as either 123 or 1.23 or 12.3 or 1.2.3.

Example 3.1.9. In the tree in Example 3.1.7, the edges are labeled with the positions of their
descendant terms.

Definition 3.1.10 (Prefix Order, [BN98]). Let t ∈ T (F , X) be a term and let π ∈ Pos(t) and
π′ ∈ Pos(t) be positions in t. The prefix order ≤ is defined as:

π′ ≤ π iff there exists π′′ such that π′π′′ = π

A position π′ is above a position π if π′ ≤ π. π′ is strictly above π if π′ < π. The notions
below and strictly below are defined analogously. If π and π′ are incomparable with respect to
≤, we say that they are at parallel positions written as π||π′.

Positions can be used to extract subterms of a term. To this end, we will use the following
operation:

Definition 3.1.11. Let t ∈ T (F , X) be a term and π ∈ Pos(t) a position in t. t|π denotes the
subterm at position π in t and is obtained as follows:

t|π =

{
t if π = ε

ti|π′ if π = iπ′ and t = f(t1, . . . , ti, . . . , tn)

Definition 3.1.12 (Variable Positions, Non-Variable Positions). The set of variable positions is
defined as VPos(t) =

{
π | π ∈ Pos(t), t|π ∈ X

}
and contains all positions of subterms in t

that are variables. The set FPos(t) = Pos(t) \ VPos(t) of non-variable positions contains all
positions of subterms of t that are not variables.

Definition 3.1.13 (Variables of a term, Function symbols of a term). Let t ∈ T (F , X) be a
term. The set Vars(t) =

{
x | π ∈ VPos(t), t|π = x

}
contains all variables occurring in t. A

term that does not contain any variables (i.e. Vars(t) = ∅) is called a ground term or ground.
The set Func(t) =

{
f | π ∈ FPos(t), root(t|π) = f

}
contains all function symbols occurring

in t.

In a term, subterms can be replaced by other terms. This way, a new term is obtained. t[s]π
denotes the term t, where the subterm at position π is replaced by the term s. Formally:

Definition 3.1.14. Let t, s ∈ T (F , X) be terms and let π ∈ Pos(t) be a position in the term t.
Then t[s]π is defined as:

t[s]π =

{
s if π = ε

f(t1, . . . , ti[s]π′ , . . . , tn) if π = iπ′ and t = f(t1, . . . , ti, . . . , tn)

Contexts are special terms over a signature F ∪
{
2
}

, where 2 (hole) is a fresh constant
symbol. A context contains 2 at one or more positions. The hole-positions are intended to be
replaced by some term when the context is used.
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Definition 3.1.15 (T (F , X)-Substitution). A substitution for a set of terms T (F , X) (called
T (F , X)-substitution or just substitution if the set of terms is clear from the context or does not
matter) is a mapping σ : X 7→ T (F , X). A T (F , X)-substitution can be extended to a mapping
σ′ from terms to terms by homomorphic extension:

σ′(t) =


σ(x) if t = x ∈ X
c if t = c ∈ F (0)

f(σ′(t1), . . . , σ′(tn)) if t = f(t1, . . . , tn) with f ∈ F (n) and n ≥ 1

By abuse of notation, in the following when talking about a substitution σ, we always consider
its homomorphic extension σ′ but denote it as σ as well. The set Subst(T (F , X)) is the set
containing all T (F , X)-substitutions.

Definition 3.1.16 (Instance). A term t′ ∈ T (F , X) is called an instance of a term t ∈ T (F , X),
if there is some T (F , X)-substitution σ such that σ(t) = t′.

3.2 Term Rewriting

The formalism of term rewriting describes how terms can be rewritten into other terms by using
rules that define the allowed rewrite steps.

Definition 3.2.1 (Rewrite Rule). A rewrite rule (or just rule) is a pair (l, r) of terms l and r,
usually denoted as l → r. The term l is called the left-hand-side (lhs) of the rule and r is called
the right-hand-side (rhs) respectively. A term t that is an instance of a lhs of a rule is called a
redex.

Definition 3.2.2 (Term Rewriting System, TRS). A term rewriting system (TRS) R is a pair
(F , R) where F is a signature and R is a set of rules such that, for every rule l → r ∈ R,
l, r ∈ T (F , X) and the following restrictions hold:

• Vars(r) ⊆ Vars(l)

• l /∈ X

For better readability, we will write l → r ∈ R when we really mean l → r ∈ R for a TRS
R = (F , R).

A function symbol f ∈ F is called defined in a TRS R, if f is the root symbol of some
left-hand-side of a rule in R. A TRS where in each rule, no variable occurs more than once in
the lhs is called left-linear.

Definition 3.2.3 (Closure under F-Contexts, Closure under T (F , X)-substitutions). Let ◦ be a
binary relation on terms from T (F , X). The relation ◦ is:

• closed under F-contexts if and only if for every two terms t and s from T (F , X), t ◦ s
implies C[t]π ◦ C[s]π for all C ∈ T (F , X) and π ∈ Pos(C).
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• closed under T (F , X)-substitutions if and only if for every two terms t and s from
T (F , X), t ◦ s implies σ(t) ◦ σ(s) for all T (F , X)-substitutions σ.

Definition 3.2.4 (Rewrite Relation). A rewrite relation on terms from T (F , X) is a relation that
is closed under F-contexts and under T (F , X)-substitutions.

Definition 3.2.5. Let R be a TRS. A term t rewrites to a term s, written as t π→R s if there is
a rule l → r ∈ R, a position π ∈ Pos(t) and a substitution σ ∈ Subst(T (F , X)) such that
t|π = σ(l) and s = t[σ(r)]π. t→R s is called one-step rewrite relation. If the position at which
the rewrite step is applied is of interest, we may write t π→ s. If it is clear, which TRS is used,R
can be omitted. If we want to make the rule used at some rewrite step explicit, we write t→α s
where α = l→ r. The rewrite relation induced byR is→∗R, the transitive and reflexive closure
of→R.

Termination

One very important property of TRSs, respectively the rewrite relations induced by TRSs, is
termination.

Definition 3.2.6 (Termination, SN). A term t ∈ T (F , X) is called terminating with respect to
R if and only if there is no infinite rewrite sequence starting at t (i.e. there is no infinite sequence
t = t1 →R t2 →R . . . ). A TRS R is called terminating (or strongly normalizing, SN) if all
terms in T (F , X) are terminating with respect to R. A TRS that is not terminating is called
non-terminating.

Termination of a TRS is closely related to its induced rewrite relation.

Definition 3.2.7 (Well-Foundedness). A relation → is called well-founded if and only if there
are no infinite descending chains.

A TRSR is terminating if and only if→+
R is well-founded.

Over the years since term rewriting was invented, many methods of proving termination of
term rewriting systems have been introduced. One very successful approach is to use so-called
reduction orders.

Definition 3.2.8 (Reduction Order). A reduction order is a well founded order that is closed
under substitutions and under contexts.

The following result (taken from [BN98]) describes how reduction orders can be used to
prove termination of term rewriting systems:

Theorem 3.2.9 (Termination with Reduction Orders, [BN98]). A term rewriting system R ter-
minates iff there exists a reduction order > that satisfies l > r for all l→ r ∈ R.
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The Dependency Pair Framework

One weakness of reduction orders is, that in practice most commonly used rewrite orders (e.g.
RPO [Der82], LPO [KL80], and KBO [KB70]) are simplification orders ([Der82]), that can
only be used to show termination of a limited subclass of terminating TRSs (simply terminating
TRSs, see [BN98] for details). A different, more flexible, method of showing termination of
term rewriting systems is the so-called dependency pair framework. The dependency pair (DP)
framework was introduced by Giesl, Thiemann and Schneider-Kamp in [GTSK05]. It is based
on the dependency pair approach by Arts and Giesl [AG00] and offers a modular method for
proofing termination of term rewriting systems.

Definition 3.2.10 (Dependency Pairs, [GAO02]). Given a TRSR over a signature F , the set of
dependency pairs DP (R) over the signature F# = F ∪

{
f# | f ∈ F

}
is defined as follows:

DP (R) =
{
l# → u# | l→ r ∈ R, u E r, root(u) defined, u 6 l

}
The original dependency pair framework from [GTSK05] is defined in a very general and

flexible way. Here, we use a simplified version of the DP framework, similar to the one defined
in [SM08], which suffices for our applications.

Definition 3.2.11 (DP problem, [SM08]). A pair of TRSs (P,R) is called a DP problem, if all
the root symbols of rules in P occur only as root symbols in P and nowhere else in P orR. The
set P is called the set of dependency pairs of (P,R) and the set R is called the set of rules of
(P,R).

Definition 3.2.12 (Finiteness of DP Problems). A DP problem (P,R) is called finite, if there is
no infinite rewrite sequence of the following shape:

s1
ε→P t1 →∗R s2

ε→P→∗R t2 . . .

where each ti is terminating with respect to R (such a sequence is called a minimal infinite
rewrite sequence).

As a direct consequence from the results in [AG00] we have the following theorem:

Theorem 3.2.13 ([AG00]). A TRSR is terminating iff the DP problem (DP (R),R) is finite.

The use of so-called DP processors makes the DP framework very flexible and modular. A
DP processor Proc is a mapping from DP problems to sets of DP problems and a special symbol
no, indicating non-finiteness. DP processors can be sound and complete.

Definition 3.2.14 (Soundness of DP Processors). A DP processor Proc is called sound if, when-
ever Proc((P,R)) 6= no and all DP problems in Proc((P,R)) are finite, then also (P,R) is
finite.

Definition 3.2.15 (Completeness of DP Processors). A DP processor Proc is called complete
if, whenever Proc((P,R)) = no or at least one DP problem in Proc((P,R)) is not finite, then
also (P,R) is not finite.
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The property of soundness is required for every DP processor in order to work as excepted
in the DP framework. The property of completeness is required, if a DP processor should be
able to prove non-finiteness of DP problems.

3.3 Context-Sensitive Rewriting

Context sensitive rewriting was introduced by Lucas in [Luc98]. It is a generalization of the
term rewriting formalism, where in addition to a set of rules, one has to specify a replacement
map. A replacement map is a function that describes at which positions in terms rewrite steps
are allowed to be applied.

Definition 3.3.1 (Replacement Map, [Luc98]). Let F be a signature. A mapping µ : F 7→ 2N is
a replacement map for the signature F if for all f ∈ F : µ(f) ⊆

{
1, . . . , ar(f)

}
Definition 3.3.2 (Replacement Condition, [Luc98]). Let F be a signature and µ be a replace-
ment map. Let t ∈ T (F , X) be a term. The replacement condition is a predicate γµ,t defined on
the set of positions Pos(t) as follows:

γµ,t(ε)

γµ,f(t1,...,tn)(iπ)⇔ (i ∈ µ(f)) ∧ γµ,ti(π)

Definition 3.3.3 (µ-Replacing Positions, [Luc98]). The set of all µ-replacing positions in a term
t is defined as Posµ(t) =

{
π | π ∈ Pos(t), γµ,t(π)

}
. Analogously, FPosµ(t) denotes the set

of all µ-replacing non-variable positions of t and VPosµ(t) denotes the set of all µ-replacing
variable positions of t. Complementary to Posµ(t), FPosµ(t) and VPosµ(t), the sets Posµ̄(t),
FPosµ̄(t) and VPosµ̄(t) contain the non-µ-replacing (non-variable/variable)-positions of t.

Definition 3.3.4 (Variables and Symbols at (Non-)µ-replacing positions). Let t ∈ T (F , X) be
a term and µ a replacement map. We define the following sets:

• Varsµ(t) =
{
x | π ∈ VPosµ(t), t|π = x

}
• Varsµ̄(t) =

{
x | π ∈ VPosµ̄(t), t|π = x

}
• Funcµ(t) =

{
f | π ∈ FPosµ(t), root(t|π) = f

}
• Funcµ̄(t) =

{
f | π ∈ FPosµ̄(t), root(t|π) = f

}
Definition 3.3.5 (CS-TRS). A context-sensitive term rewriting system (CS-TRS) is a pair (R, µ)
whereR is a TRS and µ is a replacement map for the signature ofR.

Definition 3.3.6 (Context-Sensitive Rewrite Relation [Luc98]). Let (R, µ) be a CS-TRS. A term
t µ-rewrites to a term s, written t ↪→R,µ s, if there is some position π such that t π→ s holds,
and π ∈ Posµ(t) (i.e. π is a µ-replacing position in t). The one-step context-sensitive rewrite
relation of R wrt. µ is ↪→R,µ. The context-sensitive rewrite relation of R wrt. µ is ↪→∗R,µ. If R
or µ are obvious from the context, they can be omitted. If the position at which the rewrite step
is applied does not matter, it can also be omitted.
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Termination of CS-TRSs

As in the case of TRSs, one can ask whether CS-TRSs are terminating. As before, termination
is defined by means of the absence of infinite rewrite sequences in the rewrite relation induced
by the CS-TRS. Since the rewrite relation of a CS-TRS is a restriction of the rewrite relation of
the corresponding TRS, termination of CS-TRSs should follow more easily.

Definition 3.3.7 (Termination of CS-TRSs). Let (R, µ) be a CS-TRS and t ∈ T (F , X) a term.
t is called terminating with respect to (R, µ) if there is no infinite rewrite sequence t = t1 ↪→R,µ
t2 ↪→R,µ . . . . A CS-TRS (R, µ) is called terminating, if every term s ∈ T (F , X) is terminating
with respect to (R, µ).

The Context-Sensitive Dependency Pair Framework

There are different approaches on how to generalize the DP framework to context sensitive
rewriting. VMTL uses the improved version [AEF+08] of the context-sensitive dependency
pairs [AGL06] approach by Alarcon, Gutierrez and Lucas. The main difference between the
original approach and the refined approach is, that the former uses collapsing dependency pairs,
while the latter avoids this. Collapsing dependency pairs are problematic when generalizing
existing ordinary (non-CS) DP processors to the context-sensitive case. In the refined ver-
sion, many existing DP processors can be generalized to the context-sensitive case in an almost
straightforward way [AEF+08].

Definition 3.3.8 (µ-replacing (non-µ-replacing) subterm relation, [AGL06]). Let (R, µ) be a
CS-TRS. Let s, t ∈ T (F , X) be terms. Eµ and Eµ̄ are binary relations on terms defined as
follows:

t Eµ s ⇔ s|π = t for some π ∈ Posµ(s)
t Eµ̄ s ⇔ s|π = t for some π ∈ Posµ̄(s)

In [AGL06], two distinct sets of dependency pairs for CS-TRSs (R, µ) are defined: The set
DPo((R, µ)) of ordinary dependency pairs and the set DPc((R, µ)) of collapsing dependency
pairs.

Definition 3.3.9 (DPo((R, µ)), DPc((R, µ)), [AGL06]). Let (R, µ) be a CS-TRS. The sets
DPo((R, µ)) and DPc((R, µ)) are defined as follows:

DPo((R, µ)) =
{
l# → u# | l→ r ∈ R, u Eµ r, root(u) defined

}
DPc((R, µ)) =

{
l# → x | l→ r ∈ R, x Eµ r, x 6µ l, x ∈ X

}
In [AEF+08] a method is introduced, that removes the collapsing dependency pairs from

the set of dependency pairs of a CS-TRS, adding a new set DPu((R, µ)) of non-collapsing
dependency pairs (called unhiding dependency pairs) instead. This set is constructed from the set
of collapsing dependency pairs. The dependency pairs in this set, together with the dependency
pairs in DPo((R, µ)) will form the set DP ((R, µ)) of dependency pairs of a CS-TRS (R, µ).
First, we need the notion of hidden terms and hiding contexts:
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Definition 3.3.10 (Hidden Term, [AEF+08]). Let (R, µ) be a CS-TRS. A term t is a hidden
term if root(t) is a defined symbol inR and if there exists a rule l→ r ∈ R with t / 6µ r.

Definition 3.3.11 (Hiding Context, [AEF+08]). Let (R, µ) be a CS-TRS. A function symbol
f hides position i if there is a rule l → r ∈ R with f(r1, . . . , ri, . . . , rn) / 6µ r, i ∈ µ(f), and
ri contains a defined symbol or a variable at a µ-replacing position. A context C is hiding iff
C = 2 or C has the form f(t1, . . . , ti−1, C

′, ti+1, . . . , tn) where f hides position i and C ′ is a
hiding context.

Definition 3.3.12 (Improved Context-Sensitive Dependency Pairs, [AEF+08]). Let (R, µ) be a
CS-TRS. If DPc((R, µ)) is not the empty set, a fresh unhiding tuple symbol U is introduced
and the set DPu((R, µ)) contains:

• s→ U(x) for every s→ x ∈ DPc((R, µ))

• U(f(x1, . . . , xi, . . . , xn)) → U(xi) for every f ∈ F (n) and 1 ≤ i ≤ n where f hides
position i

• U(t)→ t# for every hidden term t

Otherwise, if DPc((R, µ)) = ∅, DPu((R, µ)) is empty.

The definition of CS-DP problems and CS-DP processors in [AEF+08] is more general than
the definition we use here (we do not use CS-DP processors for proving innermost termination).

Definition 3.3.13 (CS-DP Problem, CS-DP Processor). A CS-DP problem is a tuple (P,R, µ),
where P and R are TRSs and µ is a replacement map. A CS-DP processor is a function Proc

from CS-DP problems to sets of CS-DP problems and a special symbol no indicating non-
finiteness.

Definition 3.3.14 (Soundness of CS-DP Processors). A CS-DP processor Proc is called sound
if, whenever Proc((P,R, µ)) 6= no and all DP problems in Proc((P,R, µ)) are finite, then
also (P,R, µ) is finite.

Definition 3.3.15 (Completeness of CS-DP Processors). A CS-DP processor Proc is called
complete if, whenever Proc((P,R, µ)) = no or at least one DP problem in Proc((P,R, µ)) is
not finite, then also (P,R, µ) is not finite.

In [AEF+08], termination of a CS-TRS is characterized by the absence of infinite chains.
For consistency with the definition of the non-context-sensitive DP framework in the previous
section and for some proofs in later chapters, we also give a different characterization and argue
that it is equivalent.

Definition 3.3.16 ((P,R, µ)-Chain, Finiteness of a CS-DP problem, [AEF+08]). Let (P,R, µ)
be a CS-DP problem. A (P,R, µ)-chain is a sequence of dependency pairs s1 → t1, s2 →
t2, · · · ∈ P (pairwise variable disjoint), where there exists a substitution σ, such that for all i,
σ(ti) ↪→∗R,µ σ(si+1) holds. A (P,R, µ)-chain is called minimal if for all i, the term ti terminates
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wrt. (R, µ). A CS-DP problem (P,R, µ) is called finite if no infinite minimal (P,R, µ)-chain
exists.

For some proofs, a different (equivalent) characterization of finiteness of a CS-DP problem
is convenient.

Definition 3.3.17 (Finiteness of a CS-DP problem). A CS-DP problem (P,R, µ) is finite iff
there is no infinite rewrite sequence of the following shape:

s1
ε
↪→P,µ t1 ↪→∗R,µ s2

ε
↪→P,µ t2 ↪→∗R,µ . . .

where each ti is terminating with respect to (R, µ) (such a sequence is called a minimal infinite
rewrite sequence).

Proposition 3.3.18. The two characterizations of finiteness of a CS-DP problem (P,R, µ) are
equivalent. That is, (P,R, µ) is finite wrt. Definition 3.3.16 if and only if it is finite wrt. Defini-
tion 3.3.17.

Proof. Suppose, a CS-DP problem (P,R, µ) is not finite according to Definition 3.3.17. Then
there is an infinite rewrite sequence of the following shape:

s1
ε
↪→P,µ t1 ↪→∗R,µ s2

ε
↪→P,µ t2 ↪→∗R,µ . . .

where each ti terminates wrt. (R, µ). Therefore, we have si
ε
↪→P,µ ti for all i ≥ 1, which im-

plies, that for each of these steps, there has to be a rule li → ri ∈ P and substitution σi such
that si = σi(li) and ti = σi(ri) (because, by assumption the rule is applied at root position).
Without loss of generality, we can assume that the rules li → ri do not share any variables and
the domains of the substitutions σi are pairwise disjoint. Therefore, we can define a new substi-
tution σ that combines all σi. From ti ↪→∗R,µ si+1 we know σ(li) ↪→∗R,µ σ(ri+1). Furthermore,
all ti are terminating wrt. (R, µ), so also all σ(ri) are terminating wrt. (R, µ). Thus, we have
an infinite minimal (P,R, µ)-chain l1 → r1, l2 → r2, . . . .
Now, suppose (P,R, µ) is not finite according to Definition 3.3.16. We know, that there is a
sequence of rules from P: s1 → t1, s2 → t2, . . . and a substitution σ such that for all i ≥ 1,
σ(ti) ↪→∗R,µ σ(si+1) and σ(ti) terminates wrt. (R, µ). Since CS-rewriting is closed under

substitutions([Luc95]), it follows that σ(si)
ε
↪→P,µ σ(ti) for all i ≥ 1. Thus, we obtain the

following infinite rewrite sequence:

σ(s1)
ε
↪→P,µ σ(t1) ↪→∗R,µ σ(s2)

ε
↪→P,µ σ(t2) ↪→∗R,µ . . .

where each σ(ti) (i ≥ 1) terminates wrt. (R, µ).

Theorem 3.3.19 ([AEF+08]). A CS-TRS (R, µ) is terminating if and only if the CS-DP problem
(DP ((R, µ)),R, µ′) is finite, where µ′(f) = µ(f) and µ′(f#) = µ(f) for all f ∈ F and, if
DPc(R, µ) 6= ∅ then µ′(U) = ∅.
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3.4 Conditional Rewriting

In conditional rewriting, applicability of rules depends on additional conditions that are formu-
lated as part of the rules. For a comprehensive introduction to conditional rewriting we refer to
[Ohl02]. Here we just state the most important definitions needed for working with VMTL. A
conditional term rewriting system (CTRS) consists of rules of the following shape:

l→ r ⇐ s1 →∗ t1, . . . , sn →∗ tn

The part after ⇐ in the rule are the conditions. The conditions may also be empty, in which
case ⇐ can be omitted. Such a system is called oriented CTRS (because →∗ is used in the
conditions). For use with VMTL we are interested in so-called oriented 3-CTRSs. A 3-CTRS
is a CTRS where for each rule the following restriction concerning the occurrence of variables
holds: Vars(l)∪

⋃n
i=1 (Vars(si) ∪ Vars(ti)) ⊆ Vars(r). That is, in a 3-CTRS, variables in the

right-hand-side of rules must appear either in the left-hand-side or in the conditions. A deter-
ministic CTRS (DCTRS) is an oriented 3-CTRS, where for each rule, the following additional
condition holds: Vars(si) ⊆ Vars(l) ∪

⋃i−1
j=1 Vars(tj).

In the following, when talking about CTRSs, we always mean oriented 3-CTRSs.

Definition 3.4.1 (Conditional Rewrite Relation). LetR be a oriented CTRS. The rewrite relation
→R is defined inductively. For the base case we consider the TRS R0 = ∅. In the induction
step, we define the following TRSs:

Rk =
{
σ(l)→ σ(r) | l→ r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R, σ(si)→Rk−1

σ(ti), 1 ≤ i ≤ n
}

Finally, we define→R=
⋃
i≥0 →Ri .

The inductive definition of the rewrite relation leads to a subtle problem regarding termina-
tion. Consider the following CTRSR from [SG10, Sch11]:

a→ b⇐ a→∗ b

In this example, the rewrite relation is empty, thus R is terminating when considering the
ordinary notion of termination. However, tools that try to apply the rule might loop when trying
to figure out if the condition for the rule is satisfied. Therefore, when dealing with CTRSs, one
usually needs a stronger notion of termination that also captures these cases. To this end, in
[LMM05] the notion of operational termination is introduced which is what we are interested
in when proving termination of CTRSs.

DCTRSs can be transformed into context-sensitive TRSs by the so-called context-sensitive
unravelling transformation [SG10, Sch11]. In [SG10, Sch11] it is shown, that if the CS-TRS
obtained by this transformation is terminating, then the original DCTRS is context-sensitive
quasi-reductive which in turn implies that it is operationally terminating.

Definition 3.4.2 (Context-Sensitive Unravelling of DCTRSs, [SG10, Sch11]). Let R be
a DCTRS over a signature F . The context-sensitive unravelling of R is the CS-TRS
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(UCS(R), µU(F)). For every conditional rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn , n
new function symbols Uαi (1 ≤ i ≤ n) are introduced. For all conditional rules α, UCS(R)
contains the following unconditional rules:

l → Uα1 (s1,Var(l))
Uα1 (t1,Var(l)) → Uα2 (s2,Var(l), EVar(t1))

...

Uαn (tn,Var(l), EVar(t1), . . . , EVar(tn−1)) → r

where Var(t) is an arbitrary but fixed sequence of the variables occurring in t, and EVar(ti)
is an arbitrary but fixed sequence of variables occurring in the set Vars(ti) \ (Vars(l) ∪⋃i−1
j=1 Vars(tj)). Unconditional rules are inherited from R into UCS(R) without changes.

UCS(R) is a TRS over the signature U(F) which extends F by all newly introduced symbols.
The replacement map µU(F) is defined as follows: µU(F)(f) =

{
1 . . . n

}
for all f ∈ F with

ar(f) = n and µU(F)(u) =
{

1
}

for all newly introduced symbols u.

Example 3.4.3. Applying the transformation on the example from before yields the following
CS-TRS:

a → U1
1 (a)

U1
1 (b) → b

with the replacement map µ where µ(U1
1 ) =

{
1
}

. This CS-TRS is obviously non-terminating,
since the lhs of the first rule is embedded in its rhs at a µ-replacing position. Thus, by the
results from [SG10, Sch11] we can conclude, that the original CTRS from the example is not
operationally terminating.
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CHAPTER 4
VMTL

In this chapter we discuss some of the features of VMTL. In particular, we will see how proof
strategies are executed by VMTL. After that, we present the extensions that are added to VMTL
as part of this thesis. The most important extensions are the support for direct proof methods
and a new strategy language that supports these new methods. In the last section we give a short
overview of VMTL from a programmer’s point of view, and discuss how the program logic of
VMTL is organized. This section may be helpful when planning to extend VMTL further.

4.1 VMTL

VMTL (Vienna Modular Termination Laboratory [SG09]) is a tool for automatic termination
proofs of term rewriting systems, context-sensitive term rewriting systems and conditional term
rewriting systems. As the name suggests, one big emphasis of VMTL is modularity. New proof
techniques and transformations can be added without the need of recompiling or changing the
core VMTL system. The core system also provides functions implementing the most commonly
used operations on terms, TRSs, etc. which can be used when implementing new proof tech-
niques.

The language of implementation is Java (Version 1.5). Currently (considering all modifica-
tions and extensions made as part of this thesis) the core VMTL system consists of 61 classes
and about 30.500 lines of code. The currently implemented set of proof techniques contribute
another 29 classes and about 14.700 lines of code and the VMTL Sat Solving Facility (see Chap-
ter 5) adds another 42 classes and about 12.700 lines of code. Since Java is an object-oriented
language, modularity (i.e. adding new proof techniques) is realized in a very natural way. When
a new proof-technique or transformation scheme is added, a new class (implementing the corre-
sponding Java interface) is created, and the resulting ".class"-file is loaded by VMTL at runtime
whenever it is needed.
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Strategies for the DP Analysis

Proof search in VMTL is done in the DP framework (cf. Chapter 3.1). Such a proof search will
from now on be called DP analysis. All currently implemented proof techniques are (CS-)DP
processors. Due to the flexibility of the DP framework regarding the order of application of DP
processors, it is very important to choose a reasonable order in which the processors are applied.
For example there are DP processors that split a given DP problem into a set of smaller DP
problems. DP processors of this kind will usually be used first. Then the resulting smaller DP
problems will be treated by different DP processors, until termination is proved. Furthermore, in
VMTL the behaviour of DP processors can be controlled by additional parameters. For example,
the user can choose, whether the RPOS reduction pair processor should use usable rules or not.

VMTL allows the user to control the order in which the different DP processors are ap-
plied, as well as the parameters for each application of a DP processor, by a so-called strategy
which has to be provided by the user (this is the reason that, strictly speaking, VMTL is a
semi-automatic termination prover). The choice of strategy should depend on the TRS which
should be proven (or disproven) terminating. However, sometimes one just wants a quick at-
tempt at proving termination of some system, without bothering to think of a strategy first. For
these cases, VMTL assumes a good "general-purpose" strategy that has proven useful in many
practical tests and competitions.

For the biggest part, the strategies used by VMTL are quite intuitive. Nevertheless, there are
some things that could be implemented in different ways. So, in order to have a rigid formal
definition of how strategies in VMTL are executed, we specify how strategies are handled by
VMTL. Abstractly, a strategy can be considered as a tree with ordered branches (called a strategy
tree), where each node can be either a DP processor node or a group node. DP processor nodes
are always leaves in the tree, while group nodes can have an arbitrary number of child nodes (at
least one is required, however). We formally define how strategy trees are built and how they
are "executed" by VMTL.

Strategy Trees

Here, we discuss how well-formed strategy trees are built. Note, that the description of strategy
trees given here is a high-level description, based on the notion of mathematical trees. This
concept will be used when describing the proof search in VMTL and for formal reasoning. The
actual syntax of the strategy file, defining a strategy tree, that is given to VMTL will be based on
XML and will be described later in this chapter.

In our setting, a node can have an arbitrary number of parameters (key-value mappings)
and an arbitrary number of child nodes. Furthermore, each node has a specific type that defines
how VMTL should handle that node. We distinguish two special types of nodes that can occur in
strategy trees: DP processor nodes and DP group nodes. Both DP processor nodes and DP group
nodes have at least two parameters: The parameter time and the parameter runs, both with an
integer value. These two parameters specify details about the proof search. Their meaning will
be discussed shortly in the next subsection dealing with the execution of strategy trees.

In the following, let Str be the set of all strings over the alphabet of all non-whitespace
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character symbols.

Definition 4.1.1 (Parameter). A parameter is a triple (k,D, def), where k (the key) is a textual
string from Str, D is the domain of elements that the value of the parameter may assume and
def is a default value (an element from D). We define the two standard parameters, that are
used in every node as follows:

• time = (time,N, 0) for specifying the maximum time VMTL should work on executing
the node.

• runs = (runs,N, 1) for specifying how often the node should be executed by VMTL.

Definition 4.1.2 (DP Strategy Node). A DP strategy node is a tuple (t, P, PA,C) where t is a
textual string from Str describing the type of the node, P is a set of parameters available for
this node and PA is a parameter assignment (a set of pairs (k, v) where k is the key from some
parameter in P and v is some element from the domain of that parameter, with all k pairwise
distinct). Furthermore, C is a list of child nodes (i.e. DP strategy nodes).

Definition 4.1.3 (DP Processor Node). A DP processor node is a DP strategy node (t, P, PA, ∅)
where t is the name of some DP processor (we assume, that no processor uses the empty string
ε as its name and that different DP processors use different names). If the implementation of the
referenced DP processor in VMTL depends on parameters (k1, D1, def1), . . . , (kn, Dn, defn),
then P =

{
time, runs

}
∪
{

(ki, Di, defi) | 1 ≤ i ≤ n
}

. C is empty for DP processor nodes (i.e.
they are leaf nodes in strategy trees).

Definition 4.1.4 (DP Group Node). Groups can be executed in two ways: sequentially or paral-
lel. The way they are executed is defined by two additional parameters:

• parallel = (parallel,
{
true, false

}
, false) for specifying whether this is a sequential

or a parallel group.

• dp_evaluator = (dp_evaluator, Str,default_evaluator) is needed only in
parallel groups to determine the best result.

A DP group node is a DP strategy node (ε,
{

time, runs,parallel,dp_evaluator
}
, PA,C) where

the list C contains at least one child node.

Definition 4.1.5 (DP Analysis Strategy Tree). A DP analysis strategy tree is a tree that is rooted
by some DP strategy node.
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Example 4.1.6.

εtime 〈 0 〉
runs 〈 1 〉
parallel 〈 false 〉


mmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQ

Dependency-
Graph[

time 〈 0 〉
runs 〈 1 〉

]
εtime 〈 0 〉

runs 〈 1 〉
parallel 〈 true 〉


mmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQ

KBO[
time 〈 10 〉
runs 〈 3 〉

] RPOS[
time 〈 10 〉
runs 〈 3 〉

]

This strategy tree represents the very simple strategy, where first the dependency graph processor
is applied. After that the KBO and RPOS processor are tried in parallel. Each of these processors
may run three times.

The next subsection describes how VMTL executes strategy trees.

Execution of Strategy Trees

In this subsection, we give a very formal definition, of how VMTL executes a given strategy,
accompanied by an informal description, that is probably sufficient for using VMTL but might
not be as precise.

When searching for a proof, VMTL "executes" the root node of a DP analysis strategy
tree. Formally, the execution of a DP strategy node n amounts to applying a mapping φn from
sets of DP problems to sets of DP problems. However, there is one problem when trying to
formalize this mapping: Every strategy node provides two parameters, one of which is time.
This parameter defines a timeout for the calculation of the corresponding node. If this parameter
is zero, then there is no time-limit. However, if it is not zero (let it be t), VMTL abandons the
calculation if after t seconds no result is found. To handle this source of non-determinism and
formally model this behaviour, we define for each node n and set of DP problems I , the constant
tφn(I) that specifies the time that VMTL will require to find the result of φn(I) (ignoring time
constraints). Of course, this does not work in practice. Instead, VMTL uses a Java-Timer that
signals the calculation to stop after a certain time has passed.
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Definition 4.1.7 (Parameter Assignment in a Strategy Node). Let n = (t, P, PA,C) be a strat-
egy node. The parameter assignment function PAn maps all keys k appearing as keys of param-
eters in P to their assigned value in the node n. For all k that are keys of some parameter in P
define:

PAn(k) =

{
v if there is some pair (k, v) ∈ PA
def otherwise, if (k,D, def) ∈ P for some set D

Definition 4.1.8 (Strategy Node Execution Function). Let n = (t, P, PA,C) be a strategy node.
The execution function φn maps sets of DP problems to sets of DP problems. The calculation of
φn(I) for some input set I is described successively in the remainder of this subsection.

First, VMTL checks, whether the node n is a DP processor node or a DP group node. If the
parameter runs is greater than one, the node has to be executed repeatedly. Thus we can define:

φn(I) =


r times︷ ︸︸ ︷

φGn (φGn (. . . ( I) . . . )) if n is a DP group node and PAn(runs) = r
r times︷ ︸︸ ︷

φDPn (φDPn (. . . ( I) . . . )) if n is a DP processor node and PAn(runs) = r

In the case, that n = (t, P, PA, ∅) is a DP processor node, VMTL executes the DP processor
Proc that is referenced by the name in t for each problem in the set of input problems. If there
is more than one DP problem in the input set, the time available at the current node is divided
evenly, so every application of the DP processor gets the same amount of time. Formally, in this
case we have φDPn (

{
(Pi,Ri) | 1 ≤ i ≤ k

}
) = φDPn′ (

{
(P1,R1)

}
) ∪ · · · ∪ φDPn′ (

{
(Pk,Rk)

}
)

where n′ = (t, P, PA′, ∅) and PA′ = PA except for the parameter assignment (time, t) in
PA which becomes (time, dt/ke) in PA′. If the input-set contains only one DP problem,
VMTL returns the input system in case a timeout occurs, and otherwise it returns the result of
the application of the corresponding DP processor. Therefore, we define:

φDPn (
{

(P,R)
}

) =


{

(P,R)
}

if t
φDPn (

{
(P,R)

}
)
> PAn(time)

Proc(
{

(P,R)
}

) otherwise

If a DP group node n = (ε, P, PA,C) is executed, VMTL checks, whether the group is a
sequential group or a parallel group. If it is a sequential group (i.e. PAn(parallel) = false),
all child nodes have to be executed one after another, where the input of the first child node in the
list is the input set I , the result of the first child node is used as the input of the second child node
and so on. The sequential processing shares a common timeout. So it might happen, that the first
few child nodes already consume all time that is available at this node. In this case, the remaining
child nodes are not executed and the currently obtained result is returned. Let the list of child
nodes be C = [n1, . . . , nk] where n1 = (t1, P1, PA1, C1), . . . , nk = (tk, Pk, PAk, Ck). For all
i with 1 ≤ i ≤ k define n′i = (ti, Pi, PA

′
i, Ci) with PA′ni = PAni except that (time, ti) from

PAni becomes (time,min
{
ti − tΣ, t− tΣ

}
) in PA′ni , where tΣ = tφni−1 (φni−2 (...φn1 (I))... )
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and t = PAn(time). Now choose the highest j such that for n′j , PAn′j (time) is still greater
than zero. Then φn(I) = φnj−1(φnj−2(. . . φn1(I) . . . )).

Finally, if the executed node n = (ε, P, PA,C) is a parallel DP group node (i.e. if the pa-
rameter parallel is true in n), VMTL executes all child nodes in parallel with the same
input. The result of the execution is then the most simple result that any of the child nodes
yielded. Which one is the most simple is determined with the evaluation function referenced
by the parameter dp_evaluator (The evaluation function returns a numerical value for any
given set of DP problems such that a lower number means that this set of DP problems is po-
tentially easier to prove terminating than a set of DP problems that gives a higher number). As
before, let the list of child nodes be C = [n1, . . . , nk] where n1 = (t1, P1, PA1, C1), . . . , nk =
(tk, Pk, PAk, Ck). Furthermore, let eval be the evaluation function referenced by the property
PAn(dp_evaluator). Then φn(I) = φni(I) if eval(φni(I)) ≤ eval(φnj (I)) for all j with
1 ≤ j ≤ k. If there are more possible choices for i, it is not defined which one is chosen.
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Example 4.1.9.

R
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��
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KBO

��
(∅,R)

��0000000000000000000 (P1.2.2,R)

��

[timeout]

RPOS

��

(∅,R)

(P1.2.3,R)

(∅,R)

This tree visualizes a possible execution of the strategy from Example 4.1.6 for some TRS
R. First, the TRS is transformed into the corresponding DP problem (DP (R),R) (This is
done implicitly and is not part of the strategy). After that, the dependency graph processor is
applied which yields two new DP problems (P1,R) and (P2,R). Both problems are examined
in parallel by the KBO processor and the RPOS processor, which successively try to simplify
the problem (each of these may run up to three times according to the strategy). In the end,
for the first problem, (P1,R), KBO finds a proof of termination, while RPOS did not succeed
after three successive attempts. Thus the parallel group returns the more simple result, which
will (depending on the evaluation function that is used used) most probably be (∅,R). For the
second problem, RPOS succeeds after the first attempt and KBO times out. Again, the parallel
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group returns the most simple output (∅,R). Thus for both branches, finiteness could be proven.
Since all DP processors used in VMTL are sound, we can conclude thatR is terminating.

Context-Sensitive Rewriting

VMTL supports termination proofs for context-sensitive TRSs. As in the context-free case,
proof search is based on Dependency Pairs. For the context-sensitive version, the improved CS-
DP framework from [AEF+08] is used (See Chapter 3.3 for a quick summary). The improved
CS-DP framework is closely related to the regular DP framework. Therefore, many existing DP
processors can be adapted for the context-sensitive version very easily and, more importantly,
most CS-DP processors are generalizations of their corresponding regular DP processors, so one
gets those for free as a special case. However, there are some DP processors that require some
more effort to adapt them to CS-DP processors. One example is the reduction pair processor
with usable rules, where the usable rules cannot easily be generalized to the context-sensitive
case. Most CS-DP processors in VMTL that utilize usable rules, incorporate the CS-usable rules
described in [AEF+08].

Having said this, all processors currently implemented in VMTL are really CS-DP proces-
sors that treat non context-sensitive DP problems as a special case (mostly by using the complete
replacement-map (i.e. the replacement map, where every position is allowed), but in some cases,
like usable-rules, by making a case distinction). This makes the use of VMTL very convenient,
because strategies defined for termination proofs of context-sensitive TRSs can be used without
change for termination proofs of context-free TRSs and vice versa (although, in most cases it is
probably still better to use a strategy tailored to the TRS at hand).

Conditional Rewriting

For proving operational termination (cf. [LMM05]) of CTRSs, VMTL uses the context-sensitive
unravelling transformation ([SG10]) in order to translate CTRSs into CS-TRSs. Afterwards, the
CS-DP framework is used as described to try to prove termination of the obtained CS-TRS. As
shown in [SG10], it is sufficient to show termination over the original signature of the CTRS
(i.e. the symbols introduced by the transformation need not be considered).

TRS-to-TRS Transformations

The context-sensitive unravelling transformation is implemented as a TRS-to-TRS transforma-
tion. It is also possible to specify additional transformation operations on TRSs that can be
applied on TRSs before the proof attempt is started. As in the case of unravelling, these trans-
formations may also change the type of TRS (i.e. transform a CTRS into a CS-TRS, a CS-TRS
into a TRS and so on).

Output Processing

VMTL provides an interface for specifying the output (i.e. proof details) in a uniform way. This
interface is used by all DP processors. Output specified in this way can be processed by special
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output processors in VMTL. For example, the default output processor implemented in VMTL
generates HTML output. If needed, one could easily add an output processor that generates raw
text output or even LATEX output.

4.2 Extensions of VMTL

As part of this thesis, support for direct proof methods is added to VMTL. This section covers the
integration of these methods and the corresponding extension of the strategy language. Another
part of this thesis is the integration of two concrete, new (to VMTL) proof methods: KBO and
root-labeling (as direct methods and as DP processors). The integration of these methods is
covered in dedicated chapters (Chapter 7 for KBO, Chapter 6 for root-labeling).

To ease the specification and solving of SAT and SMT solving tasks for VMTL processors
and methods, a framework for SAT/SMT solving is developed. This framework is the basis for
the new KBO processor and can be used for any processors utilizing SAT or SMT solving, which
are added in the future. A detailed description of the SAT/SMT solving framework can be found
in Chapter 5.

Direct Methods

As mentioned before, the proof search in VMTL is based on the dependency pair framework (DP
framework). One goal of this work is to add support for direct proof methods (direct methods)
in VMTL which can be used as preprocessing before engaging the DP framework. In contrast to
the DP processors used in the dependency pair framework, direct proof methods do not operate
on DP problems, but directly examine a given rewrite system.

Definition 4.2.1. A mapping DM from rewrite systems to rewrite systems and a new symbol
no (indicating non-termination) is called a direct method (abbreviated DM), if the following
properties are satisfied for all rewrite systemsR and S:

• if DM(R) = no, thenR is non-terminating.

• if DM(R) = S, then if S is terminating alsoR is terminating.
In particular, this means, that if DM(R) = ∅, thenR is terminating.

By the definition of direct methods, every direct method is sound. A direct method is called
complete, if the following additional condition holds:

• if DM(R) = S, then if S is non-terminating, alsoR is non-terminating.

Given the input systemR, most implementations of direct methods will just return the empty
set, if the system could be proven terminating, or the input systemR itself, if no proof is found.
However, the above definition also allows direct methods to return a special symbol no, if non-
termination is detected. More advanced implementations can also return a different rewrite
system S with the same termination-properties as R. In most cases S will be a subset of R. In
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any case, proving termination of S should in some sense be easier than proving termination of
R.

Similar to the DP processors and CS-DP processors, direct methods can also be implemented
as context-sensitive direct methods (CS-DMs) that operate on CS-TRSs instead of TRSs.

Since one big emphasis of VMTL is in modularity, direct methods are also added in a very
modular way. This means, that it is easy to add new direct methods later on, without having
to recompile VMTL every time. To this end, a set of Java-interfaces (extending the current
VMTL-API) is provided, which can be implemented by new direct methods. New methods,
implementing these interfaces are available at runtime for proof search.

Like the DP processors, every direct method can provide a number of parameters through its
interface, which allow to configure the mechanics behind the proof method.

If a direct proof methods succeeds in proving termination (or non-termination) of a rewrite
system or finds a simpler system with equal termination properties, it should provide appropri-
ate output information. The output should contain all details that are necessary for the user to
understand why the given system is indeed terminating (or non-terminating, resp.). The output
can be specified using the same output specification classes that are used for DP processor im-
plementations. Thus the output-processors can handle the output of both, direct methods and DP
processors in a generic way.

If no proof is found (i.e. the output of the direct method is not the empty set or no), the
output-system is passed on to the next method according to the defined strategy (the extended
strategy is covered in Section 4.2 in detail). The output of the last direct method in the prepro-
cessing strategy is then transformed into the corresponding DP problem, which is used as input
for the DP analysis (according to the DP analysis strategy).

Extensions of the Strategy Specification

In order to support direct methods, a separate strategy for the direct proof attempt can be pro-
vided. This strategy will be executed before the DP analysis strategy is executed. The direct
method proof attempt will thus be called "preprocessing" in the following. Subsequent to the
preprocessing, the DP analysis strategy is executed.

Both strategies are optional: If only the DP analysis strategy is provided, no preprocessing
is done and the proof attempt starts directly with the DP analysis step. On the other hand, if no
DP analysis strategy is provided, the proof attempt stops as soon as preprocessing is finished. If
no strategy at all is provided, then a default strategy (including preprocessing and DP analysis)
is assumed.

The structure of the strategy specification for preprocessing is quite similar to that of the
previously discussed DP analysis strategy in Section 4.1, but due to the simpler notion of direct
methods (as compared to DP processors), the strategy also is a little simpler.
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Strategy Trees for Preprocessing

The definition of preprocessing strategy trees is very similar to that of strategy trees for the DP
analysis from Section 4.1. Let parameters be defined as in Definition 4.1.1. We adopt the notion
of DP strategy nodes, DP processor nodes and DP group nodes for preprocessing as follows:

Definition 4.2.2 (DM Strategy Node). A DM strategy node is a tuple (t, P, PA,C) where t is
a textual string from Str describing the type of the node, P is a set of parameters available for
this node and PA is a parameter assignment (a set of pairs (k, v) where k is the key from some
parameter in P and v is some element from the domain of that parameter, all k pairwise distinct).
Furthermore, C is a list of child nodes (i.e. DM strategy nodes).

Definition 4.2.3 (DM Node). A DM node is a DM strategy node (t, P, PA, ∅) where t is
the name of some direct method (we assume, that no method uses the empty string ε as its
name). If the implementation of the referenced direct method in VMTL depends on parameters
(k1, D1, def1), . . . , (kn, Dn, defn), then P =

{
time, runs

}
∪
{

(ki, Di, defi) | 1 ≤ i ≤ n
}

. C
is empty for all DM nodes (i.e. they are leaf nodes in strategy trees).

Definition 4.2.4 (DM Group Node). Groups can be executed in two ways: sequentially or par-
allel. The way they are executed is defined by two additional parameters:

• parallel = (parallel,
{
true, false

}
, false) for specifying whether this is a sequential

or a parallel group

• dm_evaluator = (dm_evaluator, Str,default_evaluator_dm) is needed only
in parallel groups to determine the best result

A DM group node is a DM strategy node (ε,
{

time, runs,parallel,dp_evaluator
}
, PA,C)

where the list C contains at least one child node.

Definition 4.2.5 (Preprocessing Strategy Tree). A preprocessing strategy tree is a tree that is
rooted by some DM strategy node.

Executing Strategy Trees for Preprocessing

Execution of strategy trees for preprocessing is almost identical to the execution of DP-analysis
strategy trees (See Section 4.1). Here, we describe the differences that arise for the execution of
preprocessing strategy trees. The most important difference is, that now the execution function
is not a mapping from sets of DP problems to sets of DP problems but a mapping from TRSs
to TRSs. The execution of DM group nodes works exactly analogously to the execution of
DP group nodes. For the execution of DM nodes, the only difference to the execution of DP
processor nodes is, that now the input is not a set of DP problems but rather a single TRS.
Therefore, we can restrict ourselves to the base case, where only one input is available.
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The Strategy Language

The syntax for the strategy specification is based on XML. The user-specified strategy is passed
to VMTL (CLI) as a ".xml"-file. Syntactic validity of the given file is (to a certain degree) au-
tomatically checked by VMTL by validating it against an XML-schema-definition (See Section
4.2 for details).

A valid XML-file specifying a VMTL-strategy has to contain exactly one strategy element.
The strategy element can specify zero or one preprocessing elements and zero or one DP analysis
elements. The preprocessing and DP analysis elements have to have exactly one child element,
which can be either a group element or an element representing a direct method (for descendants
of the preprocessing element) or a DP processor (for descendants of the DP analysis element,
respectively). A group element can contain a sequence of other group nodes or elements repre-
senting direct methods resp. DP processors. The sequence has to contain at least one element,
but other than that can contain arbitrarily many elements. The parameters of group nodes resp.
direct method- or DP processor nodes are present as attributes of the respective element. If a
certain attribute is missing, the default value is assumed. This way, by choosing good default
values, it is possible to make the input file less "verbose". Another advantage of using XML
as basis for the strategy specification is that parsing is very easy due to the many XML-parsers
available. Also, XML-schema-definitions (see below) allow to easily check for syntactic and
logical errors.

The exact syntax for the strategy can be read off the schema definition in Section 4.2. As an
example for a valid strategy, the XML representation of the default strategy is provided in the
Appendix (A.1).

XML-Schema-Definitions

An XML-schema-definition (XSD) is an XML-based definition of a class of XML documents.
An XML document is said to validate against an XSD, if it is in the class defined by that XSD.
XML parsers can check whether an XML document validates against a certain XSD. If validation
fails, they can produce human-readable output describing why it failed. This way, syntactic
errors in an XML document can easily be located.

Due to the modular nature of VMTL, it is not possible to use a static XSD, because each DP
processor and each direct method has to be considered. Therefore, VMTL compiles the XSD
each time it has to validate a given strategy specification. All information about the parameters
provided by DP processors and direct methods is available at runtime through their implemented
VMTL-API interfaces. This information is used to compile the XSD.

The basic type, on which groups as well as DP processors and direct methods are based
is a node. A node is an abstract type, that cannot be instantiated directly, but it declares the
attribute "time" for the maximum execution time of a node, as well as the attribute "runs" for
the number of runs of this node. Both attributes are of type "nonNegativeInteger".

1 < !−− a b s t r a c t t y p e TANode ;
2 Group and DP−Proces sor− and DM−nodes e x t e n d t h i s −−>
3 < xsd :complexType name="TANode">
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4 < x s d : a t t r i b u t e name=" t ime " t y p e =" x s d : n o n N e g a t i v e I n t e g e r " d e f a u l t =" 0 " / >
5 < x s d : a t t r i b u t e name=" r u n s " t y p e =" x s d : n o n N e g a t i v e I n t e g e r " d e f a u l t =" 1 " / >
6 < / xsd :complexType >

Listing 4.1: XSD: TANode (abstract type for nodes)

Groups are another abstract type that extend nodes. Groups provide an additional parameter
"parallel" (of type boolean) to decide, whether the child elements of the group should be
executed in parallel or sequentially. This type is used as base for the two different kinds of
groups - direct method groups and DP processor groups. Direct method groups have to specify
a parameter "problem_selector_function_dm" (of type string). This parameter specifies a
method that is used to choose the most simple solution among a given set of rewrite systems if
more than one solution is found. Analogously, DP processor groups have to specify a parameter
"problem_selector_function_dp" (also of type string), to choose the most simple solution
among a given set of DP problems. Moreover, both kinds of groups have a sequence of child
nodes which are either groups of the corresponding type, or DP processor nodes resp. direct
method nodes. For every DP processor and direct method, VMTL will automatically generate
the necessary entries in the code below.

1 < !−− a b s t r a c t t y p e TAGroup −−>
2 < xsd :complexType name=" TAGroup ">
3 < x s d : c o m p l e x C o n t e n t >
4 < x s d : e x t e n s i o n base ="TANode">
5 < x s d : a t t r i b u t e name=" p a r a l l e l " t y p e =" x s d : b o o l e a n " d e f a u l t =" f a l s e " / >
6 < / x s d : e x t e n s i o n >
7 < / x s d : c o m p l e x C o n t e n t >
8 < / xsd :complexType >
9 < !−− t y p e TGroupPreproc −−>

10 < xsd :complexType name=" TGroupPreproc ">
11 < x s d : c o m p l e x C o n t e n t >
12 < x s d : e x t e n s i o n base =" TAGroup ">
13 < x s d : c h o i c e minOccurs=" 1 " maxOccurs=" unbounded ">
14 < x s d : e l e m e n t name=" Group " t y p e =" TGroupPreproc " / >
15 < !−− __GENERATE_DM_ENTRIES__ −−>
16 < / x s d : c h o i c e >
17 < !−− __GENERATE_DM_EVALUATOR_ATTRIBUTE −−>
18 < / x s d : e x t e n s i o n >
19 < / x s d : c o m p l e x C o n t e n t >
20 < / xsd :complexType >
21 < !−− t y p e TGroupDPAnalysis −−>
22 < xsd :complexType name=" TGroupDPAnalysis ">
23 < x s d : c o m p l e x C o n t e n t >
24 < x s d : e x t e n s i o n base =" TAGroup ">
25 < x s d : c h o i c e minOccurs=" 1 " maxOccurs=" unbounded ">
26 < x s d : e l e m e n t name=" Group " t y p e =" TGroupDPAnalysis " / >
27 < !−− __GENERATE_DP_ENTRIES__ −−>
28 < / x s d : c h o i c e >
29 < !−− __GENERATE_DP_EVALUATOR_ATTRIBUTE −−>
30 < / x s d : e x t e n s i o n >
31 < / x s d : c o m p l e x C o n t e n t >
32 < / xsd :complexType >
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Listing 4.2: XSD: TGroup (type for Group nodes)

The root node of an XML document defining a VMTL strategy is a "Strategy" element. This
element can have a "Preprocessing" element and a "DP analysis" element as children. Both of
these can be either a group of the corresponding type or a single DP processor resp. a single
direct method. The associated type is defined below. Again, VMTL automatically generates all
necessary entries for DP processors and direct methods.

1 < !−− Type d e f i n i t i o n f o r t h e s t r a t e g y node −−>
2 < xsd :complexType name=" T S t r a t e g y ">
3 < x s d : s e q u e n c e >
4 < x s d : e l e m e n t name=" P r e p r o c e s s i n g "
5 t y p e =" T P r e p r o c e s s i n g "
6 minOccurs=" 0 " maxOccurs=" 1 " / >
7 < x s d : e l e m e n t name="DP−A n a l y s i s "
8 t y p e ="TDP−A n a l y s i s "
9 minOccurs=" 0 " maxOccurs=" 1 " / >

10 < / x s d : s e q u e n c e >
11 < / xsd :complexType >
12 < xsd :complexType name=" T P r e p r o c e s s i n g ">
13 < x s d : c h o i c e minOccurs=" 1 " maxOccurs=" 1 ">
14 < x s d : e l e m e n t name=" Group " t y p e =" TGroupPreproc " / >
15 < !−− __GENERATE_DM_ENTRIES__ −−>
16 < / x s d : c h o i c e >
17 < / xsd :complexType >
18 < xsd :complexType name="TDP−A n a l y s i s ">
19 < x s d : c h o i c e minOccurs=" 1 " maxOccurs=" 1 ">
20 < x s d : e l e m e n t name=" Group " t y p e =" TGroupDPAnalysis " / >
21 < !−− __GENERATE_DP_ENTRIES__ −−>
22 < / x s d : c h o i c e >
23 < / xsd :complexType >

Listing 4.3: XSD: Strategy element and type

For each direct method and DP processor, the associated types have to be defined. For each
one of those entities, VMTL includes the following code to the XSD. _NAME_ is replaced by the
Java class-name of the entity. The parameters are extracted from the class through the interface,
and the attributes are defined accordingly.

1 < !−− t e m p l a t e f o r d i r e c t methods and DP−P r o c e s s o r s −−>
2 < xsd :complexType name="T_NAME_">
3 < x s d : c o m p l e x C o n t e n t >
4 < x s d : e x t e n s i o n base ="TANode">
5 < !−− d e f i n i t i o n o f a d d i t i o n a l a t t r i b u t e s −−>
6 < / x s d : e x t e n s i o n >
7 < / x s d : c o m p l e x C o n t e n t >
8 < / xsd :complexType >

Listing 4.4: XSD: Template for DP processors and direct methods
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Example 4.2.6. Consider the strategy, described in Example 4.1.6. A strategy file specifying
this strategy for VMTL could look as follows:

1 < S t r a t e g y >
2 <DP−A n a l y s i s >
3 <Group>
4 <DependencyGraph / >
5 <Group p a r a l l e l =" t r u e ">
6 < Reduc t ionPa i rSAT t ime =" 10 " r u n s =" 3 " / >
7 <KBOProcessor t ime =" 10 " r u n s =" 3 " / >
8 < / Group>
9 < / Group>

10 < / DP−A n a l y s i s >
11 < / S t r a t e g y >

Listing 4.5: Example Strategy

As an example of a fully compiled XSD, the XSD generated by VMTL with all the default
DP processors and direct methods is included in the appendix in Section A.2.

4.3 The VMTL Source Code

In this section, we provide a quick overview of the organization of the VMTL-source code, that
may be helpful when implementing new methods and processors. For a detailed description of
the classes presented here, we refer to the VMTL-Javadoc documentation. Basically, the source
code consists of three projects:

DeepVisDS
Contains the core data structures used in VMTL.

DeepVis
Implementation of the VMTL program logic (uses DeepVisDS).

DeepVisCLI
Implements the VMTL CLI (uses DeepVis and DeepVisDS).

We now consider the projects in more detail and give an overview of the most important
classes.

DeepVisDS

This project defines the most important data structures that are used in VMTL. The interfaces
in the package dpvis.datastructures provide the core data-types that are used to rep-
resent terms, rules, term rewriting systems and dependency pair problems for VMTL. The
implemented versions of the data-types defined in this package can be found in the package
dpvis.datastructures.impl.

35



The DeepVisDS-project also provides the base classes for all entities that can be built to
extend VMTL (e.g. direct methods or DP processors). The base-classes for direct meth-
ods can be found in the package dpvis.datastructures.directMethod. The
class DirectMethod has to be used as a base class for all new direct methods and the
class CSDirectMethod (which extends DirectMethod), has to be used as the base
class for all context-sensitive direct methods. Similarly, the package dpProcessor from
dpvis.datastructures defines the classes DPProcessor (for implementing context-
free DP processors) and ContextSensitiveDpProcessor (for implementing context-
sensitive DP processors).

DeepVis

This project implements the core functionality of VMTL. It contains all currently implemented
direct methods and DP processors as well as the methods for parsing the input-files and the
strategy, executing strategies, output generation, etc.

The set of currently implemented direct methods can be found in the VMTL package
dpvis.logic.dm.methods and the set of currently implemented DP processors can be
found in the VMTL package dpvis.logic.dp.

This project also contains the VMTL Sat Solving Facility (VSSF) which can be found in
the package vssf.core (for the core functionality) resp. vssf.factories (for the factory
classes). A detailed overview of the VSSF can be found in Chapter 5.

DeepVisCLI

This project uses the classes defined in the DeepVis- and DeepVisDS-projects to execute a proof
search. It consists of just one class "Main" in the package dpvis.cli.main which imple-
ments the CLI-version of VMTL.
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CHAPTER 5
The VMTL Sat Solving Facility

In this chapter we introduce the VMTL SAT Solving Facility (VSSF). The VSSF provides a
generic Java front-end to various SAT- and SMT solvers. It allows for a flexible specification
of SAT and SMT problems and encapsulates the invocation of the different solvers on these
problems and the interpretation and presentation of their results in a unified way. It is designed
to be simple and convenient to use, yet still powerful and flexible. Much of the complexity is
hidden from the user. However, if it is necessary, it allows a very flexible configuration of its
program logic. One other very important aspect about the VSSF is extensibility. It is designed
for easy extension by new solvers and theories for SMT solving.

This chapter starts with a very brief introduction to SAT solving and SMT solving. In Section
2, we are going to introduce the formalism we use for problem specification. Section 3 contains
an overview of the classes provided by the VSSF and shows how they interact and how the
VSSF is used to specify SAT and SMT problems, solve these problems and use the obtained
models. Section 4 introduces the so-called formula classes for easier specification of SAT and
SMT formulas and Section 5 provides a tutorial on how to solve some concrete tasks with the
VSSF. The description of the VSSF provided in this chapter is just an overview and by no means
complete. For a complete specification of all classes, we refer to the API documentation.

5.1 Introduction

SAT solving is a decision problem where one is interested in whether a given formula in (clas-
sical) propositional logic is satisfiable or not. The SAT problem is NP-complete ([Coo71]).
However, today many very efficient SAT solvers exist (e.g. Minisat [SE05], CLASP [GKNS07],
RSAT [PD07], SATzilla [XHHLB08], etc...). Most SAT-solvers use a variant of the DPLL
(Davis-Putnam-Logemann-Loveland) procedure ([DLL62]) in order to determine, whether a
SAT problem is satisfiable or not. In addition to just determining, whether a given formula
is satisfiable, all modern SAT solvers can also present the user a satisfying variable assignment
(called a model) if satisfiability is detected.
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SMT solving is an extension of SAT solving to special versions of first-order logic where
certain theories are assumed (i.e. some functions and predicates are fixed). SMT problems can
be expressed using these theories. Since theories are not limited to finite domains, SMT solving
is more powerful than SAT solving. SMT solvers try to efficiently decide satisfiability of SMT
problems by incorporating their knowledge about their supported theories in the search for a
model. One example of a theory that an SMT solver could provide may be relations and linear
arithmetic on integers.

Example 5.1.1. Let x1, x2 and x3 be integer-variables and let > be the greater-relation on
integers and + the addition operation on integers. The following formula is an example of an
SMT-Problem:

x1 > x2 + x3

A model for this problem would be the assignment where x1 = 5, x2 = 2, x3 = 2.

The VSSF provides a front-end to different SAT and SMT solvers. One of the most important
decisions in the design of the VSSF was to make it as transparent to the user as possible. The
VSSF provides the most commonly used theories that are used in many SMT solvers and defines
their semantics within the VSSF-framework. Every solver (SAT or SMT) that is integrated in the
VSSF declares which ones of the provided theories it supports. Problems can be specified using
the theories provided by the VSSF. If a solver supports all the theories used in some problem
specification, it can be used to solve this problem. From the point of view of the user, it does
not matter which solver is used (except for performance considerations...). Each solver, that
supports all the theories used in a problem specification, yields the same result according to the
defined semantics of the theories. Even tough SAT solvers do not support theories directly, SAT
solvers implemented in the VSSF can support theories. Suppose some VSSF encapsulation of
a SAT solver supports some theory T. When a problem specification using theory T is passed
to the SAT solver, VMTL transparently transforms the problem specification into an equivalent
one that does not use the theory T, by encoding the expressions from the theory T that were used
in the original specification into propositional logic. One theory, for which the VSSF provides
automatic transformation into propositional logic for SAT solvers is the theory of bit-vectors.

A similar amount of transparency is provided when extending the VSSF by new solvers or
theories. For example, if a new SAT solver should be implemented, VSSF already provides
classes that can handle automatic generation of DIMACS (cf. [Dim93], the specification lan-
guage used in SAT-competitions) input based on a VSSF problem specification and interpreta-
tion of the DIMACS output. Also for SAT solvers, the transformation of supported theories is
done automatically. Therefore, the integration of a new SAT solver into the VSSF can be done
very efficiently and just amounts to writing code that invokes the SAT solver tool with the gener-
ated input and passes its output back to the DIMACS interpreter which then extracts the finished
model.
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5.2 The Specification Logics

Problem instances that can be solved with the VSSF are specified in a set of special logics
that generalize propositional logic by allowing the use of predicates (with fixed semantics) over
elements from arbitrary domains. The predicates that are available for expressing formulas
depends on the theories that are used. This section introduces this kind of logics which we call
T -logics. First, we define the abstract notion of a theory for our setting.

Definition 5.2.1. A theory T consists of:

• A domain D (some arbitrary set of elements over which this theory reasons).

• A set F of function symbols with arities arF : F 7→ N0.

• A set P of predicate symbols with arities arP : P 7→ N0.

• For each f ∈ F , a function fT : D arF (f) 7→ D.

• For each p ∈ P , a function pT : D arP (p) 7→
{
true, false

}
.

Concisely, a theory can be specified as a tuple (D,F, P,
{
fT | f ∈ F

}
,
{
pT | p ∈ P

}
).

Example 5.2.2. A simple theory about integers that allows addition and multiplication as well
as basic comparisons could be defined as

INT = ( N0︸︷︷︸
D

,
{

+,×
}︸ ︷︷ ︸

F

,
{

=, >
}︸ ︷︷ ︸

P

,
{

+INT,×INT

}
,
{

=INT, >INT

}
)

where arF (+) = arF (×) = 2 and arP (=) = arP (>) = 2. Furthermore, we define the
functions x1 +INT x2 = x1 + x2 and x1 ×INT x2 = x1 ∗ x2 for all x1, x2 ∈ D, where + and
∗ are the addition and multiplication operations over natural numbers. For the predicates = and
>, we define for all x1, x2 ∈ D:

x1 =INT x2 =

{
true if x1 = x2

false otw.
and x1 >INT x2 =

{
true if x1 > x2

false otw.

where = and > denote the respective relations over the natural numbers.

Definition 5.2.3. Let T1 and T2 be theories where Tn = (Dn, Fn, Pn,
{
fTn | f ∈ Fn

}
,
{
pTn |

p ∈ Pn
}

) (n ∈
{

1, 2
}

). T1 and T2 are called disjoint iff the sets F1 and F2 are disjoint and
the sets P1 and P2 are disjoint. A set T =

{
T1, . . . , Tn

}
ot theories is called a set of pairwise

disjoint theories, if for all i, j ∈
{

1, . . . , n
}

with i 6= j, Ti and Tj are disjoint.

Let T be a set of pairwise disjoint theories. The T -logic generalizes propositional logic in
the sense, that instead of propositional variables, one may also use predicates from any of the
theories in T . As arguments for the used predicates, elements from the respective domain of the
theory or functions over them may be used.

The following two sections formally establish syntax and semantics of T -logics as well of
the notion of satisfiability of formulas specified in these logics.
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Syntax

The syntax of T -logics is defined in a way similar to how the syntax of first order logic is
usually defined. However, the set of predicate symbols and function symbols is fixed by the set
of theories T and a very basic form of typing is used, as predicate symbols and function symbols
permit only elements from the domain of the respective theory as their arguments. Furthermore,
T -logic formulas may not contain quantifiers.

Concerning variables, we define a countable infinite set Vp of propositional variables and for
each theory Ti ∈ T over the domain Di, we choose a countable infinite set of variables VDi
as well. We require all of the defined sets to be pairwise disjoint from each other. Later, when
defining the semantics, variables may only be assigned values from the adequate domain (i.e. for
variables from Vp, we permit true and false and for variables in the set VDi , we permit values
from Di.

Definition 5.2.4 (T -Terms). Let T be a theory with domain D and function symbols F . The set
of T -terms is defined inductively to be the smallest set such that

• all elements a ∈ D are T -terms,

• all variables v ∈ VD are T -terms and

• for all f ∈ F , f(t1, . . . , tarF (f)) is a T -term if t1, . . . , tarF (f) are T -terms.

Terms that are elements from D are called constant terms and terms that are elements from VD
are called variable terms. Constant terms and variable terms are also called atomic terms.

A T -term is called ground if it does not contain any variables.

Definition 5.2.5 (T -Formulas). Let T be a set of pairwise disjoint theories. The set of T -
formulas is defined inductively to be the smallest set such that

• > and ⊥ are T -formula

• all propositional variables v ∈ Vp are T -formulas

• let Ti ∈ T be a theory with predicates Pi. If p is some predicate from Pi and
t1, . . . , tarPi (p)

are Ti-terms, then p(t1, . . . , tarPi (p)) is a T -formula

• if f1 and f2 are T -formulas, then

– ¬f1 and ¬f2 are T -formulas and

– f1 ◦ f2 is a T -formula for all ◦ ∈
{
∧,∨,→,↔,⊕

}
We say, that a T -formula is closed iff it does not contain any variables, otherwise it is

called open. This is similar to first order logic, where a formula is called closed iff it does not
contain any free variables. Since T -logics do not support quantifiers, all variables occurring in
a T -formula are free.
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Example 5.2.6. For T = ∅, we obtain the ∅-logic that corresponds to classical propositional
logic.

Example 5.2.7. For T =
{
INT

}
, where INT is the theory defined in Example 5.2.2, we obtain

the
{
INT

}
-logic that allows expressing relations over natural numbers. Suppose, p1 ∈ Vp is a

propositional variable and i1, i2 ∈ VN0 are integer variables. Then the following formula is a
valid formula in the

{
INT

}
-logic:

((i1 = 5)→ p1) ∧ (p1 ↔ (i2 > (i1 + 6)))

In the next subsection, we define the semantics of the formulas defined in this subsection.

Semantics

Semantics of T -logics are defined by means of valuation functions that compute the truth value
of any given T -formula. Before we can define the valuation functions, we must take care of the
variables occurring in open formulas. To this end, we define T -variable assignments, that map
each variable to some appropriate value.

Definition 5.2.8 (T -variable assignment α). Let T =
{
T1, . . . , Tn

}
be a set of pairwise disjoint

theories where the domain of each Ti ∈ T is Di. A T -variable assignment α is a set of
functions

{
αp, αD1 , . . . , αDn

}
such that αp is a mapping αp : Vp 7→

{
true, false

}
and for

each i ∈
{

1, . . . , n
}

, αDi is a mapping αDi : VDi 7→ Di.

Next, we discuss how T -terms are evaluated under some T -variable assignment α. The
evaluation of a T -term interprets the term under the given variable assignment. To this end,
variables are replaced by the respective values assigned by the variable assignment. The func-
tions specified by the respective theory are then used to evaluate the terms.

Definition 5.2.9 (Evaluation of T -terms). Let T be some theory over the domain D and let αD
be a mapping αD : VD 7→ D. The function [·]TαD maps T -terms to D: For all T -terms t we
define:

[t]TαD =


a if t = a and a ∈ D
αD(t) if t ∈ VD
fT ([t1]TαD , . . . , [tn]TαD) if t = f(t1, . . . , tn) for f ∈ F and t1, . . . , tnT -terms

Now we are ready to define the valuation function for T -formulas.

Definition 5.2.10. Let T be a set of pairwise disjoint theories and let α be a T -variable assign-
ment. The mapping valTα maps T -formulas to

{
true, false

}
. For each T -formula, we define

valTα inductively as follows:

• valTα (>) = true and valTα (⊥) = false

• valTα (v) = αp(v) for all propositional variables v ∈ Vp
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• valTα (p(t1, . . . , tn)) = pTi([t1]TiαDi
, . . . , [tn]TiαDi

) for all predicate symbols p ∈ Pi with Pi
being the set of predicate symbols from some theory Ti ∈ T and Ti-terms t1 to tn

• valTα (¬F ) =

{
true if valTα (F ) = false

false if valTα (F ) = true

• valTα (F1 ∧ F2) =

{
true if valTα (F1) = true and valTα (F2) = true

false otw.

• valTα (F1 ∨ F2) =

{
true if valTα (F1) = true or valTα (F2) = true

false otw.

• valTα (F1 → F2) =

{
true if valTα (F2) = true whenever valTα (F1) = true

false otw.

• valTα (F1 ↔ F2) =

{
true if valTα (F1) = valTα (F2)

false otw.

• valTα (F1 ⊕ F2) =

{
true if valTα (F1) 6= valTα (F2)

false otw.

Example 5.2.11. Consider the following ∅-formula F :

(v1 ∧ v2)→ (v1 ∨ v2)

Let α =
{
αp
}

be a ∅-variable assignment, where αp(v1) = true and αp(v2) = false. The
valuation of the formula F is: val∅α((v1∧v2)→ (v1∨v2)). This evaluates to true, if whenever
val∅α(v1∧v2) evaluates to true, also val∅α(v1∨v2) evaluates to true. val∅α(v1∧v2) evaluates
to true only if val∅α(v1) and val∅α(v2) both evaluate to true. Both expressions are base cases
and val∅α(v1) = true but val∅α(v1) = false, so we know val∅α(v1 ∧ v2) = false and thus
val∅α((v1 ∧ v2)→ (v1 ∨ v2)) = true

Example 5.2.12. Let T =
{
INT

}
. Consider the

{
INT

}
-formula F from Example 5.2.7:

((i1 = 5)→ p1) ∧ (p1 ↔ (i2 > (i1 + 6)))

Let α =
{
αp, αN0

}
be an

{
INT

}
-variable assignment, where αp(p1) = true and αN0(i1) = 5

and αN0(i2) = 2. The valuation of the formula is

valTα (((i1 = 5)→ p1) ∧ (p1 ↔ (i2 > (i1 + 6))))

We have to determine valTα ((i1 = 5) → p1) and valTα (p1 ↔ (i2 > (i1 + 6))). In order to
determine the value of valTα ((i1 = 5) → p1), we first check valTα (i1 = 5). This evaluates to
true because it becomes [i1]TαN0

=INT [5]TαN0
and since αN0(i1) = 5 this is true. Now, since

valTα (p1) is also true, we know that valTα ((i1 = 5) → p1) = true. In a similar way, we
obtain valTα (p1 ↔ (i2 > (i1 + 6))) = false and thus valTα (F ) = false.
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Satisfiability of T-Logic Formulas

In this short section, we present the notion of satisfiability of T -formulas. Satisfiability of T -
formulas F is defined through the existence of models for F . We always require theories to be
pairwise disjunct in order to avoid ambiguity due to using the same function name or predicate
name twice in different theories.

Definition 5.2.13. Let T be a set of pairwise disjoint theories and F be some T -formula.
Further, let α be a T -variable assignment. α is called a T -model of F iff valTα (F ) = true. If
the set of theories used is clear from the context, we will usually just use the term model.

Definition 5.2.14. Let T be a set of pairwise disjoint theories and F be some T -formula. F is
called satisfiable iff there is a T -model for F . Otherwise, F is called unsatisfiable.

Definition 5.2.15. Let T be a set of pairwise disjoint theories and F be some T -formula. F is
called valid iff every T -variable assignment α is a T -model for F .

Example 5.2.16. Consider the ∅−formula F

(v1 ∧ v2)→ (v1 ∨ v2)

and the ∅-variable assignment α from Example 5.2.11. As we have shown before, val∅α((v1 ∧
v2) → (v1 ∨ v2)) = true, thus we have a model for F and so F is satisfiable. Furthermore,
as one can easily check (there are only four interesting variable assignments that need to be
checked), F is also valid, because every ∅-variable assignment is a model for F .

Example 5.2.17. Consider the
{
INT

}
-formula F from Example 5.2.7:

((i1 = 5)→ p1) ∧ (p1 ↔ (i2 > (i1 + 6)))

As shown in Example 5.2.12, F is not valid because an
{
INT

}
-variable assignment is given that

makes F false. However, F is still satisfiable. Take for example the
{
INT

}
-variable assignment

α =
{
αp, αN0

}
where αp(p1) = true and αN0(i1) = 5 and αN0(i2) = 12. It is easily verified,

that valTα (F ) = true.

Example 5.2.18. As an example for a
{
INT

}
-formula that is unsatisfiable, take the following

formula F :
(i1 = 1) ∧ (i1 = 2)

Where i1 is a variable from the set VN0 . Obviously, there can be no assignment to i1 that makes
F true, becasue it would have assign 1 and 2 to i1 at the same time.

5.3 Built-In Theories of the VSSF

The VSSF offers a selection of useful theories that are supported by most SMT solvers. In this
section, we specify the available functions and predicates for each of the built-in theories and fix
their semantics.
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BitVectors

Bit-vectors are very basic, yet very flexible and versatile entities that can be used in problem
specifications.

Definition 5.3.1 (Bit-Vector). LetB =
{

0, 1
}

be the set of bit-values. A tuple 〈bn, bn−1, . . . , b1〉
(b1, . . . , bn ∈ B) is called a bit-vector of length n (or n-bit bit-vector). By Bn we denote the
set of all n-bit bit-vectors. Bit-vectors constitute binary representations of integer values where
the bit bn is the most valuable bit and the bit b1 is the least-valuable bit. The representation
can be either signed or unsigned. In the signed case, we assume that the encoding is in two’s
complement notation. The functions intu : Bn 7→ N0 and ints : Bn 7→ Z (for all n ≥ 1) map
bit-vectors to their unsigned / signed integer values.

Notation. For noting bit-vectors, we will usually use the C-style notation for binary numbers.
For example, instead of 〈0, 1, 1, 0, 0, 1〉, we will write 0b011001.

Example 5.3.2. The bit-vector 0b011001 has the following unsigned and signed integer values:
intu(0b011001) = 25 and ints(0b011001) = 25. The bit-vector 0b111001 has the following
integer values: intu(0b111001) = 57 and ints(0b111001) = −7

The BitVectors Theory

The theory BitVectorsn is defined on the domain Bn and provides the following predicates and
functions:

Functions:

• Arithmetic functions:

Function Arity Description
+ 2 Addition (modulo 2n)
− 2 Subtraction (modulo 2n)

• Bit-operations:

Function Arity Description
<<0 1 left-shift by 1 bit (introducing a 0 as the new lvb)
<<1 1 left-shift by 1 bit (introducing a 1 as the new lvb)
>>0 1 right-shift by 1 bit (introducing a 0 as the new mvb)
>>1 1 right-shift by 1 bit (introducing a 1 as the new mvb)
neg 1 negates all bits
and 2 bitwise and
or 2 bitwise or
impl 2 bitwise implication
equiv 2 bitwise equivalence
xor 2 bitwise xor
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Predicates:

Predicate Arity Description
> 2 greater
>s 2 signed greater
= 2 equality

The semantics of the defined function symbols is the obvious intended semantics. For the
predicates, we define:

bv1 =BitVectorsn bv2 =

{
true if bv1 and bv2 coincide at all bit-positions
false otw.

bv1 >BitVectorsn bv2 =

{
true if intu(bv1) > intu(bv2)

false otw.

bv1>sBitVectorsn
bv2 =

{
true if ints(bv1) > ints(bv2)

false otw.

Example 5.3.3. An example for a formula in the
{
BitVectors5

}
-logic is:

bv1 = (bv2 + 0b00110) ∧ ¬((bv2 and bv2) = 0b00000)

where bv1 and bv2 are bit-vector variables from the set VB5 . A satisfying variable assignment
for this formula is: bv1 = 0b11110 and bv2 = 0b11000

Integers

The theory of integers (Ints) allows to specify natural operations and relations on integer num-
bers. The domain of this theory is Z and the following functions and predicates are provided:

Functions:

Function Arity Description
+ 2 Addition
− 2 Subtraction
∗ 2 Multiplication

div 2 Integer-division
mod 2 Remainder

Predicates:

Predicate Arity Description
> 2 greater
= 2 equality

positive 1 positivity
negative 1 negativity
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The semantics of the defined functions and predicates correspond to the semantics of the
respective functions and relations over the integer numbers. The predicate positive is true
for positive numbers and false otherwise and the predicate negative is true for negative
numbers and false otherwise.

Reals

The theory of rational numbers (called Reals for consistency with SMT-LIB and with Java)
allows to specify natural operations and relations on rational numbers. The domain of this
theory is Q. The following functions and predicates are provided:

Functions:

Function Arity Description
+ 2 Addition
− 2 Subtraction
∗ 2 Multiplication
÷ 2 Division
div 2 Integer-division
mod 2 Remainder

Predicates:

Predicate Arity Description
> 2 greater
= 2 equality

positive 1 positivity
negative 1 negativity

The semantics of the defined functions and predicates correspond to the semantics of the
respective functions and relations over the real numbers.

5.4 Overview of the VSSF

This section provides an overview of the classes provided by the VSSF and shows how they
interact. This section is intended as an overview of the functionality of the VSSF. For a more
in-depth resource on the classes provided by the VSSF, we refer to the VSSF documentation.

Basically, the VSSF consists of three parts that interact with each other:

1. Problem Specification

2. Solvers

3. Models

46



The problem specification part is the biggest part of VMTL. It allows for the specification
of SAT and SMT problems. The specified problems are then passed to a solver which tries to
find a model. The obtained model can finally be used to interpret the variables occurring in the
problem specification.

Problem Specification

Here, we introduce the classes that are used to specify problem instances which can be solved
by the VSSF. We distinguish between two types of problems: clause problems and formula
problems. A clause problem consists of a set of clauses that should be satisfied and a formula
problem consists of a set of formulas that should be satisfied (called assertions).

Clause Problems

Most SAT solvers take as input not propositional formulas but sets of clauses. The VSSF offers
this very basic way to specify SAT problems.

Definition 5.4.1 (Literal). A literal is either some propositional variable p or the negation of
some propositional variable (i.e. ¬p).

Definition 5.4.2 (Clause). A clause is a set of literals. A clause corresponds to the disjunction
of its literals, i.e. a clause is satisfied iff at least one of its literals evaluates to true.

Definition 5.4.3 (Clause Problem). A clause problem is a set of clauses. A clause problem is
called satisfied if all the clauses it contains are satisfied. Thus, a clause problem corresponds to
the conjunction of all its clauses.

Example 5.4.4. Let p1, p2, p3 be propositional variables. Then the following is a clause prob-
lem: {{

p1, p2,¬p3

}
,
{
p2, p3

}
,
{
¬p1,¬p2,¬p3

}}
This clause problem is satisfied by the variable assignment where p1 = true, p2 = false and
p3 = true. The clause problem corresponds to the following propositional formula:

(p1 ∨ p2 ∨ ¬p3) ∧ (p2 ∨ p3) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)

Propositional variables are represented by the class PVariable in the VSSF. If a new
propositional variable is needed, one just creates a new instance of PVariable.

Literals are created as instances of the class Literal. The constructor of this class
takes as arguments the propositional variable and the polarity of the created literal. Clauses
are represented by the class Clause. After instantiating a new Clause-object, the method
addLiteral can be used to add the literals.

Clause-problems are represented by the class ClauseProblem. After instantiating a new
clause problem, the method addClause can be used to add clauses.
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Definition 5.4.5 (Subsumption). A clause c is subsumed by another clause c′ iff c is a superset
of c′. In a clause problem, clauses that are subsumed by some other clause in the clause problem
can be removed because if the smaller clause is satisfied, the bigger clause is automatically
satisfied as well.

The removal of subsumed clauses offers a very basic form of optimizing clause prob-
lems. However, in practice subsumption-checking is rather expensive (O(n2)). Therefore, the
VSSF does not automatically remove subsumed clauses. The method doSubsumption of the
ClauseProblem class can be used to remove all subsumed clauses from the set of clauses
contained in the clause problem.

Implementation Detail
In the VSSF, subsumption is done by first sorting the clauses by their size and then checking for
set-inclusion of the smaller sets in the bigger sets, removing the bigger sets if subsumption is
detected. This yields quadratic runtime (O(n2/2) to be exact).

Example 5.4.6. Consider as an example the clause problem from Example 5.4.4:{{
p1, p2,¬p3

}
,
{
p2, p3

}
,
{
¬p1,¬p2,¬p3

}}
This clause problem is specified in the VSSF by the following code:

1 ClauseProblem p = new ClauseProblem();
2
3 PVariable p1 = new PVariable();
4 PVariable p2 = new PVariable();
5 PVariable p3 = new PVariable();
6
7 Literal lp1 = new Literal(p1, Polarity.positive);
8 Literal lnp1 = new Literal(p1, Polarity.negative);
9 Literal lp2 = new Literal(p2, Polarity.positive);

10 Literal lnp2 = new Literal(p2, Polarity.negative);
11 Literal lp3 = new Literal(p3, Polarity.positive);
12 Literal lnp3 = new Literal(p3, Polarity.negative);
13
14 Clause c1 = new Clause();
15 Clause c2 = new Clause();
16 Clause c3 = new Clause();
17
18 c1.addLiteral(lp1);
19 c1.addLiteral(lp2);
20 c1.addLiteral(lnp3);
21
22 c2.addLiteral(lp2);
23 c2.addLiteral(lp3);
24
25 c3.addLiteral(lnp1);
26 c3.addLiteral(lnp2);
27 c3.addLiteral(lnp3);
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28
29 p.addClause(c1);
30 p.addClause(c2);
31 p.addClause(c3);

Listing 5.1: Specifying a simple clause problem

As the example demonstrates, specifying SAT problems in this way s not very convenient.
Therefore, the VSSF offers different, more sophisticated ways of specifying problem instances.

Formula Problems

A more natural way of specifying SAT problems (and the only way to specify SMT problems...)
are formula problems. Here, problems can be specified by building T -formulas and adding them
to the problem specification.

We first show, how propositional formulas are specified in the VSSF and how they are added
to a formula problem. SAT solvers usually expect clause sets as input, therefore, we show how
the VSSF translates propositional formulas into clause sets. After that, we show how the theories
defined in Section 5.3 are integrated in the VSSF and how they are used.

Specifying Formulas over the ∅-Logic (i.e. Propositional Logic)

If no theories are used, we obtain raw propositional formulas. These formulas can be con-
structed using the usual connectives ¬, ∧, ∨, →, ↔ and ⊕ as well as propositional variables
that are used as atoms. The semantics is the usual semantics of the corresponding connectives
as defined in Section 5.2. The following classes are used to specify a formula that represents the
corresponding connective. All classes shown here are based on the class Formula, so by Java’s
polymorphism, they can be used everywhere, where a Formula-instance is expected.

Formula Class Constructor Arguments
> Formula.Verum -
⊥ Formula.Falsum -

p (atom) Formula.Atom PVariable or TheoryPredicate
¬ Formula.Neg Formula
∧ Formula.And Formula, Formula
∨ Formula.Or Formula, Formula
→ Formula.Impl Formula, Formula
↔ Formula.Equiv Formula, Formula
⊕ Formula.Antiv Formula, Formula

The constructors of these classes take as arguments zero, one or two other formulas (resp. atomic
entities for atoms): zero for the logical constants, one for atoms and for negation and two for the
other connectives, according to their usual arity. This naturally captures the inductive definition
of propositional formulas. For now, we are only concerned with formulas where all atoms are
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propositional variables. In the next subsection, we discuss how predicates from some theory can
be used to build SMT formulas.

Example 5.4.7. Consider the formula corresponding to the clause set from Example 5.4.4:

(p1 ∨ p2 ∨ ¬p3) ∧ (p2 ∨ p3) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)

A specification containing this formula can be created as follows in the VSSF:

1 Problem p = new Problem();
2
3 PVariable p1 = new PVariable();
4 PVariable p2 = new PVariable();
5 PVariable p3 = new PVariable();
6
7 Formula f = new And(new Or(new Or(new Atom(p1),
8 new Atom(p2)),
9 new Neg(new Atom(p3))),

10 new And(new Or( new Atom(p2),
11 new Atom(p3)),
12 new Or(new Or(new Neg(new Atom(p1)),
13 new Neg(new Atom(p2))),
14 new Neg(new Atom(p3)))));
15
16 p.addAssertion(f);

Listing 5.2: Specifying a simple formula problem

In Section 5.6, we will introduce the FormulaFactory-class which allows even shorter
specifications of formulas.

Implementation Detail
Note that, although everything is declared with the new-keyword, the VSSF is smart enough
to realize, that two different instances of the same formula have the same meaning, so in opti-
mizations it can handle them accordingly. The VSSF is even smart enough to realize, that for
commutative formulas like And, Or, Equiv, etc..., the order of the argument formulas does
not matter, so if two instances of such a formula have the same argument formulas, just with
swapped position, they are still considered equivalent.

Specifying Formulas Over Theories

Theories are created in the VSSF as classes extending the abstract Theory class. Theory classes
in the VSSF are a collection of inner classes that make up the Theory:

• One class representing the variables for this theory (extends the TheoryVariable
class).
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• A class that represents variable-terms.

• A class that represents constant-terms.

• For each function symbol a class representing the corresponding function (extending the
Term class).

• For each predicate symbol of the theory a class representing that predicate (extending the
Predicate class).

Implementation Detail
Type safety is enforced by the VSSF by the use of Java’s Generics concept. Thus, most abstract
base classes used in conjunction with theories are parametrized by some type parameters. The
result is, that it is not possible to accidentally use terms from a different theory in predicates
of another theory because Java’s static program analysis already prevents this. This makes the
VSSF quite consistent in the sense of how formulas are specified and minimizes the need for
runtime-exception checking. When specifying formulas, the use of generics is mostly hidden
and is not required from the user. However, if terms should be stored in a collection, it is
convenient to use the common base-class which is typed. For this case, we will state the actual
type of the base-class of terms for every theory when presenting the theory. It can also be looked
up in the VSSF-documentation.

Theory predicates are classes that are derived from the class TheoryPredicate. The
constructors of theory predicates take as arguments instances of terms over the respective theory.

In order to build terms for some theory, every theory provides its own type of variables
(derived from the class TheoryVariable) and its own constant type, which can be any Java
type (e.g. Java’s Integer class for the Ints-theory or a special type BitVector for the
BitVectors theory).

Formulas may also contain predicates over theories. As mentioned before, they may be used
in the place of propositional variables in formulas. Formulas using such theory predicates can
be built using the same classes that are used to build propositional formulas, but now the class
Atom may be built from some instance of the TheoryPredicate class.

In the following subsections, we show how the built-in theories of the VSSF (defined in
Section 5.3) are implemented in the VSSF. Note, that the implemented versions may contain
additional features (not defined in Section 5.3) that are added for the sake of comfort. These
features do not fit our theoretical framework for defining theories (extending the framework to
actually capture everything the VSSF implementations of the theories are capable of, would
make the framework very bloated and messy and hard to understand, therefore, we just state the
additional comfort features here and in the VSSF documentation).
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Bit-Vectors

The theories BitVectorsn (n ≥ 1) are implemented as the class TheoryBitVectors.

Implementation Detail
Note, that we provide only one class that implements all of the BitVectorsn (n ≥ 0) theories.
The VSSF checks at runtime, that all operations receive as input bit-vector terms of the same
length. In the case, that it is tried to perform some operation with differently sized bit-vector
terms, a runtime exception is thrown. Sadly, no static check of correctness is possible in this
case; This is a limitation of the Java programming language, where static class parameters may
only be types, but not instances of types (i.e. no integer values).

The variable-type is TheoryBitVectors.BVVariable (or just BVVariable). In-
stances of this type represent bit-vector variables that can be used in bit-vector terms. When
a new BVVariable instance is created, the desired bit-size of the variable is specified. De-
rived from the BVVariable-class is the BVVariableSigned-class that represents signed
bit-vector variables.

The constant-type is BitVector. This class provided by the VSSF stores bit-vectors
and can perform basic operations on bit-vectors (see the VSSF-documentation for details).
When a new BitVector is instantiated, the size as well as the desired value can be pro-
vided. It is also possible to just provide the value, in which case the smallest possible size
is automatically chosen. If both the size and the value are provided, a runtime exception
(InvalidSizeException) is thrown, if the desired value does not fit the specified size.
Derived from BitVector is SignedBitVector which represents the signed version (re-
garding comparison and integer-interpretation) of BitVector. Negative values are stored in
two’s complement form.

The common base-class of all TheoryBitVectors-terms is Term<BitVector,
BVVariable> (we abbreviate this as BVTerm which is not really a class name but rather a
short-hand notation). The following classes are provided to build TheoryBitVectors-terms:
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Class Operation Constructor Arguments
ConstantTerm - BitVector
VariableTerm - BVVariable

Add + BVTerm, BVTerm
AddNO Non-overflowing addition (*) BVTerm, BVTerm
Sub − BVTerm, BVTerm
SubNU Non-underflowing subtraction (*) BVTerm, BVTerm
Shl0 <<0 (by k bit) (*) BVTerm, int (= k)
Shl1 <<1 (by k bit) (*) BVTerm, int (= k)
Shr0 >>0 (by k bit) (*) BVTerm, int (= k)
Shr1 >>1 (by k bit) (*) BVTerm, int (= k)
PTimes × (*) BVTerm, PVariable
Neg neg BVTerm
And and BVTerm, BVTerm
Or or BVTerm, BVTerm

Impl impl BVTerm, BVTerm
Equiv equiv BVTerm, BVTerm
Xor xor BVTerm, BVTerm

Operations marked with (*) are new or extended as compared to the definition of the basic
BitVectorsn-theories in Section 5.3. We explain their meaning here:

For the shift operations, we allow specifying the number k of bits that should be shifted.
This makes the use of the theory more convenient, as one does not have to cascade shift-terms
just to shift by more than one bit.

The classes AddNO and SubNU are convenient ways of expressing, that the respective oper-
ations should not overflow (resp. underflow).

Example 5.4.8. Consider the formula

0b1011 = bv1 +no bv2

where +no means non-overflowing addition and bv1 and bv2 are bit-vector variables. This for-
mula is only satisfiable, if there are value assignments for the bit-vector variables bv1 and bv2

such that their sum is 0b1011 but no overflow happens in the addition. For example, a model of
this formula would be bv1 = 0b1010 and bv2 = 0b0001. But bv1 = 0b1110 and bv2 = 0b1101
is no model for this formula. However, if regular, overflowing addition would have been used
it would be a model because intu(0b1110) = 14, intu(0b1101) = 13 and 14 + 13 = 27 and
27mod 24 = 11 = intu(0b1011).

The ×-operation is another new operation that may be useful in some cases. It allows "mul-
tiplication" of a bit-vector bv with a single bit p (i.e. a propositional variable). If p is true, then
bv × p is bv, otherwise the result is a bit-vector of the same length as bv where all bits are set to
false.

The following predicate classes are defined by the BitVector class. They represent the
corresponding predicates from Section 5.3.
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Class Predicate Constructor Arguments
Greater > BVTerm, BVTerm
Equal = BVTerm, BVTerm

Implementation Detail
The operations do not distinguish between working with signed or unsigned bit-vectors. The
only difference between BitVector and SignedBitVector resp. BVVariable and
BVVariableSigned is that their interpretation function decodes them correctly as signed
/ unsigned bit-vectors into integers of the corresponding value. Furthermore, the Greater
predicate respects the signedness.

Example 5.4.9. Consider the following formula (from Example 5.3.3):

bv1 = (bv2 + 0b00110) ∧ ¬((bv1 and bv2) = 0b00000)

Suppose, bv1, bv1 and bv1 are signed bit-vector variables. The formula can be specified in the
VSSF using the following code:

1 Problem p = new Problem();
2
3 BVVariable bv1 = new BVVariable();
4 BVVariable bv2 = new BVVariable();
5
6 Formula f =
7 new And(new Atom(new Equals(new VariableTerm(bv1),
8 new Add(new VariableTerm(bv2),
9 new ConstantTerm(new BitVector(5,6))))),

10 new Neg(new Atom(new Equals(new TheoryBitVectors.And(
11 new VariableTerm(bv1),
12 new VariableTerm(bv2)),
13 new ConstantTerm(new BitVector(5,0)))))
14 )
15 p.addAssertion(f);

Listing 5.3: Specifying a simple problem using bit-vectors

Again, in Section 5.5, we will introduce a factory class that reduces the size of the required
code a little.

Ints

The theory Ints is implemented in the VSSF as the class TheoryInts. Variables are of the
type IntsVariable and constants are of the type Integer (the regular Java integers). The
common type of terms is: Term<Integer, IntsVariable> (which we will abbreviate
by IntsTerm here).

The following classes are provided by TheoryInts to build terms:
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Class Operation Constructor Arguments
ConstantTerm - Integer
VariableTerm - IntsVariable

Add + IntsTerm, IntsTerm
Sub − IntsTerm, IntsTerm
Mul ∗ IntsTerm, IntsTerm

IntDiv div IntsTerm, IntsTerm
Mod mod IntsTerm, IntsTerm

In order to express predicates, the following classes are provided by TheoryInts:

Class Predicate Constructor Arguments
Greater > IntsTerm, IntsTerm
Equal = IntsTerm, IntsTerm

Positive positive IntsTerm
Negative negative IntsTerm

Reals

The theory Reals is implemented in the VSSF as the class TheoryReals. Variables are of the
type RealsVariable and constants are of the type Double (the Java class for floating-point
values). The common type of terms is: Term<Double, RealsVariable> (which we will
abbreviate by RealsTerm here).

The following classes are provided by TheoryReals to build terms:

Class Operation Constructor Arguments
ConstantTerm - Real
VariableTerm - RealsVariable

Add + RealsTerm, RealsTerm
Sub − RealsTerm, RealsTerm
Mul ∗ RealsTerm, RealsTerm
Div ÷ RealsTerm, RealsTerm

IntDiv div RealsTerm, RealsTerm
Mod mod RealsTerm, RealsTerm

In order to express predicates, the following classes are provided by TheoryReals:

Class Predicate Constructor Arguments
Greater > RealsTerm, RealsTerm
Equal = RealsTerm, RealsTerm

Positive positive RealsTerm
Negative negative RealsTerm

55



This concludes the section about problem specifications for the VSSF. In the next section,
we discuss how the problems specified by the means presented in this section are solved by the
VSSF solvers.

Solving

All solvers that are implemented in the VSSF extend the Solver base class. This abstract class
declares the following functions, which concrete solver classes may implement:

• isSat: Takes as input an instance of Problem or ClauseProblem and returns true
if the model is satisfiable or false if it is not satisfiable.

• getModel: Takes as input an instance of Problem or ClauseProblem and returns a
model if the problem is satisfiable. If it is not satisfiable, null is returned.

• getModels: Takes as input an instance of Problem or ClauseProblem as well as
a number n ≥ 1. Returns a set of up to n models. If less than n models exist, only the
existing models are returned. If no model exists, an empty set is returned.

• getAllModels: Takes as input an instance of Problem or ClauseProblem and
returns the set of all models for the problem. If no model exists, an empty set is returned.

Of the four methods, only the method isSat is mandatory for concrete solver classes to
implement. However, all currently provided solvers also implement at least the getModel
method. If an unimplemented method is invoked for some concrete solver class, a runtime
exception (viz. OperationNotSupportedException) is thrown.

The following diagram depicts the class-hierarchy of the currently provided solvers and their
intermediate helper classes which perform tasks like input generation and output parsing for the
output of the underlying solvers. Class names that are written in italics denote abstract classes,
which cannot be instantiated directly.

Solver

rrffffffffffffffff

,,XXXXXXXXXXXXXXXX

SATSolver

��

SMTSolver

��
DIMACSSolver

rrffffffffffffffff

,,XXXXXXXXXXXXXXXX YicesSolver

MinisatSolver CLASPSolver

The solver classes perform the following tasks:

1. Bring the Problem resp. ClauseProblem instances they receive as input into some
form that the underlying solver can understand.

2. Invoke the underlying SAT or SMT solver using the generated, translated problem speci-
fication as input.

56



3. Wait for the underlying solver to finish, then collect its output.

4. Parse the output generated by the underlying solver and create a VSSF model (an instance
of the Model class) and return it. (Or if the user did not request a model (i.e. called
isSat) just return true or false accordingly).

Converting Formula Problems to Clause Problems and Vice Versa

As mentioned earlier, the underlying SAT- and SMT solvers expect their input in different for-
mats. Most SAT solvers expect their input in DIMACS format while SMT solvers usually
provide a proprietary input specification language (although SMT-LIB Version 1.2 [RT06] or
SMT-LIB Version 2.0 [BST+10] are supported by many SMT solvers).

The SMT solvers usually provide a rich input specification language, so formula problems
can be translated into the format expected by the solvers very naturally. However, clause prob-
lems have to be converted to formula problems before SMT solvers can solve them. This is
done automatically by the VSSF base classes in the obvious straightforward way (as shown in
Example 5.4.4).

The other direction requires a little more effort: SAT solvers require their input in the form
of clause sets, so formula problems, which may also contain theories, must be converted to
SAT-equivalent clause problems. This is done in a two step process:

1. Predicates from theories that can be translated into propositional logic are translated. If
other predicates that cannot be translated to propositional logic are encountered, a runtime
exception is thrown.

2. The now theory-free formulas are translated into propositional logic.

The translations are done automatically by the VSSF framework, but the default settings
may be changed if necessary. Translations are only required for SAT solvers, so the abstract
SATSolver class implements this functionality. The first step (translating theory predicates
into propositional logic) is done by so-called theory transformer classes (classes derived from
the abstract base class TheoryTransformer. The second step is done by a formula translator
(classes derived from the abstract base class FormulaTranslator). In the following we
discuss the two steps in a little more detail.

The TheoryTransformer class declares two abstract methods. One method that trans-
lates problems containing predicates from some theory to problems not containing such pred-
icates by translating them into propositional logic. The other method takes as input a model
for the translated problem and builds from it a model for the original problem. This second
method is discussed in more detail in Section 5.4. Actual theory transformers have to imple-
ment both methods. Currently, the only theory that supports automatic translation to propo-
sitional logic is the BitVectors theory. The corresponding theory transformer is called
BitVectorsTransformer. The transformation is done by means of bit-blasting.

The second step involved in translating formula problems into clause problems is the actual
translation of formulas into clauses. The abstract base class FormulaTranslator declares
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the method that is used for the translation. This method takes as input a set of formulas and re-
turns a set of clauses. Every concrete formula translator extending the FormulaTranslator
class must adhere the following rules:

• The set of clauses that is returned is satisfiable, if and only if the original formula is
satisfiable (SAT equivalence).

• The set of clauses that is returned can contain extra variables. Every model of the set of
clauses, restricted to the variables of the original formula, is also a model of the original
formula (model compatibility)

Implementation Detail
The FormulaTranslator class provides a caching mechanism to its subclasses. Therefore,
(sub-)formulas that have already been translated once need not be translated again.

The VSSF implements two different translation techniques: CNF-translation and Tseitin
translation. The CNF translator is implemented in the CNFTranslator class. This transfor-
mation does not introduce fresh propositional variables. It follows the standard procedure of
transforming the formula into conjunctive normal form. The conjunctive normal form can then
directly be used to obtain clause sets. This method has exponential worst-case runtime. Because
of this, it is only suitable for the translation of rather small formulas.

The other translation technique is based on Tseitin-style translations [Tse68]. This transla-
tion creates a clause form that is only SAT-equivalent, but not fully logically equivalent to the
original formula. It works by introducing new variables for each sub-formula. It is enforced,
that each variable is satisfiable if and only if the corresponding sub-formula is satisfiable. The
VSSF implementation of the Tseitin translation also supports the Plaisted-Greenbaum extension
[PG86], where the if and only if condition can be weakened, and only the required direction is
enforced to hold (based on the polarity of the formula). The Tseitin translator is implemented in
the class TseitinTranslator. The Tseitin translation has linear runtime and is well suited
for translating big formulas. Using the Plaisted-Greenbaum extension yields even fewer clauses.

Implementation Detail
In the VSSF, each variable is declared either as a user-variable or as an aux-variable. All
variables created by the user are automatically declared as user-variables. Variables that are
created by VSSF in the process of some transformation (like the Tseitin translation) are always
declared as aux-variables. The aux-variables are basically hidden from the user. They do
not appear in models and they cannot (and usually need not and should not) be referenced,
because this would create a dependency on a certain concrete translation process which should
be avoided.
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Both steps involved in transforming a formula problem into a clause problem are automati-
cally handled by the SATSolver class, which is a base class of all implemented SAT solvers.
To this end, the SATSolver class contains a list of TheoryTransformer instances. All of
these are applied sequentially as the first step. By default, one translator is contained, namely
a BitVectorsTransformer. For the second step, it contains a FormulaTranslator
instance. By default the formula translator is a TseitinTranslator instance where the
Plaisted-Greenbaum extension is enabled. The configured FormulaTranslator is applied
repeatedly for each formula in the formula problem. The SATSolver class also provides the
following methods to override the default settings:

addTheoryTransformer Takes as input an instance of a TheoryTransformer and
adds it to the set of theory transformers that are applied first, when trying to solve a
formula problem with the SAT solver.

clearTheoryTransformers Removes all the theory transformers that are currently in the
set of theory transformers of this SAT solver.

setFormulaTranslator Takes as input an instance of a FormulaTranslator and
makes it the new formula translator that is used when trying to solve formula problems
with the SAT solver.

Example 5.4.10. Solving SMT problems is very easy with the VSSF. It suffices to instantiate
some solver and pass the problem to it.

1 Problem p = new Problem();
2 /* ... (construct some formula problem p) */
3
4 Solver s = new YicesSolver(); // instantiates a new SMT solver (Yices)
5
6 Model m = s.getModel(p);

Listing 5.4: Solving formula problems with an SMT solver

We will discuss how to work with the obtained model in the next section.

Example 5.4.11. Working with SAT solvers is just as easy. Suppose, some formula p is con-
structed containing only predicates from the BitVectors theory.

1 Problem p = new Problem();
2 /* ... (construct some formula problem p using just the BitVectors theory) */
3
4 Solver s = new MinisatSolver(); // instantiates a new SAT solver (Minisat)
5
6 Model m = s.getModel(p);

Listing 5.5: Solving formula problems with a SAT solver

All necessary transformations happen automatically in the background. They can also be
changed. Suppose, instead of the preconfigured Tseitin translation with enabled Plaisted-
Greenbaum extensions we want to use a Tseitin translation without the extension. This is done
by the following code:
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1 Problem p = new Problem();
2 /* ... (construct some formula problem p using just the BitVectors theory) */
3
4 Solver s = new MinisatSolver(); // instantiates a new SAT solver (Minisat)
5
6 TseitinTranslator ttl = new TseitinTranslator();
7 ttl.usePlaistedGreenbaumExtension(false);
8 s.setFormulaTranslator(ttl);
9

10 Model m = s.getModel(p);

Listing 5.6: Configuring a SAT solver to use a different clause translation process

Models

The final important part of the VSSF are the models obtained by the solvers. Basically,
a model is a variable assignment for all variables of a problem, such that the problem
is satisfied. Models are instances of the Model class. This class provides the method
getVariableAssignment which takes as input a variable and returns the value of this
variable under the model. The type of the returned value depends on the constant type of
the corresponding theory that introduced the variable. For propositional variables (instances
of PVariable), a boolean value is returned. For bit-vector variables (BVVariable), a
bit-vector (BitVector) is returned. For the Ints variables and Reals variables, Integer
resp. Double values are returned.

Implementation Detail
The type of the returned value of the getVariableAssignment method is determined with
the help of the Java Generics feature at compile time. Therefore, no cast is necessary and type
safety is maintained.

Example 5.4.12. Consider the formula we specified in Example 5.4.7:

(p1 ∨ p2 ∨ ¬p3) ∧ (p2 ∨ p3) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)

We now extend the code from Example 5.4.7 and let Java print the determined variable assign-
ment:

1 Problem p = new Problem();
2
3 PVariable p1 = new PVariable();
4 PVariable p2 = new PVariable();
5 PVariable p3 = new PVariable();
6
7 Formula f = new And(new Or(new Or(new Atom(p1),
8 new Atom(p2)),
9 new Neg(new Atom(p3))),

10 new And(new Or( new Atom(p2),
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11 new Atom(p3)),
12 new Or(new Or(new Neg(new Atom(p1)),
13 new Neg(new Atom(p2))),
14 new Neg(new Atom(p3)))));
15
16 p.addAssertion(f);
17
18 Solver s = new MinisatSolver();
19 Model m = s.getModel(p);
20
21 if(m == null)
22 {
23 System.out.println("UNSAT");
24 }
25 else
26 {
27 System.out.println("p1: " + m.getVariableAssignment(p1));
28 System.out.println("p2: " + m.getVariableAssignment(p2));
29 System.out.println("p3: " + m.getVariableAssignment(p3));
30 }

Listing 5.7: Specifying and solving a simple formula problem

Executing this code yields the following output (other solvers may find a different model):

p1: false
p2: true
p3: true

In addition to the Solver.getVariableAssignment method, the VSSF offers a dif-
ferent very convenient way of interpreting all kinds of entities that contain variables. The VSSF
provides an interface called Interpretable. The interface provides a method interpret
that takes as input a model and returns the value of the corresponding entity under the model.
Every specification entity (like all kinds of variables, formulas, terms, and clauses) implements
this interface. This allows evaluation of complete formulas or terms under a model.

Example 5.4.13. Consider the following formula using the bit-vectors theory:

(bv1 = bv2 + bv3)⊕ (bv2 > bv1)

The following codes looks for a model of this formula and then interprets both sides of the
antivalence connective, to see which one is true under the found model. It also prints the inter-
pretations of the bit-vector variables both as bit-vectors and in integer representation.

1 Problem p = new Problem();
2
3 BVVariable bv1 = new BVVariable(5);
4 BVVariable bv2 = new BVVariable(5);
5 BVVariable bv3 = new BVVariable(5);
6
7 Formula f1 = new Atom(new Equals(new VariableTerm(bv1),
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8 new AddNO(new VariableTerm(bv2),
9 new VariableTerm(bv3))));

10 Formula f2 = new Atom(new Greater(new VariableTerm(bv2),
11 new VariableTerm(bv1)));
12 Formula f = new Antiv(f1, f2);
13 p.addAssertion(f);
14
15 SATSolver sv = new MinisatSolver();
16 Model m = sv.getModel(p);
17
18 if(m == null)
19 System.out.println("UNSAT");
20 else
21 {
22 System.out.println("bv1: " + bv1.interpret(m) +
23 "(" + bv1.interpret(m).getIntValue() + ")");
24 System.out.println("bv2: " + bv2.interpret(m) +
25 "(" + bv2.interpret(m).getIntValue() + ")");
26 System.out.println("bv3: " + bv3.interpret(m) +
27 "(" + bv3.interpret(m).getIntValue() + ")");
28
29 System.out.println("formula1: " + f1.interpret(m));
30 System.out.println("formula2: " + f2.interpret(m));
31 System.out.println("formula1 xor formula2: " + f.interpret(m));
32 }

Listing 5.8: Using the "Interpretable"-interface

A possible output is:

bv1: 00000(0)
bv2: 00000(0)
bv3: 00000(0)
first disjunct: true
second disjunct: false
formula1 xor formula2: true

5.5 The Factory Classes

The VSSF provides many classes, many of which share equal names (e.g. Neg for negation in
propositional formulas, negation of bit-vectors, ...). Therefore, usually, qualified class-names
have to be used (e.g. Formula.Neg resp. TheoryBitVectors.Neg, ...), if more theories
are used that provide classes with the same name. This is no problem for automatically generated
formulas, but when specifying formulas by hand, it may get tedious.

Another problem is that in Java every instance of a class has to be constructed with the help
of the new-keyword. This also makes specifying formulas quite verbose.

As a more convenient way of specifying formulas are the so-called "factory classes" that are
provided by the VSSF. There are factory classes for each theory. Use of the factory classes for
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specifying formulas and terms is recommended as it makes the code shorter and more easy to
understand.

Example 5.5.1. Suppose, we want to specify the following problem, where bv1, bv2 and bv3 are
bit-vector variables, r1 and r2 are real variables, and i1 is an integer variable:

(0b01100 = bv2 +NO bv3) ∧ (bv1 > bv2)

positive(i1)⊕ (i1 > 20)

(r1 > 22) ∧ (r2 = r1 ∗ 41.52)

These assertions can be specified using factory classes in the following way:
1 Problem p = new Problem();
2
3 BVVariable bv1 = new BVVariable(size);
4 BVVariable bv2 = new BVVariable(size);
5 BVVariable bv3 = new BVVariable(size);
6 IntVariable i1 = new IntVariable();
7 RealVariable r1 = new RealVariable();
8 RealVariable r2 = new RealVariable();
9

10 PropositionalFactory pf = new PropositionalFactory();
11 BitVectorsFactory bvf = new BitVectorsFactory();
12 IntsFactory inf = new IntsFactory();
13 RealsFactory rf = new RealsFactory();
14
15 Formula f1 = pf.atom(bvf.equal(bvf.atom(new BitVector(size, 12)),
16 bvf.addNO(bvf.atom(bv2), bvf.atom(bv3))));
17 Formula f2 = pf.atom(bvf.greater(bvf.atom(bv1), bvf.atom(bv2)));
18 Formula f3 = pf.xor(pf.atom(inf.positive(inf.variable(i1))),
19 pf.atom(inf.greater(inf.variable(i1),
20 inf.constant(20))));
21 Formula f4 = pf.and(pf.atom(rf.greater(rf.variable(r1), rf.constant(22.0))),
22 pf.atom(rf.equal(rf.variable(r2),
23 rf.times(rf.variable(r1), rf.constant(41.52)))));
24
25 p.addAssertion(f1);
26 p.addAssertion(f2);
27 p.addAssertion(f3);
28 p.addAssertion(f4);

Listing 5.9: Using the factory classes

In a test-run of the specified code, the VSSF found the following interpretation (using the Yices-
SMT solver):

i1: 0
r1: 23.0
r2: 954.96
bv1: 11000(24)
bv2: 00110(6)
bv2: 00110(6)
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5.6 Using the VSSF

This section provides a tutorial on how to use the VSSF to specify different problems, solve the
problems and work with models.

Example 5.6.1. As a first example, consider the following formula in propositional logic, for
which satisfiability should be checked:

(a→ b) ∨ (b→ a)

The first step is to declare all the propositional variables:

1 PVariable a = new PVariable();
2 PVariable b = new PVariable();

Next, we create a new problem instance to which we will add the formula.

1 Problem p = new Problem();

The next step is, to add the formula to the problem instance. In order to specify the formula,
we use a formula factory, which we declare first. Next, we use the addAssertion method of
the problem p we declared above, to add the formula.

1 PropositionalFactory pf = new PropositionalFactory();
2
3 p.addAssertion(pf.and(pf.impl(pf.atom(a),pf.atom(b)),
4 pf.impl(pf.atom(b),pf.atom(a))));

At this point, the problem specification is finished. We can now use any SAT or SMT solver
to solve problem p and obtain a model for it. In this example, we are going to use the Minisat-
solver.

1 Solver sv = new MinisatSolver();
2 Model m = sv.getModel(p);

Now, we can check, if the problem is satisfiable, or not. If it is not satisfiable, then our model
m will be null. Otherwise, it contains a variable assignment for our two propositional variables
a and b, such that the formula specified above evaluates to true.

1 if(m == null)
2 System.out.println("UNSAT");
3 else
4 {
5 System.out.println("a: " + a.interpret(m));
6 System.out.println("b: " + b.interpret(m));
7 }

Of course, the formula is satisfiable. One possible output would be:

a: false
b: false
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The Solver-Classes may also provide the possibility to look for more than one (or even all)
models of a SAT problem. Currently, only the CLASP solver supports this feature. Consider
again the code from Example 5.6.1. We now change the code (starting from the line, where the
solver is declared) and use the CLASP solver instead, requesting from it four models. It will
return up to four models (Actually, there are only two models, so only those are returned...):

1 SATSolver sv = new CLASPSolver();
2 Set<Model> mods = sv.getModels(p, 4);
3
4 if(mods.size() == 0)
5 System.out.println("UNSAT");
6 else
7 {
8 int i = 0;
9 for(Model m : mods)

10 {
11 System.out.print("Model " + i++ + ":");
12 System.out.print(" a: " + a.interpret(m));
13 System.out.println(" b: " + b.interpret(m));
14 }
15 }

Now, as expected, both models are printed correctly:

Model 0: a: true b: true
Model 1: a: false b: false

There is a pitfall, however, when using the feature to find more than one model, that needs
to be taken care of. Suppose, we want to find models for the formula

(a ∨ b) ∨ ¬(a ∧ b)

This formula is specified as a VSSF problem using the following code:

1 p.addAssertion(pf.or(pf.or(pf.atom(a), pf.atom(b)),
2 pf.not(pf.and(pf.atom(a), pf.atom(b)))));

If we use CLASP again, to find four models, we get the following unexpected output:

Model 0: a: false b: true
Model 1: a: false b: true
Model 2: a: false b: true
Model 3: a: false b: false

We got four models but the first three models are the same. However, there should be exactly
four different models, that the Solver could find (every possible variable assignment is a model).
The problem is, that the SATSolver class by default uses the Tseitin translation with enabled
Plaisted-Greenbaum extension in order to translate the formula into a clause set. When the
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Plaisted-Greenbaum extension is enabled, it can happen, that some of the auxiliary variables
introduced by the translation process are not fixed (i.e. it does not matter how the SAT solver
assigns them). Thus, the SAT Solver actually produces four distinct models. However, they only
differ on some of the auxiliary variables. Therefore, when looking for more than one model it is
necessary to disable the Plaisted-Greenbaum extension for the Tseitin translator. To do this, the
following code can be used, after declaring the SAT solver:

1 SATSolver sv = new CLASPSolver();
2
3 TseitinTranslator tt = new TseitinTranslator();
4 tt.usePlaistedGreenbaumExtension(false);
5 sv.setFormulaTranslator(tt);
6
7 Set<Model> mods = sv.getModels(p, 4);

Now, if we run the code again, we get the expected output:

Model 0: a: false b: false
Model 1: a: true b: true
Model 2: a: true b: false
Model 3: a: false b: true

Example 5.6.2. Suppose, we want to solve the following mathematical riddle (from the inter-
net1)

A merchant can place 8 large boxes or 10 small boxes into a carton for shipping. In
one shipment, he sent a total of 96 boxes. If there are more large boxes than small
boxes, how many cartons did he ship?

We can specify an SMT formula, using the Ints-theory, such that any model that is found
will be the solution to the riddle. We need two variables: The variable numBig will hold the
number of cartons with big boxes and the variable numSmall will hold the number of cartons
with small boxes inside. We have to specify, that the total number of boxes is equal to 96. This
can be done with the following formula:

numBig ∗ 8 + numSmall ∗ 10 = 96

Furthermore, we need to specify, that the number of of big boxes sent is greater than the number
of small boxes sent:

numBig ∗ 8 > numSmall ∗ 10

The following block of code specifies these formulas as VSSF-formulas and uses the Yices-
solver to solve the problem. After a model has been found, the solution is printed.

1http://www.mathwarehouse.com/riddles/math-riddles.php, accessed on Sept. 04, 2011
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1 Problem p = new Problem();
2
3 IntVariable numBig = new IntVariable();
4 IntVariable numSmall = new IntVariable();
5
6 PropositionalFactory pf = new PropositionalFactory();
7 IntsFactory inf = new IntsFactory();
8
9 Formula f1, f2;

10
11 /* numBig * 8 + numSmall * 10 = 96 */
12 f1 = pf.atom(inf.equal(inf.add(inf.times(inf.atom(numBig), inf.atom(8)),
13 inf.times(inf.atom(numSmall), inf.atom(10))),
14 inf.atom(96)));
15 /* numBig * 8 > numSmall * 10 */
16 f2 = pf.atom(inf.greater(inf.times(inf.atom(numBig), inf.atom(8)),
17 inf.times(inf.atom(numSmall), inf.atom(10))));
18
19 p.addAssertion(f1);
20 p.addAssertion(f2);
21
22 Solver sv = new YicesSolver();
23 Model m = sv.getModel(p);
24
25 if(m == null)
26 System.out.println("UNSAT");
27 else
28 {
29
30 System.out.println("There are " +
31 numBig.interpret(m) + " cartons with big boxes and " +
32 numSmall.interpret(m) + " cartons with small boxes.");
33 System.out.println("Thus, in total " +
34 (numBig.interpret(m) + numSmall.interpret(m)) +
35 " cartons were sent.");
36 }

Running this code yields the following output, which provides the solution to the riddle:

There are 7 cartons with big boxes and 4 cartons with small
boxes.
Thus, in total 11 cartons were sent.
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CHAPTER 6
Semantic Labeling

Semantic labeling [Zan95] is a method of transforming TRSs into different TRSs that are ter-
minating if and only if the original TRSs are terminating. The most-commonly used meth-
ods of proving termination are based on simplification orders, which means that non simply-
terminating([KO92]) TRSs (which still are potentially terminating) cannot be shown terminat-
ing with these methods. Transforming a TRS into a different TRS by means of semantic labeling
might make a TRS that was previously non-simply-terminating orientable via a simplification
order, and thus it may be possible to show termination. The first section of this chapter offers
a short introduction to semantic labeling and establishes the notations used in the later sections.
Section 2 shows a special version of semantic labeling, called root-labeling [SM08], which can
be used as both a direct method and a DP processor. In Section 3, we will generalize the direct
method version of root-labeling to the context-sensitive case, and in Section 4 we do the same
for the DP processor.

6.1 Semantic Labeling

Here, we present the semantic labeling transformation from [Zan95] and discuss how it can be
generalized to work with context-sensitive rewriting. After that, we extend it into a CS-DP pro-
cessor. The idea of semantic labeling is to incorporate some information about the intended se-
mantics of a rewrite system directly into the rewrite system, by adding labels to terms. This way,
an automatic prover that normally only examines syntactic features of rewrite systems might, in
a natural way, be able to show termination more easily using the new additional information.

Semantics of a TRS, Algebras

The semantics of a rewrite system can be described by an F-algebra. An F-algebra assigns a
meaning to each constant and each function symbol in F and defines the elements over which
the rewrite system operates.
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Definition 6.1.1 (F-Algebra). Let F be a signature. An F-Algebra A is a pair (A,
{
fA |

f ∈ F
}

) where

• A is a set containing arbitrary elements (called the domain of A) and

• for each f ∈ F (n) there is a function fA : An 7→ A (for all n ≥ 0).

Example 6.1.2. Let F =
{
0, s, plus

}
be a signature where ar(0) = 0, ar(s) = 1 and

ar(plus) = 2. One example of an F-Algebra is the algebraA with the domain N0 and functions
0A = 0, sA(x) = x + 1 and plusA(x, y) = x + y, where 0 is the natural number zero and +
denotes addition over natural numbers.

In order to evaluate a term in an F-algebra A, variables occurring in the term need to be
mapped to members of the domain A of A. This is done by a variable assignment function α.

Definition 6.1.3 (Variable Assignment). For the set X of variables and a domain A, a variable
assignment α is a function α : X 7→ A. The set of all possible variable assignments is denoted
as AX .

Evaluation of a term t ∈ T (F , X) under an F-algebra A, wrt. a variable assignment α,
amounts to replacing variables in the term with their assigned elements from the domain, and
replacing the pure syntactic function symbols with their corresponding functions defined by A.

Definition 6.1.4 (Term Evaluation). Let A be an F-algebra and let α be a variable assignment.
A term evaluation is a function [α] : T (F , X) 7→ A defined by

[α](x) = α(x) f.a. x ∈ X
[α](f(t1, . . . , tn)) = fA([α](t1), . . . , [α](tn)) f.a. f ∈ F (n), t1, . . . , tn ∈ T (F , X)

Example 6.1.5. Let F and A be as in Example 6.1.2. Let α be a variable assignment whith
α(x) = 2 and α(y) = 1. The evaluation of the term plus(x, s(y)) under the variable assignment
α is:

[α](plus(x, s(y))) = plusA(2, sA(1)) = 2 + 2 = 4

The underlying semantics of term rewriting is, that a rewrite step is intended to be some kind
of transition from one term to another, that does only apply syntactic changes to terms, but does
not change the intended value the term evaluates to. This is similar to rewriting a mathematical
term - for example, instead of (2 + 2) one might write 4. Only the syntactic representation
changes but the intended value is in both cases the number 4. An F-algebra that satisfies this
property for every rule of a rewrite systemR is called a model ofR.

Definition 6.1.6 (Model). Let R be a TRS and let A be an F-algebra. A is called a model for
R if for each rule l → r ∈ R and for every variable assignment α ∈ AX , [α](l) and [α](r)
evaluate to the same element in A (i.e. [α](l) = [α](r)).
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Example 6.1.7. Consider the following TRSR over the signature F from Example 6.1.2:

plus(0, x) → x plus(s(x), y) → s(plus(x, y))
plus(x, 0) → x plus(x, s(y)) → s(plus(x, y))

The algebra A from Example 6.1.2 is a model for R. To see this, consider the rule
plus(s(x), y)→ s(plus(x, y)). The left-hand-side evaluates to 1 + x+ y and the right-hand-side
evaluates to x + y + 1 (for x, y ∈ N0). Obviously, both sides are equivalent for all possible
substitutions of x and y into the natural numbers. Using similar argumentation, one can easily
prove, that the same also holds for all other rules.

In the following, usuallyM (An F-Algebra with domain M and functions fM) denotes a
model for some TRS. A model for a TRSR defines one possible semantics forR.

Semantic Labeling

Semantic labeling uses a model M and a special labeling function to apply labels to function
symbols occuring in terms. To this end, for each n ≥ 0 and each function symbol f ∈ F (n),
a new non-empty set of labels, denoted as Sf , is chosen. The signature F is extended to F ={
fl | f ∈ F , l ∈ Sf

}
where for all f ∈ F and l ∈ Sf , ar(fl) = ar(f) holds. Furthermore, for

every function symbol f ∈ F , a map πf : Mn 7→ Sf is chosen.

Definition 6.1.8 (Labeling Function, [Zan95]). Let A be an F-algebra. Furthermore, for each
f ∈ F , let Sf be a non-empty set of labels and πf a mapping as described above. The labeling
function lab : T (F , X) × AX 7→ T (F , X) is a mapping from terms, together with a variable
assignment, to labeled terms, defined inductively as follows:

lab(x, α) = x
lab(f(t1, . . . , tn), α) = fπf ([α](t1),...,[α](tn))(lab(t1, α), . . . , lab(tn, α))

Example 6.1.9. Consider the signature F and the F-algebra A from Example 6.1.2. Define
the following sets of labels for the function symbols: S0 =

{
0
}

, Ss =
{
N0

}
and Splus ={

N0 × N0

}
. Furthermore, let π0 = 0, πs(x) = x and πplus(x, y) = (x, y). Let α be a variable

assignment, where α(x) = 2 and α(y) = 1. The term plus(s(x), y) is labeled in the following
way under the variable assignment α:

lab(plus(s(x), y), α) = plusπplus(3,1)(sπs(2)(x), y) = plus(3,1)(s(2)(x), y)

The labeling function can be used to label a TRS R. To this end, a model for R together
with the sets Sf and label mappings πf are chosen. The definition below describes, how the
labeled version ofR, denoted asR, is obtained from these parameters.

Definition 6.1.10 (Labeled TRS, [Zan95]). Let R = (F , R) be a TRS,M a model for R. The
labeled TRSR = (R,F) has the following rules:

R =
{
lab(l, α)→ lab(r, α) | l→ r ∈ R,α ∈MX

}
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The main theorem of semantic labeling says that any TRS that is labeled in the way described
above is terminating if and only if the unlabeled version is terminating.

Theorem 6.1.11 (Semantic Labeling, [Zan95]). LetM be a model for a TRSR over a signature
F . Choose for every f ∈ F a non-empty set Sf of labels and a map πf : Mn 7→ Sf , where n is
the arity of f. DefineR as above. ThenR is terminating if and only ifR terminating.

Example 6.1.12 ([Zan95]). Consider the following TRSR which is not simply terminating:

f(f(x)) → f(g(f(x)))

Since R is not simply terminating, no simplification order can orient this TRS. Now we apply
semantic labeling using the following parameters:

• A model with the domain M =
{

1, 2
}

and functions fM(x) = 2 and gM(x) = 1 for
x ∈

{
1, 2
}

.

• Labels for f and g: Sf =
{

1, 2
}

and Sg =
{

1
}

.

• Label mappings: πf (x) = x and πg(x) = 1 for x ∈
{

1, 2
}

.

The labeled systemR is:

f2(f1(x)) → f1(g1(f1(x))) f2(f2(x)) → f1(g1(f2(x)))

The systemR can easily be oriented using a KBO with a weight function (w,w0) wherew0 = 1,
w(f1) = w(g1) = 1 and w(f2) = 3.

Semantic Labeling for Context-Sensitive Rewriting

Semantic labeling is easily generalized to context-sensitive rewriting. Almost all notions carry
over from the non-context-sensitive case without changes. The only thing changed is, that when
labeling a CS-TRS (R, µ) with a labeling function, the replacement map µ needs to be extended
to the new signature ofR.

Definition 6.1.13 (Labeled CS-TRS). Let (R, µ) be a CS-TRS over signature F , M a model
forR. The labeled CS-TRS (R, µ) over signature F has the following set of rules:

R =
{
lab(l, α)→ lab(r, α) | l→ r ∈ R,α ∈MX

}
and for each fl ∈ F , we define µ(fl) = µ(f) (here f denotes the symbol fl where the label is
removed).

We state an axillary result from [Zan95] that will be helpful in the proofs, when extending se-
mantic labeling to the context-sensitive case. The other results in this section are generalizations
of the results from the same paper.
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Lemma 6.1.14 ([Zan95]). Let α ∈ AX be a variable assignment and let σ be a substitution.
Define σ̄ : X 7→ T (F , X) by σ̄(x) = lab(σ(x), α). Then

lab(σ(t), α) = σ̄(lab(t, [α] ◦ σ))

Lemma 6.1.15. LetM be a model for a CS-TRS (R, µ) and let s, t be terms such that s ↪→R,µ t.
Then

lab(s, α) ↪→R,µ lab(t, α)

for all variable assignments α ∈MX .

Proof. By induction on the depth of the position, where the rewrite step is applied. Suppose,
the reduction is applied at root position of s. Then there is a substitution σ such that s = σ(l)
and t = σ(r) for some rule l → r ∈ R. By construction of R, we know that lab(l, [α] ◦ σ)→
lab(r, [α] ◦ σ) is a rule inR. Applying Lemma 6.1.14 twice, we get:

lab(s, α) = lab(σ(l), α)
= σ̄(lab(l, [α] ◦ σ))
ε
↪→P,µ σ̄(lab(r, [α] ◦ σ))

= lab(σ(r), α) = lab(t, α)

For the induction step, suppose s = f(. . . , si−1, s
′, si+1, . . . ) and t = f(. . . , si−1, t

′, si+1, . . . )
with s ↪→R,µ t. For this step to be possible, i ∈ µ(f) must hold. From the induction hypothesis
we know, that there is the following rewrite step: lab(s′, α) ↪→P,µ lab(t′, α). Furthermore, we
know that [α](s′) = [α](t′) because A is a model ofR. Thus we have (terms abbreviated):

lab(f(. . . , s′, . . . ), α) = fπf (...,[α](s′),... )(. . . , lab(s′, α), . . . ) (1)
= fπf (...,[α](t′),... )(. . . , lab(s′, α), . . . ) (2)

↪→R,µ fπf (...,[α](t′),... )(. . . , lab(t′, α), . . . ) (3)
= lab(f(. . . , t′, . . . ), α) (4)

The rewrite step used to get from line (2) to line (3) is valid, because by construction of µ we
have µ(fπf (...,[α](t′),... )) = µ(f) and thus i ∈ µ(fπf (...,[α](t′),... )).

Now, we can formulate the theorem stating equivalence of CS-TRSs R and R regarding
termination. This is exactly analogous to Theorem 6.1.11:

Theorem 6.1.16. LetM be a model for a CS-TRS (R, µ) over F . Choose for every f ∈ F a
non-empty set Sf of labels and a map πf : Mn 7→ Sf , where n is the arity of f. Define (R, µ)
as above. ThenR is terminating if and only if (R, µ) terminating.

Proof. If (R, µ) is not terminating, then there is an infinite rewrite sequence of terms in
T (F , X). Removing all labels yields an infinite rewrite sequence in R. For the other direction,
assume thatR is not terminating. Then there is an infinite rewrite sequence

t1 ↪→R,µ t2 ↪→R,µ t3 ↪→R,µ . . .
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Choose α arbitrarily. Then, according to Lemma 6.1.15,R allows an infinite reduction

lab(t1, α) ↪→R,µ lab(t2, α) ↪→R,µ lab(t3, α) ↪→R,µ . . .

for some variable assignment α.

Example 6.1.17. Consider the TRS R and the labeling parameters from Example 6.1.12. Sup-
pose, that instead of R, we now have a context-sensitive TRS (R, µ) with µ(f) =

{
1, 2
}

and
µ(g) = ∅. The labeled version of this CS-TRS is (R, µ), where R is the same as in Example
6.1.12. For the replacement map µ we have: µ(f1) = µ(f2) =

{
1, 2
}

and µ(g) = ∅

Semantic Labeling as a CS-DP processor

Now, we discuss how semantic labeling can be used as a CS-DP processor. This extension is
based on the DP processor for root labeling (see next section), described in [SM08]. However,
here it is generalized in two ways: first, it supports context-sensitive rewriting and second, it
supports arbitrary types of semantic labeling. We state a few helpful definitions from [SM08]
regarding signatures of DP problems.

Definition 6.1.18. Let (P,R, µ) be a CS-DP problem where P is a TRS over signature FP
and R is a TRS over signature FR. Let the signature F (#) be defined as

{
root(l), root(r) |

l→ r ∈ P
}

and define F as FR ∪ (FP \ F (#)). Furthermore, we define the signature F(R)
to contain only the function symbols occuring in R. Sometimes we augment the notation with
position constraints, so for exampleF>ε(R) denotes the signature that contains only the function
symbols occurring below root inR.

Semantic labeling is applied to a CS-DP problem by labeling it in a way similar to how
CS-TRSs are labeled:

Definition 6.1.19 (Labeled CS-DP Problem). Let (P,R, µ) be a CS-DP problem and let F (#)

and F be defined as above. Let A be a (F ∪ F (#))-algebra. For each f ∈ F ∪ F (#), choose a
set Sf and a mapping πf : An 7→ Sf , where n is the arity of f . By using Definition 6.1.13, we
can label the CS-TRSs (P, µ) and (R, µ) and obtain (P, µP) and (R, µR). Let µ(f) = µR(f)
for all f in F and let µ(F ) = µP(F ) for all F ∈ F (#). Now we can define the labeled version
of the CS-DP problem (P,R, µ) as (P,R, µ).

Using these definitions, we are now ready to state the theorem defining the CS-DP processor
for semantic labeling.

Theorem 6.1.20. Let (P,R, µ) be a CS-DP problem and let F (#) and F be defined as above.
Let A be a (F ∪ F (#))-algebra. Choose for every f ∈ F ∪ F (#) a set Sf of labels and a map
πf : An 7→ Sf , where n is the arity of f . If A is a model of P andR, then the DP Processor

(P,R, µ) 7→
{

(P,R, µ)
}

is sound and complete.
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Remark. One way of obtaining a model for P is to choose special functions for the root-symbols
of the rules in P: for each F ∈ F (#) with arity n ≥ 0, choose FA(x1, . . . , xn) = a for some
arbitrary but fixed a ∈ A Such an algebra is trivially a model for P , as the left-hand-sides and
right-hand-sides of the rules in P all evaluate to the same symbol a.

Soundness. Suppose (P,R, µ) is not finite. Then there is an infinite minimal sequence in
(P,R, µ):

s1
ε
↪→P,µ t1 ↪→∗R,µ s2

ε
↪→P,µ t2 ↪→∗R,µ . . .

Let α ∈ AX be an arbitrary variable assignment. Consider an arbitrary step si
ε
↪→P,µ ti (i ≥ 1)

in the assumed sequence. There is a substitution σ such that for some rule l → r ∈ P , we have
si = σ(l) and ti = σ(r), because the rewrite step takes place at the root position of si. By using
Lemma 6.1.13 twice we get

lab(si, α) = lab(σ(l), α)
= σ̄(lab(l, [α] ◦ σ))
ε
↪→P,µ σ̄(lab(r, [α] ◦ σ))

= lab(σ(r), α) = lab(ti, α)

because the rule lab(l, [α] ◦ σ) → lab(r, [α] ◦ σ) is in P . Since the rule is applied at root
position, it is applicable regardless of µ.
Now, consider the sequence ti ↪→∗R,µ si+1 (i ≥ 1) occurring in the assumed sequence. Let
s ↪→R,µ t be an arbitrary step within this sequence. By Lemma 6.1.15 we know, that there is
the following rewrite step in R: lab(s, α) ↪→R,µ lab(t, α) and by repeating this, we obtain
lab(ti, α) ↪→∗R,µ lab(si+1, α)

Therefore, we have constructed an infinite sequence in (P,R, µ):

lab(s1, α)
ε
↪→P,µ lab(t1, α) ↪→∗R,µ lab(s2, α)

ε
↪→P,µ lab(t2, α) ↪→∗R,µ . . .

Now, we argue that this sequence is also minimal (i.e. every term lab(ti, α) is terminating with
respect to (R, µ)). Suppose some term lab(ti, α) is not terminating with respect to (R, µ).
Then, there is an infinite rewrite sequence starting at this term. By removing all labels we get
an infinite rewrite sequence in (R, µ) starting at ti which is a contradiction to minimality of the
assumed sequence.

Completeness. Suppose, (P,R, µ) is not finite. Then there is an infinite minimal sequence in
(P,R, µ) for some α ∈ AX :

lab(s1, α)
ε
↪→P,µ lab(t1, α) ↪→∗R,µ lab(s2, α)

ε
↪→P,µ lab(t2, α) ↪→∗R,µ . . .

Removing all labels in this sequence yields the following infinite sequence in (P,R, µ):

s1
ε
↪→P,µ t1 ↪→∗R,µ s2

ε
↪→P,µ t2 ↪→∗R,µ . . .
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This sequence is also minimal: Suppose, some term ti is not terminating with respect to (R, µ).
Then there is an infinite rewrite sequence ti = u1 ↪→R,µ u2 ↪→R,µ . . . . According to Lemma
6.1.15, since A is a model of R, there is an infinite sequence lab(ti, α) = lab(u1, α) ↪→R,µ
lab(u2, α) ↪→R,µ . . . which contradicts minimality of the assumed infinite minimal sequence.

6.2 Root-Labeling

In order to use semantic labeling, many parameters have to be fixed: A model for the TRSR that
should be proven terminating, and label sets as well as label mappings for each function symbol
in the signature. Also, if the label sets are not finite, the resulting TRSR might be infinite. This
huge search space makes automated proving of termination with unrestricted semantic labeling
quite hard. Therefore, techniques like self-labelling [MOZ96] and root-labeling [SM08] have
been developed, where the labeling of a TRSR is determined solely byR itself.

One part of this thesis is the implementation of root-labeling as a direct method and as a CS-
DP processor for VMTL. Root-labeling was originally developed for string-rewriting systems (a
special case of term rewriting, where the signature is restricted to unary symbols) by Johannes
Waldmann and generalized to term rewriting by Christian Sternagel and Aart Middeldorp in
[SM08]. In this section, we recapitulate some of the definitions and results for root-labeling
from [SM08]. In the next section, we generalize these results to the context-sensitive case for
the direct method and then for the DP processor.

The following definitions will be needed in the subsequent sections.

Definition 6.2.1 (Root Preserving / Altering Rules, [SM08]). Let R be a TRS. The rules in the
set Rp =

{
l→ r ∈ R | root(l) = root(r)

}
are called root preserving. The rules in the set

Ra = R \Rp are called root altering.

Definition 6.2.2 (Flat Contexts, [SM08]). Let R be a TRS over signature F . The set FCF ={
f(x1, . . . , xi−1,2, xi+1, . . . , xn) | f ∈ F (n), 1 ≤ i ≤ n, n ≥ 1

}
is the set of flat contexts. The

flat context closure of R under a signature F is defined as FCF (R) = Rp ∪
{
C[l]→ C[r] |

l→ r ∈ Ra, C ∈ FCF
}

.

The Direct Method

The root-labeling transformation of a system R is a special case of the semantic labeling trans-
formation where as an algebra for R, one uses the algebra AF with domain F and functions
mapping to the corresponding function symbols from F .

Definition 6.2.3 (The Algebra AF , [SM08]). Let F be a signature. The algebra AF is defined
as (F ,

{
fAF | f ∈ F

}
) where for all function symbols in F with arity n ≥ 0, we define

fAF (x1, . . . , xn) = f for all x1, . . . , xn ∈ F .

The next definition describes, how the labels for root-labeled terms are chosen. The whole
translation is determined by the TRS and its signature, and thus does not require any parame-
ters, making it very well suited for automation. However, the proofs found in this way are not
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very suited for understandability by humans, because the labeling does not reflect the intended,
natural semantics of the system. Thus some of the elegance of the semantic labeling approach is
sacrificed for the improved efficiency.

Definition 6.2.4 (Root Labeling, [SM08]). Let R be a TRS over signature F . Let AF be as
defined above. Choose for every f ∈ F (n) with n ≥ 1 the set of labels Sf = Fn and mapping
πf (x1, . . . , xn) = (x1, . . . , xn) for all x1, . . . , xn ∈ F . For each c ∈ F (0), choose Sc =

{
c
}

and πc = c. A system labeled by semantic labeling with these parameters is called root-labeled,
and is denoted asRrl.

Example 6.2.5. Consider the TRS R (from [Toy87]) consisting only of the rule f(a, b, x) →
f(x, x, x). The root-labeled version,Rrl, is:

f(a,b,a)(a, b, x) → f(a,a,a)(x, x, x) f(a,b,b)(a, b, x) → f(b,b,b)(x, x, x)

f(a,b,f)(a, b, x) → f(f,f,f)(x, x, x)

WhileR is not simply-terminating, and thus any simplification-order like RPO and KBO would
fail to prove termination ofR, the root-labeled systemRrl is simply terminating and termination
can be proved very easily using the RPO induced by a strict order > s.t. f(a,b,a) > f(a,a,a),
f(a,b,b) > f(b,b,b) and f(a,b,f) > f(f,f,f).

Definition 6.2.6 (Flat-Context Stability). We say, a TRS R over a signature F is flat-context
stable, if whenever there are root-altering rules in R, then there is at least one function symbol
f ∈ F with arity ar(f) ≥ 1.

Theorem 6.2.7 (Termination of Root-Labeled Systems, [SM08]). LetR be a flat-context stable
TRS over signature F . Then the root-labeled system FCF (R)rl is terminating iffR is terminat-
ing.

Remark. Note, that the flat context closure is indeed required, because AF is not necessarily a
model for R, but by construction is a model of FCF (R) [SM08]. Furthermore, flat context-
stability is required, because otherwise the set of flat-contexts would be empty.

The DP Processor

The extension of root-labeling to a DP processor was first presented in [SM08]. Like the direct
method version, it is based on the flat context closure of the rule system. However, in [ST10]
it was shown that in general the restriction to the implicit signature of the DP problem, which
is inherent to using flat contexts, is not sound if one needs to maintain minimality of DP chains
[SM08, Lemma 13]. It is shown, however, that root-labeling is sound for DP problems where
the set of rules is left-linear. Since in our setting minimality of chains is required, we will need
this restriction to left-linear systems.
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Definition 6.2.8 (Flat Context Closure of DP Problems, [SM08]). Let (P,R) be a DP problem,
and let F (#) and F be as in Definition 6.1.18. Let ∆ be a fresh unary function symbol. The
function block inserts ∆ between the root symbol f and the arguments t1, . . . , tn of a term
f(t1, . . . , tn) with n ≥ 1:

block(t) =

{
t if t is a variable or a constant
f(∆(t1), . . . , f(∆(tn)) if t = f(t1, . . . tn) for terms t1, . . . tn

Define FC(P,R) as (block(P),FC
F∪
{

∆
}(R)) where block(P) is the TRS with the set of

rules
{
block(l)→ block(r) | l→ r ∈ P

}
.

Definition 6.2.9 (Root-Labeling Transformation for DP Problems, [SM08]). Let (P,R) be a
DP problem and let F (#) and F be as in Definition 6.1.18. Let F ′ = F ∪ F (#) ∪

{
∆
}

. Let
P ′ be the TRS with the rules from block(P), over the signature F ′ and letR′ be the TRS with
rules from FC

F∪
{

∆
}(R) over signature F ′. The root-labeling transformation FC(P,R)rl is

defined as the pair (P ′rl,R′rl), where the root-labeling operation is modified in the following
way: for each function symbol F in F (#), the set of labels is SF =

{
F
}

, the label mapping is
πF = F and the interpretation of F in AF ′ is FAF′ (x1, . . . , xn) = g for all x1, . . . , xn ∈ F ′

and arbitrary but fixed g ∈ F (#).

Example 6.2.10. Consider again the TRSR from Example 6.2.4. The corresponding DP prob-
lem (DP (R),R) contains the following dependency pair: f#(a, b, x) → f#(x, x, x). The
root-labeled version, FC(DP (R),R)rl, contains the following dependency pairs and rules:

Dependency Pairs:

f(∆,∆,∆)
#(∆a(a),∆b(b),∆a(x)) → f(∆,∆,∆)

#(∆a(x),∆a(x),∆a(x))

f(∆,∆,∆)
#(∆a(a),∆b(b),∆b(x)) → f(∆,∆,∆)

#(∆b(x),∆b(x),∆b(x))

f(∆,∆,∆)
#(∆a(a),∆b(b),∆f(x)) → f(∆,∆,∆)

#(∆f(x),∆f(x),∆f(x))

f(∆,∆,∆)
#(∆a(a),∆b(b),∆f#(x)) → f(∆,∆,∆)

#(∆f#(x),∆f#(x),∆f#(x))

f(∆,∆,∆)
#(∆a(a),∆b(b),∆∆(x)) → f(∆,∆,∆)

#(∆∆(x),∆∆(x),∆∆(x))

Rules:

f(a,b,a)(a, b, x) → f(a,a,a)(x, x, x) f(a,b,b)(a, b, x) → f(b,b,b)(x, x, x)

f(a,b,f)(a, b, x) → f(f,f,f)(x, x, x) f(a,b,∆)(a, b, x) → f(∆,∆,∆)(x, x, x)

f(a,b,f#)(a, b, x) → f(f#,f#,f#)(x, x, x)

Theorem 6.2.11 (The Root-Labeling DP Processor [SM08, ST10]). Let (P,R) be a DP prob-
lem. The following DP processor is sound:

(P,R) 7→

{{
FC(P,R)rl

}
ifR is left-linear{

(P,R)
}

otw.
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6.3 Generalizing Root-Labeling to the Context-Sensitive Case

In this section, we generalize root-labeling to the context-sensitive case. We start by generalizing
the notion of flat contexts.

Definition 6.3.1 (Flat µ-Contexts). Let (R, µ) be a CS-TRS over the signature F . Let Ra and
Rp be as in Definition 6.1.18. The set of flat µ-contexts for a signature F is

FCF ,µ =
{
f(x1, . . . , xi−1,2, xi+1, . . . , xn) | f ∈ F (n), n ≥ 1, i ∈ µ(f)

}
The flat µ-context closure of a CS-TRS (R, µ) is defined as follows: FCF (R, µ) = Rp ∪{
C[l]→ C[r] | l→ r ∈ Ra, C ∈ FCF ,µ

}
Definition 6.3.2 (Flat µ-Context Stability). We say, a CS-TRS (R, µ) over a signature F is flat
µ-context stable, if whenever there are root-altering rules inR, then there is at least one function
symbol f ∈ F with arity ar(f) ≥ 1 and µ(f) 6= ∅.

Lemma 6.3.3. Let (R, µ) be a flat µ-context stable CS-TRS over the signature F . The CS-TRS
(R, µ) is terminating if and only if the CS-TRS (FCF (R, µ), µ) is terminating.

Proof. Suppose, (FCF (R, µ), µ) is not terminating. Then there is an infinite sequence

t1 ↪→FCF (R,µ),µ t2 ↪→FCF (R,µ),µ . . .

We argue, that each step in this sequence can be simulated via steps inR. Consider an arbitrary
step ti ↪→FCF (R,µ),µ ti+1. Let l → r ∈ FCF (R, µ) be the rule applied at position π on ti in
order to obtain ti+1. There are two possibilities:

• l→ r ∈ Rp: Then also l→ r ∈ R by construction of FCµ(R).

• l → r /∈ Rp: Then the rule l → r has the following shape: C[l′] → C[r′] for some
context C = f(x1, . . . , xj−1,2, xj+1, . . . , xn) ∈ FCF ,µ. By construction of FCF (R, µ)
we have j ∈ µ(f) and l′ → r′ ∈ R. Furthermore, since the rewrite step took place
at position π we know that π is a µ-replacing position in term ti. Thus also π.j is a µ-
replacing position in ti. Therefore, it is possible, to apply the rule l′ → r′ at position π.j
on ti and obtain ti+1.

Since every step in the infinite sequence t1 ↪→FCF (R,µ),µ t2 ↪→FCF (R,µ),µ . . . can be simulated
with a rule from R, we obtain the infinite sequence t1 ↪→R,µ t2 ↪→R,µ . . . and therefore, we
know thatR is not terminating.

For the other direction, assumeR is non-terminating. In this case, there is an infinite rewrite
sequence

t1 ↪→R,µ t2 ↪→R,µ . . .

Let C = f(x1, . . . , xj−1,2, xj+1, . . . , xn) be an arbitrary flat context from FCF ,µ. Then we
know, j ∈ µ(f). Therefore, the following reduction sequence is also valid:

C[t1] ↪→R,µ C[t2] ↪→R,µ . . .
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The same sequence can be obtained using rules from FCF (R, µ) instead:

C[t1] ↪→FCF (R,µ),µ C[t2] ↪→FCF (R,µ),µ . . .

This sequence can be constructed as follows: Consider again an arbitrary step C[ti] ↪→R,µ
C[ti+1]. Let l → r ∈ R be the rule that is applied at position π on the term C[ti], in order to
obtain C[ti+1]. Again, we consider the two cases:

• l→ r ∈ Rp: Then l→ r is also in FCF (R, µ) and this rule can be used.

• l → r /∈ Rp: Note, that C[ti] = f(x1, . . . , xj−1, ti, xj+1, . . . , xn). We distinguish two
more cases:

– π = j: (i.e. the rule is applied directly at the root position of the term ti in its
enclosing context). Then the rule C[l] → C[r] ∈ FCF (R, µ) can be applied at the
root position of C[ti] to obtain C[ti+1].

– π > j: Split π in two parts: π = π′.k where π′ is a position and k ∈ N. Since
π is a µ-replacing position in the term C[ti], the smaller position π′ has to be µ-
replacing as well. Let g denote the root symbol of the term C[ti]|π′ . Because π′.k
is a µ-replacing position in C[ti], we also know, that k ∈ µ(g). Thus we know, that
the rule g(y1, . . . , yk−1, l, yk+1, . . . , ym) → g(y1, . . . , yk−1, r, yk+1, . . . , ym) is in
FCF (R, µ) and can be used at position π′ on C[ti] to obtain C[ti+1].

Thus if R is not terminating, we can construct an infinite sequence using only rules from
FCF (R, µ) and so this system is not terminating either.

Now, we describe how a CS-TRS can be root-labeled. The labeling itself is identical to the
non-context-sensitive case, but the replacement map has to be modified accordingly.

Definition 6.3.4 (Root-Labeling of CS-TRSs). Let (R, µ) be a CS-TRS over the signature F .
Let the algebra AR be as in Definition 6.2.3. Choose for every f ∈ F (n) with n ≥ 1 the set
of labels Sf = Fn and mapping πf (x1, . . . , xn) = (x1, . . . , xn) for all xi ∈ F . For each
c ∈ F (0), choose Sc =

{
c
}

and πc = c. A CS-TRS (R, µ) labeled by semantic labeling with
these parameters is called root-labeled, and is denoted as (Rrl, µrl) where µrl(fl) = µ(f) for
all fl in the signature F (cf. Section 6.1). f denotes the function symbol fl where the label is
removed.

Now, we can state the theorem expressing equivalence of termination of CS-TRSs and root-
labeled CS-TRSs.

Theorem 6.3.5. Let (R, µ) be a flat µ-context stable CS-TRS over the signature F . The CS-TRS
(R, µ) is terminating if and only if (FCF (R, µ)rl, µrl) is terminating.

Proof. By the previous Lemma we know, that (R, µ) is terminating iff (FCF (R, µ), µ) is termi-
nating. Furthermore, we know that the algebra AFCF (R,µ) is a model for FCF (R, µ), because
all rules in this system are root-preserving and thus the left-hand side and right-hand side of ev-
ery rule trivially evaluate to the same element inAFCF (R,µ). Therefore, this theorem is a special
case of Theorem 6.1.16.
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6.4 Generalizing the Root-Labeling Processor to the
Context-Sensitive Case

In this section, we generalize the root-labeling processor to a context-sensitive DP processor.

Definition 6.4.1 (Flat Context Closure of CS-DP Problems). Let (P,R, µ) be a CS-DP problem.
Let the signatures FP , FR, F (#) and F be as in Definition 6.1.18 and let ∆ and block be as in
Definition 6.2.8. DefineFCF (P,R, µ) as the triple (block(P),FC

F∪
{

∆
}(R, µ∆), µ∆) where

block(P) =
{
block(l)→ block(r) | l→ r ∈ P

}
, and µ∆(f) = µ(f) for f ∈ F ∪F (#) and

µ∆(∆) =
{

1
}

.

Lemma 6.4.2. The triple FCF (P,R, µ) is a CS-DP problem.

Proof. The only thing we need to show, is that the root symbols of rules in P occur only at root
position in these rules and nowhere else. Since neither the block-function nor closure under
flat contexts introduce symbols from F (#), this is certainly the case if (P,R, µ) is a CS-DP
problem (a prerequisite for applying the FCF -operation).

Before we can prove, that the flat context closure of a DP problem is finite if and only if
the DP problem is finite, we need some more axillary results. First, we need a way to restrict
terms over an arbitrary signature to some smaller signature. In [ST10] this is done by a cleaning
operation which replaces every subterm of a term that is rooted by a symbol not in the smaller
signature by some fixed variable:

Definition 6.4.3 (Cleaning [ST10]). Let t be a term over an arbitrary signature and let F be
a signature. The cleaning operations removes from t (top-down) all occurrences of function
symbols not occurring in F by replacing them with an arbitrary but fixed variable z:

[[t]]F =


x if t = x ∈ X
z if t = f(t1 . . . , tn) and f /∈ F
f([[t1]]F , . . . , [[tn]]F ) if t = f(t1 . . . , tn) and f ∈ F

Cleaning can also be used on substitutions. Let σ be a substitution. For all x ∈ X we define:

[[σ]]F (x) =

{
z if σ(x) = f(. . . ) and f /∈ F
σ(x) otherwise

Now, we show that every rewrite step from a term s to a term t over an arbitrary signature
is also possible for cleaned versions of the terms or the cleaned versions of the terms are equal.
The consequence of this result is that every reduction sequence from some term to some other
term over an arbitrary signature is also possible for the cleaned versions.

Lemma 6.4.4. Let (R, µ) be a CS-TRS and let s and t be terms over an arbitrary signature such
that s ↪→R,µ t holds. Further, let F be some signature extending the implicit signature ofR (i.e.
F ⊇ F(R)). Then either [[s]]F ↪→R,µ [[t]]F holds or [[s]]F = [[t]]F holds.
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Proof. Suppose, that s ↪→R,µ t holds by applying the rule l→ r ∈ R at position π in s to obtain
t. We distinguish between two cases:

• Suppose, there is no position π′ with ε ≤ π′ ≤ π such that root(s|π′) /∈ F . We claim,
that in this case the reduction step [[s]]F ↪→R,µ [[t]]F is valid. We have s = u[σ(l)]π and
t = u[σ(r)]π for some context u and substitution σ. From s = u[σ(l)]π we obtain [[s]]F =
[[u[σ(l)]π]]F . Since symbols that are not contained in F are not contained at or above π in
this term, this is equivalent to [[u]]F [[[σ(l)]]F ]π. Furthermore, since l does not contain any
symbol that is not in F , we know that [[σ(l)]]F is equivalent to [[σ]]F (l) (because symbols
not in F occurring in σ(l) are necessarily introduced by the substitution σ, so replacing
σ by [[σ]]F we directly substitute z then, thus simulating the effect of cleaning). So now
we have [[s]]F = [[u]]F [[[σ]]F (l)]π. Using the same argument on t = u[σ(r)]π, yields
[[t]]F = [[u]]F [[[σ]]F (r)]π. Therefore, we can conclude that [[s]]F ↪→R,µ [[t]]F is valid, by
using the rule l→ r instantiated by [[σ]]F at position π on the term [[s]]F .

• For the complementary case, suppose that there is some position π′ with ε ≤ π′ ≤ π and
root(s|π′) /∈ F . Note, that π′ 6= π, becauseR does not contain any symbol not in F . For
this case, the claim is, that [[s]]F and [[t]]F are equal. To show this, consider the minimal
(wrt. term positions) π′ that has the properties stipulated above. By definition we know
that [[t]]F |π′ = z and (since π′ < π) also [[s]]F |π′ = z. Since only positions strictly below
π′ are changed in the reduction step s

π
↪→R,µ t and the subterms at π in both cleaned terms

are equal, also [[s]]F and [[t]]F are equal.

The next lemma states, that for left-linear TRSs termination is preserved when cleaning all
terms to some signature that is an extension of the implicit signature of the TRS. This result is a
generalization of Lemma 16 from [ST10].

Lemma 6.4.5. Let (R, µ) be a CS-TRS where R is left-linear. Let F be some signature such
that F ⊇ F(R). Then, if a term s over an arbitrary signature is terminating wrt. (R, µ), also
[[s]]F is terminating wrt. (R, µ).

Proof. This result is a direct consequence of the proof of Lemma 16 in [ST10]. We omit the
generalization of this proof, because it is immediate from the mentioned proof. The base case
works unchanged, and in the induction step the only non-trivial part, which also introduces the
requirement for left-linearity, is when a reduction step at root position is considered. However,
in this case context-sensitive rewriting does not differ from regular rewriting, so the proof works
without changes.

The next auxiliary result shows that for CS-DP problems where the rule system is left-linear,
we may restrict attention to the signature of the DP problem without losing generality (This is
again a generalized version of a lemma from [ST10]).

Lemma 6.4.6. Let (P,R, µ) be a CS-DP problem whereR is left-linear. Let F be some signa-
ture such that F>ε(P) ∪ F(R) ⊆ F . Then, if there is an infinite minimal chain in (P,R, µ),
there also is an infinite minimal chain in (P,R, µ) with terms over the signature F .
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Proof. Suppose, that there is the following infinite sequence:

s1
ε
↪→P,µ t1 ↪→R,µ s2

ε
↪→P,µ t2 ↪→R,µ . . .

We define a new cleaning operation, that cleans only strictly below the root position of a term:

〈〈s〉〉F =

{
x if s = x ∈ X
f([[s1]]F , . . . , [[sn]]F ) if s = f(s1, . . . , sn)

We claim, that

〈〈s1〉〉F
ε
↪→P,µ 〈〈t1〉〉F ↪→∗R,µ 〈〈s2〉〉F

ε
↪→P,µ 〈〈t2〉〉F ↪→∗R,µ . . .

is an infinite minimal sequence as well. To see that this is true, first consider an arbitrary step
si

ε
↪→P,µ ti in the assumed sequence. Since the step is applied at root position, we know that

there is some rule l → r ∈ P and some substitution σ such that σ(l) = si and σ(r) = ti. From
σ(l) = si we obtain 〈〈σ(l)〉〉F = 〈〈si〉〉F and since we know that l does not contain any symbol
not in F below the root, we get [[σ]]F (l) = 〈〈si〉〉F . Applying the same argument on σ(r) = ti

yields [[σ]]F (r) = 〈〈ti〉〉F . Thus we can conclude that 〈〈si〉〉F
ε
↪→P,µ 〈〈ti〉〉F is valid.

Now we consider an arbitrary sequence ti ↪→∗R,µ si+1 that occurs in the assumed infinite min-
imal sequence. Take again an arbitrary step t ↪→R,µ s from ti ↪→∗R,µ si+1 (if there is one,
otherwise the claim trivially holds). Since ti was obtained by some P-step applied at root po-
sition, we know that ti is rooted by some symbol F from F (#). We also know, that t and s are
rooted by the same symbol F , because starting from ti both terms were reached only by using
R-steps andR does not contain any of the symbols in F (#). Let l → r ∈ R be the rule used in
the examined reduction step and let π = i.π′ be the position, at which the rule was applied on t.
The terms s and t have the following structure:

t = F (u1, . . . , ui−1, ui, ui+1, . . . , un)
π
↪→R,µ F (u1, . . . , ui−1, vi, ui+1, . . . , un) = s

For ui
π′
↪→R,µ vi, Lemma 6.4.4 states, that either [[ui]]F ↪→R,µ [[vi]]F or [[ui]]F = [[vi]]F holds.

Therefore, we obtain either

〈〈t〉〉F = F ([[u1]]F , . . . , [[ui−1]]F , [[ui]]F , [[ui+1]]F , . . . , [[un]]F )
↪→R,µ

F ([[u1]]F , . . . , [[ui−1]]F , [[vi]]F , [[ui+1]]F , . . . , [[un]]F ) = 〈〈s〉〉F
or

〈〈t〉〉F = F ([[u1]]F , . . . , [[ui−1]]F , [[ui]]F , [[ui+1]]F , . . . , [[un]]F ) = 〈〈s〉〉F
Applying this result iteratively, we can construct a (possibly shorter) sequence 〈〈ti〉〉F ↪→∗R,µ
〈〈si+1〉〉F from ti ↪→∗R,µ si+1. This concludes the proof that the new sequence is infinite. It
remains to show, that it is also minimal. This is easy, because by assumption we know that
every term ti is terminating wrt. (R, µ), and R is left-linear. By Lemma 6.4.5 it follows, that
also every term [[ti]]F is terminating wrt. (R, µ), and since all steps in (R, µ)-rewrite sequences
starting at ti are applied strictly below the root, also 〈〈ti〉〉F is terminating wrt. (R, µ).
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Lemma 6.4.7. Let (P,R, µ) be a CS-DP problem whereR is left-linear. If the CS-DP problem
FCF (P,R, µ) is finite, then also (P,R, µ) is finite.

Proof. Suppose, (P,R, µ) is not finite. Then there is an infinite minimal sequence in (P,R, µ).
By Lemma 6.4.6 we know that without loss of generality we can assume, that all symbols occur-
ring below root position are from F>ε(P) ∪ F(R). Let s1

ε
↪→P,µ t1 ↪→∗R,µ s2

ε
↪→P,µ t2 ↪→∗R,µ

. . . be such a sequence. Then we claim that

block(s1)
ε
↪→block(P),µ∆

block(t1) ↪→∗FC1(R),µ∆
block(s2)

ε
↪→block(P),µ∆

. . .

is an infinite minimal sequence wrt. FCF (P,R, µ) = (block(P),FC
F∪
{

∆
}(R, µ∆), µ∆).

Consider an arbitrary step si
ε
↪→P,µ ti in the original sequence. By construction of block(P)

and µ∆, the following step is also valid: block(si)
ε
↪→block(P),µ∆

block(ti) (because we as-
sumed, that function symbols from F (#) can only occur at root position).
Now, consider an an arbitrary (R, µ)-sequence ti ↪→∗R,µ si+1. Let s ↪→R,µ t be an arbitrary step
within this sequence and let l → r ∈ R be the rule applied at position π on the term s to obtain
t. Since the reduction must take place below root position, we can write

s = F (u1, . . . , uj−1, uj , uj+1, . . . , uk)
π
↪→l→r,µ F (u1, . . . , uj−1, vj , uj+1, . . . , uk) = t

Let π′ be a position such that π = j.π′. Then we have uj
π′
↪→l→r,µ vj . We have to distinguish

two cases:

• l → r ∈ Rp: Then the rule l → r is also in FC
F∪
{

∆
}(R, µ∆) and since µ∆(∆) =

{
1
}

,

this rule can be applied at position j.1.π′ on the term

block(s) = F (∆(u1), . . . ,∆(uj−1),∆(uj),∆(uj+1), . . . ,∆(uk))

in order to obtain block(t).

• l→ r /∈ Rp: Consider two cases again:

– π = j (i.e. π′ = ε): The rule ∆(l) → ∆(r) is in FC
F∪
{

∆
}(R, µ∆) (because 1 ∈

µ∆(∆)) and this rule can be applied at position π on block(s) to obtain block(t).

– π > j: Let π′′ be a (possibly empty) position and n be an integer such that π =
j.π′′.n. Let g = root(s|j.π′′). We know, that g(y1, . . . , yn−1, l, yn+1, . . . , ym) →
g(y1, . . . , yn−1, r, yn+1, . . . , ym) is in FC

F∪
{

∆
}(R, µ∆) because, since j.π′′.n is

an allowed position in s, we have n ∈ µ∆(g). This rule can be applied at position
j.1.π′′ on the term block(s) to obtain block(t).

Thus, we can construct an infinite FCF (P,R, µ) sequence from an infinite (P,R, µ) sequence.
We still need to show, that the constructed sequence is also minimal, i.e. all block(ti) are
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terminating wrt. (FC
F∪
{

∆
}(R, µ∆), µ∆). Suppose block(ti) is not terminating for some i.

Then there is an infinite rewrite sequence

block(ti1) ↪→FC
F∪
{

∆

}(R,µ∆),µ∆
block(ti2) ↪→FC

F∪
{

∆

}(R,µ∆),µ∆
. . .

Since by construction of FC
F∪
{

∆
}(R, µ∆), each step performed with a rule from this set can

also be performed with a rule from R (at the same position or one position above), this implies
block(ti1) ↪→R,µ block(ti2) ↪→R,µ . . . , which in turn implies ti1 ↪→R,µ ti2 ↪→R,µ . . .
becauseR does not contain the symbol ∆. This is a contradiction to the assumed minimality of
the original sequence. Therefore, FCF (P,R, µ) is not finite whenever (P,R, µ) is not finite.

Remark. Note, that we do not need flat-context stability for the TRS R in (P,R, µ) for the
above translation, as it is automatically enforced by the introduction of the symbol ∆.

Definition 6.4.8 (Root-Labeling Transformation for CS-DP Problems, [SM08]). Let (P,R, µ)
be a DP problem and let F (#) and F be as in Definition 6.1.18 and let ∆ and µ∆ be as in
Definition 6.4.1. Let F ′ = F ∪F (#) ∪

{
∆
}

. Let P ′ be the TRS with the rules from block(P),
over the signature F ′ and let R′ be the TRS with rules from FC

F∪
{

∆
}(R, µ∆) over signature

F ′. The root-labeling transformation FCF (P,R, µ)rl is defined as the triple (P ′rl,R′rl, µrl),
where the root-labeling operation is modified in the following way: for each function symbol F
in F (#), the set of labels is SF =

{
F
}

, the label mapping is πF = F and the interpretation of
F in AF ′ is FAF′ (x1, . . . , xn) = g for all x1, . . . , xn ∈ F ′ and an arbitrary but fixed g ∈ F (#).
Furthermore, for all labeled function symbols fl occurring in P ′rl andR′rl, let µrl(fl) = µ(f),
where f is the unlabeled counterpart of fl.

Theorem 6.4.9. Let (P,R, µ) be a CS-DP problem. The following CS-DP processor is sound:

(P,R, µ) 7→

{{
FCF (P,R, µ)rl

}
ifR is left-linear{

(P,R, µ)
}

otw.

Proof. According to Lemma 6.4.7, whenever FCF (P,R, µ) is finite, also (P,R, µ) is finite
because R is left-linear. As root-labeling is a special case of Theorem 6.1.20, we know that
finiteness of FCF (P,R, µ) is equivalent to finiteness of FCF (P,R, µ)rl. This concludes the
soundness proof, as the DP problem FCF (P,R, µ)rl is finite if and only if FCF (P,R, µ) is
finite, which in turn is finite only if (P,R, µ) is finite.

6.5 Implementation for VMTL

The direct method version of root-labeling is implemented in the class RootLabeling in
the package dpvis.logic.dm.methods. The DP processor is implemented in the class
RootLabelingProcessor in the package dpvis.logic.dp.
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The Direct Method

Parameters

The direct method version of root-labeling supports some parameters that can be used to limit
the size of the transformed systems.

Parameter Values Description
max_output_rules N0

Default: 0
Sets a threshold for the maximum num-
ber of rules that the transformed sys-
tem may contain. The number of rules
that the transformed system will con-
tain is calculated before the transfor-
mation is started. If the number ex-
ceeds this value, the processor fails im-
mediately and returns the unchanged
input system. If this value is zero, the
number of rules in the transformed sys-
tem is unrestricted.

max_output_growth N0

Default: 0
Sets a threshold for the maximum num-
ber of rules that the transformed sys-
tem may contain. This value speci-
fies the maximal allowed percentage of
increase in the number of rules, com-
pared to the original system. If the
number exceeds this value, the proces-
sor fails immediately and returns the
unchanged input system. If this value
is zero, the number of rules in the trans-
formed system is unrestricted.

max_arity N0

Default: 0
Sets a threshold for the maximum arity
that any function symbol in the signa-
ture of the original system may have.
If there are symbols with a greater ar-
ity, the processor fails immediately and
returns the unchanged input system. If
this value is zero, the maximum arity is
not restricted.

The (CS-)DP Processor

Parameters

The (CS-) DP processor provides the same parameters as the direct method. In addition, the
maximum number of dependency pairs in the translated DP problem can be specified.
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Parameter Values Description
max_output_rules N0

Default: 0
Sets a threshold for the maximum num-
ber of rules that the transformed DP
problem may contain. The number of
rules that the transformed DP problem
will contain is calculated before the
transformation is started. If the num-
ber exceeds this value, the processor
fails immediately and returns the un-
changed input problem. If this value is
zero, the number of rules in the trans-
formed problem is unrestricted.

max_output_dps N0

Default: 0
Sets a threshold for the maximum num-
ber of dependency pairs that the trans-
formed DP problem may contain. The
number of dependency pairs that the
transformed DP problem will contain
is calculated before the transformation
is started. If the number exceeds this
value, the processor fails immediately
and returns the unchanged input prob-
lem. If this value is zero, the number
of dependency pairs in the transformed
problem is unrestricted.

max_output_growth N0

Default: 0
Sets a threshold for the maximum num-
ber of rules and dependency pairs that
the transformed DP problem may con-
tain. This value specifies the maximum
allowed percentage of increase in the
number of rules and dependency pairs,
compared to the respective numbers in
the input problem. If one of the num-
bers exceeds this value, the processor
fails immediately and returns the un-
changed input problem. If this value is
zero, the number of rules and depen-
dency pairs in the transformed problem
is unrestricted.

max_arity N0

Default: 0
Sets a threshold for the maximum ar-
ity that any function symbol in the
signature of the original DP problem
may have. If there are symbols with a
greater arity, the processor fails imme-
diately and returns the unchanged input
problem. If this value is zero, the max-
imum arity is not restricted. 87



The implementation of root-labeling for VMTL translates (CS-) DP problems (or TRSs, re-
spectively) as described in this chapter. There is one minor difference however: For consistency
with the definition of semantic labeling, we required that root-labeling assigns labels for con-
stant symbols as well. Constant symbols always get themselves as their label. For example the
symbol c would always be labelled as c(c). Since same constant symbols are always labeled
in the same way, the label can be left implicit. This is done in the implemented versions of
root-labeling, where constant symbols do not get any label.

Internally, function symbols are just strings in VMTL. Whenever VMTL generates an
HTML output, labels are displayed subscripted (e.g. f(a,b,a)(a, b, x)). This is done by
the output processing of VMTL. Internally, the term from the example would be stored as
f_{a.b.a}(a, b, x). Usually, this raw form is hidden from the user when working with HTML
output. However, for example when debugging VMTL, terms are output in this form.

Example outputs can be found in the appendix in Section B.2.
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CHAPTER 7
Knuth-Bendix Order

One part of this thesis is the implementation of the Knuth-Bendix-Order (KBO) for use with
VMTL. It should be implemented both as a direct method and as a CS-DP processor. The
implementation mostly closely follows the approach described by Zankl, Hirokawa and Middel-
dorp in [ZHM09], where the search for a KBO that can be used to prove termination of a given
TRS is modelled as a SAT problem.

7.1 Knuth-Bendix Order

The Knuth-Bendix order was developed by Donald Knuth and Peter Bendix in 1970 and is
presented in their paper "Simple Word Problems in Universal Algebra" [KB70] where it was
used as part of a completion algorithm. Today different, (mostly) equivalent versions of the
Knuth-Bendix order are used. Here, we give the definition used in [ZHM09]. Knuth-Bendix
orders use two parameters: A weight function and an ordering relation on function symbols. As
an ordering relation, we use a quasi-ordering % (i.e. a transitive and reflexive relation). The
strict part of % is denoted as � and the equivalence part is denoted as ∼.

Definition 7.1.1 (Weight Function, Admissibility). A weight function is a pair (w,w0), where
w0 ∈ N and w is a mapping w : F 7→ N0 such that w(c) ≥ w0 for all c ∈ F (0). A weight
function is called admissible with respect to a quasi ordering % if for all f ∈ F , w(f) = 0
implies f % g for all g ∈ F .

The weight function can be extended to a function from terms to natural numbers. To this
end, every variable gets assigned the weight w0 and the weight of a term is the sum of the
weights of all variables and the weights of all function symbols occurring in the term:

w(t) =

{
w0 if t ∈ X
w(f) +

∑n
i=1w(ti) if t = f(t1, . . . , tn)
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Definition 7.1.2 (Knuth-Bendix Order, [KB70, ZHM09]). Let (w,w0) be a weight function, and
let % be a quasi-precedence. The Knuth-Bendix order >kbo is defined on terms s, t ∈ T (F , X)
by: s >kbo t iff |s|x ≥ |t|x for all x ∈ X and either:

(KBO1) w(s) > w(t) or

(KBO2) w(s) = w(t) and one of:

(KBO2a) t ∈ X, s ∈ T (F (1), {t}) and s 6= t

(KBO2b) s = f(s1, . . . , sn), t = g(t1, . . . , tm) and f � g
(KBO2c) s = f(s1, . . . , sn), t = g(t1, . . . , tm) and f ∼ g and there is an index i with

1 ≤ i ≤ min{m,n} and s1 = t1, . . . , si−1 = ti−1 and si >kbo ti

Here, � denotes the strict part of the quasi order % and ∼ denotes the equivalence part of
the quasi order %. The strict part of a quasi order % is defined as x � y iff x % y ∧ ¬(y % x).
The equivalence part of a quasi-order % is defined as x ∼ y iff. x % y ∧ y % x. A different
version of KBO uses a strict order > instead of %. In this case, in (KBO2c) instead of f ∼ g,
f = g is required.

7.2 Implementation as a Direct Method

The following result from [ZHM09] describes how KBO can be used to prove termination of a
TRS. Using this lemma, proving termination of a TRS with KBO amounts to finding a quasi-
precedence and an admissible weight function.

Theorem 7.2.1 ([ZHM09]). Let R = (F , R) be a TRS. R is terminating whenever there exists
a quasi-precedence % and an admissible weight function (w,w0) such that R ⊆>kbo.

Example 7.2.2. Consider the following TRS R, for which termination should be proven with
the help of KBO:

plus(0,x) → x plus(s(x),y) → s(plus(x,y))
plus(x, 0) → x plus(x, s(y)) → s(plus(x,y))

Now, consider the KBO induced by the following parameters:

• For the quasi-ordering we require plus � s.

• For the weight-function, we define w0 = 1 , w(0) = 1 and w(s) = w(plus) = 2.

Note, that the weight-function is admissible wrt. the quasi-ordering %. This KBO orients all
rules inR:

• The rule plus(0,x)→ x is orientable because for this rule the condition KBO1 is satisfied,
since the weight of plus(0,x) is strictly greater than the weight of x (w(plus(0,x)) =
4, w(x) = 1).
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• For the rule plus(x, 0)→ x, also the condition KBO1 is satisfied for the same reason.

• For the rule plus(s(x),y) → s(plus(x,y)) the condition KBO2 is satisfied, because both
sides have the same weight. Additionally, the condition KBO2b is satisfied, because we
defined plus � s.

• For the last rule, plus(x, s(y))→ s(plus(x,y)), also KBO2 and KBO2b are satisfied again.

By Theorem 7.2.1, we know that R is terminating, because the constructed KBO orients all
rules, and the weight-function is admissible with respect to the quasi-ordering.

The search for a quasi-precedence % and an admissible weight function (w,w0) that induce
a KBO, which can be used to prove termination of a TRS R, is modelled as a SAT problem in
[ZHM09]. The implementation of the KBO as a direct method for VMTL follows the definitions
in [ZHM09]. This section summarizes these definitions.

Specifying the Problem Formula

We use the notation of T -formulas (cf. Chapter 5) for the SMT-formulas presented here. In
the following, bit-vector variables are written in bold-face with the length of the bit-vector as
subscript. Bit-vectors will be used for specifying arithmetic calculations and relations as part
of the SAT/SMT problem (e.g. calculating term weights). In the actual implementation, real or
integer values can also be used. This can be done in the straightforward way, by just using the
respective values or variables instead of the bit-vector values or variables.

The weight function (w,w0) is encoded as a bit-vector variable (w0)k representing w0 and a
set w =

{
fk | f ∈ F

}
containing a bit-vector variable for each function symbol in F , that rep-

resents the weight of the corresponding function symbol. The quasi precedence% is represented
by means of the two sets X =

{
Xfg | f, g ∈ F

}
and Y =

{
Yfg | f, g ∈ F

}
of propositional

variables, where for a modelM,M |= Xfg means, that in the solution encoded byM, f � g
holds, andM |= Yfg means f ∼ g holds.

The formula ADM-SATk(w,w0) enforces, that the weight function encoded by a model is
indeed a weight function, and also that it is an admissible weight function with respect to the
encoded quasi-precedence %. That is, if a model M satisfies ADM-SATk(w,w0), the weight
function encoded byM is admissible wrt. %.

Definition 7.2.3 (ADM-SATk(w,w0), [ZHM09]). The formula ADM-SATk(w,w0) is defined
as:

(w0)k > 0k ∧
∧

c∈F(0)

ck ≥ (w0)k ∧
∧

f∈F(1)

fk = 0k →
∧
g∈F

(Xfg ∨ Yfg)


The weight of terms is calculated by the function Wt

k mapping terms t to (sums of) bit-vector
variables representing the weight of t.
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Definition 7.2.4 (Wt
k, [ZHM09]). Wt

k is inductively defined as:

Wt
k =

{
(w0)k if t ∈ X
fk +

∑n
i=1 Wti

k if t = f(t1, . . . , tn).

The setsX and Y are intended to encode the quasi ordering%. However, we need to enforce,
that the relation encoded by X and Y is indeed a quasi-ordering on F . In [ZHM09], this is done
by assigning to each function symbol in F a fresh bit-vector variable and requiring, that in each
model the following formula QUASIj(%) is satisfied.

Definition 7.2.5 (QUASIj(%)).

QUASIj(%) =
∧

f,g∈F

(
(Xfg → f′j > g′j) ∧ (Yfg → f′j = g′j)

)
The formulas SATk(s >kbo t) and SATk(s >′kbo t) are used to encode the KBO conditions

(KBO1), (KBO2) and (KBO2a)-(KBO2c), More precisely, in every modelM such thatM |=
SATk(s >kbo t), we have, that |s|x ≥ |t|x for all x ∈ V and either (KBO1) holds for s and t or
(KBO2) holds for s and t and additionally (encoded via SATk(s >′kbo t)), (KBO2a), (KBO2b)
or (KBO2c) hold for s and t.

Definition 7.2.6 (SATk(s >kbo t), [ZHM09]). Let s and t be terms. The formula SATk(s >kbo
t) is defined as follows. If s ∈ X or s = t or |s|x < |t|x for some x ∈ X , then SATk(s >kbo
t) = ⊥. Otherwise

SATk(s >kbo t) = Ws
k > Wt

k ∨ (Ws
k = Wt

k ∧ SATk(s >′kbo t))

with

SATk(s >′kbo t) =

{
> if t ∈ X, s ∈ T (F (1), {t}), and s 6= t

Xfg ∨ (Yfg ∧ SATk(si >kbo ti) if s = f(s1, . . . , sn), t = g(t1, . . . , tm)

where in the second clause, i denotes the least value i such that 1 ≤ i ≤ min{n,m} and si 6= ti.

Putting the defined formulas together, we obtain the formula KBO-SATk,j(R), which is
satisfiable for some values k and j ifR can be oriented with a KBO.

Definition 7.2.7 (KBO-SATk,j(R), [ZHM09]).

ADM-SATk(w,w0) ∧ QUASIj(%) ∧
∧

l→r∈R
SATk(l >kbo r)
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Solving the Problem Formula via SAT/SMT Solving

For SAT and SMT solving, we have to choose a word length for the bit-vector variables that are
used. In [ZHM09] it is shown that an upper bound BR for symbol weights can be computed,
such that if termination of a TRS R can be shown with a KBO, then there is a KBO where all
symbol weights are less than or equal to BR. Thus, the word length required for the bit-vector
variables encoding the weight function in the problem formula needs to be at most dlog2(BR +
1)e. For the bit-vector variables used to enforce the properties of a quasi-ordering, a word-length
of at least dlog2 ne is sufficient, where n is the number of function symbols in the signature of
R.

Theorem 7.2.8 (Termination criterion, [ZHM09]). Termination of a TRS R can be shown by
KBO whenever the problem formula KBO-SATk,j(R) is satisfiable for some k ∈ N and j =
dlog2 ne, where n is the number of function symbols in the signature ofR.

If k ≥ dlog2(BR + 1)e then also the other direction works.

For SAT solvers, the used bit-vectors have to be transformed into propositional logic. This
is done implicitly by the VSSF if a SAT solver is used as the back-end solver.

7.3 Implementation as a (CS-)DP Processor

As a DP processor (resp.. CS-DP processor), KBO will be used in a reduction pair processor
(CS-reduction pair processor) with argument filtering and usable rules. Due to the definitions and
results in [AEF+08] the adaption of a reduction pair processor to a context sensitive reduction
pair processor can be done in a very straightforward way for the biggest part. The only part
requiring some more consideration is the computation of usable rules, as they cannot simply
be generalized for the context-sensitive case. Therefore, the processor implemented for VMTL
will make a case distinction on the input problem, and act either as a (non-CS) reduction pair
processor or a CS-reduction pair processor accordingly.

The Reduction Pair Processor

Reduction pairs and argument filterings [AG00, GAO02] can be used in a DP processor (called
"Reduction Pair Processor") to simplify the set of dependency pairs in a DP problem.

Definition 7.3.1 (Reduction Pair [AG00, GAO02]). A reduction pair is a pair (�,%) where

• � is a well-founded order that is closed under substitutions and

• % is a quasi-order that is closed under substitutions and contexts and

• % ◦ � ◦ %⊆� (i.e. % and � are compatible).

Given a DP problem (P,R), if it is possible to orient all dependency pairs strictly or weakly
(i.e. P ⊆% ∪ �), and orient all rules weakly (i.e. R ⊆%), then (P,R) is finite iff (P \ �,R)
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is finite. However, it is not necessary to prove weak orientability for all rules inR. It suffices to
show that the set of usable rules of (P,R) is weakly orientable. To reduce the number of usable
rules further, argument filterings can be used.

Definition 7.3.2 (Argument Filtering [AG00, KNT99]). An argument filtering for a signature F
is a mapping π from F to the natural numbers or (possibly empty) lists of natural numbers such
that for each n ≥ 0 and f ∈ F (n) either

• π(f) = k for some k ∈ N with 1 ≤ k ≤ n or

• π(f) = [k1, k2, . . . , km] for k1, k2, . . . , km ∈ N and 1 ≤ k1 < k2 < · · · < km ≤ n

Argument filterings can be applied to terms, to obtain new terms. Let t ∈ T (F , X) be a term
and π an argument filtering for F . Then π(t) is defined as follows:

π(t) =


t if t ∈ X
π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

This mapping maps terms from T (F , X) to terms from T (Fπ, X) where in the signatureFπ the
same function symbols are contained, but might have lower arity. For each f ∈ F , if π(f) ∈ N
then in Fπ, the function symbol f has arity 0 and if π(f) = [k1, k2, . . . , km], then in Fπ the
function symbol f has arity m.

Example 7.3.3. As an example, consider the following TRS R which exends the TRS from
Example 7.2.2 by two additional rules:

plus(0,x) → x plus(s(x),y) → s(plus(x,y))
plus(x, 0) → x plus(x, s(y)) → s(plus(x,y))

times(x, 0) → 0 times(x, s(y)) → plus(times(x,y),x)

Consider the argument filtering π where π(plus) = [1], π(times) = 2 and π(s) = 1. Applying
the argument filtering to the lhs and rhs of each rule yields the following new TRS:

plus(0) → x plus(x) → plus(x)
plus(x) → x

0 → 0 y → plus(y)

For an ordering relation > on terms from T (F , X), the relation >π is defined as s >π t⇔
π(s) > π(t), for all s, t ∈ T (F , X).

Argument filterings reduce the number of usable rules that have to be oriented weakly in the
reduction pair processor. In [GTSKF06] the usable rules with respect to an argument filtering are
defined. Here, we split calculation of usable rules into two parts, first calculating the so-called
usable symbols, which then directly give rise to the usable rules. This two step calculation will
be necessary in the SAT encoding of the reduction pair processor based on KBO.
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Definition 7.3.4 (Regarded Positions, [GTSKF06]). Let π be an argument filtering. For any
n-ary function symbol f , the set rpπ(f) of regarded positions is

{
i
}

if π(f) = i and it is{
i1, . . . , im

}
if π(f) = [i1, . . . , im].

Definition 7.3.5 (Usable Rules wrt. Argument Filtering, [GTSKF06]). LetR be a TRS over the
signature F and let f ∈ F . The set RlsR(f) is defined as

{
l→ r ∈ R | root(l) = f

}
. Let

F ⊆ F be a set of function symbols. Then RlsR(F ) =
⋃
f∈F RlsR(f). Let t ∈ T (F , X) be a

term and π be an argument filtering. The set USR(t, π) of usable symbols with respect to π is
defined as follows:

USR(x, π) = ∅ for x ∈ X
USR(f(t1, . . . , tn), π) = f ∪

⋃
l→r∈RlsR(f)

USR\RlsR(f)(r, π)∪⋃
i∈rpπ(f)

USR\RlsR(f)(ti, π)

For a DP problem (P,R), the set of usable rules wrt. an argument filtering π is defined as

UR(P, π) =
⋃

s→t∈P
RlsR(USR(t, π))

Example 7.3.6. Consider the TRS R from Example 7.3.3. The corresponding DP problem
(DP (R),R) is:

Dependency Pairs:

plus#(x, s(y)) → plus#(x,y) plus#(s(x),y) → plus#(x,y)
times#(x, s(y)) → plus#(times(x,y),x) times#(x, s(y)) → times#(x,y)

Rules:

plus(0,x) → x plus(s(x),y) → s(plus(x,y))
plus(x, 0) → x plus(x, s(y)) → s(plus(x,y))

times(x, 0) → 0 times(x, s(y)) → plus(times(x,y),x)

Let π be an argument filtering where π(plus) = [1], π(plus#) = [], π(times) = 2, π(times#) =
[1] and π(s) = 1. Applying this argument filtering to the lhs and rhs of all dependency pairs and
all rules of the DP problem (DP (R),R)π yields the following new DP problem:
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Dependency Pairs:

plus# → plus#

times#(x) → times#(x) times#(x) → plus#

Rules:

plus(0) → x plus(x) → plus(x)
plus(x) → x

0 → 0 y → plus(y)

Since none of the right-hand-sides of any of the dependency pairs contains any symbol that is
defined in the set of rules, none of the rules are usable. Therefore, we get: UR(DP (R), π) = ∅.

For the definition of the reduction pair processor, we need the notion of Cε-compatibility for
relations.

Definition 7.3.7 (Cε-Compatibility, [GTSKF06]). A relation % is called Cε-compatible if for a
new symbol c, c(x, y) % x and c(x, y) % y holds.

However, Cε-compatibility is just a formal requirement and will not concern us in the fol-
lowing, because KBO is a simplification order, and for these orders Cε-compatibility is always
trivially satisfied.

Definition 7.3.8 (Reduction Pair Processor, [GTSKF06]). Let (�,%) be a reduction pair such
that% is Cε-compatible and let π be an argument filtering. The reduction pair processor Proc is:

Proc((P,R)) =

{{
(P \ �π,R)

}
if P ⊆ (�π ∪ %π),P∩ �π 6= ∅ and UR(P, π) ⊆%π{

(P,R)
}

otherwise

The DP processor Proc is sound and complete [GTSKF06].

As a concrete example of a reduction pair processor, we can use KBOs to construct reduction
pairs. Let >kbo be as in Definition 7.1.2 and let ≥kbo be a relation on terms, such that for two
terms s and t, s ≥kbo t holds iff s = t or s >kbo t, where = means syntactic equivalence.
Furthermore, we require that the KBO >kbo uses an admissible weight-function wrt. its quasi-
precedence. Then (>kbo,≥kbo) is a valid reduction pair:

• We know, that any KBO that is induced by some weight function w and quasi-ordering %
is a simplification order if w is admissible wrt. % [BN98]. Therefore, we know that >kbo
is well-founded and closed under substitutions.

• We know further, that ≥kbo is closed under substitutions and under contexts (because
already >kbo is closed under substitutions and under contexts, again because it is a sim-
plification order).

• Obviously the two orders are compatible.
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Example 7.3.9. Consider the DP problem (DP (R),R) and the argument filtering π from Ex-
ample 7.3.6. As we found out in Example 7.3.6, none of the rules of this DP problem are usable.
Therefore, we need to find some reduction pair, such that all dependency pairs in (DP (R),R)
can be oriented weakly, and at least one of the dependency pairs in (DP (R),R) can be oriented
strictly.

The following dependency pairs have to be oriented weakly resp. strictly:

plus# → plus#

times#(x) → times#(x) times#(x) → plus#

Now, consider the KBO >kbo with a weight function w where w0 = 1 and w(times#) = 2
and w(plus#) = 2. Using the reduction pair (>kbo,≥kbo) as defined before, we can orient
the dependency pairs plus# → plus# and times#(x) → times#(x) weakly using ≥kbo and
we can orient the dependency pair times#(x) → plus# strictly using >kbo. Thus, given the
DP problem (DP (R),R) and argument filtering π, the result of a reduction pair processor,
using the reduction pair (>kbo,≥kbo), would be the DP problem (P,R), where P = DP (R) \{
times#(x, s(y))→ times#(x, y)

}
.

The Context-Sensitive Reduction Pair Processor

The adaption of the reduction pair processor with usable rules to the CS-DP framework is pre-
sented in [AEF+08]. The notion of reduction pairs can be generalized, by requiring only µ-
monotonicity for the relation %. As in the context-free case, the use of usable rules reduces
the number of rules that have to be oriented weakly by %. However, the straightforward gener-
alization of usable rules to the context-sensitive case only works for CS-DP problems that are
strongly conservative (see below). For CS-DP problems that are not strongly conservative, a
different, weaker version of the calculation of usable rules is required.

Definition 7.3.10 (µ-Monotonicity). A binary relation ◦ on terms is called µ-monotonic, if
whenever for s, t ∈ T (F , X), s ◦ t holds also

f(t1, . . . , ti−1, s, ti+1, . . . , tn) ◦ f(t1, . . . , ti−1, t, ti+1, . . . , tn)

holds for all f ∈ F (n), t1, . . . , ti−1, ti+1, . . . , tn ∈ T (F , X) and i ∈ µ(f).

Definition 7.3.11 (µ-reduction pair, [AEF+08]). A µ-reduction pair is a pair (�,%) where

• � is a well-founded order that is closed under substitutions and

• % is a µ-monotonic quasi-order that is closed under substitutions and

• % and � are compatible.

For the calculation of usable rules, [AEF+08] presents two versions. The stronger version
requires some additional assumptions about the set of rules, that are not required for the weaker
version.
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Definition 7.3.12 (CS-Usable Rules, [AEF+08]). Let RlsR(f) =
{
l→ r ∈ R | root(l) = f

}
.

For any symbols f and h and CS-TRS (R, µ), let:

• f IR,µ h if

– f = h or

– there is a symbol g with g IR,µ h and a rule l→ r ∈ R with g ∈ Funcµ(r).

• f BR,µ h if

– f = h or

– there is a symbol g with g BR,µ h and a rule l → r ∈ R with g ∈ Funcµ̄(l) ∪
Funcµ(r).

The two versions of usable symbols are

USI(P,R, µ) =
⋃

s→t∈P
f∈Funcµ(t)
fIR,µg

g

USB(P,R, µ) =
⋃

s→t∈P
f∈Funcµ̄(s)∪Func(t)

fBR,µg

g ∪
⋃

l→r∈R
f∈Funcµ̄(r)
fBR,µg

g

which yield the following sets of usable rules:

UI(P,R, µ) = RlsR(USI(P,R, µ))

UB(P,R, µ) = RlsR(USB(P,R, µ))

For the stronger definition of usable rules (UI(P,R, µ)), we need the notion of strongly
conservative CS-TRSs, where some restrictions on the occurrences of variables hold.

Definition 7.3.13 (Strongly Conservative [AEF+08]). A CS-TRS (R, µ) is called strongly con-
servative if for all rules l→ r ∈ R the following conditions hold:

• Varsµ(r) ⊆ Varsµ(l)

• Varsµ(l) ∩ Varsµ̄(l) = ∅

• Varsµ(r) ∩ Varsµ̄(r) = ∅

Definition 7.3.14 (CS-Reduction Pair Processor, [AEF+08]). Let (�,%) be a µ-reduction pair
where % is Cε-compatible. For a CS-DP problem (P,R, µ), the result of Proc((P,R, µ)) is:

•
{

(P\ �,R, µ)
}

, if P ⊆ (� ∪ %) and at least one of the following holds:

– UI(P,R, µ) ⊆%, P ∪ UI(P,R, µ) is strongly conservative

98



– UB(P,R, µ) ⊆%

•
{

(P,R, µ)
}

otherwise.

The CS-DP processor Proc is sound [AEF+08].

A SAT/SMT Encoding

To build a reduction pair processor, we are looking for a strict order > and an admissible weight
function (w,w0), inducing a KBO >kbo. Let ≥kbo be defined as before. The search for the two
parameters inducing such a KBO is again encoded as a SAT/SMT problem in [ZHM09]. We
mostly closely follow the approach presented there.

Much of the complexity of the formulas encoding the DP processor comes from the use of
argument filterings. The argument filtering is encoded as part of the SAT problem. Argument
filterings can substantially change the structure of terms. Therefore, many things that could pre-
viously (when defining the direct method) be determined statically, now need to be encoded as
part of the SAT problem as well. An example is syntactic equivalence of terms. Previously, syn-
tactic equivalence of terms could be determined on a purely static level (e.g. by using standard
term comparison in Java). However, when argument filterings are used, syntactic equivalence
becomes dependent of the encoded argument filtering, so now syntactic equivalence of terms
has to be expressed in terms of a propositional formula as part of the SAT problem. This makes
the SAT problem considerably bigger. Therefore, for performance reasons, it should be possible
to disable the use of argument filterings if necessary.

The DP processor implemented here is (like all other DP processors that are implemented
for VMTL) actually a CS-DP processor. The processor makes a case distinction and checks,
whether the input problem is a DP problem or a CS-DP problem and continues accordingly.
There are some substantial differences between the two processors:

• The calculation of usable rules is different (see above).

• The definition of the CS-DP processor with usable rules from [AEF+08] we use here does
not support argument filterings.

Since the CS-DP processor does not use argument filterings, the use of argument filterings is
automatically disabled when context-sensitive dependency pairs are treated. Therefore, in this
case the calculation of usable rules does not need to be done as part of the SAT problem. Instead,
the restriction to usable rules is done statically, before the SAT encoding is constructed.

The set
{
πf | f ∈ F

}
∪
{
πif | f ∈ F , 1 ≤ i ≤ ar(f)

}
of propositional variables is used

to encode the argument filtering for the context-free case. Let M be a model. The argument
filtering π encoded byM is determined as follows. IfM does not satisfy πf for some symbol
f , and satisfies πif , then π(f) = i. On the other hand, ifM satisfies πf for some symbol f , and
M satisfies the variables

{
πi1f , . . . , π

im
f

}
⊆
{
πif | f ∈ F , 1 ≤ i ≤ ar(f)

}
and does not satisfy

the variables
{
πif | f ∈ F , 1 ≤ i ≤ ar(f)

}
\
{
πi1f , . . . , π

im
f

}
, then π(f) = [i1, . . . , im]. The

following formula from [ZHM09] enforces the encoding to be valid (i.e. if for some f ∈ F , πf
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evaluates to false under a model satisfying AFπ(f), then πif evaluates to true for exactly one i
with 1 ≤ i ≤ ar(f), otherwise πif may be true for arbitrarily many i with 1 ≤ i ≤ ar(f)).

Definition 7.3.15 (AFπ(f), [ZHM09]).

AFπ(f) = πf ∨
ar(f)∨
i=1

πif ∧∧
j 6=i
¬πjf


Applied on a signature F , the formula AFπ(F) is defined as

∧
f∈F AFπ(f).

In the encoding of KBO as a direct method, syntactic equivalence of terms was statically
determined at the time the SAT problem was formulated. This is no longer the case for the DP
processor implementation, because equivalence of terms is now always modulo an argument
filtering, which is determined through the encoding in the SAT problem. Therefore, the formula
s =π t is introduced in [ZHM09], which is satisfiable if and only if π(s) = π(t) for terms s and
t (The formula is stated here, as defined in [ZHM09], but in the implementation it is optimized
as suggested in the same paper).

Definition 7.3.16 (s =π t, [ZHM09]). Let s and t be terms in T (F , X). The propositional
formula s =π t is defined by induction on s and t. If s ∈ X then

s =π t =


> if s = t

⊥ if t ∈ X and s 6= t

¬πg ∧
∨m
j=1(πjg ∧ s =π tj) if t = g(t1, . . . , tm)

Let s = f(s1, . . . , sn). If t ∈ X , then

s =π t = ¬πf ∧
n∨
i=1

(πif ∧ si =π t)

If t = g(t1, . . . , tm) with f 6= g then

s =π t = ¬πf ∧
n∨
i=1

(πif ∧ si =π t) ∨ ¬πg ∧
m∨
j=1

(πjg ∧ π =π stj)

Finally, if t = f(t1, . . . , tn) then

s =π t = ¬πf ∧
n∨
i=1

(πif ∧ si =π t) ∨ πf ∧
n∧
i=1

(πif → si =π ti)

Another property that was statically determined at the absence of argument filterings is non-
duplication of a pair of terms. The formula NDπ

j (s, t) from [ZHM09] (slightly reformulated
here, as a VSSF-formula) asserts |π(s)|x ≥ |π(t)|x for terms s and t under the encoded argument
filtering π.
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Definition 7.3.17 (NDπ
j (s, t), [ZHM09]).

NDπ
j (s, t) =

∧
x∈Vars(t)

|s|jx ≥ |t|jx

with

|s|jx =


1j if s = x

0j if s ∈ X, s 6= x∑n
i=1(|si|jx × πif ) if s = f(s1, . . . , sn)

Calculation of term weights works similarly as before, but again, the encoded argument
filtering has to be considered. The expression wπ

k(t) yields a bit-vector variable that represents
the weight of the term t under the encoded argument filtering π. Again, the formula from
[ZHM09] is reformulated slightly as a VSSF-formula.

Definition 7.3.18 (wπ
k(t), [ZHM09]).

wπ
k(t) =

{
(w0)k if s = x

fk × πf +
∑n

i=1(wπ
k(ti)× πif ) if t = f(t1, . . . , tn)

The next formula SATk(s >πkbo t) is satisfiable iff under the encoded weight function, quasi-
precedence and argument filtering, the terms s and t can be strictly oriented with the KBO.
The weak version SATk(s ≥πkbo t) is satisfiable iff SATk(s >πkbo t) is satisfiable or s =π t is
satisfiable.

Definition 7.3.19 (SATk(s >πkbo t), [ZHM09]).

SATk(s >πkbo t) = NDπ
k(s, t) ∧

(
wπ
k(s) > wπ

k(t) ∨
(
wπ
k(s) = wπ

k(t) ∧ SATk(s>πkbo
′t)
))

For the weak version we have: SATk(s ≥πkbo t) = SATk(s >πkbo t) ∨ s =π t The for-
mula SATk(s>πkbo

′t) is defined by induction on the structure of s and t. If s ∈ X then
SATk(s>πkbo

′t) = ⊥. If s = f(s1, . . . , sn) and t ∈ X , then

SATk(s>πkbo
′t) = πf ∧

n∨
i=1

(πif ∧ SATk(si≥πkbo
′t)) ∨ ¬πf ∧

n∨
i=1

(πif ∧ SATk(si>πkbo
′t))

where SATk(s≥πkbo
′t) = SATk(s>πkbo

′t) ∨ s =π t.
If s = f(s1, . . . , sn) and t = g(t1, . . . , tm) with f 6= g then

SATk(s>πkbo
′t) = (πf ∧ πg ∧Xfg)∨

∨¬πg ∧
∨m
j=1(πjg ∧ SATk(s >πkbo tj))∨

∨¬πf ∧
∨n
i=1(πif ∧ SATk(si >πkbo t))
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If s = f(s1, . . . , sn) and t = f(t1, . . . , tn) then

SATk(s>πkbo
′t) = πf ∧ 〈s1, . . . , sn〉 >π,fkbo 〈t1, . . . , tn〉 ∨ ¬πf ∧

n∨
i=1

(πif ∧ SATk(si >πkbo ti))

where 〈s1, . . . , sn〉 >π,fkbo 〈t1, . . . , tn〉 = ⊥ if n = 0 and otherwise

〈s1, . . . , sn〉 >π,fkbo 〈t1, . . . , tn〉 = (π1
f ∧ SATk(s1 >

π
kbo t1))∨

∨(π1
f → s1 =π t1 ∧ 〈s2, . . . , sn〉 >π,fkbo 〈t2, . . . , tn〉).

The formula ADMπ
k(F) from [ZHM09] is used to assert admissibility of the encoded weight

function. It is satisfiable if and only if the encoded weight function is admissible with respect
to the encoded quasi-ordering and the encoded argument filtering. To take into account that
the argument filtering may change the arity of function symbols, the formulas constantπ(f) and
unaryπ(f) are introduced, being satisfiable if and only if f is constant (resp. unary) in the
signature Fπ for the encoded argument filtering π.

Definition 7.3.20 (ADMπ
k(F), [ZHM09]).

ADMπ
k(R) = (w0)k > 0k ∧∧

f∈F
(constantπ(f)→ f ≥ (w0)k) ∧

∧
f∈F

f = 0 ∧ unaryπ(f)→
∧

g∈F ,f 6=g
(πg → Xfg)


where

constantπ(f) = πf ∧
ar(f)∧
i=1

¬πif

and

unaryπ(f) = πf ∧
ar(f)∨
i=1

πif ∧∧
i 6=j
¬πjf


As in the direct method encoding (where a quasi-ordering was used), it is necessary to make

sure that the encoded relation> is really a strict order. This is achieved by satisfying the formula
PO(>) [ZHM09].

Definition 7.3.21 (POπ
j (>), [ZHM09]).

POπ
j (>) =

∧
f,g∈F

Xfg → f′j > g′j
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One technique making reduction pair processors very strong are usable rules. For a DP
problem (P,R) (respectively a CS-DP problem (P,R, µ)) the usable rules are a subset of the
rules inR, that have to be shown weakly orientable with respect to the order % of the reduction
pair used in the reduction pair processor. The calculation of usable rules depends on whether
the problem that should be processed is a DP problem or a CS-DP problem. In [ZHM09], the
encoding of the calculation of usable rules for DP problems is presented. To this end, a set{

Uf | f ∈ F#
}

of propositional variables is introduced. LetM be a model. The semantics of a
variable Uf is, that if under the argument filtering encoded inM, a rule f(l1, . . . , ln)→ r ∈ R
for a DP problem (P,R) is usable, then Uf is satisfied inM.

The formula given in [ZHM09] combines calculation of usable rules, and assertion of ori-
entability. Here, we split the calculation of usable rules and orientability into distinct formulas.
The formula USπ((P,R)) (which is based on the formula from [ZHM09]) asserts, that (at least)
those variables Uf are satisfied, that give rise to the usable rules of (P,R).

Definition 7.3.22 (USπ((P,R))). The formula USπ((P,R)) asserts, that for each usable rule
f(l1, . . . , ln) → r ∈ R wrt. P and the encoded argument filtering π, the propositional variable
Uf is satisfied.

USπ((P,R)) =
∧

l→r∈P
Uroot(l) ∧

∧
l→r∈P∪R

Uroot(l) →
∧

p∈FPos(r)
root(r|p)defined


 ∧

q,i:
i.q≤p

πiroot(r|q)

→ Uroot(r|q)




The following formula takes care of the orientability of all dependency pairs and all usable
rules. It enforces, that all dependency pairs and rules are weakly orientable and that at least
one dependency pair is strictly orientable (in order to guarantee some progress – otherwise the
SAT/SMT solver might find a model that does not help removing any dependency pair and might
miss another model that does).

Definition 7.3.23 (ORIENTπk((P,R))).

ORIENTπk((P,R)) =
∧

l→r∈P
SATk(l ≥πkbo r) ∧

∨
l→r∈P

SATk(l >πkbo r) ∧∧
l→r∈R

(
Uroot(l) → SATk(l ≥πkbo r)

)
The context-sensitive DP processor as defined in Definition 7.3.14, which we are imple-

menting, does not support argument filterings. Therefore, for the context-sensitive case the
usable rules can be determined statically before the proof attempt is started. Furthermore, in this
case, many of the formulas we defined above, can be replaced by simpler formulas, that do not
need to consider the argument filtering variables. For example, the formula NDπ

j (s, t) just evalu-
ates to > if the rule s→ t is non-duplicating (ignoring the argument filtering π) and it evaluates
to ⊥ otherwise.
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Putting everything together, we get two formulas encoding the DP processor and CS-DP
processor, respectively. The DP processor is encoded by the formula RPPk,j((P,R)) defined as

USπ((P,R)) ∧ ORIENTπk((P,R)) ∧ AFπ(F) ∧ ADMπ
k(F) ∧ POπ

j (>)

and the CS-DP processor is encoded by the formula CSRPPk,j((P,R, µ)) defined as

ORIENTπk((P,R)) ∧ ADMπ
k(F) ∧ POπ

j (>).

A modelM satisfying the first formula for a DP problem (P,R) encodes a strict order >
and a weight function (w,w0), admissible wrt. >, inducing a strict KBO >kbo and a weak KBO
≥kbo, as well as an argument filtering π with the following properties:

• For all rules and dependency pairs l→ r ∈ UR(P, π) ∪ P we have π(l) ≥kbo π(r).

• For at least one dependency pair l→ r ∈ P we have π(l) >kbo π(r).

Since ≥kbo is closed under contexts and substitutions and is Cε-compatible and >kbo is closed
under substitutions and well-founded, (>kbo,≥kbo) is a reduction pair and can be used in the
reduction pair processor.

The same is true for models satisfying the second formula for CS-DP problem (P,R, µ).
Such a model yields a reduction pair that can be used to remove dependency pairs from P .

7.4 Implementation for VMTL

In this section, we discuss the implementation of the KBO as a direct method and as a DP
processor for VMTL. Both versions use the VSSF for specifying and solving the constructed
SAT problems. Numeric values can be represented by means of bit-vectors, integers or real
values respectively variables over these domains. For SAT-solvers, the VSSF automatically
translates bit-vector formulas into pure propositional formulas, so pure SAT solvers can work on
these problems as well.

The Direct Method

The direct method version of the KBO is implemented for VMTL in the class KBO which can be
found in the package dpvis.logic.dm.methods. It can be used for both context-free and
context-sensitive TRSs. Context-sensitive TRSs are treated by this method just like context-free
TRSs.

Parameters

The KBO method provides the following parameters that can be chosen in the VMTL strategy
file when using the KBO method:
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Parameter Values Description
print_statistics true

false (default)
Chooses whether to include statistics
about the proof attempt in the output or
not.

debug true
false (default)

Chooses whether to include debug-
information in the output or not. The
debug-information may be interesting
for other things than debugging as well,
as it contains for example calculated
term weights.

word_length N0

Default: 5
Chooses the word-length that is used
for the calculation of term weights (i.e.
the number of bits used in bit-vectors
and bit-vector variables that represent
symbol- and term weights.

backend minisat
clasp
yices (default )

Selects the solver that should be used
for solving the encoded SMT problem.
MiniSat and CLASP are SAT solvers
and Yices is a SMT solver. For the
SAT solvers, the encoded SMT prob-
lem is automatically translated into a
SAT-equivalent SAT problem.

arithmetic_theory bitvectors
ints (default)
reals

Selects the theory that should be used
for expressing numeric values and
arithmetic operations on these val-
ues. The system automatically checks,
whether the chosen back-end solver
supports the selected theory. If an in-
compatible back-end solver is chosen,
the system automatically switches the
arithmetic theory to "bitvectors".

Output

VMTL only includes output of direct methods, if they were successful. If the proof attempt
was successful, the parameters for a KBO have been found that proves termination of the input
system. The output contains the following information:

• The weight-function and quasi-precedence of the KBO that proves termination of the input
system.

• If the print_statistics-parameter is set to true, some statistical information
about the proof attempt. This includes:

– The time needed for creating the problem specification.
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– The time needed for solving the specified problem with the chosen back-end solver.

– The number of variables (bit-vectors and propositional) that were used in the speci-
fication.

– The number of assertions (formulas) that were used in the specification.

– The word-size used for the bit-vectors.

• If the debug-parameter is set to true the calculated term weights are printed as well.

The output is created as an HTML document by the VMTL HTMLOutputWriter class.

The (CS-)DP Processor

The DP processor version of the KBO is implemented for VMTL in the class KBOProcessor
which can be found in the package dpvis.logic.dp. It can be used for both context-free
and context-sensitive TRSs.

By default, this processor uses usable rules. The calculation of usable rules is different for
context-sensitive dependency pairs. The processor automatically chooses the correct method for
calculating usable rules. Usable rules are calculated at the beginning of the proof search and as
part of the SMT problem (for the non-context-sensitive case). The use of usable rules can also
be deactivated by setting the respective parameter of this processor.

The use of argument filterings can also be disabled. For the context-sensitive case, the use
of argument filterings is automatically disabled. Disabling argument filterings can considerably
speed up the proof search, because a simpler SMT-problem can be created. However, it will
make the processor less powerful.

Parameters

The KBO processor provides the following parameters that can be chosen in the VMTL strategy
file when using the KBO processor:
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Parameter Values Description
print_statistics true

false (default)
Chooses whether to include
statistics about the proof attempt
in the output or not.

debug true
false (default)

Chooses whether to include
debug-information in the output
or not. The debug-information
may be interesting for other
things than debugging as well,
as it contains for example calcu-
lated term weights.

use_usable_rules true (default)
false

Used to decide whether usable
rules should be calculated or not.

use_argument_filtering true (default)
false

Used to decide whether usable
argument filterings should be
used or not.

word_length N0

Default: 5
Chooses the word-length that is
used for the calculation of term
weights (i.e. the number of bits
used in bit-vectors and bit-vector
variables that represent symbol-
and term weights.

backend minisat
clasp
yices (default)

Selects the solver that should
be used for solving the en-
coded SMT problem. MiniSat
and CLASP are SAT solvers
and Yices is an SMT solver.
For the SAT solvers, the en-
coded SMT problem is automat-
ically translated into an SAT-
equivalent SAT problem.

arithmetic_theory bitvectors
ints (default)
reals

Selects the theory that should be
used for expressing numeric val-
ues and arithmetic operations on
these values. The system au-
tomatically checks, whether the
chosen back-end solver supports
the selected theory. If an incom-
patible back-end solver is cho-
sen, the system automatically
switches the arithmetic theory to
"bitvectors".
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Output

VMTL only includes output of DP processors, if they were successful. If the proof attempt
was successful, the parameters of a KBO are presented, which weakly orients all usable rules
and dependency pairs and strictly orients at least one of the dependency pairs. The strictly
oriented dependency pairs are removed. If all dependency pairs are removed, finiteness of the
(CS-)DP problem has been proved. Otherwise, the resulting system is handed back to the VSSF
framework which chooses the next processor that tries to show finiteness of the new problem.

The output of the KBO processor contains the following elements:

• The argument filtering π that was used (if argument filterings were used).

• The weight-function and strict order of a KBO that weakly orients all usable rules and all
dependency pairs and strictly orients at least one dependency pair (all with respect to the
argument filtering π).

• The argument-filtered version of the dependency pair problem, where usable rules are
specially marked.

• The strictly oriented dependency pairs which are removed.

• If the print_statistics-parameter is set to true, some statistical information
about the proof attempt. This includes:

– The time needed for creating the problem specification.

– The time needed for solving the specified problem with the chosen back-end solver.

– The number of variables (bit-vectors and propositional) that were used in the speci-
fication.

– The number of assertions (formulas) that were used in the specification.

– The word-size used for the bit-vectors.

• If the debug-parameter is set to true the following additional information is printed:

– The calculated term weights of all terms that occur as the left-hand side or right-hand
side of a rule or dependency pair in the DP problem.

– The number of bits that are used for bit-vectors representing the number of variable
occurrences in argument-filtered terms. (Required to enforce non-duplication under
argument filterings)

– For each function symbol, whether the symbol is unary under the encoded argument
filtering or not.

The output is created as an HTML document by the VMTL HTMLOutputWriter class.
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CHAPTER 8
Tests and Benchmarks

In this chapter, we discuss how the new processors and methods were tested and present the
results of these tests. Section 8.1 summarizes the results for the technique of KBO and Section
8.2 summarizes the results for the root-labeling technique. In Section 8.3, we present a new
default strategy for VMTL that can be used for general purpose applications.

8.1 Knuth-Bendix-Order

The KBO method and processor were tested by using special strategies that use the KBO tech-
niques and running VMTL on a set of 1584 problems from the termination database (version 4).
The results were then compared with the results of the reference implementation from [ZHM09].
Cases that are not covered by the reference implementation or differ from the reference imple-
mentation (i.e. cases, where the reference implementation found "MAYBE" or "TIMEOUT"
and the VMTL implementation found "YES") were checked manually.

The VMTL implementation of KBO supports various solvers and theories for the computa-
tion of numeric values. The tests were performed with two SMT solvers (Yices [DdM06] and
z3 [dMB08]) and two SAT solvers (Minisat [SE05] and clasp [GKNS07]). For the SMT solvers,
the numeric theories of integers and reals as well as differently sized bit-vectors were used. For
the SAT solvers differently sized bit-vectors were used.

The Direct Method

For the tests of the direct method, we used a very simple strategy that just applies the KBO
method as preprocessing and does not perform a DP-analysis.
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Example 8.1.1. The following strategy file was used for the test of the KBO method, with
Minisat as the SAT-solving back-end and encoding numeric values as bit-vectors of length 4.

1 <Strategy>
2 <Preprocessing>
3 <KBO print_statistics="true" debug="true"
4 word_length="4"
5 arithmetic_theory="bitvectors"
6 backend="minisat"/>
7 </Preprocessing>
8 </Strategy>

Listing 8.1: Strategy for the tests of the KBO method

For the other test cases, the parameters of the KBO method were modified accordingly in the
strategy.

All in all, 18 different configurations were tested. The next table summarizes the results of
the tests. For each test-case we present the number of TRSs in the set of test problems that could
be proven to be terminating (YES) or non-terminating (NO). Furthermore, we show the number
of problems where termination could not be decided (MAYBE) or the computation exceeded the
time-limit of 60 seconds (T/O). The table also contains the average execution time of the KBO
method.

Solver Theory YES NO MAYBE T/O Avg. KBO Time
Yices Integers 116 60 1408 0 36.30 ms
Yices Reals 116 60 1408 0 36.30 ms
Yices BV/2 72 60 1452 0 40.31 ms
Yices BV/3 116 60 1408 0 38.79 ms
Yices BV/4 116 60 1408 0 41.21 ms
Yices BV/5 116 60 1408 0 42.70 ms
Yices BV/6 116 60 1408 0 43.56 ms
Minisat BV/4 116 60 1408 0 108.37 ms
Minisat BV/5 116 60 1408 0 175.76 ms
Minisat BV/6 116 60 1406 2 380.84 ms
clasp BV/4 116 60 1408 0 134.22 ms
clasp BV/5 116 60 1408 0 166.39 ms
clasp BV/6 116 60 1406 2 319.44 ms
z3 Integers 116 60 1408 0 56.61 ms
z3 Reals 116 60 1408 0 56.45 ms
z3 BV/4 116 60 1408 0 79.12 ms
z3 BV/5 116 60 1407 1 139.60 ms
z3 BV/6 116 60 1404 4 268.80 ms

The original implementation from [ZHM09] was tested by the authors on a set of 1381
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problems. The results of their tests can be found online1. We compared our results to their
results, for checking if our method works as expected.

In the tests, the VMTL version of the KBO method could prove termination of the same
problems that could be shown to be terminating by the reference implementation. Additionally,
in our tests we considered some problems from the TPDB, that were not considered in the tests
of the reference implementation. These cases were checked manually if termination was found.
All solutions were found to be correct.

When using bit-vectors for the representation of numeric values, a size of 3 bits suffices to
prove termination of all TRSs in our test-set, that could be proven to be terminating with stronger
theories like integers or reals. The tests showed, that the Yices SMT-solver in combination with
the Integers- or Reals-theory works most efficiently, with an average execution time of the KBO
method of 36.30 ms, proving termination of 116 TRSs and producing no timeouts.

The DP Processor

For the tests of the DP-processor a strategy was used, where first the dependency-graph processor
is applied in order to simplify the DP problem. After that, the KBO processor is used to remove
some (or all) dependency pairs. If dependency pairs remain, the dependency-graph processor
is applied once more, in order to simplify the resulting problem. This strategy is executed
repeatedly, up to five times.

Example 8.1.2. The following strategy file was used for the test of the KBO processor, using
Minisat as the SAT-solving back-end, where numeric values are encoded as bit-vectors of length
4. For testing purposes, also the statistics and debug output were enabled.

1 <Strategy>
2 <DP-Analysis>
3 <Group>
4 <DependencyGraph use_inverse_cap_function="true"
5 use_strongly_defined_symbols="false" />
6 <Group runs="10">
7 <KBOProcessor word_length="4"
8 arithmetic_theory="bitvectors"
9 backend="minisat"

10 debug="true"
11 print_statistics="true"/>
12 <DependencyGraph use_inverse_cap_function="true"
13 use_strongly_defined_symbols="false" />
14 </Group>
15 </Group>
16 </DP-Analysis>
17 </Strategy>

Listing 8.2: Strategy for the tests of the KBO processor

1http://colo6-c703.uibk.ac.at/ttt2/hz/kbo//index.php, accessed on Sept.22 2011
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For the other test cases, the parameters of the KBO processor were modified accordingly.

As for the direct method, 18 test configurations were considered to test the various encod-
ings using different arithmetic theories. Additionally, some tests were made where argument
filterings and usable rules were disabled. The next table summarizes the results of all tests. For
each test-case we present the number of TRSs in the set of test problems that could be shown to
be terminating (YES) or non-terminating (NO). Furthermore, we show the number of problems
where termination could not be decided (MAYBE) or the computation exceeded the time limit
of 60 seconds (T/O). The table also contains the average execution time of the KBO processor.

Solver Theory YES NO MAYBE T/O Avg. KBO Time Remark
Yices Integers 546 88 833 117 1634.28 ms AF+UR
Yices Reals 546 88 836 114 1427.88 ms AF+UR
Yices BV/2 465 88 922 109 1687.17 ms AF+UR
Yices BV/3 544 88 844 108 1887.17 ms AF+UR
Yices BV/4 550 88 830 116 2777.71 ms AF+UR
Yices BV/5 551 88 795 150 4419.44 ms AF+UR
Yices BV/6 549 88 742 205 4895.67 ms AF+UR
Minisat BV/4 547 88 822 127 4022.67 ms AF+UR
Minisat BV/5 548 88 796 152 5588.74 ms AF+UR
Minisat BV/6 546 88 733 217 5466.50 ms AF+UR
clasp BV/4 540 88 816 140 3817.51 ms AF+UR
clasp BV/5 541 88 800 155 4902.67 ms AF+UR
clasp BV/6 540 88 745 211 5746.30 ms AF+UR
z3 Integers 551 88 837 108 1782.70 ms AF+UR
z3 Reals 549 88 834 113 1446.42 ms AF+UR
z3 BV/4 549 88 834 113 2178.62 ms AF+UR
z3 BV/5 549 88 819 128 3206.10 ms AF+UR
z3 BV/6 549 88 776 171 4015.60 ms AF+UR
z3 Integers 321 88 1054 120 2718.38 ms AF, no UR
z3 Integers 284 88 1108 104 637.07 ms UR, no AF
z3 Integers 129 88 1265 102 518.77 ms no AF+UR

Again, the tests were compared to the tests from [ZHM09] where a similar strategy was
used. The tests revealed no contradictions between our results and the results from the reference
implementation. However, the set of problems for which a solution was found was slightly
different for both implementations (considering only the common test-problems). The reason
is that the framework of TTT2 (which was used in the tests in [ZHM09]) statically computes the
set of usable rules before the KBO processor is used. VMTL also restricts the rules of the input
system to a set of usable rules. However, a weaker version of usable rules is used. Therefore,
some problems for which a solution was found in the reference implementation yield "MAYBE"
in our implementation. On the other hand, there were some problems that could be shown to be
terminating in our tests but not in the tests of the reference implementation. Here, the reason
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is that VMTL uses a stronger dependency graph processor where sometimes a smaller set of
dependency pairs is found.

Since we used a bigger set of test problems, not for all results there were reference solutions
available for comparison. For a few random examples, where termination was found, and no
reference solution was available, the solutions were checked manually, and found to be correct.

The best results were archived with the z3 SMT-solver using the Integers theory. Using this
configuration, 551 TRSs could be proven to be terminating with an average execution-time of
the KBO processor of 1782.70 ms. For this test configuration, 108 timeouts occurred during the
tests, which is also the lowest number when compared to the number of timeouts of the other
configurations.

The tests also showed, that the runtime of the DP processor is much higher than that of
the direct method. The main reason is that argument filterings are used, which make the SAT
encoding quite big because many properties that could be determined statically in the absence of
argument filterings, now have to be encoded as part of the SAT problem (e.g. equality of terms -
if argument filterings are used, two terms may be equal under certain argument filterings, while
they differ if no argument filtering is used). Disabling argument filterings greatly decreases the
runtime of the processor, but also reduces the power of the processor (only 285 systems out of
1584 could be shown to be terminating when argument filterings are disabled, as compared to
551 out of 1584 when argument filterings were enabled).

8.2 Root-Labeling

Due to the huge size of the systems that the root-labeling operations yields in many cases, empir-
ical testing is not feasible for this technique. Instead, root-labeling was tested using systematic
tests with various input systems, that should cover all special cases (and all execution paths) that
can occur.

The tests revealed a problem with the direct-method version of root-labeling. At first, flat-
context stability (resp. flat µ-context stability) was not demanded. However, without flat-context
stability, the root-labeling can yield empty systems that are trivially terminating, while the orig-
inal system is not terminating, making the method unsound.

Example 8.2.1. LetR consist of the following two rules:

a → b b → a

Note, that R is not flat-context stable. The flat-context closure FCF (R) is the empty set and is
terminating, whileR is not terminating.

The VMTL implementation of root-labeling checks if flat-context stability (resp. flat µ-
context stability) is satisfied, when the method or processor is started. If it is not satisfied then
the unchanged input-system is returned.

113



One test that could be automated, is checking if the number of computed rules is correct.
To this end, the number of computed rules was checked against the expected number of rules
determined by the formulas presented here.

LetR be a TRS and let FCF (R)rl be the root-labeled version ofR. The following formula
gives the number of rules that are contained in FCF (R)rl:

|FCF (R)rl| =
∑

l→r∈Rp

|F||Vars(l)| +
∑

l→r∈Ra

∑
f∈F

ar(f) · |F||Vars(l)|+ar(f)−1


Here, Rp and Ra denote the root-preserving and root-altering rules of R as defined in Chapter
6.

For the DP processor, suppose (P,R) is a DP problem. The root-labeled version of this DP
problem is FC(P,R)rl. The number of dependency pairs in this problem is given by∑

l→r∈P
(|F#|+ 1)|Vars(l)|

and the number of rules is given by

∑
l→r∈Rp

(|F#|+ 1)|Vars(l)| +
∑

l→r∈Ra

 ∑
f∈F∪

{
∆
} ar(f) · (|F#|+ 1)|Vars(l)|+ar(f)−1


For context-sensitive TRSs or CS-DP problems, the presented formulas work as well. How-

ever, the term ar(f) in the base of the formulas has to be replaced by |µ(f)|.
The number of generated dependency pairs and rules was checked against the expected,

calculated numbers for the same 1584 problems that were also used when testing KBO. The
tests did not reveal any problems. The number of calculated rules and dependency pairs always
matched the expected numbers. There was one incident, however, where the formula failed,
because one rule was defined twice in the rule set. Here, the set of calculated formulas was
correct but the formula presented above fails because the rule should not be considered twice.

As the formulas indicate, the number of rules and dependency pairs can explode even for
very small input TRSs. Therefore, it is a good idea to restrict the size of the generated systems
by using the provided parameters of the direct method, respectively the DP processor. Further-
more, the practical tests showed that the root-labeling operation either succeeds rather fast (in at
most a few seconds) or times out completely for most tested problems. Therefore, when using
unrestricted root-labeling in a strategy, it is a good idea to use the root-labeling processor with a
low timeout to cut off the cases that would time out anyway due to the exponential blow-up. Fur-
thermore, since the resulting system can get quite huge, this technique should be used at some
late point in the strategy, as a kind of last-resort attempt, after all attempts on the original system
have failed.

114



8.3 A New Default Strategy

In most cases, it is a good idea to specify a strategy that is tailored specifically for the TRS that
the user wants to examine. However, sometimes it is convenient to have a good general-purpose
strategy available that is used if no specific strategy is provided. Another reason, why a good
default strategy is required is for the use in competitions. In this section, we present the results
for a new default strategy for VMTL. For all tests in this section, a subset of the TRSs in version
8 of the termination problem database was used. The subset we used, contains 92 CS-TRSs, 6
CTRSs and 2762 standard TRSs.

VMTL – Original Version

Here, we present the results for the default strategy of the original VMTL version (VMTL 1.4)
where none of the modifications described in this thesis are yet implemented.

This version of VMTL uses a fixed (hard-coded) preprocessing, where the Matrix-
Interpretations technique is used to remove some rules. In the default strategy of this version of
VMTL, the preprocessing may take up to three seconds and is run up to three times.

After that, the DP-Analysis is started. The first processor that is applied is the Dependency
Graph processor. Then, the following processors are used in the given order:

• Subterm Criterion

• Polynomial Ordering (no negative constants, coefficient range 4)

• Matrix Interpretation (dimension 2, coefficient range 3)

• Matrix Interpretation (dimension 3, coefficient range 3)

• Polynomial Ordering (allow negative constants (range 2), coefficient range 8)

• RPOS-Reduction Pair Processor

• SizeChangePrinciple

If at this point, there are any open DP problems left, the following two attempts are made in
parallel:

• Forward Narrowing

• Backward Instantiation

• Forward Instantiation

• Propagation

• Backward Narrowing

• Backward Instantiation

• Forward Instantiation

• Propagation

The old default strategy can be looked up in the Appendix in Chapter A.1.
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The following table summarizes the test results of the original version of VMTL:

TRS CS-TRS CTRS Total
YES 745 65 4 814

V
M

T
L

1.
4

NO 116 0 0 116
MAYBE 122 11 0 133
TIMEOUT 1778 16 2 1796

VMTL – Extended Version

Now, we present the results of the tests of the extended VMTL version, with the new prepro-
cessing framework and a new default strategy.

The first table presents the results, when the same default strategy as in the original version
is used in the extended version of VMTL. The only difference is, that now preprocessing is done
via the new preprocessing framework instead of the old, hard-coded preprocessing.

TRS CS-TRS CTRS Total
YES 744 65 4 813

V
M

T
L

ne
w

NO 117 0 0 117
MAYBE 120 11 0 131
TIMEOUT 1780 16 2 1798

The results are mostly the same. There were six cases, where one version found "YES"
or "NO", while the other version returned "TIMEOUT". These differences arise because of
indeterminism introduced through the involved SAT solvers. The results changed if the tests
were performed at different times.

The new default strategy extends the old default strategy by incorporating the new methods
and processors.

For the preprocessing, after using the Matrix Interpretations technique, now also an attempt
is made to show termination with the KBO method (using a timeout of two seconds). This way,
some systems can already be shown terminating before starting the DP framework.

In the DP-Analysis, the step where the reduction pair processor was used is now extended. In
the old default strategy, the RPO processor and the Dependency Graph processor were executed
sequentially up to ten times. The new default strategy also uses the KBO processor in this
sequence. Now, first the RPO processor is executed. After that, the KBO processor is executed
and then the dependency graph processor is executed. As before, the whole sequence may
run up to ten times. The interleaving of RPO and KBO should improve the performance of
both processors because some problems, that cannot be treated with the RPO processor, may
successfully be treated with the KBO processor and vice versa. Both orders are simplification
orders. Therefore, they can treat a similar set of TRSs. Still, the sets of treatable TRSs for both
processors are not the same, therefore interleaving both techniques improves the power of both
processors.

116



Another extension, made to the old default strategy, is the integration of root-labeling. If
at the very end of the proof search, where the old default strategy would just resign and return
"MAYBE", now the root-labeling processor is used in order to change the structure of the TRS.
After this has been done, the following processors are applied in the given order:

• Subterm Criterion + Dependency Graph

• An interleaving of RPO, KBO and Dependency Graph

• Polynomial Ordering

• Matrix Interpretation

The new default strategy can be looked up in the Appendix in Chapter A.1.

The following table summarizes the results obtained with the new default strategy.

TRS CS-TRS CTRS Total
YES 759 67 4 830

V
M

T
L

ne
w

NO 117 0 0 117
MAYBE 38 6 0 44
TIMEOUT 1847 19 2 1868

Comparison with Other Tools

Here, we compare the performance of the extended version of VMTL to VMTL 1.4 (as it was
used in the previous competitions) and the results for AProVE and TTT2 from the previous com-
petitions.

The following table summarizes the results of the new VMTL version as compared to the
results from the termination competition 2010.
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TRS CS-TRS Total
YES 154 21 175

V
M

T
L

ne
w

NO 13 0 13
MAYBE 14 2 16
TIMEOUT 211 4 215
YES 133 20 153

V
M

T
L

1.
41

NO 10 0 10
MAYBE 30 4 34
TIMEOUT 219 3 222
YES 299 23 322

A
Pr

oV
E

1

NO 35 1 36
MAYBE 0 0 0
TIMEOUT 61 3 61
YES 216 - 216

T
T

T
21

NO 30 - 30
MAYBE 146 - 146
TIMEOUT 0 - 0
YES 190 23 213

m
ut

er
m

1

NO 17 1 18
MAYBE 45 0 45
TIMEOUT 140 3 419
YES 171 - 171

ci
m

e3
1

NO 0 - 0
MAYBE 137 - 137
TIMEOUT 84 - 84

The following table summarizes the results of the new VMTL version as compared to the
results from the termination competition 2011.

1Results from the termination competition 2010
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TRS CS-TRS CTRS Total
YES 168 18 4 190

V
M

T
L

ne
w

NO 7 0 0 7
MAYBE 11 2 0 11
TIMEOUT 404 7 2 185
YES 167 18 4 167

V
M

T
L

1.
42

NO 6 0 0 6
MAYBE 29 4 0 33
TIMEOUT 191 5 2 198
YES 294 19 6 319

A
Pr

oV
E

2

NO 22 2 0 24
MAYBE 0 0 0 0
TIMEOUT 55 6 0 61
YES 226 - - 226

T
T

T
22

NO 19 - - 19
MAYBE 125 - - 125
TIMEOUT 0 - - 0

Note, that the results in the two tables presented above should not be seen as a direct com-
parison, since the results were obtained on different machines (the results from the competitions
were obtained during the competitions and the results for the new VMTL version was obtained in
dedicated tests on a different machine). However, the results give some idea of the expected im-
provements. The real performance of VMTL will be tested in the next termination competition
in 2012.

2Results from the termination competition 2011
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CHAPTER 9
Conclusions

9.1 Summary

The general goal of this thesis was to improve VMTL’s proof power. To this end, various ele-
ments have been added to the core framework of VMTL and to the proof methods of VMTL.

One of the goals was to design and integrate the support of direct proof methods as a pre-
processing for the VMTL proof search. In Chapter 9.3, we introduced the abstract notion of
direct methods in a way similar to DP processors. Direct methods can be used to either simplify
term rewriting systems or to directly attempt termination proofs. Our notion of direct methods
also offers a good degree of modularity, since different methods can be used subsequently in
arbitrary order or in parallel to constitute the preprocessing part of the proof search.

The language for the specification of the proof-strategy was also redesigned in the process.
Formerly, a proprietary language was used. This language has been replaced by a new XML-
based specification format. The new format supports the use of direct methods as preprocessing,
as well as the specification of the dependency pair analysis. The new format has some advan-
tages. First, the use of XML-Schema definitions (XSD) allows the generation of specific error
reports in case that there are syntactical or logical errors in the strategy specification. Further-
more, XML is a very widespread standard. Thus many tools exist which can be used to create
or modify XML files according to a given XSD. XML is also a very portable format and parsers
can handle different types of encodings.

In Chapter 5 we introduced the newly developed VMTL Sat Solving Facility (VSSF). The
VSSF offers a generic interface for SAT and SMT solving tasks. It unifies the way in which
SAT/SMT solving is used within VMTL and eases the specification of complex formulas, as it
allows the specification of formulas in a very natural way. It automatically translates formulas
that are given in propositional logic into SAT-equivalent clause-sets that can be treated by SAT
solvers. The VSSF also encapsulates the invocation of concrete SAT and SMT tools and the
parsing of their output files. The advantage of our SAT solving facility compared to existing
projects like SAT4J [BP10] and OpenSAT [ALBR+03] is that the VSSF also allows the specifi-
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cation of SMT problems. Furthermore, the VSSF transparently handles all the management of
propositional variables and theory variables. Therefore, propositional (and SMT-) variables can
be used in a very natural way, just like other Java-Variables. Compared to standalone SAT/SMT
generation tools like URSA [Jan10] and BAT [MSV07], the VSSF has the advantage that all
specification can be done directly in Java and the user does not have to deal with intermediate
problem specification files.

Formulas specified in the VSSF can be pure propositional formulas but may also contain
functions and predicates over different theories. The VSSF offers the arithmetic theories of bit-
vectors, integer numbers and real numbers. Depending on the solver that is used, occurrences
of functions or predicates from certain theories, which are not directly supported by the chosen
solver, are translated into propositional logic if such a translation is possible. If such a translation
is not possible, then an exception is generated and a different solver has to be used. Currently,
bit-vector predicates and functions are translated to propositional logic by means of bit-blasting.

The VSSF supports the DIMACS format as well as the SMT-LIB 2.0 format. For SAT
solvers, propositional formulas are translated into SAT equivalent clause sets. This is done
either by using the linear-time Tseitin translation (with the Plaisted-Greenbaum extension) or by
a simple (exponential) CNF-transformation. The clause sets that are obtained this way can be
translated into DIMACS-input code for use with SAT solvers. The DIMACS-output of the SAT
solver is then parsed and a model is extracted. If the original formula contained functions or
predicates from some theory that was translated into propositional logic, then the interpretation
of the associated variables is extracted from the model and is replaced by the real interpretation
of the variable. For SMT solvers, the SMT-LIB 2.0 format is supported. This format offers a rich
problem specification language. Therefore, no transformations are necessary. The SMT-LIB 2.0
input for the SMT solvers can be created directly from the problem specification. Again, the
output is parsed and a model is extracted. The solving process in the VSSF is illustrated in
Figure 9.1.

The VSSF is designed to be very extensible and flexible in its use. To this end, many param-
eters concerning the solving process can be modified. Extensibility is achieved through the use
of Java’s object oriented mechanisms.

The first practical use of the VSSF was the implementation of the Knuth-Bendix order
(KBO) as a direct method and as a DP processor for VMTL. The implementation is based on
the SMT encoding described in [ZHM09]. Our implementation is described in detail in Chap-
ter 7. The use of the VSSF for SMT solving tasks makes it possible to choose among different
SAT/SMT solvers at runtime without requiring any code changes. We made a few additions to
the SMT-encoding from [ZHM09] in order to support context-sensitive rewriting. For the DP
processor, some optimization options were implemented. For example, it is possible to deacti-
vate the use of argument filterings or usable rules. This results in smaller SMT problems, trading
proof power for better execution time.

Another proof technique that was added as part of this thesis is called semantic labeling
([Zan95]). More specifically a special case thereof called root-labeling ([SM08], [ST10]) has
been integrated into VMTL. In Chapter 6 we gave a short introduction to semantic labeling and
generalized the technique of semantic labeling to the context-sensitive case. We also developed
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Figure 9.1: Architecture of the VSSF library.

a framework for CS-DP processors for general semantic labeling.

In Sections 6.3 and 6.4 we presented generalizations of the existing root-labeling method
and the root-labeling DP processor to context-sensitive versions and proved the soundness of
these generalizations. The root-labeling transformation is very well suited for TRSs where the
function symbols have a low arity (e.g. in string rewriting). For TRSs over function symbols
with higher arity, the root-labeling transformation can produce very big systems. Therefore,
for some of these systems, root-labeling may not be feasible. In the VMTL implementation of
root-labeling, we added parameters by which the user can choose a threshold for the growth of
the systems.

Finally, in Chapter 8 we tested the new methods and processors on a number of test-cases
from the termination problem database. In this chapter, we also developed a new general-purpose
strategy for VMTL that uses preprocessing methods and a DP-analysis. This default-strategy is
used, whenever no strategy is provided and is tailored towards use in termination competitions
where tools are allowed to run for at most 60 seconds.

9.2 Related Work

Methods for automated termination proofs for term rewriting systems are actively explored.
Many termination tools for TRSs have emerged, some of which are: AProVE [GTSKF04], TTT2
[KSZM09], TORPA [Zan04], Jambox [EWZ06], Matchbox [Wal04], etc... Like VMTL, most
modern termination provers rely on the DP framework [GTSK05] and also support direct proof
methods.

Some attempts have been made to generalize the DP-framework to the context-sensitive case.
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An early version of the context-sensitive DP framework (CS-DP framework) was presented in
[AGL06]. Later, a refined version was published ([AEF+08]), where collapsing dependency
pairs are avoided.

The SMT encoding for KBO as a direct method and as a DP processor, on which our im-
plementation is based, is presented in [ZHM09]. For context-free TRSs, when using the direct
method, our implementation yields the same results as the implementation from [ZHM09]. The
tests of the DP processor did reveal differences in a few cases. The reason for these differences
is that the framework used for calculating usable rules and dependency graphs slightly varies
between VMTL and TTT2, which was used for the tests in [ZHM09].

The general form of semantic labeling was first presented in [Zan95]. Numerous approaches
based on semantic labeling were developed that are suitable for automated termination prov-
ing. Examples are, self-labeling [MOZ96], and predictive labeling [HM06]. The root-labeling
transformation was first presented in [SM08]. Later, the authors found a problem with one of
the claims in this paper and released a refined version of root-labeling which can be found in
[ST10]. The refined version of root-labeling was implemented for VMTL as part of this thesis.

Concerning SAT/SMT solving, there exist some projects that provide a SAT API for Java.
The two best-known SAT APIs for Java are SAT4J [BP10] and OpenSAT [ALBR+03]. BoolVar
[Bai11] is a Java library for encoding pseudo-boolean constraints. Other tools that automate the
generation of SAT / SMT specifications are URSA [Jan10] and BAT [MSV07].

9.3 Further Development

The development of a new preprocessing-framework based on direct methods allows the inte-
gration of traditional proof methods or transformations other than the DP framework. This is
useful since for some problems the DP framework would introduce unnecessary complexity.
Furthermore, direct proofs are less convoluted and easier to understand than proofs in the DP
framework.

Using the currently implemented direct methods, the proof-power of VMTL could be im-
proved slightly. We are confident that in the future, some stronger preprocessing methods and
processors are added that will further improve VMTL’s proving power.

A very useful addition to the strategy specification for VMTL would be the possibility for
conditional strategies, where parts of the strategy only get executed if certain conditions are met.
For example, one could specify that if a system is duplicating then the direct method of KBO is
not tried. Another idea would be that certain processors, which are powerful for context-sensitive
rewriting, are only tried if the system is context-sensitive.

The VMTL SAT Solving Facility has proven very useful in the implementation of the KBO
method and processor. Its flexibility and transparency allow easy experimentation with different
solvers and theories in order to find the combination with the best performance for some appli-
cation. The VSSF is designed with high extensibility in mind. Therefore, it is easy to add new
solvers or theories. Planned extensions to the VSSF include support for SMT-LIB 1.6 and new,
more efficient CNF-translation techniques like the Jackson-Sharidan approach ([JS04]).
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APPENDIX A
Strategy

A.1 Default Strategy
1 [Group,120000,1]{Problem Selection Function=DPNumberProblemEvaluator}(
2 [DependencyGraph,0,1]{Use inverse cap function=true,Use strongly defined symbols=false},
3 [Group,0,2]{Problem Selection Function=DPNumberProblemEvaluator}(
4 [SubtermCriterion,0,1],
5 [DependencyGraph,0,1]{Use inverse cap function=true,Use strongly defined symbols=false}
6 ),
7 [Group,0,10]{Problem Selection Function=DPNumberProblemEvaluator}(
8 [PolynomialOrdering,10000,1]{Usable Rules=Improved,Negative Constant Range=0,Coefficient Range

=4,Polynomial Degree=Linear,Use negative constants=false},
9 [DependencyGraph,0,1]{Use inverse cap function=true,Use strongly defined symbols=false}

10 ),
11 [Group,0,10]{Problem Selection Function=DPNumberProblemEvaluator}(
12 [MatrixInterpretations,30000,1]{matrix_dimension=2,coefficient_range=3},
13 [DependencyGraph,0,1]{Use inverse cap function=true,Use strongly defined symbols=false}
14 ),
15 [Group,0,10]{Problem Selection Function=DPNumberProblemEvaluator}(
16 [MatrixInterpretations,30000,1]{matrix_dimension=3,coefficient_range=3},
17 [DependencyGraph,0,1]{Use inverse cap function=true,Use strongly defined symbols=false}
18 ),
19 [Group,0,10]{Problem Selection Function=DPNumberProblemEvaluator}(
20 [PolynomialOrdering,30000,1]{Usable Rules=Improved,Negative Constant Range=2,Coefficient Range

=8,Polynomial Degree=Linear,Use negative constants=true},
21 [DependencyGraph,0,1]{Use inverse cap function=true,Use strongly defined symbols=false}
22 ),
23 [Group,0,10]{Problem Selection Function=DPNumberProblemEvaluator}(
24 [ReductionPairSAT,60000,1]{Ordering type=rpos,Use usable rules=true,Use nonstrict orderings=

true,Use argument filterings=true},
25 [DependencyGraph,0,1]{Use inverse cap function=true,Use strongly defined symbols=false}
26 ),
27 [SizeChangePrinciple,30000,1]{Ordering type=embedding,Use usable rules=true},
28 [Group,0,1,parallel]{Problem Selection Function=DPNumberProblemEvaluator}(
29 [Group,0,3]{Problem Selection Function=DPNumberProblemEvaluator}(
30 [Group,120000,1]{Problem Selection Function=DPNumberProblemEvaluator}(
31 [ForwardNarrowing,0,100000]{Narrowing normal form lookahead=2,Use original terms

restriction=true}
32 ),
33 [BackwardInstantiation,0,1],
34 [ForwardInstantiation,0,1],
35 [Propagation,0,1]
36 ),
37 [Group,0,3]{Problem Selection Function=DPNumberProblemEvaluator}(
38 [Group,120000,1]{Problem Selection Function=DPNumberProblemEvaluator}(
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39 [BackwardsNarrowing,0,100000]{Narrowing normal form lookahead=2,Use original terms
restriction=true}

40 ),
41 [BackwardInstantiation,0,1],
42 [ForwardInstantiation,0,1],
43 [Propagation,0,1]
44 )
45 )
46 )

Listing A.1: The old default strategy in the old syntax of the strategy language

1 <Strategy>
2 <Preprocessing>
3 <Group time="5000">
4 <MatrixInterpretationsMethod runs="5" matrix_dimension="1" coefficient_range="1" />
5 <MatrixInterpretationsMethod runs="5" matrix_dimension="1" coefficient_range="2" />
6 </Group>
7 </Preprocessing>
8 <DP-Analysis>
9 <Group>

10 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
11 <Group runs="2">
12 <SubtermCriterion />
13 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
14 </Group>
15 <Group runs="10">
16 <PolynomialOrdering time="10000" negative_constant_range="0" use_negative_constants="false"
17 coefficient_range="4" usable_rules="Improved" polynomial_degree="Linear" />
18 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
19 </Group>
20 <Group runs="10">
21 <MatrixInterpretations time="30000" matrix_dimension="2" coefficient_range="3" />
22 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
23 </Group>
24 <Group runs="10">
25 <MatrixInterpretations time="30000" matrix_dimension="3" coefficient_range="3" />
26 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
27 </Group>
28 <Group runs="10">
29 <PolynomialOrdering time="30000" negative_constant_range="2" use_negative_constants="true"
30 coefficient_range="8" usable_rules="Improved" polynomial_degree="Linear" />
31 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
32 </Group>
33 <Group runs="10">
34 <ReductionPairSAT time="60000" ordering_type="rpos" use_usable_rules="true"
35 use_argument_filterings="true" use_nonstrict_orderings="true" />
36 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
37 </Group>
38 <SizeChangePrinciple time="30000" ordering_type="embedding" use_usable_rules="true" />
39 <Group parallel="true">
40 <Group runs="3">
41 <Group time="120000">
42 <ForwardNarrowing runs="100000" use_original_terms_restriction="true"
43 narrowing_normal_form_lookahead="2" />
44 </Group>
45 <BackwardInstantiation />
46 <ForwardInstantiation />
47 <Propagation />
48 </Group>
49 <Group runs="3">
50 <Group time="120000">
51 <BackwardsNarrowing runs="100000" use_original_terms_restriction="true"
52 narrowing_normal_form_lookahead="2" />
53 </Group>
54 <BackwardInstantiation />
55 <ForwardInstantiation />
56 <Propagation />
57 </Group>
58 </Group>
59 </Group>
60 </DP-Analysis>
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61 </Strategy>

Listing A.2: The old default strategy in XML representation

1 <Strategy>
2 <Preprocessing>
3 <Group>
4 <Group time="5000">
5 <MatrixInterpretationsMethod runs="5" matrix_dimension="1" coefficient_range="1" />
6 <MatrixInterpretationsMethod runs="5" matrix_dimension="1" coefficient_range="2" />
7 </Group>
8 <KBO backend="yices" arithmetic_theory="ints" runs="1" time="2000" />
9 </Group>

10 </Preprocessing>
11 <DP-Analysis>
12 <Group>
13 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
14 <Group runs="2">
15 <SubtermCriterion />
16 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
17 </Group>
18 <Group runs="10">
19 <PolynomialOrdering time="10000" negative_constant_range="0" use_negative_constants="false"
20 coefficient_range="4" usable_rules="Improved" polynomial_degree="Linear" />
21 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
22 </Group>
23 <Group runs="10">
24 <MatrixInterpretations time="30000" matrix_dimension="2" coefficient_range="3" />
25 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
26 </Group>
27 <Group runs="10">
28 <MatrixInterpretations time="30000" matrix_dimension="3" coefficient_range="3" />
29 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
30 </Group>
31 <Group runs="10">
32 <PolynomialOrdering time="30000" negative_constant_range="2" use_negative_constants="true"
33 coefficient_range="8" usable_rules="Improved" polynomial_degree="Linear" />
34 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
35 </Group>
36 <Group runs="10">
37 <Group>
38 <ReductionPairSAT time="20000" ordering_type="rpos" use_usable_rules="true"
39 use_argument_filterings="true" use_nonstrict_orderings="true" />
40 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
41 </Group>
42 <Group>
43 <KBOProcessor time="20000" backend="yices" arithmetic_theory="ints" />
44 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
45 </Group>
46 </Group>
47 <SizeChangePrinciple time="30000" ordering_type="embedding" use_usable_rules="true" />
48 <Group parallel="true">
49 <Group runs="3">
50 <Group time="120000">
51 <ForwardNarrowing runs="100000" use_original_terms_restriction="true"
52 narrowing_normal_form_lookahead="2" />
53 </Group>
54 <BackwardInstantiation />
55 <ForwardInstantiation />
56 <Propagation />
57 </Group>
58 <Group runs="3">
59 <Group time="120000">
60 <BackwardsNarrowing runs="100000" use_original_terms_restriction="true"
61 narrowing_normal_form_lookahead="2" />
62 </Group>
63 <BackwardInstantiation />
64 <ForwardInstantiation />
65 <Propagation />
66 </Group>
67 </Group>
68 <RootLabelingProcessor max_output_growth="50000" />
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69 <Group runs="2">
70 <SubtermCriterion />
71 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
72 </Group>
73 <Group runs="10">
74 <Group>
75 <ReductionPairSAT time="20000" ordering_type="rpos" use_usable_rules="true"
76 use_argument_filterings="true" use_nonstrict_orderings="true" />
77 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
78 </Group>
79 <Group>
80 <KBOProcessor time="20000" backend="yices" arithmetic_theory="ints" />
81 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
82 </Group>
83 </Group>
84 <Group runs="10">
85 <PolynomialOrdering time="10000" negative_constant_range="0" use_negative_constants="false"
86 coefficient_range="4" usable_rules="Improved" polynomial_degree="Linear" />
87 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
88 </Group>
89 <Group runs="10">
90 <MatrixInterpretations time="30000" matrix_dimension="2" coefficient_range="3" />
91 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
92 </Group>
93 <Group runs="10">
94 <MatrixInterpretations time="30000" matrix_dimension="3" coefficient_range="3" />
95 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
96 </Group>
97 <Group runs="10">
98 <PolynomialOrdering time="30000" negative_constant_range="2" use_negative_constants="true"
99 coefficient_range="8" usable_rules="Improved" polynomial_degree="Linear" />

100 <DependencyGraph use_inverse_cap_function="true" use_strongly_defined_symbols="false" />
101 </Group>
102 </Group>
103 </DP-Analysis>
104 </Strategy>

Listing A.3: The new default strategy in XML representation
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A.2 XML Schema Definitions

XSD Template
1 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
2 <xsd:element name="Strategy" type="TStrategy" />
3 <!-- Type definition for the strategy node -->
4 <xsd:complexType name="TStrategy">
5 <xsd:sequence>
6 <xsd:element name="Preprocessing" type="TPreprocessing" minOccurs="0" maxOccurs="1" />
7 <xsd:element name="DP-Analysis" type="TDP-Analysis" minOccurs="0" maxOccurs="1" />
8 </xsd:sequence>
9 </xsd:complexType>

10 <xsd:complexType name="TPreprocessing">
11 <xsd:choice minOccurs="1" maxOccurs="1">
12 <xsd:element name="Group" type="TGroupPreproc" />
13 <!-- __GENERATE_DM_ENTRIES__ -->
14 </xsd:choice>
15 </xsd:complexType>
16 <xsd:complexType name="TDP-Analysis">
17 <xsd:choice minOccurs="1" maxOccurs="1">
18 <xsd:element name="Group" type="TGroupDPAnalysis" />
19 <!-- __GENERATE_DP_ENTRIES__ -->
20 </xsd:choice>
21 </xsd:complexType>
22 <!-- abstract type TANode;
23 Group and DP-Processor- and DM-nodes extend this -->
24 <xsd:complexType name="TANode">
25 <xsd:attribute name="time" type="xsd:nonNegativeInteger" default="0" />
26 <xsd:attribute name="runs" type="xsd:nonNegativeInteger" default="1" />
27 </xsd:complexType>
28 <!-- abstract type TAGroup -->
29 <xsd:complexType name="TAGroup">
30 <xsd:complexContent>
31 <xsd:extension base="TANode">
32 <xsd:attribute name="parallel" type="xsd:boolean" default="false" />
33 </xsd:extension>
34 </xsd:complexContent>
35 </xsd:complexType>
36 <!-- type TGroupPreproc -->
37 <xsd:complexType name="TGroupPreproc">
38 <xsd:complexContent>
39 <xsd:extension base="TAGroup">
40 <xsd:choice minOccurs="1" maxOccurs="unbounded">
41 <xsd:element name="Group" type="TGroupPreproc" />
42 <!-- __GENERATE_DM_ENTRIES__ -->
43 </xsd:choice>
44 <!-- __GENERATE_DM_EVALUATOR_ATTRIBUTE -->
45 </xsd:extension>
46 </xsd:complexContent>
47 </xsd:complexType>
48 <!-- type TGroupDPAnalysis -->
49 <xsd:complexType name="TGroupDPAnalysis">
50 <xsd:complexContent>
51 <xsd:extension base="TAGroup">
52 <xsd:choice minOccurs="1" maxOccurs="unbounded">
53 <xsd:element name="Group" type="TGroupDPAnalysis" />
54 <!-- __GENERATE_DP_ENTRIES__ -->
55 </xsd:choice>
56 <!-- __GENERATE_DP_EVALUATOR_ATTRIBUTE -->
57 </xsd:extension>
58 </xsd:complexContent>
59 </xsd:complexType>
60 <!-- __GENERATE_DP_TYPES__ -->
61 <!-- __GENERATE_DM_TYPES__ -->
62 </xsd:schema>

Listing A.4: XSD-template used by VMTL
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Example of Compiled XSD
1 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
2 <xsd:element name="Strategy" type="TStrategy" />
3 <!-- Type definition for the strategy node -->
4 <xsd:complexType name="TStrategy">
5 <xsd:sequence>
6 <xsd:element name="Preprocessing" type="TPreprocessing" minOccurs="0" maxOccurs="1" />
7 <xsd:element name="DP-Analysis" type="TDP-Analysis" minOccurs="0" maxOccurs="1" />
8 </xsd:sequence>
9 </xsd:complexType>

10 <xsd:complexType name="TPreprocessing">
11 <xsd:choice minOccurs="1" maxOccurs="1">
12 <xsd:element name="Group" type="TGroupPreproc" />
13 <xsd:element name="TestMethod" type="TTestMethod" />
14 </xsd:choice>
15 </xsd:complexType>
16 <xsd:complexType name="TDP-Analysis">
17 <xsd:choice minOccurs="1" maxOccurs="1">
18 <xsd:element name="Group" type="TGroupDPAnalysis" />
19 <xsd:element name="ForwardNarrowing" type="TForwardNarrowing" />
20 <xsd:element name="ForwardInstantiation" type="TForwardInstantiation" />
21 <xsd:element name="SizeChangePrinciple" type="TSizeChangePrinciple" />
22 <xsd:element name="MatrixInterpretations" type="TMatrixInterpretations" />
23 <xsd:element name="BackwardsNarrowing" type="TBackwardsNarrowing" />
24 <xsd:element name="BackwardInstantiation" type="TBackwardInstantiation" />
25 <xsd:element name="PolynomialOrdering" type="TPolynomialOrdering" />
26 <xsd:element name="DependencyGraph" type="TDependencyGraph" />
27 <xsd:element name="ReductionPairSAT" type="TReductionPairSAT" />
28 <xsd:element name="SubtermCriterion" type="TSubtermCriterion" />
29 <xsd:element name="Propagation" type="TPropagation" />
30 </xsd:choice>
31 </xsd:complexType>
32 <!-- abstract type TANode;
33 Group and DP-Processor- and DM-nodes extend this -->
34 <xsd:complexType name="TANode">
35 <xsd:attribute name="time" type="xsd:nonNegativeInteger" default="0" />
36 <xsd:attribute name="runs" type="xsd:nonNegativeInteger" default="1" />
37 </xsd:complexType>
38 <!-- abstract type TAGroup -->
39 <xsd:complexType name="TAGroup">
40 <xsd:complexContent>
41 <xsd:extension base="TANode">
42 <xsd:attribute name="parallel" type="xsd:boolean" default="false" />
43 </xsd:extension>
44 </xsd:complexContent>
45 </xsd:complexType>
46 <!-- type TGroupPreproc -->
47 <xsd:complexType name="TGroupPreproc">
48 <xsd:complexContent>
49 <xsd:extension base="TAGroup">
50 <xsd:choice minOccurs="1" maxOccurs="unbounded">
51 <xsd:element name="Group" type="TGroupPreproc" />
52 <xsd:element name="TestMethod" type="TTestMethod" />
53 </xsd:choice>
54 <xsd:attribute name="problem_selection_function_dm" default="SizeEvaluator">
55 <xsd:simpleType>
56 <xsd:restriction base="xsd:string">
57 <xsd:enumeration value="SizeEvaluator" />
58 </xsd:restriction>
59 </xsd:simpleType>
60 </xsd:attribute>
61 </xsd:extension>
62 </xsd:complexContent>
63 </xsd:complexType>
64 <!-- type TGroupDPAnalysis -->
65 <xsd:complexType name="TGroupDPAnalysis">
66 <xsd:complexContent>
67 <xsd:extension base="TAGroup">
68 <xsd:choice minOccurs="1" maxOccurs="unbounded">
69 <xsd:element name="Group" type="TGroupDPAnalysis" />
70 <xsd:element name="ForwardNarrowing" type="TForwardNarrowing" />
71 <xsd:element name="ForwardInstantiation" type="TForwardInstantiation" />

130



72 <xsd:element name="SizeChangePrinciple" type="TSizeChangePrinciple" />
73 <xsd:element name="MatrixInterpretations" type="TMatrixInterpretations" />
74 <xsd:element name="BackwardsNarrowing" type="TBackwardsNarrowing" />
75 <xsd:element name="BackwardInstantiation" type="TBackwardInstantiation" />
76 <xsd:element name="PolynomialOrdering" type="TPolynomialOrdering" />
77 <xsd:element name="DependencyGraph" type="TDependencyGraph" />
78 <xsd:element name="ReductionPairSAT" type="TReductionPairSAT" />
79 <xsd:element name="SubtermCriterion" type="TSubtermCriterion" />
80 <xsd:element name="Propagation" type="TPropagation" />
81 </xsd:choice>
82 <xsd:attribute name="problem_selection_function_dp" default="DPNumberProblemEvaluator">
83 <xsd:simpleType>
84 <xsd:restriction base="xsd:string">
85 <xsd:enumeration value="OverallSizeProblemEvaluator" />
86 <xsd:enumeration value="DPNumberProblemEvaluator" />
87 </xsd:restriction>
88 </xsd:simpleType>
89 </xsd:attribute>
90 </xsd:extension>
91 </xsd:complexContent>
92 </xsd:complexType>
93 <xsd:complexType name="TForwardNarrowing">
94 <xsd:complexContent>
95 <xsd:extension base="TANode">
96 <xsd:attribute name="use_original_terms_restriction" default="true">
97 <xsd:simpleType>
98 <xsd:restriction base="xsd:string">
99 <xsd:enumeration value="true" />

100 <xsd:enumeration value="false" />
101 </xsd:restriction>
102 </xsd:simpleType>
103 </xsd:attribute>
104 <xsd:attribute name="narrowing_normal_form_lookahead" type="xsd:string" default="2" />
105 </xsd:extension>
106 </xsd:complexContent>
107 </xsd:complexType>
108 <xsd:complexType name="TForwardInstantiation">
109 <xsd:complexContent>
110 <xsd:extension base="TANode"></xsd:extension>
111 </xsd:complexContent>
112 </xsd:complexType>
113 <xsd:complexType name="TSizeChangePrinciple">
114 <xsd:complexContent>
115 <xsd:extension base="TANode">
116 <xsd:attribute name="ordering_type" default="embedding">
117 <xsd:simpleType>
118 <xsd:restriction base="xsd:string">
119 <xsd:enumeration value="embedding" />
120 <xsd:enumeration value="lpo" />
121 </xsd:restriction>
122 </xsd:simpleType>
123 </xsd:attribute>
124 <xsd:attribute name="use_usable_rules" default="true">
125 <xsd:simpleType>
126 <xsd:restriction base="xsd:string">
127 <xsd:enumeration value="true" />
128 <xsd:enumeration value="false" />
129 </xsd:restriction>
130 </xsd:simpleType>
131 </xsd:attribute>
132 </xsd:extension>
133 </xsd:complexContent>
134 </xsd:complexType>
135 <xsd:complexType name="TMatrixInterpretations">
136 <xsd:complexContent>
137 <xsd:extension base="TANode">
138 <xsd:attribute name="matrix_dimension" type="xsd:string" default="2" />
139 <xsd:attribute name="coefficient_range" type="xsd:string" default="2" />
140 </xsd:extension>
141 </xsd:complexContent>
142 </xsd:complexType>
143 <xsd:complexType name="TBackwardsNarrowing">
144 <xsd:complexContent>
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145 <xsd:extension base="TANode">
146 <xsd:attribute name="use_original_terms_restriction" default="true">
147 <xsd:simpleType>
148 <xsd:restriction base="xsd:string">
149 <xsd:enumeration value="true" />
150 <xsd:enumeration value="false" />
151 </xsd:restriction>
152 </xsd:simpleType>
153 </xsd:attribute>
154 <xsd:attribute name="narrowing_normal_form_lookahead" type="xsd:string" default="2" />
155 </xsd:extension>
156 </xsd:complexContent>
157 </xsd:complexType>
158 <xsd:complexType name="TBackwardInstantiation">
159 <xsd:complexContent>
160 <xsd:extension base="TANode"></xsd:extension>
161 </xsd:complexContent>
162 </xsd:complexType>
163 <xsd:complexType name="TPolynomialOrdering">
164 <xsd:complexContent>
165 <xsd:extension base="TANode">
166 <xsd:attribute name="negative_constant_range" type="xsd:string" default="0" />
167 <xsd:attribute name="use_negative_constants">
168 <xsd:simpleType>
169 <xsd:restriction base="xsd:string">
170 <xsd:enumeration value="true" />
171 <xsd:enumeration value="false" />
172 </xsd:restriction>
173 </xsd:simpleType>
174 </xsd:attribute>
175 <xsd:attribute name="coefficient_range" type="xsd:string" default="4" />
176 <xsd:attribute name="usable_rules">
177 <xsd:simpleType>
178 <xsd:restriction base="xsd:string">
179 <xsd:enumeration value="Standard" />
180 <xsd:enumeration value="Improved" />
181 </xsd:restriction>
182 </xsd:simpleType>
183 </xsd:attribute>
184 <xsd:attribute name="polynomial_degree">
185 <xsd:simpleType>
186 <xsd:restriction base="xsd:string">
187 <xsd:enumeration value="Linear" />
188 <xsd:enumeration value="Simple Mixed" />
189 </xsd:restriction>
190 </xsd:simpleType>
191 </xsd:attribute>
192 </xsd:extension>
193 </xsd:complexContent>
194 </xsd:complexType>
195 <xsd:complexType name="TDependencyGraph">
196 <xsd:complexContent>
197 <xsd:extension base="TANode">
198 <xsd:attribute name="use_inverse_cap_function" default="true">
199 <xsd:simpleType>
200 <xsd:restriction base="xsd:string">
201 <xsd:enumeration value="true" />
202 <xsd:enumeration value="false" />
203 </xsd:restriction>
204 </xsd:simpleType>
205 </xsd:attribute>
206 <xsd:attribute name="use_strongly_defined_symbols" default="false">
207 <xsd:simpleType>
208 <xsd:restriction base="xsd:string">
209 <xsd:enumeration value="true" />
210 <xsd:enumeration value="false" />
211 </xsd:restriction>
212 </xsd:simpleType>
213 </xsd:attribute>
214 </xsd:extension>
215 </xsd:complexContent>
216 </xsd:complexType>
217 <xsd:complexType name="TReductionPairSAT">
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218 <xsd:complexContent>
219 <xsd:extension base="TANode">
220 <xsd:attribute name="ordering_type" default="rpos">
221 <xsd:simpleType>
222 <xsd:restriction base="xsd:string">
223 <xsd:enumeration value="rpos" />
224 <xsd:enumeration value="lpo" />
225 </xsd:restriction>
226 </xsd:simpleType>
227 </xsd:attribute>
228 <xsd:attribute name="use_usable_rules" default="true">
229 <xsd:simpleType>
230 <xsd:restriction base="xsd:string">
231 <xsd:enumeration value="true" />
232 <xsd:enumeration value="false" />
233 </xsd:restriction>
234 </xsd:simpleType>
235 </xsd:attribute>
236 <xsd:attribute name="use_argument_filterings" default="true">
237 <xsd:simpleType>
238 <xsd:restriction base="xsd:string">
239 <xsd:enumeration value="true" />
240 <xsd:enumeration value="false" />
241 </xsd:restriction>
242 </xsd:simpleType>
243 </xsd:attribute>
244 <xsd:attribute name="use_nonstrict_orderings" default="true">
245 <xsd:simpleType>
246 <xsd:restriction base="xsd:string">
247 <xsd:enumeration value="true" />
248 <xsd:enumeration value="false" />
249 </xsd:restriction>
250 </xsd:simpleType>
251 </xsd:attribute>
252 </xsd:extension>
253 </xsd:complexContent>
254 </xsd:complexType>
255 <xsd:complexType name="TSubtermCriterion">
256 <xsd:complexContent>
257 <xsd:extension base="TANode"></xsd:extension>
258 </xsd:complexContent>
259 </xsd:complexType>
260 <xsd:complexType name="TPropagation">
261 <xsd:complexContent>
262 <xsd:extension base="TANode"></xsd:extension>
263 </xsd:complexContent>
264 </xsd:complexType>
265 <xsd:complexType name="TTestMethod">
266 <xsd:complexContent>
267 <xsd:extension base="TANode">
268 <xsd:attribute name="result" default="subset">
269 <xsd:simpleType>
270 <xsd:restriction base="xsd:string">
271 <xsd:enumeration value="exception" />
272 <xsd:enumeration value="subset" />
273 <xsd:enumeration value="termination" />
274 <xsd:enumeration value="non-termination" />
275 </xsd:restriction>
276 </xsd:simpleType>
277 </xsd:attribute>
278 <xsd:attribute name="name" type="xsd:string" default="defaultname" />
279 <xsd:attribute name="runtime" type="xsd:string" default="1000" />
280 </xsd:extension>
281 </xsd:complexContent>
282 </xsd:complexType>
283 </xsd:schema>

Listing A.5: VMTL-compiled XSD
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APPENDIX B
Example Outputs

B.1 KBO

The Direct Method

In this section, we present an example output of the KBO method. The output contains only the
default output (no statistics and no debug information).

Example B.1.1. Consider the following TRS (TRS_SK90_2.31.trs from the termination
database):

not(true) → false not(false) → true
odd(0) → false odd(s(x)) → not(odd(x))
+(x, 0) → x +(x, s(y)) → s(+(x, y))

+(s(x), y) → s(+(x, y))

The KBO method can be used to show termination of this TRS. The output created by the
KBO method is included on the next page.

In the output, the symbol weight for each function symbol is presented in a table.
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The input-system: KBO

Term Rewriting System

Rules

not(true) → false not(false) → true

odd(0) → false odd(s(x)) → not(odd(x))

+(x, 0) → x +(x, s(y)) → s(+(x, y))

+(s(x), y) → s(+(x, y))

Original Signature

Termination of terms over the following signature is verified: not, 0, s, +, true, false, odd

Strategy

The system can be oriented by a KBO with the following parameters:

Weight function

w0 = 1

Function Symbol w(·)

not 1

0 2

s 2

false 3

true 2

+ 1

odd 1

Quasi precedence

false < s < + < true < 0 < odd < not



The (CS-)DP Processor

In this section, we present an example output of the KBO processor. The output contains only
the default output (no statistics and no debug information).

Example B.1.2. Consider the following DP problem that is created by VMTL’s dependency
graph processor when working on example TRS_SK90_2.31.trs from the termination
database:

Dependency Pairs:

+#(s(x), y) → +#(x, y) +#(x, s(y)) → +#(x, y)

Rules:

not(true) → false not(false) → true
odd(0) → false odd(s(x)) → not(odd(x))
+(x, 0) → x +(x, s(y)) → s(+(x, y))

+(s(x), y) → s(+(x, y))

The KBO processor shows finiteness of this problem by orienting the dependency pair
strictly and orienting all usable rules (wrt. the encoded argument filtering) weakly. The out-
put of the KBO processor is included on the following two pages.

In the output, the symbol weight and argument filtering for each function symbol is presented
in a table. For the argument filtering, the table contains either a single integer or a (possibly
empty) list of integers.
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Problem 2: KBOProcessor

Dependency Pair Problem

Dependency Pairs

+#(x, s(y)) → +#(x, y) +#(s(x), y) → +#(x, y)

Rewrite Rules

not(true) → false not(false) → true

odd(0) → false odd(s(x)) → not(odd(x))

+(x, 0) → x +(x, s(y)) → s(+(x, y))

+(s(x), y) → s(+(x, y))

Original Signature

Termination of terms over the following signature is verified: not, 0, s, +, true, false, odd

Strategy

The DP-problem after applying the argument filtering π

Dependency Pairs

+#(x, s(y)) → +#(x, y) +#(s(x), y) → +#(x, y)

Usable rules

There are no usable rules!

Weight Function and Argument Filtering

w0 = 2.0

Function Symbol π(·) w(·)

s [1] 1.0

+# [1, 2] 0.0

Precedence

s < false < + < true < 0 < +# < not < odd

Strictly Orientable DPs

The following Dependency Pairs could be oriented strictly and can thus be removed



+#(x, s(y)) → +#(x, y) +#(s(x), y) → +#(x, y)



B.2 Root-Labeling

The Direct Method

Example B.2.1. Consider the following context-sensitive TRS:

f(a, b, x) → f(x, x, x) a → b

with the replacement map µ where µ(a) = µ(b) = ∅ and µ(f) =
{

2, 3
}

.

The output of the direct method implementing root-labeling, applied on this example, is
given on the next page.
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The input-system: RootLabeling

Term Rewriting System

Rules

f(a, b, x) → f(x, x, x) a → b

Original Signature

Termination of terms over the following signature is verified: f, b, a

Strategy

Context-sensitive strategy:
μ(b) = μ(a) = ∅
μ(f) = {2, 3}

The system was transformed into the following root-labeled system:

f(f,a,a)(X0, a, X2) → f(f,b,a)(X0, b, X2) f(f,a,f)(X0, a, X2) → f(f,b,f)(X0, b, X2)

f(a,a,a)(X0, a, X2) → f(a,b,a)(X0, b, X2) f(b,a,a)(X0, a, X2) → f(b,b,a)(X0, b, X2)

f(a,a,f)(X0, a, X2) → f(a,b,f)(X0, b, X2) f(f,a,b)(X0, a, X2) → f(f,b,b)(X0, b, X2)

f(b,a,f)(X0, a, X2) → f(b,b,f)(X0, b, X2) f(a,a,b)(X0, a, X2) → f(a,b,b)(X0, b, X2)

f(b,a,b)(X0, a, X2) → f(b,b,b)(X0, b, X2) f(f,f,a)(X0, X1, a) → f(f,f,b)(X0, X1, b)

f(a,f,a)(X0, X1, a) → f(a,f,b)(X0, X1, b) f(f,b,a)(X0, X1, a) → f(f,b,b)(X0, X1, b)

f(b,f,a)(X0, X1, a) → f(b,f,b)(X0, X1, b) f(a,b,a)(X0, X1, a) → f(a,b,b)(X0, X1, b)

f(b,b,a)(X0, X1, a) → f(b,b,b)(X0, X1, b) f(f,a,a)(X0, X1, a) → f(f,a,b)(X0, X1, b)

f(a,a,a)(X0, X1, a) → f(a,a,b)(X0, X1, b) f(b,a,a)(X0, X1, a) → f(b,a,b)(X0, X1, b)

f(a,b,a)(a, b, x) → f(a,a,a)(x, x, x) f(a,b,b)(a, b, x) → f(b,b,b)(x, x, x)

f(a,b,f)(a, b, x) → f(f,f,f)(x, x, x)

Context-sensitive strategy:
μ(b) = μ(a) = ∅
μ(f(f,f,b)) = μ(f(a,b,b)) = μ(f(f,b,b)) = μ(f(a,a,f)) = μ(f(a,b,f)) = μ(f(f,a,a)) = μ(f(a,a,a)) = μ(f(b,b,a)) = μ(f(f,b,f)) = μ(f(b,a,a)) = μ(f(a,f,b))

= μ(f(b,f,b)) = μ(f(f,f,f)) = μ(f(f,b,a)) = μ(f(a,a,b)) = μ(f(f,f,a)) = μ(f(a,b,a)) = μ(f(b,b,f)) = μ(f(f,a,f)) = μ(f(f,a,b)) = μ(f(b,a,f)) = μ(f(b,b,b))

= μ(f(b,f,a)) = μ(f(a,f,a)) = μ(f(b,a,b)) = {2, 3}



The (CS-)DP Processor

Example B.2.2. Consider again the context-sensitive TRS from example B.2. The context-
sensitive dependency pair transformation yields the following CS-DP problem:

Dependency Pairs:

f#(a, b, x) → f#(x, x, x)

Rules:

f(a, b, x) → f(x, x, x) a → b

with the replacement map µ where µ(a) = µ(b) = ∅ and µ(f) = µ(f#) =
{

2, 3
}

.

The output of the direct method implementing root-labeling, applied on this example, is
given on the next three pages.
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Problem 1: RootLabelingProcessor

Dependency Pair Problem

Dependency Pairs

f#(a, b, x) → f#(x, x, x)

Rewrite Rules

f(a, b, x) → f(x, x, x) a → b

Original Signature

Termination of terms over the following signature is verified: f, b, a

Strategy

Context-sensitive strategy:

μ(T) = μ(b) = μ(a) = μ(a#) = ∅

μ(f) = μ(f#) = {2, 3}

The DP problem was transformed into the following root-labeled DP problem:

Dependency Pair Problem

Dependency Pairs

f#(d,d,d)(d(a)(a), d(b)(b),

d(a)(x))
→

f#(d,d,d)(d(a)(x), d(a)(x),

d(a)(x))

f#(d,d,d)(d(a)(a), d(b)(b),

d(f)(x))
→

f#(d,d,d)(d(f)(x), d(f)(x),

d(f)(x))

f#(d,d,d)(d(a)(a), d(b)(b),

d(d)(x))
→

f#(d,d,d)(d(d)(x), d(d)(x),

d(d)(x))

f#(d,d,d)(d(a)(a), d(b)(b),

d(b)(x))
→

f#(d,d,d)(d(b)(x), d(b)(x),

d(b)(x))

f#(d,d,d)(d(a)(a), d(b)(b),

d(f#)(x))
→

f#(d,d,d)(d(f#)(x), d(f#)(x),

d(f#)(x))

Rewrite Rules

f(d,f,a)(X0, X1, a) → f(d,f,b)(X0, X1, b) f(f,f,a)(X0, X1, a) → f(f,f,b)(X0, X1, b)

f(a,a,a)(X0, a, X2) → f(a,b,a)(X0, b, X2) f(f#,a,f#)(X0, a, X2) → f(f#,b,f#)(X0, b, X2)

f(a,b,a)(a, b, x) → f(a,a,a)(x, x, x) f(b,f#,a)(X0, X1, a) → f(b,f#,b)(X0, X1, b)

f(d,a,f#)(X0, a, X2) → f(d,b,f#)(X0, b, X2) f(f,a,d)(X0, a, X2) → f(f,b,d)(X0, b, X2)

f(f#,a,d)(X0, a, X2) → f(f#,b,d)(X0, b, X2) f(f#,a,f)(X0, a, X2) → f(f#,b,f)(X0, b, X2)

f(a,b,d)(a, b, x) → f(d,d,d)(x, x, x) f(f,a,b)(X0, a, X2) → f(f,b,b)(X0, b, X2)



f(f#,d,a)(X0, X1, a) → f(f#,d,b)(X0, X1, b) f(f#,a,a)(X0, a, X2) → f(f#,b,a)(X0, b, X2)

f(b,a,f#)(X0, a, X2) → f(b,b,f#)(X0, b, X2) f(a,f,a)(X0, X1, a) → f(a,f,b)(X0, X1, b)

f(b,a,b)(X0, a, X2) → f(b,b,b)(X0, b, X2) f(a,f#,a)(X0, X1, a) → f(a,f#,b)(X0, X1, b)

f(a,a,f#)(X0, a, X2) → f(a,b,f#)(X0, b, X2) f(d,a,b)(X0, a, X2) → f(d,b,b)(X0, b, X2)

f(f,d,a)(X0, X1, a) → f(f,d,b)(X0, X1, b) f(a,b,a)(X0, X1, a) → f(a,b,b)(X0, X1, b)

f(f,a,f#)(X0, a, X2) → f(f,b,f#)(X0, b, X2) f(b,a,d)(X0, a, X2) → f(b,b,d)(X0, b, X2)

f(d,f#,a)(X0, X1, a) → f(d,f#,b)(X0, X1, b) f(b,a,a)(X0, a, X2) → f(b,b,a)(X0, b, X2)

f(d,a,a)(X0, X1, a) → f(d,a,b)(X0, X1, b) f(f,f#,a)(X0, X1, a) → f(f,f#,b)(X0, X1, b)

f(d,a,f)(X0, a, X2) → f(d,b,f)(X0, b, X2) f(d,a,d)(X0, a, X2) → f(d,b,d)(X0, b, X2)

f(f#,f#,a)(X0, X1, a) → f(f#,f#,b)(X0, X1, b) f(b,d,a)(X0, X1, a) → f(b,d,b)(X0, X1, b)

f(a,b,f#)(a, b, x) → f(f#,f#,f#)(x, x, x) f(b,f,a)(X0, X1, a) → f(b,f,b)(X0, X1, b)

f(f#,f,a)(X0, X1, a) → f(f#,f,b)(X0, X1, b) f(f#,a,b)(X0, a, X2) → f(f#,b,b)(X0, b, X2)

f(b,a,a)(X0, X1, a) → f(b,a,b)(X0, X1, b) f(a,a,d)(X0, a, X2) → f(a,b,d)(X0, b, X2)

f(a,b,f)(a, b, x) → f(f,f,f)(x, x, x) d(a)(a) → d(b)(b)

f(d,a,a)(X0, a, X2) → f(d,b,a)(X0, b, X2) f(f,b,a)(X0, X1, a) → f(f,b,b)(X0, X1, b)

f(d,d,a)(X0, X1, a) → f(d,d,b)(X0, X1, b) f(d,b,a)(X0, X1, a) → f(d,b,b)(X0, X1, b)

f(a,a,f)(X0, a, X2) → f(a,b,f)(X0, b, X2) f(b,b,a)(X0, X1, a) → f(b,b,b)(X0, X1, b)

f(b,a,f)(X0, a, X2) → f(b,b,f)(X0, b, X2) f(a,a,a)(X0, X1, a) → f(a,a,b)(X0, X1, b)

f(f,a,f)(X0, a, X2) → f(f,b,f)(X0, b, X2) f(a,b,b)(a, b, x) → f(b,b,b)(x, x, x)

f(f#,a,a)(X0, X1, a) → f(f#,a,b)(X0, X1, b) f(a,a,b)(X0, a, X2) → f(a,b,b)(X0, b, X2)

f(a,d,a)(X0, X1, a) → f(a,d,b)(X0, X1, b) f(f,a,a)(X0, a, X2) → f(f,b,a)(X0, b, X2)

f(f#,b,a)(X0, X1, a) → f(f#,b,b)(X0, X1, b) f(f,a,a)(X0, X1, a) → f(f,a,b)(X0, X1, b)

Original Signature

Termination of terms over the following signature is verified: f(f,f,b), f(d,a,b), f(a,b,b), f(a,a,f), f(d,f,a), f(f,b,f#), d(b), f(a,b,f), f(a,d,b),

f(f,a,a), f(a,a,a), f(f#,d,a), f(f,d,b), f(b,b,f#), f(d,a,f#), f(f,f#,a), f(a,f#,a), f(f,b,d), f(f#,f,b), f(b,a,f#), f(a,f,b), f(d,f#,b), f(f,f,f), f(f#,f#,a), f(b,d,b),

f(f#,a,d), f(f,b,a), f(f#,b,f), f(f#,f#,f#), f(d,b,f), f(a,b,a), f(d,a,a), f(b,b,f), f(a,d,a), f(f,a,f), d(a), f(f#,b,b), f(f,d,a), f(f,a,b), f(a,a,f#), f(d,b,b), f(b,a,d),

f(a,f#,b), f(f,a,f#), f(b,b,b), f(b,f,a), f(d,d,b), f(a,f,a), f(d,a,f), f(a,b,d), f(a,a,d), f(d,a,d), f(f,b,b), f(b,d,a), f(f#,a,a), f(f#,f#,b), f(f#,b,f#), f(d,b,f#),

f(f#,b,a), f(b,b,a), f(f,b,f), f(b,f#,b), f(d,d,a), f(b,a,a), f(b,f,b), f(f#,a,f#), f(f,f,a), b, f(a,a,b), a, f(f#,a,b), f(f#,b,d), f(f#,d,b), f(b,b,d), f(d,b,a), f(f,a,d),

f(b,a,f), f(f,f#,b), f(d,f,b), f(b,f#,a), f(d,b,d), f(f#,a,f), f(f#,f,a), f(d,f#,a), f(a,b,f#), f(d,d,d), f(b,a,b)

Strategy

Context-sensitive strategy:
μ(b) = μ(a) = ∅
μ(d(b)) = μ(d(a)) = μ(d(f#)) = μ(d(d)) = μ(d(f)) = {1}

μ(f(f,f,b)) = μ(f(d,a,b)) = μ(f(a,b,b)) = μ(f(d,f,a)) = μ(f(a,a,f)) = μ(f(f,b,f#)) = μ(f(a,b,f)) = μ(f(a,d,b)) = μ(f(f,a,a)) = μ(f(a,a,a)) =

μ(f(f#,d,a)) = μ(f(d,a,f#)) = μ(f(b,b,f#)) = μ(f(f,d,b)) = μ(f(f,f#,a)) = μ(f(f,b,d)) = μ(f(a,f#,a)) = μ(f(f#,f,b)) = μ(f(b,a,f#)) = μ(f(a,f,b)) =



μ(f(f,f,f)) = μ(f(d,f#,b)) = μ(f(f#,f#,a)) = μ(f(b,d,b)) = μ(f(f#,a,d)) = μ(f(f,b,a)) = μ(f(f#,b,f)) = μ(f(f#,f#,f#)) = μ(f(d,b,f)) = μ(f(a,b,a)) =

μ(f(d,a,a)) = μ(f(b,b,f)) = μ(f(a,d,a)) = μ(f(f,a,f)) = μ(f(f,d,a)) = μ(f(f#,b,b)) = μ(f(f,a,b)) = μ(f(a,a,f#)) = μ(f(d,b,b)) = μ(f(b,a,d)) =

μ(f(a,f#,b)) = μ(f(f,a,f#)) = μ(f(b,b,b)) = μ(f(b,f,a)) = μ(f(d,d,b)) = μ(f(a,f,a)) = μ(f(d,a,f)) = μ(f(a,b,d)) = μ(f(a,a,d)) = μ(f(d,a,d)) =

μ(f(f,b,b)) = μ(f(b,d,a)) = μ(f(f#,a,a)) = μ(f(f#,f#,b)) = μ(f(d,b,f#)) = μ(f(f#,b,f#)) = μ(f(f#,b,a)) = μ(f(b,b,a)) = μ(f(f,b,f)) = μ(f#(d,d,d)) =

μ(f(b,f#,b)) = μ(f(d,d,a)) = μ(f(b,a,a)) = μ(f(b,f,b)) = μ(f(f#,a,f#)) = μ(f(a,a,b)) = μ(f(f,f,a)) = μ(f(f#,a,b)) = μ(f(f#,b,d)) = μ(f(f#,d,b)) =

μ(f(b,b,d)) = μ(f(d,b,a)) = μ(f(f,a,d)) = μ(f(b,a,f)) = μ(f(f,f#,b)) = μ(f(d,f,b)) = μ(f(d,b,d)) = μ(f(b,f#,a)) = μ(f(f#,a,f)) = μ(f(f#,f,a)) =

μ(f(a,b,f#)) = μ(f(d,f#,a)) = μ(f(d,d,d)) = μ(f(b,a,b)) = {2, 3}
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