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Abstract

With the increased availability of imaging systems for three dimensional objects, virtual models
of statues, buildings, archaeological excavation sites, or even whole cities can be created. A
popular technique to build up these models is to generate a point cloud by combining multiple
scans from a 3D scanner. The number of necessary scans depends on the size of the original
object. The combination of the single scans leads to various color discontinuities in the overall
model, which have to be corrected by post-processing.

This thesis shows two different approaches to automate the color correction process and
improve the visual appearance of a point cloud. The first approach concentrates on the images
for the colorization of the discrete scans, and tries to adjust them in a way to a achieve a common
light situation for all of the images. A model created from point clouds which are colored by the
use of the processed images, shows less color discontinuities.

In contrast to the first approach the second approach affects the points of an already colored
point cloud. The basic idea is to recolor the single points according to the surrounding points
and a specific filter. The result of the second approach depends on a number of settings and
the choice of the applied filter. An appropriate combination of these factors should change the
colors of a point cloud and make them appear smoother and less noisy.

Several point clouds together with the photos which were used to colorize them are employed
to test and validate these two approaches.
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Kurzfassung

Der Einsatz von Punktwolken, welche mit Hilfe von 3D Scannern erzeugt werden, hat zur Vi-
sualisierung von großen Szenen wie Statuen, Gebäuden, archäologische Ausgrabungsstätten und
Städten, stark an Beliebtheit gewonnen.

Um mit dieser Technik das gesamte Objekt erfassen zu können sind mehrere Scans erfor-
derlich, welche später zu einer Punktwolke zusammengefügt werden. Die Notwendigkeit von
mehreren Scans führt jedoch dazu, dass sich die Bedingungen für die einzelnen Scans (wie zum
Beispiel die Tageszeit) verändern, wodurch große Farbunterschiede im fertigen Modell auftre-
ten, die in einem Nachbearbeitungsschritt ausgebessert werden müssen.

In dieser Diplomarbeit werden zwei Verfahren angewendet um die Korrektur der Farbunter-
schiede zu automatisieren und die Farbunterschiede zu minimieren und dadurch eine Verbesse-
rung des Gesamterscheinungsbildes zu erzielen. Das erste Verfahren hat zum Ziel die Lichtsi-
tuation der einzelnen Fotos welche während des Scan Prozesses gemacht wurden, anzugleichen.
Ein Punktemodell dessen Punkte mit diesen modifizierten Fotos eingefärbt wurden, zeigt weni-
ger Farbunterschiede.

Im zweiten Verfahren wird die Farbe einzelner Punkte der gesamten Punktwolke anhand
direkt angrenzender Punkte lokal verändert. Dies geschieht durch die Verwendung der angren-
zenden Punkte in verschiedenen Filtern. Dadurch sollen die Farbunterschiede minimiert werden,
wodurch ein allgemein homogeneres Gesamtbild des Punktemodells erzeugt wird. Die Ergeb-
nisse sind von mehreren Einstellungen und der Wahl des Filters abhängig.

Zur Validierung werden beide Verfahren auf unterschiedliche Punktwolken und den Fotos
mit denen diese Punktwolken eingefärbt wurden angewendet, und mit dem Original der Punkt-
wolke verglichen.
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CHAPTER 1
Introduction

With the use of automated range finding devices like a 3D scanner, the acquisition of the geome-
try of large real-world scenes gained more and more popularity. These devices make it possible
to visualize statues, buildings, even archaeological excavation sites and cities. With the informa-
tion recorded by a 3D scanner, a 3D point cloud can be generated. To get a complete 3D model
of the desired object it is necessary to make multiple scans from different positions. Photographs
of the object are taken during the scan process as well. These pictures are later used to color the
point clouds acquired by the 3D scans.

The number of necessary scans depends on the size of the original object. To obtain a com-
plete model of the scanned object the different single scans are merged together. For smaller
objects, like statues, very often 3D meshes are generated out of point clouds. The use of points
as rendering primitives instead of a mesh has become a popular alternative especially for render-
ing of complex scenes.

1.1 Problem Definition and Objectives

If one part of the scanned object appears on different scans from different positions, then the
color for this part of the model probably differs on each of the corresponding images. The color
of one part depends for example on the distance from the point to the scanner, the scanner ori-
entation, and on the light situation (daylight, the use of spot lights). So when the different 3D
scans are merged, the surface of the final model can have great variations on it, especially on
overlapping regions. Figure 1.1 shows two examples of such point clouds. In Figure 1.1(a) the
color discontinuities which appear when multiple scans are merged together are very recogniz-
able. The boundaries of every scan are visible, for example on the floor. Figure 1.1(b) is a good
example for an irregular surface on a point cloud model. For example on the column, a lot of
dark spots are visible.
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(a)

(b)

Figure 1.1: These images show color artefacts in the color of a 3D point cloud. Figure (a) is a
good example for the color discontinuities which arise from the merge of different scans. Figure
(b) shows an example of an irregular surface.
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1.2 Contribution and Course of Investigation

Until now the correction of these errors in colored point clouds is done manually, which takes a
lot of time, especially for very large point clouds. This work presents two approaches to auto-
mate this process:

• The first approach is an image-based approach, where the pictures which were taken dur-
ing the scan process are modified.

• The second approach is a point-based approach where the points of the point cloud are
recolored in object space according to their surrounding neighbor points.

One reason for the separation of the work into two parts is that the lighting when taking
photographs influences the color of the different points a lot. The different scans, and therefore
the different images, are made at different daytimes. For example pictures which are taken at
noon can appear very bright or even overexposed, while images of the same object taken in the
late afternoon or on very cloudy days may appear darker. Here the whole picture has a spe-
cific lighting. That means that the whole images differ, not just some parts of it. The basic
approach to improve the color appearance of the point cloud is to modify the images so that all
of the images which are taken to color the points in the point cloud have the same lighting mood.

The point-based approach then tries to get a smoother colored surface of the model and also
tries to remove the noise. For this the points are recolored with the help of their neighbors. Some
criteria for the selection of the neighbor points are developed to get the best result. Then some
image processing techniques are used for the assignment of the final color.

1.3 Structure of the Work

This thesis is organized as follows:
Chapter 2 gives an overview of the state the art of the important topics covered in this thesis.

The first part is about the range image acquisition pipeline, where the important steps about
the generation of colored 3D point cloud are described. The next part presents different data
structures used for the rendering of large point clouds. Then the different color adjustment
methods for point clouds and 3D meshes coming from range images are described. These are
followed by image-processing algorithms to remove noise from images. The chapter finishes
with a short overview of the k-nearest neighbor search in point clouds.

Then Chapter 3 presents two existing methods to bring the images responsible for the col-
orization of the points in the same lighting mood. First a method in decorrelated color space is
described, then one in correlated color space. These two methods are then compared.

Chapter 4 describes the method used for the already colored point cloud. First the kd-tree
data structure used is described. This is followed by the techniques used for the calculation of
the final point color.
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The outcome of Chapter 4 in combination with the method described in Chapter 3 is pre-
sented in chapter 5. Here the outcome of the different settings which can be made for the point
based approach is presented and discussed.

Then Chapter 6 closes this thesis with a summary and some possible enhancements for future
work.
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CHAPTER 2
State of the Art

This chapter gives an overview of the state the art of the important topics covered in this thesis.
Section 2.1 deals with the range image acquisition pipeline and describes the how the final
point cloud model was generated. After that, section 2.2 shows some examples how these point
clouds can then be efficiently stored and shows some different rendering algorithms. As this
thesis is about color adjustment for colored range images, section 2.3 gives an overview of
current approaches for combining the color from multiple scans and on how to decrease color
discontinuities. Section 2.4 then shows some methods on how to reduce noise in images. Section
2.5 then describes some methods for the k-nearest neighbor search in point clouds.

2.1 Range Image Data Acquisition Pipeline

Range Images are images that store depth values of an object. As these depth values are depen-
dent of a certain viewpoint it is possible to obtain a 3D position of the points of the image, and
later on it is possible to generate a 3D model out of one or more range images. But first they
have to be generated, then registered and colored [9, 13].

2.1.1 Range Scanner Hardware

There are different types of laser scanners. The two most common types are the triangulation
laser scanner and the Time-of-Flight laser scanner.

Triangulation System

In the triangulation system the laser projects a light spot on the object of interest and then this
light spot is detected by a camera. With the known distance between the laser and the sensor, and
the angle between the laser beam and the position of the spot on the camera image, it is possible
to determine the position of the spot on the object by the use of triangulation. This principle is
shown in figure 2.1(a).
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Alternatively, another approach to obtain the shape of an object is to project a stripe or a
pattern instead of a spot on the object. The approach with the stripe is shown in figure 2.1(b). It
is also possible to work with more than one camera and laser on an object.

A disadvantage of the laser-based triangulation system is that the quality of the results is
constrained by the quality of the surface material of the object. Properties like the shininess or
subsurface scattering influence the reflection behavior of the projected laser light.

Time-of-Flight System

The time-of-flight laser scanner sends out a pulse of light and waits for it to return after the light
is reflected by the object. With the round-trip-time of the light the scanner calculates the distance
between the object and the scanner. Figure 2.2 shows the functionality of this scanner type.

The time-of-flight system has the same disadvantage like the triangulation system that it is
dependent of the quality of the surface.

2.1.2 Range Image Registration

Usually more than one scan of an object is necessary to fully capture an object, and these scans
must be merged together after the scanning. The process of putting these scans together in
one coordinate system is called registration. The most often used methods for registration are
presented in the following.

One possibility, used with high-end scanner, is that the scanner tracks its GPS1 position and
orientation precisely so the matching of the separate scans can be made easily. The registration
process can be alleviated when at least four retro-reflective targets markers are placed at the
object which is scanned. These markes must be visible from more than one scanposition [44].
The disadvantage of the method with markers is that the markers are then visible in the scan.
These can indeed be removed but then some details of the model are missing.

If there is no data about the scanning setting available it is necessary to match the separate
scans by their actual data. There are many approaches of how to match the scans automatically,
for example the Iterative Closest Point (ICP) algorithm and various modifications of it [7,10,29,
47]. Here points from two different scans which correspond to the same surface point are found
and then aligned.

Silhouettes can also be used to align corresponding scans. The single scans have to be
already converted to mesh which should be aligned later. Therefore the silhouettes appearing in
the images taken are compared with those on the image obtained by rendering the meshes [28].
With that information the meshes can be merged together.

Manual registration of the images is also possible, where the user selects corresponding
points of the model on the different images which where taken [37], or an automatic image-
based approach where specific features are detected on the images taken during the scan.

1Global Positioning System
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(a) Triangulation with a projected spot

(b) Triangulation with a projected stripe

Figure 2.1: Principle of a triangulation scanner

7



Figure 2.2: The round trip time of the laser beam is calculated.

Figure 2.3: 3D range scanner with a mounted camera [20].

2.1.3 Coloring of Range Images

With the recording and registration methods described earlier just the position of the points is
calculated, the next step is to get information about the color of the points. Therefore a cameras
is mounted on the scanner hardware and with that camera one or more pictures made are of the
field of view of the scanner during or after the scan process. With the information about the
position of the scanner and the camera the color can later be mapped on the 3d point cloud like a
texture in a post processing step. Figure 2.3 shows a 3D scanner with a mounted camera which
takes pictures during the scan process.

If there are no images made during the scan process but at some other time, there are some
approaches which combine these images to generate a texture for the geometric model after-
wards [31]. In this case the colorization of the model happens after the registration process. If
there are already color images of the scanned object available, these can be used for the regis-
tration process [22, 26].
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When the different scans are aligned a good basis for generating a single mesh out of the
point cloud is given [29].

2.2 Range Image Data Structures and Rendering

The rendering of the obtained point cloud data sets is a challenging task. To visualize this data ei-
ther a mesh can be generated or the points can be rendered individually. Especially for extremely
big point clouds, like detailed scans of statues, buildings or cultural heritage acquisition, which
exceed the limit of the main memory, the rendering becomes more complicated. To render these
scenes it is necessary to think of new data structures, which are out-of-core compatible and ide-
ally support some level of detail system. Here are some examples of rendering methods for very
large point clouds.

2.2.1 Sequential Point Trees

Dachsberger et al. [14] are using a method to process the level of detail transitions on the GPU
using Sequential Point Trees. The point set is put into an octree and different levels of detail are
calculated. The normals and positions of these new points are the averaged values of their child
nodes. Therefore nodes higher in the hierarchy represent a coarser level of detail than the lower
ones. Dependent of the geometric error eg the minimum and maximum distance values rmin,
rmax are stored with the nodes and are used to decide which level of detail should be rendered
for the current viewpoint.

2.2.2 Instant Points

Instant Points describes a data structure composed of Nested Octrees [49]. This algorithm is a
modification of SPT, described in section 2.2.1, and introduces a new data structure, the so called
Memory Optimized Sequential Point Tree (MOSPTs). Furthermore a so called outer octree is
used, which acts as a traversal structure and holds as nodes MOSPTs. The outer octree is used
for view-frustum culling and the out-of-core handling, while the MOSPTs are used for efficient
rendering and hold all actual points. Figure 2.4 shows the 2D version of a nested octree, a nested
quadtree with a depth of two.

2.2.3 Layered Point Clouds

Gobetti and Marton [21] make an LOD tree out of an evenly spaced point set. The root node
holds a coarse representation of the entire model. All other points are equally subdivided in two
subtrees, where each node is a refinement of its parent node, the nodes also store the average
spacing r j between the samples. Later when the tree is traversed for rendering, the average
sample distance of the nodes which pass view frustum culling, is projected on the screen to
obtain the splat size. The points of each node that is visited during rendering traversal are
rendered. When the splat size is under a certain threshold the points associated with the node
are still rendered, but the traversal stops. Otherwise it continues the refinement with its children.
Figure 2.5 shows two different LODs of Michelangelo’s David.
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Figure 2.4: A nested quadtree with the depth of two [49].

(a) David with 4M samples. (b) David with 28M samples.

Figure 2.5: Two different LOD representations of David [21].

2.2.4 QSplat

Qsplat [40] makes use of a hierarchy of bounding spheres. When building the hierarchy, the
bounding sphere of the complete model is recursively split into smaller spheres. The spheres
must have must have the right sizes so that the nodes touch each other in a way that there are
no holes during rendering. The nodes store the average information of their subtrees like their
bounding spheres, their subnodes, normal and optionally a color. For rendering this tree, the
nodes which pass the frustum culling are traversed until one node is a leaf node, or the size of
the sphere projected on the screen exceeds a certain threshold. Figure 2.6 shows such a bounding
sphere hierarchy with a branching factor of maximal four.
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Figure 2.6: Bounding sphere hierarchy with a branching factor 4.

2.3 Color Adjustment for Geometric Models from Range Images

Not only color processing is an issue when processing point clouds [48], for topics like hole
filling and outlier removal also a lot of research has been done. Unlike the hole filling and
outlier removal which are handled in the post-processing step, the color is in most cases already
matched during or directly after the registration process 2.1.2 [22, 26, 34].

The color matching can happen when separate colored point clouds are merged together
or when coloring the already registered point cloud or mesh, with the color coming from a
texture [11]. In that case the color processing can be done when the texture is generated.

Getting a smooth colored representation is a challenging task due to the different lighting
conditions when the pictures are made. Light sources like the sun, a flash light from the camera,
or other lights which were positioned around the object, influence the images taken. So when
these images are merged together to color the model, visual discontinuities and artifacts are
visible over the model. Figure 2.7 shows an example of a point cloud representation of the
stephansdom floor colored by the unprocessed images which were taken during the scan process.

There are some approaches how to solve this problem and improve the visual appearance of
the model.

2.3.1 Using the Color for the Registration

As mentioned in 2.1.2 the Iterative Closest Point (ICP) algorithm is a popular algorithm for the
registration of multiple scans. This algorithm can be extended for improving the registration
process by including the color values [22, 26]. Other algorithms like the Projective Surface
Matching (PSM) [34] also use the color values to improve the registration process.

Bernardini et al. [8] use a geometric-based alignment of the different scans only and use an
image-based alignment from high-quality images after that. The accuracy of the point pairs is
improved by looking for the corresponding points in the local neighborhood of the images.
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Figure 2.7: Visual discontinuities coming from the different lighting conditions are quite no-
ticeable.

Using color during for the registration helps to decrease the registration error which also
results in less color variations, especially when the colors from the different scans are blended
together when generating a texture.

Figure 2.8 shows how using the image-based alignment in addition to geometry-based align-
ment improves the resulting image.

(a) (b)

Figure 2.8: Result image once without (a) and with (b) image-based registration [8].

2.3.2 Calculate Color from multiple Images

As the previous part was about the influence of the color on the point cloud registration this part
is mostly about meshes, which were created from point clouds. Creating triangle meshes from
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point clouds is a common task, especially for smaller models. For these meshes a texture has to
be generated from the images taken during the scan process. For example if multiple parts of a
model are merged together to one mesh, some parts of the model appear in more than one scan
and therefore these parts appear in more than one image too. So there is a lot of different color
information available for that one part. When the texture for the mesh is generated, the right
color for these parts, which appear in more than one scan, has to be chosen from the different
available images. There are some possibilities how to choose the color for these parts of the
mesh.

If there are several images from different scan positions available for one query point, the
final outcome of the color can be improved by checking from which camera positions the query
point was visible and discard the occluded points from the color calculation.

One possibility to check whether a point was visible from a certain position or not is with
a z-buffer approach. Here the mesh is rendered and a depth map of the scene from the camera
position is made and then the depth values are compared in the depth map with the depth value
of the point [29, 31], if the difference between those two values exceeds a certain threshold,
the point is most likely occluded. An alternative method to the z-buffer approach is to use ray
casting. [34] used coarse shadow volumes to detect possible occluded points from certain scan
positions.

2.3.3 Image Combination

The colorization of one 3D point on a mesh which appears in more than one scan, can be cal-
culated by blending the different color values together. The blending of the different colors can
result in a smoother appearance of the whole mesh model than choosing one color which should
be the most accurate for the query point. But blending different values together can also result
in a blurry appearance.

There are some approaches which use the combination of various textures for the final color
and therefore different weighting functions were introduced which should lead to a satisfying
result. Johnson et al. [26] have first registred the different point clouds with the help of the
color ICP and then generated a mesh out of these point clouds. Later they produce a texture
out from the available textures for that model. They consider for example the normals of the
different contributing points and calculate the dot product of them with the normal from the
query point to gain the different weights for the individual contributing points. Figure 2.9 shows
the weighted blending operation of different color values to one final color.

Neugebauer et al. [31] first calculate the visibility of one point from each camera position
and then they build a weighting function with three weights. The first weight is calculated from
the sampling density of the images, the second weight is for a smooth transition between images,
and the third weight tries to eliminate outliers.

Other weighting factors can be the viewing direction or the feathering [33]. The feathering
weight was introduced to correct the illumination differences on the silhouettes of scans.

Rankov et al. [35] worked on an algorithm for combining multiple textures to one big tex-
ture. Their work is just about the textures, with no 3D mesh belonging to it. They remove the
color changes by blending the overlapping parts of the images. A look up table for the overlap-
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Figure 2.9: Calculate the color of a pixel with a weighted average of colors for that pixel. Image
taken from [26].

ping region, filled with weights, is generated for each image. Figure 2.10 shows this blending
procedure.

Figure 2.10: Blending procedure from Rankov et al. [35].

2.3.4 Texture Construction from Patches

Callieri et al. [11] use texture averaging for their meshes to remove color discontinuities and
differences from the final texturing. They subdivide the model into patches and assign parts of
the different images to these patches and try to keep these patches as large as possible. After
that they try to remove the discontinuities by interpolating between the edges of the pathes.
Figure 2.11 shows the outcome of their texture averaging algorithm.
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Figure 2.11: Using texture averaging removes large-area color discontinuities. Image taken
from [11].

2.3.5 Removal of Lighting Artifacts from the Images

Other techniques try to solve the problem with the different lighting conditions by removing the
artifacts occurring therefrom. Such artifacts can be the specular highlights, cast shadows and the
different light intensities depending on the light direction.

One approach to improve the color appearance of the 3D model is by correcting artifacts
evoked by flashlights, presented by Dellepiane et al. [15]. Here a color correction space is
made, which means that there is a color correction matrix for each point in the camera frustum.
These matrices differ for each camera. Then the colors from the images made with one camera
can be corrected afterwards by transforming the pixel values to that color correction space.
Equation 2.1 shows the transformation from the color (RGB) to the corrected color (R’, G’, B’)
with the color correction matrix ci j.

 R′

G′

B′

=

 c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34




R
G
B
1

 (2.1)

Additional to that the relative position of the flash light is calculated and with the information
about the position of the flash light and the color correction the visual artifacts like the specu-
lar highlights, by comparing the luminance of an point on the different photos, are removed.
Shadows on the model are corrected as well by constructing a depth map for the flash light.

It is also possible to remove the lighting artifacts if at least three different images from one
view are made, each one with a different, well known, lighting condition [37]. With a collection
of different images which all contain the same points under different lighting conditions it is
possible to detect shadowed pixels, but also pixels with a very low intensity, pixels with a spec-
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ular highlight, or pixels with conspicuous different saturation values. The diffuse lighting term,
as well as the normal, can then be calculated by solving a linear system, set up of the different
pixel values under the different light directions. With those two factors, the diffuse term and the
normal, the illumination-invariant color can be obtained. This method is just possible for small
indoor objects where full control can be taken over the lighting scene.

Bannai et al. [5] used a different method to remove illumination differences between multiple
images. They calculate color transformations from patches (kein Beistr) which should have the
same color. The color transformations minimize the color error over all pixels in those patches.
The patches are then transformed to have the same appearance. Later a global transformation for
all overlapping pixels is calculated, based on a chosen image A with the best appearance. With
this transformation all other images are transfered to the same color space as A.

Levoy at al. [29] took every image made of the scanned object twice, the first time with and
the second time without their spotlight. The difference image between those two images shows
the object as if it was only lit by the spotlight. By the generation of that image the different
daylight conditions can be compensated.

2.4 Methods for Noise Removing in Images

In this section some image processing methods to reduce the Gaussian and impulse noise in
images are described.

2.4.1 Linear Smoothing Filter

The Mean and the Gauss Filter are both linear smoothing filters. For the mean filter the value of
a pixel is replaced by the mean values of the pixels neighborhood (including the pixel itself).

The gauss filter weights the different pixel values from the pixel as well as the pixels neigh-
borhood with a gaussian function. For example for the standard normal distribution the weight-
ing function would be

w(x) =
1√
2π

e−
1
2 x2

(2.2)

where x is the distance between the pixel and its neighbor pixel.

2.4.2 Median Filter

For the purpose of signal smoothing Tukey [46] introduced the median filter. Regarding image
processing the median filter should reduce the noise in the image but still preserve the edges.
Therefore for every pixel in an image its value is replaced with the median of the neighboring
pixels. The median is the middle value of an sorted list of odd numbers. For an multiband image
this calculation has to be done for each band seperately which can lead to errors near the edges.
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2.4.3 Bilateral Filter

The bilateral filter was introduced by [32] and named and extended by [45]. Bilateral filtering
is a non-linear image processing filter. This filter combines a domain and a range filter. The
domain part measures how geometrically close the points are and the range part measures how
similar their values are. So the source pixel is then replaced by a combination of similar and
close-by values. The weight for the bilateral filter can then be described as:

w(x,ξ) = c(ξ,x)s(f(ξ) , f(x)) (2.3)

where f(x) is the pixel value of image f at x.
In this equation the geometric closeness between the pixel at value x and the neighbor point

ξ is computed in c(ξ,x) . The photometric closeness is computed with s( f (ξ) , f(x)) . These
functions can be Gaussian functions or other functions where the weights can decreased to zero.

The Gaussian case of the spatial weighting function is:

c(ξ,x) = e−
1
2

(
d(ξ,x)

σd

)2

(2.4)

where d (ξ,x) stands for the Euclidean distance between x and ξ.

The radial weighting function is then:

s(ξ,x) = e−
1
2

(
δ(f(ξ),f(x))

σr

)2

(2.5)

where δ(f(ξ) , f(x)) is the intensity difference between the two pixels.

This combination of range and domain filtering results in a filter that removes small differ-
ences between pixels caused by noise. So the overall image is smoothed but the edges are kept
and one other advantage is that this filter does not only work for gray scale images but also for
multi band images.

Figure 2.12 from [45] shows an example image before and after the bilateral filtering.

2.4.4 Modifications of the bilateral filter

Not only Gaussian noise can cause corruption in images, impulse noise is another type of noise
which can appear in images. Impulse noise replaces pixel values of an image with some random
values. One example of an impulse noise is the „Salt-and-Pepper“ noise where the noise-pixels
are completely black or white. Figure 2.13 from [19] shows one example of such noise.

To remove not only Gaussian noise but also impulse noise Garnett et al. [19] extended the
bilateral filter to a filter which can remove impulse noise as well. Therefore they created the
ROAD-Statistic („Rank-ordered Absolute Differences“). For the ROAD calculation the m points
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(a) Unprocessed Image (b) Bilateral Filtered Image

(c) Detail from 2.12(a) (d) Detail from 2.12(b)

Figure 2.12: Shows a picture before and after bilateral filtering, and a close-up of the onions in
that picture. Images taken from [45]

Figure 2.13: Image with impulse noise. Image taken from [19]
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which have the most similar pixel values as x out of the neighbor points are used. ROAD is
defined as:

ROADm (f(x)) =
m

∑
i=1

ri (f(x)) (2.6)

where 2 ≤ m ≤ 7 and ri (f(x)) are the euclidian distances of the color values from the m
neighbors to the value from x.

This statistic detects the m-Neighbors which are the closest to the pixel and shows how close
they are to the pixel value, because impulse noise pixels always differ much from their neighbor
pixels. And non-impulse-noise pixels, even those on the edges, should have at least four close
neighbor pixels.

Besides the domain and range filter, Garnett et al. added a third filter to the weighting
function, the „impulsive“ weight. But the impulsive weight cannot be added to the function
straight away because the range part of the bilateral filter will detect edges where the impulsive
part will detect noise. Some adjustments have to be made so that the range and impulsive help
each other instead of blocking each other, and the weight range part of the filter is dependent of
how „impulsive“ one pixel is. The „joint impulsivity“ of the pixel value x and the neighbor pixel
value ξ is computed as:

J (x,ξ) = 1− e
− 1

2

(
ROAD(f(x))+ROAD(f(ξ))

2
σJ

)2

(2.7)

This results in a new weight of the neighbor pixel ξ with respect to x:

w(x,ξ) = c(ξ,x)s(f(ξ) , f(x))1−J(x,y)i(f(ξ))J(x,y) (2.8)

2.5 K-Nearest-Neighbor Search in Point Clouds

Finding k nearest neighbors (kNNs) in point clouds is a well discussed topic. Nearest neighbors
are used for example for the calculation of normals, surface reconstruction, feature detection
or for noise removal. For the simplification of the point cloud the count of the neighbors of a
point and the local normal change are important [51] therefore the nearest neighbors of a point
areneeded too.

2.5.1 k-Nearest Neighbor

The nearest neighbor is the point that is the geometrically closest point to a query point q from
a point cloud P = {p1, p2, p3, ..., pn}. This geometrical closeness can be calculated with the
euclidean distance between the points. The k-nearest neighbor points are then the k points which
are closest to the query point. Therefore the k-nearest neighbor search can be defined as the
search for these k neighbor points in the same point cloud P.
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The simplest, but most costly, way to find the k-nearest neighbors would be a linear search.
Therefore all points in P would be compared to q. The calculation time of the linear search for
a point cloud containing N points with dimensionality d would be O(Nd).

A widely used structure, and several variations of it, for accelerating the k-nearest neighbor
search is to make use of an kd-tree [6] which performs the search in O(logN) time.

To find the k-nearest neighbors, a priority queue, where the k nearest points so far are stored,
is created. And then the tree is traversed, starting from the root node. Therefore a ball is
created around the query point. The radius of this ball is dependent on the largest distance of
the neighbor points found so far. A „bounds-overlap-ball“ and a „ball-within-bounds“ test [17]
is made on each node visited to decide whether to continue recursive traversing of the tree or
to stop. The traversing continues if the ball overlaps the node. When the ball is within the
bounds of the node, the node is a perfect match and no other nodes need to be traversed any
more. Nodes which do not overlap with or lie within the ball are completely discarded from
the search, because no potential neighbors would be found in them. If the current node is a
leaf node, all points within are tested as potential neighbors. Friedman et al. [17] made some
adjustments to the kd-tree to minimize the number of nodes which need to be traversed. To
accelerate the search-algorithm, when building the kd-tree, the axis with the largest spread is
chosen as discriminator axis for the splitting of the node into sub nodes. The bucket size was
considered as well.

Xiao and Huang [51] make the radius of the ball around the query point dependent on the
point cloud density, so that approximately k points fit in the bounding sphere.

The algorithms mentioned previously are working fine when all points lie in the main mem-
ory. Sankaranarayanan et al. [42] proposed an kNN algorithm especially for very large point
clouds. They used a hierarchical spatial data structure like an R-Tree or an bucket PR-Tree [41].
The tree structure remains in main memory while the leaf nodes, containing the actual point data,
are stored on the hard disk. For finding the kNNs of point t the neighborhood of the node N, con-
taining t, is created with the help of the distance estimates MinDist and MaxDist. Figure 2.14
shows these two distance estimates. This neighborhood, called locality of node N, contains all
kNNs for its containing points. Later this locality is searched to find the actual neighbor points
for point t.

2.5.2 Approximate Nearest Neighbor

Arya et al. [4] proposed approximate nearest neighbors for nearest neighbor search. An approx-
imate nearest neighbor is a point which is a neighbor point of query point t whose distance to
t lies within a (1+ ε) factor of the distance to the real neighbor point, where ε is a positive
real number. The approximate nearest neighbor calculation has the most advantage when work-
ing with dimensions more than 8 [1], because in this case the computation of the exact nearest
neighbors is a rather difficult task.

Muja and Lowe [30] compared the search performance of different algorithms for approxi-
mate nearest neighbor. Their conclusion was that either the k-means tree, proposed by Fukunaga
and Narendra [18] or multiple randomized kd-trees [43] brought the best result, dependent on
the dataset.
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Figure 2.14: Distance estimates to find the neighborhood of node N.

2.5.3 k-Nearest Neighbor Graph

A nearest neighbor graph contains a set of points {p1, p2, p3, ..., pn} and a set of edges, where
one edge connects a point pi with its nearest point p j. In a k-nearest neighbor graph the point i
is connected with the points Nk

i which is the set of k closest points to point i.
For example Connor and Kumar [12] show how to create a k-nearest neighbor graph by

using Morton order [41] of points.
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CHAPTER 3
Methodology for Image-Based

Approach

The reason for irregular color of the points of 3D models in the outdoor area is that the lighting
differs a lot on the pictures taken, because it depends on the daytime and the weather. Pictures
taken at noon are often overexposed and some 3D points get a very light or white color. Depen-
dent on the lighting is the lighting mood. The lighting mood of an image is the palette of colors
used in the image. The lighting mood is dependent on the intensities of the colors, shadows and
the specular effects on the objects. The lighting mood at noon is different to the lighting mood
at sunset. When colorizing a point cloud of the outdoor area with these pictures, the different
lighting moods in the pictures will lead to color inconsistencies across the point model.

The approach to solve this problem is to give all the pictures the same lighting mood, then
the scene, no matter how many different scans and pictures are used for it, should be colored in
one uniform style.

The color differences which are coming from the shadows as well as from the specular be-
havior of the material of the objects in the images cannot be affected later. The color differences
between the images which are caused by the different color temperatures can be adjusted by
using white or color balance. White balance is used to change the intensities of the colors on
an image so that the are independent of the color temperature of the light source. When images
are taken by a camera the white balance can be made automatically. Here the camera looks for
a white or very bright spot in the picture and changes the other colors according to that spot.
As an alternative to the automatic white balance a manual white balance can be made where the
white spot is defined by the user of the camera.

The white balance settings differ from scan to scan. For some 3D scans the same white
balance settings were used for all images of the object. On other 3D scans the same white color
settings are only used per scan position. But the white balance settings for one set of images
from one scan position are always the same, because the camera settings are always made once
per image set. The images used in this section were made with the same manual white balance
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settings. As a manual white balance was already made during the scan process the use of an
automatic white balance in a postprocess step will be no use.

This chapter covers two approaches for solving that problem. First the color transfer in
decorrelated color space from Reinhard et al. [36] and the color transfer in correlated color
space from Xiao et al. [50]. These two papers are described in Section 3.2 and Section 3.3
respectively.

After the presentation of the two approaches it is tested if the images can be improved by
using an automatic white balance algorithm.

3.1 Contribution

The idea behind this chapter is to bring all images to the same lighting mood so that they all look
like they were taken at the same time of the day. This approach works well for images taken in
the outside area like in Figure 3.8, except for images which are overexposed so that the color
histogram of the image is only a narrow distribution of color values.

3.2 Color Transfer in Decorrelated Color Space

One color-correction method is to borrow one images’ color characteristics and apply them to
another picture. One example for this is to let a picture which was taken at noon appear like it
was shot in the evening.

Usually these pictures are in the RGB color space. The three channels in this RGB space are
correlated, which means that if a pixel color value should be changed, all three color channels
have to be changed. To avoid this, the lαβ space from Rudermann et al. [38] is used. In this
color space the channels are only slightly correlated.

3.2.1 The lαβ space

The lαβ space is an advancement of the LMS color space1. In the lαβ color space, the l channel
is achromatic, the α channel represents the yellow-blue channel, and the β channel the red-green
channel.

The LMS color space describes a color space which represents the response of the cones of
the human eye on short, medium and long wavelengths. The following formula shows how to
convert from the RGB color space to the LMS color space:

L
M
S

=

0.3811 0.5783 0.0402
0.1967 0.7244 0.0782
0.0241 0.1288 0.8444

R
G
B

 (3.1)

On scatter plots of L-M and L-S pairs all their data lies near their diagonals, which means
that this data is strongly correlated, and the distribution along the diagonals is asymmetrical.

1http://en.wikipedia.org/wiki/LMS_Color_Space
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This can be seen in Figure 3.1(a) where in the upper right corner are less points then in the lower
left corner.

(a) L versus S (b) l versus α

Figure 3.1: Scatter plots for L-S pair in correlated color space and L-α pair in decorrelated color
space. Images taken from [36]

Rudermann et al. [39] propose to transfer these channels in the logarithmic space (base 10)
as this will improve the symmetry of the data points. The channel data is not bounded to have
only positive values and can have negative values too.

L = log L

M = log M

S = log S (3.2)

Next the axes have to be rotated so that they are decorrelated. The rotation is done with the
orthogonal transformation technique principal-components analysis (PCA). This analysis has as
result three orthonormal principal axes (l, α, β).

 l
α

β

=


1√
3

0 0
0 1√

6
0

0 0 1√
2


1 1 1

1 1 −2
1 −1 0

 L
M
S

 (3.3)

3.2.2 Color Correction

For a correct color transfer, the source and the target image have to be transfered from RGB to
lαβ color space. The target image is the image whose color characteristics should be changed
to those of the source image. Reinhard et al. [36] transfer the image to the lαβ color space and
continue with the calculation of the mean and the standard deviation along each axis for the two
images.
The mean has to be subtracted from each data point:

25



l∗ = l− lmean

α
∗ = α−α

mean

β
∗ = β−β

mean (3.4)

where lmean,α−αmean,β−βmean are again the mean values of each channel in the lαβ color
space.

Next the data points have to be scaled by the standard deviation from the source image
divided by the standard deviation from the target image:

l′ =
σl

src

σl
tgt

l∗

α
′ =

σα
src

σα
tgt

α
∗

β
′ =

σ
β
src

σ
β

tgt

β
∗ (3.5)

where σl
src,σ

α
src,σ

β
src,σl

tgt ,σ
α
tgt ,σ

β

tgt are the standard deviation values for the different chan-
nels of the source and target image.

The last thing is to add the already calculated mean to the result above:

l = l′+ lmean

α = α
′+α

mean

β = β
′+β

mean (3.6)

where lmean,αmean,βmean are again the mean values of each channel in the lαβ color space.
Reinhard et al. [36] finish the color transfer with the transformation from the lαβ color space

back to the RGB color space.

3.2.3 Results and Conclusion

The implementation of the Reinhard et al. [36] suggestion for color transfer works fine with the
example images from their paper. Figure 3.2 shows an example of this implementation.

Figure 3.3 shows the color transfer algorithm used with pictures made during an outdoor 3D
scan. As shown in Figure 3.3(c) the result image is not correct. The colors are too bright and
glaring. Some other trials showed that this algorithm is not working for pictures that are not very
colorful. These pictures use a small part of the histogram.

The next example, for Figure 3.4 the Reinhard et al. [36] color transfer algorithm is used in
the RGB color space. Here the result image looks much different, but the result is still insufficient
for an accurate color correction for the outdoor 3D scans.

26



(a) Source image (b) Target image (c) Result image

Figure 3.2: Color Transfer example pictures using the lαβ color space.

(a) Source image (b) Target image (c) Result image

Figure 3.3: Images from an outdoor scan using the lαβ color space

3.3 Color Transfer in Correlated Color Space

In the paper „Color Transfer in Correlated Color Space“ from Xiao et al. [50] an approach is
presented which is similar to Reinhard et al. [36]. The results achieved with this approach are
also similar to the approach from Reinhard et al. [36] but here an solution is found which solves
the color transfer in RGB color space and avoids to transfer the colors into the lαβ color space.
To avoid the transformation in the lαβ color space rotation is added additionally to the scaling
and translating of the values in the color correction. The results of these two methods are very
similar but tests showed that the color transfer in correlated color space produced a bit better
results than the method in decorrelated color space.

Xiao et al. [50] consider a RGB value as three dimensional stochastic variable and an image
is a set full of these variables. Here the characteristics of the source images are transfered to the
target image with the calculation of a rotation, translation, and scale matrix.

The covariance matrix between the three components of the image has to be calculated as
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(a) Source image (b) Target image (c) Result image

Figure 3.4: Images from an outdoor scan using the RGB color space

well as the mean of the pixel values along each axis. To obtain the rotation matrix the covariance
matrix has to be decomposed with the SVD [27] algorithm.

3.3.1 Color Correction

In this approach statistics are used for applying the characteristics of one image to another one.
So the first step of the method of Xiao et al. [50] is to calculate the mean along each axis for the
source- and target image as well as the covariance matrix between the three components of an
RGB value for the whole picture.

The covariance matrix shows the covariances of the three axis. This matrix is always sym-
metric and positive semidefinite and its diagonal consists of the eigenvalues.

This approach is about morphing ellipsoids to fit another one. Figure 3.5 shows that the
ellipsoid of the result image, Figure 3.5(c), is the ellipsoid from the target image morphed so its
characteristics match the characteristics of the the ellipsoid of the source images. The ellipsoids
are defined by the mean, which gives the center coordinates, and the covariance, its eigenvalues
and vectors are responsible for the length and orientation.

The next step is to decompose the covariance matrix with the SVD algorithm, the result are
three matrices U, Σ,V.

Cov = U∗Σ∗V (3.7)

U and V are orthogonal matrices, these represent the eigenvectors of Cov. Σ is the diagonal
matrix and contains the resulting eigenvalues:

Σ = diag(λR,λG,λB) (3.8)
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(a) Source image (b) Target image (c) Result image

Figure 3.5: Morphing the ellipsoid of the target image to fit the source images ellipsoid. Images
taken from [50]

where λR,λG,λB are the eigenvalues of Cov.

Then the transformation matrix can already be calculated out of the rotation, scale and trans-
lation matrices:

I = Tsrc ∗Rsrc ∗Ssrc ∗Stgt ∗Rtgt ∗Ttgt ∗ Itgt (3.9)

I is a 1x3 matrix with the RGB values. Now the rotation, scale, translation and the I matrices
are calculated.

Rsrc = Usrc Rtgt = U−1
tgt

Ssrc =


sr

src 0 0 0
0 sg

src 0 0
0 0 sb

src 0
0 0 0 1

 Stgt =


sr

tgt 0 0 0
0 sg

tgt 0 0
0 0 sb

tgt 0
0 0 0 1



Tsrc =


1 0 0 tr

src
0 1 0 tg

src

0 0 1 tb
src

0 0 0 1

 Ttgt =


1 0 0 tr

tgt
0 1 0 tg

tgt
0 0 1 tb

tgt
0 0 0 1


(3.10)

The elements of these matrices are the following:
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tr
src = Rmean

src tr
tgt =−Rmean

tgt

sr
src =

√
λ

R
src sr

tgt =
1√
λR

tgt

tg
src = Gmean

src tg
tgt =−Gmean

tgt

sg
src =

√
λ

G
src sg

tgt =
1√
λG

tgt

tb
src = Bmean

src tb
tgt =−Bmean

tgt

sb
src =

√
λ

B
src sb

tgt =
1√
λB

tgt

(3.11)

where Rmean,Gmean,Bmean are the mean values of all pixels from an image on the axes.

3.3.2 Results and Conclusion

The implementation was made with C++ and OpenCV, the Open Computer Vision Library2.
SVD is for example already implemented in OpenCV.

Applying the approach from Xiao et al. [50] on the images from the scans produced the best
results. This algorithm also works with pictures that are not very colorful and have very unbal-
anced histograms. One result of this algorithm is shown in Figure 3.6. The source and target
images are the same as in Figure 3.3 and Figure 3.4, but the result image shown in Figure 3.6(c)
was generated with this algorithm. This image has not too bright parts like in Figure 3.3(c) and
is more like the source image compared to Figure 3.4(c).

Figure 3.7 shows the three result images produced with the algorithm from Reinhard et
al. [36] and Xiao et al. [50] for direct comparison. In that comparison it is apparent that the
color transfer method from Reinhard et al. [36] and Xiao et al. [50] produce almost the same
result image. The outcome of the color transfer in the correlated color space is a bit better than
the result from the decorrelated color space because some parts in Figure 3.7(a) appear very
bright, almost glowing, which does not happen in Figure 3.7(c). Figure 3.7(b) has an overall
uniform appearance and would appear as good result, but when this image is compared with the
target image it is noticeable that the color transfer from the source to the target image did not
succeed because the result image is more desaturated than the source image and does not contain
the lighting mood of the target image at all. The best indicator for that is the color of the sky and
the green area in that image.

The best result would be if the green bushes in the source image have the same color as in the
target image, this is none of the three result images the case. But as the result image made with
the algorithm from Reinhard et al. [36] in RGB color space produces too desaturated results, the
color transfer method from Xiao et al. [50] is used for further tests.

2http://opencvlibrary.sourceforge.net/
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(a) Source image (b) Target image (c) Result image

Figure 3.6: Images from an outdoor scan using the statistic based approach.

(a) Result image from the decorre-
lated color space approach in the lαβ

color space.

(b) Result image from the decorre-
lated color space approach in the RGB
color space

(c) Result image from the correlated
color space approach.

Figure 3.7: Result images from Section 3.2 and Section 3.3.
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3.4 Enhancement to the Color Transfer Method

3.4.1 Source Image for the Color Transfer

3D scans produce multiple color images and therefore the question arises which image should be
used as source image. To get good result images it may be the better way not to just choose one
representative image in terms of scenery and color palette image as source image but to produce
a source image from all the target images. One example for such a source image is displayed in
Figure 3.8.

Figure 3.8: Source image produced from a set of images.

For this, an average image of all target images is produced. That means the mean RGB
value for every pixel is calculated. If there are many overexposed images in the set of target
images, to include them in the calculation of the source image can distort the final result after
the color adjustment. So it is better to weight them less or even discard them for producing
the source image. Figure 3.9 shows such source images created with different weighting of the
overexposes images. Figure 3.10 shows how this weighting has an influence on the resulting
images. In Figure 3.10(c) the overexposed images were completely discarded, this produced the
best results.

To detect if an image is overexposed the histogram of the image is evaluated. If more then
10% of all pixels in all three channels are in the upper or in the lower end of the histogramm, the
image is rated as overexposed image.

3.5 Automatic White Balancing

As already mentioned white balancing is used to adjust the color intensities of an image so that
these are invariant to the illumination color temperature. For the automatic white balancing the
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(a) Source image 100% (b) Source image 50% (c) Source image 0%

Figure 3.9: Source images created where overexposed images were weighted differently. They
were weighted with 100% (a), 50% (b) or were discarded (c).

(a) Result image 100% (b) Result image 50% (c) Result image 0%

Figure 3.10: Result images from the use of the source images from Figure 3.9.
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method from Huo et al. [24] was used. This algorithm uses a local automatic white balancing
algorithm where only gray color points are used for the color temperature estimation. In com-
parison to local white balancing algorithms global automatic white balancing algorithms use all
pixels for the color temperature estimation.

In the paper from Huo et al. [24] the image is first converted to the YUV color space3 where
the U and V channels, the two chrominance components, are used to find the gray color points.
The transformation to the YUV color space is shown in equation 3.12. Y

U
V

=

 0.299 0.587 0.114
−0.299 −0.587 0.886
0.701 −0.587 −0.114

 R
G
B

 (3.12)

All pixels in the image which fulfill the following criterion:

F (Y,U,V ) =
(|U |+ |V |)

Y
< T (3.13)

where T is a defined threshold. In the implementation for this thesis the value for the thresh-
old is set to 3.

When gray pixels are found the mean values for U and V channels, |U | , |V | of the gray
pixels are calculated and then the two mean values are compared to find out which channel in
the RGB color space needs adjustment. If |U | is bigger then |V | then the blue color channel
needs adjustment and |U | is used as error value. Otherwise the red channel needs adjustment
and |V | is used as error value.

If this error value is under a certain threshold the calculation of the automatic white balance
is finished. Otherwise the error value is scaled so that the color of the pixels is changed smoothly.

The error value is used to calculate the transformation of the RGB pixel values. This is done
by:

gi = gi−ϕ (3.14)

where g is the gain vector for adjusting the color values in the RGB color space and i indicates
the color channel which needs to be adjusted. ϕ is the weighted error value.

The gray color pixel estimation and the following adjustment of the color values is repeated
until the error value is under a certain threshold or after a certain number of iterations.

3.5.1 Results

The adjustment of the automatic white balance algorithm changes only a little in the images. One
image before and after the automatic white balance is shown in Figure 3.11. So the automatic
white balance is not applied on the images in this thesis because when these images were taken
a manual white balance was already set for the camera. And so the automatic white balancing
does not really improve the images.

3http://en.wikipedia.org/wiki/YUV
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(a) Original image (b) Image after automatic white bal-
ancing.

Figure 3.11: Images before (b) and after (a) automatic white balancing.

3.6 Color Transfer of the Images for the Point Cloud

When the image-based approach is used for a point cloud the number of image which should
be processed is dependent of the quality of the images. Generally all images which are used to
color the point cloud should be processed to get a point cloud with a uniform coloring. But if for
example, the scans of three different scan positions are used for one point cloud and the color
characteristics in the images from two scan positions are the same and only the images from the
third scan position differ, then the color characteristics should only be transfered to the images
from the third scan position.

For the user the best way of using the color transfer method for the images which are used
to color the point cloud, would be to use the same target image for all images. But to use one
source image for all images results in a lot of completely wrong colored images, especially for
images taken in the outside area. To use one source image for all images from one scan position
even results in wrong results. Therefore the best way is to manually choose the image which
should be used as source image for a specific subset of all images which is quite time consuming
and it is possible that no image can be found to improve the color characteristics of the image.

If the source image is generated out of the target images it is important that not too many
target images are used because that can lead to a source image which generates desaturated result
images.

In Chapter 5 two applications of the image based approach are shown.
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CHAPTER 4
Methodology for Point-Based

Approach

The following chapter deals with color adjustment for already colored point clouds. This method
was implemented for the Scanopy Rendering System [49]. As already mentioned, the starting
point for this processing step is a point cloud merged together from points of separate scans,
taken from different scan positions. The only information available are the different scan po-
sitions and the information which point belongs to which scan position. No other information
about the scanning setting, like the time or the light situation, is available. Therefore most of the
approaches to correct color discontinuities proposed in Section 2.3 cannot be applied here.

For the method in this thesis the neighbors of the points play an important role. In Scanopy
the data structure used for the storage and rendering of points is the Modifiable Nested Octree
[49]. The problem with this structure is that the neighbor points can lie in the different levels in
the hierarchy, which represent different levels of detail. The process of finding point neighbors
in this data structure is therefore quite time consuming because a lot of nodes have to be visited
to find the true nearest neighbors. To accelerate the process of finding the neighbor points of
each point, a separate data structure is integrated into Scanopy. For that purpose a kd-tree was
chosen.

In this chapter the calculation of the new color for a query point according to its neighbor
points is described first. For this, the different neighbor point selection criteria are explained.
Then the weighting function for the final point color is presented as well as the different filters
which can used to blend the neighbor point color values with the query point color value together.

As the k-nearest neighbors are needed for the point-based color adjustment the kd-tree, the
data structure which is used for the nearest neighbor search, is described in the second part of
this chapter.
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4.1 Contribution

For this part of the thesis the contribution is the following: An approach to automatize the color
correction of the individual points of the point cloud and change the color of the points so that an
overall smooth appearance is created. The color noise is removed with a set of different filters
applied to the point cloud. This happens with the help of the nearest neighbors in object space.

4.2 Color Adjustment on Point Clouds

The k-nearest neighbors for each point can be used to change the color of the query point. The
goal of this step is to remove noise of the coloring as well as to smooth the color discontinuities
coming from the different lighting settings during the scanning of the model.

This step can be divided in two parts. First the neighbor points which influence the color of
the query point are chosen carefully from the previously found kNN. Then these neighbor points
are weighted on how much they should influence the color of the query point. The final color of
the query point is then calculated by blending the weighted color values of the query point and
the neighbor points together. Here different blending functions can be used. The optimal result
would be that noisy points would be removed, and the overall appearance of the point cloud
would be smoother, while the edges should remain sharp.

4.2.1 Selection criteria for choosing neighbor points

Not all neighbor points around the query point may help to improve the color of the query point.
So some selection criteria are made to sort these neighbors out which are probably not „good“
neighbor points. When the kNN points are searched, some criteria are added to the search. With
some of these criteria, points around the query point are not even put in the kNN queue.

• Number of neighbors

• Maximum neighbor point distance

• The position of the scanner / camera from which the color was acquired.

Number of Neighbor Points

The number of neighbor points, k, is the number of sought-after neighbor points and therefore
the maximum number of points around the query point which can be used to change the color
of the query point. This number has to be chosen carefully because it can make a big difference.
If the number is too small it can happen that changing the color of the query point has almost
no effect. On the other side if the number of neighbors is too big it may occur that details get
smoothed out or that the result looks too blurry because too many color values get averaged.
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Maximum distance of a neighbor point

If only a few points are available in some regions and one or more of the k nearest neighbors
would be far away of the query point, this can lead to errors in the recolorization. To avoid
including points which are far away, it is useful to define a maximum distance up to which
neighbor points are considered for the recoloring.

Distance to Scan Position Influence

In [11] it is described that the camera which should capture the point of interest best should be
the one which points towards the point along the normal of the point. For recoloring the points,
the relationship between the scan position and the point is important too. When choosing the
neighbor points which influence the color of the query point, a better result can be expected if
these neighbor points are captured from a scan position with a good view on the area of the query
point. Therefore the points in the neighborhood of query point p which got their color from the
camera with the best view of p are preferred for recoloring p.

Figure 4.1 shows an example of a situation where the scan position should influence the
choice of the neighbor points. The neighbors around the query point come from two scan posi-
tions. First the distance from the query point to the scan position is measured to find out which
scan position is closer. In this figure scan position 1 is much closer to the query point than scan
position 2, so it is assumed that the colors of the points coming from that scan position are more
accurate than the colors from the points of scan position 2. So if there are enough points avail-
able from scan position 1 these should be chosen as neighbor points instead of the points from
scan position 2.

2. preferred scan position

3. preferred 
    neighbor 
    points

1. check distance to scan positions

Scan Position 1

Scan Position 2

query point scanned object

Figure 4.1: A 2D-representation of a point cloud scanned from two scan positions. The red dots
come from scan position 1 and the blue dots come from scan position 2. Around the query point
lie points from both scan positions.
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4.2.2 Point Normal Influences

With the selection criteria for choosing the neighbor points a set of neighbors with a potentially
good color are chosen for the recoloring of the point. For the selection criteria only the point
position was considered. The next step is to consider the point normals too. For example if the
neighbor point belongs to a different surface than the query point and therefore the normals of
the neighbor point and the query points look in totally different directions, then the probability
that the colors of these two points are not similar is very high.

So these two factors are used to calculate a weight which defines how much influence the
neighbor point color should have on the final point color according to its normal:

• The relation between the normal of the query point and that of the neighbor point.

• The scan direction point normal relationship.

The weight calculated with these two factors is then integrated in the different blending
functions which are used to calculate the new color for the query point. If an image based filter
is used which weights the different neighbor point colors then this weight is combined with the
weight coming from the normal calculations.

Normal Influence

If the positions of two points are very close it does not mean that the colors of those points
need to be similar. The color of a point depends on the surface attributes. For example if the
object has a bumpy surface, the normals of close points can look in different directions, which
causes different lighting effects on the object. Figure 4.2(a) shows a curved surface with points
that are close to each other but whose normals look in different directions. If the surface is
smooth, the points will look in the same direction and the illumination is smoother. To regard
the surface normal is a good way to find out about the surface quality. Figure 4.2(b) shows the
direct comparison of the two normal vectors. A weight is calculated from the difference of those
two vectors.

If the normal of the point looks in the same direction as the normal of its neighbor point then
it can be assumed that the points have a similar shading and that the possible color differences
are not coming from the shading.

So the difference between the normal of the query point and those of the neighbor points is
considered too by calculating a weight. This weight and other weights, calculated later in the
recoloring process, are responsible for the influence of the neighbor color to the final point color.

This weight is calculated by the dot product between the normal of the query point and the
normal of the neighbor point. The dot product is clamped to the range between zero and one.
This linear weighting function is given in Figure 4.3.

As an alternative the dot product can be weighted with a Gaussian function, the visualization
for that function is given in Figure 4.4 .
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Scan Position 1

query point

(a)

query 
point

neighbor
point

weight

(b)

Figure 4.2: This image shows that the normals of points which are very close to each other can
look in different directions. The difference between those two normals is then weighted.

0 1 0

0

1

0

dot product linear weight function 

Figure 4.3: Linear weight for the dot product between the query point normal and the neighbor
point normal.
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0 1 0

1

0

dot product gaussian weight function 

0

Figure 4.4: Gaussian weight function for the dot product between the query point normal and
neighbor point normal.

Scan Position - Point Normal Relationship Influence

As third factor the relationship between the neighbor point normal and the vector between the
neighbor point and its scan position is considered. If the angle between the neighbor point’s
normal and the vector to its scan position is larger than 90 degrees, the color of the neighbor
point will corrupt the blended color for the query point. An example for such a situation is
shown in Figure 4.5.

Scan Position 1

Scan Position 2

query point

Figure 4.5: The blue points were scanned from scan position 2 but their normals look to the
opposite side, like the red dots. That is an indication for the fact that the color can differ much
from the surrounding red points, which were colored from the view point.
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Therefore this is an additional weight and can be calculated like the weight for the query
point normal and neighbor point normal relationship shown in Figures 4.3 and 4.4.

4.2.3 Blending functions for the final point color

If there are neighbors available for a query point, which were chosen according to the qualities
described in Section 4.2.1, the final color for the query point has to be calculated. For this several
methods are available. These methods are taken from image processing, especially the latter four
methods are nonlinear filters used for noise reduction. These image processing methods produce
weights which are combined with the weights coming from the calculations presented in Sec-
tion 4.2.2. These four methods were already specified in 2.4.

As these blending functions for the final point color come from image processing some
adjustments have to be made so that these filters can be applied on the point cloud. For this, first
the geometric distance between the points and the colors of the points needs to be calculated for
example for the gauss and the bilateral filter. The bilateral and trilateral filter need the distance
between the intensity values of the query point and the neighbor point too. If these distances
are known the weight for the point color coming from the specific filter and therefore the final
weighting function for the final color of the query point can be calculated.

Geometrical distance of points

When calculating the distance between the query point and one neighbor point, the Euclidean
distance is used. That means the calculation for the distance d is then:

d
(q,n) =

√
(qx−nx)

2 +(qy−ny)
2 +(qz−nz)

2 (4.1)

where q is the position of the query point and n is the position of the neighbor point.

Color distance of points

Calculating the difference in the color values between the query point and a neighbor point can
be done by using the Euclidean distance (see equation 4.1). Instead of the x,y,z values the r,g,b
are used.

As an alternative to the Euclidean distance another distance can be used for measuring the
difference between the two intensity values. For this, a color metric method presented from
CompuPhase is used which calculates the color difference like the human eye perceives it [2].

The calculation for this color distance is then:

rmean =
cqr + cnr

2
(4.2)

∆r = cqr− cnr (4.3)

∆g = cqg− cng (4.4)

43



∆b = cqb− cnb (4.5)

∆c =

√(
2+

rmean

256

)
∗∆r+4∗∆g2 +

(
2+

255− rmean

256

)
∗∆b2 (4.6)

where cqx are the color channels of the query point and cnx are the color channels of the
neighbor point.

Calculation of the final color with a weight function

If the gauss, mean, bilateral or trilateral filter is chosen for the color adjustment the final color
of the point is calculated with a weighting function. This weighting function is used because
the mentioned filters are used to calculate a weight for each neighbor point. This weight defines
how much influence the neighbor point color should have on the final color for the point.

As already mentioned in Section 4.2.2, if the relation between the query point normal and the
neighbor normal or the neighbor normal and its scan position is considered, a weight depending
of the normals of the points is calculated. When a specific filter is chosen for blending the colors
of the neighbor points with the query point, the weight coming from considering the normals
of the points is integrated in the filter. That means the final weight for a neighbor point color
is the weight from the image based filter with respect to the geometry of the object. The final
weights of the neighbor points are summed up so that the new color for the query point can be
normalized by the sum of weights.

When a filter like the median filter is used which does not weight the different neighbor point
colors, then the weight coming from normal calculations is ignored too.

For the calculation of the final color with the gauss or mean filter first the colors of the
neighbor points are added up according to their final weight. Then the color of the query point is
added to the function too. The query point color is also weighted from the filter and the weight
coming from the relationship between the point normal and the vector to the scan position is
added too.

So the final coloring of the query point can be:

c f iltered(q) =
1

wsum(q)

((
k

∑
i=1

c(ni)∗nw(ni)∗ f w(ni)

)
+ c(q)∗nw(nq)∗ f w(nq)

)
(4.7)

with the normalization:

wsum(q) =

(
k

∑
i=1

nw(ni)∗ f w(ni)

)
+nw(nq)∗ f w(nq) ; (4.8)
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Here c(q) is the color of the query point, c(ni) the color of the i-th neighbor point, nw(ni)
the weight according to the calculations around the normal of the neighbor point (4.2.2) and
f w(ni) the weight coming from the used filter. The term nw(nq), where nq is the normal of the
query point, is only the weight for the query point coming from the relation to the scanposition.
f w(nq) is the filter weight for the query point.

When the bilateral or trilateral filters are used, the query point color is already considered
when the intensity differences are calculated. The color of the query point is therefore not
additionally added. Then the calculation of the final color is:

c f iltered(q) =
1

wsum(q)

k

∑
i=1

c(ni)∗nw(ni)∗ f w(ni) (4.9)

with the normalization:

wsum(q) =
k

∑
i=1

nw(ni)∗ f w(ni) (4.10)

With the information about the geometric distance between points and the distance of the
intensity values different filters can be used to blend the color values together. The different
blending modes which can be used for recoloring the query point from the neighbor points are
described below.

Mean Filter

For the mean filter the mean of all color values (including the color value of the query point) is
used. So the weight for this filter is:

f w(ni) =
1

(k+1)
(4.11)

where k is the number of neighbor points for the query point. It is k+ 1 because the query
point color is used too.

Gauss Filter

The gauss filter is used to weight the different points according to their distance to the query point
because points which are farther away should have less influence on the final point color. For
this, the filter generates a weight where the distance between the query point and the neighbor
point is weighted with the standard normal distribution. The weight calculation for one neighbor
point is therefore:

f w(ni) =
1√
2π

e
− 1

2 d2
(q,n) (4.12)

where d is the Euclidean distance between the query point position and the neighbor point
position.
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Median Filter

To remove noise in the visual appearance of the point cloud the median filter is used. The
median filter is a simple noise removal filter which takes the median of all color values available
for the final point color. For this, no weight needs to be calculated for the median filter. Here
the rgb color values of the query point and of the neighbor points are put in a list which is then
sorted. This is done for each channel separately. Then the rgb color values of the query point
are replaced by the median values of the sorted list.

Minimum Filter

Here the sorted lists for the rgb color values are used too. In contrary to the median filter, for the
minimum filter the smallest color values are taken for the query point.

Maximum Filter

For the maximum filter the highest values of the sorted rgb color values lists are taken.

Bilateral Filter

In this thesis the bilateral filter from Tomasi et al. [45] is used. This filter technique is already
described in detail in section 2.4.3. With the use of this filter it is tried to remove gaussian
noise by considering the intensity distances. As for the gauss filter the geometric distance of the
neighbor point is weighted too. So the final weight of the filter is composed of the geometric
distance and the intensity distance between the query point and the neighbor points.

When the weight from the normal calculations in Section 4.2.2 is added to the weight from
the bilateral filter the final weighting function equates to a cross bilateral filter [16].

In this version the Euclidean distance or the color metric distance, described in section 4.2.3,
can be used for the distance of the intensity values of the points. The additional weight coming
from the normal calculations is added too.

For this, the weight is calculated by :

f w(ni) = e
− 1

2

(
gd
(q,n)
σd

)2

∗ e
− 1

2

(
id
(q,n)
σr

)2

(4.13)

where gd
(q,n) is the geometric distance between the query point and the neighbor point and

id
(q,n) is the intensity distance between the two points. σd and σr are the two scale values which

can be set by the user to adjust the filter so that it produces the best outcome.

Bilateral Filter (each channel separately)

This version of the bilateral filter differs from the previously described filter version by calcu-
lating the filter weight for each color channel separately. That means, instead of calculating the
distance between the rgb values of the points, the distance is calculated for the red channel, the
blue channel and the green channel separately and therefore results in three different weights.
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Trilateral Filter

For the trilateral filter the modified version of the bilateral filter from Garnett et al. [19] is used.
This filter is explained in section 2.4.4. The filter was added because it should remove impulse
noise as well as gaussian noise. Before the filter can be used, the ROAD values for the k neighbor
points of the query point have to be calculated, which leads to an additional pass. Because of
the additional pass for the ROAD values, the performance of the color adjustment calculation
decreases when using this filter compared to the other filters.

First the ROAD values have to calculated:

ROADm (q) =
m

∑
i=1

id
(q,ni)

(4.14)

where q is the point for which the ROAD value is calculated. id
(q,n) is the intensity distance

between the query point end the i-th neighbor point.
With the ROAD values for each point, the weight can be calculated by :

f w(ni) = e
− 1

2

(
gd
(q,n)
σd

)2

∗

e
− 1

2

(
id
(q,n)
σr

)2
1−J(q,n)

∗ e
− ROAD(n)2

2∗σJ 2

J(q,n)

(4.15)

where gd
(q,n) is the geometric distance between the query point and the neighbor point and

id
(q,n) is the intensity distance between the two points. σd and σr are the two scale values which

can be set by the user to adjust the filter so that it produces the best outcome.
And the „joint impulsivity“ is calculated by:

J (q,n) = 1− e
− 1

2

(
ROAD(q)+ROAD(n)

2
σJ

)2

(4.16)

where ROAD(q) and ROAD(b) are the ROAD values for the query point and the neighbor
point.

Trilateral Filter (each channel separately)

Like in the second version of the bilateral filter, for this version of the trilateral filter the filter
weight is created for each color channel separately. The ROAD values are calculated for each
channel separately too.

4.3 Kd-Tree

A k-dimensional tree (short kd-tree) was introduced by [6] and is a data structure used to store
points from Rn. The kd-tree is a binary search tree, that means that every node of the tree
has hat most two child nodes. This makes this data structure very useful for queries like the
nearest-neighbor-search. For operations like fast insertion of points and fast deletion of points
the kd-tree is not qualified. As a method to find the k-nearest neighbors for every point in a point
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cloud is needed for the point-based color adjustment, this is done with the kd-tree.

A node of the kd-tree can either be an inner node or a leaf node. Inner nodes are nodes which
are further subdivided into sub nodes. These inner nodes can be split in one of the k dimensions
into two parts. Then the inner node points to its two sub nodes. Which axis is chosen for splitting
the node varies, it can for example be a randomly chosen axis, or the axis with the widest spread.
Leaf nodes are the nodes which actually store point data. Contrary to [25] the implementation
of the kd-tree in this thesis stores point data only in the leaf nodes. The inner nodes just contain
pointers to their child nodes.

Figure 4.6: 2-d tree

In Figure 4.6 a 2-d tree is given as an example consisting of nine points. The left side shows
how the axes are split. First the cloud is split along the x-axis, x1. Then the left and the right side
are split along the y-axis, y1 and y2. After that it is again split along the x-axis, and this recursion
repeats until all points are divided into leaf nodes. Each leaf node stores at most a user-defined
amount of points.

4.3.1 Out-of-Core Implementation Ability

The implementation of the kd-tree for this thesis is prepared for out-of-core processing of point
clouds. Therefore the kd-tree only keeps the coarse structure of the tree in the main memory.
The point data from the leaf nodes of the tree are stored in files on the disk. If the node data is
needed for the nearest neighbor search, rendering or color processing, the detailed information
about the points in the leaf node can be loaded into main memory.

Section 2.2 gives an overview of currently used data structures for large point sets which
are used for spatial queries. Hubot et al. [23] use a fast version of the kd-tree where the point
information is compressed so that the whole kd-tree fits into the main memory. If the kd-tree is
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just used for the color adjustment, the total point information is not needed in the main memory
the whole time. When searching for the nearest neighbors for example, only the node for whose
points the nearest neighbors are searched can be loaded in the main memory. If any other node
may contain potential neighbor points this node is then loaded into main memory too. All other
points are not needed at this step.

The size of the point clouds which were used for this thesis was limited to fit in the main
memory. Therefore the out-of-core ability was not used and the complete tree was kept in the
main memory.

4.3.2 Structure

The kd-tree class holds the root node of the tree data structure. Every kd-tree node holds pointers
to its two sub nodes, except for the leaf nodes which hold the actual point data instead. Figure
4.7 shows the structure of this kd-tree, including the information stored with each point, like the
normal, the scan position from which the point was scanned, the point position and its color. To
traverse the tree not only downward but also upward each node also holds a pointer to its parent
node.

KdTree

RootNode
BoundingBox
DimX
DimY
DimZ

KdTreeNode

Id
LeftSubNode
RightSubNode
BoundingBox
SplitValue
SplitAxis
NumPoints
PointBu�er
ParentNode

KdTreePoint

Position
Color
ScanPositionIndex
PointIndex
Normal

1 1 1

1

0 .. 2

0 .. *

Figure 4.7: Structure of kd-tree

4.3.3 Construction

For the construction of the kd-tree the user can define the maximum number of points one leaf
node should contain. As mentioned before in this version of the kd-tree the available axes are
cycled to get the split axes. When creating the kd-tree the point files are loaded and the median
value of the positions of the points in the first split axis is found and the data is divided into two
parts. Then the resulting two parts of the data are recursively split until the resulting amount of
points is equal to or smaller than the chosen bucket size. Then the algorithm stops and the leaf
nodes are stored on the disk with a link to their parent nodes. The basic algorithm for subdividing
one kd-tree node into two sub nodes is outlined in Algorithm 13.
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1 Algorithm: SubdivideNode

input: PointBuffer

2 if NumPoints > MaxPointsPerNode then
3 choose splitting axis
4 sort PointBuffer according at the splitting axis
5 search median value
6 split PointBuffer at the median value in two buffers
7 create left and right subnode
8 calculate bounding box for left and right subnode
9 leftNode← SubdivideNode( LeftPointBuffer)

10 rightNode← SubdivideNode( RightPointBuffer)
11 else
12 save point buffer in node
13 end

Figure 4.8: Node visualization of a kd-tree in scanopy.
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 A B

(a) „bounds-overlap-ball“

B

(b) „ball-within-bounds“

Figure 4.9: (a) shows the „bounds-overlap-ball“ and (b) the „ball-within-bounds“ test. Here
the blue sphere is the sphere created around the query point and the red boxes are the bounding
boxes of the kd-tree nodes.

4.3.4 k-Nearest-Neighbor Search

For the calculation of the k-nearest neighbors the approach from Friedman et al. [17], which was
shortly described in section 2.5, was used. A bounding sphere is created for the query point, the
radius for the bounding sphere can be chosen by the user. Then the kd-tree is traversed starting
from the root node. The traversal stops at each node which fails the „bounds-overlap-ball“ or
„ball-within-bounds“ test. If the bounding sphere of the query point and the node bounding
box overlap, the „bounds-overlap-ball“ test will pass. The „ball-within-bounds“ passes if the
bounding sphere of the query point is within the bounding box of the node. Figure 4.9 visualizes
these two tests. If the nodes pass these tests their subnodes will be tested until the algorithm
finds the leaf nodes which contain the real neighbor for the query point.

A queue which stores pointers to the nodes that pass the „bounds-overlap-ball“ and „ball-
within-bounds“ test is created. When all these leaf nodes containing the potential neighbor
points are found, the queue holding these leaf nodes is processed. Therefore a priority queue
of size k is created. The node closest to the query point is tested first for potential neighbors.
The distance between the points in this node and the query point is calculated and the k points
with the smallest distance to the query point are stored in the queue. Then the distance to the
other nodes in the node queue is calculated. Those nodes in the node queue, whose distance to
the query point is smaller then the distance of the point with the maximum distance in the point
priority queue, are searched for neighbors too.

Out-of-core ability of kNN search

This nearest neighbor search is usable for very large point clouds, since for the „bounds-overlap-
ball“ or „ball-within-bounds“ test the actual node need not be loaded into the main memory,
because the tree structure of the kd-tree always remains in the main memory. If those nodes pass
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the test then the individual nodes, holding the potential neighbor nodes, must be loaded in the
main memory, one after another.

4.4 Application of the point-based color adjustment

To use the color adjustment method presented in the first part of this Chapter the point cloud
has to stored in a kd-tree structure. Then the k-nearest points can be searched for each point in
the point cloud. With the nearest neighbors and a chosen filter, the new color of the query point
can be calculated. The settings for the nearest neighbor search, like the maximum number of
neighbors or the maximum distance, can be adjusted in a GUI1 Dialog integrated into Scanopy.
The neighbor point selection criteria as well as the settings for the bilateral or trilateral filter can
be set too. The user can also choose the filter which should be used for the point-based color
adjustment. Results of the point-based approach are shown and compared in Chapter 5

1Graphical User Interface
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CHAPTER 5
Results and Conclusions

This chapter shows results achieved with the color adjustment methods from Chapter 3 and
Chapter 4. The different settings for the point-based approach are compared on different models
to identify their strengths and weaknesses. The influence of the selection criteria for the neigh-
bor points on the final result is presented too.

Section 5.1 gives a short overview how these results were generated. Section 5.2 shows
results produced with the image-based approach as well as with the point-based approach and
then the combination of the two methods is presented. The image-based approach was used
for the point model of the Leopoldsberg in Section 5.3. In Section 5.4 the point-based color
adjustment approach is used for the Hanghaus of Ephesos model.

5.1 Color adjustment testing pipeline

For testing, point clouds made with scanners from the company Riegl1 are used. This point cloud
data is registered and colored from the images taken during the scan process, with their program
RiSCAN PRO [44]. These images are available in the JPG format. To test the color transfer
method from Chapter 3, these textures are changed and then the point cloud is newly colorized
from these processed images. For the color transfer, the method „Color Transfer in Correlated
Color Space“ from Xiao et al. [50] (described in Section 3.3) is used.

After that, the point cloud is exported and converted to a kd-tree that can be used in Scanopy
to test the point-based approach. As already mentioned in Chapter 4, a GUI2 dialog was therefore
included in Scanopy to allow the user to define the color adjustment settings which should be
used.

All these point clouds consist of different scans coming from more then one scan position,
so the visual artifacts coming from the merge of these scans can be well observed. For the

1http://www.riegl.com/
2Graphical User Interface
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Table 5.1: Time used for building the kd-tree and the color adjustment

1.8M Points 5M Points
Build up kd-tree 30 seconds 1.5 minutes

Color adjustment (gauss, with OpenMP) 7.5 minutes 32 minutes
Color adjustment (gauss) 15 minutes 75 minutes

comparison of the different color adjustment settings a close-up view of one part of the model,
where the color discontinuities are quite visible, is used. The difference of the settings are quite
obvious here, especially on small details of the model, like a door or window frame.

The time it takes to build up a kd-tree and use the point-based color adjustment is shown
in Table 5.1. Here the calculation times for a point model consisting of 1.8M points and one
with 5M points is shown. For the color adjustment, the same settings were used, the Gauss filter
with 5 neighbor points. The speed-up of the color adjustment process because of the use of the
OpenMP API [3] for multi-threading is shown too. These results are produced on a Core i5-760
with 2.8 GHz and 8 GB RAM.

5.2 Stephansdom

5.2.1 Image-based color adjustment

The part of the Stephansdom containing the altar was used for testing the color adjustment
methods. This part consists of twelve different scan positions. All 78 textures for these scan
positions where processed two times. One time with the generated source image (see Section ??)
and then with one image chosen out of the 78 available images used as source image. Figure 5.1
shows the two source images used for the color transfer. Figure 5.2 shows the different results
compared with the original coloring. The images used for the coloring of the Stephandsdom
were made with different cameras and different white balance settings for each scan position.

In comparison to the original point cloud (Figure 5.2(a) and 5.2(b)) the point cloud with the
colors from the color transfer with the generated source image (Figure 5.2(c) and 5.2(b)) has
a more uniform appearance but the whole color representation is desaturated. The usage of a
chosen source image out of all images used for the color transfer results in a point cloud with a
more uniform look than the original coloring of the point cloud. The point cloud still looks a bit
desaturated but the colors of this point cloud are more uniform because the very dark parts from
the original coloring are brightened up.

The areas in the images marked with the red circles show large black areas in the original
point cloud. The same area is not black anymore in the processed point clouds, but still these
areas are not colored with the right color.

5.2.2 Point-based color adjustment with different filters

The original coloring of the next scene is shown in Figure 5.3. The outcome of the different
filters are presented in Figure 5.4 and in Figure 5.5. The settings which were used for the color
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(a) (b)

Figure 5.1: These images were used as source images for the color transfer. Figure (a) is the
automatically generated source image of all 78 images. Figure (b) is a user-selected source
image.

Table 5.2: Settings for the calculation of Figures 5.4 and 5.5

Max Scales Scan Pos Normal Normal-
Subfigure Filter kNN Distance (σd , σr, σJ) Influence Relation Scan Pos

Relation
Fig. 5.4(a) Gauss 5 0.2 x x x
Fig. 5.4(c) Bilateral 5 0.1 10, 100 x x x
Fig. 5.4(e) Trilateral 5 0.1 15, 50, 50 x x x
Fig. 5.5(a) Mean 5 0.1 x x x
Fig. 5.5(c) Median 10 0.1 x x x
Fig. 5.5(e) Median 5 0.1 x x x

adjustment for each image are listed in Table 5.2. The abbreviation „Scan Pos“ stands for scan
position. If a checkmark in the last three columns is set these neighbor point selection criteria
were used.

Here the best results are achieved with the median, bilateral and the trilateral filter. The
median filter is used two times with a different number of kNN. The first time with ten neighbor
points (Figure 5.5(c)), the second time with five neighbor points (Figure 5.5(e)). When the result
images from the median filter are compared it is well visible that the usage of too many neighbor
points reduces details. The best result was achieved with five kNN Points.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Results of using the image-based approach. The first row shows ((a), (b)) the
model with its original colors. For the second row ((c), (d)) the automatically generated image
(Figure 5.1(a)) was used as source image. And for the third row ((e), (f)) Figure 5.1(b) was used
as source image.
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(a) Original (b) Original closeup

Figure 5.3: Original coloring of the scene for the point-based color adjustment.

Table 5.3: Settings for the calculation of Figures 5.6 and 5.7

Max Scales Scan Pos Normal Normal-
Subfigure Filter kNN Distance (σd , σr, σJ) Influence Relation Scan Pos

Relation
Fig. 5.6(b) Trilateral 5 0.1 15, 30, 30 x x x
Fig. 5.6(c) Trilateral 5 0.1 15, 30, 30 x x
Fig. 5.7(a) Trilateral 5 0.1 15, 30, 30 x
Fig. 5.7(b) Trilateral 5 0.1 15, 30, 30 x
Fig. 5.7(c) Trilateral 5 0.1 15, 30, 30 x x x

5.2.3 Point-based color adjustment with different neighbor point selection
criteria

In Figure 5.6 and 5.7 the influence of the different selection criteria for choosing neighbor points
can be observed. The color metric (see Section 4.2.3) is used as one color adjustment setting.
The filter setting for the trilateral filter was the same for all screenshots. The parameter „CM“ in
Table 5.3 stands for the color metric.

The influence of preferring the points from the nearest scan positions can be well observed
in Figure 5.6(b). A clean cut is made at the border between the two nearest scan positions.
In comparison to Figure 5.6 and 5.7 where the consideration of the nearest scan position helps
to remove the black areas on the model, here the results without the usage of the nearest scan
position look better. Therefore it can be said that it depends strongly on the model or part of
the model if the usage of the nearest scan position improves the result achieved by the color
adjustment.

For the color adjustment of the point cloud in Figure 5.6(b) 68 % of potential neighbor points
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(a) Gauss (b) Gauss closeup

(c) Bilateral (d) Bilateral closeup

(e) Trilateral (f) Trilateral closeup

Figure 5.4: One set of results of using the point-based approach. These are produced with the
settings in Table 5.2
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(a) Mean (b) Mean closeup

(c) Median 1 (d) Median 1

(e) Median 2 (f) Median 2

Figure 5.5: The second set of results of using the point-based approach. These are produced
with the settings in Table 5.2
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(a) Original

(b) Setting 1

(c) Setting 2

Figure 5.6: Results produced with the different selection criteria for choosing neighbor points
enabled. These are produced with the settings in Table 5.3
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(a) Setting 3

(b) Setting 4

(c) Setting 5

Figure 5.7: Results produced with the different selection criteria for choosing neighbor points
enabled. These are produced with the settings in Table 5.3
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have been rejected because of their scan position. 0.01 % of the potential neighbor points have
been rejected because their normal pointed in a completely different direction than the normal of
the query point. And finally 0.0001 % have been rejected because the normal of these neighbor
points looked in a completely different direction than the vector between the neighbor point and
the scan position. For the result in Figure 5.4(a) 39% of the potential neighbor poins are rejected
because of their scan position, 0.04 % because of their normal and 0.0001 % because of the
normal - scanposition relationship.

For the generation of the point cloud in Figure 5.6(c) all criteria based on the normal were
used. Here changes occur on geometric edges like the steps or the altar. The usage of the normal
based criteria helps to emphasize the borders and make less blurry edges.

The usage of the color metric results in a point cloud which looks quite noisy. Therefore the
usage of the color metric does not help to improve the result images.

5.2.4 Point-based color adjustment with different settings for the bilateral and
trilateral filter

The results of using the point-based color adjustment methods on the scene from Figure 5.8 are
shown in Figure 5.9 and Figure 5.10. Here different settings for the bilateral and trilateral filter
were brought into focus. These settings can be found in Table 5.4.

Figure 5.8: Original coloring of the second scene from the stephansdom.

On these images it can be observed that the bilateral filter helps to create a smoother surface
but noise is sometimes detected as edges. Instead of removing these pixels they are even pointed
out. The trilateral filter classifies the noisy points much more accurately and therefore good
results can be achieved. Figure 5.9(a), 5.9(b), 5.10(a) and 5.10(b) show how important the
settings are for the bilateral and trilateral filter. It is possible to achieve completely varying
results with the same filter but different settings. The usage of the bilateral and trilateral filter
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(a) Bilateral 1

(b) Bilateral 2

(c) Bilateral separate

Figure 5.9: Results produced with different settings of the bilateral filter. These are produced
with the settings in Table 5.4
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(a) Trilateral 1

(b) Trilateral 2

(c) Trilateral separate

Figure 5.10: Results produced with different settings of the trilateral filter. These are produced
with the settings in Table 5.4
64



Table 5.4: Settings for the calculation of Figures 5.9 and 5.10

Max Scales Scan Pos Normal Normal-
Subfigure Filter kNN Distance (σd , σr, σJ) Influence Relation Scan Pos

Relation
Fig. 5.9(a) Bilateral 5 0.1 1, 50 x x
Fig. 5.9(b) Bilateral 5 0.1 10, 30 x x
Fig. 5.9(c) Bilateral 5 0.1 10, 30 x x

seperate
Fig. 5.10(a) Trilateral 5 0.1 5, 10, 30 x x
Fig. 5.10(b) Trilateral 5 0.1 15, 30, 30 x x
Fig. 5.10(c) Trilateral 10 0.1 15, 30, 30 x x

seperate

for each RGB color channel separately results in some completely wrong colored pixels and the
result looks a little bit more blurry.

5.2.5 Combination of the point-based approach and the image based approach

Figure 5.11 shows two result images from the combination of the point-based approach and the
image-based approach. The point-based approach is used on the point cloud which was colored
from the processed images. This point cloud is shown in Figure 5.2(e) and 5.2(f). For the
point-based approach the same settings as for Figure 5.5(e) and 5.4(e) were used.

The images where only the point-based approach was used show better results than those
where a combination of the two approaches was used. On Figure 5.11(b) and 5.11(d) the benches
on the left side have a different color than on the right side. The carpet on the floor has a wrong
color too on the images were a combination of the two approaches is used. On these images it
can be observed that the image-based approach is not necessary to remove color discontinuities
because these can be quite good removed when only the point-based approach is used.

5.3 Leopoldsberg

For the point model of the Leopoldsberg the image-based approach was tested too. The images
taken for this point cloud have great variations in it. Examples for such images are shown in
Figure 5.12. Figure 5.13 shows the original colored point cloud. The results produced with the
image-based approach are presented in Figure 5.14. All images made during the scan process
were made with the same camera and different exposure times but for all images the same manual
white balance was set for the camera.

Using the image-based approach for this model unfortunately did not improve the final col-
oring of the model. The images for the point cloud had such big variations in it that it was not
possible to transfer them all in the same color space without getting wrongly colored images.
The color transfer works well when only a few images are used or when the images which were
used do not differ that much. Much better results were achieved for the pictures used in Sec-
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(a) Median Filter (b) Image-based and Median Filter

(c) Trilateral Filter (d) Image-based and Trilateral Filter

Figure 5.11: Results from a combination of the point-based and image-based method (b, d)
compared to the results where only the point-based approach was used (a, c).

tion 4, but these pictures had not such differences in lighting. For the generation of the images in
Figure 5.14 twenty images were used and that results in quite wrong images. So unfortunately
it was not possible with this approach to improve the visual quality of this point cloud.

5.4 Hanghaus of Ephesos

5.4.1 Point-based color adjustment with different filter

In Figure 5.16 and Figure 5.17 some results for the Hanghaus of Ephesos are shown. Here just
the point-based approach was tested. The settings for the different modes tested are shown in
Table 5.5. Figure 5.15 is a screenshot of the original colored Hanghaus.

5.5 Conclusion

In this chapter results from the use of the point-based approach and the image-based approach
on three different point clouds was presented.

66



(a) (b)

Figure 5.12: Images taken of the scanned object during the scan process.

Figure 5.13: Original colored point cloud.
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(a) Source (b) Result

(c) Source (d) Result

(e) Source (f) Result

Figure 5.14: Results of using the image-based approach. The first row shows the source images
used for the recoloring. The second column shows a resulting point cloud.
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Figure 5.15: Original coloring of the hanghaus scene.

Table 5.5: Settings for the calculation of Figures 5.16 and 5.17

Max Scales Scan Pos Normal Normal-
Subfigure Filter kNN Distance (σd , σr, σJ) Influence Relation Scan Pos

Relation
Fig. 5.16(a) Gauss 5 0.2 x x x
Fig. 5.16(b) Mean 5 0.2 x x x
Fig. 5.16(c) Bilateral 5 0.3 3, 30 x x x
Fig. 5.17(a) Median 5 0.1 x x x
Fig. 5.17(b) Trilateral 10 0.3 15, 30, 30 x x x

Quite good results were achieved with the point-based approach, especially with the use of
the neighbor point selection criteria and the median and trilateral filter. The filter work how
they are supposed to do. With those two filters the Gaussian and impulse noise was quite good
removed and the resulting point clouds have a smooth and uniform color appearance. Unfortu-
nately there are still some noisy spots which could not be removed. For example the flowers in
the front of the point cloud shown in Figure 5.4(e). These flowers still contain black noise. But
here the colors of the points vary too much so that the filter cannot detect these dark points as
wrongly colored points.

The use of the neighbor point selection criteria help to improve the final results too, espe-
cially the criteria where points from the nearest scan position are preferred as neighbor points.
The dark areas appearing in Figure 5.3(a) can be mostly removed by using this criterion.

In comparison to the point-based approach the results achieved with the image-based ap-
proach did not improve the color appearance. Mainly this is because the number of images used
is too big and the lighting mood on the images which are used to color the point cloud varies
too much. The approach worked quite ok with a small amount of images, if the color of one
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(a) Gauss

(b) Mean

(c) Bilateral

Figure 5.16: One set of results of using the point-based approach on the Hanghaus model. These
are produced with the settings in Table 5.5
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(a) Median

(b) Trilateral

Figure 5.17: These are more results of using the point-based approach on the Hanghaus model.
These are produced with the settings in Table 5.5
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image is transfered to the one other image, but when more images should have the same color
characteristics the number of wrongly colored images tops the number of good colored images.

To achieve the best result only the point-based approach should be used for the color ad-
justment of the already colored point clouds. The preferred filter should be the trilateral filter
because this filter removes noise but still preserves the details in the color of the point cloud. As
an alternative the median filter produces quite good results too but here more detail in the color
of the point cloud gets lost. The settings for the trilateral filter are different for every point cloud
so it may take more than one attempt to produce the desired result.
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CHAPTER 6
Summary

This thesis presents an image based approach and a point based approach to improve the visual
appearance of point clouds. The combination of single scans leads to various color discontinu-
ities in the overall model which should be decreased or even removed automatically.

The image based approach tries to improve the coloring of the point cloud by transforming
all images taken for the colorization of the point cloud to the same lighting mood. This works
well if the lighting situation in the images does not differ too much or if this approach is used
for a small amount of images. Otherwise the new images produced by transfering the images in
the color space of another image can have wrong colors and cannot be used at all.

The second approach is a point based approach. Here an already colored point cloud is
processed. The single points are recolored according to the surrounding points and a specific
filter. A data structure for the k-nearest neighbor search was implemented and different criteria
for the usage of the neighbor points where presented. For the final recoloring of the points, a set
of different filters is available. These filters should help to smooth or even remove the noise of
the coloring of the point cloud, but the edges and details in the texturing should still be preserved.

6.1 Future Work

6.1.1 Image based approach

The approach presented in Section 3 generates result images which are quite good when a small
amount of images is used for the color transfer, or when the lighting mood of the images does
not differ very much. This approach may be improved if a color transfer method is found which
also works for images with big variations in the lighting.
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6.1.2 Point based approach

The results which can be achieved with the point based approach help to increase the visual
quality of the point cloud. One drawback of this method is the time it takes to compute the kNN
for a big point cloud. This can possibly be improved.
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