The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

What California can learn from the Austrian implementation of the European Energy Performance Directive – and what the Austrian can learn from Californian regulations concerning this matter.

A Master's Thesis submitted for the degree of "Master of Science"

supervised by Univ.Prof. Dr. DI Reinhard Haas

Mag. Heide Hitzenberger-Schauer, MBA 8703203

2011, 6th of October, Eichgraben

Affidavit

I, MAG. HEIDE HITZENBERGER-SCHAUER, MBA, hereby declare

- 1. that I am the sole author of the present Master's Thesis, "WHAT LEARN CALIFORNIA CAN FROM THE AUSTRIAN **IMPLEMENTATION** OF THE **EUROPEAN** ENERGY PERFORMANCE DIRECTIVE - AND WHAT THE AUSTRIAN CAN LEARN FROM CALIFORNIAN REGULATIONS CONCERNING THIS MATTER.", 106 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and
- 2. that I have not prior to this date submitted this Master's Thesis as an examination paper in any form in Austria or abroad.

Vienna, 06.10.2011

Signature

Abstract

Starting with the Austrian OIB-directive-6 the calculated heating demand of the energy-pass is compared to the Californian approach of energy-efficient homes. The focus is put on the building envelope. The legislative background in both countries is discussed.

Basis of pointing out the main differences of the Austrian energy-pass and the Californian HERS rating are 4 examples in Austria (Traunkirchen, Baden, Altenfelden and Schwarzenberg) and one example in California (San Francisco).

Both systems (of California and Austria) are not exchangeable to each other without adapting certain parameters (e.g. reference model that gives the number of the Austrian rating. It is necessary to adapt it otherwise insufficient improvements of the insulation are done.) California divides the country in several climatic zones to take this into account California has 2 different approaches (simple U-values) and HERS rating. Nevertheless we all have to improve our home's efficiency. HERS raters give a good chance to check the whole house – from the building envelope to the individual electrical appliances of the household. In Austria "Energieberater" do a similar job, but the energy-pass can also be done by different professionals and does not include household devices.

Heating costs of improved buildings can go down from about 7% of the annual household income to 2% without changing the heating system. Better results can be received, if renewable energy like solar thermal of biomass is used instead.

Table of Content

1	List of T	ables			
2	List of Figures5				
3	Introduction8				
4	Abbreviations8				
5	Descrip	tion of method of approach applied9			
6	The Eu	ropean basis for energy-efficiency-regulations			
(6.1 Au	strian regulations for energy efficiency12			
	6.1.1	Details of OIB-directive-613			
7	Californ	ia Legislation – relevant for energy-efficient buildings			
-	7.1 Leg	gislation basis – valid all over USA			
-	7.2 Leg	gislation basis – focus on California19			
-	7.3 200) 38 Building Energy Efficiency Standards – focused on residential			
I	ouildings.				
-	7.4 Ho	me Energy Rating in California24			
8	Calcula	tion of energy efficiency26			
8	3.1 Ca	lculation of energy efficiency with the Austrian methodology - the			
"	"energy pass" (Energieausweis)				
	8.1.1	Example 1 – single family house in Traunkirchen / Upper Austria27			
	8.1.2	Example 2 – single family house in Baden / Lower Austria			
	8.1.3	Example 3 – single family house in Altenfelden / Upper Austria35			
	8.1.4	Example 4 – weekend home in Schwarzenberg/Hochficht / Upper			
	Austria	43			
	8.1.5	Example 5 – single family house in San Francisco / California49			
8	3.2 Ca	lculation of energy efficiency with the Californian methodology – HERS			
	55				
	8.2.1 the 5 ex	Discussion of the usage of the Californian prescriptive approach for camples			
ł	3.3 Su	mmary of the energy-efficiency calculation – comparison of both			
(countries (description of the results)				

MSc Program Renewable Energy in Central & Eastern Europe

9 Future prospects				
10 Conclusions				
11 Acknowledgements				
12 Literature				
13 Annexes				
13.1 Details (current status) of Austrian Energy-pass for the examples-houses – own calculations based on (GEQ, 2011)72				
13.1.1 Example 1 - Energy-pass for single family house in Traunkirchen72				
13.1.2 Example 2 – Energy-pass for single family house in Baden				
13.1.3 Example 3 – Energy-pass for single family house in Altenfelden84				
13.1.4 Example 4 – Energy-pass for weekend home in Schwarzenberg/Hochficht				
13.1.5 Example 5 – Energy-pass for building in San Francisco				
13.2 Details (status after suggested improvements of Austrian Energy-pass for the example-houses				
13.2.1 Example 1 - Energy-pass for single family house in Traunkirchen93				
13.2.2 Example 3 – Energy-pass for single family house in Altenfelden98				
13.2.3 Example 4 – Energy-pass for weekend home in Schwarzenberg/Hochficht				
13.2.4 Example 5 – Energy-pass for building in San Francisco				

1 List of Tables

Table 1: Construction Components with U-value (OIB-direction-6) - (OIB-Richtlinie 6	i,
2007)10	3
Table 2: parameter of the used examples (own table) 2	7
Table 3: U-values of the building in Traunkirchen and their corresponding limit of the	Э
OIB-directive-6 (own calculation based on energy pass calculation with (GEQ, 2011)
	3

MSc Program Renewable Energy in Central & Eastern Europe

Table 4: HWB-details for the calculated HWB for the reference-climate as well as the location itself (own calculation based on (GEQ, 2011))......29 Table 5: calculated HWB versus maximum HWB for new buildings (OIB-directive-6) Table 6: margins of HWB for improvements (own calculation based on (GEQ, 2011)) Table 7: U-values of the building in Baden - own table based on calculation with Table 8: HWB-details for house in Baden – own calculation based on (GEQ, 2011) Table 9: U-values of the building (status now) – own calculation based on (GEQ, Table 10: HWB-details for the calculated HWB in Altenfelden - own calculation Table 11: margins (OIB-directive-6) for new building in Altenfelden – own calculation Table 12: U-values after the planned improvements (Altenfelden) – own calculation Table 13: HWB-details (Altenfelden) - with improvements - own calculation based Table 14: mean Upper-Austrian household net-income per household related to the costs for heating in Altenfelden – own calculation based on (Statistik Austria 2009, 2011), (Tarifkalkulator, 2011) and (Statistik Austria gasprice, 2011)......41 Table 16: HWB-details for house in Schwarzenberg – own calculation based on Table 17: calculated HWB versus maximum HWB for new building in Table 18: U-values for the insulation-improvements in Schwarzenberg – own calculation based on (GEQ, 2011)47 Table 19: HWB-details for improvements in Schwarzenberg – own calculation based Table 20: U-values compared to the limits of the Austrian OIB-directive-6 - own calculation based on (GEQ, 2011)50 Table 21: HWB-details (San Francisco) – own calculation based on (GEQ, 2011).51 Table 22: margins (OIB-directive-6) for new buildings in San Francisco - own

MSc Program Renewable Energy in Central & Eastern Europe

Table 23: U-values of improvements in San Francisco – own calculation based on
(GEQ, 2011)
Table 24: HWB-details of house in San Francisco with improvements - own
calculation based on (GEQ, 2011)53
Table 25: calculated HWB versus maximum HWB for new buildings (OIB-directive-
6) – own calculation based on (GEQ, 2011)53
Table 26: parameter relevant for San Francisco / climate zone 3 – own table55
Table 27: R- and U-value units in Austria and the USA – own table
Table 28: R-value-margins in California for package C and D in San Francisco and
Bishop own table based on (CAL-2008 Manual, 2008)59
Table 29: limits of U-values valid in Austria and California – own table60
Table 30: U-values [W / m^2 K] of the main parts of the examples – own calculation 60
Table 31: differences of energy-efficiency calculation (own table)

2 List of Figures

Figure 1: Directives of European - relevant for energy efficiency of residential
houses [own illustration based on (EU-LEGIS 2002/91/EC, 2002)]11
Figure 2: Law in Austria for building-energy-efficiency concerns (own illustration)13
Figure 3: first page of Austrian energy-pass (OIB-Richtlinie 6, 2007)17
Figure 4: HERS Index - (RESNET - HERS, 1995)19
Figure 5: Parts of Title 24 (Guide - Title 24, 2010) – part 7 is currently vacant20
Figure 6: Climate zones in California (CLIM, 2011)23
Figure 7: official California Home Energy Rating Certificate with the seal of the
California Energy Commission (HERS-Booklet, 2011)25
Figure 8: Austrian examples for the Austrian energy-pass-calculation (Google Earth,
2011)
Figure 9: position of the single-family house in Traunkirchen (Google Map, 2011).27
Figure 10: garden-view to the building (Traunkirchen), (own photograph)28
Figure 11: rating of building in Traunkirchen with Austrian energy-pass (own
calculation based on (GEQ, 2011))29
Figure 12: HWB - Traunkirchen for new buildings (own illustration based on (GEQ,
2011))
Figure 13: HWB of the house in Traunkirchen with 15 cm more insulation (case of a
new building) – own illustration based on (GEQ, 2011))

Figure 14: HWB of the house in Traunkirchen (case of reconstruction) - own Figure 17: rating of house in Baden – own calculation based on (GEQ, 2011).......34 Figure 18: HWB-Baden for new buildings – own illustration based on (GEQ, 2011)34 Figure 21: rating of building in Altenfelden with Austrian energy-pass - own Figure 22: HWB-Altenfelden for new buildings – own illustration based on (GEQ, Figure 23: OIB-directive-6 limits for new buildings (Altenfelden) - own illustration Figure 24: OIB-directive-6 limits for reconstruction projects in Altenfelden - own illustration based on (GEQ, 2011)......40 Figure 25: NPV for investing in upgrading the building envelope (inclusive windows) – based on own calculation42 Figure 26: position of the weekend-home in Schwarzenberg (Google Map, 2011)..43 Figure 28: rating for building in Schwarzenberg – own calculation based on (GEQ, 2011)......45 Figure 29: HWB-Schwarzenberg for new buildings - own illustration based on Figure 30: HWB-Schwarzenberg (new building) - own calculation based on (GEQ Figure 31: HWB - Schwarzenberg (reconstruction-project) - own calculation based Figure 32: location of the investigated house in San Francisco (Google Earth, 2011) Figure 33: street front-view of the San Francisco-house (Google Map, 2011).......50 Figure 34: rating of house in San Francisco - own calculation based on (GEQ, Figure 35: HWB - San Francisco for new buildings - own illustration based on Figure 36: HWB of the house in San Francisco with more insulation (case of a new

MSc Program Renewable Energy in Central & Eastern Europe

Figure 37: HWB - San Francisco for larger construction projects - own illustration
based on (GEQ, 2011)54
Figure 38: HGT (20/12), HGT (18,3; 18,3) and CDD (18,3; 18,3) - (StartClim2006.F,
2007)
Figure 39: energy-star labels - relevant for San Francisco (Energy Star_Windows,
2011)
Figure 40: different U-values for the limits in Austria and California + examples -
own illustration60
Figure 41: overview of the improvements in HWB - calculated with the Austrian
energy-pass – own illustration based on (GEQ, 2011)61
Figure 42: limits in Austria and California for different U-values (own illustration)62

3 Introduction

"The best energy is energy which is not used!" Spain advertises (European Comission, 2011) on the European Commission Homepage. Energy-efficient homes are a big approach not wasting energy for heating or hot-water. Several countries thought about energy-rating-systems for residential houses.

There is the European Union with their legislative-basis of the "European Energy Performance Directive EPBD" that has to become law in their countries. Austria implements this European assignment with the Austrian "Energieausweis-Vorlage-Gesetz EAVG" and the OIB-directive-6.

Also the United States deal with that topic. California considers herself as the national leader in promoting energy efficiency (HERS-Booklet, 2011).

This master thesis will point out the main differences of both specifications with examples.

4 Abbreviations

- A/V parameter for compactness of a building
- BGF Bruttogrundfläche (gross floor area)
- CBSC California Building Standards Commission
- CFA conditioned floor area
- CCR California Code of Regulations
- CZ climate zone
- EAVG Energieausweis-Vorlagegesetz
- EEB Endenergiebedarf (final energy demand)
- EPBD European Energy Performance Directive
- GEQ calculation program for the Austrian energy-pass
- HDD heating degree days (abbreviation used in California)
- HERS Home Energy Rating System
- HGT Heizgradtage (abbreviation used in Austria) heating degree days

MSc Program Renewable Energy in Central & Eastern Europe

- HDD heating degree days (abbreviation used in the USA)
- HTEB Heiztechnikenergiebedarf (specific energy demand of the equipment of a heating system)
- HWB Heizwärmebedarf (heating demand)
- I_c characteristic length
- NEEAP national energy efficiency action plan
- OAL California Office of Administrative Law
- OIB Österreichisches Institut für Bautechnik
- OÖBauTG Oberösterreichisches Bautechnikgesetz
- RESNET Residential Energy Services network
- SHGC solar heat gain coefficient
- TDV time dependent value
- WWWB Warmwasserwärmebedarf (hot water heating demand)

5 Description of method of approach applied

This master thesis of the MSc Program "Renewable Energy in Central & Eastern Europe" shows an elaboration that compares the implementation of the European Performance Directive in Austria (Energieausweis-Vorlage-Gesetz EAVG, OIB-directive-6) and the analogous regulations in California (Californian Home-Energy-Rating Program. To find the differences I calculated the Austrian "Energieausweis" (energy-pass) with the calculation-program "GEQ" (GEQ, 2011) for 4 examples from Austria (Upper Austria, Lower Austria) and 1 example from California:

- 1st step: analysis
- 2nd step: Improvements of the insulation (if necessary) are shown with a second calculation of the energy-pass.
- 3rd step: check, if the results fit to both national regulations
- 4th step: improvements and their results are discussed comparing the necessary money for heating energy with the mean household budget in the individual cases.

Theoretical basis of the analysis is the literature-comparison of the legislative concerning energy-efficiency for residential homes of both countries.

Finally the main differences with the help of the examples are pointed out.

6 The European basis for energyefficiency-regulations

Austria is part of the European Union since 1995. In 1993 there was the first directive "SAVE" (DIR 1993/76/EEC, 1993) to use energy certifications for buildings within the European Union. The focus of this directive was the reduction of carbon dioxide emissions. Therefore the member states were obliged to implement energy certification programs for buildings. Long-term programs should be installed to promote effective thermal insulation for new buildings.

Because one third of the European energy consumption is caused by buildingsrelated services (EU-LEGIS 2002/91/EC, 2002) the European Union foresees initiatives to support savings in this field. The commitments under the Kyoto Protocol and the aim of security of supply – to get out of the dilemma to need energy from outside the European Union – were the aims why this directive was released. The member states of the European Union have to put four major topics of this directive (EU-LEGIS 2002/91/EC, 2002) in their national law:

- Methodology for calculating the integrated energy performance of buildings
- Minimum standards on the energy performance of new buildings and existing buildings (to be renovated)
- Systems of the energy performance of new and existing buildings
- Regular inspections of installations

In April 2006 a new directive "energy end-use efficiency and energy services" (DIR 2006/32/EC, 2006) of the European Union was released repealing directive 93/76/EEC with the aim to increase the cost-effective improvement of energy end-use efficiency. The member states have to reach an energy saving target of 9 % (EU-LEGIS 2006/32/EC, 2006) within a national energy efficiency action plan (NEEAP). Furthermore the European countries have to develop energy auditing systems for final customers, what can be done to improve energy efficiency. The installation of the customer's own meters is necessary to reach amendments.

Directive 2010/31/EC "energy performance of buildings" (EPBD) from May 2010 is now the next step in the European legislation [(DIR 2010/31/EU, 2010), (EU-LEGIS 2010/31/EC, 2010)]. The deadline for the member states to put the directive to national law is 9th of July 2012. With this paper the European Union wants to promote the energy performance of buildings and building units. The methodology for calculating the energy performance of buildings has to include defined elements (e.g. thermal characteristics, lighting, air-condition, hot water supply, heating insulation...). For new buildings a feasibility study is needed before construction starts, to analyze the possibilities for renewable energy supply systems. Minimum standards have to be fulfilled and checked every 5 years. For existing buildings also minimum targets have to be reached to increase better total energy efficiency. Nearly zero-energy buildings should be promoted, too. All new buildings should meet this criterion from 31th of December 2020. The member states have to work out national plans with intermediate mile stones to reach those goals. The usage of Energy performance certificates is concretized. The new directive repeals directive 2002/91/EC.

Figure 1: Directives of European - relevant for energy efficiency of residential houses [own illustration based on (EU-LEGIS 2002/91/EC, 2002)]

6.1 Austrian regulations for energy efficiency

The Austrian EAVG (Energieausweis Vorlagegesetz, (RIS EAVG, 2006)) is the implementation of the EBPD (Energy Performance of Buildings Directive) 2002/91/EG (DIR 2002/91/EC, 2002) on European Level. The Austrian energy pass is obliged in case of selling, renting or leasing of houses. The energy pass is needed for information and valid for 10 years. The law came into force in January 2008, when all federal states have implemented their individual energy pass-regulations.

The EAVG was also implemented with several federal state laws, like Bauordnung or Bautechnikverordnung that differ a bit from federal state to federal state.

To harmonize the law concerning building-energy-efficiency within Austria the OIBdirective-6 from the "Österreiches Institut für Bautechnik" was made valid with special regulations in each individual Federal State law. So Upper Austria included the directive with the OÖBauTG and Lower Austria with the NÖ BTV.

Upper Austria – as first province of Austria - takes directive "SAVE" (DIR 1993/76/EEC, 1993) into account in their OÖ. Bautechnikgesetz in 1998 (OÖ. BauTG, 1994) with §39 chapter "Energieausweis" (energy pass). Also the EPBD-directive (DIR 2002/91/EC, 2002) causes an update of this federal law.

Lower Austria goes a similar way. 2008 with the necessity of harmonizing the technical demand, there were effects in their NÖ Bauordnung in 2008 (NÖ BO 1996, 2011), NÖ Bautechnikverordnung 1997 (NÖ BTV 1997, 2010) and NÖ Gebäudeenergieeffizienzverordnung 2008 (NÖ GEEV 2008, 2009). NÖ GEEV 2008 deals with energy-saving and defines the essential usage of the energy-pass.

MSc Program Renewable Energy in Central & Eastern Europe

Figure 2: Law in Austria for building-energy-efficiency concerns (own illustration)

6.1.1 Details of OIB-directive-6

The OIB-directive-6 (OIB-Richtlinie 6, 2007) is also called "Energieeinsparung und Wärmeschutz" (saving of energy and thermal protection). This Austrian directive describes several specifications for residential and non-residential buildings. By the beginning of 2012 a new version of OIB-directive-6 will come into force. A draft (OIB-Draft, 2011) is already available.

The focus in this master thesis is concentrated on residential buildings. So the requirements of the actual OIB-directive-6 can be summarized by:

MSc Program Renewable Energy in Central & Eastern Europe

1. Definitions

E.g. used parameters of the OIB-directive-6 are summarized within this chapter.

- 2. Heating and cooling demand
 - a. Heating demand HWB (Heizwärmebedarf) for new buildings with maximum of 66,5 kWh/m²a:

$$HWB_{BGF,WG,max,Ref}[kWh/m^{2}a] = 19 * \left(1 + \frac{2.5}{l_{c}}\right)$$

(Note: The new OIB-directive-6 valid from 1st of January 2012 will have lower limits:

 $HWB_{BGF,WG,max,Ref}[kWh/m^2a] = 16 * \left(1 + \frac{3}{l_c}\right)$ with a maximum of 54,4 kWh/m²a)

- i. HWB is referred to the conditioned gross floor area BGF ("Bruttogrundfläche") and the reference climate (the same all over Austria with heating degree days HDT = 3400 °Kd)
- ii. $I_{\rm c}$... characteristic length as a parameter for the relevant geometry

$$I_c = \frac{V_B}{A_B}$$

- 1. $V_B \dots$ conditioned gross volume
- 2. $A_B \dots$ surface of the thermal building envelope
- 3. The larger the characteristic length, the more compact is the construction. That means, that less energy is needed to heat the building, when the surface of the building is as small as possible.
- iii. 8 kWh/m²a has to be reduced when there is a ventilation system with heat recovery installed.
- b. For buildings after larger reconstructions the heating demand has to be smaller than 87,5 kWh/m²a for projects from 2011 (also valid for the upcoming OIB-directive-6 in 2012) with the following formula:

$$HWB_{BGF,WG,max,Ref}[kWh/m^{2}a] = 25 * \left(1 + \frac{2,5}{l_{c}}\right)$$

- 3. Thermal quality of buildings
 - a. LEK-value ("Linie europäischer Kriterien" (Fachbegriffe-LEK (2011))) is used for the description of the thermal protection of buildings:

$$LEK = 300 * \left(\frac{U_m}{(2+l_c)}\right)$$

MSc Program Renewable Energy in Central & Eastern Europe

- i. $U_m \dots$ medium U-value of the building envelope
- ii. I_c ... characteristic length as a parameter for the relevant geometry
- iii. examples:
 - 1. Low energy house: 20
 - 2. Passive house: 10
- iv. OIB-directive-6 foresees the following LEK-values:
 - 1. New residential buildings: maximal LEK = 27
 - a. If ventilation system with heat recovery is installed, the maximal LEK is 31.
 - 2. For buildings after larger reconstruction: maximal LEK= 36
- b. To take into account the local climate situation of a building the maximal LEK-value is defined with "heating degree days" HGT ("Heizgradtage") of the building location:

 $LEK_{Standort} = LEK_{max} * 3400/HGT_{Standort}$

- i. HGT [Kd] ... heating degree days (Fachbegriffe-HGT, 2011) are the sum of the daily difference between the average temperature inside the house and the average outside temperature – calculated across all heating days within the yearly heating period.
- 4. Final energy demand EEB ("Endenergiebedarf") has to be smaller than:

 $EEB_{BGF,WG} \leq$ $HWB_{BGF,WG,max,local}$ $+WWWB_{BGF}$ $+1,05 * HTEB_{BGF,WG,Ref}$

i. *HWB_{BGF,WG,max,local}* ... HWB under local conditions:

 $HWB_{BGF,WG,max,local} = HWB_{BGF,WG,max,Ref} * HGT_{local}/3400$

- ii. $WWWB_{BGF}$... Hot water heating demand ("Warmwasserwärmebedarf") based on the gross floor area.
- iii. $HTEB_{BGF,WG,Ref}$... Specific energy demand of reference equipment of a heating system based on the gross floor area.
- 5. Heat transmitting construction components:
 - a. In addition to the definition of HWB and EEB the following U-values listed in OIB-directive-6 (OIB-Richtlinie 6, 2007) have to be taken into

account (similar limits will be valid for the upcoming version of the OIB-directive-6):

Table 1: Construction Components with U-value (OIB-direction-6) - (OIB-Richtlinie 6, 2007)

Construction Component	U-value [W/m ² K]
external wall (towards outdoor air)	0,35
small external wall (< 2% of the surface of	
the building towards outdoor air) - e.g.	
dormer	0,7
separating wall between different living-	
areas	0,9
walls towards not-conditioned (but frost-	
free) building parts	0,6
walls towards not-conditioned attic	0,35
walls towards other buildings at the site	
boundary	0,5
walls to ground	0,4
Windows towards not-conditioned building-	
areas	2,5
Windows towards outdoor air	1,4
other glass-areas towards outdoor air	1,7
skylights towards outdoor air	1,7
other transparent horizontal building-areas	
or situated in the pitch of the roof	2
ceiling towards outdoor air / attic - not	
isolated or ventilated / pitch of the roof	
towards outdoor air	0,2
inner ceiling towards not-conditioned	
building parts	0,4

6. Energy systems

- a. There are specific standards to fulfill for isolating pipes and lines (heating and hot water).
- b. Heat loss is to be reduced by the use of heat storage tanks.
- 7. Other requirements:
 - a. Minimize thermal bridges.
 - b. Airtight and windproof construction
 - c. In summer overheating of buildings is to avoid.
- 8. Energy pass
 - a. The Austrian energy pass ("Energieausweis") consists of
 - i. Scale of efficiency on the first page with $HWB_{BGF,Ref}$ calculated for reference climate conditions. The following categories can be shown:

MSc Program Renewable Energy in Central & Eastern Europe

- 1. Category A++: $HWB_{BGF,REF} \le 10 \text{ kWh/m}^2a$
- 2. Category A+: $HWB_{BGF,REF} \le 15 \text{ kWh/m}^2a$
- 3. Category A: $HWB_{BGF,REF} \le 25 \text{ kWh/m}^2 \text{a}$
- 4. Category B: $HWB_{BGF,REF} \le 50 \text{ kWh/m}^2 \text{a}$
- 5. Category C: $HWB_{BGF,REF} \le 100 \text{ kWh/m}^2a$
- 6. Category D: $HWB_{BGF,REF} \le 150 \text{ kWh/m}^2a$
- 7. Category E: $HWB_{BGF,REF} \le 200 \text{ kWh/m}^2 \text{a}$
- 8. Category F: $HWB_{BGF,REF} \le 250 \text{ kWh/m}^2a$
- 9. Category G: HWB_{BGF,REF} > 250 kWh/m²a

The rating can be summarized to:

- 1. Passive house: A++
- 2. Lowest energy house (Niedrigstenergiehaus): A, A+
- 3. Low energy house: B

Genali Celokuli i Sass und Robelinie 2003/91/05	Ĩ		Logo
GEBÄUDE			
Gebäudeart	Б	ibeut	
Gebäudezone	K.	atastralgemeinde	
Stube	6	6-Nummar	
PLZ/Drt	E	inlagezahl.	
Egentümerin	6	rundstädsnummer	
SPEZIFISCHER HEIZWÄRMEBEDARF BEI 3	400 HEIZGRADTAGEN (REF	ERENZKUMA)	
A ++			
A+			
A			
В			
c			
D			
E			
F			
G			
ERSTELLT			
ErstellerIn	0	rganisation	
ErstellerIn-Wr.	A	ustellungsdatum	
GWR-Zahl	G	iltigkeitsdatum	
Geschäftszahl.	U	nterschrift	

Figure 3: first page of Austrian energy-pass (OIB-Richtlinie 6, 2007)

ii. Page 2 of the energy-pass shows the detail results

- iii. The appendix of the energy pass shows the used standards and calculation basis.
- b. Minimum information given by the Austrian energy-pass:
 - i. HWB of the building and the comparison to a reference climate
 - ii. HTEB of the building
 - iii. EEB of the building
 - iv. Measures to improve the EEB of the building with a technical and economic view.

7 California Legislation – relevant for energy-efficient buildings

7.1 Legislation basis – valid all over USA

In 1995 the Residential Energy Services network (RESNET) (RESNET, 1995) was founded by the National Association of State Energy Officials and Energy Rated Homes of America with the aim to develop a national market for home rating systems. Those standards are the basis for several programs of the federal government for verification of building energy performance, e.g.:

- "ENERGY STAR"-program (RESNET HERS, 1995) of the Environmental Protection Agency
 - The HERS¹ Index of a house points out, if the home meets the ENERGY STAR performance guidelines. It is called a home energy rating tool, which makes different homes comparable.
 - RESNET defined a label called "HERS Index" which compares an individual home with a HERS reference home

¹ HERS ... home energy rating system

MSc Program Renewable Energy in Central & Eastern Europe

Figure 4: HERS Index - (RESNET - HERS, 1995)

- The index of 100 shows the scale basis. The closer the index moves to the zero-Energy-Home with a value of zero, the more energy-efficient is the house. 1 point reduction means 1% off the energy consumption of the Reference-House.
- Therefore construction plans are analyzed, also onsite inspections are done (e.g. blower door test).
- The usage of those standards are voluntarily but is also necessary when mortgages are needed.
- Program of the U.S. Department of Energy's Building America Program
- Federal tax incentives

7.2 Legislation basis – focus on California

The California Office of Administrative Law (OAL) publishes the regulations of the state California with the California Code of Regulations (CCR). There are 28 titles within these regulations. Those regulations are adapted by state agencies when there are necessities for changes e.g. because of new state laws or clarifications.

The 24th title (Guide - Title 24, 2010) of the CCR is called "Title 24" is relevant for building-issues (e.g. construction, installations) and called "California Building Standards Code". The California Building Standards Commission (CBSC) – consisting of 10 members (e.g. architect, mechanical engineer) – appointed by the Governor of California – has the responsibility for modification of this part of the

CCR. Cities and counties with their different climatic conditions throughout California are allowed to be much stricter in their building-regulations as Title 24.

Title 24 is divided in several different parts:

Figure 5: Parts of Title 24 (Guide - Title 24, 2010) - part 7 is currently vacant.

Part 6 of Title 24 focuses on energy-topics and is named "The Energy Efficiency Standards for Residential and Nonresidential Buildings". In 1978 the Energy Efficiency Standards for Residential and Nonresidential Buildings (CAL-2008Standards, 2008) were written down to give the legislative basis reducing the energy consumption in California. To take into account changes of the last years the California Energy Commission regularly do some adoptions to the Building Energy Efficiency Standards of the California Code of Regulations (CCR). 2008 was the last update for the so called 2008-Standards. On the 1st of January 2010 the current standards (2008) went into effect, which means, that each building with building permits after this date, have to follow those 2008-Standards. The California Energy Commission stated several reasons adopting the 2008 changes to the Building Energy Standards (CAL-2008 Energy Commission, 2010):

1. "To provide California with an adequate, reasonably-priced, and environmentally-sound supply of energy.

- To respond to Assembly Bill 32, the Global Warming Solutions Act of 2006, which mandates that California must reduce its greenhouse gas emissions to 1990 levels by 2020
- 3. To pursue California energy policy that energy efficiency is the resource of first choice for meeting California's energy needs.
- 4. To act on the findings of California's Integrated Energy Policy Report (IEPR) that Standards are the most cost effective means to achieve energy efficiency, expects the Building Energy Efficiency Standards to continue to be upgraded over time to reduce electricity and peak demand, and recognizes the role of the Standards in reducing energy related to meeting California's water needs and in reducing greenhouse gas emissions.
- 5. To meet the West Coast Governors' Global Warming Initiative commitment to include aggressive energy efficiency measures into updates of state building codes.
- 6. To meet the Executive Order in the Green Building Initiative to improve the energy efficiency of nonresidential buildings through aggressive standards."

7.3 2008 Building Energy Efficiency Standards – focused on residential buildings

The California Energy Commission describes in her paper "regulations / standards: 2008 building energy – efficiency standards for residential and nonresidential buildings" (CAL-2008 Energy Commission, 2010) and in the paper "2008 building energy efficiency standards – commission manual" (CAL-2008 Manual, 2008) to describe their standards for low-rise residential buildings. The aims of those standards are:

- reducing the energy costs
- Increasing the availability of electricity (to reduce the electric demand!)
- More comfort of energy efficient homes
- Economic benefit, reducing global warming
- Reducing the impact of buildings to our environment.

New homes have to follow those latest building-energy-efficiency standards. Mandatory measures have to be fulfilled. There are two methods for complying with low-rise residential energy budget described in the Commission Manual (CAL-2008 Manual, 2008):

a) Prescriptive approach: is the simplest way

MSc Program Renewable Energy in Central & Eastern Europe

- Choose from several packages (C, D, E) with individual parameters for different components of the building
 - i. Package C: allows electric resistance space and water heating systems
 - ii. Package D: (is also the basis of the performance approach)
 - iii. Package E: defines usage of high-energy-efficient components
- Little flexibility but easy
- The individual prescriptive packages regulate the necessary insulation of each building component. To meet these requirements, there are two possibilities:
 - Install the necessary installation (from the limit-listing of the Commission Manual) in wood-framed construction. The regulations for package C call for more insulation.
 - 2. Use lower U-values than the according U-values in the Reference Joint Appendix JA4 (JA4, 2008), that are referred to wood-framed constructions. Then it is possible to use different assembly as mentioned in the paper JA4.
- b) Performance approach: more complicated
 - Design flexibility possible
 - An approved computer program is needed to determine the annual Time Dependent Valuation (TDV) energy. The software calculates what type of energy that is when used (electricity, gas, etc.)
 - Computer models get the energy budget for space conditioning and uses package D of the prescriptive package. During the calculation better values can be achieved, but each assembly has to meet minimum R-values / U-values, that are defined with "mandatory measures" in the Compliance Manual.

The house builders have to follow the "Guide to California Climate Zones" (CLIM, 2011) to get the right parameters for the climate data (e.g. temperature, wind speed etc.): 16 climate zones (CZ) were established (CZ, 2011), that represent an energy budget as a threshold of the maximum amount of energy a building can be built to consume per year:

MSc Program Renewable Energy in Central & Eastern Europe

- CZ 1: Arcata
- CZ 2: Santa Rosa
- CZ 3: Oakland
- CZ 4: Sunnyvale
- CZ 5: Santa Maria
- CZ 6: Los Angeles
- CZ 7: San Diego
- CZ 8: El Toro
- CZ 9: Pasadena
- CZ10: Riverside
- CZ11: Red Bluff
- CZ12: Sacramento
- CZ13: Fresno
- CZ14: China Lake
- CZ15: El Centro
- CZ16: Mount Shasta

Figure 6: Climate zones in California (CLIM, 2011)

Similar as in Austria low-rise buildings need a permit from the local enforcement agency before building. The agency checks the plans and specifications and also verifies the compliance with the Building Energy Efficiency Standards. After finishing the building the enforcement agency approves the final house with the certificate of occupancy. In some cases (e.g. heat pumps, air condition systems, building envelope sealing, low leakage ducts etc.) third party inspectors (HERS rater) are invited to do special tests or verifications.

The building envelope has to fulfill several features: e.g.

- Fenestration:
 - Package C sets U-factor = 0,38 for all California climate zones
 - Package D sets U-factor = 0,40 for all zones
 - Package E: for climate zone 5 and 6 there are special solar heat gain coefficient-requirements needed (SHGC = 0,40)
 - SHGC (Window, 2011) is used in the USA and describes the increase of the temperature inside a house/room by solar radiation. The lower SHGC the less is the solar gain. SHGC is the fraction of incident radiation going through the window.
 - In Europe the G-value (solar factor) is used as a percentage.

7.4 Home Energy Rating in California

The California Energy Commission (CAL-HERS, 2011), (HERS-regulations, 2009) is responsible for implementing a HERS-program in California. Therefore few software products – used for rating – are certified, when they are in compliance with the HERS Regulations. Only specially trained HERS-raters are allowed to do the ratings.

California has developed a "Whole-House Home Energy Rating" (HERS-Booklet, 2011) to analyze the efficiency of the entire home (new and already existing homes). The rating is also called California Home Energy Audit, which is based on an inspection of the home by the HERS-rater. The California Energy Commission (HERS-manual, 2008) defines the requirements for HERS-software and the raters.

Master Thesis MSc Program Renewable Energy in Central & Eastern Europe

The owner of the rated buildings gets a report and recommendations (e.g. test and seal air leaks in building envelope, increase attic insulation) for cost-effective improvements:

Figure 7: official California Home Energy Rating Certificate with the seal of the California Energy Commission (HERS-Booklet, 2011)

Here again – similar to the US-energy-star-version: The lower the HERS index (out of a 250 point scale) of the house the more energy efficient is the building. An index of 100 is the rating of the reference building of California's 2008 Building Energy Efficiency Standards. The California HERS index is defined (HERS-manual, 2008) by:

HERS Index =
$$\frac{TDV_{Rated} - TDV_{PV}}{TDV_{Reference}} x100$$

With:

- *TDV*_{Rated}
 TDV (Time Dependent Value) energy of the rated home [kBtu / year]
- *TDV* energy produced by on-site PV-systems of other renewable energy systems [kBtu / year]; when not including on-site-generation, then the value is set to zero.
- TDV_{Reference} TDV energy of the reference home [kBtu / year]

Modeling rules are defined by the California Energy Commission.

Energy bills can be analyzed in that way, that the data is put into relation of the outdoor temperature data to differ between monthly and yearly energy-demand.

There are federal tax credits available, HERS rating is needed. Also loan programs (e.g. Energy Efficient Mortgage – EEM), that are specialized to energy efficiency improvements, need the HERS rating of an certified rater.

8 Calculation of energy efficiency

4 building-examples in Austria and one example from California were chosen to focus on the differences of both legislative energy-efficiency- basis in Austria and California. The Austrian houses are marked in the following map.

Figure 8: Austrian examples for the Austrian energy-pass-calculation (Google Earth, 2011)

Table 2: parameter of the used examples (own table)

				Schwarzenberg /	San Francisco /
Location	Traunkirchen	Baden	Altenfelden	Hochficht	California
general information:					
federal country	Upper Austria	Lower Austria	Upper Austria	Upper Austria	California
built	1992	2010	1979	1910	1961
sea level [m]	580	237	580	630	154
HGT [Kd]	4.038	3.389	4.158	4.220	1.921
standard outdoor temperature [°C]	- 14,3	- 12,5	- 15,9	- 15,3	not necessary
temperature inside house [°C]	20	20	20	20	20
hot-water with	heat pump	air heating pump	gas	wood-stove	gas
heating with	heat pump	air heating pump	gas	wood-stove	gas

8.1 Calculation of energy efficiency with the Austrian methodology – the "energy pass" (Energieausweis)

The detail energy-pass-calculation is included in the appendix. Basis of the calculation is the actual OIB-directive-6 (side-step to the upcoming version in 2012 is included).

8.1.1 Example 1 – single family house in Traunkirchen / Upper Austria

The first calculation example is an insulated log-home built in 1992 situated on the northern slope of a hill next to the Traunsee in Upper Austria. The sea-level is about 580 m (DORIS, 2011).

Figure 9: position of the single-family house in Traunkirchen (Google Map, 2011)

The house is used the whole year and heated by a heat-pump. Hot water is also generated by this heat-pump.

MSc Program Renewable Energy in Central & Eastern Europe

Figure 10: garden-view to the building (Traunkirchen), (own photograph)

The relevant U-values for the Austrian energy-pass show now the following situation (using building plans and information of the house owner):

		limits of Austrian OIB-
Construction Compound (Traunkirchen)	U-values [W/m ² K]	directive-6
ceiling towards unconditioned attic	0,163	0,20
external wall (towards outdoor air)	0,251	0,35
wintergarden (non-glass-part)	0,855	0,70
pitch of the roof	0,169	0,20
windows and door	1,098	1,70
ground-floor (wintergarden)	0,235	0,40
ceiling towards unconditioned cellar	0,196	0,40
external wall (towards non-heated areas)	0,246	0,35
external wall (towards non-heated wintergarden	0,246	0,35

Table 3: U-values of the building in Traunkirchen and their corresponding limit of the OIBdirective-6 (own calculation based on energy pass calculation with (GEQ, 2011)

The individual construction-compounds still fit to the actual values of the OIBdirective-6. Only for the non-glass-winter garden-part with very few square-meters has a slight difference to the today-requirement.

The house is rated with "C":

Master Thesis MSc Program Renewable Energy in Central & Eastern Europe

Figure 11: rating of building in Traunkirchen with Austrian energy-pass (own calculation based on (GEQ, 2011))

When we compare the calculated HWB, the almost 20 year old building still fulfills approximately the thermal requirements of the actual OIB-directive-6 for new houses:

Table 4: HWB-details for the calculated HWB for the reference-climate as well as the location itself (own calculation based on (GEQ, 2011))

HWB-details [kWh/m²a]:	
BGF [m ²]	207,20
conditioned gross volume [m ³]	634,84
surface of the thermal building envelope [m ²]	484,06
characteristic length [m]	1,31
compactness (A/V) [1/m]	0,76
calculated HWB_(BGF, Ref) [kWh/m ² a]	55,97
heating demand (reference) per year [kWh]	11597
calculated HWB_(BGF, local) [kWh/m ² a]	61,89
heating demand (local) per year [kWh]	12.823

The above stated heating demand of about 13000 kWh for the whole year was confirmed by the homeowner.

To check if the calculated HWB – in the fictitious case it is a new building - fits to the actual and to the upcoming version of the OIB-directive-6 the following calculations for the maximum allowed HWB were done with the above data:

MSc Program Renewable Energy in Central & Eastern Europe

Table 5: calculated HWB versus maximum HWB for new buildings (OIB-directive-6) – own calculation based on (GEQ, 2011))

if the building will be built today, the following margins have to be fulfilled to be conform to OIB-directive-6:			
when built < 2012: formula valid for actual OIB- directive-6 (2007)	$HWB_{BGF,WG,max,Ref}[kWh/m^{2}a] = 19 * \left(1 + \frac{2.5}{l_{c}}\right)$		
maximum HWB_(BGF,WG,max,Ref) [kWh/m ² a]	—		
(2007): max. 66,5 kWh/m² a	55,22		
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]			
(2007) - local	65,58		
when built > 2011: formula valid for actual OIB-	$HWB_{RGEWGmax} \operatorname{Per}[kWh/m^2a] = 16 * \left(1 + \frac{3}{m}\right)$		
directive-6 (draft - valid from 1st of January 2012)			
maximum HWB_(BGF,WG,max,Ref) [kWh/m ²			
a](draft - valid from 1st of January 2012): max. 54,4			
kWh/m² a	52,60		
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]			
(draft - valid from 1st of January 2012) - local	62,47		

The calculated HWB of the energy-pass (local and reference) has to be compared with those margins:

Figure 12: HWB - Traunkirchen for new buildings (own illustration based on my calculation with (GEQ, 2011))

If the house owner wants to build the same house once more now – in the year 2011, the whole energetic system fulfills the local 2007-specification of OIB-directive-6 (65,58 kWh/m²a). The HWB for the reference-climate already reaches the margin of 55,22 kWh/m²a.

But if built 2012 (next year) when the OIB-6-specification (HWB = 62,47 kWh/m²a for the local value) is much stricter (OIB-Draft, 2011). To fulfill the limits of the reference climate (52,6 kWh/m²a), the owner has to think over to enlarge the insulation layer in

the ceiling to the attic and the pitch of the roof a little bit (15 cm). Also the external walls need more insulation of about 15 cm. 15 additional centimeter of insulation will also be added to the insufficient construction part in the winter garden.

The calculation of the Austrian energy-pass shows the following situation and is now rated with "B":

Figure 13: HWB of the house in Traunkirchen with 15 cm more insulation (case of a new building) – own illustration based on my calculation with (GEQ, 2011))

Different from above limit-values for new houses is the situation for larger reconstructions:

Table 6: margins of HWB for improvements (own calculation based on (GEQ, 2011))

improvements (case of larger reconstructions) of the existing building ==> therefore the following margins have to be fulfilled after		
the reconstruction for the OIB-directive-6:		
formula valid for actual OIB-directive-6 (2007 and	$HWB_{BGF,WG,max,Ref}[kWh/m^{2}a] = 25 * \left(1 + \frac{2,5}{l_{c}}\right)$	
new draft)		
maximum HWB_(BGF,WG,max,Ref) [kWh/m ² a]:		
max. 87,5 kWh/m ² a	72,66	
maximum HWB_(BGF,WG,max,local) [kWh/m ² a] -		
local	86,29	

The limits for reconstruction an existing building are much bigger than for new buildings.

MSc Program Renewable Energy in Central & Eastern Europe

Figure 14: HWB of the house in Traunkirchen (case of reconstruction) – own illustration based on my calculation with (GEQ, 2011))

Now it is obvious, that using both OIB-directive-6 (2007 and upcoming 2012) no improvements are seen necessary.

8.1.2 Example 2 – single family house in Baden / Lower Austria

This new family-house was built in 2010 and is situated next to the vineyards in Baden at the edge of the town.

Figure 15: position of the single-family house in Baden (Google Map, 2011)

It is a design of timber-frame-construction executed as a prefabricated building. An air-heating-pump is responsible for hot water and heating. It is used the whole year.

Figure 16: garden-view to the building (Baden) - own photograph

The Austrian energy-pass was calculated with the following U-values of the individual construction compounds (using the building plans, technical descriptions and information of the house owner):

		limits of Austrian OIB-
Construction Compound (Baden)	U-values [W/m ² K]	directive-6
ceiling towards outdoor air	0,13	0,20
external wall (towards outdoor air)	0,14	0,35
ceiling (sleeping room) towards outdoor air	0,16	0,70
ceiling towards unconditioned cellar	0,23	0,40
external wall (towards non-heated areas)	0,14	0,35
windows and door	0,898	1,70

Table 7: U-values of the building in Baden – own table based on calculation with (GEQ, 20)11)
---	------

Of course the U-values (new house) fit perfectly to the limit-values. The building is rated with "B":

MSc Program Renewable Energy in Central & Eastern Europe

Figure 17: rating of house in Baden – own calculation based on (GEQ, 2011)

The HWB is expected to fit to the limits, too:

Table 8: HWB-details for house in Baden - own calculation based on (GEQ, 2011)

HWB-details [kWh/m ² a]:	
BGF [m ²]	208,46
conditioned gross volume [m ³]	657,78
surface of the thermal building envelope [m ²]	489,88
characteristic length [m]	1,34
compactness (A/V) [1/m]	0,74
calculated HWB_(BGF, Ref) [kWh/m ² a]	38,16
heating demand (reference) per year [kWh]	7954
calculated HWB_(BGF, local) [kWh/m ² a]	37,56
heating demand (local) per year [kWh]	7830

Figure 18: HWB-Baden for new buildings – own illustration based on my calculation with (GEQ, 2011)
If the house owner wants to build the same house once more now, the actual OIBdirective-6 as well as the upcoming one (valid from 2012) sees no need for improvements.

8.1.3 Example 3 – single family house in Altenfelden / Upper Austria

This house is located at the edge of Altenfelden / Upper Austria and was built in 1979. Altenfelden can be found in the heart of the northern part of Upper Austria – Mühlviertel.

Figure 19: map around Altenfelden (Google Map, 2011)

It is now mainly used as weekend-home. The calculation is done for whole-year use to compare the results with other examples. Hot-water-supply and heating are done by gas.

Figure 20: street-view to the building in Altenfelden – own photograph

The Austrian energy-pass was done with the following current U-values (using building plans and information of the house owner):

Table 9: U-values of the building	(status now) - own calculation	based on (GEQ, 2011)
-----------------------------------	--------------------------------	----------------------

		limits of Austrian OIB-
Construction Compound (Altenfelden)	U-values [W/m ² K]	directive-6
ceiling towards unconditioned attic	0,348	0,20
wall towards staircase	1,361	0,60
external wall (towards outdoor air) - with eternit layer	0,865	0,35
external wall (towards outdoor air)	1,142	0,35
ground-floor (unconditioned cellar)	0,654	0,40
windows and door	1,863	1,70

All above mentioned construction compounds are larger than the limits of the OIBdirective-6.

The house is rated with "E":

MSc Program Renewable Energy in Central & Eastern Europe

Figure 21: rating of building in Altenfelden with Austrian energy-pass – own calculation based on (GEQ, 2011)

The house owner has to think over more insulation for this more than 30 year old building. When the HWB-limits for new buildings are taken into account – the situation is as followed:

Table 1	10:	HWB-details	for t	the	calculated	HWB	in	Altenfelden	– own	calculation	based	on (GEQ,
2011)												-	

HWB-details [kWh/m²a]:	
BGF [m ²]	149,21
conditioned gross volume [m ³]	483,44
surface of the thermal building envelope [m ²]	476,62
characteristic length [m]	1,01
compactness (A/V) [1/m]	0,99
calculated HWB_(BGF, Ref) [kWh/m ² a]	195,56
heating demand (reference) per year [kWh]	29.180
calculated HWB_(BGF, local) [kWh/m ² a]	245,64
heating demand (local) per year [kWh]	36.653

The check, if the calculated HWB still fits to the actual OBI-directive-6, shows big discrepancies, when the margins for new houses are analyzed:

MSc Program Renewable Energy in Central & Eastern Europe

Table 11: margins (OIB-directive-6) for new building in Altenfelden – own calculation based on (GEQ, 2011)

if the building will be built today, the following margins have to be fulfilled to be conform to OIB-directive-6:				
when built < 2012: formula valid for actual OIB- directive-6 (2007)	$HWB_{BGF,WG,max,Ref}[kWh/m^{2}a] = 19 * \left(1 + \frac{2.5}{l_{e}}\right)$			
maximum HWB_(BGF,WG,max,Ref) [kWh/m² a]				
(2007): max. 66,5 kWh/m² a	65,83			
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]				
(2007) - local	80,51			
when built > 2011: formula valid for actual OIB-	$HWB_{BGFWGmax,Ref}[kWh/m^2a] = 16 * \left(1 + \frac{3}{m}\right)$			
directive-6 (draft - valid from 1st of January 2012)				
maximum HWB_(BGF,WG,max,Ref) [kWh/m ²				
a](draft - valid from 1st of January 2012): max. 54,4				
kWh/m² a	54,40			
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]				
(draft - valid from 1st of January 2012) - local	66,53			

Figure 22: HWB-Altenfelden for new buildings – own illustration based on my calculation with (GEQ, 2011)

It is obvious, improvements of the insulation and of the windows are necessary, to fulfill the requirements of OIB-directive-6:

- Wall: 14 cm of additional insulation
- Floor: 12 cm of additional insulation
- Ceiling: 15 cm of additional insulation
- Change of windows

MSc Program Renewable Energy in Central & Eastern Europe

Table 12: U-values after the planned improvements (Altenfelden) – own calculation based on (GEQ, 2011)

		limits of Austrian OIB-
Construction Compound (Altenfelden - improvements)	U-values [W/m ² K]	directive-6
ceiling towards unconditioned attic	0,127	0,20
wall towards staircase	0,201	0,60
external wall (towards outdoor air) - with eternit layer	0,197	0,35
external wall (towards outdoor air)	0,195	0,35
ground-floor (unconditioned cellar)	0,194	0,40
windows and door	1,061	1,70

New details for HWB, when building is improved by more insulation:

Table 13: HWB-details (Altenfelden) - with improvements – own calculation based on (GEQ, 2011)

HWB-details [kWh/m²a]:	
BGF [m ²]	149,21
conditioned gross volume [m ³]	523,73
surface of the thermal building envelope [m ²]	491,48
characteristic length [m]	1,07
compactness (A/V) [1/m]	0,94
calculated HWB_(BGF, Ref) [kWh/m ² a]	51,06
heating demand (reference) per year [kWh]	7.619
calculated HWB_(BGF, local) [kWh/m ² a]	63,92
heating demand (local) per year [kWh]	9.538

With above improvements the OIB-directive-6 limits (both: the actual version and the upcoming one) for new houses are fully fulfilled:

Figure 23: OIB-directive-6 limits for new buildings (Altenfelden) – own illustration based on my calculation with (GEQ, 2011)

Reconstruction-projects use lower limits – so they are again also fulfilled:

Figure 24: OIB-directive-6 limits for reconstruction projects in Altenfelden – own illustration based on my calculation with (GEQ, 2011)

With the reconstruction project HWB will be improved from 245,64 kWh/m² to 63,92 kWh / m² and therefore the heating demand will come from 36.653 kWh to 9.538 kWh. With simply upgrading the assembly of the building envelope it is possible to save energy for heating and money.

To know which part of the average income is needed for heating in this house I used the net household income data from Statistik Austria (Statistik Austria, 2011), (Statistik Austria _ 2009, 2011) and the gas-price of today – 2011 – from e-control using the tariff-calculator (Tarifkalkulator, 2011) and the years before (Statistik Austria_gasprice, 2011). The analysis back goes until 2003, when gas-market in Austria was fully liberalized (October 2002):

MSc Program Renewable Energy in Central & Eastern Europe

Table 14: mean Upper-Austrian household net-income per household related to the costs for
heating in Altenfelden – own calculation based on (Statistik Austria _ 2009, 2011),
(Tarifkalkulator, 2011) and (Statistik Austria_gasprice, 2011)

		heating domand			heating demand		
house in:	Altenfelden	(status now) [kWh]	36.653		[kWh]	9.538	
					heating demand	heating demand	
	Austrian net income	average price per	price for heating [gas] -	price for heating [gas] -	(status now) % of net	(upgraded) % of net	
Upgrading	per year	kWh gas	status now	status upgraded	income	income	
2003	€ 22.228,00	€ 0,0545	1997,5885	519,821	8,99%	2,34%	
2004	€ 23.421,00	€ 0,0545	1997,5885	519,821	8,53%	2,22%	
2005	€ 24.741,00	€ 0,0522	1913,2866	497,8836	7,73%	2,01%	
2006	€ 26.090,00	€ 0,0522	1913,2866	497,8836	7,33%	1,91%	
2007	€ 27.313,00	€ 0,0631	2312,8043	601,8478	8,47%	2,20%	
2008	€ 28.410,00	€ 0,0631	2312,8043	601,8478	8,14%	2,12%	
2009	€ 29.849,00	€ 0,0652	2389,7756	621,8776	8,01%	2,08%	
2010 (assuming + 2,3%)	€ 30.535,53	€ 0,0652	2389,7756	621,8776	7,83%	2,04%	
2011 (assuming + 2,3%)	€ 31.237,84	€ 0,0700	2565,71	667,66	8,21%	2,14%	
price for 2011 from www	v.e-control.at "Tarifkal	kulator"					
nvises 2002 to 2010 from Statistic Austria assuming 1 m ³ ass contains 10 LAM							

If the house owner does not improve the whole insulation layer of his house he has to pay more than 8% of his net income for heating. With upgrading the house envelope a reduction to 2% of his net income is possible.

Calculating predetermined standard rates for improving the house is difficult to mention. A builder and the energy consultant have to check the house on-site to discuss the possibilities together with the house owner. Depending on the necessary technical improvements of the building envelope (mold, thermal bridge, construction damages, is existing insulation ok etc.) the best solution must be found. It has to be taken into account that the biggest costs come from the building site facilities and scaffolds and of course the working time itself. So it is not really essential, if one or two layer of insulation has to be put on the walls. The paper "Wirtschaftlichkeit von Wärmedämm-Maßnahmen im Gebäudebestand 2005" (Passivhaus Institut, 2005) shows that there is a range of the optimal U-value, where the economic earnings (saving-costs for heating bigger than annual annuities) are maximized. This range depends on the kind of necessary improvements and their costs, the energy costs etc.

It can be assumed, that a large reconstruction project with more insulation (whole building envelope) and more efficient windows – without changing the heating system – has to be calculated with about 50.000,-- Euros. A rough calculation of amortization says:

$Amortization = \frac{cost \ of \ the \ improvement}{(costs \ of \ heating \ demand_{OLD} - costs \ of \ heating \ demand_{improved})}$ $= \frac{50000}{2565,71-667,66} = 26,34 \ years.$

Taking into account a discount rate of 5% and an increase of the price for heating with annual 2%, it can be calculated with the NPV (net present value):

Figure 25: NPV for investing in upgrading the building envelope (inclusive windows) – based on own calculation

It can be seen, that the NPV is still negative after 25 years, when there are no additional incentives from the country.

But in most cases the house owner has to think about a new heating system. There are additional costs, but there is a chance to install a more efficient system using renewable energy. Of course the impulses for someone investing money in his house are multiple. An amortization time of more than 25 years can only be argued when windows are already for example leaky and an investment is essential for comfort-reasons. Of course the decision to spend money in this way also depends on the age of the resident. On the other hand an upgraded house will be worth a higher price, when it is sold. The "OÖ Energiesparverband" (Energiesparend - Infomappe, 2011) suggested the following steps, when a big reconstruction project is not possible:

 One comparatively cheap starting point for improving the house energy condition is to insulate the upper ceiling of the house. Costs of about 2000 Euro can decrease the heating-bill with about 20% Renewable Energy in Central & Eastern Europe

- Changing the windows to U-values of 0,5 0,7 W/m² K (about 20.000,--Euro)
- Improve insulation of the ceiling of the cellar Costs of about 2500 Euro can decrease the heating-bill with about 10%.
- If improvement of the façade is necessary it should be combined with additional insulation.
- Check the hot-water and heating-facilities (add solar thermal)

In Upper Austria (OÖ - Wohnbauförderung, 2011) there is the possibility for people/families with lower than certain income limits to get cheap money from the country, to encourage more people to invest in energy-efficiency. It is necessary, that HWB after improvement is not higher than 65 kWh/m²a. The Upper Austrian housing program gives grants to annuity repayments to bank loans of maximum 37.000 Euro. It has to be mentioned that in Austria credits for reconstruction projects can lower the income tax.

8.1.4 Example 4 – weekend home in Schwarzenberg/Hochficht / Upper Austria

Between the German and Czech-border the 4th Austrian calculation-example can be found.

Figure 26: position of the weekend-home in Schwarzenberg (Google Map, 2011)

This house in the skiing-area in Hochficht (Upper Austria) is quite an old building and almost 100 years old. The beautiful door in front shows the year "1910". Several adaptations were done about 20 years ago. The calculation was done with the assumption, that the house will now be used the whole year. A wood-stove is used for hot water and heating.

Figure 27: entrance-view at the house in Schwarzenberg – own photograph

The following U-values are the input-data (based on building plans and information of the house owner) for the Austrian energy-pass-calculation to fix the current status.

Table 15: U-values for building in Schwarzenberg – based on (GEQ, 2011)

		limits of Austrian OIB-
Construction Compound (Schwarzenberg)	U-values [W/m ² K]	directive-6
ceiling towards unconditioned attic (kitchen)	0,7	0,20
ceiling towards unconditioned attic (sleeping room)	3,63	0,20
ceiling towards unconditioned attic (living room)	0,15	0,20
external wall (towards outdoor air) - granite	0,74	0,35
external wall (towards outdoor air) - brick	0,77	0,35
ground-floor	0,46	0,40
external wall (towards non-heated areas) - shelter (brick)	0,76	0,35
external wall (towards non-heated areas) - shelter (granite)	0,7	0,35
windows and door	2,205	1,70

Almost each construction compound has increased values. Only the ceiling in the living-room seems to be well insulated.

This house in Schwarzenberg is rated with "F":

MSc Program Renewable Energy in Central & Eastern Europe

Figure 28: rating for building in Schwarzenberg – own calculation based on (GEQ, 2011)

Basis of the rating are the following HWB-values:

Table 16:	HWB-details	for house in	Schwarzenberg – owr	a calculation	based on (GEQ.	2011)
1 4 10 101	IIII aotano		oonnan zonsong onn	- ourouration	babba bii j	,,	

HWB-details [kWh/m²a]:	
BGF [m ²]	152,67
conditioned gross volume [m ³]	446,47
surface of the thermal building envelope [m ²]	455,86
characteristic length [m]	0,98
compactness (A/V) [1/m]	1,02
calculated HWB_(BGF, Ref) [kWh/m ² a]	240,71
heating demand (reference) per year [kWh]	36.750
calculated HWB_(BGF, local) [kWh/m ² a]	310,52
heating demand (local) per year [kWh]	47.408

To check the deviation to the OIB-directive-6 margins, the following calculations for the maximum allowed HWB were done with above data.

MSc Program Renewable Energy in Central & Eastern Europe

Table 17: calculated HWB versus maximum HWB for new building in Schwarzenberg – own calculation based on (GEQ, 2011)

if the building will be built today, the following margins have to be fulfilled to be conform to OIB-directive-6:					
when built < 2012: formula valid for actual OIB- directive-6 (2007)	$HWB_{BGF,WG,max,Ref}[kWh/m^2a] = 19 * \left(1 + \frac{2.5}{l_e}\right)$				
maximum HWB (BGE WG max Ref) [kWh/m ² a]					
(2007): max. 66,5 kWh/m² a	66,50				
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]					
(2007) - local	82,54				
when built > 2011: formula valid for actual OIB-	$HWB_{RGEWGmax} \operatorname{Per}[kWh/m^2a] = 16 * \left(1 + \frac{3}{m}\right)$				
directive-6 (draft - valid from 1st of January 2012)					
maximum HWB_(BGF,WG,max,Ref) [kWh/m ²					
a](draft - valid from 1st of January 2012): max. 54,4					
kWh/m² a	54,40				
maximum HWB_(BGF,WG,max,local) [kWh/m² a]					
(draft - valid from 1st of January 2012) - local	67,52				

So, for the assumption, the same building is built once more now in 2011 or after, the graph for the comparison shows the following picture:

Figure 29: HWB-Schwarzenberg for new buildings – own illustration based on my calculation with (GEQ, 2011)

Due to the small insulation the calculated HWB is more than 3,5 times higher than the allowed margins of the OIB-directive-6.

If the house-owner wants to build the house today ones more, he has to add a thick insulation layer around the whole surface:

• 12 cm insulation on the outer part of the walls

MSc Program Renewable Energy in Central & Eastern Europe

- 24 cm additional insulation on the ceiling towards the unconditioned attic
- 16 cm insulation on the floor (change existing insulation)
- Better windows / door: at least U = 1,1 W/m²K

Table 18: U-values for the insulation-improvements in Schwarzenberg – own calculation based on (GEQ, 2011)

		limits of Austrian OIB-
Construction Compound (Schwarzenberg - improvements)	U-values [W/m ² K]	directive-6
ceiling towards unconditioned attic (kitchen)	0,144	0,20
ceiling towards unconditioned attic (sleeping room)	0,173	0,20
ceiling towards unconditioned attic (living room)	0,169	0,20
external wall (towards outdoor air) - granite	0,197	0,35
external wall (towards outdoor air) - brick	0,199	0,35
ground-floor	0,214	0,40
external wall (towards non-heated areas) - shelter (brick)	0,197	0,35
external wall (towards non-heated areas) - shelter (granite)	0,198	0,35
windows and door	1,109	1,70

The whole building has to be discussed with a builder to find the best technicalplanning solution for the house owner together with the energy consultant to reach the HWB-margins best.

From HWB-concerns point of view the above input-data changes the whole system:

Table 19: HWB-details for improvements in Schwarzenberg – own calculation based on (GEQ, 2011)

HWB-details [kWh/m²a]:	
BGF [m ²]	152,67
conditioned gross volume [m ³]	488,02
surface of the thermal building envelope [m ²]	470,53
characteristic length [m]	1,04
compactness (A/V) [1/m]	0,96
calculated HWB_(BGF, Ref) [kWh/m ² a]	52,07
heating demand (reference) per year [kWh]	7.950
calculated HWB_(BGF, local) [kWh/m ² a]	67,31
heating demand (local) per year [kWh]	10.276

So for a fictitious new building the following results can be seen, when improving the U-values (building is now rated with "C"):

MSc Program Renewable Energy in Central & Eastern Europe

Figure 30: HWB-Schwarzenberg (new building) - own calculation based on (GEQ (2011))

In this building-example for larger reconstructions I have to use lower limit-values and get the following situation:

Figure 31: HWB - Schwarzenberg (reconstruction-project) - own calculation based on (GEQ (2011))

The new improvements fit perfectly to both margins (for new buildings and for larger reconstructions). The house-owners are well prepared for future rise in energy-prices.

To get a feeling about the payback time of this investment of reconstruction the calculation has to be done with the following assumption, that there is no change in providing hot water and heating, because the house-owner has a little wood for his own consumption. So it can be assumed, that there are no costs for his energy-demand. The improvements have to be argued with more comfort and being a part of a sustainable community.

8.1.5 Example 5 – single family house in San Francisco / California

This single-family house is situated in San Francisco nearby the Golden Gate Park.

Figure 32: location of the investigated house in San Francisco (Google Earth, 2011)

The house was built in 1961 in typical timber-frame-construction. The windows were changed in 2000 into double-glazed windows.

Master Thesis MSc Program Renewable Energy in Central & Eastern Europe

Figure 33: street front-view of the San Francisco-house (Google Map, 2011)

The house is heated with gas and has also an air condition system. Because there are no detailed building plans available, several assumptions according to the discussion with the house-owner have to be done to do the further calculations.

The HWB should be calculated with the Austrian energy-pass – in the same way as the above examples; that means, that the used reference-climate is also the Austrian mean climate with HGT = 3400 Kd. So the calculations of the software-programe GEQ (GEQ, 2011) has to be adapted with the correct HGT for San Francisco with 1921 Kd (worldclimate, 2011) in that area to find an assumption for the local valid HWB (without considering the detailed heating conditions in San Francisco).

The following U-values are used for the calculations:

Table	20 :	U-values	compared	to	the	limits	of	the	Austrian	OIB-directive-6	-	own	calculation
based	on ((GEQ, 201	1)										

		limits of Austrian OIB-
Construction Compound (San Francisco)	U-values [W/m ² K]	directive-6
ceiling towards outdoor air	0,502	0,20
external wall (towards outdoor air)	0,35	0,35
inner ceiling towards unconditioned garage	0,35	0,40
windows and door	1,434	1,70

The ceiling to the roof doesn't fit to the Austrian OIB-directive-6. The external walls hit the limit exactly.

The energy-pass calculation with the Austrian reference shows the following picture:

Table 21: HWB-details (San Francisco) – own calculation based on (GEQ, 2011)

HWB-details [kWh/m ² a]:	
BGF [m ²]	112,00
conditioned gross volume [m ³]	334,32
surface of the thermal building envelope [m ²]	355,34
characteristic length [m]	0,94
compactness (A/V) [1/m]	1,06
calculated HWB_(BGF, Ref) [kWh/m ² a]	119,01
heating demand (reference) per year [kWh]	13.329
calculated HWB_(BGF, local) [kWh/m ² a]	67,24
heating demand (local) per year [kWh]	7.531

The Californian house is rated with "D".

Figure 34: rating of house in San Francisco – own calculation based on (GEQ, 2011)

If the house-owner wants to build the same house today the HWB-limits are therefore – with the Austrian energy-pass-calculation:

MSc Program Renewable Energy in Central & Eastern Europe

Table 22: margins (OIB-directive-6) for new buildings in San Francisco – own calculation based on (GEQ, 2011)

if the building will be built today, the following margins have to be fulfilled to be conform to OIB-directive-6:				
when built < 2012: formula valid for actual OIB-	$HWB_{BGF,WG,max,Ref}[kWh/m^2a] = 19 * \left(1 + \frac{2.5}{l_e}\right)$			
directive-6 (2007)	h			
maximum HWB_(BGF,WG,max,Ref) [kWh/m ² a]				
(2007): max. 66,5 kWh/m² a	66,50			
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]				
(2007) - local	37,57			
when built > 2011: formula valid for actual OIB-	$HWB_{BGFWGmax,Ber}[kWh/m^2a] = 16 * \left(1 + \frac{3}{m}\right)$			
directive-6 (draft - valid from 1st of January 2012)				
maximum HWB_(BGF,WG,max,Ref) [kWh/m ²				
a](draft - valid from 1st of January 2012): max. 54,4				
kWh/m² a	54,40			
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]				
(draft - valid from 1st of January 2012) - local	30,74			

Figure 35: HWB - San Francisco for new buildings – own illustration based on my calculation with (GEQ, 2011)

The reference-values are quite high compared to the local value. The winters (heating period) are much milder than in warmer parts of Austria. This more than 40 years old house doesn't meet the Austrian HWB-limits; more insulation is needed, when the house-owner wants to reach these values for a new building: So the new U-values are:

MSc Program Renewable Energy in Central & Eastern Europe

Table 23: U-values of improvements in San Francisco - own calculation based on (GEQ, 2011)

		limits of Austrian OIB-
Construction Compound (San Francisco - improvements)	U-values [W/m ² K]	directive-6
ceiling towards outdoor air	0,167	0,20
external wall (towards outdoor air)	0,167	0,35
inner ceiling towards unconditioned garage	0,112	0,40
windows and door	1,284	1,70

Again the Austrian energy-pass-calculation has to consider HGT of San Francisco. This correction is done outside the calculation program (without considering the detailed heating conditions in San Francisco).

Table 24: HWB-details of house in San Francisco with improvements – own calculation based on (GEQ, 2011)

HWB-details [kWh/m ² a]:	
BGF [m ²]	112,00
conditioned gross volume [m ³]	376,88
surface of the thermal building envelope [m ²]	372,06
characteristic length [m]	1,01
compactness (A/V) [1/m]	0,99
calculated HWB_(BGF, Ref) [kWh/m ² a]	59,40
heating demand (reference) per year [kWh]	6.653
calculated HWB_(BGF, local) [kWh/m ² a]	33,56
heating demand (local) per year [kWh]	3.759

The improvements for new buildings that the building has to follow these margins:

Table 25: calculated HWB versus maximum HWB for new buildings (OIB-directive-6) – own calculation based on (GEQ, 2011)

if the building will be built today, the following margins have to be fulfilled to be conform to OIB-directive-6:				
when built < 2012: formula valid for actual OIB- directive-6 (2007)	$HWB_{BGF,WG,max,Ref}[kWh/m^{2}a] = 19 * \left(1 + \frac{2.5}{l_{e}}\right)$			
maximum HWB_(BGF,WG,max,Ref) [kWh/m² a]				
(2007): max. 66,5 kWh/m² a	65,89			
maximum HWB_(BGF,WG,max,local) [kWh/m ² a]				
(2007) - local	37,23			
when built > 2011: formula valid for actual OIB-	$HWB_{\text{REFEWG}} = 16 * \left(1 + \frac{3}{2}\right)$			
directive-6 (draft - valid from 1st of January 2012)				
maximum HWB_(BGF,WG,max,Ref) [kWh/m ²				
a](draft - valid from 1st of January 2012): max. 54,4				
kWh/m² a	54,40			
maximum HWB_(BGF,WG,max,local) [kWh/m² a]				
(draft - valid from 1st of January 2012) - local	30,74			

MSc Program Renewable Energy in Central & Eastern Europe

Figure 36: HWB of the house in San Francisco with more insulation (case of a new building) – own illustration based on my calculation with (GEQ, 2011)

The limits of the actual OIB-directive-6 fit perfectly, for the upcoming version the quality of the windows should be thought over to improve the total energy-efficiency-behavior of the building.

The margins for larger reconstruction-projects are again here less strict and the above suggestion of improvement is below both HWB-limits.

Figure 37: HWB - San Francisco for larger construction projects – own illustration based on my calculation with (GEQ, 2011)

The improvements mentioned above are perfect for OIB-directive-6 (2007 and upcoming 2012).

8.2 Calculation of energy efficiency with the Californian methodology – HERS

Depending on different climate-zones within California the regulations of the California Energy Commission (CAL-2008 Energy Commission, 2010) describe the envelope of high-rise-buildings differently. According to example 5 the following analysis is focused on the area of San Francisco. The city is located in zone "3". The reference city is Oakland/San Francisco.

The calculations are done for package D for the zone "3".

Buildings in San Francisco have to take into account the following requirements ((CLIM02, 2011); (CAL-2008 Manual, 2008), (JA4, 2008) to fit to Title 24:

parameter		comments
HDD (heating degree days)	1921°C d/a with the basis of	HDD as the cumulative
(in Austria: HGT	18,3°C	number of degrees in a year,
("Heizgradtage"))		when the mean temperature
		is below 65°F (= 18,3°C)
		HGT in Austria uses for
		room temperature of 20°C a
		limit, when heating is
		necessary at 12°C.
U-value (fenestration)	U _{USA} = 0,40 Btu / ft² °F h	SHGC is not relevant in
	→	zone 3
	$U_{Austria}$ = 2,271 W / m^2 K	
U-value (skylight)	U _{USA} = 0,40 Btu / ft² °F h	
	→	
	$U_{Austria}$ = 2,271 W / m^2 K	
Maximum of window area	20% of the conditioned floor	
U-value of ceiling (roof)	Package C: R-38	
	Package D: R-30	
U-value of walls	Package C: R-25	
	Package D: R-13	

Table 26: parameter relevant for San Francisco / climate zone 3 – own table

U-value of walls (heavy	Package C: -	notice: Walls of heavy mass
mass)	Package D: R-2.44	have special limits, that are
		neglected here; for further
		discussion I used the limits
		of the wood-frame walls
U-value of raised floors	Package C: R-30	Notice: for concrete raised
	Package D: R-19	floors (typical for buildings
		above the garage) no
		insulation is required in San
		Francisco.
Space heating	No electric resistance	
	allowed !	

It has to be strictly rescinded, that above listed R-values of the building envelope are not the limits of the whole component, in fact they are limits of the insulation needed (CAL-2008 Manual, 2008).

The paper "Auswirkungen des Klimawandels auf Heiz- und Kühlenergiebedarf in Österreich" of the project StartClim2006.F (StartClim2006.F, 2007) correlates both definitions of HDD in the United States and the HGT in Austria:

• HDD is defined by the "balance point temperature" of 65°F (18,3°C)

•
$$HDD(T_1, T_2) = \sum_{t=T_1}^{T_2} (18.3 - \theta_t)$$

- If mean day temperature $\theta_t \le 18,3$ °C in the period between T_1 and T_2
- HGT is defined by the limit temperature of 12°C, because for Austria the margin of 18,3°C would be much too high (e.g. solar radiation) to start heating. ÖNORM 8135 (ÖNORM EN 12831 (2003)) defines HGT with these margins. Germany on the contrary uses the margin of 15°C.
 - $HGT(T_1, T_2) = \sum_{t=T_1}^{T_2} (20 \theta_t)$
 - If mean day temperature (outside) θ_t ≤ 12 °C in the period between T₁ and T₂
- The paper compares both definitions with a graph (also included CDD/KGT [cooling degree days]:

MSc Program Renewable Energy in Central & Eastern Europe

Figure 38: HGT (20/12), HGT (18,3; 18,3) and CDD (18,3; 18,3) - (StartClim2006.F, 2007)

The calculation with HGT (20,12) is a little bit higher than the US-version.
 It is clear, that from 13°C onwards there is no heating, whereas HGT (18,3; 18,3) consider heating till 18,3°C. Then there is curve for cooling.

The conditioned floor area (CFA) is typically expressed as square feet. It can be compared with the Austrian BGF. CFA is needed for the purpose of compliance, because the annual energy demand is divided by CFA to get the energy budget. The maximum fenestration area is expressed as a percentage of this value.

In Austria the R-value (thermal resistance) is given in SI units: $[m^2K / W]$. The U-value () is identical with 1/R with the dimension $[W/m^2K]$. In the USA they do not use the SI-units (WIKI_01, 2011):

	Austria	USA
R-value	m²K/W	ft² °F h / Btu
U-value	W/m²K	Btu / ft² °F h

Whereas:

- 1 ft² °F h / Btu = 0,176110 m² K / W
- 1 m² K / W = 5,678263 ft² °F h / Btu

In the USA the units normally are not written with their units – they are much higher (about 6x) than the SI-units.

For example "R-40" means:

R_{USA} = 40 ft² °F h / Btu → R_{Austria}= 7,04 m² K / W

U_{USA} = 1/R_{USA} = 0,025 Btu / ft² °F h → U_{Austria} = 0,142 W/m²K

The usage of R-values are more common in the states whereas Europe uses its reciprocal numbers – the U-values.

This part of San Francisco is located in the North-Central-Climate Zone. Energy Star certifications should be taken into account with the following labels for windows and doors:

Figure 39: energy-star labels - relevant for San Francisco (Energy Star_Windows, 2011)

Energy Star (Energy Star_Windows, 2011) foresees these limits at the area of San Francisco:

⇒ Windows with U-factor of 0.32 or less AND an SHGC of 0.40 or less

⇒ Doors (without glass) with U-factor of 0.21 or less (no SHGC requirement)

With her paper "2008 Residential Compliance Manual" (CAL-2008 Manual, 2008) the California Energy Commission forces the restriction of switching from gas to electric resistance water heaters. The new heaters have to be certified by the Energy Commission. The Heating Seasonal Performance Factor HSPF [Btu / W h] is used to describe the efficiency of heat pumps or electric resistance.

8.2.1 Discussion of the usage of the Californian prescriptive approach for the 5 examples

According to the Commission Manual (CAL-2008 Manual, 2008) I used the Californian "prescriptive approach". As this package is also the basis of the performance approach, when HERS raters are needed to do the "whole-house home energy rating" with a computer model, I chose package D for my further remarks. But also package C with its stronger margins is taken into account.

Paper "Joint Appendix JA4 – 2008" (JA4, 2008) is used to find out the limits of the whole assembly of the parts of the building. To understand the used R-value-limits in California also an additional comparison to the numbers of zone 16 in the "Golden State" was necessary, that is located in the higher region (> 5000 ft = 1524 m) in the north-western part of the country.

The differences between the Austrian and Californian approach are focused on the analysis of their limiting values for R- and U-value.

Bases are the R-values for the necessary insulation from (CAL-2008 Manual, 2008) and the corresponding U-values from (JA4, 2008) for the whole assembly.

accembly	limits in California - area San Francisco (zone		limits in California - area Bishop (zone 16,		limits in California - area San Francisco (zone	
ussenisty	S, package C)		puck		3, puc	
	R-value [ft ² °F h / Btu]	U-value [Btu / ft ² °F h]	R-value [ft ² °F h / Btu]	U-value [Btu / ft ² °F h]	R-value [ft ² °F h / Btu]	U-value [Btu / ft ² °F h]
	of insulation	of whole assembly	of insulation	of whole assembly	of insulation	of whole assembly
fenestration	-	0,38	-	0,38		0,4
ceiling (roof)	R-38	0,026	R-49	0,02	R-30	0,032
walls (wood)	R-25	0,057	R-29	0,047	R-13	0,102
walls (heavy mass) -	R-25	0,057	R-29	0,047	R-13	0,102
floor towards unconditioned						
cellar/ground	R-30	0,028	R-30	0,028	R-19	0,037
concrete raised floor (garage in						
the USA)	no insulation needed	0,269	no insulation needed	0,269	R-0	0,269

 Table 28: R-value-margins in California for package C and D in San Francisco and Bishop own table based on (CAL-2008 Manual, 2008)

To compare the Californian results with the Austrian limits the data have to be converted in SI-units.

notice: raised floors are used in the USA - those values are used for further discussion

MSc Program Renewable Energy in Central & Eastern Europe

Table 29: limits of U-values valid in Austria and California – own table

U-value of component	limits in Austria [W/m²K]	limits in California [W/m ² K] area San Francisco (zone 3, package C)	limits in California [W/m²K] area Bishop (zone 16, package C)	limits in California [W/m²K] area San Francisco (zone 3, package D)	limits in California [W/m²K] area Bishop (zone 16, package D)
fenestration	1,4	2,158	2,158	2,271	2,271
U-value of ceiling (roof)	0,2	0,148	0,114	0,182	0,148
U-value of walls	0,35	0,324	0,267	0,579	0,392
floor towards unconditioned cellar/ground	0,4	0,159	0,159	0,21	0,21
concrete raised floor (garage in the USA)	0,4	1,527	1,527	1,527	0,522

Only the main parts of each example-building will be taken into account:

Table 30: U-values [W / m² K] of the main parts of the examples – own calculation

	Traun-		Alten-	Schwarzen-	San
U-value of component	kirchen	Baden	felden	berg	Francisco
fenestration	1,098	0,898	1,863	2,205	1,434
U-value of ceiling (roof)	0,163	0,13	0,348	3,63	0,502
U-value of walls	0,251	0,14	1,142	0,74	0,35
floor towards unconditioned cellar/ground	0,196	0,23	0,654	0,46	_
concrete raised floor (garage in the USA)	_	_	_	_	0,35

The differences are shown in the following graph:

Figure 40: different U-values for the limits in Austria and California + examples - own illustration

It can be seen with above rough analysis that also the low energy-houses in Austria do not fully fit to all of the Californian margins. Low energy-houses are called those Austrian buildings with HWB lower than 50 kWh / m^2 K (similar to the Austrian

ratings of A+, A, B, C). The strong limits of package C in California are especially in the mountain-region zone 16 very challenging for the Austrian low-energy houses in Traunkirchen and Baden. They would need additional insulation especially in the floor towards unconditioned cellar or ground and in the roof/ceiling.

8.3 Summary of the energy-efficiency calculation – comparison of both countries (description of the results)

To achieve better HWB with the Austrian energy pass calculation in 3 from 5 examples it was necessary to do several improvements (more insulation, windows with lower U-value). The rating of the new calculated Austrian energy-pass moves to a better grading – shown in below figure.

Figure 41: overview of the improvements in HWB - calculated with the Austrian energy-pass – own illustration based on (GEQ, 2011)

Similar is the situation in California. Here they work with different limits of U-values – depending on the location (climate zone) - (look at chapter 6.2.2):

Master Thesis MSc Program

Renewable Energy in Central & Eastern Europe

Figure 42: limits in Austria and California for different U-values (own illustration)

The following table shows an overview about the main differences between both country approaches:

Description	Austria	California
Method for	Energy-pass calculation	Simplest way:
documenting		Prescriptive approach
compliance with the		(look 5.3.)
energy efficiency		Performance approach:
standards of the		allows more flexibility
country		(5.3.)
Definition of heating	HGT ("Heizgradtage") is defined	HDD is defined by the balance
degree days	by the limit temperature of 12°C	point temperature of 65°F
		(18,3°C)
U-value limits (look	One set of limits	Different values for 16
at figure 42)		climate zones of
		California
		Different limits using
		different packages
		(chapter 5.3.)
		More severe limits for
		ceiling and floor/towards
		ground
Limits of heating	Yes, defined in OIB-directive 6	No

Table 31: differences of energy-efficiency calculation (own table)

MSc Program Renewable Energy in Central & Eastern Europe

demand available?			
Rating is done with	Energy-pass calculation –	HERS-index (development out of	
	calculating HWB (referring to a	US-energy-star-rating) with a	
	reference calculation)	250 point scale – relating to a	
		reference building at 100)	
Is rating obligatory?	Yes, for new buildings and when	No, it is recommended	
	building is sold.	Minimum: Prescriptive	
		approach (fulfilling	
		several limits of building	
		components and other	
		installation parts)	
Who is allowed to do	Certain engineering offices	Certified Raters, trained by the	
the rating?		Energy Commission	
Is the using of	No, simple spreadsheet analysis	When using the performance	
special software	is possible – results have to	approach, the used computer	
obliged?	fulfill OIB-directive-6	model has to be approved by the	
		Energy Commission	
Which topics are	Heating demand HWB	HERS-Index as a result	
described in the	Thermal quality of	of standard	
energy-efficiency	buildings (LEK)	measurement of the	
standards	Final energy demand	energy efficiency of the	
concerning the	(EEB)	home and its	
rating-pass?	Heat transmitting	possibilities for	
	construction	improvements – relative	
	components (U-values)	to the reference house.	
	 Energy systems with 	HERS simulation tool to	
	their losses concerning	model the house and	
	pipes and storage	simulating the energy	
	• Others: thermal bridges,	use for one year.	
	airtight and windproof	End-use demands	
	construction, summer	(inclusive cooking,	
	overheating	fridge, other electronics)	
	 structure of the Austrian 	as standard	
	energy pass	assumptions (LBL,	
		2000) for examined	
		house size.	
Minimum information	HWB of the building	Score of rating	
given by the local	(relating to reference	Recommendations with	
energy-pass?	climate)	lifecycle savings of	

MSc Program Renewable Energy in Central & Eastern Europe

• HTEB	suggested
• EEB	improvements
Possible improvements	
of EEB	

The difference of the definition between HGT and HDD has strong dependencies on the local climate with its solar radiation and the internal gains. So it does not make sense to mix those local parameters in the calculation.

In comparison with Austria, it can be summarized, that the focus in California's guidelines for U-values is set on higher U-values of the ceiling/roof and of the floor towards the ground or unconditioned cellar. But the system of California also allows a special computer program to do a whole-house energy rating (HERS) to get the possibility to model the house, to get the best values by simulating the whole system (that is not focus of this work).

So the effort to fit to the Californian limits is to improve the insulation of the whole building shell according to the given parameters in the California Energy Commission paper. There is a strong dependence on the location of the building. According to the climate-zone it is necessary to choose the right necessary thicknesses of the insulation of the building envelope. The Californian listings in the appendix of the paper of the California Energy Commission (CAL-2008 Manual, 2008) are a very good basis to go into a good simulation model-program to find the best solution for the individual case.

In Austria an energy-pass is always needed for new buildings and reconstruction projects. Used installations like dishwasher or washing machine are not a topic in this European country whereas California's HERS rating does a model calculation for the whole building. But it was seen quite difficult in California using a database of HERS input-data predicting the actual energy consumption. Now a lot of effort was and is put in improving the accuracy of HERS. (LBL, 2000)

There are strict trainings for the raters in California. Only certified raters are allowed to do these HERS ratings. In Austria it is sufficient if you fulfill a certain qualification like an engineering office of a special field. It is absolutely essential that all consultants are familiar with the latest innovation in their area and are well trained. Both countries do a lot for advertising the necessity of improving the energyefficiency of the people's homes. Austria has special subsidies to help people with cheaper credits, when they build energy-efficient buildings. Tax-reduction is possible in Austria and in California.

In both countries additional activities can be found in the environment of the mentioned energy-efficiency standards.

- In Austria klima:aktiv (<u>www.klimaaktiv.at</u>) has worked out additional but voluntarily - commitments for builders that are much stricter than the ones of OIB-directive-6. New buildings are forced to become passive house standard. Ecological requirements (e.g. using special ecologically optimized products for building, no PVC allowed, using water saving taps etc.) are listed to reach the klima:aktiv criteria (klima_aktiv_Gebäudeplattform, 2011).
- 2. In California there are several developments in several counties. Santa Monica (Santa Monica Municipal Code, 2010) for example developed guidelines for green buildings that also refer to the California Energy Code. The compliance requirements for Santa Monica Residents are even more severe (10%) than the requirements of California title 24 Energy Code standards. Additionally ecological criteria (e.g. water conservation, using green building materials) are listed.

Erecting a new building with the best possible U-values is all over the world the best way to reduce the heating costs as low as possible. Later adaptations in reconstruction projects mean high additional costs. On the other hand it might be better to invest in house improvements to reduce the energy-bill during ones pension than bringing the money to the bank.

9 Future prospects

From 1st of January 2012 a new OIB-directive-6 is valid for Austria. The restrictions for HWB will be more severe – but the done modifications are not really big. To my personal opinion the limits are still much too high. Even more effort has to be put in tuning the energy-efficiency of our houses. From technical and economical point of view much lower limits are possible.

MSc Program Renewable Energy in Central & Eastern Europe

In addition to further improvements in home-efficiencies the Austrian energy-pass also has to provide the primary energy demand (PEB) (relevant for the local conditions) and the amount of CO2-emission caused by the individual home. The limits for individual U-value will be the same as in the actual version of OIB-directive-6. With this update of OIB-directive-6 the European directive 2010/31/EU will come into force in Austria. Nearly zero-energy houses for all new buildings are the goal for 2020.

Also California just started working on new standards "2013 Building Energy Efficiency Standards"– coming into rule 2014 (California Energy Commission - Background, 2011). This update will emphasize the essential role of improving the building energy efficiency to achieve California's goal of reducing greenhouse gas emissions. The new standards will be an essential step to achieve new building standards "net zero energy" levels for residences by 2020. With this new release [will be published as "2013 California Energy Code"] the life cycle costs (California Energy Commission - LifeCycle, 2011) will be based on TDV energy to get a better understanding of the saved energy during peak period or the distribution system is near capacity.

For both countries it is clear, that more effort is necessary to maximize the energy efficiency in all homes. Improving the building envelope is one essential step reducing greenhouse gases.

California wants to reduce its emission in order to reach 1990-level again in 2020 (similar to a reduction of 25% of the emission of 2006!). In Europe the strategy (e-control, 2010) is called "20-20-20", that means that the European countries want to reduce their greenhouse gases by 20% (from the year 2005). 20% usage of renewable energy and 20% more energy efficiency are the other pillars. Each country has its own targets. The Austrian energy-strategy focuses on 3 points (more details can be found on: <u>www.energiestrategie.at</u>):

- 1. Increasing of energy-efficiency
- 2. More renewable energy of the Austrian energy mix
- 3. Securing of the Austrian energy supply

Especially for Europe there is the demand of becoming independent from instable importing countries for heating with gas or oil. Reducing the heating demand together with switching to renewable energy facilities is the way we have to work to.

10 Conclusions

When comparing the Austrian with the California legislation framework for residential homes, it is obvious, that both rating-systems follow the same idea:

- Requesting the necessary data
- Calculation of a rating/index of the efficiency of the house
- Pointing out the improvements of the existing house

The Austrian energy-pass only looks at the efficiency of the residential house itself, as well as the heating-system including hot-water-generation (HWB, WWEB etc.)

California's HERS also includes the used electrical installations (used lamps, fridge, pool etc.). The house owner gets an estimation of the energy-use of the individual home.

In both countries it is handled the same: if essential information is not provided by the owner, assumptions according to the age of the house and based on the experience of the rater can be made. The final results are compared to a reference.

In Austria the rating is necessary for new buildings and when buildings are sold. In California it is recommended.

The Austrian OIB-Directive-6 as well as the California Building Energy Standards itemizes individual U-values for single construction parts.

It is still necessary for both countries, that standards were implemented to reduce CO2 and put even more effort in improving the building energy efficiency.

It has to be transparent for the citizens that improving the insulation of the houseenvelope has more effects than reducing the monthly part used for heating:

• Feeling more cozy in winter and in summer (not so hot inside the house)

- Ratings are needed for selling or renting houses
 - If having a good value in the HERS rating or energy-pass the house has higher quality than others.
- The house-owner can be a part of reducing CO2-emissions.

We all are responsible for our nature and environment. It should be clear that we all need to do everything to get a better environment. 2005 Governor Schwarzenegger said (Schwarzenegger, 2005): "I SAY THE DEBATE IS OVER. WE KNOW THE SCIENCE. WE SEE THE THREAT. AND WE KNOW THE TIME FOR ACTION IS NOW." Let's do it!

11 Acknowledgements

Many thanks to...

- My children and my husband for their understanding and encouragement
- My parents and brothers for their emotional support
- My father master builder Horst Hitzenberger for the technical discussions
- All friends, family members and colleagues for supporting me with examples to be able to get enough examples in Austria and California.
- The team of CEC with Martin Schestag and DI Andrea Würz and DI Ralf Roggenbauer from Energiepark Bruck an der Leitha for their untiring support
- Univ. Prof. Dr. DI Reinhard Haas for his support and suggestions

12 Literature

- CAL-2008 Energy Commission. (2010). Accessed 06. 03 2011 from 2008 Building Energy Efficiency Standards for California: www.energy.ca.dov/title24/2008standards/index.html
- CAL-2008 Manual. (2008). Accessed 25. 09 2011 from 2008 Building Energy Efficiency Standards - Commission Manual: http://www.energy.ca.gov/2008publications/CEC-400-2008-016/CEC-400-2008-016-CMF.PDF

- *CAL-2008Standards*. (2008). Accessed 30. 07 2011 from California's Energy Efficiency Standards for Residential and Nonresidential Building: http://www.energy.ca.gov/title24/
- *CAL-HERS*. (2011). Accessed 27. 09 2011 from Home Energy Rating System Program (HERS): http://www.energy.ca.gov/HERS
- California Energy Commission Background. (2011). Accessed 26. 10 2011 from The California Energy Commission - Background Information 2013 Building Energy Efficiency Standards: http://www.energy.ca.gov/title24/2013standards/prerulemaking/background.html
- California Energy Commission LifeCycle. (14. 01 2011). Accessed 26. 10 2011 from The California Energy Commission - Life-Cycle Cost Methodology for 2013 California Building Energy Efficiency Standards: http://www.energy.ca.gov/title24/2013standards/prerulemaking/documents/general_ cec_documents/2011-01-14_LCC_Methodology_2013.pdf
- *CLIM.* (2011). Accessed 25. 09 2011 from Guide to California Climate Zones: http://www.pge.com/mybusiness/edusafety/training/pec/toolbox/arch/climate/index.s html
- CLIM02. (2011). Accessed 25. 09 2011 from California Climate Zone 3: http://www.pge.com/includes/docs/pdfs/about/edusafety/training/pec/toolbox/arch/cli mate/california_climate_zone_03.pdf
- Commission, C. E. (2010). 2008_BuildEff. Accessed 04. 08 2011 from 2008 Building Energy Efficiency Standards for Residential and Nonresidential Buildings regulations / standards: http://www.energy.ca.gov/2008publications/CEC-400-2008-001/CEC-400-2008-001-CMF.PDF
- *CZ*. (2011). Accessed 25. 09 2011 from Energy maps of California: http://www.energy.ca.gov/maps/renewable/building_climate_zones.html
- DIR 1993/76/EEC. (13. September 1993). Directive 1993/76/EEC: to limit carbon dioxide emissions by improving energy efficiency (SAVE).
- DIR 2002/91/EC. (16. December 2002). Directive 2002/91/EC: Energy efficiency: energy performance of buildings.
- DIR 2006/32/EC. (5. April 2006). Directive 2006/32/EC: Energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC.
- DIR 2010/31/EU. (19. May 2010). Directive 2010/31/EU: Energy Performance of Buildings.
- DORIS. (2011). From DORIS intermap des Landes Oberösterreich: http://doris.ooe.gv.at/ abgerufen
- *e-control.* (2010). Accessed 26. 10 2011 from e-control: Die 20-20-20-Ziele: http://e-control.at/de/konsumenten/oeko-energie/klima-und-umwelt/20-20-20-ziele
- Energiesparend Infomappe. (2011). Energiesparend Bauen Sanieren & Wohnen Infomappe (OÖ Energiesparverband).
- Energy Star_Windows. (2011). Accessed 18. 09 2011 from http://www.energystar.gov/index.cfm?fuseaction=windows_doors.search_climate_su bmit
- EU-LEGIS 2002/91/EC. (2002). Accessed 06. 03 2011 from Summaries of EU legislation Energy efficiency: energy performance of buildings: http://europa.eu/legislation_summaries/other/127042_en.htm

Renewable Energy in Central & Eastern Europe

- *EU-LEGIS 2006/32/EC*. (05. April 2006). Accessed 2011. 04 27 from Summaries of EU legislation Energy efficiency: Energy end-use efficiency and energy services: http://europa.eu/legislation_summaries/energy/energy_efficiency/l27057_en.htm
- EU-LEGIS 2010/31/EC. (19. May 2010). Accessed 22. April 2011 from Summaries of EU legislation - Internal market - Single market for Goods - Construction: Energy performance of buildings: http://europa.eu/legislation_summaries/internal_market/single_market_for_goods/co nstruction/en0021_en.htm
- European Comission. (2011). Accessed 11. 09 2011 from EU Regional Policy -Project examples - Projects: http://ec.europa.eu/regional_policy/projects/stories/details_new.cfm?pay=ES&the=7 2&sto=1485&lan=7®ion=ALL&obj=ALL&per=2&defL=EN
- *Fachbegriffe-HGT*. (2011). Accessed 29. 08 2011 from Fachbegriffe: Heizgradtage HGT: http://www.energiesparhaus.at/fachbegriffe/hgt.htm
- *Fachbegriffe-LEK*. (2011). Accessed 29. 08 2011 from Energiesparhaus.at: http://www.energiesparhaus.at/fachbegriffe/lek.htm
- GEQ. (2011). Accessed 19. 08 2011 from GEQ Energieausweis Software Zehentmayer Software GmbH / Downloads: http://www.geq.at/update/Energieausweis_geq_Demoversion.exe
- Google Earth. (2011).
- Google Map. (2011).
- Guide Title 24. (2010). Accessed 02. 08 2011 from Guide to Title 24 California Building Standards Code: www.documents.dgs.ca.gov/bsc/Title 24/T24TrainingGuide.pdf
- *HERS-Booklet.* (2011). Accessed 11. 09 2011 from Home Energy Rating System Program Booklet: http://www.energy.ca.gov/2009publications/CEC-400-2009-008/CEC-400-2009-008-BR-REV1.PDF
- *HERS-manual.* (2008). Accessed 27. 09 2011 from Home Energy Rating System (HERS) technical manual: http://www.energy.ca.gov/2008publications/CEC-400-2008-012/CEC-400-2008-012-CMF.PDF
- *HERS-regulations*. (2009). Accessed 27. 09 2011 from Home Energy Rating System Program (HERS) - regulations: http://www.energy.ca.gov/2008publications/CEC-400-2008-011/CEC-400-2008-011-CMF.PDF
- JA4. (2008). Accessed 01. 10 2011 from Joint Appendix JA4 2008 (U-factor, C-factor, and Thermal Mass Data) California Energy Commission: http://www.energy.ca.gov/title24/2008standards/rulemaking/documents/pre-15-day_language/appendices/joint_appendices/JA%204%20-%20U-Factors%20-%20Rev%2014-15-day-1.pdf
- klima_aktiv_Gebäudeplattform. (2011). Accessed 26. 10 2011 from klima:aktiv Gebäudeplattform: http://www.baubook.at/kahg/?to=0&forward=ALLGEMEIN&id=9f31602a12609e152e c3f8dd72d1969d&dmy=27122_29862
- LBL. (2000). Accessed 30. 03 2011 from Accuracy of Home Energy Rating Systems

 Chapter Introduction; E.O. Lawrence Berkeley National Laboratory: http://eetd.lbl.gov/ea/reports/40394/40394-2
- NÖ BO 1996. (15. 02 2011). NÖ Bauordnung 1996 mit Änderung It. LGBI. 8200.
- NÖ BTV 1997. (07. 10 2010). NÖ Bautechnikverordnung 1997.
- NÖ GEEV 2008. (27. 03 2009). NÖ Gebäudeenergieeffizienzverordnung 2008.
- OIB-Draft. (2011). OIB-Richtlinie 6 Energieeinsparung und Wärmeschutz Draft 2012.
- OIB-Richtlinie 6. (04 2007). Energieeinsparung und Wärmeschutz [Österreichisches Institut für Bautechnik].
- ÖNORM EN 12831 (2003). (kein Datum). From Heizungsanlagen in Gebäuden -Verfahren zur Berechnung der Norm-Heizlast: http://www.bdb.at/Service/NormenDetail?id=156852 abgerufen
- OÖ Wohnbauförderung. (2011). Accessed 06. 10 2011 from Land Oberösterreich -Sanierung from Häusern bis zu 3 Wohnungen: http://www.landoberoesterreich.gv.at/cps/rde/xchg/SID-91DA9422-48362D12/ooe/hs.xsl/99369_DEU_HTML.htm
- OÖ. BauTG. (5. May 1994). Landesgesetz vom 5. Mai 1994 über die Planung und Ausführung from Gebäuden und sonstigen baulichen Anlagen (Oö. Bautechnikgesetz Oö. BauTG) included its changes until 25th of April 2011.
- Passivhaus Institut. (2005). Accessed 02. 10 2010 from Wirtschaftlichkeit from Wärmedämm-Maßnahmen im Gebäudebestand 2005; Passivhaus Institut (2005) Dr. Wolfgang Feist: Klima:aktiv Lernplattform http://kurse.ibo.at
- *RESNET HERS*. (1995). Accessed 01. 09 2011 from What is a Home Energy Rating? RESNET: http://www.resnet.us/home-energy-ratings
- RESNET. (1995). Accessed 08. 08 2011 from About RESNET: http://www.resnet.us/about
- RIS EAVG. (2006). Energieausweis-Vorlage-Gesetz: BGBI. I Nr. 137/2006, Bundesgesetz über die Pflicht zur Vorlage eines Energieausweises beim Verkauf und bei der In-Bestand-Gabe from Gebäuden und Nutzungsobjekten.
- Santa Monica Municipal Code. (2010). Accessed 06. 03 2011 from Santa Monica Municipal Code - Green Building: http://qcode.us/codes/santamonica/view.php?topic=8-8_108&showAll=1&frames=on
- Schwarzenegger. (2005). Accessed 02. 10 2011 from Environment California Reports: An Online Update for Environment California Members: http://www.environmentcalifornia.org/html/newsletters/fall06/article3.html
- StartClim2006.F. (2007). Accessed 25. 09 2011 from Auswirkungen des Klimawandels auf Heiz- und Kühlenergiebedarf in Österreich; Prettenthaler Franz et.al.: http://www.austroclim.at/fileadmin/user_upload/reports/StCl06F.pdf
- Statistik Austria _ 2009. (2011). Accessed 03. 10 2011 from Statistik Austria Haushaltseinkommen: http://www.statistik.at/web_de/statistiken/soziales/haushalts-einkommen/index.html
- Statistik Austria. (2011). Accessed 03. 10 2011 from Statistik Austria NUTS2 verfügbares Einkommen der österreichischen Haushalte: http://www.statistik.at/web_de/statistiken/volkswirtschaftliche_gesamtrechnungen/re gionale_gesamtrechnungen/nuts2_verfuegbares_einkommen_und_verteilungskonte n_der_privaten_haushalte/019517.html
- *Statistik Austria_gasprice*. (2011). Accessed 02. 10 2011 from Statistik Austria Energieeinsatz der haushalte:

http://www.statistik.at/web_de/static/gesamteinsatz_aller_energietraeger_2003_bis_ 2010_022720.xlsx

- Tarifkalkulator. (2011). Accessed 02. 10 2011 from e-control: Tarifkalkulator Application: http://www.e-control.at/de/konsumenten/service-undberatung/toolbox/tarifkalkulator/tarifkalkulatorapplication?fPage=tk_uebersicht&fDruck=N
- *WIKI_01*. (2011). Accessed 26. 09 2011 from Wikipedia R-value (insulation): http://en.wikipedia.org/wiki/R-value_%28insulation%29
- Window. (2011). Accessed 26. 09 2011 from The Efficient Windows Collaborative -SHGC: http://www.efficientwindows.org/shgc.cfm
- worldclimate. (2011). Accessed 16. 09 2011 from http://www.worldclimate.com/cgibin/data.pl?ref=N37W122+1306+047767C

13 Annexes

13.1 Details (current status) of Austrian Energy-passfor the examples-houses – own calculationsbased on (GEQ, 2011)

	13.1.1 E	Example 1 -	- Energy-pass	for single	family house	in Traunkirchen
--	----------	-------------	---------------	------------	--------------	-----------------

Norm-Außentemperatur:	-14,3 °C	Standort:	Traunkirche	in		
Berechnungs-Raumtemperatur:	20 °C	Brutto-Rau	uminhalt der			
Temperatur-Differenz:	34,3 K	beheizten	Gebäudetel	e:	634,84	mª
		Gebäudeh	diffache:		484,06	m²
Bautelle		Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf
		A [m²]	U [W/m² K]	ď.	(1)	[W/K]
AD01 Decke zu unkonditionierte	m geschloss. Dachraum	41,06	0,163	0,90		6,04
AW01 Aussenwand - Holzblock		109,59	0,251	1,00		27,53
AW02 Wintergarten		9,87	0,855	1,00		8,44
DS01 Dachschräge hinterlüftet		79,75	0,169	1,00		13,47
FE/TÜ Fenster u. Türen		73,59	1,098	1,00		80,77
EB02 Wintergarten-Fussboden		23,68	0,235	0,70	1,34	5,20
KD01 Kellerdecke		101,87	0,196	0,50	1,34	13,36
IW01 Aussenwand - Holzblock (Holzlagerraum, Garage)	29,10	0,246	0,70		5,01
IW02 Aussenwand - Holzblock (WIGa-kalt Norden)	15,55	0,246	0,80		3,06
Summe OBEN-Bautelle		138,57				
Summe UNTEN-Bautelle		125,55				
Summe Außenwandfläche	n	119,46				
Summe Innenwandflächer	1	44,65				
Fensterantell in Außenwär	nden 28,9 %	48,64				
Fenster in Innenwänden		7,18				
Fenster in Deckenflächen		17,76				
Summe				[W/	К]	163
Wärmebrücken (pausch	al)			[W/	к]	13
Transmissions - Leitwer	t L _T			[W/	к]	176
Lüftungs - Leitwert L _v				[W/	К]	58,61
Gebäude - Heizlast P _{tot}	L	uffwechsel -	0,40 1/h	[k)	W]	8,06
Flächenbez. Heizlast P1	bei einer BGF vor	n 207	m² [W/	m² BG	F]	38,89
Gebäude - Heizlast P _{tot} (EN	12831 vereinfacht) L	uftwechsel =	0,50 1/h	[k	wj	8,85

Bauteile				
Übungsversion_single-family home in T	raunkirchen / Uppe	er		
AD01 Decke zu unkonditioniertem geschloss	. Dachraum			
Versid Charles Franceshides and	von Außen nach inr	ten Dicke	λ.	d/ X
Knaur Gipskarton Feuerschutzplatte	8	0,0180	0,250	0,072
Luft steh W-Fluss horizontal 35 < d < = 40 mm	B	0,0240	0,140	0,171
Steinwole MW-W (33)	B	0.2000	0.038	5,263
1.402.02 Holz	в	0,0240	0,140	0,171
1.108.02 Gipsbauplatten	в	0,0180	0,290	0,062
	Rse+Rsl = 0,2	Dicke gesamt 0,3240	U-Wert	0,16
AW01 Aussenwand - Holzblock	use lease each Auf	Dista		413
1 402 02 Holz	P P	0.0240	0.140	0.171
PVC-Dichtungshahn	B	0,0240	0,140	0.007
Steinwole MW-W (33)	в	0,1000	0.038	2.632
1.402.02 Holz	В	0.1400	0.140	1.000
	Rse+Rsl = 0,17	Dicke gesamt 0,2650	U-Wert	0,25
DS01 Dachschräge hinterlüftet				
	von Außen nach inr	ien Dicke	λ	d/ λ
Luft steh., W-Fluss horizontal 25 < d < = 30 mm	в	0,0300	0,176	0,170
1.402.02 Holz	5	0,0200	0,140	0,143
Steinwolle MW-W (33)	B	0,0400	0.038	4737
PVC-Dichtungsbahn	B	0.0010	0.140	0.007
1.402.02 Holz	в	0,0240	0,140	0,171
Luft steh., W-Fluss horizontal 15 < d < = 20 mm	в	0,0200	0,118	0,169
1.402.02 Holz	в	0,0200	0,140	0,143
	Rse+RsI = 0,2	Dicke gesamt 0,3350	U-Wert	0,17
EB02 Wintergarten-Fussboden	the large such that	Dista		
1 704 09 Ellecon	von innen nach Aut	sen Dicke	1 000	0.010
1.202.06 Estrichbeton	FB	0,0100	1,000	0.047
PVC-Dichtungsbahn	B	0.0010	0.140	0.007
Styrodur 3035 C (140 mm)	В	0,1500	0,038	3,947
PVC-Dichtungsbahn	в	0,0010	0,140	0,007
1.508.02 Schüttung (Sand, Kles, Splitt)	в	0,0500	0,700	0,071
	Rse+Rsi = 0,17	Dicke gesamt 0,2820	U-Wert	0,23
KD01 Kellerdecke	von innen nach Auf	len Dicke	2	4/2
1.402.02 Holz	B	0.0140	0 140	0.100
PVC-Dichtungsbahn	B	0.0010	0.140	0.007
Steinwolle MW-W (33)	в	0,0500	0,038	1,316
1.202.02 Stahlbeton	в	0,1700	2,300	0,074
Styrodur 2800 C (80 mm)	в	0,0800	0,035	2,286
ISOVER TDPT Trittschall-Dämmpl. 30/30	В	0,0300	0,033	0,909
1.202.06 Estrichbeton	FB	0,0600	1,480	0,041
1.704.06 Filesen	D Reat Rel = 0.34	0,0200 Dicke gegent 0,4250	1,000	0,020
7001 warme Zwischenderke zw. EG und OG	Nettive = 0,34	Dicke geodinic 0,4250	0-Mail	0,20
2001 warne 2wischendeute 2w. EO und OO	von innen nach Aul	len Dicke	λ	d/ λ
1.402.02 Holz	В	0,0400	0,140	0,286
Steinwolle MW-W (33)	в	0,1700	0,038	4,474
1.402.02 Holz	В	0,0250	0,140	0,179
Konkschrot (100), expandiert	в	0,0050	0,050	0,100
Ab berg & Berg Perogparkett in Esche	D Dray Drive C. CC	0,0250	0,120	0,208
	Rse+Rsi = 0,26	Dicke gesamt 0,2650	u-wert	0,18

MSc Program Renewable Energy in Central & Eastern Europe

Bauteile					
Übungsversion_single-family home in T	raunkirchen / Upp	ber			
IW01 Aussenwand - Holzblock (Holzlagerrau	um, Garage)				
	von Innen nach A	ußen	Dicke	λ	d/λ
1.402.02 Holz	в		0,0240	0,140	0,171
PVC-Dichtungsbahn	в		0,0010	0,140	0,007
Steinwole MW-W (33)	8		0,1000	0,038	2,632
1.402.02 H012	D Brou Bri - 0.06	Dieke gegent	0,1400	0,140	0.00
	nse+nsi = 0,20	Dicke gesami	0,2600	0-Weit	0,20
IWUZ Aussenwand - Holzblock (WiGa-Kalt N	von innen nach A	ußen	Dicke	λ	d/ λ
1.402.02 Holz	в		0.0240	0,140	0,171
PVC-Dichtungsbahn	в		0,0010	0,140	0,007
Steinwolle MW-W (33)	в		0,1000	0,038	2,632
1.402.02 Holz	в		0,1400	0,140	1,000
	Rse+Rsl = 0,26	Dicke gesamt	0,2650	U-Wert	0,25
AW02 Wintergarten	von innen nach A	ußen	Dicke	2	d/ 2
1.402.02 Holz	8		0.1400	0.140	1.000
	Rse+Rsl = 0,17	Dicke gesamt	0,1400	U-Wert	0,85
EK01 Keller - in Basis nicht beheizt					
	von innen nach A	ußen	Dicke	λ	d/ λ
1.704.08 Filesen	в		0,0200	1,000	0,020
1.202.06 Estrichbeton	в		0,0600	1,480	0,041
PVC-Dichtungsbahn	в		0,0010	0,140	0,007
EXPORIT EPS F 16	в		0,1600	0,040	4,000
PVC-Dichtungsbann	8		0,0010	0,140	0,007
1.202.00 Estitableton	D Brou Bri - 0.17	Disks second	0,0500	1,400	0,034
EW01 Kellerwood	Naethal = 0,17	Dicke gesami	0,2320	0-weit	0,20
EWO1 Relief wand	von innen nach A	ußen	Dicke	2	d/ A
1 108 04 Gipsbauplatten	B		0.0150	0.410	0.037
Styrodur 2800 C (50 mm)	B B		0.0500	0.033	1.515
1.202.02 Stahlbeton	в		0,3000	2,300	0,130
1.604.06 Kunststoff- & Gummibelag	в		0,0050	0,210	0,024
Styrodur 2800 C (50 mm)	в		0,0500	0,033	1,515
	Rse+Rsl = 0,13	Dicke gesamt	0,4200	U-Wert	0,30
EW02 Kellerwand - Bereich Gästezimmer	von innen nach A	uBen	Dicke		4/ 2
1.108.04 Glosbauplatten	B		0.0150	0.410	0.037
Styrodur 2800 C (50 mm)	B		0.0500	0.033	1.515
1.202.02 Stahlbeton	в		0,3000	2,300	0,130
1.604.06 Kunststoff- & Gummibelag	в		0,0050	0,210	0,024
Styrodur 2800 C (50 mm)	в		0,0500	0,033	1,515
	Rse+Rsl = 0,13	Dicke gesamt	0,4200	U-Wert	0,30
Calabara Dista Ind. Aska shaka dind. Dasha Ind. 1114/-+ 040000. Dista	Destroll Antonio				
* Schicht z	standsschicht **Default	wert It. OIB			

RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6948

Geometrieausdruck	
Übungsversion_single-family	nome in Traunkirchen / Upper
EG basis	
Nr 2 a W3 W4 b	<pre>a = 9,72 b = 9,72 lichte Raumhohe = 2,50 + obere Decke: 0,27 => 2,77m BGF 94,48m² BRI 261,23m³ Wand W1 26,88m² AW01 Aussenwand = Holzblock Wand W2 26,88m² AW01 Aussenwand = Holzblock (Holzlagerraum Wand W3 26,88m² IN01 Aussenwand = Holzblock (Holzlagerraum Wand W4 12,97m³ AW01 Aussenwand = Holzblock (WiGa-kalt Nor Teilung 5,03 x 2,77 (Lange x Hobe) 13,91m² IW02 Aussenwand = Holzblock (WiGa-kalt Nor Decke 94,48m² ZD01 Warme Zwischendecke zw. EG und OG Boden 94,48m² KD01 Kellerdecke</pre>
EG rectangle-Schlafzimmer	
Nr 18	 a = 4,93 b = 1,50 lichte Raumhohe = 2,50 + obere Decke: 0,27 => 2,77m BGF 7,40m² BRI 20,45m³ Wand W1 4,15m² IN02 Aussenwand = Holzblock (WiGa-kalt Nor Wand W2 -13,65m² ANO1 Aussenwand = Holzblock Wand W3 4,15m² ANO1 Aussenwand = Holzblock Wand W4 13,65m² ANO1 Decke 7,40m² ZDO1 warme Zwischendecke zw. EG und OG Boden 7,40m² KDO1 Kellerdecke
EG Wintergarten-Anbau we	SI Dechne(man, a(*), 18,00
Nr 75	<pre>a = 6.20 b = 3.82 hl = 2.20 lichte Raumhohe = 3.09 + obere Decke: 0.35 => 3.44m BGF 23.68m² BRI 66.80m³ Dachfl. 24.90m² Wand W1 10.77m² ANO2 Wintergarten Wand W2 -21.34m² ANO2 Wintergarten Wand W3 10.77m² ANO2 Wintergarten Wand W4 13.64m² ANO2 Wintergarten Wand W4 13.64m² ANO2 Wintergarten Boden 23.68m² EBO2 Wintergarten-Fussboden</pre>
EG Summe	EG Bruttogrundfläche [m ²]: 125,56 EG Bruttorauminhalt [m ²]: 348,48

Geometrieausdruck Übungsversion_single-family h	ome in Traunkirchen / Upper
DG Obergeschoss	
Nr 62 a h1 a h2 h2 h2 h2 h2 h2 h2 h2 h2 h2	Dachneigung a(*) 35,00 a = 9,72 b = 9,72 hl= 0,90 h2 = 0,90 lichte Raumhöhe(h)= 2,50 + obere Decke: 0,32 \Rightarrow 2,82m BGF $94,48m^2$ BRI 215,42m ² Dachfl. 65,21m ² Decke 41,06m ² Wand W1 22,16m ² AWO1 Aussenwand - Holzblock Wand W2 22,16m ² AWO1 Wand W3 22,16m ² AWO1 Wand W4 8,75m ² AWO1 Dach 65,21m ² D801 Dachschräge hinterlüftet Decke 41,06m ² ABO1 Decke zu unkonditioniertem geschloss. Boden $-94,48m^2$ 2001 warme Zwischendecke zw. EG und OG
DG rectangel - OG	
a wi wi b	a = 4,93 b = 1,50 lichte Raumhohe = 2,50 + obere Decke: 0,34 => 2,84m BGF 7,40m ² BRI 20,96m ² Wand W1 4,25m ² AW01 Aussenwand - Holzblock Wand W2 -13,96m ² AW01 Wand W3 4,25m ² AW01 Wand W4 13,96m ² AW01 Decke 7,40m ² D801 Dachschräge hinterluftet Boden -7,40m ² ZD01 warme Zwischendecke zw. EG und OG
DG Summe	DG Bruttogrundfläche [m²]: 101,87 DG Bruttorauminhalt [m²]: 236,39
DG BGF - Reduzierung	
	BGF Reduzierung = BGF-Höhe kleiner 1.5 m
	Reduzierung = -20,24 m² Summe Reduzierung Bruttogrundfläche [m²]: -20,24
Deckenvolumen EB02	
Deskenvelumen KD04	Flache 23,68 m ² x Dicke 0,28 m = 6,68 m ³
Deckenvolumen KD01	Flache 101,87 m ² x Dicke 0,43 m = 43,29 m ²
	Bruttorauminhait [m²]: 49,97

MSc Program Renewable Energy in Central & Eastern Europe

Fen: Übu	ster ngs	und 1 versi	Für on	en _single-family	hom	e in	Traunk	irchen	/ UI	pper						
Тур		Beutei	Anz	Bezeichnung	Breite [m]	Hohe (m)	Flache (m²) (M	Ug U Wh?K] [Wh	ir ir∺K] (PSI WmK]	Ag (m²)	Uw [Wim ³ K]	AxUM [WIK]	9	fa	
N					1											
8	EG	AW01	2	1,07 x 1,19 - Schlefzimmer	1,07	1,19	2,55				1,78	1,30	3,31	0,62	0,85	
в	EG	AW02	1	3,78 x 2,20 - Wintergentenwend	3,00	2,70	8,10				5,67	1,10	8,91	0,62	0,85	
в	EG	IW02	1	2,40 x 2,20 - Wintergerten - Nord	2,40	2,20	5,28				3,70	1,30	5,49	0,62	0,85	
в	DG	AW01	1	1,07 x 1,19 - Empore	1,07	1,19	1,27				0,89	1,30	1,68	0,62	0,85	
в	DG	AW01	1	1,07 x 2,10 - Empore	1,07	2,10	2,25				1,57	1,30	2,92	0,62	0,85	
			6				19,45						22,29			
0					1											
в	EG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,66	0,62	0,85	
в	EG	IW01	1	1,07 x 1,19 - Bed	1,07	1,19	1,27				0,89	1,30	1,18	0,62	0,85	
в	EG	IW01	1	1,07 x 0,59 - Stegenhaus	1,07	0,59	0,63				0,44	1,30	0,57	0,62	0,85	
в	DG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,66	0,62	0,85	
			4				4,44						5,05			
8																
в	EG	AW01	1	0,90 x 2,10 - Heustor	0,90	2,10	1,89					2,33	4,40			
в	EG	AW01	2	1,07 x 1,19 - Erker	1,07	1,19	2,55				1,78	1,30	3,31	0,62	0,85	
в	EG	AW01	1	1,07 x 1,19 - essen	1,07	1,19	1,27				0,89	1,30	1,66	0,62	0,85	
в	EG	AW02	1	3,78 x 2,20 - Wintergentenwand	3,00	2,70	8,10				5,67	1,10	8,91	0,62	0,85	
в	DG	AW01	2	1,07 x 1,19 - Erker	1,07	1,19	2,55				1,78	1,30	3,31	0,62	0,85	
			7				16,36						21,59			
w																
в	EG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,68	0,62	0,85	
в	EG	AW02	1	5,92 x 2,20 - Wintergerten	5,92	2,20	13,02				9,12	1,10	14,33	0,62	0,85	
в	EG	D801	1	5,92 x 3,00 - Wintergerten-Dech	5,92	3,00	17,76				12,43	0,80	14,21	0,62	0,85	
в	DG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,66	0,62	0,85	
			4				33,32						31,86			
Summe	•		21				73,57						80,79			

Ug., Uwert Gles Uf., Uwert Rahmen PBL, Unearer Korrekturkoeffizient Ag., Glesfläche g., Energiedurchlesegred Verglesung fs., Verscheittungsfeldor Typ., Prüfnommeßtyp B., Fenster gehört

B... Fenster gehört zum Bestand des Gebäudes

MSc Program Renewable Energy in Central & Eastern Europe

13.1.2 Example 2 – Energy-pass for single family house in Baden

Norm-Außentemperatur:	-12.5 °C	Standort:	Baden			
Berechnungs-Raumtemperatur	20 *C	Brutto-Rai	minhalt der			
Temperatur-Differenz:	32.5 K	heheizten	CohSudatali	a.	657 78	mł
remperator-omerenz.	52,5 K	Cohđudah	Olfische:	e.	400.00	
		Geoauder	iumache.		409,00	m-
Bautelle		Fläche	Warmed	Korr	Korr	AxUxf
			Koemz.	Taktor	Taktor	
		[m]	[W/m=K]	- m	[1]	[W/K]
AW01 Außenwand - KG		19,37	0,244	1,00		4,73
AW02 Aussenwand-verputzt		188,77	0,144	1,00		27,11
DD01 Außendecke, Wärmestron	nach unten (SchlafZI)	4,51	0,162	1,00	1,35	0,99
FD01 Außendecke, Wärmestron	nach oben	106,49	0,132	1,00		14,09
FE/TÜ Fenster u. Türen		65,41	0,898	1,00		58,76
KD01 Decke zu unkonditionierte	m gedämmten Keller	101,97	0,227	0,50	1,35	15,67
IW01 Aussenwand-verputzt (zu	Garage)	3,36	0,142	0,70		0,33
Summe OBEN-Bautelle		106,49				
Summe UNTEN-Bautelle		106,48				
Summe Außenwandfläche	n	208,14				
Summe Innenwandflächer	1	3,36				
Fensterantell in Außenwär	iden 23,9 %	65,41				
Summe				[W/	K]	122
Wärmebrücken (pausch	al)			[W/	К]	12
Transmissions - Leitwer	t L _T			[W/	K]	134
Lüftungs - Leitwert L _V				[W/	K]	58,97
Gebäude - Heizlast Ptot		Luftwechsel -	0,40 1/h	[k)	N]	6,27
Flächenbez. Heizlast P1	bei einer BGF vo	n 208	m² [W/	m² BG	F]	30,07
Gebäude - Heizlast P _{tot} (EN	12831 vereinfacht)	Luftwechsel -	0,50 1/h	[k	w]	7,12

Bauteile							
Ubungsversion_s	single-family	home in B	aden - (statu	is now)			
AW01 AuBenwan	d - KG		von Innen	nach Außen	Dicke	λ	d/λ
Knauf Gipskarton Feuer	schutzplatte		в		0,0200	0,250	0,080
1.202.02 Stahlbeton daz Stablbeton	SW.		B	8,0%	0.0500	2,300	0,063
1.202.02 Stahlbeton daz	w.		в	40,0 %	0,0000	2,300	0,063
Steinwolle MW-WF 6 steinopor, 700 ERS-W30	0		В	43,3 %	0,2500	0,043	3,023
alemopol 700 EPS-Wol	RTo 4,8448	RTu 3,3508	RT 4,0978	Dicke ge	esamt 0,4200	U-Wert	0,24
1.202.02 Stahl:	Achsabstand	0,625 Breite	0,300		Rse+Rsl 0,	,17	
AW02 Aussenwa	nd-verputzt		von Innen	nach Außen	Dicke	λ	d/λ
StoLotusan K/MP			B		0,0050	0,700	0,007
StoColl RC			8		0,0400	0,045	0,003
DHF 13 mm			в		0,0130	0,100	0,130
Abhängung - Lattung da Zellulosedämmplatte	ZW.		8	8,0 %	0,1000	0,120	0,067
Abhängung - Lattung da	ZW.		Б	8,0 %	0,1000	0,120	0,067
Zellulosedāmmplatte			В	92,0 %	0.0150	0,040	2,300
Abhängung - Lattung da	ZW.		в	8,0 %	0,0130	0,120	0,033
Zellulosedāmmplatte			в	92,0 %	0.0430	0,040	1,150
Fermadeli 12,5 mm	BT0 7 1880	RTu 6 7383	RT 6 9632	Dicke de	0,0130 eamt 0,3380	U-Wert	0.14
Abhängung - Lattung:	Achsabstand	0,625 Breite	0,050	Dione ge	Rse+Rsi 0,	,17	
Abhängung - Lattung: Abhängung - Lattung:	Achsabstand Achsabstand	0,625 Breite 0,625 Breite	0,050 0,050				
EW01 Außenwan	d - KG - erdani	iegend	von Innen	nach Außen	Dicke	x	d/ λ
Knauf Glpskarton Feuer	schutzplatte		в		0,0200	0,250	0,080
1.202.02 Stahlbeton daz	CW.		В	8,0 %	0.0500	2,300	0,063
1.202.02 Stahlbeton daz	w.		В	40,0 %	0,0500	2,300	0,063
Steinwolle MW-WF 6	0		в	43,3 %	0,2500	0,043	3,023
steinopor 700 EPS-W30	0 (220mm) RTo 4 7957	RTU 3 3108	BT 4.0532	Dicke de	0,1000	0,035	2,857
1.202.02 Stahl:	Achsabstand	0,625 Breite	0,300	Dieve Be	Rse+Rsi 0,	,13	0,20
EK01 erdanliege	nder Fußboder	n in unkonditio	oniertem Kelle	r (>1,5m unter Ei	rdreich)		d/ 1
1.704.08 Filesen			в	in a second second	0.0100	1.000	0.010
Zementestrich			в		0,0500	1,700	0,029
Polyethylenbahn, -folle (Polystyrol EPS Trittscha	PE) Idämmolatte		8		0,0001	0,500	0,000
Polystyrol EPS 20	and a second product		В		0,0600	0,038	1,579
Bitumen			B		0,0050	0,230	0,022
AUSTROTHERM XPS T	TOP 30		В		0,1000	0,038	2,632
			Rse+RsI = 0,17	Dicke ge	esamt 0,4651	U-Wert	0,18

Bauteile Übungsversion_single-family home in Baden - (status now)								
ZD01 warme Zwi	schendecke							
				von Innen na	ach Außen	Dicke	λ	d/ λ
AB Berg & Berg Fertigp	arkett in Esche			в		0,0150	0,120	0,125
Korkschrot natur						0,0050	0,060	0,083
Estrichfolle				B		0,0950	0,500	0,000
EPS T				в		0.0400	0.044	0.909
Bachl EPS W-20				в		0,0500	0,038	1,316
Holz - Brettschichtholz				в		0,1470	0,120	1,225
				Rse+RsI = 0,26	Dicke gesam	t 0,3521	U-Wert	0,25
KD01 Decke zu u	inkonditionierte	m gedi	ämmte	n Keller von Innen na	ach Außen	Dicke	λ	d/λ
AB Berg & Berg Fertigp	arkett in Esche			в		0,0150	0,120	0,125
Korkschrot natur				В		0,0050	0,060	0,083
FileBestrich				FB		0,0550	1,400	0,039
Bachi EBS W-20				B		0,0001	0,000	1.053
Bachi EPS W-20				в		0.0500	0.038	1,316
Betonhohidiele - Decke	(roh < = 280 kg/m²)		в		0,2000	1,000	0,200
EPS F				в		0,0500	0,040	1,250
				Rse+Rsl = 0,34	Dicke gesam	t 0,4151	U-Wert	0,23
DD01 Außendeck	ke, Wärmestrom	nach	unten	(SchlafZi) von Innen na	ach Außen	Dicke	λ	d/ λ
AB Berg & Berg Fertigp	arkett in Esche			в		0,0150	0,120	0,125
Korkschrot natur				в		0,0050	0,060	0,083
FileBestrich				FB		0,0950	1,400	0,068
Estrichfolie				В		0,0001	0,500	0,000
EPS 1 Bachi EPS W-20				8		0,0400	0,044	1,316
Holz - Brettschichtholz				в		0.1470	0,120	1,225
Abhängung - Lattung da	ZW.			в	8,0 %	0,0500	0,120	0,033
Zellulosedmämmplat	te			в	92,0 %		0,040	1,150
Abhängung - Lattung da	ZW.			в	8,0 %	0,0500	0,120	0,033
Zellulosedmämmplati	te			В	92,0 %		0,040	1,150
3S-Platte				8	Disks see	0,0190	0,000	0,000
AbhSogung - Lattung:	Achsabstand	0.625	6,0914 Brolto	0.050	Dicke gesam	0,4/11 94Rcl 0	0-went	0,16
Abhängung - Lattung:	Achsabstand	0,625	Breite	0,050				
FD01 Außendeck	ke, Wärmestrom	nach	oben	von Außen r	ach innen	Dicke		d/ 3
Samafii TC 66				B		0.0020	0.200	0.010
Polystyrol EPS 20				В		0.2500	0.038	6.579
Sarnavap 1000 E				Б		0,0002	0,350	0,001
Hakofelt 300				в		0,0020	0,200	0,010
Holz - Brettschichtholz				в		0,0980	0,120	0,817
				Rse+RsI = 0,14	Dicke gesam	t 0,3522	U-Wert	0,13

Bauteile Übungsversion_single-family home in Baden - (status now)								
IW01 Aussenwand-verputzt (zu Garage)								
				von Innen r	nach Außen	Dicke	λ	d/λ
StoLotusan K/MP				в		0,0050	0,700	0,007
Sto Korkplatte				в		0,0400	0,045	0,889
StoColl RC				в		0,0020	0,700	0,003
DHF 13 mm				в		0,0130	0,100	0,130
Abhängung - Lattung da	ZW.			в	8,0 %	0,1000	0,120	0,067
Zellulosedāmmplatte				в	92,0 %		0,040	2,300
Abhängung - Lattung dazw.				в	8,0 %	0,1000	0,120	0,067
Zellulosedämmplatte				в	92,0 %		0,040	2,300
OSB 15 mm				в		0,0150	0,130	0,115
Abhängung - Lattung da	ZW.			в	8,0 %	0,0500	0,120	0,033
Zellulosedāmmplatte				в	92,0 %		0,040	1,150
Fermacell 12,5 mm				в		0,0130	0,360	0,036
	RT0 7,2792	RTu	6,8283	RT 7,0538	Dicke gesa	mt 0,3380	U-Wert	0,14
Abhängung - Lattung:	Achsabstand	0,625	Breite	0,050	F	lse+Rsl 0,	26	
Abhängung - Lattung:	Achsabstand	0,625	Breite	0,050				
Abhängung - Lattung:	Achsabstand	0,625	Breite	0,050				
Einheiten: Dicke (m), Acheabstand (m), Breite (m), U-Wert (Wim*K), Dichte (kg/m²), X(WimK) * Schicht zählt nicht zum U-Wert F enthält Flächenheizung B Bestandeschicht **Defautivert It. OIB RTu unterer Grenzwert RTo oberer Grenzwert laut ONORM EN ISO 6046								

Geometrieausdruck Übungsversion_single-family h	nome in Baden - (status now)
EG ground floor - basis	
Nr 2	a = 9,71 b = 11,82 lichte Raumhöhe = 2,59 + obere Decke: 0,35 => 2,94m BGF 114,77m ² BRI 337,67m ³
a W2 W1 W4	Wand W1 28,57m ² AW02 Aussenwand-verputzt Wand W2 34,78m ² AW02 Wand W3 11,59m ² AW02 Teilung 5,77 x 2,94 (Länge x Höhe) 16,98m ² AW01 Außenwand - KG Wand W4 34,78m ² AW02
1 b	Boden 114,77m ² KDOl Decke zu unkonditioniertem gedämmten
EG minus rectangle (garage)
a wi wi	<pre>a = 3,70 b = 1,00 lichte Raumhöhe = 2,59 + obere Decke: 0,35 => 2,94m BGF -3,70m² BRI -10,89m³ Wand W1 -2,94m³ AW02 Aussenwand-verputzt Wand W2 10,89m³ IW01 Aussenwand-verputzt (zu Garage) Wand W3 2,94m³ IW01 Wand W4 -10,89m³ IW01 Decke -3,70m³ ZD01 warme Zwischendecke Boden -3,70m³ KD01 Decke zu unkonditioniertem gedämmten</pre>
EG minus rectangle (toilet)	
a w4 w2 b	a = 3,70 b = 0,65 lichte Raumhöhe = 2,59 + obere Decke: 0,35 => 2,94m BGF -2,41m ² BRI -7,08m ³ Wand W1 -1,91m ² AW02 Aussenwand-verputzt Wand W2 10,89m ² AW02 Wand W3 1,91m ² AW02 Wand W4 -10,89m ² AW02 Decke -2,41m ² ZD01 warme Zwischendecke Boden -2,41m ² KD01 Decke zu unkonditioniertem gedämmten

MSc Program Renewable Energy in Central & Eastern Europe

Fens	Fenster und Türen Übungsversion, single family home in Baden , (status now)																						
UDu	ngs	versi	on.	_single-ramily	nom	e m	Bade	n - (s	tatus	now													
Тур		Bauteil	Anz	Bezeichnung	Breite [m]	Hohe [m]	Fläche [m²]	Ug [Wimitk]	Uf [W/m ² K]	PSI [W/mK]	Ag (m ²)	Uw [Wim ² K]	AxUxf [W/K]	8	16								
в				Profoormmaß Typ 1 (T1)	1,23	1,48	1,82	0,70	1,00	0,040	1,23	0,90		0,51									
NO																							
B T1	EG	AW02	2	1,75 x 0,87	1,75	0,87	3,05	0,70	1,00	0,040	1,90	0,93	2,82	0,51	0,85								
B T1	EG	AW02	1	0,50 x 2,28	0,50	2,28	1,14	0,70	1,00	0,040	0,53	1,02	1,17	0,51	0,85								
B T1	EG	AW02	1	0,97 x 0,87	0,97	0,87	0,84	0,70	1,00	0,040	0,46	0,97	0,81	0,51	0,85								
В Т1	EG	AW02	1	1,10 x 2,28 - It. Plan	1,10	2,28	2,51					1,44	3,61										
в т1	DG	AW02	3	Eingangstür 1.75 x 0.87	1.75	0.87	4.57	0.70	1.00	0.040	2.85	0.93	4.23	0.51	0.85								
			8			-	12.11						12,64	-		-							
ND44																_							
B T1	E E O	44402	-	134 v 2 64	1.34	2.64	3.54	0.70	1.00	0.040	2.64	0.86	3.02	0.51	0.85								
B T1	00	444/02	4	108 x 2 28	108	2.28	2.45	0.70	1.00	0.040	1 70	0.89	2.17	0.51	0.85								
B T1	DG	AW02	÷	0.88 x 0.87	0,88	0,87	0,76	0,70	1,00	0,040	0,40	0,98	0.74	0.51	0,85								
			3				6,75						5,93			-							
																_							
8 71	L EO	44402		0.94 x 2.64	0.94	264	2.48	0.70	1.00	0.040	1.68	0.90	2.22	0.51	0.85								
B T1	DG	AW02	4	1.89 x 1.37	1.89	1.37	2.59	0.70	1.00	0.040	1.85	0.87	2.25	0.51	0.85								
			2			-,	5.07					-	4.47	-	-,	-							
			-				-							_		_							
SW				147-044		0.64	7.76	0.70		0.040	E 00	0.05			0.05								
8 11	50	AWV02	2	1,47 x 2,64	1,47	2,64	1,15	0,70	1,00	0,040	0,89	0,85	5,57	0,51	0,85								
0.74	50	414100		0.74 × 2,04	0.74	2,04	4,05	0,70	1,00	0,040	4.00	0,00	1,40	0,51	0,00								
8 11	50	414/02	1	0,74 X 2,04	2.44	2,04	0.45	0,70	1,00	0,040	5.08	0,95	6.00	0,51	0.00								
8 11	50	414100	4	100-004	1.00	2,04	0,40	0,70	1.00	0,040	0,20	0,01	2,22	0,51	0,00								
8 14	00	44402	-	0.08 x 1.07	0.08	1.97	2,49	0,70	1.00	0.040	1.66	0,00	2,00	0.51	0.65								
8 74	~	414100	ŝ	4.75 × 0.09	1.75	2.29	7.00	0.70	1.00	0.040	0.10	0.00	0.70	0.51	0.05								
B T1	00	444/02	-	195 x 1 37	1.05	1.37	2.67	0,70	1.00	0.040	1.03	0.87	2,32	0,51	0.85								
		- Hitse	13	1000 1000	1,44	1,21	41.47	0,10	1,00	0,040	1,00	0,01	35.50	0,01	0,00	-							
																_							
Summe	summe 20 65,40 58,63																						
In the Start Review																							
ug.: Uwert Gais Ut.: Uwert Hammen PSI.: Linearer Korresturkoeftizient Ag.: Glasmache g.: Energiedurchlasegrad Verglasung fs.: Verschaltungefaktor																							
Typ P	rüfnorn	nmaßtyp					B	Fensterg	gehört zum	Bestand	des Ge	bäudes				g Energiedurchissignad vergiasung 16 Verschattungsfaktor Typ Prüfinommaßtyp B Fenster gehört zum Besland des Gebäudes							

13.1.3 Example 3 – Energy-pass for single family house in Altenfelden

Norm-Außentemperatur:	-15,9 °C	Standort:	Altenfelden			
Berechnungs-Raumtemperatur:	20 °C	Brutto-Rau	uminhalt der			
Temperatur-Differenz:	35,9 K	beheizten	Gebäudetell	e:	483,44	mª
		Gebäudeh	olfläche:		476,62	m²
Bautelle		Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf
		A [m²]	U [W/m [±] K]	r m	11) [1]	[W/K]
AD01 Decke zu unkonditioniertem	geschloss. Dachraum	149,21	0,348	0,90		46,74
AW02 Außenwand-EG	-	110,97	1,142	1,00		126,71
AW03 Außenwand-EG - mit Eternit	tverkleidung	16,48	0,865	1,00		14,26
FE/TÜ Fenster u. Türen		22,21	1,863	1,00		41,38
KD01 Decke zu unkonditioniertem	ungedämmten Keller	149,21	0,654	0,70		68,29
IW01 Wand zu sonstigem Pufferra	aum (Stiegenhaus)	28,54	1,361	0,70		27,18
Summe OBEN-Bautelle		149,21				
Summe UNTEN-Bautelle		149,21				
Summe Außenwandflächen		127,45				
Summe innenwandflächen		28,54				
Fensterantell In Außenwänd	len 13,9 %	20,56				
Fenster in Innenwänden		1,66				
Summe				[W/	K]	325
Wärmebrücken (pauscha	I)			[W/	K]	23
Transmissions - Leitwert	LT			[W/	K]	347
Lüftungs - Leitwert L _V				[W/	K]	42,21
Gebäude - Heizlast Ptot	L	uffwechsel -	0,40 1/h	[k\	N]	13,98
Flächenbez. Heizlast P1 k	oei einer BGF vor	n 149	m² [W/	m² BG	F]	93,70
Gebäude - Heizlast P _{tot} (EN 12	2831 vereinfacht) 🛛 L	uftwechsel -	0,50 1/h	[k	w]	14,83

Bauteile					
Übungsversion Single-Family home in /	Altenfelden / Upper				
AW02 Außenwand-EG					
Ante Automatic Co	von Innen nach Auß	Sen	Dicke	λ	d/ λ
Röfix 190 Kalk-Gips-Innenputz	В		0,0200	0,700	0,029
2.202.02 Lecabetonwandelement	в		0,3000	0,830	0,361
Dāmmputz EPS	в		0,0300	0,095	0,316
	Rse+Rsl = 0,17	Dicke gesamt	0,3500	U-Wert	1,14
KD01 Decke zu unkonditioniertem ungedäm	mten Keller				
	von Innen nach Aut	Sen	Dicke	λ	d/λ
1.704.08 Filesen	В		0,0100	1,000	0,010
1.202.06 Estrichbeton	В		0,0500	1,480	0,034
Leca-Schüttung	8		0,1000	0,120	0,833
Ziegeinonikorper mit Aurbeton (Decke)			0,2200	0,735	0,298
Ronx 190 Kaik-Gips-Innenpulz	D Rec: Rel = 0.34	Disks geografi	0,0100	U,/UU	0,014
	Rse+RsI = 0,34	Dicke gesamt	0,3900	0-Weit	0,65
AD01 Decke zu unkonditioniertem geschlos	5. Dachraum		Dieke		41.2
	von Ausen haur im	ien	Dicke		07.8
1.202.06 Estricheton			0,0500	1,480	0,034
Steinopor 700 EPS-F (100mm)	5		0,1000	0,040	2,500
Betonnonikorper mit Autoeton (Decke) BAtiv 100 Kolk-Cins-Innenoutz	B		0,1000	0,000	0,125
Rollx 190 Rala-Gipe-Interpole	Prov Rel = 0.2	Dicke geeent	0,0100	U.Wort	0.95
Philod Mand an aparticism Dufferences (Ofice	Retroi = 0,2	Dicke gesame	0,2600	0-11011	0,35
IW01 Wand zu sonstigem Putterraum (stieg	enhaus) von Innen nach Auf	len	Dicke		4/2
Pôty 100 Kalk-Cinc-Innenoutz	8		0.0100	0.700	0.014
2 108 0D Lecabetonstein	B		0,0100	0,560	0,014
RARY 100 Kolk-Gins-Innennutz	B		0.0100	0,000	0.014
Noix 150 Naix-Olponinenpeiz	Rse+Rsi = 0.26	Dicke gesamt	0 2700	U-Wert	1.36
AW02 Außenwand-EG - mit Eternitverkleidun		Diene geening	0,2102	•	
Anos Aubenwand-Lo - Init Eternityerkieldun	von Innen nach Auß	Sen	Dicke	λ	d/λ
Röfix 190 Kalk-Gips-Innenputz	В		0,0200	0,700	0,029
2.202.02 Lecabetonwandelement	в		0,3000	0,830	0,361
Dämmputz EPS	в		0,0300	0,095	0,316
Luft steh., W-Fluss horizontal 35 < d < = 40 mm	в		0,0400	0,222	0,180
AURIA Wandschindel	в		0,0050	0,500	0,010
	Rse+RsI = 0,26	Dicke gesamt	0,3950	U-Wert	0,87
Einheiten: Dioke [m], Achsabstand [m], Breite [m], U-Wert [Wim/K], Dioht * Schicht zählt nicht zum U-Wert F enthält Flächenheizung B Be RTu unterer Grenzwert RTo oberer Grenzwert laut ÖNORM EN ISO	e [kg/m²], X[W/mK] standsschicht **Defaultwe 6948	rt II. OIB			

MSc Program Renewable Energy in Central & Eastern Europe

Geometrieausdruck	
Übungsversion_Single-Family	home in Altenfelden / Upper
EG Basis	
Nr2	a = 11,50 b = 16,00 lichte Raumhöhe = 2,59 + obere Decke: 0,26 => 2,85m BGF 184,00m² BRI 524,40m³
a W2 W1 W4 b	Wand W1 32,78m² AW02 Au8enwand-EG Wand W2 45,60m² AW02 Wand W3 32,78m² AW02 Wand W4 45,60m² AW03 Au8enwand-EG - mit Eternitverkleidung Decke 184,00m² AD01 Decke zu unkonditioniertem geschloss. Boden 184,00m² KD01 Decke zu unkonditioniertem ungedämmte
EG Windfang/Stiegenhaus-	Korrektur
Nr 22	a = 7,87 b = 2,70 lichte Raumhöhe = 2,59 + obere Decke: 0,26 => 2,85m BGF -21,25m ² BRI -60,56m ³
a w4 w2	Wand W1 -7,70m ² AW03 Außenwand-EG - mit Eternitverkleidung Wand W2 18,87m ³ IW01 Wand zu sonstigen Pufferraum (Stiegen Teilung 1,25 x 2,85 (Länge x Höhe) 3,56m ² AW02 Außenwand-EG Wand W3 7,70m ² IW01 Wang W4 -22,43m ² AW02 Außenwand-EG
b	Decke -21,25m² ADOl Decke zu unkonditioniertem geschloss. Boden -21,25m² KDOl Decke zu unkonditioniertem ungedämmte
EG Balkonkorrektur-Westen	
a W3 W2 W2 b	<pre>a = 1,00 b = 6,00 lichte Raumhöhe = 2,59 + obere Decke: 0,26 => 2,85m BGF -6,00m² BRI -17,10m³ Wand W1 -17,10m² AW03 Außenwand-EG - mit Eternitverkleidung Wand W2 2,85m² AW02 Außenwand-EG Wand W3 17,10m² AW02 Wand W4 -2,85m² AW02 Decke -6,00m³ AD01 Decke zu unkonditioniertem geschloss. Boden -6,00m³ KD01 Decke zu unkonditioniertem ungedämmte</pre>
Geometrieausdruck	
Übungsversion_Single-Family	home in Altenfelden / Upper
EG Balkonkorrektur-Süden	
Nr 22	a = 5,80 b = 1,30 lichte Raumhöhe = 2,59 + obere Decke: 0,26 => 2,85m BGF -7,54m ² BRI -21,49m ³
a w4 w2	Wand W1 -3,71m ² AW03 AuBenwand-EG - mit Eternitverkleidung Wand W2 16,53m ³ AW02 AuBenwand-EG Wand W3 3,71m ² AW02 Wand W4 -16,53m ³ AW02 Decke -7,54m ³ AW02 Decke -7,54m ³ AD01 Decke zu unkonditioniertem ungedämmte Boden -7,54m ³ KD01 Decke zu unkonditioniertem ungedämmte
EG Summe	EG Bruttogrundfläche [m²]: 149,21 EG Bruttorauminhait [m²]: 425,25
Deckenvolumen KD01	
	Fläche 149,21 m² x Dicke 0,39 m = 58,19 m³

Bruttorauminhait [m²]: 58,19

MSc Program Renewable Energy in Central & Eastern Europe

Fe Ü	Fenster und Türen Übungsversion_Single-Family home in Altenfelden / Upper															
1	γp		Bauteil	Anz	Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug (WimPK)	Uf (W/m ^a K)	PSI [WimK]	Ag (m²)	Uw (Wim ^a K)	(WK)	9	5
в	- 1				Prüfnormmaß Typ 1 (T1)	1.23	1.48	1.82	1.90	1.65	0.040	1.23	1.92		0.63	
_															-	
	N															
в	1	EG	IW01	1	0,85 x 1,95 - Haustür zu Stiegenhaus	0,85	1,95	1,66					2,00	2,32		
_				1				1,66						2,32		
	0															
в		EG	AW02	1	1,24 x 1,30 - Kinderzimmer	1,24	1,30	1,61				1,13	1,90	3,06	0,62	0,85
в		EG	AW02	1	1,24 x 0,64 - Bad	1,24	0,64	0,79				0,56	1,90	1,51	0,62	0,85
в	i	EG	AW02	1	1,24 x 1,30 - Schlafzimmer	1,24	1,30	1,61				1,13	1,90	3,06	0,62	0,85
в	i	EG	AW02	1	1,14 x 1,40 -	1,14	1,40	1,60				1,12	1,90	3,03	0,62	0,85
в		EG	AW02	1	1,10 x 2,10 - Wohnzimmer Australia	1,10	2,10	2,31				1,62	1,90	4,39	0,62	0,85
_				5				7,92						15,05		
	s					1										
в	1	EG	AW02	1	2,24 x 1,30 -	2,24	1,30	2,91				2,04	1,90	5,53	0,62	0,85
в	ł	EG	AW02	1	1,10 x 2,10 - Essplatz	1,10	2,10	2,31				1,62	1,90	4,39	0,62	0,85
в		EG	AW02	1	1,14 x 1,30 - Esspiatz	1,14	1,30	1,48				1,04	1,90	2,82	0,62	0,85
_				3				6,70						12,74		
1	W															
в		EG	AW02	2	1,14 x 1,30 - Essplatz / Küche	1,14	1,30	2,98				2,07	1,90	5,63	0,62	0,85
в	i	EG	AW03	1	1,14 x 1,30 -	1,14	1,30	1,48				1,04	1,90	2,82	0,62	0,85
в		EG	AW03	1	1,14 x 1,30 - Kinderzimmer	1,14	1,30	1,48				1,04	1,90	2,82	0,62	0,85
_				4		•		5,92						11,27		
Su	mme			13				22,20						41,38		
Lia		and Ok		hand	Dahman DOI Lineara	er Morrald	turko a M	vient &	a Olasfi	tobe						

g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor Typ... Prüfnormmaßtyp

B... Fenster gehört zum Bestand des Gebäudes

13.1.4 Example 4 – Energy-pass for weekend home in

Schwarzenberg/Hochficht

Norm-/	Außentemperatur:	-15,3 °C	Standort:	Schwarzen	berg im M	ühikrei	
Berech	nungs-Raumtemperatur:	20 °C	Brutto-Ra	uminhalt der			
Tempe	ratur-Differenz:	35,3 K	beheizten	Gebäudetel	446,47	mª	
			Gebäudel	fülfläche:	455,86	m² .	
Bautel	le		Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf
			A [m³]	U [W/m² K]	di di	(1) (1)	[W/K]
AW01	Außenwand-Granit BEST/	AND	83,07	0,745	1,00		61,86
AW02	Außenwand-Ziegel (Adapt	ion 1985) - nach Aussen	8,81	0,772	1,00		6,80
FE/TÜ	Fenster u. Türen		15,50	2,205	1,00		34,19
EB01	erdanliegender Fußboden	(<=1,5m unter Erdreich)	152,67	0,464	0,70		49,56
AG01	Decke zu sonstigem Puffe room)	rraum nach oben (living	50,91	0,147	0,70		5,25
AG02	Decke zu sonstigem Puffe	rraum nach oben (kitchen) 15,50	0,698	0,70		7,58
AG03	Decke zu sonstigem Puffe (sleeping-room)	rraum nach oben	86,26	3,633	0,70		219,40
IW01	Außenwand-Granit zu unb	ehelztem Schuppen	9,85	0,698	0,70		4,81
IW02	Außenwand-Ziegel zu unb (Adaption 1985)	ehelztem Schuppen	33,29	0,760	0,70		17,71
	Summe OBEN-Bautelle		152,67				
	Summe UNTEN-Bautelle		152,67				
	Summe Außenwandfläche	in .	91,88				
	Summe Innenwandflächer	1	43,14				
	Fensterantell In Außenwär	nden 13,1 %	13,80				
	Fenster in Innenwänden		1,70				
Sum	me				[W/	K]	407
Wärr	nebrücken (pausch	al)			[W/	к]	10
Tran	smissions - Leitwer	t L _T			[W/	K]	417
Lüftı	ungs - Leitwert L _V	-			[W/	ĸj	43,19
Gebä	aude - Heizlast Ptot	U	uftwechsel -	0,40 1/h	[k\	N]	16,25
Fläc	henbez. Heizlast P ₁	bei einer BGF vor	1 153 i	m ² [W	m² BG	F]	106,44
Gebä	ude - Heizlast P _{tot} (EN	12831 vereinfacht)	uftwechsel -	0,50 1/h	[k]	wj	16,87

Bauteile									
Übungsversion	weekend-ho	me in	the mo	ountains -	(status				
	d Cranit DEST	AND							
AWVI Auberiwan	u-Granic DEar	AND		von inne	en nach Auße	en .	Dicke	2	d/ λ
Zementputz				в			0.0100	1.000	0.010
StoGranit				В#			0,8000	0,700	1,143
Zementputz				в			0,0200	1,000	0,020
				Rse+RsI = 0,1	7	Dicke gesamt	0,8300	U-Wert	0,74
IW01 Außenwan	d-Granit zu unl	beheizt	em Sch	uppen					
				von Inne	en nach Auße	en	Dicke	λ	d/ λ
Zementputz				в			0,0100	1,000	0,010
StoGranit				В#			0,8000	0,700	1,143
Zementputz					-	Distances of	0,0200	1,000	0,020
				Rse+Rsi = 0,2	0	Dicke gesamt	0,8300	0-went	0,70
IWUZ Außenwan	d-Ziegel zu unt	peheizt	em Sch	uppen (Adaj von Inne	n nach Auße) en	Dicke	λ	d/λ
Zementputz				в			0,0100	1,000	0,010
2.406.02 Schlackenbeto	instein 25 cm			в			0,3000	0,630	0,476
Herakilth-BM (5,0cm)				в			0,0500	0,091	0,550
Zementputz				в	-		0,0200	1,000	0,020
				Rse+RsI = 0,2	6	Dicke gesamt	0,3800	U-Wert	0,76
AW02 Außenwan	d-Ziegel (Adap	tion 19	85) - na	ch Aussen von Inne	en nach Auße	en	Dicke	λ	d/ λ
Zementputz				в			0.0100	1.000	0.010
1.106.06 Betonhohistein	mauerwerk			в			0,3000	0,550	0,545
Herakilth-BM (5,0cm)				в			0,0500	0,091	0,550
Zementputz				в			0,0200	1,000	0,020
				Rse+RsI = 0,1	7	Dicke gesamt	0,3800	U-Wert	0,77
EB01 erdanliege	nder Fußboder	ı (<=1,5	5m unte	r Erdreich)		_	Dista		
				von inne	en nach Aulse	en	Dicke	^	0/ X
Riegel dazw	Del			B #	0.14	N.	0,0300	0,120	0,250
steinopor 700 EPS-V	W15 (220mm)			Б#	90.9	%	0.0800	0.041	1.774
1.202.02 Stahlbeton	(,			в			0,1000	2,300	0,043
	RTo 2,1886	RTu	2,1239	RT 2,1562		Dicke gesamt	0,2100	U-Wert	0,46
Riegel:	Achsabstand	0,550	Breite	0,050		Rse	+Rsl 0,	,17	
AC04 Dealer av a	and an Duff		and a	han Ultring a					
AGUT Decke zu s	ionstigem Putto	erraum	nach o	von Auß	en nach inne	en	Dicke	λ	d/λ
Stroh				В #			0,3000	0,047	6,383
3.304.02 Tram-Traverse	endecke 20 cm			в			0,2000	0,950	0,211
				Rse+Rsl = 0,	2	Dicke gesamt	0,5000	U-Wert	0,15
AG02 Decke zu s	ionstigem Puffe	erraum	nach o	ben (kitchen) en nach inne	20	Dicks		4/3
1 202 02 Stabiliteton				B	en navn inne		0.1500	2 300	0.065
Riegel dazw				Б.#	5.53	*	0,1000	0 120	0.023
steinopor 700 EPS-V	W15 (220mm)			В#	94,6	%	0,0500	0,041	1,153
1.108.04 Glpsbauplatter	ı Č			в			0,0200	0,410	0,049
	RT0 1,4469	RTu	1,4176	RT 1,4322		Dicke gesamt	0,2200	U-Wert	0,70
Riegel:	Achsabstand	0,550	Breite	0,030		Rse	+Rsl (0,2	
AG03 Dooke aver	onstigen Puff		nach o	han (cleanin	a-room)				
Hovo Decke zu s	onsugen i un	araum	mach o	von Auß	en nach inne	en	Dicke	λ	d/ a
1.202.02 Stahlbeton				В			0.1500	2,300	0.065
Zementputz				в			0,0100	1,000	0,010
				Rse+Rsi = 0,	2	Dicke gesamt	0,1600	U-Wert	3,63

MSc Program Renewable Energy in Central & Eastern Europe

Geometrieausdruck	e in the mountaine - (etatue
obungsversion_weekend-nom	e in the mountains - (status
EG basis - granite part	
Nr 2 a W3 W4 b	<pre>a = 12,10 b = 10,60 lichte Raumhöhe = 2,50 + obere Decke: 0,16 => 2,66m BGF 128,26m² BRI 341,17m² Wand W1 32,19m² IWO1 Außenwand-Granit zu unbeheiztem Schup Wand W2 28,20m² AWO1 Außenwand-Granit BESTAND Wand W4 28,20m² AWO1 Decke 86,26m² AGO3 Decke zu sonstigem Pufferraum nach ob Teilung 26,50m² AGO3 Teilung 15,50m² AGO2 Boden 128,26m² EBO1 erdanliegender Fußboden (<=1,5m unter</pre>
-	
EG rectangle with bathroon	n/toilet
Nr 18	<pre>a = 7,75 b = 3,15 lichte Raumhöhe = 2,50 + obere Decke: 0,50 => 3,00m BGF 24,41m² BRI 73,24m³ Wand W1 9,45m² IM02 Außenwand-Ziegel zu unbeheiztem Schup Wand W2 -23,25m² IM01 Außenwand-Ziegel (Adaption 1985) - na Wand W3 9,45m² AM02 Außenwand-Ziegel (Adaption 1985) - na Wand W4 23,25m² IM02 Außenwand-Ziegel (unbeheiztem Schup Decke 24,41m² AG01 Decke zu sonstigem Pufferraum nach ob Boden 24,41m² EB01 erdanliegender Fußboden (<-1,5m unter</pre>
EG Summe	EG Bruttogrundfläche (m*): 152,67 EG Bruttorauminhalt (m*): 414,41
Deckenvolumen EB01	
	Fläche 152,67 m² x Dicke 0,21 m = 32,06 m³
	Bruttorauminhait [m³]: 32,06

Fens	Fenster und Türen Übungsversion, weekend home in the mountains - (status														
Тур	ligs	Bautei	Anz	Bezeichnung	Breite [m]	Hôhe [m]	Fläche [m²]	Ug [WimPK]	Uf [Wim ² K]	PSI [WimK]	Ag [m ²]	Uw [Wim ² K]	AxUsf [W/K]	9	8
в				Prüfnormmaß Typ 1 (T1)	1,23	1,48	1,82	2,70	1,55	0,040	1,23	2,42		0,72	
0															
в	EG	AW01	1	1,00 x 1,30 - Küche	1,00	1,30	1,30				0,91	2,38	3,09	0,62	0,85
в	EG	AW01	2	1,00 x 1,30 - WohnZi Hight wit 2-facts	1,00	1,30	2,60				1,82	2,38	6,19	0,62	0,85
в	EG	AW02	1	1,00 x 1,30 - Bad (Holz mit 2-fach Verbundglas)	1,00	1,30	1,30				0,91	2,38	3,09	0,62	0,85
			4				5,20						12,37		
S															
в	EG	AW01	3	1,00 x 1,30 - WohnZi (Holz mit 2-fach	1,00	1,30	3,90				2,73	2,38	9,28	0,62	0,85
в	EG	AW01	1	1,00 x 1,30 - Schlaf2(Holz mit 2-fach	1,00	1,30	1,30				0,91	2,38	3,09	0,62	0,85
в	EG	AW01	1	1,00 x 2,10 - Haustür	1,00	2,10	2,10					1,67	3,51		
			5				7,30						15,88		
W															
в	EG	AW01	1	1,00 x 1,30 - KindZi(Holz mit 2, fach Verbundnias)	1,00	1,30	1,30				0,91	2,38	3,09	0,62	0,85
в	EG	IW02	1	0,85 x 2,00 - Tür zu unbeheiztem Schuppen	0,85	2,00	1,70					2,38	2,83		
			2				3,00						5,92		
Summe			11				15,50						34,17		
UgU	Ug Uwert Glas Uf Uwert Rahmen PSI Linearer Korrekturkoeffizient Ag Glasfläche														

Typ... Prüfnormmaßtyp

B... Fenster gehört zum Bestand des Gebäudes

13.1.5 Example 5 – Energy-pass for building in San Francisco

Norm-/	Außentemperatur:	Standort:				
Berech	nungs-Raumtemperatur:	Brutto-Rai	uminhait der			
Tempe	ratur-Differenz:	beheizten	Gebäudetell	e:	334,32	mª
		Gebäudeh	fülfläche:		355,34	m²
Bautel	le	Fläche	Warmed	Korr	Korr	AxUxf
			KOETTIZ.	Taktor	Taktor	
		[m ²]	[W/m ² K]	- m	11	[W/K]
AW01	Außenwand	117,54	0,350	1,00		41,18
FD01	Außendecke, Wärmestrom nach oben	112,00	0,350	1,00		39,19
FE/TŰ	Fenster u. Türen	13,80	1,434	1,00		19,79
ID01	Fußboden zu sonstigem Pufferraum (nach unten)	112,00	0,502	0,70		39,38
	Summe OBEN-Bautelle	112,00				
	Summe UNTEN-Bautelle	112,00				
	Summe Außenwandflächen	117,54				
	Fensterantell in Außenwänden 10,5 %	13,80				
Sum	me			[W/	K]	140
Wärn	nebrücken (pauschal)			[W/	K]	10
Tran	smissions - Leitwert L _T			[W/	K]	150
Lüftu	ings - Leitwert L _V			[W/	K]	31,68
Gebä	iude - Heizlast P _{tot}	uffwechsel -	0,40 1/h	[k	W]	5,89
Fläch	enbez, Heizlast P, bei einer BGE vo	n 112	m ² IW/	m ² BG	FI	52,59
Gabër	ide Heinlast P /EN 12021 versiofacht)				wa	6.24
Gebal	ude - Heiziast P _{tot} (EN 12831 Vereinfacht)	unwechsel -	0,50 1/h	[K	and I	6,34

Bauteile

Übungsversion California - San Francisco

	d							
				von Innen na	ach Außen	Dicke	λ	d/λ
1.402.02 Holz				в		0,0120	0,140	0,086
Riegel dazw.				в	10,0 %		0,120	0,105
Steinwolle MW-WF 6	0			в	90,0 %	0,1260	0,043	2,637
1.402.02 Holz				в		0,0120	0,140	0,086
	RT0 2,8822	RTu	2,8266	RT 2,8544	Dicke gea	amt 0,1500	U-Wert	0,35
Riegel:	Achsabstand	0,600	Breite	0,060	, i	Rse+Rsl 0,	17	-
FD01 Außendec	ke, Wärmestrom	nach	oben					
				von Außen n	ach innen	Dicke	λ	d/λ
ETERNIT Dachplatten				в		0,0200	0,600	0,033
1.402.02 Holz				в		0,0120	0,140	0,086
Riegel dazw.				в	10,0 %		0,120	0,105
Steinwolle MW-WF 6	0			в	90,0 %	0,1260	0,043	2,637
1.402.02 Holz				в		0,0120	0,140	0,086
	RTo 2,8859	RTu	2,8300	RT 2,8580	Dicke ges	samt 0,1700	U-Wert	0,35
Riegel:	Achsabstand	0,600	Breite	0,060		Rse+Rsl 0,	14	
ID01 Fußboden	zu sonstigem P	ufferra	aum (na	ich unten)				
ID01 Fußboden	zu sonstigem P	ufferra	aum (na	ich unten) von Innen na	ach Außen	Dicke	λ	d/ λ
ID01 Fußboden 1.704.08 Filesen	zu sonstigem P	ufferra	aum (na	a <mark>ch unten)</mark> von innen na B	ach Außen	Dicke 0,0150	λ 1,000	d/ λ 0,015
ID01 Fußboden 1.704.08 Filesen 1.202.06 Estrichbeton	zu sonstigem P	ufferra	aum (na	ach unten) von Innen na B B	ach Außen	Dicke 0,0150 0,0500	λ 1,000 1,480	d/ λ 0,015 0,034
ID01 Fußboden 1.704.08 Filesen 1.202.06 Estrichbeton ISOVER TDPS Trittscha	zu sonstigem Pi	ufferra	aum (na	ich unten) von innen na B B B	ach Außen	Dicke 0,0150 0,0500 0,0500	λ 1,000 1,480 0,033	d/), 0,015 0,034 1,515
ID01 Fußboden 1.704.08 Filesen 1.202.06 Estrichbeton ISOVER TDPS Trittsch: 1.202.02 Stahlbeton	zu sonstigem P	ufferra	aum (na	ich unten) von innen n: B B B B B	ach Außen	Dicke 0,0150 0,0500 0,0500 0,2000	λ 1,000 1,480 0,033 2,300	d/ λ 0,015 0,034 1,515 0,087

Geometrieausdruck	
Übungenungeinen California Ca	
Obungsversion_California - Sa	an Francisco
DG Dachkörper	
DO Dacinkorper	
Nr 49	a = 8,00 b = 14,00
	BGF 112.00m ² BRI 299.04m ³
	Decke 112,00m ²
	Wand W1 21,36m² AWD1 Aubenwand Wand W2 37,38m3 AWD1
W/2	Wand W3 21,36m ² AW01
	Wand W4 37,38m ² AW01
h	Decke 112,00m ² FD01 Außendecke, Wärmestrom nach oben
wi b	Boden 112,00m² 1001 Fubboden zu sonstigem Füfferraum (nac
a	
	DG Bruffogrundfläche [m ²]: 112.00
DG Summe	DG Bruttorauminhait [m ²]: 299.04
Deckenvolumen ID01	
	Fläche 112,00 m² x Dicke 0,32 m = 35,28 m³
	Bruttorauminhait (m*1: 35.28
Fenster und Türen	
Übungsversion California - S	San Francisco
Typ Bauteil Anz. Bezeichnung	Breite Hohe Fläche Ug Uf PSI Ag Uw AxUxf g fs [m] [m] [m²] [Wim²K] [Wim²K] [WimK] [m²] [Wim²K] [WK]

						[m]	[m]	[m²]	(WmH)	(Wm ^a K)	[WimK]	[m ³]	[Wim ² K]	[WiK]		
в					Prüfnormmaß Typ 1 (T1)	1,23	1,48	1,82	1,25	1,40	0,070	1,23	1,47		0,58	
	N															
в	T1	DG	AW01	1	1,20 x 1,00	1,20	1,00	1,20	1,25	1,40	0,070	0,73	1,51	1,81	0,58	0,85
в	T1	DG	AW01	1	0,80 x 1,00	0,80	1,00	0,80	1,25	1,40	0,070	0,43	1,55	1,24	0,58	0,85
_				2				2,00						3,05		
	0															
в	T1	DG	AW01	2	1,20 x 1,00	1,20	1,00	2,40	1,25	1,40	0,070	1,48	1,51	3,62	0,58	0,85
в	Т1	DG	AW01	1	1,00 x 2,20 - Gartentür	1,00	2,20	2,20					1,67	3,67		
_								4.00						7.00		
				3				4,00						1,20		
	S															
в	T1	DG	AW01	1	1,20 x 1,00	1,20	1,00	1,20	1,25	1,40	0,070	0,73	1,51	1,81	0,58	0,85
в	Τ1	DG	AW01	1	0,80 x 1,00	0,80	1,00	0,80	1,25	1,40	0,070	0,43	1,55	1,24	0,58	0,85
в	T1	DG	AW01	1	1,00 x 2,20 - Haustür	1,00	2,20	2,20					0,87	1,91		
				3				4,20						4,96		
	w															
в	T1	DG	AW01	2	1,50 x 1,00	1,50	1,00	3,00	1,25	1,40	0,070	1,92	1,49	4,48	0,58	0,85
_				2				3,00						4,48		
8	umme	1		10				13,80						19,78		
U	g U	wert Gla	as Uf (Jwer	t Rahmen PSI Lineare	r Korrekt	urkoeffi	zient A	g Glasfi	iche						
9	Ene	rgiedur	chiasegra	d Ve	rglasung fs Verschattu	ngsfakto	er 👘		Fereter		Destand		h			
	ур Р	Tumorn	nmastyp					В	mensoer ş	periort zum	Destand	Jes Ge	Dauges			

13.2 Details (status after suggested improvements of Austrian Energy-pass for the example-houses

13.2.1 Example 1 - Energy-pass for single family house in Traunkirchen

Norm Außentennerstur	44.2.90	Chandart	Traunkinsha				
Norm-Ausentemperatur.	-14,5 C	Standoft.	Taunkirche	au			
Berechnungs-Raumtemperatur:	20 °C	Brutto-Rai	uminhalt der				
Temperatur-Differenz:	34,3 K	beheizten	Gebaudetei	le:	641,80	m²	
		Gebäudeh	nüllfläche:		486,63	m²	
Bauteile		Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf	
		A [m²]	U [W/m² K]	(1)	ffh (1)	[W/K]	
AD01 Decke zu unkonditionierte	m geschloss. Dachraum	36,90	0,099	0,90		3,30	
AW01 Aussenwand - Holzblock		111,24	0,126	1,00		14,03	
AW02 Wintergarten		9,87	0,191	1,00		1,89	
DS01 Dachschräge hinterlüftet		84,83	0,101	1,00		8,60	
FE/TÜ Fenster u. Türen		73,59	1,098	1,00		80,77	
EB02 Wintergarten-Fussboden		23,68	0,235	0,70	1,34	5,20	
KD01 Kellerdecke		101,87	0,196	0,50	1,34	13,36	
IW01 Aussenwand - Holzblock	(Holzlagerraum, Garage)	29,10	0,125	0,70		2,54	
IW02 Aussenwand - Holzblock	(WiGa-kalt Norden)	15,55	0,125	0,80		1,55	
Summe OBEN-Bauteile		139,49					
Summe UNTEN-Bauteile		125,55					
Summe Außenwandfläche	en	121,11					
Summe Innenwandfläche	n	44,65					
Fensteranteil in Außenwä	nden 28,7 %	48,64					
Fenster in Innenwänden		7,18					
Fenster in Deckenflächen		17,76					
Summe				[W/	K]	131	
Wärmebrücken (pausch	ial)			[W/	К]	13	
Transmissions - Leitwe	rt L _T			[W/	к]	144	
Lüftungs - Leitwert L _v				[W/	К]	57,17	
Gebäude - Heizlast P _{tot}	L	uftwechsel =	: 0,40 1/h	[k\	w]	6,89	
Flächenbez. Heizlast P ₁	bei einer BGF vor	n 202	m² [W/	m² BG	F]	34,11	
Gebäude - Heizlast P _{tot} (EN	12831 vereinfacht) L	uftwechsel =	0,50 1/h	[k	W]	7,77	
Die berechnete Helzlast kann von Jener ger	nåß ÖNORM H 7500 bzw. EN IS	O 12831 abwek	chen und ersetz	t nicht den M	Nachwels der	Gebäude-Normhei	Izlast

Bauteile					
Übungsversion_single-family home in T	raunkirchen / Up	per			
AD01 Decke zu unkonditioniertem geschlos	s. Dachraum	-			
Vasud Claskadas Sauerah daslatis	von Außen nach	Innen	Dicke	λ	d / λ
1.402.02 Holz	8	0.0240	0,250	0,072	
Luft steh., W-Fluss horizontal 35 < d < = 40 mm	в	0,0400	0,222	0,180	
Steinwolle MW-W (33)	B		0,3500	0,038	9,211
1.402.02 H02 1.108.02 Glosbauplatten	8		0.0180	0,140	0.062
	Rse+Rsl = 0,2	Dicke gesamt	0,4740	U-Wert	0,10
AW01 Aussenwand - Holzblock					
4 400 00 1010	von innen nach /	Außen	Dicke	λ	d/ λ
PVC-Dichtungsbahn	B		0.0010	0,140	0.007
Steinwolle MW-W (33)	в		0,2500	0,038	6,579
1.402.02 Holz	в		0,1400	0,140	1,000
D601 Dashrahriga historlüftet	Rse+Rsi = 0,17	Dicke gesamt	0,4150	U-Wert	0,13
Daon Dachschräge nintenuntet	von Außen nach	Innen	Dicke	λ	d/ λ
Luft steh., W-Fluss horizontal 25 < d < = 30 mm	в		0,0300	0,176	0,170
1.402.02 Holz	в		0,0200	0,140	0,143
Steinwole MW-W (33)	8		0.0400	0,222	8,684
PVC-Dichtungsbahn	в		0,0010	0,140	0,007
1.402.02 Holz	в		0,0240	0,140	0,171
Luft sten., W-Fluss norizontal 15 < 0 < = 20 mm 1.402.02 Holz	8		0,0200	0,118	0,169
1. Hold of the second	-				100 C 100 C
	Rse+Rsl = 0,2	Dicke gesamt	0,4850	U-Wert	0,10
EB02 Wintergarten-Fussboden	Rse+RsI = 0,2	Dicke gesamt	0,4850	U-Wert	0,10
EB02 Wintergarten-Fussboden	Rse+Rsl = 0,2	Dicke gesamt Außen	0,4850 Dicke	U-Wert λ	0,10 d/ λ
EB02 Wintergarten-Fussboden	Rse+RsI = 0,2 von innen nach / B F B	Dicke gesamt Außen	0,4850 Dicke 0,0100 0.0700	U-Wert λ 1,000 1,480	0,10 d/λ 0,010 0.047
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn	Rse+Rsl = 0,2 von innen nach / B F B B	Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010	U-Wert λ 1,000 1,480 0,140	0,10 d/λ 0,010 0,047 0,007
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) DVC Dichtungsbahn	Rse+Rsi = 0,2 von innen nach / B F B B B	Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0700 0,0010 0,1500	U-Wert λ 1,000 1,480 0,140 0,038 0,140	0,10 d/ λ 0,010 0,047 0,007 3,947
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Spiltt)	Rse+Rsi = 0,2 von innen nach / B F B B B B B B B	Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,1500 0,0010 0,0500	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Spiltt)	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt	0,4850 Dicke 0,0100 0,0700 0,0010 0,1500 0,0010 0,0500 0,2820	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071 0,23
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke	Rse+RsI = 0,2 von Innen nach / B F B B B B Rse+RsI = 0,17	Dicke gesamt Außen Dicke gesamt	0,4850 Dicke 0,0100 0,0700 0,0010 0,0500 0,2820	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071 0,23
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Olchtungsbahn Styrodur 3035 C (140 mm) PVC-Olchtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke 1.402.02 Holtz	Rse+RsI = 0,2 von Innen nach / B F B B B Rse+RsI = 0,17 von Innen nach /	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,0500 0,2820 Dicke 0,0140	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071 0,23 d/ λ 0,100
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Olchtungsbahn Styrodur 3035 C (140 mm) PVC-Olchtungsbahn 1.508.02 Schüttung (Sand, Kles, Splitt) KD01 Kellerdecke 1.402.02 Holz PVC-Olchtungsbahn	Rse+RsI = 0,2 von Innen nach / B F B B Rse+RsI = 0,17 von Innen nach / B	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,0010 0,0500 0,2820 Dicke 0,0140 0,0010	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140 0,140	0,10 d/ λ 0,010 0,047 0,007 3,947 0,071 0,23 d/ λ 0,100 0,007
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Olchtungsbahn Styrodur 3035 C (140 mm) PVC-Olchtungsbahn 1.508.02 Schüttung (Sand, Kles, Splitt) KD01 Kellerdecke 1.402.02 Holz PVC-Olchtungsbahn Steinwolle MW-W (33)	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,0010 0,0500 Dicke 0,0140 0,0010 0,0500	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,140 0,038	0,10 d/ λ 0,010 0,047 0,007 0,007 0,071 0,23 d/ λ 0,100 0,007 1,316
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Olchtungsbahn Styrodur 3035 C (140 mm) PVC-Olchtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Olchtungsbahn Steinwolle MW-W (33) 1.202.02 Stahlbeton Dharacter 2000 0 (80 mm)	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,0500 0,2820 Dicke 0,0140 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0700	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,140 0,140 0,038 2,300 2,205	0,10 d/ λ 0,010 0,047 0,007 0,071 0,23 d/ λ 0,100 0,007 1,316 0,074
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Dichtungsbahn Steinwolle MV-W (33) 1.202.02 Stahlbeton Styrodur 2800 C (80 mm) ISOVER TDPT Trittshal-Dämmpl. 30/30	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,0500 0,2820 Dicke 0,0140 0,0500 0,0500 0,1700 0,0300	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,038 2,300 0,035 0,035 0,035	0,10 d/ λ 0,010 0,047 0,007 0,071 0,23 d/ λ 0,100 0,007 1,316 0,074 2,286 0,909
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Dichtungsbahn Steinwolle MW-W (33) 1.202.02 Stahlbeton Styrodur 2800 C (80 mm) ISOVER TDPT Trittschail-Dämmpl. 30/30 1.202.06 Estrichbeton	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0500 0,2820 Dicke 0,0140 0,0140 0,0500	U-Wert λ 1,000 1,480 0,140 0,140 0,140 U-Wert λ 0,140 0,140 0,140 0,140 0,140 0,038 2,300 0,033 1,480	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071 0,074 0,999 0,041 0,041 0,074 0,094 0,004 0,0
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Spiltt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Dichtungsbahn Steinwolie MW-W (33) 1.202.02 Stahibeton Steinwolie MW-W (33) 1.202.06 Estrichbeton 1.704.08 Filesen	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,0500 0,2820 Dicke 0,0140 0,0140 0,0100 0,0500 0,0000 0,00000000	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,038 2,300 0,033 1,480 1,000	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071 0,023 d/ λ 0,100 0,074 2,286 0,909 0,041 0,020
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Dichtungsbahn Steinwolle MV-W (33) 1.202.02 Stahlbeton Styrodur 2800 C (80 mm) ISOVER TUPT Trittschi-Dämmpl. 30/30 1.202.06 Estrichbeton 1.704.08 Filesen 2001 warme Zwischendische zw. E0 wed 20	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen	0,4850 Dicke 0,0100 0,0700 0,0010 0,0500 0,2820 Dicke 0,0140 0,0010 0,0010 0,0010 0,0010 0,0500 0,0200 0,0300 0,0300 0,0300 0,0200 0,0200 0,0200	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,038 2,300 0,038 1,480 1,000 U-Wert U-Wert U-Wert 0,140 0,038 0,140 0,038 0,140 0,038 0,140 0,040 0,040 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,009 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,009 0,008 0,00	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071 0,23 d/ λ 0,100 0,007 1,316 0,074 2,286 0,909 0,041 0,020 0,20
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Dichtungsbahn Steinwole MV-W (33) 1.202.02 Stahlbeton Steinwole MV-W (33) 1.202.02 Stahlbeton Styrodur 2800 C (80 mm) ISOVER TDPT Trittsch-Dämmpl. 30/30 I.202.06 Estrichbeton 1.704.08 Filesen ZD01 warme Zwischendecke zw. EG und OC	Rse+RsI = 0,2	Dicke gesamt Dicke gesamt Außen Dicke gesamt	0,4850 Dicke 0,0100 0,0700 0,0010 0,0500 0,2820 Dicke 0,0140 0,0010 0,0500 0,0200 0,0500 0,0010 0,0010 0,0010 0,0010 0,0010 0,0000	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,038 2,300 0,033 1,480 1,000 U-Wert λ	0,10 d/ λ 0,010 0,047 0,007 3,947 0,007 0,071 0,23 d/ λ 0,100 0,007 1,316 0,074 2,286 0,909 0,041 0,020 0,200 d/ λ
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Dichtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Splitt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Dichtungsbahn Steinwolle MW-W (33) 1.202.02 Stahlbeton Styrodur 2800 C (80 mm) ISOVER TDPT Trittschail-Dämmpl. 30/30 1.202.06 Estrichbeton 1.704.08 Filesen ZD01 warme Zwischendecke zw. EG und OG 1.402.02 Hoiz	Rse+RsI = 0,2 von innen nach / B F B B B Rse+RsI = 0,17 von innen nach / B B B B B B B B B B B B B	Dicke gesamt Außen Dicke gesamt Außen Dicke gesamt	0,4850 Dicke 0,0100 0,0700 0,0200 0,2820 Dicke 0,0140 0,0140 0,0500 0,2800 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0100 0,0500 0,0100 0,0500 0,0500 0,0500 0,0100 0,0500	U-Wert λ 1,000 1,480 0,140 0,038 0,140 0,700 U-Wert λ 0,140 0,038 2,300 0,038 2,300 0,033 1,480 1,000 U-Wert λ 0,140 0,038 0,140 0,038 0,140 0,038 0,140 0,040 0,040 0,040 0,040 0,040 0,008 0,140 0,008 0,000 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,000 0,008 0,000 0,008 0,000 0,008 0,008 0,008 0,008 0,000 0,008 0,000 0,008 0,000 0,008 0,000 0,008 0,000 0,008 0,008 0,008 0,000 0,008 0,0	0,10 d / λ 0,010 0,047 0,007 0,071 0,23 d / λ 0,100 0,074 2,286 0,004 0,074 2,286 0,041 0,020 0,20 d / λ 0,286
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Olchtungsbahn Styrodur 3035 C (140 mm) PVC-Olchtungsbahn 1.508.02 Schüttung (Sand, Kies, Spiltt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Olchtungsbahn Steinwolle MW-W (33) 1.202.02 Stahibeton 1.202.05 Estrichbeton 1.202.05 Holtz ED01 warme Zwischendecke zw. EG und OC 1.402.02 Holz Steinwolle MW-W (33)	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen Dicke gesamt	0,4850 Dicke 0,0100 0,0700 0,0210 0,0500 0,2820 Dicke 0,0140 0,0140 0,0100 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0200 0,4250 Dicke 0,0400 0,04250	U-Wert λ 1,000 1,480 0,140 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,035 0,033 1,480 0,033 1,480 0,035 0,033 0,035 0,033 1,480 0,038 0,140 0,038 0,038 0,140 0,038 0,038 0,140 0,038 0,140 0,038 0,140 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040	0,10 d / λ 0,010 0,047 0,007 0,071 0,23 d / λ 0,100 0,074 2,286 0,007 0,074 2,286 0,074 2,286 0,007 0,041 0,020 0,041 0,020 0,041 0,020 0,041 0,020 0,041 0,020 0,047 0,010 0,047 0,010 0,010 0,047 0,007 0,071 0,023 d / λ 0,010 0,074 0,007 0,074 0,007 0,074 0,007 0,074 0,007 0,0
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Olchtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Spiltt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Olchtungsbahn Steinwolle MW+W (33) 1.202.02 Stahibeton Styrodur 2800 C (80 mm) ISOVER TDPT Trittschail-Dämmpl. 30/30 1.202.06 Estrichbeton 1.704.08 Filesen ZD01 warme Zwischendecke zw. EG und OC 1.402.02 Hoiz Steinwolle MW+W (33) 1.402.02 Hoiz Steinwolle MW+W (33) 1.402.02 Hoiz Steinwolle MW+W (33)	Rse+RsI = 0,2 von innen nach / F B B B B Rse+RsI = 0,17 von innen nach / B B B B B B B B B B B B B	Dicke gesamt Außen Dicke gesamt Außen Dicke gesamt	0,4850 Dicke 0,0100 0,0700 0,0200 0,2820 Dicke 0,0140 0,0140 0,0140 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0200 0,4250 Dicke 0,0400 0,04250 0,04250	U-Wert λ 1,000 1,480 0,140 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,140 0,140 0,140 0,035 0,033 1,480 1,000 U-Wert λ 0,140 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,038 0,040 0,038 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,038 0,040 0,040 0,038 0,040 0,040 0,040 0,040 0,040 0,058 0,040 0,040 0,058 0,040 0,040 0,058 0,058 0,0	0,10 d / λ 0,010 0,047 0,007 0,071 0,23 d / λ 0,100 0,074 2,286 0,074 2,286 0,074 2,286 0,074 0,074 2,286 0,007 0,041 0,020 0,041 0,020 0,041 0,020 0,041 0,020 0,047 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,007 0,0
EB02 Wintergarten-Fussboden 1.704.08 Filesen 1.202.06 Estrichbeton PVC-Olchtungsbahn Styrodur 3035 C (140 mm) PVC-Dichtungsbahn 1.508.02 Schüttung (Sand, Kies, Spiltt) KD01 Kellerdecke 1.402.02 Hoiz PVC-Olchtungsbahn Steinwolle MW-W (33) 1.202.02 Stahlbeton Styrodur 2800 C (80 mm) ISOVER TDPT Trittschail-Dämmpl. 30/30 1.202.02 Estrichbeton 1.704.08 Filesen ZD01 warme Zwischendecke zw. EG und OC 1.402.02 Hoiz Steinwolle MW-W (33) 1.4	Rse+RsI = 0,2	Dicke gesamt Außen Dicke gesamt Außen Dicke gesamt	0,4850 Dicke 0,0100 0,0700 0,0210 0,0500 0,2820 Dicke 0,0140 0,0140 0,0100 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0200 0,4250 Dicke 0,0400 0,04250 0,04250 0,0250 0,0250 0,0250 0,0250 0,0250	U-Wert λ 1,000 1,480 0,140 0,140 0,700 U-Wert λ 0,140 0,140 0,140 0,140 0,140 0,140 0,035 0,033 1,480 1,000 U-Wert λ 0,140 0,035 0,033 1,480 1,000 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,033 1,480 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,000 0,035 0,000 0,035 0,035 0,035 0,000 0,035 0,000 0,035 0,000 0,000 0,035 0,000 0,035 0,000 0,035 0,000 0,0	0,10 d / λ 0,010 0,047 0,007 0,071 0,23 d / λ 0,100 0,074 2,286 0,074 2,286 0,074 2,286 0,074 0,074 2,286 0,007 0,020 d / λ 0,200 d / λ 0,200 d / λ 0,200 0,201 0,202 0,202 d / λ 0,205 0,010 0,010 0,010 0,010 0,010 0,007 0,000 0,007 0,000 0,0

Bauteile												
Übungsversion_single-family home in Traunkirchen / Upper												
IW01 Aussenwand - Holzblock (Holzlagerra	um, Garage)											
	von Innen nach Au	Ben	Dicke	λ	d/							
1.402.02 Holz	в		0,0240	0,140	0,171							
PVC-Dichtungsbahn	В		0,0010	0,140	0,007							
Steinwolle MW-W (33) 1 402 02 Holz	B B		0,2500	0,038	1,000							
1.462.0211012	Dicke gesamt	0.4150	U-Wert	0.12								
IW02 Aussenwand - Holzblock (WiGa-kalt Norden)												
HTTE Aussenwand - Holzbiotik (Hitta-kaik h	von Innen nach Au	Ben	Dicke	λ	d/ λ							
1.402.02 Holz	в		0.0240	0,140	0,171							
PVC-Dichtungsbahn	в		0,0010	0,140	0,007							
Steinwolle MW-W (33)	в		0,2500	0,038	6,579							
1.402.02 Holz	в		0,1400	0,140	1,000							
	Rse+Rsl = 0,26	Dicke gesamt	0,4150	U-Wert	0,12							
AW02 Wintergarten			-									
4 400 00 Hele	von innen nach Au	sen	Dicke	A .	4,000							
1.402.02 Holz Stelewale MM W (22)	D D		0,1400	0,140	1,000							
1.402.02 Holz	B		0,1500	0,030	0,947							
1.462.0211012	Rse+Rsi = 0.17	Dicke gesamt	0.3050	U-Wert	0.19							
FK01 Keller - in Basis nicht beheizt		Diono goodini	0,0000									
	von Innen nach Au	Ben	Dicke	λ	d/ λ							
1.704.08 Filesen	в		0,0200	1,000	0,020							
1.202.06 Estrichbeton	в		0,0600	1,480	0,041							
PVC-Dichtungsbahn	в		0,0010	0,140	0,007							
EXPORIT EPS F 16	В		0,1600	0,040	4,000							
PVC-Dichtungsbahn	8		0,0010	0,140	0,007							
1.202.06 Estilchbeion	D Brou Bri - 0.17	Dieke gegent	0,0500	1,400	0,034							
EW04 K-llassed	Naetria = 0,17	Dicke gesaint	0,2320	0-Weit	0,20							
EW01 Reliefwand	von innen nach Au	Ben	Dicke	2	4/2							
1 108 04 Gipsbauplatten	В		0.0150	0.410	0.037							
Styrodur 2800 C (50 mm)	B		0,0500	0,033	1,515							
1.202.02 Stahlbeton	в		0,3000	2,300	0,130							
1.604.06 Kunststoff- & Gummibelag	в		0,0050	0,210	0,024							
Styrodur 2800 C (50 mm)	в		0,0500	0,033	1,515							
	Rse+Rsl = 0,13	Dicke gesamt	0,4200	U-Wert	0,30							
EW02 Kellerwand - Bereich Gästezimmer			-									
4 409 D4 Clashausiation	von innen nach Au	sen	DICKE	A .	0/ 7							
Shrodur 2800 C (50 mm)			0,0100	0,410	1,037							
1 202 02 Stabibeton	B		0.3000	2,300	0 130							
1.604.06 Kunststoff- & Gummibelag	B		0.0050	0.210	0.024							
Styrodur 2800 C (50 mm)	в		0,0500	0,033	1,515							
	Rse+Rsl = 0,13	Dicke gesamt	0,4200	U-Wert	0,30							
Einheiten: Dicke [m], Acheabstand [m], Breite [m], U-Wert [WIm ² K], Dich * Schicht zahlt nicht zum U-Wert F enthält Flächenheizung B B	te [kg/m²], λ[Wink] estandeschicht **Defaultw	ert It. OIB										

Geometrieausdruck	Geometrieausdruck										
Ubungsversion_single-family h	Ubungsversion_single-tamily nome in Traunkironen / Upper										
EG basis											
Nr 2 a W3 W4 b	<pre>a = 9,72 b = 9,72 lichte Haumhöhe = 2,50 + obere Decke: 0,27 => 2,77m BGF 94,48m² BKI 261,23m² Wand W1 26,88m² AWO1 Aussenwand = Holzblock Wand W2 26,88m² AWO1 Aussenwand = Holzblock (Holzlagerraum Wand W3 26,88m² IWO1 Aussenwand = Holzblock (Holzlagerraum Wand W4 12,97m² AWO1 Aussenwand = Holzblock Teilung 5,03 x 2,77 (Lange x Höbe) 13,91m² IWO2 Aussenwand = Holzblock (WiGa-kalt Nor Decke 94,48m² ZDO1 Warme Zwischendecke zw. EG und OG Boden 94,48m² KDO1 Kellerdecke</pre>										
EG rectangle-Schlafzimmer											
Nr 18	<pre>a = 4,93 b = 1,50 lichte Baumhöhe = 2,50 + obere Decke: 0,27 => 2,77m BGF 7,40m² BKI 20,45m³ Wand W1 4,15m² IW02 Aussenwand = Holzblock (WiGa-kalt Nor Wand W2 -13,63m² AW01 Aussenwand = Holzblock Wand W4 13,63m² AW01 Wand W4 13,63m³ AW01 Decke 7,40m³ 2D01 warme Zwischendecke zw. EG und OG Boden 7,40m³ KD01 Kellerdecke</pre>										
EG Wintergarten-Anbau Wes	st										
Nr 75	Dachneigung a(*) 18,00 a = 6,20 $b = 3,82hl= 2,20lichte Raumhohe = 2,93 + obere Decke: 0,51 => 3,44mBGF 23,68m2 BRI 66,80m3Dachfl. 24,90m2Wand W1 10,77m2 AW02 WintergartenWand W2 -21,34m2 AW01 Aussenwand - HolzblockWand W3 10,77m2 AW02 WintergartenWand W4 13,64m3 AW02Dach 24,90m2 D801 Dachschräge hinterlüftetBoden 23,68m2 EB02 Wintergarten-Fussboden$										
EG Summe	EG Bruttogrundfläche [m ²]: 125,56 EG Bruttorauminhait [m ²]: 348,48										

Geometrieausdruck Übungsversion_single-family home in Traunkirchen / Upper										
DG Obergeschoss										
Nr 62 h1 h1 a	Dachneigung a(') 35,00 a = 9,72 hl= 0,90 hl= 0,90 lichte Raushöhe(h)= 2,50 + obere Decke: 0,47 => 2,97m BGF 94,48m ² BRI 221,27m ³ Dachfl. 70,29m ² Decke 36,90m ² Wand W1 22,76m ³ AW01 Aussenwand = Holzblock Wand W2 8,75m ³ AW01 Wand W2 8,75m ³ AW01 Wand W4 8,75m ³ AW01 Wand W4 8,75m ³ AW01 Dach 70,29m ³ DS01 Dachschräge hinterlüftet Decke 36,90m ³ AD01 Decke zu unkonditioniertem geschloss. Boden -94,48m ³ ZD01 warme Zwischendecke zw. EG und OG									
DG rectangel - OG										
a with with with with with with with with	 a = 4,93 b = 1,50 lichte Raumhöhe = 2,50 + obere Decke: 0,49 => 2,99m BGF 7,40m² BRI 22,07m² Wand W1 4,48m² ANO1 Aussenwand = Holzblock Wand W2 -14,72m² ANO1 Wand W3 4,48m² ANO1 Wand W4 14,72m² ANO1 Decke 7,40m² DSO1 Dachschräge hinterluftet Boden -7,40m² ZDO1 warme Zwischendecke zw. EG und OG 									
DG Summe	DG Bruttogrundfläche [m²]: 101,87 DG Bruttorauminhait [m²]: 243,34									
DG BGF - Reduzierung										
	BGF Reduzierung = BGF-Hohe kleiner 1.5 m Reduzierung = -25,32 m ² Summe Reduzierung Bruttogrundfläche [m ²]: -25,32									
Deckenvolumen EB02										
	Flache 23,68 m² x Dicke 0,28 m = 6,68 m³									
Deckenvolumen KD01										
	Flache 101,87 m² x Dicke 0,43 m = 43,29 m³									
	Bruttorauminhait [m²]: 49,97									

MSc Program Renewable Energy in Central & Eastern Europe

Fens	Fenster und Türen														
obu	ngs	versio	200	_single-rainity	nom	em	mau	ikirche	en / C	pper					
Тур		Beuteil	Anz	Bezeichnung	Breite (m)	(m)	Fläche (m²)	[WimPK] [I	ur Wi n ²K]	PSI (WmK)	Ag (m²)	(Wim ² K)	AxUsf [WK]	9	fs.
N															
в	EG	AW01	2	1,07 x 1,19 - Schlefzimmer	1,07	1,19	2,55				1,78	1,30	3,31	0,62	0,85
в	EG	AW02	1	3,78 x 2,20 -	3,00	2,70	8,10				5,67	1,10	8,91	0,62	0,85
в	EG	IW02	1	2,40 x 2,20	2,40	2,20	5,28				3,70	1,30	5,49	0,62	0,85
в	DG	AW01	1	1,07 x 1,19 - Empore	1,07	1,19	1,27				0,89	1,30	1,68	0,62	0,85
в	DG	AW01	1	1,07 x 2,10 - Empore	1,07	2,10	2,25				1,57	1,30	2,92	0,62	0,85
			6				19,45						22,29		
0															
в	EG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,66	0,62	0,85
в	EG	IW01	1	1,07 x 1,19 - Bed	1,07	1,19	1,27				0,89	1,30	1,18	0,62	0,85
в	EG	IW01	1	1,07 x 0,59 - Stiegenhaus	1,07	0,59	0,63				0,44	1,30	0,57	0,62	0,85
в	DG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,66	0,62	0,85
	4 4,44 5,05														
8															
в	EG	AW01	1	0,90 x 2,10 - Heustor	0,90	2,10	1,89					2,33	4,40		
в	EG	AW01	2	1,07 x 1,19 - Erker	1,07	1,19	2,55				1,78	1,30	3,31	0,62	0,85
в	EG	AW01	1	1,07 x 1,19 - essen	1,07	1,19	1,27				0,89	1,30	1,68	0,62	0,85
в	EG	AW02	1	3,78 x 2,20 - Wintergentenwand	3,00	2,70	8,10				5,67	1,10	8,91	0,62	0,85
в	DG	AW01	2	1,07 x 1,19 - Erker	1,07	1,19	2,55				1,78	1,30	3,31	0,62	0,85
			7				16,38						21,59		
W															
в	EG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,68	0,62	0,85
в	EG	AW02	1	5,92 x 2,20 - Wintergerten	5,92	2,20	13,02				9,12	1,10	14,33	0,62	0,85
в	EG	DS01	1	5,92 x 3,00 - Wintergenten-Dech	5,92	3,00	17,76				12,43	0,80	14,21	0,62	0,85
в	DG	AW01	1	1,07 x 1,19 - Erker	1,07	1,19	1,27				0,89	1,30	1,66	0,62	0,85
			4				33,32						31,86		
Summe	•		21				73,57						80,79		
Ug Ur g Ene Typ P	Ug Uwert Gles Uf Uwert Rehmen PBL Linearer Korreidurkoeffizient Ag Gleaffäche g Energiedurchassgrad Verglesung fs Verschattungsfektor Typ Pröfnommeßtyp B Fenster gehört zum Bestand des Gebäudes														

13.2.2 Example 3 – Energy-pass for single family house in Altenfelden

the state of the s							
Norm-Außentemperatur:	-15,9 °C	Standort:	Altenfelden				
Berechnungs-Raumtemperatur:	20 °C	Brutto-Rai	uminhalt der				
Temperatur-Differenz:	35,9 K	beheizten	Gebäudetell	523,73	523,73 m²		
		Gebäudel	fülfläche:	491,48	491,48 m²		
Bautalla			Wärmed -	Korr -	Korr -	Avilyf	
Dadtene		Fläche	koeffiz.	faktor	faktor		
		A	U	f .	ffh		
		[m²]	[W/mª K]	[1]	[1]	[W/K]	
AD01 Decke zu unkonditionierte	m geschloss. Dachraum	149,21	0,127	0,90		17,06	
AW02 Außenwand-EG		121,69	0,195	1,00		23,78	
AW03 Außenwand-EG - mit Eter	nitverkleidung	18,10	0,197	1,00		3,56	
FE/TO Fenster u. Türen		22,21	1,061	1,00		23,58	
KD01 Decke zu unkonditionierte	m ungedämmten Keller	149,21	0,194	0,70		20,22	
IW01 Wand zu sonstigem Puffe	rraum (Stiegenhaus)	31,06	0,201	0,70		4,37	
Summe OBEN-Bautelle		149,21					
Summe UNTEN-Bautelle		149,21					
Summe Außenwandfläche	en	139,79					
Summe Innenwandfläche	n	31,06					
Fensterantell in Außenwä	nden 12,8 %	20,56					
Fenster in Innenwänden		1,66					
Summe				[W/	K]	93	
Wärmebrücken (pausch	ial)			[W/	к]	10	
Transmissions - Leitwe	rt L _T			[W/	K]	103	
Lüftungs - Leitwert L _V				[W/	K]	42,21	
Gebäude - Heizlast Ptot	L	uftwechsel -	0,40 1/h	[k\	N]	5,21	
Flächenbez, Heizlast P.	bei einer BGF vor	n 149	m ² IW	m² BG	F1	34.93	
Gebäude - Heizlast P /EN	12831 vereinfacht)		0.50.10	r.	wi	6.25	
Gebaude - Heizlast P tot (EN	12031 Vereinlachty L	unwechsel -	· u,su 1/n	- In		0,20	

MSc Program Renewable Energy in Central & Eastern Europe

Bauteile												
Übungsversion_Single-Family home in Altenfelden / Upper												
AW02 Außenwand-EG												
	von Innen nach A	wißen	Dicke	λ	d/λ							
Röftx 190 Kalk-Gips-Innenputz	в		0,0200	0,700	0,029							
2.202.02 Lecabetonwandelement	B		0,3000	0,830	0,361							
Dâmmoutz EBS	B		0,1400	0,035	4,242							
Daninpuz 2P0	Rse+Rsi = 0.17	Dicke gesamt	0.4900	U-Wert	0.20							
KD01 Decke zu unkonditioniertem ungedär	mten Keller	Dieke gesamt	0,4000	0-mont	0,20							
Novi Decke zu unkonditioniertein ungedan	von Innen nach A	ußen	Dicke	λ	d/λ							
1.704.08 Filesen	в		0.0100	1,000	0.010							
1.202.06 Estrichbeton	в		0,0500	1,480	0,034							
Leca-Schüttung	в		0,1000	0,120	0,833							
Zlegelhohikörper mit Aufbeton (Decke)	В		0,2200	0,738	0,298							
ISOVER KDP Kellerdecken-Dämmplatte 12	В		0,1200	0,033	3,636							
Röftx 190 Kalk-Gips-Innenputz	в		0,0100	0,700	0,014							
	Rse+RsI = 0,34	Dicke gesamt	0,5100	U-Wert	0,19							
AD01 Decke zu unkonditioniertem geschlos	is. Dachraum von Außen nach	Innen	Dicke	λ	d/ λ							
1.202.06 Estrichbeton	в		0.0500	1,480	0.034							
AUSTROTHERM EPS W30 PLUS	в		0,1500	0,030	5,000							
steinopor 700 EPS-F (100mm)	в		0,1000	0,040	2,500							
Betonhohikörper mit Aufbeton (Decke)	В		0,1000	0,800	0,125							
Röfix 190 Kalk-Gips-Innenputz	в		0,0100	0,700	0,014							
	Rse+Rsl = 0,2	Dicke gesamt	0,4100	U-Wert	0,13							
IW01 Wand zu sonstigem Pufferraum (Stieg	genhaus) von innen nach A	ußen	Dicke	2	d/ λ							
Rôfiy 190 Kalk-Cins-Innensutz	B		0.0100	0 700	0.014							
2.108.0D Lecabetonstein	в		0.2500	0.560	0.446							
ISOVER FDP Fassadendämmplatte 14	в		0,1400	0,033	4,242							
Röfix 190 Kalk-Gips-Innenputz	в		0,0100	0,700	0,014							
	Rse+Rsi = 0,26	Dicke gesamt	0,4100	U-Wert	0,20							
AW03 Außenwand-EG - mit Eternitverkleidu	ng											
	von Innen nach A	ußen	Dicke	λ	d/λ							
Röfix 190 Kalk-Gips-Innenputz	в		0,0200	0,700	0,029							
2.202.02 Lecabetonwandelement	В		0,3000	0,830	0,361							
ISOVER FDP Fassadendämmplatte 14	В		0,1400	0,033	4,242							
Lutt sten., w-Fluss norizontal 35 < d < = 40 mm	в		0,0400	0,222	0,180							
AURIA Wandschindel	Brou Bri - 0.05	Disks second	0,0050	0,500	0,010							
	Rse+Rsi = 0,26	Dicke gesamt	0,5050	U-Wert	0,20							
Einheiten: Dicke (m), Achsabstand (m), Breite (m), U-Wert (Wim?K), Dich * Schicht zählt nicht zum U-Wert F enthält Flächenheizung B B	te [kg/m²], λ[W/mK] estandsschicht **Defaul	wert It. OIB										

*... Schicht zählt nicht zum U-Wert F... erthäll Flächenheizung B... Bestandsschicht RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6948

Geometrieausdruck Übungsversion_Single-Family I	Geometrieausdruck Übungsversion_Single-Family home in Altenfelden / Upper										
EG Basis											
Nr 2 a W3 W4 b	<pre>a = 11,50 b = 16,00 lighte Raumhöhe = 2,59 + obere Decke: 0,41 => 3,00m BGF 184,00m³ BRI 552,00m³ Wand W1 34,50m² AW02 Außenwand-EG Wand W2 48,00m³ AW02 Außenwand-EG Wand W3 34,50m³ AW03 Außenwand-EG - mit Eternitverkleidung Decke 184,00m³ AW03 Außenwand-EG - mit Eternitverkleidung Decke 184,00m³ AD01 Decke zu unkonditioniertem ungedämmte Boden 184,00m³ KD01 Decke zu unkonditioniertem ungedämmte</pre>										
EG Windfang/Stiegenhaus-K	Correktur										
a wi wi	 a = 7,87 b = 2,70 lichte Raumhöhe = 2,59 + obere Decke: 0,41 => 3,00m BGF -21,25m³ BRI -63,75m³ Wand W1 -8,10m³ AW03 Außenwand-EG - mit Eternitverkleidung Wand W2 19,86m³ IW01 Wand zu sonstigen Pufferraum (Stiegen Teilung 1,25 x 3,00 (Länge x Höhe) 3,75m³ AW02 Außenwand-EG Wand W3 8,10m³ IW01 Wand W4 -23,61m³ AW02 Außenwand-EG Decke -21,25m³ AD01 Decke zu unkonditioniertem ungedämmte Boden -21,25m³ KD01 Decke zu unkonditioniertem ungedämmte 										
EG Balkonkorrektur-Westen											
a W3 W2 W1 b	<pre>a = 1,00 b = 6,00 lichte Raumhöhe = 2,59 + obere Decke: 0,41 => 3,00m BGF -6,00m³ BRI -18,00m³ Wand W1 -18,00m³ AW03 AuBenwand-EG - mit Eternitverkleidung Wand W2 3,00m³ AW02 AuBenwand-EG Wand W4 -3,00m³ AW02 Wand W4 -3,00m³ AW02 Decke -6,00m³ AW02 Decke -6,00m³ AD01 Decke zu unkonditioniertem ungedämmte</pre>										

MSc Program Renewable Energy in Central & Eastern Europe

F	Fenster und Türen Übungsversion_Single-Family home in Altenfelden / Upper															
	Тур		Bauteil	Anz	Bezeichnung	Breite [m]	Hohe (m)	Fläche [m²]	Ug (Wimitk)	Uf (W/m²K)	PSI [WimK]	Ag (m²)	Uw [W/m ^a K]	(WIK)	9	8
8					Prifoormmaß Typ 1 (T1)	1.23	1.48	1.82	1.10	0.87	0.028	123	1.09		0.63	
в					Prüfnormmaß Typ 2 (T2)	1,23	1,48	1,82	1,90	1,65	0,040	1,23	1,92		0,63	
-																
	N															
в		EG	IW01	1	0,85 x 1,95 - Haustür zu Stiegenhaus	0,85	1,95	1,68					1,01	1,17		
_				1				1,66						1,17		
	0															
в		EG	AW02	1	1,24 x 1,30 - Kindetzimmer	1,24	1,30	1,61				1,13	1,09	1,76	0,62	0,85
в	i	EG	AW02	1	1,24 x 0,64 - Bad	1,24	0,64	0,79				0,58	1,09	0,87	0,62	0,85
в		EG	AW02	1	1,24 x 1,30 - Schlafzimmer	1,24	1,30	1,61				1,13	1,09	1,76	0,62	0,85
в		EG	AW02	1	1,14 x 1,40 - Wohnzimmer	1,14	1,40	1,60				1,12	1,09	1,74	0,62	0,85
в		EG	AW02	1	1,10 x 2,10 - Wohnzimmer-Ausgang	1,10	2,10	2,31				1,62	1,09	2,52	0,62	0,85
_				5				7,92						8,65		
	S															
в		EG	AW02	1	2,24 x 1,30 - Wohnzimmer	2,24	1,30	2,91				2,04	1,09	3,17	0,62	0,85
в		EG	AW02	1	1,10 x 2,10 - Esspiatz	1,10	2,10	2,31				1,62	1,09	2,52	0,62	0,85
в	i	EG	AW02	1	1,14 x 1,30 - Essplatz	1,14	1,30	1,48				1,04	1,09	1,62	0,62	0,85
_				3				6,70						7,31		
	w															
в		EG	AW02	2	1,14 x 1,30 - Essplatz / Küche	1,14	1,30	2,96				2,07	1,09	3,23	0,62	0,85
в		EG	AW03	1	1,14 x 1,30 - Arbeitsraum	1,14	1,30	1,48				1,04	1,09	1,62	0,62	0,85
в		EG	AW03	1	1,14 x 1,30 - Kinderzimmer	1,14	1,30	1,48				1,04	1,09	1,62	0,62	0,85
_				4				5,92						6,47		
Su	Summe 13 22,20 23,60															

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korreidurkoeftizient Ag... Glasfläche g... Energiedurchlasegrad Verglasung fa... Verschattungsfaktor Typ... Prüfinormmaßtyp B... Fenster gehör

B... Fenster gehört zum Bestand des Gebäudes

13.2.3 Example 4 – Energy-pass for weekend home in

Schwarzenberg/Hochficht

Norm-/	Außentemperatur:	-15,3 °C	Standort: Schwarzenberg im Mühikrei							
Berech	nungs-Raumtemperatur:	20 °C	Brutto-Ra	uminhalt der						
Tempe	ratur-Differenz:	35,3 K	beheizten	Gebäudetell	e:	488,02	mª			
			Gebäuder	fülfläche:		m²				
Bautel	le		Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf			
			A [m²]	U [W/m [±] K]	ď.	(1)	[W/K]			
AW01	Außenwand-Granit BESTA	ND	93,73	0,197	1,00		18,44			
AW02	Außenwand-Ziegel (Adapti	on 1985) - nach Aussen	8,88	0,199	1,00		1,76			
FE/TÜ	Fenster u. Türen		15,50	1,109	1,00		17,19			
EB01	erdanliegender Fußboden	(<=1,5m unter Erdreich)	152,67	0,214	0,70		22,86			
AG01	Decke zu sonstigem Puffer room)	rraum nach oben (living	50,91	0,169	0,70		6,03			
AG02	Decke zu sonstigem Puffer	raum nach oben (kitchen) 15,50	0,144	0,70		1,56			
AG03	Decke zu sonstigem Puffer (sleeping-room)	raum nach oben	86,26	0,173	0,70		10,46			
IW01	Außenwand-Granit zu unb	eheiztem Schuppen	13,57	0,193	0,70		1,84			
IW02	Außenwand-Ziegel zu unbe (Adaption 1985)	eheiztem Schuppen	33,51	0,198	0,70		4,64			
	Summe OBEN-Bautelle		152,67							
	Summe UNTEN-Bautelle		152,67							
	Summe Außenwandfläche	n	102,61							
	Summe Innerwandflächen		47,08							
	Fensterantell in Außenwän	den 11,9 %	13,80							
	Fenster in Innenwänden		1,70							
Sum	me				[W/	К]	85			
Wärr	nebrücken (pausch	al)			[W/	к]	10			
Tran	smissions - Leitwer	t L _T			[W/	K]	94			
Lüftı	ings - Leitwert L _V	-			[W/	K]	43,19			
Gebä	iude - Heizlast P _{tot}	U	uftwechsel -	0,40 1/h	[k\	N]	4,86			
Fläck	henbez. Heizlast P ₁	bei einer BGF vor	on 153 m² [W/m² BGF] 3							
Geba	ude - Heiziast P _{tot} (EN	izosi vereiniacht)	unwechsel -	0,50 1/n	[K]	3,66			

Bauteile				
Übungsversion, weekend-home in the m	ountains -			
	ountaino			
AW01 Außenwand-Granit BESTAND				
	von Innen nach A	uisen Dicke	λ	α/ λ
Zementputz	В	0,0100	1,000	0,010
StoGranit	В#	0,8000	0,700	1,143
Zementputz	5	0,0200	1,000	0,020
EDS Dammeutz (200)		0,1200	0,005	3,030
EPS-Dammpulz (SUD)	D ReauBel - 0.47	Disks gesent 0.9000	U,U95	0,105
	Rae+Rai = 0,17	Dicke gesamt 0,5600	0-Well	0,20
IW01 Außenwand-Granit zu unbeheiztem Sc	huppen von Innen nach A	ußen Dicke		d/ 3
Zementoutz	в	0.0100	1 000	0.010
StoGranit	Б #	0,8000	0,700	1,143
Zementoutz	в	0.0200	1.000	0.020
ISOVER FDP Fassadendämmplatte 12	в	0,1200	0.033	3,636
EPS-Dämmputz (300)	в	0,0100	0,095	0,105
	Rse+RsI = 0,26	Dicke gesamt 0,9600	U-Wert	0,19
IW02 Außenwand-Ziegel zu unbeheiztem Sc	huppen (Adaption 19	85)		
Hote Haberhand Eleger La anderenzien oo	von Innen nach A	ußen Dicke	λ	d/λ
Zementputz	в	0,0100	1,000	0,010
2.406.02 Schlackenbetonstein 25 cm	в	0,3000	0,630	0,476
Herakilth-BM (5,0cm)	в	0,0500	0,091	0,550
Zementputz	В	0,0200	1,000	0,020
ISOVER FDP Fassadendämmplatte 12	В	0,1200	0,033	3,636
EPS-Dämmputz (300)	В	0,0100	0,095	0,105
	Rse+RsI = 0,26	Dicke gesamt 0,5100	U-Wert	0,20
AW02 Außenwand-Ziegel (Adaption 1985) - na	ach Aussen	- Dista		
	von innen nach A	uisen Dicke	λ	a/ Y
Zementputz	В	0,0100	1,000	0,010
1.106.06 Betonnonisteinmauerwerk		0,3000	0,550	0,545
Heraklith-BM (5,00m)	5	0,0500	0,091	0,550
ISOVER EDD Essentiammolate 12	B	0,0200	0.033	3,636
EDS-Dämmeutz (300)	B	0,1200	0,000	0,000
EP 0-Daninipal2 (000)	Rse+Rsi = 0.17	Dicke gesamt 0 5100	U-Wert	0.20
ED04 and a linear day Ev@baday (and Example	- Enderich	Dicke gesame 0,0100	0-11011	0,20
EBV1 erdanliegender Fußboden (<=1,5m unt	von Innen nach A	ußen Dicke	λ	d/λ
Holzboden, Volholz Nadel	В	0.0300	0.120	0.250
steinopor 700 EPS-W20 (160mm)	В	0.1600	0.038	4,211
ISOVER VARIO KM	в	0.0001	0,200	0.001
1.202.02 Stahlbeton	в	0,1000	2,300	0,043
	Rse+Rsl = 0,17	Dicke gesamt 0,2901	U-Wert	0,21
AG01 Decke zu sonstigem Pufferraum nach (oben (living room)			
	von Außen nach I	nnen Dicke	λ	d/λ
ROCKWOOL Isolith Dachboden-Dämmelement OG-03 (1	2cm) B	0,1200	0,044	2,750
ROCKWOOL Isolith Dachboden-Dämmelement OG-03 (1	2cm) B	0,1200	0,044	2,750
3.304.02 Tram-Traversendecke 20 cm	в	0,2000	0,950	0,211
	Rse+Rsl = 0,2	Dicke gesamt 0,4400	U-Wert	0,17

Bauteile			
Bauteile	-		
	•••	 .	6.0
		 _	

Bauteile						
Übungsversion_weekend-h	nome in the mour	ntains -				
AG02 Decke zu sonstigem P	ufferraum nach ober	(kitchen)				
-		von Außen nac	h Innen	Dicke	λ	d/λ
ROCKWOOL Isolith Dachboden-Dämn	nelement OG-03 (12cm)) В		0,1200	0,044	2,750
ROCKWOOL Isolith Dachboden-Dämr	nelement OG-03 (12cm)) В		0,1200	0,044	2,750
1.202.02 Stahlbeton		в		0,1500	2,300	0,065
Riegel dazw.		B #	5,5 %		0,120	0,023
steinopor 700 EPS-W15 (220mm)		B #	94,6 %	0,0500	0,041	1,153
1.108.04 Gipsbauplatten		в		0,0200	0,410	0,049
RT0 6,9845	5 RTU 6,9176 R	RT 6,9510	Dicke gesamt	0,4600	U-Wert	0,14
Riegel: Achsabstand	0,550 Breite 0,	030	Rse	e+Rsl (0,2	
AG03 Decke zu sonstigem P	ufferraum nach ober	(sleeping-roo	m)			
•		von Außen nac	h innen	Dicke	λ	d/λ
ROCKWOOL Isolith Dachboden-Dämn	nelement OG-03 (12cm)) В		0,1200	0,044	2,750
ROCKWOOL Isolith Dachboden-Dämr	nelement OG-03 (12cm)) В		0,1200	0,044	2,750
1.202.02 Stahlbeton		в		0,1500	2,300	0,065
Zementputz		в		0,0100	1,000	0,010
	R	se+RsI = 0,2	Dicke gesamt	0,4000	U-Wert	0,17
Einheiten: Dicke [m], Acheabstand [m], Breite [m], * Schicht zählt nicht zum U-Wert # Schicht z RTu unterer Grenzwert RTo oberer Grenzw	U-Wert [W/m²K], Dichte [kg/m ählt nicht zur OI3-Berechnung ert laut ÖNORM EN ISO 6946	역, λ(W/mK) F enthält Flächer	heizung B., Bestandsso	hidht •	Defaultwer	IL OIB

MSc Program Renewable Energy in Central & Eastern Europe

Cas															
Geometrieausdruck Übungsversion_weekend-home in the mountains -															
EG	ba	eie o	ure.	nite part											
20	Da	aia - g	Ind	into part											
	Nr2	_			a = lich BGF	12,10 ite Ra	unhöh 128,2	6 = 1 6 = 6m ² BR	0,60 2,50 + I 3	obere 71,95m	Deck	e: 0,4	0 => 2	2,90m	I
	a W2 W1					I W1 I W2 I W3 I W4 Lung Lung	35,0 30,7 35,0 30,7 86,2 26,5 15,5	9m ² IW 4m ² AW 9m ² AW 4m ² AW 6m ² AG 0m ² AG 0m ² AG	01 Auß 01 Auß 01 01 03 Dec 01 02	enwand enwand ke zu :	-Gran -Gran sonst	it zu it BES igem P	unbehe TAND uffer:	aizte aun	m Schup nach ob
		_	b		Bode	'n	128,2	6m² EB	01 erd	anlieg	ender	Fuñbo	den (<	=1,5	m unter
EG	rec	tangl	e١	with bathroom	toile	t									
		-		1.40	a -	7,75		b = 1	3,15						
		W3	/		lich BGF Wand	ite Ra	24,4 9,2	e - lm ² BR 6m ² IW	2,50 + I 02 AuB	obere 71,77m enwand	Deck	e: 0,4	4 => 2 unbehe	,94m	m Schup
Wand W1 9,25m ⁻¹ IWO2 AlbenWand-Slegel zu unbeheiztem Schup Wand W2 -22,75m ² IWO1 Albenwand-Slegel zu unbeheiztem Schup Wand W3 9,25m ² IWO2 Albenwand-Zlegel (Adaption 1985) - na Wand W4 W4 W2 W4 22,75m ² IWO2 Albenwand-Zlegel zu unbeheiztem Schup Decke W4 W2 24,41m ² AGO1 Decke zu sonstigen Pufferraum nach ob Boden W4 W1										m Schup 5) - na m Schup nach ob m unter					
EC	C	b						E	Brutto	grundf	läche	[m=]:		152,	67
EG	Sumr	ne						E	G Brut	oraum	Inhalt	[m²]:		443,	73
	De	ckenv	/ol	umen EB01											
					Fla	iche	152	,67 m²	x Di	cke O,	29 n	-	44,29	mª.	
											nhalt	[mill-			
Bruttorauminhait [m³]: 44,29															
									Brut	toraumi	iman	lin li		44,:	29
Fe	nster	und 1	Für	en					Brut	toraumi	innan	lin l'		44,	29
Fe Üb	nster	und 1 versio	Für on_	en _weekend-hon	ne in	the	mour	ntains	Brut	toraum		lui l		44,:	29
Fe Üb T)	nster oungs	und T versio Bautei	Für on_ Anz	en _weekend-hon Bezeichnung	ne in Breite [m]	the Hohe [m]	Flache [m²]	ug [Wim ² K]	- Uf [W/m ² K]	PSI [Wimk]	Ag (m²)	Uw [W/m ² K]	AxUsf [W/K]	44 ,: 9	29 %
Fe Üb T)	nster oungs	und T versio Bauteil	Für on_ Anz	en _weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1)	Breite [m]	the Hohe [m]	Fläche [m ²]	ug [WimPK] 0.70	Ur (Wim ² K)	PSI [WimK]	Ag (m²)	Uw [WimH]	AxUxf [W/K]	44 ,: 9 0.51	29 %
Fe Üb T) B	nster oungs	und 1 versio Bautei	Für on_ Anz	r en _weekend-hon Bezeichnung Prüfnormma& Typ 1 (T1 Prüfnormma& Typ 2 (T2)	Breite [m] 1,23 1,23	the (m)	Fläche [m ²] 1,82 1,82	Ug [W/m ⁺ K] 0,70 2,70	Brutt - - [Wim ³ K] 1,25 1,55	PSI [WimK] 0,040 0,040	Ag (m²) 1,23 1,23	Uw [Wim#k] 0,98 2,42	AxUxf [WiK]	44 ; 9 0,51 0,72	29
Fe Üb T) B	nster oungs	und 1 versio Bautei	Für on <u>.</u> Anz	r en _weekend-hon Bezeichnung Prüfnormma& Typ 1 (T1 Prüfnormma& Typ 2 (T2)	Breite [m] 1,23 1,23	the Hohe [m] 1,48 1,48	Fläche [m ²] 1,82 1,82	Ug [WimHk] 0,70 2,70	Brutt - [Wim ³ K] 1,25 1,55	PSI [WimK] 0,040 0,040	Ag (m²) 1,23 1,23	Uw (Wim ² K) 0,98 2,42	AxUxf [W/K]	9 0,51 0,72	5
Fe Üb T) B B B	nster oungs	und 1 versio Bauteil	Für on_ Anz	ren _weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1) Prüfnormmaß Typ 2 (T2) 1,00 x 1,30 - Küche	Breite [m] 1,23 1,23	the [m] 1,48 1,48	Fläche [m²] 1,82 1,82 1,82	Ug [W0m ² K] 0,70 2,70	Brutt - [Wim ² K] 1,25 1,55	PSI [WimK] 0,040 0,040	Ag (m²) 1,23 1,23	Uw [Wim ³ K] 0,98 2,42	AxUsf [W/K]	9 0,51 0,72	5 0,85
Fe Üb T) B B B B	onster oungs	und 1 versic Bauteil	1 2	en _weekend-hon Bezeichnung Prüfnomma& Typ 1 (T1 Prüfnomma& Typ 2 (T2) 1,00 x 1,30 - Küche (Holz mit 2-fach 1,00 x 1,30 - WohnZ)	Breite [m] 1,23 1,23	the [m] 1,48 1,48 1,30 1,30	Flache [m ²] 1,82 1,82 1,30 2,60	Ug [WimHk] 0,70 2,70	Brutt - [Wim ³ K] 1,25 1,55	PSI [WimK] 0,040 0,040	Ag (m ²) 1,23 1,23 0,91 1,82	Uw (W/m²K) 0,98 2,42 1,02	AxUxf [W/K] 1,33 2,65	9 0,51 0,72 0,51 0,51	8 9 0,85 0,85
Fe Üb T) B B B B B B B B	onster oungs yp c c c c c c c c c c c c c c	und 1 versic Bautei Awo1 Awo1 Awo2	1 2 1	ren _weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1 Prüfnormmaß Typ 2 (T2) 1,00 x 1,30 - Küche (Hotz mit 2-fach 1,00 x 1,30 - WohnZi (Hotz mit 2-fach 1,00 x 1,30 - Bed (Hotz	Breite [m] 1,23 1,23 1,00 1,00	the [m] 1,48 1,48 1,30 1,30 1,30	Flache [m ²] 1,82 1,82 1,82 1,30 2,60 1,30	Ug [W/mAk] 0,70 2,70	Brutt - - 1,25 1,55	PSI [Wimk] 0,040 0,040	Ag (m²) 1,23 1,23 0,91 1,82 0,91	Uw (W/m ⁴ K) 0,98 2,42 1,02 1,02 1,02	AxUsf [WiK] 1,33 2,65 1,33	9 0,51 0,72 0,51 0,51 0,51	5 0,85 0,85 0,85 0,85
Fe Üb T) B B B B B B	D EG EG EG	und T versic Bauteil Aw01 Aw01 Aw02	1 2 4	en _weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1) Prüfnormmaß Typ 2 (T2) 1,00 x 1,30 - Küche (Holz mit 2-fach 1,00 x 1,30 - WohnZ) (Holz mit 2-fach 1,00 x 1,30 - Bad (Holz mit 2-fach Verbundglae)	Breite [m] 1,23 1,23 1,00 1,00	the [m] 1,48 1,48 1,30 1,30	Flache [m ²] 1,82 1,82 1,82 1,30 2,60 1,30 5,20	ug [W0mPK] 0,70 2,70	Brutt	PSI [Wimk] 0,040	Ag [m ²] 1,23 1,23 0,91 1,82 0,91	Uw (Wim*K) 0,98 2,42 1,02 1,02	AxUM [W/K] 1,33 2,65 1,33 5,31	9 0,51 0,72 0,51 0,51 0,51	5 0,85 0,85 0,85
Fe Üb Ti B B B	onster oungs ^{yp} EQ EQ S	und 1 versic Bauteil Aw01 Aw01 Aw02	1 2 4	en Bezeichnung Prüfnormmaß Typ 1 (T1) Prüfnormmaß Typ 2 (T2) 1.00 x 1.30 - Kuche (Holz mit 2-fach 1.00 x 1.30 - WohnZ) (Holz mit 2-fach 1.00 x 1.30 - Bad (Holz mit 2-fach Verbundglas)	ne in Brette (m) 1,23 1,23 1,00 1,00	the Hohe 1,48 1,48 1,30 1,30	Flache [m ²] 1,82 1,82 1,30 2,60 1,30 5,20	Ug [W0m ² K] 0,70 2,70	Brutt [W/m ² K] 1,25 1,55	PSI [WimK] 0,040 0,040	Ag [m ³] 1,23 1,23 0,91 1,82 0,91	Uw [Wim ³ K] 0,98 2,42 1,02 1,02	AxLisf [WiK] 1,33 2,65 1,33 5,31	9 0,51 0,51 0,51 0,51 0,51	5 0,85 0,85 0,85
Fe Üb	D C S S S	AW01 AW01 AW01	1 2 1 4	en Bezeichnung Prüfnommaß Typ 1 (T1) Prüfnommaß Typ 2 (T2) 1.00 x 1.30 - Kuche (Hotz mit 2-fach 1.00 x 1.30 - WohnZI (Hotz mit 2-fach 1.00 x 1.30 - Bad (Hotz mit 2-fach Verbundglas)	ne in Breite [m] 1,23 1,23 1,00 1,00	the (m) 1,48 1,48 1,30 1,30	Flache [m²] 1,82 1,82 1,82 1,30 2,60 1,30 5,20	0,70 2,70	Brutt [W/m*K] 1,25 1,55	P8I [WimK] 0,040 0,040	Ag [m ²] 1,23 1,23 0,91 1,82 0,91 2,73	Uw [Wim#k] 0,98 2,42 1,02 1,02 1,02	Ax(L)xf [WUK] 1,33 2,65 1,33 5,31 3,98	9 0,51 0,51 0,51 0,51 0,51	\$ 0,85 0,85 0,85
Fe Üb B B B B B B	binster bungs	Awo1 Awo1 Awo1 Awo1	1 2 1 4	en weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1 Prüfnormmaß Typ 2 (T2) 1.00 x 1.30 - Kache (Hoiz mit 2-fach 1.00 x 1.30 - WohnZi (Hoiz mit 2-fach 1.00 x 1.30 - Bad (Hoiz mit 2-fach Verbundglas) 1.00 x 1.30 - WohnZi (Hoiz mit 2-fach 1.00 x 1.30 - Sohlardzi (Hoiz mit 2-fach 1.00 x 1.30 - Sohlardzi (Hoiz mit 2-fach	Breibe [m] 1,23 1,23 1,00 1,00 1,00	the Hohe [m] 1,48 1,48 1,30 1,30 1,30	mour Flache [m²] 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82	0,70 2,70	Brutt	PSI [Wimk] 0,040 0,040	Ag (m ²) 1,23 1,23 0,91 1,82 0,91 2,73 0,91	Uw [Wim*K] 0,98 2,42 1,02 1,02 1,02	AxLisf [WiK] 1,33 2,65 1,33 5,31 3,98 1,33	9 0,51 0,51 0,51 0,51 0,51 0,51	\$ 0,85 0,85 0,85 0,85
Fe Üb B B B B B B B B B B B B	D S S S S S S S S S S S S S S S S S S S	Awo1 Awo1 Awo1 Awo1 Awo1 Awo1 Awo1	1 2 1 4 3 1 5	en weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1 Prüfnormmaß Typ 2 (T2) 1,00 x 1,30 - Küche (Hotz mit 2-fach 1,00 x 1,30 - WohnZi (Hotz mit 2-fach 1,00 x 1,30 - WohnZi (Hotz mit 2-fach 1,00 x 1,30 - WohnZi (Hotz mit 2-fach 1,00 x 1,30 - Schlaf2(Hotz mit 2-fach 1,00 x 1,30 - Haustür	ne in Breite [m] 1,23 1,23 1,00 1,00 1,00 1,00	the Hohe (m) 1,48 1,48 1,30 1,30 1,30 1,30 1,30	Flache [m ²] 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82	Ug WmRQ 0,70 2,70	Brutt	PSI [Wimk] 0,040	Ag (m ²) 1,23 1,23 0,91 1,82 0,91 2,73 0,91	Uw [Wim*K] 0,98 2,42 1,02 1,02 1,02 1,02 1,02	Avilat (WK) 1,33 2,65 1,33 5,31 3,98 1,33 3,51	44, 9 0,51 0,51 0,51 0,51 0,51 0,51	% 0,85 0,85 0,85 0,85 0,85
Fe Üb B B B B B B B B B B	Provide a constant provide a con	Awo1 Awo1 Awo1 Awo1 Awo1 Awo1 Awo1	1 2 1 4 3 1 5	en weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1) Prüfnormmaß Typ 2 (T2) 1,00 x 1,30 - Küche (Holz mit 2-fach 1,00 x 1,30 - WohnZ) (Holz mit 2-fach 1,00 x 1,30 - Haustür	ne in Breite [m] 1,23 1,23 1,00 1,00 1,00 1,00	the Hohe [m] 1,48 1,30 1,30 1,30 1,30 1,30 2,10	Flache [m ²] 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82	Ug Wimikg 0,70 2,70	Brutt	PSI [Wimk] 0,040	Ag [m ³] 1,23 1,23 0,91 1,82 0,91 2,73 0,91	Uw [Wim ³ K] 0,98 2,42 1,02 1,02 1,02 1,02 1,02 1,02	Avd.brf [WiK] 1,33 2,65 1,33 5,31 3,98 1,33 3,51 8,82	9 0,51 0,51 0,51 0,51 0,51 0,51	5 0,85 0,85 0,85 0,85 0,85
Fe Üb B B B B B B B B B B B B B B B B B B	Provide a constant provide a con	Awo1 Awo1 Awo1 Awo1 Awo1 Awo1 Awo1	1 2 1 4 3 1 5	en weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1) Prüfnormmaß Typ 2 (T2) 1,00 x 1,30 - Küchte (Hotz mit 2-fach 1,00 x 1,30 - WohnZ) (Hotz mit 2-fach 1,00 x 1,30 - Bad (Hotz mit 2-fach Verbundglas) 1,00 x 1,30 - Stach 1,00 x 1,30 - Stach 1,00 x 1,30 - KindZi (Hotz mit 2-fach 1,00 x 1,30 - Haustur 1,00 x 1,30 - Haustur	ne in Breite [m] 1,23 1,23 1,00 1,00 1,00 1,00	the Hohe [m] 1,48 1,48 1,30 1,30 1,30 1,30 1,30 1,30	Flache [m ²] 1,82 1,82 1,30 2,60 1,30 5,20 1,30 2,10 7,30 1,30	Ug WemPKJ 0,70 2,70	Brutt	P8I [Wimk] 0,040	Ag (m ³) 1,23 1,23 0,91 1,82 0,91 2,73 0,91	Uw [Wm4k] 0,98 2,42 1,02 1,02 1,02 1,02 1,02 1,02	AvcLisf [Wilk] 1,33 2,65 1,33 5,31 3,98 1,33 3,51 8,82 1,33	9 0,51 0,51 0,51 0,51 0,51 0,51	19 0,85 0,85 0,85 0,85 0,85
Fe Üb B B B B B B B B B B B B B B B B B B	P P P P P P P P P P P P P P	AW01 AW01 AW01 AW01 AW01 AW01 AW01 AW01	1 1 1 1 1 1 1 1 1 1	en _weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1) Prüfnormmaß Typ 2 (T2) 1.00 x 1.30 - Kuche (Holz mit 2-fach 1.00 x 1.30 - Kuche (Holz mit 2-fach 1.00 x 1.30 - Bad (Holz mit 2-fach Verbundglas) 1.00 x 1.30 - Bad (Holz mit 2-fach Verbundglas) 1.00 x 1.30 - KindZi (Holz mit 2-fach Verbundglas) 0.00 x 1.30 - KindZi (Holz mit 2-fach Verbundglas)	ne in Binba 1,23 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	the i Hohe 1,48 1,48 1,30 1,30 1,30 1,30 1,30 1,30 2,10	Tische [m²] 1,82 (Ug (WemHK) 0,70 2,70	Brutt	PSI [Wimk] 0,040	Ag (m ²) 1,23 1,23 0,91 1,82 0,91 2,73 0,91	Uw [Wim#k] 0,98 2,42 1,02 1,02 1,02 1,02 1,02 1,67	Aullef [WK] 1,33 2,65 1,33 5,31 3,08 1,33 3,51 8,82 1,33 1,75	44, 9 0,51 0,51 0,51 0,51 0,51 0,51	\$ 0,85 0,85 0,85 0,85 0,85 0,85
Fe Üb B B B B B B B B B B B B B B B B B B	N EQ	Awo1 Awo1 Awo1 Awo1 Awo1 Awo1 Awo1 Awo1	1 2 1 4 3 1 1 5 1 1 2	en _weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1) Prüfnormmaß Typ 2 (T2) 1.00 x 1.30 - Kuche (Hoiz mit 2-fach 1.00 x 1.30 - WohnZi (Hoiz mit 2-fach 1.00 x 1.30 - Bad (Hoiz mit 2-fach Verbundglas) 1.00 x 1.30 - Sud (Hoiz mit 2-fach Verbundglas) 2.00 x 1.30 - KindZi (Hoiz mit 2-fach 1.00 x 1.30 - KindZi (Hoiz mit 2-fach 1.00 x 1.30 - KindZi (Hoiz mit 2-fach 1.00 x 1.30 - KindZi 1.00 x 1.30 - KindZi (Hoiz mit 2-fach 1.00 x 1.30 - KindZi 1.00 x 1.30 - KindZi	ne in Brebe [m] 1,23 1,23 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	the: Hohe (m) 1,48 1,48 1,30 1,30 1,30 1,30 2,10 1,30 2,00	Tiache [m²] 1,82 1,82 1,82 1,30 2,60 1,30 2,60 1,30 2,10 7,30 1,30 1,30 1,30 3,00	Ug (W/mHK) 0,70 2,70	Brutt	PSI [Wimk] 0,040	Ag [m ²] 1,23 1,23 0,91 1,82 0,91 2,73 0,91	Uw [Wim ³ K] 0,98 2,42 1,02 1,02 1,02 1,02 1,02 1,02 1,02 1,0	Aullaf [WIK] 1,33 2,65 1,33 3,51 1,33 3,51 8,82 1,33 1,75 3,08	44, 9 0,51 0,51 0,51 0,51 0,51 0,51	\$ 0,85 0,85 0,85 0,85 0,85
Fe Üb B B B B B B B B Sum	P P P P P P P P P P P P P P	Awo1 Awo1 Awo1 Awo1 Awo1 Awo1 Awo1 Awo1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	en weekend-hon Bezeichnung Prüfnormmaß Typ 1 (T1 Prüfnormmaß Typ 2 (T2) (Holz mit 2-fach 1,00 x 1,30 - Küche (Holz mit 2-fach 1,00 x 1,30 - WohnZi (Holz mit 2-fach 1,00 x 1,30 - Bad (Holz mit 2-fach Verbundglae) 1,00 x 1,30 - KindZi (Holz mit 2-fach Verbundglae) 1,00 x 1,30 - KindZi (Holz mit 2-fach Verbundglae) 1,00 x 1,30 - KindZi (Holz mit 2-fach Verbundglae) 0,85 x 2,00 - Tir zu unbeheiztem Schuppen	ne in Breite [m] 1,23 1,23 1,00 1,00 1,00 1,00 1,00 1,00	the Hohe (m) 1,48 1,48 1,30 1,30 1,30 1,30 1,30 2,10	Flache [m ²] 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82	Ug (WemHc) 2,70	Brutt	PSI [Wimk] 0,040 0,040	Ap [m ²] 1,23 1,23 0,91 1,82 0,91 2,73 0,91 0,91	Uw [Wim*K] 0,98 2,42 1,02 1,02 1,02 1,02 1,02 1,02 1,02 1,0	Axilari (WK) 1,33 2,65 1,33 5,31 3,98 1,33 3,51 8,82 1,33 1,75 3,08 17,21	9 0,51 0,51 0,51 0,51 0,51 0,51 0,51	% 0,85 0,85 0,85 0,85 0,85

Typ... Prüfnormmaßtyp B... Fenster gehört zum Bestand des Gebäudes

13.2.4 Example 5 – Energy-pass for building in San Francisco

Norm-Außentemperatur:	Standort:							
Berechnungs-Raumtemperatur:	Brutto-Ra	uminhalt der						
Temperatur-Differenz:	beheizten	Gebäudetell	e:	376,88	mª			
	Gebäudel	nülfläche:		372,06	m²			
Bautelle	Fläche	Warmed	Korr	Korr	AxUxf			
		KOETTIZ.	Taktor	Taktor				
	[m]	[W/m=K]	- m	[1]	[W/K]			
AW01 Außenwand	134,26	0,167	1,00		22,45			
FD01 Außendecke, Wärmestrom nach oben	112,00	0,167	1,00		18,72			
FE/TÜ Fenster u. Türen	13,80	1,284	1,00		17,72			
ID01 Fußboden zu sonstigem Pufferraum (nach unten)	112,00	0,112	0,70		8,82			
Summe OBEN-Bautelle	112,00							
Summe UNTEN-Bautelle	112,00							
Summe Außenwandflächen	134,26							
Fensterantell in Außenwänden 9,3 %	13,80							
Summe			[W/	K]	68			
Wärmebrücken (pauschal)			[W/	К]	8			
Transmissions - Leitwert L _T			[W/	K]	75			
Lüftungs - Leitwert L _V	K]	31,68						
Gebäude - Heizlast Ptot	Luftwechsel -	0,40 1/h	[k	W]	3,48			
Flächenbez, Heizlast P, bei einer BGF vo	on 112	m² IW	m² BG	FI	31.07			
Gebäude - Heizlast P _{tot} (EN 12831 vereinfacht)	Luftwechsel	0,50 1/h	[k	wj	4,12			

Bauteile								
Übungsversion_	California - Sa	n Fr	anciso	o - (improver	nents)			
AW01 Außenwan	d							
	-			von Innen na	ach Außen	Dicke	λ	d/ λ
1.402.02 Holz				в		0,0120	0,140	0,086
Lattung dazw.				в	10,0 %	0,1260	0,120	0,105
Steinwolle MW-W				в	90,0 %		0,043	2,637
Lattung dazw.				в	10,0 %	0,1500	0,120	0,125
Steinwolle MW-W				в	90,0 %		0,043	3,140
1.402.02 Holz				в		0,0120	0,140	0,086
	RT0 6,1745	RTu	5,7852	RT 5,9799	Dicke ge	samt 0,3000	U-Wert	0,17
Lattung:	Achsabstand	0,600	Breite	0,060		Rse+Rsi 0,	17	
Lattung:	Achsabstand	0,600	Breite	0,060				
FD01 Außendec	ke. Wärmestrom	nach	oben					
				von Außen n	ach innen	Dicke	λ	d/λ
ETERNIT Dachplatten				в		0,0200	0,600	0,033
1.402.02 Holz				в		0,0120	0,140	0,086
Lattung dazw.				в	10,0 %	0,1260	0,120	0,105
Steinwolle MW-W				в	90,0 %		0,043	2,637
Lattung dazw.				в	10,0 %	0,1500	0,120	0,125
Steinwolle MW-W				в	90,0 %		0,043	3,140
1.402.02 Holz				в		0,0120	0,140	0,086
	RTo 6,1780	RTu	5,7885	RT 5,9833	Dicke ge	samt 0,3200	U-Wert	0,17
Lattung:	Achsabstand	0,600	Breite	0,060		Rse+Rsi u,	14	
Lattung:	Achsabstand	0,600	Brene	0,060				
ID01 Eußboden	zu sonstigem Pr	ufferr:	aum (nz	sch unten)				
				von Innen na	ach Außen	Dicke	λ	d/λ
1.704.08 Flesen				В		0.0150	1.000	0.015
1.202.06 Estrichbeton				в		0,0500	1,480	0,034
ISOVER TDPS Trittscha	ali-Dāmmpi. 55/50			в		0,0500	0,033	1,515
1.202.02 Stahlbeton				в		0,2000	2,300	0,087
ISOVER KDP Kellerdec	ken-Dämmplatte 22			в		0,2200	0,032	6,875
Glpsputz (1000)				в		0,0100	0,400	0,025
				Rse+RsI = 0,34	Dicke ge	samt 0,5450	U-Wert	0,11
			_					
Einheiten: Dicke [m], Achsabst * Schicht zählt nicht zum U-V	and [m], Breite [m], U-We Vert F enthält Flächer	nt (W/m² nheizun:	K] Dichte B. Besi	[kg/m²], ^[W/mK] landsschicht **D	efaultwert It. OIB			
RTu unterer Grenzwert RTo	oberer Grenzwert laut	ONOR	MEN ISO C	94949				

Geometrieausdruck Übungsversion_California - Sa	an Francisco - (improvements)
DG Dachkörper	
Nr 49	<pre>a = 8,00 b = 14,00 lichte Raumhöhe(h) = 2,50 + obere Decke: 0,32 => 2,82m BGF 112,00m² Wand W1 22,56m² AW01 Au&enwand Wand W2 39,48m² AW01 Wand W4 39,48m² AW01 Wand W4 39,48m² AW01 Decke 112,00m² FD01 Au&endecke, Warmestrom nach oben Boden 112,00m² FD01 Fu&boden zu sonstigem Pufferraum (nac</pre>
DG Summe	DG Bruttogrundfläche [m²]: 112,00 DG Bruttorauminhalt [m²]: 315,84
Deckenvolumen ID01	
	Fläche 112,00 m² x Dicke 0,55 m = 61,04 m³
	Bruttorauminhait [m ²]: 61,04

Fenster und Türen															
Übungsversion_California - San Francisco - (improvements)															
Тур		Bauteil	Anz	Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug (Wimith)	Uf [Wim ² K]	PSI [W/mK]	Ag [m ²]	Uw [Wim ² K]	AxUsf [W/K]	9	8
	·														
в				Prüfnormmaß Typ 1 (T1)	1,23	1,48	1,82	1,25	1,40	0,070	1,23	1,47		0,58	
N															
B T1	DG	AW01	1	1,20 x 1,00	1,20	1,00	1,20	1,25	1,40	0,070	0,73	1,51	1,81	0,58	0,85
B T1	DG	AW01	1	0,80 x 1,00	0,80	1,00	0,80	1,25	1,40	0,070	0,43	1,55	1,24	0,58	0,85
			2				2,00						3,05		
0															
B T1	DG	AW01	2	1,20 x 1,00	1,20	1,00	2,40	1,25	1,40	0,070	1,48	1,51	3,62	0,58	0,85
B T1	DG	AW01	1	1,00 x 2,20 - Gartentür	1,00	2,20	2,20					0,73	1,61		
			3				4,60						5,23		
S															
B T1	DG	AW01	1	1,20 x 1,00	1,20	1,00	1,20	1,25	1,40	0,070	0,73	1,51	1,81	0,58	0,85
B T1	DG	AW01	1	0,80 x 1,00	0,80	1,00	0,80	1,25	1,40	0,070	0,43	1,55	1,24	0,58	0,85
B T1	DG	AW01	1	1,00 x 2,20 - Haustür	1,00	2,20	2,20					0,87	1,91		
			3				4,20						4,96		
w															
B T1	DG	AW01	2	1,50 x 1,00	1,50	1,00	3,00	1,25	1,40	0,070	1,92	1,49	4,48	0,58	0,85
			2				3,00						4,48		
Summ	e		10				13,80						17,72		
Ug., Uwert Glas Uf., Uwert Rahmen PBI., Linearer Korrekturkoeffizient Ag., Glasfläche g., Energiedurchlasegrad Vergiasung fa., Verschattungsfaktor Typ., Prüfnormmaßtyp B., Ferster gehört zum Bestand des Gebäudes															