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Abstract

Building automation systems aim at providing a comfortableenvironment while saving
available resources. In case of using fire alarm systems (functional safety) or access-control
systems (security) those systems are realized as separate,closed systems interacting with an
existing building automation system via dedicated points of interaction. Integrated systems
providing functional safety natively are currently hardlyavailable.

This thesis targets an approach to extend the building automation technology KNX
with functional safety. In compliance with IEC 61508 (Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems)and ISO 13849 (Safety of machin-
ery - Safety-related parts of control systems) an architecture satisfying safety integrity level
3 (SIL3) as defined by IEC 61508 is presented. Security is thereby left unconsidered.
SIL3 compliance implies sufficient support on hardware level (fault-tolerance), a standard-
conform documentation of all development steps as well as adequate software to detect
errors in the hardware and the communication system.

The intention of the thesis is not the provision of a completeimplementation of all
requirements according to IEC 61508 but rather elaborationof an extension to existing ap-
proaches within this field. On that score and in compliance with IEC 61784-3 (Industrielle
Kommunikationsnetze - Profile - Teil 3-1: Funktional sichere Übertragung bei Feldbussen)
measures to detect errors in the communication system are discussed, architectures for a
SIL3 compliant KNX-system are presented and resulting impacts on hard- and software are
shown.



Kurzfassung

Gebäudeautomationssysteme dienen in erster Linie der Erzeugung eines komfortablen
Raumklimas bei gleichzeitiger, ressourcenschonender Nutzung der zur Verfügung stehen-
den Energie. Geht man davon aus, dass funktionale Sicherheit (Safety) etwa für Brand-
meldeanlagen oder Systemsicherheit (Security) für Zutrittskontrollen erforderlich sind, wer-
den diese Anforderungen durch eigenständige Systeme realisiert, die (im besten Fall) über
ausgewählte Schnittstellen mit einem vorhanden Gebäudeautomationssystem kommunizieren.
Integrierte Systeme, die bereits "nativ" funktionale Sicherheit zur Verfügung stellen, sind
derzeit kaum verfügbar.

Diese Arbeit versucht einen Ansatz zu schaffen, die Gebäudeautomationstechnologie
KNX um funktionale Sicherheit zu erweitern. In Übereinstimmung mit den Standards
IEC 61508 (Funktionale Sicherheit sicherheits-bezogenerelektrischer / elektronischer /
programmierbarer elektronischer Systeme) und ISO 13849 (Sicherheit von Maschinen -
Sicherheitsbezogene Teile von Steuerungen) wird eine mögliche Architektur erarbeitet, um
einen Sicherheitsintegritäts-Level 3 (SIL3) laut IEC 61508 zu erreichen. Systemsicher-
heit bleibt dabei unberücksichtigt. SIL3 impliziert eine ausreichende Unterstützung der zu-
grunde liegenden Hardware (Fehlertoleranz), eine Standard-konforme Dokumentation aller
Entwicklungsschritte sowie Software, um Fehler in der Hardware und dem Kommunika-
tionssystem zu erkennen.

Ziel dieser Arbeit ist nicht eine vollständige Ausarbeitung aller Erfordernisse gemäß
IEC 61508, sondern eine Erweiterung zu bereits bestehendenAnsätzen in diesem Umfeld
zu schaffen. Im Zuge dieser Arbeit werden Mechanismen, die Fehler im Kommunikations-
system erkennen, in Abstimmung mit IEC 61784-3 (Industrielle Kommunikationsnetze -
Profile - Teil 3-1: Funktional sichere Übertragung bei Feldbussen) diskutiert, Architekturen
für ein SIL3 konformes KNX-System vorgestellt und sich daraus ergebende Anforderungen
an die Hard- und Software erarbeitet.
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CHAPTER 1
Introduction

1.1 Motivation

Traditionally, Building Automation Systems (BAS) providebasic services like Heating, Ven-
tilation and Air Conditioning (HVAC), lighting and shading. Safety critical applications like
fire detection and alarm systems are usually stand-alone units which interact with BAS using
dedicated gateways. Increasing requests for BAS in safety-critical environments ask for ad-
vanced mechanisms to integrate safety-critical technology into BAS. Therefore, it is necessary
to define what safety-critical properties are and what theirmeaning is - to detect hazardous
events in an automation system. These can be failures in hardware, software or the underlying
communication-system like a "wrong message" in any way. Such a message can be wrong in
a sense of its value-domain or in its time-domain. Detectionof the afore mentioned failures
requires implementation of certain mechanisms in hardwareand software.

The requirements for safety-critical systems are specifiedin two common standards - ISO
13849 (Safety of machinery - Safety-related parts of control systems) and IEC 61508 (Functional
safety of electrical/electronic/programmable electronic safety-related systems). Especially, IEC
61508 presents a very general view on requirements and guidelines for the complete lifecycle of
a safety-related device. Requirements to communication systems are presended in detail in IEC
61784-3 (Functional safety fieldbuses).

The thesis follows the approach presented in [20] and tries to extend the KNX protocol
to fulfill requirements of SIL 3 as defined by IEC 61508. To achieve this, certain measures
regarding hardware and software are required. From a hardware point of view a higher level
of safety can be achieved by application of redundancy approaches. Furthermore, software is
required which is capable of detecting failures in hardwareand the communication system. On
that score, the following chapters will give discussions onhow to achieve functional safety in
the KNX protocol in terms of hardware requirements and involved software.
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1.2 Guide through this Thesis

Chapter 2 will give an overview about automation systems andrelated terms and definitions.
Furthermore, the target technology KNX will be described.

Chapter 3 will cover state-of-the-art standards IEC 61508 and ISO 13849 and show the main
differences between them. Following IEC 61508, the achievement of specific Safety-Integrity-
Levels (SIL) is of importance. SILs define requirements concerning electrical and programming-
standards implying the failure rate of a safety-providing device depending on its frequency of
use. In the context of this thesis, high demanding devices which allow a maximum of one
hazardous failure in107 hours will be of special interest (SIL3).

Existing solutions in BAS and industrial automation will bepresented and compared in
Chapter 4. Here, special attention is put on potential communication errors as defined by IEC
61784-3.

In Chapter 5, special aspects relevant for this thesis regarding safety will be presented in
detail. This will include a discussion on possible hardwarearchitectures, communication issues,
clock synchronization, scheduling and hardware self tests.

The closing Chapter 6 will conclude gained knowledge and provides an outlook on further
work.
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CHAPTER 2
Building Automation Systems

Progress in technology mostly aims at making things more convenient for the user. Focusing
on electronic devices, additionally energy efficiency comes into mind. That trend also affects
buildings or their building automation systems. When talking about automation, mainly indus-
trial automation comes into mind. Characterized by short reaction times, fast control loops, high
precision and occasionally high dependability, an industrial automation system handles tasks
where human power is not sufficient, too slow, or not possibledue to dangerous environments.
Building Automation Systems (BAS) are a special category ofindustrial automation. In contrast,
timings are more relaxed due to long response times from the building. Additionally, a BAS has
to take care of energy efficient house keeping and to do that ina most comfortable way.

2.1 Introduction

BAS start at small homes with just a handful of devices and endat large, public buildings like
airports or office buildings automatized by some thousand devices. Especially for large build-
ings the advantage of BAS is clear: A BAS provides central knowledge and control about all
processes involved in a building which is also known as Computer Aided Facility Management
System (CAFMS). In case of an error, the operator is enabled to gain information about the error
and can initiate measures to maintain the system at a very early stage. Another advantage of
BAS is the ability to dynamically reconfigure the behaviour of the system. If for example a light
switch should control more than the initially installed lamps, it was necessary to re-wire certain
parts of the installation in traditional electrical installations. Using a BAS, simply re-binding the
switch to more lamps can be done from a PC in far less time. Having knowledge of multiple
sensors also enables construction of intelligent buildings. For example, opening a window will
turn off the heating or ventilation. Likewise, increasing temperatures in a room will activate sun
shadings and climate control. Since the properties of a comfortable room climate are different
for each person, smart room controllers in combination withknowledge about who is in the
room could control HVAC according to the person’s preferences (smart buildings). Against all
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advantages, the main disadvantage is the tremendous cost for initial installation. Additionally,
operators have to be trained thoroughly.

According to [19], typically the running costs of a buildingover its lifetime are seven times
the initial cost for construction. Considering the whole life cycle of a building, the amount of
saved energy during its lifetime makes the use of a BAS economically feasible.

Another topics in BAS are security and safety. These are two completely different concepts,
although described by the same word in German language (“Sicherheit”).

Security describes protection of a system against malicious attacks. For instance, consid-
ering a network, insertion of a malicious message or listening to the contents sent through the
network have to be detected or prevented by certain securitymeasures. At the beginning, BAS
were designed and implemented as closed systems and missingknowledge of potential intruders
on how to break the BAS was protection enough. Advances in wireless technology, networked
automation devices in every room in combination with open standards give motivation for de-
velopment of appropriate measures to close those vulnerabilities.

Safety describes the failure free operation of a system or atleast the detection of an error and
transferring the system to a safe state. Safety in automation is currently just available for indus-
trial automation solutions (with some minor exceptions). That can be divided into requirements
for operator safety and requirements for process safety. For example, an emergency stop in-
formation transferred through an automation network is required to be delivered and performed
within predefined deadlines. If that requirement cannot be met, the operator working on the ma-
chine could sustain injury or the machine could take damage.That means, the information has to
be transmitted correctly and in time - no matter what happens, the machine has to be transferred
to a safe state. Safety in HBA has been an isolated topic so far, addressing primarily fire alarm
systems. Until now, safety providing systems have been mainly constructed as closed systems
communicating via dedicated gateways with other systems. The only HBA solution providing
functional safety found so far is an extension to LON called SafetyLON.

Automation Networks

Communication in a traditional automation system can be visualized by the three-levelarchitecture
as depicted in Figure 2.1.

The field levelis responsible for direct interaction with the physical environment and col-
lects data from simple sensors and activates actuators. Usually that level is equipped with low-
bandwidth networks. The collected data is transferred to the automation levelwhich processes
and passes data to the management level (vertical communication) or issues other devices at
field level to take action (horizontal communication). The topmostmanagement levelprovides
a global view of all data across the BAS. Therefore, control terminals and logging systems are
placed on that level. Operators are enabled to (re-)configure the BAS through a control center
and perform diagnostic measures on the BAS in case of an error. Typically, the management
level is equipped with a high-bandwidth network caused by high amount of data collected by
the lower levels. If communication with other automation systems is required, the management
level networks are connected via gateways or routers.

As described, the previous approach assumes simple sensorswith small processing power
to prepare raw data in a very basic way. Development in the microprocessor sector increased
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Figure 2.1: Three-tier architecture

processing power to admit advanced techniques to pre-process and transmit sensor values [18].
That simplifies the diagram in Figure 2.1 to the enhanced two-tier architecture depicted in Figure
2.2 by making use ofintelligent devices.

Figure 2.2: Two-tier architecture

Increased intelligence on sensor/actuator level enables integration of communication pro-
tocols for direct communication between sensors and actuators through acontrol networkwhat
makes a separate automation level obsolete. Communicationbetween different control networks
is established via gateways throughbackbone networksproviding sufficient bandwidth for inter-
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control network communication as well as for management- and logging tasks.

2.2 KNX

In 1996,BatiBus Club International(BCI), European Installation Bus Association(EIBA) and
European Home System Association(EHSA) started to develop a common standard for home
and building automation. In 1999, leading manufacturers ofelectrical building equipment such
as Siemens, Bosch and Merten, along with some more, founded Konnex Association (also
known as KNX Association). The first KNX specification was published in 2002 which was
adopted EN 50090 in 2005 and accepted as an international standard ISO/IEC 14543-3 later in
2006.

Basically, KNX defines runtime-characteristics, a toolkitof services as well as mechanisms
to manage a network. The building automation system is defined by a distributed application
implemented through standardized data-point types and “functional block” objects modelling
logical device channels. KNX is platform independent enabling usage of any kind of micropro-
cessor to implement a network device.

Elements of KNX

The KNX framework consists of the following parts:

• An inter-working and (distributed) application model which performs the actual HBA
application (lighting, shading, HVAC,. . . ).

• Configuration and management schemes for logical linking orbinding of KNX devices.
These schemes are structured in a set of configuration modes.

• A communication system which defines communication media, amessage protocol and a
communication stack. The communication system has to implement required mechanisms
for configuration and management and hosts the distributed application. This is typified
by the KNX Common Kernel [2].

• A set of device models is summarized in profiles.

An illustration of the afore mentioned components of KNX is depicted in Figure 2.3.

Supported communication media by KNX

KNX offers a wide variety of possible communication media suited to customer’s needs and
devices to enable interaction between different media.

• Twisted pair is the basic medium in KNX. Main characteristics are: energy and informa-
tion are transported over the same pair of wires, an asynchronous, character oriented data
transfer, half duplex, bi-directional communication. TP1(9,6 kBit/s) is the basic medium
inherited from EIB and allows free choice of topology. On topof TP1 the CSMA/CA
protocol is implemented.
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Figure 2.3: KNX model [2]

• Powerline (PL110, 1,2 kBits/s) allows data transmission over main wire. Its characteristics
are a central frequency of 110 kHz, spread frequency shift keying signalling, asynchronous
transmission of data packets and half duplex, bi-directional communication. PL110 im-
plements CSMA and is EN 50065-1 compliant.

• RF is fully specified within KNX in the 868 MHz bandwidth. Characteristics are: fre-
quency shift keying signalling, asynchronous, half duplex, bi- or unidirectional commu-
nication. The central frequency is set to 868,30 MHz using short range device frequency
with a duty cycle limited to< 1% and a data rate of 32 kHz. Medium access is based on
CSMA mechanisms [1].

• Furthermore, IP-enabled integration for IEEE 802.2 (LAN),802.11 (WLAN), IEEE1394
(Firewire) is handled in KNXnet/IP.

The communication is implemented in compliance with the OSIlayer model. As in most
automation systems, not all seven layers are implemented. KNX uses the following four layers:

• The “Data Link Layer General” is implemented on top of theData Link Layerand pro-
vides medium access control and logical link control.

• The Network Layerprovides a segment wise acknowledge telegram and controls hop
count of a frame.

• TheTransport Layerenables communication relationships between communication points.
Supported relations are 1 to N (multicast) connectionless,1 to all (broadcast) connection-
less, 1 to 1 connectionless and 1 to 1 connection-oriented.

• TheApplication Layeroffers a toolkit to maintain and run the distributed application.
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Topologies

As shown later, a KNX frame supports 16-bit space for individual source and destination ad-
dresses. That results in a total of 65535 possible devices ona KNX network. The network can
be grouped physically intolinesof 256 devices each. These lines can be formed by amain line
into anarea. A domainis a combination of up to 15 areas connected through abackbone line.
Figure 2.4 gives an illustration of the resulting topology.

Figure 2.4: KNX topology [2]

Addressing schemes

Central functionality of a network is to enable communication between nodes. Therefore, nodes
need to be identified uniquely. In most cases, an installation will be wired and configured af-
terwards. KNX offers device identification by a unique device serial number or by the device’s
individual address. Unique serial device numbering is achieved through controlled allocation of
number ranges to manufacturers by KNX Association. By knowledge of a devices identifica-
tion (unique serial number or individual address) it is possible to communicate with that device.
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KNX distinguishes system resources keeping configuration information (address-, lookup tables
and parameters) and parameters which control the application.

Communication is distinguished between network resource management and run-time com-
munication. Configuration and management tasks usually require direct communication with
the related node (point-to-point connection) or require communication with all nodes (broad-
cast) nodes. In contrast, run-time communication mainly uses multicast communication with
other nodes interested in changed values.

In order to achieve inter-working, the data-points have to implement “Standardized Data-
point Types”, grouped into “Functional Blocks”. Communication between nodes is established
after “binding” or linking data-points located on different devices to common multicast group
addresses. Binding of devices happens either through looseor strict binding rules or depending
on semantic information contained in the address. Upon a successful binding process the dis-
tributed application is enabled. That is, if a local application on a node writes a data-point value
the change notification will be sent across the network with the corresponding address of the
sending node. Any node interested in the changed value from that node will receive that value
and inform its local application about the new value. The local application on the receiving
node will now react depending on its internal state machine and update its own data-points. The
communication between nodes transferes multiple local applications into a single, distributed
application.

KNX supports the following three binding schemes: free, structured or tagged. Basically,
free and structured binding assume free addressing which means that the numerical value of
addresses do not contain application semantics. The only assumption is, that all data-points
communicating with each other are assigned to the same address. Contrarily, tagged binding as-
sumes the numerical value of an address to contain a semantic(data-point) identifier. Therefore,
the logical tag or zoningpart of the address identifies a device’s communication partners on a
device level. By assigning data-points to the same zone, they form a group communicating via
multicast.

To configure a KNX network, two main configuration modes are specified as depicted in
Figure 2.3. Depending on the user’s preferences and application environment these modes pro-
vide functionality to configure a device remotely from ETS tool or locally using the push button
approach:

• E(asy)-Mode is applied for simple manipulations where devices are configured according
to a structured binding without need for separate configuration tools.
Controller mode (Ctrl) supports installation of a limited number of devices on one logical
segment of a physical medium. Such an installation will contain one dedicated node
responsible for the configuration process.
Logical Tag (LT) and Logical Tag Extended (LTE) modes basically enable device config-
uration using DIP-switches or selectors.
Push Button mode (PB) is almost equal to Ctrl-mode configuration but without the need
for a dedicated configuration device.

• S(ystem)-Mode enables central, free binding and configuration of the installation, typi-
cally carried out with the ETS tool.
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KNX Frame

The frame of a KNX TP1 telegram is depicted in Figure 2.5. Depending on the communication
medium, different preambles might be appended which will beleft unconsidered here.

Figure 2.5: KNX LPDU TP1 standard frame structure

The control field determines the priority and distinguishesbetween standard and extended
frame format. The individual source address determines theaddress of the sending node. The
individual (unicast) or group (multicast) destination address determines the address of the re-
ceiving node(s). The following byte contains hop-count andaddress-type-information. The
Transport Layer Protocol Control Information (TPCI) controls the transport layer to manage
end-to-end connection. The Application Layer Protocol Control Information (APCI) accesses
application layer primitives (read, write, response,. . . ). The standard frame ensures compatibil-
ity with KNX messages (up to 14 octets of data). Extended frames can contain up to 248 octets
of data. The enclosing frame check sequence ensures data consistency.

KNX line access

To access contents sent on the KNX line, special hardware in form of a transceiver is required.
Therefore, Siemens provides the TP-UART-IC (Twisted Pair -Universal Asynchronous Receive
Transmit - IC).

This module supports every transmit- and receive - functionand also the high ohmic
decoupling of energy from bus line. It generates further a stabilized 3.3V or 5V
supply to use by a host controller. Up to 256 subscribers can be connected to one
bus line [25]

The TP-UART-IC consists of an analog part responsible for level converting on the KNX-line
and a digital part providing serial access for communication with connected microcontrollers.
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CHAPTER 3
State-of-the-art Standards

This section gives an overview of applicable standards for safety-related systems. First, ISO
13849 for a general approach regarding safety of machinery is presented. A more detailed de-
scription of safety-related development is specified by IEC61508, a standard defining a complete
lifecycle model for every development phase of an Electric/Electronic/Programmable Electronic
System (E/E/PES). Here, a degree of safety is described by safety integrity levels (SIL) which
are assigned depending to the probability of one hazardous failure per hour. In contrast, perfor-
mance levels (PL) are defined by ISO 13849.

Prior to focusing on the standards, some important terms such as fault, error, failure, risk,
hazard, dangerous failure and hazardous event are introduced:

[21] describes faults, errors and failures as a chain depicted in Figure 3.1. Afault is the
cause of an error and, thus, the indirect cause of failure. In[6], a fault is defined as an unusual
condition which leads to loss of ability to perform a desiredfunctionality. Anerror is both, the
deviation of an expected result ([6]) or an incorrect internal state, like a corrupted element in the
memory ([21]), whereas afailure is an event that denotes the deviation between the actual and
the intended service, or the loss of ability to perform a demanded functionality, respectively.

Figure 3.1: Fault chain defined by [21]

Riskis defined as the combination of probability of error and the resulting harm [6].
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A hazardis a potential source of harm and is specified to define the source (mechanical or
electrical harm) or type (fire, cut or electrical shock) of harm [6]. Thus, ahazardous eventis a
situation where a hazard leads to a harm [6].

A dangerous failuredescribes a failure that potentially leads the safety-related system to a
dangerous or non-functioning state [6].

In safety-related systems, redundancy is common practice which introduced multiple-channel
architectures. Such an architecture can be, for example, a1oo2 architecture(one out-of two) de-
scribing an approach where one output is chosen among two possible candidates (see Figure
3.2). The expression 1oo2 gives no information about the chosen criteria for either of the two
input channels. It is clear, that such an architecture is optionally extendable by more inputs like
a 1oo3 or 1oo4 architecture.

Figure 3.2: One-out-of-two architecture (1oo2)

A clear distinction has to be drawn between safety and security, although it is not always
possible in every aspect. Security describes the protection of a system against malicious attacks.
Contrarily, safety is defined as the ability of a system to perform its intended behaviour even in
case of failure under predefined conditions.

The structure of standards in the domain of safety-related machinery as defined by ISO
12100-1 is as follows:

• Type-A-Standards cover definitions, design guidelines, and general aspects applicable to
machinery.

• Type-B-Standards cover a specific safety-aspect or a type ofsafety equipment that is ap-
plicable for a wide range of machinery:

– Type-B1-Standards for specific safety-aspects like safetymargins and temperature
levels.

– Type-B2-Standards for safety equipment.

• Type-C-Standards cover detailed safety requirements for aspecific machine or a group of
machines.

In case different standards have to be applied, like a Type-Aand a Type-C standard, the
higher level standard (Type-C in that case) will have to be favoured. By means of that catego-
rization, ISO 13849 is a Type-B1 standard.
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3.1 ISO 13849 - Safety of machinery - Safety-related parts of
control systems

This section explains some of the basic principles on how to achieve a certain level of safety
as defined by ISO 13849-1 [10]. Performance levels (PL) are the base for the following devel-
opment process. This standard specifies methods to fulfill the requirements for a PL through
the terms diagnostic coverage, mean time to failure, commoncause failure, and some more key
words explained briefly in the following. Furthermore, ISO 13849 defines requirements to the
lifecycle of safety-related software. The second part of the standard (ISO 13849-2 [11]) presents
guidelines and techniques for the validation of the afore defined safety concept.

All parts of a machine control supplying safety functionality are called “safety-related parts
of the control system” (SRP/CS). These parts may be realizedin hard- or software. Additionally,
such a machine may supply operational functionality. The ability of a device to provide safety-
related functionality under predictable conditions is divided into five PLs as shown in Table 3.1.
These PLs are defined in terms of probability of a dangerous failure per hour.

Performance Level (PL) Average probability of
a hazardous failure per hour
[1/h]

a ≥ 10−5 until < 10−4

b ≥ 3 ∗ 10−6 until < 10−5

c ≥ 10−6 until < 3 ∗ 10−6

d ≥ 10−7 until < 10−6

e ≥ 10−8 until < 10−7

Table 3.1: Performance Levels (PL)

Probability of a dangerous failure depends on certain parameters. ISO 13849 defines the
following criteria which have to be considered:

• Hard- and software structure
• Fault detection mechanisms
• Degree of diagnostic coverage (DC)
• Dependability of used devices (MTTFd)
• Common cause failures (CCF)
• Behaviour at systematic failures
• Behaviour at faults
• Development process
• Load under operational conditions
• Environmental conditions

With regard to the evaluation process of PLs those aspects are grouped into quantifiable (MTTF,
DC, CCF, structure) and non-quantifiable, qualitative (allothers) principles. Quantifiable aspects
of PLs can be estimated by usage of Markov models, generalized stochastic Petri Nets (GSPN)
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or reliability block diagrams. In ISO 13849, the determination of PLs under quantifiable aspects
is proposed by five different architectures fulfilling predefined characteristics in case of fault. If
other architectures are used, detailed calculations on theachieved PLs need to be given. For a
description of predefined architectures, please refer to [10].

To achieve a required PL, measures have to be taken to lower risk. These measures are the
reduction of the probability of a fault on device level by usage of more reliable devices and
by improvement of the structure of the SRP/CS to lower the effect of the fault. Depending on
expectable faults, these measures can be applied separately or together, where common cause
failures have to be taken into account.

Mean time to failure of a channelMTTFd

Assuming a redundancy approach, achannelis defined to be one of the replicated paths. The
value of theMTTFd of each channel is divided into three steps as depicted in Table 3.2 and
shall be calculated individually for each channel.

Description for each channel Range for each channel
low 3 years≤ MTTFd < 10 years

medium 10 years≤ MTTFd < 30 years
high 30 years≤ MTTFd ≤ 100 years

Table 3.2: Mean time to failure for a channelMTTFd

MTTFd for each device has to be determined by gathering information from data-sheets
provided by the manufacturer or other methods defined in appendices C and D of [10]. If neither
is applicable, a duration of 10 years has to be taken.

Diagnostic coverage DC

In most cases an estimation of the DC will be done by a Failure Mode and Effects Analysis
(FMEA) or a similar procedure. Therefore, all relevant faults and failures have to be considered,
including a calculation if the PL of the SPR/CS fulfills the required performance levelPLr. ISO
13849 defines four levels of DC as shown in Table 3.3.

Description Range
none DC < 60%

low 60% ≤ DC < 90%

medium 90% ≤ DC < 99%

high 99% ≤ DC

Table 3.3: Diagnostic coverage (DC)

16



Requirements to safety-related software

The aim of the software development process is to avoid faults introduced by the software life-
cycle. ISO 13849 specifies certain criteria which have to be fulfilled depending on the required
performance level. Basically, a consistent documentationof the whole development process
falls into these conditions. The standard proposes to use the simplified V-Model for the software
lifecycle as shown in Figure 3.3.

Figure 3.3: Simplified V-Model of the software lifecycle proposed by ISO 13849-1

This standard distinguishes between safety-related embedded software (SRESW) and safety-
related application software (SRASW). A subset of the applicable methods for SRESW and
SRASW up to thePLr d is listed in the following:

• Software lifecycle with verification and validation
• Documentation and reasoning of the specification and the design
• Modular and structured development and implementation
• Handling of systematic failures
• Extended functional tests
• Change management including reasoning
• Quality management

Usage of SRASW is subjected to some more requirements depending on the type of pro-
gramming language and thePLr:

• Certified toolchain
• Validated libraries
• Criteria to performance (e.g. reaction times)
• Semi-formal methods to describe data and control flow
• Simulation of the implemented code
• Adequate testing
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• A complete, consistent, readable, available and understandable documentation
• Verification
• Change management

For detailed requirements, please refer to points 4.6.2 and4.6.3 in [10].
ISO 13849-1 proposes the parametrization of safety-related software as well. According to

this, the inserted parameters need to be examined with respect to their validity. Further, safe
data transmission from a configuration tool to the device hasto be ensured and the effects of
incomplete or incorrect transmitted parameters have to be known in advance. Additionally, the
configuration tool needs to comply with the same requirements of SRP/CS as the configured
device. Once again, for a detailed description of applicable criteria to parametrize safety-related
devices, please refer to point 4.6.4. in [10].

ISO 13849-2 Validation

The standard’s second part addresses validation of mechanical, pneumatical, hydraulic and elec-
tronic systems. The validation process assumes error listscontaining all considered faults. These
lists are processed by a predefined validation process and a validation plan. Furthermore, the
whole validation process needs to be documented.

Finally, the most important part is the validation of safety-related functionality. In that step
validation has to ensure correct operation of the device under different configurations and its
reaction to different inputs. Additionally, where applicable, a combination of safety-related
devices needs to be validated by analysis or by testing if required.

3.2 IEC 61508 - Functional safety of E/E/PE safety-related systems

IEC 61508 is the de-facto standard for anything concerning safety-related electric/electronic/pro-
grammable electronic (E/E/PE) systems. It covers every single step of the development process
of safety-related systems starting from the very first concept up to the decommission of the sys-
tem and provides requirements and methods in order to achieve a specified safety integrity level
(SIL).

IEC 61508 is divided into seven technical parts and an additional guide part. The docu-
ment structure and relation between them are shown in Figure3.4. Part one covers basic terms,
conditions and requirements for the entire safety lifecycle of the development process. The
second part addresses special requirements for E/E/PE systems. In the third part, the develop-
ment of safety-related software is examined in terms of lifecycle, parametrization, extension and
upgrading, whereas definitions and abbreviations are defined in the fourth part. Methods for de-
termining the achieved safety integrity level are laid downin part five. The sixth part presents
guidelines for the application of parts two and three. Finally, the seventh part gives an overview
of techniques and measures for the implementation and validation.

Before details regarding the development of a safety-related system are described, basic
definitions of safety and functional safety need to be given.According to IEC 61508-0 [13] the
definition of safety is as follows:
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Figure 3.4: Requirements map for parts 1 to 7 of IEC 61508 [13]

This is the freedom from unacceptable risk of physical injury or of damage to the
health of people, either directly, or indirectly as a resultof damage to property or to
the environment.

Opposite to that, functional safety is defined as:

Functional safety is part of the overall safety that dependson a system or equipment
operating directly in response to its inputs.

Both terms can only be determined by considering the system as a whole together with the
environment it is interacting with. The procedure of developing a safety-related device is as
follows: First, a hazard analysis needs to be performed. According to this, the necessity of
functional safety is determined. If so, adequate measures need to be taken into account during
design.

Functional safety means, that it is required to perform a specific function to ensure that risks
are kept below a certain level. Therefore, thesafety function requirements(what the function
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does) deriving from the hazard analysis and thesafety integrity requirements(the probability
that the safety function performs as defined) which again derive from the risk assessment need
to be determined. The hazard analysis points out what needs to be done to prevent hazardous
failures, whereas risk assessment defines the degree of certainty that the safety function will be
performed.

The entire safety lifecycle

In order to achieve the required safety integrity, the standard defines a lifecycle model (see Figure
3.5) which covers every step of the lifetime of a safety-related device starting at the first concept
and ending by the decommission of the device.

Figure 3.5: Entire safety lifecycle as defined by [3]

To achieve and keep a defined SIL during the design and throughout the further operation,
each step must to be documented scrupulously. Additionally, the generated documentation has
to be versioned, revisioned and approved. Further, the standard requires defined authorities for
the technical and management phases of each cycle in the model, referred to asmanagement of
functional safety.

A brief description of the single steps of the entire safety lifecycle seems to be helpful:
The concept phase is intended to get knowledge about the equipment under control (EUC)

and its environment. This is the base for the consecutive steps, for which reason all possible
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sources of hazards and information about them as well as any information from applicable stan-
dards have to be pointed out.

The aim of defining the complete area of application is to showthe limits of the EUC and the
application area for the following hazard and risk analysis, requiring specification of physical
devices, external events and subsystems.

The hazard and risk analysis point out hazards, hazardous events and sequences leading to
hazardous events. Probability of a hazardous event, its impact and necessary measures to reduce
the risk have to be considered. Furthermore, any assumptions during the analysis have to be
stated.

The entire safety requirements target the development of safety-related E/E/PES, focussed
on the safety functionality and the safety integrity. Therefore, safety functions and necessary
risk reduction for every hazardous event have to be defined. Requirements for safety integrity
have to be determined for every safety function.

Assignment of safety requirements is intended to map the previously defined safety functions
to the safety-related systems and E/E/PES and to assign a SILto each of these functions. In
case the assignment of the safety requirements shows that the required SIL cannot be achieved,
the architecture has to be changed and the assignment needs to be re-done. Requirements to
safety integrity have to be adequate in order to show that themean probability of failure or the
probability of a hazardous failure per hour is satisfied. Furthermore, common cause failures
(CCF) have to be taken into account, unless the single subsystems can be shown to operate
independently. Independence is given if

• the subsystems are functionally different,
• they are based on different technologies,
• they do not use common parts, services or supply systems,
• they have no common operational, maintenance or test measures, or
• they are physically separated.

In case one of these requirements cannot be satisfied the subsystems cannot be considered as
independent in terms of safety integrity.

Once the mapping has been done, the safety integrity levels have to be assigned according
to Table 3.4.

Safety Integrity Level Operational mode with continuous operation
(Probability of a hazardous fault per hour)

4 ≥ 10−9 until < 10−8

3 ≥ 10−8 until < 10−7

2 ≥ 10−7 until < 10−6

1 ≥ 10−6 until < 10−5

Table 3.4: Safety integrity levels for devices with high performance rate [3]

For systems containing of multiple subsystems with different SILs, the whole system will
have to be regarded as a system with the lowest SIL among its subsystems, unless it can be
shown that sufficient independence between them is present.
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The E/E/PES lifecycle model defined by IEC 61508-2

This section describes the lifecycle model for a E/E/PES as apart of the overall IEC 61508-
1 lifecycle model in Figure 3.5. Therefore, the component 9 of the model is extracted into
further steps as shown in Figure 3.6. The model is kept very general and can be used unchanged
for hard- and software development. The sub-lifecycle is organized in six tasks which will be
explained in the following.

Figure 3.6: E/E/PES safety lifecycle in the realization phase defined by [4]

Specification of the E/E/PES safety requirements

The specification of the requirements to the safety functionality needs to contain the following:

• A description of the provided safety functionality
• Performance requirements like throughput and response times
• Interfaces between the E/E/PES and user interfaces
• Any safety relevant information
• Operational modes like parametrization, automatic, semi-automatic, manual, shut down,

maintenance
• All kinds of failure performance, i.e. the reaction of the system in case of failure (e.g.

alarm or shut-down)
• The meaning of the hardware/software interaction
• Constraints and limits of the E/E/PE subsystems
• Requirements to the commission and restart of the E/E/PES
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Furthermore, the specification of the E/E/PES safety integrity requires to define the SIL for
every safety function, the operational mode for every safety function, limits to the environmental
conditions and limits to electromagnetic compatibility.

Planning the validation of the safety-related E/E/PES regarding safety

E/E/PES design and implementation

This step presents the most complex part in the development process of a safety related device.
For better understanding, it is subdivided into several smaller items:

General requirements The main requirement is that the design needs to fulfill the speci-
fication in all points. The design of a safety-related E/E/PES including hard- and software-
architecture, sensors, actuators, programmable electronics, embedded- and application software
as shown in Figure 3.7 has to be accomplished in order to satisfy all of the following conditions:

• Safety integrity requirements to hardware consisting of the requirements due to the prob-
ability of dangerous hardware failures and the constraintsof the safety integrity caused by
hardware architecture.

• Requirements to the systematic safety integrity consisting of the certificate of approved
devices and the requirements to avoidance and handling of systematic failures.

• Requirements to the system behavior when detecting a fault.

Figure 3.7: Relation between hardware and software architectures of PE [5]

In case a safety-related E/E/PES supplies safety-relevantand non-safety-relevant function-
ality, the complete hardware and software have to be considered safety-relevant except a proof
for the independence of safety and non-safety-related parts of the system can be provided. The
arising SIL that has to be satisfied is the highest among all affected devices. That means, a sys-
tem requiring SIL2 has to contain systems satisfying at least SIL2. If one subsystem just fulfills
SIL1, the whole system is considered to have SIL1.

If independence between safety and non-safety functionality is required the methods for
achieving the separation and the reasons therefore have to be disclosed.

23



The developer has to ensure the adequateness of the requirements for the safety-related
E/E/PES hardware and software with focus on the safety-functionality, safety-integrity require-
ments, electrical equipment and user interfaces.

A further step requires documentation and reasoning of the applied procedures and measures
in design as well as of hardware-software interaction.

The whole system has to be partitioned into subsystems whereby each of them requires a
separate design and verification process. In case a subsystem has multiple outputs it is required
to show that no possible combination of states leads to a hazardous failure of the E/E/PES. If
possible, all components should be dimensioned for underload.

Constraints to the hardware safety integrity due to architecture The highest achievable
SIL in the context of hardware is limited through the fault tolerance of the hardware and the
fraction of safe failures in the subsystems. A fault tolerance of N means that the safety func-
tionality will get lost by N+1 faults with the constraint that fault detection mechanisms like
diagnosis must not be taken into consideration. Where a fault leads to another fault, these two
faults are considered to be a single fault. If certain improbable faults can be excluded from the
fault tolerance calculation it has to be reasoned and documented. The fraction of non-hazardous
failures (SFF) of a subsystem is defined as the mean rate of non-hazardous faults plus hazardous
detected faults divided by the overall failure rate of the subsystem:

SFF=
Safe Faults+ Detected Faults

Overall Failure Rate of the Subsystem
(3.1)

The standard defines subsystems of types A and B. Type A is required to be completely
specified by means of fault performance of the components, the subsystem itself under a fault
and reliable information about process experience. Even ifonly one requirement is not fulfilled,
a subsystem is classified as type B. Depending on the subsystem type either Table 3.5 for type A
or Table 3.6 for a type B subsystem have to be taken into consideration. These tables describe the
achievable SIL depending on the fault tolerance of the hardware and the fraction of nonhazardous
failures. For example, a subsystem of type A with more than 99% of non-hazardous failures can
reach SIL4 with a fault tolerance of 1.

Fraction of nonhazardous failures
Fault tolerance of the hardware

0 1 2
< 60% SIL1 SIL2 SIL3

60% - <90% SIL2 SIL3 SIL4
90% - <99% SIL3 SIL4 SIL4

≥99% SIL3 SIL4 SIL4

Table 3.5: Safety integrity of hardware: Constraints to architectures for safety-related type A
subsystems [4]

Requirements for the estimation of the failure probability of a safety function due to ran-
dom hardware faults The probability of loss of the safety functionality due to random hard-
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Fraction of nonhazardous failures
Fault tolerance of the hardware

0 1 2
< 60% not allowed SIL1 SIL2

60% - <90% SIL1 SIL2 SIL3
90% - <99% SIL2 SIL3 SIL4

≥99% SIL3 SIL4 SIL4

Table 3.6: Safety integrity of hardware: Constraints to architectures for safety-related type B
subsystems [4]

ware faults has to be less than the specified failure limit andhas to be estimated considering the
following:

• The architecture of the safety-related subsystem related to the safety function.
• The estimated failure rate/s of each subsystem in every operational mode which leads to a

dangerous failure and can/cannot be detected through diagnostic mechanisms.
• The vulnerability to common cause failures.
• The diagnostic coverage of the diagnostic tests.
• The interval of online tests to detect dangerous faults which cannot be detected by diag-

nostic tests.
• The probability of an undetected failure of any data transmission process.

According to these criteria the diagnostic test-interval has to be set adequately. If for any
design the required limits of failure rates cannot be fulfilled, critical components or parameters
need to be identified and possibilities for improvements have to be located. Afterwards the
improvements have to be applied and the probability of a hardware failure has to be determined
again.

Requirements to avoid failures Therefore, appropriate procedures and measures have to be
developed and applied. According to the required SIL, theseprocedures have to be modular
and transparent. Furthermore, they have to give a clear and precise description of the provided
functionality, the interfaces of the subsystems, the timely order of the information and parallel
operation and synchronization. Additionally, a proper documentation as well as validation and
verification have to be supported.

Maintenance schemes and integration tests have to be planned during the design phase to
ensure that the required SIL can be obtained. If possible, automated tools and integrated devel-
opment tools should be used.

Requirements to handle systematic failures Systematic failures should already be detected
in the design phase. Therefore, the testability and maintainability as well as the human abilities
to operate the system have to be taken into account. Thus, thedesign should ensure that all
remaining design errors regarding the hardware, environmental conditions, human errors, all
remaining software errors and communication issues are detected.
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Requirements to the system behavior at fault detection If a fault has been detected the
system either has to go into a safe state and inform the operator about it or, if that is not possible,
the fault has to be isolated. If the fault cannot be fixed within the MTTR a predefined action has
to take place.

Requirements to E/E/PES implementation The implementation of the safety-related E/E/PES
has to be in agreement with the design of the E/E/PES. Every subsystem that is used by a safety
function has to be identified and described as a safety-related subsystem. To every safety-related
subsystem the following information has to be provided:

• The functional specification of functions and interfaces used by the safety-related subsys-
tem.

• The estimated failure rate/s caused by random hardware errors in every mode leading to a
dangerous failure and being detected or not by diagnostic measures.

• The environmental limits of the subsystem.
• The lifetime of the subsystem.
• Maintenance requirements and intervals.
• The diagnostic coverage and test interval.
• Any required information to determine the MTTR.
• Any information to determine the fraction of safe failures.
• Fault tolerance of the hardware.
• All remaining limits applicable to the subsystem to avoid systematic failures.
• The highest SIL that can be consumed by a safety function.
• Any information regarding configuration of the subsystem.
• A confirmation about the verification of the subsystem.

Estimated failure rates for a subsystem caused by random hardware errors can be determined by
a failure mode and effects analysis (FMEA) or, if available,by performance information about
the subsystem under similar conditions.

Requirements to data communication In case of data communication influencing the safety
functionality, the probability of an undetected fault of the communication system has to be es-
timated. Therefore, transmission errors, repetition, loss, insertion, wrong sequence, corruption,
delay and masquerade have to be taken into account. Especially the parameters residual er-
ror rate, rate of residual information loss, bitrate and message delay have to be considered for
the estimation. The topic of data communication will be discussed in detail in the Section 4.1
describing the IEC 61784-3.

E/E/PES integration

The integration tests of an E/E/PES have to ensure that all modules interact in the specified way
and fulfill the intended behaviour. For the execution of the tests, appropriate procedures and
measures have to be applied. Furthermore, every modification needs to be evaluated and the
tests themselves must be properly documented.
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E/E/PES operation and maintenance procedures

That point addresses the routinely procedures for maintenance purposes. It has to be ensured that
an unsafe state does not occur during these tasks. Moreover,it requires that irregularities from
the normal operation and online test results are documented. Procedures for maintenance have
to be defined which are applied in case of failure including procedures for diagnosis, repair,
logging and analysis of failures and revalidation. Routinely maintenance procedures have to
fulfill systematic methods which have to detect non-detected failures resulting in reduction of
the required safety integrity.

Validation of the E/E/PES regarding safety

Validation of the E/E/PES has to be performed according to the previously defined validation
plan. Each used measurement device has to be calibrated and verified for its correct functionality.
During tests every safety function has to be evaluated according to its intended behaviour and
results have to be documented in an adequate way.

E/E/PES modification

If an existing E/E/PES has to be modified the following requirements have to be complied:

• An exact and complete specification of the modification.
• An analysis of the impact on the whole system.
• Approval for all modifications.
• Test-cases of the modified components including data gainedby the revalidation process.
• Deviations from the normal operation.
• Required changes to the system behaviour and the documentation.

Once the system has been modified it has to be re-verified and re-validated.

E/E/PES verification

The goal of the verification is to ensure the correctness and consistency of the device with the
specification. Therefore, the verification already has to beplanned during the development phase
of the E/E/PES. That plan has to include strategies and procedures for verification, usage of
measurement devices, documentation and analysis of the gained results. For each stage of the
design phase it has to be shown that the safety integrity requirements are fulfilled.

SIL 3 in detail

In the previous sections some of the basic requirements for the development of a safety-related
E/E/PES have been presented. Basically, these requirements are applicable from SIL 1 to SIL 4.
Part 3 of IEC 61508 [5] presents guidelines for every SIL witha special focus on the software
of an E/E/PES.

As already mentioned the development of safety-related software has to be executed accord-
ing to the lifecycle model in Figure 3.6. Besides, some more guidelines for the implementation
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of each step are given in Appendix A and B of [5]. For the software specification and design,
computer-based specification tools and semi-formal methods are recommended. Appropriate, if
possible certified, programming languages, toolchains, compilers, libraries and integrated devel-
opment environments should be used. As this thesis does not target a fully developed device, not
all of the recommendations can be met. For instance, the usage of interrupts and pointers should
be avoided although they are some of the basic concepts in microcontroller programming.

According to Table 3.6, a SIL can be achieved by increasing the SFF or the fault tolerance
of hardware. For SIL3 that is to detect more than 99% of hazards with a fault tolerance of 0 or
to detect 90% to 99% of hazards with a fault tolerance of 1 or todetect 60% to 90% of hazards
with a fault tolerance of 2. As shown later, a high SFF can onlybe gained through extensive
online tests and thus high diagnostic coverage. The consequence is to increase hardware fault
tolerance. A discussion on different hardware architectures will be given in Section 5.1.

3.3 Conclusions of ISO 13849 and IEC 61508

So far, terms and definitions regarding safety-related systems and the two most important stan-
dards in the area of safety-related systems have been presented. Summing up, ISO 13849-1 is
kept very generic in some parts of the definition of safety-related devices. There are no mecha-
nisms or methods given on how to realize specific functionality in order to accomplish a certain
performance level. Also the second part, ISO 13849-2 is keptgeneric to be applicable for a wide
range of devices.

Contrary, IEC 61508 provides detailed information about the whole development lifecycle
of safety-related devices and depicts generic requirements for concept, design, implementation,
testing, validation and verification.

Both standards address the development of safety-related systems as a whole and do not
provide guidelines on how to implement specific safety-functionality. A more “implementation-
oriented” standard is IEC 61784, outlined in the following chapter where measures for safe
transmission of data over a network will be presented.

Especially interesting for this thesis is the relation of PLs to SILs which is outlined in Table
3.7.

PL SIL (high usage)
a no correspondent
b 1
c 1
d 2
e 3

Table 3.7: Relation between Performance Levels (PL) and Safety Integrity Levels (SIL) as de-
fined by [10]

PL a has no corresponding SIL level and is intended to reduce the risk of slight, usually
reversible injury. IEC 61508 defines SIL 4 for possible hazardous accidents in process industry
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and is not relevant for the application at machinery. Thus, the highest relevant PL ise which is
assigned SIL 3.
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CHAPTER 4
Existing Safety Solutions in HBA

Systems

Building automation systems have initially been designed for simple applications like lighting,
shading and climate control without any safety relevance. If safety was required, separate, closed
systems have been installed which were interacting via gateways with the non-safe parts of the
automation system.

Increasing demands regarding safety resulted in extensions of existing automation systems
with safety functionality. A further requirement has been to enable coexistence of safe and non-
safe nodes on the same network. Since also the existing communication media should have been
reused, the solution was to implement protocols which were built on top of the existing non-safe
ones. Thus, to gain safety requirements, the underlying communication channel is considered as
“black channel”. That means, theoretically any communication medium, wired or wireless, can
be used as long as timing requirements are met which are of major importance. If no guarantees
can be given whether a message has arrived or not, timeouts have to be introduced to determine
loss of messages. Discussion of these issues will be presented in the following.

However, safety in home and building systems does not mean high dependability. Instead,
each safe automation system is assumed to have a safe state. Thus, safety can be gained by
detecting faults and transferring the system into a safe state.

In the following four automation solutions will be presented, namely Safety over Ether-
CAT (SoE), CANopen Safety, SafetyLON and OpenSafety. Although Safety over EtherCAT
and CANopen Safety have their origins in industrial automation, they are covered too, since
especially SoE becomes more interesting for building automation. However, this thesis does
not focus solely on building automation systems. Instead, the communication and hardware
technology used is of special interest which brings in SoE and CANopen Safety for comparison.

Preliminary to presenting existing safety solutions in home and building automation systems,
a standard defining communication measures for safety-related systems will be presented - IEC
61784-3. The standard describes common communication errors and measures to detect them.
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4.1 IEC61784-3 - Functional safety fieldbuses

The IEC 61784-3 standard outlines the general principles for safe message transmission in net-
works which are conform with afore described IEC 61508. Therefore, communication profiles
for different fieldbus networks are specified in parts IEC 61784-3-x and an additional communi-
cation/protocol service is extended by a safety layer.

Before the standard will be described in depth some important terms have to be defined.
Since all communication profiles defined here base on it, theblack channel principlewill be
given special attention:

Black Channel Principle

As defined by [9], that principle states:

. . . the chosen communications technology does not matter, except for a few basic
constraints. . .

. . . none of the error detection mechanisms of the chosen communication technology
are taken into account to guarantee the integrity of the transferred process data.

. . . Basically, there are no restrictions with respect to transmission rate, number of
bus devices, or transmission technology as long as the parameters are tolerated by
the required reaction times of a given safety application.[29]

The black channel principle gives no guarantee whether a sent message has been delivered cor-
rectly, in time, or received at all by the receiver. Message transmission is thus just a best effort
approach. Any data integrity or safety measures have to be done by the safety layer.

Another term is thesafety communication layer (SCL). That is a separate layer in the com-
munication stack which provides measures to ensure safe transmission of messages according
to IEC 61508.

Communication Errors

To achieve a certain level of safety in message transmission, all kinds of communication er-
rors have to be taken into account. In the following, IEC 61784-3 defined errors and possible
behaviour under black channel conditions will be explainedbriefly:

Corruption

A message may be corrupted by errors in the communication subsystem or on a node. Such
errors are common in networks and usually end up in bit errors(flipped bits).

Unintended repetition

By errors or malfunction, old and out-of-date messages are repeated at wrong time instants.
Repetition by sender is common in case an acknowledgement ofthe receiver is absent.
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Incorrect sequence

By errors or malfunction, a sink receives messages in incorrect sequence by means of wrong
sequence numbers or timestamps. It is likely that such errors occur in networks with storing
elements like routers or gateways where messages are delayed caused by higher prioritized mes-
sages.

Loss

By errors or malfunction, a message was not delivered or acknowledged.

Unacceptable delay

Messages are intended to be delivered within a predefined time instant. If a message is delayed
due to congestion or errors on the bus, FIFOs in switches, bridges or routers, the message will
be delayed.

Insertion

By errors or malfunction, a message from an unintended or unknown source was inserted. Since
these messages do not have a valid source they cannot be classified as correct.

Masquerade

Maquerade is similar to insertion, except that the receivedmessage comes from a valid source.
That means, a non-safety message will be accepted as safety relevant message.

Addressing

Through errors on the communication system a safety relevant message has been received by a
wrong node which handles the message as correct.

Deterministic Countermeasures

So far, possible errors on the communication system have been pointed out. They have to be
detected by at least one mechanism in the safety communications layer. In the following, coun-
termeasures for deterministic errors as defined by IEC 61784-3 are presented:

Sequence number

Each message is tagged with a continuous increasing number.

Timestamp

Usually, data is only valid for an amount of time. Therefore,each message is tagged with a
relative or absolute timestamp. That requires synchronization of clocks across the participating
nodes.
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Timing expectation

Messages are expected to be received during predefined timeslots. If a message arrives outside
a timeslot, an error can be assumed. That requires synchronization, since each participant has to
know the time instant of its bus access.

Connection authenticity

Each message contains a unique sender or receiver identifierdescribing the logical address of
the safety relevant participant.

Acknowledge

The message sink replies the reception to the source. Depending on the protocol, that can be a
simple acknowledge message, or the message itself to ensurecorrect reception of data.

Redundancy with crosschecking

Safety relevant data can be packed twice or more times into the same or different messages. On
receiver side, the message contents are cross checked to their correctness.

Different data integrity assurance systems

If safety relevant and non-safety relevant messages are transmitted over the same communication
system, different data integrity measures like CRC-polynomials or hash functions can be applied.
Thus, non-safety messages should not be accepted as safety relevant data.

Relation between errors and safety measures

Table 4.1 shows already described errors on the communication subsystem and possible coun-
termeasures against such errors. It is clear, that any type of error has to be detected by at least
one countermeasure. Depending on the implementation of theoverall system, the table is am-
biguous, since for example incorrect sequence errors can bedetected by sequence numbers and
timestamps. Thus, not both measures are required to be implemented.

Data integrity and Data security

To ensure integrity of received data, hash functions, parity bits, CRC checks or redundant mes-
sage sending have to be performed. It has to be mentioned, that the underlying communication
channel must not use the same data integrity and data safety mechanisms as the implemented
safety communication layer, except special measures against mix up have been met. To re-
late the degree of safety in the SCL with the required SIL, theresidual error rate of the SCL
ΛSL(Pe), which is a function of the bit error ratePe, the residual error rate of the safety mes-
sageRSL(Pe), the maximum number of safety messages per hourv and the maximum number
of safety message sinksm, is introduced by IEC 61784-3:
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Corruption XN1) X
Unintended repetition X X XN1)

Incorrect sequence X X XN1)

Loss X XN1) XN1)

Unacceptable delay X Xc)

Insertion X Xa)b) Xa) XN1)

Masquerade Xa) Xa) X
Addressing X
a) Application dependent
b) Shows only insertion of an invalid source
c) In any case required
d) Just in case that the residual error rateΛSL can be shown to meet specified requirements
N1) Under certain conditions

Table 4.1: Communication errors and detection measures by [9]

ΛSL(Pe) = RSL(Pe) ∗ v ∗m (4.1)

The residual error rate also depends on the maximum number ofsafety messages per hour
which implies bounded reaction times of safety functionality. Regardless of the operational
mode (continuous, or low performance, see Table 3.4), relations between the residual error rate
of the functional safe communication system and applicableSILs are depicted in Table 4.2.

SIL Probability of a hazardous
failure per hour of the functional
safe communication system

Max. allowed residual error rate of the
functional safe communication system

4 < 10−10/h Λ < 10−10/h

3 < 10−9/h Λ < 10−9/h

2 < 10−8/h Λ < 10−8/h

1 < 10−7/h Λ < 10−7/h

Table 4.2: Relation between residual error rate and safety integrity level

Thus, to fulfill SIL 3 the residual error rate per hour has to beless than10−9.
Additionally to safe transmission of data, security has to be considered as well. According to

IEC 61784-3 Point 5.7, security measures have to be implemented in the black channel. Further
information will be provided in the upcoming IEC 62443.
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The remaining information provided by the standard addresses different communication
profiles for fieldbus systems such as Profibus, CIP, EtherCAT and much more which will be
explained partially in the following. For further information, refer to [9].

4.2 Industrial Automation solutions

CANopen Safety

This automation solution builds on the well known CAN bus which was originally developed
for in-vehicle networks. There are several standardized protocols that make use of the CAN data
link protocol which are, for example, CANopen for embedded control systems1, DeviceNet for
factory automation, J1939 based solutions (J1939-71 Isobus, ISO 11992) for trucks and other
vehicles and, ISO 15765 for passenger car diagnostics.

CANopen can be extended to be safe by either applying the safety-relevant communication
protocol defined in CiA 304 [17] or by using the CANopen safetychip 02 (CSC02) which has
been certified by TÜV according to SIL3. Application of CiA 304 describes safety as a prop-
erty of a device: A device uses all features defined by a communication profile and additionally
special safety communication objects. All other, non-safecommunication objects remain un-
changed. A CSC02 chip contains a complete implementation ofstandard CiA 301 CANopen
application layer [16] and CiA 304 CANopen safety protocol on top of two CAN modules on-
chip.

CiA 304 also defines required hardware architecture for SIL3compliance (see Figure 4.1).

Figure 4.1: C-model for safety-relevant communication networks [17]

CANopen Safety distinguishes sources of safe information (safety switches, light barri-
ers, emergency stops) and consumers of information (relay,valve drives, safety PLCs). Since

1http://www.can-cia.org/index.php?id=4
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CANopen Safety does not provide request-response communication pattern, it is left up to the
data consumers to check data integrity and transfer to safe state in case of incorrect data. The
number of information sources (safe inputs) is limited to 64, whereas an unlimited number of
information consumers (safe outputs) may listen to the produced safety-relevant data objects
(SRDOs).

To increase data safety, an SRDO consists of two standard CANdata frames, where the
second data frame transfers the same data as the first one, butin a different bit-ordering, like
reverse ordering (Redundancy with cross-checking). Such consecutive CAN frames from the
same SRDO have to arrive within the safety-relevant object validation time (SRVT). An example
is given in Figure 4.2. Additionally, that mechanisms checkwhether sufficient network capacity
is available. If the second frame is delivered after the SRVTexpired, the safety controller shall
go into safe state. Likewise, if one of the frames does not satisfy data integrity or data contents
of the two frames do not match, the safety controller also hasto switch to safe state.

Figure 4.2: Example for SRVT timing [17]

Further, SRDOs are transmitted periodically. The intervalbetween consecutive SRDOs is
referred to as Safeguard Cycle Time (SCT). If a message is delivered after the SCT expired, the
safety controller shall go into a safe state. Figure 4.3 illustrates an example. Timing expecta-
tions require synchronization among safe nodes. Unlike most other safety extensions, CANopen
provides synchronization by default.

Figure 4.3: Example for SCT timing [17]

CiA 304 also gives a mathematical analysis of the protocol performance: Assuming a max-
imum of 64 safety relevant devices and an error rate of less than10−9 for SIL3 compliance, 44
SRDOs per second are possible. The calculation is as follows:

The worst case residual error probability of CAN is defined by[8]:
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PRest = 7 ∗ 10−9 ≈ 1 ∗ 10−8 (4.2)

According to model C defined in [12], sending the safety relevant data twice, the residual
error probability results in:

P = P 2
Rest (4.3)

Applying Equation 4.1 for SIL 3 and assuming the network to consist of 64 devices results
in afore mentioned 44 SRDOs per second and, thus, a refresh time of 23ms [17].

A comparison to Table 4.1 is depicted in Table 4.3. It has to bementioned, that the CANopen
specification does not provide all information required to give a complete comparison. Measures
depicted here are thus just based on assumptions.
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Corruption X
Unintended repetition X
Incorrect sequence X
Loss X
Unacceptable delay X X
Insertion X
Masquerade X
Addressing X
NOTE: CANopen Safety specification CiA304 forbids usage of safe CAN IDs on non-safe nodes in networks con-
sisting of safe and non-safe nodes.

Table 4.3: Communication errors and detection measures used by CANopen Safety

Safety over EtherCAT

Safety-over-EtherCAT is defined as communication profile family 12 of IEC 61784-3 [14] and
certified for SIL 3 compliance. Like most other industrial safety providing systems, also Safety-
over-EtherCAT builds on the black channel principle, and provides safety and non-safety func-
tionality on the same bus.

As depicted in Figure 4.4 Safety-over-EtherCAT uses uniquemaster-slave relationships be-
tween FSoE Master (Failsafe over CPF 12) and FSoE Slave called FSoE Connections. Such a
FSoE Connection is always established between exactly one FSoE Master and one FSoE Slave.

To ensure data integrity of the safety message transmission, [14] points out the following
measures:

• Session-numbers for detecting buffering of a complete startup sequence
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Figure 4.4: Basic FSCP 12/1-System [14]

• Sequence numbers for detecting interchange, repetition, insertion or loss of whole mes-
sages

• Unique connection identification for safely detecting miss-routed messages via a unique
address relationship

• Watchdog monitoring for safely detecting delays not allowed on the communication path
• Cyclic redundancy checking for data integrity to detectingmessage corruption from source

to sink.

The Safety PDU is embedded into standard Type 12 PDUs as depicted in Figure 4.5. As
illustrated, the safety-relevant data is transferred in 2-byte blocks with a separate checksum.
The checksum is calculated over the command, two byte safetydata, the connection ID, a virtual
sequence number, the CRC_0 of the last received safety PDU and three additional zero octets
with the CRC polynomial 0x139B7. If only one octet of safety data is transferred, SafeData[1]
is skipped in the calculation. The virtual sequence number is a 16-bit value which is separately
incremented by the master and the slave each time a new safetyPDU is created. Once the
sequence number is 65535 it will start again with 1 (0 is left out). In case of faulty checksums,
both, the FSoE master and the FSoE slave will switch to a defined safe state. For detailed state
diagrams of the Safety-over-EtherCAT nodes please see [14].

Figure 4.5: Safety PDU for CPF 12 embedded in Type 12 PDU [14]
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The communication is organized in FSoE Cycles. The FSoE Master sends a safety master
PDU, called SafeOutput, to one of the FSoE Slaves and starts the FSoE Watchdog. The FSoE
Slave then handles the data and returns its Safety Slave PDU,also called SafeInput, and starts
its own FSoE Watchdog. Once the FSoE Master receives a SafetySlave PDU, it stops the FSoE
Watchdog and the FSoE Cycle is finished. An example executionis depicted in Figure 4.6. On
expiration of either of these watchdogs, the correspondingnode will enter its safe state.

Figure 4.6: FSoE Cycle [14]

Compared to Table 4.1, SoE uses different measures to detecterrors on the communication
subsystem as depicted in Table 4.4. Note, that in differenceto most other solutions presented
here, SoE distinguishes cyclic and acyclic measures for error detection.

4.3 OpenSafety

OpenSafety is a new, hardware independent software implementation of a safety stack for au-
tomation systems. OpenSafety implements the application layer (layer 7) of the standardized
OSI model and considers all lower layers to be a black channel. Thus, it is applicable for prac-
tically any underlying hardware architecture. For Sercos III, EtherNet/IP, Modbus-TCP and
POWERLINK, OpenSafety is certified for SIL3.

Causes of fault are mostly identified to be routing errors on gateways2: One and the same
message might be transmitted to the same destination network over two or more gateways result-
ing in duplicate messages. In contrast, messages might be lost at gateways by not forwarding it at
all or forwarding it to wrong destination nets. Long messages sent in packets might be forwarded
erroneously, incompletely or delayed at gateways, resulting in corrupt messages. Another source

2http://www.open-safety.org/index.php?id=21L=hplzymywy
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Corruption Xa Xa Xc Xa Xc
Unintended repetition Xa Xc
Incorrect sequence Xa Xc
Loss Xa Xca) Xa
Unacceptable delay Xc Xc
Insertion Xa Xcb) Xa
Masquerade Xc Xa Xc Xa Xc Xa Xc
Addressing Xa Xc
a) Missing PDUs shall be detected within maximum reaction time.
b) Only one message shall be accepted during a defined time frame.
Xc) Errors detected by cyclic measures
Xa) Errors detected by A-cyclic measures

Table 4.4: Communication errors and detection measures used by Safety over EtherCAT

of error is identified to message corruption caused by electro-magnetical interference resulting
in flipping bits. Finally, as safe and non-safe nodes may coexist on the same network, non-safe
messages might be erroneously identified as safe messages (masquerading or message mix-up).

To detect these identified errors, OpenSafety introduces timestamps as a basic concept. Each
sent message is tagged with a timestamp resulting in detection of duplication, delay and mix-
up. Each safe receiver is required to reply to a message reception to the sender to indicate
that the data link remains established. Additionally, timemonitoring detects delayed and lost
messages. The latter two mechanisms are referred to as watchdog and are part of the OpenSafety
software stack. Message corruption is avoided by tagging each message with a unique 8 or 16 bit
identification tag which encodes parts of the messages’ address field, telegram type and frame
type. Furthermore, CRCs are calculated over every frame andattached to it including the key the
calculation was done with. Upon reception, the receiver will recalculate the CRC of the message
with the attached key. In case of different checksums, the message will be dropped. As final
measurement, each frame is packed twice into one OpenSafetyframe as illustrated in Figure 4.7.
This increases the probability to detect corrupt messages,since an error would have to occur in
both frames at the exactly same position. Also, masquerading is now very unlikely to occur.

Unfortunately, OpenSafety does not provide more detailed information about the exact time-
synchronization protocol implemented, but according to the EPSG website (see3), a resolution
in microsecond range is achievable.

An implementation of OpenSafety on top of the POWERLINK protocol is available under
BSD-license at IXXAT4.

3http://www.ethernet-powerlink.org/index.php?id=41
4http://www.ixxat.de/ethernet_powerlink_safety_intro_de.html
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Figure 4.7: OpenSafety safety frame structure

Since OpenSafety just provides a software stack, it is left up to the hardware designer which
architecture to use. But to be SIL3 compliant, an architecture similar to the one presented in
Figure 4.8 has to be applied.

Figure 4.8: Possible hardware architecture for an OpenSafety-Node

An OpenSafety network can handle up to 1023 domains, where each domain may include
up to 1023 nodes, whereat safe nodes in a safety domain do not have to operate within the
same network. Communication between safety domains is handled through gateways. Since
OpenSafety builds on the black channel principle, safe and non-safe nodes are allowed to operate
in the same network. Each domain has to contain a Safety Configuration Manager (SCM) to
monitor safe nodes. That SCM cyclically sends lifeguard signals to test safe nodes in its domain.
If a lifeguard signal is absent, the safe node shall go into safe state.

Compared to safety measures defined by IEC 61784-3 in Table 4.1, OpenSafety uses mea-
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sures depicted in Table 4.5.

Faults
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Duplication X
Loss X
Insertion X
Incorrect Sequence X
Delay X X
Distortion X X
Mix-up of standard
and safety frames

X

Table 4.5: Communication errors and detection measures by OpenSafety

Summing up, OpenSafety is a good option to extend any bus-system with safety functionality
since an available software stack is already SIL3 certified.The provided documentation included
in the downloadable software stack is a good entry point on how to integrate OpenSafety within
an existing implementation. For SIL3 certification, the OpenSafety homepage5 recommends to
contact the EPSG (Ethernet PowerLink Safety Group) for help.

4.4 SafetyLON

SafetyLON is an extension to the building automation systemLON developed in the 1990s by
Echelon. Since 2008 LON is approved ISO and IEC standard and documented in EN 14908
series. Due to its open and inter-operable specification it is widely used, especially in public
buildings. LON nodes base on Neuron Chips, including MAC-, network- and application-CPU.
The MAC CPU handles physical access to medium, the network CPU de- and encodes messages
to proper format and the application CPU implements the userprogram. Each neuron chip is
identified by a worldwide, unique 48 bit Neuron ID, assigned by the chip manufacturer. The
Neuron ID is used for identifying chips in the fieldbus network. The communication between
LON nodes is performed according to the LonTalk protocol which is applicable to a wide range
of communication media.

Just like other building automation protocols, LON does notprovide safety by default. In
course of the SafetyLON project, LON has been extended to fulfill safety requirements up to
SIL 3. Therefore, the hardware architecture has been extended as similar depicted in Figure 4.8.
To access LON networks, the bus transceiver will be replacedby a Neuron chip. Since safe
and non-safe nodes shall coexist among the same network, theLonTalk protocol must not be
changed which results in application of the black channel principle. Thus, safety relevant data
is packed into payload data area of standard LonTalk messages.

5http://www.open-safety.com/index.php?id=25&L=wqdrevmxcexvyln
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The format of the safe message is depicted in Figure 4.9. To ensure high amount of data
integrity and low risk of corruption, the data part of the safe message is sent twice. The mes-
sage starts with an ID field keeping information about message type followed by a three byte
safe address field. The timestamp is divided in two parts which results in a 4 byte timestamp
consisting of MSWord (Most Significant Word) for the higher two bytes and LSWord (Least
Significant Word) for the lower. SafetyLON uses timestamps for detection of delay, repetition,
wrong sequence and in conjunction with safe address, insertion [23]. Finally, two different CRC
polynomials are applied and results placed in field CRC 1 and 2. Depending on the message
length, either one or two bytes of CRC sums are appended.

Figure 4.9: SafetyLON protocol Extension

Communication among nodes is performed according to producer-consumer model: Each
producer and consumer is assigned a safe address. Additionally, consumers keep a list of safe
addresses of producers, from which they are allowed to receive safe messages. When sending
a safe message, the producer attaches its own safe address tothe message. Upon receiving a
safe message, the receiver will only do further processing,if the safe address in the message is
contained in its list of valid producers.

Additionally, producers cyclically send heartbeat messages. Consumers check timing inter-
vals between heartbeats and in case of expired timeout, the consumer will enter a defined safe
state.

In comparison to Table 4.1, applied measures in SafetyLON are depicted in Table 4.6. It has
to be mentioned, that connection authentication is implemented by means of a safe addressing
model.

Unfortunately, information about application of SafetyLON can hardly be found. For the
time this thesis was written, it was not even possible to examine if SafetyLON was used at all.
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Corruption X
Unintended repetition X
Incorrect sequence X
Loss X
Unacceptable delay X X
Insertion Xa) Xa)

Masquerade X
Addressing X
NOTE: Connection authentication is implemented by usage ofa safe addressing model. Messages are just processed
if the source address in a delivered message is in the list of known source addresses.
a) In conjunction of timestamps with safe addresses.

Table 4.6: Communication errors and detection measures used by Safety LON
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CHAPTER 5
KNX Safety

The development of a safety-related device requires to consider every aspect of a device starting
from a sensor up to the actuator. The chain is visualized in Figure 5.1. For the further safety
considerations, only the red marked units will be taken intoaccount.

Figure 5.1: System chain - From the sensor to the actuator

First, all possible hazards have to be determined in a hazardand risk analysis. For fieldbus
systems, [24] has identified them to:

• Crosstalk due to a coupling fault
• Broken cabling
• Wrong wiring
• Stochastic failures
• Extensive bandwidth allocation
• Transmission of unauthorized messages

These hazards can cause further hazardous events which are:

• Data corruption
• Loss of messages
• Insertion of messages
• Delay, repetition, wrong sequence of messages
• Masquerade: Unsafe messages look like safe messages
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Hence, hazards can occur on every component of the microcontroller such as CPU, memory,
inputs and outputs. Since it is assumed that not all used components are fully specified with
regard to their safety properties, Table 3.6 will be applied. As already stated, a SIL can be
achieved by increasing the SFF or fault tolerance of hardware. For SIL 3 that is, according to
Table 3.6, to detect more than 99% of hazards with a fault tolerance of 0 or, to detect 90% to 99%
of hazards with a fault tolerance of 1 or to detect 60% to 90% ofhazards with a fault tolerance
of 2. As shown later, a high SFF can only be gained through extensive online tests and thus high
diagnostic coverage. The consequence is to increase hardware fault tolerance. Hardware fault
tolerance of 1 can be achieved with a 1oo2 architecture as presented in [7].

Up to now, hazards on a microprocessor level have been considered. Failures in the commu-
nication subsystem have been discussed in Section 4.1. Safein- and outputs will be covered in
Section 5.9.

In the following sections requirements to extend KNX with functional safety will be pre-
sented. This will start with a discussion on possible hardware architectures. After a selection of
the best suited hardware architecture, consequences for software will be discussed.

5.1 Hardware Architectures for Safe KNX Nodes

This section discusses possible architectures for safe nodes. We will start with a simple one
channel architecture and, by replicating the safe controllers and bus access hardware, end with
a triple modular redundancy (TMR) approach. Since most automation systems are assumed to
have a safe state, it is sufficient to detect errors and switchto the safe state. This measure lowers
requirements to the whole system enormously since complexity of hardware and software of
fail-safe and fail-operational systems is magnitudes higher.

Most of the architectures in existing solutions make use of the black channel principle as
already described in Section 4.1 which will be assumed here,too. A further requirement for the
choice of hardware is reuse of existing wiring-scheme of KNXnetworks. Thus, full redundant
approaches using replicated bus wiring could be left unconsidered.

One Channel Architecture

The one channel architecture is the most simple architecture with just a single controller. The
implementation of a SIL 3 compliant device requires a certain degree of safe failures as already
presented in previous sections. Since that kind of hardwarearchitecture has a fault tolerance of 0
it is necessary to have a safe failure fraction (SFF) of more than 99% to be SIL 3 compliant (see
Table 3.6). This can be achieved by extensive online self tests resulting in a high diagnostic cov-
erage, but it is very resource intensive. To lower the required safe failure fraction it is necessary
to increase the fault tolerance of the hardware. Such an approach is presented in the following.

Replicated Safe Controllers on a single TP-UART Chip

The first presented architecture (see Figure 5.3) is a typical master-slave model. The safe con-
troller 1 (SC1) receives messages from the bus and forwards them to the safe controller 2 (SC2).
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Figure 5.2: One channel architecture

On top of the safe controllers a safe I/O unit decides on the in- and outputs. Referring to Fig-
ure 5.14, only the SC1 has to run the complete stack (KNX and TP-UART) whereas the SC2
will only run the KNX Safety stack. This architecture has a fault tolerance of 1 and thus a SFF
between 90% and <99% is required. It has to be considered herethat in case the SC1 fails,
SC2 may still work but has no possibility to continue the further operation since it gets no more
messages and cannot send messages.

Thus, the consequence is an architecture shown in Figure 5.4where SC2 also has bus access.
The bus access for SC2 is intended to operate in a cold standbymode which means that it will
only be used if SC1 fails. Then SC2 takes over control and performs the communication. The
single point of failure SC1 has now moved downwards to the TP-UART which is in the black
channel and thus not relevant for the further safety considerations. The problem that arises here
is that in case SC1 fails SC2 has to continue the operation where SC1 ended. Thus, the safe
controllers have to be synchronized. Additionally, the communication lines between the TP-
UART chip and SC1 will have to be physically disconnected since SC1 may fail with a stuck-at
error on the bus lines and thus SC2 cannot communicate either. The problem is that everything
in the black channel is out of the controlled area of the safe controllers which affects the TP-
UART-safe controller connection, too.

Replicated Safe Nodes

A further consequence is to duplicate the TP-UART-Safe Controller line as depicted in Figure
5.5. That approach looks very similar to the afore presentedarchitectures but is very different
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Figure 5.3: Replicated Safe Controllers on a single bus-coupler

Figure 5.4: Replicated Safe Controllers on a single bus-coupler - Alternative
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in terms of the software architecture. The first presented architectures work as master-slave
models. SC1 gets messages and forwards them to SC2. So SC2 is just reacting to SC1s actions
unlike the second architecture where both SCs have bus access. As soon as both SCs have bus
access it is necessary to guarantee determinism among the safe controllers which is also referred
to as replica determinism in [21]. This means that the safe controllers have to be synchronized
and a protocol which assures that only one of the two SCs actually sends a message has to be
implemented. On the other hand, the architecture enables tocontrol whether a message that
has to be sent has been sent correctly by immediately readingit while writing. However, the
architecture requires certain techniques to synchronize the internal states of the SCs which can
be very challenging as pointed out in [21].

Figure 5.5: Replicated Safe Controllers with replicated bus-couplers

Redundant Nodes on a redundant Bus

For completeness of the architecture discussion redundancy approaches will be presented too.
Since these concepts base on duplicated wiring of the fieldbus network they can be disregarded.
If the bus lines are wired redundantly the probability of broken wiring will be lowered. In any
case, measures have to be implemented to detect broken wiring. The architecture depicted in
Figure 5.6 is equal to the architecture depicted in Figure 5.5 from a node-level point of view.
Both have a hardware fault tolerance of 1 which requires a safe failure fraction of 90% to <99%
for SIL3. Triple modular redundancy (TMR) is achieved by adding a third TP-UART-Safe Con-
troller line to the safe node (See Figure 5.7). That would be the most safe architecture so far
with a hardware fault tolerance of 2. According to Table 3.6,the safe failure fraction goes down
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to 60% to <90%. The extension brings advantages in the safe I/O unit since now a simple 2oo3
voter can be implemented. On the other hand the hardware costis significantly higher and for a
fieldbus system inapplicable.

Figure 5.6: Redundant Safe Nodes on a redundant Bus

Conclusion

So far all relevant architectures have been presented with their advantages and disadvantages.
The one channel architecture is not useful due to high computation complexity for the required
online-tests and the redundancy approaches due to the bus wiring. Thus, the remaining archi-
tectures are the replicated SCs with single and replicated bus access depicted in Figures 5.3,
5.4 and 5.5. Since the black channel has to be left unchanged the remaining architecture is the
one depicted in Figure 5.3. Additionally, the architectureis advantageous since no synchroniza-
tion between the single SCs is required. It leaves the black channel completely unchanged and
requires no further knowledge about mechanisms working in the black channel.

Depending on the chosen hardware architecture several requirements arise for the software
architecture. As the black channel gives no guarantees on the completeness, correctness or time-
liness of a sent message, just to name a few, these controls have to be covered by the software.
Therefore, the following sections will present approachesto overcome these issues.
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Figure 5.7: Triple modular redundancy - TMR

5.2 Synchronizing Safety Nodes

This section will explain how to gain a global timebase in a distributed system. Therefore, the
different concepts of time will be described in detail. Further terms like accuracy, precision
and clock drift as defined by [21] will be explained briefly. Two different algorithms, namely
Vector clocks and the Precision Time Protocol, will be presented for synchronizing clocks in a
distributed system. The closing part will describe the usedalgorithm in the KNX Safety project.

Basically, a clock is a counter which is increased by the progression of time. Clocks may
vary in certain parameters. We call a tick of the reference clock amicrotickand the time between
two microticks thegranularity. The granularity of a reference clock is the smallest unit oftime
across all other clocks in the network. Furthermore, we assume an omniscient observer which
has access to a reference clock. Each event will be recognized by the observer and tagged with
the timestamp of the reference clock.

The drift of a clockk between microticksi and i + 1 is defined as the frequency ration
between clockk and the reference clock at the instant of microticki. Thus, the drift can be
calculated by counting the number of microticks of the reference clockz during one granule
of clock k and dividing it by the nominal number of microticksnk of the reference clocks’
microticks in a granule [21]:

driftki =
z(microtickki+1)− z(microtickki )

nk

Furthermore, thedriftrate ρki [21] is defined as
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which tends to get zero for perfect clocks.
The offset error of two clocksj and k with the same granularity is defined as the time

difference between two consecutive microticks of these clocks measured in microticks of the
reference clock [21].

offsetjki = |z(microtickji )− z(microtickki )|

TheprecisionΠi at microticki of a given ensemble of clocks{1, 2, . . . , n} is defined as the
maximum offset between any of these clocks [21]:

Πi = max
∀1≤j,k≤n

{offsetjki }

The maximum offset between any two clocks in an interval of interest is called the precision
Π of the ensemble and is measured in microticks of the reference clock.

The accuracy is defined as the offset of clockk against the reference clock at microticki
of the reference clock. The maximum offset of clockk in an interval of interest is denoted by
accuracyk.

For now the most important terms for clocks are defined. In thefollowing the basic concepts
of internal clock synchronization will be explained.

The idea behind clock synchronization is that all correct nodes work within a specified preci-
sionΦ regardless of the driftrates of the single clocks. Since every clock works slightly different
they need to be synchronized after an interval calledresynchronization intervalRint. An exam-
ple is shown in Figure 5.8. Here one can see that clocks drift apart (grey shaded areas) and after
the durationRint they are resynchronized and the process starts again. Theconvergence function
Φ denotes the offset values immediately after resynchronization. Thedrift offsetΓ denotes the
maximum difference between any two good clocks during a resynchronization interval. As the
drift offset depends onRint andρ it can be calculated by

Γ = 2ρRint

By looking at Figure 5.8 one can see thesynchronization conditionfor an ensemble of
clocks:

Φ+ Γ ≤ Π

This means that starting immediately after a resynchronization, the convergence function
corrects the clocks to a specified precisionΦ. After that the clocks drift apart byΓ. As the
clocks need to stay within a defined interval of precisionΠ the synchronization condition results
in Φ+ Γ ≤ Π.
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Figure 5.8: Synchronization condition

Now assume we have a central master which periodically sendsits current time to all other
nodes. The time it takes for the master to read its local clockvalue, to put into a message and to
send it as well as the time it takes for the receiver to unpack the message and to read the sent time
is called thejitter ε. The jitter is most affected through the communication subsystem and thus
a non-deterministic function. However, adding the jitter to the precision of the central master
synchronization results in

Πcentral = ε+ Γ

Precision Time Protocol IEEE1588

The Precision Time Protocol (PTP) is an IEEE standardized protocol for high precise clock syn-
chronization [15]. It is applicable to any communication system supporting multicast communi-
cation. The protocol supports a system wide synchronization accuracy to a grandmaster clock in
the sub-microsecond range with minimal network and clock computing resources. This section
gives a short overview about the terms, constraints, exchanged messages and the communication
scheme of the PTP.

Terms of PTP

Grandmaster clock: The grandmaster clock is the source of synchronization within a domain.
It is comparable with a reference clock.
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PTP Port: A logical access point of a clock for PTP communication to the communications
network.

Ordinary clock : A clock that has a single PTP Port. The clock can act as masterclock or
as a slave clock which synchronizes to a master clock.

Boundary clock: A clock that has multiple PTP Ports in a domain and maintainsthe
timescale used in that domain. That clock may be a master or a slave clock.

Constraints to the network and the implementation

• The network eliminates cyclic forwarding of PTP messages.
• PTP assumes a multicast network model.
• The time accuracy is degraded by asymmetry in the communication paths. This means

that it takes different times for messages to be passed to thesynchronization source and
back.

• PTP tolerates duplicated, missed or out-of-order messagesas long as they happen seldom.
• The network should be optimized to forward PTP messages at high priorities to prevent

the introduction of jitter.

Exchanged messages

The PTP distinguishes between event messages which containa timestamp and general messages
which do not require accurate timestamps. An event message can be one of:

• Sync
• Delay_Req
• PDelay_Req
• PDelay_Resp

General messages are defined by:

• Announce
• Follow_Up
• Delay_Resp
• PDelay_Resp_Follow_Up
• Management
• Signaling

The PTP defines two ways to measure the propagation delay between PTP ports, namely
the delay request-response method for the synchronizationof ordinary and boundary clocks
and the peer delay mechanism for measuring the link delays. Sync, Delay_Req, Follow_Up
and Delay_Resp messages are used in the request-response method whereas PDelay_Req, PDe-
lay_Resp and PDelay_Resp_Follow_Up messages are used to implement the peer delay mech-
anism. The Announce messages are used to establish a hierarchy between master and slave
clocks. Management messages are intended to query and update PTP data sets as well as to
customize the PTP system. Signaling messages are defined forcommunication between clocks
regarding all other purposes.
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Synchronization Process

The execution of the PTP works in two phases:

• Building a master-slave hierarchy through Announce messages, and
• Synchronization of the clocks

The hierarchy is established by a best master-clock algorithm. The properties of the clocks
received in the Announce messages are compared to the already known clocks and the best
among them is chosen as master.

Next, the clocks are synchronized according to the message exchange sequence shown in
Figure 5.9.

Figure 5.9: Basic synchronization message exchange [15]

• The master initiates the sync-process by sending a Sync message to all its slaves and notes
the timet1 it was sent.

• The slave receives the Sync message and notes the timet2 it was received.
• The master tells its slaves about the timet1 when the Sync message has been sent. This can

be done either by packingt1 into the Sync message or by sending a Follow_Up message
containingt1.

• The slave sends a Delay_Req message to the master and notes the timet3 it was sent.
• The master receives the Delay_Req and notes the time of its receptiont4.
• The master replies with a Delay_Resp containingt4.

After the synchronization process a slave knows all four times t1, t2, t3 and t4. First, an
offset correction can be applied:

offset = t2 − t1 − delay
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where theDelay is not known yet. For the correction of the delay the timestms (delay master
to slave) andtsm (delay slave to master) are assumed to be equal. Otherwise, small errors in the
calculation of the link delay will occur.

tms = t2 − t1

tsm = t4 − t3

delay =
tms + tsm

2

It is absolutely essential to have the exact times of the sending and receiving instants of the
messages. That means that a timestamp is best drawn as late aspossible before sending it. Due
to the execution of the protocol stack this is not easily possible. Thus, Follow_Up messages are
used which contain the sending instant of the previously sent Sync message. The same applies
for the receiving times. The timestamp of a received messageis best drawn immediately when
it is read from the bus. As this is not always possible too, further errors in the offset and link
delay calculations will arise.

Vector Clocks

So far the term clock was assumed to be a counter which increases by the progression of time. In
the following, we will assume that a clock progresses by the occurrence of events. This means
that whenever an event happens the local counter is increased by one. This concept is being
referred to as logical clock [22].

Now assume that each node in a network has its own view of the logical timesCi of each
other node kept in a vector of lengthn, wheren is the number of processes in the network. At
the beginning the vector is initialized with the zero vector. Whenever an event occurs the clock
ticks immediately before the event by incrementing the value of its own component:

Ci[i] := Ci[i] + 1

Each message which is sent across the network contains the timestamp vector of its sender.
By receiving a message the timestampst of the remote vector and the local vectorCi are adapted
by the following function:

Ci := sup(Ci, t)

wheresupdenotes the component-wise maximum operation. The timestamp C(e) of an event
e at processPi is the value of the clockCi at the moment of the execution ofe. An example
execution is depicted in Figure 5.10. The vector timestampC(e) of an evente contains the
complete knowledge about previously happened events from which e is potentially dependent.
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Figure 5.10: Example execution of vector clocks

Conclusion

Summing up, the vector clocks protocol is well applicable for environments where the number
of nodes participating the communication is limited since occurance of an event will require to
exchange the vector time. Thus, increasing the number of nodes implies increasing the length
of messages and increasing the utilization on the bus. However, the vector clocks method is
not applicable to KNX Safety due to a simple reason: The protocol extension only allows six
bytes of user data. As described, a node has to keep track of all events happening at other nodes
which requires to store an array with the length of the numberof participating nodes. Assuming
that 255 events (1 byte) might happen before the local counters are resetted, only 6 nodes could
participate the synchronization which is not sufficient forthe requirements of the KNX Safety
project.

The Precision Time Protocol is intended for use in environments where highly accurate
clock synchronization is required. Therefore, a wide variety of different message types, data
types and settings are defined in the IEEE 1588 standard. As one can see later, our approach
does neither require nor give the possibility in the implementation of such a high accuracy. Thus,
not all properties of the PTP will be implemented. It is sufficient to achieve an accuracy in the
millisecond range. Therefore, the basic synchronization algorithm depicted in Figure 5.9 could
be implemented.

5.3 Intercommunication - KNX Safety Protocol Extension

To gain functional safety it is not sufficient to just build safe hardware. Instead, also software
has to be designed to fulfill safety requirements which involves safety of application software
and an applied communication protocol. By employing the mentioned architecture depicted in
Figure 5.3 and taking into account requirements of SIL3, a safe failure fraction of 90% to 99%
is necessary. That is, more than 90% of all dangerous failures shall be detected. That involves
failures in the safety-related part or failures in the blackchannel which is the standard KNX
network.

Safety devices developed from scratch will have no constraints for protocol design. Since
this thesis builds on an existing KNX protocol which shall not be altered, protocol safety has
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to be gained differently. A widely accepted approach to extend non-safe protocols by safety, is
to embed a separate protocol enabling safety requirements into the payload area of the non-safe
underlying protocol. Such existing solutions have alreadybeen presented in the previous chap-
ter. These solutions make use of the black channel principlestating that the non-safe protocol
resides in the black channel and therefore needs not to be taken into account for safety con-
siderations. Instead, the embedded safety-providing protocol has to take care of all mentioned
communication errors as specified in Table 4.1. Therefore, the protocol extension as proposed
by [20] will be applied (see Figure 5.11).

Figure 5.11: Safety providing protocol extension for KNX

• The ID field contains information about the protocol versionand the length of the follow-
ing safety-related data.

• The safety address of the source is encapsulated in every sent message. During com-
missioning phase, each safety data-point is assigned a safety address. Additionally, each
safety data-point receives a list of safety addresses whichit is allowed to receive messages
from. Thus, a received message will only be processed if the safety address contained in
the message is on the list of known safety addresses. Using two bytes for safety addresses,
a total of216 = 65535 safety data-points is possible.

• Since KNX is purely event-driven and sends messages solely upon changed values, the
last received value is assumed to be the most current one which gives no possibility to
detect loss or delay of messages. For safety considerations, each message is tagged with
a timestamp generated at the time-instant of the causally connected event. To be able to
compare timestamps across a network, clock synchronization is required.

• The message type defines the type of the following safety-related data.
• Safety-related data carries the current values captured from the environment.
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• Every safety-related frame is checked by a CRC which enablesto detect stochastic faults
like bit faults resulting in corruption of data.

Implementing the afore mentioned protocol, communicationerrors as defined in Table 4.1
will be detected by the following measures (see Table 5.1):
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Corruption X
Unintended repetition X X
Incorrect sequence X X
Loss X X
Unacceptable delay X X
Insertion X X X
Masquerade X X
Addressing X

Table 5.1: Communication errors and detection measures used in KNX safety

• Corruption will be detected by CRC in every safety-related data frame.
• Unintended repetition will be detected by timestamps generated once for every sent mes-

sage. If more than one message from the same source contains the same timestamp, the
message has to be neglected.

• Incorrect Sequence: Received messages have to arrive in a strict timely order. That is,
assuming eventse1 and e2 happened at time instantst1 and t2, respectively, wheret1
happens beforet2 (denoted ast1 < t2) then messagem1 sent in accordance toe1 has to
arrive beforem2 sent in accordance toe2.

• Loss: Safety extension will send messages cyclically afterpredefined intervals (heartbeat)
regardless if values have changed or not. Since every node knows these intervals, a timer
(watchdog) will be started upon reception of such a message.If after expiration of that
timeout no new heartbeat message has arrived, loss of connection has to be assumed.

• Unacceptable delay will be detected like message loss.
• Insertion: Each safety node is taught a list of safety addresses during the commissioning

phase which it is allowed to receive messages from. If a safety address contained in a
safety-related message is not in the list of known safety addresses, the message can be
assumed to be inserted and has to be neglected.

• Masquerade: Each safety-related message contains the safety address of the sending node
and a checksum mechanism to ensure data-integrity. Since the checksum will be gener-
ated over the whole safety-related part of the message, it isvery unlikely, that a non-safety
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message contains information which would represent a validsafety address accepted by
the receiving node and, additionally, also the checksum is valid. Thus, it is almost impos-
sible that a non-safety message is interpreted as a safety-related message.

• Addressing will be detected like insertion.
• Additionally, each safety-related message will be received and checked by both safety

controllers. Only if both safety controllers agree on the same correct result, the mes-
sage will be accepted (redundancy with cross-checking). Otherwise, the message will be
neglected.

Communication between safety data-points

Addressing of safety nodes cannot be done directly since thesafety extension is built on top of an
existing KNX protocol. Thus, a safety-relevant message is packed into the payload of a standard
KNX message and will have a usual KNX address, too. An addressing scheme is depicted in
Figure 5.12.

Figure 5.12: Schematic addressing in KNX Safety

Referring to Figure 5.12, if a safety relevant message should be sent from a data-point with
safety address 1 (SA) to SA 2, the safety-relevant message will be packed into a standard KNX
message with a particular KNX address. Since non-safety devices in the KNX network, such
as routers, switches and gateways, do not care about the datacontent of a message, the safety
address cannot be used for addressing. The most simple solution therefore is to define one KNX
group where all KNX nodes containing safety data-points areconnected. If a message is sent
to that group, every node in the same group will receive and accept that message. Thus, also
all safety data-points will receive that message. As depicted in Firgure 5.12, if the data-point
with safety address 1 tries so send a message, the safety-relevant message will be packed into
a standard KNX message containing the KNX group address 1. That message will be received
and accepted by any standard KNX node in that particular group with address 1. Any KNX
message with a different group address should be neglected by the KNX stack. If a message
with an unacceptable group address passes the KNX stack anyway, the safety-related part of the
message should not be accepted by the SCL since safety-relevant messages are only accepted if
the safety address is in the list of known safety data-points.

As mentioned afore, timing expectation is required to detect loss or delay of messages. To
determine a realistic timeout, it is required to know the worst case time it takes for a message
to be received by another node. The timeout consists of the processing times required for han-
dling the safety and non-safety protocol, the transfer timefrom the microcontroller to the TP-
UART-chip and from the TP-UART-chip to the KNX-line. Transfer times from microcontroller
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to TP-UART and following KNX-line additionally are dependent on KNX-specific retransmit
measures. Likewise, handling and transfer times on the receiving node have to be calculated.

• Data sent from the microcontroller to the TP-UART will be transferred at a transmission
rate of 19200 bit/s. As soon as the last byte has been transferred to the TP-UART, a
checksum will be calculated at the TP-UART and the message will be transmitted to the
KNX-line [25]. The time required for checksum calculation will be neglected here. The
transfer rate of 19200 bit/s yields in a bit-time of52, 083µs. One data-packet transferred
to the TP-UART consists of one start-bit, eight data-bits, one parity-bit and one stop-bit
(11 bits). Between consecutive bytes, the bus will be idle for 2 bit-times. Additionally,
each data byte sent from the microcontroller to the TP-UART is preceeded by a control
byte. To indicate start and end of data-content, special data start and data end octets are
transmitted. Assuming the extended KNX frame format, a maximum of 263 bytes of data
might be transmitted. Attaching start and end bytes as well as control bytes to each of the
transmitted data bytes, this results in 265 * 2 = 530 bytes which is a worst case time of
358,75ms required to transfer data from the microcontroller to the TP-UART.

• Transmission from the TP-UART to the KNX-line: At maximum, 265 bytes (1 control
byte, 263 data bytes and 1 checksum byte) will be transferredat a transmission rate of
9600 bit/s which yields in a bit-time of 104µs. Between consecutive bytes, the bus will
be idle for 2 bit-times. Before transmission, the sender will wait for 53 bit-times (5,52ms)
to ensure that no other sender is currently active. The transmission might fail if a higher
prioritized frame is currently in transfer. In that case, the frame will be retransmitted for
a maximum of three times. Between retransmit attempts, the sender will wait for 50 bit-
times (5,512ms). One data-byte transferred will be enclosed by one start-bit, one parity-bit
and one stop-bit which yields in 1,146ms for one data-byte tobe transferred. The worst
case time for one complete data frame to be transferred wouldbe to initially wait for
an empty bus-line (53 bit-times) and failing to send due to higher prioritized frame with a
maximum length of 265 bytes. After that, the sender will waitfor another 50 bit-times and
might fail again. There will be one initial try to transmit followed by 3 retries. Summing
up, the overall worst case transfer time results in: 53 bit-times (5,521ms) followed by 265
bytes data (358,07ms), 50 bit-times idle (5,512ms) and 265 bytes data. That is, 5,521ms
+ 358,07ms +3*(5,512ms + 358,07ms) = 1,454s worst case transmission time from the
TP-UART to the KNX-line.

• Transmission from the KNX-line to the TP-UART and the microcontroller: In contrast to
the transmission from the microcontroller to the TP-UART and further to the KNX-line,
data received by the TP-UART from the KNX-line will be immediately forwarded to the
microcontroller after receiving the control-byte from theKNX-line.

• Repeaters, routers, etc. on the KNX-line: KNX supports transmission over a maximum of
5 lines. That means, summing up transmission times from microcontroller to TP-UART
(358,75ms) and TP-UART to KNX-line (1,454s) a controller will receive the message at
latest after 1812,75ms. Each time a controller forwards a message, that time has to be
calculated yielding in 5*1812,75ms = 9,06s until a node in 5 lines distance receives a
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message. A complete transmission cycle between two KNX nodes is illustrated in Figure
5.13.

Data exchange between safety data points

To exchange data between safety data points it is required todefine the meaning of the exchanged
data. Therefore, the KNX safety protocol contains the message type field which indicates how
to interpret the following data.

So far identified message types could be encoded as depicted in Table 5.2:

Octet 8 Message type
7 6 5 4 3 2 1 0
General messages
0 0 0 0 0 0 0 1 SKNX_A_heartbeat
0 0 0 0 0 0 1 0 SKNX_A_safestate
Time synchronization messages
0 0 0 0 0 0 1 1 SKNX_A_timesync_sync
0 0 0 0 0 1 0 0 SKNX_A_timesync_follow_up
0 0 0 0 0 1 0 1 SKNX_A_timesync_delay_req
0 0 0 0 0 1 1 0 SKNX_A_timesync_delay_resp
Process data messages
0 0 0 0 0 1 1 1 SKNX_A_pd_value_read
0 0 0 0 1 0 0 0 SKNX_A_pd_value_write

Table 5.2: Message types for KNX Safety

As mentioned afore, each safety node is required to cyclically send heartbeat messages
(SKNX_A_heartbeat) to indicate that it is still working. Depending on the intervals required
for heartbeat messages and time synchronization processes, the time synchronization process
could be used as heartbeat mechanism too.

The SKNX_A_safestate message is intended to indicate a global error on a network
level. Upon receiving that message, all safety nodes have totransfer into their safe state.

The time synchronization messages have already been presented in the previous Section 5.2.
To indicate process data exchangeSKNX_A_pd_value_read and
SKNX_A_pd_value_writemessages are defined.

5.4 Software Architecture for a Safety Node

To apply the afore discussed architecture depicted in Figure 5.3, certain requirements arise for
the software. Since the chosen architecture consists of twomicrocontrollers, a communication
protocol to exchange messages between them has to be found. To detect errors in the commu-
nication system, time synchronization is required. Furthermore, to gain a SFF of more than
90% test mechanisms have to be provided as well. Finally, as stated in [5] if safety-related
and non-safety-related software are executed on the same device, it has to be ensured, that the
non-safety-related part does not have any influence on the safety-related part of the software.
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Figure 5.13: Timing diagram of message exchange between KNXnodes
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Therefore, an operating system or scheduler has to be developed which ensures independence of
safety-related and non-safety-related parts of the software.

A possible software architecture for KNX Safety is depictedin Figure 5.14. As one can
see, the KNX Safety API is the core of intelligence of a safetynode. The KNX Safety API
provides an operating system responsible for executing cyclical tasks like time synchronization,
online self tests and serial communication between safe controllers 1 and 2. Furthermore, both,
the KNX application and the KNX Safety application access the KNX Safety API by means
of its included operating system. Depending on the receivedmessage type either a task will
be scheduled to the KNX application or the KNX Safety application, respectively. It has to be
mentioned, that in case a safety-related task and a non-safety-related task are to be executed,
the non-safety-related task will be preempted. As one can see, the KNX application will just be
executed on safe controller 1. Since there is no requirementfor non-safety-related messages to
be cross-checked with safe controller 2, safe controller 2 will never receive a non-safety-related
message. Thus, safe controller 2 cannot run the non-safety-related application.

Figure 5.14: Software architecture of a safe KNX node

The following sections will provide discussions on the afore mentioned issues regarding a
communication protocol between safe controllers 1 and 2 (Section 5.5), an operating system
(Section 5.8) and online test mechanisms (Section 5.7).
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5.5 Intracommunication - Communication between Safe
Controllers

Messages are received from the TP-UART Chip only at one processor, namely the coordinator.
As we have a two channel architecture (see Figure 5.3) the other processor, namely the partic-
ipant needs to get the message too. Therefore, this section describes possible methods for a
reliable message exchange between two or more processors.

Simple Acknowledge

The first protocol is a simple transmission of data with a following acknowledge as shown in
Figure 5.15. Using this protocol the coordinator can be surethat the participant got the message
if it replied with an ACK. The other way round, the participant cannot be sure, whether the
coordinator actually got the ACK to the just received message. This means, that the participant
cannot be sure if the coordinator actually knows that the participant got the message. Thus, a
more sophisticated way of a message exchange has to be applied.

Figure 5.15: Simple acknowledge transmission protocol

Two-Phase-Commit Protocol 2PC

The logical consequence to the afore mentioned problem is the introduction of a second com-
munication phase which ensures that a participant gets an acknowledge to the previously sent
ACK as presented by [27]. The presented 2PC is at first based onthe assumption that no failures
occur. Afterwards, possible scenarios are described wherethe coordinator or participants may
fail. Example executions of 2PC are depicted in Figures 5.16and 5.17:

• The coordinator sends aVOTE_REQUEST to all its participants and expects to get either
VOTE_COMMIT or VOTE_ABORT.

• If a participant receives aVOTE_REQUEST it either returns aVOTE_COMMIT to indicate
that it is locally prepared to commit a transaction or it replies aVOTE_ABORT.
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Figure 5.16: Sequence diagram of a successful
Two-Phase-Commit Protocol

Figure 5.17: Sequence diagram of a failed Two-
Phase-Commit Protocol

• Upon receiving aVOTE_COMMIT from all its participants the coordinator will reply with
aGLOBAL_COMMIT to notify the participants to commit the transaction.

• If one of the participants replies with aVOTE_ABORT the coordinator will broadcast a
GLOBAL_ABORT to indicate that the transaction has failed.

In a failure free scenario the 2PC-protocol can ensure that aparticipant got a previously sent
message, and the coordinator will know that the participantactually got the message. As the
assumption of a failure free environment is not sufficient for this thesis, we assume that fail-stop
failures may occur. This can be explained best using the state diagrams depicted in Figures 5.18
for the coordinator and 5.19 for the participants.

Figure 5.18: State diagram of the coordinator in the Two-Phase-Commit Protocol

First, assume all participants are inINIT state and the coordinator crashes. The participants
will wait for a VOTE_REQUEST. Since the coordinator has crashed such a message will never
be received and thus the participants will be blocked inINIT state. To detect such a case
participants will wait until a timeout happens and send aVOTE_ABORT to the coordinator and
cancel the current transaction locally.

68



Figure 5.19: State diagram of a participant in the Two-Phase-Commit Protocol

A similar case can be observed if the coordinator is in stateWAIT, and waits for votes
from its participants. If not all participants replied within a certain time, the coordinator has to
distribute aGLOBAL_ABORT to all of them.

Finally, assume a participant in stateREADY waiting for a GLOBAL_COMMIT or a
GLOBAL_ABORT from the coordinator. Furthermore, assume the coordinatorhas crashed. This
means that the coordinator may have sent aVOTE_REQUEST
or a GLOBAL_COMMIT, whereas either of those messages has not been delivered to all par-
ticipants. In such a case the participant may not simply abort the transaction. Instead, it has to
find out in which state the other participants are and decide according to their states to either
abort or commit the transaction.

In any case this model assumes that faulty processes recoverwithin a finite time. To enable
local recovery the current state of the process needs to be written to a persistent memory. For
instance a participant which has crashed in statesCOMMIT or ABORT without having returned
an ACK to the coordinator, can recover to its last logged state and inform the coordinator about
its decision.

Problems arise if a participant crashes in stateREADY. After recovery it can not safely decide
to abort or commit the transaction without checking the decisions of other participants.

If the coordinator crashes in stateWAIT it has to ensure, that it has not missed anyCOMMIT-
messages. Therefore, a safe solution is to retransmit theVOTE_REQUEST. Likewise, if a deci-
sion has already been taken it is sufficient to retransmit it when recovering.

Here one can observe that a participant may block until the coordinator has recovered. Such
a scenario is present if all participants have received theVOTE_REQUEST and the coordinator
crashes. If so, the participants cannot cooperatively decide on a final result. A possible solution
to avoid the blocking issue is resolved in the Three-Phase-Commit protocol described in the
following section.
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Three-Phase-Commit Protocol 3PC

As described before if the coordinator crashes, the participants may not be able to reach a final
decision. Therefore, [26] has extended 2PC to avoid blocking processes in crash-stop scenarios.
To achieve this, the following two constraints have to be fulfilled:

• There is no single state from which it is possible to directlyreach one of the statesCOMMIT
or ABORT.

• From each state it is possible to reach a final decision and from which a transition to
COMMIT can be made.

The execution of the 3PC is quite similar to 2PC but with the difference that an addi-
tional pre-commit phase is now introduced. The coordinatorstarts again by multicasting a
VOTE_REQUEST to its participants and expects to receiveVOTE_COMMIT messages. Once
the coordinator got allVOTE_COMMIT messages it broadcasts aPREPARE_COMMIT. After
receiving all acknowledges the coordinator will now send the GLOBAL_COMMIT message to
actually commit the transaction.

Figure 5.20: Sequence diagram of the Three-Phase-Commit Protocol

Once again, there are possible scenarios where processors may block waiting for incoming
messages. Therefore, state diagrams for the coordinator and the participant in Figures 5.21 and
5.22 illustrate that behaviour.
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Like in the 2PC, a participant may wait for aVOTE_REQUEST until it times out and even-
tually aborts the transaction. Analogously, the coordinator may stay inWAIT state waiting for
votes from the participants. On a timeout the coordinator will assume that one or more partici-
pants have crashed, abort the transaction and broadcast aGLOBAL_ABORT.

Now assume that the coordinator is blocked in statePRECOMMIT. Since all participants
must have voted for committing the transaction before - otherwise the coordinator would not
have reached thePRECOMMIT state - the coordinator can now safely commit the transaction by
multicasting aGLOBAL_COMMITmessage.

A participant may block in one of the statesREADY or PRECOMMIT. On a timeout the
participant has to ask its neighbours for their states. If all of them are in stateCOMMIT or
ABORT the participant should move to one of those states, too. If all neighbours are in state
PRECOMMIT the transaction can safely be commited.

Figure 5.21: State diagram of the coordinator in the Three-Phase-Commit Protocol

Conclusion

This section has described possible methods for the exchange of messages between safe con-
trollers on a single node - hence the name intracommunication. The simple acknowledge pro-
tocol has been shown to not supply the required level of safety. The applied architecture as
depicted in Figure 5.3 makes use of just two safe controllers. The three-phase commit protocol
is assumed to rely on a majority of correct working controllers, which can not be guaranteed with
only two processors. Hence, the 3PC can be taken out of consideration. Thus, the two-phase
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Figure 5.22: State diagram of a participant in the Three-Phase-Commit Protocol

commit protocol is the only remaining protocol which might be applied for communication be-
tween safe controllers 1 and 2 in KNX Safety.

5.6 KNX Safety Application

The actual user application is carried out in the KNX Safety Application. The application pro-
grammer defines how KNX Safety messagesSKNX_A_pd_value_read and
SKNX_A_pd_value_write as defined in Table 5.2 have to be interpreted. Therefore, the
programmer has access to the KNX Safety stack to fetch the content of a safety message and to
create safety messages. To enable interaction with the environment, the programmer has access
to the interface of the safe I/O unit. It has to be mentioned, that it is up to the underlying oper-
ating system to run cyclical processes like time synchronization and intracommunication. The
KNX Safety application is solely responsible for reading and writing output values according to
the user application.

Similar to KNX, the concept of data points will be applied here too. Here, aKNX Safety Data
Point can be read using aSKNX_A_pd_value_read message while writing a safety data
point will be handled by anSKNX_A_pd_value_writemessage. If KNX-mechanisms like
A_GroupValue_Read-PDU and
A_GroupValue_Write-PDU are required too, Table 5.2 has to be extended by the required
message types.
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5.7 Hardware self tests

As already stated, a certain SIL can be gained through increasing fault tolerance of hardware or
increasing detection of failures which is mainly gathered by software. While hardware architec-
tures have already been discussed thoroughly in previous chapters, test mechanisms in software
will be covered in this section.

Basically, there are two ways of test executions: First, to run the system for a predefined
time and fully test it afterwards (offline test). A second possibility is to test the system cyclically
in running mode (online test). Figure 5.23 illustrates the required test intervals of on- and offline
tests.

Figure 5.23: Online and Offline test intervals. Slightly modified illustration from [28]

During operation the number of errors will increase linear.If no error detection measures are
performed, the system will run until a maximum number of faults is reached where the system
cannot be assumed to work safely any further. At that time instant, the system has to be fully
tested. After that test the system is in a theoretical new state which means that theoretically every
error has been detected and repaired. In practice not every error will be detected nor repaired.

If cyclical tests are performed, a fraction of errors can be detected and repaired. Since not
every error can be detected or repaired by online tests (for instance mechanical wear problems)
some errors will remain what requires to perform a full test additionally.

It is clear, that only combination of online and offline testsyield in an optimal solution.
Eventually, information about best test strategies gives an FMEA analysis.
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Errors in memory

Any CPU requires various memory elements to process data. Therefore, data is stored in mem-
ory elements and retrieved later to be processed. During that time, information in memory might
be corrupted through hardware defects. Basically, memory can be divided into two categories:
Read Only Memory (ROM)andRandom Access Memory (RAM). ROM keeps the operating sys-
tem, bootstrap loader and application code while RAM contains working information like reg-
isters. Thus, errors in memory may occur in various ways resulting in marginal deviated stored
values or in hazardous program execution. Therefore, it is of importance to ensure a correct
working behaviour of memory. This can only be achieved through repetitive memory tests. The
test intervals will depend on manufacturer specific MTTF of the memory.

Memory elements are organized in units of bytes (8 bit) or words (16 bit) and can be accessed
by addressing the memory element followed by a write or read command. Memory elements are
addressed by an address decoder controlled by the CPU. The contents of the addressed memory
cell are then made accessible by an I/O driver which is controlled by an access logic deciding if
the cell has to be read or written. An illustration of a memorystructure including possible errors
is given in Figure 5.28.

An error is present if the memory access deviates from the intended behaviour. An error free
memory element will behave like depicted in Figure 5.24.

Figure 5.24: State diagram of a correct working memory cell

If the current value of the cell is 0, and the next value written will be 0 too, the resulting
value of the cell will be 0. If the current value is 0 and the written value is 1, the resulting value
will be 1. The same applies for an initial value of 1. Any deviation of the afore depicted state
diagram is an error.

Such an error might be astuck-at-erroras depicted in Figures 5.25 and 5.26 resulting in an
unchanged memory cell. If the current value of the cell is 0 itwill remain 0 regardless of the
written value. The same applies to a cell value of 1 and a written value of 0.

Similarly, a memory cell can be in a dominant state resultingin an unchangeable state once
the cell resides in that dominant state (see Figure 5.27).
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Figure 5.25: State diagram of a stuck-at zero er-
ror in a memory cell

Figure 5.26: State diagram of a stuck-at one er-
ror in a memory cell

Figure 5.27: State diagram of a state transition error of memory cell

So far, errors in memory have been considered to occur in the memory cell only. Since
memory cells are accessed via addresses, the address decoder or access logic might behave
erroneous, too. Potential errors are depicted in Figure 5.28.

• A short circuit between address lines will result in replicated data in memory since ad-
dresses will occur twice. The replicated cells will depend on either a logical 0 or 1 in the
address decoder will become dominant.

• Likewise, a stuck-at to ground will result in replicated data in memory.
• A short after the decoder will result in replicated memory, too.
• A short in the data area will result in identical bytes in a word. If the short resides on the

output side, any data will be affected. There is also the possibility that the short resides in
the memory cell itself which can be detected by direct addressing the cell.

• Timing errors can be assumed to occur sporadically. But if they occur, a total failure of
the device can be assumed.

• Defects in the memory cell can be caused by manufacturing process or occur during op-
eration.

• Open circuits might result in no access at all or might affectneighbor cells.

RAM tests

As described so far, errors in memory may occur in the memory cell or in the access logic
for the cell. Thus, memory testing should cover all parts of the memory element to ensure a
high diagnostic coverage. Basically, memory tests work by writing test patterns to memory and
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Figure 5.28: Potential errors in a memory block

reading them back afterwards. If the written value differs from the read one, the memory cell
has to be assumed erroneous. It is clear, that this kind of tests can only be performed on writable
memories.

TheMarching-Bit-Testassumes an empty memory (all cells set to 0) and writes sequentially,
beginning by the first memory address ones to each bit of the memory. Before writing the new
value, each bit is checked to be 0. In a second run, the test will be performed with inverted data
beginning from the last memory cell.

Similarly, theCheckerboard-Pattern-Testinitially writes alternating 0/1 bits to memory. Af-
terwards, all bits are read back and checked for their correct value. A second run is performed
with inverted data.

TheWalkpat-Pattern-Testassumes a memory initialized with defined bit-patterns. Thefirst
step will be to invert the first bit and test all other bits for their validity. After that, the first bit
will be set to its initial value again and the procedure will be performed for the second bit. In a
second run, the whole memory will be inverted and tested again.

Finally, theGalpat-Pattern-Test(galloping patterns) is a variation of Walkpat-Pattern-Test
where a single 1 passes an initially empty (all bits set to 0) memory. After inverting a single
bit, all (including the currently set bit) bits are read and tested for validity. Additionally, after
reading a (0-) bit-cell also the inverted (1-) bit-cell willbe checked for validity. Thus, the Galpat-
Pattern-Test also detects errors yielding from unexpectedwriting after reading a bit-cell. After
every bit-cell has been inverted, a second run will be performed starting with a 1-initialized
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memory where a single bit is set to 0. Figure 5.29 illustratesa sample test execution.

Figure 5.29: Sample execution of Galpat-Pattern-Test

Memory Test Performance and Test Strategies

Depending on the chosen test pattern, memory tests can be very time consuming. For example,
simply setting all bits to 0, reading the memory, writing allbits to 1 and reading the complete
memory again already results in test length of4∗2N where N is the number of address bits where
diagnostic coverage (DC) is less than50% since neither the decoder errors nor short circuits are
detected. The more exhaustive Galpat-Pattern-Test provides very high diagnostic coverage but
yields in test length of2∗ (2N +2∗n2) where N is the number of address bits and n the number
of memory cells (bits). Table 5.3 gives an overview of tests and the resulting DC.

Test / Diagnostic method Diagnostic Coverage
Checkerboard-Pattern-Test low
Marching-Bit-Test low
Walkpat-Pattern-Test medium
Galpat-Pattern-Test high

Parity Bit low
Mirrored memory with constant bit
comparison on every read- and write access

high

Table 5.3: RAM test methods and resulting DC

Since processing time can be assumed to be limited, it is almost impossible to test the whole
memory with a high DC in a single test execution. Instead, memory has to be divided into
several smaller segments and a test manager has to take care of running memory tests part-wise.
Since all presented memory test algorithms are data destroying, the values before test execution
have to be mirrored and written back again. Additionally, the currently in use memory has to be
tested, too. To ensure correctness of mirrored data, it is required to calculate a checksum over
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the mirrored memory area before the test starts, recalculate the checksum after writing back the
memory segment and finally compare the checksums.

Read Only Memory Tests

Contents of read only memory are usually written only once bythe manufacturer to ROM or
during activation or maintenance to EEPROM (Electrical Erasable Programmable Read Only
Memory). Possible errors can therefore be reduced to randomerrors occurring at putting on
supply voltage. Thus, ROM checks should be performed immediately at startup of the system.
Since errors can occur during operation of the system, online-tests are necessary.

The simplest test for ROMs are calculation of parity bits (even of odd) and store the parity
information in a separate word. Alternatively, checksums of ROM can be taken and stored.
Additionally, overflow bits might be considered or not.

A more safe method is to calculate a CRC where the complete memory is assumed to be
a polynomial. Therefore, every byte of the memory is attached to a chain. Using that chain
a CRC is calculated where the remainder is kept in memory. It is clear, that CRC calculation
requires check polynomials guaranteeing Hamming-distance and complete coding. Figure 5.30
illustrates a simple example assuming two bytes of memory and additionally, one byte for the
CRC checksum. To increase data integrity, an appropriate check polynomial has to be chosen.
As depicted in Figure 5.30, combining 16 bits differently results in 65536 possible combinations
of data. Including 8 bits for checksum, 24 bits of information resulting in 16777216 possible
data combinations are available. That is, 16777216 possible combinations against 65535 valid
combinations. Probability to not detect an error is thus65535/16777216 = 1/256 which yields
in DC of more than99%.

Figure 5.30: Sample calculation of CRC

Summing up, ROM error detection mechanisms differ in simplicity and thus error detection
coverage. Parity checks will fail even on even numbers of flipped bits, where for failing CRC at
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least 4 bits have to flip. Table 5.4 gives an overview of ROM test measures and resulting DC.

Test / Diagnostic method Diagnostic Coverage
Parity bit low
Double word checksum medium
CRC with guaranteed Hamming-distance high

Table 5.4: ROM test methods and resulting DC

Errors in the CPU

A CPU (Central Processing Unit) is the core of any processor or microcontroller and is respon-
sible for executing software. Usually, CPU consists of an ALU (Arithmetic Logic Unit), instruc-
tion counter, registers and instruction decoder. Microcontrollers are microprocessors extended
by peripheral components like I/O ports, clock generator, watchdog or communication ports. To
thoroughly test a microcontroller implementations have tobe provided to test every component
separately. It is clear, that only those components have to be tested which are required for the
safety functionality.

There is still doubt about the effectiveness of online CPU tests since the question arises
which errors in a processor could be detected by an erroneousprocessor and if there is a possi-
bility to transfer it to a safe state upon detecting an error.Therefore, the following conditions
have been defined [28]:

• A test should detect random errors.
• A test should detect errors in production lots.
• The DC is derived from error models and not from error combinations.
• Errors are limited in their effects. Even in case of an error,there is still possibility to

transfer the system into a safe state.

[4] presents requirements for error models in single components of microcontrollers and
defines according DC upon detecting an error. An example would be an emergency-stop signal
which is fired only rarely. Software is implemented to execute the according handler which
works on different registers. Caused by rare usage of those methods and switching to associated
registers, it might be the case that the handler method is notexecuted correctly.

Therefore, every seldom used method or hardware component has to be tested dynamically.
Furthermore, test results have to be compared with a predefined expectancy value. It is clear,
that self tests consume a lot of time, but components do not have to be tested concurrently.
Test routines can be executed serially, where overall consuming time to test the whole device
should be between one and two hours [28]. For systems which are restarted regularly it might
be sufficient to execute self-tests at startup.
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Execution of tests are coordinated by a test manager. The manager has to take care, that
none of the test routines consumes more time than provided. Therefore tests have to be designed
to be short enough to fit that constraint. If a test routine takes more time it has to be divided into
several smaller jobs.

Checking the Stack

The stack memory size is assigned at development time. Depending on the usage of interrupts
stack memory can reserve some bytes up to some kilobytes. Theexact size can be determined
after extensive tests. Monitoring stack memory can be done as illustrated in Figure 5.31: The
maximum stack memory element is allocated a fixed value. Following stack memory entries are
filled top-down. Thus, a stack underflow can only occur if more“pop”-commands are executed
than “push”-commands. A stack overflow might occur if (nested) interrupt routines are executed
multiple times. Therefore, a buffer area in the stack memoryis reserved. Stack memory is
initialized on startup and has to be tested during runtime like other memory.

Figure 5.31: Structure of stack memory

Implementing test routines

For different test routines it might be required to temporarily disable interrupts. It has to be
verified, that enabling and disabling interrupts has been executed successfully. If components
are required constantly it might not be necessary to test them separately since deviations might
already be detected during regular operation. For example,sending and receiving registers of a
serial communications port which cyclically sends and receives data do not have to be tested.
Especially if protocols containing checksums are used, anyerror in the communication system
will be detected by higher level software.
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5.8 Scheduling tasks on a Microprocessor

So far, most required tasks for safety-related nodes have been identified and discussed thor-
oughly:

• (Cyclical) Message exchange between safety data-points (intercommunication)
• (Cyclical) Message exchange between safety controllers (intracommunication)
• (Cyclical) Clock synchronization between safety nodes
• Running the safety-related application software
• Running the non-safety-related application software
• Running hardware self tests

To ensure in time execution of each of these tasks, scheduling strategies are of major interest.
On personal computers, scheduling is implemented by the operating system. On most micro-
controllers, scheduling is not available by default. Sincethe application programmer should not
take care about the execution of the afore mentioned tasks, an operating system or at least a
simple scheduling mechanism should be provided which takescare of executing the basic tasks
required for running the safety-related and non-safety-related software.

In the following, some available operating systems have been evaluated for possible reuse
and will be described briefly1 . The criteria for the choice of an existing product has been the
existence of a port to the MSP430f149 since an implementation of the hardware drivers, the
TP-UART stack and the KNX stack is already available.

• MicroC/OSII

MicroC/OSII has been developed by Micriµm and advertises its safety-capability, espe-
cially with its SIL3 and even SIL4 compliance:

“. . . it is successfully implemented in some of the highest level safety-critical
devices, including those certified for avionics DO-178B Level A, and EURO-
CAE ED-12B, medical FDA pre-market notification (510(k)), and pre-market
approval (PMA), and SIL 3/SIL4 IEC for transportation and nuclear systems.2

“

Micriµm offers a 45 day trial license for evaluation after which theproduct needs to be
purchased. There exists a port to the MSP430x5xx processor series, but unfortunately not
for the used MSP430f149.

1http://processors.wiki.ti.com/index.php/MSP430_Real_Time_Operating_Systems_Overview
2http://micrium.com/page/products/rtos/os-ii
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• TinyOS

TinyOS3 is an open-source embedded operating system mainly developed for sensor nodes
(motes). The extension SafeTinyOS4 adds further functionality regarding datatype and
memory safety at runtime. The communication protocol is predefined. Thus, the only
thing to do for the programmer is to handle the inputs and outputs. This is done in the
module based language NCC. Reuse of existing C-code is not provided thus the complete
KNX stack and the TPUART driver would have to be recoded. However, TinyOS supports
the MSP430f149 in the Telos mote, but recoding KNX would go beyond the scope of this
thesis.

• FreeRTOS

The RTOS5 family is available in three different versions:

– FreeRTOS is open source and royalty free.

– OpenRTOS is the commercially licensed and supported version or FreeRTOS. It
supplies further functionality such as USB and TCP/IP components.

– SafeRTOS is a SIL3 certified version with a complete development/safety lifecycle
documentation for compliance with IEC 61508.

There exists a FreeRTOS port for the MSP430f149 in combination with the MSPGCC
toolchain. However, the last supported version of MSPGCC isdated back in 2004 which
is quite too old.

• Other remaining operating systems either do not offer an active support, are not freely
available (embOS, IAR PowerPAC) or do not support the MSPGCCtoolchain (Salvo,
CMX-Tiny+).

So far, operating systems for the MSP430 family have been evaluated for reuse in the KNX
safety project. Since no OS met all requirements, scheduling needs to be developed from scratch.
In the following, an approach for a simple scheduling of safety and non-safety-related tasks will
be presented.

Simple Scheduling for KNX Safety

Scheduling is a very wide area of research and development. Since a detailed discussion on
different scheduling mechanisms would go far beyond the scope of that thesis, basic appropriate
scheduling mechanisms will be presented only. For choice ofa scheduler in KNX Safety, the
following tasks and issues have to be taken into consideration:

3http://tinyos.net/
4http://docs.tinyos.net/index.php/Safe_TinyOS
5http://www.freertos.org/
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• Safety-related user-application has to be prevented from starvation.
• Intercommunication task
• Intracommunication task by means of commit protocol.
• Clock synchronization task should no be preempted, since even smallest protocol-stack

jitter lowers the precision of the synchronization protocol. Therefore, a required clock
synchronization process (as clock master) has to be processed immediately. Clock syn-
chronization requests (as clock slave) received from synchronization master also have to
be answered as fast as possible.

• A test-manager has to take care of execution times of online self-test routines including
internal processor tests (RAM, ROM tests) and external tests (safe IO). Such a routine has
to be short enough to prevent other processes from starvation caused by exhaustive CPU
usage from test-manager.

• Non-safety-related user-application has to be prevented from starvation.

A common scheduling strategy to prevent starvation of tasksis round-robin which will be
outlined in the following. However, a round-robin scheduler does not fully support requirements
as defined previously. Especially time-critical tasks might be problematic.

Round-Robin scheduling

A basic round-robin scheduler implements a preemptive, first-come-first-serve (FCFS) strategy
with fixed time intervals. A dispatcher will assign each queued process a slot of CPU-time. If
the process requires less time than it was assigned, it will release the CPU and the next process
in queue will proceed immediately. If the process requires more time, it will be preempted, the
dispatcher will choose the next process and the preempted process will be moved back in the
queue.

For instance, a simple execution of round-robin scheduler could be as P1 takes 25ms, P2
takes 3ms, P3 takes 15ms, P4 takes 20ms, with timeslot each 10ms. Processes arrive in order
P1, P2, P3, P4. Scheduling would be preformed as depicted in the following Table:

A round-robin scheduler prevents tasks from starvation, but does not support requirement to
immediately respond to clock synchronization requests. For the sake of simplicity and the fact,
that a KNX message might take up to 8 seconds to be received by aremote node (see Section
5.3), clock synchronization cannot be assumed to be as precise as PTP would provide under best
circumstances. Furthermore, transfer times for messages are non-deterministic caused by delays
at routers, gateways and higher prioritized frames on KNX-line. Therefore, scheduling can be
simplified to the approach presented in the following.
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Process CPU cycles Queue Information
P1 0..10 P2, P3, P4, P1 P1 preempted, 15ms remaining
P2 10..13 P3, P4, P1 P2 is done
P3 13..23 P4, P1, P3 P3 preempted, 5ms remaining
P4 23..33 P1, P3, P4 P4 preempted, 10ms remaining
P1 33..43 P3, P4, P1 P1 preempted, 5ms remaining
P3 43..48 P4, P1 P3 done
P4 48..58 P1 P4 done
P1 58..63 P1 done

Table 5.5: Example round-robin scheduling

Simplified priority scheduling

Afore mentioned tasks can be reduced to

• Execution of safe user application
• Execution of non-safe user application
• Handling of clock synchronization messages
• Executing self tests

These tasks will be executed cyclically depending whether it is required to execute the task or
not. For example, upon receiving a safety-related message,a flag will indicate the reception
of the message and during the next round of executing all available tasks serially, the safety
message handling task will be executed. To ensure executionof the safety-related tasks, two-
level prioritized (safe and non-safe priority levels) willbe introduced privileging a safety-related
task instead of a non-safety-related task. Furthermore, a watchdog is started up along with
starting a task which is configured long enough to execute thetask entirely. If a task takes longer
than that timeout, it will be preempted. Therefore, tasks have to be designed to fit that timeout
or vice-versa.

5.9 Building Safe Hardware

Safe Inputs and Outputs

Safety-related systems are required to perform their defined behaviour under any circumstances.
That is not only fail-safe communication between safety nodes and evaluation of data, but also
reading and setting according values from the environment via sensors and actuators. Therefore,
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mechanisms are required to detect erroneous inputs or outputs. That can be gathered, like already
presented in previous chapters, by single-channel approaches or redundant solutions.

Sensors and input devices

The most simple sensor would be a switch connected to an inputof the microcontroller. Sensors
are not restricted to return binary values but can also provide analog values like a temperature
or rotational speed. Single channel approaches might fail if the sensor fails, the connecting
wire breaks or the input port of the microprocessor fails, which results in loss of whole safety
functionality. Therefore, at least two-channel architectures are of importance. Such architectures
are depicted in Figures 5.32 and 5.33. The architecture presented in Figure 5.32 has to be
considered too since it might not always be possible to mountmore than one sensor. It does
not detect a failing sensor, but errors in one of the input stages. To increase the level of safety
a second sensor has to be used and in best case both make use of adifferent technology. If for
example both sensors are implemented by the same technologyand one sensor fails caused by an
unexpected reason, the second sensor would likely fail, too. The usage of different technologies
eliminates such faults.

Figure 5.32: Single sensor on replicated input
stages

Figure 5.33: Replicated sensors on replicated
input stages

Binary sensors like switches have to be handled thoroughly.By looking at Figure 5.34 one
can see that safety functionality is completely lost if wiring is shorted. A short betweenSignal
1 andSignal 2as depicted in Figure 5.35 reduces the circuit to evaluate only one channel. To
prevent this, each switch has to be wired separately and connected to different in- and outputs
of the logic. Furthermore, instead of providing direct voltage, the signal sent to the switch
can be pulsed, where each of the switches gets different pulse patterns. Such pulsed patterns
are also referred to as OSSD (Output Silicon Switched Device). Reading back the inputs and
comparing the sent pulse pattern with the received one enables to detect shorts between wiring
of the switches (see Figure 5.36). It has to be mentioned, that evaluation of the switch state can
only be performed if the switch is closed. That is sufficient since it is assumed that an open
switch indicates a safe state.

If sensed values can not be applied to the microcontroller directly, input stages have to be
used. Depending on the applied architecture, input stages may become single points of failure
and therefore have to be tested as well. Since the output signal of the logic is pulsed, the sensor
as well as the input stage is tested implicitly. Referring toFigure 5.37, wiring the input stage
with logic twice increases possibility to detect errors in the wiring or logic inputs.
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Figure 5.34: Example of connecting two
switches in line

Figure 5.35: Example of connecting two
switches parallel

Figure 5.36: Monitoring sensors using pulsed voltage

Since not every sensor provides potential free contacts, itmight not be possible to use afore
mentioned pulsed pattern technique to ensure correctness of operation. That might be the case
for sensors with separate power supply providing an active signal themselves like proximity
sensors (see Figure 5.38). Here one can see that the input stage receives a pulsed signal from the
logic which cyclically tests if the input stage still reactsby forwarding the pulses to the logic. It
is clear, that such an approach assumes correctness of the sensor itself. It can only be tested if
the input stage behaves according to its specification.

Safe outputs

In safety-relevant automation systems it is often requiredto safely turn off a device like a motor
for example. Here it is not sufficient to use a simple switch toexecute a safety function since in
case of a stuck-at error, it might not be possible to disconnect the device and transfer the system
into a safe state. Therefore, multiple switches connected serially as depicted in Figure 5.39 are
applied. If one of the switches fails to disconnect, there isstill another one to execute the safety
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Figure 5.37: Test in a closed circuit

Figure 5.38: Testable input stage in a closed circuit

function and transfer the system to a safe state. To ensure ifthe switch is actually disconnected,
reading back values gives information about successful execution of the switch-command.

Figure 5.39: Serially connected switches with read-back switch state

A more sophisticated circuit fulfilling even highest level safety requirements is depicted in
Figure 5.40. Just like in the afore presented circuit two switching elements are used to safely
disconnect the device. To ensure correctness of the operation, both semiconductors (T2, T3)
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have to be tested cyclically. Therefore, microcontroller 1informs microcontroller 2 about an
upcoming test and sends an impulse via R1 to T1. That pulse will be recognized by microcon-
troller 2 (via R4) which will inform microcontroller 1 aboutcorrect operation of T2. The same
mechanism applies to testing T3 from microcontroller 2. A further measure to increase safety
is usage of a fail-safe unit which is enables control voltagefor T1. The fail-safe unit is imple-
mented to be controlled dynamically and just enables outputsignal if both microcontrollers give
the same input. That will ensure safe switching off the output even if one of the microcontrollers
has failed. It is clear, that test pulses have to be short enough to not affect correct operation of the
device connected to the output. Furthermore, semiconductors T2 and T3 are driven by different
technology to overcome simultaneous failing of both driving units. Summing up, the following
measures for safely switching off have been applied:

• Usage of two microcontrollers (two-channel-architecture)
• Cyclical tests of main semiconductors using test-pulses and reading back pulses cross-

wise.
• Usage of different driving technology for main semiconductors
• Usage of dynamically controlled fail-safe unit

Figure 5.40: Two-channel output using semiconductors

Fail-safe unit As mentioned, a fail-safe unit is required to enable controlling voltage for T1.
The unit will only return a valid output if both its inputs arecontrolled according to predefined
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dynamic signals. Otherwise, an output indicating safe state will be provided. An example of
a fail-safe output unit is depicted in Figure 5.41. Microcontroller 1 provides constant voltage
via high-side driver 1 while microcontroller 2 provides pulsed voltage to drive the transformer
via low-side driver 2. Additionally, both microcontrollers provide alternating test pulses. The
transformer including filter D1, C1 are dimensioned that microcontrollers are enabled to read
back test pulses via R1 or R2, respectively. Following D2 andC2 are dimensioned that output of
the fail-safe unit is pulse-free direct voltage. If either of the microcontrollers fails, the output of
the fail-safe unit turns to zero since valid outputs of both microcontrollers are required to drive
the transformer.

Figure 5.41: Fail-safe unit
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CHAPTER 6
Conclusion

The thesis started by explaining basic terms and definitionsrequired for building automation
systems and KNX protocol in depth. Chapter 3 gave an outline on state-of-the-art standards
IEC 61508 and ISO 13849 concerning functional safety in electrical systems and pointed out
requirements for functional safe devices from a development lifecycle as well as hard- and soft-
ware point of view. Basically, IEC 61508 states that higher safety integrity levels can either be
gained by increasing fault tolerance of hardware or by increasing fraction of errors which can be
detected by system itself through extensive self tests.

In Chapter 4, a selection of existing solutions for industrial and home and building automa-
tion providing functional safety has been presented and compared in terms of their protocol
safety. Possible errors in communication systems and measures to detect and prevent them are
defined in IEC 61784-3. Communication errors have been identified in case of corruption, unin-
tended repetition, incorrect sequence, loss, unacceptable delay, insertion, masquerade and wrong
addressing. Detection of timing-related errors requires implementation of clock synchronization
mechanisms to ensure global notion of time and therefore ability to order messages by their oc-
currences. Due to limited bandwidth of the KNX bus line, existing synchronization protocols,
namely vector clocks and precision time protocol, have beenevaluated with a focus on reuse in
the thesis.

To gain safety integrity level 3 as specified by IEC 61508, application of extensive hardware
self tests or hardware redundancy is required. Due to limited processing power of microcon-
trollers, a hardware redundancy approach using two microcontrollers and a single TP-UART-IC
for KNX-line access has been chosen. Even implementation ofhardware redundancy requires
hardware self tests, but to gain SIL 3 a safe failure fractionof more than 90% is sufficient which
can be gained by memory tests as presented in Chapter 5.7. To enable application of redun-
dant controllers, a reliable communication protocol between safe controllers had to be applied.
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Furthermore, safe hardware also includes safe in- and outputs for interaction with environment
which has been outlined in Section 5.9. Since non-safety andsafety-related applications should
operate on the same node, IEC 61508 requires to show sufficient independence of safety-related
and non-safety-related application which requires implementation of scheduling mechanisms.

Summing up, developing a safety-capable device requires much more than just building re-
dundant hardware. Instead, especially protocol safety is of major concern, which even gets more
important if existing wiring has to be kept and safety and non-safety nodes should coexist on the
same network. To solve this problem, almost any existing solution for safety-related automation
systems relies on the black-channel-principle stating, that the safety-related protocol itself has to
take care about correct transmission, reception and detection of errors of a message without rely-
ing on potentially implemented error detection mechanismsof the underlying non-safety-related
protocol. Further issues become safety of hardware itself which includes implementation of safe
interaction with the environment via safe inputs and outputs as well as communication between
redundant safe controllers on a safe node itself. Finally, the hardware has to be checked cycli-
cally for correctness of operation where especially errorsin memory have to be detected using
different memory-check algorithms.

6.1 Outlook and further work

Process data exchange has been explained only very briefly. KNX supports a variety of mech-
anisms to exchange data between nodes and how nodes are seen from their data-point-of-view
by means of their functional block description. To allow a simpler implementation of a KNX
Safety network, KNX Safety should be extended to support functional blocks as well as more
sophisticated methods to work with safety data points.

Rapid spreading of wireless devices with potential safety-related functionality entails an-
other topic which has to be considered too i.e. security. A safety-related device might operate
safely in closed circuits, but if an unauthorized person gains access to a safety-related system, the
system itself cannot be considered to safely operate anymore. Therefore, integration of security
measures into safety-related devices and vice-versa has tobe a major concern.
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