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Abstract

The task of proving the correctness of software (formal verification) has
been a research topic for many years. Despite that, formal methods still
have not been widely adopted in practical areas. A key reason for this has
been the lack of accessible yet powerful tools that are able to efficiently
support the software engineer in this complex exercise. In the last few years,
a new generation of tools has appeared: They are aimed at the verification
of programs written in programming languages such as C or Java and claim
to be usable by software engineers without education in formal methods.

This thesis gives an overview of some theoretical aspects of formal
verification. A number of tools is extensively described, and some of them
are selected to compete in a practical comparison. The comparison is based
on tasks that are commonly encountered in software development. Some
general thoughts on requirements for formal verification tools in industry and
teaching are also given. The tools analyzed are CBMC, Escher C Verifier,
Frama-C/Jessie, Frege Program Prover, KeY, Perfect Developer, Prototype
Verification System, VCC and VeriFast.

Zusammenfassung

Die Aufgabenstellung, die Korrektheit von Software zu beweisen (Forma-
le Verifikation), ist seit vielen Jahren Forschungsthema. Trotzdem ist die
Nutzung von formalen Methoden in der Praxis noch nicht weit verbreitet.
Ein zentraler Grund dafiir ist der Mangel an leicht zugénglichen, aber trotz-
dem leistungsstarken Tools, die Softwareentwickler bei dieser komplexen
Aufgabe unterstiitzen. In den letzten Jahren ist eine neue Generation von
Tools erschienen: Sie zielen auf die Verifikation von Programmen ab, die
in Programmiersprachen wie C und Java geschrieben sind und erheben
den Anspruch, auch fiir Softwareentwickler ohne Ausbildung in formalen
Methoden verwendbar zu sein.

Diese Arbeit gibt einen Uberblick iiber einige theoretische Aspekte von
formaler Verifikation. Mehrere Tools werden ausfiihrlich beschrieben. Ei-
nige davon werden ausgewéhlt, um ihre Féahigkeiten in einem praktischen
Vergleich zu beweisen. Dazu werden Beispiele verwendet, die auf haufig
vorkommenden Problemstellungen basieren. Einige allgemeine Anforderun-
gen an Verifikationstools in Industrie und Lehre werden ebenfalls diskutiert.
Die in dieser Arbeit analysierten Tools sind CBMC, Escher C Verifier,
Frama-C/Jessie, Frege Program Prover, KeY, Perfect Developer, Prototype
Verification System, VCC und VeriFast.
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CHAPTER

Introduction

Software is an important factor to almost all areas of life. Today, dependency
on software is still increasing, especially in critical domains, where damage
to human health, impact on the environment or vast economic effects could
be caused by malfunctioning software and systems. Critical domains include
medical applications (diagnostic and therapeutic devices), transportation
(spacecrafts, aircrafts or trains) and industrial applications like power plants.
The ubiquitous presence of software leads to the requirement of being able
to prove its correctness.

Dynamic software tests, which verify programs by executing them, sup-
plying them with various input data and analyzing the results, have been
universally employed for decades, both in scientific research as well as in
commercial environments. There exist numerous approaches for testing
different aspects of software and tools for almost every development process,
programming language and platform. The common problem with dynamic
testing is that, even when structured procedures are used, it can never be
proved that the code is completely correct, meaning it does exactly, in all
situations, what is required by the specification. The only result that can be
obtained is that under the used procedures in a certain environment, with
certain input data, no more errors can be found. While this result may well
be sufficient in some situations, for applications such as those outlined above
a formal proof that the produced code is absolutely correct is desirable or
even strictly necessary because of ethical, legal or economic considerations.

Formal verification, in contrast to dynamic testing, strives to accomplish
this. Using a formalisation of the natural-language specification, it can be
proved that software is correct. The downside is that formal verification is a
complex task, both for humans to understand as well as computationally.

11




12 CHAPTER 1. INTRODUCTION

While techniques for formal verification have been the subject of scientific
research for a long time, only few tools are available to support their use in
settings outside the academic field and their usage in large or commercial
projects is rather uncommon.

In contrast, formal verification is quite popular in hardware design
processes, especially through the use of model checking. This is due to
the high cost of correcting any design faults and due to the fact that most
hardware designs can be more easily verified from a computational standpoint
than software.

In the last few years, a new generation of tools supporting formal verifi-
cation of software has appeared. In most cases, earlier tools were suitable
only for use in research or for demonstration purposes. They only supported
small fractions of the features of general-purpose programming languages
and required excellent knowledge of the tool and formal methods in general.
The new generation of tools aims to make formal verification of software
accessible to a larger audience. They support the verification of programs
written in substantial subsets of languages such as C or Java. In many
cases they are able to automatically prove correctness, abolishing the need
for the user to become an expert in formal methods in order to manually
construct proofs. The developers of some tools even specifically address
software engineers who have no training in formal methods and claim that
their products are just as useful for this target group as they are for experts.

In 2004 four of the then current tools were evaluated by Feinerer et. al. [37;
38]. They concluded that only one tool, Perfect Developer, was suitable
for general-purpose use by persons with little background knowledge in
formal methods. The main impulse to start work on this thesis was that
the appearance of the new generation of tools has improved the potential of
formal verification considerably. In addition, a long time has passed since
2004 and no comprehensive analysis or comparison of current tools has been
performed since then.

The aim is to provide an overview on today’s state of formal verification
of software on multiple levels and to analyze whether the claims made by the
tools’ developers are accurate. We will start by looking at the theoretical
background of formal verification in chapter 2, for example by explaining
the methods of natural deduction, Hoare logic and model checking. Many
of the more powerful existing tools for the application of these methods
are researched, analyzed and compared in chapter 3. The tools chosen for
this analysis are CBMC, Escher C Verifier, Frama-C/Jessie, Frege Program
Prover, KeY, Perfect Developer, Prototype Verification System, VCC and
VeriFast. They are categorized based on theoretical background and by
the developers’ claims regarding their suitability for different programming
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problems and environments, for example certain programming languages
and platforms.

Those tools that show the most promising approaches are selected to
compete in a practical comparison in chapter 4. Examples for different
classes of programming problems are created. They are used to evaluate
the claims the tool’s developers made and the adequacy of the tools for
specific target groups. Special attention is paid to examine possibilities
and hindrances regarding the tools’ practical use and to good approaches
that could increase the adoption of formal verification outside of academic
research. Finally, chapter 5 summarizes important properties tools should
possess to be suitable for industrial or educational environments.






CHAPTER
Theoretical background

This chapter aims to give an overview of some approaches often used for the
task of formal verification. The methods described are all used directly or
in modified form in the tools that will be compared in section 3. As many
approaches are quite complex and a vast amount of publications exists, just
a small fraction of the aspects of each approach can be illustrated here. For
further information, references to seminal and current publications will be
given in each section.

The following descriptions assume the reader to have a basic knowledge
of propositional and first-order predicate logic.

2.1 Natural deduction

For being able to reason about specifications of programs and systems some
sort of formal calculus is needed. Such a calculus needs to provide rules that
allow to draw conclusions from formulas.

Natural deduction is the basic calculus for reasoning about formulas
in propositional logic. It has been described independently by Gerhard
Gentzen [43] and Stanistaw Jaskowski [55] in 1934. The following description
is based on [47, pp. 5 sqq.], where many additional explanations are given.
We start with a set of formulas ¢q,...,¢, and a formula ¢, which are
called premises and conclusion, respectively. Deduction consists in applying
rules to premises to obtain new formulas (consequences), and to obtain the
conclusion eventually. This goal is expressed by the sequent ¢, ..., ¢, F 1.
If this process succeeds, the sequent is valid. In non-trivial formulas more
than one rule can be applied in most cases. One possible approach for

15




16 CHAPTER 2. THEORETICAL BACKGROUND

constructing proofs is given in [47, p. 28]: The authors recommend working
both from the premises and from the conclusion towards each other. The
— 4 and —i rules (which will be explained below) are said to most often
improve the situation when applying them backwards to the conclusion, as
they yield an extra premise and simplify the conclusion.

We will now look at the rules that natural deduction provides for trans-
forming propositional logic formulas. In the rules, the premises are stated
above the line and the conclusion that can be obtained below the line. For
the rules dealing with logical connectives, two versions (for introduction i
and elimination e of the respective connective) are given.

¢ PAY ¢NY

A1 — ANe — ANe
oA o v
The rules for conjunction state that, if both ¢ and ¢ have already been
concluded, ¢ A ¢ may be concluded (A7), and that, if ¢ A1 has already been
concluded, ¢ as well as 1 may be concluded (Aey, Aes).

Conjunction

Disjunction PEVEn V1 PSVET Vig
The introduction rules for disjunction are easy to understand, as they just
express that if a formula has been concluded, it is possible to conclude the
disjunction with another formula as well (i1, i3). The elimination rule Ve is
a bit different: To show that a formula y is true starting from the premise
¢V 1), it has to be shown that from both ¢ and v, x can be concluded. This
is necessary as it is unknown which of the subformulas in the premise is
true. The contents of the boxes are thus subproofs, in which it is assumed
that ¢ and v are true, respectively. From this assumption, y needs to be
concluded.

1
Bottom g le

The rule for bottom elimination expresses the fact that from a contradiction
(denoted by L), any formula can be derived. Informally, a contradiction, for
example ¢ A =), can be seen as a formula that carries more information
than any other formula in the calculus could ever carry. Thus, any other
formula can be concluded from a contradiction.
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Negation e

L

To use —i, a subproof has to be performed in which it is shown that ¢ leads
to a contradiction L. Then, —¢ may be concluded. The elimination rule —e
defines that L is the symbol for a contradiction.

Double negation — — e

These rules express that in classical logic a formula and its double negation
are equivalent.

¢ o=
(8

Implication — e (modus ponens)

Introducing an implication is performed by conducting a subproof, in which
it needs to be shown that, under the assumption that ¢ is true, ¢ can
be concluded. Then, ¢ — ¢ may be concluded. The elimination rule for
implications, also called modus ponens, states that, given both ¢ and ¢ — v,
1) may be concluded.

Beside the necessary basic rules, additional derived rules can be defined.
These rules are not strictly required for performing proofs, but can make
proofs easier by combining applications of several basic rules into a single
derived rule. We will look at three widely-known derived rules called modus
tollens, proof by contradiction and law of excluded middle. Strictly speaking,
the == rule is a derived rule, too, as it can be constructed by applying —i
and —e to ¢.
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o=y

—¢
Modus tollens, similar to — e, eliminates an implication. However, it deals
with the implication’s right-hand side and states that when ¢ — ¢ and —
have been concluded, —¢ can be concluded.

Derived rules modus tollens

¢

L
== proof by contradiction (reductio ad absurdum)

¢

A proof by contradiction for a formula ¢ is performed by assuming —¢ in a
subproof and deriving that this assumption results in L.

PV law of excluded middle (tertium non datur)
The law of excluded middle simply states that always either ¢ or —¢ is true
and thus no third possibility exists.

To illustrate how proofs are constructed, we will look at the example given
in [47, p. 23] that incorporates various rules. The sequent to be proven is
pA—q—r, —r, pk q. To the right of the formulas it is shown which rules

1 pA—q—r premise

2 -r premise

3 P premise

4 —q assumption
) p A —q At 3,4

6 r —el, b

7 1 —e 6, 2

8 ——q - 4-7

9 q ——e 8

are applied to which lines. Taking up the hint that both — ¢ and — are
often helpful when applying them to the conclusion, we look at which of
the rules would be easier to use. Since the conclusion we want to proof is
just ¢, we try —i, because the structure of its conclusion fits better than the
conclusion of the — ¢ rule. —i enables us to derive —¢ from ¢. However,
we want to conclude ¢ and not —g. Thus, we need to add an additional
negation: The ——e rule applied backwards to line 9 provides line 8. Now
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we can start the application of =i by performing the subproof needed to
establish —i’s premise. This is done between the horizontal bars (lines 4-7).

In the subproof, we want to go from —¢ to L, which proves —=—¢. Again,
it is easier to start at the bottom. To derive a contradiction, we need two
formulas ¢ and —¢. —r is already provided in the premise, so we just need
to derive r. One of the main premises states that p A =q¢ — r, so we will try
to derive r from this premise using the — e rule (line 6). For the application
of this rule, we still need to show that p A —¢q is valid. This is done easily, as
p is one of the premises and —¢q is the assumption we make in the subproof.
Thus, we can use rule Ai to derive p A =¢ (line 5). Now, a continuous chain
of proofs has been created which shows that p A -q — r, =r, p - ¢. Note
that instead of using the —¢ rule, it would have also been possible to perform
a proof by contradiction. In this case, lines 4-7 would have directly yielded q.

The calculus introduced until now was focused on propositional logic. To
extend the calculus to first-order predicate logic we can use all rules defined
above, but need to introduce additional rules for working with quantifiers
and the equality predicate.

Equality — =1 1=t olt/z] =e
t=t Plt2/x]
The rule for introducing equality simply states that any term ¢ is equal to
itself. The elimination rule allows to conclude ¢[ts/x] given the equality of
t; and ¢y and the formula ¢ where every free occurrence of x was replaced
by t;. An occurrence of x is called free if it is not in the scope of some V&
or dz and bound otherwise. Further information regarding this aspect can

be found in [47, pp. 102 sq.].

Zo

. . . Plo/2] . V¢

Universal quantification = Vi

V¢ ot/ x]

The Vx ¢ rule looks similar to some rules defined for propositional formulas,
but it works differently: In the box, a fresh variable x is introduced. x
must not occur anywhere outside the box and is called eigenvariable or
parameter. When ¢[xy/x] can be proven, it is possible to conclude Vz ¢.
This is because, as x is a new variable, no assumptions were made about it.
Thus, any x would work instead of xy and the generalization to Vz is valid.
The rule for elimination states that when ¢ is true for all z (premise Vz ¢),

Vre
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it is possible to replace x by any term ¢ (with ¢ being free in ¢), resulting

in ¢[t/z]. t can be thought of “[...] as a more concrete instance of x” [47,
p. 109].
zo  ¢lzo/7]
Jr ¢ :
X
Existential quantification olt/z] dx i dre

dx ¢ X

Introducing an existential quantifier 4z to a formula ¢ is allowed when
a formula ¢[t/z] has already been concluded. A reason for this is that
the formula in the premise contains more information than the conclusion,
because in the premise a concrete value of = for which ¢ is valid occurs (t).
The dx e rule works by finding an xy that, when replacing x in ¢, allows to
conclude y. Again, the eigenvariable xy must not occur outside the box.

Further information on the additional rules for first-order logic can be
found in [47, pp. 107 sqq.].

2.2 Hoare logic

Hoare logic (also known as Floyd-Hoare logic) was described in 1969 by
C. A. R. Hoare [46] with some ideas based on an article published by
Robert W Floyd two years earlier [39]. The explanation below is based both
on Hoare’s paper as well as on [47, pp. 262 sqq.].

Hoare logic is based on properties of variables before and after execution
of a part of a program. An important aspect is that the correctness of such
a part can depend on the values of variables before execution of the part is
initiated. Thus, certain requirements (assertions) for those variables can be
specified. Such a specification is called precondition. Similarly, the program
is meant to yield a result that has certain properties. Again, these properties
are formalized in an assertion called postcondition. These assertions express
that the program promises to return results that adhere to the postcondition
under the requirement that, at the beginning of program execution, the
precondition is satisfied. These aspects can be written formally as a Hoare
triple {¢} P{¢}, with ¢ as the formula representing the precondition, 1 the
postcondition and P the program. Pre- and postcondition are formulas in
first-order logic.

A Hoare triple can be proved in regard to partial or total correctness.
Partial correctness means that, “[...] for all states which satisfy ¢, the state
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resulting from P’s execution satisfies the postcondition 1, provided that P
actually terminates” [47, p. 265]. Thus, any program that does not terminate,
regardless of what it is computing, is partially correct. Total correctness
additionally requires that the program always indeed does terminate.

Hoare logic consists of axioms and rules that are to be applied for
constructing proofs.

Assignment
{V[E/z]}x = E{¢}
The assignment axiom states that in order to show that v holds after the

execution of x = F, it needs to be shown that ¢[F/z], i. e. ¢ with every
free occurrence of x replaced with E, holds before the assignment.

{0} Ci{n} {n} Cy {2}
{(/5} Cy; Cy {w}

The composition rule enables us to split a complex problem into two simpler
problems by finding a suitable midcondition 7 that serves as postcondition
of C7 and as precondition of Cs.

{¢ AN B} Ci {9} {6 AN =B} Co {1}
{¢}if B {C1} else {Co} {9}

The rule for if statements splits the proof into two triples: In the one triple it
has to be shown that the program is correct in the case that B is true, which
is reflected by the fact that B is added to the precondition as a conjunction.
In the other triple correctness needs to be shown for the case that B is
false.

Composition

If statement

Far ¢ =0 {9} C{¥} Far ¢ — ¢
{¢'yC{y'}

The implied rule allows to prove {¢'} C' {1’} in the case that {¢} C' {1} could

already be proven and that both ¢’ implies ¢ and v implies ¢’. Using this

rule, it is possible to strengthen the pre- and weaken the postcondition. Far

denotes that a proof for the respective sequent using the natural deduction
calculus with the addition of standard arithmetic is required.

{n A B} C {n}
{n}while B {C}{nA-B}

This rule can show partial correctness of a loop, which means it does not
consider whether the loop terminates. Dealing with loops is the most complex
aspect of Hoare logic and one that cannot be automated. The main feature

Implied

Partial while
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of the partial while rule is the invariant n: “In general, the body C' [.. ]
changes the values of the variables it manipulates; but the invariant expresses
a relationship between those values which is preserved by any execution of
C.” 47, p. 273] The problem is that the rule cannot be applied directly
in most cases, as normally triples such as {¢}while B {C}{¢} need to
be proven, where ¢ and ¢ are not related in a way as would be required
by the rule. Thus, an invariant n has to be found for which Fag ¢ — 7,
Far 7 A 2B — ¢ and by {n} while B {C}{n A =B} are all valid. The
third sequent is proven using the partial while rule, and then, using the
other two sequents with the implied rule, the original loop can be proven.

Finding loop invariants in general requires intelligence and intuition. In-
variants are thus a rather problematic aspect with regard to the widespread
acceptance of formal verification, as finding them not only cannot be au-
tomated, but can also be a quite complex task for the user. Automatic
generation of invariants is a research topic, for example in [75].

{NMANBANO<SE=E}C{nN0<E<E}
{n N0 < E}while B {C}{nA-B}

This rule can show total correctness of a loop, as it uses additional informa-
tion for showing that the loop terminates after a finite number of iterations.
For this, an integral expression called loop wvariant is used, E. The value
of the variant is decremented in each loop iteration, and, as it has a lower
bound of 0, the loop terminates when E reaches this value.

Total while

Hoare logic is the foundation of many implementations for formal veri-
fication, although it is not directly implemented in most cases. In practice,
other approaches, some of which are extensions of Hoare logic, are used.

2.3 Weakest preconditions

The idea of weakest preconditions was introduced by Edsger W. Dijkstra in
1975 together with the Guarded Command Language [26]. Weakest precondi-
tions were inspired by Hoare logic, as they also use pre- and postconditions
for describing the expected results of a program that gets supplied with
certain inputs. The main difference is that in Hoare logic, for pairs of every
program and every postcondition, it is possible to state infinitely many
different preconditions in a way that the Hoare triple is valid. Most of the
possible preconditions are much stronger than really necessary.

In contrast, wp(S, R), with S being a list of commands and R the required
postcondition, denotes the necessary and sufficient — and thus weakest —
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precondition “[...] for the initial state of the system such that activation
of S is guaranteed to lead to a properly terminating activity leaving the
system in a final state satisfying the post-condition R” [26, p. 454].

Similar to Hoare logic, there exist rules to deal with certain command
constructs. As most rules follow the same ideas as those in Hoare logic, we
will give only the rule for the alternative construct as an example. While this
rule is the analogon to the if statement rule in Hoare logic, Dijkstra describes
a version suitable for dealing with an arbitrary number of guarded commands:
First, two abbreviations are defined. IF denotes a set of guarded commands
if By — S, O... OB, — SL, fi; and BB denotes (Ji: 1 <i < n: B;);.
By to B, are called guards. When a guard is true, the corresponding
guarded list (SLy,...,SL,) can be executed. [J is a separator between
guarded commands.

Then, wp(IF,R) = (BB and (Vi : 1 <i<n:B; = wp(SL;,R)). BB
expresses that at least one guard must be true, otherwise the program would
abort. The main term requires “[...] that each guarded list eligible for
execution will lead to an acceptable final state” [26, p. 455].

Further rules exist for other elements such as assignments and loops.
Loops are handled in a way very similar to Hoare logic by requiring loop
invariants and variants.

The weakest preconditions calculus is implemented in several tools that
are analyzed in section 3.

2.4 Dynamic logic

Dynamic logic (DL) was described in 1984 by David Harel. An updated
version of his book was published in 2000 [45]. DL can be seen as an
extension of Hoare logic [4, p. 70]. A form of dynamic logic is constructed by
extending a non-dynamic logic with modal operators associated to actions.
The necessity (or box) operator [], for example used in [p]i) expresses that if
the computation of p terminates, then v holds. The possibility (or diamond)
operator (), for example used in (p)1) expresses that the computation of p
will terminate and that afterwards v will hold.

Formulas in dynamic logic are of the form ¢ — [p| or ¢ — (p)1,
which is similar to a Hoare triple {¢} p {1} for partial or total correctness,
respectively. The extension in dynamic logic is that “[ijn Hoare logic, the
formulae ¢ and 1 are pure first-order formulae, whereas in DL they can
contain programs” [4, p. 70]. This provides greater expressiveness, as some
conditions cannot be stated using just first-order logic.
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KeY (see section 3.2.2 on page 45) uses a custom dynamic logic called
Java Card DL and performs symbolic execution for deduction.

2.5 Symbolic execution

Symbolic execution deals with the analysis of programs by working with
symbols representing arbitrary values instead of certain input values [59].
James King described in 1976 that the approach “[...] offers the advantage
that one symbolic execution may represent a large, usually infinite, class of
normal executions” [59, p. 394].

To illustrate symbolic execution, we will use the example that is given
in [4, pp. 115 sq.] for KeY. The rule sets for Java Card DL employ symbolic
execution to reduce complex programs to simpler ones. In contrast to Hoare
logic, where relatively few rules are used, rule sets for dynamic logic can
contain a vast number of complex rules. Therefore we will only look at two
very basic symbolic execution steps.

The example sequent we will analyze is:
= (0.next.prev=o0;)o.next.prev = o
The Java Card code in the diamond operator is symbolically executed, which
yields a sequent containing a longer, but simpler program:
= (ListEl v; v=o0.next; v.prev=o;)o.next.prev = o
The first of the simplified assignments can fail if o is null. Therefore, two
distinctive cases have to be analyzed:
0 #null = {v:= o.next}(v.prev=o0;)o.next.prev = o
o =null = (throw new NullPointerException();)o.next.prev = o
Both subproofs then have to be continued with additional rule applications,
which we omit here because of their complexity. Many rules are listed and
explained in detail in [4, pp. 120 sqq.].

The example shows the methods of introducing case distinctions and per-
forming syntactic updates. In general, symbolic execution cannot be applied
to loops as no bound on the number of iterations can be determined when
using symbolic values. Thus, symbolic execution needs to be combined with
other methods for complete verification. In KeY, for example, verification
of loops can be performed either by providing loop invariants or by using
induction [4, p. 116], with both methods needing assistance from the user.
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2.6 Model checking

Model checking was introduced by Edmund M. Clarke and E. Allen Emerson
in 1981 [13]. It offers an approach different from the methods based on Hoare
logic. Most explanations given here are based on the chapter on model
checking in [47].

Model checking is based on temporal logic:

The idea of temporal logic is that a formula is not statically true
or false in a model, as it is in propositional and predicate logic.
Instead, the models of temporal logic contain several states and
a formula can be true in some states and false in others. Thus,
the static notion of truth is replaced by a dynamic one, in which
the formulas may change their truth values as the system evolves
from state to state. [47, p. 174]

There exist various types of temporal logics, two that are widely researched
are linear temporal logic (LTL) and computational tree logic (CTL). We
will give a short introduction to LTL and also briefly look at CTL.

The set of LTL formulas is defined recursively as follows:

pu=T|Lpl(=d) | (@A) [(dVP)|(d—0)|(X)|(F¢)]|(Ge)]
(@U@ [ (6W )| (9 R9)
p is any atom from propositional logic. X, F, G, U, W and R are

called temporal connectives. LTL formulas are used for describing models of
transition systems. To explain the semantics of LTL, we need the notion of a
path w, which is defined as an infinite sequence of states 7 = s1 — s — .. ..
7" denotes a sub-path of 7 starting at state s;. L(s) is the set of atomic
propositions which are true at a state s. The satisfaction relation = defines
whether a path 7 satisfies an LTL formula. The definitions are taken from
[47, pp. 180 sq.].

erlT
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TEOAGiff T ¢ and T | ¢y
TV oy iff 7= ¢y or 7 = gy

T | ¢1 = ¢y iff w = ¢ whenever 7 = ¢
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o Next state: m = X ¢ iff 72 = ¢
e Some future state: 7 |= F ¢ iff there is some i > 1 such that 7° = ¢
e All future states (globally): 7 = G ¢ iff, for alli > 1, 7' |= ¢

e Until: 7 = ¢ U ¢ iff there is some 7 > 1 such that 7 |= ¢ and for all
j=1,...,i—1 we have 7/ = ¢

e Weak until: 7 |= ¢ W 4 iff either there is some ¢ > 1 such that 7 = 1)
and for all j =1,...,7 — 1 we have 7/ |= ¢, or for all k > 1 we have

"¢

e Release: m = ¢ R4 iff there is some ¢ > 1 such that 7 = ¢ and for
all j =1,...,4 we have 7/ = 4, or for all k > 1 we have 7% |= 1)

A system’s state satisfies an LTL formula if all paths from this state
satisfy the formula: “Thus, LTL implicitly quantifies universally over paths.
Therefore, properties which assert the existence of a path cannot be expressed
in LTL.” [47, p. 207] If an answer to the question whether there ezists a
path from a state satisfying formula ¢ is required, it is possible to check
whether all paths satisfy —¢ and interpret the result negated. However, it
is not possible to mix universal and existential quantification. For this, a
different type of logics called branching-time logics is required. We will take
a short look at computational tree logic (CTL).

In CTL, the temporal connectives are augmented by an additional symbol
A or E, for example X is used in the form AX ¢ or EX ¢ and U is used
in the form A[pU ¢| or E[p U ¢]. A specifies that the connective has to be
satisfied along all paths, while E specifies that there has to exist at least
one path where the connective is satisfied. CTL therefore is more expressive
than LTL in some cases — but the reverse is also true, as some facts cannot
be expressed in CTL due to the requirement that every temporal connective
has an associated A or E. To remedy this, a superset of LTL and CTL
called CTL* was defined, where syntax consists of state formulas, that are
interpreted with regard to the system’s states, and path formulas, that are
interpreted along paths. Thus, CTL* combines the expressive powers of its
subsets.

As a model checker has to evaluate all paths a program might take
and check whether they satisfy the system specification, model checking
severely suffers from the problem of state space explosion [27, p. 37]: The
number of states grows exponentially with every program variable and every
thread in multi-threaded programs. Thus, model checking is more widely
used for the verification of hardware or low-level software such as drivers



2.6. MODEL CHECKING 27

than general-purpose software [27, p. 39]. A number of approaches has been
considered for alleviating this problem, for example the use of data structures
that represent sets of states instead of individual states (ordered binary
decision diagrams, symbolic model checking) [47, pp. 229, 383]. Another
example is counterexample-guided abstraction refinement (CEGAR) [61],
where model checking starts with a coarse abstraction that is iteratively
refined only if necessary. A further approach is bounded model checking
where verification of loops is just performed up to a certain number of loop
iterations (implemented for example in CBMC, see section 3.1.5 on page 36).






CHAPTER

Tools

Although many foundations of concepts dealing with formal verification
were described years or even decades ago, the number of tools available for
applying those concepts to practical use on a larger scale is still rather small
and their features and capabilities vary greatly. This chapter will describe
those tools that are designed not just to implement or automate a certain
theoretical foundation, but that also have potential for use in practice and
in larger projects.

For each of them we are going to give an overview of its origin such as
its developing institutions. Basic usage aspects will be covered, for example
which operating systems are supported, which programming languages can
be verified and in what way interaction with the tool is performed, such
as the availability or absence of a graphical user interface, either for the
tool itself or in the form of plug-ins or similar mechanisms for existing
integrated development environments. Each tool’s theoretical background
will be described. The intended field of use and target groups are going to
be analyzed: Is the tool aimed at academic or industrial use? What kind of
knowledge of formal verification is necessary to successfully use the tool?
In addition, aspects such as the license under which the respective tools
are made available, the state of support and development and the prospect
on long-term availability will be considered. Properties that have a large
influence on the tools’ suitability for industrial applications and teaching will
only be touched in this chapter to be analyzed in more detail in chapter 5
on page 105.

In general, we are going to focus on those tools that make it possible
to get results even for a user with little experience in the field of formal
verification.

29
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In 2004, Feinerer et. al. evaluated four tools [37; 38], namely Frege
Program Prover, KeY, Perfect Developer and Prototype Verification System.
In determining whether it would be worthwhile to analyze them in detail
again, different aspects have to be considered. We will look at the progress
the tools’ features and usability have made, and whether or not they are still
actively developed. Those that did not undergo substantial improvements
are only covered in little detail.

3.1 Tools not selected for comparison

3.1.1 Frama-C/Jessie
Overview

Frama-C (FC) is developed by the French institutions CEA LIST (Lab
of applied research on software-intensive technologies at Commissariat a
'énergie atomique et aux énergies alternatives) and INRIA Saclay (a research
center of National Institute for Research in Computer Science and Control)
[9, About us]. It is a framework “[. . .| dedicated to the static analysis of source
code written in C” [18, p. 11]. In contrast to some of the other tools Frama-C
is not monolithic, but is meant as a platform to be extended by a number of
plug-ins for different purposes. It provides a parser for C programs that also
understands annotations in ACSL (ANSI/ISO C Specification Language)
[18, p. 12]. The project offers plug-ins for deductive verification (Jessie and
wp), extracting semantic information from code, static analysis of variable
values at different points in programs, determining what code parts are
affected by a modification (impact analysis), and some more [18, p. 12][9,
Plug-ins].

Background

Frama-C can be used either as a console application [18; p. 16] or by utilizing
a graphical user interface [18, p. 35]. Two of Frama-C’s plug-ins are in the
scope of our comparison: Jessie and wp. Both of them implement deductive
verification based on Dijkstra’s weakest preconditions, an approach that is
explained in section 2.3. According to wp’s manual, wp is the newer plug-in,
but it does not supersede Jessie and instead is aimed at different aspects:

The Jessie memory model is very efficient for a large variety of
well structured C-programs. However, it does not apply when low-
level memory manipulations are involved, such as heterogeneous
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casts. Moreover, Jessie operates by translating the C program to
Why, a solution that prevents the user from combining weakest
precondition calculs [sic] with other techniques [...] [17, p. 7].

The main component of the Why platform mentioned in the citation is a
general-purpose generator for verification conditions that is driven by input
in the likewise Why-titled intermediate language.

The annotation language used by Frama-C, ACSL, is developed by the
same institutions as the tool itself. It “[...] aims at specifying behavioral
properties of C source code” [3, p. 11] and is, indirectly, by way of another tool
called Caduceus, inspired by Java Modeling Language. ACSL annotations
are added to the source code as comments and are thus ignored by a regular
compiler [3, p. 12].

As our focus is on formal verification in general software development
and teaching, Jessie seems to be the more suitable plug-in. In a diagram in
Jessie’s tutorial [64, p. 3], the chain of actions for conducting a proof with
Frama-C/Jessie is given. It can be summarized as follows: The program
in C annotated in ACSL is processed by Frama-C and converted into an
intermediate language that is used as input for the Jessie plug-in. Jessie
generates code in Why which is given to Why’s verification condition gener-
ator. Why can generate verification conditions for many different provers,
automated provers like Alt-Ergo, Simplify and Z3 or interactive ones such
as Coq, Isabelle and PVS [62]. Resulting from this long chain of interde-
pendencies, installation and configuration is a rather complex task. The
positive aspect of this is that since Why can supply various provers with
verification conditions, a proof can be attempted in more than one prover
easily. Thus, the strong points of one prover may outweigh the weaknesses
of another, as is demonstrated in the tutorial [64, p. 17]. Unfortunately,
a negative aspect results from this, too: The tools of the Why platform
provide no way of relating the generated constructs (in Why code) to the
respective lines in the original C/ACSL code. This might greatly hinder
analysis of any problems found by the provers. Indeed, in the tutorial it is
stated that finding the respective line in the C code “[...] can be done by
hand for very short functions” [64, p. 4], but not in longer ones.

In addition, the Why platform in the version required by Jessie (Why2)
is no longer under development, but has been superseded by Why3 [62].
Although it is stated that Why?2 is still maintained as necessary for Jessie, the
thought of beginning development with or designing teaching materials for
a partly deprecated platform is rather deterrent. Another downside is that
Frama-C’s current version Carbon is not available for the Windows platform,
but only for Linux and Mac OS X, which might be acceptable for some



32 CHAPTER 3. TOOLS

academic usage scenarios, but not for general industrial deployment. The
latest version for Windows is Boron, which is from April 2010 [9, Download].

Documentation and target audience

The documentation provided seems comprehensive at first: Manuals about
Frama-C, ACSL, plug-in development and about most plug-ins are available
on the project’s website [9, Support|. Links to a wiki, mailing list and blog
can also be found there. However, the level of detail and quality varies
considerably. For some components, like for the Frama-C kernel itself or
for the ACSL specification, the documents are extensive and cover many
topics. In other cases, like the Jessie plug-in, there is no proper manual
available, but just a tutorial with a very short manual chapter, which, while
answering some questions, provides only few detailed explanations [64, p. 24].
Additional information available for Jessie would consist of a demonstration
video, however the link to it is broken [9, Plug-ins/Jessie]. Offering a wiki
seems to be a good idea for documenting practical aspects of the project,
but there is only very little content available. The only exception is the
comprehensive FAQ page — unfortunately, its latest update was performed
in 2009.

There have been quite a few publications on the foundations of Frama-C,
ACSL and many plug-ins [8]. A comprehensive manual or book about the
project as a whole, written in a consistent style and structure would greatly
help understand the structure and usage, but unfortunately none exists.

No support for integration into existing integrated development envi-
ronments is available. The main Frama-C component has a GUI that can
be used as a simple IDE for writing ACSL annotations. For verification
with Jessie, the tools available for the Why platform have to be used, in
particular the gWhy GUI [64, p. 2|.

Some facts could be gathered regarding the practical use of Frama-
C/Jessie: In the list of publications in the wiki, an experience report on the
verification of algorithms in the C++ standard library [5, p. 191], presented
at the International Conference on Formal Verification of Object-Oriented
Software, is mentioned. Another paper from this conference presents the
experiences with Frama-C at Dassault Aviation [5, p. 205]. Three additional
papers on experiences with Jessie are mentioned in the wiki [8].

No information is explicitly given about Frama-C’s target audience on
the website or in the manuals. The features and plug-ins provided could in
general be useful in both academic and industrial environments. This is also
because the amount of details the user gets provided with and the level of
interaction needed when using Jessie depends on the prover being used and
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can thus be chosen according to the user’s expertise in the field. Still, no
information could be found on the use of Frama-C in teaching, so at least in
practice the focus seems to be more on industrial applications.

License and development

Frama-C is provided freely under the GNU Lesser General Public License
version 2.1 [9, Download]. The Why platform the Jessie plug-in depends
on is available under the GPL as well. Frama-C is actively developed: The
latest release is from February 2011, with the exception of the Windows
version that is far older. Since various institutions support it [9, About us],
the chance of further development of the Frama-C kernel is high. However,
the situation is not that clear for some plug-ins, especially for Jessie, because
it depends on the deprecated Why?2 software.

Support is provided via a mailing list where project members generally
answer in timespans of hours to a few days.

The project shows great transparency in regard to bugs and known issues.
A public bug tracking system is available on the website [9, Support| which
can be viewed anonymously, to report new issues an account can be created
easily. Unfortunately there is no redacted, structured list of known issues
available that is structured by severity of issues. The filtering features of the
bug tracking system cannot effectively be used to gather this information,
as most issues do not have a priority level specified and there are also notes
and development proposals in the system.

Summary

Frama-C/Jessie presents itself as an interesting platform with some disad-
vantages. In general, documentation, state of development and support for
the main component leave a good impression, but it is not exactly so in case
of the Jessie plug-in. The complex interaction between various components
and the reliance on the Why2 platform are deterrent to starting development
with Frama-C/Jessie for the sole purpose of formal verification. When static
analyses like value and impact analysis or approaches like program slicing
are desired in the development process besides formal verification, Frama-C
might be a powerful option to consider.

For our focus on formal verification in industrial applications and teaching,
Frama-C/Jessie seems to be too complicated and, when looking at the
uncertain future of Why2, less attractive than other tools. When Why3
becomes stable and if Jessie is updated to use the new platform, a new look
at Frama-C/Jessie might be worthwhile.
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3.1.2 Frege Program Prover

Frege Program Prover (FPP) [80] is one of the tools that was already analyzed
in [37]. It was developed at the Department of Mathematics & Computer
Science at Friedrich-Schiller-Universitit Jena. FPP performs verification
by reasoning about code written in a subset of the language Ada that is
augmented by annotations giving information about pre- and postconditions,
loop invariants and the like. The tool does fully automatic analysis and
verification by computing weakest preconditions for a given program and
postconditions or by verifying whether Hoare triples of precondition, program
fragments and postcondition hold [81, p. 119]. FPP is a purely online tool
that is operated via its website.

An advantage compared to many other systems is that FPP concentrates
on some few key aspects that are often focused on when teaching formal
verification [47, p. 269; 44, p. 109]. However, supported language features
are constrained so tightly that use outside of teaching is impossible and that
they might not even be sufficient for entry-level courses. Important features
missing are the support for additional data types beside the integer and
boolean types that are currently available, for aggregate types like arrays or
lists and for any kind of structuring like packages or procedures [80, Syntax].
None of these shortcomings have changed since the work in [37].

Because of this fact, and also because the website states that because of
technical problems FPP is currently not available, it will not be included in
this comparison.

3.1.3 Perfect Developer

Perfect Developer (PD) [33] is one of those tools that were compared in [37].
It is developed by British company Escher Technologies. It was previewed in
1999 at the World Congress of Formal Methods under the name Escher Tool
and commercially released in 2002 under its current name [23, p. 10]. Perfect
Developer is designed in a different way than many other tools mentioned
here: Instead of writing code in a general-purpose programming language
that gets annotated with specifications, the user has to adopt a different
paradigm. Escher developed their own specification and programming
language called Perfect, of which they claim it “[...] has the look and feel of
an object-oriented programming language but the power of a specification
language” [20, p. 1]. Perfect is used to create a formal specification of
the system to be implemented, for example by writing class skeletons and
function signatures including pre- and postconditions. No details on the
implementation need to be given by the user in this step. Perfect Developer
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generates about 50 types of verification conditions based on the specification,
which the included automatic theorem prover tries to verify [23, p. 5].

Users have different options regarding how much of the development pro-
cess should rely on Perfect Developer. In the one scenario, the use of Perfect
Developer is complete after checking that the specification is consistent and
the program is implemented by hand using regular tools and programming
languages while trying to adhere to the specification [32, p. 1]. This approach
might introduce arbitrary errors in the code, as the implementation solely
is in the hands of the programmer. It is the only choice in some other
verification tools, for example in Prototype Verification System. However,
Perfect Developer allows to automatically generate program code conforming
to the specification. The target languages currently available are Ada, C++,
C# and Java [32, p. 2|. If Perfect Developer has trouble generating code for
certain specifications or if the generated code’s performance is not sufficient,
the user can provide refinements to the specification. These are imperative
annotations that tell Perfect Developer how the specifications should be
implemented. Refinements are also devised using the Perfect language, can
be formulated in an object-oriented way and can also be verified by PD [23,
pp- 9 sq.].

Perfect Developer was very positively received in the comparison by
Feinerer et. al., where it was stated that it is the only tool of those compared
“[...] that comes close to the ideal of automatic and easy program verification”
[37, p. 80], along with the criticism of missing support for induction and
“[...] the lack of information concerning the inner workings of the prover”
[37, p. 80], since the user does not get access to the logical rules used to
construct proofs. These criticisms still apply to the current version of Perfect
Developer.

Escher is currently developing a second tool called Escher C Verifier
(eCv) that, similar to many other tools analyzed in this work, strives to
verify programs written in C with additional annotations. As eCv uses the
same theorem prover as PD [31], and since nothing has changed regarding
the main criticisms, we will not include Perfect Developer in this comparison,
but instead we will analyze Escher C Verifier.

3.1.4 Prototype Verification System

Prototype Verification System (PVS) [72] is another of the tools already
analyzed in [37]. PVS is developed at the Computer Science Laboratory at
SRI International and was introduced in 1992 [70]. PVS is a more formal
tool. The source code is available under the terms of the GNU General
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Public License. Binary distributions are provided for Linux and Mac OS X
operating systems.

In PVS, specifications formulated in a higher-order logic language also
called PVS are verified with the help of an interactive proof checker. For
solving theorems, the prover depends on the user’s knowledge and intuition
for choosing the commands suitable for progressing towards the complete
proof. To help with recurring problems, proof strategies “[...] from quite
sophisticated primitive inference steps that employ arithmetic decision pro-
cedures, rewriting, and simplification” [73, p. 2] can be assembled. Some
examples of readily available proof strategies for various knowledge domains
are also mentioned there. Still, when there exist no proof strategies for a
user’s problem yet, creating them is a highly complex task requiring good
knowledge of PVS itself as well as logic in general. Examples for designing
proof strategies are given in [73, p. 12].

A positive aspect for use in teaching could be that the prover gives
detailed output that shows which rule applications yielded which results,
see for example [71, p. 13]. On the downside, there is no nexus between
specifications and proofs in PVS and code in a programming language. This
means that while a system’s specification can be verified, its realization
in a programming language is still completely up to the user and may
introduce arbitrary errors that cannot be detected by the verification system.
Combining these aspects results in the notion that PVS only has a small
potential for industrial use. For teaching formal methods, as stated in [38,
p. 300], PVS could be suitable for (very) advanced students, but not for
entry-level courses.

Resulting from this, and from the fact that no substantial changes have
occurred since the comparison in [37], PVS is not included in this comparison.

3.1.5 CBMC

Overview

CBMC [40] is developed by the Formal Verification Group of Carnegie Mellon
University, University of Oxford and Eidgendssische Technische Hochschule
Zirich. It is part of the CPROVER project that offers different tools for
software and hardware verification. Its design is different from the other
tools analyzed here in that it is the only tool that uses model checking for
verifying software. Model checking is often used for verification of hardware
or embedded software, and CBMC is also aimed at low-level, embedded
software [12, p. 168]. However, features such as dynamic memory allocation
that are seldom used in embedded software are supported [12, p. 170]. CBMC
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is based on the method of bounded model checking which was proposed in
1999 in [7].

Background

CBMC is used to verify programs written in C. It is provided in binary form
for Windows, Linux and Mac OS X as well as in source code by public access
to the version control system [40]. On Windows, the compiler of Microsoft’s
Visual Studio is needed as a prerequisite before being able to use the tool.
CBMC is a console application. The main paper contains screenshots of a
graphical user interface [12, p. 174], but no evidence of a GUI could be found
in the current version. Instead, a plug-in for the Eclipse IDE is available.

CBMC uses assertions to specify program properties. Assertions are
either generated automatically by CBMC, or they are added to the code
by the user. Automatically generated assertions aim to make C safer by
checking for the presence of possible buffer overflows, the use of pointers,
arithmetic properties (such as divisions by zero), the use of uninitialized
variables and concurrent accesses to a single variable from more than one
thread [41, Property instrumentation]. Many of these aspects are already
intrinsic to “modern” languages like Java and C#. However, especially in
the field of embedded software, C is very widely used and thus dealing with
C’s ambiguities is important when targeting the verification of embedded
software.

The user can specify additional assertions to enable verification of more
aspects of the program. Unfortunately, CBMC only provides the ability to
process assertions that are in the form of standard ANSI C expressions [12,
p. 173], which limits the power of constructs used in assertions. As program
inputs normally can take any form, model checking uses nondeterminism:
In the simulation, “[t|he program may follow any computation that results
from any choice of inputs” [41, Nondeterminism|. Nondeterminism can also
be explicitly introduced in a program, which can be used to reason about
ranges of values. Still, nondeterminism cannot compensate for the lack of
existential and universal quantifiers. Future releases are planned to have
support for quantification [41, Modeling with Assertions and Assumptions].

CBMC implements the method of bounded model checking. Its aim is
to circumvent the state explosion problem commonly associated with model
checking. A program that contains loops is unwound a fixed number of
times. This means that each loop in the code is replaced by a series of
nested statements consisting of an if () condition with the semantics of the
condition in the loop’s while() statement and a copy of the loop body [12,
p. 169]. Information on model checking in general is given in section 2.6.
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After these changes, the program is transformed into a boolean satisfi-
ability problem (SAT), which a solver tries to prove. If the SAT formula
is satisfiable, the program contains an error [7, p. 194]. If the solver finds
no proof, it is possible that either the program is correct or that unwinding
needs to be performed for an increased number of loop iterations. CBMC is
able to detect such a case by adding an unwinding assertion to the deepest
copy of the loop body. If this assertion is encountered by the symbolic
simulation performed by CBMC, this is evidence that more unwinding needs
to be performed [12, p. 170]. If the assertion is not encountered and no other
assertions are violated, the loop is proven to be correct. The necessary bound
for the number of unwinding operations can in some cases be determined
by CBMC itself, otherwise it has to be given by the user. Loops where a
sensible bound is not known or which are expected to repeat indefinitely
cannot be proven completely, it can only be said that the program is correct
up to a certain number of loop iterations.

In the case that the SAT formula is satisfiable, a counterexample is
extracted from the prover’s output which can be presented to the user to
enable him to understand the actions that led to the failure [12, p. 168].

An interesting aspect of CBMC stemming from the orientation to low-
level software is the possibility to prove behavioral consistency between a
C program and a system specified in the hardware description language
Verilog. An approach that is often taken in hardware design according
to [11, p. 308] is the following: First, a prototype implementation in C is
created, which is used for testing. After completing this phase, the system
is modeled in a hardware description language such as Verilog. This process
can introduce new bugs that are seldom found since additional debugging
and testing in hardware description languages are time-consuming tasks.
CBMC can generate a SAT problem from both the C program and Verilog
description and verify that their behavior is consistent. Details are given in
[11, pp. 309 sqq.; 41, Hardware/Software Co-Verification].

Documentation and target audience

The website [40] offers some publications on CBMC. A manual for users in
HTML format is available [41]. While it touches many different topics and
gives some examples, it is very brief and does not give detailed information
on each topic. It might be sufficient for the first steps in CBMC, but
cannot be seen as a proper reference manual — a book neither is available.
Information about the theoretical aspects of CBMC and bounded model
checking in general is given in some papers. The main paper [12] introduces
the approach, [11; 60] give more information on loop unwinding, the code
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transformation process and the verification of behavioral consistency between
C program and Verilog hardware description.

A section on the website lists different scenarios where CBMC was used
[40, Applications of CBMC], mainly in verifying embedded or low-level
software such as software for microcontrollers and device drivers. Integration
into existing development processes is made possible by a plug-in for the
popular IDE Eclipse. In the main paper about CBMC in the description
of the then available GUI, it is stated that “[w|e hope to make formal
verification tools accessible to non-expert users this way” [12, p. 168], so
the intended target audience includes software developers without expert
knowledge in formal methods. Unfortunately, it could not be verified how
well this intention was realized, as we could not get the plug-in to work as
intended.

Some university courses where CBMC was used could be found, mainly in
the German language area, for example at Vienna University of Technology,
Karlsruhe Institute of Technology and Technische Universitat Miinchen.

License and development

CBMC is provided free of charge under a custom license allowing redistri-
bution and use under the condition of retaining the copyright notice and
informing the authors by e-mail when installing CBMC for any purpose [40,
License].

The tool is actively developed, with new releases appearing every few
months, at least since 2009. The only information that could be found
about further development is the announcement of a version with support
for quantifiers to be released sometime in the future.

No information could be found on the website regarding known issues with
CBMC. There is also no public bug tracker available. Support is provided
using a forum linked on the CPROVER website [42, Support]. While some
questions posted there have been answered after a few days, many questions
still remain unanswered. These aspects make CBMC unattractive for projects
where accurate information about the state of the project is desired or where
any kind of support is needed.

Summary

CBMC is different in concept to the other tools in this comparison in that
it performs model checking for verification. As this is a completely different
concept than the approaches taken with the other tools, and since — in
contrast to many other model checking implementations — CBMC is suited
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not only for embedded applications, a comparison could be interesting.
However, a severe restriction exists: only being able to use standard C
expressions in assertions can make the formulation of some conditions
hard or impossible. Thus, we will favor other tools that do not have such
limitations. When the announced new version with support for quantifiers
is released, a re-evaluation of CBMC could be beneficial.
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3.2 Tools selected for comparison

3.2.1 Escher C Verifier

Overview

Escher C Verifier (eCv) [31] is a new tool developed by Escher Technologies.
It was designed as an alternative to Perfect Developer for areas where Perfect
Developer’s approach is not adequate. The paradigm of Perfect Developer
is specifying the system in the Perfect language and, after verifying the
specification, automatically generating code that complies — the performance
of which might be inferior compared to code optimized by hand (see sec-
tion 3.1.3 on page 34). For such cases, where formulating each aspect of the
code imperatively is necessary, another approach is needed.

Based on this notion, Escher designed eCv, which, similar to some other
tools in this comparison, strives to verify programs written in a subset of C.
Verification can be performed on different levels. It always tries to prove
that programs “[...] are free from out-of-bounds array indexing, null pointer
de-referencing, arithmetic overflow and other ‘undefined behaviour’, and that
each loop [...] will terminate” [29, p. 1]. When source code is annotated with
additional knowledge like specifications, pre-/postconditions and invariants,
Escher C Verifier aims to prove those too.

Background

Escher C Verifier is available for Windows and Linux operating systems in
binary form. The final version was released in October 2011, although this
description is based on the last pre-release version 5rc10. Escher combined
Perfect Developer and Escher C Verifier into a product called Verification
Studio that is available in different versions [34]. Verification Studio provides
a common graphical user interface to both tools. Integration is not very
extensive however, as the user has to decide whether to load an eCv or PD
project into Verification Studio. Thus, in practice, the current state of the
implementation can be seen as providing two separate tools sharing a very
similar GUI, without the support of combined use of both tools in a single
project.

eCv is similar to some other tools in that it strives to verify programs
written in C with additional annotations. The verification approach used by
the tool is called verified design by contract, an extension to the term design
by contract coined in 1988 [65]. It was inspired by Hoare logic and weakest
preconditions [20, p. 3]. The tool generates about 50 different verification
conditions [22, p. 31] which are verified using a term rewriting system
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together with a first-order theorem prover. The system can also handle some
higher-order constructs by employing additional rules [21]. Escher C Verifier
uses the same prover as Perfect Developer.

All tools have some limitations concerning the language features they
support. An interesting aspect of Escher C Verifier is that the decision on
which features should be supported was based on a proven standard called
MISRA C. The C language is still often used because of its efficiency, for
example in embedded and server applications, but it is missing some basic
features present in more modern high-level languages, for example integrated
checking whether accesses to elements of an array are within the array’s
bounds. Also, the C standards lack definitions of behavior in lots of cases,
many of which are important in practice [48, p. 492]. Some institutions have
specified subsets of C for use in certain fields. The Motor Industry Software
Reliability Association’s (MISRA) mission statement is to provide “[...]
assistance to the automotive industry in the application and creation within
vehicle systems of safe and reliable software” [69]. In this role the MISRA C
subset of the C language was developed where many “unsafe” features were
removed [68] and which has been adopted in a variety of fields.

The features supported in Escher C Verifier are closely related to the
2004 version of MISRA C: Escher states that “...] almost all the constructs
that are prohibited in our subset are also prohibited in the MISRA subset,
although the reverse is not true” [24, p. 8|. Thus, eCv supports even more
aspects than MISRA C which backs the claim that existing programs written
in MISRA C can be adapted for verification with eCv with relatively small
effort [29, p. 1].

The additional keywords needed for annotating the code are implemented
using preprocessor macros that expand to nothing at compilation. Thus,
any compiler can be used, as all annotations are invisible when compiling
(24, p. §].

A unique feature of the tools developed by Escher is the provision
of advanced support in the case that a code segment cannot be proven
automatically. While other tools just show the line the problem occurred
in — and sometimes do not succeed even in this aspect, see section 3.1.1 on
page 30 — Escher C Verifier in some cases can give hints on how to solve
the problem. For some types of missing annotations, the verifier suggests
amendments:

For example, if an unproven verification condition involves only
the values of inputs to a function, it is very likely that the
user forgot to state the required condition as a precondition
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of the function; so the verifier will suggest it as an additional
precondition. [24, p. 12]

Although the helpfulness of the suggestions depends on the complexity of
the situation, they can increase the user’s productivity by decreasing the
time spent on debugging “easy” parts of the specification.

Documentation and target audience

Several papers and slides from various conferences about the tools and
the verified-design-by-contract approach are available on the website [31,
Publications]. The founder of Escher Technologies, David Crocker, has a
weblog where many practical aspects of eCv and verification of C programs
in general are illustrated [19]. As Escher C Verifier has only just been released
product documentation is not as extensive as that for Perfect Developer, for
which there exists a comprehensive self-help section [33, Support|. Among the
documents provided is a user guide, a language reference manual, tutorials
for beginning work with the tool, a complete list of the verification conditions
generated and a frequently asked questions section. Even though no book
or other extensive work exists, the amount and quality of documentation
can be considered as an advantage compared to the other tools. It will be
very positive if the full documentation on eCv is going to be similar to that
of PD.

Escher C Verifier is mainly targeted on industrial users, but support for
the use in teaching is not neglected either. Escher claims its tools are well-
suited for developing applications adhering to various safety standards [35]
and that Perfect Developer has already been employed in various industrial
projects — as Escher C Verifier is a new tool, no experiences with industrial
usage exist yet. Unfortunately, there is no support for the most widely used
integrated development environments Eclipse and Visual Studio. For the
Perfect language, at least there exist customization files adding syntactic
support to a few editors: To more common ones like Vim, but also to
obsolete ones like Crimson. For the additional language keywords needed
for Escher C Verifier even such customization files were not available as of
version 5rcl0, even though they were advertised for the final release [29,
p. 2]. Instead, the user needs to configure the editor she uses herself, which
is not very attractive.

Verification Studio itself does not offer a code editor either, but was
designed as a project manager with verification abilities: Source files in C
or Perfect are organized into projects and can all be verified in one step.
Messages about the state of verification conditions are output in a relatively
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well-arranged way (see figure 3.1), and it is possible to directly jump to the
corresponding line of code (if the editor supports this), which is convenient.
Still, integration into an IDE could increase productivity even further.
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Figure 3.1: Main user interface of Verification Studio

Regarding use in teaching, we again have to fall back to looking at
the current situation of Perfect Developer and assume that the materials
provided for Escher C Verifier will be similar. The self-help section on the
website [31, Support] offers a page with some teaching materials for Perfect
Developer, for example a comprehensive one-day tutorial including a number
of exercises, which should be well suited for an introductory lesson in a
formal methods course. PD has already been used in courses at various
universities [36].

License and development

Escher C Verifier is a commercial tool. In the form of the product Verification
Studio, several combinations of Escher C Verifier and Perfect Developer
are available. A free-of-charge version that is limited to noncommercial use
(and subject to some additional terms) is also available upon request for
evaluation and educational institutions [34].
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Both tools are under active development, with the first release of eCv
appearing as a component of Verification Studio in October 2011. Escher
anticipates that some customers will be using both tools to work on the same
projects and thus announced a closer integration of each other in future
releases [34]. As mentioned above, eCv provides suggestions for annotations
in some cases, for example when a loop invariant for the loop counter is
missing. An important feature that could bring large gains in productivity
would be the automatic generation of suggestions also for loop invariants
that describe the meaning of a loop. The plan to work on this problem
has already been announced in [24, p. 14], but it is not clear whether any
progress has been made on this issue.

As Escher C Verifier is a commercial product, there is professional support
included which probably is an advantage for companies thinking about
introducing formal verification, but low-priority support is also provided for
the free of charge version. For Perfect Developer, a clearly arranged list of
known issues is available in the self-help section on the website [31, Support].
Issues are structured by severity and detailed explanations and, if applicable,
examples are given for each of them. We expect that the same approach
will be taken with Escher C Verifier.

Summary

Escher C Verifier follows a similar concept as Frama-C/Jessie and VCC
(described in section 3.2.3 on page 50). An interesting aspect is that, in
contrast to the other tools, the C language subset supported by eCv is
based on the widely used standard MISRA C. Good documentation and the
availability of professional support are advantageous especially in industrial
environments. The unique ability to suggest missing annotations in the case
that a proof fails can increase productivity in some cases. An area that is
rather neglected in the design of Escher C Verifier is the integration into
standard IDEs. Despite this criticism, eCv already seems like a mature tool
suitable for general use. The analysis from a practical point of view will
show whether this impression holds true.

3.2.2 KeY

Overview

KeY [58] was already analyzed in [37]. KeY is developed in a joint project of
Karlsruhe Institute of Technology and Chalmers University of Technology. It
is aimed at verifying properties of code written in Java Card, a “[...] superset
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of a subset [...]” [4, p. 375] of Oracle’s Java platform. Annotations are added
to the code using Object Constraint Language (OCL) or Java Modeling
Language (JML) [28, p. 2]. For verification, KeY transforms programs into
a type of dynamic logic called Java Card DL and then performs symbolic
execution [1, pp. 42 sq.].

Background

KeY is available for download in Java source code and binaries as well
as a web application run directly in the browser using Java Web Start.
Thus, all operating systems for which a Java runtime environment exists
are supported.

Java Card was designed to be primarily used in memory-constrained,
security-sensitive embedded devices such as smart cards [76, p. xvii]. While
it is positive that a proven standard has been selected for the language basis
of KeY, Java Card lacks many features the Java platform normally provides,
for example multi-threading, object cloning, data types for floating point
numbers, arrays with more than one dimension, and many classes such as
java.lang.String [76, pp. 2-2-2-5]. In contrast, Java Card also provides
some features not present in regular Java, for example object persistence
and atomic transaction mechanisms [4, p. 375]. Important features of object-
oriented languages such as inheritance, interfaces and overloading are also
still supported [63, p. 5]. KeY extends the features of Java Card in some
ways, for example the use of string classes is supported since version 1.6 [56].
Even so, these aspects point to the insight that developing in Java Card (and
thus also the use of KeY) is probably not feasible for applications designed
for general use. But still, for users working in the area of embedded or similar
software, Java Card and KeY could be a very suitable choice. Use of KeY
in teaching might also be worthwhile as the possibility of verifying programs
written in a modern language with most features regarding object-orientation
supported is an interesting aspect.

The code needs to be enriched with annotations for verification. In
2004, when the comparison in [37] was performed, only OCL was available,
which was found to be insufficiently expressive for some problems, such as
specifying the postcondition of an algorithm that computes factorials [37,
p. 57]. Since release 0.99, KeY also supports specifications in JML [56]. OCL
was designed as an addition to the Unified Modeling Language (UML), and
as such cannot consider language-specific needs. JML is better suited for
specifying properties such as exception handling, has support for concrete
data types used in Java Card and supports additional clauses which can for
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example be used to specify which variables a function is allowed to modify
(63, p. 9].

The annotated program is translated by KeY’s verification middleware
into a formalisation in a variant of dynamic logic [1, p. 34]. Java Card DL can
be seen as being loosely related to Hoare logic [1, p. 42] and is used to express
the program in a form that KeY’s deduction component can reason about.
The deduction component then performs symbolic execution and unfolds
complex expressions into simpler ones. More information about symbolic
execution in KeY can be found in [4, pp. 115 sq.]. Symbolic execution and
dynamic logic are explained on a general level in sections 2.4 and 2.5. The
simplified expressions are then transformed by using special rules called
taclets: “A taclet combines the logical content of a sequent calculus rule
with pragmatic information that indicates when and for what it should be
used.” [1, p. 45] The prover can be used with varying degrees of automation:
Proofs can be attempted fully manually using an interactive prover interface,
or different levels of heuristics can be activated to support partly to fully
automatic proof search [1, p. 46].

KeY differs from many other tools in the fact that, while discharging
proof obligations can be performed mostly automated, the choice of which
obligations are to be proven is up to the user. Thus, a user cannot simply
tell KeY to verify all possible aspects of a sufficiently annotated program.
Instead, for each of the program’s classes and methods, the user has to
analyze by herself which obligations need to be proven and make sense, and
select one of them in the proof obligation browser (see figure 3.2).

For some obligations, the user has additional choices. For example,
in the very common proof of verifying a method’s compliance with given
postconditions, the user has to select the contract to use in the proof (see
figure 3.3), if more than one contract is available. A contract specifies a
behavioral scenario for a method, for example which postconditions to apply
in relation to certain preconditions, or the expected behavior when problems
like Java exceptions are encountered at runtime. Then, finally, the proof
can be initiated. This process has to be repeated for each class and method
that exists in the program and for every proof obligation that needs to be
verified.

Documentation and target audience

The main paper about KeY was already published in 2005 [1], but many
points made there are still valid. A book edited by some of the main authors
of KeY is available as well, it is based on the outdated version 1.0 [4]. Beside
these publications, the website offers an extensive list of papers, many of
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which are however only marginally related to KeY itself and focus more on
general or theoretical topics [58, Publications].

According to [1, p. 35], the goal for KeY was to make it usable in different
scenarios, for example in general industrial software development, in the
development of security critical software as well as in education. It is even
explicitly stated that “the most important target user group for the KeY tool
are people who are not experts in formal methods” [1, p. 35]. An attribute
that was criticized in [37, p. 52] was the need for purchasing and setting
up a commercial computer-aided software engineering tool that was then
required for KeY'’s user interface. This criticism does not apply anymore:
KeY is now stand-alone and thus has its own user interface that does not
depend on any external components.

In contrast to many other tools, KeY has a vast amount of configuration
options. For example, there is a large number of options regarding proof
search strategies and how to apply which rules and taclet options. In the
quicktour document, there even is a whole section dedicated to configuring
KeY in the correct way for being able to follow the tutorial [28, p. 12]. The
multitude of options offers enough flexibility for using KeY in different ways
by different users: Beside formal verification, the tool can for example also
be used as an interactive theorem prover for first-order predicate logic [1,
p. 36] or for the generation of unit tests based on proof attempts [28, p. 28§].

The project offers a plug-in for the popular IDE Eclipse. Unfortunately,
it does not directly support the verification features of KeY. It just provides
the possibility to call KeY from Eclipse and to visualize execution paths
in the case that a proof cannot be performed automatically [28, p. 23].
The selection of classes, methods and contracts to prove and the proving
process itself still need to be carried out in the completely separate KeY
window and just the visualization is performed by coloring code in Eclipse’s
editor. A positive aspect regarding productivity is the use of Java Modeling
Language as KeY’s annotation language, as this enables the user to make
use of existing utilities that support manipulating JML specifications.

KeY was already used in teaching, at least at the universities involved
in its development. The teaching section on the website offers links to some
courses, however they do not give much information as they are mostly
outdated: one of the courses is from 2006 and two other course sites do
not exist anymore. KeY seems to be more widely used in research than in
the software industry, as only little information could be found regarding
practical experiences. The website lists two case studies [58, Case Studies].
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License and development

KeY is freely available under the GNU General Public License version 2.
The project is actively developed, at the moment work is being done on
version 1.7. What kind of changes are planned for this version is unknown
since no documentation on this topic could be found. As KeY has been in
development at least since 2002 (when the main paper was handed in for
publication [1]) and some people involved in development then still are part
of the project, there is good potential for long-term availability. It would be
positive if future versions could increase the amount of language features
supported even further, similar to the addition of strings with version 1.6.

There is no public bug tracking system available, but the website has
a list of known issues with explanations and in some cases also hints for
working around an issue [57]. An e-mail address for support on KeY is
provided in the download section [58, Download].

Summary

KeY has evolved considerably since the analysis in [37]. The purely aca-
demical tool with very complex and frequent user interactions depending
on a commercial development environment has changed into a stand-alone
platform that can perform proofs automatically in many cases. As sub-
stantial changes have occurred in KeY, an analysis at its current state of
development, with special attention paid to the amount and quality of user
interactions seems to be beneficial.

3.2.3 VCC

Overview

VCC [67] is being developed at the Microsoft Innovation Center Europe in
Germany and at the Microsoft Research in Software Engineering group in the
United States. VCC, similar to Frama-C/Jessie, deals with the verification
of C source code enriched with annotations. Another similarity is that
VCC also provides an interface for extending functionality via plug-ins [15,
p. 37]. In contrast to Frama-C, formal verification is the main feature in
VCC, so any plug-ins will not be considered in this analysis. The unnamed
annotation language used was developed especially for VCC. A noteworthy
property of VCC is that it was designed especially with formal verification
of multi-threaded (concurrent) programs in mind [15, p. 24].
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Background

Microsoft Innovation Center Europe was one of the institutions taking
part in the Verisoft X'T' research project on formal verification of computer
systems [78]. Stemming from this program, a project to formally verify
Microsoft’s, at that time new, hypervisor Hyper-V was initiated [15, p. 23].
The requirements of this project drove the development of VCC and are
heavily reflected in VCC’s focus on “[...] sound verification of functional
properties of low-level concurrent C code” [15, p. 27].

VCC is a console application only available for Windows. A current
version of the .NET runtime environment and a redistributable of the
F# programming language are required as additional components. The
verification process is structured in a way similar to Frama-C/Jessie [15,
p. 37]: The user writes annotations that are parsed by VCC. The code
is then simplified and source code in the Boogie intermediate language is
generated. Boogie, which is another project at Microsoft Research, is also
the name of the tool that then processes the code. It is the analogon to the
Why platform used by Jessie: Boogie is based on the approach of weakest
preconditions [2, p. 380] and generates verification conditions that can be
passed to a prover that supports satisfiability modulo theories (SMT) [66].
The default prover is Z3 (also a Microsoft Research project) but other SMT
provers like Simplify are also supported, and there exists a backend for the
interactive Isabelle prover, too [6]. For trying out VCC, a simple online
version is also available on the website [67].

The annotation language introduces additional keywords, which are
implemented as C preprocessor macros that are defined as to expand to
nothing when compiling. This means that the annotations are invisible to a
regular C compiler, and so any compiler can be used [15, p. 26].

Special attention was paid to providing suitable debugging tools. When
the prover Z3 refutes a verification condition, it generates a counterexample
which Boogie and VCC try to map to the respective lines in the original
source code. To aid the user, VCC Model Viewer is available “[...] that
allows inspecting the sequence of program states that led to the failure,
including the value of local and global variables and the heap state” [15,
p. 38]. Other tools offered are Z3 Inspector and Z3 Axiom Profiler. They are
used in those cases where the prover needs an unacceptably long duration
to refute or prove the program. In such situations they can provide an
insight into the details concerning for which verification condition the prover
takes long to find a counterexample (in the case the condition is invalid) or
into which verification condition takes a long time to prove (in the case the
condition is valid) [15, p. 38].
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VCC uses an approach called locally checked invariants (LCI) for verifi-
cation. “LCI assigns to each object (including threads) a two-state invariant,
i.e., a predicate over pairs of states expected to hold for every pair of con-
secutive states in every execution.” [14, p. 481] The idea is that the verifier
checks whether all invariants and state transitions have certain properties,
namely being admissible and safe, in the paper’s terminology, respectively.
When all invariants in the program are identified as being admissible, then,
when checking whether a state update adheres to all invariants, VCC solely
needs to check the invariants of the updated objects [15, p. 32]. As VCC
targets the verification of system code, each memory write results in a new
state, and thus arbitrary low-level features of C can be used, for example
unions [67]. VCC supports most features of C, with probably the most
notable exception of only restricted support for floating point numbers [67,
Unsupported C Features]. A detailed explanation of LCI is given in the paper
[14] and a good overview on VCC’s methodology, including verification of
concurrent programs, is given in [15, pp. 27 sqq.].

Documentation and target audience

There is a number of scientific papers available for VCC and its related com-
ponents: The main paper on VCC [15], the description of the methodology
used by VCC, LCI [14], details on the verification process, the memory model
and some more are listed on the website [67, Papers|. Documentation from a
practical point of view is available, too. A draft version of a comprehensive
tutorial that is currently being worked on is provided on the main page.
A separate page is dedicated to give examples and some explanations on
frequently needed topics, such as loops, pointers and arithmetic operations.
However, it is stated there that some content is outdated and even that
“[m]ost of VCC syntax is in flux right now” [67, Documentation].

Indeed, there is currently a complete reimplementation of VCC underway.
The current version 2 will be replaced by VCC3. It is based on a new
memory model and redesigned axiomatization, which should result in better
performance [67, p. VCC3]. VCC3 is already included in the same package as
version 2 and can be used by supplying the -3 parameter, but is not finished
yet. Thus, most of the theoretical work published and the documentation
section on the website do not reflect the current state of the project. The
only current documentation seems to be the tutorial’s working draft, which
is written for VCC3 [16, p. 2].

Judging from VCC’s origin in being designed to aid the verification of
Hyper-V, the targeted fields of use are clearly industrial applications. VCC
is one of the few tools that offer comprehensive integration into an existing
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development workflow: The Visual Studio IDE is widely used for developing
in C, C++4 or C# for the Windows platform. VCC can be called directly
from Visual Studio for verifying whole projects or just selected functions.
The debugging aids mentioned on page 51 are also available in Visual Studio.
This aspect might be a great incentive for teams already using Visual Studio
to look at VCC when thinking about the introduction of formal verification
into their projects.

Only little information could be found on practical use of VCC. The
verification of Hyper-V still seems to be the main application of VCC. No
current information on the state of verification is given. In the main paper
on VCC [15, p. 39| from 2009, an experience report is given in which it is
said that about 20% of Hyper-V’s codebase had been successfully verified
then. The only instance of use in teaching that could be found is a course
at Technische Universitét Berlin [77].

License and development

VCC is provided without cost under a proprietary license called Microsoft
Research License Agreement, which basically allows non-commercial use such
as in teaching, research and personal projects, but not the creation of any
commercial products using the tool. The source code also provided may be
used to create derivative works, again only in non-commercial applications.
Boogie, which VCC depends on, is licensed under the Microsoft Public
License which also allows commercial use. Detailed terms can be found in
(67, License].

It seems that the VCC project is quite active: The version control system
shows check-ins at least every few days [67, Source code]. Also, a number
of people that authored the fundamental paper are still members of the
team, implying serious commitment to the project. This, and the fact that
VCC is currently being reimplemented with the goal of achieving better
performance, seems positive in regard to long-term availability of VCC.

On VCC’s website a discussion forum is provided where team members
answer most questions in a few days. The project also offers a public bug
tracking system. Issues can be viewed anonymously, to create issues the
user needs to sign up for a CodePlex or Windows Live account. Similar to
Frama-C, there is no redacted overview of relevant known issues, but the
user needs to try using the bug tracking system’s filtering features to get to
the information she wants.
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Summary

VCC has distinctive properties because it was designed to support an
industrial project, the verification of Microsoft’s Hyper-V hypervisor. Thus,
special attention was paid to supporting low-level features of the C language
and to providing efficient methods for verifying multi-threaded programs.
Such features are not the primary concern for teaching formal methods,
but multi-threading, although not in the focus of this comparison, is rather
important also for general-purpose software nowadays. As the chances seem
to be good that VCC will be supported and developed for some time to
come thanks to the reimplementation currently underway, we will include
VCC in the practical evaluation.

3.2.4 VeriFast

Overview

VeriFast [49] is developed at the Department of Computer Science at
Katholieke Universiteit Leuven. It deals with verifying programs writ-
ten in subsets of C or Java extended with annotations written in separation
logic [52, p. 304]. VeriFast performs symbolic execution for verification [54,
p. 42].

Background

The verifier is available for download at its website in binary versions for
Linux, Mac OS X and Windows platforms. It uses the Z3 SMT solver
by Microsoft Research by default, but can also be configured to use the
Redux solver. The project offers both a console version and a version
with a graphical user interface. Programs can be written using C or Java,
but only subsets of the regular language features are supported in both
cases. Unfortunately, not much information could be found regarding the
current state of language support. For C, the grammar of the then current
implementation was given in the main paper on VeriFast in 2008 [50, p. 7.
An updated version is listed in [51, pp. 3 sqq.]. Both versions are not suited
for providing a quick overview about features not supported as there is no
concise explanation given. For Java, no information could be found at all.
The user needs to annotate programs with pre-/postconditions and loop
invariants in the form of separation logic. This type of logic was introduced
in 2002. Separation logic is an extension of Hoare logic that deals with
specifying behavior for programs accessing shared mutable data structures
[74, p. 55]. It provides an additional rule called frame rule, that “[...] states
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that to reason about the behavior of a command C, it is safe to ignore memory
locations not accessed by C” [52, p. 304]. Thus, VeriFast also supports the
verification of multi-threaded programs where threads may access shared
variables. Annotations are added to the code using the respective language’s
comment syntax, so they are invisible to regular compilers [52, p. 305].

For verifying a method, VeriFast takes the method’s precondition as the
initial symbolic state, symbolically executes the method’s body and compares
the consequential state with the postcondition. Detailed information is given
in [54, p. 42; 79, p. 321].

The tool’s verification approach needs relatively elaborate annotations
in some cases, for example for opening and closing predicates: Predicates
stand, in VeriFast’s terminology, for named assertions [52, p. 306] that
encapsulate other assertions on the symbolic execution heap. Predicates
need to be opened to enable the prover to reason about the fields the
encapsulated assertions encompass. An extreme example for this is given
in [79, p. 327]. The VeriFast team works on generating such, and some
additional, annotations automatically. The paper [79] gives an experience
report at an early stage.

Documentation and target audience

The project offers a number of papers on VeriFast itself as well as on topics
related to the tool [49]. Among the documents is the draft version of a
tutorial for beginning work with VeriFast. It consists of many examples
sorted by different topics along with, in most cases, rather extensive and
helpful comments and explanations. For many topics, one or more exercises
are given, with solutions in an addendum to enhance understanding of the
matter. A reference manual, also in a draft version, is included in the
download package. It seems to be best to use both documents together, as
the reference manual offers very few descriptions, but mainly consists of
an uncommented list of the supported C and separation logic syntax [51,
pp- 3 sqq.]. A more extensive, mature work on VeriFast such as a book or
similar publication is not available.

A positive aspect is that there is a large number of example programs
available for download that demonstrate many features, including a small
game and chat server [49, Example programs|.

VeriFast does not offer any integration into standard development en-
vironments. Instead, a GUI version of the tool is available. The user
interface consists of a code editor and several lists giving information about
the current symbolic state when symbolic execution was interrupted, see
figure 3.4. The user can also select a symbolic state for which the conditions
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applying to the current execution path, the contents of the symbolic heap
and the assignments of symbolic variables can be inspected. Retracing the
symbolic states with this feature can help to identify mistakes in the code
made earlier that led to an error in the current line of code. Another helpful
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Figure 3.4: GUI version of VeriFast

feature is that in some cases where VeriFast cannot verify a method, the GUI
displays a help button that leads the user to a documentation page where
information and suggested solutions for the error can be found. Sometimes
there are examples available, too, complete with code to solve the problem.
This feature can improve productivity for beginners, but is currently only
available in “easy” cases, for example for possible arithmetic overflow. While
the described functionality is useful, the user interface offers only very few
additional features. Hence, it cannot replace a fully functional IDE, so the
software engineer still has to work with at least two tools.

VeriFast was already used in teaching at Katholieke Universiteit Leuven
and Eidgendssische Technische Hochschule Ziirich [52, p. 310]. No information
was found about any industrial use of VeriFast. A paper lists some projects
oriented on practical use that are currently in progress at the group VeriFast’s
authors work at: Verification of Java Card programs, integration of shape
analysis to automatically generate some annotations, and some early efforts
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to verify device drivers for Linux [54, pp. 53 sqq.].

License and development

VeriFast is available for download freely without any license terms. For the
Z3 prover it depends on, the Microsoft Research License Agreement applies
(see section 3.2.3 on page 53 for a description).

The project is in active development. New releases have been appearing
every few months [49, RSS feed]. It is unclear what kind of plans the authors
have for future improvements. The only mention of a direction to work on
is the improved automatic generation of annotations [79, p. 332].

Unfortunately, the project is not open about known problems and re-
strictions regarding the tool. There is no list of known issues, public bug
tracker, forum or a similar source of information. Also, no e-mail address or
other means of direct communication are provided for questions or support,
just links to the authors’ websites.

Summary

In general, it seems that VeriFast’s separation logic approach, while offering
the possibility to verify multi-threaded programs, results in more elaborate,
lower level annotations than necessary in the approaches taken by some
other tools. The possibility of generating more annotations automatically in
a future version could greatly enhance usability. While the graphical user
interface is advanced in comparison to many other tools, it is still minimal-
istic and cannot replace a proper integrated development environment. A
negative aspect, especially when thinking about using VeriFast in industrial
environments, is the low amount (or even lack) of documentation in some
cases, for example regarding restrictions on the language features supported
or known issues. Still, as VeriFast is in active development and the user
interface is an advantage over many other tools, it will be included in the
practical evaluation.






CHAPTER
Comparison

This chapter compares the tools that were selected in chapter 3 from a
practical point of view. The goal is to find out how well the features promised
in the tools’ documentation work in practice, what kind of problems are
encountered and to identify areas where improvements are needed.

The comparison will be performed by verifying small example programs.
Examples will consist both of simple arithmetic calculations and basic
program constructs. We will also attempt the verification of more complex
functions, for example of standard library functions. The programs will be
annotated at least with postconditions that describe the values the functions
return as precisely as possible.

In addition to this core aspect of formal verification, we will also look at
how the tools handle programs that are incorrect from a technical point of
view. Standard integrated development environments contain state of the
art support for dealing with common problems like syntax errors. Therefore,
such simple aspects will not be considered when comparing the verification
tools. More complex questions however, for example the detection of faulty
memory accesses or going beyond an array’s bounds, are in the tools’ scope.
Finding such errors is an important aspect in verifying correctness, especially
for programs written in C.

The amount and quality of information a tool provides regarding problems
is crucial for aiding the user in debugging. Attention will therefore be paid
to the way the tools present information to the user and any distinctive
aspects will be noted.

In the case that the implementation of an example proves to be trouble-
some, help from the respective tool’s developers will be requested.

99
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The following gives a short description of algorithms that will be verified.

e Multiplication: Custom implementation of the multiplication of non-
negative integers

e Division: Custom implementation of division of a non-negative divi-
dend by a positive divisor

e Factorial: Recursive implementation of factorial calculation

e Index of maximum array element: Returning the index of one of the
maximum elements in an integer array

e Faulty pointers: Accessing an uninitialized pointer and a pointer whose
target is out of scope, as well as returning a pointer to a local variable

e Out of bounds array access: Accessing array elements beyond array
bounds, both for an array passed as parameter and a statically defined
array

e String length: Determining the length of a string
e String comparison: Comparing two strings with each other

All tools provide different annotation languages and thus different ways
of formulating formal aspects are required. In some cases the programming
language features supported also differ between tools. Still, we will strive to
state the algorithms in a way as similar as possible for all tools so that the
results can be easily compared.

Each of the following sections is devoted to one particular tool. At the
beginning of each section a short overview of language constructs commonly
used in annotations will be given. In some cases additional general remarks
on the tool will be made. The annotated source code of each algorithm is
followed by a description of the proof process, the difficulties encountered and
any further noteworthy aspects. In section 4.5 on page 97 the experiences
made in the practical comparison will be summarized.

4.1 Escher C Verifier

Escher C Verifier supports various compiler settings. We configured the tool
as described for the Visual C++ compiler in the manual [30, Appendix A].
eCv version 5rcl0 was used in this comparison. The following list provides
a basic overview of some constructs often used in annotations.
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pre  Function precondition

post, returns  Function postcondition

writes  Lists variables a loop is permitted to write to
keep  Loop invariant

decrease Loop or recursive function variant

arr.lwb, arr.upb, arr.lim Lowest, highest and one past the highest
index of an array arr

a..b  Set of integers from a to b
=>  Material implication

:=  When used in an expression together with the quantifier forall means
“it is the case that”, together with exists means “such that”

Multiplication

#include <ecv.h>

unsigned int multiply (unsigned int termA
unsigned int termB)

pre ((termA x termB) <= maxof(unsigned int))

returns (termA x termB)

{

unsigned int ret = 0;
unsigned int i;

for (i = 0; 1 != termB; 4+i)
writes (i; ret)

keep(ret = termA * i)
decrease (termB — i)

{
}

return ret;

ret += termA ;

The formulation of the annotations was easy. A first version of the
program was susceptible to arithmetic overflow at the addition inside the
loop. To rule this out, eCv suggested to add the precondition (termA *
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termB) <= maxof (unsigned int). A syntactically similar assertion like
assert(termA * termB <= UINT_MAX) that could be made in the program
code in standard C would not be correct as the assertion itself would be
affected by arithmetic overflow. The suggested annotation works because
in specifications all variables are handled as if they were typed in eCv’s
unbounded internal data types, in this case integer. The precondition thus
always correctly represents the user’s intention.

eCv generates 16 verification conditions for this program, all but one
could be proven straight away. The only problematic aspect was that eCv
could not prove that the value of ret adhered to the postcondition. For
this, after some trial and error, the loop invariant keep(i <= termB) was
added. The whole program could then be proven. Later, it was found out
that the additional invariant was only necessary because of the way the
loop was specified: From the loop header in the usual form for (i = 0;
i < termB; i++) it cannot be derived that i == termB is true after loop
termination, as i could be larger as well. Thus, it is advisable to use the
form for (i = 0; i !'= termB; i++) for specifying the loop, an idea that
was promoted in [25, p. 56]. Note that this is no limitation only applicable
to eCv, but rather a general requirement.

Division

#include <ecv.h>

unsigned int divide (unsigned int dividend,
unsigned int divisor)

pre(divisor > 0)

returns (dividend / divisor)

{
unsigned int remainder = dividend;
unsigned int quotient = 0;

while (remainder >= divisor)
writes (remainder; quotient)
keep(dividend = remainder +
quotient * divisor)
decrease (remainder)
{
remainder = remainder — divisor;
quotient—++;
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return quotient;

The division algorithm could be proven easily. The loop invariant directly
expresses the relationships between the variables. In the postcondition the
standard division operator is used to clearly express the intention of this
function.

Factorial

#include <ecv.h>
unsigned int factorial (const unsigned int num)
pre (num >= 0)
pre(factorialGhost (num) <= maxof(unsigned int))
decrease (num)
post (result >= 1)
post (result = factorialGhost (num))
{
if (num = 0)

{

return 1;
}
else
{
return (num * factorial (num — 1));

ghost (

integer factorialGhost (const integer num)

pre (num >= 0)

decrease (num)

returns (num = 0 ? 1 : num * factorialGhost (num — 1))

)

Although recursion is supported in eCv, recursive function calls cannot
be used in specifications in general. An exception is when formulating the
postcondition using the returns () statement which just gives information
on the function’s return value, as opposed to post () statements with which
multiple, more complex facts can be stated. The specification language
offers no keyword for directly denoting the factorial of a number, so the
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postcondition basically encompasses the whole program: returns(num ==
07 1 : (num * factorial(num - 1))) was the first approach. In this
version it could not be proven that no arithmetic overflow occurred. As the
use of recursion in preconditions is not allowed, no suitable precondition
could be found that would have enabled to rule out arithmetic overflow.

A solution was achieved by writing a ghost function, which is only used
for verification. As a ghost function solely contains annotations and no
implementation it is ignored when compiling the program, just as eCv’s
other keywords. Using the ghost function in a precondition is allowed. With
the help of the precondition factorialGhost(num) <= maxof (unsigned
int) all verification conditions could be proven.

Index of maximum array element

#include <ecv.h>

int getMaximum (const ints array numbers,
const int numbersSize)

pre(numbersSize >= 1)

pre (numbers.lwb = 0)

pre (numbers.lim = numbersSize)

post (result in 0..(numbersSize — 1))

post (numbers|[result ] = numbers. all .max())

{
int maximumPosition = 0;
int maximum = numbers|[maximumPosition |;
int i;
for (i = 1; i != numbersSize; ++i)
writes (i; maximum; maximumPosition)
keep(i in 1..numbersSize)
keep (maximumPosition in 0..(numbersSize — 1))
keep(forall a in numbers. all.take(i) :—

maximum >= a)

keep (numbers [ maximumPosition| = maximum)
decrease (numbersSize — 1)

{

if (numbers[i] > maximum)
{
maximum = numbers[1i|;
maximumPosition = 1

I
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}

return maximumPosition;

This program required considerable effort: A mistake was made in one
of the loop invariants, which led to the problem that eCv could not prove
invariants later on in the program. After many attempts at correcting the
latter invariants it was discovered by chance that in fact an earlier invariant
caused the problem. The warnings eCv returned were of no help in this case.
After gaining this insight, the formulation of the remaining annotations was
rather simple.

The array ghost qualifier at the numbers parameter tells eCv that the
pointer references an array. Only then does eCv allow indexing or pointer
arithmetic on numbers. It is not necessary to think about any checks
regarding the possibility of encountering null pointers: eCv always requires
that pointers are not null, except when explicitly adding the null qualifier
to a pointer declaration.

In addition to the user specifying ghost functions, eCv also provides
built-in ghost functions that can be used in annotations to easily express
some facts. The max () function was used to express that the function returns
the index of the array’s maximum element. This feature and the forall
keyword enable the powerful and relatively clear formulation of the facts
needed to prove the program.

Faulty pointers

#include <ecv.h>
intx testPointers ()

{
int a = 1;
intx ap = &a;

intx bp;
*bp = 2;

int ¢ = *xap + xbp;

int xdp;

{

int e = 3;
dp = &e;
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}

int f = xdp;

return &a;

eCv correctly returns messages warning about uninitialized variables
for both lines *bp = 2; and int ¢ = *ap + *bp;. There exist two more
problems: The access to *dp is illegal after the nested block as the memory
previously occupied by e and thus pointed to by *dp might be reallocated for
other purposes. The same point applies to the function’s return statement
which returns the address of a local variable as well. Unfortunately, both
errors were not detected by eCv.

Out of bounds array access

#include <ecv.h>
void outOfBounds(intx array arrA)

{
int arrB[2] = {0, 1};

arrA [2];
arrB [2];

int i;
int incorrectBound = 3;
for (i = 0; i < incorrectBound; 4++i)
writes (i)
keep(i in 0..incorrectBound)
decrease (incorrectBound — 1)
{
arrA[i];
arrB[1];

eCv correctly detects all illegal accesses. The statements accessing the
array passed via parameter are flagged with warnings that the precondition
of the [] operator may not be satisfied and the suggestion of a correct
precondition that would enable eCv to prove these statements. The first of
the statements accessing the statically defined array, arrB[2] ;, is refuted.
The other statement is warned about and a suggestion for an additional loop
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invariant is provided. In this case, however, the suggestion makes no sense
and, if implemented by the user, only leads to further misleading suggestions.

String length

#include <ecv.h>

#include <stddef.h>

size_t strlen (const charx array str)
pre(str.lim <= maxof(int))

pre(exists i in 0..str.upb :— str[i] = ’\07)
post (result in 0..str.upb)
post (str[result] = ’\0’)
post (forall i in 0..(result — 1) :— str[i] != "\0")
{
size_t 1;
for (i = 0; str[i] != "\07; ++i)

writes (1)
keep(i in 0..str.upb)

keep(forall j in 0..(1 — 1) :— str[j] != ’\0")
decrease (str.upb — i)

{}

return i;

As strings in C are just arrays of characters and an array’s length is
not implicitly known, the convention is to signal the end of a string by a
null character. The precondition exists i in 0..str.upb :- str[i] ==
’\0’ expresses the fact that the string is null-terminated. This function was
easy to verify, the conditions and invariants could be formulated in a natural
way.

A problem in an early version of the function was that the postcondition
result in O..str.upb was missing. As the constructs used in postcondi-
tions need to be proven independently of the program, eCv warned that the
[] operator’s precondition (staying within the array’s bounds) might not
be satisfied and suggested adding the postcondition stated above. Doing so
enabled the proof of all verification conditions.

String comparison

#include <ecv.h>
int strcmp (const charx array sl,
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const charx array s2)
pre(sl.lim <= maxof(int))
pre(s2.lim <= maxof(int))
pre(exists i in 0..sl.upb :— sl[i]
pre(exists i in 0..s2.upb :— s2[i]
post (result in —1..1)
post ((exists i in O..min(sl.upb, s2.upb) :—
((forall j in 0..(1 — 1) :— sl[j] == s2[]]) &
sl[i] = "\0" && s2[i] = "\0")) =
result = 0)
post ((exists 1 in 0..min(sl.upb, s2.upb) :
((forall j in 0..(1i — 1) :— sl[J] = s2[j] &
sl[j] = "\07) && sl]i] < s2[i])) =
result = —1)
post ((exists i in O..min(sl.upb, s2.upb) :
((forall j in 0..(1 — 1) :— sl[j] = s2[j] &
s1[j] !'= "\0") && sl1]i] > s2[i])) =

result = 1)

unsigned int i

for (i = 0; sl[i] = s2[i]; ++i)

writes (i)

keep(i in 0..sl.upb)

keep(i in 0..s2.upb)

keep(forall j in 0..(1 — 1) :— sl[j] !=
keep(forall j in 0..(1 — 1) :— s2[j] =
keep(forall j in 0..(1 — 1) :— sl[j]
decrease (sl.upb — i)

decrease (s2.upb — i)

{

| i
wm - -
—e - -
— ~
N—

if (s1[i] = "\0")
{

}
}

return sl[i] < s2[i] 7 -1 : 1

return 0;

}

ghost (
integer min(integer a, integer b)
returns(a <=b 7 a : b)
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Using the loop invariants from the previous program it was easy to
completely verify the loop. Formulating the postconditions for this program
took a few tries. However, the quantifier keywords exists and forall
provide the ability to precisely state under which conditions which return
value is expected. To keep the ghost variable i in the postconditions in the
bounds of both s1 and s2, a ghost function that returns the smaller of two
numbers needed to be added.

4.2 KeY

KeY is different from the other tools presented in that it was designed as a
tool for interactively proving certain properties. Although the capabilities
for performing proofs automatically were extended with each version, we
still expect that not all examples can be proven automatically. As manual
proofs are unfeasible in most industrial settings and present a considerable
challenge when using a verification tool in teaching, no manual proofs will
be performed in this comparison. If no formulation of an example program
can be found that allows automatic verification then the program will be
skipped.

KeY version 1.6.0 was used in this comparison. The following list provides
a basic overview of some constructs often used in KeY annotations.

normal_behavior  Specifies behavior for execution of a method in the
case that no exceptions occur. exceptional_behavior could be used
to specify behavior in the case that exceptions occur, but this feature is
not used in this comparison. For each method there could be multiple
specifications for both normal and exceptional behavior.

requires  Function precondition

ensures Function postcondition

loop_invariant  Loop invariant

assignable  Lists variables a loop is permitted to write to

decreasing  Loop or recursive function variant

pure Function that has no side effects
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Multiplication

public class Multiplication {
/%@ public normal_behavior
@ requires termA >= 0;
@ requires termB >= 0;
@ requires termA x termB <= 2147483647;
@ ensures \result == termA * termB;
@x /
public static /*@ pure @/ int multiply (int termA ,
int termB) {
int ret = 0;
/%@ loop_invariant i >= 0 6 i <= termB &¢
@ ret == termA x 1i;
@ assignable i, ret;
@ decreasing termB — 1
@ /
for (int i = 0; i != termB; i++)

{
}

return ret ;

ret += termA;

—

The formulation of pre- and postconditions was simple. A minor flaw
is the use of the literal 2147483647 as upper bound for termA * termB.
Normally the maximum value for integers in Java is given by the constant
java.lang.Integer .MAX_VALUE, but KeY does not seem to support the
java.lang.Integer class.

The proof of this algorithm halted rather early as KeY at first could not
prove that the loop adhered to the loop invariant. After trying different
invariants and settings, the cause was discovered to be the accidental omission
of ret in the loop’s assignable clause. While this was certainly not KeY’s
fault, it did not provide much help in finding this trivial mistake. Instead of
a notification that a variable is written to which is not declared as assignable,
KeY stops when working on the verification condition “body preserves
invariant and decreases variant” and returns the following output as current
goal:

{_termA:=termA || _termB:=termB || i:=0 || ret:=0}
anon_O(_termB, ret, _termA, i),
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i_0 =0,
termB >= 1,
inReachableState,

termA >= 1,

termB <= 2147483647,

termA <= 2147483647,

termB * termA <= 2147483647

==>

{_termA:=termA || _termB:=termB || i:=0 || ret:=termA}
anon_O(_termB, ret, _termA, i)

While even an inexperienced user may conclude that something is wrong
with the value of ret, the real mistake is not revealed.

As explained in section 3.2.2 on page 47, KeY supports a large number
of different settings. One of them determines how arithmetics are handled:
Either the program is checked using Java semantics (which dictate modulo
arithmetics in case of overflow), or semantics where overflow is ignored
(which treats Java’s data types as if they could hold unbounded numbers),
or semantics where it is verified that overflow does not occur.

The second setting is the easiest to prove but cannot assert program cor-
rectness. Using the first setting, correctness with regard to Java arithmetics
can be proven, but the program could still exhibit undesired behavior due
to overflow. The third setting is the only that rules out any unwanted side
effects, but is the hardest to prove.

The multiplication algorithm could be proven using the first and second,
but not using the stronger third setting. This could be caused by the fact
that the Java Modeling Language specification defines that JML expressions
are to be interpreted using Java semantics. Thus, the specification itself is
susceptible to arithmetic overflow in this case: Arbitrary values for termA
and termB are valid because multiplying them will always result in a number
<= 2147483647 in Java semantics. An excellent overview on the state of
JML arithmetics and a proposal for an adaptation of JML providing more
advanced arithmetics is given in [10].

Division

public class Division {

/@ public normal_behavior
@ requires dividend >= 0 &6 divisor > 0;
@ ensures \result == dividend / divisor;

@« /
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public static /@ pure @«/ int divide (int dividend,
int divisor) {

int remainder = dividend;
int quotient = 0;
/%@ loop_invariant dividend == remainder +
@ quotient x divisor &€ remainder >= 0;

@ assignable quotient, remainder;
@ decreasing remainder;

@x /
while (remainder >= divisor) {
remainder = remainder — divisor;
quotient—++;

}

return quotient ;

—

The division algorithm could be proven without difficulty using the set-
ting for ignoring overflow. Unfortunately, no formulation of this method
could be found that would have enabled an automatic proof using either of
the two stronger arithmetic settings. Correspondence with KeY’s develop-
ers resulted in the statement that such a proof would be very difficult or
even impossible. Thus, the proof obtained can only be considered a coarse
estimate on program correctness.

Factorial

The recursive factorial implementation cannot be verified by KeY at the
time of writing. Recursive methods are not supported in KeY version 1.6.0
[57].

Index of maximum array element

class ArrayMaximum {
/@ public normal_behavior
requires numbers = null &6 numbers. length > 0 ¢
numbers. length < 2147483647,
ensures \result >= 0 &6 \result < numbers.length ;
ensures (\ forall int j; j >= 0 &
J < numbers.length;
numbers [\ result] >= numbers[j]);

SESESEORONC)
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@x /
public static /*@ pure @x/ int getMaximum (
int [] numbers) {
int maximumPosition = 0;
int maximum = numbers|[maximumPosition ];
/%@ loop_invariant
@ i >= 1 66 ¢ <= numbers. length €9
@ (\forall int j; j>= 0866 5 < i;
@ mazimum >= numbers[j]) €€
@ mazimumPosition >= 0 &¢
@ maximumPosition < numbers.length €55
@
@
@

numbers [mazimumPosition | == mazimum;
assignable i, maximum, maximumPosition
decreasing numbers.length — 1;

@« /

for (int i = 1; i < numbers.length; i++) {
if (numbers[i] > maximum) {
maximum = numbers[1i];
maximumPosition = i;

}

return maximumPosition;

Java Modeling Language provides quantifier keywords similar to those
already used with Escher C Verifier. The \forall keyword is used for
the loop invariant and method postcondition. JML also offers a quantifier
that maximizes a certain value. This would have enabled the slightly more
compact formulation ensures \result == (\max int j; j >= 0 && j <
numbers.length; numbers[j]), but this keyword is not supported by KeY.

KeY could prove this method without any user interaction.

Faulty pointers

class NullPointer {

//@ requires true;

//@ ensures true;

public static void testPointers|()

{
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String a = "17;
String b = null;
String ¢ = a.concat(b);

—

Since the user needs to select a certain task for KeY to perform, this
method was annotated with simple pre- and postconditions in order to try
proving the postcondition holds.

As Java is more robust and offers less features regarding memory man-
agement and pointers, this method only tests behavior when a null pointer
is passed to a method. The other errors that the version for eCv contained
are not applicable to Java.

The NullPointerException that will occur at the statement String c
= a.concat(b); when running this method is detected by KeY in that it
could not prove the postcondition is valid. Unfortunately, there is no clear
information about what the problem that was found means. KeY halts the
proof with one unproven condition and the following information:

pool("1") .<created> = TRUE,
inReachableState
==>
pool("1") = null,
{a:=pool("1") ||
argO:=null ||
exc:=null ||
content (pool("1")):="1"}
\<{try {method-frame(source=NullPointer)
4 A
v_String=a.concat(arg0)@java.lang.String;
}
c=v_3tring;
}
} catch (java.lang.Throwable e) {
exc=e;
}
F\> exc = null

}

While it is certainly possible to conclude from this output that a Null-
PointerException might occur in String ¢ = a.concat(b); it cannot be
said that this presentation efficiently aids the user in doing so.
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Out of bounds array access

class ArrayBounds {

//@ requires arrA != null;

//@ ensures true;

public static void outOfBounds(int[] arrA)

{

int arrB[] = {0, 1};
int element;
element = arrA[2];
element = arrB[2];
int incorrectBound = 3;
/%@ loop_invariant i >= 0 6
@ 1 <= incorrectBound;
@ assignable i, element;
@ decreasing incorrectBound — 1i;
@x /

for (int i = 0; i < incorrectBound; ++i)
{

element = arrA[i];

element = arrB[i];

KeY is able to detect all problematic array accesses. The information is
again presented in a quite intricate way. For example, the goal that KeY
stops at because of element = arrA[2]; is given as:

java.lang.ArrayIndexOutOfBoundsException.<nextToCreate> >= 0,
jint[].<nextToCreate> >= 0,

arrA.length >= 3,

inReachableState,

arrA.<created> = TRUE

)
R
H
=
1]

jint[]::<get>(jint[].<nextToCreate>),
null

)
[a]
a]
=
1]

The output regarding the statements in the loop body is about three
times as long.
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String length

class StringLength {
/%@ public normal_behavior
@ requires str != null 66 str.length > 0 &6

@ str.length < 2147483647 €55

@ (\ exists int i; i >= 0 & i < str.length;
@ strfi] == "07);

@ ensures str[\result] == "0 €&

@ (\ forall int i; i >= 0 86 i < \result;

@ strfi] I= 707);

@x /

int getStringLength (char|[] str)
{
int i;
/%@ loop_invariant
@ ¢ >= 0 66 1 <= str.length &

@ (\ forall int j; j>= 0866 j < i;
@ strfj] 1= 707);
@ assignable 1,
@ decreasing str.length — 1
@« /
for (i = 0; str[i] != ’07; 4++i)
{}
return i;

—

While Java’s java.lang.String class internally stores string values in
character arrays (which is a similarity to string handling in C), the arrays
are normally not visible on the surface and neither does the developer have
to be concerned with topics such as string termination using null characters.
We still implemented C’s strlen function as an analogous Java method to
test KeY'’s abilities for reasoning about more complex specifications.

The annotations could be formulated in a natural way using the quantifier
keywords. KeY could prove that the method adheres to the postconditions
without any problems.
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String comparison

class SimpleString {
/%@ public invariant value.length < 2147483647 €
@ count >= 0 €6 count < 2147483647 €99
@ offset >= 0 ¢ offset < 2147483647 €€
@ offset + count < 2147483647 &6
@ value.length >= offset + count;
@« /
private char value [];
private int offset;
private int count;

//@ requires anotherString != null;
//@ ensures true;
public int compareTo(SimpleString anotherString) {

int lenl = count;
int len2 = anotherString.count;
int n = min(lenl, len2);
char v1[] = value;
char v2[] = anotherString.value;
int i = offset;
int j = anotherString. offset;
it (i — ) {
int k = i;
int lim =n + i;

//@ loop_invariant k >= 0 66 k <= lim;
//@ assignable k;

//@ decreasing lim — k;

while (k < lim) {

char cl = vl[k];
char ¢2 = v2[k];
if (¢l 1= ¢2) {
return cl — c2;
}
k++;

}
} else {

/@ loop_invariant n >= 0 &
@ n <= min(lenl, len2) &
@ i — offset ==
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@ min(lenl, len2) — n 66
@ j — anotherString. offset ==
@ min(lenl, len2) — n;
@x /

//@ assignable n, i, j;

//@ decreasing n;

while (n— != 0) {
char cl = v1[i++];
char c2 = v2[j++];
if (cl 1= c2) {

return cl — c2;
}
}

}

return lenl — len2;
}
//@ requires true;
//@ ensures \result == (nl < n2 ¢ nl : n2);
private int min(int nl, int n2) {

return nl < n2 ? nl : n2;

}
}

For the task of comparing two strings no port of C’s strcmp() function
to Java was used, but instead it was attempted to verify the analogous
java.lang.String.compareTo() method of the standard Java Class Li-
brary. To simplify the situation for this comparison, a downscaled string
class containing only the fields relevant to this method was created. The
min() method was added instead of using the one in java.lang.Math as
this class is not part of Java Card.

The first attempt consisted of trying to prove that no exceptions occurred
in this method by specifying the postcondition as ensures true. The
correctness of the array accesses in the second loop could not be proven at
first by using the invariants i >= offset && i <= offset + min(lenl,
len2) regarding i (and analogous invariants regarding j). One of KeY’s
developers provided help by suggesting to add invariants that more directly
relate the array index variables i and j to the loop counter n. KeY was
then able to prove the absence of unexpected behavior.

Unfortunately, full verification of the method did not succeed. Various
postconditions were tested. Even after lengthy attempts, the only postcon-
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dition that could be proven was one specifying that the method returns 0 in
the case that the strings are identical.

It is suspected that the loop invariants might not be strong enough to
allow proving the other cases. For example, for the second loop an ad-
ditional invariant like (\forall int k; k >= 0 && k < (\old(n) - n);
vl[this.offset + k] == v2[anotherString.offset + k]) would be an
obvious choice. \old(n) refers to the value of n before the first loop itera-
tion. The invariant states that at all indices that were already passed both
arrays contain the same character. Unfortunately, we could not get KeY to
automatically verify this or similar invariants and finally gave up. The lack
of simple and concise information regarding the facts which KeY was unable
to prove was a large obstacle for working on this algorithm.

4.3 VCC

The VCC team provides no distinction between unstable or release versions
but just offers automated daily builds for downloading. The version used in
this comparison is 2.1.40918.0 from September 18, 2011.

The following list provides a basic overview of some constructs often
used in VCC annotations.

requires  Function precondition
ensures, returns  Function postcondition
invariant Loop invariant

==>  Material implication

Multiplication

#include <vcc.h>

#include <limits .h>

unsigned int multiply (unsigned int termA ,
unsigned int termB)

_(requires termA x termB < UINT_MAX)

_(returns termA x termB)

{

unsigned int ret = 0;
unsigned int i;
for (i = 0; 1 != termB; 4+i)
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_(invariant i >= 0)
_(invariant i <= termB)
_(invariant ret = termA x 1)
{

_(assert lemma(termA, termB, 1))
ret += termA;

}

return ret ;

}

_(ghost _(pure) bool lemma(\integer termA
\integer termB, \integer i)
_(requires termA x termB < UINT_MAX)
_(requires termA >= 0 && i1 < termB)
_(ensures termA x i + termA < UINT_MAX)
_(returns \true)
{

_(assert i + 1 <= termB)
_(assert termA % (i + 1) <= termA x termB)
return \true;

1)

VCC could verify most aspects of this program, the only fact that could
not be proven was that ret += termA; in the loop body did not cause
arithmetic overflow. Additional assertions were then added to the loop body
to find out what exactly VCC was unable to prove. One of the assertions
that did not verify was termA * (i + 1) < UINT_MAX), even though at
this point it was already proven that termA * termB < UINT_MAX) and
i < termB. When then adding termA < 65500 && termB < 65500 as pre-
condition (for which termA * termB is just smaller than UINT_MAX using
default limits), the whole function was proven, however this unnecessarily
constrained the function’s scope.

One of VCC’s developers gave the hint of using a ghost lemma function
that details the steps needed to prove termA * (i + 1) < UINT_MAX) and
guides the prover to the correct result. While this method indeed enables
verification of the function, it seems rather complex and lengthy for a simple
task.

It is not clear how VCC checks for loop termination: No information
regarding this topic could be found in the tool’s documentation. By chance
it was found out that there exists a decreases keyword in VCC’s annotation



4.3. VCC 81

language, but regardless of what was specified as decreasing, no influence
on the prover’s results could be detected.

Similar to eCv, VCC automatically treats variables in specifications as if
they were typed in an unbounded type, in this case \integer.

Division

#include <vcc.h>
#include <limits.h>
unsigned int divide (unsigned int dividend,
unsigned int divisor , unsigned intx remainder)
_(requires dividend >= 0 && divisor > 0)
_(writes remainder)
_(ensures dividend = *remainder + divisor x
\result && sremainder < divisor)
{
unsigned int lRemainder = dividend;
unsigned int quotient = 0;

while (lRemainder >= divisor)

_(invariant dividend = lRemainder +
quotient * divisor)

{

IRemainder = lRemainder — divisor;
quotient—++;

}

xremainder = IRemainder ;

return quotient;

In this function the loop could be verified without problems. Unfortu-
nately it could not be shown that the program satisfied the postcondition
stated simply as \result == dividend / divisor. VCC’s tutorial con-
tains an example for verifying division [16, p. 18] and this is where the
decisive hint was found. It seems that in order to show that the postcondi-
tion is satisfied, the value of the division’s remainder has to be taken into
consideration.

The additional parameter unsigned int* remainder was added to the
function signature. Using this pointer it is possible to formulate the postcon-
dition very similar to the loop invariant. While this version of the program
was completely verified, requiring the user to add an additional parameter
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and to write the postcondition in this rather complex form is unsatisfactory.

Factorial

#include <vce.h>
#include <limits.h>
unsigned int factorial (const unsigned int num)
_(requires num >= 0)

_(requires factorialGhost (num) <= UINT_MAX)
_(ensures \result >= 1)

(ensures \result = factorialGhost (num))

~

if (num = 0)
{

return 1;
}
else
{
return (num *x factorial (num — 1));

_(ghost _(pure) \integer factorialGhost(\integer num)
—(requires num >= 0)
_(returns num = 0 ? 1
num * factorialGhost (num — 1))

The state of support for recursive functions in VCC could not be estab-
lished without any doubt: Recursion is supported in general, the tutorial
contains a recursive implementation for example [16, p. 14]. Unfortunately
no background information regarding recursion is provided. There is nothing
in the documentation about whether or how VCC checks for termination of
recursive function calls and whether they may be freely used in specifica-
tions. It could only be found out that, in order to call any functions from
specifications, the functions called need to be annotated as _(pure). Such
functions “[...] are not allowed to allocate memory, and can write only to
local variables” [16, p. 62].

As no definite information was found, verification was attempted with the
almost trivial specifications _(requires num >= 0), _(requires num > 0
==> num * factorial(num - 1) <= UINT_MAX) and _(ensures \result
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== (num == 0 ? 1 : num * factorial(num - 1)). VCC quickly out-
put a rather generic error message that the call factorial (num - 1) in the
precondition could not be verified but continued running for a few minutes
without further results.

Therefore, verification was tried with a new version using a ghost function.
In this case VCC claims that the verification succeeded and no errors are re-
turned. Regrettably, there is a warning [possible unsoundness]: cycle
in pure function calls: factorialGhost -> factorialGhost. How
severely this warning affects the validity of the verification result is unknown.
In the discussion forum on VCC’s website a post from 2010 was found that
states that for recursive functions it is the user’s responsibility to make sure
recursion is finite. If the warning only pertains to this fact, the result would
still be valid.

Index of maximum array element

#include <vcc.h>
unsigned int getMaximum (const intx numbers,
const unsigned int numbersSize)
_(requires \thread_local_array (numbers, numbersSize))
_(requires numbersSize >= 1)
_(ensures \result >= 0 &&
\result <= (numbersSize — 1))
_(ensures \forall unsigned int a; a < numbersSize =—>
numbers [\ result ] >= numbers|a])
{

unsigned int maximumPosition = 0;

int maximum = numbers | maximumPosition |;

unsigned int i;

for (i = 1; i != numbersSize; ++i)

_(invariant i >= 1 && i <= numbersSize)

_(invariant maximumPosition >= 0 &&
maximumPosition < numbersSize)

_(invariant \forall unsigned int a; a < i =>
maximum >= numbers|a])

_(invariant numbers[maximumPosition| =—
maximum )

{

if (numbers[i] > maximum)
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maximum = numbers|[1i];

maximumPosition = i;
}

}

return maximumPosition;

This program could be verified very quickly. As VCC supports multi-
threaded programs, all accesses to data structures like arrays need to be anno-
tated in a way that allows to exclude the possibility of another thread writing
to the same structure. The precondition \thread_local_array(numbers,
numbersSize) specifies the fact that the array belongs to the local thread.
Implicitly it also specifies that the array pointer must not be null.

Similar to eCv and KeY, keywords for reasoning with quantifiers are
available, \forall and \exists. VCC provides no ghost function for deter-
mining the maximum array element. Therefore, the postcondition cannot
be formulated as simple as is possible in the eCv version, but it can still be
stated in a concise way.

Faulty pointers

#include <vcc.h>
intx testPointers ()

{
int a = 1;
intx ap = &a;

intx bp;
xbp = 2;

int ¢ = xap + xbp;

int xdp;

{
int e = 3;
dp = &e;

}

int f = xdp;

return &a;
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VCC detects all faulty pointer accesses in this function, although the mes-
sages provided are not as precise as those that eCv provides: For example,
regarding the line *bp = 2; the message Assertion ’bp is writable’
did not verify is output. For the lines containing the addition and the
assignment to £ VCC returns an analogous message concerning the asser-
tion bp [or dp| is thread local. In contrast to eCv, the error in int
f = xdp; is detected. Unfortunately, like eCv, VCC could not detect the
error in the return statement where the address of a local variable is returned.

Out of bounds array access

#include <vcc.h>
void outOfBounds(intx arrA)

{
int arrB[2] = {0, 1};

arrA [2];
arrB [2];

int i;
int incorrectBound = 3;
for (i = 0; i < incorrectBound; ++i)
_(invariant 1 >= 0 && i <= incorrectBound)
{

arrA[i];

arrB[i];

In this program all out of bounds accesses are detected, however they are
only flagged using the generic message telling that it could not be verified
that the respective variable is thread-local. In addition to the errors regard-
ing the invalid accesses VCC also returns warnings that an expression like
arrA[2] ; has no side effect and that an operation with side effect is expected.

String length

#include <vcc.h>

size_t strlen (const charx str _(ghost size_t strSize))
_(requires \thread_local_array (str, strSize))
_(requires \exists unsigned int i; i < strSize &&
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str[i] = ’\0")
_(ensures str[result] = "\0")
_(ensures \forall unsigned int i; i < \result =
str[i] = "\0")
{
size_t 1;
for (i = 0; str[i] != "\0"; ++i)
_(invariant i >= 0 && i < strSize)
_(invariant \forall unsigned int j; j < i =—>
str[j] I= "\07)

{}

return i;

VCC provides no ghost fields for reasoning about array bounds which
posed a problem for devising correct specifications for this function. After
a few unsuccessful attempts, a ghost parameter that specifies the array’s
size was added to the function signature. With the help of this parameter it
was possible to completely verify the function. There is a downside to this
approach though: When calling strlen in a program that is to be verified
a value has to be supplied for the ghost parameter strSize, which is quite
inconvenient. In contrast, the ghost fields that for example eCv provides
enable verification without the need for introducing any ghost parameters
for expressing information regarding array bounds.

All other annotations could be stated in a straightforward manner.

String comparison

#include <vcc.h>

int strcmp(const charx sl, _(ghost size_t slSize)
const charx s2 _(ghost size_t s2Size))

_(requires \thread_local_array(sl, slSize))

_(requires \thread_local_array(s2, s2Size))

_(requires \exists unsigned int i; 1 < slSize &
sl1[i] = "\0")

_(requires \exists unsigned int i; i < s2Size &
s2[i] = "\0")

_(ensures \result >= —1 && \result <= 1)
_(ensures (\exists unsigned int k;
(k < min(slSize, s2Size) &&
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(\ forall unsigned int j;
<k = s1(j] — s2[j]) &
(s1[k] = "\0’ & s2[k] =~
\result = 0)

_(ensures (\exists unsigned int k;
(k < min(slSize, s2Size) &&
(\forall unsigned int j;

\07))) =

87

i<k = s1[j] = s2[j] && sL[j] != "\0’) &

(sl1[k] < s2[k]))) = \result = —-1)
_(ensures (\exists unsigned int k;

(k < min(slSize, s2Size) &&

(\ forall unsigned int j;

j <k = s1[j] — s2[j] & s1[j] !

(s1[k] > s2[k]))) = \result = 1)

unsigned int i;

for (i = 0; sl[i] = s2[i]; ++i)
_(invariant i >= 0 && i < slSize)
_(invariant i >= 0 && i < s2Size)

1= \07) &

!

_(invariant \forall unsigned int j; j < i =

sL{j] = "\07)

_(invariant \forall unsigned int j; j < i

s2[j] 1= "\0")

_(invariant \forall unsigned int j; j < i

sL{j] = s2[j])

if (s1[i] = '\0")

{

return 1;

}

return sl[i] < s2[i] ? =1 : 1;

}

_(ghost _(pure) size_t min(size_t a, size_t b)
_(ensures \result = (a<=Db 7 a : b))
)

I

Taking the implementation for eCv and the knowledge about the need of
introducing array size ghost parameters the function could be implemented
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for VCC with little effort. The annotations for this function could be stated
using the quantifier keywords \exists and \forall in a precise way. VCC
has a more verbose syntax for quantifiers than eCv which makes the pre-
and postconditions longer and a bit harder to read in this version.

4.4 VeriFast

In section 3.2.4 on page 57 we expressed the concern that VeriFast seems
to require more elaborate and lower level annotations than the other tools.
This suspicion turned out to be true, at least for the algorithms compared
here. VeriFast offers the possibility to write powerful lemma functions to
express different facts. While this can be very useful for advanced users,
it causes a steep learning curve for beginners. Therefore, for almost all
algorithms in this comparison the help of VeriFast’s authors was necessary.

VeriFast supports the verification both of programs written in C and in
Java. Only the verification of C programs was analyzed in this comparison.
The version used was 11.9.19.

The following list provides a basic overview of some constructs often
used in VeriFast annotations.

requires  Function precondition
ensures  Function postcondition
invariant  Loop invariant
decreases  Loop variant

produce_limits(var)  Generates assumptions on arithmetic properties
of var which is not done by default [53, p. 18]

cons(z, zs0)  Used with list data types. Splits a list into an element z
and the list of further elements zs0

Multiplication

/%@

lemma void lemma_mult(int x, int y, int z)
requires 0 <= x &8 y <= z;

ensures T x Yy <= T * 2z;

{

for (int @ = 0; i < x; i++)
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invariant i x y <= 1 % z &6 i <= x;
decreases © — 1;

{}

}
@x /

int multiply (int termA, int termB)
/%@ requires termA >= (0 &€ termB >= 0
€99 termA x termB < INT_MAX;
@x /
//@ ensures result == (termA x termB);
{
//@ produce_limits (termA );
//@ produce_limits (termB );
int ret = 0;
int i;
for (i = 0; i != termB; ++i)
/%@ invariant i >= 0 &6 | <= termB €
ret == termA x 1i;
@x /
//@ decreases termB — i,
{
//@ lemma_mult (termA, i + 1, termB);
ret 4= termA:;

}

return ret;

VeriFast does not take differences between platforms or compilers into
account when checking arithmetic properties of data types. Instead, it always
assumes that the int type is signed with a size of 32 bits. No information
could be found regarding the possibility of reasoning using limits of unsigned
types, and thus only signed types were used in the functions verified with
VeriFast.

For a first version of this program without the lemma function it could
not be proven that no arithmetic overflow occurred in the loop body. For
debugging purposes some additional assertions were added before the return
statement: i == termB, ret == termA * i and ret == termA * termB.
The first two of these assertions could be proven. Strangely, the third one,
and thus also the function postcondition, was not verified.
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One of VeriFast’s developers advised not to use Z3 but instead the Redux
solver for this function, as Z3 apparently often has difficulties with certain
arithmetic properties. Using Redux all assertions were proven, but the
overflow warning for the loop body still appeared. VeriFast’s developer
kindly provided a lemma function that helps showing that multiplication
preserves the smaller-than relation. It therefore enables the proof that when
termA * termB < INT_MAX and i <= termB it is also valid that termA *
i < INT_MAX. This results in the fact that no arithmetic overflow can occur
in the loop body.

The conclusion is similar to multiplication in VCC: While a complete
automatic proof is possible the way to get there was rather complicated.

Division

/x@
lemma void lemma_mult(int a, int b)
requires 0 <= a &6 1 <= b;
ensures a <= a *x b;
{
for (int @i = 1; i < b; i++)
invariant 1 <= b 6 a <= a x i;
decreases b — 1i;
{
}
}
lemma void aziom_div(int a, int b, int q, int 1);
requires 0 <= a €6 1 <= b & 0 <= q 6 0 <= r &
a == qx b+ 1 r<b;
ensures ¢ == a / b &6 r == a % b;
@« /

int divide (int dividend, int divisor)
//@ requires dividend >= 0 &6 divisor > 0;
//@ ensures result == dividend / divisor;
{

//@ produce_limits (dividend );

//@ produce_limits (divisor );

int remainder = dividend ;

int quotient = 0;

while (remainder >= divisor)
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/%@ invariant dividend == remainder +
quotient *x divisor €99
remainder >= 0 66 quotient >= (0 &€
remainder <= dividend —
quotient x divisor;

@x /

//@ decreases remainder;

{

remainder = remainder — divisor ;
//@ lemma_mult(quotient , divisor);
quotient++;

}

/%@ axiom_div(dividend , divisor , quotient,
remainder );

@x /

return quotient;

For the division algorithm help from VeriFast’s developers was necessary
again. Two difficulties were encountered: Related to the problem in the
previous algorithm a lemma had to be added that specifies that, in the allowed
variable ranges, quotient is always smaller than or equal to quotient *
divisor — and thus also smaller than or equal to dividend.

VeriFast provides no full axiomatization for division. It is therefore
necessary to add an axiom in the form of a lemma function without body
that defines division in a way that corresponds to the implemented algorithm.
Only with this axiom the postcondition could be verified.

Factorial

The situation becomes even more complicated when trying to prove the
factorial algorithm. Again, VeriFast’s developers provided help by supplying
extensive annotations for this task. Unfortunately, the code is about one
hundred lines long and quite complicated. Due to the length it is not
reproduced here, but can be found in appendix A on page 115. It consists of
various lemmas that show different arithmetic aspects and fixpoint functions
that deal with specifying properties of the factorial function itself.

While VeriFast was able to automatically proof the program, the complex-
ity of the annotations is very high. The user is required to have an excellent
understanding of VeriFast’s theoretic aspects and annotation language in
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order to being able to devise such enormous annotations by himself.

Index of maximum array element

//@ #include 7listex.h”
/x@
fizpoint bool ge(int z, int y) { return z >=y; }

lemma void ge_max(int z, int y, list<int> zs)
requires x >= vy & forall(zs, (ge)(y)) == true;
ensures forall(zs, (ge)(z)) == true;
{
switch (zs) {
case mnil:
case cons(z, zs0):
ge_maz(z, y, zs0);

}
@« /
int getMaximum (int* numbers, int numbersSize)

/%@ requires array<int>(numbers, numbersSize
sizeof(int), integer, ?numbersList) €&
numbersSize > 0 &€ numbersList = nil &
length (numbersList) == numbersSize;

@« /

/%@ ensures array<int>(numbers, numbersSize,
sizeof(int), integer, numbersList) &
result >= 0 & result < numbersSize €&
forall (numbersList, (ge)(nth(result,

numbersList))) == true;

@x /

/*@ switch (numbersList) {
case nil: case cons(h, t): }

@« /

int maximumPosition = 0;

int maximum = numbers [ maximumPosition |;
int i;

for (i = 1; i != numbersSize; 4+i)

/%@ invariant array<int>(numbers, numbersSize,
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sizeof(int), integer, numbersList) €&
i@ >= 1 &6 i <= numbersSize &
mazimumPosition >= 0 &
mazimumPosition < i ExE
nth (maximumPosition, numbersList) ==
mazximum €€
forall(take (i, numbersList),
(ge)(nth(mazimumPosition ,
numbersList))) == true;
@x /
//@ decreases numbersSize — i;
{
//@ take_plus_one (i, numbersList);
/%@
if (nth(i, numbersList) >= maximum) {
ge_max (nth (i, numbersList),
mazimum, take (i, numbersList));
forall_append (take (i, numbersList),
cons(nth(i, numbersList),
nil ),
(ge)(nth(i, numbersList)));
} oelse {
forall_append (take (i, numbersList),
cons(nth(i, numbersList),
nil),
(ge ) (mazimum) ) ;

}
@x /

if (numbers|[i] >= maximum)

maximum = numbers[1i |;
maximumPosition = i;

}

return maximumPosition;

The annotations for this algorithm employ some of the powerful aspects of
VeriFast’s annotation language. They also show that in some cases VeriFast
requires more elaborate information than the other verification tools.
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To successfully verify this algorithm the user needs to introduce a fixpoint
function ge that returns whether or not one number is greater than or equal
to another number. The lemma ge_max shows the fact that when it has
already been concluded that a number y fulfills the ge relation for all
elements of a list, and a number x is not smaller than y, then x also fulfills
the ge relation for all elements. The lemma also demonstrates that VeriFast
internally handles the contents of arrays as lists of generic data types and
provides various predefined utility functions, for example the forall fixpoint
that is used here to reason about all elements of a list.

Pre- and postconditions for the algorithm itself are rather straightfor-
ward. The array<int> clause expresses that the pointer numbers points
to an array of length numbersSize of integer elements and that the array
contents can be accessed in annotations by using the numbersList variable.
nth(result, numbersList) returns the element with index result from
the numbersList.

In the loop invariant take (i, numbersList) returns a list containing
the first i elements of numbersList. The annotations discussed to this point
are quite similar to those required by the other tools that were compared.

Unfortunately, the situation gets more complex. The switch statement
in the annotation right at the beginning of the function body deserves an
explanation, which was kindly given by VeriFast’s developers. The take
fixpoint in the loop invariant is defined by recursion on the list parameter.
Out of performance considerations VeriFast does not automatically perform
case splitting. However, case splitting is necessary in this scenario: In order
to reason on take, it needs to be discerned whether or not the list parameter
is nil. The switch statement causes VeriFast to symbolically execute the
function body in two paths, one where numbersList equals nil and one
where it does not. VeriFast can discard the prior path immediately because
the function preconditions rule this situation out and can continue just with
the latter path. Still, in order to reach this conclusion the case split has to
be introduced manually.

The predefined take_plus_one axiom in the loop body defines the fact
that taking the first i + 1 elements of a list yields an identical result as
taking the first i elements and appending the element at index i. This,
together with the following annotation, is required to enable the proof of
the forall statement in the loop invariant, which otherwise fails. The
conditional statement in the annotation that follows is then providing details
on the loop body’s intended semantics.

While it is positive that the algorithm can be completely proven in
this way, the requirement to duplicate many program statements in the
annotation language is unsatisfactory. Also, even though most users will
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probably be able to comprehend the annotations with relatively small effort
by looking at the definitions of the predefined lemma functions, writing them
requires a thorough understanding of VeriFast’s methodology. In addition,
no documentation on the currently implemented state of array support is
available at the time of writing. VeriFast’s developers mentioned that work
is under way to improve and simplify array handling. Therefore exten-
sive help was needed again from VeriFast’s developers, who provided the
fixpoint and lemma functions as well as the annotations inside the loop body.

Faulty pointers

intx testPointers ()
//@ requires true;
//@ ensures true;
{
int a = 1;
intx ap = &a;

intx bp;
xbp = 2;

int ¢ = xap + *bp;

int xdp;

{
int e = 3;
dp = &e;

}

int f = xdp;

return &a;

Empty pre- and postconditions needed to be added to this method
because VeriFast enforces that all non-fixpoint functions have a method
contract.

VeriFast detects all faulty pointers in this function. Unfortunately, the
messages returned contain only a similar level of detail as those returned by
VCC. Still, the output is reasonably suitable for finding errors, especially
when compared to KeY. From the first erroneous line the message No
matching heap chunks: integer(bp, _) results. The other two errors
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are reported as a similar No matching pointsto chunk message.
Like Escher C Verifier and VCC, VeriFast does not detect the problem
in the return statement.

Out of bounds array access

void outOfBounds(intx arrA)
//@ requires true;
//@ ensures true;

{
int arrB[2
arrB[0] =
arrB[1] =
//@ assert array<int>(%a, -, _, _, _);

];
0;
L;

arrA [2];
arrB [2];

int i;

int incorrectBound = 3;

for (i = 0; i < incorrectBound; +4+i)

/%@ invariant array<int>(a, incorrectBound,
sizeof(int), integer, _) Exé
i >= 0 66 1 <= incorrectBound;

@x /
//@ decreases incorrectBound — i;
{

arrA[i];

arrB[1];

Checking this function first resulted in the peculiarity that VeriFast
returned a syntax error at the array initialization int arrB[2] = {0, 1}.
Omitting the explicit declaration of the array length, which is valid as well,
even results in an “internal error”. Thus, array initialization was modified
as in the code above.

This program reflects the work-in-progress state of VeriFast’s array
support. The array clause only supports pointers and no locally defined
arrays. As a workaround, a new pointer a is introduced which automatically
takes the address of the array defined before, arrB. The pointer can then be
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used to enable access to the array in the loop body.

VeriFast detects all out of bounds array accesses in this function. The
messages returned are No matching array chunk outside the loop and No
matching heap chunks: array(arrB_addr, 3, 4, integer, _) inside
the loop.

String length, string comparison

Since these two algorithms depend heavily on array handling which, as
already mentioned above, is currently in the process of being adapted, we
refrained from implementing them in VeriFast. strlen is discussed in the
tutorial [53, p. 50]. An implementation is contained in the collection of
solutions to the tutorial examples that is included in the VeriFast distri-
bution. This implementation however is based on an older array handling
paradigm. A new look on possible implementations of strlen and strcmp
could be worthwhile when VeriFast’s array support has stabilized and proper
documentation is available.

4.5 Summary

The comparison was conducted with great care. Still, it is possible that some
problems could have been solved with one or another tool more efficiently
than the way it was done here. To become fully proficient with a tool the
investment of a lot of time and work is necessary and thus not all possibilities
of all tools could be explored in this work. Even so, a very positive insight
comes from this comparison: In view of the features and accessibility the
tools analyzed in [37] provided, it can be said that the situation improved
considerably.

Today, there are a number of tools that support formal verification
of regular, widely-used programming languages, or at least of substantial
subsets. Each of those that were compared here showed its own strengths
and weaknesses.

Escher C Verifier

The feature of suggesting some types of missing annotations is unique to eCv.
Although they only appear in some cases, the suggestions can have a large
impact on productivity. In a number of simple cases where the developer
inadvertently forgot necessary function preconditions or loop invariants,
eCv’s hints can reduce the time spent on debugging. This may not apply
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to very experienced users, as they can probably find missing annotations
quickly by themselves in those simple cases where suggestions are available.
Still, for users just starting work with formal verification the hints given
can greatly lower the obstacles encountered right at the beginning. In some
scenarios experienced users can profit from suggestions too, as they may
point to errors in existing annotations.

Thus, suggestions are helpful most of the time, but they can also be
misleading. When testing the detection of out of bounds array accesses
eCv suggested annotations that only complicated the situation and could
never lead to a proof, as the program simply was incorrect. In some cases it
was observed that suggestions were made that were syntactically incorrect.
Examples include the suggestion of a precondition that contains a recursive
call to a C function (which is not allowed in eCv by design), as well as an
annotation that contained an inline conditional operator with a missing else
branch.

Another unique feature in Escher C Verifier is that the user can easily
configure the properties of the compiler that is used in a project, most
importantly the sizes of different data types. The verifier is thus enabled
to provide correct results almost regardless of compiler features or target
platform.

A further positive aspect is that of all tools eCv provides the most
detailed and understandable result messages to the user. Therefore, in many
cases, the user is led directly to the relevant mistake in the program or
specification and does not have to find it by trial and error. The user can
also configure the level of detail provided in error and success messages.
In most cases eCv offers different formulations of each fact that could not
be proven and often also uses case distinctions for different variable ranges
to aid the user in retracing the process that led to the verification failure.
While these detailed messages are not perfect and may mislead the user in
some cases, in general they help tremendously in getting positive results
rather easily.

Unfortunately, Escher C Verifier does not support the verification of
multi-threaded programs. While multi-threading was no part of this practical
comparison, it is widely used in general-purpose and server software and
might thus rule out the use of eCv in some industrial environments. This is
less a factor for Escher’s core target group that deals with security critical,
often embedded, software. Similarly, the suitability for teaching formal
methods does not depend on multi-threading support either. The only
additional negative technical aspect observed was that eCv did not detect
one pointer-related error which VCC and VeriFast did notice.

In general, Escher C Verifier presents itself as a very accessible tool



4.5. SUMMARY 99

that enables a novice user, regardless of being a software engineer in an
industrial environment or a student attending a course, to have a positive
experience when first dealing with practical aspects of formal verification.
More advanced users are also supported in a helpful way by the precise
output provided and the possibility of configuring architectural properties
of the target platform.

KeY

KeY differs from the other tools in that it only supports programs written
in Java Card (with some extensions) and has a rather long development
history. It was already available when the comparison in [37] was performed,
and we will therefore especially look at the progress KeY has made since
then.

In the previous comparison, a multitude of very complex interactions was
required for every single algorithm that was analyzed. This was necessary
even though in some cases postconditions had to be formulated much weaker
than intended, because there was no way of precisely specifying more complex
behavior using Object Constraint Language. The situation today is quite
different: The possibility of using Java Modeling Language in annotations
greatly enhances the number and quality of facts that can be expressed.
Unfortunately, JML also introduces the problem that arithmetics are handled
in annotations according to Java semantics instead of providing unbounded
data types that would further improve specifications.

KeY’s features and tactics for performing automatic proofs seem to
have improved vastly. Most aspects of the algorithms could be proven
automatically today. Notable exceptions are proofs for ruling out arithmetic
overflow in the methods for multiplication and division (which is arguably
impossible due to the use of JML) as well as for the postconditions of the
string comparison method.

Unfortunately, even though great progress has been made, KeY can
still present a major challenge to the user. By design KeY is still a tool
meant for interactive verification. Therefore, when KeY cannot continue
a proof by itself, it does not return results that are easily comprehensible,
but just the description of the next goal that needs to be proven. The
user must interpret the output by himself and find out whether there is
an error in the specification, the program, or whether a manual proof is
necessary. Some hints are provided, for example the name of the current
branch of the proof tree, or the possibility to view the Java execution path
that led to the current goal, but these features cannot replace the output of
precise and helpful result messages. At the very least, in common cases like
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some syntactical errors in annotations, or the omission of certain required
annotations, KeY should be able to clearly state what the problem is to
avoid tedious debugging.

A further possible improvement could be to introduce support for JML
assertion statements in KeY. In the other tools it was found that the
debugging process could in some cases be made faster and easier by adding
assertions to the program to find out at which points in the code which
facts could be deduced by the prover. KeY only supports standard Java
assertions, which provide much fewer possibilities than JML assertions.

KeY positively surprised in this comparison because of its improved
abilities to perform proofs automatically and the support of the powerful Java
Modeling Language. Still, caused by the fact that it is aimed at interactive
proofs and in certain cases requires them, it cannot be recommended for
industrial environments. Using KeY in teaching could be more interesting,
because — in contrast to the other tools — it allows presenting the principles
of proof construction using practical examples. It is expected that a typical
university course that also discusses theoretical aspects does not provide
enough time for students to become proficient using KeY in all situations.
Therefore, the examples presented in courses would need to be restricted
to simple ones, and enough staff to support students in the construction of
manual proofs would be necessary.

vVCC

VCC’s history of being used for formal verification of parts of Microsoft’s
hypervisor Hyper-V is reflected in that VCC appeared as a stable, mature
tool in this comparison, despite the fact that the reimplementation that is
currently being performed is not fully finished and that documentation for
the new syntax is not yet complete. The tutorial document already available
for the new VCC version provided answers to most questions that came up
when working on the example algorithms.

VCC, similar to Escher C Verifier, was able to completely prove all
algorithms, with the only exception of the warning regarding “possible un-
soundness” in the recursive factorial specification. However, in comparison
to eCv the annotations required were more elaborate and less convenient.
Examples for this concern are found in the arithmetic algorithms: Multipli-
cation required a lengthy lemma function for ruling out arithmetic overflow.
To prove the division algorithm, it was necessary to introduce an additional
function parameter and state the postcondition analogously to the loop
invariant instead of simply being able to use the division operator.
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A similar criticism applies to the functions for determining the length of
a string and comparing two strings. Since no predefined ghost fields exist
that could be used for specifying properties of arrays, ghost parameters have
to be introduced that specify the length of arrays for use in annotations.
The syntax for quantifiers is similar to JML and thus more verbose than
in eCv, mostly due to the fact that the bounds for the quantifying variable
cannot be stated as simply as is possible there.

It was disappointing not to find clear information regarding how termi-
nation is ensured for loops or recursive function calls. At least for recursion,
it seems that termination is currently not checked (as mentioned in the
description of the factorial algorithm), which makes VCC less useful in cases
where recursion is needed.

Another area that showed room for some improvement is the level of
detail of the result messages provided to the user. They are far more helpful
than the output of KeY, but in many cases not as specific as those provided
by eCv. This may make the use of VCC less convenient than eCv, especially
in larger projects where debugging is more complex.

VCC offers the most extensive support for existing development workflows
of all tools analyzed here: eCv does not offer any integration into standard
IDEs. Developers of KeY provide a plug-in for Eclipse, but it has only
rudimentary features. VeriFast includes a simple GUI with code editor, but
this cannot compete with a full IDE. In contrast, VCC can be integrated
into the Visual Studio platform: Options for VCC can be set directly in
Visual Studio’s configuration windows. Verification can be started for opened
source files with a single click or keyboard shortcut. Any errors that are
found are displayed directly in the source code by underlining the respective
elements and displaying tooltips when hovering the cursor above them.

The support for a proper IDE was perceived to be VCC’s biggest advan-
tage in the practical comparison. VCC was not as easily accessible as eCv
because it required more complicated, sometimes not immediately obvious
annotations. Still, it is a powerful tool that has the advantage of being open
source and supporting the verification of multi-threaded programs. Judging
from the results of this comparison, VCC should be considered both for
use in industry and teaching, especially when users are already proficient
in Visual Studio. Unfortunately the current license agreement permits only
non-commercial use, ruling VCC out for many applications.

VeriFast

VeriFast is unique in that it does not only support a single programming
language, but can be used for programs written in C as well as in Java. This
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comparison was restricted to looking at the verification of C programs with
VeriFast.

The first thing that attracts attention when using VeriFast is the speed
of verification. In all situations encountered in the comparison, VeriFast
returned results without any noticeable delay. This is clearly much faster
than the other tools: In most cases they are able to assert the correctness
of an algorithm in a matter of seconds to a minute which is rather quick
as well. More problematic is the aspect that for programs or annotations
containing errors it often takes much longer to yield a result. This interferes
with effective debugging since a lot of time may pass when several iterations
of verifying and modifying annotations are required until a positive result
is obtained. The problem could be noticed especially when using eCv and
KeY. VeriFast does not suffer from this: It returns results immediately even
for erroneous programs and thus does not impede productivity.

The graphical user interface, although only offering basic features, was
helpful when working on specifications. For example, preconfigured header
files (where default lemma and fixpoint functions are defined) are opened
automatically when verifying a program to simplify looking up definitions,
if needed. VeriFast supports the use of two different provers. It would be
useful if the selection of which prover to use could be integrated into the user
interface. Currently, VeriFast has to be restarted with certain parameters
to select a prover.

Annotations for VeriFast are quite different from those used by the other
tools. For example, the annotation language misses constructs for specifying
quantification. Instead, VeriFast relies on the user to implement lemmas
and fixpoints to express those facts that cannot be stated directly in the
annotation language. Thus, VeriFast’s approach is quite hard to grasp for a
user just introduced to the tool. This is aggravated by the fact that there
exists no proper documentation regarding predefined lemmas. Only some of
them are mentioned in the tutorial where they are applied to examples, and
no overview in the style of an API documentation or similar is available.

At least for the algorithms presented here, annotations for VeriFast are
considerably more lengthy and complex than annotations for the other tools.
In some cases, like the tutorial solution to the strlen function that was
discussed above, annotations for VeriFast have only very little resemblance
to the other implementations made in this comparison.

In summary, VeriFast is an interesting tool that supports the verification
of programs written in C or Java, including the possibility of using multiple
threads. It offers a unique annotation language that was designed to heavily
rely on the formulation of custom lemmas. While this feature is quite pow-
erful, it causes a novice user to be overwhelmed by the different possibilities
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of handling a problem, especially considering that there exists no complete
documentation. As VeriFast supports two programming languages, it is
the obvious choice in cases where development or teaching is done in both
supported languages. For scenarios where this is no criterion, novice users
can attain positive results more easily using the other tools. When more
documentation regarding the annotation language and the included lemma
functions is available, a new look at VeriFast could be worthwhile.






CHAPTER

Thoughts on requirements for
better adoption of formal
verification

This chapter aims to give a short overview on some more general aspects
regarding the use of formal verification in industry or teaching. It is not
meant as an extensive analysis, but rather as a starting point for own
thoughts. Requirements differ between fields, so aspects regarding use in
industry and teaching will be looked at separately.

Still, there exist some common obstacles and noteworthy points. Using
formal verification in practice requires learning a new language that is used
for annotations or, in the cases of Prototype Verification System and Perfect
Developer, also for the algorithm itself. For most annotation languages
there is only little educational material like practice-oriented documentation,
literature or tutorials available. Thus, in general it is harder and more time-
consuming to learn working with an annotation language than to learn a
standard programming language. Fortunately, for most annotation languages
the number of constructs available is not very high, and therefore the basics
of each language can still be comprehended rather quickly.

Most tools use an annotation language that was developed in conjunction
with the tool itself. Since no other sources of information exist in this case, it
is important that the tools’ developers are aware of the necessity of providing
good documentation. It is crucial that documentation is extensive enough
to cover both introduction and regular use, and also of high enough quality
to support users efficiently. In some cases, documentation was inferior to
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the quality and features of the tool itself or lagged behind the current state
of development.

The practical comparison showed that it is crucial for a verification tool
to provide precise and easily comprehensible information to the user. This
is especially important to users that are new to the area. Thus, the tools’
developers need to give sufficient attention to improving the capabilities for
providing result messages, instead of solely focusing on proofs themselves:
A tool that provides good output in most situations but has a less capable
prover that sometimes requires additional hints in annotations will serve
most users better than another tool that has a better prover but can only
provide more complex output.

5.1 Industrial applications

The adoption of formal verification in industrial environments is marginal
in most areas of software development. In most projects, resources are
severely constrained: The number of developers as well as the financial and
time budget available is not supportive of the introduction of experimental
techniques. Therefore, for formal verification to gain acceptance in the
software industry, a few key points need to be fulfilled by verification tools
as well as possible.

Most software developers only have little or even no knowledge about
formal methods and do not have the possibility to extensively study the topic.
Thus, tools only qualify if they do not absolutely require such knowledge. It
is desirable that tools support well-known programming languages like C,
C++ and Java. In each case, restrictions to supported language features
are not welcome — although they currently need to be tolerated, as there
is no tool available that supports all features of a language. In some fields,
such restrictions might be less of a factor, for example the absence of
multi-threading support in embedded software development.

The time span needed to get acquainted with a tool is, at least in large
projects, only of secondary importance. In a large project, time taken for
training is going to be rather short in relation to the overall time spent
working with the tool, anyway. More important is the usability, which is
reflected in the amount of time a developer needs to correctly annotate
program methods after the initial training and in the degree of a tool’s
integration into an existing development workflow. These factors have a
large influence on a project’s duration and cost. Therefore, it is important
that tools offer good reference documentation and ideally also provide
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a collection of examples that prototypically show how certain tasks and
constructs can be handled.

One of the main aspects regarding workflow integration is the support
for a preferably large number of integrated development environments or
code editors. Optimal support would include syntax highlighting and code
completion features not only for the programming language but also for
annotations. Verification would be started directly from the IDE, and results
would be displayed directly at the respective lines of code. None of the
existing tools provide an optimal integration (some none at all), although
VCC shows a promising approach for Visual Studio. This is an area where
additional work is needed in order to make the introduction of formal
verification more efficient.

Fortunately, none of the tools requires developers to change the compilers
or build systems they are using: Annotations are either added as comments
or they are defined as macros that disappear in a preprocessing step. Thus,
regular compilers never see any annotations. Depending on a project’s
target platform, it might be necessary to have the ability to configure the
verification tool regarding details such as the sizes of data types. This is
currently only extensively supported by Escher C Verifier.

In many areas it may be advantageous if the possibility of negotiating a
dedicated support contract exists. Such commercial agreements typically
include guaranteed response times and can therefore positively influence
productivity in case problems are encountered. As most tools currently are
developed by research institutions, support agreements are seldom available.
Of all tools analyzed in section 3, only Perfect Developer and Escher C
Verifier offer one. Speaking from the author’s own experience, the authors of
noncommercial tools provide very good support in most cases as well: They
have an interest in promoting and enhancing their developments and are
thus happy to help quickly and efficiently.

The programs analyzed in the practical comparison show that pre- and
postconditions can be quite complex in some cases. This should not discour-
age potential users: In industrial software engineering function contracts are
very often specified, anyway. Formalizing those natural-language specifica-
tions using an annotation language can be performed with rather small effort.
Another important aspect when newly introducing formal verification is the
possibility of annotating only parts of a program. This way, verification can
be started with the most important (or most easily verifiable) functions, and
then be extended step by step to the rest of the program. Fortunately, this
can be done easily with all tools. An example is the insertion of assume
statements in annotations for Escher C Verifier. They tell the verifier to
take the facts in this statement as a given and can thus be used to establish
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facts required by another function’s precondition.

A problematic aspect that still remains is the way programs need to be
formulated in order to verify correctly: In general-purpose programming
languages, there is a large (or even infinite) number of ways to solve most
tasks. However, verification tools generally cannot handle all possible
formulations automatically. Thus, when annotating existing programs the
user needs to be prepared to make (sometimes substantial) changes to the
code in order to being able to verify them.

5.2 Teaching

Formal verification has a largely different target in teaching than in the
software industry. The main points of interest are the teaching of theoretical
aspects of formal verification and illustrating them with the help of tools
and examples. The larger aim is for students to become acquainted with
formal methods, in order for them to be open-minded regarding use on the
job later.

The resources available for university courses are constrained in most
cases: There is only little time, funding and few staff attainable. A tool
suitable for teaching therefore has to be offered at little or no cost, it must
be possible to convey the basics in a rather short time span, and students
should be able to work with the tool without the need for constant support.

The time period needed to get acquainted with a tool is more important
here than in industrial use: Courses are normally allotted a few hours of
work per week. A tool should therefore not be too complex — otherwise there
could be too little time for working on meaningful examples after studying
theoretical aspects and the general handling of the tool. In contrast, the
time needed for realizing examples using a tool is less relevant in teaching:
The principles that need to be conveyed can be illustrated with very small
examples in most cases. Therefore, the size of examples given to students
can be chosen according to the amount of work a tool causes.

Depending on a course’s target group and structure the use of a tool that
requires background knowledge of formal methods is less problematic than
in industrial environments. It might even be preferable to employ a tool
that offers more low-level features, for example for displaying the proof steps
taken for each line of program code or for optionally performing assisted
manual proofs. The level of detail of the information a tool provides should
be adequate for a student to see the connection between the theoretical
aspects that have been studied and their practical application.
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In order to enable students to work with a tool by themselves without
requiring a lot of assistance it is required that at least some kind of extensive
documentation is available, for example a book or a good tutorial document
that also describes advanced aspects. The availability of direct support by
the developers is less a factor in teaching. If at all, it could be advantageous
in the planning phase of a course.

Similarly, other topics important in industrial environments are less
relevant in teaching: Restrictions to the language features supported have
no influence on a tool’s suitability, at least as long as the fundamental
properties of a language are preserved. Good integration into development
environments and code editors may help students to be open-minded when
beginning to study formal verification, but is not indispensable.






CHAPTER

Conclusion

This thesis dealt with the current state of formal verification of software.
After an introduction to the topic we looked at the foundations of formal
verification in chapter 2. Methods like natural deduction, Hoare logic,
weakest preconditions and model checking were explained in a concise way
to give the reader basic knowledge about theoretical aspects. Chapter 3 gave
a description of several tools for applying formal verification in practice. The
focus was on those tools that are capable of automatic verification, without
needing the user to manually construct proofs. Each tool’s properties were
extensively analyzed by researching theoretical background, target groups,
features, usability, documentation, license and state of development. The
most advanced tools Escher C Verifier, KeY, VCC and VeriFast were selected
to compete in a comparison in chapter 4. Care was taken to devise relevant
examples that clearly demonstrate whether or not the tools are suitable
for users in industrial software development and in educational institutions.
They included arithmetic calculations and basic program constructs, but
also more complex examples like functions from standard string libraries
for C and Java. A detailed description of the performance of each tool was
given in section 4.5. Some general thoughts on the requirements of users in
teaching and software industry were stated in chapter 5.

This work contains the first comprehensive analysis and comparison
of the new generation of software verification tools. When looking at the
previous comparison in [37], several points stand out. The capabilities of the
available tools have been greatly improved: Today, there is a number of tools
available that explicitly target users with little or no background knowledge
of formal methods and that support the automatic verification of substantial
subsets of general-purpose programming languages. In comparison to a few
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years ago the specification languages have become much more powerful,
too. They allow the precise specification of complex issues with relatively
clear and easily readable syntax. Therefore, the expected behavior can be
specified completely even for sophisticated functions.

In general, the promise of being both more powerful and more easily
accessible was kept by the tools. The comparison showed that formal
verification of software can be considered suitable for practical use. It is
still necessary to budget additional costs and time in a development process
where formal verification is involved. However, proving program correctness
will lead to a better product that not only causes fewer costs in maintenance
but may, in certain application areas, also prevent accidents and save lives.

Of course, some areas for improvement remain: The developers of most
tools need to work on the output returned to the user in order to more
efficiently help in debugging. Making the handling of loops easier by auto-
matically suggesting invariants that describe a loop’s semantics is another
research topic.

A fictitious ideal system would encompass properties of various existing
tools:

e Support for easily using multiple provers like Frama-C/Jessie
e Field-tested in industrial environments like VCC

e Support for multi-threaded programs like VCC and VeriFast
e [IDE integration like VCC

e Result messages like Escher C Verifier

e Avoiding hand-coded loops like Perfect Developer, or suggesting in-
variants like (in a basic form) Escher C Verifier

e Object-orientation like Perfect Developer and KeY

e Detailed target platform settings like Escher C Verifier

e Instant results like VeriFast

e Good documentation and accessibility like Escher C Verifier

e Transparency with regard to known bugs or problems like Escher C
Verifier or KeY

e Open-source software like Frama-C/Jessie, KeY or VCC
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The list shows that a lot of work is still necessary in order to yield a tool
that performs optimally on different levels.

A future comparison could look at several aspects. Trials could be ex-
tended with more elaborate tasks, for example by verifying programs that
encompass complex C structured types or Java class hierarchies. Since
multi-threading becomes more important each year, an in-depth look at
the capabilities the tools have for verifying multi-threaded programs could
be worthwhile. The use of formal verification in larger projects might be
impeded by long verification times. As explained in section 4.5, verifiers
often take a long time to return results in the case of incorrect programs or
annotations, which is problematic when debugging programs. Future work
could therefore also deal with this aspect.

All tools analyzed in this thesis support verifying only parts of programs.
Thus, a pragmatic approach can be taken: Every bit of formal verification
introduced into a development process is better than no verification at
all. The most important conclusion from this work is that today formal
verification is already suitable for industrial use in many fields. Curricula
need to be adapted in order for more students to become acquainted with
the positive aspects of the topic.






APPENDIX
VeriFast: Factorial

This is the code for verifying the factorial function in VeriFast that was
provided by developer Bart Jacobs and was omitted from section 4.4 on
page 91 due to its length.

//@ #include “nat.h”
/%@

lemma void nonneg-mult(int a, int b)
requires 0 <= a &6 0 <= b;
ensures 0 <= a x b;

for (int i = 0; i < b; i++)
invariant 0 <= 1 & i <= b 6 0 <= a x 1i;
decreases b — i

}

lemma void mult_le(int a, int b)
requires 0 <= a &6 1 <= b;
ensures a <= a x b;

for (int @ = 1; i < b; i++)

invariant 1 <= b € a <= a * i,
decreases b — 1;
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}

lemma void mult_commut(int a, int b)
requires true;
ensures a x b == b *x a;

{
}

fizpoint int factorial(nat n) {
switch (n) {
case zero: return 1;
case succ(m): return int_of_nat(n) *
factorial (m);

}

lemma void mult_cong(int al, int a2, int b)
requires al == a2;
ensures al x b == a2 x b;

{

¥

lemma void pos_factorial(int m)
requires (0 <= m;
ensures 1 <= factorial(nat_of_int(m));

for (int i = 0; i < m; i++)
invariant 0 <= 1 &€ 1 <= factorial
(nat_of_int(i)) &6 i <= m;
decreases m — 1i;

nat_of_int_of_-nat(succ(nat_of_int(i)));

mult_le(factorial (nat_of_int(i)), i + 1);

int_of_nat_of_int(i + 1);

mult_cong (int_of_nat(nat_of_int(i + 1)),
i + 1, factorial(nat_of_-int(i)));

}

lemma void le_factorial(int m, int n)



@x /

int
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requires 0 <= m 6 m <= n;
ensures factorial(nat_of_int(m)) <=
factorial (nat_of_int(n));

pos_factorial (m);
for (int i =m; i < n; i++)
invariant 0 <= i &8 1 <= factorial(
nat_of_int(m)) €& factorial(
nat_of_int(m)) <= factorial(
nat_of_int(i)) & i <= n;

decreases n — 1;

nat_of_int_of_nat (succ(nat_of_int(1)));

mult_le(factorial (nat_of_int(i)), i + 1);

int_of-nat_of_int (i + 1);

mult_cong (int_of_-nat(nat_of_int(i + 1)),
i + 1, factorial(nat_of-int(i)));

fact (int n)
/%@ requires 0 <= n k&
factorial(nat_of_int(n)) <= INT_MAX;

@x /
//@ ensures result == factorial(nat_of_int(n));
int result = 1;
//@ nat_of_int_of_nat(succ(zero));
int i = 2;
//@ if (n<= 0) {} else if (n<= 1) {} else {}
if (n < 2)
return result ;
for (;;)

/%@ invariant 2 <= i 6 i <= n &
1 <= result &€& result ==
factorial(nat_of_int(i — 1));
@x /
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//@ nonneg_mult (result , i);

//@ le_factorial (i, n);

/@ nat_of_int_of_-nat(succ(
nat_of_int(i — 1)));

@« /

//@ mult_le (result, i);

result x= 1i;
if (i = n)
break ;
1+
¥

return result ;
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