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Abstract

Java bytecode is commonly executed by a Java virtual machine (JVM)
on a desktop computer, which usually either interprets the code or em-
ploys a just-in-time (JIT) compiler to translate the code to native ma-
chine code. Profile-guided optimizations are used to speedup hotspots
at runtime. In contrast to that, Java processors like the Java Optimized
Processor (JOP) execute Java bytecode directly without the need for a
JIT compiler or an interpreter.

For real-time applications the worst-case execution time (WCET) is
more important than the average-case execution time (ACET). If the
WCET of a real time task is too high, ahead-of-time optimization is
required that focuses the worst-case execution path to reduce the WCET.

In this thesis, we show how the worst-case analysis (WCA) can be
used to guide the optimizer and discuss the impact of a method cache on
the performance of the optimizations. An existing WCET analysis tool
is used to drive WCET oriented optimizations for the JOP processor.
The main optimization is inlining method calls to eliminate the invoke
overhead, while trying to avoid increasing the overall WCET due to
higher method cache miss penalties. A framework has been implemented
which allows the optimizer and the WCA to work on the same data
structures in memory so that the WCA can be invoked repeatedly during
the optimizations with low overhead.

To test the impact of the optimizations, various benchmark applica-
tions have been optimized and analyzed, and the WCET, the ACET as
well as the code size of the optimized applications are compared to their
unoptimized version.
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Zusammenfassung

Java Bytecode wird üblicherweise in einer Java Virtual Machine
(JVM) auf einem Desktop PC ausgeführt. Meistens wird der Code von
der JVM interpretiert oder mittels eines Just-In-Time (JIT) Compilers
in Maschinencode übersetzt. Basierend auf Profiling-Informationen wer-
den kritische Stellen zur Laufzeit bei Bedarf optimiert. Java Prozessoren
wie der Java Optimized Processor (JOP) können hingegen Java Byteco-
de direkt ausführen ohne zusätzlich einen Interpreter oder JIT Compiler
zu benötigen.

Die Worst-Case Execution Time (WCET) ist bei Echtzeitsystemen
wichtiger als die Average-Case Execution Time (ACET). Falls die WCET
eines Echtzeit-Prozesses zu hoch ist, werden Optimierungen während der
Entwicklung benötigt um den Worst-Case Pfad im Programm zu opti-
mieren und damit die WCET zu reduzieren.

In dieser Diplomarbeit wird gezeigt, wie eine Worst-Case Analyse
(WCA) verwendet werden kann um einen Optimizer zu unterstützen.
Des weiteren werden die Auswirkungen des Method Cache auf die Effi-
zienz von Optimierungen betrachtet. Ein bestehendes WCET Analyse-
tool wird verwendet um Optimierungen für JOP zu lenken. Als zentrale
Optimierung wird Method Inlining verwendet, wobei versucht wird eine
Verschlechterung der WCET durch höhere Cache-Miss Kosten zu ver-
meiden. Ein Framework wurde erstellt um die Optimierungen und die
Worst-Case Analyse auf den selben Daten arbeiten zu lassen, damit die
WCA während der Optimierung mit geringen Overhead mehrfach durch-
geführt werden kann.

Um die Auswirkungen der Optimierungen zu testen wurden mehre-
re Benchmark-Anwendungen optimiert und analysiert. Die WCET, die
ACET und die Codegröße der optimierten Anwendungen wurden mit
den nicht optimierten Versionen verglichen.
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Chapter 1

Introduction

An embedded system needs to interact with its physical environment. Usually,
the system needs to meet deadlines imposed by the environment when it reacts
to external events, or it needs to execute a task periodically at predefined
intervals. Such systems are called real-time systems. An important property
of those systems is the worst-case execution time (WCET). It is the maximum
execution time of a given program or part of a program for any possible input
data. The WCET of the tasks of a real-time system must be low enough so
that they always meet their deadlines.

A worst-case analysis (WCA) can be used to calculate a bound on the
WCET of a given part of an application. A precise calculation of the WCET
is not possible in most cases due to the large number of program states to
explore and the complexity of the behavior of the underlying hardware. The
WCA requires bounds on the execution time of all operations, and requires
bounds on the number of iterations of all loops and recursions. Hints like loop
bounds that restrict the feasible paths are called flow facts. In the general
case, manual annotation is required to provide such loop bounds, but a flow
analysis can be used to derive some of the required flow facts automatically.

If the WCET is too high, i.e., if the application may not always meet the
required deadlines, the system designer either needs to use a faster processor,
which is usually more expensive and has a higher power consumption, or he
needs to optimize the application. A compiler may perform optimizations to
reduce the execution time of the application. In contrast to conventional ap-
plications however, the optimizations need to reduce the worst-case execution
time, not the average-case execution time (ACET).

Java programs are usually executed on a Java virtual machine (JVM),
which is executed on a register-based architecture.. The JVM either interprets
Java bytecode instructions or compiles the Java code to the native architec-
ture before it executes the application. Desktop JVMs usually use profiling
information collected at runtime to optimize hot spots.

Java processors on the other hand implement the Java virtual machine in
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2 CHAPTER 1. INTRODUCTION

hardware. The Java Optimized Processor (JOP) [22, 23] is a small Java proces-
sor designed to simplify the WCET analysis. Its native instruction set called
microcode is designed for efficient execution of Java bytecode. The processor
executes bytecode instructions by invoking a sequence of microcode instruc-
tions for every bytecode instruction. The timing of the bytecode instructions
is composable, i.e., the execution time of a sequence of instructions is always
equal to the sum of the execution times of the individual instructions. JOP
uses a novel instruction cache called method cache that caches whole methods.
Instruction cache misses can only appear at invoke and return instructions,
all other instructions are guaranteed cache hits.

Due to the limited resources of small embedded processors like JOP, ad-
vanced optimization at runtime based on profiling data are difficult to achieve
and can introduce additional runtime overhead. Furthermore, optimizing the
application using profiling information collected at runtime only improves the
execution speed after several iterations of the code and thus does not decrease
the WCET, but increases the complexity of the WCET analysis.

For real time systems we therefore need ahead-of-time (AOT) optimiza-
tions to reduce the WCET. The target architecture needs to be known in
detail at design-time, as this is required by the WCET analysis to calculate
a good WCET approximation. The optimizer can also use this information
to optimize the code for the concrete target architecture. Feedback from a
WCET analysis can be used to guide the optimizations. The WCET path is
independent of specific executions and can therefore be calculated statically
and used by an ahead-of-time optimizer. Runtime profiling information is not
needed to improve the results.

For this thesis a new framework for analyzing and optimizing Java byte-
code was created, and an existing data-flow analysis and an existing WCET
analysis tool have been ported to the new framework. A WCET-driven opti-
mizer called JCopter has been implemented on top of this framework, which
performs method inlining using feedback from the WCET analysis and a
method cache analysis.

In Section 1.1 we will present the motivation for this thesis. Section 1.2
discusses related work. The rest of the thesis is structured as follows: Chap-
ter 2 gives an introduction to WCET analysis, the JOP architecture, and
some data structures used by the optimizer. In Chapter 3 we discuss vari-
ous optimizations with respect to JOP, the method cache and the worst case
execution time. Chapter 4 presents the implemented inliner and introduces
a WCET driven algorithm to select call sites for inlining. We show how the
optimizer interacts with the cache analysis and the WCET analysis. Chapter
5 describes the implemented framework and the toolchain and discusses some
implementation specific issues. The results achieved by the optimizations are
presented in Chapter 6. The thesis concludes with a summary and an outlook
in Chapter 7.
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1.1 Motivation

A compiler can perform optimizations to reduce the execution time or the code
size of a program automatically. The developer does not need to optimize the
code by hand, which would make the source code less readable. Instead the
developer can focus on writing more structured code and on expressing the
intended meaning in the source code (e.g., by using a multiplication instead
of a shift operation to multiply with 2n), and let the compiler eliminate re-
dundancies and find semantically equivalent but faster versions of the code.

Furthermore the compiler can evaluate its optimization decisions anew
every time the developer changes the code. This would be a significant burden
to do manually. Performing optimizations by hand is also an error-prune
process and requires additional code documentation to convey the intention
behind an optimization to other developers. Also, the developer can only
perform optimizations at source code level, while the compiler can optimize
the binary code for the specific target platform.

In this thesis we focus on real time applications in which the WCET is
more important than the ACET. Since optimizations targeted at the average
case can have a negative effect on the WCET, we need WCET-driven opti-
mizations instead. To avoid implementing a separate timing analysis within
the optimizer, we use the existing WCET analysis to guide the optimizer.
All execution timings and WCET related analysis results are provided by the
worst-case analysis.

The main target architecture used for this thesis is JOP. As JOP uses
a method cache, the cache costs in terms of time spent for filling the cache
are directly related to the code size of methods. Cache miss costs can be
a significant part of the execution time, therefore we need to consider the
impact of the optimizations on the method cache. A method cache analysis
is required to estimate cache costs.

Method inlining has been chosen as primary optimization for two reasons:
First, the method invocation overhead on JOP is quite high, so removing
that overhead can yield a significant gain. Secondly, when method inlining is
performed automatically, the developer can use standard code patterns like
getter and setter methods or wrapper methods to improve the modularity of
the code with low or even no execution time penalties.

We have chosen to implement our own framework for two reasons: First,
it allows us to port all existing tools to the same code base with minimal
effort. This reduces the redundancy of code in the toolchain and allows for
an efficient interaction between tools. Secondly, the WCET analysis requires
the application code in its final bytecode form to perform a precise analysis.
The Java optimization framework Soot [33] uses a quadruple code represen-
tation for code optimizations. Java frontends for the LLVM1 [9] framework

1The Low Level Virtual Machine Compiler Infrastructure Project, http://llvm.org/

http://llvm.org/
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and the GCC2 compiler exist, but the internal low level code representations
are too different from the Java architecture. Translating the internal code
representation back to Java bytecode after optimization is infeasible. Instead
we use any standard javac compiler to generate Java bytecode, and perform
the analyses and optimizations entirely on Java bytecode. A transformation
between different code representations is not required.

1.2 Related Work

In the last decades, a significant amount of research has been done regarding
automatic code optimizations. Most of the developed techniques target the
ACET and the code size of the applications to optimize. Only few works exist
that explicitly target the WCET of an application. As the gap between the
computational speed and the memory speed increases, it also becomes increas-
ingly important to take the cache costs caused by optimizations into account.
The method cache used by JOP is a comparatively new cache architecture.
To our knowledge, no previous work exists that investigates optimizations for
target platforms that use a method cache.

Inlining is a well known optimization to reduce the calling overhead. The
inliner developed in this thesis is similar to the algorithm described by Zhou et
al. [37]. They present a fast inlining algorithm that tries to maximize the gain
achieved by inlining, while keeping the application code size below a predefined
limit. Selecting call sites to inline is based on a heuristic rebate ratio that is
calculated for all nodes in the call graph. The rebate ratio is defined as the
function calling frequency divided by the expected code size increase when
that function is inlined. However, the algorithm does not take instruction
cache costs into account, and it is not designed to target the WCET.

The TU Dortmund WCC optimizer3 [12, 18] is a C compiler for the Infi-
neon TriCore TC1796 and TC1797 processors that implements several WCET
analysis driven optimizations. The aiT WCET analyzer is used for timing
analysis and to find the worst-case execution path (WCEP). WCC first trans-
lates ANSI-C source code into a high-level intermediate representation, that
is used by most code optimizations. A code selector then generates a low-level
intermediate representation (LLIR) from the high-level intermediate represen-
tation. Additional optimizations are performed on the LLIR.

The aiT WCET analysis4 interfaces with the WCC framework on the level
of the LLIR code. The results of the WCET analysis are mapped back to both
the LLIR as well as the high-level code representation using back-annotation,
so that they can be used by the optimizations. Evolutionary algorithms
have been used to find good optimization sequences that improve either both

2The GNU Compiler Collection, http://gcc.gnu.org/
3http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/index.html
4http://www.absint.com/ait/

http://gcc.gnu.org/
http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/index.html
http://www.absint.com/ait/
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WCET and ACET or both WCET and code size [12]. The authors found that
most standard optimizations affect both ACET and WCET in a similar way
for the TriCore architecture, which uses both a scratchpad instruction cache
and a set associative instruction cache.

WCC also features a heuristic WCET-driven function inliner [11]. Call site
selection is done by random forests. Random forests consist of several decision
trees, a majority vote on a random subset of the decision trees decides whether
a call site should be inlined or not. The decisions are based on various features
such as method sizes or WCET analysis results. The decision trees are trained
by supervised machine learning. The WCET analysis is used to calculate the
WCET of several benchmark applications. For several call sites it is tested if
inlining that call site improves the WCET. Together with the feature vectors
of the call sites, those results are passed to the machine learner that generates
the decision trees. This approach has the advantage that the inliner can be
easily retrained for new target architectures. The compiler designer does not
need to manually tune the heuristics used in the optimizer. The machine
learning based inliner can outperform manually crafted heuristics.

Zhao et al. use interaction with a WCET analysis to apply path opti-
mizations on the WCEP [36]. The WCEP-driven optimizations are applied
after performing some traditional code optimizations. Superblock formation is
used to copy the WCEP into a superblock, i.e., a sequence of basic blocks that
has only one entry but can have multiple exits. Path duplication duplicates
the WCEP within loops, while loop unrolling is used to duplicate whole loop
bodies, regardless of the WCEP. The main advantage of those optimizations
are that they may create additional optimization opportunities and that some
transfer of control penalties within the loop bodies can be eliminated, due to
rearranging the WCEP into sequential code. However, these optimizations
increase the code size. The optimizations have been applied only to the in-
nermost loops to limit the code size increase. Instruction cache costs have not
been taken into account because the used target architectures does not use
caches.

Java bytecode is usually optimized during execution on a Java virtual ma-
chine. The Java HotSpot VM is the high-performance desktop JVM reference
implementation [16, 8]. In contrast to a traditional just-in-time (JIT) compiler
that compiles every method when it is first executed, the HotSpot VM starts
by interpreting the code first. When a hot spot is detected, i.e., when the
JVM finds a piece of code that is executed very often and is therefore respon-
sible for a large percentage of the execution time, the hot spot is compiled and
optimized, using profiling information gathered during the initial executions
of the code. Inlining is used to reduce the method invocation overhead and
to create larger code blocks for the optimizer. Deoptimization is used when
the class hierarchy changes due to dynamic class loading. Optimizations are
performed on a high-level intermediate representation that is in static single-
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assignment (SSA) form. However, the WCET of an application running on
such a platform is hard to analyze.

Since Java programs are usually executed on JVMs that perform profiling-
driven optimizations, most existing bytecode optimizers focus on unused code
removal and on code obfuscation.

Soot is an ahead-of-time (AOT) Java optimization framework that uses a
3-address intermediate representation to facilitate code transformations [33].
It takes Java class files containing bytecode as input and transforms the code
to an intermediate representation called Baf that is similar to bytecode. Then
the code is transformed from stack code to a 3-address code (or quadruple
form) intermediate representation called Jimple. The code can also be con-
verted to SSA form, or to a more high-level intermediate form that repre-
sents the code as expressions. Optimizations are performed on the 3-address
code [32]. To generate optimized bytecode, Jimple code can be translated
back to Baf stack code that is then optimized. Alternatively, Jimple code can
be aggregated into expressions, which can then be compiled efficiently into
stack code without the need for additional optimizations. In any case, the
resulting stack code is then compiled to bytecode using the Jasmin bytecode
assembler. Soot performs several intra-procedural optimizations such as copy
propagation, constant folding and dead code elimination, as well as method
inlining. Inlining is performed in a bottom-up manner, the code size increase
is limited by predefined code size bounds. However, the optimizations are not
designed to target the WCET of the applications. Interaction with a WCET
analysis requires transforming the code from 3-address form as used for op-
timization back to optimized stack code that is required for a precise timing
analysis.

A ACET-driven Java method inliner for JOP has already been imple-
mented [3]. In this thesis, the method inliner has been ported to a new
framework, and it has been integrated with the WCET analysis tool and the
data-flow analysis tool of the JOP toolchain. The feedback from the WCET
analysis is used to implement the WCET-driven method inliner presented in
this thesis.



Chapter 2

Background

This chapter discusses the background of this thesis. The notions of average-
case execution time and worst-case execution time are discussed. A short
overview over the Java virtual machine and the Java Optimized Processor is
given, as those form the main target architecture used in this thesis. We also
discuss the data-flow analysis and the worst-case analysis tool used in this
thesis.

2.1 Worst-Case Execution Time

The worst-case execution path (WCEP) of a method is a control flow path
with the highest execution time. The execution time of the WCEP is the
worst-case execution time (WCET) of that code.

The task of a WCET analyzer is to find a safe and tight upper bound on
the actual WCET of a method [35, 5]. To do this, the analysis must first
find all feasible control flow paths. Hints that restrict the set of feasible paths
are called flow facts. If the code contains loops or recursions, the number
of iterations must be bounded. Flow facts that bound the number of loop
iterations are called loop bounds. If any loop or recursion is unbounded, it is
possible to construct control flow paths of infinite length. The execution time
of such a path would be infinite.

Flow facts can be provided by the system designer in the form of code
annotations, or they can be derived automatically from the source code by a
flow analysis. For instance, if the loop variable of a for loop iterates from
a constant initial value to a constant end value, the compiler can derive an
upper loop bound directly from the source code.

A data-flow analysis can also be used to derive flow facts. It calculates an
over-approximation of the possible values that the variables of a program can
hold at specific program locations. This can be used to determine the value
range of loop variables. Abstract interpretation can be used to implement
a data-flow analysis. Abstract interpretation calculates abstract states for

7
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every program location that over-approximate the set of concrete states that
the program can have at that program location. The analysis starts with
an empty abstract state for every location and then iteratively transfers an
abstract state to a new abstract state, using the semantics of the instruction
at the corresponding program location. The new abstract state is joined with
the existing abstract state at the program location after the instruction. This
is repeated until a fix-point is reached.

The precision of the abstract states determines the runtime of the analysis,
therefore the abstract states should only capture the information the user is
interested in, nothing more. On the other hand, if the abstract states are not
precise enough, the analysis might not find any bounds on the values of the
variables. If the data-flow analysis is unable to determine loop bounds, the
programmer must provide loop bounds or he must use loop constructs that can
be analyzed. Flow facts that are provided by source code annotations need
to be transformed according to the code transformations performed during
optimization and compilation, as the flow facts are required by the worst-case
analysis that must analyze the generated code in order to get safe results.

If the flow facts are imprecise, the worst-case analysis might find a WCEP
that is actually infeasible. This contributes to an over-estimation of the
WCET.

The second task in a worst-case execution time analysis is to determine
the actual execution time of the WCEP, i.e., the WCET of the analyzed code.
The actual execution time depends on the properties of the target platform.
However, the WCEP depends on the execution time of the code. Determin-
ing the WCEP first and then calculating the execution time of that path is
therefore not possible, except if the code has only a single control flow path,
i.e., when the control flow path is independent of the input data. Calculating
the WCET by enumerating all paths and calculating the maximum execution
time over all paths is usually not feasible due to the huge number of possible
paths. A WCET analysis must therefore compose the WCET of a program
from partial results of subgraphs of the control flow graph.

Modern processor architectures are very complex, which makes the esti-
mation of the execution time of instructions very hard or even unsafe. Due
to features such as pipelines, instruction and data caches, branch prediction
and speculative execution and out-of-order execution, the execution time of
an instruction or a sequence of instructions can depend on the processor state
prior to the execution of the instructions. This brings about a potentially large
over-estimation if the processor state at the beginning of the analyzed code
segment is not known. Due to the large number of possible concrete processor
states, the WCET analysis needs to use abstract processor states, which intro-
duces non-determinism to the hardware model and renders an exact WCET
analysis impossible.

Complex processors can also exhibit timing anomalies [13, 20]. A faster
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execution of an instruction sequence can lead to a processor state that causes
subsequently executed code to have a higher execution time than it would
exhibit after a slower execution of the first instruction sequence. This increases
the complexity of the composition of execution times of instruction sequences.

It should be noted that the WCEP depends on the target platform. The
WCEP can be different for the same program for different target platforms.
Therefore the results of the WCET analysis cannot be easily reused when
a program is ported to a different platform. Also, the actual WCEP can be
different from the WCEP found by the analysis due to the over-approximation
of the execution timings, even if the path found by the analysis is a feasible
path.

Two main methods exist to analyze the execution time of some code,
measurement-based timing analysis and static timing analysis. A measurement-
based timing analysis executes the code on the target hardware and measures
the actual execution time, while a static WCET analysis calculates a bound
on execution time of a code sequence for some initial abstract processor state
based on a hardware model. The advantage of a measurement based analysis
is that the analysis does not need a precise hardware model. However, to
measure the execution time, some concrete input data must be used. One
of the central problems of measurement-based analyses is that in the general
case it is not known which input data and which initial processor states trig-
ger the execution of the WCEP. On the other hand if the control flow is not
data-dependent and if the part of the processor state that can influence the
execution time of instructions is forced to a known state by special instruc-
tions at the beginning of the analyzed code, the result of the measurement is
precise.

A static WCET analysis does not require access to the target hardware
or concrete test input data, but it requires a very precise hardware model.
Adapting a static WCET analysis tool for a new target architecture is therefore
more time-consuming than for a measurement based analysis. The precision
of the analyzed WCET bound depends on the precision of the hardware model
and the complexity of the processor.

The WCET analysis used in this thesis is a static WCET analysis [28]. It
uses abstract interpretation for data-flow analysis. The analyses are presented
in more detail in Section 2.5.

2.2 The Java Virtual Machine

The Java virtual machine (JVM) is a stack architecture designed to execute
object-oriented code written in the Java programming language. In this thesis,
we restrict ourselves to the Java 6 JVM specification [10, 15].

Source code written in the Java programming language can be compiled
to Java class files using the javac compiler provided by the Java development
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kit. The class files can be executed by a JVM such as the Java HotSpot
VM [16]. The HotSpot VM interprets the code and uses profiling information
to detect, compile and optimize often executed pieces of the code at runtime.

At the time of writing, the Java 7 specification [17] has just been released,
which introduces an additional invokedynamic instruction and additional con-
stant pool entries to support dynamically typed programming languages in the
JVM. Those features however are not suited for static analysis and are not
supported by the JOP toolchain.

Class Hierarchy and Class Members

Java uses a single-root class hierarchy. The root object is java.lang.Object,
all other classes are subclasses of that class. Multiple inheritance is not al-
lowed, but classes can implement multiple interfaces. Interfaces themselves
can also extend multiple interface. Classes are members of packages. A class
can have fields and methods as class members. In Java subroutines are always
associated with a class. Subroutines are therefore called methods, not func-
tions as in non-object-oriented languages. Methods are always class members.

A class can also be nested inside an enclosing class. Classes are categorized
in the following way:

• Top-level class: A class that is a direct member of a package, i.e., it
has no enclosing class or enclosing method.

• Nested class: Every class that is not a top-level class is a nested class.

• Static nested class: A static nested class is always a member of the
directly enclosing class. However it has no reference to an instance of
the outer class.

• Inner class: A non-static nested class is called inner class. An inner
class is created with a reference to an instance of the enclosing class. It
has access to all members of that instance of the enclosing class. An
inner class can be either a member of the directly enclosing class, or it
can be defined within an enclosing method.

• Local class: A local class is an inner class that has a class name and is
enclosed by a method.

• Anonymous class: An anonymous class is an inner class that has no
class name and is enclosed by a method.

It should be noted that the class attribute that stores class nesting information
is called InnerClasses, although it stores information about static nested
classes too.

Classes and class members have an access modifier that defines which
classes have access to it. Class members have access if the class of the member
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has access to a class or class member. A class has access to all top-level classes
that are either declared public or that are members of the same package.

A class member can have one of the following access modifiers:

• Public: Every class has access to that class member.

• Protected: Let C be the class of the class member. The class member
can be accessed by C itself, any class in the same package as C, and any
subclass of C.

• Package visible: Let C be the class of the class member. The class
member can be accessed by C itself and any class in the same package
as C.

• Private: Only the class containing the member has access to it.

The member name of a method (i.e., the name without a class name)
together with its method descriptor (i.e, the representation of the types of the
arguments and the return type) is called the method signature. A non-static,
non-private method m overrides a method s if the class of m is a subclass of
the class of s and if s can be accessed from m. An abstract method is a method
without an implementation. A native method is a non-abstract method that is
not implemented in Java. The implementation can be provided by an external
binary library or by the JVM implementation.

Constructor methods are named <init> in the class file. Classes can also
have a static initialization method named <clinit>, which is invoked exactly
once when the class is accessed for the first time.

Non-static fields can be inherited, but they never override other fields.

The Java Class Files and Bytecode

The JVM specification defines the instruction set architecture and the file
format of the binary class files. For every class in the application, a separate
class file is generated, which contains information about the fields and methods
of the class, references to the super class and the implemented interfaces, as
well as a constant pool and the code of non-abstract, non-native methods
defined in the class.

The constant pool contains all constants used in the class, such as strings
and numbers. It also contains entries that reference classes, methods and
fields. Those entries are used in the class to refer to the superclass and the
implemented interfaces as well as by instructions that access fields and invoke
methods. Entries are indexed by consecutive indices. However the index 0 is
not a valid index, and the index after a long or double constant is defined to
be unusable by the JVM specification.

The code in the JVM is called bytecode. Instructions take their operands
from a stack and put the result back on the stack. Load and store instructions
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void invoker() { class A {

A a = new B(); void m() { }

a.m(); }

} class B extends A { }

Figure 2.1: Declared type and receiver of an invocation

are used to load values from a local variable table on to the stack or vice versa.
Every method on the call stack has its own local variable table. The local
variable table of a method initially contains the arguments of the method.
The maximum stack height and the maximum local variable table size are
known statically. The JVM requires that the stack height for any instruction
is always the same for every execution of the instruction.

The stack and the local variable table consist of 32 bit wide slots. Most
bytecode instructions are typed. The types of values on the stack or in the local
variable table can be 32 bit or 64 bit wide integer or floating-point numbers,
or a 32 bit wide reference to an object or an array.1 Bit-manipulations of
references are not allowed by the JVM. Memory addresses cannot be stored,
indirect jumps are not possible in the JVM.2

The bytecode instructions are of variable length. For some parametrized
instructions a wide variant exists that adds additional bytes to the instruction
to increase the range of the parameter. Among others, the JVM instruction
set includes instructions to manipulate the values on the stack, to perform
arithmetic operations on the stack and to load the value of fields on the stack
or put the top of the stack into a field. The new instruction is used to create
a new object of a given type and place a reference to the new object on the
stack. Several instructions exist to invoke a method, as described in the next
section.

Method Invocations

A method is invoked at a call site. We call the method containing the call site
the invoker and the invoked method the callee.

The declared type of a call site is the class that is statically referenced
by the call site. The receiver of an invocation is the object that receives the
call, i.e., the object of which the call site invokes a method. The runtime type
of a call site is the type of the receiver. In the example in Figure 2.1 the

1Besides the int, long, float and double types the JVM also defines boolean, char
and short types. They are used primarily for arrays and are implicitly converted to int

when they are put on the stack.
2The special jsr and ret instruction are defined by the JVM. They can be used to store

the current process counter into the local variable table and to jump back to the stored
location. This is primarily intended for the implementation of subroutines that handle
exceptions, but the latest javac compiler does no longer emit those instructions.



2.3. THE JAVA OPTIMIZED PROCESSOR 13

declared type of the invocation a.m() is class A, while the receiver type of the
invocation is class B. Class B inherits the invoked method m() from class A.

Java 6 defines four different invoke instructions. All invoke instructions
have a reference to a method as parameter. The class of the referenced method
is the declared type of the invocation. The descriptor of the referenced method
defines the values that are consumed from the stack.

• invokestatic: This instruction is used to invoke static methods. In
contrast to the other invoke instructions, this instruction does not con-
sume an object reference, and the method referenced by the instruction
is always the invoked method.

• invokevirtual: This instruction performs a virtual invocation by in-
voking the method that is defined in the receiver or inherited by the
receiver. This can be a different method than the method statically ref-
erenced by the instruction. The declared type of the invocation must
not be an interface.

• invokeinterface: The invokeinterface instruction is similar to the
invokevirtual instruction except that the declared type of the call site
must be an interface.

• invokespecial: This instruction is used to perform non-virtual invoca-
tions of non-static methods. This includes private methods, constructor
methods and super methods, but it can also be used to perform a non-
virtual invocation of any other method. Super method invocations are
handled slightly different (see below).

To support recompilation of only a subset of the classes of an application
or changing a library to a new version without recompiling the application, the
invokespecial instruction is specified so that it may call a different method
than the method it refers to. For instance if a class C extends a class B which
in turn extends a class A and both A and C but not B define a method m(), a
super call in C.m() would refer to A.m(). If class B would be recompiled at a
later time so that it now has a method m() too, without recompiling class C

the super call in C.m() would still refer to the super method in class A, but
the Java specification requires the instruction to call B.m().

2.3 The Java Optimized Processor

The Java Optimized Processor (JOP) is a small, single-issue stack processor
for embedded systems [22, 23]. The processor implements a RISC architecture
that is significantly simpler than the JVM. The native instruction set of the
processor is called microcode. JOP executes Java bytecode by executing ei-
ther a sequence of microcode instructions or by invoking a static Java method
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for every bytecode instruction. The latter method is used to implement com-
plex instructions like new, which needs to invoke a garbage collector, or to
implement floating point operations in software.

To access hardware devices, hardware objects are used to map I/O regis-
ters to fields of singleton objects [26, 25]. The I/O registers can be accessed
simply by using the fields of the hardware objects. Interrupt handlers can
be registered to interrupt sources that can be triggered in hardware or in
software [24]. The JVM implementation on JOP also provides several native
methods to access memory directly. Invocations of such native methods are
replaced by special bytecode instructions before the application is downloaded
to the target. Those instructions are then executed by microcode like standard
bytecode instructions.

A tool called JOPizer takes standard Java class files of the application and
of a downscaled Java runtime library implementation and creates a .jop file
that contains the complete code of the application in Java bytecode, as well as
the part of the JVM that is implemented in Java, all constants and the class
hierarchy information. The .jop file can then be downloaded to the processor,
which starts by executing a startup method to perform initialization tasks such
as executing the static class initialization methods <clinit> or setting up the
scheduler and the garbage collector. After initialization, the entry method of
the application is invoked by the startup method.

JOP has been designed from the beginning to simplify WCET analysis.
The JVM uses wait instructions in the microcode to stall execution of a byte-
code instruction until a read or write operation performed by the microcode
of that instruction is completed. Processor resources are not shared between
bytecode instructions.

Similarly, the processor does not perform speculative execution at branches.
Instead, branch bytecode instructions simply clear the pipeline by executing an
appropriate number of nop instructions in the microcode. Since the pipeline
of JOP is very short, the branch costs are very low nevertheless.

As a result, there is no interlocking at bytecode level. The execution
time of every bytecode instruction that is implemented in microcode can be
calculated statically if the memory access delays are known. It is independent
of the processor state and thus of the execution history (with the exception of
instructions that access the cache, but the cache miss costs can be calculated
statically too). The execution time of a sequence of bytecode instructions or
of basic blocks can therefore be calculated simply by adding up the execution
times of the individual instructions or basic blocks. There are no timing
anomalies due to pipelining effects, which simplifies the WCET analysis.

The JOP architecture restricts the number of local variable slots and the
maximum stack size to a much lower value than the JVM specification. How-
ever since the maximum number of used local variable slots and the maximum
stack size are static properties, the tools can check at design time if the con-
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straints are met.

The Method Cache

JOP employs a novel instruction cache called method cache [21] or function
cache [7]. When a method is invoked, then the whole method is loaded into
the cache if it is not already in the cache. Similarly, an invoker is completely
loaded into the cache when the invoked method returns if it was removed from
the method cache during the execution of the invoked method.

This cache organization has the advantage that instruction cache misses
only appear at invoke and return instructions. All other instructions are guar-
anteed cache hits, which simplifies the WCET analysis. The cache content de-
pends on the sequence of method invocations, the size of the invoked methods,
and on the replacement policy, but not on the addresses of the cached instruc-
tions. This also simplifies code generation, because it makes code positioning
considerations to avoid cache line conflicts obsolete.

Caching whole methods also means that the cache miss costs of a single
invoke are always proportional to the size of the invoked method, not to the
fraction of the code that is actually executed of that method. A large method
that exits early, e.g., due to some parameter check, or that always executes
only a fraction of its code, e.g., if it contains a large switch statement, can
cause large cache miss costs for a comparatively small number of executed
instructions. Similarly, if a method first executes the first half of its code
sequentially, then invokes a method that causes it to get removed from the
cache, and then executes the second half of its code after the return from the
invoked method, the whole method has to be loaded into the cache twice.
However, the instructions are executed only once, even if the method does not
contain any loops. On the other hand, invoke and return instructions hide part
of the cache miss costs on JOP. For sufficiently small methods the execution
time on a cache miss and a cache hit of an invoke or return instruction can
be the same. Therefore, to keep the total cache miss costs of an application
down, the methods should be kept small.

The cache is organized in blocks of fixed size. The number of cache blocks
influences the cache lookup costs. A method is mapped to a set of consecutive
cache blocks. The size of a method must not be larger than the size of the
cache.

For up to two cache blocks a Least-Recently Used (LRU) replacement
policy can be used, i.e., on a cache miss the cache block with the oldest access
time is replaced. For more than two cache blocks this becomes impractical to
implement. If the oldest cache entry should be replaced by a method larger
than the oldest cache entry, the second-oldest entry must be removed too. In
this case the processor would either need to defragment the cache content so
that the new method can be placed into a continuous cache region, or it would
need to place the method into several non-continuous regions, which increases



16 CHAPTER 2. BACKGROUND

the complexity of the instruction fetch.
Instead a First-In First-Out (FIFO) policy is used. This means that the

oldest entry in the cache is replaced, even if it has been used more recently
than other entries. The disadvantage of that policy is that it is more difficult to
analyze and does not perform as well as the LRU replacement policy [28, 19].

In general, a cache access at an invoke or return instruction can be classified
using the following categories [7]:

• always miss: Every cache access is a miss. Since cache miss costs are
never lower than cache hit costs on JOP, this is always a safe upper
bound on the cache costs.

• at most one miss: During the execution of a given scope of the pro-
gram, there is at most one cache miss, every other access is a cache hit.
The total number of cache misses for the execution of the whole program
is bounded by the number of times the program can enter the scope for
which the cache access is classified as at most one miss.

• persistent: The first cache access after the application entered a given
scope is a cache miss, every following access is a cache hit until the
application leaves the given scope. This is more strict than at most one
miss which does not require the cache miss to appear before the cache
hits. The upper bound on the number of cache misses for persistent
cache accesses is the same as for at most one miss.

If a cache access is persistent during the execution of the whole program,
it is called globally persistent, else it is called locally persistent.

• always hit: Every access is a cache hit.

• not classified: The cache access cannot be classified as any of the above
categories.

A data-flow analysis can be used to classify cache accesses [7]. The ex-
isting worst-case analysis uses the fact that if a method m accesses at most
maxBlocks(m) ≤ N distinct cache blocks of a FIFO or LRU cache with N
blocks during its execution, then every access of that execution can be classi-
fied as at most one miss [28]. The number of blocks required for all methods
reachable from m in the call graph, including m, is a safe upper bound for
maxBlocks(m). If maxBlocks(m) ≤ N , the worst-case analysis classifies all
cache accesses within m as at most one miss, else as always miss.

If the cache uses an LRU replacement policy, all cache accesses at invoke
instructions in methods with maxBlocks(m) ≤ N can be classified as persis-
tent (assuming that the cache is not fragmented), return cache misses can be
classified as always hit . For FIFO caches, this is not the case. Assume that a
method m with maxBlocks(m) ≤ N invokes a method a in a loop, and that
the cache contains m as its oldest entry and a as its second-oldest entry. The
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first invoke of a is therefore a cache hit. If a invokes a method that is not
yet in the cache, the FIFO cache will replace the oldest entry, in our case m,
with the invoked method. When a returns, m is no longer in the cache and
needs to be loaded, replacing the cache blocks holding method a. The second
invoke of a is therefore a cache miss. All following cache accesses to a and m
are cache hits as long as method m does not return, since they are now the
newest entries in the cache and are replaced only when more than N distinct
cache blocks are accessed.

The cache miss costs for a FIFO cache can be higher than for LRU
caches, since the cache misses of methods reachable from a method m with
maxBlocks(m) ≤ N can also appear at return instructions, which hide fewer
cache load cycles than invoke instructions.

It is possible to force a FIFO cache to behave like an LRU cache in the
analysis by inserting instructions into the code that explicitly clear the cache.
If such instructions are inserted at all locations where the program enters a
scope for which the analysis can show that at most N distinct cache blocks
are accessed during execution, then every first access in those scopes is a cache
miss since the cache contains no entries when it enters that scope. Therefore
the analysis can classify cache accesses at invokes as persistent and cache
accesses at return instructions as always hit , which simplifies the analysis and
avoids the higher cache miss costs at return instructions. The actual number
of cache misses can increase, since explicitly clearing the cache invalidates
cache entries, which could otherwise still be used later on. This increases
the ACET, but the more precise cache analysis can lead to a better WCET
analysis result. However this has not been tested in the course of this thesis.

2.4 Call Graphs and Call Strings

A call graph is a directed graph that contains non-abstract methods as nodes.
An edge between two nodes represents a call of the method at the head from
a call site in the method at the tail of the edge. In the general case virtual
invokes can have different receivers at runtime. This is represented by multiple
outgoing edges to all possible implementations of the virtual invoke.

In Java, the receiver of a non-virtual invoke is always known statically.
The set containing the declared type of a virtual invoke (i.e., the class that
is statically referenced by the invoke instruction) and all subclasses of the
declared type is a superset of all receivers of the invoke instructions. The set
of method implementations inherited by those receivers of a call site contains
all methods that can be executed by the invoke instruction. This is known as
class hierarchy analysis [2].

The call graph can be constructed recursively by processing all new nodes.
For every new node, outgoing edges to all method implementations of all call
sites of the method are added. If no node for the invoked method implemen-
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tation exists, it is added to the graph and added to the set of new nodes.
Call graph thinning techniques can be used to remove infeasible edges

from the call graph. Rapid type analysis removes receivers that are never
instantiated in the application, while variable type analysis tries to find all
types that can reach a variable and can thus appear as receivers of call sites
using the variable [31]. Alternatively, the results of the receiver type data-
flow analysis can be used to find method implementations of call sites while
constructing the call graph.

A path exists in the call graph from a method a() to a method b() if
method b() may be executed during the execution of method a(). Therefore,
if the program contains recursions, the call graph is cyclic. Vice versa, if
the call graph is a directed acyclic graph (DAG), the application code is not
recursive. On the other hand, it is not necessary that a recursion-free program
has an acyclic call graph. This can happen if the application contains wrapper
methods that invoke the same method of a different object that provides a
different implementation. If the receiver analysis cannot show that the type of
the receiver of the call site in the wrapper is always different from the wrapper
itself, the call graph contains a self-loop at the wrapper method. Using the
results of the receiver type data-flow analysis such self-loops can be usually
removed though.

If the call graph is acyclic, a topological ordering can be derived. In a
topological ordering every node i that has an edge to a node j appears before
j in the ordering. Therefore, if the methods in a call graph are visited in
topological order, then when a method m is visited, every method for which
m may be invoked during its execution (i.e., every method that has a path to
m in the call graph) has been visited before. If a call graph is traversed in
reverse topological order, a method is only visited after all reachable methods
have been visited. This property simplifies many algorithms that calculate
analysis results based on the results of all invokers or of all invoked methods.

A depth-first search (DFS) algorithm can be used to find back edges in a
call graph [29]. The set of back edges is not unique however, since the DFS
can mark different edges as back edges depending on the order in which the
direct successors of nodes are traversed.

Call strings are sequences of call site references and are used to make anal-
ysis results and the call graph context-sensitive. A call string (c1, c2, · · · , cn)
represents a sequence of method invocations at call site ci. The method mi

containing the call site ci is the method invoked at call site ci−1. The call
string corresponds to a path (m1,m2, · · · ,mn) in the call graph. If the call
string starts with the entry method, it represents a single execution context of
a method. Otherwise the call string contains the top entries in the call stack
and represents all contexts that have that call string as its suffix.

A set of contexts of an execution of method m can be represented by the
tuple 〈c,m〉, where c is a call string leading to the invocation of method m, i.e.,
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the tuple 〈c,m〉 represents all contexts of method m where the top of the call
stack equals c. In our implementation, the call graph is made context sensitive
by using those tuples as nodes. If a call site cm in a context represented by
〈c,m〉 invokes a method m′, then the call graph contains an edge from 〈c,m〉
to 〈c′,m′〉, where c′ is equal to or a suffix of (c1, · · · , cn, cm). If the length of
the call strings is unbounded and increased by one at each call site, then the
call graph is unfolded into a call tree. If the call graph is cyclic, the resulting
call tree has an infinite number of nodes. By bounding the length of the call
strings in the call graph by some constant k, the resulting graph remains finite
since the number of call sites and therefore the number of unique call strings
is finite. A context-sensitive analysis that only uses call strings of length up
to k is called k-limiting context analysis. The context-insensitive call string
can be represented as a special case of the call graph with call strings where
all call strings are of zero-length [1]. In a context-sensitive call graph, each
method can have a different set of successors per context.

The last entry cn of a call string c of a node 〈c,m〉 represents the call site in
method mn that invoked the method m. To find all method implementations
which can be invoked at a call site cm in a context represented by 〈c,m〉,
the following procedure can be used: Let c′′ = (c1, · · · , cn, cm). First, find
all nodes in the call graph that represent a context of method m. For every
directly reachable context 〈c′,m′〉 check if one of c′ and c′′ is a suffix of the
other one, and if so, add m′ to the set of invoked methods.

If c′ is a suffix of c′′, then all contexts 〈c′′,m′〉 are also represented by
〈c′,m′〉, i.e., 〈c′,m′〉 is less precise than 〈c′′,m′〉. We therefore need to add m′

although this might be an over-approximation. If c′′ is a suffix of or equal to
c′, then the contexts represented by 〈c′,m′〉 are a subset of the contexts for
which we search the invoked methods, therefore m′ needs to be added. By
iterating over all nodes that can be directly reached from any context of m,
we guarantee that we check all contexts where cm appears as the last invoke.

It is also possible to use an edge-labeled call graph instead of creating
separate nodes for different contexts. In this case the call strings are attached
to the edges, not to the nodes. The structure of the graph only changes if a
receiver of a call site is removed in every context of the invoker, the number of
nodes is independent from the call string lengths. Finding the invoked method
implementations of a call site in this graph can be done by checking the labels
of the outgoing edges of the method containing the call site in a similar way.

It should be noted that a call site does not need to be an invoke instruction.
Bytecode instructions that are implemented as Java methods in the JVM can
also be represented in the call graph as a call site at the instruction invoking
the JVM method. This can be used to find all unused methods not only in
the application, but in the JVM as well. Since JVM methods are also loaded
into the method cache, those methods are actually required to be represented
in the call graph if the call graph is used by the cache analysis to determine
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the set of methods that may be loaded into the cache during execution of a
method.

2.5 The WCET Analysis Tool

The data-flow analysis (DFA) and the WCET analysis (WCA) presented
in [28] are used in this thesis. They have been ported to the new framework
(see Chapter 5) and interact over common data structures with the optimizer.
The data-flow analysis provides a context-sensitive receiver-type and loop-
bound analysis. The WCA employs a static WCET analysis to calculate the
WCET of a given method. In addition to the loop bounds provided by the
data-flow analysis, the WCA also reads loop bound annotations in the source
code and merges them with the data-flow results.

The WCA expects a target method as parameter. The analysis then cal-
culates an upper bound on the WCET of a single execution of the target
method. The target method is usually an interrupt handler or a periodically
executed real-time task. The analysis then constructs a separate call graph
that has the target method as its root, which must be acyclic, i.e., there must
be no recursive calls in the real-time code. All loops must be bounded, either
by the data-flow analysis or by manual source annotations.

A microcode timing analysis is used to automatically derive the execution
time for every bytecode instruction that is implemented in microcode on JOP.
The timings of the bytecode instructions are composable and can be calculated
once, since the execution time of bytecode instructions does not depend on the
processor state by design (with the exception of invoke and return instructions,
in those cases the execution time depends on the content of the method cache
and the size of the invoked method).

The WCA can either use a WCET analysis based on the implicit path
enumeration technique (IPET), or a model checking based WCET analysis
[4, 28]. In this thesis we use the IPET-based analysis.

The IPET-based analysis transforms the control flow into an integer linear
programming (ILP) problem. To do this, the analysis first calculates the
execution time ci of every basic block Bi using the bytecode instruction timing
analysis. Virtual invokes are devirtualized by creating separate parallel paths
at every virtual call site, where each path invokes a different possible callee.

The analysis then derives constraints for the execution frequencies ei from
the fact that the sum of the execution frequencies of the ingoing edges of a
basic block Bi is equal to ei. The same holds true for the outgoing edges of
every basic block. The execution frequency of the entry block is set to 1, and
the execution frequencies of back edges are bounded by the loop bounds.

The analysis can now use an ILP-solver to calculate the WCET of a control
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flow graph with n basic blocks by solving

WCET = max
〈e1,··· ,en〉∈Nn

0

n∑
i=1

ciei

under the above constraints.
The recursive WCET analysis adds the WCET of methods to the execution

time of their devirtualized call sites. Since the analysis requires an acyclic call
graph, it can traverse the call graph in reverse topological order to calculate
the WCET of all invoked methods before analyzing the invoker methods.

The global WCET analysis creates a supergraph by inserting the control
flow graph of the invoked method into the call graph of the invoker after the
call site of the invoked method, and solves the ILP-problem for all methods
at once. This is a very precise analysis but the size of the problem to solve is
much larger.

Cache costs are handled by creating two alternative paths for every devir-
tualized call site and for every return. One path is assigned the execution time
of a cache hit, the execution time of the other path also includes the additional
cache miss costs. The execution frequencies of the paths that represent the
cache misses are bound by the cache analysis.

The WCET analysis provides several different cache approximations. In
this thesis we use the following three:

• always miss: For every call site the number of cache misses is equal to
the execution frequency of the call site, i.e., the execution frequencies of
all cache hit paths are zero. This analysis provides a safe upper bound
for both the cache costs and the analyzed WCET.

• at most one miss: If for a method m maxBlocks(m) ≤ N holds, where
N is the number of method cache blocks, then the cache accesses in m
are classified as at most one miss, otherwise they are classified as always
miss. For always miss, the number of cache misses is bounded by the
execution frequency of the basic block containing the cache access. For
the recursive WCET analysis, cache accesses classified as at most one
miss can have at most one cache miss per invocation of the method
containing the cache access. For the global WCET analysis the number
of cache misses is bounded by the number of times the program may
enter the scope for which the cache access is classified as at most one
miss, which usually results in a lower total number of cache misses.

• always hit: For all call sites the number of cache misses is zero, i.e.,
the cache costs are ignored by the analysis. The resulting WCET can be
used to calculate the fraction of the WCET returned by an analysis using
a different cache approximation that includes only cache miss costs.
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The value of maxBlocks(m) is determined by the set of methods reachable
from m in the call graph.



Chapter 3

Optimizations

The main goal of this thesis is to implement optimizations that decrease the
WCET respectively the computed WCET bound of programs executed on
JOP or similar processors. Optimizing for JOP has two main advantages that
are exploited in this thesis. First, we use bytecode as internal representation,
which is a very analysis-friendly representation. No other code representation
is required, therefore we do not need to translate between various representa-
tions. Secondly, the method cache allows us to calculate the instruction cache
miss costs primarily based on the size of the methods.

Since Java does not allow indirect jumps or jumps out of methods and
also keeps the class hierarchy information at the bytecode level, identifying
methods and constructing control flow graphs and type hierarchy graphs is
trivial compared to other binary formats. All analyses and optimizations are
therefore performed on bytecode. Access to the source code is only needed for
flow-fact annotations, there is no distinction between code transformations at
source code level and binary level. Converting between different intermedi-
ate representations for interaction between the optimizer and the worst-case
analysis is not necessary.

Because we use a method cache we only need to consider the code size
of methods to calculate cache miss costs, instructions other than invoke and
return instructions can be considered to be always hit . This simplifies the
cache analysis. On conventional cache architectures, increasing the code size
has a negative effect on the locality of the code and thus potentially leads to
more cache line conflicts too, but the relation between method code size and
cache miss costs is less explicit.

However, if the architecture uses a method cache, the instruction cache
costs are proportional to the method code size. The gain of an optimization
is therefore related to the code size increase that the optimization causes.
Therefore we will first discuss the cache costs on the method cache. In the
remainder of this chapter we then discuss several commonly used optimizations
and their effects on JOP. At the end of Section 3.2 we will discuss the impact
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of local improvements of the execution time on the worst-case execution time
based on a simple example.

3.1 Code Size Considerations for the Method
Cache

When a method cache is used, an optimization that increases the code size
of a method will also increase the cache costs of invocations of that method,
as well as cache costs of return instructions returning to the method that
contains the inlined call site. Additional cache costs can appear, depending
on the cache configuration and the precision of the cache analysis. In a variable
block configuration (i.e., a method may occupy more than one cache block), a
method may require more cache blocks after the code size has been increased.

Let N be the number of cache blocks of the method cache. Increasing
the size of a method can cause some scopes that access at most N distinct
cache blocks before the optimization to access more than N blocks after the
optimization (see Section 2.3). This can cause some cache accesses not to be
classified as at most one miss or always hit anymore, which increases the total
cache costs. Other cache accesses may remain classified as at most one miss,
but the scope for which they are classified gets smaller. So the upper bound
for cache misses increases if the number of times that scope can be entered
increases.

If the cache maps methods only to single cache blocks, cache accesses never
need to be reclassified. Increasing the code size of a method only increases
the invoke cache miss costs at the call sites of the method and the return
cache miss costs of call sites within the method (if the return cache miss costs
are attributed to the call sites instead of the return instructions). The cache
cost increase linear with the code size, the speed of the program memory and
the number of cache misses of accesses of that method, but the method sizes
cannot increase beyond the size of the cache blocks.

For the variable-block method cache, which allows methods that are larger
than a single cache block, the cache miss costs are also directly proportional
to the code size, as long as the code size increase due to the optimization
is small enough so that the optimized method requires the same number of
cache blocks as the unoptimized version. An example is shown in Figure 3.1a.
The code size increase of method a() represented by the shaded area does not
affect the cache blocks for method b(). Also, if the cache analysis classifies
all cache accesses as always miss, the cache costs increase linearly and only at
methods that are adjacent to the optimized method in the call graph. In case
of always hit , the cache costs are always zero. In all other cases there can be
additional cache costs throughout the call graph as described above whenever
a method requires additional blocks, although the total cache costs will always
be below the cache costs estimated by an analysis that classifies all accesses
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a() b()

(a) The code size increase of a(), shaded area, does not affect b()

a()

(b) Another increase of a() causes b() not to fit into the cache anymore

Figure 3.1: Effect of code size increases on cache allocations

as always miss. In the example in Figure 3.1b a second code size increase of
method a() causes method b() not to fit into the cache together with method
a() anymore. This results in additional cache misses when method b() is
accessed after method a() has been loaded into the cache.

On the other hand, if the code size of a method is not increased by an
optimization, the cache costs never increase. In case of JOP and the cache
analysis we use, the total cache costs never increase if we reduce the code size,
since individual cache miss costs never increase and the number of expected
cache misses never increases for any call site if less cache blocks are accessed
after optimization. We will therefore distinguish between optimizations that
increase the code size of a method and optimizations that do not. In the latter
case, if an optimization does not have a negative effect on the execution time
of any other path in the control-flow graph of the method to optimize, the
optimization can be always performed without any negative effect on either
the ACET or the WCET, or the application code size. Feedback from the
WCET analysis is not needed in this case.

If an optimization increases the code size of a method, the costs of all
control-flow paths that contain a call site where the return can be a cache
miss, as well as of all control-flow paths in invokers where an invoke of the
optimized method can be a cache miss, can increase. This can cause the
worst-case execution path to change.

3.2 Code Optimizations

There are a number of well known optimization techniques to reduce the ex-
pected execution time of some code, or to reduce the code size of the applica-
tion. Although speed and code size are usually different optimization targets,
a reduction in code size can also lead to an improved speed due to better
cache behavior (however, this is not guaranteed on conventional architectures
because of timing anomalies due to pipelining effects and potential instruction
cache line conflicts).

Optimizations can aim at reducing redundancy in code (e.g., code motion,
copy propagation or common subexpression elimination), at exploiting par-
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allelism in the hardware (e.g., instruction scheduling or software pipelining),
at replacing certain constructs with faster versions (e.g., strength reduction
or constant folding), or at reducing the code size (e.g., dead code elimina-
tion). Many optimization techniques are presented in [1]. An overview of
optimizations implemented in the WCC compiler can be found in [12].

In the following we will discuss some of the most common optimizations
and their application to JOP.

• Instruction scheduling and software pipelining: Instruction schedul-
ing rearranges the order of instructions in the code to minimize stall
cycles due to resource conflicts or data dependencies of instructions, by
scheduling independent operations between two conflicting operations.
Software pipelining unrolls loops and rearranges the instructions in the
loop body so that the execution of several iterations overlap. If the iter-
ations of the loop are sufficiently independent of each other, the compiler
can shuffle instructions from different, independent iterations between
two operations of the same iteration.

Since JOP waits during the execution of all bytecode instructions for
all memory accesses to complete and does not share resources between
instructions, those optimizations have no effect on this architecture.

• Register allocation: A typical compiler uses an unlimited number of
virtual variables for its intermediate representation. To generate the
code for the target architecture, the compiler must assign variables to
registers on the target processor. If the processor does not have enough
registers to store all variables in registers, the compiler must store some
variables in memory which slows down execution. The objective of reg-
ister allocation is to find a mapping that results in the lowest memory
access costs.

The JVM local variables can be regarded as a form of registers. The
JVM allows a maximum of 216 slots per method, but the maximum
number on JOP is much smaller. Spilling local variables to memory
however is not feasible. The first four slots can be accessed with special
instructions that are shorter and, depending on the target architecture,
are also slightly faster. Register allocation could be used to try to store
the most commonly used variables in the first four slots, and to spill
variables to auto-generated fields if required.

However, since the difference between accessing the first four slots and
any other slot is only one cycle on JOP, this has not been implemented.
Optimizations are not performed if the resulting code would require more
local variable slots than available on the target.

• Strength reduction and peephole optimizations: Strength reduc-
tion replaces certain instructions or instruction sequences with faster
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versions. A typical example is a multiplication with a constant factor of
2n. This can be replaced by a left shift by n bits, which is usually faster
than a multiplication. On CISC architectures where a left-shift-and-add
instruction is available, a multiplication by 2n + 1 can be replaced by a
shift-and-add too.

Peephole optimizations look for specific code patterns that are typi-
cally generated by code generators and replace them with faster code
sequences. Usually the new code is shorter or of equal length, and the
gain is always positive. So there are no negative effects on the WCET
in those cases.

• Copy propagation and constant folding: Copy propagation re-
places usages of variables with their assigned value. This is used to
eliminate unnecessary copy operations that are often created by other
optimizations, and to propagate constants to the expressions where they
are used.

Constant folding replaces expressions by their value if the expression only
uses statically known constants. This can cause edges in the control-flow
graph to become infeasible, and thus allows the dead-code elimination to
remove code that is statically disabled in the source code by constants.
However, this is already done in the javac compiler, so this optimiza-
tion may only have an effect after inlining. Since the optimization only
removes instructions and changes the value of constants loaded onto the
stack, such an optimization never increases the code size and thus has
no negative effect on the WCET on JOP.

There are several ways in which loops can be transformed. A few of them
are presented below. Most loop transformations need to transform the flow-
facts of the loop, i.e., the loop bounds of the optimized loop need to be updated
accordingly. Most loop optimizations change the order or the number of times
the loop conditions are evaluated, so usually the conditions must be side-effect
free for the optimizations to work.

• Loop interchange, loop inversion and loop-invariant code mo-
tion: Loop interchange swaps an inner loop with an outer loop. This can
be used to iterate more efficiently over multidimensional arrays. Loop
inversion changes a while loop into a do/while loop. If the compiler
does not have a lower bound on the number of iterations of that loop,
it needs to put the new loop inside an if construct that evaluates the
loop condition. Code motion can be used to move side-effect free code
that is independent of the loop iterations outside the loop body of a
do/while loop, which reduces the number of executions of that code.
Those optimizations have a low impact on the code size and the cache
costs.
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• Loop peeling: This optimization moves the first or last iterations of a
loop out of the loop by copying the loop body. Loop condition checks
can be omitted if the compiler has a lower bound for that loop. This
can be used to remove special cases for some iterations from the loop,
thus simplifying both the loop body as well as the code of the special
iterations. A typical case is a loop that performs some initializations
in the first iteration. By peeling the first iteration, the initialization
code can be removed from the loop body, and the iteration check can
be removed from both the initial iteration and the loop body. The code
size increase and thus the cache costs depend on how many iterations
are extracted and on how much initialization code can be removed from
the loop body.

• Loop unswitching and loop unrolling: If a loop contains an if-else

block with a loop-invariant condition, loop unswitching moves that con-
dition to the outside by creating two copies of that loop inside an
if-else construct with that condition, and replaces the conditional in
the loops with their if or else blocks correspondingly. Loop unrolling
duplicates the loop body, which reduces the number of times the condi-
tion is evaluated and the number of back jumps. Loop peeling must be
used to ensure that the number of iterations is a multiple of the number
of times the body has been unrolled.

The disadvantage of those optimizations is that in case of loop un-
rolling the complete loop body is copied, possibly several times. This
can increase the cache costs significantly for the method cache. Since
branch delays are very short on JOP due to its short pipeline, the gain
of those optimizations can easily be smaller than the additional cache
costs, except for very small loop bodies. Lokuciejewski et al. show in
[12] that for optimization sequences that target both WCET and code
size, loop unrolling is not a good strategy, in contrast to the target pair
(WCET,ACET) for a conventional instruction cache.

Note that since the upper loop bounds must be known for all loops
to perform a worst-case analysis, it is possible to unroll all iterations
of all loops in the real-time code of an application, thus creating loop-
free code that only contains loop condition checks for iterations between
the lower and the upper loop bounds. This can simplify various code
analyses, since the control-flow graphs are now directed acyclic graphs,
and every operation of every loop iteration is represented at a different
program location. Due to the large code size increase, however, this is
not practical for code generation.

On the JVM architecture, we can also perform the following optimizations:
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• Stack code optimization: The standard Java javac compiler stores
every variable into a local variable slot. This is useful for debugging
purposes, but temporary variables that are only used once or twice can
be kept entirely on the stack in some cases, which reduces the num-
ber of required load and store instructions. Also, optimizations like
inlining may introduce temporary variables. Peephole optimizations
can be used to remove typical instruction sequences like store/load

or store/load/load. More elaborate optimizations exist to optimize
the instruction schedule and insert stack manipulation instructions so
that fewer load and store instructions are required [14].

The Soot framework uses two different techniques to generate stack
code [32]. The first method is similar to the one described above. It
generates straight-forward stack code from its internal representation,
and then applies various optimizations to reduce the number of instruc-
tions. The second method first aggregates expressions from the internal
quadruple code representation. Then efficient stack code is generated for
those expressions using tree traversal techniques. This is similar to the
method the javac compiler uses to generate stack code. Again, since
this optimization only removes instructions or replace them with stack
manipulation instructions, the code size should never increase. On JOP,
rearranging the instruction schedule has no impact on the execution time
since the execution time of bytecode sequences are composable, therefore
this optimization should also never increase the WCET.

• Reduce field accesses: If a non-volatile field of an object is accessed
multiple times in a method, some of the accesses can be replaced by
much faster accesses to local variables by copying the field to a local
variable at its first usage and writing the variable’s value back after
its last assignment. This can reduce the execution time of a method
with little or no code size increase, especially after inlining has been
performed.

Most standard optimizations do not increase the code size significantly
and therefore have a low impact on cache costs. In [12] the authors also show
that standard optimizations have a similar impact on WCET and ACET.
On JOP, instruction-reordering optimizations are not required. Due to the
method cache, however, we need to avoid code size increases even more than
on conventional architectures.

In combination with a WCET analysis, another objective of code opti-
mizations can be to create code that is better suited for analysis, e.g., by
peeling the first loop iteration so that cache accesses within the loop body for
all other iterations can be classified as always hit , or by inserting instructions
to reset the processor state or clear the cache, as discussed in Section 2.3.
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(a) Initial control-flow graph,
WCET is 180

(b) CFG after optimization
of node 3, WCET is 160

(c) CFG after optimization
of node 6, WCET is 170

Figure 3.2: Example of WCET path switching during optimization

Rolling back the code transformations done by an optimization is called
deoptimization. This can be used to undo an optimization when the WCET
analysis shows that it had a negative effect on the WCET.

Optimization Gain and WCET Improvement

So far we have only considered the gain of an optimization for a single execu-
tion of the optimized code path. However the actual WCET decrease can be
much lower. If the optimized code is not on the WCEP, the WCET does not
decrease at all.

Figure 3.2a shows a simple control-flow graph. The nodes represent basic
blocks, the labels next to the nodes represent the execution time of the blocks.
The worst-case path is shown by bold edges. We assume that nodes 2 and 5
contain call sites where the return is a cache miss.

We assume that we can reduce the costs of nodes 3 and 6 by 50, the costs
of node 5 by 40 and of node 2 by 20 (including cache cost increases), and that
optimization of any node increases the method code size so that the cache miss
return costs increase by 10. Furthermore we assume that we can only optimize
two nodes because any additional optimization would increase the code size
of the method beyond the maximum code size limit. The cost changes for
optimizing a single node are summarized in Table 3.1.

We choose node 3 as the first node to optimize. Although we reduced the
execution time by 50, the WCET only decreases by 20, because the worst-case
path now switches to node 2, and we additionally increased the costs of node 2
and 5 due to the increased code size. Figure 3.2b shows the control-flow graph
with the new WCEP and the new execution costs. If we would have chosen
node 6 instead, the WCET gain would only be 10, although the optimization
gain at node 3 and 6 is the same.

We now have two possibilities. We can either reduce the costs of node 2
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Node 2 Node 3 Node 5 Node 6

Initial 50 80 50 70

Optimization of 2 -20 0 +10 0
Optimization of 3 +10 -50 +10 0
Optimization of 5 +10 0 -40 0
Optimization of 6 +10 0 +10 -50

Table 3.1: Cost changes for optimizing a single node in Figure 3.2a

by 20 or of node 6 by 50. A greedy algorithm would certainly choose node 6 in
this case, if it only considers the local gain. However this is a bad choice in this
case, leading to the new costs shown in Figure 3.2c. The WCEP switches again
to node 5, making the gain of the optimization void, and the additional cache
costs at node 2 even increase the execution time of the WCEP. Optimizing at
node 2 would have further reduced the WCET to 140, the higher cache costs
at node 5 do not matter. Note that the total cache costs only increase by 20
while we reduce the costs of node 6 by 50, still the WCET increases by 10.

This however is still not an optimal solution for our example. If we would
have chosen to optimize node 6 instead of node 3 at the beginning, the WCET
would initially decrease only by 10, and the new WCEP would go over nodes
3 and 5. But if we would then optimize node 5 and reduce its execution time
by 40 (although we could reduce the costs of node 3 by 50), the new WCET
would only be 130.

The WCET reduction therefore depends not only on the execution time
reduction of nodes on the WCEP, but also on the execution time of alternative
paths, the influence of WCEP optimizations on those other paths, and if those
paths can be optimized too.

As we have seen, the WCET decrease for a method can be lower than
the local optimization gain. The same holds true for the global WCET. If we
decrease the WCET of a method, the costs of all call sites of that method
are reduced by the same amount (assuming that the call sites may not call
other methods). The WCET decrease of the invoker method however will
be even lower than the WCET decrease of the invoked method if the WCEP
switches away from the call site in the invoker. The global WCET gain of an
optimization therefore depends not only on the execution time of alternative
paths bypassing the optimized code, but also on the execution time of paths
bypassing the call sites on the global WCEP that can (indirectly) invoke the
optimized method.

On the other hand, an increase of the execution time of code outside the
WCEP is at least partially hidden, although it can reduce the WCET gain
of other optimizations. In our example, the cache cost increases at node 5
do not increase the WCET at all, but they reduce the WCET gain of the
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optimization of node 6.

3.3 Function Inlining, Cloning, and Splitting

If it is possible to statically determine that a call site always invokes the same
method, it is possible to replace the call site with the code of the invoked
method. This optimization is called function inlining. It reduces the call
overhead and can create additional optimization opportunities, since the in-
voked code can now be optimized in the context of the call site. On the other
hand, the code size increases in the general case, which usually also increases
cache costs (see Section 3.1).

Function cloning or specialization also enables additional optimization op-
portunities by creating a separate version of a method for a specific call con-
text. The new version can now be optimized specifically for this context.
This does not reduce the call overhead (except if constant arguments are
propagated into and removed from the new method) and can yield fewer op-
timization opportunities than inlining as the code cannot be optimized across
method boundaries. However it also does not increase the code size of the in-
voker method. The cache costs might still increase since the optimized method
may now appear in the cache more than once, which can lead to additional
cache conflicts. However, only the number of cache misses may increase, not
the cache miss costs of any cache access.

Function splitting can be seen as the inverse operation to function inlining.
It replaces a subgraph of a control-flow graph with a call to a new method
containing the replaced code. Although this adds an additional call overhead,
the size of the optimized method is reduced. This can reduce the cache miss
costs, and it can be used to reduce the size of methods that are larger than
the maximum method size allowed by the method cache. It should be noted
though that this is not the same as deoptimization of an inlined call site, which
creates a call to an existing method, while function splitting creates a call to
a new method, which has a different impact on the cache.

Reducing the call overhead by function inlining does not lead to the same
reduction of the WCET, since the WCEP can change and thus hide part of
the gain. Similarly, the additional call overhead required for function splitting
does not lead to an increase of the WCET by the call overhead, if the extracted
subgraph is not part of the WCEP. If the execution time of the worst-case path
is higher than the execution time of the optimized path plus the call overhead,
the WCET does not increase at all. The actual WCET improvement of inlining
and function splitting heavily depends on how the cache miss cost changes
affect the worst-case execution path.

Inlining is the main optimization employed in this thesis. The main reason
for this choice is that invocation costs are very high on JOP, thus the potential
gain of removing invocations is also high. Since inlining not only changes the
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optimized method but also the call graph, can introduce new call sites, affects
context references, and can lead to some methods becoming unused, it has an
impact on virtually all data structures in the optimizer.

Two separate inlining optimizations were implemented. The first inliner,
called SimpleInliner, is designed to inline without increasing the code size.
This optimization is very fast and does not require interaction with the worst-
case analysis. The second inliner handles all other cases and can increase cache
costs. The greedy algorithm presented in Section 4.4 is used to choose call
sites for optimization for which inlining is expected to improve the WCET.
More details on the implementation of the inlining optimizations and how the
data structures and analyses are updated can be found in Chapter 4.

3.4 Code Size Reduction

To reduce the code size of the final application, unused code can be removed
from the application. The current optimizer first removes all unused mem-
bers (classes, fields and methods) and debug annotations. Then the constant
pools of all classes are reconstructed using only used entries. Those two op-
timizations are presented in more detail in Section 5.4. They only affect the
application size and do not change the execution time of the application.1

On the other hand, a dead code elimination reduces the size of methods,
which has a positive effect on cache costs. The loop bound data-flow analysis
can also detect infeasible edges in the control-flow graph. This can be used to
find all basic blocks in a method that are only reachable over infeasible edges
and can therefore be removed. However, removing dead code is currently
not implemented. Feedback from the WCET analysis is not required for this
optimization.

The javac compiler does not emit code for statements that are enclosed
by a condition that statically evaluates to false. The data-flow analysis may
find additional infeasible edges, although it could be argued that code that
is unreachable due to conditions less obvious than simple expressions over
constants can be seen as a hint to an erroneous implementation.

1It is possible that due to smaller constant pools, the shorter version of ldc can be used
at some places, which can reduce the method size and thus the cache miss costs of that
method, but that effect is negligible. An increase of cache costs or the execution time due
to the optimizations is avoided by design of the optimizations.





Chapter 4

Method Inlining for Java

As described in the previous chapter, inlining is used to reduce the invocation
overhead at some of the call sites in the application. The drawback of inlining
is that the code size is increased, which may increase the cache miss costs
significantly. On architectures using the method cache, the code size increase
translates directly into increased cache miss costs at several call sites. For
other cache architectures, inlining can cause an increase in cache line con-
flicts. Inlining also increases the register pressure in the invoker. Additional
spill code may be required when a call site is inlined. The JVM provides a
large number of local variables, so this may not be an issue. However the tar-
get architecture can limit the number of available local variables per method
significantly. JOP currently allows at most 32 local variables per method.

Besides changing the execution time of the optimized code, inlining also
eliminates a call site, creates new call sites in the invoker if the invoked method
contains call sites, and has an impact on the cache classification at several
locations in the application. Hence the cache analysis, the worst-case analysis
and the call graph must be updated accordingly.

In this chapter the implemented bytecode inliner is presented and we show
how the analysis results are updated during inlining. The greedy algorithm
presented in Section 4.4 selects candidates for inlining. At the end of the
chapter other approaches for selecting call sites are briefly discussed.

4.1 Preparations

To perform inlining, we first need to determine the receivers of virtual invokes.
Then all call sites for which the invoked method implementation can be de-
termined statically are analyzed to check if inlining is possible and allowed by
the configuration.

35
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Figure 4.1: Example class hierarchy. A virtual invoke referring to
B.doSomething() may invoke implementations from classes A or D

Resolving Virtual Invokes

Non-virtual invokes always execute the method they refer to (either because
they refer to methods that cannot be overloaded like static or private methods,
or because a specific method implementation should be invoked, e.g., a super-
method). Virtual invokes however may invoke a number of different methods.

The set of methods that can be invoked at a call site contains the method
referenced by the invoke instruction if the declared type can be a receiver type,
and all method that override the referenced method defined in any receiver
type. To be able to inline a call site, this set must contain exactly one method.
Finding the implementing methods of a call site is done by using either a class
hierarchy analysis or the receiver type data-flow analysis (which is also used
by the worst-case analysis). If a call graph has already been constructed as
described in Section 2.4, it can also be used. The successors of the nodes
representing the call site in the call graph are the method implementations
that can be invoked.

For example, if we have a class hierarchy as shown in Figure 4.1 and a
virtual invoke calls B.doSomething(), then the implementation from either
class A or D could be invoked, depending on the receiver of the invoke instruc-
tion. E.doSomething() can never be invoked in this case, because although
it overrides a possible implementation, class E cannot be a receiver of this
invoke instruction. If we could prove either that class D (that provides its
own implementation of B.doSomething()), or that both classes B and C (that
inherit A.doSomething()) are never receivers of the invoke, the invoked im-
plementation is statically known and we can inline the call site.

So far we assumed that all classes of the application are known to the
compiler and that therefore the class hierarchy is complete. If not all classes
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referenced somewhere in the used application code are loaded or if reflection
is used to instantiate classes, the class hierarchy might contain additional
subclasses and thus potentially additional receivers at runtime, which could
provide additional implementations. In this case inlining is only safe if the
method in the declared type of the invoke is final or if the DFA can prove
that there are only known receivers. The super classes must also be known
if the implementing method is inherited (class A in our example, if the set of
receivers contains class B or C).

For applications that are executed on JOP it can be assumed that the
whole program code is available and that reflection is not used. This can
also be checked by the compiler. Desktop JVMs, that cannot make those
assumptions, can instead insert code before the inlined code that checks that
the actual receiver type matches the type that has been used for inlining
and falls back to a virtual invoke if this is not the case, but this degrades
the performance of inlining. This method can also be used to decrease the
average-case execution time by inlining the most commonly invoked method,
but this increases the WCET so it is not an option for real-time applications.

Dynamic class loading also makes inlining unsafe, since the code of the
implementing method can be changed at runtime. In this case inlining would
only be safe if all inlined invoke sites would be updated or deoptimized if a
method is replaced with a new version at runtime. Again, this is not possible
on JOP so the inliner does not need to handle this case.

Inlining Checks

Even if the implementing method can be determined statically, inlining the
method might not be possible for several reasons. Conditions that must be
satisfied so that a method can be inlined successfully are presented in [3] and
[30]. The conditions are briefly presented here:

• Native methods: Native Java methods cannot be inlined and are
therefore ignored.

• Recursive methods: Recursive calls are not inlined to prevent the
inliner from getting stuck at unbounded recursive calls. The maximum
method size is limited so the inliner would abort anyway if the method
size increases due to inlining, but this does not need to be the case if
the program to optimize contains bugs (i.e., if it contains a method that
only invokes itself).

• Maximum code size: The invoked method cannot be inlined if the
resulting invoker is larger than the maximum code size for methods,
which can be restricted e.g., by the method cache.

• Number of local variables and stack size: To inline a method
additional local variables may be needed to store the local variables of
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the invoked method. The number of available local variable slots can be
limited by the target processor. Inlining is not performed if there are
not enough slots available. It would be possible to generate spill code at
the call site to store live local variables into auto-generated fields, but
the costs may be higher than the cost of a call. A similar restriction
holds for the stack size although this is much less likely to prevent a call
site from optimization and the stack could be saved to local variables if
required. The stack contents at the call site needs to be stored in local
variables in any case if the invoked method contains exception handlers,
since catching an exception clears the stack contents. If the invoked
method catches an exception, the invoker would not be affected in the
unoptimized version since only the stack of the callee is cleared, but after
inlining the stack of the invoker would be cleared too.

• Excluded methods: Methods can be excluded from being inlined by
configuration. The method for which the WCET should be calculated
must not be inlined, otherwise the executed code would be different from
the code analyzed by the WCA. It can also be desirable not to inline
into instrumented methods that are used to measure the execution time
of a method including initial invocation costs.

• Access checks: If a method is inlined into another method in a different
class, all non-public fields and methods accessed by the method need to
be changed to package or public access. If a method is changed to public
access, all methods with the same signature in all subclasses need to be
made public too.

It is possible that package visible methods are overridden by methods
in subclasses in other packages due to the access modifications. In this
case the inliner can only optimize the call site if either the invoked
method and its overriding methods or the non-overriding methods in
the subclasses are renamed and the call sites are updated to refer to the
renamed methods correspondingly.

If the call site tries to invoke a method that is not accessible to the
invoker, the call site is not optimized. This can happen if the class
containing the callee is recompiled but the class containing the call site
is kept. Such code will throw an exception at runtime if this access
violation was not reported already at compile time.

• Special invokes in the callee: Additional checks are required if the
callee contains invokespecial instructions. If invokespecial refers to
a superclass of the class of the callee, the ACC SUPER flag is set and the
invoked method is not a instance initialization method, the instruction
does not call the referenced method, but calls the method with the same
signature defined in (or inherited by) the direct superclass of the class
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class B { class C extends A { class A {

void foo() { void m() { void m() {

invoke C.m() invokespecial A.m() }

} } }

} }

Figure 4.2: An invokespecial instruction in the callee

that contains the invokespecial instruction (also see Section 2.2). If
the ACC SUPER flag is set and the instruction does not call an instance
initialization method, we need to check if the inlined code still calls the
same method.

Let class A be the class of the method invoked by the invokespecial

instruction in the callee and let B be the class of the invoker, as shown in
the example in Figure 4.2. In the example, we want to inline the call site
in B.foo(). We assume that after the optimization the class hierarchy
is not changed and no new methods are added to the application. Then
we only need to check if the invoke instruction in the callee resolves to
the same method as the inlined call in the invoker.

The inlined invoke instruction will call the same method as the original
invokespecial instruction if B is not a subclass of A or if B is a subclass
of A but there is no class C that is a subclass of A and a superclass of B and
contains a method that overrides the method referenced by the invoke
instruction. In the first case, the inlined invokespecial in the invoker
is not a super call and will thus always call the referenced method. In
the second case the inlined invoke is a super call since B extends A, but
the invoke resolves to the same method as in inlined callee.

Otherwise we can only inline if we clear the ACC SUPER flag of the in-
voker class. In our example this would be the case if B extends C. Then
the invoke in C.m() resolves to A.m(), but when we inline C.m() into
B.foo(), the invokespecial A.m() in B.foo() would resolve to C.m().

We do not even require that we inline a method from a super class. As-
sume that in our example we have a fourth class D that has a method
bar() containing invokespecial A.m(), and let B.foo() invoke D.bar()
and let B extend C. If we then inline the call site in B, the special invoke
from class D would again invoke C.m() instead of A.m().

Note that if C contains a package visible method with the same signature
as the method in class A that is invoked by invokespecial, but does
not override the method in class A, the access checks will prevent the
method in C from being changed to public access.

Non-static invoke instructions are required to throw null pointer exceptions
if the receiver is a null reference. A null pointer check needs to be inserted in
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the prologue of the inlined code to emulate this behavior. If the optimizer can
verify that the inlined code will always throw a null pointer exception before
any side effects are produced, the null pointer check code can be omitted. This
is done by checking the first unconditionally executed instructions of the callee
for instructions like getfield, setfield or invoke instructions. If they use
the this reference as receiver, they throw the same exception as the optimized
invoke if the this reference is a null pointer. The data-flow analysis could be
used to check if the receiver of a call site can be a null reference, but this has
not been implemented in the analysis yet.

Java Implementations of Bytecode Instructions

Bytecode instructions that are implemented as Java methods in the JOP JVM
can be seen as special static invokes. They can be inlined in the same way
as invokestatic instructions. The only difference is that the return type
and argument types of the invoked method do not need to match the types
that are expected on the stack. This is used for instance by the floating
point software implementation, which provides implementations for bytecode
instructions that operate on float and double types on the stack. The imple-
mentation however accesses the values as int and long types to perform bit
manipulations. Although the methods could be inlined, the resulting code
would not be legal bytecode and would not be accepted by a bytecode verifier.
Such cases are therefore not inlined by default, however this check can be
disabled by an option of the optimizer.

4.2 The SimpleInliner

If the code size is not increased when a call site is inlined, there is no increase
in cache miss costs or in the global code size. The execution times of other
paths are not affected, therefore inlining has no negative effects on the WCET
or the ACET for such call sites.

A specialized method inliner called SimpleInliner has been implemented
to optimize call sites that can be inlined without an increase in code size.
The inliner only optimizes call sites where no or only a very short prologue
for parameter passing needs to be inserted. By restricting the type and the
sequence of instructions in the callee, SimpleInliner can generate parameter
passing code more efficiently than the generic inliner described in section 4.3.

As long as the code size is not increased, the gain of the optimization is
always positive, therefore this optimization does not require interaction with
the WCET analysis or the method cache analysis. The order in which the call
sites are processed is not important either. If a method b() can be inlined by
the SimpleInliner into a method a(), and if b() contains a call site that can
be inlined by SimpleInliner too, the call site in a() can be inlined using either
the optimized or the unoptimized method b(). Therefore the optimization
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can be applied to all methods of the application and to all call sites in the
methods in arbitrary order. New call sites in the inlined code are optimized
recursively.

The SimpleInliner is used to inline getter, setter, and most wrapper meth-
ods, as well as method stubs and methods performing simple calculations and
empty methods, including initialization methods. The optimization is very
fast and can be applied to optimize at least some invocations if the developer
does not want to use the slower WCET driven optimizations. It also reduces
the number of call sites for the more complex generic inliner.

Selecting Call Sites

First, the inliner performs the actions described in Section 4.1 to resolve virtual
invokes, to check if inlining is allowed and to change the access of members if
required. Inlining is not performed if the callee contains exception handlers,
requires an additional null pointer check, or if the callee code size is larger
than a certain threshold, as in those cases the code size of the invoker would
most certainly increase. A precise code size check is performed after the new
prologue for the call site has been generated.

The maximum size of a callee is equal to the size of an invoke instruction
(5 bytes for invokeinterface), a return instruction (1 byte), plus the size of
instructions used for parameter passing in the callee and at the call site, if
they can be removed from the original code as described below.

Inlining Selected Call Sites

The SimpleInliner inlines methods if the code matches the following layout:

A method matching the
required layout

1. Instructions that load parameters or con-
stants on the stack

2. Instructions that perform operations on
the stack, e.g., arithmetic operations, in-
voke instructions, field access, stack ma-
nipulations (like dup or pop), type checks
or constant loads.

3. A return or throw instruction

Branch instructions and load and store instructions are not allowed in the
second section. It would be possible to allow load and store instructions that
use slots different from the slots containing the arguments, and to allow branch
instructions that do not jump into the first section, but such methods would
most likely be too large for inlining anyway.
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void invoker(): int calc(int a, int b):

... // return this.calc(b,a,null);

11: getfield <myObject> 0: aload_0

14: iload 4 1: iload_2

15: iconst_1 2: iload_1

16: invokeinterface 3: aconst_null

<MyIF.calc(II)I> 4: invokespecial

21: istore_3 <MyObj.calc(IILOtherObj;)I>

... 7: ireturn
(a) Original code

void invoker():

...

11: getfield <myObject>

14: iconst_1

15: iload 4

16: aconst_null

17: invokespecial

<MyObj.calc(IILOtherObj;)I>

20: istore_3

...
(b) Optimized code

Figure 4.3: Example of a call site optimized by SimpleInliner

The inliner first analyzes the stack state after the first section, mapping
each stack entry to the method argument or constant value it contains. Then
the optimizer tries to modify the code at the call site so that the top of the
stack at the call site contains the same values. If the optimizer succeeds, it
replaces the invoke instruction with the second code section. Note that any
of the first two sections can be empty.

All instructions that load local variables, constants or the value of a static
field onto the stack at the call site are rearranged, as long as they are within
the same basic block. If the callee consumes more values than those loaded by
those instructions, the callee must use them in the same order as they appear
on the stack (i.e., the method must start with loading the arguments in the
same order as they appear in the method descriptor).

Figure 4.3 shows an example of a call site in method invoke() that gets
optimized by the inliner (the numbers in front of the instructions represent
the byte address in the code). The invoker calls this.myObject.calc(x,1).
We assume the call resolves to the given calc(int,int) method, which in
turn calls a private calc(int,int,OtherObj) method.

The instructions at address 14-15 are updated using the stack value map-
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ping calculated from instructions 1-3 in the callee. The this reference of the
callee is placed on the stack using a getfield instruction at the call site,
which is not rearranged by the optimizer. However since the callee consumes
the this reference exactly once and places it at the bottom of its stack with
the aload 0 instruction at address 0, the call site does not need to be modified
for this parameter. Finally the original call site is replaced with the rest of
the code of the callee, namely the invoke instruction at position 4.

If the invoker and the method invoked by invokespecial are in different
classes, the inliner must make the private method calc(int,int,OtherObj)

public. The new call site at position 17 in the invoker is a new optimization
candidate, so the optimizer then starts all over using the new call site, if
the new callee is small enough. Since the callee method is different from the
previously inlined method, it is not a recursive call.

4.3 The Inline Optimizer

While SimpleInliner is designed to handle very small methods that match
a given pattern, the inliner described in this section can inline any method
as long as the inlining criteria presented in Section 4.1 are met. The code
generation for parameter passing is less elaborate, removing unnecessary local
variable copy operations is left to other optimizations.

Inlining all call sites could lead to an unacceptable increase of the code size
and the cache costs. Therefore the greedy algorithm presented in Section 4.4
is used to select only a subset of the call sites for inlining to minimize the
negative effects of inlining.

The inliner must also update analysis results in accordance with the op-
timization, so that the selection algorithm does not use outdated results for
its decisions during optimization. The updates performed during inlining are
presented in Section 4.5.

Selecting Call Sites

The inliner first performs the inline checks described in Section 4.1 for every
call site in the methods to optimize. If the receiver of a call site can be resolved
uniquely and if inlining is allowed, the optimizer calculates the expected gain,
the code size increase and the expected cache miss cost increase as described
in the next two sections, and passes this information along with the call site
to the greedy algorithm described in Section 4.4.

The greedy algorithm checks the code size constraints and selects call sites
for which it estimates the best gain to code size ratio, which are then optimized
by this inliner.
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Code Size Changes and Gain

The code size increase of the invoker method by inlining a call site is equal
to the size of the callee, plus the size of the inserted prologue, minus the size
of the replaced invoke instruction. The size of the inlined code can be larger
than the size of the callee, because the local variables used by the inlined code
will be mapped to higher slots than in the callee, therefore larger parametric
instructions like iload may need to be used instead of smaller instructions
like iload 0. While the last return instruction can be removed, other return
instructions need to be replaced with larger goto instructions.

The application code size increases by the same amount, except if the call
site to inline is the last call site of the callee in the application. In this case the
callee is not used anymore and can be removed. Then the application code
size increase only includes the size of the prologue and the increase of the
callee code, not the size of the callee code itself. Note that even if a method
is not used anymore after inlining, its invoked methods will still be used by
the inlined code. Therefore we do not need to check if any method other than
the callee becomes unreachable in the call graph.

Similarly, if we ignore the cache costs, the execution time gain of the
optimization for a single execution of the call site is equal to the execution time
of the removed invoke instruction (assuming a cache hit), plus the execution
time difference between a single return instruction and a goto instruction. The
gain is reduced by the execution time of the prologue (we can assume that the
receiver is never null for the execution time of the null pointer check). The
gain can be further decreased since the parametric versions of instructions
accessing local variables may have a higher execution time, but this effect is
ignored by the current implemention of the gain estimator.

Impact on Cache Miss Costs

The application wide cache cost changes for inlining a single call site can be
expressed as the sum of four values. The number of cache misses are provided
by the cache analysis used by the greedy algorithm and are relative to a
single execution of the target method (i.e., the root method of the call graph
containing the methods to optimize).

1. Since the invoke instruction is removed, the total cache costs are de-
creased by the invoke and return cache miss costs that appear at the
inlined call site.

2. All call sites in the callee are duplicated and copied into the invoker.
Since all of those call sites still call the same methods, the invoke cache
miss costs of those call sites do not change. However, since the inlined
call sites now return to the invoker that now consists of the code of the
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callee plus the old invoker, the return cache miss costs of the inlined call
sites are increased proportionally to the size of the invoker.

If the number of cache misses in the callee decreases by the same amount
of cache misses that now occur in the inlined code (i.e., if the total num-
ber of cache misses stays constant), the total cache costs are increased
by the product of the return cache miss cost increase and the number of
return cache misses that now occur at call sites in the inlined code.

Otherwise, if returning to the invoker causes more cache misses than
returning to the original callee, the cache miss cost increase can be cal-
culated as the total cache miss costs of the inlined code being executed
n times, minus the decrease of cache miss costs due to the callee being
executed n times less often, where n is the execution frequency of the
optimized call size.

3. The cache costs are increased further due to the code size increase of
the invoker, because all invoke cache misses of the invoker and all return
cache misses of all call sites in the invoker have higher cache miss costs,
proportional to the size of the callee (except for the call sites in the
inlined code, they have already been handled above).

4. Furthermore, the total cache costs of the application can increase if
the invoker requires additional cache blocks after the optimization, as
discussed in Section 3.1. On the other hand, if the inlined callee is no
longer reachable from the optimized invoker, and if the callee is small
enough so that the invoker does not require additional blocks, then the
number of cache blocks required by all methods reachable by the invoker
is reduced by one, which may decrease the number of method cache
misses.

However, the estimated cache miss cost change caused by the change of
the number of required cache blocks depends on the cache approximation
used by the cache analysis.

The total gain of optimizing a call site including cache costs can be esti-
mated as the gain without cache costs per execution of the call site multiplied
by the execution frequency of the call site in the application, minus the cache
cost difference as described above. The actual WCET gain however can differ
significantly, since those calculations do not honor the fact that the worst-case
path can change when the cache costs change, as discussed in the example in
Section 3.2.

Since the cache costs, and hence the total gain, depend on the size of the
invoker and the callee as well as on the estimated number of cache misses, the
gain estimations for all call sites of a method m must be updated if a call site
in method m or any method invoked by m is inlined, or if the cache analysis
results change for method m.
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(a) Initial call graph (b) Method b() has been inlined into a()

(c) Original code of a() has been inlined
into i()

(d) New call site of b() has been inlined

Figure 4.4: Inlining using unoptimized method code

Inlining Unoptimized Methods

The current implementation of the inliner does not keep separate versions
of the optimized and the original method code. When a method is inlined,
the inlined method may already contain inlined code. Although this has the
advantage that the implementation of the inliner is simpler since we do not
need to keep separate versions of methods and the corresponding analysis
results, it has the disadvantage that the order in which call sites are selected
has an impact on which call sites can be optimized. If the size of the callee is
increased too much due to inlining, it may not be possible to inline a call site
anymore due to code size restrictions.

If the inliner would keep the original unoptimized code of all methods and
would always inline unoptimized code, optimizations of the callee of a call site
first would not affect the code size increase of the invoker, so inlining does not
become impossible during optimization. Also, if unoptimized code is inlined,
the optimizer can choose not to inline a call site in the inlined code although it
has already been inlined in the callee. This allows the optimizer to find better
trade-offs between code size and speed for each method, and to optimize the
code differently in different contexts.

If a method a() invokes a method b() as shown in Figure 4.4a, and all
call sites of b() get inlined (including the one in a()), then method b() is not
used anymore and can be removed from the application code, and does not
allocate method cache blocks (Figure 4.4b). But if a call site of a() is inlined,
then the new code will again contain a call site of method b() (Figure 4.4c).
If the inliner does not inline the new call site too (e.g., because of method size
restrictions) the method b() cannot be removed anymore.
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This has several consequences. First, when a call site is inlined, the ap-
plication code size can increase by more than just the size of the callee, since
methods that have already been removed are used again, thus possibly making
the advantage of inlining the last call site of those methods void. Second, the
gain (ignoring cache costs) is lower since we replace an invoke of a possibly
already optimized method with the unoptimized code of the method. This
also means that analysis results like execution frequencies and worst-case exe-
cution time need to be kept and updated for both the unoptimized versions of
methods as well as unused methods, as they are needed to calculate the effects
of the optimization. However if the unoptimized inlined code is optimized in
the same way as the callee, the gain and the code size changes are the same
as when the optimized code is inlined (Figure 4.4d).

In both cases inlining has an impact on the application code size and
can change the WCET and WCEP not only on all paths from the root to the
optimized method in the call graph, but also in other regions of the call graph,
depending on the cache analysis. Since the gain of inlining a call site depends
mostly on the cache costs, inlining of one call site can make inlining at other
call sites infeasible.

Inlining Selected Call Sites

Once a call site has been selected for optimization, inlining is performed as
described in [3]. A prologue is created that pops all parameters of the invoked
method from the stack and stores them into unused local variable slots. A null
pointer check for the this reference of non-static callees is inserted if required.

The invoke instruction is replaced with the code of the invoked method.
Local variable accesses are mapped to the slots where the parameters have
been stored by the prologue or other unused slots. Return instructions are
replaced with jumps to the instruction following the inlined invoke instruction.
If the stack prior to a return instruction in the callee contains more than the
return value, pop instructions are inserted accordingly to create the correct
stack size after the return.

Loop bounds and source line numbers are copied from the callee. If the
class of the inlined method differs from the class of the invoker, a reference to
the source class is attached to the line numbers. Since loop bounds are relative
to their enclosing loop in our implementation, the loop bounds do not need to
be adapted if the call site appears within a loop. However, if context sensitive
loop bounds would be used (i.e., loop bounds that can be more precise in
certain contexts), they need to be updated to the new context.

4.4 WCA-driven Greedy Optimizer

In this section we present a WCA-driven greedy algorithm to select optimiza-
tion candidates iteratively. The basic idea behind this algorithm is similar to
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the algorithm presented in [37], but this algorithm can be used for other opti-
mizations than inlining too, and it uses a worst-case analysis for the selection
of candidates. It is also possible to select between candidates of different op-
timizations, eliminating the need for a phase ordering of those optimizations.
A disadvantage of that algorithm is that it does not honor the fact that the
WCET gain of a set of optimized candidates can be different from the sum of
the gains of the individual candidates.

The inliner provides a set of optimization candidates to the algorithm. For
every candidate the algorithm requires a code range containing the code to
optimize, the code size increase of the optimized method, and the estimated
execution time gain for a single execution of the optimized code excluding
cache costs, as well as the total cache miss cost increase for instructions in the
modified code range. In addition to that, the algorithm needs to know which
methods are no longer invoked by the optimized method, and which methods
are no longer reachable by the entry method in the call graph (i.e., which are
no longer used).

An execution frequency analysis and a method cache analysis are used
to estimate the gain and the cache costs. The worst-case analysis is used to
decide which candidates should be selected. The analyses and the interaction
with the WCA tool are presented in the following sections.

To favor candidates that have a low impact on the application code size, we
use the ratio of the expected gain to the code size increase to select candidates.
The algorithm works by repeatedly selecting the candidate with the highest
rebate ratio, i.e., the highest estimated gain per code size increase. It optimizes
he selected candidates6 and updates the call graph, the execution frequency
analysis and the method cache analysis. Then the ratios of the candidates are
reevaluated. The algorithm stops when either no candidate with a positive
gain is left or until the application code size reaches a predefined threshold.
The code size is therefore not an optimization objective, but a constraint.
However since the cache costs depend on the code size, the optimizer will
favor optimizations with low impact on the code size due to the cache costs
too.

The pseudo-code of the optimizer is shown in Algorithm 4.1. In more
detail, the algorithm performs the following steps:

1. Initialization: First, the method cache analysis and the execution fre-
quency analysis calculate the initial analysis results. The WCA tool is
used to calculate an initial worst-case execution path.

2. Iterate over call graph regions: Depending on the configuration, the
methods to optimize in the next steps are chosen. We can either choose
to optimize all methods reachable from the entry method together (i.e.,
we choose the best candidate from all candidates in all methods), or we
can choose to optimize only one method at a time (i.e., choosing the
best candidate within a single method) and traverse the call graph in
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Algorithm 4.1: Pseudo-code for greedy optimizer

initialize WCA, cache analysis, exec frequency analysis;
foreach region in call graph do

find initial candidates in region;
calculate ratios for all candidates;
while candidates available do

select candidate c with highest ratio;
optimize c;
find new candidates;
update analyses;
update ratios;

end

end

a top-down or bottom-up manner. By default we optimize all methods
reachable from the WCA target method first, and optimize the rest of
the application afterwards.

3. Find initial candidates: The selected call graph region is searched for
optimization candidates. The found candidates are evaluated and sorted
using the calculated rebate ratio. There are several ways to evaluate and
classify the candidates; this is discussed at the end of this chapter.

4. Select and optimize a candidate: The candidate with the highest
rebate ratio is optimized. The optimization must also update the execu-
tion frequency analysis and the method cache analysis, as well as data
structures like the call graph accordingly, since inlining creates new ex-
ecution contexts, creates new edges in the call graph and changes the
method code size. Inlining and updating the analyses is performed by
the inline optimizer as discussed in Section 4.3.

5. Update candidates: Optimizing code can create new optimization
opportunities. We therefore search the optimized code region for new
candidates. We also need to reevaluate the rebate ratio of all candidates
where the optimization gain, the cache miss costs, the WCEP, or the
code size changed.

6. Continue optimization: After the candidates have been updated, we
continue at step 4 if we have any candidates left. Otherwise we go to
step 2 and select the next call graph region to optimize or stop if no
more methods are left to optimize.
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Execution Frequency Analysis

We can approximate the execution frequency of an instruction for one execu-
tion of the method containing the instruction by using the upper loop bound
for instructions inside a loop, and assume an execution frequency of 1 for
all other instructions. The result is an upper bound on the real execution
frequencies. The estimation of the gain of an optimization (excluding cache
costs) based on those results is therefore very optimistic. On the other hand,
when those results are used for cache miss count estimations, the result is
very conservative. We can also use the execution frequencies calculated by
the IPET analysis for the WCEP instead, which is better suited to estimate
the optimization gain. However, in this case the actual cache costs can be
higher than estimated, if additional cache costs at call sites that are not on
the WCEP and are thus assigned an execution frequency of zero cause the
worst-case path to switch.

To get the execution frequencies of methods and instructions for one ex-
ecution of the optimization target method (the application entry method or
the WCA target method), we multiply the local execution frequencies of all
call sites along every path starting at the root of the call graph and calculate
the sum over all paths when paths merge. For now the analysis assumes that
the application is recursion-free. Back edges in the call graph are ignored.
The call graph is traversed in topological order, starting at the roots of the
call graph.

When a node is visited, we sum up the execution frequencies of all call sites
of that node to get the execution count for that node. The execution frequen-
cies of instructions in the method of that node is equal to the execution count
of that node multiplied by the local execution frequency of the instruction.
For virtual calls we over-approximate the execution frequencies by assuming
that every execution of a call site invokes every possible implementation.

Method Cache Analysis

To estimate the cache costs, a method cache analysis has been implemented.
The method cache analysis provides several analysis modes with varying pre-
cision. Besides estimating the total number of cache misses for every cache
access, the analysis calculates the total cache miss cost difference when the
size of a method is changed.

In this section, we use N for the number of blocks in the method cache, and
maxBlocks(n) for the number of cache blocks accessed during the execution
of node n. The set of reachable methods reachable(n) represents all distinct
methods that can be reached from node n in the call graph, including the
method represented by n itself. This analysis uses the sum of cache blocks
required by all methods in reachable(n) to over-approximate maxBlocks(n).

For brevity, we call the subgraph of the call graph that consists of all nodes
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(a) Initial call graph (b) Call graph after node 8 has been in-
lined into nodes 6 and 7

Figure 4.5: All-fit region of a call graph

n with maxBlocks(n) ≤ N the all-fit region of the call graph. Figure 4.5a
shows an example of an all-fit region in a call graph where every node requires
exactly one cache block, and the cache consists of four cache blocks. The
all-fit region in this example consists of the nodes 3 to 8. Figure 4.5b shows
the impact of inlining on the all-fit region. If we inline all call sites of node
8 in this example, nodes 6 and 7 require an additional block. Node 4 is no
longer in the all-fit region, since the code of node 8 now appears two times in
the reachable methods of node 4.

Note that in our case context-sensitivity of the call graph is expressed via
different nodes for different call strings, not by labeled edges. This means that
if a path exists between two nodes, the node at the end of the path is always
assumed to be executed by the node at the beginning of the path, the edges
themselves are not context-sensitive. Therefore maxBlocks(n) never increases
along any edge or path in the call graph, since for every edge v → u we
have reachable(u) ⊆ reachable(v). The nodes of loops in the call graph must
therefore be either all inside or all outside the all-fit region, since maxBlocks(n)
must be the same for all nodes n of a loop, or else we would have a path in
the loop from a node m to a node m′ where maxBlocks(m) < maxBlocks(m′).

The cache analysis currently supports the following analysis methods:

• Always miss: Every cache access is classified as always miss. This is
a very pessimistic analysis and provides a simple upper bound on the
cache costs. The execution frequency analysis presented above is used
to estimate the number of cache misses. The advantage of that analysis
is that it is very fast, and changing the size of a method only affects
cache costs of cache accesses in adjacent call graph nodes.

• Always hit: Every cache access is classified as always hit . This analysis
never returns any cache miss costs, the optimizations therefore ignore
the impact of the method cache on the optimization gain.
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• Always miss or at most one miss: Let n be the node that contains
the cache access. If n is within the all-fit region, the access is classified as
at most one miss. All other cache accesses are classified as always miss.
The number of cache misses is estimated using the execution frequency
analysis. For always miss cache accesses, the number of cache misses is
again equal to the execution frequency of the cache access. For the other
cache misses, we need to calculate the number of times the application
can enter the scope for which the cache access is classified as at most one
miss. This is done by calculating the sum of the execution frequencies of
all call sites classified as always miss that invoke a method in the all-fit
region that can reach n in the call graph. For LRU caches, the analysis
can classify at most one miss cache misses as locally persistent. This
analysis is similar to the cache analysis performed by the WCA.

This analysis still provides an upper bound on the cache costs, but it
is more precise than the always miss analysis. The disadvantage of this
analysis is that calculating the number of cache misses is more costly, and
even a small code size increase can cause large total cache cost increases,
if some methods cannot be classified as at most one miss anymore. If the
all-fit region changes, the number of cache misses can change throughout
the whole all-fit region.

• Always miss or always hit: This analysis is similar to the previous
analysis method, except that cache accesses within the all-fit region are
classified as always hit instead of as at most one miss. As a result, the
analysis no longer calculates an upper bound on the cache miss costs,
but the cache miss cost estimation is faster since we do not need to
calculate the number of entries into the all-fit region, and the cache miss
cost increase is lower when the all-fit region changes. Another advantage
is that if the all-fit region changes, the upper bound on cache misses of
cache accesses in the all-fit region does not change, therefore we do not
need to recalculate all gain estimations in the changed all-fit region.

For the always hit and always miss analysis, no initialization is needed. For
the other analysis modes, the analysis calculates reachable(n) and maxBlocks(n)
during initialization. This is done by first constructing the transitive closure
of the call graph. The transitive closure of a graph contains the original graph,
as well as additional edges between any two nodes that are connected by a
path in the original graph. The transitive closure can be constructed by iter-
ating blog2|V |c + 1 times over the graph and adding edges between any two
nodes if a path of length 2 exists between the nodes. The implementation of
that algorithm requires that the original graph contains no self loops, i.e., the
original graph must be a simple graph. However since we always include n in
reachable(n) by definition anyway, we can simply remove self loops before con-
structing the transitive closure. The sets reachable(n) can now be constructed
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for every node n simply by collecting all direct successors of n in the transitive
closure, the value of maxBlocks(n) can be over-approximated by calculating
the sum of cache blocks required by the methods in reachable(n).

Estimating Cache Cost Increases

The cache analysis is also used to estimate the impact of an optimization on
the cache costs. The analysis provides a generic method to calculate the cache
miss cost changes due to code size changes. It takes the modified method,
the estimated code size difference, as well as methods that will no longer be
invoked by the method after the optimization as arguments, and calculates the
total method cache miss cost changes, using the execution frequency analysis
to estimate the number of cache misses for cache accesses classified as always
miss or at most one miss. This cache analysis only considers the cache costs
directly related to the code size increase of a single method. Other cache
costs specific to inlining, such as the increase of return costs of call sites in
the callee, are calculated by the inliner. To simplify the implementation, only
code size increases are currently handled.

The cache cost increase depends on the analysis mode. If the analysis
classifies all cache accesses as always hit , the result is always zero. If all cache
accesses are classified as always miss, or if the modified method is not in the
all-fit region, the invoke cache miss costs of all call sites of the method and the
return cache miss costs of all call sites in that method change proportionally
to the code size difference1 multiplied by the sum of the execution frequencies
of the cache accesses.

If the modified method is within the all-fit region, and if the analysis
classifies all accesses in the all-fit region as always hit , the cache costs only
change if the all-fit region changes. The analysis needs to find out how the
values of reachable(n) and maxBlocks(n) are affected by the optimization for all
nodes in the call graph. The modified method m only appears in reachable(n)
if there is a path from node n to a node of m. Therefore we only need to
consider nodes that are reachable from m in the reversed call graph.

If m requires i more blocks after the modification, we need to add i to
maxBlocks(n) for every node n that can be reached from m in the reversed
call graph. If a method a is no longer invoked by m, the analysis must find
all nodes n where a is no longer in reachable(n) after the code modification,
i.e., all nodes n that can reach m but can no longer reach a.

If a method is removed from any set reachable(n), maxBlocks(n) must be
updated accordingly. All nodes n where maxBlocks(n) ≤ N not longer holds
(N being the number of available cache blocks), are classified as always miss
instead of always hit , the cache costs increase accordingly. Similarly, for all

1For virtual invokes, the largest method in all receivers of the call site determines the
cache costs, so there might not be a cache cost change if larger methods can be invoked at
the call sites of the modified method.
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nodes where maxBlocks(n) ≤ N only holds after the optimization, the cache
costs decrease.

If the analysis classifies accesses in the all-fit region as at most one miss,
we also need to handle the increase of invoke miss costs and return miss costs
of the modified method similar to the always miss analysis, but with a lower
number of cache misses. Furthermore, changing the all-fit region may lead
to different cache miss counts for all methods that are reachable from any
call graph node for which the all-fit region classification changed. The cache
costs change proportionally to the difference in the number of all-fit region
entries times the cache miss costs of all methods that are reachable from the
reclassified nodes.

WCA Integration

The WCET analysis is used to find the current worst-case execution path. The
candidate selector uses this information to choose only candidates that are on
the worst-case path and can therefore reduce the WCET when optimized.
The current greedy algorithm implementation uses the IPET-based WCET
analysis method, which calculates the WCET for every node in the call graph.
Existing WCA results are reused to calculate the WCET of a call site.

The analysis currently does not allow loops in the analyzed call graph.
We can therefore initialize the analysis by traversing the call graph in reverse
topological order and analyze the WCET of nodes as we visit them. The
topological order guarantees that WCET results exist for all methods invoked
by the visited node. Since usually the WCA is not used to analyze the whole
application but only the real-time part of the application, a separate call graph
is constructed that starts at the target method of the analysis, i.e., the entry
method of the real-time code. This call graph is not necessarily a subgraph
of the application call graph if the call graphs are context-sensitive, since the
root of the WCA call graph starts with a single node with an empty call
string, while the application call graph may contain several nodes with non-
zero-length call strings representing the target method in different execution
contexts.

Since the optimizer and the WCA use the same data structures for opti-
mization and analysis, exchanging data is trivial. The WCA calculates worst-
case execution frequencies and attaches them to the basic blocks of the CFG
of the analyzed methods. To check if an instruction is on the WCEP, the
optimizer only needs to check if the attached worst-case execution frequency
is greater than zero.

Gain Estimation and Rebate Ratios

The candidate selection is based on the rebate ratio of an optimization candi-
date, which is simply the estimated total gain of an optimization divided by
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the code size increase. Therefore we need to calculate the gain and the code
size increase of all optimization candidates.

In order to calculate the total estimated gain g of a candidate, the inliner
provides the execution time gain g′ for a single execution of the optimized call
site excluding cache costs (i.e., the invocation overhead), as well as the total
cache cost changes c′ within the optimized code. The execution count f of the
optimized code is provided by the execution frequency analysis. The cache
cost increase c in the rest of the application due to the code size increase of
the modified method is estimated by the method cache analysis. The total
gain g of an optimization candidate is then estimated as

g = g′ ∗ f − c′ − c

The application code size increase ∆s is equal to the code size increase of
the modified method, minus the size of methods that are no longer used after
optimization, provided that removing unused code is enabled. Using the esti-
mated gain and code size increase, we can calculate the rebate ratio r of an
optimization candidate as r = g/∆s.

However, the estimated total gain and thus the rebate ratio are over-
approximations of the actual WCET gain, if the optimization causes the
WCEP to change, as discussed in the example in Section 3.2. It might be
possible to estimate the WCET gain for every inlining candidate by reducing
the execution time of the call site to inline by the estimated gain g′ and to
calculate the WCET for that modified control-flow graph. However, perform-
ing a WCET analysis for every candidate is very expensive and has not yet
been implemented. Furthermore, the WCET gain of the application might
still be lower than the WCET gain of the optimized method, since decreasing
the WCET of a method may result in a change of the WCEP in the invokers
of that method too.

Candidate Selection

Once all candidates have been found and evaluated, the greedy algorithm
needs to select one of those candidates for optimization. If the WCET analysis
is not used, the algorithm simply selects the candidate with the highest rebate
ratio first. In this case the optimizer is similar to an ACET optimizer.

If the WCET analysis is used, the algorithm selects only candidates that
are on the worst-case path. By default the algorithm chooses between candi-
dates from all methods that are reachable from the WCA target method and
that are on the worst-case path in the call graph. If the analysis is configured
to iterate over the methods in the call graph in top-down or bottom-up order,
the analysis only chooses between candidates within a single method at the
same time. Optimizing methods can change the global WCEP, but if the call
graph is visited in a fixed order, methods that appear on the WCEP after they



56 CHAPTER 4. METHOD INLINING FOR JAVA

have been visited are not revisited. Therefore when methods are optimized in
a fixed order, the algorithm only considers the local worst-case paths of the
methods, regardless of the global worst-case path.

4.5 Updating the Call Graph and the Analyses

After a call site has been inlined, the call graph needs to be updated. If the
call graph does not contain call site references, this is fairly simple. New edges
need to be added from the invoker to all children of the callee. The edge from
the invoker to the callee needs to be removed if the optimized call site was the
last call site of the callee in the invoker.

If the call graph is context-sensitive, new nodes need to be created since
the call strings consist of call site references (see Section 2.4). All nodes in
the call graph with a call string containing the removed invoke site need to be
removed. Instead of adding edges from the invoker to all direct successors of
the callee, new nodes need to be created for the inlined call sites.

This can be done in the following way: We iterate over all nodes 〈c,m〉 rep-
resenting a context of the optimized method m with call string c = 〈c1, · · · , cn〉.
For every direct successor 〈c′,m′〉 of the inlined callee we construct a new call
string c′′ = 〈c1, · · · , cn, cm〉 where cm is the new call site in the inlined code
corresponding to the call site in the callee that invokes 〈c′,m′〉, thus removing
the inlined call site and replacing the call site in the callee with the call site
in the inlined code in the call string c′. If the length of c′′ is longer than the
maximum call string length k, we remove the first entry from the call string.

An edge from 〈c,m〉 to 〈c′′,m′〉 is created. If the node at the head of the
new edge does not exist, it is created first. For every direct successor of 〈c′,m′〉
a new successor of 〈c′′,m′〉 is added. The call string of the new children are
constructed by appending the top entry of the call string of the old child to c′′,
thus replacing the prefix containing the original call site with the new prefix
containing the corresponding inlined call site. This is performed recursively
on all new nodes. All nodes reachable from the callee over any path of length
up to k are copied in this way. All other nodes do not contain call sites of the
callee or the optimized method.

The execution frequency analysis, the method cache analysis, and the
worst-case analysis need to be updated for the optimized method as well as
any new nodes in the call graph.

For a context-insensitive call graph, only the execution count of the in-
voked method changes. Since we removed a call site of that method, the
execution count of the method is decreased by the execution count of the re-
moved call site. The execution counts of the inlined instructions is equal to
the execution count of the removed call site times the execution frequency of
the corresponding instruction in the callee (relative to one call of the callee).
The execution count of the instructions in the callee decreases by the same
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amount. Therefore the execution counts of the children of the callee do not
change, since the sum of the execution counts of the call sites in the callee and
in the inlined code is the same as the execution count of the call sites in the
callee prior to optimization.

If the call graph is context-sensitive, we additionally need to calculate
execution counts for all new nodes. This is done the same way as in the ini-
tialization of the execution frequency analysis, except that the call graph is
traversed by starting at the optimized method instead of at the root, and only
nodes for which the distance to the optimized method is at most k (the max-
imum call string length) are visited. As in the initialization, we ignore back
edges. The nodes are visited in topological order, the sum of the execution
counts of all call sites of a node is used as the execution count for new nodes.

Updating the cache analysis requires analyzing the new nodes and remov-
ing the callee from the set of reachable implementations of all nodes that no
longer have a path to the callee, if no other call site in the optimized method
invokes the inlined method.

To calculate the sets of reachable methods for the new nodes, first a sub-
graph of the call graph is created, which contains all paths of length k + 1
starting at the nodes of the optimized method. The subgraph therefore con-
tains all new nodes, and every path either ends in a new node with no children
or in a node for which the set of reachable methods is known. Similar to initial-
ization, the sets of reachable methods are generated by creating the transitive
closure of the graph and then adding all children of a node in the transitive
closure to the set of reachable methods, with the exception that for all leafs
the set of methods reachable from the leaf is added too.

If the callee is no longer invoked from the modified method, the callee is
removed from the sets of reachable methods in the same way as the analy-
sis checks for reachable set changes to find all-fit region changes after code
modifications. Note that we do not need to increase any set of reachable
methods after inlining, because all methods reachable from the callee are also
reachable from the invoker. Therefore copying call sites from the callee to the
invoker does not add new methods to the set of known reachable methods of
the invoker.

Finally, the sum of cache blocks required for all methods reachable from a
node needs to be increased by the number of additional cache blocks required
by the optimized method. This is done for all nodes that have a path to
the optimized method in the call graph. This can change the cache miss
classifications and thus the estimated cache miss costs of call sites anywhere
in the call graph, depending on the used analysis. The gain estimations need
to be updated accordingly.

To update the WCA results, a subgraph of the edge-reversed call graph
is created first. This subgraph contains only methods reachable by the WCA
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target method2 and only nodes reachable (in the edge-reversed graph) from
any of the new nodes, the nodes of the optimized method, or methods for
which the results of the cache analysis changed, i.e., it contains all methods
that may call methods whose WCET bound may have changed. The WCA
currently does not allow recursion, therefore we can assume that the resulting
graph is acyclic. Similar to the initialization of the WCA analysis, the graph
is then traversed in topological order, and for every visited node a new WCET
and WCEP is calculated.

4.6 Other Approaches to the Call Site Selection

The greedy algorithm is a simple method to select call sites for inlining. It has
several shortcomings though. It does not calculate the total gain of sequences
of optimizations. For instance, the algorithm may choose not to inline any
other call site, because doing so would cause cache costs larger than the invoke
overhead due to some methods not being classified as all-fit anymore. It
ignores the possibility that doing so could create new optimization candidates
which it might be able to inline with only very low cache costs if the optimized
method does not require additional cache blocks, and could thus lead to a
better total gain.

As mentioned before, the implemented greedy algorithm does not use the
actual WCET gain to select its candidates and may actually increase the
WCET due to cache costs. To avoid this behavior, deoptimization could be
used to restore the original call site if the WCET analysis shows that the
WCET increased.

A different approach for call site selection is presented in [11]. The inliner
decides on which call sites to inline based on a variety of features such as the
caller and callee size, the WCET of the caller and the callee, or the number
of live registers at the call site, using decision trees. The decision trees are
generated by using a set of example applications. The WCET gain of inlining a
call site is determined by analyzing the WCET of the unoptimized version and
a version where only the call site to analyze has been inlined. The results are
passed to the learning algorithm that creates a set of decision trees. During
optimization of a program, the decision trees classify the call sites of the
program, the final inlining decision is done by a majority vote on the decision
tree results. The advantage of this method is that the optimization heuristic
can be trained for different target architectures automatically. The compiler
designer does not need to find good heuristic parameters himself.

The IPET based WCET analysis [28] could also be used to classify call sites
directly. The WCA creates separate paths for a call site in the control-flow

2This is done by keeping a separate call graph that starts at the WCA target method
and that is used for all WCA related call graph searches. This call graph is also updated
during inlining.
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graph, representing the costs of an invocation with and without cache miss
costs. Constraints are used to limit the number of cache misses depending on
the cache analysis.

Inlining a method can be represented in the control-flow graph by adding
a third path to the call site that skips the invoke instruction and has the
execution time of the generated prologue attached to it. Constraints need to
restrict the solution to take either the optimized path or the unoptimized path
for all executions, depending on the state of a decision variable. The cache
costs at the call sites of the optimized method and at the return edges into
the optimized method now depend on the value of the decision variables.

The WCET of a control-flow graph with N basic blocks can be expressed
as

WCET = max
〈e1,··· ,eN 〉∈NN

0

N∑
i=1

ciei

where ci is the cost of the basic block Bi and ei denotes the execution fre-
quency of that block. The values of the execution frequencies are bounded by
loop bounds and constraints encoding the fact that the sum of the execution
frequencies of the ingoing edges of a block must be equal to the sum of the
execution frequencies of its outgoing edges.

The optimizer needs to minimize that expression using the decision values,
therefore we need to solve

WCET = min
〈d1,··· ,dk〉∈Zk

1

max
〈e1,··· ,eN 〉∈NN

0

N∑
i=1

ciei

for a method with k call sites. The problem with this approach is that this
can no longer be solved by linear programming. Furthermore, not only are the
cache costs expressions in the decision variables di instead of constants, the
cache analysis results and thus the constraints on the number of cache misses
at a call site also depend on the decision variables.

Another problem is that this approach does not cover the fact that inlining
a method can create new call sites. It might be possible to encode this in the
supergraph3 by adding additional decision variables to not only decide if a
call site is inlined but also which of the methods reachable in the call graph
should be recursively inlined at that call site. This however results in a large
increase in the number of decision variables and in the size of the constraints
and cache cost expressions. So this approach might not be practical except
for small programs or for the classification of call sites for only one method
at a time. It should be noted though that this method could also be used for

3A supergraph is a graph that contains all control-flow graphs where basic blocks are
split at call sites and additional edges from the call site to the entry block and from the exit
block back to the call site are added for the control-flow graphs of all implementing methods
of a call site.
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optimizations other than inlining by adding different paths to the control-flow
graph representing optimized and unoptimized paths. The feasibility of this
approach however has not been studied in this thesis.

Using the IPET based analysis for classification of optimization candidates
makes the border between WCET analysis and optimizer less clear, which can
be regarded as a disadvantage since this is in conflict with the goal of creating
separate, specialized tools for a single task like analysis or optimization.

The most important difference between this approach and the inliner pre-
sented in this thesis or the inliner presented in [11] is that instead of using the
WCET analysis to provide feedback to the optimizer, the optimizer provides
a set of optimization candidates to the WCET analysis. The WCET analysis
then classifies the candidates itself.

The advantage of this is that the effects of an optimization on the WCEP
need to be handled only by the WCA, which can be done more efficiently than
by a classification algorithm that needs to switch back and forth between the
optimizations and the WCET analysis. The cache and timing analyses do not
need to be exposed by the WCA.

An interesting use case is function splitting. Since the method cache has a
bad performance if a large method is called where a large part of the code is not
on the WCEP, extracting that code into a separate method and replacing it
with a call could reduce the cache costs on the WCEP. However, if the WCET
of the removed code is only slightly below the execution time of the WCEP,
adding a call site might actually increase the overall WCET. Similarly, inlining
a method increases the return cache miss costs of call sites in the optimized
methods. If those call sites do not lie on the WCEP, the additional costs can
be ignored, but only up to the point where the WCEP switches to those call
sites. To handle this, the optimizer would either need to deoptimize the code if
the WCA showed that the WCET has actually been increased, optimize very
conservatively, or it would require timing information on paths other than the
WCEP too. By solving the classification using the IPET based approach, this
is handled exclusively by the algorithm to solve the min-max problem.

On the other hand, either the optimizer needs to describe its code trans-
formations to the WCA so that the WCA can calculate the effects of an
optimization on the cache and the WCET and to update the flow facts, or
the WCA needs to know how the optimizations affects the code itself, which
makes the implementation of the analysis more complex. An alternative could
be to implement a separate, possibly less precise cache- and WCET analysis
(for driving the optimizations we do not need the final precise WCET, it does
not even need to be safe as it is only used to drive the optimization heuristics),
designed for optimization candidate classification. The more precise WCET
analysis is used only to analyze the WCET of the optimized application, or
to create an initial solution for the input of the optimizer that could then be
used by the second WCET analysis.



Chapter 5

The Framework

During the work on this thesis a framework for all analyses and tools was
created to implement the optimizations, to simplify the development of new
tools, and in order to let all analyses and optimizations work on the same
data structures in memory. The existing worst-case analysis and the data-
flow analysis have been ported to the new framework so that the optimizer
can run the analyses iteratively on the modified bytecode without the need to
export the transformed code prior to the analysis. Existing results that are
not affected by the optimizations can be reused by the analyses without the
need to keep results and data structures like the call graph consistent over
separate tools.

This chapter gives an overview over the features of the framework and
presents the toolchain used to create optimized code for JOP and to analyze
the worst-case execution time of the code.

5.1 Framework Overview

The framework is implemented in Java and uses BCEL1 for reading and writ-
ing class files. It provides implementations to find and load all classes required
by the target program (see Section 5.3), construct and modify call graphs and
control flow graphs as described in the previous chapters, and to simplify
lookups and modifications of constant pool entries and class members (i.e.
methods, fields and attributes).

Additionally the framework provides code for common tasks such as:

• Configuration, logging, and setup of tools: This includes loading
and parsing of configuration files and command line arguments. Com-
mon configuration options are provided and handled by the framework,

1The Apache Commons Byte Code Engineering Library: http://commons.apache.org/
bcel/
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so that all tools in the tool chain have similar configuration options and
can use the same configuration files. However, a user provided con-
figuration is not loaded by default, any configuration to use must be
specified at the command line. Therefore default values are not changed
unknowingly by any leftover configuration files, which ensures repro-
ducible results.

• Lookups in the class hierarchy and access checks: Methods are
provided to resolve fully qualified class names, field names and method
signatures to a reference to the correct member object. The framework
supports common tasks such as finding overriding methods or super
methods.

Access checks are required to determine if a method actually overrides a
method defined in a super class or if a call site can be copied to another
class by the inliner without violating the access restrictions.

• Finding possible implementations for call sites: The set of meth-
ods that can be invoked at virtual invokes is determined by a lookup in
the class hierarchy or the call graph if available. The result can be made
more precise by thinning the call graph first, e.g., by using receiver type
information from the data-flow analysis to construct the call graph.

The receiver of non-virtual invocations (invokestatic and invoke-

special as well as bytecode instructions that are implemented as Java
methods in the JVM) can be determined statically. Super method in-
vokes are resolved as specified by the invokespecial instruction (see
Section 2.2). Dynamic invokes as introduced by Java 7 are not handled.

• Common graph algorithms: Various simple traversal and graph
transformation algorithms are provided, e.g., to traverse the classes in
the class hierarchy, to visit all elements of a class, to traverse the call
graph in depth-first order, or to detect back edges in the call graph, or to
construct acyclic graphs from directed graphs by removing back edges.

• Nested classes support: To determine the enclosing classes of nested
classes the InnerClasses and EnclosingMethod class attributes need
to be used. Since the InnerClasses attribute of a class needs to contain
an entry for every nested class referenced by the constant pool of the
class, it may be necessary to add new entries if new constant pool class
references are added, e.g., due to inlining of a method from another class.

The access checks also require information about nested classes, since
for instance private methods of nested classes can be accessed by their
enclosing classes whereas members of a local class (i.e., a class that is
defined within a method) can only be accessed in the enclosing method.
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• Processor models: Basic information about the target JVM and pro-
cessor are provided, such as the names of classes that are required by
the JVM, and must not be removed, the maximum method size or the
maximum number of local variables and references to methods that are
invoked to execute certain Java bytecode instructions.

• Source code line number handling: The frameworks provides meth-
ods to keep accurate source line numbers and source file references for
instructions even after inlining of methods from different classes, see also
Section 5.5.

• Java 6 support: In order to remove unused constant pool entries all
used entries must be found. This means that all elements of the class file
that should be kept must be parsed completely, and all other elements
must be removed. BCEL was therefore extended to support all standard
Java 6 attributes like EnclosingMethod or various annotation attributes.

Timing models are not included in the framework. Those are implemented
exclusively by the worst-case analysis tool. Therefore only the WCA tool needs
to have a detailed timing model of the target processor. The optimizer uses
the WCA tool to get timing information for code sequences and details about
the cache if required.

Code Representation

In contrast to other optimization frameworks like Soot [33], bytecode is used
as the only internal representation. Optimizations work directly on byte-
code, there is no simplified stack instruction set or a register architecture
representation like quadruple code (BCEL makes a few minor simplifications,
e.g., instructions like aload 0 are represented by the parametrized version
like aload n, but every bytecode instruction in the class file is represented by
exactly one BCEL instruction and the opcode and size of the bytecode instruc-
tion that will be generated can be determined unambiguously by looking at
the parameters of the instruction). The framework must not modify the code
on its own during class loading or writing and must present the instruction
sequences the same way to the analyses and tools as they are stored in the
class files. Otherwise the worst-case analysis results would become inaccurate
or even unsafe.

By using the Java instruction set architecture as internal representation,
the tools always work on code that is very close to the code that will be
executed on the processor (invokes of native JVM methods are replaced by
custom bytecodes at the end of the JOP toolchain). However, since standard
Java bytecode instructions are used, the tools are not limited to a specific Java
processor by the instruction set. Since on JOP the execution time of instruc-
tions is independent of previously executed instructions (except for invoke and
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Figure 5.1: JOP Toolchain

return instructions whose execution time also depends on the method cache
contents that depends on the sequence of executed invokes) the execution time
of bytecode instruction sequences are composable. This allows the worst-case
analysis to calculate accurate timing information for any given sequence of
instructions, independent of the surrounding instructions.

5.2 Tools

The JOP toolchain is shown in Figure 5.1. The standard Java compiler javac
of the Java Development Kit (JDK) is used to compile Java sources to Java
class files containing bytecode, but other compilers emitting JVM class files
could be used as well.

The JOPizer tool [24] takes either optimized or unoptimized files (if the op-
timizer is not used) as input and generates a .jop file containing the bytecode,
the constant pools and information about the structure of classes, methods
and fields that can then be uploaded to the JOP processor.

The worst-case analysis tool takes the Java class files as input and uses
the source code line numbers from the class files (and additionally from the
previously stored source line database file for optimized code) to read source
code loop annotations. The loop annotations are merged with the loop bound
results produced by the data-flow analysis. The WCA tool then performs
a worst-case execution time analysis for a given method and generates a re-
port containing the calculated worst-case execution time and the source code
annotated with the worst-case path.
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JCopter

The worst-case oriented bytecode optimizer JCopter takes class files as input,
invokes the data-flow analysis and uses the worst-case analysis to guide the
optimizations and emits new Java class files containing the optimized code,
without unused methods or classes. Source line references that cannot be
stored in class files directly (i.e., line numbers for code with a different source
file than the source file of the class containing the code) are stored in a separate
file.

The optimizer currently executes the following steps:

1. Optionally perform a receiver type data-flow analysis

2. Invoke SimpleInliner to eliminate getter, setter and wrapper methods

3. Rerun the data-flow analysis to analyze receiver types and loop bounds,
if enabled

4. Rebuild the call graph using the data-flow results if available

5. Initialize the WCET analysis, initialize the execution frequency analysis
and method cache analysis

6. Perform inlining using the WCA-driven greedy selector

7. Remove unused class members and classes

8. Remove unused constant pool entries

9. Write the application code and the source line references to files

Although the WCA instance in the optimizer could also be used to generate
a WCET report on the optimized code, running the WCA as a separate tool
makes it easier to use a different (i.e. more precise) WCET analysis method
than the optimizer does, and the correctness of the worst-case analysis does not
depend on the correctness of the implementation of transformations of data
structures like the call graph or the type graph in the optimizer. Incorrect
line number references however could make the WCA results unsafe.

5.3 Class Loading

In order to build a type graph and a call graph, all classes that are used
by the application are loaded by the framework before any analyses or code
optimizations are performed. This is done by following all class references in
the constant pools of the class files recursively, starting at the application main
class as well as the JVM implementation classes (the classes that contain the
boot method and the methods that are invoked to execute bytecodes that are
implemented as Java methods). Class names in parameter types of methods
need to be checked too, since the parameter types of methods are stored as
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descriptor strings only and not as class references. So the classes of parameters
do not occur as class reference in the constant pool if those types are not
elsewhere in the class too.

The class loader will find all classes used by the application and the JVM,
since every class that is instantiated or referenced somewhere in a used method
or field needs to have a class reference entry in the constant pool associated
with the method or field, assuming that reflection is not used to instantiate
or access a class. This assumption can be enforced by checking that no class
or method related to reflection is used by the application code.

The loader does not check if methods of the classes to load are actually
used. Classes that are referenced by unused methods or dead code are loaded
too. Unused classes and methods are removed in a separate step as described
in the following section.

5.4 Removing Unused Elements

To reduce the total size of the application and to remove class members and
constant pool entries left over by optimizations, two cleanup algorithms have
been implemented, one to remove unused classes, methods and fields and
another one to remove unused constant pool entries. They are executed by
the optimizer before the class files are written. Unused (debug) attributes
are removed first so that as many constant pool entries as possible can be
removed.

Unused Members Remover

Classes can contain class members (methods and fields) that are never used
by the application, either because the application code (including libraries,
the Java runtime library and the JVM implementation itself) contains unused
methods or fields or because the optimizer inlined a method at all of its call
sites. Classes that are only referenced by unused methods can be removed
too.

To remove unused members, all used members are marked first, starting at
all entry methods like the JVM startup method, the application main method
and run() methods of thread classes. All methods that may be invoked by a
method as well as all fields that are accessed by a method are marked too, and
searched recursively. All classes that are referenced in a method descriptor, a
field type, as superclass or implemented interface as well as classes containing
marked methods are marked as used too. If a class is marked and contains a
static initializer method <clinit>(), the static initializer is processed too.

Finally, all unmarked classes and class members can be removed, with a
few exceptions:

• Fields of hardware objects (classes that are used to map IO device regis-
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ters to object fields) [26] must not be removed, else the mapping between
the fields and the register addresses is destroyed.

• Fields with constant integer values are not removed because they may
be used by source loop bound annotations.

• Non-abstract methods that are only referenced by invoke instructions
but are never invoked are kept but their code attribute is removed and
the method and its class are made abstract.

This can happen if the declared type of a virtual invoke instruction
provides a method implementation for the method reference, but the
data-flow analysis proved that all possible receivers of the call site over-
ride the method in the declared type. To handle this case, the algorithm
marks methods as referenced when they appear as reference at a call
site and are not marked yet. Methods are only processed when they are
marked as used the first time (i.e., when they appear as implementing
method in the call graph at a call site).

Constant Pool Cleanup

If class members or instructions are removed, entries in the constant pool
can become unused. Since the underlying BCEL library does not provide
the means to modify existing entries in the constant pool (this would in fact
require the user to check if the entry he wants to change is not used anywhere
else where the old value is still used), unreferenced entries can also appear due
to code transformations.

To remove such entries, a simple algorithm can be used: First all used
entries are marked by visiting all elements of the class structure (i.e. the
class, its members and their various attributes like the code, the InnerClasses
attribute,. . . ), then the constant pool is rebuilt using only the marked entries.
If there is at least one unused entry in the old pool prior to a used entry,
this will cause at least some indices to change. Hence we need to update all
constant pool references in the class to the new indices too.

Although it would be possible to do this in a single pass by adding entries to
a new constant pool and updating the references to the constant pool whenever
a reference is encountered during a traversal of the class structure, there is a
possibility that updating the constant pool references can increase the code
size if the new constant pool has more than 255 entries. If an instruction (e.g.
ldc) refers to an item with an index of less than 256, then the instruction can
be encoded with two bytes. If the entry gets a new index larger than 255, then
the same instruction requires four bytes (due to the wide opcode). This can
increase the cache miss penalty of the method cache and therefore increase
the WCET of the application, and if the new method code size becomes larger
than the maximum code size, the application cannot be executed on the target
anymore.
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Therefore the entries are added to the new constant pool in the same order
as they appear in the old constant pool after all used entries are found and
before the references are updated. Since the new constant pool only contains
a subset of the entries of the old constant pool, no entry in the new constant
pool has a larger index than its corresponding entry in the old constant pool,
and so the method code size is not increased.

5.5 Source Line Numbers

To calculate a static WCET, the worst-case analysis requires loop bounds for
all loops. The programmer can annotate loops in the source code to improve
loop bounds found by the data-flow analysis or to provide loop bounds if
the data-flow analysis is not used or cannot detect loop bounds. To find the
annotations, the instructions of the loop header must have a reference to the
source code file and the first line number of the corresponding loop statement
in the source code. The Java JVM specification defines attributes to store the
name of the source file for a class and to map instructions to line numbers,
but references to a source file different from the class source file as required
after inlining cannot be stored. This can be solved either by defining custom
attributes or by storing the information in a database file separate from the
class file. To avoid additional entries in the constant pool for attributes that
are only used in the toolchain, the latter approach was implemented.

If the optimizer performs loop transformations, the loop bounds need to
be transformed too [6]. The new loop bounds need to be stored in a similar
way so that the WCA can use the transformed loop bounds instead of the
outdated source annotations.

The source line references are also useful to show the programmer which
statements in the source code contribute to the WCET in the unoptimized or
the optimized code.



Chapter 6

Evaluation

The performance of the implemented WCET-driven inliner was evaluated by
analyzing and executing various benchmark applications. The benchmark ap-
plications were optimized by the optimizer implemented in this thesis. The
WCA was used to calculate a WCET bound for the optimized and the unopti-
mized applications. The benchmarks are discussed in Section 6.1. Section 6.2
presents the results for various optimization configurations.

6.1 Used Benchmarks

The JemBench suite [27] provides three real-world application benchmarks.
Kfl is a controller application used in a rail cargo project. It uses only static
methods and no object allocation. The Lift application is a lift controller,
which uses some virtual invocations. However, objects are only instantiated
during initialization. The UdpIp benchmark is based on an UDP/IP stack
that also uses virtual invocations.

In addition to the JemBench application benchmarks, a small software that
controls a line-follower robot was evaluated. WCET analysis results for the
JemBench application benchmarks and the line-follower software have been
published in [28].

To test the optimizer with a larger application, the Java port of the de-
bie1 (First Standard Space Debris Monitoring Instrument, European Space
Agency1) benchmark was used. The original benchmark is written in C and is
based on the on-board software of the DEBIE space debris impact monitoring
instrument for satellites. The benchmark has been ported to Java using an ob-
ject oriented approach. WCET analysis results of the unoptimized benchmark
were published in [34].

The debie benchmark consists of several interrupt handlers and periodic
tasks. Three interrupt handlers are used for telecommand reception, telemetry

1https://gate.etamax.de/edid/publicaccess/debie1.php
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Name Description Methods

LineFollower Simple line-following robot 9

Kfl The Kippfahrleitung controller 46
Lift A lift controller 19
UdpIp A UDP/IP benchmark 39

Debie 1 jDebie telecommand interrupt handler 36
Debie 2 jDebie transmission interrupt handler 24
Debie 3 jDebie hit detection interrupt handler 28
Debie 4 jDebie telecommand execution task 68
Debie 5 jDebie acquisition task 82

Table 6.1: Overview over the used benchmarks

transmission and hit trigger handling. Two periodic tasks process the data
provided by the interrupt handlers. The benchmark also includes a monitoring
task, but meaningful flow constraints are not available for all loops, therefore
this task has not been analyzed.

Table 6.1 gives an overview over the used benchmarks as well as the tasks
and interrupt handlers of the debie benchmark. The table also lists the number
of methods in the call graph of the real-time code to optimize. This includes
methods in the JVM that are called to execute bytecode instructions that are
implemented as Java methods.

The WCA tool is used to find a WCET bound for the real-time tasks
of the optimized and the unoptimized benchmark applications for the JOP
platform, by using the global IPET-based analysis and the at most one miss
cache approximation. The data-flow analysis is used to find receiver types and
loop bounds. Only context-insensitive analyses have been used, since for the
simple benchmarks there is no advantage in using context-sensitive analyses,
and for the jDebie benchmark a context-sensitive analysis requires too much
memory. The benchmarks where executed on JOP to measure the execution
time of the tasks. The results give the maximum execution time that has been
measured. However, since the tests are not exhaustive and the execution time
depends on the cache content of the processor, the measured execution times
cannot be guaranteed tp show the real WCET. All analyzed and measured
execution time results in this chapter are given in numbers of cycles.

6.2 Results

First all benchmarks were optimized using only the SimpleInliner. Table 6.2
shows the measured execution times and the analyzed WCET of the unop-
timized and the optimized benchmarks. The SimpleInliner optimizes every
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Benchmark Unoptimized SimpleInliner
Measured WCET Measured WCET Inlined

LineFollower 2232 2287 2232 (-0%) 2287 (-0%) 81

Kfl 10040 22251 10040 (-0%) 22251 (-0%) 94
Lift 5007 7603 5007 (-0%) 7603 (-0%) 81
UdpIp 7959 127501 7934 (-0%) 127069 (-0%) 97

Debie 1 6977 17717 6043 (-13%) 15518 (-12%) 564
Debie 2 6601 9104 6177 (-6%) 8409 (-8%) 564
Debie 3 67666 132353 61160 (-10%) 123785 (-6%) 564
Debie 4 24652 26863 21496 (-13%) 23063 (-14%) 564
Debie 5 1288962 1382300 659143 (-49%) 750158 (-46%) 564

Table 6.2: Execution times for unoptimized code and after SimpleInliner

method in the code, including unused methods, methods in the JVM, and
initialization code. The number of inlined call sites is therefore quite high,
even if the actual real-time tasks contain only a few methods. The JemBench
applications do not use getter, setter and similar methods, the SimpleInliner
therefore has nearly no impact on the execution times for those benchmarks.
For the jDebie benchmark, which has been written in a more object-oriented
style, the SimpleInliner is able to reduce both the measured execution time as
well as the WCET bound by about 6% to 14% for the interrupt handlers and
the telecommand task. The execution time of the aquisition task (Debie 5) is
nearly cut in half by inlining all small methods.

Optimizing multiple WCA targets at the same time is currently not sup-
ported by the optimizer. We therefore start the optimizer for each of the
jDebie real-time tasks separately, using the output of the previous optimiza-
tion run as input of the next run. Optimizing for a different target method
could have a negative influence on the WCET of the already optimized target
methods. However, this was not the case with the jDebie benchmark. Opti-
mizing any single task of the jDebie benchmark produced the same execution
time for that task as when all tasks of the benchmark were optimized.

Evaluation of the Greedy Inliner

After the initial optimization with the SimpleInliner, the greedy inliner was
used to optimize the remaining call sites that were not handled by the Sim-
pleInliner. Figure 6.1 and Figure 6.2 show the effect of the greedy inliner on
the execution time of the benchmark applications for various configurations of
the inliner. The figures plot the WCET bounds analyzed by the WCA tool,
the maximum execution times measured on JOP, and the cache miss costs as
estimated by the WCET analysis, relative to the WCET results achieved by



72 CHAPTER 6. EVALUATION

 0

 20

 40

 60

 80

 100

 120

Sim
pleInliner

A
C
ET, at m

ost one m
iss

W
C
ET, at m

ost one m
iss

W
C
ET, alw

ays m
iss

A
C
ET, alw

ays hit

W
C
ET, alw

ays hit
Sim

pleInliner
A
C
ET, at m

ost one m
iss

W
C
ET, at m

ost one m
iss

W
C
ET, alw

ays m
iss

A
C
ET, alw

ays hit

W
C
ET, alw

ays hit
Sim

pleInliner
A
C
ET, at m

ost one m
iss

W
C
ET, at m

ost one m
iss

W
C
ET, alw

ays m
iss

A
C
ET, alw

ays hit

W
C
ET, alw

ays hit
Sim

pleInliner
A
C
ET, at m

ost one m
iss

W
C
ET, at m

ost one m
iss

W
C
ET, alw

ays m
iss

A
C
ET, alw

ays hit

W
C
ET, alw

ays hit

E
x
e
cu

ti
o
n

 t
im

e
 (

%
)

WCET Cache Measured

UdpIpLiftKflLineFollower

Figure 6.1: Execution times for various greedy inliner settings

applying the SimpleInliner only.
The following optimizer configurations are used in Figure 6.1 and Fig-

ure 6.2:

• SimpleInliner: This configuration represents the case where the greedy
optimizer is not used, and is included in the figures for reference. The
execution times shown for this configuration are the same as in Table 6.2.

• ACET, at most one miss: The ACET-driven greedy inliner is used,
i.e., no WCA results are used for optimization decisions. The cache costs
are approximated using a cache analysis which classifies all cache access
in the all-fit region as at most one miss. All other cache accesses are
classified as always miss.

• WCET, at most one miss: In this configuration, the WCET-driven
greedy inliner is used, i.e., only candidates on the current WCEP are
optimized. The cache cost estimation is the same as in the previous
configuration.

• WCET, always miss: Again, the WCET-driven greedy inliner is used,
but all cache accesses are classified as always miss, which simplifies the
cache cost analysis but provides a much more conservative cost estima-
tion. Inlining only changes cache costs at the caller and the adjacent
nodes in the call graph.
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Figure 6.2: Execution times for various greedy inliner settings

• ACET, always hit: The ACET-driven greedy inliner is used, and all
cache accesses are classified as always hit , i.e., the cache costs are not
taken into account. This is the most aggressive configuration.

• WCET, always hit: Only candidates on the WCEP are optimized,
but cache costs are ignored. This is a very aggressive configuration of
the WCET-driven inliner, but in contrast to the previous configuration,
optimization candidates outside the WCET-critical code are ignored.

In all configurations, we optimize all methods reachable from the WCA
target method, i.e., the code that implements the real-time tasks of the bench-
marks. The inliner uses a global selection strategy, i.e., it searches for the best
candidates in all methods in the real-time code. The call graph is not traversed
in a fixed order for optimization.

The LineFollower application is small enough so that the whole mission
critical code fits into the cache. The inliner is able to inline almost all can-
didates. The optimizer configurations have no impact on the set ofi the op-
timized call sites, the execution times resulting from the optimization are
therefore the same for all configurations.

The three benchmark applications of the JemBench suite are large enough
so that different inliner configurations can lead to different sets of inlined call
sites. However, the benchmarks do not contain many methods that can be
inlined without a negative impact on the WCET bound analysis. The more
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Figure 6.3: Intermediate WCET analysis results during optimization of UdpIp
with WCET-driven inliner and always hit cache analysis

precise at most one miss approximation results in the largest speedups for
those applications.

The less precise cache approximations cause the inliner to optimize more
call sites, as shown in Table 6.4 below. For the UdpIp benchmark, this even
results in a major increase of the WCET bound. Figure 6.3 shows the WCET
bounds calculated after every inlining operation by the WCA that drives the
optimizer. The final increase of about 15% of the WCET after inlining is
caused primarily by only three candidates, for which the optimizer estimated
the impact on the WCET incorrectly. If the optimizer undid such individual
bad decisions, less precise cache approximations could still be sufficient to
optimize the remaining call sites.

For the jDebie benchmarks the situation is quite different. Again the less
precise cache approximations lead to more call sites being inlined. However,
in contrast to the JemBench applications this has a positive overall impact on
the WCET. More aggressive optimization configurations lead to lower WCET
bounds as well as lower measured execution times.

The total number of call sites and inlining candidates found during opti-
mization by the WCET-driven greedy inliner are listed in Table 6.3 for every
benchmark. The inlining candidates are those call sites that were success-
fully devirtualized and that passed the various inlining checks presented in
Section 4.1. The number of candidates depends on the optimization settings,
since inlining more call sites also creates more inlining candidates in the in-
lined code. Table 6.3 also shows that almost all call sites were successfully
devirtualized using the context-insensitive receiver type data-flow analysis,
even in the object oriented benchmarks.

Table 6.4 lists the number of call sites inlined in each benchmark, for vari-
ous optimization settings. For reference, the table also includes the number of
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Benchmark Call Sites Runtime
Not resolved Candidates Total Greedy

LineFollower 0 13 26 0.5 s

Kfl 0 122 135 10 s
Lift 0 21 27 1 s
UdpIp 1 55 84 1 s

Debie 1 1 15 73 1.5 s
Debie 2 1 11 40 1 s
Debie 3 0 22 34 0.5 s
Debie 4 0 56 198 3 s
Debie 5 0 107 181 34 s

Table 6.3: Results after WCET-driven inlining

Benchmark WCET-driven ACET-driven
at most one miss always hit at most one miss always hit

LineFollower 11 / 13 13 / 15 13 / 15 13 / 15

Kfl 17 / 122 40 / 120 21 / 123 59 / 124
Lift 9 / 21 11 / 17 10 / 17 11 / 17
UdpIp 4 / 55 16 / 61 16 / 60 44 / 63

Debie 1 5 / 15 9 / 15 6 / 15 11 / 15
Debie 2 4 / 11 6 / 11 4 / 10 9 / 10
Debie 3 4 / 22 17 / 22 5 / 22 18 / 22
Debie 4 8 / 56 14 / 56 17 / 55 54 / 56
Debie 5 29 / 107 74 / 98 30 / 115 74 / 93

Table 6.4: Inlined call sites / candidates for various optimization settings

inlining candidates, i.e., the number of call sites that passed the initial inlin-
ing checks. We can see that the WCET-driven inliner inlines less candidates
than the ACET-driven inliner, i.e., the inliner that does not use WCA feed-
back. The cache cost estimation has a major impact on the number of call
sites that are inlined. As we have seen in the execution time results of the
jDebie benchmark above, the at most one miss approximation leads to a too
conservative gain estimation. Only a few of the candidates are inlined when
that approximation is used.

The cache approximation that classifies all cache accesses in the all-fit re-
gion as always hit and all other cache accesses as always miss is not included
in the results presented here, since in most cases the performance of this ap-
proximation is similar to the always miss cache approximation, and in the
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remaining cases it is similar to the more precise at most one miss approxima-
tion. There was no benefit over the always miss cache approximation for any
of the benchmarks.

Also, optimizer configurations that use a top-down or a bottom-up selec-
tion strategy are not shown here as there was no real advantage in using those
strategies. The top-down strategy creates more inlining candidates since it
always inlines callees that have not been optimized before, in contrast to the
bottom-up strategy, which inlines candidates in the callee before the callee is
inlined at any call site. The top-down strategy may optimize call sites both
in the inlined code and in the original callee separately. This requires more
updates of the WCA results, which slows the optimizer down slightly. On
the other hand, the results of the top-down strategy are similar to the global
selection strategy.

The bottom-up strategy results in higher cache miss costs and a higher
WCET for three benchmarks. The results are similar to the top-down strategy
for the other benchmarks. This suggests that iterating the call graph in a fixed
bottom-up order is not a good strategy for architectures that employ a method
cache, as it increases the code size primarily at the leaves of the call graph
and therefore reduces the size of the all-fit region. The negative impact on
the cache costs is larger than the advantage from the fact that bottom-up
favors call sites that potentially have the highest execution frequencies.2 The
top-down strategy on the other hand increases cache costs primarily at the
top of the call graph, which leads to similar cache costs as the global selection
strategy for all benchmarks, with the exception of the Debie 5 benchmark. For
this benchmark the top-down strategy results in about 12% lower cache costs
as the global strategy. However, as the cache costs contribute to only a small
fraction of the WCET bound, the total WCET of the Debie 5 benchmark was
only slightly better when the top-down strategy was used, compared to the
global selection strategy.

Optimizer Performance and Application Size

Table 6.5 and Figure 6.4 show the total speedup of the WCET that has been
achieved by applying both the SimpleInliner and the greedy inliner for every
benchmark, as well as the inliner configuration used to achieve the result. It
should be noted that although the WCET-driven inliner achieves the best re-
sults in most cases, the difference to the ACET-driven inliner is usually very
small, as seen in Figure 6.1 and Figure 6.2. JemBench has already been man-
ually optimized, therefore it provides less opportunities for optimization than

2It is possible that some leaves of the call graph have a lower execution frequency than
their callers. This is the case if all callers of a method invoke that method only in execution
contexts with a low execution frequency. However, in the general case the leaves of a call
graph will more likely include methods that are called at many call sites with a high execution
frequency, such as library methods or JVM methods.
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Benchmark Speedup Inliner configuration

LineFollower 2.05 any

Kfl 1.09 WCET-driven, at most one miss
Lift 1.15 ACET-driven, at most one miss
UdpIp 1.01 WCET-driven, at most one miss

Debie 1 1.22 WCET-driven, always miss / always hit
Debie 2 1.28 WCET-driven, always hit
Debie 3 1.54 WCET-driven, always miss
Debie 4 1.69 WCET-driven, always hit
Debie 5 2.38 WCET/ACET-driven, always hit

Table 6.5: Maximum total WCET speedup and the corresponding optimizer
configuration

the jDebie benchmark and requires a more conservative cache approximation
to avoid a degradation of the WCET, as we have seen before.

The execution times of the WCET-driven greedy optimizer are listed in
Table 6.3. They were measured on a PC with an AMD Phenom II processor
at 2.8 GHz and 8 GB of RAM. They only include the runtime of the greedy
optimizer, and do not account for any other phases of the optimizer. The
runtime is primarily determined by the runtime of the WCET analysis used
to update the new WCEP after every optimization. If the WCA is disabled,
the greedy optimizer executes within a second for all benchmarks.

The rest of the optimizer takes three seconds for loading the application,
for the call graph construction and for executing the SimpleInliner, as well as
removing unused code and writing the code back to disk. After optimization,
the WCA was started separately to analyze the final result, which also took
about three to five seconds per benchmark. Executing the whole toolchain,
including compiling the Java sources of the benchmarks takes about 15 seconds
for a small application like LineFollower, and about 50 seconds for optimizing
and analyzing all five tasks of the jDebie benchmark.

The data-flow analysis is not included in those numbers. The results of
the data-flow analysis have been pre-calculated for all benchmarks. The ex-
ecution time of the data-flow analysis ranges from a few seconds for a small
application like LineFollower to about 20 minutes for the jDebie benchmark.
The inliner transforms the data-flow analysis results during optimization and
provides the results to the WCA. Therefore the WCA used to calculate the
final WCET bound does not need to run the data-flow analysis a second time.
This feature is disabled by default to prevent errors in the data-flow result
transformations from influencing the final WCET analysis. However, in the
current implementation, passing data-flow results from the inliner to the WCA



78 CHAPTER 6. EVALUATION

Benchmark Unoptimized Unused code After inlining
removed

LineFollower 61 kB 25 kB 23 kB

Kfl 64 kB 28 kB 27 kB
Lift 61 kB 26 kB 24 kB
UdpIp 65 kB 28 kB 26 kB

Debie 142 kB 99 kB 97 kB

Table 6.6: Program size before and after optimizations
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Figure 6.4: Best total speedup and code size reduction compared to the un-
optimized benchmarks

does not work if unused code has been removed. In this case, the data-flow
analysis needs to be executed once per target method to optimize and one
additional time for the final WCA, e.g., a total of six times for the jDebie
benchmark.

Table 6.6 lists the size of the generated binary for the benchmark appli-
cations before and after unused code has been removed. The program binary
includes the bytecode of the methods, information about the class hierarchy
and the constant pools, both from the application itself and the part of the
JVM that is implemented in Java. Interestingly, the program size decreases
after inlining. This is due to the fact that after inlining more methods and
classes become unused and are therefore removed. The various optimizer
configurations have only little impact on the program size of the benchmark
applications. In both the optimized and the unoptimized program binaries,
about 60% of the program binaries consist of the bytecode of the methods.
The overall code size reduction of the various benchmarks after optimization,
compared to the unoptimized code size, is shown in Figure 6.4.



Chapter 7

Conclusion

Modern optimizers are designed to improve the ACET of applications. For
real-time applications however, optimizing the WCET is of more interest.
WCET-driven optimization is commonly done by focusing the efforts on the
WCEP that is found by a WCET analysis. This is complicated by the fact
that the WCEP can change during the code optimization.

Many standard ACET optimizations have a positive effect on the WCET
if the code size increase is very low. However, on architectures that employ
a method cache, optimizations that can lead to a code size increase must
be used carefully to avoid increasing the cache costs beyond the gain of the
optimization.

To reduce the invocation costs of JOP applications, a WCET-driven byte-
code inliner was implemented. To facilitate data exchange between analysis
tools and the optimizer, and to avoid redundant code in the toolchain, a new
framework was created for the tools. An existing worst-case analysis and an
existing data-flow analysis were integrated into a new optimizer using the new
framework.

An optimization that does not increase the code size and that does not
increase the execution time of any control-flow path never increases the WCET
on JOP. Based on this observation a specialized inliner was implemented that
is used to inline typical getter, setter and wrapper methods and that does not
require feedback from the WCA.

A second inliner was created to handle the more complex case where the
code size of the caller increases due to inlining. Feedback from the WCA can
be used to optimize only call sites on the WCEP. A cache analysis is used to
estimate the gain that is achieved by inlining a call site.

The inliner prioritizes candidates that have a small impact on the appli-
cation size by selecting candidates with the highest gain to code size increase
ratio first. However, for the evaluated benchmarks the code size actually de-
creases after inlining when unused code is removed. The inliner also avoids
large code size increases because the size of the methods directly determines
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the cache miss costs and hence the gain of the optimizations.
The achieved speedup depends on the benchmark. The small LineFollower

benchmark fits completely into the method cache. By inlining nearly all call
sites, the WCET bound was cut in half. For the manually optimized Jem-
Bench application benchmarks, the greedy inliner reduced the WCET bound
by up to 15%. For the more object-oriented jDebie benchmark application,
the optimizer was able to achieve speedups from 1.22 up to 2.38, partially due
to the good performance of the SimpleInliner.

The benchmark evaluations suggest that a precise cache cost analysis is
too conservative in some cases. On the other hand, ignoring the cache costs
can lead to optimizations that cause an increase of the WCET in some cases.
Focusing on the WCEP during optimization leads to better results than an
ACET-oriented optimizer, but it also increases the runtime of the optimizer
due to the frequent WCET analyses required to keep the analyzed WCEP up
to date, while the faster ACET-driven optimizer also achieves similar WCET
improvements in many cases, depending on the benchmark and the cache
approximation.

Future Work

There are several ways in which the current optimizer can be improved. First
of all, it would be interesting to implement method cloning and method split-
ting to provide optimizations to reduce the cache costs. Method cloning could
be used to create copies of methods for specific call contexts. The copies
can then be optimized for the specific call contexts. Method splitting could
be used to reduce the size of methods and to move code that is not on the
WCEP into a separate method. This would also allow us to generate exe-
cutable code even if the original application contained methods that are too
large for the method cache. Deciding when to use method splitting or method
cloning however is not a trivial task and needs support from the method cache
analysis. In combination with method inlining, the three optimizations can
be seen as a single optimization that re-partitions the supergraph into new
methods so that both the method cache costs and the invocation costs are
minimized.

To avoid an increase of the WCET during optimization deoptimization
should undo optimizations if the WCET analysis calculates a larger WCET
after optimization. This would allow us to optimize code more aggressively
by using less conservative gain estimations.

It would also be interesting to develop better WCET gain estimations, ei-
ther by using the WCA to calculate the WCET gain for all candidates in ad-
vance, or by calculating the execution time of paths that bypass the optimized
code and are therefore potential new worst-case paths after the optimization.
However, the final gain of an optimization also depends on future optimiza-
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tions that may or may not leverage the optimization potential exposed by the
optimization, and a precise WCET gain estimation is very expensive. There-
fore an aggressive WCEP-driven optimizer that incorporates deoptimization
could provide a better overall performance.

The candidate selector should be improved so that it not only tries to
optimize the current WCEP but also other paths that might become new
worst-case paths during optimization. Then those other paths may be less
likely to prevent the WCET from being decreased by optimizations of the
WCEP by becoming the new WCEP.

Interaction with a full-blown WCA is very costly and should be kept to
a minimum. Even when a precise WCA is used after every optimization to
determine the new WCEP, the actual WCET gain of an optimization is cur-
rently only known after the optimization has been applied and analyzed. The
estimation of the actual WCET gain for every candidate is either very im-
precise or very costly. To the author’s knowledge, all current WCET-driven
optimization frameworks use feedback from a separate WCET analysis to
drive optimization decisions. Integrating the optimization decisions into the
IPET-based WCET analysis instead would reduce the number of interactions
required between the optimizer and the WCET analysis, while improving the
quality of the optimization decisions. The disadvantage of such an approach
is that the WCET analysis requires precise knowledge of the code transfor-
mations performed by the optimization, and that the resulting ILP problem
is probably too large to be solved as whole.

Therefore it would be interesting to explore a third approach, where the
precise WCA is used in combination with the data-flow analysis to only pro-
vide an initial solution, as well as timing information for basic blocks and
flow facts such as loop bounds. Those initial results are used as input for
an analysis designed to support the optimizer. A comparatively simple and
imprecise high-level WCET analysis that integrates the optimization decision
problem might even be more efficient than a very precise WCA driving a sim-
ple heuristic optimizer iteratively, especially on target architectures that are
very WCET analysis friendly, such as JOP. For example, a specialized WCET
analysis could be designed to solve the supergraph repartition problem pre-
sented above. Another example would be a WCET analysis that not only
provides the worst-case path, but also the execution times of other paths to
the optimizer, so that the optimizer could calculate the maximum WCET gain
that is achievable by optimizing only a single path or a set of paths.

The optimizer could be improved by implementing a number of standard
code optimization techniques that have very little impact on the code size,
such as loop interchange, copy propagation, optimization of non-volatile field
accesses, or removal of redundant load/store instructions. While those opti-
mizations are not very interesting from a scientific point of view since they are
all well known optimizations and do not require interaction with the WCET
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analyzer, realizing them will require some work on the optimization framework
since currently it does not provide all analyses and data structures required by
such optimizations. However, using a separate optimization framework such
as Soot to perform non-WCET-critical optimizations instead could remove
line number information from the class files, which would prevent the WCET
analyzer from reading source code flow fact annotations.

The current optimizer implementation is restricted to a single WCET tar-
get method, i.e., it only tries to reduce the WCET for a single root method.
Other targets can only be optimized by using either the ACET optimizer
without WCA feedback, or by executing the optimizer multiple times for ev-
ery WCA target method on its output. While it would be possible to restart
the WCA-driven optimizations internally for every target method separately,
optimizing for a second WCA target method could have a negative impact
on the WCET of the previous target method. The current implementation
of the WCA does not allow to create multiple WCA instances for different
target methods at the same time, which could allow the optimizer to check
if a candidate is on the WCEP of any target method, or to prefer candidates
which would improve the WCET of more than one WCA target method. A
solution could be to extend the WCET analysis to support multiple WCA
targets, although this is not a trivial task.
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