FAKULTAT
FUR INFORMATIK

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitét Wien aufgestellt
(http://www.ub.tuwien.ac.at).

Faculty of Informatics

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Functional Safety in KNX

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Technische Informatik
eingereicht von

Marco Steffan
Matrikelnummer 0215884

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung
Betreuer: Ao.Univ.Prof.Dr. Wolfgang Kastner
Mitwirkung: Dr. Wolfgang Granzer

Wien, 24.11.2011

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Marco Steffan
Wiesenweg 13, 6170 Zirl

Hiermit erklare ich, dass ich diese Arbeit selbstandiga&st habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstdndig angegeben habe dask ich die Stellen der Arbeit -
einschlie3lich Tabellen, Karten und Abbildungen -, dieered Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fadr iingabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

Building automation systems aim at providing a comfortasieironment while saving
available resources. In case of using fire alarm systemsti{fural safety) or access-control
systems (security) those systems are realized as sepdoags] systems interacting with an
existing building automation system via dedicated poifiiateraction. Integrated systems
providing functional safety natively are currently hardiailable.

This thesis targets an approach to extend the building attomtechnology KNX
with functional safety. In compliance with IEC 61508 (Funogl safety of electrical/elec-
tronic/programmable electronic safety-related systeans)|SO 13849 (Safety of machin-
ery - Safety-related parts of control systems) an architectatisfying safety integrity level
3 (SIL3) as defined by IEC 61508 is presented. Security isetheteft unconsidered.
SIL3 compliance implies sufficient support on hardware I¢failt-tolerance), a standard-
conform documentation of all development steps as well asjaate software to detect
errors in the hardware and the communication system.

The intention of the thesis is not the provision of a compliaiplementation of all
requirements according to IEC 61508 but rather elaborati@m extension to existing ap-
proaches within this field. On that score and in compliandb VEC 61784-3 (Industrielle
Kommunikationsnetze - Profile - Teil 3-1: Funktional sigh<bertragung bei Feldbussen)
measures to detect errors in the communication system scegdied, architectures for a
SIL3 compliant KNX-system are presented and resulting tgpan hard- and software are
shown.

Kurzfassung

Gebaudeautomationssysteme dienen in erster Linie deu@upg eines komfortablen
Raumklimas bei gleichzeitiger, ressourcenschonendezudgtder zur Verfigung stehen-
den Energie. Geht man davon aus, dass funktionale Sich¢8edety) etwa fur Brand-
meldeanlagen oder Systemsicherheit (Security) fiir Zsidntrollen erforderlich sind, wer-
den diese Anforderungen durch eigenstandige Systemsiezgldie (im besten Fall) Uber
ausgewabhlte Schnittstellen mit einem vorhanden Gebato®ationssystem kommunizieren.
Integrierte Systeme, die bereits "nativ" funktionale ®itteit zur Verfiigung stellen, sind
derzeit kaum verfligbar.

Diese Arbeit versucht einen Ansatz zu schaffen, die Gelsudeationstechnologie
KNX um funktionale Sicherheit zu erweitern. In Ubereinstiong mit den Standards
IEC 61508 (Funktionale Sicherheit sicherheits-bezogetektrischer / elektronischer /
programmierbarer elektronischer Systeme) und ISO 138#&hétheit von Maschinen -
Sicherheitsbezogene Teile von Steuerungen) wird eineiohi@ghrchitektur erarbeitet, um
einen Sicherheitsintegritats-Level 3 (SIL3) laut IEC 685 erreichen. Systemsicher-
heit bleibt dabei unbertcksichtigt. SIL3 impliziert eingseeichende Unterstlitzung der zu-
grunde liegenden Hardware (Fehlertoleranz), eine Starktamforme Dokumentation aller
Entwicklungsschritte sowie Software, um Fehler in der Mand und dem Kommunika-
tionssystem zu erkennen.

Ziel dieser Arbeit ist nicht eine vollstandige Ausarbegualler Erfordernisse gemaf
IEC 61508, sondern eine Erweiterung zu bereits bestehefdsitzen in diesem Umfeld
zu schaffen. Im Zuge dieser Arbeit werden Mechanismen, eligdf im Kommunikations-
system erkennen, in Abstimmung mit IEC 61784-3 (Indus&iKbmmunikationsnetze -
Profile - Teil 3-1: Funktional sichere Ubertragung bei Felsen) diskutiert, Architekturen
fur ein SIL3 konformes KNX-System vorgestellt und sich derargebende Anforderungen
an die Hard- und Software erarbeitet.

Contents

Abstract ii
Kurzfassung iii
Contents Vv
List of Figures Vi
List of Tables viii
1 Introduction 3
1.1 Motivation e 3
1.2 GuidethroughthisThesis. 4
2 Building Automation Systems 5
2.1 Introduction 5
2.2 KNX . . e 8
3 State-of-the-art Standards 13
3.1 IS0 13849 - Safety of machinery - Safety-related partoafrol systems . .. 15
3.2 IEC 61508 - Functional safety of E/E/PE safety-relateslesns 18
3.3 Conclusions of ISO 13849 andIEC61508 28
4 Existing Safety Solutions in HBA Systems 31
4.1 IEC61784-3 - Functional safety fieldbuses 32
4.2 Industrial Automation solutions Lo 36
4.3 OpenSafety e 40
4.4 SafetyLON 43
5 KNX Safety 47
5.1 Hardware Architectures for Safe KNXNodes 48
5.2 Synchronizing Safety Nodes 53
5.3 Intercommunication - KNX Safety Protocol Extension e < 1°)
5.4 Software Architecture fora SafetyNode 64

5.5 Intracommunication - Communication between Safe ©dats 67
5.6 KNXSafety Application 72
5.7 Hardwareselftests 73
5.8 Scheduling tasks on a Microprocessor wwa .. 81
5.9 Building Safe Hardware o 84
6 Conclusion 91
6.1 Outlook and furtherwork, 92
Bibliography 93
List of Figures
2.1 Three-tier architecture 7
2.2 Two-tierarchitecture 7
23 KNXmodel[2]
2.4 KNXtopology [2]. o 0 o 10
2.5 KNXLPDU TP1 standard frame structure 12
3.1 Faultchaindefinedby [21] 13
3.2 One-out-of-two architecture (1002) e 14
3.3 Simplified V-Model of the software lifecycle proposedIB 13849-1 17
3.4 Requirements map for parts 1to 7 of IEC 61508 [13] 19
3.5 Entire safety lifecycle as defined by [3] 20
3.6 E/E/PES safety lifecycle in the realization phase ddftme[4] 22
3.7 Relation between hardware and software architectdileg¢] 23
4.1 C-model for safety-relevant communication networkg 1 36
4.2 Example for SRVTtmMIing [17] o o e 37
4.3 Examplefor SCTtming [17] o o e 37
4.4 Basic FSCP 12/1-System [14] e e 39
4.5 Safety PDU for CPF 12 embedded in Type 12PDU[14] 39
46 FSOECycle[14] 40
4.7 OpenSafety safety frame structure 42
4.8 Possible hardware architecture for an OpenSafety-Nade 42
4.9 SafetyLON protocol Extension cue.... 44
5.1 System chain - From the sensortotheactuator 47

Vi

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41

One channel architecture
Replicated Safe Controllers on a single bus-coupler
Replicated Safe Controllers on a single bus-coupleteraative
Replicated Safe Controllers with replicated bus-cexgpl
Redundant Safe NodesonaredundantBus.
Triple modular redundancy - TMR
Synchronization condition L L L
Basic synchronization message exchange [15]
Example execution of vector clocks oL
Safety providing protocol extension for KNX
Schematic addressingin KNX Safety
Timing diagram of message exchange between KNX nodes.....
Software architecture of asafe KNXnode
Simple acknowledge transmission protocol .. e
Sequence diagram of a successful Two-Phase- ComrmmBro
Sequence diagram of a failed Two-Phase-Commit Prbtoco.
State diagram of the coordinator in the Two-Phase-CoRiotocol
State diagram of a participant in the Two-Phase-CorRnoitocol
Sequence diagram of the Three-Phase-Commit Protocol.
State diagram of the coordinator in the Three-Phasen@ibProtocol
State diagram of a participant in the Three-Phase-GoRnotocol
Online and Offline test intervals. Slightly modifiedigtration from [28]
State diagram of a correct working memorycell L.
State diagram of a stuck-at zero errorinamemorycell.
State diagram of a stuck-at one errorinamemorycell
State diagram of a state transition error of memorycell.
Potential errorsinamemoryblocko
Sample execution of Galpat-Pattern-Test o
Sample calculation of CRC e
Structure of stack memory
Single sensor on replicated inputstages
Replicated sensors on replicated input stages
Example of connecting two switchesinline
Example of connecting two switches parallel

Monitoring sensors using pulsed voltage
Testinaclosed circuit
Testable input stage inaclosed circuit
Serially connected switches with read-back switctesta
Two-channel output using semiconductors
Fail-safeunit

3.1
3.2
3.3
3.4
3.5

3.6

3.7

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5

List of Tables

Performance Levels (PL) e 15
Mean time to failure forachann®7TTF,; 16
Diagnostic coverage (DC) e 16
Safety integrity levels for devices with high perforrmamate [3] 21
Safety integrity of hardware: Constraints to architees for safety-related type A
subsystems [4] 24
Safety integrity of hardware: Constraints to archiiezs for safety-related type B
subsystems [4] 25
Relation between Performance Levels (PL) and Safe¢gtity Levels (SIL) as de-

fined by [10]. 28
Communication errors and detection measuresby [9] 35
Relation between residual error rate and safety intelgwel 35
Communication errors and detection measures used byoféiNSafety 38
Communication errors and detection measures used biy®aier EtherCAT . .. 41
Communication errors and detection measures by OpetySaf. 43
Communication errors and detection measures used bijy28dN 45
Communication errors and detection measures used ingdfety 61
Message types for KNX Safety 64
RAM test methods and resultingDC, 77
ROM test methods and resultingDC 79
Example round-robin scheduling Lo 84

viii

FSoE
CPF
SFF
SIL

PL
PL,
E/E/IPES
SRP
EUC
MTTR
DC
CCF
SCL
PTP
CRC
FCS
SRDO
SRVT
SA
SPDU
APDU
GSPN
ANubis
CPU
OSsD
WCET
PES
MTTF
FMEA
SCL
CRC
Cs
SRESW
SRASW
HVAC
ROM
RAM
EPROM
TMR
BCI
EIBA
EHSA
HBA

Failsafe over CPF 12
Communication Profile Family

Safe Failure Fraction
Safety Integrity Level

Performance Level
Required Performance Level
Electric/Electronic/Programmable Electronist&m
Safety-Related Part

Equipment under Control
Mean Time To Repair

Diagnostic Coverage

Common Cause Failure

Safety Communication Layer
Precision Time Protocol

Cyclic Redundancy Check

Frame Checking Sequence

Safe Communication Object
Safety-relevant Object Validation Time
Safe Address

Safety Process Data Unit
Application Process Data Unit
Generalized Stochastic Petri Nets
Advanced Network for Unified Building Integration &&ices
Central Processing Unit

Output Silicon Switched Device
Worst Case Execution Time
Programmable Electronic System
Mean Time To Failure
Failure Mode and Effects Analysis
Safety Communication Layer
Cyclical Redundancy Check

Control System

Safety-Related Embedded Software
Safety-Related Application Software
Heating Ventilation Air Conditioning
Read Only Memory
Random Access Memory

Electrical Erasable Read Only Memory
Triple Modular Redundancy
BatiBus Club International
European Installation Bus Association
European Home System Association
Home and Building Automation

CSMA Carrier Sense Multiple Access

TPCI Transport Layer Protocol Control Information
APCI Application Layer Protocol Control Information
PDU Process Data Unit

CAFMS Computer Aided Facility Management System
FSCP Functional Safety Communication Profile
SCM Safety Configuration Manager

CiA CAN in Automation

SCT Safeguard Cycle Time

CHAPTER

Introduction

1.1 Motivation

Traditionally, Building Automation Systems (BAS) provithasic services like Heating, Ven-
tilation and Air Conditioning (HVAC), lighting and shadingSafety critical applications like

fire detection and alarm systems are usually stand-alorte which interact with BAS using

dedicated gateways. Increasing requests for BAS in safiéttgal environments ask for ad-

vanced mechanisms to integrate safety-critical techiyolotp BAS. Therefore, it is necessary
to define what safety-critical properties are and what the#aning is - to detect hazardous
events in an automation system. These can be failures invhaed software or the underlying
communication-system like a "wrong message” in any way.h&umessage can be wrong in
a sense of its value-domain or in its time-domain. Detectibthe afore mentioned failures
requires implementation of certain mechanisms in hardaadesoftware.

The requirements for safety-critical systems are specifigd/o common standards - ISO
13849 (Safety of machinery - Safety-related parts of césyrstems) and IEC 61508 (Functional
safety of electrical/electronic/programmable electsafety-related systems). Especially, IEC
61508 presents a very general view on requirements andlmasgdor the complete lifecycle of
a safety-related device. Requirements to communicatistes)s are presended in detail in IEC
61784-3 (Functional safety fieldbuses).

The thesis follows the approach presented in [20] and toesxtend the KNX protocol
to fulfill requirements of SIL 3 as defined by IEC 61508. To awki this, certain measures
regarding hardware and software are required. From a haedpant of view a higher level
of safety can be achieved by application of redundancy aoes. Furthermore, software is
required which is capable of detecting failures in hardvaaré the communication system. On
that score, the following chapters will give discussionshow to achieve functional safety in
the KNX protocol in terms of hardware requirements and ivwdlsoftware.

1.2 Guide through this Thesis

Chapter 2 will give an overview about automation systems rafated terms and definitions.
Furthermore, the target technology KNX will be described.

Chapter 3 will cover state-of-the-art standards IEC 615@BISO 13849 and show the main
differences between them. Following IEC 61508, the acimmre of specific Safety-Integrity-
Levels (SIL) is of importance. SILs define requirements eoning electrical and programming-
standards implying the failure rate of a safety-providireyide depending on its frequency of
use. In the context of this thesis, high demanding devicestwallow a maximum of one
hazardous failure in0” hours will be of special interest (SIL3).

Existing solutions in BAS and industrial automation will peesented and compared in
Chapter 4. Here, special attention is put on potential comeation errors as defined by IEC
61784-3.

In Chapter 5, special aspects relevant for this thesis deggusafety will be presented in
detail. This will include a discussion on possible hardwanghitectures, communication issues,
clock synchronization, scheduling and hardware self tests

The closing Chapter 6 will conclude gained knowledge andiges an outlook on further
work.

CHAPTER

Building Automation Systems

Progress in technology mostly aims at making things moreeent for the user. Focusing
on electronic devices, additionally energy efficiency cenmdéo mind. That trend also affects
buildings or their building automation systems. When tajkabout automation, mainly indus-
trial automation comes into mind. Characterized by shattien times, fast control loops, high
precision and occasionally high dependability, an indaisautomation system handles tasks
where human power is not sufficient, too slow, or not posdilole to dangerous environments.
Building Automation Systems (BAS) are a special categoipadistrial automation. In contrast,
timings are more relaxed due to long response times fromuihdithy. Additionally, a BAS has
to take care of energy efficient house keeping and to do tratiost comfortable way.

2.1 Introduction

BAS start at small homes with just a handful of devices andardrge, public buildings like
airports or office buildings automatized by some thousanicds. Especially for large build-
ings the advantage of BAS is clear: A BAS provides centravkdadge and control about all
processes involved in a building which is also known as Cdempaided Facility Management
System (CAFMS). In case of an error, the operator is enablgdit information about the error
and can initiate measures to maintain the system at a vely fage. Another advantage of
BAS is the ability to dynamically reconfigure the behaviotitte system. If for example a light
switch should control more than the initially installed lasnit was necessary to re-wire certain
parts of the installation in traditional electrical ingddilons. Using a BAS, simply re-binding the
switch to more lamps can be done from a PC in far less time. ndakowledge of multiple
sensors also enables construction of intelligent builsliigpr example, opening a window will
turn off the heating or ventilation. Likewise, increasiegnperatures in a room will activate sun
shadings and climate control. Since the properties of a cdatile room climate are different
for each person, smart room controllers in combination Witbwledge about who is in the
room could control HVAC according to the person’s prefeemn¢smart buildings). Against all

5

advantages, the main disadvantage is the tremendous casitid installation. Additionally,
operators have to be trained thoroughly.

According to [19], typically the running costs of a buildioger its lifetime are seven times
the initial cost for construction. Considering the whole Igycle of a building, the amount of
saved energy during its lifetime makes the use of a BAS ecmaiiy feasible.

Another topics in BAS are security and safety. These are twapdetely different concepts,
although described by the same word in German languagehg8ieit”).

Security describes protection of a system against makcaitacks. For instance, consid-
ering a network, insertion of a malicious message or lisigid the contents sent through the
network have to be detected or prevented by certain seaugysures. At the beginning, BAS
were designed and implemented as closed systems and nmisswiedge of potential intruders
on how to break the BAS was protection enough. Advances ieless technology, networked
automation devices in every room in combination with opemdards give motivation for de-
velopment of appropriate measures to close those vulriiegbi

Safety describes the failure free operation of a systemleaat the detection of an error and
transferring the system to a safe state. Safety in automagicurrently just available for indus-
trial automation solutions (with some minor exceptiond)aflcan be divided into requirements
for operator safety and requirements for process safety.ekample, an emergency stop in-
formation transferred through an automation network islireqgl to be delivered and performed
within predefined deadlines. If that requirement cannot bg the operator working on the ma-
chine could sustain injury or the machine could take dam@ibat means, the information has to
be transmitted correctly and in time - no matter what happsesmachine has to be transferred
to a safe state. Safety in HBA has been an isolated topic saddressing primarily fire alarm
systems. Until now, safety providing systems have beenlgnaonstructed as closed systems
communicating via dedicated gateways with other systenhg ohly HBA solution providing
functional safety found so far is an extension to LON callete§/LON.

Automation Networks

Communication in a traditional automation system can healised by the three-levelarchitecture
as depicted in Figure 2.1.

Thefield levelis responsible for direct interaction with the physical iezwment and col-
lects data from simple sensors and activates actuatorsallyshat level is equipped with low-
bandwidth networks. The collected data is transferred é@tliomation levelhich processes
and passes data to the management lexatiCal communicationor issues other devices at
field level to take actionhorizontal communicatign The topmosmanagement levelrovides
a global view of all data across the BAS. Therefore, con&ahinals and logging systems are
placed on that level. Operators are enabled to (re-)codithe BAS through a control center
and perform diagnostic measures on the BAS in case of an efypically, the management
level is equipped with a high-bandwidth network caused Ightamount of data collected by
the lower levels. If communication with other automatiosteyns is required, the management
level networks are connected via gateways or routers.

As described, the previous approach assumes simple sewisiorsmall processing power
to prepare raw data in a very basic way. Development in theapiocessor sector increased

6

Control Center Logging Server

Eﬁj !’ <§> GB low high

¢ o

\ |

Gateway / Router

8
c
Q
k=3
s
=

______ P senersiaion

Automation Level

- oo -/ Unit Controller -/
2
o]
o
Field Level %
o
Sensors and Actuators -

Byte high low

Figure 2.1: Three-tier architecture

processing power to admit advanced techniques to pregsauel transmit sensor values [18].
That simplifies the diagram in Figure 2.1 to the enhancedtieraarchitecture depicted in Figure

2.2 by making use ahtelligent devices

Control Center Logging Server
E@ ‘ GB low high
= =

Backbone Level

Q
o
=
(5}

o)

2
=

Gateway

------ Gateway

Control Level

— =

Data Rate

Intelligent Sensors
and Actuators

Control Network Control Network

kByte mid mid

Figure 2.2: Two-tier architecture

Increased intelligence on sensor/actuator level enahtegration of communication pro-
tocols for direct communication between sensors and ast#trough aontrol networkwhat
makes a separate automation level obsolete. Communidagioreen different control networks
is established via gateways througgckbone networksroviding sufficient bandwidth for inter-

7

control network communication as well as for managemerd-lagging tasks.

2.2 KNX

In 1996,BatiBus Club Internationa(BCl), European Installation Bus Associati¢gIBA) and
European Home System Associat{@HSA) started to develop a common standard for home
and building automation. In 1999, leading manufacturerslegtrical building equipment such
as Siemens, Bosch and Merten, along with some more, founadetdk Association (also
known as KNX Association). The first KNX specification was [isiired in 2002 which was
adopted EN 50090 in 2005 and accepted as an internatiomalasthISO/IEC 14543-3 later in
2006.

Basically, KNX defines runtime-characteristics, a tootdiservices as well as mechanisms
to manage a network. The building automation system is difyea distributed application
implemented through standardized data-point types anactiional block” objects modelling
logical device channels. KNX is platform independent eimgolisage of any kind of micropro-
cessor to implement a network device.

Elements of KNX

The KNX framework consists of the following parts:

e An inter-working and (distributed) application model whiperforms the actual HBA
application (lighting, shading, HVAC,...).

e Configuration and management schemes for logical linkingiding of KNX devices.
These schemes are structured in a set of configuration modes.

e A communication system which defines communication medaessage protocol and a
communication stack. The communication system has to g required mechanisms
for configuration and management and hosts the distribytptication. This is typified
by the KNX Common Kernel [2].

e A set of device models is summarized in profiles.

An illustration of the afore mentioned components of KNX é&pitted in Figure 2.3.

Supported communication media by KNX

KNX offers a wide variety of possible communication medidtesi to customer’s needs and
devices to enable interaction between different media.

e Twisted pair is the basic medium in KNX. Main characterstare: energy and informa-
tion are transported over the same pair of wires, an asynobs) character oriented data
transfer, half duplex, bi-directional communication. T®6 kBit/s) is the basic medium
inherited from EIB and allows free choice of topology. On wipTP1 the CSMA/CA
protocol is implemented.

N

[Common Object Definitions

Common Logo
g >

7) \]
System Mode ‘ Easy Mode |

S \\ E |
PC based
oo 8 @CUlL a LTE|

Common Run TimJ J

Standard
Configuration
Engineering
Tool

Configuration

\
[
[
(

Runtime
Interworking

Communication

Profile 1
Profile 2

Common
Kernel

[NetworkManagementM Tool J A

3 { | Standard Adressing]

-
net |

Media Coupler 4
between Media

Ctrl = Controller approach LT = Logical Tag PB = Push Button approach LTE = Logical Tag extended

Figure 2.3: KNX model [2]

e Powerline (PL110, 1,2 kBits/s) allows data transmissiogrorain wire. Its characteristics
are a central frequency of 110 kHz, spread frequency shifhgesignalling, asynchronous
transmission of data packets and half duplex, bi-direeli@m@mmunication. PL110 im-
plements CSMA and is EN 50065-1 compliant.

e RF is fully specified within KNX in the 868 MHz bandwidth. Claateristics are: fre-
quency shift keying signalling, asynchronous, half duplax or unidirectional commu-
nication. The central frequency is set to 868,30 MHz usimgtsfange device frequency
with a duty cycle limited to< 1% and a data rate of 32 kHz. Medium access is based on
CSMA mechanisms [1].

e Furthermore, IP-enabled integration for IEEE 802.2 (LA8D2.11 (WLAN), IEEE1394
(Firewire) is handled in KNXnet/IP.

The communication is implemented in compliance with the @$ér model. As in most
automation systems, not all seven layers are implementsX #Ses the following four layers:

e The “Data Link Layer General” is implemented on top of bata Link Layerand pro-
vides medium access control and logical link control.

e The Network Layerprovides a segment wise acknowledge telegram and contops h
count of a frame.

e TheTransport Layeenables communication relationships between commuaicabints.
Supported relations are 1 to N (multicast) connectionlkgs,all (broadcast) connection-
less, 1 to 1 connectionless and 1 to 1 connection-oriented.

e TheApplication Layeroffers a toolkit to maintain and run the distributed applima

Topologies

As shown later, a KNX frame supports 16-bit space for indigidsource and destination ad-
dresses. That results in a total of 65535 possible deviceskKidX network. The network can
be grouped physically intbnes of 256 devices each. These lines can be formed imaia line
into anarea A domainis a combination of up to 15 areas connected througackbone line
Figure 2.4 gives an illustration of the resulting topology.

line .
device
coupler

area
coupler
©
¥
A
15.0.000

(Bl 2 rﬁf) n.nnn
area 1
1.0.000

N main line 1.0

[\ (¢ N
[1.1.000 | [1.2.000 | 1.15.000

1.1.001 1| 1.2.001 |— 1.15.0011— | 1.0.001 —
1.1.002}— | 1.2.002 | 1.15.002— | 1.0.002—
1.1.003 || 1.2.003 |— 1.15.003— | 1.0.003 —

N —~

o o A oY
1.1.252 1 [1.2.250 1.15.252— [1.0.252
1.1.253— 11.2.253— 1.15.253— 11.0.253
1.1.254 11.2.254 1.15.254 1.0.254|

1.1.255] 1.2.255} 1.15.255" 1.0.255] (—

Figure 2.4: KNX topology [2]

Addressing schemes

Central functionality of a network is to enable communicatbetween nodes. Therefore, nodes
need to be identified uniquely. In most cases, an instatiatil be wired and configured af-
terwards. KNX offers device identification by a unique devéerial number or by the device’s
individual address. Unique serial device numbering isexad through controlled allocation of
number ranges to manufacturers by KNX Association. By keogé of a devices identifica-
tion (unique serial number or individual address) it is jldesto communicate with that device.

10

KNX distinguishes system resources keeping configuratiformation (address-, lookup tables
and parameters) and parameters which control the applicati

Communication is distinguished between network resouraeagement and run-time com-
munication. Configuration and management tasks usuallyireeglirect communication with
the related node (point-to-point connection) or requirencwnication with all nodes (broad-
cast) nodes. In contrast, run-time communication mainBsusulticast communication with
other nodes interested in changed values.

In order to achieve inter-working, the data-points haventplement “Standardized Data-
point Types”, grouped into “Functional Blocks”. Commurtica between nodes is established
after “binding” or linking data-points located on diffetethevices to common multicast group
addresses. Binding of devices happens either through twosteict binding rules or depending
on semantic information contained in the address. Upon eesstul binding process the dis-
tributed application is enabled. That is, if a local apglima on a node writes a data-point value
the change notification will be sent across the network with dorresponding address of the
sending node. Any node interested in the changed value fnatmbde will receive that value
and inform its local application about the new value. Thelapplication on the receiving
node will now react depending on its internal state machireugpdate its own data-points. The
communication between nodes transferes multiple localiGgns into a single, distributed
application.

KNX supports the following three binding schemes: freeudtired or tagged. Basically,
free and structured binding assume free addressing whignsnhat the numerical value of
addresses do not contain application semantics. The oslyrgstion is, that all data-points
communicating with each other are assigned to the samesaidtentrarily, tagged binding as-
sumes the numerical value of an address to contain a sen(@atizcpoint) identifier. Therefore,
the logical tag or zoningpart of the address identifies a device’s communicatiompeston a
device level. By assigning data-points to the same zong,ftten a group communicating via
multicast.

To configure a KNX network, two main configuration modes arecsfjed as depicted in
Figure 2.3. Depending on the user’s preferences and apphoanvironment these modes pro-
vide functionality to configure a device remotely from ET8ltor locally using the push button
approach:

e E(asy)-Mode is applied for simple manipulations where deviare configured according
to a structured binding without need for separate configurdbols.
Controller mode (Ctrl) supports installation of a limitedmber of devices on one logical
segment of a physical medium. Such an installation will ammibne dedicated node
responsible for the configuration process.
Logical Tag (LT) and Logical Tag Extended (LTE) modes bdsia@nable device config-
uration using DIP-switches or selectors.
Push Button mode (PB) is almost equal to Ctrl-mode configamaiut without the need
for a dedicated configuration device.

e S(ystem)-Mode enables central, free binding and configuraif the installation, typi-
cally carried out with the ETS tool.

11

KNX Frame

The frame of a KNX TP1 telegram is depicted in Figure 2.5. Dejrey on the communication
medium, different preambles might be appended which wileftaunconsidered here.

Octeto] 1 [2 3 | 4 5 6 | 7 8 | ..] N1] Ns22

Address

Control Source Destination Type;
Field Address Address NPCI;

Length

Data;
APCI

Frame

TPCI|APCI Check

Data

Figure 2.5: KNX LPDU TP1 standard frame structure

The control field determines the priority and distinguishesveen standard and extended
frame format. The individual source address determinesdueess of the sending node. The
individual (unicast) or group (multicast) destination eetd determines the address of the re-
ceiving node(s). The following byte contains hop-count address-type-information. The
Transport Layer Protocol Control Information (TPCI) cafdrthe transport layer to manage
end-to-end connection. The Application Layer Protocol @arnnformation (APCI) accesses
application layer primitives (read, write, response,. T.He standard frame ensures compatibil-
ity with KNX messages (up to 14 octets of data). Extended &swan contain up to 248 octets
of data. The enclosing frame check sequence ensures daiateoay.

KNX line access

To access contents sent on the KNX line, special hardwarerin 6f a transceiver is required.
Therefore, Siemens provides the TP-UART-IC (Twisted Phiniversal Asynchronous Receive
Transmit - IC).

This module supports every transmit- and receive - funaiwhalso the high ohmic
decoupling of energy from bus line. It generates furtheradibted 3.3V or 5V
supply to use by a host controller. Up to 256 subscribers eatohnected to one
bus line [25]

The TP-UART-IC consists of an analog part responsible feelleonverting on the KNX-line
and a digital part providing serial access for communicatiith connected microcontrollers.

12

CHAPTER

State-of-the-art Standards

This section gives an overview of applicable standards &fetg-related systems. First, ISO
13849 for a general approach regarding safety of machirsgpyesented. A more detailed de-
scription of safety-related development is specified by 8808, a standard defining a complete
lifecycle model for every development phase of an Eledi@ttronic/Programmable Electronic
System (E/E/PES). Here, a degree of safety is describedfety sategrity levels (SIL) which
are assigned depending to the probability of one hazardolusd per hour. In contrast, perfor-
mance levels (PL) are defined by ISO 13849.

Prior to focusing on the standards, some important termis asdault, error, failure, risk,
hazard, dangerous failure and hazardous event are ingdduc

[21] describes faults, errors and failures as a chain degict Figure 3.1. Afault is the
cause of an error and, thus, the indirect cause of failurg6]ira fault is defined as an unusual
condition which leads to loss of ability to perform a desifedctionality. Anerror is both, the
deviation of an expected result ([6]) or an incorrect ingistate, like a corrupted element in the
memory ([21]), whereas ailure is an event that denotes the deviation between the actual and
the intended service, or the loss of ability to perform a dedea functionality, respectively.

Cause of . Deviation of actual service
Error (and failure) Subsystem under from intended service:
Fault consideration Failure

Unintended state:

Error

Faults and errors are states, Failures are events

Figure 3.1: Fault chain defined by [21]

Riskis defined as the combination of probability of error and #sulting harm [6].

13

A hazardis a potential source of harm and is specified to define thecequmechanical or
electrical harm) or type (fire, cut or electrical shock) ofrhd6]. Thus, ahazardous everis a
situation where a hazard leads to a harm [6].

A dangerous failuredescribes a failure that potentially leads the safetytedlgystem to a
dangerous or non-functioning state [6].

In safety-related systems, redundancy is common practehvintroduced multiple-channel
architectures. Such an architecture can be, for examfilep2 architecturgéone out-of two) de-
scribing an approach where one output is chosen among twsibimgandidates (see Figure
3.2). The expression 1002 gives no information about theemariteria for either of the two
input channels. It is clear, that such an architecture imoplly extendable by more inputs like

a 1003 or 1004 architecture.
Voter H Output

Figure 3.2: One-out-of-two architecture (1002)

Input Source 1

Input Source 2

A clear distinction has to be drawn between safety and dgcafthough it is not always
possible in every aspect. Security describes the proteofia system against malicious attacks.
Contrarily, safety is defined as the ability of a system tdquen its intended behaviour even in
case of failure under predefined conditions.

The structure of standards in the domain of safety-relateadhinery as defined by 1SO
12100-1 is as follows:

e Type-A-Standards cover definitions, design guidelined, ganeral aspects applicable to
machinery.

e Type-B-Standards cover a specific safety-aspect or a typafefy equipment that is ap-
plicable for a wide range of machinery:

— Type-B1-Standards for specific safety-aspects like safetygins and temperature
levels.

— Type-B2-Standards for safety equipment.
e Type-C-Standards cover detailed safety requirements $peaific machine or a group of
machines.

In case different standards have to be applied, like a Ty@ed a Type-C standard, the
higher level standard (Type-C in that case) will have to lvedeaed. By means of that catego-
rization, ISO 13849 is a Type-B1 standard.

14

3.1 IS0 13849 - Safety of machinery - Safety-related parts of
control systems

This section explains some of the basic principles on howctoeze a certain level of safety
as defined by ISO 13849-1 [10]. Performance levels (PL) ard#se for the following devel-
opment process. This standard specifies methods to fuliilreélquirements for a PL through
the terms diagnostic coverage, mean time to failure, comeaose failure, and some more key
words explained briefly in the following. Furthermore, IS@8#9 defines requirements to the
lifecycle of safety-related software. The second part efstandard (ISO 13849-2 [11]) presents
guidelines and techniques for the validation of the afoffendd safety concept.

All parts of a machine control supplying safety functiohakre called “safety-related parts
of the control system” (SRP/CS). These parts may be reailiviedrd- or software. Additionally,
such a machine may supply operational functionality. Thityalof a device to provide safety-
related functionality under predictable conditions isididd into five PLs as shown in Table 3.1.
These PLs are defined in terms of probability of a dangeralwsdgper hour.

Performance Level (PL) Average probability of
a hazardous failure per hour
[1/h]

> 10=° until < 1074

> 3% 107 until < 107°
> 105 until < 3% 107°
> 10" until < 1079

> 10~% until < 107

DO | Tl

Table 3.1: Performance Levels (PL)

Probability of a dangerous failure depends on certain parars. 1SO 13849 defines the
following criteria which have to be considered:

Hard- and software structure

Fault detection mechanisms

Degree of diagnostic coverage (DC)
Dependability of used device3{T'T F})
Common cause failures (CCF)
Behaviour at systematic failures
Behaviour at faults

Development process

Load under operational conditions
Environmental conditions

With regard to the evaluation process of PLs those aspextgauped into quantifiable (MTTF,
DC, CCF, structure) and non-quantifiable, qualitatived#ikers) principles. Quantifiable aspects
of PLs can be estimated by usage of Markov models, genaladioehastic Petri Nets (GSPN)

15

or reliability block diagrams. In ISO 13849, the determioatof PLs under quantifiable aspects
is proposed by five different architectures fulfilling préded characteristics in case of fault. If
other architectures are used, detailed calculations oadhieved PLs need to be given. For a
description of predefined architectures, please referGp [1

To achieve a required PL, measures have to be taken to logkerThese measures are the
reduction of the probability of a fault on device level by gsaof more reliable devices and
by improvement of the structure of the SRP/CS to lower thecefdf the fault. Depending on
expectable faults, these measures can be applied separategether, where common cause
failures have to be taken into account.

Mean time to failure of a channel MTTF,

Assuming a redundancy approachstennelis defined to be one of the replicated paths. The
value of theMTTF, of each channel is divided into three steps as depicted ite TaB and
shall be calculated individually for each channel.

Description for each channel Range for each channel
low 3years< MTTF,; < 10 years
medium 10 years< MTTF,; < 30 years
high 30 years< MTTF,; < 100 years

Table 3.2: Mean time to failure for a channelTT F;

MTTFy for each device has to be determined by gathering informdtiom data-sheets
provided by the manufacturer or other methods defined inrafipes C and D of [10]. If neither
is applicable, a duration of 10 years has to be taken.

Diagnostic coverage DC

In most cases an estimation of the DC will be done by a Failuoeldland Effects Analysis
(FMEA) or a similar procedure. Therefore, all relevant faand failures have to be considered,
including a calculation if the PL of the SPR/CS fulfills thejuired performance levé? L,.. ISO
13849 defines four levels of DC as shown in Table 3.3.

Description Range
none DC < 60%
low 60% < DC < 90%

medium | 90% < DC' < 99%
high 99% < DC

Table 3.3: Diagnostic coverage (DC)

16

Requirements to safety-related software

The aim of the software development process is to avoiddandtoduced by the software life-
cycle. ISO 13849 specifies certain criteria which have toutidléd depending on the required
performance level. Basically, a consistent documentatithe whole development process
falls into these conditions. The standard proposes to essittplified V-Model for the software
lifecycle as shown in Figure 3.3.

Safety-related Validation
software specification
System design - — Integration tests
Module design }4 *{ Module tests

o

Implementation

Specification of
the safety-related
functionality

Validated
software

Validation

Result >
Verification — — =

Figure 3.3: Simplified V-Model of the software lifecycle pased by ISO 13849-1

This standard distinguishes between safety-related etieloesbftware (SRESW) and safety-
related application software (SRASW). A subset of the @aplie methods for SRESW and
SRASW up to thePL, d is listed in the following:

Software lifecycle with verification and validation
Documentation and reasoning of the specification and thgrdes
Modular and structured development and implementation
Handling of systematic failures

Extended functional tests

Change management including reasoning

Quality management

Usage of SRASW is subjected to some more requirements deeod the type of pro-
gramming language and theL,

Certified toolchain

Validated libraries

Criteria to performance (e.g. reaction times)
Semi-formal methods to describe data and control flow
Simulation of the implemented code

Adequate testing

17

e A complete, consistent, readable, available and undelsktd® documentation
e Verification
e Change management

For detailed requirements, please refer to points 4.6.24&h8 in [10].

ISO 13849-1 proposes the parametrization of safety-ikledftware as well. According to
this, the inserted parameters need to be examined withaegpéheir validity. Further, safe
data transmission from a configuration tool to the devicetbdse ensured and the effects of
incomplete or incorrect transmitted parameters have tanbevk in advance. Additionally, the
configuration tool needs to comply with the same requiremeftSRP/CS as the configured
device. Once again, for a detailed description of appleabieria to parametrize safety-related
devices, please refer to point 4.6.4. in [10].

ISO 13849-2 Validation

The standard’s second part addresses validation of mecapneumatical, hydraulic and elec-
tronic systems. The validation process assumes errocbsisining all considered faults. These
lists are processed by a predefined validation process aatidation plan. Furthermore, the
whole validation process needs to be documented.

Finally, the most important part is the validation of safetjated functionality. In that step
validation has to ensure correct operation of the deviceeuddferent configurations and its
reaction to different inputs. Additionally, where applide, a combination of safety-related
devices needs to be validated by analysis or by testing ifired.

3.2 IEC 61508 - Functional safety of E/E/PE safety-relatedystems

IEC 61508 is the de-facto standard for anything concerréfigtg-related electric/electronic/pro-
grammable electronic (E/E/PE) systems. It covers eveglesistep of the development process
of safety-related systems starting from the very first cphop to the decommission of the sys-
tem and provides requirements and methods in order to achispecified safety integrity level
(SIL).

IEC 61508 is divided into seven technical parts and an amhitiguide part. The docu-
ment structure and relation between them are shown in FgjdrePart one covers basic terms,
conditions and requirements for the entire safety lifeeyaf the development process. The
second part addresses special requirements for E/E/Pé&nsystn the third part, the develop-
ment of safety-related software is examined in terms ofyitée, parametrization, extension and
upgrading, whereas definitions and abbreviations are dkfirge fourth part. Methods for de-
termining the achieved safety integrity level are laid dawpart five. The sixth part presents
guidelines for the application of parts two and three. Fyn#the seventh part gives an overview
of techniques and measures for the implementation andayelid

Before details regarding the development of a safetyedlalystem are described, basic
definitions of safety and functional safety need to be givestording to IEC 61508-0 [13] the
definition of safety is as follows:

18

Technical
Part 1 } i
J requirements

Development of the overall safety
requirements (concept, scope
definition, hazard and risk analysis)
(E/E/PE safety-related systems, other
technology safety-related systems and
external risk reduction facilities
711075

1]
Part1 }

Allocation of the safety
requirements to the E/E/PE
safety-related systems

Risk based approaches
to the development of
the safety integrity
requirements

Other
requirements

76 Overview of Definitions and
techniques abbreviations
and measurements
Guidelines for the
Realization Realization application of
phase for phase for parts 2 and 3 Documentation
E/E/PE safety- safety-related Clause 5 and
related systems software annex A
Part2 Part3
fﬁ* Management of
a) unctional safet
Part 1 fi ional safety
Installation and commissioning Clause 6
and safety validation of E/E/PE Part 1
safety-related systems
7.13and 7.14
Functional safety
% assessment
Clause 8
Part1)

Operation and maintenance,
modification and retrofit,
decommissioning or disposal of
E/E/PE safety-related systems

715t07.17

J

Figure 3.4: Requirements map for parts 1 to 7 of IEC 61508 [13]

This is the freedom from unacceptable risk of physical wjor of damage to the
health of people, either directly, or indirectly as a resfilamage to property or to
the environment.

Opposite to that, functional safety is defined as:

Functional safety is part of the overall safety that depemda system or equipment
operating directly in response to its inputs.

Both terms can only be determined by considering the systeawvehole together with the
environment it is interacting with. The procedure of depaig a safety-related device is as
follows: First, a hazard analysis needs to be performed. oslicg to this, the necessity of
functional safety is determined. If so, adequate measwged to be taken into account during
design.

Functional safety means, that it is required to perform &ifipdunction to ensure that risks
are kept below a certain level. Therefore, #adety function requiremenfsvhat the function

19

does) deriving from the hazard analysis and shéety integrity requirement@he probability
that the safety function performs as defined) which agaiivelérom the risk assessment need
to be determined. The hazard analysis points out what neels tlone to prevent hazardous
failures, whereas risk assessment defines the degree ahtgthat the safety function will be
performed.

The entire safety lifecycle

In order to achieve the required safety integrity, the stathdefines a lifecycle model (see Figure
3.5) which covers every step of the lifetime of a safetytegladevice starting at the first concept
and ending by the decommission of the device.

Definition of the
2 complete
area of application
3 Hazard- and risk
analysis
4 Entire
safety requirements
Allocation of the
safety requirements

i oy

Entire planing

| External |
| methods |
i forrisk i
1 sk

Safety-related | |
Systems: i
E/E/PE

| Safety-related |
; | systems with
| | different |
110 | ;

Planing of
entire
operation and
maintenance

Planing of
7 entire
safety

validation

Planing of
entire
installation and
commission

6 8

{ Realization | | i Realization |

Back to an adequate

[Entire operation phase in the safety
» 14 mamngnce and 15 Entire modification lifecycle
VL repair and upgrading
16 Decommission or
sorting out

Figure 3.5: Entire safety lifecycle as defined by [3]

To achieve and keep a defined SIL during the design and thoaighe further operation,
each step must to be documented scrupulously. Additignhkygenerated documentation has
to be versioned, revisioned and approved. Further, th@atdirequires defined authorities for
the technical and management phases of each cycle in thd,mefdered to agnanagement of
functional safety

A brief description of the single steps of the entire safégcl/cle seems to be helpful:

The concept phase is intended to get knowledge about thpragat under control (EUC)
and its environment. This is the base for the consecutiygsster which reason all possible

20

sources of hazards and information about them as well asémyriation from applicable stan-
dards have to be pointed out.

The aim of defining the complete area of application is to stimlimits of the EUC and the
application area for the following hazard and risk analysegjuiring specification of physical
devices, external events and subsystems.

The hazard and risk analysis point out hazards, hazardamsesnd sequences leading to
hazardous events. Probability of a hazardous event, itastrgnd necessary measures to reduce
the risk have to be considered. Furthermore, any assunsptioring the analysis have to be
stated.

The entire safety requirements target the developmentfefyseelated E/E/PES, focussed
on the safety functionality and the safety integrity. Tliere, safety functions and necessary
risk reduction for every hazardous event have to be defineduiRrRments for safety integrity
have to be determined for every safety function.

Assignment of safety requirements is intended to map theqursly defined safety functions
to the safety-related systems and E/E/PES and to assign o &iach of these functions. In
case the assignment of the safety requirements shows thegdhired SIL cannot be achieved,
the architecture has to be changed and the assignment mebdsré-done. Requirements to
safety integrity have to be adequate in order to show thatiéan probability of failure or the
probability of a hazardous failure per hour is satisfied. tli@nmore, common cause failures
(CCF) have to be taken into account, unless the single stdmsgscan be shown to operate
independently. Independence is given if

o the subsystems are functionally different,

they are based on different technologies,

they do not use common parts, services or supply systems,
they have no common operational, maintenance or test mesgasur
they are physically separated.

In case one of these requirements cannot be satisfied thgssetins cannot be considered as
independent in terms of safety integrity.

Once the mapping has been done, the safety integrity leests o be assigned according
to Table 3.4.

Safety Integrity Level Operational mode with continuous operatipn
(Probability of a hazardous fault per hour)

4 > 10~2 until < 108
3 > 10"% until < 107
2 > 10~ until < 1076
1 > 1075 until < 107°

Table 3.4: Safety integrity levels for devices with highfpemance rate [3]

For systems containing of multiple subsystems with difie/®ILs, the whole system will
have to be regarded as a system with the lowest SIL amongbts/stems, unless it can be
shown that sufficient independence between them is present.

21

The E/E/PES lifecycle model defined by IEC 61508-2

This section describes the lifecycle model for a E/E/PES partof the overall IEC 61508-
1 lifecycle model in Figure 3.5. Therefore, the componentf $he model is extracted into
further steps as shown in Figure 3.6. The model is kept vemgigé and can be used unchanged
for hard- and software development. The sub-lifecycle ganized in six tasks which will be
explained in the following.

E/E/PES safety lifecycle

Specification of the /E/E/PE

9.1 ‘

safety requirements

Specification of the
requirements to the
safety function

%}. 1.1
Safety-related

Specification of the
requirements to the
safety integrity

o

Systems: ‘

E/E/PE

Planning of the E/E/PE
validation with regard
to the safety

>‘ 9.2

E/E/PE design and
implementation

9.3

oo

L]

E/E/PE operation
and maintenance

E/E/PE integration

‘ 9.4

- ‘
%

E/E/PE safety
validation

To box 14 in picture 2
of the IEC 61508-1

To box 12 in picture 2

A E/E/PE safety lifecycle of the IEC 61508-1

for every safety related
E/E/PE system

Figure 3.6: E/E/PES safety lifecycle in the realizationgghdefined by [4]

Specification of the E/E/PES safety requirements

The specification of the requirements to the safety funetipnneeds to contain the following:

A description of the provided safety functionality

Performance requirements like throughput and responssstim

Interfaces between the E/E/PES and user interfaces

Any safety relevant information

Operational modes like parametrization, automatic, sammatic, manual, shut down,

maintenance

e All kinds of failure performance, i.e. the reaction of thestgm in case of failure (e.qg.
alarm or shut-down)

e The meaning of the hardware/software interaction

e Constraints and limits of the E/E/PE subsystems

e Requirements to the commission and restart of the E/E/PES

22

Furthermore, the specification of the E/E/PES safety iitiegequires to define the SIL for
every safety function, the operational mode for every gdtetction, limits to the environmental
conditions and limits to electromagnetic compatibility.

Planning the validation of the safety-related E/E/PES regaling safety
E/E/PES design and implementation

This step presents the most complex part in the developnienégs of a safety related device.
For better understanding, it is subdivided into severalllemigems:

General requirements The main requirement is that the design needs to fulfill thecisp
fication in all points. The design of a safety-related E/EBHEcluding hard- and software-
architecture, sensors, actuators, programmable elécdt@mbedded- and application software
as shown in Figure 3.7 has to be accomplished in order tdysati®of the following conditions:

e Safety integrity requirements to hardware consisting efréquirements due to the prob-
ability of dangerous hardware failures and the constraihtise safety integrity caused by
hardware architecture.

e Requirements to the systematic safety integrity congjstinthe certificate of approved
devices and the requirements to avoidance and handlingstédragtic failures.

e Requirements to the system behavior when detecting a fault.

Architecture of the programmable electronic

PE Hardware Architecture

P2 (R SR AT LT (containing of embedded and application software)

General and application- PE Embedded software | PE Application software
specific properties of the

Examples:
EE har?wgre Examples: - /O functions
e - Communication drivers | -Derived functionality like
- Diagnostic tests Fault handli tests if not
e e 1S - Fault handling sensor tests if not pro-
- Application software vided by the embedded
- Two-Channel I/0 software

Figure 3.7: Relation between hardware and software agthites of PE [5]

In case a safety-related E/E/PES supplies safety-rel@rahnon-safety-relevant function-
ality, the complete hardware and software have to be comgideafety-relevant except a proof
for the independence of safety and non-safety-related pathe system can be provided. The
arising SIL that has to be satisfied is the highest among feittefd devices. That means, a sys-
tem requiring SIL2 has to contain systems satisfying at I8H4<2. If one subsystem just fulfills
SIL1, the whole system is considered to have SIL1.

If independence between safety and non-safety functignairequired the methods for
achieving the separation and the reasons therefore haeedisdiosed.

23

The developer has to ensure the adequateness of the regonisefor the safety-related
E/E/PES hardware and software with focus on the safetytifumality, safety-integrity require-
ments, electrical equipment and user interfaces.

A further step requires documentation and reasoning offipbeal procedures and measures
in design as well as of hardware-software interaction.

The whole system has to be partitioned into subsystems Wwherach of them requires a
separate design and verification process. In case a sulpsiiagemultiple outputs it is required
to show that no possible combination of states leads to atauzs failure of the E/E/PES. If
possible, all components should be dimensioned for unarlio

Constraints to the hardware safety integrity due to architecture The highest achievable
SIL in the context of hardware is limited through the faulletance of the hardware and the
fraction of safe failures in the subsystems. A fault toleenf N means that the safety func-
tionality will get lost by N+1 faults with the constraint thé&ault detection mechanisms like
diagnosis must not be taken into consideration. Where & lizadls to another fault, these two
faults are considered to be a single fault. If certain impié faults can be excluded from the
fault tolerance calculation it has to be reasoned and doctede The fraction of non-hazardous
failures (SFF) of a subsystem is defined as the mean rate dfismardous faults plus hazardous
detected faults divided by the overall failure rate of thesystem:

B Safe Faultst- Detected Faults
~ Overall Failure Rate of the Subsystem

The standard defines subsystems of types A and B. Type A isreeqio be completely
specified by means of fault performance of the componentssibsystem itself under a fault
and reliable information about process experience. Evenlyf one requirement is not fulfilled,
a subsystem is classified as type B. Depending on the subsygbe either Table 3.5 for type A
or Table 3.6 for a type B subsystem have to be taken into ceratidn. These tables describe the
achievable SIL depending on the fault tolerance of the hareand the fraction of nonhazardous
failures. For example, a subsystem of type A with more th&b 89non-hazardous failures can
reach SIL4 with a fault tolerance of 1.

SFF (3.1)

. . Fault tolerance of the hardware
Fraction of nonhazardous failures 0 1 5
< 60% SIL1 | SIL2 SIL3
60% - <90% SIL2 | SIL3 SIL4
90% - <99% SIL3 | SIL4 SIL4
>99% SIL3 | SIL4 SIL4

Table 3.5: Safety integrity of hardware: Constraints tchdectures for safety-related type A
subsystems [4]

Requirements for the estimation of the failure probability of a safety function due to ran-
dom hardware faults The probability of loss of the safety functionality due tomdam hard-

24

. . Fault tolerance of the hardware
Fraction of nonhazardous failures) 1 5
< 60% not allowed| SIL1 SIL2
60% - <90% SIL1 SIL2 SIL3
90% - <99% SIL2 SIL3 SiL4
>99% SIL3 SIL4 SIL4

Table 3.6: Safety integrity of hardware: Constraints tchaectures for safety-related type B
subsystems [4]

ware faults has to be less than the specified failure limitlaasito be estimated considering the
following:

e The architecture of the safety-related subsystem relatétetsafety function.

e The estimated failure rate/s of each subsystem in evenatipeal mode which leads to a
dangerous failure and can/cannot be detected throughastigmechanisms.

e The vulnerability to common cause failures.

e The diagnostic coverage of the diagnostic tests.

e The interval of online tests to detect dangerous faults wbannot be detected by diag-
nostic tests.

e The probability of an undetected failure of any data tralssion process.

According to these criteria the diagnostic test-internas ko be set adequately. If for any
design the required limits of failure rates cannot be faléill critical components or parameters
need to be identified and possibilities for improvementsehiavbe located. Afterwards the
improvements have to be applied and the probability of aveare failure has to be determined
again.

Requirements to avoid failures Therefore, appropriate procedures and measures have to be
developed and applied. According to the required SIL, th@eeedures have to be modular
and transparent. Furthermore, they have to give a clear i@uisp description of the provided
functionality, the interfaces of the subsystems, the tynoetler of the information and parallel
operation and synchronization. Additionally, a properwentation as well as validation and
verification have to be supported.

Maintenance schemes and integration tests have to be plahumigg the design phase to
ensure that the required SIL can be obtained. If possiblenzated tools and integrated devel-
opment tools should be used.

Requirements to handle systematic failures Systematic failures should already be detected
in the design phase. Therefore, the testability and maiakdlity as well as the human abilities
to operate the system have to be taken into account. Thuslesign should ensure that all
remaining design errors regarding the hardware, enviroteheonditions, human errors, all
remaining software errors and communication issues asethet.

25

Requirements to the system behavior at fault detection If a fault has been detected the
system either has to go into a safe state and inform the @pedadut it or, if that is not possible,
the fault has to be isolated. If the fault cannot be fixed withe MTTR a predefined action has
to take place.

Requirements to E/E/PES implementation The implementation of the safety-related E/E/PES
has to be in agreement with the design of the E/E/PES. Evéigystem that is used by a safety
function has to be identified and described as a safetyeteRtbsystem. To every safety-related
subsystem the following information has to be provided:

e The functional specification of functions and interfacesdigy the safety-related subsys-
tem.

e The estimated failure rate/s caused by random hardwaresénrevery mode leading to a

dangerous failure and being detected or not by diagnostasures.

The environmental limits of the subsystem.

The lifetime of the subsystem.

Maintenance requirements and intervals.

The diagnostic coverage and test interval.

Any required information to determine the MTTR.

Any information to determine the fraction of safe failures.

Fault tolerance of the hardware.

All remaining limits applicable to the subsystem to avoidtsynatic failures.

The highest SIL that can be consumed by a safety function.

Any information regarding configuration of the subsystem.

A confirmation about the verification of the subsystem.

Estimated failure rates for a subsystem caused by randodwbes errors can be determined by
a failure mode and effects analysis (FMEA) or, if availalilg, performance information about
the subsystem under similar conditions.

Requirements to data communication In case of data communication influencing the safety
functionality, the probability of an undetected fault oétbommunication system has to be es-
timated. Therefore, transmission errors, repetitions,lgssertion, wrong sequence, corruption,
delay and masquerade have to be taken into account. Edpdbmlparameters residual er-
ror rate, rate of residual information loss, bitrate and sage delay have to be considered for
the estimation. The topic of data communication will be dgsed in detail in the Section 4.1
describing the IEC 61784-3.

E/E/PES integration

The integration tests of an E/E/PES have to ensure that alubes interact in the specified way

and fulfill the intended behaviour. For the execution of thstd, appropriate procedures and
measures have to be applied. Furthermore, every modificagéeds to be evaluated and the
tests themselves must be properly documented.

26

E/E/PES operation and maintenance procedures

That point addresses the routinely procedures for maintanpurposes. It has to be ensured that
an unsafe state does not occur during these tasks. Morgoregquires that irregularities from
the normal operation and online test results are documeRwextedures for maintenance have
to be defined which are applied in case of failure includingcpdures for diagnosis, repair,
logging and analysis of failures and revalidation. Routimaaintenance procedures have to
fulfill systematic methods which have to detect non-deteéadlures resulting in reduction of
the required safety integrity.

Validation of the E/E/PES regarding safety

Validation of the E/E/PES has to be performed according ¢opifeviously defined validation
plan. Each used measurement device has to be calibrate@afield/for its correct functionality.
During tests every safety function has to be evaluated doaptto its intended behaviour and
results have to be documented in an adequate way.

E/E/PES modification

If an existing E/E/PES has to be modified the following reeuoients have to be complied:

An exact and complete specification of the modification.

An analysis of the impact on the whole system.

Approval for all modifications.

Test-cases of the modified components including data gdipélde revalidation process.
Deviations from the normal operation.

Required changes to the system behaviour and the documentat

Once the system has been modified it has to be re-verified avalidated.

E/E/PES verification

The goal of the verification is to ensure the correctness andistency of the device with the
specification. Therefore, the verification already has tplaened during the development phase
of the E/E/PES. That plan has to include strategies and guoes for verification, usage of
measurement devices, documentation and analysis of thedyaésults. For each stage of the
design phase it has to be shown that the safety integrityireagents are fulfilled.

SIL 3 in detall

In the previous sections some of the basic requirementhédévelopment of a safety-related
E/E/PES have been presented. Basically, these requirsrmenapplicable from SIL 1 to SIL 4.
Part 3 of IEC 61508 [5] presents guidelines for every SIL veitbpecial focus on the software
of an E/E/PES.

As already mentioned the development of safety-relatevacé has to be executed accord-
ing to the lifecycle model in Figure 3.6. Besides, some matidgjines for the implementation

27

of each step are given in Appendix A and B of [5]. For the sofenvspecification and design,
computer-based specification tools and semi-formal methoel recommended. Appropriate, if
possible certified, programming languages, toolchaingpdiers, libraries and integrated devel-
opment environments should be used. As this thesis doeanget & fully developed device, not
all of the recommendations can be met. For instance, theeudfagterrupts and pointers should
be avoided although they are some of the basic concepts noeoiatroller programming.
According to Table 3.6, a SIL can be achieved by increasieg3fiF or the fault tolerance
of hardware. For SIL3 that is to detect more than 99% of hazaiith a fault tolerance of 0 or
to detect 90% to 99% of hazards with a fault tolerance of 1 aetect 60% to 90% of hazards
with a fault tolerance of 2. As shown later, a high SFF can dmdygained through extensive
online tests and thus high diagnostic coverage. The copsegus to increase hardware fault
tolerance. A discussion on different hardware architestuvill be given in Section 5.1.

3.3 Conclusions of ISO 13849 and IEC 61508

So far, terms and definitions regarding safety-relatecegystand the two most important stan-
dards in the area of safety-related systems have been dse&umming up, ISO 13849-1 is
kept very generic in some parts of the definition of safetsitesl devices. There are no mecha-
nisms or methods given on how to realize specific functioyati order to accomplish a certain
performance level. Also the second part, ISO 13849-2 isgepéric to be applicable for a wide
range of devices.

Contrary, IEC 61508 provides detailed information aboetwhole development lifecycle
of safety-related devices and depicts generic requiresrfentoncept, design, implementation,
testing, validation and verification.

Both standards address the development of safety-relgitdnss as a whole and do not
provide guidelines on how to implement specific safety-fiomality. A more “implementation-
oriented” standard is IEC 61784, outlined in the followingapter where measures for safe
transmission of data over a network will be presented.

Especially interesting for this thesis is the relation oSR& SILs which is outlined in Table
3.7.

PL | SIL (high usage)

a | no correspondent
b 1
c 1
d 2
e 3

Table 3.7: Relation between Performance Levels (PL) andt@aitegrity Levels (SIL) as de-
fined by [10]

PL a has no corresponding SIL level and is intended to reduceiskeof slight, usually
reversible injury. IEC 61508 defines SIL 4 for possible hdpas accidents in process industry

28

and is not relevant for the application at machinery. Thius,Highest relevant PL iswhich is
assigned SIL 3.

29

CHAPTER

Existing Safety Solutions in HBA
Systems

Building automation systems have initially been desigreedsimple applications like lighting,
shading and climate control without any safety relevanicgafety was required, separate, closed
systems have been installed which were interacting viaxgate with the non-safe parts of the
automation system.

Increasing demands regarding safety resulted in extensibaxisting automation systems
with safety functionality. A further requirement has beemrnhable coexistence of safe and non-
safe nodes on the same network. Since also the existing coioation media should have been
reused, the solution was to implement protocols which wailé din top of the existing non-safe
ones. Thus, to gain safety requirements, the underlyingrmamication channel is considered as
“black channel”. That means, theoretically any commuimncaimedium, wired or wireless, can
be used as long as timing requirements are met which are of ingportance. If no guarantees
can be given whether a message has arrived or not, timeotggdnae introduced to determine
loss of messages. Discussion of these issues will be pegsenthe following.

However, safety in home and building systems does not maegndependability. Instead,
each safe automation system is assumed to have a safe state, sifety can be gained by
detecting faults and transferring the system into a safe.sta

In the following four automation solutions will be presemtenamely Safety over Ether-
CAT (SoE), CANopen Safety, SafetyLON and OpenSafety. Algdto Safety over EtherCAT
and CANopen Safety have their origins in industrial auteomatthey are covered too, since
especially SoE becomes more interesting for building aat@n. However, this thesis does
not focus solely on building automation systems. Instehd,dommunication and hardware
technology used is of special interest which brings in SalE@ANopen Safety for comparison.

Preliminary to presenting existing safety solutions in leand building automation systems,
a standard defining communication measures for safetyetely/stems will be presented - IEC
61784-3. The standard describes common communicatiorsexnal measures to detect them.

31

4.1 IEC61784-3 - Functional safety fieldbuses

The IEC 61784-3 standard outlines the general principlesdte message transmission in net-
works which are conform with afore described IEC 61508. €fae, communication profiles
for different fieldbus networks are specified in parts IEC&L3-x and an additional communi-
cation/protocol service is extended by a safety layer.

Before the standard will be described in depth some impbte&zms have to be defined.
Since all communication profiles defined here base on itpbtaek channel principlewill be
given special attention:

Black Channel Principle

As defined by [9], that principle states:

...the chosen communications technology does not makeepe for a few basic
constraints. . .

... nhone of the error detection mechanisms of the chosen coneation technology
are taken into account to guarantee the integrity of thestemred process data.

... Basically, there are no restrictions with respect tognaission rate, number of
bus devices, or transmission technology as long as the péeasrare tolerated by
the required reaction times of a given safety applicati9].[

The black channel principle gives no guarantee whethertansessage has been delivered cor-
rectly, in time, or received at all by the receiver. Messagadmission is thus just a best effort
approach. Any data integrity or safety measures have to be by the safety layer.

Another term is thesafety communication layer (SCljhat is a separate layer in the com-
munication stack which provides measures to ensure safeniasion of messages according
to IEC 61508.

Communication Errors

To achieve a certain level of safety in message transmissibikinds of communication er-
rors have to be taken into account. In the following, IEC 61t38defined errors and possible
behaviour under black channel conditions will be explaibadfly:

Corruption

A message may be corrupted by errors in the communicatiogystdm or on a node. Such
errors are common in networks and usually end up in bit e(fbpped bits).

Unintended repetition

By errors or malfunction, old and out-of-date messages gpeated at wrong time instants.
Repetition by sender is common in case an acknowledgemeiné oéceiver is absent.

32

Incorrect sequence

By errors or malfunction, a sink receives messages in ircbsequence by means of wrong
sequence numbers or timestamps. It is likely that such®wocur in networks with storing
elements like routers or gateways where messages are delaysed by higher prioritized mes-
sages.

Loss

By errors or malfunction, a message was not delivered oraelauged.

Unacceptable delay

Messages are intended to be delivered within a predefineditistant. If a message is delayed
due to congestion or errors on the bus, FIFOs in switchedgési or routers, the message will
be delayed.

Insertion

By errors or malfunction, a message from an unintended onawk source was inserted. Since
these messages do not have a valid source they cannot béexlsas correct.

Masquerade

Maquerade is similar to insertion, except that the receimedsage comes from a valid source.
That means, a non-safety message will be accepted as sglfatgnt message.

Addressing

Through errors on the communication system a safety relewassage has been received by a
wrong node which handles the message as correct.

Deterministic Countermeasures

So far, possible errors on the communication system have peiated out. They have to be
detected by at least one mechanism in the safety commuwmedayer. In the following, coun-
termeasures for deterministic errors as defined by IEC 6B/&# presented:

Sequence number

Each message is tagged with a continuous increasing number.

Timestamp

Usually, data is only valid for an amount of time. Therefoeach message is tagged with a
relative or absolute timestamp. That requires synchrainizaf clocks across the participating
nodes.

33

Timing expectation

Messages are expected to be received during predefineddimd$ a message arrives outside
atimeslot, an error can be assumed. That requires synehtam, since each participant has to
know the time instant of its bus access.

Connection authenticity

Each message contains a unique sender or receiver idedgferibing the logical address of
the safety relevant participant.

Acknowledge

The message sink replies the reception to the source. Digeod the protocol, that can be a
simple acknowledge message, or the message itself to ecmueet reception of data.

Redundancy with crosschecking

Safety relevant data can be packed twice or more times ietedme or different messages. On
receiver side, the message contents are cross checkedr toatectness.

Different data integrity assurance systems

If safety relevant and non-safety relevant messages arsnitied over the same communication
system, different data integrity measures like CRC-patyiads or hash functions can be applied.
Thus, non-safety messages should not be accepted as sdéebnt data.

Relation between errors and safety measures

Table 4.1 shows already described errors on the commurrcatibsystem and possible coun-
termeasures against such errors. It is clear, that any fypear has to be detected by at least
one countermeasure. Depending on the implementation aiviigll system, the table is am-
biguous, since for example incorrect sequence errors cdeteeted by sequence numbers and
timestamps. Thus, not both measures are required to berimepted.

Data integrity and Data security

To ensure integrity of received data, hash functions, paits, CRC checks or redundant mes-
sage sending have to be performed. It has to be mentiongédhthanderlying communication
channel must not use the same data integrity and data saéstiyamisms as the implemented
safety communication layer, except special measures stgaiix up have been met. To re-
late the degree of safety in the SCL with the required SIL,résdual error rate of the SCL
Agsr.(Pe), which is a function of the bit error ratBe, the residual error rate of the safety mes-
sageRgs(Pe), the maximum number of safety messages per haurd the maximum number
of safety message sinks, is introduced by IEC 61784-3:

34

Communication Safety Measures
error
c 8
= %
o cC = =
. |§ g |88 |5y |88 |88 |2¢.
o2 7 © Q5 2 F £g S J o £ E
= I} o O c =l L= = o o2
g5 | E Eg |55 |88 |82 |38 |£2%
n c [F o O w e 0O X o (ARSI
Corruption XD X
Unintended repetition| X X XD
Incorrect sequence | X X XD
Loss X XND XND
Unacceptable delay X X
Insertion X X¥P) X XND
Masquerade X X X
Addressing X
a) Application dependent
b) Shows only insertion of an invalid source
¢) In any case required
d) Just in case that the residual error ratg, can be shown to meet specified requirements
N1) Under certain conditions
Table 4.1: Communication errors and detection measure8]by [
Asr(Pe) = Rsp(Pe) xvxm (4.1)

The residual error rate also depends on the maximum numisafety messages per hour
which implies bounded reaction times of safety functidgaliRegardless of the operational
mode (continuous, or low performance, see Table 3.4)joaekbetween the residual error rate
of the functional safe communication system and applic8lils are depicted in Table 4.2.

SIL | Probability of a hazardOL;Ts Max. allowed residual error rate of the
failure per hour of the functional functional safe communication system

safe communication system
4 | <1071%/h A <10710/h
3 | <1079/h A <1079/h
2 | <1078/h A <1078/h
1 [<1077/h A<107"/h

Table 4.2: Relation between residual error rate and safiggiity level

Thus, to fulfill SIL 3 the residual error rate per hour has tddss thanl0—°.

Additionally to safe transmission of data, security hasdebtnsidered as well. According to
IEC 61784-3 Point 5.7, security measures have to be implezden the black channel. Further
information will be provided in the upcoming IEC 62443.

35

The remaining information provided by the standard adeé®sifferent communication
profiles for fieldbus systems such as Profibus, CIP, EtherGATTmuch more which will be
explained partially in the following. For further informiem, refer to [9].

4.2 Industrial Automation solutions

CANopen Safety

This automation solution builds on the well known CAN bus ethivas originally developed
for in-vehicle networks. There are several standardizetbpols that make use of the CAN data
link protocol which are, for example, CANopen for embeddedtm! systems, DeviceNet for
factory automation, J1939 based solutions (J1939-71 sdBR©O 11992) for trucks and other
vehicles and, ISO 15765 for passenger car diagnostics.

CANopen can be extended to be safe by either applying théysafievant communication
protocol defined in CiA 304 [17] or by using the CANopen safeltyp 02 (CSC02) which has
been certified by TUV according to SIL3. Application of CiA8describes safety as a prop-
erty of a device: A device uses all features defined by a contation profile and additionally
special safety communication objects. All other, non-gafemunication objects remain un-
changed. A CSCO02 chip contains a complete implementatistamidard CiA 301 CANopen
application layer [16] and CiA 304 CANopen safety protocoltop of two CAN modules on-
chip.

CiA 304 also defines required hardware architecture for $tir8pliance (see Figure 4.1).

Micro Controller 1 Micro Controller 2

4 4
y y

[CAN Controller 1) [CAN Controller 2)
T A

CAN transceiver '

SPON NVO djes

CAN

Figure 4.1: C-model for safety-relevant communicatiorwoeks [17]

CANopen Safety distinguishes sources of safe informatgaiefy switches, light barri-
ers, emergency stops) and consumers of information (retdye drives, safety PLCs). Since

http://www.can-cia.org/index.php?id=4

36

CANopen Safety does not provide request-response comatiomcpattern, it is left up to the
data consumers to check data integrity and transfer to satfe is case of incorrect data. The
number of information sources (safe inputs) is limited to Whereas an unlimited number of
information consumers (safe outputs) may listen to the ywed safety-relevant data objects
(SRDOs).

To increase data safety, an SRDO consists of two standard ds4&l frames, where the
second data frame transfers the same data as the first one, dudlifferent bit-ordering, like
reverse ordering (Redundancy with cross-checking). Soodsecutive CAN frames from the
same SRDO have to arrive within the safety-relevant objaladation time (SRVT). An example
is given in Figure 4.2. Additionally, that mechanisms chetlether sufficient network capacity
is available. If the second frame is delivered after the SR¥fired, the safety controller shall
go into safe state. Likewise, if one of the frames does nadfgadata integrity or data contents
of the two frames do not match, the safety controller alsadasvitch to safe state.

SRDO SRDO SRDO

SRVT expired

A Kad

SRVT SRVT SRVT

Figure 4.2: Example for SRVT timing [17]

Further, SRDOs are transmitted periodically. The intebestiveen consecutive SRDOs is
referred to as Safeguard Cycle Time (SCT). If a messageiigeded after the SCT expired, the
safety controller shall go into a safe state. Figure 4.3fithtes an example. Timing expecta-
tions require synchronization among safe nodes. Unlike otbsr safety extensions, CANopen
provides synchronization by default.

SRDO SRDO SRDO SRDO

SCT expired

t

SCT

SCT

SCT

Figure 4.3: Example for SCT timing [17]

CiA 304 also gives a mathematical analysis of the protocdbpmance: Assuming a max-
imum of 64 safety relevant devices and an error rate of lems1b—* for SIL3 compliance, 44
SRDOs per second are possible. The calculation is as fallows

The worst case residual error probability of CAN is defined8ly

37

Prest =7%107% = 1% 1078 4.2)

According to model C defined in [12], sending the safety r@h\data twice, the residual
error probability results in:

P = PI%est (43)

Applying Equation 4.1 for SIL 3 and assuming the network tosist of 64 devices results
in afore mentioned 44 SRDOs per second and, thus, a refrastofi23ms [17].

A comparison to Table 4.1 is depicted in Table 4.3. It has tmbationed, that the CANopen
specification does not provide all information requiredit@@ complete comparison. Measures
depicted here are thus just based on assumptions.

L . Safety Measures ©
Communicationerror & = = =
o =
B=] (=2 o
§ 8 & > > £ 8 3
< o |3} c = = oS < £
() IS] o ® ~ (S = T g
) o = .8 o o Q Q < = o »
c g x O = @ D E < T O c b
g 3 o 8 |85 |=S |54 |SE5
(0] (0] ® > o O8
g E £ § | 8¢ |22 |88 |£2¢
wn (= [O ® (TS (el x o NE?
Corruption X
Unintended repetition X
Incorrect sequence X
Loss X
Unacceptable delay X X
Insertion X
Masquerade X
Addressing X
NOTE: CANopen Safety specification CiA304 forbids usageadésCAN IDs on non-safe nodes in networks cgn-
sisting of safe and non-safe nodes.

Table 4.3: Communication errors and detection measureshys€ANopen Safety

Safety over EtherCAT

Safety-over-EtherCAT is defined as communication profifeilig 12 of IEC 61784-3 [14] and
certified for SIL 3 compliance. Like most other industrialetg providing systems, also Safety-
over-EtherCAT builds on the black channel principle, anovates safety and non-safety func-
tionality on the same bus.

As depicted in Figure 4.4 Safety-over-EtherCAT uses unigaster-slave relationships be-
tween FSoE Master (Failsafe over CPF 12) and FSoE SlaveldaBeE Connections. Such a
FSoE Connection is always established between exactly 8n& Master and one FSoE Slave.

To ensure data integrity of the safety message transmijslidh points out the following
measures:

e Session-numbers for detecting buffering of a completdugiasequence

38

Bus Standard FSoE FSoE Standard FSoE
Master Slave Slave Slave Slave Slave

FSoE Connection

FSoE Standard
Master Slave

Figure 4.4: Basic FSCP 12/1-System [14]

Sequence numbers for detecting interchange, repetitisertion or loss of whole mes-

sages
Uniqgue connection identification for safely detecting migsted messages via a unique

address relationship
Watchdog monitoring for safely detecting delays not alldwe the communication path

Cyclic redundancy checking for data integrity to detectimggsage corruption from source
to sink.

The Safety PDU is embedded into standard Type 12 PDUs astelépic Figure 4.5. As
illustrated, the safety-relevant data is transferred iy blocks with a separate checksum.
The checksum is calculated over the command, two byte sdééty the connection ID, a virtual
sequence number, the CRC_O0 of the last received safety PBUthage additional zero octets
with the CRC polynomial 0x139B7. If only one octet of safestalis transferred, SafeDéth
is skipped in the calculation. The virtual sequence numbari6-bit value which is separately
incremented by the master and the slave each time a new $iiBtyis created. Once the
sequence number is 65535 it will start again with 1 (O is lef).oln case of faulty checksums,
both, the FSoE master and the FSoE slave will switch to a dkBaée state. For detailed state
diagrams of the Safety-over-EtherCAT nodes please see [14]

Ethernet Type 12 Type 12 PDU Type 12 PDU Ethernet
Frame | Type 12 Q |Type 12 S
Ethernet Header Header | Header Data < | Header Data s FCS
SafeData SafeData SafeData
CMD| [01] CRC_0 2,3] CRC_1 (K] CRC_n [Conn_ID

Figure 4.5: Safety PDU for CPF 12 embedded in Type 12 PDU [14]

39

The communication is organized in FSoE Cycles. The FSoE éasinds a safety master
PDU, called SafeOutput, to one of the FSoE Slaves and stets§$oE Watchdog. The FSoE
Slave then handles the data and returns its Safety Slave BBdJcalled Safelnput, and starts
its own FSoE Watchdog. Once the FSoE Master receives a Siftatg PDU, it stops the FSoE
Watchdog and the FSoE Cycle is finished. An example execigidepicted in Figure 4.6. On
expiration of either of these watchdogs, the correspondodge will enter its safe state.

FSoE Network FSoE
Master Component Slave

I i
. |Start WD() Safety Master ppyy

Verify
FSoE &
h Safety Slave PDY___. o e
P hodo e
Stop_WD(- couee

Verify
&
Calculate
S,

afety M
“...| Start_WD() ¥ Master PDy

\»

Figure 4.6: FSoE Cycle [14]

Compared to Table 4.1, SoE uses different measures to égtecs on the communication
subsystem as depicted in Table 4.4. Note, that in differémcrost other solutions presented
here, SoE distinguishes cyclic and acyclic measures for datection.

4.3 OpenSafety

OpenSafety is a new, hardware independent software impleathen of a safety stack for au-
tomation systems. OpenSafety implements the applicatiger|(layer 7) of the standardized
OSI model and considers all lower layers to be a black chanrals, it is applicable for prac-
tically any underlying hardware architecture. For SerdgsHtherNet/IP, Modbus-TCP and
POWERLINK, OpenSafety is certified for SIL3.

Causes of fault are mostly identified to be routing errors ateway3: One and the same
message might be transmitted to the same destination riebwer two or more gateways result-
ing in duplicate messages. In contrast, messages mighstet lgateways by not forwarding it at
all or forwarding it to wrong destination nets. Long messaggnt in packets might be forwarded
erroneously, incompletely or delayed at gateways, respiti corrupt messages. Another source

2http://www.open-safety.org/index.php?id=21L=hplzymyy

40

Communicationerror g £ Safety Measures = g
5 g 5 > =2 | oS
c a o c = =] < &
8 £ g 28 | Jo S g2 |Z@
c o] x o = c D = S G c >
g z > 25 |S¢ |SS€ |sa | 255
g |E E 55 |88 |53 (8¢ |58¢
n ~ ~ O® w E (el X o QOEn

Corruption Xa Xa Xc Xa Xc

Unintended repetition| Xa Xc

Incorrect sequence Xa Xc

Loss Xa Xc® Xa

Unacceptable delay Xc Xc

Insertion Xa Xc? Xa

Masquerade Xc Xa Xc Xa Xc Xa Xc

Addressing Xa Xc

a) Missing PDUs shall be detected within maximum reactioreti

b) Only one message shall be accepted during a defined time fra

Xc) Errors detected by cyclic measures

Xa) Errors detected by A-cyclic measures

Table 4.4 Communication errors and detection measurekhys8afety over EtherCAT

of error is identified to message corruption caused by @eauotgnetical interference resulting
in flipping bits. Finally, as safe and non-safe nodes mayisbex the same network, non-safe
messages might be erroneously identified as safe messagegug@nading or message mix-up).

To detect these identified errors, OpenSafety introduoesstiamps as a basic concept. Each
sent message is tagged with a timestamp resulting in detecfiduplication, delay and mix-
up. Each safe receiver is required to reply to a messageti@cdp the sender to indicate
that the data link remains established. Additionally, timenitoring detects delayed and lost
messages. The latter two mechanisms are referred to asdegtahd are part of the OpenSafety
software stack. Message corruption is avoided by tagginly eessage with a unique 8 or 16 bit
identification tag which encodes parts of the messageseaddield, telegram type and frame
type. Furthermore, CRCs are calculated over every framatached to it including the key the
calculation was done with. Upon reception, the receivelrmedalculate the CRC of the message
with the attached key. In case of different checksums, thesage will be dropped. As final
measurement, each frame is packed twice into one OpenS3ety as illustrated in Figure 4.7.
This increases the probability to detect corrupt messagese an error would have to occur in
both frames at the exactly same position. Also, masquegadinow very unlikely to occur.

Unfortunately, OpenSafety does not provide more detailéatination about the exact time-
synchronization protocol implemented, but according ®EPSG website (s&e a resolution
in microsecond range is achievable.

An implementation of OpenSafety on top of the POWERLINK pomtl is available under
BSD-license at IXXAT.

3http:/iwww.ethernet-powerlink.org/index.php?id=41
“http://www.ixxat.de/ethernet_powerlink_safety_intde.htm!

41

Payload data area

Data CRC Data CRC

Subframe 1 Subframe 2

Safety Frame

Figure 4.7: OpenSafety safety frame structure

Since OpenSafety just provides a software stack, it is [etbuhe hardware designer which
architecture to use. But to be SIL3 compliant, an architecgimilar to the one presented in

Figure 4.8 has to be applied.

Actuators A Sensors

4

(Safe |10)
2
h J h J @
>
(Safe Controller 1 H Safe Controller 2) g(/))
=
o
<
pd
g
Y @

Bus transceiver ’

Bus-line

Figure 4.8: Possible hardware architecture for an Openshlfiede

An OpenSafety network can handle up to 1023 domains, whete gamain may include
up to 1023 nodes, whereat safe nodes in a safety domain doamettb operate within the
same network. Communication between safety domains islé@nkdrough gateways. Since
OpenSafety builds on the black channel principle, safe andsafe nodes are allowed to operate
in the same network. Each domain has to contain a Safety Coafign Manager (SCM) to
monitor safe nodes. That SCM cyclically sends lifeguardaig to test safe nodes in its domain.
If a lifeguard signal is absent, the safe node shall go inte siate.

Compared to safety measures defined by IEC 61784-3 in Table&OpenSafety uses mea-

42

sures depicted in Table 4.5.

Faults Preventive/Corrective mea.§__ures

Time
Monitoring
Identifier

CRC protection
Redundancy wi
cross-checks
Distinct frame
structure

X| Time Stamp

Duplication
Loss
Insertion X
Incorrect Sequence
Delay

Distortion X X
Mix-up of standard X
and safety frames

x

X[X

Table 4.5: Communication errors and detection measuregeySafety

Summing up, OpenSafety is a good option to extend any buereysith safety functionality
since an available software stack is already SIL3 certiflégk provided documentation included
in the downloadable software stack is a good entry point emthdntegrate OpenSafety within
an existing implementation. For SIL3 certification, the @Pafety homepageecommends to
contact the EPSG (Ethernet PowerLink Safety Group) for.help

4.4 SafetyLON

SafetyLON is an extension to the building automation syst€»\ developed in the 1990s by
Echelon. Since 2008 LON is approved ISO and IEC standard andndented in EN 14908
series. Due to its open and inter-operable specificatios widely used, especially in public
buildings. LON nodes base on Neuron Chips, including MA@twork- and application-CPU.
The MAC CPU handles physical access to medium, the netwoltk @ and encodes messages
to proper format and the application CPU implements the pssgram. Each neuron chip is
identified by a worldwide, unique 48 bit Neuron ID, assignedtltite chip manufacturer. The
Neuron ID is used for identifying chips in the fieldbus netiwohe communication between
LON nodes is performed according to the LonTalk protocololhs applicable to a wide range
of communication media.

Just like other building automation protocols, LON does pratvide safety by default. In
course of the SafetyLON project, LON has been extended fdl &dfety requirements up to
SIL 3. Therefore, the hardware architecture has been extkeasl similar depicted in Figure 4.8.
To access LON networks, the bus transceiver will be repldged Neuron chip. Since safe
and non-safe nodes shall coexist among the same networkptikalk protocol must not be
changed which results in application of the black channielcpple. Thus, safety relevant data
is packed into payload data area of standard LonTalk message

Shttp://www.open-safety.com/index.php?id=25&L=wqdrecexvyln

43

The format of the safe message is depicted in Figure 4.9. Sorerhigh amount of data
integrity and low risk of corruption, the data part of theesaiessage is sent twice. The mes-
sage starts with an ID field keeping information about mesdgpe followed by a three byte
safe address field. The timestamp is divided in two parts wiesults in a 4 byte timestamp
consisting of MSWord (Most Significant Word) for the higherot bytes and LSWord (Least
Significant Word) for the lower. SafetyLON uses timestangsdietection of delay, repetition,
wrong sequence and in conjunction with safe address, iosd&3]. Finally, two different CRC
polynomials are applied and results placed in field CRC 1 anBépending on the message
length, either one or two bytes of CRC sums are appended.

Time- Time-
ID | Address | Stamp | Datanbytes |ChC|ID | Address | Stamp | Data:nbytes |CRC
MSWord LSWord

Figure 4.9: SafetyLON protocol Extension

Communication among nodes is performed according to pevdzansumer model: Each
producer and consumer is assigned a safe address. Adthtiammsumers keep a list of safe
addresses of producers, from which they are allowed tovezfe messages. When sending
a safe message, the producer attaches its own safe addtbssn@ssage. Upon receiving a
safe message, the receiver will only do further processinbe safe address in the message is
contained in its list of valid producers.

Additionally, producers cyclically send heartbeat messagonsumers check timing inter-
vals between heartbeats and in case of expired timeoutotiimer will enter a defined safe
state.

In comparison to Table 4.1, applied measures in SafetyL@Nlapicted in Table 4.6. It has
to be mentioned, that connection authentication is impigeteby means of a safe addressing
model.

Unfortunately, information about application of SafetyN@an hardly be found. For the
time this thesis was written, it was not even possible to exanfi SafetyLON was used at all.

44

Communication Safety Measures

error
@ 8
o 5 n = c
IS E= o T o <
S] S > 1= < S
2 3 S v = = =]

o |57 [l =) = o35 T 7

) Q o 8 < x SN S o T
o IS o S 038 S o o © g 2 -
c @ = O= T © o = C TG c >
g 7 > 25558 |SS |55 | 255
g‘ o Q cc @ 8 %] T > S 0 [4) 8749
o E E S5 T o2 < 2 oo |22
wn = (= Ocw WL E 0 x o [a =7

Corruption X

Unintended repetition X

Incorrect sequence X

Loss X

Unacceptable delay X X

Insertion X X

Masquerade X

Addressing X

NOTE: Connection authentication is implemented by usagesaffe addressing model. Messages are just proce

if the source address in a delivered message is in the lisimfk source addresses.

a) In conjunction of timestamps with safe addresses.

Table 4.6: Communication errors and detection measureshys8afety LON

45

ssed

CHAPTER

KNX Safety

The development of a safety-related device requires toidensvery aspect of a device starting
from a sensor up to the actuator. The chain is visualized girigi 5.1. For the further safety
considerations, only the red marked units will be taken atoount.

Safety-related system under consideration

{ Sensor]—1»{ Input H Logic H Communication H Logic H Output]—|>{ Actuator]

Figure 5.1: System chain - From the sensor to the actuator

First, all possible hazards have to be determined in a hagaidisk analysis. For fieldbus
systems, [24] has identified them to:

Crosstalk due to a coupling fault

Broken cabling

Wrong wiring

Stochastic failures

Extensive bandwidth allocation
Transmission of unauthorized messages

These hazards can cause further hazardous events which are:

Data corruption

Loss of messages

Insertion of messages

Delay, repetition, wrong sequence of messages
Masquerade: Unsafe messages look like safe messages

47

Hence, hazards can occur on every component of the micratientsuch as CPU, memory,
inputs and outputs. Since it is assumed that not all used ocoemts are fully specified with
regard to their safety properties, Table 3.6 will be appliess already stated, a SIL can be
achieved by increasing the SFF or fault tolerance of hardwkor SIL 3 that is, according to
Table 3.6, to detect more than 99% of hazards with a faultaal=e of O or, to detect 90% to 99%
of hazards with a fault tolerance of 1 or to detect 60% to 90%aafards with a fault tolerance
of 2. As shown later, a high SFF can only be gained throughmsite online tests and thus high
diagnostic coverage. The consequence is to increase hardavdt tolerance. Hardware fault
tolerance of 1 can be achieved with a 1002 architecture aeipted in [7].

Up to now, hazards on a microprocessor level have been @esidFailures in the commu-
nication subsystem have been discussed in Section 4.1.irBafed outputs will be covered in
Section 5.9.

In the following sections requirements to extend KNX witmdétional safety will be pre-
sented. This will start with a discussion on possible hardveachitectures. After a selection of
the best suited hardware architecture, consequencesffoase will be discussed.

5.1 Hardware Architectures for Safe KNX Nodes

This section discusses possible architectures for safesnod/e will start with a simple one
channel architecture and, by replicating the safe coet®ihnd bus access hardware, end with
a triple modular redundancy (TMR) approach. Since mostraation systems are assumed to
have a safe state, it is sufficient to detect errors and suottie safe state. This measure lowers
requirements to the whole system enormously since compyplekihardware and software of
fail-safe and fail-operational systems is magnitudesdrigh

Most of the architectures in existing solutions make useheflilack channel principle as
already described in Section 4.1 which will be assumed teoe A further requirement for the
choice of hardware is reuse of existing wiring-scheme of KinXworks. Thus, full redundant
approaches using replicated bus wiring could be left uridensd.

One Channel Architecture

The one channel architecture is the most simple architestith just a single controller. The
implementation of a SIL 3 compliant device requires a certiigree of safe failures as already
presented in previous sections. Since that kind of hardeiat@tecture has a fault tolerance of O
it is necessary to have a safe failure fraction (SFF) of muse 89% to be SIL 3 compliant (see
Table 3.6). This can be achieved by extensive online se¥ tesulting in a high diagnostic cov-
erage, but it is very resource intensive. To lower the regugafe failure fraction it is necessary
to increase the fault tolerance of the hardware. Such aroappris presented in the following.

Replicated Safe Controllers on a single TP-UART Chip

The first presented architecture (see Figure 5.3) is a tiypieater-slave model. The safe con-
troller 1 (SC1) receives messages from the bus and forwheds to the safe controller 2 (SC2).

48

Actuators Sensors

A
Safety related
Y 0
(Safe Controller) 9..
D
)
Z
X
Z
8
Non-Safety o)
related
) J
(TP-UART)
_ /
\J
KNX

Figure 5.2: One channel architecture

On top of the safe controllers a safe 1/0 unit decides on thamd outputs. Referring to Fig-
ure 5.14, only the SC1 has to run the complete stack (KNX andUART) whereas the SC2
will only run the KNX Safety stack. This architecture has altaolerance of 1 and thus a SFF
between 90% and <99% is required. It has to be consideredthatrén case the SC1 fails,
SC2 may still work but has no possibility to continue thelfiertoperation since it gets no more
messages and cannot send messages.

Thus, the consequence is an architecture shown in Figuretiede SC2 also has bus access.
The bus access for SC2 is intended to operate in a cold standdg which means that it will
only be used if SC1 fails. Then SC2 takes over control ancbpeg the communication. The
single point of failure SC1 has now moved downwards to theJPMRT which is in the black
channel and thus not relevant for the further safety congiibms. The problem that arises here
is that in case SC1 fails SC2 has to continue the operatiomeA®€1 ended. Thus, the safe
controllers have to be synchronized. Additionally, the ocmmication lines between the TP-
UART chip and SC1 will have to be physically disconnectedsiS8C1 may fail with a stuck-at
error on the bus lines and thus SC2 cannot communicate .€itherproblem is that everything
in the black channel is out of the controlled area of the saferollers which affects the TP-
UART-safe controller connection, too.

Replicated Safe Nodes

A further consequence is to duplicate the TP-UART-Safe (et line as depicted in Figure
5.5. That approach looks very similar to the afore preseatetitectures but is very different

49

Actuators A Sensors

Safety related
A
[Safe |10)
wn
A4 A %
(Safe Controller 1 H Safe Controller 2 P
Z
X
Z
/Non-Safety a)
related [0)
Y
(TP-UART)
o %

KNX
Figure 5.3: Replicated Safe Controllers on a single bupleou

Actuators Sensors
A
/Safety related N
\
C Safe 10)
%
4 Y T
[Safe Controller 1)4—»[Safe Controller 2) PN
P
X
Z
(]
o
(0]
¢ Non-Safety N
related
4
[TP-UART)
o %
\
KNX

Figure 5.4: Replicated Safe Controllers on a single bugpleou Alternative

50

in terms of the software architecture. The first presentetii@ctures work as master-slave
models. SC1 gets messages and forwards them to SC2. So SG2rsgcting to SC1s actions
unlike the second architecture where both SCs have bussackesoon as both SCs have bus
access it is necessary to guarantee determinism amongé¢heosdrollers which is also referred
to as replica determinism in [21]. This means that the saf¢rolders have to be synchronized
and a protocol which assures that only one of the two SCslacsends a message has to be
implemented. On the other hand, the architecture enablesritvol whether a message that
has to be sent has been sent correctly by immediately redtdivigile writing. However, the
architecture requires certain techniques to synchrohigenternal states of the SCs which can
be very challenging as pointed out in [21].

Actuators‘ \ Sensors
Safety related
Y
[Safe |10)
w
Q
y A o)
[Safe Controller 1 H Safe Controller 2) é
X
P
o
/Non-Safety % N
related
y Y
[TP-UART 1) C TP-UART 2)
_ %
KNX

Figure 5.5: Replicated Safe Controllers with replicated-bauplers

Redundant Nodes on a redundant Bus

For completeness of the architecture discussion redugdgpgroaches will be presented too.
Since these concepts base on duplicated wiring of the fisldbtwork they can be disregarded.
If the bus lines are wired redundantly the probability ofkeo wiring will be lowered. In any
case, measures have to be implemented to detect brokergwiFime architecture depicted in
Figure 5.6 is equal to the architecture depicted in Figubeftsm a node-level point of view.
Both have a hardware fault tolerance of 1 which requires afséltre fraction of 90% to <99%
for SIL3. Triple modular redundancy (TMR) is achieved by iadch third TP-UART-Safe Con-
troller line to the safe node (See Figure 5.7). That wouldheerhost safe architecture so far
with a hardware fault tolerance of 2. According to Table #he,safe failure fraction goes down

51

to 60% to <90%. The extension brings advantages in the saferiit since now a simple 2003
voter can be implemented. On the other hand the hardwarescsignificantly higher and for a
fieldbus system inapplicable.

Actuators Sensors
A
/Safety related N
Y
(Safe 10)
w
o
Y \ 4 (0]
A
Safe Controller 1 Safe Controller 2 zZ
X
Z
[®]
o
¢ "Non-Safety o
related
Y Y
(TP-UART 1) (TP-UART 2)
N A J

Figure 5.6: Redundant Safe Nodes on a redundant Bus

Conclusion

So far all relevant architectures have been presented héih advantages and disadvantages.
The one channel architecture is not useful due to high coatiputcomplexity for the required
online-tests and the redundancy approaches due to the bag.wrhus, the remaining archi-
tectures are the replicated SCs with single and replicatisdalscess depicted in Figures 5.3,
5.4 and 5.5. Since the black channel has to be left unchamgeekmaining architecture is the
one depicted in Figure 5.3. Additionally, the architectisradvantageous since no synchroniza-
tion between the single SCs is required. It leaves the blhaekmel completely unchanged and
requires no further knowledge about mechanisms workingerbtack channel.

Depending on the chosen hardware architecture severateewnts arise for the software
architecture. As the black channel gives no guaranteeseotoiimpleteness, correctness or time-
liness of a sent message, just to name a few, these contra@ddnée covered by the software.
Therefore, the following sections will present approadisesvercome these issues.

52

Actuators Sensors

A
/Safety related N
Y
[Safe 10 / Voter)
n
o
\ Y / ;
[Safe Controller 1 H Safe Controller 2)<—>[Safe Controller 3) E
Z
g
I Non-Safety| D
related v v Y
[TP-UART 1) [TP-UART 2) [TP-UART 3)
_ A /

Figure 5.7: Triple modular redundancy - TMR

5.2 Synchronizing Safety Nodes

This section will explain how to gain a global timebase in stritbuted system. Therefore, the
different concepts of time will be described in detail. Rertterms like accuracy, precision
and clock drift as defined by [21] will be explained briefly. dwifferent algorithms, namely
Vector clocks and the Precision Time Protocol, will be présd for synchronizing clocks in a
distributed system. The closing part will describe the wgdrithm in the KNX Safety project.

Basically, a clock is a counter which is increased by the megjon of time. Clocks may
vary in certain parameters. We call a tick of the referenoelcamicrotickand the time between
two microticks thegranularity. The granularity of a reference clock is the smallest untiroé
across all other clocks in the network. Furthermore, weragssan omniscient observer which
has access to a reference clock. Each event will be recabbizéhe observer and tagged with
the timestamp of the reference clock.

The drift of a clock & between microticks andi + 1 is defined as the frequency ration
between clocki and the reference clock at the instant of microtickThus, the drift can be
calculated by counting the number of microticks of the reffiee clockz during one granule
of clock & and dividing it by the nominal number of microtickg® of the reference clocks’
microticks in a granule [21]:

z(microtickf, |) — z(microtickl)
k

driftf =
n

Furthermore, thelriftrate p¥ [21] is defined as

53

z(microtickf, |) — z(microtick)

k
p. =
) nk

which tends to get zero for perfect clocks.

The offset error of two clocks; and k& with the same granularity is defined as the time
difference between two consecutive microticks of thesekdaneasured in microticks of the
reference clock [21].

offsetgk = |z(micr0tick‘£) — z(microtickl)|

Theprecision II; at microtick: of a given ensemble of clockd, 2, ..., n} is defined as the
maximum offset between any of these clocks [21]:

II; = max Sn{Offsetfk}

The maximum offset between any two clocks in an interval tdriest is called the precision
IT of the ensemble and is measured in microticks of the referelock.

The accuracyis defined as the offset of clodk against the reference clock at microtitk
of the reference clock. The maximum offset of cldckn an interval of interest is denoted by
accuracyk.

For now the most important terms for clocks are defined. Iridhewing the basic concepts
of internal clock synchronization will be explained.

The idea behind clock synchronization is that all correctesowork within a specified preci-
sion® regardless of the driftrates of the single clocks. Sinceyest@ck works slightly different
they need to be synchronized after an interval cadsynchronization intervak;,,;. An exam-
ple is shown in Figure 5.8. Here one can see that clocks ¢rdfttgdgrey shaded areas) and after
the durationR;,,; they are resynchronized and the process starts agaircoflrergence function
® denotes the offset values immediately after resynchrtinizaThedrift offset” denotes the
maximum difference between any two good clocks during angsynization interval. As the
drift offset depends o;,,; andp it can be calculated by

['=2pRins

By looking at Figure 5.8 one can see thgnchronization conditiorfior an ensemble of
clocks:

o+I'<II

This means that starting immediately after a resynchrdioizathe convergence function
corrects the clocks to a specified precisibn After that the clocks drift apart by. As the
clocks need to stay within a defined interval of precidibthe synchronization condition results
in®+ I <II

54

Local A

clock Precision I

Convergence function ®

Drift Offset M'=2pRint
(clocks free running)

All good clocks operate
within the shaded area

| -
Time of reference clock

Figure 5.8: Synchronization condition

Now assume we have a central master which periodically séndarrent time to all other
nodes. The time it takes for the master to read its local cladlke, to put into a message and to
send it as well as the time it takes for the receiver to unplaekrtessage and to read the sent time
is called thgitter e. The jitter is most affected through the communication gstesn and thus
a non-deterministic function. However, adding the jiteeithie precision of the central master
synchronization results in

Hcentral =e+T

Precision Time Protocol IEEE1588

The Precision Time Protocol (PTP) is an IEEE standardizetbpol for high precise clock syn-
chronization [15]. Itis applicable to any communicatiosteyn supporting multicast communi-
cation. The protocol supports a system wide synchronizaezuracy to a grandmaster clock in
the sub-microsecond range with minimal network and clockmating resources. This section
gives a short overview about the terms, constraints, exygrthmessages and the communication
scheme of the PTP.

Terms of PTP

Grandmaster clock The grandmaster clock is the source of synchronizatiohiwé domain.
It is comparable with a reference clock.

55

PTP Port: A logical access point of a clock for PTP communication ® ¢bmmunications
network.

Ordinary clock: A clock that has a single PTP Port. The clock can act as melstek or
as a slave clock which synchronizes to a master clock.

Boundary clock: A clock that has multiple PTP Ports in a domain and maintaives
timescale used in that domain. That clock may be a masterlava clock.

Constraints to the network and the implementation

e The network eliminates cyclic forwarding of PTP messages.

e PTP assumes a multicast network model.

e The time accuracy is degraded by asymmetry in the commumicaaths. This means
that it takes different times for messages to be passed tgytiEhronization source and
back.

e PTP tolerates duplicated, missed or out-of-order messeglesg as they happen seldom.

e The network should be optimized to forward PTP messagegyhtgriorities to prevent
the introduction of jitter.

Exchanged messages

The PTP distinguishes between event messages which carttaiestamp and general messages
which do not require accurate timestamps. An event messagbecone of:

e Sync

e Delay Req

e PDelay_Req
e PDelay Resp

General messages are defined by:

Announce

Follow_Up

Delay_Resp
PDelay_Resp_Follow_Up
Management

Signaling

The PTP defines two ways to measure the propagation delaye®et®TP ports, namely
the delay request-response method for the synchronizafiardinary and boundary clocks
and the peer delay mechanism for measuring the link delaysc, Pelay Req, Follow_Up
and Delay_Resp messages are used in the request-respahse mbereas PDelay_Req, PDe-
lay Resp and PDelay Resp_Follow_Up messages are usegltament the peer delay mech-
anism. The Announce messages are used to establish a hjetstween master and slave
clocks. Management messages are intended to query anceupi@iet data sets as well as to
customize the PTP system. Signaling messages are definednfonunication between clocks
regarding all other purposes.

56

Synchronization Process

The execution of the PTP works in two phases:

e Building a master-slave hierarchy through Announce messsand
e Synchronization of the clocks

The hierarchy is established by a best master-clock akgorit The properties of the clocks
received in the Announce messages are compared to theyakeadin clocks and the best
among them is chosen as master.

Next, the clocks are synchronized according to the messageerge sequence shown in

Figure 5.9.

time

—— 1
t-ms \

t-sm‘
-t

Figure 5.9: Basic synchronization message exchange [15]

M

\

aster Slave

Sync

—
—
—

- Follow_Up
—

—
—
—

—

—
—

—__ Delay_Resp
—
—
—

—
—

-~
\

J

time

Timestamps
known by slave

t2

1, t2

t1, 12,13

1,12, 13, t4

e The master initiates the sync-process by sending a Synagess all its slaves and notes
the timet; it was sent.

e The slave receives the Sync message and notes theditngas received.

e The master tells its slaves about the tilmg/hen the Sync message has been sent. This can
be done either by packing into the Sync message or by sending a Follow_Up message

containingt; .

e The slave sends a Delay_Req message to the master and motiesetly it was sent.

e The master receives the Delay_Req and notes the time otptiont,.
e The master replies with a Delay_Resp containing

After the synchronization process a slave knows all fouetim, ¢t5,t3 andts. First, an
offset correction can be applied:

of fset =ty —t1 — delay

57

where theDelay is not known yet. For the correction of the delay the timgs (delay master
to slave) and,,, (delay slave to master) are assumed to be equal. Othenmisdl,esrors in the
calculation of the link delay will occur.

tms =12 — 1

tom = t4 — t3

tms + tsm

delay = 5

It is absolutely essential to have the exact times of theisgrahd receiving instants of the
messages. That means that a timestamp is best drawn as jaies#se before sending it. Due
to the execution of the protocol stack this is not easily fssThus, Follow_Up messages are
used which contain the sending instant of the previously Sgnc message. The same applies
for the receiving times. The timestamp of a received messalgest drawn immediately when
it is read from the bus. As this is not always possible toathtir errors in the offset and link
delay calculations will arise.

Vector Clocks

So far the term clock was assumed to be a counter which iresdnsthe progression of time. In
the following, we will assume that a clock progresses by tmuoence of events. This means
that whenever an event happens the local counter is inctdasene. This concept is being
referred to as logical clock [22].

Now assume that each node in a network has its own view of tiedbtimesC); of each
other node kept in a vector of length wheren is the number of processes in the network. At
the beginning the vector is initialized with the zero vectidthenever an event occurs the clock
ticks immediately before the event by incrementing the eaifiits own component:

Each message which is sent across the network containgrtastéimp vector of its sender.
By receiving a message the timestamp$the remote vector and the local vect@rare adapted
by the following function:

C; = sup(Cy,t)

wheresupdenotes the component-wise maximum operation. The timgsta(e) of an event
e at processP,; is the value of the clock’; at the moment of the execution ef An example
execution is depicted in Figure 5.10. The vector timestanip) of an evente contains the
complete knowledge about previously happened events frbithw is potentially dependent.

58

(1’00) (210‘%

(0,1,00) (0,2,0,0) (2.3,3,1)

@
(0,0,1,1) 2,1,2,1) (2,1,3,1)

(0,0,0,1) (0,0,0,2)

N
N

View of an ideal
external observer

o o = o
o o N o
o O N =
2 O N =
[N NS
A o NN
= N N N
= w N N
N W N

N W W

Figure 5.10: Example execution of vector clocks

Conclusion

Summing up, the vector clocks protocol is well applicabledovironments where the number
of nodes participating the communication is limited sincewance of an event will require to
exchange the vector time. Thus, increasing the number adsodplies increasing the length
of messages and increasing the utilization on the bus. Hemvéive vector clocks method is
not applicable to KNX Safety due to a simple reason: The paitextension only allows six
bytes of user data. As described, a node has to keep trackenkaits happening at other nodes
which requires to store an array with the length of the nunobb@articipating nodes. Assuming
that 255 events (1 byte) might happen before the local comare resetted, only 6 nodes could
participate the synchronization which is not sufficient thee requirements of the KNX Safety
project.

The Precision Time Protocol is intended for use in enviromisievhere highly accurate
clock synchronization is required. Therefore, a wide \grig different message types, data
types and settings are defined in the IEEE 1588 standard. &sam see later, our approach
does neither require nor give the possibility in the implatadon of such a high accuracy. Thus,
not all properties of the PTP will be implemented. It is sufit to achieve an accuracy in the
millisecond range. Therefore, the basic synchronizatigorahm depicted in Figure 5.9 could
be implemented.

5.3 Intercommunication - KNX Safety Protocol Extension

To gain functional safety it is not sufficient to just buildfesdardware. Instead, also software
has to be designed to fulfill safety requirements which wslsafety of application software
and an applied communication protocol. By employing the tmead architecture depicted in
Figure 5.3 and taking into account requirements of SIL3 fa alure fraction of 90% to 99%
is necessary. That is, more than 90% of all dangerous failsinall be detected. That involves
failures in the safety-related part or failures in the blatlannel which is the standard KNX
network.

Safety devices developed from scratch will have no comgsdor protocol design. Since
this thesis builds on an existing KNX protocol which shalt be altered, protocol safety has

59

to be gained differently. A widely accepted approach tomkteon-safe protocols by safety, is
to embed a separate protocol enabling safety requiremaiotthie payload area of the non-safe
underlying protocol. Such existing solutions have alrelaglgn presented in the previous chap-
ter. These solutions make use of the black channel prinsipaling that the non-safe protocol
resides in the black channel and therefore needs not to ke iako account for safety con-
siderations. Instead, the embedded safety-providingopobthas to take care of all mentioned
communication errors as specified in Table 4.1. Thereftwe ptotocol extension as proposed
by [20] will be applied (see Figure 5.11).

1Byte | 1Byte | 1Byte | 1Byte | 1Byte | 1 Byte 1..16 Bytes 1 Byte
Control Source Destination Frame
Field Address Address RL Data Check
Octet0] 1 2 3 | 4 5 [6 [7 8 9..14 15
1 Byte | 1 Byte | 1 Byte 2 Bytes 3 Bytes 1 Byte 1..6 Bytes 1 Byte
Safety " Msg Safety-related
TL/AL| AL ID culilees Timestamp type data CRC
MSB LSB
1Bt | 1Bt | 1Bt | 1Bit | 1Bit | 1Bt | 1Bt [1Bit
0 Reserved Version Length

Figure 5.11: Safety providing protocol extension for KNX

e The ID field contains information about the protocol versam the length of the follow-
ing safety-related data.

e The safety address of the source is encapsulated in everyre=sage. During com-
missioning phase, each safety data-point is assigned ty saféress. Additionally, each
safety data-point receives a list of safety addresses vitighllowed to receive messages
from. Thus, a received message will only be processed ifdfetysaddress contained in
the message is on the list of known safety addresses. Ustyttes for safety addresses,
a total of2'® = 65535 safety data-points is possible.

e Since KNX is purely event-driven and sends messages sofelyg ahanged values, the
last received value is assumed to be the most current onéhwghies no possibility to
detect loss or delay of messages. For safety consideraBankh message is tagged with
a timestamp generated at the time-instant of the causatigezied event. To be able to
compare timestamps across a network, clock synchronmzeicequired.

e The message type defines the type of the following safettaéldata.

e Safety-related data carries the current values captuosd thhe environment.

60

e Every safety-related frame is checked by a CRC which endbldstect stochastic faults
like bit faults resulting in corruption of data.

Implementing the afore mentioned protocol, communicagaiors as defined in Table 4.1
will be detected by the following measures (see Table 5.1):

Communication Safety Measures
error
3]
c
c
c So g
S 2 =< g2
o = c = =] < f
Q o o ® X o = S @
o 1S = = O S @ O g @ -
C = @ © O = c O = C =l c >0
o 9 3 3 o = o ® £a c S o £ E
52 | o © D = s g s 3 = s o8
o E o S o9 = 0 28 2o
o5 | £ E £ Q35 o 2 < 2 e £ 270
wn c [F o O ® w E 0« X o [aIR=I7
Corruption X
Unintended repetition X X
Incorrect sequence X X
Loss X X
Unacceptable delay X X
Insertion X X X
Masquerade X X
Addressing X

Table 5.1: Communication errors and detection measurebingeNX safety

e Corruption will be detected by CRC in every safety-relatathdrame.

e Unintended repetition will be detected by timestamps gateeronce for every sent mes-
sage. If more than one message from the same source colfitaisarhe timestamp, the
message has to be neglected.

e Incorrect Sequence: Received messages have to arrive iirctatistely order. That is,
assuming events; ande, happened at time instants andt,, respectively, where;
happens before, (denoted as$; < t3) then messager; sent in accordance tg has to
arrive beforem, sent in accordance .

e Loss: Safety extension will send messages cyclically aftedefined intervals (heartbeat)
regardless if values have changed or not. Since every naueskinese intervals, a timer
(watchdog) will be started upon reception of such a messHgdter expiration of that
timeout no new heartbeat message has arrived, loss of diwméas to be assumed.

e Unacceptable delay will be detected like message loss.

e Insertion: Each safety node is taught a list of safety adeesuring the commissioning
phase which it is allowed to receive messages from. If apadtress contained in a
safety-related message is not in the list of known safetyemd@s, the message can be
assumed to be inserted and has to be neglected.

e Masquerade: Each safety-related message contains tly aadieess of the sending node
and a checksum mechanism to ensure data-integrity. Sieceh#cksum will be gener-
ated over the whole safety-related part of the messagesatysunlikely, that a non-safety

61

message contains information which would represent a ealfdty address accepted by
the receiving node and, additionally, also the checksuralig vThus, it is almost impos-
sible that a non-safety message is interpreted as a safatgd message.

¢ Addressing will be detected like insertion.

e Additionally, each safety-related message will be reakimad checked by both safety
controllers. Only if both safety controllers agree on thensacorrect result, the mes-
sage will be accepted (redundancy with cross-checking)ei@iise, the message will be
neglected.

Communication between safety data-points

Addressing of safety nodes cannot be done directly sincedfety extension is built on top of an
existing KNX protocol. Thus, a safety-relevant messagagked into the payload of a standard
KNX message and will have a usual KNX address, too. An adiorgssheme is depicted in

Figure 5.12.

[Safety Address: 1 } [Safety Address: 2 }

KNX Group-address: 2 KNX Group-address: 2
KNX Group-address: 1 KNX Group-address: 1 KNX Address: 4 KNX Address: 3

KNX/EIB
‘KNX Group-address: 1 ‘ Safety Address: 1 H

Figure 5.12: Schematic addressing in KNX Safety

Referring to Figure 5.12, if a safety relevant message shioellsent from a data-point with
safety address 1 (SA) to SA 2, the safety-relevant messdbbenpacked into a standard KNX
message with a particular KNX address. Since non-safeticefewn the KNX network, such
as routers, switches and gateways, do not care about theaatnt of a message, the safety
address cannot be used for addressing. The most simplesdluerefore is to define one KNX
group where all KNX nodes containing safety data-pointscarenected. If a message is sent
to that group, every node in the same group will receive ane@cthat message. Thus, also
all safety data-points will receive that message. As degi@t Firgure 5.12, if the data-point
with safety address 1 tries so send a message, the safetgmeimessage will be packed into
a standard KNX message containing the KNX group address at mbhssage will be received
and accepted by any standard KNX node in that particularpreith address 1. Any KNX
message with a different group address should be neglegt#iielKNX stack. If a message
with an unacceptable group address passes the KNX staclagnghve safety-related part of the
message should not be accepted by the SCL since safetgmelmessages are only accepted if
the safety address is in the list of known safety data-points

As mentioned afore, timing expectation is required to ddtess or delay of messages. To
determine a realistic timeout, it is required to know the st@ase time it takes for a message
to be received by another node. The timeout consists of theepsing times required for han-
dling the safety and non-safety protocol, the transfer tiram the microcontroller to the TP-
UART-chip and from the TP-UART-chip to the KNX-line. Tramsftimes from microcontroller

62

to TP-UART and following KNX-line additionally are depenteon KNX-specific retransmit
measures. Likewise, handling and transfer times on théwiegenode have to be calculated.

e Data sent from the microcontroller to the TP-UART will bertséerred at a transmission
rate of 19200 bit/s. As soon as the last byte has been traedfén the TP-UART, a
checksum will be calculated at the TP-UART and the messatideviransmitted to the
KNX-line [25]. The time required for checksum calculationlliee neglected here. The
transfer rate of 19200 bit/s yields in a bit-time &, 083us. One data-packet transferred
to the TP-UART consists of one start-bit, eight data-bitse parity-bit and one stop-bit
(11 bits). Between consecutive bytes, the bus will be idie2fbit-times. Additionally,
each data byte sent from the microcontroller to the TP-UARpreceeded by a control
byte. To indicate start and end of data-content, special stait and data end octets are
transmitted. Assuming the extended KNX frame format, a maxn of 263 bytes of data
might be transmitted. Attaching start and end bytes as weibatrol bytes to each of the
transmitted data bytes, this results in 265 * 2 = 530 byte<kvig a worst case time of
358,75ms required to transfer data from the microcontretieghe TP-UART.

e Transmission from the TP-UART to the KNX-line: At maximumg2 bytes (1 control
byte, 263 data bytes and 1 checksum byte) will be transfeatedtransmission rate of
9600 bit/s which yields in a bit-time of 1p4. Between consecutive bytes, the bus will
be idle for 2 bit-times. Before transmission, the sendelrwalit for 53 bit-times (5,52ms)
to ensure that no other sender is currently active. Thermmeasson might fail if a higher
prioritized frame is currently in transfer. In that cases frame will be retransmitted for
a maximum of three times. Between retransmit attempts,ehdes will wait for 50 bit-
times (5,512ms). One data-byte transferred will be endlbyeone start-bit, one parity-bit
and one stop-bit which yields in 1,146ms for one data-byteetdransferred. The worst
case time for one complete data frame to be transferred wmailtb initially wait for
an empty bus-line (53 bit-times) and failing to send due ghar prioritized frame with a
maximum length of 265 bytes. After that, the sender will vi@itanother 50 bit-times and
might fail again. There will be one initial try to transmitlimved by 3 retries. Summing
up, the overall worst case transfer time results in: 53ibies (5,521 ms) followed by 265
bytes data (358,07ms), 50 bit-times idle (5,512ms) and 36&skdata. That is, 5,521ms
+ 358,07ms +3*(5,512ms + 358,07ms) = 1,454s worst casentigae®n time from the
TP-UART to the KNX-line.

e Transmission from the KNX-line to the TP-UART and the miantroller: In contrast to
the transmission from the microcontroller to the TP-UART™ dnrther to the KNX-line,
data received by the TP-UART from the KNX-line will be immattly forwarded to the
microcontroller after receiving the control-byte from il X-line.

e Repeaters, routers, etc. on the KNX-line: KNX supportsdnaigsion over a maximum of
5 lines. That means, summing up transmission times fromawodertroller to TP-UART
(358,75ms) and TP-UART to KNX-line (1,454s) a controlletlweceive the message at
latest after 1812,75ms. Each time a controller forwards asage, that time has to be
calculated yielding in 5*1812,75ms = 9,06s until a node inngd$ distance receives a

63

message. A complete transmission cycle between two KNXsimd#lustrated in Figure
5.13.

Data exchange between safety data points

To exchange data between safety data points it is requirefitoe the meaning of the exchanged
data. Therefore, the KNX safety protocol contains the ngssgpe field which indicates how
to interpret the following data.

So far identified message types could be encoded as depictedblie 5.2:

Octet 8 Message type
7]6]5]4]3]2]1]0
General messages
O |0 |0 |0 |0 |0 |0 |1 |SKNX_A heartbeat
0O |0 |0 |0 |0 |0 |1 |0 | SKNX_A_safestate
Time synchronization messages
0|0 |0 |0 |0 |0 |11 | SKNX_A timesync_sync
O[O0 |0 |0 |0 |1 |0 |0 | SKNX_A timesync_ follow _up
0O |0 |0 |0 |0 |1 |0 |1 |SKNX_A timesync delay req
0|0 |0 |0 |0 |21 |10 |SKNX_A timesync _delay resp
Process data messages
0|0 |0 |0 |0 |2 |11 | SKNX_A pd value read
O[O0 |0 |0 |1 |0 /|0 |0 | SKNX_A pd_value write

Table 5.2: Message types for KNX Safety

As mentioned afore, each safety node is required to cyblicaEnd heartbeat messages
(SKNX_A heart beat)to indicate that it is still working. Depending on the intals required
for heartbeat messages and time synchronization procdbgesme synchronization process
could be used as heartbeat mechanism too.

The SKNX_A_saf est at e message is intended to indicate a global error on a network
level. Upon receiving that message, all safety nodes hatransfer into their safe state.

The time synchronization messages have already been dseithe previous Section 5.2.

To indicate process data exchar8€NX A pd_val ue_readand

SKNX_A pd_val ue_writ e messages are defined.

5.4 Software Architecture for a Safety Node

To apply the afore discussed architecture depicted in Ei§us, certain requirements arise for
the software. Since the chosen architecture consists ofrtiwmcontrollers, a communication
protocol to exchange messages between them has to be foamtktélct errors in the commu-
nication system, time synchronization is required. Furtiege, to gain a SFF of more than
90% test mechanisms have to be provided as well. Finallytasdsin [5] if safety-related
and non-safety-related software are executed on the savitedi has to be ensured, that the
non-safety-related part does not have any influence on fletyselated part of the software.

64

T XN

\

/msﬁﬁnr

sjedoed usamiaq s|pl sewn g Z
S 00261 18 Suq L} (doys |
‘fued | ‘elep g

‘pels 1) yoe

sjoxoed G9Z “Xew JO UOISSIWSUBI]

/

(uoneoydde Jesn
“Yoe}s [000joud)

swg|
-8)Aq 151y au) Buinea Jaye Al

€T 19vNn-dL zor

~

JeIpaULILI J3](0UCO0LIL U}
o elep Bwoo

"ZOPON ~

'S/Iq 0096 OF PoY
Os|e ‘S/iq 0096

sjeoed usemieq o[p! seLun 1iq Z
S/ 00261 18 SUq 1L (dois |
“fued | ‘ejep g

‘ejs |) yoeg

oBd Gz "Xeuw J0 UOISS|LISUBI]

pajos|Bau aq [Im Aejap uonebedoid
'salkq 69z 4o uoissiwsuel |

= XN Je paLisjsues; 8i4q |

AEMIO) [IIM LHVN-d.L

L'z 1avn-dl /
~

SPGY'L = (SWL0'8GE + SWZLG'G),E + SW.0'8GE

JNWsue.al 0} sal) pue (SWzlg's)
1} 11q 0G 0} JeM [[im JBpUaS 8y} ‘Uoissiwsuex Buey uodn
‘sowi))iq Z 10} 8|pi 8q

@
2

ued | ‘e}ep g ‘LEIS | JO SISISUCO WNIpaU Je S1Aq BUQ
“(SwZ0'8GE) SMIG 0096 18 SOIG G9Z 10 BWe) papualxe
ue puas JyBil |pou JBYouY ‘UONELIGIe JO SSOT

SWZLG'S = SAIq 0096 1e 9|p! SaWmiq €5

L XNX

M SNq aU} SBIAQ BAINVBSUOO UsaMIaE NG dojs | pue XZ/

swil
“ T Thesn
/ A\
[,
, ,
[,
, ,
, ,
[,
, ,
| I
ol Jo awn uoneNdwoo [epoy +, swozsl
,
| ,
| ___ I
wuyuod viva 1 Swoz'gl8l
, ,
[,
[,
, ,
[,
,
[,
,
JEN,«@@
, / dusIgee
| SwiG/'85E ,
s1oxoed Usamiaq alp! SaWI G ¢
, S/IG 00261 ¥ S¥q || (dois | |
“fued | ‘elep g
‘uess 1) yoe
| 19%08d G9Z "XEW JO UOISSIWSUE.] |
| 7 swo
Lyvn-dL Lort /

_ -

f message exchange between Kddés

iagram o

ing d

iming

T

Figure 5.13

65

Therefore, an operating system or scheduler has to be gegelohich ensures independence of
safety-related and non-safety-related parts of the softwa

A possible software architecture for KNX Safety is depicted-igure 5.14. As one can
see, the KNX Safety API is the core of intelligence of a safetge. The KNX Safety API
provides an operating system responsible for executinticeytasks like time synchronization,
online self tests and serial communication between safgdaltars 1 and 2. Furthermore, both,
the KNX application and the KNX Safety application access KiNX Safety APl by means
of its included operating system. Depending on the receiwedsage type either a task will
be scheduled to the KNX application or the KNX Safety appita respectively. It has to be
mentioned, that in case a safety-related task and a notysafated task are to be executed,
the non-safety-related task will be preempted. As one cantse KNX application will just be
executed on safe controller 1. Since there is no requirefoemon-safety-related messages to
be cross-checked with safe controller 2, safe controllefl2never receive a non-safety-related
message. Thus, safe controller 2 cannot run the non-sadietied application.

Safe Controller 1

KNX Application l

n

Safe Controller 2

- e—

KNX Safety API h KNX Safety API

P
Scheduling / Scheduling /
E Safe I/0 J E Operating system J E Safe I1/0) E J

-~

Operating system

El'ime synchronizatiorﬂ [Online tests El'ime synchronizatiorﬂ [Online tests J
Serial Serial
Communication Communication
o v o

1]
v

KNX Stack

i

TP-UART Stack

KNX

Figure 5.14: Software architecture of a safe KNX node

The following sections will provide discussions on the afanentioned issues regarding a
communication protocol between safe controllers 1 and 2t{&e5.5), an operating system
(Section 5.8) and online test mechanisms (Section 5.7).

66

5.5 Intracommunication - Communication between Safe
Controllers

Messages are received from the TP-UART Chip only at one psarenamely the coordinator.

As we have a two channel architecture (see Figure 5.3) ttex ptiocessor, namely the partic-
ipant needs to get the message too. Therefore, this seamerildes possible methods for a
reliable message exchange between two or more processors.

Simple Acknowledge

The first protocol is a simple transmission of data with adielhg acknowledge as shown in

Figure 5.15. Using this protocol the coordinator can be thaethe participant got the message
if it replied with an ACK. The other way round, the participazannot be sure, whether the
coordinator actually got the ACK to the just received messddis means, that the participant
cannot be sure if the coordinator actually knows that thégieant got the message. Thus, a
more sophisticated way of a message exchange has to bedapplie

Coordinator J Participant J

Request
< ACK

Figure 5.15: Simple acknowledge transmission protocol

Two-Phase-Commit Protocol 2PC

The logical consequence to the afore mentioned probleneignthroduction of a second com-
munication phase which ensures that a participant gets karoatedge to the previously sent
ACK as presented by [27]. The presented 2PC is at first bas#teassumption that no failures
occur. Afterwards, possible scenarios are described wthereoordinator or participants may
fail. Example executions of 2PC are depicted in Figures &rib5.17:

e The coordinator sends\8OTE_REQUEST to all its participants and expects to get either
VOTE_COW T or VOTE_ABORT.

o If a participant receives ¥OTE_REQUEST it either returns & OTE_COWM T to indicate
that it is locally prepared to commit a transaction or it eplVOTE_ABORT.

67

Participant I

e
Coordinator
|
| |

Vote-Request Vote-Request
Vote-Commit Vote-Commit
Vote-Abort
Global-Commit Global-Abort
ACK ACK

Figure 5.16: Sequence diagram of a successfuFigure 5.17: Sequence diagram of a failed Two-
Two-Phase-Commit Protocol Phase-Commit Protocol

e Upon receiving &/OTE_COW T from all its participants the coordinator will reply with
aGLOBAL_COW T to notify the participants to commit the transaction.

o If one of the participants replies with\&OTE_ABORT the coordinator will broadcast a
GLOBAL _ABCORT to indicate that the transaction has failed.

In a failure free scenario the 2PC-protocol can ensure thatticipant got a previously sent
message, and the coordinator will know that the particigamaally got the message. As the

assumption of a failure free environment is not sufficiemtlfiss thesis, we assume that fail-stop
failures may occur. This can be explained best using the dtagrams depicted in Figures 5.18

for the coordinator and 5.19 for the participants.

)

Y Vote-request

‘ WAIT J
Vote-abort Vote-commit
Global-abort Global-commit
ABORT J k COMMIT J

Figure 5.18: State diagram of the coordinator in the TwoseHaommit Protocol

First, assume all participants arelibll T state and the coordinator crashes. The participants
will wait for a VOTE_REQUEST. Since the coordinator has crashed such a message will never
be received and thus the participants will be blocked Mi T state. To detect such a case
participants will wait until a timeout happens and sendCGIE_ABORT to the coordinator and

cancel the current transaction locally.

68

Vote-request
Vote-abo

Vote-request
y Vote-commit

[READY

Global-abort
ACK

Global-commit
ACK

COMMIT

Figure 5.19: State diagram of a participant in the Two-P{@semit Protocol

A similar case can be observed if the coordinator is in st&ET, and waits for votes
from its participants. If not all participants replied witha certain time, the coordinator has to
distribute aG_OBAL_ABORT to all of them.

Finally, assume a participant in staREADY waiting for a G_COBAL_COVMM T or a
GLOBAL _ABOCRT from the coordinator. Furthermore, assume the coordirfatsrcrashed. This
means that the coordinator may have sent avVOTE_REQUEST
or aG@.OBAL_COW T, whereas either of those messages has not been deliverddoar-a
ticipants. In such a case the participant may not simplytabertransaction. Instead, it has to
find out in which state the other participants are and deciderding to their states to either
abort or commit the transaction.

In any case this model assumes that faulty processes rewdhear a finite time. To enable
local recovery the current state of the process needs to itlerwto a persistent memory. For
instance a participant which has crashed in sta@@eM T or ABORT without having returned
an ACK to the coordinator, can recover to its last loggecestad inform the coordinator about
its decision.

Problems arise if a participant crashes in sREADY. After recovery it can not safely decide
to abort or commit the transaction without checking the sleas of other participants.

If the coordinator crashes in statél T it has to ensure, that it has not missed @vM T-
messages. Therefore, a safe solution is to retransmi{@i&_REQUEST. Likewise, if a deci-
sion has already been taken it is sufficient to retransmihgmrecovering.

Here one can observe that a participant may block until thedboator has recovered. Such
a scenario is present if all participants have receivedADEE_REQUEST and the coordinator
crashes. If so, the participants cannot cooperativelyddegn a final result. A possible solution
to avoid the blocking issue is resolved in the Three-Phas®a+@it protocol described in the
following section.

69

Three-Phase-Commit Protocol 3PC

As described before if the coordinator crashes, the ppaints may not be able to reach a final
decision. Therefore, [26] has extended 2PC to avoid blackiocesses in crash-stop scenarios.
To achieve this, the following two constraints have to bélfed:

e Thereis no single state from which it is possible to dirertigch one of the stat€OVM T
or ABORT.

e From each state it is possible to reach a final decision amd fuhich a transition to
COW T can be made.

The execution of the 3PC is quite similar to 2PC but with thiéedence that an addi-
tional pre-commit phase is now introduced. The coordinatarts again by multicasting a
VOTE_REQUEST to its participants and expects to receW&TE_COVM T messages. Once
the coordinator got aWOTE_COVM T messages it broadcastsPREPARE_COVM T. After
receiving all acknowledges the coordinator will now senel @G OBAL_COVMM T message to
actually commit the transaction.

’
Coordinator J Participant J_J

] Vote-Request |
» Vote-Commit
Prepare-Commit -
> Ready-Commit
Global-Commit .
> ACK

T m
\

\
Figure 5.20: Sequence diagram of the Three-Phase-Comatadet
Once again, there are possible scenarios where procesagrslotk waiting for incoming

messages. Therefore, state diagrams for the coordinadatharparticipant in Figures 5.21 and
5.22 illustrate that behaviour.

70

Like in the 2PC, a participant may wait fondOTE_REQUEST until it times out and even-
tually aborts the transaction. Analogously, the coordinatay stay iflAI T state waiting for
votes from the participants. On a timeout the coordinatdiragsume that one or more partici-
pants have crashed, abort the transaction and broadGa$EAL _ABORT.

Now assume that the coordinator is blocked in sRRECOVM T. Since all participants
must have voted for committing the transaction before - mifse the coordinator would not
have reached theRECOVM T state - the coordinator can now safely commit the transadtjo
multicasting &&3.OBAL_COVM T message.

A participant may block in one of the stat®&&ADY or PRECOVMM T. On a timeout the
participant has to ask its neighbours for their states. lIbathem are in stateCOVM T or
ABORT the participant should move to one of those states, too.| lieghbours are in state
PRECOW T the transaction can safely be commited.

[INIT)
v Vote-request
[WAIT)
Vote-abort Vote-commit
Global-abort Prepare-commit

[ABORT) [PRECOMMIT
,

Ready-commit
v Global-commit

[COMMIT
J

Figure 5.21: State diagram of the coordinator in the ThrieasB-Commit Protocol

Conclusion

This section has described possible methods for the exehaihmessages between safe con-
trollers on a single node - hence the name intracommunitafithe simple acknowledge pro-
tocol has been shown to not supply the required level of waf€he applied architecture as
depicted in Figure 5.3 makes use of just two safe controllEhe three-phase commit protocol
is assumed to rely on a majority of correct working contirslievhich can not be guaranteed with
only two processors. Hence, the 3PC can be taken out of @rasigh. Thus, the two-phase

71

Vote-request

Vote-abo _Vote-request

v Vote-commit
READY
Global-abort Prepare-commit

CK Ready-commit

ABORT) [PRECOMMIT

_Global-commit
\ ACK

COMMIT '

Figure 5.22: State diagram of a participant in the ThreesBf@@ommit Protocol

commit protocol is the only remaining protocol which miglet &pplied for communication be-
tween safe controllers 1 and 2 in KNX Safety.

5.6 KNX Safety Application

The actual user application is carried out in the KNX Safeppkcation. The application pro-
grammer defines how KNX Safety messageSKNX A pd _value read and
SKNX_A pd_val ue_writ e as defined in Table 5.2 have to be interpreted. Therefore, the
programmer has access to the KNX Safety stack to fetch thebof a safety message and to
create safety messages. To enable interaction with theoament, the programmer has access
to the interface of the safe I/O unit. It has to be mentionkdt it is up to the underlying oper-
ating system to run cyclical processes like time synchaditn and intracommunication. The
KNX Safety application is solely responsible for readingl ariting output values according to
the user application.

Similar to KNX, the concept of data points will be appliedd&wo. Here, &NX Safety Data
Point can be read using 8KNX_A pd_val ue_r ead message while writing a safety data
point will be handled by aBKNX_A pd_val ue_w i t e message. If KNX-mechanisms like
A G oupVal ue_Read- PDU and
A G oupVal ue_W it e- PDUare required too, Table 5.2 has to be extended by the required
message types.

72

5.7 Hardware self tests

As already stated, a certain SIL can be gained through isitrgdault tolerance of hardware or
increasing detection of failures which is mainly gatherggbftware. While hardware architec-
tures have already been discussed thoroughly in previcystefs, test mechanisms in software
will be covered in this section.

Basically, there are two ways of test executions: Firstuto the system for a predefined
time and fully test it afterwardoffline tes}. A second possibility is to test the system cyclically
in running moded@nline tes}. Figure 5.23 illustrates the required test intervals ofamd offline
tests.

Number of faults Duration after a full offline test

A Duration until maximum until maximum number of faults
number of faults is reached s reached

Maximum number i
of faults

Online-Test

. Offline-Test

Online-Test in(ervg\

Offline-Test interval

Figure 5.23: Online and Offline test intervals. Slightly rifiedi illustration from [28]

During operation the number of errors will increase linéfamo error detection measures are
performed, the system will run until a maximum number of faig reached where the system
cannot be assumed to work safely any further. At that timamsthe system has to be fully
tested. After that test the system is in a theoretical netg sthich means that theoretically every
error has been detected and repaired. In practice not exrenywéll be detected nor repaired.

If cyclical tests are performed, a fraction of errors can beedted and repaired. Since not
every error can be detected or repaired by online testsr{fdamnce mechanical wear problems)
some errors will remain what requires to perform a full testigonally.

It is clear, that only combination of online and offline tegtsld in an optimal solution.
Eventually, information about best test strategies giveBMEA analysis.

73

Errors in memory

Any CPU requires various memory elements to process datxeldre, data is stored in mem-
ory elements and retrieved later to be processed. Duringithe, information in memory might
be corrupted through hardware defects. Basically, memanybe divided into two categories:
Read Only Memory (ROMIndRandom Access Memory (RANROM keeps the operating sys-
tem, bootstrap loader and application code while RAM caostavorking information like reg-
isters. Thus, errors in memory may occur in various waysltiagun marginal deviated stored
values or in hazardous program execution. Therefore, if importance to ensure a correct
working behaviour of memory. This can only be achieved tglorepetitive memory tests. The
test intervals will depend on manufacturer specific MTTFH&f inemory.

Memory elements are organized in units of bytes (8 bit) ords @6 bit) and can be accessed
by addressing the memory element followed by a write or reaisand. Memory elements are
addressed by an address decoder controlled by the CPU. mtent®of the addressed memaory
cell are then made accessible by an I/O driver which is cdattdy an access logic deciding if
the cell has to be read or written. An illustration of a memstryicture including possible errors
is given in Figure 5.28.

An error is present if the memory access deviates from tlead#d behaviour. An error free
memory element will behave like depicted in Figure 5.24.

Write 1

Write O (a ‘) Write 1

Write 0

Figure 5.24: State diagram of a correct working memory cell

If the current value of the cell is 0, and the next value wmitteill be O too, the resulting
value of the cell will be 0. If the current value is 0 and thetten value is 1, the resulting value
will be 1. The same applies for an initial value of 1. Any déwia of the afore depicted state
diagram is an error.

Such an error might be stuck-at-erroras depicted in Figures 5.25 and 5.26 resulting in an
unchanged memory cell. If the current value of the cell is Wilt remain 0 regardless of the
written value. The same applies to a cell value of 1 and aawitalue of 0.

Similarly, a memory cell can be in a dominant state resulitingn unchangeable state once
the cell resides in that dominant state (see Figure 5.27).

74

Write O @Write 1 Write O @Write 1

Figure 5.25: State diagram of a stuck-at zero erfigure 5.26: State diagram of a stuck-at one er-
ror in a memory cell ror in a memory cell

Write 1

Write O (a ‘ Write 1

Write O

Figure 5.27: State diagram of a state transition error of orgroell

So far, errors in memory have been considered to occur in #moary cell only. Since
memory cells are accessed via addresses, the address ec@ideess logic might behave
erroneous, too. Potential errors are depicted in Figur@.5.2

e A short circuit between address lines will result in repigchdata in memory since ad-
dresses will occur twice. The replicated cells will depencedher a logical O or 1 in the
address decoder will become dominant.

e Likewise, a stuck-at to ground will result in replicated alat memory.

e A short after the decoder will result in replicated memoog.t

e A short in the data area will result in identical bytes in a gvdf the short resides on the
output side, any data will be affected. There is also theipitisg that the short resides in
the memory cell itself which can be detected by direct aduingsthe cell.

e Timing errors can be assumed to occur sporadically. Butey thccur, a total failure of
the device can be assumed.

e Defects in the memory cell can be caused by manufacturingepsoor occur during op-
eration.

e Open circuits might result in no access at all or might affeighbor cells.

RAM tests

As described so far, errors in memory may occur in the memelyar in the access logic
for the cell. Thus, memory testing should cover all partshef memory element to ensure a
high diagnostic coverage. Basically, memory tests work hting test patterns to memory and

75

Failure of Short in
a memory cell data area
|
I
|

Short before
address
decoder

)

ry cell
-

Address Data

—

Memory cell

\ Memo

1/O driver

Address decoder

[

|_Y_
.
Memory cell }
3

Stuck-at —— |

Access logic J

\ Memory element

Yo

A A

Short after
address Read Write Timing error

decoder

Figure 5.28: Potential errors in a memory block

reading them back afterwards. If the written value diffexsf the read one, the memory cell
has to be assumed erroneous. It is clear, that this kind tsf¢as only be performed on writable

memories.

TheMarching-Bit-Tesassumes an empty memory (all cells set to 0) and writes stglign
beginning by the first memory address ones to each bit of theane Before writing the new
value, each bit is checked to be 0. In a second run, the tddtevderformed with inverted data
beginning from the last memory cell.

Similarly, theCheckerboard-Pattern-Testitially writes alternating 0/1 bits to memory. Af-
terwards, all bits are read back and checked for their cowadnoe. A second run is performed

with inverted data.

The Walkpat-Pattern-Testissumes a memory initialized with defined bit-patterns. firse
step will be to invert the first bit and test all other bits foeir validity. After that, the first bit
will be set to its initial value again and the procedure wélerformed for the second bit. In a
second run, the whole memory will be inverted and testedhagai

Finally, the Galpat-Pattern-Tes{galloping patterns) is a variation of Walkpat-PatterrsiTe
where a single 1 passes an initially empty (all bits set to 8nory. After inverting a single
bit, all (including the currently set bit) bits are read aedted for validity. Additionally, after
reading a (0-) bit-cell also the inverted (1-) bit-cell wakk checked for validity. Thus, the Galpat-
Pattern-Test also detects errors yielding from unexpeetdthg after reading a bit-cell. After
every bit-cell has been inverted, a second run will be peréat starting with a 1-initialized

76

memory where a single bit is set to 0. Figure 5.29 illustratsample test execution.

v v v [y
1/0/0/0({0]0|0|0 1/0/0/0/0]0/0|0 1/0/0/0/0]0|0|0 0/1/0/0/0|0|0|0
0|0j0|0[0|0|0|0 0|0/0|0|0|0|0|0 0|0|0|0|0|0|0|0O 0|0j0|0[0|0|0|0
0|0|0|0[0|0|0]|0 0/0/0|0/0|0]0|0 0{0|0|0|0|0|0|0O 0/0/0|0/0|0|0|0
0|0|0|0[0|0|0|0 0|0/0|0|0|0|0|0 0{0|0|0|0|0|0|0O 0/0/0|0|0|0|0|0
0|0|0|0j0|0|0|0 0/0|0|0|0|0|0|0 0j0|0|0|0|0[0|0 0/0|0|0|0|0|0]|0
0|0|0|0[0|0|0|0 0/0/0/0/0|0|0|0 0(0/0|0|0|0|0|0O 0/0/0|0/0|0|0|0
0|0j0|0[0|0|0|0 0|0/0|0|0|0|0|0 0(0|0|0|0|0|0O|0O 0|0j0|0[0|0|0|0
0[0|0j|0[0|0]0]0 0/0/0j0]0|0]00 0[0|0|0|0|0]0]0O 0/0/0/0]0|0]0]0O
First step Second step Last step -~ First step
for 1 bit for 1% bit for 1% bit for 2™ bit

Figure 5.29: Sample execution of Galpat-Pattern-Test

Memory Test Performance and Test Strategies

Depending on the chosen test pattern, memory tests canypé&merconsuming. For example,
simply setting all bits to 0, reading the memory, writing lailis to 1 and reading the complete
memory again already results in test lengtde2” where N is the number of address bits where
diagnostic coverage (DC) is less thaits since neither the decoder errors nor short circuits are
detected. The more exhaustive Galpat-Pattern-Test mewidry high diagnostic coverage but
yields in test length of x (2" + 2 xn?) where N is the number of address bits and n the number
of memory cells (bits). Table 5.3 gives an overview of testd #he resulting DC.

Test / Diagnostic method Diagnostic Coverage
Checkerboard-Pattern-Test low
Marching-Bit-Test low
Walkpat-Pattern-Test medium
Galpat-Pattern-Test high

Parity Bit low

Mirrored memory with constant bit high
comparison on every read- and write access

Table 5.3: RAM test methods and resulting DC

Since processing time can be assumed to be limited, it isslimpossible to test the whole
memory with a high DC in a single test execution. Instead, orgnimas to be divided into
several smaller segments and a test manager has to takd oameing memory tests part-wise.
Since all presented memory test algorithms are data dasgrae values before test execution
have to be mirrored and written back again. Additionallg thirrently in use memory has to be
tested, too. To ensure correctness of mirrored data, itpsimed to calculate a checksum over

77

the mirrored memory area before the test starts, recatctatchecksum after writing back the
memory segment and finally compare the checksums.

Read Only Memory Tests

Contents of read only memory are usually written only oncehgymanufacturer to ROM or

during activation or maintenance to EEPROM (Electricaldalde Programmable Read Only
Memory). Possible errors can therefore be reduced to raretoons occurring at putting on

supply voltage. Thus, ROM checks should be performed imatelyi at startup of the system.
Since errors can occur during operation of the system, efésts are necessary.

The simplest test for ROMs are calculation of parity bitsefewf odd) and store the parity
information in a separate word. Alternatively, checksurh&0M can be taken and stored.
Additionally, overflow bits might be considered or not.

A more safe method is to calculate a CRC where the completeomyeis assumed to be
a polynomial. Therefore, every byte of the memory is attdcteea chain. Using that chain
a CRC is calculated where the remainder is kept in memons dtaar, that CRC calculation
requires check polynomials guaranteeing Hamming-distamd complete coding. Figure 5.30
illustrates a simple example assuming two bytes of memodyaalditionally, one byte for the
CRC checksum. To increase data integrity, an appropriaekcpolynomial has to be chosen.
As depicted in Figure 5.30, combining 16 bits differentlguks in 65536 possible combinations
of data. Including 8 bits for checksum, 24 bits of informatie@sulting in 16777216 possible
data combinations are available. That is, 16777216 pessilyhbinations against 65535 valid
combinations. Probability to not detect an error is thbs35/16777216 = 1/256 which yields
in DC of more thar99%.

1 2
1[1[1[0[0[1[1[1[0}-=[1[1[0[0[1[1[1[0[0[0[1[1[1[0[O[1]
0 0 »

Y

CRC calculation

h J
[0[1[1]0[1]0[1[0]«—0[1[1[0[1[0[1]0]
Memory

Figure 5.30: Sample calculation of CRC

Summing up, ROM error detection mechanisms differ in sigifgliand thus error detection
coverage. Parity checks will fail even on even numbers opégbbits, where for failing CRC at

78

least 4 bits have to flip. Table 5.4 gives an overview of ROM tesasures and resulting DC.

Test / Diagnostic method Diagnostic Coverage
Parity bit low

Double word checksum medium

CRC with guaranteed Hamming-distance high

Table 5.4: ROM test methods and resulting DC

Errors in the CPU

A CPU (Central Processing Unit) is the core of any processaniorocontroller and is respon-
sible for executing software. Usually, CPU consists of atuArithmetic Logic Unit), instruc-
tion counter, registers and instruction decoder. Microwbiers are microprocessors extended
by peripheral components like 1/O ports, clock generatatcivdog or communication ports. To
thoroughly test a microcontroller implementations havbdgrovided to test every component
separately. It is clear, that only those components have tesied which are required for the
safety functionality.

There is still doubt about the effectiveness of online CP&istesince the question arises
which errors in a processor could be detected by an errorogsssor and if there is a possi-
bility to transfer it to a safe state upon detecting an erfidrerefore, the following conditions
have been defined [28]:

A test should detect random errors.

A test should detect errors in production lots.

The DC is derived from error models and not from error comipams.

Errors are limited in their effects. Even in case of an ertioere is still possibility to
transfer the system into a safe state.

[4] presents requirements for error models in single coreptsof microcontrollers and
defines according DC upon detecting an error. An exampledvoellan emergency-stop signal
which is fired only rarely. Software is implemented to exectite according handler which
works on different registers. Caused by rare usage of thetlkeads and switching to associated
registers, it might be the case that the handler method iexsmtuted correctly.

Therefore, every seldom used method or hardware compoasribtbe tested dynamically.
Furthermore, test results have to be compared with a predkeérpectancy value. It is clear,
that self tests consume a lot of time, but components do na# tabe tested concurrently.
Test routines can be executed serially, where overall comgutime to test the whole device
should be between one and two hours [28]. For systems whéheatarted regularly it might
be sufficient to execute self-tests at startup.

79

Execution of tests are coordinated by a test manager. Thageamas to take care, that
none of the test routines consumes more time than providegkelore tests have to be designed
to be short enough to fit that constraint. If a test routinesakore time it has to be divided into
several smaller jobs.

Checking the Stack

The stack memory size is assigned at development time. Dé@eon the usage of interrupts
stack memory can reserve some bytes up to some kilobytesexdw size can be determined
after extensive tests. Monitoring stack memory can be dsn#ustrated in Figure 5.31: The
maximum stack memory element is allocated a fixed valueowatly stack memory entries are
filled top-down. Thus, a stack underflow can only occur if mg@p”-commands are executed
than “push”-commands. A stack overflow might occur if (nd¥taterrupt routines are executed
multiple times. Therefore, a buffer area in the stack meniemeserved. Stack memory is
initialized on startup and has to be tested during runtikes dther memory.

A5A5A5A5h Upper bound (signature)
Stack 1 T
Stack 2
Stack 3

Stack n
AS5A5A5A5 Lower bound (signature)
A5A5A5A5

_ 00000000
Empty 00000000
buffer-area 00000000

_ 00000000 L

Data
Data
Data

Figure 5.31: Structure of stack memory

Implementing test routines

For different test routines it might be required to tempibyadtisable interrupts. It has to be

verified, that enabling and disabling interrupts has beatuwed successfully. If components
are required constantly it might not be necessary to test sgparately since deviations might
already be detected during regular operation. For examplaling and receiving registers of a
serial communications port which cyclically sends and ikexsedata do not have to be tested.
Especially if protocols containing checksums are used,eargr in the communication system

will be detected by higher level software.

80

5.8 Scheduling tasks on a Microprocessor

So far, most required tasks for safety-related nodes hage lukentified and discussed thor-
oughly:

e (Cyclical) Message exchange between safety data-pomter¢bmmunication)
e (Cyclical) Message exchange between safety controlletsaiommunication)
(Cyclical) Clock synchronization between safety nodes

Running the safety-related application software

Running the non-safety-related application software

Running hardware self tests

To ensure in time execution of each of these tasks, schedstliategies are of major interest.
On personal computers, scheduling is implemented by theatipg system. On most micro-
controllers, scheduling is not available by default. Sitimeapplication programmer should not
take care about the execution of the afore mentioned taskeperating system or at least a
simple scheduling mechanism should be provided which te#esof executing the basic tasks
required for running the safety-related and non-safelgted software.

In the following, some available operating systems haven lesaluated for possible reuse
and will be described briefly. The criteria for the choice of an existing product has béen t
existence of a port to the MSP430f149 since an implememtaifathe hardware drivers, the
TP-UART stack and the KNX stack is already available.

e MicroC/OSlI

MicroC/OSII has been developed by Miem and advertises its safety-capability, espe-
cially with its SIL3 and even SIL4 compliance:

“...itis successfully implemented in some of the highestleafety-critical
devices, including those certified for avionics DO-178B ¢éle&, and EURO-
CAE ED-12B, medical FDA pre-market notification (510(k)hdepre-market
approval (PMA), and SIL 3/SIL4 IEC for transportation andlear system3.

Micrium offers a 45 day trial license for evaluation after which pineduct needs to be
purchased. There exists a port to the MSP430x5xx processes shut unfortunately not
for the used MSP430f149.

http://processors.wiki.ti.com/index.php/MSP430_R&ahe_Operating_Systems_Overview
2http://micrium.com/page/products/rtos/os-ii

81

e TinyOS

TinyOS? is an open-source embedded operating system mainly deetfopsensor nodes
(motes). The extension SafeTiny®&dds further functionality regarding datatype and
memory safety at runtime. The communication protocol isiefieed. Thus, the only
thing to do for the programmer is to handle the inputs andwatpThis is done in the
module based language NCC. Reuse of existing C-code is ogited thus the complete
KNX stack and the TPUART driver would have to be recoded. HareTinyOS supports
the MSP430f149 in the Telos mote, but recoding KNX would ggpdoel the scope of this
thesis.

e FreeRTOS
The RTOS family is available in three different versions:

— FreeRTOS is open source and royalty free.

— OpenRTOS is the commercially licensed and supported vemioFreeRTOS. It
supplies further functionality such as USB and TCP/IP conemds.

— SafeRTOS is a SIL3 certified version with a complete devekmysafety lifecycle
documentation for compliance with IEC 61508.

There exists a FreeRTOS port for the MSP430f149 in comlmnatiith the MSPGCC
toolchain. However, the last supported version of MSPGCdated back in 2004 which
is quite too old.

e Other remaining operating systems either do not offer aweasupport, are not freely
available (embQOS, IAR PowerPAC) or do not support the MSPG&Ithain (Salvo,
CMX-Tiny+).

So far, operating systems for the MSP430 family have beeluateal for reuse in the KNX
safety project. Since no OS met all requirements, scheglnkeds to be developed from scratch.
In the following, an approach for a simple scheduling of safend non-safety-related tasks will
be presented.

Simple Scheduling for KNX Safety

Scheduling is a very wide area of research and developméante & detailed discussion on
different scheduling mechanisms would go far beyond thpescd that thesis, basic appropriate
scheduling mechanisms will be presented only. For choice stheduler in KNX Safety, the

following tasks and issues have to be taken into considerati

Shttp:/itinyos.net/
“http://docs.tinyos.net/index.php/Safe_TinyOS
Shttp://www.freertos.org/

82

Safety-related user-application has to be prevented ftammagion.

Intercommunication task

Intracommunication task by means of commit protocol.

Clock synchronization task should no be preempted, sinea smallest protocol-stack

jitter lowers the precision of the synchronization protoc®herefore, a required clock

synchronization process (as clock master) has to be peatéssnediately. Clock syn-
chronization requests (as clock slave) received from symekation master also have to
be answered as fast as possible.

e A test-manager has to take care of execution times of onklfeest routines including
internal processor tests (RAM, ROM tests) and externad {gsife 10). Such a routine has
to be short enough to prevent other processes from stamvediased by exhaustive CPU
usage from test-manager.

o Non-safety-related user-application has to be prevemtad $tarvation.

A common scheduling strategy to prevent starvation of taskeund-robin which will be
outlined in the following. However, a round-robin scheduees not fully support requirements
as defined previously. Especially time-critical tasks nhiggh problematic.

Round-Robin scheduling

A basic round-robin scheduler implements a preemptive;dome-first-serve (FCFS) strategy
with fixed time intervals. A dispatcher will assign each gegtprocess a slot of CPU-time. If
the process requires less time than it was assigned, iteldase the CPU and the next process
in queue will proceed immediately. If the process requiresanime, it will be preempted, the
dispatcher will choose the next process and the preemptextss will be moved back in the
queue.

For instance, a simple execution of round-robin scheduwetdcbe as P1 takes 25ms, P2
takes 3ms, P3 takes 15ms, P4 takes 20ms, with timeslot eaah. 1Processes arrive in order
P1, P2, P3, P4. Scheduling would be preformed as depictéxt folowing Table:

A round-robin scheduler prevents tasks from starvatiohgdbas not support requirement to
immediately respond to clock synchronization requests.tff@sake of simplicity and the fact,
that a KNX message might take up to 8 seconds to be receiveddyate node (see Section
5.3), clock synchronization cannot be assumed to be assprasiPTP would provide under best
circumstances. Furthermore, transfer times for message®a-deterministic caused by delays
at routers, gateways and higher prioritized frames on Ki¥:| Therefore, scheduling can be
simplified to the approach presented in the following.

83

Process| CPU cycles| Queue Information
P1 0..10 P2, P3, P4, P1 P1 preempted, 15ms remaining
P2 10..13 P3, P4, P1 P2 is done
P3 13..23 P4, P1, P3 P3 preempted, 5ms remaining
P4 23..33 P1, P3, P4 P4 preempted, 10ms remaining
P1 33..43 P3, P4, P1 P1 preempted, 5ms remaining
P3 43..48 P4, P1 P3 done
P4 48..58 P1 P4 done
P1 58..63 P1 done

Table 5.5: Example round-robin scheduling

Simplified priority scheduling

Afore mentioned tasks can be reduced to

Execution of safe user application

Execution of non-safe user application
Handling of clock synchronization messages
Executing self tests

These tasks will be executed cyclically depending whethisrrequired to execute the task or
not. For example, upon receiving a safety-related messaflag will indicate the reception

of the message and during the next round of executing alladlaitasks serially, the safety
message handling task will be executed. To ensure execotitre safety-related tasks, two-
level prioritized (safe and non-safe priority levels) viné introduced privileging a safety-related
task instead of a non-safety-related task. Furthermoreatahdog is started up along with
starting a task which is configured long enough to executtasieentirely. If a task takes longer
than that timeout, it will be preempted. Therefore, taskseha be designed to fit that timeout
or vice-versa.

5.9 Building Safe Hardware

Safe Inputs and Outputs

Safety-related systems are required to perform their ditfiebaviour under any circumstances.
That is not only fail-safe communication between safetyasoaind evaluation of data, but also
reading and setting according values from the environmiargensors and actuators. Therefore,

84

mechanisms are required to detect erroneous inputs ortsufpluat can be gathered, like already
presented in previous chapters, by single-channel apipesamr redundant solutions.

Sensors and input devices

The most simple sensor would be a switch connected to an @fpié microcontroller. Sensors
are not restricted to return binary values but can also geoanalog values like a temperature
or rotational speed. Single channel approaches mightfféiilei sensor fails, the connecting
wire breaks or the input port of the microprocessor failsiclwhresults in loss of whole safety
functionality. Therefore, at least two-channel architees are of importance. Such architectures
are depicted in Figures 5.32 and 5.33. The architectureepted in Figure 5.32 has to be
considered too since it might not always be possible to mowre than one sensor. It does
not detect a failing sensor, but errors in one of the inpujesta To increase the level of safety
a second sensor has to be used and in best case both make wi#aveat technology. If for
example both sensors are implemented by the same techrantdgyne sensor fails caused by an
unexpected reason, the second sensor would likely fail, Tthe usage of different technologies
eliminates such faults.

Sensor 1
Sensor
Input Stage 1 '—»

> Input Stage 1
Logic /
Logic / Sensor 2 Microcontroller
Microcontroller
Input Stage 2
Input Stage 2 ot Stege

Figure 5.32: Single sensor on replicated inputFigure 5.33: Replicated sensors on replicated
stages input stages

Binary sensors like switches have to be handled thorouddhooking at Figure 5.34 one
can see that safety functionality is completely lost if wiyiis shorted. A short betweeignal
1 andSignal 2as depicted in Figure 5.35 reduces the circuit to evaluaie are channel. To
prevent this, each switch has to be wired separately andecteuh to different in- and outputs
of the logic. Furthermore, instead of providing direct agk, the signal sent to the switch
can be pulsed, where each of the switches gets differené palterns. Such pulsed patterns
are also referred to as OSSD (Output Silicon Switched DgviBeading back the inputs and
comparing the sent pulse pattern with the received one esnabldetect shorts between wiring
of the switches (see Figure 5.36). It has to be mentionetlgttsuation of the switch state can
only be performed if the switch is closed. That is sufficiencs it is assumed that an open
switch indicates a safe state.

If sensed values can not be applied to the microcontrollerctdy, input stages have to be
used. Depending on the applied architecture, input staggsh@come single points of failure
and therefore have to be tested as well. Since the outpulsifithe logic is pulsed, the sensor
as well as the input stage is tested implicitly. Referrind-tgure 5.37, wiring the input stage
with logic twice increases possibility to detect errorshie tiring or logic inputs.

85

vV DC VvV DC

Sensor 1 [] Sensor 1 []
Sensor 2 [] Sensor 2 []

Function ». Signal 2

» Signal 1

Figure 5.34: Example of connecting two Figure 5.35: Example of connecting two
switches in line switches parallel

Sensor []
Input 1

—»
Input Stage Input 2

Logic /
Microcontroller

U

Figure 5.36: Monitoring sensors using pulsed voltage

Since not every sensor provides potential free contaatsiginit not be possible to use afore
mentioned pulsed pattern technique to ensure correctfiegsemtion. That might be the case
for sensors with separate power supply providing an aciyeas themselves like proximity
sensors (see Figure 5.38). Here one can see that the ingetreteives a pulsed signal from the
logic which cyclically tests if the input stage still reatig forwarding the pulses to the logic. It
is clear, that such an approach assumes correctness ofngar $self. It can only be tested if
the input stage behaves according to its specification.

Safe outputs

In safety-relevant automation systems it is often requiceshfely turn off a device like a motor

for example. Here it is not sufficient to use a simple switckxecute a safety function since in
case of a stuck-at error, it might not be possible to discontiie device and transfer the system
into a safe state. Therefore, multiple switches conneatédlly as depicted in Figure 5.39 are
applied. If one of the switches fails to disconnect, thergtilsanother one to execute the safety

86

| U T T U
Sensor 1
Signal 1 > Input 1
«P Input 2
Sensor 2
= i Logic /
Signal 2 Microcontroller

Figure 5.37: Test in a closed circuit

Sensor
y —w| Input1
Input Stage Input 2
Logic /
Microcontroller

Figure 5.38: Testable input stage in a closed circuit

function and transfer the system to a safe state. To enstire gwitch is actually disconnected,
reading back values gives information about successfudwian of the switch-command.

Output-supply
Control-supply

[Output 2
A

Kk,

{ Output 1
i K

Output

L

Figure 5.39: Serially connected switches with read-badkctvstate

A more sophisticated circuit fulfilling even highest levafaty requirements is depicted in
Figure 5.40. Just like in the afore presented circuit twotdvimg elements are used to safely
disconnect the device. To ensure correctness of the operdioth semiconductors (T2, T3)

87

have to be tested cyclically. Therefore, microcontrolleénfbrms microcontroller 2 about an
upcoming test and sends an impulse via R1 to T1. That pul$devilecognized by microcon-
troller 2 (via R4) which will inform microcontroller 1 abowbrrect operation of T2. The same
mechanism applies to testing T3 from microcontroller 2. Atfar measure to increase safety
is usage of a fail-safe unit which is enables control volteiyeT 1. The fail-safe unit is imple-
mented to be controlled dynamically and just enables owdiguial if both microcontrollers give
the same input. That will ensure safe switching off the ougwen if one of the microcontrollers
has failed. Itis clear, that test pulses have to be shortgntmnot affect correct operation of the
device connected to the output. Furthermore, semicondug@®and T3 are driven by different
technology to overcome simultaneous failing of both digvimits. Summing up, the following
measures for safely switching off have been applied:

Usage of two microcontrollers (two-channel-architecture

Cyclical tests of main semiconductors using test-pulsesraading back pulses cross-
wise.

Usage of different driving technology for main semiconaust

Usage of dynamically controlled fail-safe unit

Vbc
» -
Microcontroller 1 FS U—
A -
R1 TI1
| — T2
e
1’7 R2
L T
' Driver
R3 T3
Microcontroller 2 ‘t:l‘,> h
o]
— Output
————»
r
RLU
L

Figure 5.40: Two-channel output using semiconductors

Fail-safe unit As mentioned, a fail-safe unit is required to enable coltiglvoltage for T1.
The unit will only return a valid output if both its inputs acentrolled according to predefined

88

dynamic signals. Otherwise, an output indicating safeestall be provided. An example of
a fail-safe output unit is depicted in Figure 5.41. Micrototer 1 provides constant voltage
via high-side driver 1 while microcontroller 2 provides gedl voltage to drive the transformer
via low-side driver 2. Additionally, both microcontroleiprovide alternating test pulses. The
transformer including filter D1, C1 are dimensioned thatnegontrollers are enabled to read
back test pulses via R1 or R2, respectively. Following D2@8dre dimensioned that output of
the fail-safe unit is pulse-free direct voltage. If eithétlee microcontrollers fails, the output of
the fail-safe unit turns to zero since valid outputs of boibrotontrollers are required to drive
the transformer.

Test pulse Driver 1 D1 D2
M
L—
Microcontroller 1 =
7\ C1= c2 Fail-safe
Transformer output
R1 _
T >
R2
1
\ 4 — _
Microcontroller 2 = Driver 2 Read back
[test pulse
W L—

Transformer driving frequency
including test pulse

Figure 5.41: Fail-safe unit

89

CHAPTER

Conclusion

The thesis started by explaining basic terms and definitiegsired for building automation
systems and KNX protocol in depth. Chapter 3 gave an outlimstate-of-the-art standards
IEC 61508 and ISO 13849 concerning functional safety intetad systems and pointed out
requirements for functional safe devices from a developrtiiecycle as well as hard- and soft-
ware point of view. Basically, IEC 61508 states that highadety integrity levels can either be
gained by increasing fault tolerance of hardware or by msirey fraction of errors which can be
detected by system itself through extensive self tests.

In Chapter 4, a selection of existing solutions for indastand home and building automa-
tion providing functional safety has been presented andpeoed in terms of their protocol
safety. Possible errors in communication systems and mesasu detect and prevent them are
defined in IEC 61784-3. Communication errors have beenifteohin case of corruption, unin-
tended repetition, incorrect sequence, loss, unacceptdaidy, insertion, masquerade and wrong
addressing. Detection of timing-related errors requimggdémentation of clock synchronization
mechanisms to ensure global notion of time and therefolgyatni order messages by their oc-
currences. Due to limited bandwidth of the KNX bus line, @ri$ synchronization protocols,
namely vector clocks and precision time protocol, have leatuated with a focus on reuse in
the thesis.

To gain safety integrity level 3 as specified by IEC 61508 liappon of extensive hardware
self tests or hardware redundancy is required. Due to ldni®cessing power of microcon-
trollers, a hardware redundancy approach using two micttoolters and a single TP-UART-IC
for KNX-line access has been chosen. Even implementatidraafware redundancy requires
hardware self tests, but to gain SIL 3 a safe failure fractifomore than 90% is sufficient which
can be gained by memory tests as presented in Chapter 5.7nabteeapplication of redun-
dant controllers, a reliable communication protocol betweafe controllers had to be applied.

91

Furthermore, safe hardware also includes safe in- and sutpuinteraction with environment
which has been outlined in Section 5.9. Since non-safetysafety-related applications should
operate on the same node, IEC 61508 requires to show sufficd@pendence of safety-related
and non-safety-related application which requires imggletation of scheduling mechanisms.

Summing up, developing a safety-capable device requirehmore than just building re-
dundant hardware. Instead, especially protocol safetiyrisagor concern, which even gets more
important if existing wiring has to be kept and safety and-safety nodes should coexist on the
same network. To solve this problem, almost any existingtswi for safety-related automation
systems relies on the black-channel-principle statiregj, tthe safety-related protocol itself has to
take care about correct transmission, reception and dmtexfterrors of a message without rely-
ing on potentially implemented error detection mechanishtse underlying non-safety-related
protocol. Further issues become safety of hardware itdafmincludes implementation of safe
interaction with the environment via safe inputs and owg@s well as communication between
redundant safe controllers on a safe node itself. Findlly,hardware has to be checked cycli-
cally for correctness of operation where especially eriormemory have to be detected using
different memory-check algorithms.

6.1 Outlook and further work

Process data exchange has been explained only very bridfl})t ¢Gpports a variety of mech-
anisms to exchange data between nodes and how nodes aremseehdir data-point-of-view

by means of their functional block description. To allow mpgier implementation of a KNX

Safety network, KNX Safety should be extended to supporttfanal blocks as well as more
sophisticated methods to work with safety data points.

Rapid spreading of wireless devices with potential safelsted functionality entails an-
other topic which has to be considered too i.e. security. fAtgaelated device might operate
safely in closed circuits, but if an unauthorized persomgaccess to a safety-related system, the
system itself cannot be considered to safely operate amymitrerefore, integration of security
measures into safety-related devices and vice-versa lesaanajor concern.

92

[1]
[2]

[3]

[4]

[5]

[6]

[7]

Bibliography

Konnex Association KNX Handbook, Version 2.Konnex Association, 2009.

Konnex AssociationKNX System Specifications, Architecture, v Onnex Association,
2009.

CENELEC Européaisches Komitee fir Elektrotechnischeriang. DIN EN 61508-
1 (VDE 0803 Teil 1) Funktionale Sicherheit sicherheitslygaeer elektrischer/elek-
tronischer/programmierbarer elektronischer Systemel 1Téllgemeine Anforderungen
(IEC 61508-1:1996 + Corrigendum 1999); Deutsche FassunddEN8-1:2001. IEC,
2001.

CENELEC Europaisches Komitee fur Elektrotechnische rmiang. DIN EN
61508-2 (VDE 0803 Teil 2) Funktionale Sicherheit sichedimzogener elek-
trischer/elektronischer/programmierbarer elektrdmscSysteme - Teil 2: Anforderungen
an sicherheitsbezogene elektrische/elektronischerpmugierbare elektronische Systeme
(IEC 61508-2:2000); Deutsche Fassung EN 61508-2:206C, 2001.

CENELEC Europaisches Komitee fur Elektrotechnische rimiang. DIN EN
61508-3 (VDE 0803 Teil 3) Funktionale Sicherheit sichedtmzogener elek-
trischer/elektronischer/programmierbarer elektrdmscSysteme - Teil 3: Anforderungen
an Software (IEC 61508-3:1998 + Corrigendum 1999); Dewtdeassung EN 61508-
3:2001.1EC, 2001.

CENELEC Europaisches Komitee fur Elektrotechnische rriang. DIN EN
61508-4 (VDE 0803 Teil 4) Funktionale Sicherheit sichedtmzogener elek-
trischer/elektronischer/programmierbarer elektrdmscSysteme - Teil 4. Begriffe und
Abkirzungen (IEC 61508-4:1998 + Corrigendum 1999); DédsEassung EN 61508-
4:2001.1EC, 2001.

CENELEC Europaisches Komitee fur Elektrotechnische rimiang. DIN EN
61508-6 (VDE 0803 Teil 6) Funktionale Sicherheit sichedimzogener elek-
trischer/elektronischer/programmierbarer elektrdmesc Systeme - Teil 6: Anwen-
dungsrichtlinie fur IEC 61508-2 und IEC 61508-3 (IEC 61508000); Deutsche Fassung
EN 61508-6:2001IEC, 2001.

93

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Charzinsiki. Bewertung der Fehlersicherungsverfahirma CAN Protokoll. Universitat
Stuttgart 1991.

DEK Deutsche Kommission Elektrotechnik Elektronik dnfnationstechnik im DIN und
VDE. DIN IEC 61784-3 (VDE 0803-500) Industrielle Kommunilansnetze - Profile -
Teil 3: Funktional sichere Ubertragung bei Feldbussen GBT/500/CD:2008IEC, 2008.

DIN Deutsches Institut fir Normung e.V. DIN EN 13849-icl®erheit von Maschinen -
Sicherheitsbezogene Teile von Steuerungen - Teil 1: AlgieenGestaltungsleitsatze (ISO
13849-1:2006); Deutsche Fassung EN ISO 13849-1:2D08, 2008.

DIN Deutsches Institut fir Normung e.V. DIN EN 13849-&lerheit von Maschinen
- Sicherheitsbezogene Teile von Steuerungen - Teil 2: Malidg (ISO 13849-2:2003);
Deutsche Fassung EN ISO 13849-2:20D8N, 2008.

Fachausschuss Elektrotechnik. Grundsatz fur diedAgitind Zertifizierung von Bussys-
temen fur die Ubertragung sicherheitsrelevanter Nacteigt2002.

IEC International Electrotechnical Commission. IEC568-0 Part 0: Functional safety
and IEC 61508IEC, 2005.

IEC International Electrotechnical Commission. IEC784-3-12 Industrial communica-
tion networks - Profiles - Part 3-12: Functional safety fieks - Additional specifications
for CPF 12 (Safety-over-EtherCAT)EC, 2010.

IEEE Instrumentation and Measurement Society. |IEEB81Standard for a Precision
Clock Synchronization Protocol for Networked Measurensrt Control Systems$EEE,
Revision of IEEE Std 1588-2002.

CAN in Automation e.V. CANopen - Application Layer ansb@munication Profile - CiA
Draft Standard 301CAN in Automation e.\/2002.

CAN in Automation e.V. CANopen - Framework for safeglevant communication - CiA
Draft Standard 304CAN in Automation e.\/2005.

Wolfgang Kastner and Georg Neugschwandtner. Datenkonikation in der verteilten
gebaudeautomatiorBulletin SEV/VSE2006.

Wolfgang Kastner, Georg Neugschwandtner, Stefan &quand H. Michael Newman.
Communication systems for building automation and controProceedings of the IEEE
volume 93, pages 1178-1203, 2005.

Wolfgang Kastner and Thomas Novak. Functional safetuilding automation. Irin
Proc. of 14th IEEE Conference on Emerging Technologies autofy Automation (ETFA
'09), pages 1-8, September 2009.

Hermann Kopetz.Real-Time Systems - Design Principles for Distributed Eddbd Ap-
plications Kluwer Academic Publichers, 2003.

94

[22] Friedemann Mattern. On the relativistic structureagfital time in distributed systems. In
Elsevier Science Publishers B.V in Parallel and Distrilsigslgorithms pages 215-226,
1992.

[23] Thomas Novak and Thomas Tamandl. Architecture of a satie for a fieldbus system.
In 5th IEEE International Conference on Industrial Inforntgipages 101-106, 2007.

[24] Dietmar Reinert and Dietmar Schaef&ichere Bussysteme fiir die Automatidithig,
2001.

[25] SiemensTechnical data EIB-TP-UART-Q001.

[26] Dale Skeen and Michael Stonebraker. A formal model aBhrrecovery in a distributed
systemsIEEE Transactions on Software Engineerjipgges 219—-228, 1983.

[27] Andrew S. Tanenbaum and Maarten van Steddistributed Systems - Principles and
Paradigms Prentice Hall, 2002.

[28] Peter Wratil and Michael Kieviet. Sicherheitstechnik fir Komponenten und Systeme
Huthig, 2007.

[29] Richard ZurawskiThe industrial communication technology handhoGRC Press, 2005.

95

