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Kurzfassung

Hardware Designs die für sicherheitskritische Anwendungen entwickelt werden müssen
unter allen Umständen korrekt funktionieren. Eine Möglichkeit dies sicherzustellen ist
durch (i) Beschreiben der Spezifikation in einem formalen Framework und (ii) Beweisen
des korrekten Verhaltens der Designs auf der Abstraktionsebene dieses Frameworks. Bei
diesem Ansatz bleibt immer noch eine Beweislücke zwischen der Darstellung des Designs
im Framework und dessen Codierung in einer für die Fertigung verwendeten Hardware
Beschreibungssprache.

In dieser Arbeit wird die neue Hardware Beschreibungssprache Dhdl vorgestellt. Dhdl
erweitert das Formal Modeling and Analysis Framework von Függer [9]. Dadurch wird die
Beweislücke zwischen der formalen Analyse und der Hardware Implementierung geschlos-
sen. Mit dem Dhdl spezifischen, semantischen Zeitmodell können auch Simulationsergeb-
nisse von Dhdl in das Formale Framework rückgeführt werden. Die Möglichkeit Zu-
sicherungen über das Zeitverhalten direkt im Dhdl Design selbst zu spezifizieren ist ein
großer Vorteil gegenüber aktuell verwendeten Beschreibungssprachen wie VHDL. Um die
breite Anwendbarkeit von Dhdl zu zeigen wurden zwei Designs implementiert und deren
Zeitverhalten analysiert: ein synchrones, am Beispiel einer einfachen Kaffeemaschine, und
ein asynchrones, am Beispiel des DARTS Pulse Generation Algorithmus [21].
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Abstract

Hardware designs intended for use in high reliability missions are required to behave
correctly under all circumstances. One way of establishing their validity is by (i) stating a
specification in terms of a formal framework and (ii) proving them correct within the frame-
work. However, a proof gap between the formally stated design and the actual specification
in terms of a hardware description language remains.

In this thesis, a novel hardware description language, called Dhdl, is introduced. Dhdl is
tailored to the formal modeling and analysis framework defined by Függer in [9]. Thereby,
it closes the gap between formal proof methods and hardware implementation. With its
semantically defined timing model it is even possible to translate traces back to the mod-
eling and analysis framework. The ability to specify timing properties within the design
itself is a major advantage of Dhdl to currently popular hardware description languages like
VHDL. To demonstrate the wide applicability of Dhdl, both a synchronous (a simple coffee
machine) and an asynchronous hardware design, namely the pulse generation algorithm of
DARTS [21], have been implemented and their timing constraints have been analyzed.
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CHAPTER 1
Introduction

In this thesis, the discrepancy between the definitions of systems within a formal framework and
their description within a machine readable code is reduced. This is achieved by introducing a
novel programming language for hardware description.

The core issue are hardware designs intended for use in high reliability missions that are
required to behave correctly under all circumstances. One way of establishing their validity is
by stating a specification in terms of a formal framework and proving them correct within the
framework. However, a proof gap between the formally stated design and the actual specification
in terms of a hardware description language remains. The problem here consists of different
forms and levels of abstraction and whether they express the same system.

Abstraction is the key concept for describing complex processes, systems, et cetera. With
the right level of abstraction it is possible to efficiently describe large systems in a way that is
still feasible for a human mind. With each layer of abstraction, detailed information is lost in
order to be able to focus on the core issues. It is crucial for these models to contain all the
necessary information needed within and above the current layer of abstraction.

This leads us to the comparison of things, which can be a trivial task, e.g. no one will argue
about 3 not being equal to 3. But showing equality of more complex systems might not be as
simple. This gets even more complicated when using different languages. The best example
here is the transformation of an English written specification to a program. Also, when using
abstract models to prove properties of specific algorithms and implementing them later in code
is a manual and quite error prone task. In the best case it would be possible to let a reliable
tool generate verified code. To at least make this task quite simple for humans it would be of
great advantage if the same language could be used. If this is not available due to the lack of
expressiveness of the formal models which is necessary to ensure implementability, it is at least a
great help if the style of description and the important keywords are the same in the specification
and design entry.
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1.1 Motivation for a New Hardware Programming Language

In [9], Függer defines a formal analysis and modeling framework for hardware, whose key fea-
ture is the ability to argue with timing properties about the correctness of circuits. As powerful as
this framework is for formal analysis, it is incapable of describing larger systems in an efficient
human readable way. Also, no currently available language for hardware description can be
mapped directly from this framework to hardware and so a new language was the best approach.
Dhdl has its basis in this framework but extends it with powerful expressions and syntactic sugar.

1.2 About Time

In classical synchronous designs time itself is not modeled. Instead, the circuits depend on a
clock which has a dependency on time. The first simulation in the design flow, the behavioral
simulation, has no concept of the causality of signals and rather shows the transformation of
the system states from one well defined point in time to another and by this does not capture
any possible occurring intermediate states. When going further down the design flow, timing
behavior gets more detailed, but the simulations become more expensive with respect to the
calculations they need. To simulate systems without clock at the behavioral level one must be
creative, when using common tools.

To overcome this problem, the time model used in this thesis will be called causal time and
will be derived from the structure of the circuit.

1.3 Methodology

The new language is designed starting from the formal framework’s elements and refined with
concepts from modern programming languages and general hardware design. To show that
the language is powerful enough for implementing real-life systems, two reference designs are
implemented. These designs are simulated in Dhdl and tested on a FPGA board for functionality.
Also, one small reference module is implemented to analyze all aspects of Dhdl in detail. For this
module, the correctness of the generated VHDL code is checked by means of simulation. The
output is then compared with the Dhdl simulation. The results of the timing properties for this
module are also checked manually. Furthermore, a formal semantic for a sufficiently large subset
of the language is defined. This is used for better understanding of the trace generation and to
test the behavior of the Dhdl simulator. The traces generated by the semantic interpretation are
shown to be compatible to traces within the formal framework. With the reference module, the
semantic interpretation of a specific simulation and design description is demonstrated.

That the method of semantic interpretation can be applied to a simulation and design de-
scription and generate a valid trace is also demonstrated with the reference module.

1.4 Related work

Starting with solutions for timing constraints only, the tools from Altera [1] and Xilinx [24] offer
the possibility to specify assertions about delays on specific paths. These are absolute assertions

2



and cannot be annotated in VHDL directly. This problem is overcome in [6], where VHDL is
extended by timing constraints for the behavioral simulation with procedures. These constraints
are translated to constraints for the synthesis tool. However, they still have a defined time range:
if one wants to specify that one delay must be longer than another one, it has to be expressed
with specific values.

Without explicitly stating timing constraints, in [22] the behavior of hardware is modeled
with CCS and by this, naturally, a relative timing is defined. From this the logical behavior can
be deduced, but it still is hidden in the specification. Thus, this method is different with respect
to specifying timing constraints from all currently used languages. Also, it is not possible to
check an absolute delay.

Only limited timing assertions are used in [20], where Haste programs are translated to
asynchronous hardware and the timing needed for the handshake is tested and corrected. The
program logic itself is not verified and there is no timing annotation within the Haste programs
available. Also effects of glitches on the handshake signals are not taken into account.

Without considering signal delay properties at all, problems on a higher level are solved
in [14]. In this work a model checker is used to verify the behavior of Rebeca programs which
are then translated to hardware specifications. This approach to verify a specification and derive
physical hardware from it is not as low level in the specification as our formal framework and
its output is restricted to synchronous designs.

1.5 Remarks

The Dhdl version described in this thesis is Dhdl 0.9. I it is planned to develop it further and
change small parts of the syntax.

Syntax in this thesis will be annotated as defined in [3, p. 28]. Please note that optional
whitespace characters, that can usually be placed anywhere within the languages, will be ig-
nored in the syntax description for the sake of simplicity. Only required newline characters are
annotated.

In the main part of this thesis only the ideas and concepts of Dhdl will be described, as well
as the formal semantics. The detailed Dhdl language specification can be found in Appendix A.
For better readability, it also contains information covered within the first chapters of this thesis.

All the concepts presented have been implemented in Antlr and Java.

1.6 Structure of the Thesis

In Chapter 2 the underlying time model of Dhdl is described in detail. The general concepts
and ideas of Dhdl are discussed in Chapter 3 and its implementation in Chapter 4. In Chapter 5
the formal semantics for Dhdl is defined and the reference designs are explained in Chapter 6
followed by the conclusion in Chapter 7.

3



CHAPTER 2
Causal Time

The causal time model is used as time basis for the simulator and the formal semantics. With this
model it is possible to derive the simulated timed behavior from the circuit structure by means
of the syntax. In our model it is stated that when a signal a is connected to a signal b with the
information flow oriented from a to b, the changes appearing on b happen exactly a tick later on
signal a. Ticks are used as basic time unit and one tick is the smallest amount of time that can
pass within this model. To calculate the values for the next tick, a simulator is said to take a step.
It is important to remember that the traces generated in this way are example traces of the design
which might or might not appear similar in the final system. However, it gives a feeling of the
causal relations of the signals within the system and a defined deterministic behavior which is
very valuable for testing the circuits. Also, synchronous designs can be tested in this way, but
special care must be taken when modeling the clock period. Here, the clock period is the time
within two triggering edges of the clock signal, regardless of whether they are rising ones, falling
or both. In synchronous hardware the clock period must be wider than the longest delay path
found within the combinational logic of any two registers. This property has also to be fulfilled
when simulating synchronous designs with causal time.

Figure 2.1: The trace of a grequals simulation.

4



Figure 2.1 shows a simulation trace of the grequals module, defined in the Dhdl library,
with the configuration that it has true as output if two or more input signals are true. It is
observable how this module changes the output with some delay when a new input is given.
Even a glitch for the output is visible shortly after tick 120. Therefore, for writing tests it is
necessary to keep the underlying time model in mind and to know when the circuit reaches the
desired state. The longest path, by means of occurring delayed connections(<=), from any input
signal to any output signal is here of great help. This value is not yet calculated by Dhdl.

2.1 Timing Behavior in the Functional Simulation

The functional simulation of hardware designs provides a timing behavior where each generic
gate has a unit delay. At this level of the design flow, the hardware description code has already
been translated to gate logic. However, the causal time model is directly derived from the syntax.
Through this, the designer can predict the causal time behavior immediately from the code and
specify simulation tests accordingly.

2.2 Compatibility with the Formal Analysis and Modeling
Framework

The formal analysis and modeling framework uses continuous time and specifies the behavior of
circuits by events happening at input ports and those eventually appearing within a certain time
range later at the output ports. An appropriate hardware model using causal time can be shown
to coincide with specifications stated in the formal framework when mapping the transitions in
the causal time model to transitions in the continuous time model of the framework. More on
this can be found in Chapter 5.

2.3 Timing Assertions for Generated Circuits

When connecting two signals, this naturally limits their relative timing behavior within generated
circuits. Assuming that the signals a and b are connected with the information flow from a to b
(b<=a), then a transition appearing on a must happen at the same time or later on b. Of course,
the transition cannot be performed earlier. One could argue that there must be a certain delay at
any case, but we will stick here to observable behavior. Also, when generating hardware, some
signals might be removed or merged for optimization, which is favorable in most cases. Thus,
these transitions at a and b could actually happen at the same time.

Through this the timing assertion for the generated hardware is that the delay between the
value of the right side of the assignment and the resulting value of the signal on the left is greater
or equal to zero. As already mentioned, the model of causal time satisfies this constraint with a
fixed delay of one tick.
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CHAPTER 3
Definition Concepts

This chapter describes the concepts and intentions of definitions in Dhdl. For a detailed syntax
specification and useful examples, please refer to the Dhdl language specification in Appendix A.
Some parts in the language specification might have already be defined and explained within this
chapter, but are nonetheless included there for completeness.

Hardware, simulation and package definition are three different problem domains with the
intention to design an integrated circuit. For each of these domains a separate language concept
is presented, although they use the same core idea and similar syntax.

3.1 Hardware Definition

Todays most commonly used hardware description languages, like Verilog or SystemC, use an
imperative approach for defining systems. Their concept of simulation is important for their
language design, just take a look at the construct of sensitivity lists in VHDL. Dhdl has the
model of causal time (see Chapter 2) to be able to take a different approach.

The basic element in Dhdl is a signal. These signals are kept within modules that have in-
and output ports that are also signals. Each signal must be assigned exactly one expression. In
the most simple case these are Boolean expressions. From the point of view of a module, all
internal signals, output ports of the module and input ports of submodules are assigned within it.
All other signals are assigned somewhere else. For the simulator it is now possible to use these
expressions and the current values of the signals to determine all values after one tick time has
passed. In this sense, Dhdl is similar to a functional programming language. This part of Dhdl
is also possible to be modeled by the formal semantic defined in Chapter 5. Theoretically, these
constructs are sufficient to model all possible circuits, but it might be more than inconvenient.
The solution to this can be found in Section 3.1.4, where many more features of Dhdl are de-
scribed that make designing hardware easier. And in Section 3.1.2 the available expressions will
be explained in detail.
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3.1.1 Types

All languages in Dhdl are strongly typed, which is an immediate result from the problem domain.
There are five primitive types,W , B,N , I andD.W ranges over binary values and “undefined”.
B is for binary values, N for natural numbers including zero and I for integer values. Values in
D define a range over decimal numbers. The order is B ⊆ W and B ⊆ N ⊆ I ⊂ D. Only ex-
pressions of the wire typeW can be later generated into hardware. The only two representatives
ofW are Signal and Register. D is used for checking timings and all other types are for
generating hardware structure.

In the following, the term variable will be used to refer to a primitive type as well as a
module.

3.1.2 Expressions

The key construct for describing logic circuits in Dhdl is the guarded expression. A guarded ex-
pression consists of subexpressions, where each has its own guarding expression and a resulting
logic expression. In the most trivial case the guarding expression is empty and thus true. It can
also be a list of expressions, where, if and only if all expressions evaluate to true, so does the
guarding expression. The result of a guarded expression is the result of the first logic expression
for which its guarding expression evaluate to true. Listing 3.1 shows how a simple c := a ∧ b
can be encoded in that way, provided that the part with “d <= true” is ignored. The first subex-
pression sets c to true if the guarding expression is true, and through this a and b are true. The
second subexpression sets c to false in all other cases, since its guarding expression is empty.

Listing 3.1: Guarded and-gate expression.
1 d <= false / / d e f a u l t v a l u e o f d
2 c <=
3 a == true , b == true / / f i r s t g u a r d i n g e x p r e s s i o n
4 −> d <= true , true / / s i d e e f f e c t d s e t t o t r u e , c a s s i g n e d t r u e
5 −> false / / " e l s e " pa th , s i n c e t h e second
6 / / g u a r d i n g e x p r e s s i o n i s empty

Another feature is that guarded expressions can also have side effects. When a guarding
expression evaluates to true also the value of other signals can be set, provided that those sig-
nals have a general expression for determining their value otherwise. If that would not be the
case, latches could easily be created by accident. Cross referencing guarded expressions is not
recommended but it is currently not checked during translation. Again Listing 3.1 provides an
example, this time for an expression defining d := a ∧ b using side effects within the expres-
sion for c. More sophisticated examples for the use of guarded expressions can be found in the
appendix in Section A.9.

3.1.3 Delay Annotation

The proofs in the formal analysis and verification framework require modules to satisfy certain
time constraints. The key feature of Dhdl is to annotate these constraints directly within the def-
inition of the modules. Through this, it is possible to check a variety of timing properties of the
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signals in the module and submodule. These expressions often have to use signals from within
submodules. These expressions are the only ones that can also depend on structures of other
modules and by that reduce the flexibility of the design, since there might occur problems when
refactoring the used submodules. However, with each translation of the code, also the existence
of the referred signals is checked and thus it should be possible to adapt these expressions quite
fast during development.

Listing 3.2 gives two delay annotation examples. The “require_module_range” delay prop-
erty states that the timing from the in to the out port of mod must be in between one and two
nanoseconds. The second delay property, “require_slow_chain”, states that the sum of the de-
lays from the in to the out port of mod1, as well as the in to the out port of mod2, has to be
greater than 10 nanoseconds.

Listing 3.2: Two delay annotation examples.
1 delay require_module_range := 1ns < (mod .in , mod .out ) < 2ns
2 delay require_slow_chain := 10ns < (mod1 .in , mod1 .out ) + (mod2 .in , mod2 .out )

3.1.4 Extended Description Concepts

With good programming languages it is possible to define solutions for common problems of
their domain in a readable and comprehensive style. The concepts introduced in this section are
intended to achieve exactly this for Dhdl.

Synchronous Designs

To design synchronous systems in a more comfortable way, Dhdl supports a special signal,
namely register. A register in Dhdl is a signal that changes its value to zero when the reset signal
is one, to the value of expression when there is a rising edge at the clock signal and keeps its
previous value otherwise. The signals reset and clock must exist in the module where the register
is defined and they are automatically connected.1 When using port forwarding (see 3.1.4) for
clock and reset interconnect, designs can be kept simple with respect to annotation of these
networks.

Using a register in combination with a multiline expression yields a compact annotation of
a state machine.

Interconnection of Ports

For convenience it is possible to just use a submodule’s reference name to access certain ports.
When assigning an expression that way it is connected to the input port “in” and the usage within
an expression accesses the output port “out”. Aside from the explicit annotation of submodules,
it is also possible to embed a module within an expression. For this the module must be de-
signed with the “out” output port and an input port parameter list. A simple example is given
in Listing 3.3, where in line 8 the input port inv.in is assigned a and in line 9 the output port
inv.out is assigned to b.

1The limitation to a high active reset and the clock trigger at the rising edge will be removed in later versions.
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Listing 3.3: Using the submodule’s reference name for port access.
1 module invert {
2 in Signal in
3 out Signal out <= not in
4 }
5

6 module result {
7 in Signal a
8 invert inv <= a
9 out Signal b <= inv

10 }

Input ports marked with the keyword forward will be automatically connected to all not
explicitly connected input ports of submodules with the same name. In Listing 3.4, the keyword
forward is used in line 2 and through this, the signal clock is automatically assigned to the signal
counter.clock.

Listing 3.4: Using the keyword forward for automatic interconnect.
1 module {
2 forward in Signal clock
3 Counter counter
4 out Signal out [ 4 ] <= counter
5 }
6

7 module Counter {
8 in Signal clock
9 Register out <= increment (out )

10 }

Interfaces

Interfaces in Dhdl describe only the available ports of a module. As in other languages, like Java,
interfaces are used to represent modules as black boxes and assure port compatibility within
different implementations. Each module can implement any number of interfaces.

Parameters

Parameters are used to make modules and interfaces generic and to allow modules to be em-
bedded directly into logic expressions. For easy distinction there are two types of parameters,
namely generic parameters and signal parameters. They are differentiated by syntactical anno-
tation and supported parameter types to force a clean separation.

Wiring Code

In hardware designs, problems are often solved by using circuit cells of the same structure and
wiring them in a specific way. This can be done in Dhdl with wiring code. This wiring code is
executed in a sequential manner and yields a module with the basic assigned signal structure for
simulation and code generation. Within the code it is possible to define and assign signals, add
delay constraints and also if-structures, as well as for-each-loops are available.
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Intentionally, only loops of the for-each type are supported in order to encourage program-
mers to think about how to treat each of their used submodules systematically. It is also suf-
ficient, since all signals must be assigned exactly once. The for-each loop construct of wiring
code takes a variable and an identifier in square brackets as shown in Listing 3.5. The identifier
will then be used as iteration variable within the code body of the loop, holding the current index
value. In this example all input ports in of the submodules cell will be connected to the specific
input ports in of the whole module. This code, by definition, guarantees that all input ports in
of the submodules are connected, but not that all input ports in of the current module are used.

Listing 3.5: For-each loop example.
1 foreach cell [i ] {
2 cell [i ] . in <= in [i ]
3 }

Assertions

A common method to find flaws when writing software is to use assertions. Assertions in the
hardware description of Dhdl have the scope of a module and are checked before the wiring code
is executed. The main goal of these assertions is to check whether the generic parameters have
valid values and the ports arrays are within the supported ranges.

Packages

To keep the designs well structured the concept of packages is used. Similar to packages in
Java, packages in Dhdl are folders within the file structure and their modules can be loaded with
import statements. Currently, no wildcard characters are supported.

Macros

Macros are accessed and imported like regular modules, but can yield specific simulation objects
or code. Macros are defined in Java code and by this are able to extend the Dhdl language with
numerous functions.

Replacement Terms

For each package it is possible to define identifiers that stand for expressions. These identifiers
will then be replaced within all other expressions with the defined one. This is similar to C-
macros and can be used for a designer’s own constants.

3.2 Simulation Definition

Simulating hardware designs at an early stage of development is necessary to write working
code. With the model of causal time in Dhdl it is even possible to have some sort of time
dependence in the first possible simulation level. This is contrary to current available behavioral
simulations of languages such as VHDL.
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A simulation run written in Dhdl has the intention to show that a specific functionality of the
design is correctly implemented.2 For small modules, single simulation runs might also cover
their complete specification. Different to the hardware definition, the simulation language is
imperative. Mostly timed behavior is tested which is done by giving a specific input and waiting
for a corresponding output. Thus, an imperative execution of the specification best reflects the
problem domain.

The simulation principle of the Dhdl simulator is time based. The causal time model defines
the minimum time difference with one tick causal time. When incrementing the causal time by
one tick in a simulation run, all new signal state values are calculated based on the old signal
state values. Through this method, timing loops are avoided.

Usually, there are several simulation runs executed for testing. If one of them fails the other
ones are still run afterwards, since, for finding errors, it can also be useful to know exactly which
simulation runs fail and pass. In a simulation file, several simulation runs can be specified.

3.2.1 Simulation Run Procedure

Each simulation run controls its own simulation environment that models the modules’ behavior,
controls the time and also the signal state recorders. Each simulation environment needs a
specific setup to function properly. Due to this, a simulation run consists of three phases, namely
setup, register and run. It starts with a simulation environment at tick zero, that contains no
modules and by this also no signal state recorders. During the setup phase variables might be
declared, etc. but most importantly the modules that are tested are added to the simulation
environment. This phase is ended by sending the start command to the simulation environment.
Then the register phase follows, in which signals are added to the listening list and through
this, signal state recorders are implicitly added to the environment. To have complete traces,
this is recommended to be done before the simulation environment has advanced time by taking
a simulation step. However, this phase can be left out when no traces are needed. Finally,
during the run phase inputs are manipulated, output values are verified and the simulation time
is advanced.

3.2.2 Simulation Environment

The simulation environment controls the calculation of the signal values, the advancing of time
and the recording of signal states. When the simulation time should advance by one tick time, a
step command has to be issued. As the simulation environment takes a step, time is advanced by
one tick and the new signal states are calculated purely based on the previous states. The sim-
ulation environment’s signal state recorders sample only the old signal states, since the current
states can still be changed by the further executed simulation code.

2This should be analogous to the test driven development philosophy, but there is no limitation in any way
preventing a different use.

11



3.2.3 Results

To analyze the output of test simulations it is best to use assertions. When an assertion expression
fails, the specific simulation run is aborted and either the line wise position of the assertion and
its resulting value or a customized error message are printed. If no error occurs, the simulation
runs are usually executed without any output. This of course is useful for regression testing, but
can be tedious for development and further analysis.

For that purpose the simulation interpreter in Dhdl is also capable of printing the recorded
signal values in a semicolon separated style, which can be further processed by other programs.
There is also an internal waveform viewer available.

3.2.4 Language Features

For convenient simulation run description, some features also common to other imperative lan-
guages are available. In this section are the detailed descriptions for statements that differ to
some extent from the general concepts.

Assigning Values

Contrary to the hardware language, when assigning values to signal arrays or Boolean variable
arrays it is possible to use values within N . This value is then automatically converted to a
Binary number representation and stored right aligned in the Boolean array. Leading zeros are
added. If the destination array is too small, an error is printed and the current simulation run
aborted.

Assertions

An assertion can contain a whole list of comma separated expressions. For an assertion to
evaluate to true, all subexpressions have to evaluate to true, otherwise its result is false. The last
expression can be followed by a comma and a print command for a specific error output which
will be executed in case the assertion fails. If no print is specified, simply the position and value
of the failed assertion is printed. When an assertion evaluation fails, the current simulation run
is aborted.

Loops

The simulation language supports all kinds of loops (while, do-while, do-until, for, for-each),
where for and for-each have a Dhdl specific meaning. The for-each loop is already described
in Section 3.1.4 and can be used in the simulation code just the same way. The for loop has a
variable definition over a range in its head and executes the body accordingly. Listing 3.6 shows
an example where the body of the loop is executed 10 times and variable i is iterating from 1 to
10. With the keyword downto it is possible to reverse the direction.

Listing 3.6: For loop example.
1 for i := 1 to 10 {
2 cell [i ] . in <= in [i ]
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3 }

3.3 Package Definition

Neither the hardware definition, nor the simulation language provide a convenient way of de-
scribing how a final module is connected to pins of a chip and which target technology to use.
Therefore, a configuration file consisting of assignments is used for the package definition.
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CHAPTER 4
Dhdl Implementation and Interaction

As the previous chapter defined all the concepts for the languages, this one is devoted to the
Dhdl translation and simulation programs’ implementation and its interaction concept and im-
plementation with focus on the development flow used to derive the net lists and the resulting
hardware from the design and simulation specifications in Dhdl.

Dhdl has been developed according to the guidelines of test driven development as specified
in [2].

4.1 Technology Decisions

The Dhdl program is written in Java 6 [16]. Java has the advantage of built-in garbage collection,
support for Windows and Linux and provides rich libraries. Furthermore, there exist tools for
automated testing, on the fly code compilation and lexer and parser generation. For testing,
JUnit 4.8.2 [13] and Easymock 3.0 [23] are used, as they are widely spread within the test
driven development community. Antlr 3.2 [19] was chosen to generate lexers, parsers and tree
walkers, as it provides a comfortable language for definition (see [17] and [18]) and is still
actively developed. With Javassist 3.13.GA[4] Java code is compiled on the fly. As external
synthesis tool, Quartus II 9.1sp1 Web Edition from Altera [5] was chosen, since it fits to the
Altera DE2 Development and Education Board, on which the generated hardware was tested.

4.2 The Dhdl Development Flow

The Dhdl development flow is a result of the used tools and concepts defined prior. All interac-
tion with the Dhdl program happens along this development. During the development of a Dhdl
design, the complete flow chart given in Figure 4.1 is covered. All rounded rectangles represent
tasks performed by a program, the circles yes/no feedback, and the other rectangles are files.
The input for the Dhdl program are hardware, simulation and package description when all pos-
sible tasks should be performed. With the help of an external synthesis tool a netlist is generated
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Figure 4.1: The development flow of a hardware design from specification to timing verification.

and Dhdl reports whether the simulations ran correctly and the timing requirements are met. For
simulation runs, the hardware and simulation description are enough to yield the result, whereas
for the timing verification also the package description is needed since the timing information of
the full netlist is processed for accurate results. In the following the different tasks of the flow
chart are explained in detail.

4.2.1 Analyze

Each design contains a single module as top level entity. Module identifiers are either directly
passed to the Dhdl program or are retrieved from a package or simulation description. During
the analysis of the hardware description, each module is parsed and stored to an internal data
structure. Then the compliance with its parent modules and implemented interfaces is checked.
Also, the assertions are evaluated. The wiring code is then executed to obtain the full module.
All expressions are optimized and type checked and it is assured that all output signals of each
module are assigned expressions.

4.2.2 Generate

Depending on the desired result either VHDL code is generated from the internal module rep-
resentation or Java code. The Java code specifies classes extending a module simulation class.
These classes are compiled on the fly and used for simulation. If a package file is given, a
tcl-script for the external tool can be generated.
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4.2.3 Simulation

For executing a simulation run the simulation run description is parsed and interpreted sequen-
tially. Every time a module is added to the simulation environment it is analyzed and when
starting the simulator all simulation objects are generated. When all commands of a simulation
have been successfully executed, the simulation has passed.

4.2.4 External Tool

If the external tool for synthesis and timing analysis is started by the Dhdl program, its execution
is controlled with the tcl-script generated from the package description. After the external tool
has terminated, Dhdl can start the timing verification.

4.2.5 Timing Verification

For timing verification, the timing files are parsed and their signal network with timing infor-
mation is constructed. Then all the delay assertions of the modules are evaluated. To evaluate
a delay between signals, these signals are looked up in the network and then the minimum and
maximum delay value of the paths in between them is determined with a depth first search algo-
rithm.

4.3 Specific Issues

Most parts of the program are written in a straightforward fashion as it should be. This section is
devoted to the parts where this method was not sufficient enough and it is worth to take a closer
look at the solution. Also, in instances where a different approach seemed promising.

4.3.1 Network Representation

The signal delay extraction is the core feature for timing verification. As external synthesis and
time analysis tool, Quartus is used and due to this some parts of building up the timed network
depend specifically on the output formats of Quartus. The data structure for the internal network
representation is a map from strings to lists of connections, where a connection contains the
connected signals, the delay between them and the hierarchy level within the module structure.
The index string is the origin signal of the connection. Another map called entry map consisting
of the same data structure, but with zero delays within the connections, is used to connect the
input and output ports of modules to the network and by this translates the names of the Dhdl
naming system to the ones used by the Quartus output.

Parsing the Timed Network

Quartus generates two files for timing analysis, i.e. the VHDL file containing the network for
the final design using the suffix vho and a standard delay format file (SDF file, see [12]) with the
delays using the suffix sdo. Since Quartus names the signals with their full path according to the
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VHDL component structure, it is possible to deduct the according modules and signals within
Dhdl.

First, the network is derived by parsing the vho file. The containing cells with port mapping
are extracted and the cell names are translated to the Dhdl names and put into the network with
the according module level and zero delays. The translated cell name with an added space and
either “in” or “out” and a list of the full input and output names and zero delays is then added to
the entry map described earlier in “Network Representation”.

Then the delay file is parsed and for each specified delay the associated connection is found
within the network map and its delay is set. The delays used in Dhdl only contain the minimum
and maximum value and so during the extraction of delays all but those two are ignored.

The VHDL lexer and parser only implement the VHDL subset used within the generated
files. For parsing the SDF file, a full lexer complying with the standard specified in [12] has
been implemented, but again the parser recognizes only the constructs used by Quartus. In both
cases, a full implementation according to the standards would have increased the programs’ size,
complexity and vulnerability to bugs without any payoff.

Searching the Delays

A simple DFS algorithm is used to determine the delay in between signals. From the entry
map, described earlier in “Network Representation”, the list of signal input ports is taken for the
starting signal and the list of output ports for the destination signal. Then the DFS algorithm
is run for each signal from the starting list. A signal is not further analyzed when the current
signal is within the destination list or the level of the current signal is lower than the module
containing the delay assertion. In the first case, a zero delay is returned and in the second, that
no path was found. This is valid, since delay assertions can only refer to signals of their module
and its submodules. This property is deducted naturally from the concept of a module enclosing
complexity and providing an interface. Also through the language definition, by having no
operator to refer to a higher module in the architecture or providing a special reference name for
the enclosing module. When all follow up signals have been analyzed the merge of all further
signal delays is returned. However, all connections to signals within the assertions’ module and
its submodules have to be analyzed, since the minimum and maximum delay can occur within
completely different paths.

4.3.2 Hardware Description Parsing

The parsing of hardware description files happens in the following order. First, all files are syn-
tactically parsed and an abstract syntax tree is constructed. Each file represents its own scope.
From these trees the information is passed to the objects representing replacement terms (de-
scribed in Section 3.1.4), modules and interfaces. Then, the parameters of the modules and
interfaces are interpreted and the port’s expressions are optimized in a first step. Then, the mod-
ules and interfaces are type checked and the assertions are evaluated. After this has been done
for all modules and interfaces, the internal signals of the modules are optimized and all assigned
expressions are type checked and further optimized. Finally, the wiring code is interpreted, the
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delay assertions are optimized and it is checked whether all expressions that are needed are
assigned.

4.3.3 Expression Optimization

Expressions in Dhdl are optimized from the leaves to the roots where every subexpression is
checked whether it is replaceable by a single node or a smaller expression tree and, if so, the re-
placement is performed. Through this constants are replaced by numbers, numbers are merged,
double negation is removed, Boolean expressions where one parameter is a constant are com-
pressed and clauses and unreachable parts of guarded expressions removed. Assertions in mod-
ules are only evaluated with this expression optimization.

4.3.4 Expression Parsing with Operator Precedence

The recommended method for parsing expressions in Antlr with operators of different prece-
dence order is by using Antlr’s backtracking feature to find a parse tree matching the expression
grammar (see [17, pages 266 to 268]). This works only for expressions allowing a small set of
possible operators within them.

However, Dhdl has and needs a rich set of operators, not only to construct guarded expres-
sions. To overcome this problem, expressions are parsed in two steps. First, each expression
is parsed and transformed into a list of node elements, where each node represents exactly one
syntax element. The nodes are assigned values according to their precedence level: 0 for a final
element, 1 for all unary operators, 2 for multiply, modulo and divide, etc. The recognition of
unary and binary minus is done by Antlr according to the specified expression grammar. Then,
these nodes are sequentially processed and formed into a tree that conforms to the specified
operator precedence. This tree is constructed starting from a sentinel node with the highest
precedence level as root. A pointer to the last inserted node is kept and initially points to the
sentinel. Then, the expression list is proceeded sequentially. Final elements and unary operators
are simply added to the pointer as child nodes. Otherwise, the pointer moves upwards in the tree
as long as the inserted node has a higher precedence value than the pointer. Then, the last child
of the pointer is added to the new node as a child and the pointer swaps its last child with the
new node. Afterwards, the sentinel root node of the tree is found by searching upwards from the
pointer and this tree is then used as AST for the expression. When evaluating an expression tree
that is generated with this algorithm, operators on the same precedence level are evaluated from
right to left. Figure 4.2 shows an example of a tree construction from an expression according
to this algorithm.

4.3.5 Simulator Generation

The Dhdl simulation environment in Java consists of a simulator class, a class for the signal state
recorders, a class for the simulated signals and one for the registers, as well as one class for each
used parameter setting for a module. These modules are all derived from one module simula-
tion class. This high amount of classes is necessary since the representation of the modules is
translated to Java code and compiled on the fly. The reason for this is speed. Clearly, a compiled
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Java class is faster during execution than an interpreter written in Java and the most frequent task
during simulation is the calculation of signal values as time advances. Thus, optimizing this step
first is a promising approach to generating a fast simulator. In this context, the terms module,
signal and register now refer to their simulation classes.

The calculation of the new signal values after a tick has passed is implemented as follows.
The simulator controls this process with two functions, i.e. calcTick and switchTick. A signal
or register, respectively, has the functions getState, setState and switchTick. Only after calling
switchTick, a value that has been set with setState will be read with getState. Therefore, calcTick
of the first module calls all submodules’ calcTick methods and then calculates the new signal
values and sets them with setState. Similarly, switchTick calls all switchTick methods of the
submodules and then those of its own signals and registers.

The generated modules, as mentioned before, derive themselves from the module simula-
tion class. This class also has the functions initLocal and calcTickLocal. Code for those two
functions is generated from the module description and they are replaced on the fly. Also, new
members are added for the submodules, and local signals and registers. The initLocal func-
tion contains all the code for initializing and adding the submodules and connecting signals. In
calcTickLocal, the code for calculating the outcome of the module’s assignment expressions is
performed. Extending and compiling classes on the fly is implemented with the use of Javassist
(see [4]). For fast calculation of values from the wire typeW , a class containing two dimensional
arrays is used, just like the one for symbol checking in [18, page 214].
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CHAPTER 5
Semantics

In this chapter, the deterministic execution model of the Dhdl simulator is specified with a for-
mal semantics. The resulting configurations of the semantic interpretation are then mapped to
executions of the formal modeling and analysis framework of [9].

The specified semantics cover the core features of Dhdl and the formal modeling and anal-
ysis framework. So, for the hardware definition it includes modules with ports, signals and
submodules. The available expression will be of logical and guarded type, but with the con-
straint that objects with guarded expressions must be defined in a module after all others have
been defined. Furthermore, it is necessary that within an expression for a signal, this very signal
is not assigned an expression within a side effect.1 Also, the syntax of the simulation code is
limited to the basic commands.

The definitions and methods in this chapter closely relate to those used in [10], since it is a
well known and widely accepted approach. In its core, the semantic interpretation models the
execution of the simulation code. It reflects the execution of simulation code with a structural
operational semantics in order to exhibit the behavior of the simulation interpreter.

5.1 Basic Definitions

In the semantic interpretation, the Dhdl definition files are viewed as describing a transition
function from one state of the signals in a module to another state, after one tick of time in
the causal time model has passed (see Chapter 2). The simulator code is the starting point for
the semantics execution. The structural operational semantics defined for Dhdl operate on the
following construct:

〈(S,D, T ), (s, e, h)〉 (5.1)

Where,
1This is also not recommended in general Dhdl.
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• S is the string for simulation code,

• D the string for definition code,

• T the transition function as a mapped set,

• s the signal state as a mapped set,

• e the environment as a mapped set and

• h the history of the recored states as a mapped set.

A semantic interpretation starts at the initial configuration and rules are applied for as long
as is possible. When no further rule can be applied, the semantic interpretation is terminated and
its result is the last configuration.

In the following all types used in the construct above are explained in detail:

Strings Strings are, when necessary, annotated with single quotes and their concatenation with
a plus sign, e.g. ’abc’ + ’d’ = ’abcd’. The empty string will be represented with ε and newlines
with ’\n’, like in C. Sometimes, the single quotes are left out for better readability.

Within this semantic rules and algorithms, strings and their substrings can also be referred
to as abstract syntax trees (see [15, page 70]). The referring name is then identical with a syntax
definition name and thus the string has to map the syntax rule. An explicit model of these trees
would cause the rules and algorithms to be more difficult to read without providing more insight.

Command Identification When referring to the first command within the code of S orD, this
is written as the command followed by a colon and then a symbol for the remaining code. E.g.
D = Signal a : D′ means that D starts with the definition of member a from the type Signal.
Since there are no semicolons used in Dhdl to determine the end of a command, the colon is
used to represent it. This colon style can also be used to select another symbol within the code,
e.g. D = module name {: D′ :} : D′′, where the closing brace is the one corresponding to the
first opening bracket.

Mapped Sets Mapped sets are sets of tuples of the form a 7→ b, where the left string a of
the tuple maps to the right string b. These mapped sets are annotated with mapping arrows
7→ within the comma separated tuples, e.g. M = {a 7→ b, c.e 7→ d}. The left string of
the tuple is also called symbol and the right one, element, for the purpose of clear distinction.
The element can be accessed with the the symbol and dot operator, e.g. M.a. If the symbol
contains dots, also brackets can be added. They are not required, but emphasize the symbol
string, e.g. M.(c.e) = M.c.e = M.′c.e′. Only symbols fulfill the ∈ property, e.g. a ∈ M
and b 6∈ M . Furthermore, the [ ] operator adds or “substitutes” symbols, e.g. M ′ = M [e 7→
a][a 7→ f ] = {a 7→ f, c.e 7→ d, e 7→ a}. When concatenated, these operators are executed in the
order of appearance, starting with the left most one. For readability, it is possible to have more
expressions set at the same time, e.g. M [a 7→ b][c 7→ d] = M [a 7→ b, c 7→ d]. If the accessed
symbol is not part of the set, the expression is equal to ε, e.g. ∅.b = ε.
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5.2 Syntax

For semantic analysis of a language a full syntax definition is necessary. The full EBNF syntax
of the supported Dhdl language subset is given in Listing 5.1.

Listing 5.1: Syntax definition expressions modeled by the formal semantics.
sig_expr ::=

expr Newline |
g_expr+

g_expr ::=
clause_list ’->’ side_effects? expr Newline

w_expr ::=
(clause_list ’->’ expr)+

c_list ::= (expr (’,’ expr)*)?

side_effects ::= (variable ’<=’ expr ’,’)+

expr :=
un_op expr |
expr bin_op expr |
’(’ expr ’)’ |
value |
variable

assert_expr :=
un_op expr |
expr bin_op expr |
’(’ expr ’)’ |
value |
sim_signal

un_op ::= ’not’ | ’!’

bin_op ::=
’and’ | ’nand’ | ’or’ | ’nor’ | ’xor’ |
’equiv’ | ’==’ | ’!=’

value ::= ’true’ | ’false’

variable ::=
Identifier (’.’ Identifier)?

sub_port ::=
Identifier ’.’ Identifier
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sim_signal ::=
Identifier (’.’ Identifier)*

Identifier ::=
[a-zA-Z] (’_’ Identifier_character |

Identifier_character)*

Identifier_character ::= [a-zA-Z0-9]

Newline ::=
((’\r’)? ’\n’)

module ::=
’module’ ’{’

module_element*
’}’

module_element ::=
’in’ ’Signal’ Identifier Newline |
’out’ ’Signal’ Identifier ’<=’ sig_expr |
’Signal’ Identifier ’<=’ sig_expr |
’:’ sub_port ’<=’ sig_expr |
Identifier Identifier Newline

simulation ::=
(simulation_command Newline)*

simulation_command ::=
’simulator’ ’add’ Identifier ’:=’ Identifier |
’simulator’ ’start’ |
’simulator’ ’listen’ sim_signal |
’simulator’ ’step’
sim_signal ’:=’ expr
’assert’ assert_expr

Initially, passed strings to D have to match the module rule and those for S have to match
simulation.

5.3 W Semantics

W arithmetic is used for calculating values of signals by semantic interpretation of expression
code. From the rules shown below, rule 1 is applicable for empty clause lists, which has the
truth value true, just like an empty formula. Rules 2 to 4 just map the strings to the objects in
W . Rule 5 is for accessing the values of signals. Rules 6 to 12 model logic operations. Rule 13
is for clause lists and rules 14 and 15 for guarded expressions.

1. W[]s = true
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2. W[true]s = true

3. W[false]s = false

4. W[undef]s = undef

5. W[sim_signal]s =W[s.sim_signal]

6. W[not a]s =W[! a]s =


true ifW[a]s = false
false ifW[a]s = true
undef ifW[a]s = undef

7. W[a1 and a2]s =


true ifW[a1]s =W[a2]s = true
false ifW[a1]s = false ∨W[a2]s = false
undef if otherwise

8. W[a1 nand a2]s =


true ifW[a1]s = false ∨W[a2]s = false
false ifW[a1]s =W[a2]s = true
undef if otherwise

9. W[a1 or a2]s =


true ifW[a1]s = true ∨W[a2]s = true
false ifW[a1]s =W[a2]s = false
undef if otherwise

10. W[a1 nor a2]s =


true ifW[a1]s =W[a2]s = false
false ifW[a1]s = true ∨W[a2]s = true
undef if otherwise

11. W[a1 xor a2]s =

W[a1 ! = a2]s =


true ifW[a1]s 6=W[a2]s ∧W[a1] 6= undef ∧W[a1] 6= undef
false ifW[a1]s =W[a2]s 6= undef
undef if otherwise

12. W[a1 equiv a2]s =

W[a1== a2]s =


true ifW[a1]s =W[a2]s 6= undef
false ifW[a1]s 6=W[a2]s ∧W[a1]s 6= undef ∧W[a1] 6= undef
undef if otherwise

13. W[a1, a2]s =


true ifW[a1]s = true ∧W[a2]s = true
false ifW[a1]s = false ∨W[a2]s = false
undef if otherwise

14. W[clause_list -> expr]s

=


true ifW[clause_list]s = true ∧W[expr]s = true
false ifW[clause_list]s = true ∧W[expr]s = false
undef if otherwise
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15. W[clause_list -> expr w_expr]s

=


true ifW[clause_list]s = true ∧W[expr]s = true
false ifW[clause_list]s = true ∧W[expr]s = false
true ifW[clause_list]s = false ∧ cW [w_expr]s = true
false ifW[clause_list]s = false ∧ cW [w_expr]s = false
undef if otherwise

5.4 Rules

Since the causal time model is the basis for hardware simulation in Dhdl, structural operational
semantics are used for interpretation. These pronounce especially well the tick-wise transition
from state to state as time advances. The semantic rules given here can be divided into two
classes according to their functionality. System definition rules translate definition code D into
transition code for the mapped set T . This transition code is a condensed version of the defini-
tion code and interpretable by W semantics. Simulation rules directly interpret the simulation
code S. When a new module is added to the system, all system definition rules must be executed
before the simulation code can be further interpreted. This is achieved by requiring that D = ∅
for each simulation rule. Only a small set of rules is defined that still supports the specified
subset of Dhdl in order to keep the semantic interpretation simple.

Rules have one of the following two shapes:

1. A⇒ B

2. C ⇒
∗ D

A⇒ B

With rules of the first shape, it is possible to directly reach the configuration B by applying
the rule to A. For the second type, the configuration B can only be reached, if and only if the
configuration D can be reached by applying one or more rules on the configuration C.

In the following context, type and name have the syntax of Identifier and, although the
cursive names are included within strings, they represent syntactical constructs. This is done to
improve the readability of where a definition within the code ends and the next one begins.

5.4.1 System Definition Rules

A hardware design in Dhdl is characterized by its modules, signals and their expressions. These
rules are used to handle the hardware definition code D.

Module Definition

[module]

〈(S,D′, T ), (s, e, h)〉 ⇒∗ 〈(S, ε, T ′), (s′, e′, h)〉
〈(S, ’module name {’ : D′ : ’}’, T ), (s, e, h)〉 ⇒ 〈(S, ε, T ′), (s′, e, h)〉
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Interpreting a module definition. This rule forces the body of the module to be fully interpreted
and all of its definitions transferred to the transition set.

[submodule]

〈(S, e.type, T ), (s, e′, h)〉 ⇒∗ 〈(S, ε, T ′′), (s′′, e′′, h)〉
〈(S, ’type name’ : D,T ), (s, e, h)〉 ⇒ 〈(S,D, T ′′), (s′′, e′′, h)〉

• precondition: type ∈ e

• e′ = e[e.mod_curr 7→ e.mod_curr + ’.’ + name]

Including a submodule within a module. The nested path for the submodule is kept in mod_curr
of the environment set e. The module definition of the submodule is retrieved from e and fully
interpreted. No check for modules with the same name is performed, but the sets of signals
within the modules have to be disjoint. A direct check would increase the semantics’ complexity
without providing an adequate advantage.

Signal Definition

[input]

〈(S, ’in Signal name’ : D,T ), (s, e, h)〉 ⇒ 〈(S,D, T ), (s′, e, h)〉

• precondition: e.mod_curr + ’.’ + name 6∈ s

• s′ = s[e.mod_curr + ’.’ + name 7→ undef]

Defining an input port. The input port must not be defined elsewhere and naturally, the defining
module cannot set its expression.

[output]

〈(S, ’out Signal name <= sig_expr’ : D,T ), (s, e, h)〉 ⇒ 〈(S,D, T ′), (s′, e, h)〉

• precondition: e.mod_curr + ’.’ + name 6∈ s

• s′ = s[e.mod_curr + ’.’ + name 7→ undef]

• T ′ = addexpression(T, e.mod_curr, name, expr)

Defining an output port. The output port must not be defined elsewhere and its expression must
be assigned at definition.

27



[signal]

〈(S, ’Signal name <= sig_expr’ : D,T ), (s, e, h)〉 ⇒ 〈(S,D, T ′), (s′, e, h)〉

• precondition: e.mod_curr + ’.’ + name 6∈ s

• s′ = s[e.mod_curr + ’.’ + name 7→ undef]

• T ′ = addexpression(T, e.mod_curr, name, sig_expr)

Defining a signal. The signal must not be defined elsewhere and its expression must be assigned
at definition. This definition might lead to a pitfall, as no visibility checks are modeled within
the semantics to keep them simple. Thus, these signals could be accessed like output ports.

[wire]

〈(S, ’: sub_port <= sig_expr’ : D,T ), (s, e, h)〉 ⇒ 〈(S,D, T ′), (s, e, h)〉

• preconditions: e.mod_curr + ’.’ + sub_port ∈ s, e.mod_curr + ’.’ + sub_port 6∈ T

• T ′ = addexpression(T, e.mod_curr, variable, sig_expr)

Assigning a submodule’s input port. The port to be assigned must exist and it must not have
been assigned so far. Furthermore, the syntax requires that it is a port of a submodule and must
therefore be an input port, since all others have to be assigned on definition.

5.4.2 Simulation Rules

Simulation rules define the semantics for code within S.

Adding Modules

[add]

〈(’simulator add name := type’ : S, ε, T ), (s, e, h)〉 ⇒ 〈(S, e.type, T ), (s, e′, h)〉

• preconditions: type ∈ e, e.sim_stat = init

• e′ = e[mod_curr 7→ name]

Modules can only be added before the simulator is started.
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Starting the Simulator

[start]

〈(’simulator start’ : S, ε, T ), (s, e, h)〉 ⇒ 〈(S, ε, T ), (s, e′, h)〉

• preconditions: type ∈ e, e.sim_stat = init

• e′ = e[sim_stat 7→ listen]

Simply prevents the adding of more modules.

Listen to a Signal

[listen]

〈(’simulator listen sim_signal : S, ε, T ), (s, e, h)〉 ⇒ 〈(S, ε, T ), (s, e, h′)〉

• preconditions: e.sim_stat = listen, sim_signa ∈ s, sim_signa 6∈ h

• h′ = h[signal 7→ ε]

Enlists a signal to be recorded in the state history.

Execute Simulator Steps

[step]

〈(’simulator step’ : S, ε, T ), (s, e, h)〉 ⇒ 〈(S, ε, T ), (s′, e′, h′)〉

• preconditions: e.sim_stat ∈ {listen, init}

• ∀signal ∈ s : s′ =W[T.signal]s

• h′ = h(∀signal ∈ s : [signal 7→ h.signal + ’:’ + s.signal])

• e′ = e[sim_stat 7→ run]

Computes the new state values with the W semantics and records the past states in the state
history.

Set Value

[set]

〈(’sim_signal := sig_expr’ : S, ε, T ), (s, e, h)〉 ⇒ 〈(S, ε, T ), (s′, e, h)〉〉

• precondition: sig_expr ∈ s

• s′ = s[name 7→ W[sig_expr]s]

Assigns the string to a signal.
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Assert

[assertt]

〈(’assert assert_expr’ : S, ε, T ), (s, e, h)〉 ⇒ 〈(S, ε, T ), (s, e, h)〉〉

• precondition: W[assert_expr]s = true

When the assertion holds, the semantic interpretation just continues.

[assertf ]

〈(’assert assert_expr’ : S, ε, T ), (s, e, h)〉 ⇒ 〈(FAIL, assert_expr), (s, e, h)〉

• precondition: W[assert_expr]s = false

When the assertion fails, the semantic interpretation is terminated and a failure configuration is
returned.

Terminate

[term]

〈(ε, ε, T ), (s, e, h)〉 ⇒ 〈TERM, h′〉

• preconditions: e.sim_stat ∈ {listen, init}

• h′ = h(∀signal ∈ s : [signal 7→ h.signal + ’:’ + s.signal])

When no further simulation commands can be executed, the semantic interpretation is terminated
and the state history returned.

5.4.3 Initial Configuration

The initial configuration of a system 〈(Si, Di, Ti), (si, ei, hi)〉 is defined as follows:

• Si is the simulation code that will be executed.

• Di = ε

• Ti = ∅

• si = ∅

• ei = {sim_stat 7→ init,mod_curr 7→ ε} ∪ rms, where rms represents all the required
module definitions in the form of module_name 7→ module_code, where module_code
matches the syntax ofmodule. The intention of sim_stat is to determine the current status
of the simulator phase.

• hi = ∅
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5.4.4 Termination

After applying the termination rule, a configuration of the type 〈TERM, h〉 is reached, no further
rule can be applied and the simulation terminated correctly. The result of the simulation is the
history of the recorded signals h. Should the simulation end in 〈(FAIL, a), (s, e, h)〉, the asser-
tion expression a was not valid. If during the semantic interpretation a different configuration is
reached, where no rule is applicable, then the code has a syntax error or a non existent symbol
is accessed.

5.4.5 Functions

The algorithms of the functions used to transform part of the definition code to the transition
set T are written in a style close to regular programming languages and use the := operator for
assigning a new value to a variable. These functions make extensive use of the possibility to
refer to substrings in the style of abstract syntax trees.

add_expression

This function is specified in Algorithm 1. It adds a new expression for a signal to the mapped
set T .

Parameters:

• Tc is the transition map before applying the rule as a mapped set.

• mod_curr is the current module’s path and name as a string.

• name is the name of the signal to be assigned an expression as a string.

• expression is the expression to be added to the signal as a string.

Variables:

• T ′ is the transition map with side effects as a mapped set.

• name′ is the full name of the signal to assign the expression as a string.

• expression′ is the expression, without side effects, to be added for the signal as a string.

• expression′′ is the expression, with full signal names and without side effects, to be added
as a string.

Returns: A mapped set with the added expression.

31



Algorithm 1 add_expression (Tc,mod_curr, name, expression)
1: T ′ = add_sideeffects(T,mod_curr, expression)
2: name′ = expand_signalnames(mod_curr, name)
3: expression′ = remove_sideeffects(expression)
4: expression′′ = expand_signalnames(mod_curr, expression)
5: return T ′[name′ 7→ expression′′]

add_sideeffects

This function is specified in Algorithm 2. It adds the side effects to the signal expressions of the
mapped set for the transition function.

Parameters:

• Tc is the transition map before applying the rule as a mapped set.

• mod_curr is the current module’s path and name as a string.

• expression is the expression where the side effects are extracted from as a string.

Variables:

• Tr is the transition map for returning.

• A is an intermediate set for assembling the side effects functions as a mapped set.

• gl is the current guarded line of the expression as a string.

• name is the name of the individual signals to assign the side effects as a string.

• name′ it the full name of the individual signals to assign the side effects as a string.

• cexpr is the expression to be added for the signal as a string.

• expr′ is the expression to be added for the signal with full signal names as a string.

• clause_list is the clauses within the guarded line as a string.

• clauses′ is the clauses within the guarded line with full signal names as a string.

• signal is the signal name to have its expression extended as a string.

Returns: A mapped set with the added side effect expressions.
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Algorithm 2 add_sideeffects (Tc,mod_curr, expression)
1: Tr:=Tc
2: if expression is not of guarded expression type then
3: return Tr
4: end if
5: for each guarded_line in expression as gl do
6: for each side_effect in expression as name <= cexpr do
7: name′:= expand_signalnames(mod_curr, name)
8: expr′:= expand_signalnames(mod_curr, cexpr)
9: clauses′:= expand_signalnames(mod_curr, clause_list of gl)

10: A:=A[name′ 7→ A.name′ + clauses′+’->’+expr′ +Newline]
11: end for
12: end for
13: for each element in A as signal 7→ expr do
14: Tr:=Tr[signal 7→ expr + T.signal]
15: end for
16: return Tr

remove_sideeffects

This function is specified in Algorithm 3. It removes side effects from an expression.

Parameters:

• expression is the expression where the side effects are removed from as a string.

Variables:

• rexpr is the expression to be returned as a string.

Returns: A string with the cleaned expressions.

Algorithm 3 remove_sideeffects (expression)
1: if expression is not of guarded expression type then
2: return expression
3: end if
4: for each guarded_line in expression as gl do
5: rexpr:=rexpr + clause_list of gl+’->’+expr of gl +Newline
6: end for
7: return rexpr

expand_signalnames

This function is specified in Algorithm 4. It replaces all variable occurrences with their full
reference name in T .
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Parameters:

• mod_curr is the current module’s path and name as a string.

• construct is the construct to be expanded as a string.

Variables:

• rconstruct is the construct to be returned as a string.

Returns: A string with full signal names.

Algorithm 4 expand_signalnames (construct)
1: rconstruct:=construct
2: for all structures s in rconstruct of type variable do
3: substitute s with mod_curr+’.’+s within rconstruct
4: end for
5: return rconstruct

5.4.6 Integration to the Formal Framework

The formal analysis and modeling framework of [9] defines three different signal representa-
tions. Closest to the history representation of the signals in the semantics is the status represen-
tation of the framework. It is defined by the function S̃(t):

S̃ : R+
0 → {0, 1},

where each point of realtime is associated with a Boolean value. In this work, the codomain
of S̃ was extended: Traces in the history of the Dhdl semantic can also contain undef. One
can deduce from the definition of W and the fact that the undef cannot be assigned due to the
syntax definition that, as soon as a state in the semantic execution without undef is reached,
only true and false values occur in the remaining execution. Let T0 be the smallest tick number
such that a state without undef occurs, starting the enumeration with tick 0. Let l be the signal
name of the signal S and h the history of a semantic execution. Then, for all t ∈ R+

0 , S̃(t) =
hmap(t+ T0, h.l) with:

hmap(t, sh) =


0 if 0 ≤ t < 1 ∧ sh starts with ’false:’
1 if 0 ≤ t < 1 ∧ sh starts with ’true:’
hmap(t− 1, sf ) where sf = sh without the first value and colon

By starting at the time when there occurs no undef anymore, it is possible to transform the
traces, as introduced in this work, to valid traces of the formal framework.
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CHAPTER 6
Reference Designs

The reference designs, presented in this chapter, show the capabilities of Dhdl and are also used
to test the correctness of the translation and timing analysis. Another goal of these designs is to
show how the features of Dhdl harmonize with each other.

6.1 All Aspects of a Small Design

Aside from the functionality check, deeper insight into Dhdl is another motivation for imple-
menting and analyzing all translations and simulation traces of a small reference design.

6.1.1 Reference Design Specification

The criteria for a suitable reference design are as follows: First, it has to show the core features
of the language, which are guarded expressions, causal time and timing assertions. Second, it
has to be within the syntactical description of the specified formal semantics. Lastly, it has to be
feasible for manual analysis of the generated VHDL code, obtained timings, the semantic inter-
pretation and simulation. The output files of the synthesis tools and the semantic interpretation
traces tend to be large compared to the initial designs, thus we decided to specify a design as
small as possible. This example is represented in Listing 6.1. Apart from line two and three, it is
within the syntax used by the formal semantics as specified in Chapter 5. It contains a guarded
expression, the signal last can be used to demonstrate the functionality of the causal time model
and a delay assertion is also included. It is an implementation of an and-gate with two output
lines holding eventually the same value. With this simple behavior it is possible to check the
correct results for Dhdl simulation, VHDL generation, VHDL simulation, timing verification,
semantic interpretation and the behavior on a FPGA board.

Listing 6.1: The small reference design.
1 module And {
2 delay time_assertion := in0ToLast > 10ps

35



3 delay in0ToLast := (in0 , last )
4

5 in Signal in0
6 in Signal in1
7

8 out Signal out <=
9 in0 == true , in1 == true

10 −> true
11 −> false
12

13 out Signal last <= out
14 }

6.1.2 Dhdl Simulation

Figure 6.1 shows the simulation trace of the Dhdl simulation that can be found in more detail in
Appendix B.1.1. Initially, the signals out and last have the value undef, which is specified by
the formal semantics in Chapter 5. The signal out behaves according to the and-gate truth table,
with one tick delay, as specified by the causal time model. Also, last has the value of out with
one tick delay.

Figure 6.1: The trace of a the and-gate simulation.

6.1.3 Generated VHDL Code

From the Dhdl specification, the VHDL code in Listing 6.2 is generated according to the defi-
nitions in Appendix A.6.1. The ports from the original design can easily be identified, as well
as the module itself. The processes “in_ports” and “out_ports” just map the ports to the internal
signals, distinguishable by their suffixes “_port” and “_signal”. The internal signals are nec-
essary since, contrary to Dhdl, output ports can only be read, but not assigned in VHDL. The
mapping of the input ports is performed for consistency and, through this, readability. The ex-
pressions assigned in Dhdl are translated to the process “calculate_signals”. The expression for
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last is clearly equivalent to the assignment in Dhdl and the if-else structure for out reads like
the guarded expression: If in0 and in1 are true, out is also true, otherwise out is false.

Listing 6.2: The VHDL code generated from the reference design.
1 −− g e n e r a t e d by dhd l
2 −− 2 0 1 1 / 0 7 / 1 9 1 8 : 3 7 : 1 4
3

4 library ieee ;
5 use ieee .std_logic_1164 .all ;
6

7 entity And_0 is
8 port (
9 in0_port : in std_logic ;

10 in1_port : in std_logic ;
11 out_port : out std_logic ;
12 last_port : out std_logic
13 ) ;
14 end And_0 ;
15

16 architecture behavior of And_0 is
17

18 signal in0_signal : std_logic ;
19 signal in1_signal : std_logic ;
20 signal out_signal : std_logic ;
21 signal last_signal : std_logic ;
22

23 begin
24 in_ports : process (in0_port , in1_port )
25 begin
26 in0_signal <= in0_port ;
27 in1_signal <= in1_port ;
28 end process ;
29

30 calculate_signals : process (in0_signal , in1_signal , out_signal ,
last_signal )

31 begin
32 last_signal <= out_signal ;
33 if (in0_signal = ’ 1 ’ ) and (in1_signal = ’ 1 ’ ) then
34 out_signal <= ’ 1 ’ ;
35 else
36 out_signal <= ’ 0 ’ ;
37 end if ;
38 end process ;
39

40 out_ports : process (out_signal , last_signal )
41 begin
42 out_port <= out_signal ;
43 last_port <= last_signal ;
44 end process ;
45

46 end behavior ;
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6.1.4 VHDL Simulation

To keep the trace of the VHDL simulation similar to the one of the Dhdl code, the values of
the input signals are assigned in the same order and one tick is resolved to a time of 1ns. The
simulation, specified in Appendix B.1.2, is run for 6ns and the resulting waveform can be found
in Figure 6.2. However, contrary to the Dhdl simulation, all values of the input ports instantly
effect both output ports.

Figure 6.2: The trace of the and-gate VHDL testbench.

6.1.5 Timing Assertions

From the VHDL code the external tool generates timing files (see Appendix B.1.3). Listing 6.3
contains the output of the Dhdl timing analysis with inserted newlines for readability. The value
of the in0ToLast delay expression is the time it takes for a signal change at in0 to affect the
output signal last. The timing assertion time_assertion then checks whether this delay is
larger than 10ps. From the output we can tell that this assertion holds.

Listing 6.3: Dhdl timing analysis output of the and-gate.
1 Time Reader: parse time/And_vhd.sdo
2 Time Reader: parse time/And.vho
3 [line 4, char 19]: Delay in0ToLast := (in0[1], last[1]) on path "

base component" is satisfied. [1.1303999999999998E-8,
1.1303999999999998E-8]

4 dhdl/And.df[line 3, char 35]: Delay time_assertion := (in0ToLast >
1.0E-11) on path "base component" is satisfied. [1.0E-11,
1.1303999999999998E-8]

0 errors 0 warnings 0 assertion violations

From the timing files, the graph of Figure 6.3 can be derived by hand. In this graph, the
direction of the edges is from top to bottom and the weights are either 0s, or the given value.
Following the lines, the resulting delay is 11304ps, which is almost the value returned by Dhdl
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found in Listing 6.3 at the end of line four. The difference comes from the floating point rep-
resentation in Java. Since it is less than 10−23s and so way beyond our measuring or designing
precision, it should not be bothered. Interestingly, the delays between the and-gate output port
and each of the output port pins on the FPGA are the same. Since these pins are right next to
each other on the chip, the delay difference between them is too small to be modeled.

in0_port           in1_port

out_port           last_port

ww_in0_port       ww_in1_port

ww_out_port       ww_last_port

\in0_port~I\ padio       \in0_port~I\ padio

\in0_port~I\ combout   

\in0_port~combout\   

    \in1_port~I\ combout

    \in1_port~combout\

842ps862ps

\calculate_signals~0\ datab       \calculate_signals~0\ datac

    \calculate_signals~0\ combout

5732ps 5262ps

\out_port~I\ padio       \last_port~I\ padio

\out_port~I\ datain       \last_port~I\ datain

4710ps 4710ps

Figure 6.3: Manually derived graph from the timing files of the and-gate.

6.1.6 Testing on a Development Board

This simple and-gate design has been tested on the development board and it works as specified.
Please note, when using the same test environment, the buttons on the Altera DE2 Development
and Education Board are low-active.

6.1.7 Semantic Interpretation

The full semantic interpretation of the simulation code can be found in Appendix B.1.4. The
history h of the final configuration 〈TERM, h〉 is equivalent to the simulation trace presented
earlier in Figure 6.1 as required.
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6.2 Synchronous Design

To demonstrate the capabilities of Dhdl with respect to synchronous designs, a simple coffee
machine is implemented with a finite state machine. The machine starts in the idle state. Even-
tually, a customer inserts a coin and then presses one of three buttons: “make coffee”, “make
tea” or “abort”. On “abort”, the coin is returned and the machine is set to the initial state. When
“make coffee” or “make tea” is pressed, the right beverage is made and when it is ready, a beep
tone is played until the cup is taken out of the machine.

The Dhdl code can be found in Appendix B.2. Figure 6.4 shows the state machine diagram
for this design, annotating the active signals. The state machine coincides with the specification
for the coffee machine.

Idle

State
Output Signal

Input Signal [/ Output Signal]

WaitSelect
coinAvailable

WaitBeverage

btnCoffee /
makeCoffee

btnTea /
makeTea

btnAbort / returnCoin

WaitForTakeOut
beep

cupRemoved

beverageReady

Figure 6.4: State machine diagram of the coffee machine design.

The Dhdl hardware definition (see Listing B.5) is equally simple to describe. With the use of
a guarded expression for defining the state transitions, this description is straightforward. Aside
from that, it is required that the current state is stored in a register (state) and that all output ports
are set to false as default. The expression for state is organized as follows. The first six guarding
expressions are derived from the state transitions in the diagram and their side conditions set the
according output ports. The subexpression that checks only for the “WaitForTakeOut” state
ensures that beep is set while being in this state and the last line just keeps the current state
stored. In Dhdl all registers are set to 0 on reset and through this “Idle”, with the value 0, is the
initial state. As one can see, Dhdl provides a compact but easy to read style for annotating finite
state machines.

Simulating the coffee machine in the Dhdl simulator, with the simulation specification for
“coffee’ in Listing B.6, results in the signal trace of Figure 6.5. This trace also matches the
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machine specification. The machine starts in “Idle” (0). Then it is signaled that the coin is
inserted and the state switches to “WaitSelect” (1). When the button for coffee is pressed, the
state is changed to “WaitBeverage” (2) and the “makeCoffee” signal is set to true for one clock
cycle. As the “beverageReady” signal is received, the state is set to “WaitForTakeOut” (3) and
“beep” is true until the machine returns to the “Idle” state with the “cupRemoved” signal being
true.

Figure 6.5: Simulation trace of the coffee machine design when making coffee.

With the additional code provided in the appendix, the coffee machine design has been
successfully tested on an Altera DE2 Development and Education Board.

6.3 Asynchronous Design

The asynchronous design of choice is DARTS. For a detailed description, please consider [21].
It is sufficiently large to show that Dhdl is capable of modeling and simulating more complex
systems, including their timing requirements. One DARTS node of an implementation with
eleven nodes in [7] consists of 3218 basic gates and 100 C-Elements.

DARTS is an asynchronous design used for fault tolerant clock generation. Its function-
ality has been formally proven and successfully implemented on FPGAs and within an ASIC.
Figure 6.6 shows the design of a single local clock generation module as implemented in this
example. This diagram can be mapped directly to Dhdl. Of course, in practice, a synchronous
design would be connected to the DARTS node’s output. Since the focus here is on the DARTS
nodes, such a synchronous node is omitted, although its description would be straightforward.

In this thesis, a DARTS network of five nodes has been synthesized for the Altera DE2
Development and Education Board. All further observations refer to this design.
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Figure 6.6: DARTS tick generation design.

6.3.1 Simulation

When simulating the tick generation without channels in-between the clocks, the result is just as
symmetrical as the design itself. The traces in Figure 6.7 show that all DARTS clocks generate
the next rising or falling edge at exactly the same time. Since all have the same state in the
beginning, as well as the same architecture and distance, this corresponds to what is expected.

Figure 6.7: DARTS Dhdl simulation without Channels.
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However, when adding channels with different delays in between the clock tick signals, one
can get a simulation trace as in Figure 6.8. The generated traces still meet the synchronization
criteria required by DARTS, but are no longer equal.

Figure 6.8: DARTS Dhdl simulation with Channels.

6.3.2 Timing Analysis

Two main properties of DARTS have been analyzed with Dhdl. First, the compliance with the
DARTS timing constraints, and second, the frequency of the generated clock.

DARTS Timing Constraints

In order for DARTS to function properly, certain timing constraints have to be fulfilled by the
hardware. These constraints are specified in [8, pages 56 and 57] and they are interlocking, tick
removal and fastest progress. These constraints are translated to the Dhdl timing properties in
the following three modules:

• the “CounterModule” module, see Listing 6.5,

• the “DartsClock” module, see Listing 6.6,

• and the “DartsNetwork” module, see Listing 6.7.

Except for the fastest progress constraint, the timing properties are named after the specific
constraints and variables in [8]. The timing properties for the fastest progress constraint are
defined within wiring code and thus have generic names. In the following, we will take a closer
look at each of the timing delays1:

tdiffm is the delay of the “DiffGate”.
1The name of the property in brackets is used in [8].
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tdiff (τDiff ) is the merged delay of the delays from the local “DiffGates”.

tdiffmin (τ−Diff ) is the minimum delay of tdiff .

tdiffmax (τ+Diff ) is the maximum delay of tdiff .

tdis (Tdis ) is the merged delay of the local tick generation loop through all “CounterModules”.

tmindis (Tmin,dis ) is the minimum delay of tdis .

tmaxdis (Tmax ,dis ) is the maximum delay of tdis .

tmin (Tmin ) is the minimum delay of tdis plus tdiff .

tloc (T+
loc) is an alias of tmaxdis .

interlocking (Tmax ,dis ≤ Tmin + Tmin,dis ) is the interlocking timing constraint. It guarantees
that all rising, as well as all falling ticks do not interfere with each other.

tickRemoval (τ+Diff ≤ Tmin) is the tick removal timing constraint. It states that the tick removal
is faster than the local generation of new ticks.

delay (T−first ≥ T
+
loc) is the tick fastest progress timing constraint. It ensures that the slowest

local tick generation delay is smaller than the smallest delay from a remote DARTS node.

The full Dhdl timing analysis output can be found in the appendix in Listing B.10. The
hardware generated with Dhdl and synthesized by Quartus does not satisfy the interlocking and
fastest progress constraints. Listing 6.4 shows an excerpt of the Dhdl timing analysis output,
where a tick removal constraint is validated, and properties for interlocking and fastest progress
result in errors. The 25 errors are the sum of the 5 interlocking constraints and the 20 (4*5)
fastest progress constraints. The most likely cause for the generated hardware not to comply
with the fastest progress constraint is the missing distance in-between the DARTS nodes, since
only the DARTS network is synthesized. The interlocking constraint does not hold as there is a
big difference between the minimum and maximum delays of tdis. This could be a result of the
structure of the threshold gates. As they are specified recursively and not necessarily balanced,
this might lead to significant delay differences. These problems with synthesis are still unsolved,
however, Dhdl is capable of specifying all necessary timing constraints and evaluate them.

Listing 6.4: Excerpt of the Dhdl timing analysis output for the timing constraints.
...
33 error 5 dhdl/darts/DartsClock.df[line 27, char 31]: Delay not

satisfied interlocking := (tmaxdis <= ((tmin * 2) + tmindis)) on
path "clock[4]". The resulting delay is [2.0837E-8,
2.8685000000000002E-8].

34 dhdl/darts/DartsClock.df[line 28, char 31]: Delay tickRemoval := (
tdiffmax <= tmin) on path "clock[4]" is satisfied. [7.897E-9,
9.578E-9]
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35 dhdl/darts/DartsClock.df[line 16, char 15]: Delay tloc := tmaxdis
on path "clock[1]" is satisfied. [2.8685000000000002E-8,
2.8685000000000002E-8]

36 error 6 [line 29, char 102]: Delay not satisfied delay 1 := ((
clock[0].thresholdGates[0].celem[0].bit[0].out[1], clock[1].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[1] tloc) on
path "base component". The resulting delay is [6.572E-9,
4.092399999999999E-8].

...
25 errors 0 warnings 0 assertion violations

Listing 6.5: Dhdl timing property for DARTS’ constraints in the module “CounterModule”.
1 delay tdiffm := (diff [ 0 ] . celem [ 0 ] . bit [ 0 ] . invOut [ 0 ] ,
2 diff [ 0 ] . celem [ 0 ] . bit [ 0 ] . invOut [ 0 ] )

Listing 6.6: Dhdl timing property for DARTS’ constraints in the module “DartsClock”.
1 delay tdiff :=
2 (counterModules [ 0 ] . tdiffm | |
3 counterModules [ 1 ] . tdiffm | |
4 counterModules [ 2 ] . tdiffm | |
5 counterModules [ 3 ] . tdiffm )
6

7 delay tdiffmin := min (tdiff )
8 delay tdiffmax := max (tdiff )
9

10 delay tdis :=
11 ( (thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
12 counterModules [ 0 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) +
13 (counterModules [ 0 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
14 thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) ) | |
15 ( (thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
16 counterModules [ 1 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) +
17 (counterModules [ 1 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
18 thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) ) | |
19 ( (thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
20 counterModules [ 2 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) +
21 (counterModules [ 2 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
22 thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) ) | |
23 ( (thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
24 counterModules [ 3 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) +
25 (counterModules [ 3 ] . local [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ,
26 thresholdGates [ 0 ] . celem [ 0 ] . bit [ 0 ] . out ) )
27

28 delay tmindis := min (tdis )
29 delay tmaxdis := max (tdis )
30 delay tmin := tmindis + tdiffmin
31 delay tloc := tmaxdis
32

33 delay interlocking := tmaxdis <= tmin∗2 + tmindis
34 delay tickRemoval := tdiffmax <= tmin
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Listing 6.7: Dhdl timing property for DARTS’ constraints in the module “DartsNetwork”.
1 : foreach clock [i ] {
2 foreach clock [j ] {
3 delay (clock [i ] . thresholdGates .celem [ 0 ] . bit [ 0 ] . out , clock [j ] .

thresholdGates .celem [ 0 ] . bit [ 0 ] . out ) >= clock [j ] . tloc
4 }
5 }

Clock Frequency

Listing 6.8: Dhdl clock frequency estimation.
1 : foreach clock [i ] {
2 foreach clock [j ] {
3 if j < i {
4 delay (clock [i ] . thresholdGates .celem [ 0 ] . bit [ 0 ] . out , clock [j ] .

counterModules [i−1] .remote .celem [ 3 ] . bit [ 0 ] . out )
5 } else if j > i {
6 delay (clock [i ] . thresholdGates .celem [ 0 ] . bit [ 0 ] . out , clock [j ] .

counterModules [i ] . remote .celem [ 1 ] . bit [ 0 ] . out )
7 }
8 }
9 }

Since DARTS is an asynchronous clock generation algorithm, the generated clock frequency
is of particular interest. With the timing property of Listing 6.8 in the “DartsNetwork” module,
the delays in between the clock signals can be calculated. The Dhdl output can be found in the
appendix in Listing B.11. An evaluation of these results follows in Section 6.3.3.

6.3.3 Executing on a Development Board

Figure 6.9 shows the resulting waveform generated on the FPGA of the Altera DE2 Development
and Education Board. The frequency of the generated clock signal is 87.72MHz and so it has
a period of 11.4ns. Thus, the delays in-between and within the single DARTS clocks have to
be about 5.7ns. The Dhdl timing analysis of the delays between all output C-Elements of the
clocks returns the values found in Table 6.1. The raw Dhdl output can be found in the appendix
in Listing B.11. This indicates that the minimum delays determine the clock frequency in this
FPGA implementation, since the highest minimum delay values are closest to the resulting clock
impulse width (divided by two).
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Table 6.1: Clock delays of the Dhdl DARTS solution on the Altera DE2 Development and
Education Board.

From Clock Nr. To Clock Nr. Minimum Delay Maximum Delay

1 0 3.962 ∗ 10−09 1.350 ∗ 10−08
2 0 5.191 ∗ 10−09 1.544 ∗ 10−08
3 0 5.477 ∗ 10−09 1.456 ∗ 10−08
4 0 5.473 ∗ 10−09 1.468 ∗ 10−08
0 1 4.154 ∗ 10−09 1.651 ∗ 10−08
2 1 3.815 ∗ 10−09 1.610 ∗ 10−08
3 1 4.389 ∗ 10−09 1.300 ∗ 10−08
4 1 5.669 ∗ 10−09 1.620 ∗ 10−08
0 2 4.570 ∗ 10−09 1.631 ∗ 10−08
1 2 5.062 ∗ 10−09 1.662 ∗ 10−08
3 2 4.132 ∗ 10−09 1.565 ∗ 10−08
4 2 5.743 ∗ 10−09 1.475 ∗ 10−08
0 3 4.748 ∗ 10−09 1.531 ∗ 10−08
1 3 4.694 ∗ 10−09 1.454 ∗ 10−08
2 3 4.950 ∗ 10−09 1.634 ∗ 10−08
4 3 5.049 ∗ 10−09 1.303 ∗ 10−08
0 4 5.408 ∗ 10−09 1.415 ∗ 10−08
1 4 3.559 ∗ 10−09 1.538 ∗ 10−08
2 4 4.237 ∗ 10−09 1.333 ∗ 10−08
3 4 5.147 ∗ 10−09 1.589 ∗ 10−08
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Figure 6.9: Waveform of the Dhdl DARTS solution on the Altera DE2 Development and Edu-
cation Board.

48



CHAPTER 7
Conclusions

The aim of this thesis was to establish a direct link between Függer’s formal analysis and mod-
eling framework [9] and physical hardware designs. The core foundation for this link is the
new programming language Dhdl. It is both close in style to the framework’s description and
powerful enough to manage larger designs.

Dhdl and the formal framework use the same structural elements and keywords. For timing
properties, Dhdl uses all common algebraic operators and a parallel operator on tuples containing
minimum and maximum delay values, which is as expressive as the formal framework’s timing
requirements. A significant subset of Dhdl can be interpreted with a formal semantic.

For simulation and semantic interpretation, a time model, called causal time, is used, that
derives the simulation delays directly from the module structure of the hardware description.
The advantage of the causal time model is that it reflects dependencies within designs at an early
stage. Moreover, the simulation traces generated with it are often accurate enough to predict the
overall behavior of physical designs.

The Dhdl formal semantics is structural operational semantics consisting of 14 rules oper-
ating on a structure that contains the state of the system and the code for its definition. The
semantic interpretation of the expressions is done by a separate algebra, the results of which are
not necessarily directly mappable to the domain of the formal framework. It is shown that, if all
elements of the interpreted expressions are mappable to the formal framework, so is the result.

A set of representative reference designs were specified in Dhdl, simulated and their imple-
mentation checked on the development board. Their timing and behavior on the development
board fitted to the Dhdl delay properties results and the simulations. However, only one timing
constraint of DARTS could be verified.

Dhdl fulfills all the necessary and requested features and is a language that connects Függer’s
formal analysis and modeling framework directly to hardware generation. Furthermore, it can
be used to describe hardware designs in an efficient way and offers a new kind of simulation
with its causal time model. Still, it can only verify and not enforce that the generated hardware
satisfies all timing constraints.

Still, this leaves a lot of space for future work. The next big step would be to pass timing
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constraints to the external tool, if they are not fulfilled. Another improvement could be the inte-
gration of a constraint solver that checks whether delay properties are reasonable and satisfiable.
This would allow to show erroneous assumptions about the timing behavior at an early stage and
independently of the generated netlists. An even more ambitious extension would be the integra-
tion of the reasoning from the formal framework and a mechanic check for validity of the stated
properties. Aside from that, also Dhdl simulations could be translated to VHDL testbenches and
by this used in further stages of the development flow.
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APPENDIX A
Dhdl Language Specification

A.1 Introduction

Dhdl is designed for integrated circuit definition and due to this limited in its general descrip-
tiveness of circuit behavior. The philosophy behind Dhdl is to use the best suitable language for
each description problem, and so Dhdl consists of three languages. Their targets are hardware,
simulation and a small one for packaging description.

A.1.1 Remarks

This document describes the version 0.9 of Dhdl. In this specification, the syntax will be anno-
tated as defined in [3, p. 28]. Please note that optional whitespace characters, that can be placed
usually anywhere within the languages, will be ignored in the syntax description for the sake of
simplicity. Only required newline characters are annotated.

A.1.2 Structure of this Specification

Definitions common for all languages are defined in Section A.2. Hardware, simulation and
package description are covered in Sections A.3, A.4 and A.5. The files generated by Dhdl
are described in Section A.6 followed by the full syntax definition in Section A.7. Section A.8
contains the translator guide and finally some code examples are given in Section A.9.

A.2 Common Definitions

Due to the nature of the problem, the definition and simulation languages of Dhdl share some
common definitions, as well as the package description. The syntax for all these language con-
structs can be found in Section A.7.
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A.2.1 Basic Language Elements

This section contains the most basic elements that the Dhdl languages consist of.

Whitespace and Newline

For most cases whitespace and newline characters are in general ignored and just used as sep-
arators. The whitespace characters are ignored in all syntax definitions. In certain syntactical
constructs newline characters are required and annotated, but otherwise they are also ignored.

Identifiers

The definition of Identifiers is as in VHDL [11, p. 179]. They start with a character and can
contain characters, numbers, and single underlines, but there must not be an underline at the end.
In Dhdl also the following suffixes should be avoided since they are used for VHDL generation:

• _port

• _signal

• _register

• _subcomponent

Numbers

Unsigned integers can be represented in binary, octal, decimal, and hexadecimal annotated like
in C. Rational numbers can only be used in delay expressions. They can have us, ns and ps
suffixes to be multiplied by the corresponding factor (10−6, 10−9 and 10−12). The unit seconds
will be ignored, but since it is only used in delay expressions, it is assumed that numbers used
without this indication still will be of type seconds and thus the term will be correctly interpreted.

Constants

In Table A.1, the constants with the according values are shown. The definition of the types is
found in Section A.2.3

Table A.1: Dhdl constants

Constant Value Type

true 1 B
false 0 B
high 1 B
low 0 B
undef - W
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A.2.2 Code Structure

All commands are terminated with a newline or the closing brace of a code block. As in many
other languages, code blocks start with a left brace and end with a right one. Unlike in other
languages, code blocks can only be inserted with certain commands or declarations, as given in
the syntax.

A.2.3 Types

Dhdl is a strong typed language. Types in Dhdl are designed to separate between different
specification areas. There are five primitive types, W , B, N , I and D. W ranges over binary
values and undefined. B is for binary values, N for natural numbers including zero and I for
integer values. Values in D define a range over decimal numbers. The order is B ⊆ W and
B ⊆ N ⊆ I ⊂ D. Type conversion is performed automatically. Only expressions of the wire
typeW can be later generated into hardware. D is used for checking timings and all other types
are for generating hardware structure. The only two entity representations ofW are Signal and
Register. A comprehensive description of the types can be found in Table A.2. The ranges of
the primitive datatypes are derived from the types used within the Java implementation of Dhdl.
For further information see the definition of long and double in [16]). Due to this, R means a
decimal number with the precision and within the range of double. The undef element represents
an unknown value of a wire and is used for W . The delay type D is a 2-tuple, representing a
range where the first element is the minimum and the second element the maximum value. These
elements are also annotated with v.min and v.max where v is of type D. Furthermore I ⊂ D
where the single value is used as minimum and maximum value, leaving aside the imprecision
of the floating point representation.

Table A.2: Dhdl datatypes

Name Keyword Symbol Type Range

Signal Signal, Register W wire B ∪ undef
Boolean bool B generic [0, 1] ∈ Z
Natural nat N generic [0, 263 − 1] ∈ Z
Integer int I generic [−263, 263 − 1] ∈ Z
Delay delay D delay (R,R)

A.2.4 Operators

Table A.3 shows all the operators that are available in Dhdl. The lower the precedence level of
an operator is, the stronger it binds. The evaluation order of operators with the same precedence
level is undefined.1 For delay expressions, the parallel operator is introduced to merge two
parallel paths. In the following, the operator definitions on the domains W and D are given
separately. The definition on all other domains is the common interpretation.

1In the current version it is from right to left, e.g. a+ b− c = a+ (b− c).
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Table A.3: Dhdl operators

Operator Name Precedence Level Type Possible Signatures

not logical not 1 unary B 7→ B orW 7→ W
and and 4 binary B × B 7→ B orW ×W 7→ W
nand nand 4 binary B × B 7→ B orW ×W 7→ W
or or 5 binary B × B 7→ B orW ×W 7→ W
nor nor 5 binary B × B 7→ B orW ×W 7→ W
xor xor 5 binary B × B 7→ B orW ×W 7→ W
equiv equivalent 5 binary B × B 7→ B orW ×W 7→ W
- unary minus 1 unary I 7→ I or D 7→ D
+ plus 3 binary I × I 7→ I or D ×D 7→ D
- minus 3 binary I × I 7→ I or D ×D 7→ D
* multiply 2 binary I × I 7→ I or D ×D 7→ D
/ divide 2 binary I × I 7→ I or D ×D 7→ D
% modulo 2 binary I × I 7→ I or D ×D 7→ D
|| parallel 4 binary D ×D 7→ D
! not 1 unary B 7→ B
== equals 6 binary I × I 7→ B or D ×D 7→ B
!= not equals 6 binary I × I 7→ B or D ×D 7→ B
< less than 6 binary I × I 7→ B or D ×D 7→ B
<= less or equals 6 binary I × I 7→ B or D ×D 7→ B
> greater 6 binary I × I 7→ B or D ×D 7→ B
>= greater or equals 6 binary I × I 7→ B or D ×D 7→ B

Operators in D

In Table A.4 the definition of the operators in D is given. The column result defines the final
2-tuple and in the column truth value is the expression for the Boolean evaluation.

Operators inW

The Tables A.5, A.6, A.7, A.8, A.9, A.10 and A.11 show the truth tables for operators inW .
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Table A.4: Operator definition for D

Term Result Truth Value

v1 + v2 (v1.min+ v2.min, v1.max+ v2.max) -
v1 − v2 (v1.min− v2.min, v1.max− v2.max) -
v1 ∗ v2 (v1.min ∗ v2.min, v1.max ∗ v2.max) -
v1/v2 (v1.min/v2.min, v1.max/v2.max) -
v1%v2 (v1.min%v2.min, v1.max%v2.max) -
v1 ‖ v2 (min(v1.min, v2.min),max(v1.max, v2.max)) -
v1 == v2 (min(v1.min, v2.min),max(v1.max, v2.max)) v1.min == v2.min ∧ v1.max == v2.max
v1! = v2 (min(v1.min, v2.min),max(v1.max, v2.max)) v1.max < v2.min ∨ v1.min > v2.max
v1 < v2 (min(v1.min, v2.min),max(v1.max, v2.max)) v1.max < v2.min
v1 <= v2 (min(v1.min, v2.min),max(v1.max, v2.max)) v1.max ≤ v2.min
v1 > v2 (min(v1.min, v2.min),max(v1.max, v2.max)) v1.max > v2.min
v1 >= v2 (min(v1.min, v2.min),max(v1.max, v2.max)) v1.max ≥ v2.min

Table A.5: Truth Table Logical NOT

Input Output

0 1
1 0
undef undef

Table A.6: Truth Table AND

Input 1 Input 2 Output

0 0 0
0 1 0
0 undef 0
1 0 0
1 1 1
1 undef undef
undef 0 0
undef 1 undef
undef undef undef
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Table A.7: Truth Table NAND

Input 1 Input 2 Output

0 0 1
0 1 1
0 undef 1
1 0 1
1 1 0
1 undef undef
undef 0 1
undef 1 undef
undef undef undef

Table A.8: Truth Table OR

Input 1 Input 2 Output

0 0 0
0 1 1
0 undef undef
1 0 1
1 1 1
1 undef 1
undef 0 undef
undef 1 1
undef undef undef

Table A.9: Truth Table NOR

Input 1 Input 2 Output

0 0 1
0 1 0
0 undef undef
1 0 0
1 1 0
1 undef 0
undef 0 undef
undef 1 0
undef undef undef
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Table A.10: Truth Table XOR

Input 1 Input 2 Output

0 0 0
0 1 1
0 undef undef
1 0 1
1 1 0
1 undef undef
undef 0 undef
undef 1 undef
undef undef undef

Table A.11: Truth Table EQUIV

Input 1 Input 2 Output

0 0 1
0 1 0
0 undef undef
1 0 0
1 1 1
1 undef undef
undef 0 undef
undef 1 undef
undef undef undef

A.2.5 Expressions

Dhdl defines different types of expressions:

• Logical expressions

• Guarded expressions

• Arithmetical expressions

• Comparison expressions

• Delay expressions

• Array expressions

Within these expressions only a specific subset of operators might be used, as defined by the
syntax. Besides the syntax, also matching array widths and operator types are necessary for an
expression to be valid.
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Logical Expressions

Logical expressions are used to define circuit logic for signals. Within logic expressions also
submodules can be included. A logic expression can also be seen as a single guarded expression.

Guarded Expressions

The guarded expression is the most important element in Dhdl to make case distinctions. They
are only used in hardware description and therefore explained in detail in Section A.3.11.

Arithmetical Expressions

The return value of an arithmetical expressions is within I. It has all the logic operators as well
but contrary to logic or guarded expressions it is not possible to use a new submodule within it.

Comparison Expressions

The result of a comparison expression is of type B. When comparison expressions are written
in a comma separated list, the result is the “and” concatenation of all of them. When only an
arithmetic expression is used the result within B is true if the arithmetic result is one and false
otherwise.

Delay Expressions

Delay expressions can access all signals of the current component and its subcomponents. How-
ever, not all signals will be actually generated to hardware and so only these can be accessed
later for verifying the timing behavior. Luckily, interesting paths usually lead from one storage
element to another and thus those path delays are most likely to be computable.

Array Expressions

An array expressions yields a range of natural numbers. When defining an array of signals, like
in C, a single index n will give a range from 0 to n− 1. Using an array expression for access, a
single value is interpreted as a single index of an array.

A.3 Hardware Description

The elements of the hardware description in Dhdl reflect the one used in Függer’s formal frame-
work (see [9]). This language is more oriented towards functional programming languages since
they are naturally closer to the structure of hardware. Dhdl strongly separates between the func-
tions that are mapped to hardware logic and functions that are used to generate structures.
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A.3.1 Packages

Dhdl code is organized in packages. A package identifier determines with the first dot separated
names the path from the source or library folder and with the last name the filename without
suffix. The main module must have a name identical to its package and be defined as public.

A.3.2 Signal

Signals and arrays of signals are used to define wires generated in the final hardware.

Array Using arrays it is possible to define signals over a range of indices. Like in C and Java,
an array defined with a single value n will have indices starting from 0 to n − 1. With the
keywords to and downto it is possible to define specific ranges. An example can be found in
Listing A.1

Listing A.1: Example module using signal arrays.
1 module test {
2 in Signal in [ 5 ]
3 out Signal out [0 to 4] <= in
4 }

Register

Registers are special types of signals. Each register will be connected to the local visible signals
named reset and clock, which have to exist for correct translation. In its current implementation
the Register is set to 0 on a high reset and triggers on the rising edge of the clock signal.

A.3.3 Module

In Dhdl systems are built out of modules. They are the basic building block for the structure. A
module is a collection of ports, signals, submodules and their interconnection by simple wiring
or as functions of other signals.

Extending other modules A module can extend other modules. This is done by simply copy-
ing the port definitions, which are not defined within the current module, and checking whether
the defined ones match. This can have unforeseen side effects, e.g. a module uses a local visible
definition, and thus should be used carefully. The modules it extends are simply listed after the
keyword extends.

Implementing interfaces A module implements an interface if the interface’s ports are a sub-
set of its ports. Also, the interface name must be listed after the keyword implements within
the modules header.
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Generic parameters Generic parameters are parameters with a generic type (bool, nat, int).
These parameters are passed in angle brackets and can be assigned default values as shown in
Listing A.2. Within the module body the value of gen_param is then 3, if no other value is
provided. Generic parameters can also be used to define the default width of regular parameters.

Listing A.2: Example of a generic parameter definition.
1 module <nat gen_param <= 3> { }

Parameters Parameters are in ports that can be connected within an expression. If a parameter
can have an arbitrary array width, it is indicated with an identifier in square brackets, like the
example in Listing A.3. There the in port param has width n, which is 2, when no other value
is specified.

Listing A.3: Example of a parameter definition.
1 module (Signal param [n<=2] ) { }

A.3.4 Port

Ports can hold values of the wire datatype and have a direction (in or out). Unlike to VHDL,
it is possible to read values of output ports. With the keyword forward, an input port can be
defined to automatically connect to all submodules, which have unassigned ports with the same
name and width. This comes in handy when using, e.g. reset lines. Out ports can be set an
expression at their definition or later in the wiring code. Every out port must be connected at
some point. Since Dhdl describes hardware and these ports represent wires, they can only be
assigned once. Also see A.3.5 for further notes on assigning expressions. The Ports of a module
can only be accessed from this very module and its enclosing one. An exception is made for
timing properties, which can refer to all signals of its module and submodules.

Special Named Ports There are two special ports, namely the input port named in and the out
port named out. When a module has such an input port, then this port can be assigned by only
using the modules reference name, and likewise the out port can be connected. Also when using
a module directly within an expression it must have an output port called out.

A.3.5 Members

There are three types of members and they can be used according to their datatype. Regardless
of their type, each member can only be assigned once.

Wire typed Wire typed members behave like ports, but are only visible within the module.

Structure typed Structure typed members, further also called submodule members, define
subcomponents. The in ports of these subcomponents must be assigned and can be read. Natu-
rally, their out ports can only be read.
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Generic typed Generic typed members must be assigned at their definition and these expres-
sions will be evaluated before executing the wiring code. These members will only appear in
symbol lists and never in the final modules.

Assignment on declaration

The expressions assigned to the members are treated like wiring code assignments and are “ex-
ecuted” after all elements of the module body are analyzed. The execution order is not guaran-
teed.2 This is only of concern when assigning interface typed members to other interface typed
members. To avoid errors, it is recommended to assign these types of members within the wiring
code segments of a module.

A.3.6 Interface

An interface itself contains only port information. Like in other programming languages (e.g.
Java) it is a placeholder. With the keyword implements it is annotated that a module im-
plements an interface. Furthermore, interfaces can have generic parameters, which can also be
passed down values that are in the module’s scope. A set of sample interface definitions can be
found in the appendix A.9.1. During the analysis of the module, it is verified, that the ports of
the interface are a subset of the ports of the module.

A.3.7 Macros

There are two different kinds of macros depending on the result they produce. They are defined
in Java and called by the translator.

Optimization macros

Optimization macros for logical expression are accessed like modules with only generic param-
eters. In arithmetical expressions they have simple parentheses. These macros will be evaluated
in the optimization stage.

Generation macros

These macros appear like regular modules and will generate its specific simulation code, as well
as VHDL code.

A.3.8 Wiring Code

The wiring code takes care of the interconnection of elements that have not been assigned on
declaration, e.g. ports of submodules. Wire code statements are executed sequentially in the
order of appearance from top down. As they are executed all elements of the used expressions
must be fully evaluable at that time. Special care must be taken when assigning a multiline ex-
pression, this can only be done in a single line wiring code, since the syntax would be ambiguous

2Currently it is in the order of appearance of the members from top to bottom.
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otherwise. Also, if it would be necessary to assign a multiline expression within a list of wire
statements, it is most likely that a new submodule would do a better job.

Here, ports and members will be referred to as variables.

Definition of Members

Wire code always defines members and never ports. On definition they can be assigned an
expression.

Assignment Statements

As previously described, all out ports and members can be assigned exactly once. Of course,
out ports of submodules cannot be assigned. Generic typed members can also only be assigned
once.

A special case are the submodule members. If it is of a module type the assigning operator
acts as described in the previous paragraph. Otherwise, the first assignment must determine the
module referenced by the member. This can be done by referencing a member that is defined
with a module type or a member that is of interface type, but already refers to some component.
The example in Listing A.4 can be executed assuming that moduleComponent implements in-
terfaceComponent. After execution, there is a sub component of type moduleComponent called
“a” and two references to that, namely “b” and “c”.

Listing A.4: Interconnect example for component members.
1 : moduleComponent a
2 : interfaceComponent b <= a
3 : interfaceComponent c <= b

Foreach

This construct is the only loop available in the wiring code and since its purpose is to wire
signals, it is also the only one needed.

The code within the “foreach” body is executed as many times as the range of the array of
the variable wide is. In each execution the index variable defined in the “foreach” head has the
value of the current array index. The order is dependent on the definition of the array. Arrays
defined as [3] or [0 to 2] yield executions like 0,1,2. Likewise, an array defined as [2 downto 1]
yields 2,1,0.

If

Like in all imperative languages, the first condition in the construct that evaluates to true deter-
mines the execution of the wire statements in the body. If none is true, the body of else will be
executed, if it exists.
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A.3.9 Delay Assertions

Delay assertions have names for better identifications. During translation, the expressions for
measuring delays are checked, whether the referenced signals exist. On delay analysis their
values will be calculated and an error reported when an assertion fails.

A.3.10 Constraints

Constraints given in this style will be checked before any wiring code is executed. This is
especially helpful to assert that generic parameters are within a valid range and the connected
signals have valid array widths.

A.3.11 Defining Circuit Logic

The key construct for defining circuit logic in Dhdl is the guarded expression. These expres-
sions are suitable for computing different functions, as well as defining finite state machines. A
guarded expression consists of subexpressions, where each has its own guard expression and a
resulting logic expression. In the most trivial case, the guarding expression is empty and thus
true. It can also be a list of expressions, where, if and only if all expressions evaluate to true, so
does the guarding expression. The result of a guarded expression is the result of the first logic
expression for which its guarding expression evaluate to true.

Recursive Computation

With this type of expressions many computational problems can be solved recursively. List-
ing A.5 shows a module that compares two arrays of signals for equality. The code is straight-
forward. The assertion at the beginning of the module guarantees that both signal arrays, value1
and value2, have the same width. The expression for the result reads like this: If the signal ar-
rays are one signal wide, then the equivalence of those two signals is computed. Or, if the signals
at index 0 are equal, then the result depends on the rest of the of signals to be equal. Otherwise,
these signal arrays are not equal. Clearly, the structure of guarded expressions favors recursive
definitions.

Listing A.5: Full equality example
1 module isEqual (Signal value1 [n ] , Signal value2 [m ] ) {
2 :− n == m
3

4 out Signal out <=
5 n == 1 −>
6 value1 [ 0 ] equiv value2 [ 0 ]
7

8 value1 [ 0 ] == value2 [ 0 ] −>
9 isEqual (value1 [1 to n−1] , value2 [1 to n−1])

10

11 −> false
12 }
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Finite State Machines

Another feature is that guarded expressions can also have side effects. When a guarding expres-
sion evaluates to true also the value of other signals can be set, provided that those signals have
a general expression for determining their value otherwise. If that would not be the case, latches
could easily be created by accident. Please note that cross-referencing guarded expressions is
not recommended, but it is currently not checked during translation. A simple synchronous ex-
ample for a traffic light state machine is given in Listing A.6. The output ports red, yellow,
green represent when the according light is turned on. The false values assigned to these sig-
nals are their default values. These values can be overridden in the side effects of the guarded
expression for the state register. So, if the state is RED, the signal red will be true since it is
assigned in both side effects of the corresponding guarding expressions. Similarly, if the state is
REDY ELLOW , the red and yellow signals will be true. An example with identical simulation
traces, but without side effects can be found in Section A.9.4.

Listing A.6: Synchronous traffic light.
1 import dhdl .lang
2

3 define WIDTH 2
4

5 define logic RED toArray<0 , WIDTH>
6 define logic REDYELLOW toArray<1 , WIDTH>
7 define logic GREEN toArray<2 , WIDTH>
8 define logic YELLOW toArray<3 , WIDTH>
9

10 module TrafficLights {
11 forward in Signal clock
12 forward in Signal reset
13

14 in Signal next
15

16 out Signal red <= false
17 out Signal yellow <= false
18 out Signal green <= false
19

20 Register state [WIDTH ] <=
21 state == RED , next == true
22 −> red <= true ,
23 REDYELLOW
24

25 state == RED
26 −> red <= true ,
27 state
28

29 state == REDYELLOW , next == true
30 −> red <= true ,
31 yellow <= true ,
32 GREEN
33

34 state == REDYELLOW
35 −> red <= true ,
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36 yellow <= true ,
37 state
38

39 state == GREEN , next == true
40 −> green <= true ,
41 YELLOW
42

43 state == GREEN
44 −> green <= true ,
45 state
46

47 state == YELLOW , next == true
48 −> yellow <= true ,
49 RED
50

51 state == YELLOW
52 −> yellow <= true ,
53 state
54 }

A.4 Simulation Description

Naturally, simulations and tests are described in a sequential style since inputs are applied and
outputs checked. Therefore, the language for defining simulations in Dhdl is an imperative
language.

A.4.1 Simulation

A simulation consists of three phases. The setup phase, where modules are added to the simu-
lator and variables are initialized. This phase is ended with the simulator-start command. Then
follows the register phase where, with the simulator-listen command, signals are added to the
listening list. This list specifies all signals of which the traces are recorded. Afterwards, the run
phase starts where signal values are assigned, time is advanced and outputs are checked.

A.4.2 Simulator

The simulator itself is generated and compiled to Java code with the simulator-start command.
This is done to achieve fast runtimes. The simulator controls the calculation of the signal values.
As the signal takes a step, time is advanced by one tick and the new signal values are calculated
purely based on the previous values. The simulator also records these values, if they are on the
listening list. Also, each signal state can be accessed and a string representation of the module
structure generated. The simulator is controlled with the simulator commands.

A.4.3 Commands

The commands are interpreted sequentially and only the syntax is checked before execution. If
an error occurs during execution of a command, the simulation is aborted.
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Variable

Naturally, variables are treated differently in the simulation than in the hardware definition.
Here, each variable can be assigned values more than once and this is emphasized with the set
symbol.

Definition Variables can be defined at any point within the simulation.

Assignment Contrary to the hardware language, when assigning values to signal arrays or
Boolean variable arrays, it is possible to use values within N . This value is then automatically
split up in a Boolean array and leading zeros are added. If the destination array is to small, an
error is printed and the current simulation aborted.

General Access Variables defined within the simulation have the array access as usual, but
signals taken from the simulator are assumed to be accessed at array index 0, if no array is
specified. This is necessary due to the current nature of the simulator, but might change in
further versions of Dhdl.

Simulator Commands

Simulator commands explicitly control the simulator.

Add Adds a new module to the simulator, which can then be accessed after executing the start
command with the provided name.

Start Generates the simulator with all the previously added modules and compiles it to Java
binary code for fast execution.

Listen Adds a signal to the listening list in order to record its trace.

Plot The plot command prints the recorded signal traces to the specified output stream. The
values 0 and 1 represent false and true, whereas 2 stands for undef.

Show The show command opens the wave viewer and displays the so far recorded signal
traces. See Section A.4.4 for more information on the wave viewer.

Print

Prints the specified expression.

If

Executes the first statements block, which preceding clauses evaluate to true. Otherwise, the
else block is executed. Except for the first if block, all others are optional.
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While

Executes the statement block while the given clauses evaluate to true.

Do-while

Executes the statement block once and then continues evaluating it if the while clauses evaluate
to true.

Do-until

Executes the statement block once and then continues evaluating it if the until clauses evaluate
to false.

For

The for loop defines a variable on a range in its header. The body is executed as often as the range
is wide and each time with the variable having the current index number. With the keywords to
and downto the sequence of the iteration values is controlled.

Foreach

See the definition of the wiring code for-each in Section A.3.8.

A.4.4 Wave viewer

2

1

3

Figure A.1: Gui elements of the wave viewer with indices.

The wave viewer provides a convenient and fast way for displaying the current simulation
results. Please keep in mind that looking at traces should never replace writing assertions. Fig-
ure A.1 shows an example trace within a wave viewer window. The signal list (1) contains all
the recorded signals within the simulation run. The checkboxes tell whether they are included
in the plot area (2) or not. With the right mouse button it is possible to mark signals in the list
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and move them with the up and down buttons below. In the plot area it is possible to set three
different cursors, one with each mouse button. The values of the signals at the current cursor
position are displayed on the right side of them. In this context U stands for undef. The zoom
can be controlled with the slider (3) below.

A.5 Package Description

Listing A.7: Syntax for a package description file.

package ::= package_property*

package_property ::=
Identifier ’:=’ port_value |
’pin’ port_access ’:=’ Identifier

port_access ::=
Identifier ’.’ Identifier array?

port_value ::= [^(Newline | ’ ’ | ’\r’)]

array ::= ’[’ [0-9]+ ’]’

Package description in the current version of Dhdl is a simple configuration file for defining
the module to generate and to which pins it should be connected, as well as which FPGA to
use. From this information a tcl-script is generated to drive the external tool for synthesis. The
reason not to simply use the generated VHDL files for the module is to make the task easier for
the designer. The generated components in VHDL have similar, but still different names to the
ones in the Dhdl files. With this method, it is also possible to call the external tool from within
Dhdl and perform checks beforehand.

A.6 Generated Files

During the whole design flow usually two types of files are generated by Dhdl itself. The hard-
ware description is translated to VHDL and the package file to a tcl file for the external tool.

A.6.1 VHDL File

For each separate parameter setting of a module, a VHDL file is generated. These VHDL files
contain the full entity and architecture description for each of these used modules together with
their specific parameter settings.

The names are changed for VHDL in the following style. The entity name is the module
name followed by an underscore and an integer identifier. The ports of the entity have the port
names of the module followed by “_port”. For all signals including ports and registers, a signal
with the same name followed by “_signal” is defined. For registers, also a signal with that name
and “_register” appended is defined. The expressions are assigned to the port or signal names
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extended with “_signal”, or to the ones with “_register” for registers. The values are always read
from signals with the suffix “_signal”.

The architecture contains three or four processes, depending on whether or not registers
are used. The processes “in_ports” and “out_ports” connect the input and output ports, respec-
tively, with the according signal. In “register_sync”, the register logic is defined and finally,
“calculate_signals” contains the specified logic. In that process, all signals with simple logic
expressions are assigned and afterwards, all guarded expressions are translated to if-then-else
structures, including the side effects.

A.6.2 Tcl File

The generated tcl file of this Dhdl version is intended to be run by Quartus, which is currently the
only supported external tool. It contains the information retrieved from the package file, namely
FPGA family, the specific device and the pin assignments. Also, the VHDL top level entity is
included, as well as some settings to generate timing files that are needed later within Dhdl for
delay verification.

A.7 Syntax

This section gives an overview of the syntax that is used within the hardware and simulation
definition.

A.7.1 Common Definitions

Whitespace and Newline

Listing A.8: Whitespace and Newline.
Whitespace ::=

’ ’ | ’\t’

Newline ::=
((’\r’)? ’\n’)

Identifiers

Listing A.9: Syntax definition of identifiers.
Identifier ::=

[a-zA-Z] (’_’ Identifier_character |
Identifier_character)*

Identifier_character ::= [a-zA-Z0-9]

Numbers
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Listing A.10: Syntax definition of numbers.
value ::=

number | constant

number ::=
Binary_number | Octal_number |
Decimal_number | Hexadecimal_number

Binary_number ::= ’0b’ (’0’|’1’)+
Octal_number ::= ’0o’ [0-7]+
Decimal_number ::= ’0d’? [0-9]+
Hexadecimal_number ::= ’0x’ [0-9a-fA-F]+

Listing A.11: Syntax definition of rational numbers.
Rational_number ::=

Dec_number ’.’ Dec_number
(’e’ (’+’ | ’-’)? Dec_number)?
(’us’ | ’ns’ | ’ps’)? |

Dec_number (’us’ | ’ns’ | ’ps’)?

Dec_number ::= [0-9]+

Constants

Listing A.12: Constants in Dhdl.
constant ::=

’true’ | ’false |
’high’ | ’low’

String

Listing A.13: Strings in Dhdl.
String ::=

’"’ character* ’"’

character ::=
[^\"] |
’\’ [nrtbf/\"’]"

Type Names

Listing A.14: Possible type names.
wire_type ::= ’Register’ | ’Signal’
generic_type ::= ’bool’ | ’nat’ | ’int’
structure_type ::= Identifier
variable_type ::= wire_type | generic_type | structure_type

Expressions
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Listing A.15: Syntax definition of logical expressions.

logical_expr :=
logical_un_op logical_expr |
logical_expr logical_bin_op logical_expr |
’(’ logical_expr ’)’ |
value |
logical_variable |
module_reference

logical_un_op ::=
’not’

logical_bin_op ::=
’and’ | ’nand’ | ’or’ | ’nor’ | ’xor’ | ’equiv’

logical_variable ::=
Identifier array? (’.’ Identifier array?)?

module_reference ::=
Identifier generic_parameter_list? parameter_list?

generic_parameter_list ::=
’<’ arithm_expr_list ’>’

parameter_list ::=
’(’ logical_expr_list ’)’

Listing A.16: Syntax definition of multiline expressions.
multiline_expr ::=

logical_expr Newline |
guarded_expr+

guarded_expr ::=
clause_list ’->’ side_effects? logical_expr Newline

clause_list ::=
comp_expr (’,’ comp_expr)*

condition ::=
clause_list |
’(’ clause_list ’)’

side_effects ::=
(logical_expr ’,’)+
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logical_expr_list ::=
logical_expr (’,’ logical_expr)*

Listing A.17: Syntax definition of arithmetical expressions.
arithm_expr ::=

arithm_un_op arithm_expr |
arithm_expr arithm_bin_op arithm_expr |
’(’ arithm_expr ’)’ |
value |
arithm_variable |
macro_access

arithm_un_op ::=
’-’ | ’not’ | ’!’

arithm_bin_op ::=
’+’ | ’-’ | ’*’ | ’/’ | ’%’ |
’and’ | ’nand’ | ’or’ | ’nor’ | ’xor’ | ’equiv’

arithm_variable ::=
Identifier array? (’.’ Identifier array?)?

macro_access ::=
Identifier ’(’ arithm_expr_list ’)’

arithm_expr_list ::=
arithm_expr (’,’ arithm_expr)*

Listing A.18: Syntax definition of comparison expressions.

comp_op ::=
’==’ | ’!=’ | ’<’ | ’<=’ | ’>’ | ’>=’

comp_expr ::=
arithm_expr
(comp_op arithm_expr)*

comp_expr_list ::=
comp_expr (’,’ comp_expr)*
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Listing A.19: Syntax definition of delay expressions.
delay_expr ::=

delay_un_op delay_expr |
delay_expr delay_bin_op delay_expr |
’(’ delay_expr ’)’ |
value |
delay_measure

delay_un_op ::= ’-’ | ’not’ | ’!’

delay_bin_op ::=
’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’<=’ | ’==’ |
’!=’ | ’>=’ | ’!’ |’>’ | ’<’ | ’||’

delay_measure ::=
’(’ delay_variable, delay_variable ’)’

delay_variable ::=
Identifier array? (’.’ Identifier array?)*

Listing A.20: Syntax definition of array expressions.
array ::= ’[’ array_range ’]’
array_range ::= arithm_expr (’to’|’downto’ arithm_expr)?

Packages

Listing A.21: Package identifier definition.
package_identifier ::= Identifier (’.’ Identifier)

Defines

Listing A.22: Syntax definition of defines.
define ::=

’define’ Identifier comp_expr |
’define’ ’logic’ Identifier logical_expr

Imports

Listing A.23: Syntax definition of imports.
import ::=

’import’ package_identifier
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A.7.2 Hardware Definition

Listing A.24: Syntax definition of hardware definition files.
hardware_definition_file ::=

hardware_definition*

hardware_definition ::=
import |
define |
interface_definition |
module_definition

Module

Listing A.25: Syntax definition of modules.
module_definition ::=

’public’? ’module’ Identifier
module_attributes
module_body

module_attributes ::=
(’<’ generic_parameters ’>’)?
(’(’ parameters ’)’)?
(’extends’ identifier_list)?
(’implements’ identifier_list)?

module_body ::= ’{’ module_element* ’}’

module_element ::=
port |
member |
wire |
constraint |
delay

Listing A.26: Syntax definition of ports.
port ::= (’in’|’out’) wire_type array? Identifier

(’<=’ multiline_expr)? Newline

Listing A.27: Syntax definition of members.
member ::=
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wire_type Identifier array? (’<=’ multiline_expr)? Newline |
structure_type Identifier array? (’<=’ logical_expr)? Newline |
generic_type Identifier ’<=’ arithm_expr Newline

Listing A.28: Syntax definition of wiring code.
wire ::=

’:’ single_wire_statement |
’:’ ’{’ wire_statement* ’}’

single_wire_statement ::=
define_statement_multiline |
assign_statement_multiline |
wire_statement

wire_statement ::=
define_statement |
assign_statement |
foreach_statement |
if_statement

Listing A.29: Syntax definition of define statements.
define_statement_multiline ::=

(wire_type | structure_type) logical_variable
(’<=’ multiline_expr)?
Newline |

generic_type Identifier
(’<=’ arithm_expr)?
Newline

define_statement ::=
(wire_type | structure_type) logical_variable

(’<=’ logical_expr)?
Newline |

generic_type Identifier
(’<=’ arithm_expr)?
Newline

Listing A.30: Syntax definition of assignment statements.
assign_statement ::=

logical_variable ’<=’
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multiline_expr | arithm_expr
Newline

assign_statement_ ::=
logical_variable_multiline ’<=’

logical_expr | arithm_expr
Newline

Listing A.31: Syntax definition of foreach statements.
foreach_statement ::=

’foreach’ variable_name ’[’ index ’]’ ’{’
wire_statement*

’}’ Newline

variable_name ::= Identifier
index ::= Identifier

Listing A.32: Syntax definition of if statements.
if_statement ::=

’if’ condition ’{’
wire_statement*

’}’ (’else’ ’if’ clause_list ’{’
wire_statement*

’}’)* (’else’ ’{’
wire_statement*

’}’)? Newline

Listing A.33: Syntax definition of delay assertions.
delay ::=

’delay’ delay_list Newline |
’delay’ ’{’ delay_list? ’}’

delay_list ::= delay_property (’,’ delay_property)*

delay_property ::= (Identifier ’:=’) delay_expr
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Listing A.34: Syntax definition of constraints.
constraint ::=

’:-’ comp_expr_list Newline |
’:-’ ’{’ comp_expr_list? ’}’

Interface

Listing A.35: Syntax definition of interfaces.
interface_definition ::=

’public’? ’interface’ Identifier
interface_attributes
interface_body

interface_attributes ::=
(’<’ generic_parameters ’>’)?
(’extends’ identifier_list)?

interface_body ::= ’{’ port* ’}’

A.7.3 Simulation Definition

Listing A.36: Syntax definition of simulation definition files.
simulation_definition_file ::=

simulation_definition*

simulation_definition ::=
import |
define |
simulation_definition |

Listing A.37: Syntax definition of simulations.
simulation_definition ::=

’simulation’ Identifier?
statement_block

statement_block ::=
’{’ simulation_statement* ’}’

simulation_statement ::=
assert |
variable_definition |
variable_assign |
simulator_statement |
print_statement |
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control_statement

control_statement ::=
if_statement |
for_loop |
foreach_loop |
do_loop |
while_loop

Assert

Listing A.38: Syntax definition of assert.
assert ::=

’assert’ comp_expr_list
(’,’ print_statement)?

Variable Definition

Listing A.39: Syntax definition of variable definition.
variable_definition ::=

(wire_type | structure_type) logical_variable
(’:=’ arithm_expr)?

Variable Assign

Listing A.40: Syntax definition of variable assign.
variable_assign ::=

arithm_variable ’:=’ arithm_expr

Simulator

Listing A.41: Syntax definition of simulator statement.
simulator_statement ::=

’simulator’ Identifier arithm_expr |
’simulator’ ’add’ Identifier ’:=’ module_reference

Print

Listing A.42: Syntax definition of print statement.
print_statement ::=

print_element (’+’ print_element)*
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print_element ::=
String |
arithm_expr

If

Listing A.43: Syntax definition of if statements.
if_statement ::=

’if’ condition statement_block
(’else’ ’if’ condition statement_block)*
(’else’ statement_block)?

For

Listing A.44: Syntax definition of for loop.
for_loop ::=

’for’ for_expr statement_block

for_expr ::=
iterator |
’(’ iterator ’)’

iterator ::=
Identifier := array_expr

Do

Listing A.45: Syntax definition of do loop.
do_loop ::=

’do’ statement_block
’while’ | ’until’ condition

While

Listing A.46: Syntax definition of while loop.
while_loop ::=

’while’ condition statement_block

A.8 Translator Guide

This section describes the Dhdl command line interface and its translation procedure. The ex-
pression in brackets is the option for the interface. In general, Dhdl’s interface is designed to
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comply with the UNIX/Linux guidelines. For a quick summary of the commands, please see the
Dhdl man-page.

A.8.1 Modes

The Dhdl program transforms the input files according to the selected mode. The input files can
either be hardware, simulation or package definitions. In each mode all necessary files are read,
e.g. the files on which the specified ones depend.

Check (-c)

This mode accepts hardware definition files. The specified hardware descriptions are checked
for sanity. The top most module, in this case, cannot have generic parameters without default
values.

Generate VHDL (-v)

This mode accepts hardware definition files. The specified hardware descriptions are checked
for sanity and, for each module configuration, a VHDL component is generated. Here, the top
most module also cannot have generic parameters without default values.

Generate Tcl-Script (-q)

This mode accepts package files. The packages are read and the specified hardware descriptions
are checked for sanity and, for each module configuration, a VHDL component is generated.
Also, a tcl-script for the external synthesizer is generated.

Simulate (-s)

This mode accepts simulation files. The specified simulations are executed sequentially and
modules are checked and translated to the simulation representation as they appear. If one sim-
ulation fails, the whole procedure is aborted and an error message returned. To suppress the
interpretation of output commands of the simulations “-nso” can be used.

A.8.2 Timing Verification (-d)

When the previously selected mode did not read the package description, it is read for the timing
verification separately with all its modules. Then, the timing files are read and the check of the
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timing properties is performed. With “-ps” a list of accessible signals for timing properties is
printed.

A.8.3 More Options

Other than the core features, Dhdl provides more options for convenient usage.

Run Quartus (-rq)

Runs the external synthesizer, Quartus in this version, after the generation of the tcl-script. With
this option it is possible to generate the netlist and check its timing with one command line.

Folder Settings

Generated files that belong together are usually grouped within the same folder by Dhdl. The
folders are the source folder, the VHDL file folder, the synthesis folder and the timing informa-
tion folder. These folders can be changed in the command line with the options “–src”, “–vhdl”,
“–syn”, “–time” and the new folder to use. Folders for generated files are also generated if they
do not exist prior to the execution. All files are overwritten without check back and with the
option “-e” it is possible to empty all folders before the translation starts.

Verbose Output

With the option “-v”, Dhdl reports about the current progress in translation and its result.

A.9 Code Examples

Below you find a useful set of code examples for the Dhdl language. In general, these examples
are easy to understand and little explanatory text is provided.

A.9.1 Declaring Structures

The general structure in Dhdl is achieved with modules and interfaces.

Modules

Here are some examples of module definitions.
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Basic Module A basic module with one input and one output port which are directly con-
nected.

1 module BasicModule {
2 in Signal in
3 out Signal out <= in
4 }

Module with Generic Parameter This module takes one generic parameter width to deter-
mine the array width of the input and output ports.

1 module ModuleWithGenericParameter<nat width> {
2 in Signal in [width ]
3 out Signal out [width ] <= in
4 }

Module with Signal Parameters A module with signal parameters can be used within an
expression of another module, as the following example shows.

1 module Connect (Signal in ) {
2 out Signal out <= in
3 }
4

5 module UsingModule {
6 in Signal in
7 out Signal out <= Connect (in )
8 }

Interfaces

In this section it is shown how to declare and correctly implement an interface in a module.

Basic Interface The following code shows a very simple interface and an implementing mod-
ule.

1 public interface BasicInterface {
2 in Signal inPort
3 out Signal outPort
4 }
5

6 public module BasicModule implements BasicInterface {
7 in Signal inPort
8 out Signal outPort <= inPort
9 }

Passing Generic Parameters to an Interface If the module itself implements only an inter-
face with a specific generic parameter, then one can set this parameter via a member variable
within the module having the same name, but not necessarily the same type. Nonetheless, the
value must be within the right range as shown in the following example.
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1 public interface PassGenericInterface1 <nat width> {
2 in Signal inPort [width ]
3 out Signal outPort [width ]
4 }
5

6 public module PassGenericModule1 implements PassGenericInterface1 {
7 int width <= 2
8

9 in Signal inPort [ 2 ]
10 out Signal outPort [ 2 ] <= inPort
11 }

If a generic parameter within the module is used, it has to have the same name, then it will
be passed on automatically, like in the next example.

1 public interface PassGenericInterface2 <nat width> {
2 in Signal inPort [width ]
3 out Signal outPort [width ]
4 }
5

6 public module PassGenericModule2 <bool width <= 1>
7 implements PassGenericInterface2 {
8 in Signal inPort [width ]
9 out Signal outPort [width ] <= inPort

10 }

A.9.2 Recursion

Recursion is the key element for specifying modules that perform more advanced calculations.
Here are some example from the library for using recursion in Dhdl in a simple and clear manner.

Equals The “equals” library element checks whether all signals in the array in are the same
value as value.

1 module equals (Signal in [n ] , Signal val ) {
2

3 out Signal out <=
4 n == 1 −> in equiv val
5 −> (in [ 0 ] equiv val ) and equals (in [1 to n − 1 ] , val )
6 }

Greater or Equals The “greator or equals” library element checks whether number or more
signals in the array in are the same value as value.

1 import dhdl .base .equals
2

3 module grequals<nat number>(Signal in [n ] , Signal value ) {
4

5 out Signal out <=
6 number == 0 −> true
7 number > n −> false
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8 n == number −> equals (in , value )
9 in [ 0 ] == value −> grequals<number−1>(in [1 to n−1] , value )

10 in [ 0 ] != value −> grequals<number>(in [1 to n−1] , value )
11 }

Is Equal The “isEqual” module of the library checks whether all signals value1 and value2
are bitwise equivalent.

1 module isEqual (Signal value1 [n ] , Signal value2 [m ] ) {
2 :− n == m
3

4 out Signal out <=
5 n == 1 −>
6 value1 [ 0 ] equiv value2 [ 0 ]
7

8 value1 [ 0 ] == value2 [ 0 ] −>
9 isEqual (value1 [1 to n−1] , value2 [1 to n−1])

10

11 −> false
12 }

A.9.3 Interconnect

In hardware designs it is often the case that logic modules of the same type have to be inter-
connected in a certain manner. Here are some examples how to use wiring code for an efficient
solution.

Increment The library module “increment” uses basic cells to increment the value of the input
port in. These cells are simple one bit adder and the first one is assigned true on its carry port
to increment.

1 module incrementCell {
2 in Signal in
3 in Signal carry
4

5 out Signal out <= in xor carry
6 out Signal carryOut <= in and carry
7 }
8

9 public module increment (Signal in [n ] ) {
10

11 out Signal out [n ]
12

13 incrementCell inc [n ]
14

15 : foreach out [i ] {
16 out [i ] <= inc [i ] . out
17 inc [i ] . in <= in [i ]
18

19 if i == 0 {

84



20 inc [i ] . carry <= true
21 } else {
22 inc [i ] . carry <= inc [i−1] .carryOut
23 }
24 }
25 }

Full Connect When it is necessary to connect all modules of a certain type with each other,
a nested foreach loop is a good method. In this example, all element modules have the same
pattern of the other elements’ output ports at their input ports.

1 module Element<nat n> {
2 in Signal in [n ]
3 out Signal out <= true
4 }
5

6 module FullConnect<nat n <= 5> {
7 Element<n> element [n ]
8

9 : foreach element [i ] {
10 foreach element [j ] {
11 element [i ] . in [j ] <= element [j ] . out
12 }
13 }
14 }

A.9.4 State Machine

In synchronous designs, finite state machines are the core elements. Here is an example state
machine encoding the behavior of traffic lights. It has the (one bit) states of the lights as output
and a signal next as input to determine when to compute the next state.

1 import dhdl .lang
2

3 define WIDTH 2
4

5 define logic RED toArray<0 , WIDTH>
6 define logic REDYELLOW toArray<1 , WIDTH>
7 define logic GREEN toArray<2 , WIDTH>
8 define logic YELLOW toArray<3 , WIDTH>
9

10

11 module TrafficLights {
12 forward in Signal clock
13 forward in Signal reset
14

15 in Signal next
16

17 out Signal red <=
18 state == RED −> true
19 state == REDYELLOW −> true
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20 −> false
21

22 out Signal yellow <=
23 state == YELLOW −> true
24 state == REDYELLOW −> true
25 −> false
26

27 out Signal green <=
28 state == GREEN −> true
29 −> false
30

31 Register state [WIDTH ] <=
32 state == RED , next == true
33 −> REDYELLOW
34

35 state == REDYELLOW , next == true
36 −> GREEN
37

38 state == GREEN , next == true
39 −> YELLOW
40

41 state == YELLOW , next == true
42 −> RED
43

44 −> state
45 }
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APPENDIX B
Reference Design Details

This chapter contains the code and, provided it is interesting, also some generated files of the
reference designs explained in Chapter 6.

B.1 The Small And-Gate Design

For the small and-gate design, the Dhdl simulation code, the VHDL testbench, the generated
timing files and the full semantic interpretation is given here.

B.1.1 Dhdl Simulation Code

Listing B.1: Dhdl simulation code for the and-gate design.
1 import And
2

3 simulation andTest {
4

5 simulator add gate := And
6 simulator start
7

8 simulator listen gate .in0
9 simulator listen gate .in1

10 simulator listen gate .out
11 simulator listen gate .last
12

13 gate .in0 := false
14 gate .in1 := false
15 simulator step
16 assert gate .out == false
17

18 gate .in0 := true
19 gate .in1 := false
20 simulator step
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21 assert gate .out == false
22 assert gate .last == false
23

24 gate .in0 := false
25 gate .in1 := true
26 simulator step
27 assert gate .out == false
28 assert gate .last == false
29

30 gate .in0 := true
31 gate .in1 := true
32 simulator step
33 assert gate .out == true
34 assert gate .last == false
35

36 simulator step
37 assert gate .out == true
38 assert gate .last == true
39

40 simulator show
41 }

B.1.2 VHDL Testbench Code

Listing B.2: The VHDL code for the testbench of the and-gate design.
1 library IEEE ;
2 use IEEE .std_logic_1164 .all ;
3 use IEEE .std_logic_unsigned .all ;
4 use IEEE .numeric_std .all ;
5

6 library WORK ;
7 use WORK .all ;
8

9 entity tb_and is
10 end entity ;
11

12 architecture tb_behavior of tb_and is
13

14 component And_0
15 port (
16 in0_port : in std_logic ;
17 in1_port : in std_logic ;
18 out_port : out std_logic ;
19 last_port : out std_logic
20 ) ;
21 end component ;
22

23 signal in0_signal : std_logic ;
24 signal in1_signal : std_logic ;
25 signal out_signal : std_logic ;
26 signal last_signal : std_logic ;
27

28 begin
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29

30 DUT : And_0
31 port map (
32 in0_port => in0_signal ,
33 in1_port => in1_signal ,
34 out_port => out_signal ,
35 last_port => last_signal
36 ) ;
37

38 testrun : process
39

40 procedure tick is
41 begin
42 wait for 1 ns ;
43 end tick ;
44

45 begin
46 tick ;
47

48 in0_signal <= ’ 0 ’ ;
49 in1_signal <= ’ 0 ’ ;
50 tick ;
51 assert out_signal = ’0 ’ severity FAILURE ;
52

53 in0_signal <= ’ 1 ’ ;
54 in1_signal <= ’ 0 ’ ;
55 tick ;
56 assert out_signal = ’0 ’ severity FAILURE ;
57 assert last_signal = ’0 ’ severity FAILURE ;
58

59 in0_signal <= ’ 0 ’ ;
60 in1_signal <= ’ 1 ’ ;
61 tick ;
62 assert out_signal = ’0 ’ severity FAILURE ;
63 assert last_signal = ’0 ’ severity FAILURE ;
64

65 in0_signal <= ’ 1 ’ ;
66 in1_signal <= ’ 1 ’ ;
67 tick ;
68 assert out_signal = ’1 ’ severity FAILURE ;
69 assert last_signal = ’1 ’ severity FAILURE ;
70

71 tick ;
72 assert out_signal = ’1 ’ severity FAILURE ;
73 assert last_signal = ’1 ’ severity FAILURE ;
74

75 end process ;
76

77 end architecture tb_behavior ;

B.1.3 Timing Files
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Listing B.3: The standard delay format file generated for the and-gate design.
1 / / C o p y r i g h t (C) 1991−2010 A l t e r a C o r p o r a t i o n
2 / / Your use o f A l t e r a C o r p o r a t i o n ’ s d e s i g n t o o l s , l o g i c f u n c t i o n s
3 / / and o t h e r s o f t w a r e and t o o l s , and i t s AMPP p a r t n e r l o g i c
4 / / f u n c t i o n s , and any o u t p u t f i l e s from any of t h e f o r e g o i n g
5 / / ( i n c l u d i n g d e v i c e programming or s i m u l a t i o n f i l e s ) , and any
6 / / a s s o c i a t e d d o c u m e n t a t i o n o r i n f o r m a t i o n a r e e x p r e s s l y s u b j e c t
7 / / t o t h e t e r m s and c o n d i t i o n s o f t h e A l t e r a Program L i c e n s e
8 / / S u b s c r i p t i o n Agreement , A l t e r a MegaCore F u n c t i o n L i c e n s e
9 / / Agreement , o r o t h e r a p p l i c a b l e l i c e n s e agreement , i n c l u d i n g ,

10 / / w i t h o u t l i m i t a t i o n , t h a t your use i s f o r t h e s o l e p u r p o s e o f
11 / / programming l o g i c d e v i c e s m a n u f a c t u r e d by A l t e r a and s o l d by
12 / / A l t e r a o r i t s a u t h o r i z e d d i s t r i b u t o r s . P l e a s e r e f e r t o t h e
13 / / a p p l i c a b l e ag reemen t f o r f u r t h e r d e t a i l s .
14

15

16 / /
17 / / Device : A l t e r a EP2C35F672C6 Package FBGA672
18 / /
19

20 / /
21 / / Th i s SDF f i l e s h o u l d be used f o r Custom VHDL on ly
22 / /
23

24 (DELAYFILE
25 (SDFVERSION " 2 . 1 " )
26 (DESIGN "And_0 " )
27 (DATE " 0 7 / 1 4 / 2 0 1 1 1 9 : 4 0 : 1 3 " )
28 (VENDOR "Altera " )
29 (PROGRAM "Quartus II " )
30 (VERSION "Version 9 . 1 Build 304 0 1 / 2 5 / 2 0 1 0 Service Pack 1 SJ Web Edition " )
31 (DIVIDER . )
32 (TIMESCALE 1 ps )
33

34 (CELL
35 (CELLTYPE "cycloneii_asynch_io " )
36 (INSTANCE \ \ in0_port \ ~I \ \ . asynch_inst )
37 (DELAY
38 (ABSOLUTE
39 (IOPATH padio combout ( 8 6 2 : 8 6 2 : 8 6 2 ) ( 8 6 2 : 8 6 2 : 8 6 2 ) )
40 )
41 )
42 )
43 (CELL
44 (CELLTYPE "cycloneii_asynch_io " )
45 (INSTANCE \ \ in1_port \ ~I \ \ . asynch_inst )
46 (DELAY
47 (ABSOLUTE
48 (IOPATH padio combout ( 8 4 2 : 8 4 2 : 8 4 2 ) ( 8 4 2 : 8 4 2 : 8 4 2 ) )
49 )
50 )
51 )
52 (CELL
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53 (CELLTYPE "cycloneii_lcell_comb " )
54 (INSTANCE \ \ calculate_signals \ ~ 0 \ \ )
55 (DELAY
56 (ABSOLUTE
57 (PORT datab ( 5 3 1 3 : 5 3 1 3 : 5 3 1 3 ) ( 5 3 1 3 : 5 3 1 3 : 5 3 1 3 ) )
58 (PORT datac ( 4 9 8 7 : 4 9 8 7 : 4 9 8 7 ) ( 4 9 8 7 : 4 9 8 7 : 4 9 8 7 ) )
59 (IOPATH datab combout ( 4 1 9 : 4 1 9 : 4 1 9 ) ( 4 1 9 : 4 1 9 : 4 1 9 ) )
60 (IOPATH datac combout ( 2 7 5 : 2 7 5 : 2 7 5 ) ( 2 7 5 : 2 7 5 : 2 7 5 ) )
61 )
62 )
63 )
64 (CELL
65 (CELLTYPE "cycloneii_asynch_io " )
66 (INSTANCE \ \ out_port \ ~I \ \ . asynch_inst )
67 (DELAY
68 (ABSOLUTE
69 (PORT datain ( 1 9 0 2 : 1 9 0 2 : 1 9 0 2 ) ( 1 9 0 2 : 1 9 0 2 : 1 9 0 2 ) )
70 (IOPATH datain padio ( 2 8 0 8 : 2 8 0 8 : 2 8 0 8 ) ( 2 8 0 8 : 2 8 0 8 : 2 8 0 8 ) )
71 )
72 )
73 )
74 (CELL
75 (CELLTYPE "cycloneii_asynch_io " )
76 (INSTANCE \ \ last_port \ ~I \ \ . asynch_inst )
77 (DELAY
78 (ABSOLUTE
79 (PORT datain ( 1 9 0 2 : 1 9 0 2 : 1 9 0 2 ) ( 1 9 0 2 : 1 9 0 2 : 1 9 0 2 ) )
80 (IOPATH datain padio ( 2 8 0 8 : 2 8 0 8 : 2 8 0 8 ) ( 2 8 0 8 : 2 8 0 8 : 2 8 0 8 ) )
81 )
82 )
83 )
84 )

Listing B.4: The generated netlist for the use with the standard delay format file for the and-gate
design.

1 −− C o p y r i g h t (C) 1991−2010 A l t e r a C o r p o r a t i o n
2 −− Your use o f A l t e r a C o r p o r a t i o n ’ s d e s i g n t o o l s , l o g i c f u n c t i o n s
3 −− and o t h e r s o f t w a r e and t o o l s , and i t s AMPP p a r t n e r l o g i c
4 −− f u n c t i o n s , and any o u t p u t f i l e s from any of t h e f o r e g o i n g
5 −− ( i n c l u d i n g d e v i c e programming or s i m u l a t i o n f i l e s ) , and any
6 −− a s s o c i a t e d d o c u m e n t a t i o n o r i n f o r m a t i o n a r e e x p r e s s l y s u b j e c t
7 −− t o t h e t e r m s and c o n d i t i o n s o f t h e A l t e r a Program L i c e n s e
8 −− S u b s c r i p t i o n Agreement , A l t e r a MegaCore F u n c t i o n L i c e n s e
9 −− Agreement , o r o t h e r a p p l i c a b l e l i c e n s e agreement , i n c l u d i n g ,

10 −− w i t h o u t l i m i t a t i o n , t h a t your use i s f o r t h e s o l e p u r p o s e o f
11 −− programming l o g i c d e v i c e s m a n u f a c t u r e d by A l t e r a and s o l d by
12 −− A l t e r a o r i t s a u t h o r i z e d d i s t r i b u t o r s . P l e a s e r e f e r t o t h e
13 −− a p p l i c a b l e ag reemen t f o r f u r t h e r d e t a i l s .
14

15 −− VENDOR " A l t e r a "
16 −− PROGRAM " Q u a r t u s I I "
17 −− VERSION " V e r s i o n 9 . 1 B u i l d 304 0 1 / 2 5 / 2 0 1 0 S e r v i c e Pack 1 SJ Web E d i t i o n "
18
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19 −− DATE " 0 7 / 1 4 / 2 0 1 1 1 9 : 4 0 : 1 3 "
20

21 −−
22 −− Device : A l t e r a EP2C35F672C6 Package FBGA672
23 −−
24

25 −−
26 −− Thi s VHDL f i l e s h o u l d be used f o r Custom VHDL on ly
27 −−
28

29 LIBRARY CYCLONEII ;
30 LIBRARY IEEE ;
31 USE CYCLONEII .CYCLONEII_COMPONENTS .ALL ;
32 USE IEEE .STD_LOGIC_1164 .ALL ;
33

34 ENTITY And_0 IS
35 PORT (
36 in0_port : IN std_logic ;
37 in1_port : IN std_logic ;
38 out_port : OUT std_logic ;
39 last_port : OUT std_logic
40 ) ;
41 END And_0 ;
42

43 −− Design P o r t s I n f o r m a t i o n
44 −− o u t _ p o r t => L o c a t i o n : PIN_AE22 , I /O S t a n d a r d : 3.3−V LVTTL ,

C u r r e n t S t r e n g t h : 24mA
45 −− l a s t _ p o r t => L o c a t i o n : PIN_AF22 , I /O S t a n d a r d : 3.3−V LVTTL ,

C u r r e n t S t r e n g t h : 24mA
46 −− i n 0 _ p o r t => L o c a t i o n : PIN_G26 , I /O S t a n d a r d : 3.3−V LVTTL ,

C u r r e n t S t r e n g t h : D e f a u l t
47 −− i n 1 _ p o r t => L o c a t i o n : PIN_N23 , I /O S t a n d a r d : 3.3−V LVTTL ,

C u r r e n t S t r e n g t h : D e f a u l t
48

49 ARCHITECTURE structure OF And_0 IS
50 SIGNAL gnd : std_logic := ’ 0 ’ ;
51 SIGNAL vcc : std_logic := ’ 1 ’ ;
52 SIGNAL unknown : std_logic := ’X ’ ;
53 SIGNAL devoe : std_logic := ’ 1 ’ ;
54 SIGNAL devclrn : std_logic := ’ 1 ’ ;
55 SIGNAL devpor : std_logic := ’ 1 ’ ;
56 SIGNAL ww_devoe : std_logic ;
57 SIGNAL ww_devclrn : std_logic ;
58 SIGNAL ww_devpor : std_logic ;
59 SIGNAL ww_in0_port : std_logic ;
60 SIGNAL ww_in1_port : std_logic ;
61 SIGNAL ww_out_port : std_logic ;
62 SIGNAL ww_last_port : std_logic ;
63 SIGNAL \in0_port~combout \ : std_logic ;
64 SIGNAL \in1_port~combout \ : std_logic ;
65 SIGNAL \calculate_signals~0_combout \ : std_logic ;
66

67 BEGIN
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68

69 ww_in0_port <= in0_port ;
70 ww_in1_port <= in1_port ;
71 out_port <= ww_out_port ;
72 last_port <= ww_last_port ;
73 ww_devoe <= devoe ;
74 ww_devclrn <= devclrn ;
75 ww_devpor <= devpor ;
76

77 −− L o c a t i o n : PIN_G26 , I /O S t a n d a r d : 3.3−V LVTTL , C u r r e n t S t r e n g t h :
D e f a u l t

78 \in0_port~I \ : cycloneii_io
79 −− pragma t r a n s l a t e _ o f f
80 GENERIC MAP (
81 input_async_reset => "none" ,
82 input_power_up => "low" ,
83 input_register_mode => "none" ,
84 input_sync_reset => "none" ,
85 oe_async_reset => "none" ,
86 oe_power_up => "low" ,
87 oe_register_mode => "none" ,
88 oe_sync_reset => "none" ,
89 operation_mode => "input" ,
90 output_async_reset => "none" ,
91 output_power_up => "low" ,
92 output_register_mode => "none" ,
93 output_sync_reset => "none" )
94 −− pragma t r a n s l a t e _ o n
95 PORT MAP (
96 devclrn => ww_devclrn ,
97 devpor => ww_devpor ,
98 devoe => ww_devoe ,
99 oe => GND ,

100 padio => ww_in0_port ,
101 combout => \in0_port~combout \ ) ;
102

103 −− L o c a t i o n : PIN_N23 , I /O S t a n d a r d : 3.3−V LVTTL , C u r r e n t S t r e n g t h :
D e f a u l t

104 \in1_port~I \ : cycloneii_io
105 −− pragma t r a n s l a t e _ o f f
106 GENERIC MAP (
107 input_async_reset => "none" ,
108 input_power_up => "low" ,
109 input_register_mode => "none" ,
110 input_sync_reset => "none" ,
111 oe_async_reset => "none" ,
112 oe_power_up => "low" ,
113 oe_register_mode => "none" ,
114 oe_sync_reset => "none" ,
115 operation_mode => "input" ,
116 output_async_reset => "none" ,
117 output_power_up => "low" ,
118 output_register_mode => "none" ,
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119 output_sync_reset => "none" )
120 −− pragma t r a n s l a t e _ o n
121 PORT MAP (
122 devclrn => ww_devclrn ,
123 devpor => ww_devpor ,
124 devoe => ww_devoe ,
125 oe => GND ,
126 padio => ww_in1_port ,
127 combout => \in1_port~combout \ ) ;
128

129 −− L o c a t i o n : LCCOMB_X61_Y19_N8
130 \calculate_signals~0 \ : cycloneii_lcell_comb
131 −− E q u a t i o n ( s ) :
132 −− \ c a l c u l a t e _ s i g n a l s ~0 _combout \ = ( \ i n 0 _ p o r t ~combout \ & \ i n 1 _ p o r t ~combout \ )
133

134 −− pragma t r a n s l a t e _ o f f
135 GENERIC MAP (
136 lut_mask => "1100000011000000" ,
137 sum_lutc_input => "datac" )
138 −− pragma t r a n s l a t e _ o n
139 PORT MAP (
140 datab => \in0_port~combout \ ,
141 datac => \in1_port~combout \ ,
142 combout => \calculate_signals~0_combout \ ) ;
143

144 −− L o c a t i o n : PIN_AE22 , I /O S t a n d a r d : 3.3−V LVTTL , C u r r e n t S t r e n g t h : 24
mA

145 \out_port~I \ : cycloneii_io
146 −− pragma t r a n s l a t e _ o f f
147 GENERIC MAP (
148 input_async_reset => "none" ,
149 input_power_up => "low" ,
150 input_register_mode => "none" ,
151 input_sync_reset => "none" ,
152 oe_async_reset => "none" ,
153 oe_power_up => "low" ,
154 oe_register_mode => "none" ,
155 oe_sync_reset => "none" ,
156 operation_mode => "output" ,
157 output_async_reset => "none" ,
158 output_power_up => "low" ,
159 output_register_mode => "none" ,
160 output_sync_reset => "none" )
161 −− pragma t r a n s l a t e _ o n
162 PORT MAP (
163 datain => \calculate_signals~0_combout \ ,
164 devclrn => ww_devclrn ,
165 devpor => ww_devpor ,
166 devoe => ww_devoe ,
167 oe => VCC ,
168 padio => ww_out_port ) ;
169
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170 −− L o c a t i o n : PIN_AF22 , I /O S t a n d a r d : 3.3−V LVTTL , C u r r e n t S t r e n g t h : 24
mA

171 \last_port~I \ : cycloneii_io
172 −− pragma t r a n s l a t e _ o f f
173 GENERIC MAP (
174 input_async_reset => "none" ,
175 input_power_up => "low" ,
176 input_register_mode => "none" ,
177 input_sync_reset => "none" ,
178 oe_async_reset => "none" ,
179 oe_power_up => "low" ,
180 oe_register_mode => "none" ,
181 oe_sync_reset => "none" ,
182 operation_mode => "output" ,
183 output_async_reset => "none" ,
184 output_power_up => "low" ,
185 output_register_mode => "none" ,
186 output_sync_reset => "none" )
187 −− pragma t r a n s l a t e _ o n
188 PORT MAP (
189 datain => \calculate_signals~0_combout \ ,
190 devclrn => ww_devclrn ,
191 devpor => ww_devpor ,
192 devoe => ww_devoe ,
193 oe => VCC ,
194 padio => ww_last_port ) ;
195 END structure ;

B.1.4 Semantic Interpretation

For better readability of the semantic interpretation, the Dhdl code will be represented with
CT
lines, where T ∈ {S,D} which stand for the and-gate simulation and definition code respec-

tively. The index lines contains the included line numbers comma separated, as well as ranges
of line numbers annotated with colons.

1. Initial configuration: 〈(CS
5:38, ε, ∅), (∅, ei, ∅)〉

• ei = {sim_start 7→ init,mod_curr 7→ ε, And 7→ CD
1,5:14}

2. 〈(’simulator add gate := And’ : CS
6:38, ε, ∅), (∅, ei, ∅)〉

[add]⇒ 〈(CS
6:38, C

D
1,5:14, ∅), (∅, e2, ∅)〉

• e3 = {sim_start 7→ init,mod_curr 7→ ’gate’, And 7→ CD
1,5:14}

3.

〈(CS
6:38, C

D
5:13, ∅), (∅, e2, ∅)〉 ⇒a to d 〈(CS

6:38, ε, T ), (s3, e2, ∅)〉
〈(CS

6:38, C
D
1,5:14, ∅), (∅, e2, ∅)〉 ⇒ 〈(CS

6:38, ε, T ), (s3, e2, ∅)〉
[module]

a. 〈(CS
6:38, ’in Signal in0’ : CD

6:13, ∅), (∅, e2, ∅)〉
[input]⇒ 〈(CS

6:38, C
D
6:13, ∅), (sa, e2, ∅)〉

• sa = {gate.in0 7→ undef}

b. 〈(CS
6:38, ’in Signal in1’ : CD

7:13, ∅), (sa, e2, ∅)〉
[input]⇒ 〈(CS

6:38, C
D
8:13, ∅), (sb, e2, ∅)〉
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• sb = {gate.in0 7→ undef, gate.in1 7→ undef}

c. 〈(CS
6:38, C

D
8:11 : C

D
12:13, ∅), (sb, e2, ∅)〉

[output]⇒ 〈(CS
6:38, C

D
13, Tc), (sc, e2, ∅)〉

• sc = {gate.in0 7→ undef, gate.in1 7→ undef, gate.out 7→ undef}
• Tc = {gate.out 7→ ’in0 == true, in2 == true -> true \n -> false’}

d. 〈(CS
6:38, ’out Signal last <= out’, Tc), (sc, e2, ∅)〉

[output]⇒ 〈(CS
6:38, ε, T ), (s3, e2, ∅)〉

• s3 =
{

gate.in0 7→ undef, gate.in1 7→ undef,
gate.out 7→ undef, gate.last 7→ undef

}
• T =

{
gate.out 7→ ’in0 == true, in2 == true -> true \n -> false’,
gate.last 7→ ’out’

}

4. 〈(’simulator start’ : CS
7:38, ε, T ), (s3, e2, ∅)〉

[start]⇒ 〈(CS
8:38, ε, T ), (s3, e4, ∅)〉

• e4 = {sim_start 7→ listen,mod_curr 7→ ’gate’, And 7→ CD
1,5:14}

5. 〈(’simulator listen gate.in0’ : CS
9:38, ε, T ), (s3, e4, ∅)〉

[listen]⇒ 〈(CS
9:38, ε, T ), (s3, e4, h5)〉

• h5 = {gate.in0 7→ ε}

6. 〈(’simulator listen gate.in1’ : CS
10:38, ε, T ), (s3, e4, h5)〉

[listen]⇒ 〈(CS
10:38, ε, T ), (s3, e4, h6)〉

• h6 = {gate.in0 7→ ε, gate.in1 7→ ε}

7. 〈(’simulator listen gate.out’ : CS
11:38, ε, T ), (s3, e4, h6)〉

[listen]⇒ 〈(CS
11:38, ε, T ), (s3, e4, h7)〉

• h7 = {gate.in0 7→ ε, gate.in1 7→ ε, gate.out 7→ ε}

8. 〈(’simulator listen gate.last’ : CS
12:38, ε, T ), (s3, e4, h7)〉

[listen]⇒ 〈(CS
13:38, ε, T ), (s3, e4, h8)〉

• h8 =
{

gate.in0 7→ ε, gate.in1 7→ ε,
gate.out 7→ ε, gate.last 7→ ε

}
9. 〈(’gate.in0 := false’ : CS

14:38, ε, T ), (s3, e4, h7)〉
[set]⇒ 〈(CS

14:38, ε, T ), (s9, e4, h8)〉

• s9 =
{

gate.in0 7→ false, gate.in1 7→ undef,
gate.out 7→ undef, gate.last 7→ undef

}
10. 〈(’gate.in1 := false’ : CS

15:38, ε, T ), (s9, e4, h7)〉
[set]⇒ 〈(CS

15:38, ε, T ), (s10, e4, h8)〉

• s10 =
{

gate.in0 7→ false, gate.in1 7→ false,
gate.out 7→ undef, gate.last 7→ undef

}
11. 〈(’simulator step’ : CS

16:38, ε, T ), (s10, e4, h8)〉
[step]⇒ 〈(CS

16:38, ε, T ), (s11, e11, h11)〉

96



• e11 = {sim_start 7→ run,mod_curr 7→ ’gate’, And 7→ CD
1,5:14}

• s11 =
{

gate.in0 7→ false, gate.in1 7→ false,
gate.out 7→ false, gate.last 7→ undef

}
• h11 =

{
gate.in0 7→ ’false’, gate.in1 7→ ’false’,
gate.out 7→ ’undef’, gate.last 7→ ’undef’

}
12. 〈(’assert gate.out == false’ : CS

17:38, ε, T ), (s11, e11, h11)〉
[assertt]⇒

〈(CS
18:38, ε, T ), (s11, e11, h11)〉

13. 〈(’gate.in0 := true’ : CS
19:38, ε, T ), (s11, e11, h11)〉

[step]⇒ 〈(CS
19:38, ε, T ), (s12, e11, h11)〉

• s12 =
{

gate.in0 7→ true, gate.in1 7→ false,
gate.out 7→ false, gate.last 7→ undef

}
14. 〈(’gate.in1 := false’ : CS

20:38, ε, T ), (s12, e11, h11)〉
[set]⇒ 〈(CS

20:38, ε, T ), (s12, e11, h11)〉

15. 〈(’simulator step’ : CS
21:38, ε, T ), (s12, e11, h11)〉

[set]⇒ 〈(CS
21:38, ε, T ), (s15, e11, h15)〉

• s15 =
{

gate.in0 7→ true, gate.in1 7→ false,
gate.out 7→ false, gate.last 7→ false

}
• h15 =

{
gate.in0 7→ ’false:true’, gate.in1 7→ ’false:false’,
gate.out 7→ ’undef:false’, gate.last 7→ ’undef:undef’

}

16. 〈(’assert gate.out == false’ : CS
22:38, ε, T ), (s15, e11, h15)〉

[assertt]⇒
〈(CS

22:38, ε, T ), (s15, e11, h15)〉

17. 〈(’assert gate.last == false’ : CS
23:38, ε, T ), (s15, e11, h15)〉

[assertt]⇒
〈(CS

24:38, ε, T ), (s15, e11, h15)〉

18. 〈(’gate.in0 := false’ : CS
25:38, ε, T ), (s15, e11, h15)〉

[set]⇒
〈(CS

25:38, ε, T ), (s18, e11, h15)〉

• s18 =
{

gate.in0 7→ false, gate.in1 7→ false,
gate.out 7→ false, gate.last 7→ false

}

19. 〈(’gate.in1 := true’ : CS
26:38, ε, T ), (s18, e11, h15)〉

[set]⇒
〈(CS

26:38, ε, T ), (s19, e11, h15)〉

• s19 =
{

gate.in0 7→ false, gate.in1 7→ true,
gate.out 7→ false, gate.last 7→ false

}

20. 〈(’simulator step’ : CS
27:38, ε, T ), (s19, e11, h11)〉

[set]⇒ 〈(CS
27:38, ε, T ), (s19, e11, h20)〉
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• h20 =


gate.in0 7→ ’false:true:false’,
gate.in1 7→ ’false:false:true’,
gate.out 7→ ’undef:false:false’,
gate.last 7→ ’undef:undef:false’


21. 〈(’assert gate.out == false’ : CS

28:38, ε, T ), (s19, e11, h20)〉
[assertt]⇒

〈(CS
28:38, ε, T ), (s19, e11, h20)〉

22. 〈(’assert gate.last == false’ : CS
29:38, ε, T ), (s19, e11, h20)〉

[assertt]⇒
〈(CS

30:38, ε, T ), (s19, e11, h20)〉

23. 〈(’gate.in0 := true’ : CS
31:38, ε, T ), (s19, e11, h20)〉

[set]⇒ 〈(CS
31:38, ε, T ), (s23, e11, h20)〉

• s23 =
{

gate.in0 7→ true, gate.in1 7→ true,
gate.out 7→ false, gate.last 7→ false

}

24. 〈(’gate.in1 := true’ : CS
32:38, ε, T ), (s23, e11, h20)〉

[set]⇒ 〈(CS
32:38, ε, T ), (s23, e11, h20)〉

25. 〈(’simulator step’ : CS
33:38, ε, T ), (s23, e11, h20)〉

[step]⇒ 〈(CS
33:38, ε, T ), (s25, e11, h24)〉

• s25 =
{

gate.in0 7→ true, gate.in1 7→ true,
gate.out 7→ true, gate.last 7→ false

}

• h25 =


gate.in0 7→ ’false:true:false:true’,
gate.in1 7→ ’false:false:true:true’,
gate.out 7→ ’undef:false:false:false’,
gate.last 7→ ’undef:undef:false:false’


26. 〈(’assert gate.out == true’ : CS

34:38, ε, T ), (s25, e11, h25)〉
[assertt]⇒

〈(CS
34:38, ε, T ), (s25, e11, h25)〉

27. 〈(’assert gate.last == false’ : CS
35:38, ε, T ), (s25, e11, h25)〉

[assertt]⇒
〈(CS

36:38, ε, T ), (s25, e11, h25)〉

28. 〈(’simulator step’ : CS
37:38, ε, T ), (s25, e11, h25)〉

[step]⇒ 〈(CS
37:38, ε, T ), (s28, e11, h28)〉

• s28 =
{

gate.in0 7→ true, gate.in1 7→ true,
gate.out 7→ true, gate.last 7→ true

}

• h28 =


gate.in0 7→ ’false:true:false:true:true’,
gate.in1 7→ ’false:false:true:true:true’,
gate.out 7→ ’undef:false:false:false:true’,
gate.last 7→ ’undef:undef:false:false:false’


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29. 〈(’assert gate.out == true’ : CS
38, ε, T ), (s28, e11, h28)〉

[assertt]⇒
〈(CS

38, ε, T ), (s28, e11, h28)〉

30. 〈(’assert gate.last == true’, ε, T ), (s28, e11, h28)〉
[assertt]⇒

〈(ε, ε, T ), (s28, e11, h28)〉

31. 〈(ε, ε, T ), (s28, e11, h28)〉
[term]⇒ 〈TERM, h〉

• h =


gate.in0 7→ ’false:true:false:true:true:true’,
gate.in1 7→ ’false:false:true:true:true:true’,
gate.out 7→ ’undef:false:false:false:true:true’,
gate.last 7→ ’undef:undef:false:false:false:true’


B.2 Synchronous Design

The synchronous design, a coffee machine, consists of five Dhdl files. CoffeeFSM.df contains
the finite state machine definition and CoffeeFSM.sf, its simulation test cases. In Coffee.df,
the finite state machine is wrapped. There button debouncers are added and the cupRemoved
signal is set to true to limit the buttons used. Also, further modules are connected to make a one
tick long high visible on LEDs for the human eye. In Machine.df, a port for a reset indicator
LED is added and all other ports are directly connected. Finally, Machine.pf specifies the pin
assignment and the used FPGA device. A state diagram and a detailed specification of the tasks
performed can be found in Section B.2.

Listing B.5: Hardware specification of the coffee finite state machine.
1 import dhdl .lang
2

3 define logic Idle toArray<0 , 2>
4 define logic WaitSelect toArray<1 , 2>
5 define logic WaitBeverage toArray<2 , 2>
6 define logic WaitForTakeOut toArray<3 , 2>
7

8 public module CoffeeFSM {
9 forward in Signal clock

10 forward in Signal reset
11

12 in Signal coinAvailable
13 in Signal btnCoffee
14 in Signal btnTea
15 in Signal btnAbort
16 in Signal cupRemoved
17 in Signal beverageReady
18

19 out Register makeCoffee <= false
20 out Register makeTea <= false
21 out Register returnCoin <= false
22 out Register beep <= false
23
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24 Register state [ 2 ] <=
25 Idle == state , coinAvailable −>
26 WaitSelect
27

28 WaitSelect == state , btnCoffee −>
29 makeCoffee <= true ,
30 WaitBeverage
31

32 WaitSelect == state , btnTea −>
33 makeTea <= true ,
34 WaitBeverage
35

36 WaitSelect == state , btnAbort −>
37 returnCoin <= true ,
38 Idle
39

40 WaitBeverage == state , beverageReady −>
41 beep <= true ,
42 WaitForTakeOut
43

44 WaitForTakeOut == state , cupRemoved −>
45 Idle
46

47 WaitForTakeOut == state −>
48 beep <= true ,
49 WaitForTakeOut
50

51 −> state
52 }

Listing B.6: Simulation specification for the coffee selection of the coffee finite state machine.
1 import coffee .CoffeeFSM
2

3 simulation coffee {
4

5 simulator add machine := CoffeeFSM
6 simulator start
7

8 simulator listen machine .clock
9 simulator listen machine .reset

10

11 simulator listen machine .state [0 to 1]
12

13 simulator listen machine .coinAvailable
14 simulator listen machine .btnCoffee
15 simulator listen machine .btnTea
16 simulator listen machine .btnAbort
17 simulator listen machine .cupRemoved
18 simulator listen machine .beverageReady
19

20 simulator listen machine .makeCoffee
21 simulator listen machine .makeTea
22 simulator listen machine .returnCoin
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23 simulator listen machine .beep
24

25

26 machine .clock := false
27 machine .reset := true
28

29 machine .coinAvailable := false
30 machine .btnCoffee := false
31 machine .btnTea := false
32 machine .btnAbort := false
33 machine .cupRemoved := false
34 machine .beverageReady := false
35

36 simulator step
37 machine .reset := false
38 simulator step
39

40 assert machine .state [0 to 1] == 0
41 assert machine .makeCoffee == 0
42 assert machine .makeTea == 0
43 assert machine .returnCoin == 0
44 assert machine .beep == 0
45

46

47 machine .clock := not machine .clock
48 simulator step
49

50 assert machine .state [0 to 1] == 0
51 assert machine .makeCoffee == 0
52 assert machine .makeTea == 0
53 assert machine .returnCoin == 0
54 assert machine .beep == 0
55

56 machine .coinAvailable := true
57

58 machine .clock := not machine .clock
59 simulator step
60 machine .clock := not machine .clock
61 simulator step
62

63 assert machine .state [0 to 1] == 1
64 assert machine .makeCoffee == 0
65 assert machine .makeTea == 0
66 assert machine .returnCoin == 0
67 assert machine .beep == 0
68

69 machine .coinAvailable := false
70

71 machine .clock := not machine .clock
72 simulator step
73 machine .clock := not machine .clock
74 simulator step
75
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76 assert machine .state [0 to 1] == 1
77 assert machine .makeCoffee == 0
78 assert machine .makeTea == 0
79 assert machine .returnCoin == 0
80 assert machine .beep == 0
81

82 machine .btnCoffee := true
83

84 machine .clock := not machine .clock
85 simulator step
86 machine .clock := not machine .clock
87 simulator step
88

89 assert machine .state [0 to 1] == 2
90 assert machine .makeCoffee == 1
91 assert machine .makeTea == 0
92 assert machine .returnCoin == 0
93 assert machine .beep == 0
94

95 machine .btnCoffee := false
96

97 machine .clock := not machine .clock
98 simulator step
99 machine .clock := not machine .clock

100 simulator step
101

102 assert machine .state [0 to 1] == 2
103 assert machine .makeCoffee == 0
104 assert machine .makeTea == 0
105 assert machine .returnCoin == 0
106 assert machine .beep == 0
107

108 machine .clock := not machine .clock
109 simulator step
110 machine .clock := not machine .clock
111 simulator step
112

113 assert machine .state [0 to 1] == 2
114 assert machine .makeCoffee == 0
115 assert machine .makeTea == 0
116 assert machine .returnCoin == 0
117 assert machine .beep == 0
118

119 machine .beverageReady := true
120

121 machine .clock := not machine .clock
122 simulator step
123 machine .clock := not machine .clock
124 simulator step
125

126 assert machine .state [0 to 1] == 3
127 assert machine .makeCoffee == 0
128 assert machine .makeTea == 0
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129 assert machine .returnCoin == 0
130 assert machine .beep == 1
131

132 machine .beverageReady := false
133

134 machine .clock := not machine .clock
135 simulator step
136 machine .clock := not machine .clock
137 simulator step
138

139 assert machine .state [0 to 1] == 3
140 assert machine .makeCoffee == 0
141 assert machine .makeTea == 0
142 assert machine .returnCoin == 0
143 assert machine .beep == 1
144

145 machine .clock := not machine .clock
146 simulator step
147 machine .clock := not machine .clock
148 simulator step
149

150 assert machine .state [0 to 1] == 3
151 assert machine .makeCoffee == 0
152 assert machine .makeTea == 0
153 assert machine .returnCoin == 0
154 assert machine .beep == 1
155

156 machine .cupRemoved := true
157

158 machine .clock := not machine .clock
159 simulator step
160 machine .clock := not machine .clock
161 simulator step
162

163 assert machine .state [0 to 1] == 0
164 assert machine .makeCoffee == 0
165 assert machine .makeTea == 0
166 assert machine .returnCoin == 0
167 assert machine .beep == 0
168

169 machine .cupRemoved := false
170

171 machine .clock := not machine .clock
172 simulator step
173 machine .clock := not machine .clock
174 simulator step
175

176 assert machine .state [0 to 1] == 0
177 assert machine .makeCoffee == 0
178 assert machine .makeTea == 0
179 assert machine .returnCoin == 0
180 assert machine .beep == 0
181
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182 simulator show
183 }

Listing B.7: Wrapper module for the coffee finite state machine.
1 import dhdl .util .Button
2 import dhdl .util .StretchImpulse
3 import dhdl .util .DelayImpulse
4

5 import coffee .CoffeeFSM
6

7 public module Coffee <nat inCycles <= 128 , nat outCycles <= 128 >{
8 forward in Signal clock
9 forward in Signal reset

10

11 in Register tasterCoin
12 in Register tasterCoffee
13 in Register tasterTea
14 in Register tasterAbort
15

16 out Signal ledMakeCoffee <= StretchImpulse<outCycles>(coffeeFSM .
makeCoffee )

17 out Signal ledMakeTea <= StretchImpulse<outCycles>(coffeeFSM .makeTea )
18 out Signal ledReturnCoin <= StretchImpulse<outCycles>(coffeeFSM .

returnCoin )
19 out Signal ledReady <= StretchImpulse<outCycles>(coffeeFSM .beep )
20 out Signal ledCoin <= StretchImpulse<outCycles>(btnCoin .pressed )
21

22

23 Button<inCycles> btnCoin
24 : btnCoin .in <= tasterCoin
25

26 Button<inCycles> btnCoffee
27 : btnCoffee .in <= tasterCoffee
28

29 Button<inCycles> btnTea
30 : btnTea .in <= tasterTea
31

32 Button<inCycles> btnAbort
33 : btnAbort .in <= tasterAbort
34

35 CoffeeFSM coffeeFSM
36

37 : coffeeFSM .coinAvailable <= btnCoin .pressed
38 : coffeeFSM .btnCoffee <= btnCoffee .pressed
39 : coffeeFSM .btnTea <= btnTea .pressed
40 : coffeeFSM .btnAbort <= btnAbort .pressed
41 / / No s e n s o r f o r cup removed :
42 : coffeeFSM .cupRemoved <= true
43 : coffeeFSM .beverageReady <= DelayImpulse<outCycles>(coffeeFSM .

makeCoffee
44 or coffeeFSM .makeTea )
45 }
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Listing B.8: Wrapper module for the coffee module.
1

2 import coffee .Coffee
3

4 define inDelay 25000
5 define outHold 25000000
6

7 public module Machine {
8

9 forward in Signal clock
10 forward in Signal reset
11

12 Coffee<inDelay , outHold> coffee
13

14 in Signal tasterCoin
15 : coffee .tasterCoin <= not tasterCoin
16

17 in Signal tasterCoffee
18 : coffee .tasterCoffee <= not tasterCoffee
19

20 in Signal tasterTea
21 : coffee .tasterTea <= not tasterTea
22

23 in Signal tasterAbort
24 : coffee .tasterAbort <= not tasterAbort
25

26 out Signal ledCoin <= coffee .ledCoin
27 out Signal ledMakeCoffee <= coffee .ledMakeCoffee
28 out Signal ledMakeTea <= coffee .ledMakeTea
29 out Signal ledReturnCoin <= coffee .ledReturnCoin
30 out Signal ledReady <= coffee .ledReady
31

32 out Signal resetLed <= reset
33 / / o u t S i g n a l gnd <= f a l s e
34

35 }

Listing B.9: Package file for the coffee machine.
1 / / Package d e s c r i p t i o n f o r C of f e e Machine
2 / /
3

4 component := coffee .Machine
5

6 family := "Cyclone II"
7 device := EP2C35F672C6
8

9 pin Machine .clock := PIN_D13
10 pin Machine .reset := PIN_V2
11

12 pin Machine .resetLed := PIN_AD12
13

14 pin Machine .tasterCoin := PIN_G26
15 pin Machine .tasterCoffee := PIN_N23
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16 pin Machine .tasterTea := PIN_P23
17 pin Machine .tasterAbort := PIN_W26
18

19 pin Machine .ledCoin := PIN_AE22
20 pin Machine .ledMakeCoffee := PIN_AF22
21 pin Machine .ledMakeTea := PIN_W19
22 pin Machine .ledReturnCoin := PIN_V18
23 pin Machine .ledReady := PIN_U18
24

25 / / p i n Machine . gnd := PIN_K25

B.3 Asynchronous Design

This section contains the listings of the DARTS timing analysis.

B.3.1 Timing Constraints

Listing B.10 shows the Dhdl output of the timing constraint analysis for DARTS.

Listing B.10: Dhdl timing analysis output for the timing constraints.
1 Time Reader: parse time/DartsNetwork_vhd.sdo
2 Time Reader: parse time/DartsNetwork.vho
3 [line 8, char 17]: Delay tdiffm := (diff[0].celem[0].bit[0].invOut

[0], diff[0].celem[0].bit[0].invOut[0]) on path "clock[0].
counterModules[0]" is satisfied. [7.897E-9, 7.897E-9]

4 [line 8, char 17]: Delay tdiffm := (diff[0].celem[0].bit[0].invOut
[0], diff[0].celem[0].bit[0].invOut[0]) on path "clock[0].
counterModules[1]" is satisfied. [7.797E-9, 7.797E-9]

5 [line 8, char 17]: Delay tdiffm := (diff[0].celem[0].bit[0].invOut
[0], diff[0].celem[0].bit[0].invOut[0]) on path "clock[0].
counterModules[2]" is satisfied. [7.538E-9, 7.538E-9]

6 [line 8, char 17]: Delay tdiffm := (diff[0].celem[0].bit[0].invOut
[0], diff[0].celem[0].bit[0].invOut[0]) on path "clock[0].
counterModules[3]" is satisfied. [7.358E-9, 7.358E-9]

7 dhdl/darts/DartsClock.df[line 8, char 195]: Delay tdis := (((
thresholdGates[0].celem[0].bit[0].out[1], counterModules[0].local
[0].celem[0].bit[0].out[1]) + (counterModules[0].local[0].celem
[0].bit[0].out[1], thresholdGates[0].celem[0].bit[0].out[1]))
PARALLEL (((thresholdGates[0].celem[0].bit[0].out[1],
counterModules[1].local[0].celem[0].bit[0].out[1]) + (
counterModules[1].local[0].celem[0].bit[0].out[1], thresholdGates
[0].celem[0].bit[0].out[1])) PARALLEL (((thresholdGates[0].celem
[0].bit[0].out[1], counterModules[2].local[0].celem[0].bit[0].out
[1]) + (counterModules[2].local[0].celem[0].bit[0].out[1],
thresholdGates[0].celem[0].bit[0].out[1])) PARALLEL ((
thresholdGates[0].celem[0].bit[0].out[1], counterModules[3].local
[0].celem[0].bit[0].out[1]) + (counterModules[3].local[0].celem
[0].bit[0].out[1], thresholdGates[0].celem[0].bit[0].out[1])))))
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on path "clock[0]" is satisfied. [1.6809999999999999E-9,
2.8685000000000002E-8]

8 dhdl/darts/DartsClock.df[line 8, char 195]: Delay tdis := (((
thresholdGates[0].celem[0].bit[0].out[1], counterModules[0].local
[0].celem[0].bit[0].out[1]) + (counterModules[0].local[0].celem
[0].bit[0].out[1], thresholdGates[0].celem[0].bit[0].out[1]))
PARALLEL (((thresholdGates[0].celem[0].bit[0].out[1],
counterModules[1].local[0].celem[0].bit[0].out[1]) + (
counterModules[1].local[0].celem[0].bit[0].out[1], thresholdGates
[0].celem[0].bit[0].out[1])) PARALLEL (((thresholdGates[0].celem
[0].bit[0].out[1], counterModules[2].local[0].celem[0].bit[0].out
[1]) + (counterModules[2].local[0].celem[0].bit[0].out[1],
thresholdGates[0].celem[0].bit[0].out[1])) PARALLEL ((
thresholdGates[0].celem[0].bit[0].out[1], counterModules[3].local
[0].celem[0].bit[0].out[1]) + (counterModules[3].local[0].celem
[0].bit[0].out[1], thresholdGates[0].celem[0].bit[0].out[1])))))
on path "clock[0]" is satisfied. [1.6809999999999999E-9,
2.8685000000000002E-8]

9 [line 13, char 18]: Delay tmindis := min(tdis) on path "clock[0]"
is satisfied. [1.6809999999999999E-9, 1.6809999999999999E-9]

10 [line 14, char 18]: Delay tmaxdis := max(tdis) on path "clock[0]"
is satisfied. [2.8685000000000002E-8, 2.8685000000000002E-8]

11 [line 13, char 18]: Delay tmindis := min(tdis) on path "clock[0]"
is satisfied. [1.6809999999999999E-9, 1.6809999999999999E-9]

12 [line 8, char 17]: Delay tdiffm := (diff[0].celem[0].bit[0].invOut
[0], diff[0].celem[0].bit[0].invOut[0]) on path "clock[0].
counterModules[0]" is satisfied. [7.897E-9, 7.897E-9]

13 dhdl/darts/DartsClock.df[line 19, char 42]: Delay tdiff := (
counterModules[0] tdiffm PARALLEL (counterModules[1] tdiffm
PARALLEL (counterModules[2] tdiffm PARALLEL counterModules[3]
tdiffm))) on path "clock[0]" is satisfied. [7.897E-9, 7.897E-9]

14 [line 24, char 19]: Delay tdiffmin := min(tdiff) on path "clock
[0]" is satisfied. [7.897E-9, 7.897E-9]

15 dhdl/darts/DartsClock.df[line 15, char 23]: Delay tmin := (tmindis
+ tdiffmin) on path "clock[0]" is satisfied. [9.578E-9, 9.578E-9]

16 [line 14, char 18]: Delay tmaxdis := max(tdis) on path "clock[0]"
is satisfied. [2.8685000000000002E-8, 2.8685000000000002E-8]

17 dhdl/darts/DartsClock.df[line 16, char 15]: Delay tloc := tmaxdis
on path "clock[0]" is satisfied. [2.8685000000000002E-8,
2.8685000000000002E-8]

18 [line 25, char 19]: Delay tdiffmax := max(tdiff) on path "clock
[0]" is satisfied. [7.897E-9, 7.897E-9]

19 dhdl/darts/DartsClock.df[line 15, char 23]: Delay tmin := (tmindis
+ tdiffmin) on path "clock[0]" is satisfied. [9.578E-9, 9.578E-9]

20 error 1 dhdl/darts/DartsClock.df[line 27, char 31]: Delay not
satisfied interlocking := (tmaxdis <= ((tmin * 2) + tmindis)) on
path "clock[0]". The resulting delay is [2.0837E-8,
2.8685000000000002E-8].
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21 [line 25, char 19]: Delay tdiffmax := max(tdiff) on path "clock
[0]" is satisfied. [7.897E-9, 7.897E-9]

22 dhdl/darts/DartsClock.df[line 28, char 31]: Delay tickRemoval := (
tdiffmax <= tmin) on path "clock[0]" is satisfied. [7.897E-9,
9.578E-9]

23 dhdl/darts/DartsClock.df[line 16, char 15]: Delay tloc := tmaxdis
on path "clock[1]" is satisfied. [2.8685000000000002E-8,
2.8685000000000002E-8]

24 error 2 dhdl/darts/DartsClock.df[line 27, char 31]: Delay not
satisfied interlocking := (tmaxdis <= ((tmin * 2) + tmindis)) on
path "clock[1]". The resulting delay is [2.0837E-8,
2.8685000000000002E-8].

25 dhdl/darts/DartsClock.df[line 28, char 31]: Delay tickRemoval := (
tdiffmax <= tmin) on path "clock[1]" is satisfied. [7.897E-9,
9.578E-9]

26 dhdl/darts/DartsClock.df[line 16, char 15]: Delay tloc := tmaxdis
on path "clock[2]" is satisfied. [2.8685000000000002E-8,
2.8685000000000002E-8]

27 error 3 dhdl/darts/DartsClock.df[line 27, char 31]: Delay not
satisfied interlocking := (tmaxdis <= ((tmin * 2) + tmindis)) on
path "clock[2]". The resulting delay is [2.0837E-8,
2.8685000000000002E-8].

28 dhdl/darts/DartsClock.df[line 28, char 31]: Delay tickRemoval := (
tdiffmax <= tmin) on path "clock[2]" is satisfied. [7.897E-9,
9.578E-9]

29 dhdl/darts/DartsClock.df[line 16, char 15]: Delay tloc := tmaxdis
on path "clock[3]" is satisfied. [2.8685000000000002E-8,
2.8685000000000002E-8]

30 error 4 dhdl/darts/DartsClock.df[line 27, char 31]: Delay not
satisfied interlocking := (tmaxdis <= ((tmin * 2) + tmindis)) on
path "clock[3]". The resulting delay is [2.0837E-8,
2.8685000000000002E-8].

31 dhdl/darts/DartsClock.df[line 28, char 31]: Delay tickRemoval := (
tdiffmax <= tmin) on path "clock[3]" is satisfied. [7.897E-9,
9.578E-9]

32 dhdl/darts/DartsClock.df[line 16, char 15]: Delay tloc := tmaxdis
on path "clock[4]" is satisfied. [2.8685000000000002E-8,
2.8685000000000002E-8]

33 error 5 dhdl/darts/DartsClock.df[line 27, char 31]: Delay not
satisfied interlocking := (tmaxdis <= ((tmin * 2) + tmindis)) on
path "clock[4]". The resulting delay is [2.0837E-8,
2.8685000000000002E-8].

34 dhdl/darts/DartsClock.df[line 28, char 31]: Delay tickRemoval := (
tdiffmax <= tmin) on path "clock[4]" is satisfied. [7.897E-9,
9.578E-9]

35 dhdl/darts/DartsClock.df[line 16, char 15]: Delay tloc := tmaxdis
on path "clock[1]" is satisfied. [2.8685000000000002E-8,
2.8685000000000002E-8]
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36 error 6 [line 29, char 102]: Delay not satisfied delay 1 := ((
clock[0].thresholdGates[0].celem[0].bit[0].out[1], clock[1].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[1] tloc) on
path "base component". The resulting delay is [6.572E-9,
4.092399999999999E-8].

37 error 7 [line 29, char 102]: Delay not satisfied delay 2 := ((
clock[0].thresholdGates[0].celem[0].bit[0].out[1], clock[2].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[2] tloc) on
path "base component". The resulting delay is [6.788E-9,
4.0836999999999984E-8].

38 error 8 [line 29, char 102]: Delay not satisfied delay 3 := ((
clock[0].thresholdGates[0].celem[0].bit[0].out[1], clock[3].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[3] tloc) on
path "base component". The resulting delay is [7.366E-9, 4.6206E
-8].

39 error 9 [line 29, char 102]: Delay not satisfied delay 4 := ((
clock[0].thresholdGates[0].celem[0].bit[0].out[1], clock[4].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[4] tloc) on
path "base component". The resulting delay is [7.716000000000001E
-9, 3.6886E-8].

40 error 10 [line 29, char 102]: Delay not satisfied delay 5 := ((
clock[1].thresholdGates[0].celem[0].bit[0].out[1], clock[0].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[0] tloc) on
path "base component". The resulting delay is [5.870999999999999E
-9, 3.6154E-8].

41 error 11 [line 29, char 102]: Delay not satisfied delay 6 := ((
clock[1].thresholdGates[0].celem[0].bit[0].out[1], clock[2].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[2] tloc) on
path "base component". The resulting delay is [6.761E-9, 5.0526E
-8].

42 error 12 [line 29, char 102]: Delay not satisfied delay 7 := ((
clock[1].thresholdGates[0].celem[0].bit[0].out[1], clock[3].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[3] tloc) on
path "base component". The resulting delay is [6.765E-9, 5.1507E
-8].

43 error 13 [line 29, char 102]: Delay not satisfied delay 8 := ((
clock[1].thresholdGates[0].celem[0].bit[0].out[1], clock[4].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[4] tloc) on
path "base component". The resulting delay is [5.491E-9,
4.6947000000000003E-8].

44 error 14 [line 29, char 102]: Delay not satisfied delay 9 := ((
clock[2].thresholdGates[0].celem[0].bit[0].out[1], clock[0].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[0] tloc) on
path "base component". The resulting delay is [7.064E-9, 4.2492E
-8].

45 error 15 [line 29, char 102]: Delay not satisfied delay 10 := ((
clock[2].thresholdGates[0].celem[0].bit[0].out[1], clock[1].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[1] tloc) on
path "base component". The resulting delay is [5.692E-9, 4.3329E
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-8].
46 error 16 [line 29, char 102]: Delay not satisfied delay 11 := ((

clock[2].thresholdGates[0].celem[0].bit[0].out[1], clock[3].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[3] tloc) on
path "base component". The resulting delay is [1.4561000000000002E
-8, 5.0119999999999995E-8].

47 error 17 [line 29, char 102]: Delay not satisfied delay 12 := ((
clock[2].thresholdGates[0].celem[0].bit[0].out[1], clock[4].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[4] tloc) on
path "base component". The resulting delay is [1.4911000000000004E
-8, 4.084499999999999E-8].

48 error 18 [line 29, char 102]: Delay not satisfied delay 13 := ((
clock[3].thresholdGates[0].celem[0].bit[0].out[1], clock[0].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[0] tloc) on
path "base component". The resulting delay is [1.4583999999999997E
-8, 4.1457E-8].

49 error 19 [line 29, char 102]: Delay not satisfied delay 14 := ((
clock[3].thresholdGates[0].celem[0].bit[0].out[1], clock[1].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[1] tloc) on
path "base component". The resulting delay is [1.5051999999999998E
-8, 4.757699999999999E-8].

50 error 20 [line 29, char 102]: Delay not satisfied delay 15 := ((
clock[3].thresholdGates[0].celem[0].bit[0].out[1], clock[2].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[2] tloc) on
path "base component". The resulting delay is [1.4829999999999996E
-8, 4.3352E-8].

51 error 21 [line 29, char 102]: Delay not satisfied delay 16 := ((
clock[3].thresholdGates[0].celem[0].bit[0].out[1], clock[4].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[4] tloc) on
path "base component". The resulting delay is [7.862E-9,
2.8685000000000002E-8].

52 error 22 [line 29, char 102]: Delay not satisfied delay 17 := ((
clock[4].thresholdGates[0].celem[0].bit[0].out[1], clock[0].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[0] tloc) on
path "base component". The resulting delay is [7.929E-9,
3.2628999999999994E-8].

53 error 23 [line 29, char 102]: Delay not satisfied delay 18 := ((
clock[4].thresholdGates[0].celem[0].bit[0].out[1], clock[1].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[1] tloc) on
path "base component". The resulting delay is [8.396999999999999E
-9, 3.874899999999999E-8].

54 error 24 [line 29, char 102]: Delay not satisfied delay 19 := ((
clock[4].thresholdGates[0].celem[0].bit[0].out[1], clock[2].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[2] tloc) on
path "base component". The resulting delay is [8.174999999999999E
-9, 3.4524E-8].

55 error 25 [line 29, char 102]: Delay not satisfied delay 20 := ((
clock[4].thresholdGates[0].celem[0].bit[0].out[1], clock[3].
thresholdGates[0].celem[0].bit[0].out[1]) >= clock[3] tloc) on
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path "base component". The resulting delay is [7.921E-9, 4.5092E
-8].

25 errors 0 warnings 0 assertion violations

Clock Frequency

Listing B.11 shows the clock timing analysis output of Dhdl for the Darts design.

Listing B.11: The Darts clock timing analysis output.
1 Time Reader : p a r s e t ime / Dar t sNetwork_vhd . sdo
2 Time Reader : p a r s e t ime / Dar t sNe twork . vho
3 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 1 := ( c l o c k [ 0 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .

b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 1 ] . c o u n t e r M o d u l e s [ 0 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [4 .1539999999999995E−9,
1 .6505E−8]

4 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 2 := ( c l o c k [ 0 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 2 ] . c o u n t e r M o d u l e s [ 0 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 4 . 5 7 E−9, 1 .631E−8]

5 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 3 := ( c l o c k [ 0 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 3 ] . c o u n t e r M o d u l e s [ 0 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 4 . 7 4 8 E−9, 1 .5312E−8]

6 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 4 := ( c l o c k [ 0 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 4 ] . c o u n t e r M o d u l e s [ 0 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 5 . 4 0 8 E−9, 1 .4153E−8]

7 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 5 := ( c l o c k [ 1 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 0 ] . c o u n t e r M o d u l e s [ 0 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [3 .961999999999999E−9, 1 . 3 5 E
−8]

8 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 6 := ( c l o c k [ 1 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 2 ] . c o u n t e r M o d u l e s [ 1 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [5 .061999999999999E−9, 1 .6617
E−8]

9 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 7 := ( c l o c k [ 1 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 3 ] . c o u n t e r M o d u l e s [ 1 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 4 . 6 9 4 E−9, 1 .4535999999999999
E−8]

10 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 8 := ( c l o c k [ 1 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 4 ] . c o u n t e r M o d u l e s [ 1 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 3 . 5 5 9 E−9, 1 .5388E−8]

11 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 9 := ( c l o c k [ 2 ] . t h r e s h o l d G a t e s [ 0 ] . celem [ 0 ] .
b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 0 ] . c o u n t e r M o d u l e s [ 1 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] . o u t
[ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [5 .190999999999999E−9, 1 .5436
E−8]

12 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 10 := ( c l o c k [ 2 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 1 ] . c o u n t e r M o d u l e s [ 1 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 3 . 8 1 5 E−9, 1 .6096E−8]

13 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 11 := ( c l o c k [ 2 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 3 ] . c o u n t e r M o d u l e s [ 2 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 4 . 9 5 E−9, 1 .6341E−8]

14 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 12 := ( c l o c k [ 2 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 4 ] . c o u n t e r M o d u l e s [ 2 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
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o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 4 . 2 3 7 E−9,
1 .3325000000000002E−8]

15 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 13 := ( c l o c k [ 3 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 0 ] . c o u n t e r M o d u l e s [ 2 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 5 . 4 7 7 E−9,
1 .4557999999999999E−8]

16 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 14 := ( c l o c k [ 3 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 1 ] . c o u n t e r M o d u l e s [ 2 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 4 . 3 8 9 E−9,
1 .2997999999999998E−8]

17 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 15 := ( c l o c k [ 3 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 2 ] . c o u n t e r M o d u l e s [ 2 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [4 .131999999999999E−9,
1 .5649999999999998E−8]

18 [ l i n e 34 , c h a r 1 0 ] : Delay d e l a y 16 := ( c l o c k [ 3 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 4 ] . c o u n t e r M o d u l e s [ 3 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 5 . 1 4 7 E−9,
1 .5888999999999998E−8]

19 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 17 := ( c l o c k [ 4 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 0 ] . c o u n t e r M o d u l e s [ 3 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [ 5 . 4 7 3 E−9, 1 .4676E−8]

20 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 18 := ( c l o c k [ 4 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 1 ] . c o u n t e r M o d u l e s [ 3 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [5 .668999999999999E−9,
1 . 6 2 E−8]

21 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 19 := ( c l o c k [ 4 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 2 ] . c o u n t e r M o d u l e s [ 3 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [5 .742999999999999E−9,
1 .4753E−8]

22 [ l i n e 26 , c h a r 1 0 ] : Delay d e l a y 20 := ( c l o c k [ 4 ] . t h r e s h o l d G a t e s [ 0 ] . celem
[ 0 ] . b i t [ 0 ] . o u t [ 1 ] , c l o c k [ 3 ] . c o u n t e r M o d u l e s [ 3 ] . r emote [ 0 ] . celem [ 3 ] . b i t [ 0 ] .
o u t [ 1 ] ) on p a t h " base component " i s s a t i s f i e d . [5 .0489999999999994E−9,
1 .3031E−8]

0 e r r o r s 0 w a r n i n g s 0 a s s e r t i o n v i o l a t i o n s
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