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Abstract

When a user installs a third party application on her smartphone, she does not know in advance
whether sensitive data — like her current location, the unique device ID or even data about her
health condition — leaves the phone. This raises new concerns about privacy and data security,
since more and more people are using smartphones in private and business life.

In this thesis, we design and implement a prototype of Leakalizer, a tool to automati-
cally detect data leaks in smartphone applications in three steps. First, Leakalizer thoroughly
explores execution paths of the target application. Then, for each path, it traces sensitive data.
Finally, Leakalizer reports all sensitive data that leaves the smartphone. The prototype emu-
lates a smartphone device on a desktop PC to run the Android software stack, applies symbolic
execution to traverse execution paths of the target application, and uses dynamic taint tracking
to detect transmissions of sensitive data.

Leakalizer demonstrates how a thorough exploration of execution paths in a smartphone
application can be used to make data leaking behavior visible, which helps users and organiza-
tions to assess the trustworthiness of a given application.
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Kurzfassung

Wenn eine Benutzerin eine Smartphoneanwendung von Drittanbietern installiert, weiß sie vorher
nicht ob sensible, auf dem Smartphone gespeicherte, Daten — wie etwa Daten über ihren ak-
tuellen Aufenthaltsort, die eindeutige Geräte ID oder sogar Daten über ihren Gesundheitszus-
tand — ihr Telefon verlassen. Das wirft Bedenken bezüglich Privacy und Datensicherheit auf,
da Smartphones im beruflichen und privaten Alltag immer häufiger eingesetzt werden.

Diese Diplomarbeit beschäftigt sich mit dem Design und der Implementierung eines Pro-
totyps von Leakalizer, einem Tool zur automatischen Erkennung von Datenlecks in Smart-
phoneanwendungen. Das geschieht in drei Schritten: Zuerst führt Leakalizer eine gründliche
Untersuchung der Ausführungspfade der Zielapplikation durch. Danach werden sensible Dat-
en für jeden Ausführungspfad verfolgt. Schließlich meldet Leakalizer wenn sensible Daten
das Smartphone verlassen. Der Prototyp erstellt ein virtuelles Smartphone auf einem Desktop
PC um den Android Software Stack zu starten, er wendet symbolische Ausführung an um Aus-
führungspfade der Zielapplikation zu traversieren, und er benutzt Dynamic Taint Tracking um
das Versenden von sensiblen Daten zu erkennen.

Leakalizer demonstriert wie die systematische Untersuchung von Ausführungspfaden in
Smartphoneanwendungen verwendet werden kann um Datenlecks sichtbar zu machen. Dies hilft
Benutzerinnen und Organisationen die Vertrauenswürdigkeit von Applikationen von Drittanbi-
etern zu bewerten.
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CHAPTER 1
Introduction

In the 21st century the technology revolution will move into the everyday, the small
and the invisible. (Mark Weiser)

In recent years, smartphones have become ubiquitous. Within one year — between June
2010 and June 2011 — the average time an US-citizen spends with mobile applications almost
doubled from 43 minutes to 81 minutes per day, which is more than the average time spent
on Web consumption (74 minutes per day) [24]. In June 2011, 400,000 Android phones were
activated worldwide every day. One month later, the number increased by 38% to 550,000
[11]. The Android market store exists since August 2008 to provide and download third party
applications. Within two month (from May to July 2011) the number of downloads increased by
50% from 3.0 billion to 4.5 billion [51].

The ability to access information from everywhere is one reason why smartphones are widely
used in daily life. There are third party applications to read mails, to post on social networks,
to manage the daily schedule, to find the nearest restaurant, and many more. The applications
can be easily downloaded from smartphone application repositories. Examples are Google’s
Android Market for Android smartphones, Apple’s App Store for iPhone and iPad applications,
or Microsoft’s Windows Phone Marketplace. Most of the applications are for free or available
for low price.

Moreover, smartphones change the organization of businesses [36]. For example, in mo-
bile health care, smartphones can be used to update electronic health records, improve the
doctor-patient relationship, approve drug prescriptions, and access current evidence-based clini-
cal guidelines [8]. According to various studies, more and more doctors and nurses are willing to
use smartphones at work because they already carry a smartphone for private use [31] [48]. The
health informatics sector also realized that smartphones can be useful in health care. According
to a global survey among mobile health application developers, 78% of the respondents think
that smartphones offer the best business opportunities for mobile health care applications [23].
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1.1 Problem

The highly increasing use of smartphones raises new concerns about privacy and data security.
Since smartphones are our daily companions, they store data which represents sensitive informa-
tion about our private and professional life, or data which helps to derive this information. For
example, we usually do not tell our employee the phone number of our doctor or the contents of
short messages we send to our friends, unless there is a reason to do so. And we usually do not
want our smartphone to automatically transmit such data to strangers.

Discussions on privacy date back to the 19th century, a time where newspapers and photog-
raphy found their way into the everyday life. For example, Warren and Brandeis published an
article in the Harvard Law Review in which they argued for the right to privacy, the right to be
let alone [49].

In the 21st century, Internet and mobile devices heavily expanded communication technolo-
gies and made people think about privacy under current conditions. Advocates of a transparent
society state that we should arrange ourselves in a world where we do not (or should not) have
anything to hide anymore [50] [9]. According to a mediating position, privacy and transparency
are not mutually exclusive, because privacy is not identical with secrecy [42] [16]. For example,
it is not contradictory to demand more transparency — e.g., a society where public and private
realms are melting together — and also demand that an owner of a smartphone should be able
to control how sensitive data is transmitted.

We believe that privacy in smartphones is not primarily about holding back secrets but about
feeling comfortable when using the rich opportunities of smartphones. If a user has control
over her data, she might be more willing to use her smartphone for payments or storing her
electronic health record, because she can more reasonably trust the applications which provide
these features.

Various studies and articles have shown that a significant amount of smartphone applications
transmit sensitive data without the user’s permission. The Wall Street Journal tested 101 iPhone
and Android applications. They found that 56 applications transmit the unique device ID and 47
disclose the location of the phone [46] [53]. Another study presented at the Black Hat Confer-
ence 2011 revealed that in a sample of 10.000 Android applications 8% leak private information.
11 applications even transmit the content of short messages [19]. Other studies come to compa-
rable results [21] [27] [20]. Almost weekly, new cases about suspicious smartphone applications
appear [30] [43].

The studies above let us conclude that our privacy suffers when installing some third party
applications on smartphones. On the one hand, installing third party smartphone applications
make the smartphone interesting, smart and useful. On the other hand, installing third party ap-
plications is like giving an invisible agent access to your home. In the digital realm, transmission
and duplication of data can be done within milliseconds. With built-in technology, smartphone
users do not have a chance to detect and block ongoing behavior on their smartphone.

Applications are to some degree able to access personal data like location data or the unique
device ID. Before one notices, the current location or even the whole address book could have
been sent over network to an advertisement company or even malicious destinations. Advertise-
ment companies could exploit this by aggregating informations associated with the same device
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ID to track users.
Consider the following scenario: A smartphone user is installing a weather application and

is shown a permissions dialog. She might ask herself: “What if I install this weather applica-
tion? The permissions dialog tells me that the application needs Internet access, that it accesses
location data and the unique device ID. But what kind of data will be actually sent and to which
destination?”.

Not every transmission of sensitive data has of course malicious intents, but one cannot know
in advance whether the receiver redistributes the data or just processes it in order to provide a
useful weather application. A weather application may require location data to be transmitted
in order to provide the user with a relevant weather report [53]. But the server who receives the
data could send it to third parties without the user’s agreement nor knowledge. In general, every
redistribution of sensitive data increases the risk that sensitive data is revealed to unintended
agents, either on purpose or by accident.

As soon as privacy is taken serious as the users ability to control distribution of sensitive
information, the user needs to be informed when her smartphone transmits sensitive data over
network.

Many smartphone applications do not inform users about the transmission of sensitive data.
If there exists a permission system in the mobile operation system (like in Android), it is not
fine-grained enough to control the type of data which is sent outside. If the user had a compre-
hensive summary of the application’s behavior, it would be easier to assess the risk of installing
an application. Providing this information would be the first step to support privacy for smart-
phones.

Data leak detection tools assist users and organizations in deciding if they can trust a given
application. The decision to trust an application cannot be automatically determined, it has to be
taken by the user. As long as smartphone applications do not notify users when sensitive data is
transmitted, additional tools need to extract this information.

Data leak analysis can also contribute to improve privacy support for smartphone appli-
cations. It requires not only legal regulations to face the challenges of privacy but efforts in
software development. Speaking about privacy is pointless when a user or organization does
not have control over her data any more. By automatically uncovering data leaks, smartphone
application developers can be motivated to better support privacy.

The thesis deals with the problem of automatically detecting data leaks in smartphone appli-
cations. The motivation to solve this problem is to provide users and organizations with infor-
mation about the usage of sensitive data. It is especially important to provide that information
before the data leak occurs, e.g., before the application is installed.
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1.2 Leakalizer - A Data Leak Analyzer for Smartphone
Applications

In this thesis, we design and implement a prototype of Leakalizer, a tool to automatically
detect data leaks in smartphone applications. Leakalizer detects data leaks and lets the user
decide if a data leak means a privacy restriction to her. A privacy restriction is a restriction
on the user’s ability to determine for herself when, how and to what extent sensitive data is
communicated to others. Before she installs an application, she can use Leakalizer to find
out which data will be sent to which destination. Leakalizer is designed to run on a host
computer or to be embedded in a Web service. We envision Leakalizer to create data leak
reports of smartphone applications. Given a smartphone application, it shows to the user which
type of sensitive data is eventually transmitted over the network, e.g., to an advertisement server.
Leakalizer systematically explores possible execution paths of the application and creates a
report that points out leakage of different types of sensitive data.

Leakalizer complements existing approaches to detect data leaks in smartphone applica-
tions. The main contribution is a path exploration engine which builds the basis for systematic
detection of data leaks in a running Android application. To our knowledge, such an exploration
engine has not been implemented before to automatically detect data leaks in Android applica-
tions. To achieve this, Leakalizer uses dynamic taint tracking and symbolic execution for a
virtual smartphone.

The prototype is based on S2E, a platform for building multi-path analysis tools [15], the
Android emulator which ships with the Android Software Development Kit [5], and an extended
Android operating system.

1.3 Overview

The thesis is divided into the following chapters: Background (2), Design (3), Implementation
(4), Evaluation (5), and Discussion (6).

Chapter 2 defines privacy, data leak, and sensitive data and discusses the state of the art in
data leak analysis for smartphones.

Chapter 3 gives an answer to the research question of this thesis: How is it possible to sys-
tematically find data leaks in smartphone applications? From the requirements of an ideal data
leak detection tool we derive five components to detect data leaks in smartphone applications.
Finally, we decide on the techniques to implement the components.

Chapter 4 gives implementation details of Leakalizer, a data leak detection tool for
Android applications. The prototype emulates a virtual smartphone device and applies sym-
bolic execution to analyze Android applications. We discuss implementation challenges of
Leakalizer.

Chapter 5 examines the effectiveness of Leakalizer. Is the proposed design suitable to
detect data leaks in a systematic way? We use microbenchmarks on our prototype, to answer
this question.

Finally, chapter 6 discusses the results of the thesis and sketches ways to extend and improve
the prototype.
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CHAPTER 2
Background

This chapter provides a definition of concepts used throughout the thesis and an overview of
state of the art approaches in data leak analysis for smartphone applications. We classify and
discuss existing approaches.

2.1 Definitions

First we define central notions used in this thesis: privacy, sensitive data and data leak.
Privacy is “the ability to determine for ourselves when, how and to what extent information

about us is communicated to others” [17]. Thus, we speak of a privacy restriction, if this ability
is restricted.

Sensitive data is the material basis for ’information about us’. The term denotes for example
data about health, salary, current location, social network, unique identifiers, or daily schedule of
a person. For companies, data of current projects or personal data of customers are considered to
be sensitive. There is no method to distinguish between sensitive and non-sensitive data, because
what is sensitive varies over time and depends on the social, cultural and legal context.

A data leak in general is any transmission of data to an undesired receiver. An undesired
receiver is any receiver in a network which is not explicitly accepted as receiver of data. Privacy
focuses on the handling of sensitive data. Therefore, a more narrow definition is used: A data
leak is any transmission of sensitive data to an undesired receiver. For example, the purpose of
a weather application is to provide recent weather reports based on the current location of the
user. When the application sends the content of short messages over the network, a user will
almost certain consider the transmission of short messages as a data leak, but she will probably
not consider anonymous usage statistics about the most heavily used features as data leak or as
a privacy restriction.

A data distributor is any agent who is responsible for data management of a person or insti-
tution [40]. In smartphones, multiple data distributors are involved. The smartphone operating
system is a data distributor that gives sensitive data to third party applications. Moreover, third
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party applications are data distributors that occasionally transmit sensitive data over the network
or to other third party applications. The receivers are again data distributors.

Privacy Support: An application (or operating system) supports privacy if it allows users to
control the transmission of sensitive data. We consider privacy support as a quality attribute of
software [39], like performance and usability.

We do not use the term ’privacy leak’ because an ability cannot leak out; data can leak out
of software (like oil leaks out of a ship).

2.2 State Of The Art Data Leak Analysis

Existing approaches fall under three main categories: (1) data leak detection, (2) data leak pre-
vention, and (3) security enforcement. Data leak detection tools aim to detect data leaks in
applications. They do not necessarily block software behavior which causes the data leak in a
running system, but some do. Data leak prevention tools help the user to protect sensitive data
stored in her smartphone. The user can specify what the system should do in case of an ac-
cess to sensitive data. Security enforcement tools augment smartphone operating systems with
additional security mechanisms which sometimes include protection of sensitive data.

Data Leak Detection

PiOS is a tool which analyzes the flow of sensitive data to detect data leaks in iOS applica-
tions [20]. PiOS proceeds in three steps: (1) First, PiOS uses static analysis to create an approx-
imation of the control flow graph (CFG) of application binaries. (2) Then, the tool performs a
reachability analysis on the CFG to find paths between methods which access sensitive data and
methods which transmit data over the network. (3) To ensure that paths reflect the information
flow between source and sink, PiOS performs additional analysis. The resulting paths entail a
potential data leak. With this approach the authors analyzed the distribution of sensitive data in
1607 applications.

PiOS does not cover all data leaks due to three reasons: (1) Given the static binary analysis
and the characteristics of Objective C1 the analysis could not detect the corresponding Objective
C methods for 18% of method calls, because in Objective C methods are called by sending a
message. A dispatch function then sends the message to its destination at runtime which makes
it difficult to find the right method name statically. Thus, the approximation of the CFG could
miss data leaks, i.e., introduce false negatives. (2) The CFG does not include data flows that
are interrupted by user interface interactions. The reason is that user event handling is located
in the sources of the iOS software stack (which is not statically analyzed) and not in the ap-
plication’s binary. Although it is useful to filter out cases where the application asks the user
to permit or block the transmission of sensitive data, it can introduce false negatives. (3) The
current implementation supports a maximal path length of 100 nodes in a CFG. The evaluation
in the paper does not mention false positives, i.e., wrong classification of data transmissions as
leaks of sensitive data.

1Objective C is the programming language used in iOS applications.
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TaintDroid is an privacy-monitoring application which sends notifications to the user if a third
party application sends sensitive data via network. It requires to modify the Android platform on
the user’s phone and allows to monitor the flow of sensitive data for installed applications. For
this purpose, TaintDroid uses dynamic taint tracking, an approach to label data and propagate
the label during execution, based on different propagation rules [38]. Instead of using tainting at
machine instruction-level, TaintDroid integrates four levels of taint tracking to detect data flows:
variable-level tracking, method-level tracking, message-level tracking, and file-level tracking.
The authors of TaintDroid identified different taint sources (e.g., in the location manager which
supplied third party applications with coordinates from the GPS sensor) to taint sensitive data
which is propagated along the flow of data and maybe reach a taint sink (e.g., a method which
sends data over network). Both taint sources and taint sinks have to be located in interpreted
bytecode. The authors of TaintDroid formally defined the propagation rules for Dalvik bytecode
instructions.

TaintDroid aims to give users and security companies real time notifications about data leaks.
It is designed to run on the phone on a daily basis. Thus, unmodified Android has to be replaced
by TaintDroid which has three major drawbacks: Firstly, replacing the firmware of a phone
leads to warranty loss. Moreover, replacing the firmware is likely to be too much work for an
average user if she only wants to know how a given application uses her personal information.
Second, not all third party applications are supported by this particular implementation, because
TaintDroid does not allow an application to execute its own native libraries. Only native system
libraries (e.g., OpenGL) are allowed. This is the consequence of considering the whole Android
software stack as trusted code and the only untrusted code comes from interpreted code, exe-
cuted by instances of the Dalvik virtual machine. Third, TaintDroid does not offer to block the
behavior or never install applications that disclose sensitive data. If the user is notified after her
data is exposed, it is too late to uninstall a leaking application, because it is impossible to reverse
a data leak.

Finally, TaintDroid is not designed for systematic analysis of smartphone applications to de-
tect data leaks, because the exploration of execution paths is only triggered by the actions of the
user. There is no mechanism which guarantees to cover more than one execution path.

AppInspector is a tool for detecting data leaks of Android applications [26]. It is a successor
project of the TaintDroid research group. The system is not realized yet, but the design aims to
utilize a virtualized smartphone on a host computer where a modified Android software stack
is augmented with four components: (1) An execution engine included in Android’s applica-
tion runtime to explore relevant execution paths. (2) The information flow tracking component
utilizes dynamic taint tracking to mark sensitive data and log their propagation during execu-
tion. (3) The privacy analyzer creates dependency graphs to perform various analysis techniques
which help to better understand potential data leaks. (4) AppInspector also aims to take into
account end user license agreements (EULA) to distinguish between legal and illegal access
of sensitive data. Natural language processing and crowd sourcing should be utilized to detect
whether the text inside the user notification mentions private data. While AppInspector is simi-
lar to the design of Leakalizer, AppInspector has two drawbacks: First, AppInspector is not
implemented yet. Second, the aim to distinguish between proper and improper use of sensitive
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data is framed as the problem of natural language processing which by itself is an open research
question [6].

Data Leak Prevention

TISSA implements a privacy mode for Android [53]. With a privacy mode, users can setup and
enforce their own privacy rules. The rules specify which data is accessible from third party ap-
plications. If an application requests data which does not comply with the privacy rules, TISSA
generates bogus data, returns an empty result or anonymized data. TISSA adds an additional per-
mission specification and enforcement layer on top of the Android software stack. To achieve
this, three components are added: (1) Policy Decision Point: A content provider to store privacy
permissions for third party applications. (2) Policy Administration Point: An Android appli-
cation which serves as settings manager, i.e., lets the user update privacy settings. (3) Policy
Enforcement Points: This is the heart of the privacy mode. Functionality is embedded in An-
droid components (e.g., contacts content provider, location manager, telephony manager). They
regulate the access to sensitive data based on stored permissions in the policy decision point. In
the current implementation, three types of data are supported: phone identities (IMEI, MEID),
location data, and phone call log. TISSA is a straightforward and efficient implementation of a
privacy mode. Benchmarks have shown no measurable performance overhead.

Security Enforcement

SCanDroid extracts security specifications from the Android manifest of an application and
checks at runtime if the application behaves in accordance to the security specification [25].
The researchers define abstract semantics for Android applications which allows to statically
analyze data flows. The approach is based on former research on language based security for
Android [12]. The implementation is built on top of WALA – a tool chain for Java program
analysis. SCanDroid was not applied to real-world applications.

Paranoid Android (PA) proposes security as a service for smartphones [41]. The user’s smart-
phone is synchronized with a virtual smartphone running as a process on a server. PA applies
virtual machine recording and replaying techniques to perform security checks. The smartphone
operating system is augmented with a tracer component on the users phone. The tracer first
records various types of events on the user’s phone: system calls and signals. PA records system
calls to capture for example network traffic, sensor data and user actions. PA traces signals to
capture errors like segmentation faults or timer expirations. After recording, PA sends the traces
to the virtual device on the server on a regular basis. The virtual device then replays all events
but additionally performs security checks. PA implements an anti-virus scanner and dynamic
taint analysis (similar to TaintDroid) to perform the security checks.

From a privacy perspective, there are two major issues of decoupling security from execu-
tion: Firstly, storage and transmission of the event traces are by themselves a threat to security
and privacy. As recently shown, a debugging tool for HTC phones could be exploited to gather
sensitive user data [43]. Secondly, the user has to trust the server that hosts an exact copy of the
smartphone and processes the same amount of sensitive data as the user’s phone.
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In this section, we have defined central notions used in this thesis. Then, we described six
data leak analysis tools along with their advantages and limitations. As we will see later, the most
interesting for the purpose of our thesis are the three data leak detection tools TaintDroid, PiOS
and AppInspector because they focus on data leak reports. While TaintDroid requires to change
the firmware of the user’s phone, PiOS and AppInspector are independent from real smartphones
and perform the analysis on a host computer. AppInspector has not been implemented yet.
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CHAPTER 3
Design

In this thesis, we build Leakalizer, a tool that detects data leaks in smartphone applications.
The user provides a smartphone application and receives a data leak report which makes it easier
to decide whether to install the application or not. Therefore, the tool should not require the user
to install the application on her phone. As a side effect, such a data leak detection tool could
also prevent data leaks because the generated report could keep users from installing data leaking
applications or organizations from embedding them in their IT infrastructure.

The research question is: How is it possible to automatically detect data leaks for a given
smartphone application with high accuracy and without requiring the user to install the applica-
tion on her phone?

We split the question in three parts: (1) Requirements: What do we demand from a data leak
detection tool for smartphone applications? (2) Components: Which components are necessary
to automatically find data leaks? (3) Choice of Techniques: Which techniques can be used to
implement these components?

3.1 Requirements

An ideal data leak detection tool has the following properties:

A Work on Binaries: Usually, smartphone applications come in packages which do not con-
tain the source code. For example, application developers write Android applications in Java.
Then, the source code is compiled to Dalvik bytecode. A tool that analyzes Android appli-
cations should work on Dalvik bytecode and should not depend on the availability of Java
source code.

B No false negatives: The analysis should find all leaks of sensitive data. Users and organiza-
tions which use the tool must be sure that they can rely on the report. In other words, if the
report states that the application does not introduce data leaks, then the application does not
introduce data leaks, no matter what the user or system input is.
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C No false positives: A false positive is when a data transmission is wrongly qualified as leak of
sensitive data. In other words, given a list of data types which are considered to be sensitive,
the analysis should only report data leaks that actually are leaks of sensitive data.

D Independence from user phone: The tool should neither require the user to do any modifi-
cations on her phone nor should it rely on the user’s phone at all. The rationale is that a data
leak detection tool is more valuable when it allows the user to also prevent data leaks. Only
when the tool is independent from the user’s phone the user can read the data leak report and
decide whether to install the application on her phone. For example, the tool could run on a
typical desktop computer or as a web service.

The properties B and C express that the tool should be accurate. In fact, a data leak detection
tool is a binary classifier. Each data transmission is either a data leak or not. To assess the
performance of binary classifiers, sensitivity and specificity are often used. For example, in
medical statistics, sensitivity and specificity are used to assess the performance of diagnostic
methods.

In the context of finding data leaks, sensitivity describes the probability that the data leak
detection tool reports a data leak when the transmission is actually a data leak. Specificity
describes the probability that the tool classifies a transmission as harmless when the transmission
actually is harmless, i.e. not a data leak.

Do existing tools meet our requirements?

We already described existing approaches to detect data leaks in chapter 2: TaintDroid and
PiOS.1 We shall see now to what extend they meet the requirements.

PiOS performs static analysis on binaries, which meets requirement A. Moreover, the eval-
uation does not mention false positives. Static analysis is known for giving false positives [13].
Thus, we consider requirement C as not fulfilled. PiOS has false negatives. It cannot find data
leaks in 27 out of 172 tested applications due to limitations of the static analysis approach. That
means, sensitivity is 84% in the sample of PiOS. Finally, it does not require to install the appli-
cation on the phone which meets requirement D. To summarize, PiOS meets requirement A and
D.

TaintDroid is embedded in the OS of the user’s phone and tracks the flow of sensitive data
at runtime. This means that no source code is required and requirement A is met. The authors
of TaintDroid state that false positives are possible due to different granularity levels of data
tainting. Thus, requirement C is not met (we are not provided with numbers). Finally, false
negatives are possible due to various reasons. The most crucial reason is that TaintDroid relies
on user inputs to detect data leaks. This is sufficient to observe the behavior of already installed
applications and when manual application usage is no problem. This approach is not suitable
for systematic exploration, because it is impossible that a user (or any other agent) explores all
possible combinations of user inputs. Finally, TaintDroid does not meet requirement D, because
it requires the user to modify the operating system on her phone and requires to install the
application she wants to analyze. In summary, TaintDroid only meets requirement A.

1We cannot judge on AppInspector because implementation is not finished yet.
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Neither TaintDroid nor PiOS meet our requirements. One major reason is that they are not
sufficiently accurate. Therefore, we aim to improve the accuracy of data leak detection with the
constraint to be independent from the user’s phone.

We claim that a systematic exploration of possible execution paths is the key to a thorough
data leak analysis. We present systematic exploration techniques in the next sections.

3.2 Components

The design of a data leak detection tool consists of the following high level components that we
describe in this section: (1) entry point invocator (2) exploration engine, (3) tracer, (4) transmis-
sion observer and (5) reporting component.

To explain the purpose of the components, we define the following terms: unit, environment,
and entry point.

A unit is the smartphone application of interest. The environment is the code that surrounds
the unit. For each run, we concentrate on exactly one application of interest, i.e., on the unit.
The environment is the whole system without the unit, as defined in [15].

An entry point is a point in the application where execution jumps to after an event occurs.
The invocation of an entry point leads to the execution of a sequence of instructions, depending
on the input. For example, consider figure 3.1 that shows entry points of a simplified weather
application. The arrows represent method calls that follow from the invocation of an entry
point. When the user presses a button the application calls the method onTouch() of an event
handler and the instructions of onTouch() are executed. If the user presses another button, the
application calls a method of another event handler — probably with different instructions.

The interactions between a unit and its environment can be understood by the model of
a biological cell. A cell has multiple receptors to interact with the surrounding environment
awaiting particular events to happen. Events activate receptors and initiate a cascade of processes
inside the cell. In software, receptors are called entry points.

We first give an overview of the components and then discuss each of them in detail. The
entry point invocator determines and invokes all entry points that could contain a data leak, e.g.,
event handlers, or methods that start the life cycle of an application. For each entry point, the
exploration engine explores possible execution paths of a smartphone application. The tracer is
responsible to label sensitive data (e.g., unique device identifiers) in order to distinguish them
from other data circulating in the system (e.g., anonymous weather report). The transmission
observer raises an alert when the application transmits labeled data over network. Finally, the
reporting component generates a report of all found data leaks including additional information.

Entry Point Invocator

Depending on the design of the smartphone operating system, smartphone applications can have
multiple entry points which are usually activated by events. In the example of figure 3.1, af-
ter the application invokes onTouchListener, it calls a handler for the onTouch event. If
the input indicates that the user has touched the “generate weather report” button, the appli-
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cation calls the corresponding method genWeatherReport() which calls another method
displayWeather().

Figure 3.1: Multiple entry points in a simplified Android application. Event handlers trigger
execution of different code fragments of the application.

To systematically detect data leaks, we need to find, invoke, and explore all entry points that
contain third party code. Otherwise, we would miss potential data leaks. Let us take a second
look at figure 3.1. From within the onTouchListener, not all methods that belong to the ap-
plication are reachable. This is different from software that starts at the main method and where
all code is reachable from within the main method. If we only explore the execution paths of the
onTouchListener entry point, we will never find the data leak inside the sendLocation()
method no matter what input (in particular, touch event) is generated.

The entry point invocator finds and invokes entry points. After that, systematic exploration
of each entry point is done by the exploration engine.

Exploration Engine

The exploration engine is the heart of our tool because it determines the accuracy of the analysis.
To explain the task of the exploration engine, we define the following terms: program state,

execution path and code coverage. A program state describes a snapshot of the system that
includes all values used by the application and the system to function properly. An execution
path consists of a sequence of program states.

Code coverage is a measure of systematic software testing. It describes the degree to which
the source code of a program has been explored. Or in other terms: It describes the propor-
tion between the number of actually explored execution paths and the number of all possible
execution paths of the unit.
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When executing a program with concrete input, not all possible execution paths are actually
executed. Consider the following example:

public Report genWeatherReport(boolean useCache,
Location location, Date date) {

if (useCache) {
return getCachedReport(date);

}
String uid = TelephonyManager.getDeviceId();
return retrieveReport(location, date, uid);

}

The method genWeatherReport()has two possible execution paths where one leads to a data
leak. Depending on the parameter useCache, the method either returns a cached weather report
or retrieves the report from the web by sending current location, current date and the unique
device ID of the phone.

The higher the code coverage the higher the likelihood to find all data leaks. In the example
above, if our exploration engine explored only the execution path that returns the weather report
from the cache, it would not find the data leak, i.e. our exploration engine would result in a false
negative.

It is not feasible to automatically check all possible execution paths for the whole system
because the number of paths grows exponentially with the number of branches, which leads to
the path explosion problem. In practice, an exploration engine that suffers from path explosion
’never’ finishes the analysis.

We do not need to check all execution paths of the environment. In the example above, the
telephony manager is part of the smartphone operation system and not part of the third party
application. Since we only want to check if code from the third party application causes a data
leak, we do not need to systematically explore code from the telephony manager. Thus, the
exploration engine executes the method getDeviceId() of the telephony manager only to get
a return value from the function.

To avoid the path explosion problem, we need a technique that explores possible execution
paths of the unit and not of the environment. Since a typical smartphone application is much
smaller than the surrounding environment, the exploration engine has significantly less execution
paths to explore.

Depending on the way how smartphone applications are built, it may be challenging to
distinguish between unit and environment from the perspective of the exploration engine. We
will come back to this point in the implementation chapter at section 4.4.

Tracer

The tracer component focuses on the flow of sensitive data. It distinguishes between sensitive
and non-sensitive data by labeling sensitive data at a relevant point, e.g., when the system gen-
erates the data or when the data enters the unit.
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Moreover, the tracer distinguishes between types of sensitive data. Therefore, there are
different labels for each relevant type of data. For example, to later generate a meaningful data
leak report, labels of device identifiers are different from labels of location data.

For each execution path, the labeling mechanism needs to be consistent with the execution
semantic. In particular, the tracer attaches a new label when a statement of the application copies
an already labeled value. Additionally, the tracer preserves a label when a statement modifies
sensitive data. In section 3.3 we discuss techniques to achieve this.

Transmission Observer

The transmission observer focuses on end points of sensitive data. It hooks calls to the network
interface to find out, whether the application transmits sensitive data — i.e., data labeled by the
tracer component — over network. If the application transmits labeled data, the transmission
observer sends the type of data and the destination address to the reporting component.

We need to cover all interfaces that establish connections to a network. If one interface is
missing, it can be used to leak undetected data leaks which introduces false negatives.

Reporting Component

The reporting component aggregates data that was collected during the analysis of the applica-
tion and generates a human-readable data leak report. If the tool discovers a data leak it reports
the following information: the entry point (e.g., an event handler), the type of sensitive data
(e.g., location data), the IP address or the host name of the receiver (e.g., 198.78.202.118
or fbi.gov). Optionally, the execution trace can be replayed to reproduce the data leak and to
enable the user to study under which conditions the data leak occurred.
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3.3 Choice of Techniques

Which techniques allow to implement the five specified components of the last section? Until
now, we have developed the high-level design of a data leak detection tool that aims to meet four
requirements. The requirements reflect that our data leak detection tool has high accuracy, only
needs the binary form of the application and is independent from the user’s phone. We have
specified five components that explain how we can meet these requirements in general.

Our data leak detection tool needs at least two techniques to implement all components, (1)
a technique to systematically explore execution paths and (2) a technique to find data leaks for
each execution path. A technique to systematically explore execution paths allows to implement
the execution explorer and the entry point invocator. A technique to find data leaks allows to
implement the tracer, the transmission observer and the reporting component.

For both techniques, we briefly describe possible strategies and assess their advantages and
disadvantages. Based on the result of the assessment, we decide the techniques that we use for
the prototype.

Exploration of execution paths

The task of our exploration engine is to explore execution paths of a smartphone application. In
other words, the question is how to analyze the full spectrum of potential behavior, encoded in
the unit? In the specification of the exploration engine (cf. section 3.2) we described that this
question is crucial to automatically detect data leaks with low false negatives.

Data leak detection rate can be improved when the exploration of execution paths does not
require the user to manually supply inputs by themselves. But which alternatives do we have,
when we do not want to rely on manually providing user input, like TaintDroid does, as described
in section 2.2 and 3.1?

Systematic exploration of execution paths can be done using static and dynamic approaches.
One approach is to statically obtain the control flow graph (CFG) of the unit to get an ap-

proximative CFG of all possible execution paths of the unit. As described earlier, the static
approach was used by PiOS to detect data leaks (cf. section 2.2 and 3.1). One advantage of
static analysis is that the application does not need to be executed. One disadvantage is that -
due to limitations of static analysis [34] - it is impossible to obtain an exact control flow graph
statically. This does not mean, that static analysis is insufficient for data leak analysis. PiOS has
shown that static analysis is applicable for data leak detection. Would a dynamic approach yield
better results?

A common practice in dynamic analysis is to randomly generate user input. By using the
generated input in multiple executions, dynamic analysis explores different execution paths.
The advantage is that it is straightforward to implement and there are already tools for common
smartphone operating systems, like Monkey in Android [1]. Unfortunately, a study found out
that this is not effective for smartphone applications, because they have multiple entry points
that are coupled with user interface elements (like buttons and form elements). According to the
study, randomly generated user events leads to code coverage of 40% or lower [26]. Since the
disadvantages are predominant, we do not consider this option.

Another technique to systematically explore execution paths is symbolic execution. Instead
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of executing the program with concrete inputs (e.g., zipcode = 2060), symbolic execution
assigns symbolic values (e.g., zipcode = alpha) to the inputs, which represent any possible
concrete value that the variable could take. It then executes the program using these values.

Consider the following function that is called when the user edits the zip code field. The
function updates the object’s state, then retrieves the current day of week in order to send the
zip code once a week to an advertisement server. Under symbolic execution, the zip code and
the day of week are both symbolic. When symbolic execution reaches the if statement, since
the condition variable is symbolic, the execution follows both paths. The transmission observer
component automatically flags a leak when it notices that a symbolic user input (e.g., zipcode) is
sent over the network along the true path. Without symbolic execution, thorough dynamic data
leak detection would require blind guessing of inputs or exhaustive input enumeration, which is
prohibitive.

public int onFieldEdit(int zipcode) {
m_zipcode = zipcode;
int day = Calendar.getInstance().get(Date.DAY_OF_WEEK);
if (day == 1) {

sendOverNetwork(zipcode);
}

}

An early publication about symbolic execution compares symbolic execution with algebra
[32]. The authors stated that symbolic execution is related to concrete execution as algebra to
arithmetic. Like Algebra, symbolic execution delays the concrete computation by using symbols
and collecting the effects that computations would have on the result.

The power of symbolic execution is its ability to cover whole sets of execution paths. In
the function above, symbolic execution covers all execution paths within this function. One
execution path assumes that the variable day is equal to 1 and another assumes that the variable
day is not equal to 1. The first one calls the function sendOverNetwork(), the second one
does not. In contrast, concrete execution follows only one path of execution because the variable
day has one concrete value which forces the execution to either enter the if branch or not.

However, symbolic execution is affected by the state explosion problem. Like other multi-
path analyses (e.g., model checking) symbolic execution allows to assert properties for a set of
execution paths without testing each input value. But whenever symbolic execution reaches a
branch, the exploration engine has to create a new execution state. The effect is, that the number
of paths grows exponentially with the number of branches in the program.

A variant of symbolic execution is called selective symbolic execution (SSE). Selective sym-
bolic execution alleviates state explosion by automatically reducing the amount of code that
needs to be executed symbolically [15]. This is done by switching between concrete and sym-
bolic execution depending on the requirements of the analysis. For our data leak detection tool,
we require that only execution paths of the application are systematically explored.

An exploration engine that uses selective symbolic execution checks whether execution calls
into a method that belongs to the unit — the application of interest — or to the environment.
If the method belongs to the unit, the exploration engine systematically explores the method.
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It uses symbolic values for each method parameter. Moreover, whenever execution reaches
a method from inside a method of the unit, the exploration engine executes it concretely and
replaces the concrete return value with a symbolic one. The effect is that execution forks if it
reaches a branch, but only when execution is inside the unit.

If the method belongs to the environment (e.g., in Java: System.out.println() ), this
means that it is out of scope of the analysis and does not require exhaustive exploration, i.e. the
exploration engine executes it concretely.

Is it feasible to systematically explore all paths of the smartphone application? A study
counted the branches of 1100 smartphone applications and found out that 90% of the applica-
tions have about 4187 branches, a complexity which has already been managed by path explo-
ration tools [26].

We consider symbolic execution as the most promising technique for our exploration en-
gine. The question of this subsection was to find a way to systematically explore execution
paths. We considered three alternatives: static code analysis, random generation of user input,
and symbolic execution. We decide to use symbolic execution for our exploration engine. Al-
though former work demonstrated that static analysis is applicable for detecting data leaks in
smartphone applications, we believe that using symbolic execution leads to less false positives.
In particular, we considered selective symbolic execution, a variant of symbolic execution that
alleviates the path explosion problem of symbolic execution.

Data Leak Detection

The task of data leak detection can be framed as a problem of data flow analysis. Data flow
analysis studies the propagation of values inside a program.

Similar to the exploration engine, there are two directions, static reachability and data flow
analysis, and dynamic taint tracking.

Static reachability analysis answers the following question: Given a graph that represents
possible execution paths of a program, is there a path that leads from a source of sensitive data
(e.g., a method which retrieves the current location) to a data sink (e.g., a method that transmits
data over the network)? A graph that represents possible execution paths is also called a control-
flow-graph (CFG). Each node represents a basic block, i.e., a piece of code that contains no
jumps or jump targets in the middle of the block. Each basic block starts with a jump target and
ends with a jump.

Reachability analysis is not enough to accurately detect data flows for a given CFG, because
a relation between the data source and the data sink does not necessarily imply that execution
propagates the same data along the path. Thus, static reachability analysis is complemented by
static data flow analysis.

Although applicable for data leak detection, static analysis suffers from false positives and
false negatives. Static reachability analysis and static data flow analysis were used by PiOS to
detect data leaks in iOS applicaiton [20]. We have discussed its limitations earlier in section 2.2.

Dynamic taint tracking marks input data and then monitors how the marked data propagates
during execution. The process of marking input data is called tainting. Monitoring tainted data
requires propagation rules to update the taint tag along an execution path.

Dynamic taint tracking can be used for various data flow analyses at runtime [47]. For

19



example, the detection of software vulnerabilities like buffer overflow [38], the lifetime analysis
of data inside an application [29], the generation of test data [54] and finally data leak analysis
[21].

The principle of dynamic taint tracking is similar to scintigraphy in nuclear medicine [52]. In
scintigraphy, radioisotopes which emit gamma radiation are introduced into the body of a patient.
Outside, gamma cameras measure the emitted gamma radiation and track the movements of the
’tainted’ isotopes inside the body. This method allows to identify the location of tumors, the
location of bone fractures or diagnose the blockage of arteries.

We can combine the principle of dynamic taint tracking with symbolic execution. The sym-
bolic execution engine can also be used for tainting data. Instead of tagging sensitive data
separately, one can inject a symbolic value whenever the unit requests sensitive data. For exam-
ple, when an application calls the application programming interface (API) to receive the current
location, a symbolic value with a predefined name is returned. For example, one could give all
symbolic values that represent location data the name ’location’. A data leak occurs whenever
the transmission observer component detects a symbolic value with a known name in a method
from the network API.

Dynamic taint tracking cannot detect data leaks that arise from implicit (or indirect) flow.
We modified an earlier example to show a data leak that arise from implicit flow:

public int onFieldEdit(int zipcode) {
m_zipcode = zipcode;
int day = Calendar.getInstance().get(Date.DAY_OF_WEEK);
if (day == 1) {

switch(zipcode) {
case 1:

sendOverNetwork(1);
break;

case 2:
sendOverNetwork(2);
break;

case 3:
sendOverNetwork(3);
break;

// ...

case 9999:
sendOverNetwork(9999);
break;

}
}

}

Data leaks that follow from implicit flows require other methods such as static code analysis
to be detected [18]. Such data leaks cannot be detected with dynamic taint tracking because
zipcode is implicitly derived from the control flow of the code. No application programmer
would write such code unless she explicitly wants to bypass data leak detection mechanisms. The
authors of TaintDroid — which also use dynamic taint tracking — state that the use of implicit
flows is already an indicator for malicious intentions, but cannot be detected by dynamic taint
tracking [21].

In summary, dynamic taint tracking allows to detect data leaks that follow from explicit
flows. One limitation of dynamic taint tracking is that it does not detect data leaks that follow
from implicit flows. We decide to use dynamic taint tracking and combine it with symbolic
execution. The tracer component inserts symbolic values into the system whenever the unit
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requests sensitive data. Afterwards, the transmission observer component reports a data leak
whenever symbolic values are detected in the network API.

In this chapter, we developed a concrete picture of how to automatically detect data leaks
in smartphone applications. First, we identified four requirements which drove the component
specification of the tool. We discussed design choices and evaluated advantages and disadvan-
tages of possible techniques. We decided to use symbolic execution to explore all execution
paths of the unit. Additionally, we use symbolic values as tainting mechanism to find and report
data leaks.
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CHAPTER 4
Implementation

This chapter describes the current implementation state of Leakalizer and the challenges
while building it. First, we give an overview of the implementation. Then we describe used
tools and how we modified them. Finally, we sketch what we have built additionally in order to
find data leaks with Leakalizer.

Leakalizer builds upon S2E and the Android emulator. As specified in chapter 3, we
wanted a data leak detection prototype based on symbolic execution and dynamic taint analysis
to converge to the properties of an ideal data leak detection tool. To achieve this for Android
applications, we combine S2E and the Android emulator to diagnose data leaks.

S2E is a platform that uses symbolic execution to analyze whole software stacks at run-
time. So far, S2E was only available for the instruction set architecture X86. First, we added
support for ARM, an instruction set architecture used for mobile devices and other embedded
systems. Then, we integrated the Android emulator into S2E. The intermediate result is a virtual
smartphone device that can be analyzed by Leakalizer.

Figure 4.1 shows an overview of the implementation. Numbers in parentheses refer to com-
ponents of Leakalizer. The core of Leakalizer (1) is built upon the modified S2E platform.
The integrated Android emulator (2) boots the Android software stack (3) inside the virtual
smartphone and starts the unit (4), i.e., the Android application of interest.

Leakalizer diagnoses data leaks in an Android application by using invasive and noninva-
sive methods. In medical diagnostics, noninvasive methods work from outside the living system,
i.e. they do not invade the living body. In contrast, invasive methods require instruments inside
the living body to provide diagnostic information.

We implemented the data leak detection mechanism from chapter 3 by splitting the compo-
nents in a noninvasive host side and an invasive target side. Both sides communicate with each
other in order to select execution paths of the unit and to diagnose data leaks.

We implemented the host side (5) in form of Leakalizer plugins. Plugins use the devel-
oper interface from S2E to exchange messages with the target side, to systematically explore
execution paths of the unit, and to find data leaks along an execution path. We have built four
Leakalizer plugins that cover all components of the design, except the entry point invocator.
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Figure 4.1: Components of Leakalizer — a prototype to detect data leaks in Android appli-
cations: (1) S2E, a platform for building analysis tools for big software stacks, (2) an embedded
Android emulator to run (3) the Android software stack on a typical desktop computer. (4) One
process inside Android runs a Dalvik virtual machine that executes the unit. (5) Plugins outside
the target system detect OS events and observe sensitive data. (6) The Leakalizer plugin exten-
sion (LPE) inside the target system complements plugins on the host-side to explore possible
execution paths of the unit and diagnose data leaks along each execution path.

The target side (6) consists of the Leakalizer plugin extension (LPE) — a mediator module
that we have incorporated into the Android software stack. The LPE allows Leakalizer to
focus on the unit, sources of sensitive data (e.g., the Android Location manager), and data sinks
(e.g., the Android network API).

The rest of this chapter describes the main challenges of building Leakalizer as follows:
Section 4.1 describes the inner working of the Android emulator. Section 4.2 explains S2E, a
platform to build multi-path analysis tools by writing plugins. Section 4.3 describe how we mod-
ified S2E and the Android emulator in order to boot Android. The intermediate result is a custom
virtual smartphone that boots Android and can be observed and controlled from Leakalizer

plugins. From this ground, section 4.4 describes the challenge of analyzing Android applications
and our approach to use a combination of noninvasive Leakalizer plugins and an invasive me-
diator module — the LPE — to detect data leaks caused by a single Android application. Finally,
section 4.5 describes the four Leakalizer plugins.
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4.1 The Android Emulator

The Android emulator allows Android application developers to test and debug their applications
without the need to use their own phones (Figure 4.2).

Figure 4.2: Screenshot of the Android emulator that emulates a virtual smartphone device to
run the Android software stack on PC.

The Android emulator uses the full system emulator QEMU to run virtual machines in a
process on the host machine. We first discuss QEMU and then the specifics of the Android
emulator.

Dynamic Binary Translation with QEMU

QEMU is a full-system-emulator written in C. A full system emulator emulates target systems
(CPU and periphery), in a process on the host system. In QEMU, target systems can have
different instruction set architectures and use different hardware than the host system.

For example, in order to run a smartphone application on PC, QEMU needs to execute
ARM instructions and to emulate the hardware of the smartphone. A typical PC has an X86
(or AMD64) processor. Smartphones often have a system-on-a-chip with an ARM processor
and various sensors. QEMU translates ARM instructions into X86 instructions to emulate a
smartphone environment.

QEMU uses dynamic binary translation (DBT) to translate ARM instructions into X86 in-
structions [7]. Dynamic binary translation translates a set of instructions into a translation block.
A translation block consists of the intermediate representation of a sequence of instructions. The
last instruction of the translation block changes the control flow. For example, consider the fol-
lowing four ARM instructions1:

0x0000810c: mov r0, r1

1Refer to the ARM instruction set references to get a list of all instructions along with their exact effects on CPU
state, memory and periphery [2].
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0x00008110: mov r2, #28672 ; 0x7000
0x00008114: cmp r0, r2
0x00008118: bne 0x8000

The first two ARM instructions of the translation block modify register values and the third
one modifies the program state register. All three instructions do not modify the control flow of
the program. The fourth instruction is a branch instruction. Depending on the last comparison,
it jumps either to 0x8000 or to 0x811c. This means, that the first instruction of the next
translation block is either 0x8000 or 0x811c. In this example, the value of r1 at runtime
determines which translation block comes next.

Because QEMU uses a dynamic translation process, the value of r1 does not need to be
inferred with static methods. Whenever execution reaches the translation block from above, r1
is already stored in the CPU state. Because QEMU emulates the behavior of a real ARM CPU,
the CPU state is stored in a data structure and updated along execution.

Let us assume, that r1 is 0x6000. The comparison updates the condition flags of the pro-
gram state register. Therefore, the condition (NE) is fulfilled and the branch instruction is exe-
cuted. Finally, the program counter is set to 0x8000 and the next executed instruction is read
from 0x8000.

QEMU implements DBT in two steps. First, QEMU translates a sequence of instructions
into an intermediate representation that consists of micro-operations. Then, QEMU translates
the intermediate representation into host instructions.

In the first step, QEMU translates a sequence of guest instructions in an intermediate rep-
resentation. This step is target-dependent, i.e., is different for ARM-targets and X86-targets. A
disassembler reads one instruction after the other from the memory to detect the instruction type.
When it detects the instruction, it calls helper functions that generate the corresponding micro
operations. The disassembler continues until all instructions of the sequence are translated into
micro-operations.

For the second translation step, QEMU uses the built-in-compiler TCG (Tiny Code Gen-
erator) that compiles micro-operations into host instructions. TCG translates the sequence of
micro-operations of a translation block into instructions that can be executed by the host CPU.
This step is host-dependent, i.e., depends on the instruction set architecture of the physical ma-
chine where QEMU is running.

When TCG is finished, QEMU stores the result in a cache. The cache avoids translating the
same blocks again and again. Translation only starts when QEMU discovers a new translation
block during execution. Finally, the host CPU executes the result.

Specifics of The Android Emulator

There are three major differences between vanilla QEMU and the Android emulator: (1) The
front-end for Android SDK integration, (2) the virtual system-on-a-chip called Goldfish and (3)
the multiplexing daemon Qemud.

The emulator adds a front-end to integrate into the SDK, especially to interact with the
Android Virtual Device Manager (AVD). AVD is a graphical user interface to configure and
start a virtual smartphone device [3]. AVD passes the user-defined configuration to the new
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front-end. The front-end then transforms the configuration into a sequence of parameters that
are passed to QEMU. For example, AVD can command QEMU to start virtual device which has
256MB memory instead of 128MB.

Figure 4.3 shows the most important devices that make up goldfish. Goldfish includes an
ARM CPU, which supports ARMv5TE instructions and the necessary periphery (e.g., the real
time clock, NAND flash, battery, and multimedia card device). Most of the Goldfish devices are
not included in vanilla QEMU.2

Qemud is a multiplexing daemon which enables communication between the emulator and
the emulated Android system over a serial port. The main elements are: The qemud multiplexing
daemon, qemud clients and qemud services (see Figure 4.4). The daemon and the clients run
inside the emulated Android system. The daemon process named qemud is started during the
boot process. A qemud client is any part inside the Android system that wants to communicate
with the emulator.

The purpose of qemud is to control parts of the emulator from inside the Android system,
e.g., change the intensity of the emulated LCD backlight, retrieve a list of available sensors,
setup boot properties during the boot process or send AT commands to the emulated modem.
Qemud services are listening for client messages. If a service receives a message that complies
with the protocol, the service executes the command and the client receives an answer. For
example, when qemud receives the command “temperature:25” from a qemud client, it sets the
current temperature of the temperature sensor to 25◦. In the documentation, the developers of
the Android emulator state that qemud saves them from writing additional kernel drivers for the
target and saves them from writing additional hardware emulation code. The documentation
also includes the communication protocol between multiplexing daemon and services [4].

4.2 Selective Symbolic Execution with S2E

S2E is a platform that implements selective symbolic execution. In section 3.3, we already
introduced selective symbolic execution as a variant of symbolic execution that mitigates the
path explosion problem for a particular analysis task by automatically reducing the amount of
code that is executed symbolically.

S2E is built on QEMU and KLEE, which is shown in figure 4.5. S2E instruments QEMU for
dynamic program analysis. Dynamic program analysis allows to analyze software at runtime.
S2E analyzes the software that runs inside the virtual machine. S2E incorporates KLEE, a
symbolic execution engine which was originally built to automatically generate test cases [10].
If a translation block needs to be executed symbolically, S2E first translates it into the LLVM
assembly language [35] and then passes the result to KLEE which performs symbolic execution.
To switch between symbolic and concrete execution, KLEE and QEMU use the same states.
Details can be found in the original papers [14] [15].

An analysis tool that is built on top of S2E consists of two types of plugins, analysis plugins
and selector plugins. Selector plugins define the scope of the analysis, i.e. they split the set of
possible execution paths into interesting paths — i.e., paths that belong to the unit — and other

2There are ongoing efforts to port parts of the Goldfish devices to vanilla QEMU. [28]
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Figure 4.3: Overview of the Goldfish board (periphery and ARMv5 CPU)

Figure 4.4: Qemud communication scheme between emulated Android system and emulator
program used to control parts of the emulated hardware

paths — i.e., paths that belong to the environment. Thus, selector plugins implement selective
symbolic execution. Analysis plugins check whether certain properties hold for explored paths,
e.g., whether a path leaks sensitive data. Both types of plugins have access to the S2E application
programming interface (API). The API provides low level access, i.e., access to memory, CPU
registers, interrupts, system events, that execution reached an instruction at a particular program
counter, etc.

Plugins can emit events to communicate with other plugins. This way, plugins can build up
higher level events — e.g., the launch of an application — by consuming and processing events
from other plugins.
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Figure 4.5: The architecture of S2E incorporates the emulator QEMU and the symbolic execu-
tion engine KLEE

4.3 Port S2E to ARM

The core of the exploration engine of Leakalizer is a modified S2E platform. We modified
parts of S2E to boot an Android software stack inside S2E. Although there is a X86 port for An-
droid, smartphones (and other embedded systems) are usually built around an ARM processor.

To boot Android with S2E, we ported S2E to ARM. Afterwards, we embedded the An-
droid emulator into S2E. Overall, we conducted the following modifications which are further
described in the next subsections: (1) S2E only adapted the X86-specific part of the dynamic
binary translation process of QEMU. We adapted the ARM-specific part to communicate with
the S2E core. (2) We modified the ARM-specific CPU state in QEMU. QEMU models the state
of the CPU as a data structure in C. S2E only adapted the target-independent part and the X86-
specific part of the CPU state and not the one for ARM CPU’s. (3) We changed the core of S2E
to support both X86 and ARM. In general, S2E supports other instruction set architectures, be-
cause the core of S2E does not require a particular instruction set. Some parts, however, assume
X86. We changed these parts to support both X86 and ARM. (4) We adapted common CPU
boards for ARM processors (Integrator- and Verbatim-boards) to give S2E full access to CPU
and RAM. (5) We ported some of the already existing plugins for X86 to ARM. This enables
ARM code inside the virtual smartphone to communicate with host-side plugins and the other
way around. (6) We integrated the Android emulator into S2E to support Goldfish, boot Android
and launch Android applications.

ARM support for S2E was tested by successfully booting an ARM Debian Linux and sym-
bolically execute a small native ARM binary on it.3 Since the V1.1 release of S2E, the ARM
port of S2E is publicly available.

3The Symbolic Maze is an example to demonstrate the power of symbolic execution [37].
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Control the state of a virtual ARM machine

We adapted the ARM-specific target of QEMU to give S2E control over the virtual machine at
runtime. Although QEMU currently supports X86, ARM, MIPS, M68K and PowerPC as target
systems out of the box, S2E only supports X86. S2E ships with vanilla code of the ARM-target
of QEMU but does not instrument it to control the state of the virtual machine.

S2E gives plugins control over CPU and RAM of the emulated system. For example, they
can read/write the value of a register or the value of a memory address. To achieve this, the
emulated target CPU and target RAM need to be registered to S2E when the system is initialized
by QEMU. When QEMU starts full-system emulation it allocates memory for the target CPU
and the target memory and resets the state of the CPU to an initial state. At this point, S2E
hooks the initialization routine to access target CPU and target RAM. We added hooks to two
common ARM boards, the Integrator- and the Verbatim-board to control the state of the virtual
ARM machine.

ARM CPU state

We analyzed the ARM CPU state structure and split it into symbolic and concrete regions, which
is shown in figure 4.6. QEMU stores the state of the CPU (e.g., the value of registers) in a
data structure. The data structure was rearranged to have a clear border between symbolic and
concrete regions.

In S2E, registers can hold symbolic values, but some registers need to be always concrete.
One example is the program counter (r15) that stores the address of the instruction which is
executed next. If the address was symbolic, any address could contain the next instruction.
As consequence, S2E needs to massively fork the execution after each instruction which is an
unmanagable state explosion.

On the other hand, other fields of the CPU state need to be inside the symbolic area, e.g., the
condition flags. The condition flags C (carry), V (overflow), N (negative) and Z (zero) influence
the control flow for conditional instructions. In ARM, nearly every instruction can become a
conditional instruction by using the conditional field. The condition needs to be satisfied in
order to execute the instruction. A condition is satisfied if the condition flags are in a certain
state. Consider the following sequence of ARM instructions:

0xab142460: mov r7, #100 ; write 100 into r7
0xab142464: mov r1, #200 ; write 200 into r1
0xab142468: cmp r7, r1 ; set condition flags accordingly
0xab14246c: bge 0xab1424b0 ; branch if r7 greater or equal r1

The ARM assembly code above is an example to show why the condition flags need to be in-
side the symbolic area. The instruction cmp (compare) updates the condition flags according to
the result of subtracting r1 from r7. Instruction b (branch) is only executed when the condition
flags satisfy the condition ge (greater or equal).4 Assuming that r7 contains a symbolic value
and that condition flags are in concrete-only area, S2E would concretize symbolic values before

4Consult the ARM Architecture Reference Manual for details [2].
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Figure 4.6: Code fragment from the data structure which store the ARM CPU state. The
first fields until regs[14] are allowed to hold symbolic values. regs[15] is the first item inside
concrete-only area.

it updates the flags. Therefore, execution state will not fork into two states at the branch instruc-
tion. But forking into two states is expected behavior when r7 is symbolic. Thus, condition
flags need to be in the symbolic area.

Inside the ARM CPU state, we formed two contiguous areas, one symbolic and one concrete
area, and changed the order of the fields in the structure accordingly. In hardware, condition
flags are part of CPSR (current program state register), but the structure in QEMU stores each
condition flag separately as 32 bit unsigned integer for faster access and stores other contents
of CPSR in the array uncached_cpsr. This makes it easy to form one contiguous block of
fields which can hold symbolic values and another block of fields which can only hold concrete
values. As figure 4.6 shows, it was not possible for the regs array, which represent the registers
r0-15. r15 is the program counter and needs to be always concrete to continue execution at
a certain and concrete address. Thus, we moved the array to the end of the symbolic area and
draw the border between regs[14] and regs[15].

The border between symbolic and concrete area is defined in S2E’s execution state. The

31



symbolic area of the CPU state has a special treatment, because it does not only use allocated
space from QEMU. Instead, S2E uses special memory objects which are capable of storing
and handling symbolic values. The symbolic execution engine KLEE provides these memory
objects. QEMU can access the symbolic regions through wrappers. All parts of QEMU which
access fields inside the symbolic area need to use these wrappers in order to get the current value
of these fields.

Conditional compilation for X86 and ARM support

We adapted S2E in order to support both X86 and ARM. For example, consider the following
C++ method inside S2E’s execution state:

uint64_t S2EExecutionState::getPc() const
{
#ifdef TARGET_ARM

return readCpuState(CPU_OFFSET(regs[15]),
8*sizeof(target_ulong));

#elif defined(TARGET_I386)
return readCpuState(CPU_OFFSET(eip),

8*sizeof(target_ulong));
#endif
}

The method retrieves the program counter from the CPU structure of QEMU. The X86 CPU
structure stores the program counter in the field eip, the ARM CPU structure in regs[15].
To access the right field depending for which target S2E is compiled, we do not want to have dif-
ferent source files. Therefore, we use precompiler macros (e.g., TARGET_ARM) and conditional
compilation directives (e.g., #ifdef).

The build system of QEMU provides precompiler macros that indicate the target for the
current compilation (e.g., TARGET_ARM and TARGET_I386). We globally use QEMU’s pre-
compiler macros for S2E to compile target-specific code without having different source files.

Port existing S2E plugins to ARM

We ported already existing S2E plugins to ARM whenever needed for building Leakalizer on
top of it. So far, S2E was used for building various analysis tools for X86 targets [15]. Therefore,
most of the existing plugins for S2E are written for X86. Moreover, many plugins analyze the
Windows platform. We now describe how we ported the BasicInstruction plugin to ARM.

S2E allows target code to communicate with S2E plugins over custom opcodes. A custom
opcode is an instructions of the guest system that is directly interpreted by S2E and is not trans-
lated into a host instruction. First, S2E calls s2e_tcg_emit_custom_instruction() in
the target-dependent translation step, whenever it discovers an instruction with S2E’s custom op-
code. Then, S2E invokes a custom instruction handler. Finally, S2E notifies the BasicInstruction
plugin about a custom opcode which can retrieve the operands and perform the corresponding
action.
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We ported communication with S2E plugins over custom opcodes to ARM. First, we chose
an opcode that is not used by other ARM instructions according to the ARM instruction set
reference [2]. Then we had to modify QEMU’s dynamic binary translation engine accordingly
to invoke the custom instruction handler whenever the new opcode appears in an instruction.
Finally, we ported the BasicInstruction plugin to catch all operands.

The result is that the target ARM code can communicate with S2E to retrieve the S2E ver-
sion, enable/disable forking of execution paths, retrieve the path id of current execution path,
log messages, print a symbolic expression, insert a symbolic value, print memory contents, con-
cretize a symbolic expression, etc.

Integrate Android Emulator Into S2E

Leakalizer exploits the fact that both the Android emulator and S2E are based on QEMU to
analyze Android applications. Therefore, we can use the Android emulator instead of the vanilla
QEMU to boot Android.

To integrate the Android emulator into S2E, we added hooks to the code base of the Android
emulator. This enables Leakalizer and the plugins to control the state of the virtual smart-
phone at runtime. In most cases, the hooks for the Android emulator were similar to the hooks
that S2E applied to control QEMU. We identified the changes and applied it to the Android
emulator code base accordingly.

The result is that Leakalizer is able to boot Android, run Android applications and analyze
the system. From outside, i.e. from the host system, Leakalizer can observe the current state
of the target CPU and the target memory.

Leakalizer takes advantages of the snapshot mechanism of QEMU to speed up develop-
ment cycles. Booting Android in Leakalizer takes longer compared to the original Android
emulator. Thus, we first boot with the original Android emulator, store a snapshot of the current
state at the local file system of the host system and load the snapshot in Leakalizer to continue
a running Android system.

4.4 Analysis of Android Applications With Leakalizer

In the former sections of this chapter, we prepared the ground for detecting data leaks with
Leakalizer. The result was a custom virtual smartphone that waits to be analyzed by plugins
using the plugin infrastructure of the S2E platfrom. In other words, we have to write plugins
on top of S2E that detect data leaks. We call those plugins Leakalizer plugins. As described
earlier, the plugin infrastructure of S2E allows to write selector plugins — to select and explore
execution paths of interests — and analysis plugins — to check for properties along execution
paths (cf. 4.2).

This section first describes how to write Leakalizer plugins that analyze interpreted byte-
code of a single Android application. This is challenging because the instruments of S2E are tai-
lored to analyze native instructions, not interpreted code. Then, we describe how we approached
this challenge by adding a module inside the Android system — the Leakalizer plugin extension
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(LPE) — that gives Leakalizer plugins more control over the Android system, especially the
Android runtime environment.

How to analyze interpreted bytecode?

Based on the design proposed in chapter 3, Leakalizer requires to distinguish between unit
and environment. To be more precise, the execution engine needs to systematically explore
execution paths that belong to the target Android application (the unit) and executes the rest of
the Android software stack (the environment) concretely to mitigate the path explosion problem
(cf. section 3.3).

Java applications consist of Java bytecode. Developers write their applications in the Java
programming language. The code is compiled into Java bytecode. Finally, the Java virtual
machine (JVM) interprets the byte code and executes the application. That means that Java
applications are never compiled to native code.

Android applications consist of Dalvik bytecode. Application developers also write their
applications in the Java programing language and again the Java source code is compiled into
Java bytecode. But additionally, the Java bytecode is transformed into Dalvik byte code. The
Dalvik bytecode is similar to the Java bytecode but optimized for mobile devices [45].

Interpreting Dalvik bytecode requires a virtual machine called the Dalvik virtual machine
(DVM). Like a JVM it decouples applications from the rest of the system, which makes Android
applications hardware-independent and to some extent more secure.5

The Android software stack houses multiple DVMs. Each Android application runs in a
separate process with its own DVM. Since Leakalizer uses a virtual machine to analyze the
Android software stack, we have the situation that multiple virtual machines are running inside
a virtual machine. This situation is shown in figure 4.7. The Android emulator — that we
have integrated into Leakalizer — emulates a virtual smartphone that is capable of booting
Android. Android is based on a modified Linux kernel and runs multiple Linux processes. Some
of the processes run a DVM to execute Dalvik bytecode from Android applications.

There is one DVM inside Android that interprets bytecode from the unit, i.e., the application
to be analyzed. We call a DVM which interprets unit code inner environment, because it is tightly
coupled with the unit. The rest of the environment is called outer environment. In summary,
the Android system consists of a unit (the Android application of interest), inner environment
(DVM) and outer environment (rest of the system). The outer environment includes other DVMs
that interpret bytecode of other applications. They belong to the outer environment, because they
are not within the scope of the analysis, i.e., we only want to find data leaks that are caused by
one singular Android application.

A DVM is like an organelle in an eukaryotic cell. The tight coupling between the inner
environment and the unit can be understood with the model of a biological cell in cell biology.
We already used the model of a cell to explain entry points (cf. section 3.2). A cell organelle
is a subunit of the cell that has a specific function. It is surrounded with a membrane to highly
control interactions with the outer environment, i.e., the cytoplasm. Staying with the model, we
are interested in the processes inside one organelle. We could take it out of the living system,

5According to various studies, the level of security is still not satisfying [33] [44] [22].
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Figure 4.7: The target system of Leakalizer is the Android software stack which runs multi-
ple instances of the Dalvik virtual machine of which one interprets the code of the unit.

but then we cannot study the interactions between the inner and the outer environment anymore,
which is important for a thorough analysis.

The state and the processes inside the DVM are hard to focus from outside, especially when
our instruments only measure low level processes. The execution of bytecode inside the DVM
cannot be easily observed at native instruction level. From the point of view of the S2E platform,
software is a sequence of native ARM instructions which modifies registers and memory. This
approach suits well to analyze software like device drivers or kernel code. It also suits to analyze
applications which are compiled into native ARM instructions. At the same time, it is hard to
study the behavior inside a single DVM, because the abstraction level is different.

The diagnostic instruments that build the core of Leakalizer (i.e., the modified S2E plat-
form) work at a different abstraction level than the unit code. Bytecode is not directly compiled
into native ARM instructions but interpreted from a bytecode interpreter. The interpreter of
Dalvik bytecode stands between the diagnostic instruments of S2E and the application logic of
the unit, because the diagnostic instruments of S2E measure how sequences of ARM instruc-
tions affect the CPU state and memory and not how Dalvik bytecode of the unit affects the state
of the DVM.

We tackle the problem by developing Leakalizer plugins at the host side that measure
the overall state of the system. In addition to that, some of the plugins exchange information
with the Android system by using a mediator module. The mediator module — incorporated
into the Android software stack — communicates with plugins in order to detect data leaks. The
mediator module is called Leakalizer Plugin Extension (LPE).

In summary, we implemented the components of chapter 3 by writing host-side plugins
based on S2E’s plugin infrastructure and the target-side mediator module LPE. The LPE com-
municates with the Leakalizer plugins via custom ARM instructions (cf. section 4.3). Figure
4.8 gives an overview of the interplay between plugins and LPE. At the host side, we imple-
mented plugins that observe and manipulate the system from outside (1). The host-side plugins
are extended by the Leakalizer plugin extension (LPE) inside the Android system (2,3).
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Figure 4.8: Interplay between Leakalizer plugins at the host side and the Leakalizer plugin
extension (LPE) inside Android. While Leakalizer plugins alone focus the system as a whole
(1), LPE allows to focus the inner environment (2), parts of the Android framework (3), or other
aspects.

Leakalizer Plugin Extension (LPE)

LPE is a package of libraries that establishes communication with Leakalizer plugins at the
host side. The purpose of the LPE is to measure and control the Android system, especially the
inner environment which is hard to focus from outside. For example, LPE is used to trace Dalvik
instructions of the unit and to filter out bytecode interpretation for all other DVMs.

Communication between the Android system and Leakalizer plugins is established via
instrumentation points. An instrumentation point is a modification of the Android code base
that uses LPE to help Leakalizer to focus on specific aspects of the Android system. While
Leakalizer plugins alone focus on the whole Android system, LPE can focus on the inner
environment or the network interface or the location manager inside the Android system. Instru-
mentation points can be added everywhere in the Android system and at different abstraction
levels.

LPE allows to add instrumentation points at three levels of abstraction, which is shown in
figure 4.9: (1) inside Java code, (2) inside C/C++ code, and (3) inside assembly code. Java
methods use a class called S2ECommands to talk to host plugins, C/C++ code include a header
file, and assembly code invokes custom S2E instructions directly (cf. section 4.3).

For example, we added an instrumentation point for the class ActivityThread. When-
ever a new application is launched, an instance of ActivityThread calls a static method of
S2ECommands to notify the Leakalizer plugin AndroidMonitor about the start of an Android
application. AndroidMonitor compares the name of the application with the user-defined unit
name in the configuration file. If they match, AndroidMonitor notifies LPE to focus on this
application. Then, LPE sets the boolean s2ehooks — which is inside the global state of the
DVM — to true. Leakalizer uses the new state information to trace the execution of unit code
and to tag sensitive data only if the unit requests it. A lot of other usage scenarios are possible.
In general, s2ehooks is a convenient way to distinguish between the unit and other Android
applications inside the system which we count as environment.
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Figure 4.9: The Leakalizer Plugin Extension (LPE) establishes communication between An-
droid and Leakalizer plugins at three abstraction levels, Java code, C/C++ code and assembly
code. The left side shows two modules of the Android software stack that use LPE.

4.5 Data Leak Detection Plugins of Leakalizer

We implemented the detection of data leaks with Leakalizer plugins and LPE. Leakalizer
includes a basic implementation for all components except the entry point invocator.

Exploration Engine

The implementation of the exploration engine consists of three plugins: LinuxMonitor, Android-
Monitor and AndroidAnnotation. Moreover, some instrumentation points are added inside the
DVM interpreter and the class ActivityThread which is involved in the launch of an Android
application.

LinuxMonitor provides other plugins like AndroidMonitor with OS-level information, e.g.,
the current process including informations about loaded libraries, a list of running processes,
system events, etc. LinuxMonitor retrieves this information in a non-invasive way, i.e. without
LPE. But it requires knowledge about the data structures of the Android kernel.

AndroidMonitor detects the launch of the unit, i.e., a user-defined application of interest.
Whenever AndroidMonitor detects the launch of a unit it does two things: (1) It notifies other
plugins about it. (2) It enables Leakalizer-specific instrumentation of the DVM that launched
the application. One effect is that Leakalizer supports tracing of Dalvik bytecode instructions
of the unit.

AndroidAnnotation provides support for automatic exploration of code in a Java method.
The user specifies a list of target methods. Target methods are methods that belong to the unit
and that the user wants to be fully explored. Whenever the system calls a target method, An-
droidAnnotation replaces the concrete parameters of the method with symbolic values. The
consequence is that Leakalizer explores all branches that rely on method parameters. Cur-
rently the following Java data types are supported: int, float, long, char, double and byte.
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Tracer

The implementation of the tracer component consists of instrumentation points inside the An-
droid application framework. For example, we modified the telephony manager, a class that
transmits the unique device ID to third party applications. Whenever a third party application
requests the device ID, the telephony manager distinguishes between two cases: If the source of
the request is the unit, it returns an unconstrained symbolic value with the name device_id.
Otherwise, the telephony manager returns the concrete device ID. This strategy can be extended
for other sources of sensitive data.

Transmission Observer

The implementation of the transmisssion observer component consists of a Leakalizer plu-
gin named TransmissionObserver. In addition to that, we added instrumentation points inside
the class SocketImplementation of Android. The instrumentation point notifies Transmis-
sionObserver whenever data is written to a socket and that data contains a symbolic value. Trans-
missionObserver then checks if the symbolic value represents sensitive data. If it is the case, it
sends the details (hostname, port, type of sensitive data) to the reporting component. This strat-
egy can be applied to other network APIs in Android.

Reporting component

Leakalizer takes advantage of the logging facility of the S2E platform to report data leaks.
Log files collect reported data leaks, information about the injection of symbolic values and the
forking of execution states.

This chapter gave insights into our prototype Leakalizer — a tool to automatically detect
data leaks in an Android application. We use the Android emulator to create a virtual smart-
phone device and integrate it into the multi-path analysis platform S2E to analyze an Android
application inside a ’living’ Android software stack. We use the plugin infrastructure of S2E
to implement our data leak detection approach of chapter 3. Finally, we wrote the LPE that
mediates between host-side plugins and interesting locations inside the virtual smartphone de-
vice. LPE helps Leakalizer to focus on the unit, sources of sensitive data (e.g., the Android
Location manager), and data sinks (e.g., the Android network API).
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CHAPTER 5
Evaluation

This chapter evaluates our data leak detection approach based on the prototype of Leakalizer.
The goal of this thesis is to automatically detect data leaks without requiring the user to install
the application on her phone and to be more accurate than existing tools. To achieve this, we
designed a data leak detection tool consisting of five components (cf. chapter 3). We decided
to use symbolic execution for the exploration engine to systematically explore execution paths
of the unit and to combine it with dynamic taint tracking to detect data leaks along an execution
path. Based on these decisions, we built a prototype of Leakalizer and described it in chapter
4. The following evaluates our approach based on the performance of Leakalizer.

In particular, the evaluation covers two questions. (1) Does Leakalizer accurately detect
data leaks by using dynamic taint tracking along an execution path? (2) Which code coverage
can be expected from an exploration engine that uses selective symbolic execution?

We answer each question with one microbenchmark. The benchmark of the first question
evaluates whether Leakalizer detects leakage of the unique device ID. The focus is on the
components tracer, transmission observer, and reporting. The benchmark of the second question
targets the exploration engine and measures the code coverage of a method inside the unit.

The test setup consists of Leakalizer and an Android application named Leakalizer Eval
App (LEA). LEA displays the microbenchmarks and performs them with a button click (figure
5.1). The host system, in which we compiled and run Leakalizer is based on Ubuntu 10.10.
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Figure 5.1: LEA, an Android application that performs our benchmarks.

5.1 Data Leak Detection With Leakalizer

LEA contains the following Java method that causes a data leak. LEA calls the method when
we press the button Send UID.

public void onClickSendUid(View view) {
TelephonyManager tManager = (TelephonyManager)

getSystemService(Context.TELEPHONY_SERVICE);
String uid = tManager.getDeviceId();
sendToServer(uid);

}

The method onClickSendUid retrieves the unique device ID and transmits it over network
to a server. First, the method retrieves an instance of the telephony manager. The telephony
manager is part of the Android application framework and provides access to telephony services
and informations. Then, the method retrieves the device ID and sends it to sendToServer that
creates a socket connection to the host 10.0.2.2 at port 6667 and transmits the device ID.1

We expect Leakalizer to detect the transmission of the device ID. To verify that, we in-
voke the entry point that eventually calls onClickSendUid. Since the entry point invocator
is not implemented yet, we can either press the button manually or use Monkey, an applica-
tion exerciser that generates random user events, e.g. a button click [1]. We press the button
manually.

When LEA calls getDeviceId(), the telephony manager returns a “tainted string”, i.e. a
modified object of java.lang.String that contains a symbolic value. The symbolic value is

1The IP 10.0.2.2 inside the virtual smartphone points to localhost of the host system, i.e., the physical
machine that runs Leakalizer.
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named deviceid to signify the type of sensitive data. The tracer component of Leakalizer
hooks the telephony manager. Whenever the unit — and only the unit — requests the device ID,
it returns a “tainted string“.

Before sendToServer sends the string to the destination, the transmission observer com-
ponent notifies a data leak to the reporting component which then adds the following entry into
the log file: ”Data leak of type ’deviceid’ detected. Data leak destination is 10.0.2.2 at port
6667.“ The log entry appeared three times during execution, because Leakalizer had to fork
the execution path two times. This is because our tainting mechanism uses symbolic values to
taint the string. Whenever a branch relies on a symbolic value, Leakalizer follows both paths
(if former constraints on the path do not predetermine a decision).

Our benchmark showed that Leakalizer detects leakage of the unique device ID along one
execution path. The Android application does not need to be annotated or modified in any way.
The components of Leakalizer — tracer, transmission observer and reporting component —
tag sensitive data, detect its transmission and report the data leak to the user with information
about destination and type of sensitive data.

5.2 Systematic Exploration of Execution Paths With Leakalizer

Now we want to assess the exploration engine of Leakalizer. In particular, we expect the
exploration engine to automatically explore all possible execution paths of the following Java
method that is part of LEA:

private static void testAutoSymbexInts(boolean ok, int x, int y) {
if (ok) {

if (x == y) {
S2ECommands.killState(0, "(int) ok: x == y");

} else {
S2ECommands.killState(1, "(int) ok: x != y");

}
} else {

if (x == y) {
S2ECommands.killState(2, "(int) !ok: x == y");

} else {
S2ECommands.killState(3, "(int) !ok: x != y");

}
}

}

The method testAutoSymbexInts has four possible execution paths. To be precise, the
method has four possible execution paths at the abstraction level that focuses on Java source
code. Java source code is compiled to Dalvik bytecode and interpreted at runtime. Only the
bytecode interpreter generates machine instructions that the CPU executes. The sequence of
machine instructions also contains code that do not belong to the application logic but arise
from the interpretation itself. Thus, additional execution paths may be possible, depending on
how the interpreter is implemented. For this evaluation, we are only interested in statements and
execution paths that belong to the application logic at the Java abstraction level.

We expect the exploration engine to achieve 100% basic block coverage. Basic block cov-
erage measures the proportion between the number of actually explored basic blocks and the
number of all basic blocks in the target code. A basic block is any sequence of non-branching
instructions.
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In our benchmark, we have four basic blocks. Each basic block has only one statement
that is a Leakalizer annotation provided by our mediator module LPE (cf. section 4.4).
S2ECommands.killState tells Leakalizer to terminate the current execution path and to
log this event with a particular message. We can verify that Leakalizer has explored all four
basic blocks by checking the log file. If the log file contains all four termination messages, the
exploration engine has achieved 100% basic block coverage.

Without the exploration engine, we could achieve 100% basic block coverage by manu-
ally calling the method four times, e.g., with the following input: (true, 1, 1), (true, 1, 0),
(false, 1, 1), (false, 1, 0). Each input triplet covers one basic block.

To systematically explore testAutoSymbexInts, we add the unique description name of
the method to the configuration file of Leakalizer. The specification in the configuration file
is necessary, because the entry point invocator is not yet implemented yet for Leakalizer.
Hence, the user has to inform the exploration engine about methods of interest.

According to the log file extract below, Leakalizer achieved 100% basic block coverage.
First, the exploration engine injected three symbolic values — one for each parameter. Then,
exploration engine forked execution three times to get in total four states. Finally, for each
state, the annotation statement was executed, Leakalizer terminated the state and creates the
corresponding message in the log file.

[State 1] Killing state 1
[State 1] Terminating state 1 with message ’State was terminated by opcode

message: "(int) z: x == y"
status: 0’

[State 1] Switching from state 1 to state 0

...

[State 0] Killing state 0
[State 0] Terminating state 0 with message ’State was terminated by opcode

message: "(int) !z: x == y"
status: 2’

[State 0] Switching from state 0 to state 3

...

[State 3] Killing state 3
[State 3] Terminating state 3 with message ’State was terminated by opcode

message: "(int) !z: x != y"
status: 3’

[State 3] Switching from state 3 to state 2

...

[State 2] Killing state 2
[State 2] Terminating state 2 with message ’State was terminated by opcode

message: "(int) z: x != y"
status: 1’

All states were terminated

Moreover, we modified testAutoSymbexInts to test whether exploration engine works
for other datatypes and also achieved 100% branch coverage. We replaced the data type of the
parameters x and y with other primitive datatypes, char, float, and double. For char, we
achieved the same coverage with four states. For float and double, the exploration engine
achieved the same coverage but forked 47 and 85 states, respectively, due to the way how floating
point values are represented and interpreted in Dalvik bytecode.
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In summary, our benchmarks demonstrate that Leakalizer detects a data leak and is able to
achieve high branch coverage for a given method in an Android application. We further discuss
our results in the next chapter.
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CHAPTER 6
Discussion

We now discuss advantages and disadvantages of our solution Leakalizer.
Our approach leads to less false negatives compared to existing approaches. In our proto-

type, we used selective symbolic execution to achieve this. The benchmark results (cf. section
5.2) show that Leakalizer achieved basic code coverage of 100% by systematically explore
possible execution paths of simple methods. Although Leakalizer has not yet been tested for
bigger Android applications, our prototype suggests that a tool that implements the components
of our design will lead to fewer false negatives than existing approaches.

Leakalizer is independent from the user’s phone. Leakalizer emulates a virtual smart-
phone and detects data leaks inside that living system. Hence, the user can first read the data
leak report and decide whether to install the application on her phone afterwards. In contrast,
TaintDroid requires the user to modify the Android software stack on her physical phone, install
the application and gets notified after the application leaked her personal data.

Our approach is also suitable for application developers that want to know whether some type
of sensitive data can leak out of their application. Leakalizer does not require but allows to
annotate Android applications to detect leaks of specific types of data by writing instrumentation
points that use LPE (cf. section 4.5).

One limitation of our approach is that dynamic taint tracking focuses on data leaks that
follow from explicit flow. Dynamic taint tracking does not capture data leaks that follow from
implicit flow. We have discussed this in section 3.2.

Our prototype has the following limitations that arise from the fact that we have not fully
implemented all five components specified in chapter 3. First, there is only a basic implementa-
tion of the tracer that only supports the detection of two types of sensitive data, device ID and
current location. However, our mediator module LPE (cf. section 4.4) allows to add instrumen-
tation points everywhere in the Android software stack, e.g., to add support for additional types
of sensitive data. This way, the core of Leakalizer can also be used for other analyses of
Android applications than data leak detection. Second, we have not implemented the entry point
invocator that invokes all entry points of the unit. Hence, the user needs to specify the methods
of interest. Third, the exploration engine works with simple data types and not yet with objects.
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Therefore, our prototype is not ready to detect data leaks for all Android applications out of the
box. Finally, our implementation does not take into account that Android applications can store
sensitive data in an internal database and leak it later. In other words, our tainting mechanism
currently does not consider data from the database as source of sensitive data.

In summary, benchmarks with our prototype Leakalizer suggest that combining symbolic
execution and dynamic taint analysis is viable to automatically detect data leaks. This approach
leads to less false positives compared to existing approaches. Moreover, our approach informs
the user about transmissions of sensitive data before her own sensitive data is at the mercy of
third party applications. However, our approach does not detect data leaks that follow from
implicit flows and our prototype needs further improvements to detect more kinds of data leaks
with less configuration work on the user side.
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CHAPTER 7
Conclusion

In this thesis, we designed and built a prototype of Leakalizer — a tool that detects data leaks
in smartphone applications without requiring the user to install the application on her phone.
Leakalizer allows users and organizations to better decide whether the application can be
trusted and should be installed on their phones.

The prototype of Leakalizer is based on symbolic execution, dynamic taint tracking and
a virtual smartphone. The prototype thoroughly explores possible execution paths of an Android
application inside the ’living’ Android software stack and tracks sensitive data along each path
to detect data leaks.

We evaluated Leakalizer by using microbenchmarks. Leakalizer yields 100% basic
code coverage for simple Java methods and correctly diagnoses the transmission of the device
ID of the virtual smartphone. The results suggest that a combination of symbolic execution and
dynamic taint tracking yields higher code coverage and correctly diagnoses more data leaks —
i.e., has fewer false negatives — than tools that rely on concrete user input or that perform static
code analysis on only the application of interest.
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CHAPTER 8
Appendix
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