
D I S S E R T A T I O N

Deterministic Numerical Solution

of the

Boltzmann Transport Equation

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Karl Rupp

Linke Bahnzeile 7/6
A-2486 Pottendorf-Landegg, Österreich
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Kurzfassung

Die kleinen Abmessungen moderner Halbleiterbauelemente machen eine direkte Messung
von Ladungstransportdetails unmöglich. Eine präzise Simulation des Ladungsträgertrans-
ports im Inneren des Bauelements ist daher für das Verstehen der physikalischen Vorgänge
und für weitere Effizienzsteigerungen unerlässlich. Für diesen Zweck ist das Drift-Diffusions-
modell lange das Zugpferd der Halbleitersimulation gewesen, allerdings verliert es durch die
voranschreitende Miniaturisierung und der einhergehended Reduktion der Streuung von
Ladungsträgern am Kristallgitter oder anderen Ladungsträgern seine Gültigkeit.

Der genannte Genauigkeitsverlust kann durch eine Lösung der Boltzmannschen Trans-
portgleichung anstelle der von ihr abgeleiteten vereinfachten Transportmodelle kompen-
siert werden, solange Quanteneffekte hinreichend klein sind. Die Hochdimensionalität der
Boltzmannschen Transportgleichung macht eine direkte numerische Lösung jedoch sehr dif-
fizil. Aus diesem Grund hat sich die stochastische Monte Carlo Methode etabliert, die
die Berücksichtigung vieler Details erlaubt, aber zu langen Rechenzeiten führt und andere
Nachteile mit sich bringt, welche in dieser Form bei makroskopischen Transportmodellen
nicht auftreten. Der im Rahmen dieser Arbeit behandelte deterministische numerische
Lösungsansatz mittels einer Entwicklung in harmonische Kugelflächenfunktionen leidet
nicht unter den Nachteilen der Monte Carlo Methode, gleichzeitig kann aber eine prak-
tisch gleiche Genauigkeit erreicht werden.

Im Laufe dieser Arbeit werden weitere Verbesserungen der Methode der Entwicklung
in harmonische Kugelflächenfunktionen vorgeschlagen. Zuerst wird eine Erweiterung auf
Streuungen zwischen Ladungsträgern präsentiert, die auch für höhere Entwicklungsgrade
arbeitet. Danach wird die Struktur der resultierenden Gleichungen untersucht und eine
Methode zur effizienten Speicherung der Systemmatrix vorgestellt. Im Anschluss werden Er-
weiterungen auf unstrukturierte Gitter unter der Verwendung beliebiger Entwicklungsgrade
vorgeschlagen. Um den Rechenaufwand klein zu halten, werden variable Entwicklungsgrade
und adaptive Kontrollstrategien eingeführt. Dem Trend hin zu parallelen Rechenarchitek-
turen wird durch die Vorstellung eines Schemas für das parallele Vorkonditionieren der Sys-
temmatrix Rechnung getragen. Die Kombination der vorgestellten Techniken ermöglicht
die erstmalige dreidimensionale Simulation eines Feldeffekttransistors mit Hilfe der Meth-
ode der Entwicklung in harmonische Kugelflächenfunktionen. Summa summarum erlauben
die vorgeschlagenen Verbesserungen eine Reduktion des Speicherbedarfs um eine Größen-
ordnung und der Ausführzeiten um zwei Größenordnungen.
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Abstract

A direct measurement of the details of charge transport in semiconductor devices is impos-
sible due to the small characteristic lengths of semiconductor devices. Therefore, accurate
simulations are essential for understanding the physical effects inside the device and for
further improvements of device performance. While the drift-diffusion model has long been
the workhorse of semiconductor device simulation, the ongoing miniaturization implies that
carrier transport through the device is no longer dominated by scattering with the crystal
lattice or other carriers, which invalidates the model.

The loss in accuracy can be compensated by a numerical solution of the Boltzmann
transport equation instead of simplified transport models derived from its moments, pro-
vided that quantum mechanical effects are sufficiently small. However, the high dimension-
ality of the Boltzmann transport equation makes direct numerical solutions very difficult.
Consequently, the most commonly used method is the stochastic Monte Carlo method,
which allows for the inclusion of many details. However, the method leads to excessive ex-
ecution times and other problems, which are absent in macroscopic transport models. The
deterministic numerical solution approach based on spherical harmonics expansions con-
sidered throughout this thesis does not suffer from the disadvantages of the Monte Carlo
method, yet it provides virtually the same accuracy.

Further improvements of the spherical harmonics expansion methods are proposed in
this work. First, a method for the inclusion of carrier-carrier scattering at arbitrary ex-
pansion orders is proposed. Then, the structure of the resulting equations is analyzed and
a scheme for the efficient storage of the resulting system matrix is proposed. The method
is then extended to unstructured grids at arbitrary expansion order. Variable-order ex-
pansions and adaptive schemes are proposed in order to keep computational costs under
control. Moreover, the trend towards parallel computing architectures is addressed by the
development of a parallel preconditioner scheme. With the combination of the presented
schemes it is shown for the first time that the simulation of truly three-dimensional field-
effect transistors using the spherical harmonics expansion method is feasible. Overall, the
improvements suggested in this thesis lead to a reduction of memory requirements by one
order of magnitude and execution times by two orders of magnitude.
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Preface and Acknowledgement

This thesis summarizes my contributions to the enhancement of the spherical harmonics
expansion (SHE) method developed during my doctoral studies. While microelectronics is
at the heart of this thesis, it also touches on a number of related scientific fields: On the
one hand, the ubiquitous solid-state physics provides the framework for all investigations
of carrier transport in semiconductors, while on the other hand rather pure mathematics
provides approximation results for the expansion of a function into spherical harmonics. In
between, a considerable amount of scientific computing is also covered using the toolbox
of modern programming paradigms. The latter is beyond the scope of this work and not
further discussed, even though I consider it as one of the keys for extending the SHE method
to three spatial dimensions.

The last three years consisted of a number of key events. I wish to reflect them in the
following in order to also document the timeline that has lead to the hard scientific facts
discussed in the remainder of this work. A discussion of whether luck, fate or something
else was the main trigger for each of these events is beyond the scope of this thesis and thus
left to the interpretation of the reader.

It all started in late 2008 with Prof. Tibor Grasser sending me a paper of Prof. Christoph
Jungemann. Prof. Grasser was convinced that the SHE method is the ideal topic for a
microelectronics-mathematics hybrid like myself. In retrospective, I am very glad that he
has not mentioned at that time that other students had failed to achieve notable progress
while working on the method. Consequently, the year 2009 was mostly devoted to making
myself familiar with the existing literature and to summarizing my gained knowledge in
a master’s thesis supervised by Prof. Ansgar Jüngel. Even though only one-dimensional
n+nn+-diodes were investigated numerically, first experiences with the peculiarities of the
Boltzmann transport equation could already be gathered. Also, the mathematical focus led
to first results on the coupling structure of the SHE equations.

In February 2010 I was given the chance to visit the group of Prof. Jungemann at the
Bundeswehr University in Neubiberg, Munich. The first results on the coupling structure
could be refined, yet my personal aim for the stay was to have a first implementation
of a spatially two-dimensional SHE simulator ready when heading back to Vienna. This
essentially required to restart from scratch and to come up with a two-dimensional drift-
diffusion implementation in order to have a reasonable initial guess for the electrostatic
potential. Moreover, an incomplete LU factorization preconditioner for the convergence of
the iterative solvers had to be implemented. As a huge fan of winter sports, it required a
lot of discipline to keep myself on coding in the evenings rather than watching the Olympic
Winter Games, which were held in Vancouver during that time and thus broadcasted in
Europe during the evening. The fruits of spending my time with my laptop and C++
instead of the television became visible on the last day of my stay, where the spatially two-
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dimensional simulation of a simple n+nn+-diode was completed. This paved the way for
improvements on the SHE method in the months to come. I wish to thank Prof. Jungemann,
Mr. Hong, Mr. Kovarik, Mr. Kraus, Mr. Matz, Mr. Thao and Mr. Dinh for hosting me in
such a productive atmosphere.

It soon became apparent that a parallel preconditioner for SHE should be the next step.
I could convince my colleague and friend Florian Rudolf (‘kleiner Meister ’), who shares a lot
of interest in programming graphics adapters with me, to work on a master’s thesis inves-
tigating the usefulness of OpenCL for general purpose computations on graphics adapters
and multi-core central processing units. We spent two intensive weeks of implementing
linear algebra, which after some final polishing resulted in the first release of ViennaCL.
While the iterative solvers showed a speed-up of up to one order of magnitude compared to
conventional single-threaded implementations, the incomplete LU factorization could not
be accelerated properly due to its serial nature, thus prolongating the hunt for a parallel
preconditioner for SHE.

During that time Josef Weinbub joined the development of ViennaCL. I could benefit a
lot from his advanced knowledge of generic programming, which has entered ViennaCL on
the one hand, and which also allowed me to reconsider the internals of the SHE simulator.
Even though he had no direct contact with the SHE simulator and still considers it ‘evil
witchcraft’, always leading to a smile on my face, he had a high influence on the coding
style and design. I am deeply indebted for his indirect contributions, of which he may not
be fully aware of.

Former experiences with finite element implementations and the now increased generic
programming skills paired with experiences from subsequent ViennaCL releases led to the
decision of a rigorous orthogonalization of software components in order to cope with the
complexities of numerical methods in general and the SHE method in particular. It was
clear to me that this decision required additional implementation effort at the beginning,
but will pay off in the long run. At the end of 2010, ViennaData was essentially finished,
and ViennaGrid reached a functional state in January 2011.

In February 2011, the combination of the individual software components ViennaCL for
linear algebra, ViennaGrid for mesh management and ViennaData for the storage of quan-
tities on mesh elements have all of a sudden lead to an enormous pace in the development
of the SHE simulator ViennaSHE. Since the former three libraries have been tested and
verified within other applications as well, ViennaSHE could be kept lightweight and with
a focus on the algorithms specific to the SHE method only. This has reduced the time
required for debugging to a bare minimum, simply because the amount of code in which
a particular bug may show up was always very small and expressive. By the beginning of
March, adaptive variable-order SHE as well as a parallel preconditioner were implemented
and verified for a one-dimensional n+nn+-diode.

A little later in April, Prof. Grasser challenged me by asking for the possibility to extend
ViennaSHE to unstructured grids and to extend the still brand-new adaptive variable orders
and parallelization. Since this question was not new to me at that time, I replied that I
expected the results from the one-dimensional evaluation to be transferable to spatially
two-dimensional device simulations, hence it should work out. However, when he added
that we should submit results for fully three-dimensional devices, I was very doubtful about
this being possible given the other obligations I had until the deadline at the end of June.
Instead of finding reasons why it definitely cannot be possible, I started with the required
implementations. Without giving details about a race against time which ended 24 min-



utes before the extended deadline, I succeeded in submitting the results – and finally got
accepted. Therefore, I wish to thank Prof. Grasser for continuously directing me in the
right directions, and for being a positive example of a person who lives passion for science
and his family.

I also wish to thank Prof. Ansgar Jüngel for his support and excitement whenever
I reported new functionalities of ViennaSHE. In particular, he had been eagerly looking
forward to full three-dimensional device simulations using the SHE method from the very
beginning, hence I am very glad that it indeed all worked out. My thanks also go to
Prof. Siegfried Selberherr, whose wide range of scientific sight and advise as well as his
desire for highest quality I highly appreciate. Even though he is not my doctoral advisor,
he always provided helpful guidance and plenty of valuable suggestions throughout my
studies. I am also indebted to Prof. Erasmus Langer, who does a great job as head of
the Institute for Microelectronics and cared for a fruitful environment especially during the
financial crisis. I highly enjoyed sharing a room with Dr. Hajdin Ceric and Dr. Roberto
Lacerda de Orio during the first half of my doctoral studies and wish to thank them for
many interesting discussions. Markus Bina has been highly motivated and interested in
joining the development of ViennaSHE from the day he joined the institute, but due to
other obligations he had to restrict to verbally sharing his experiences with MinimosNT

and giving advice on potential user requirements for ViennaSHE. I highly appreciate his
input and look forward to the near future, which will finally allow him to actively join the
development. In order to keep a reasonable scope of this preface, I collectively thank my
co-workers at the Institute for Microelectronics and the Institute for Analysis and Scientific
Computing for a respectful working environment.

A large amount of this thesis has been written at the Gasthof Schlagobersbauer in
Alpl, Styria, home town of the Styrian poet Peter Rosegger. I express my gratitudes to
Fam. Leitner, who ensured that I can fully focus on my writing. Nonetheless, the subsequent
pages cannot compete with the literary excellence of Rosegger’s work.

The high level of motivation during my work on and around ViennaSHE would have been
impossible without the deliberate and highly enjoyable distractions in the form of various
gatherings and events with my friends, such as Neujahrs-LAN, birthday parties or evenings
spent with cooking and/or sufficiently large amounts of exotic food. Thank you very much.

As a first quantum of return for unconditional support during my studies, I hope that
my whole family can enjoy the completion of this thesis with me. In particular, and most
importantly, I wish to thank Doris for her love and the tremendous amount of patience she
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Notation

Symbols

Symbol Meaning

R set of real numbers
‖ · ‖ norm of the argument
| · | modulus of the argument
O(·) Landau symbol
Ω unit sphere
θ colatitude (polar angle)
ϕ longitude (azimuth)
dΩ unit sphere surface element, sin θ dθ dϕ
eθ, eϕ unit vectors w.r.t. θ and ϕ
∇ Nabla operator
∆ Laplace operator
A,B matrices (capital letters, bold)
v,w vectors (lowercase, bold)
Y l,m real valued spherical harmonic of major index l and minor

index m
Xl,m spherical harmonics expansion coefficient to Y l,m of the

quantity X
δi,j Kronecker delta
δ(·) delta distribution
T triangulation of the simulation domain
B Voronoi box grid of T
Bi a box from the adjoint box grid B

B̃ dual box grid of B

B̃i,j a box from the box grid B overlapping Bi and Bj

Ai,j interface area between boxes Bi and Bj

Vi,j volume fraction of the boxes Bi and Bj associated with Ai,j

ni,j surface unit normal vector of box Bi pointing into Bj

N number of degrees of freedom in (x,H)-space
Nx number of degrees of freedom in x-space
NH number of discrete total energies Hi

L spherical harmonics expansion order
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NOTATION x

Symbol Meaning

~ Planck constant divided by 2π
kB Boltzmann constant
ǫ permittivity (not to be confused with kinetic energy ε)
ρ space charge
|q| elementary charge
q charge of a carrier (negative for electrons, positive for holes)
m∗ effective mass
ε kinetic energy (not to be confused with permittivity ǫ)
H total energy
t time
x spatial coordinate within the device
k wave vector
p momentum vector
v (group) velocity
F force
E electric field
ψ quasi-electrostatic potential
Q{·} scattering operator
Qin{·} in-scattering operator
Qout{·} out-scattering operator
QVR{·} velocity-randomizing scattering operator
η index of the scattering process
s(x,k,k′) scattering coefficient
σ(x,k,k′) symmetric scattering coefficient
n(x, t) particle density (electron density)
Z(ε, θ, ϕ) generalized density of states
〈·〉 moment of the BTE with respect to the argument
f(x,k, t) distribution function
g(x,k, t) generalized energy distribution function
jl,m generalized current density term

Γl,m spherical harmonics coupling term
VT thermal voltage

Abbreviations

BTE Boltzmann transport equation
CPU central processing unit
GPU graphics processing unit
FET field effect transistor
MEDS maximum entropy dissipation scheme
MOSFET metal-oxide-semiconductor field effect transistor
SHE spherical harmonics expansion
TCAD technology computer aided design



Chapter 1

Introduction

With the continued shrinking of semiconductor devices, a deeper understanding of the
underlying physical processes is required in order to further improve device performance.
Since it is impossible to measure all details of carrier transport on the nanometer scale, the
availability of accurate theoretical descriptions is essential in order to gain insight into the
physical processes by means of numerical simulations. This so-called Technology Computer
Aided Design (TCAD) has become an indispensable ingredient for the development of faster,
smaller and more power-efficient devices.

Quantum effects have long been negligible for charge transport, but they gain impor-
tance with each technology generation. Nevertheless, quantum effects are not considered
further within this thesis, even though the theory of carrier scattering is based on a quantum
mechanical foundation [67].

1.1 Semiclassical Carrier Transport

The Boltzmann Transport Equation (BTE) is commonly considered to provide the best
semiclassical description of carrier transport. Carriers are described in a classical fashion
by a continuous distribution function f , which depends on the spatial location x, momentum
p and time t. The carrier momentum p is related to a quantum-mechanical wave number
k by the relation p = ~k, where ~ is the modified Planck constant. Without going into the
details of various derivations (see e.g. [50, 67,68]), the BTE is given by

∂f

∂t
+ v · ∇xf + F · ∇pf = Q{f} , (1.1)

where function arguments are omitted. Here, v denotes the carrier velocity in dependence of
the carrier momentum, F refers to the electrostatic force, and Q is the scattering operator.
A formulation based on the wavevector k rather than momentum p transforms the gradient
as ∇p 7→ ∇k/~.

The description of carries by means of a distribution function with respect to the spa-
tial variable x, the momentum p and time t leads to a seven-dimensional problem space,
which makes the direct solution of the BTE very demanding. As a consequence, simpler
macroscopic models have been derived from moments of the BTE. Most noteworthy in this
regard are the drift-diffusion equations presented in Sec. 1.1.1, which are obtained from the
zeroth and first moment of the BTE.

1



1.1. SEMICLASSICAL CARRIER TRANSPORT 2

While the drift-diffusion equations have been successfully employed throughout the 20th
century for TCAD, the characteristic lengths of modern devices are well outside the range of
validity of the model. Hence, even though variants of the drift-diffusion equations are still in
use for the simulation of recent device generations, their accuracy is highly questionable and
leads to poor results already in the linear regime [51]. More accurate macroscopic transport
models have been derived based on higher moments of the Boltzmann Transport Equation
(BTE). The energy transport model and the hydrodynamic model are derived from the
first four moments of the BTE and presented in Sec. 1.1.3 and Sec. 1.1.2 respectively. In
Sec. 1.1.4 a transport model based on the first six moments of the BTE is discussed.

Despite the good results obtained from macroscopic models, which are derived from
moments of the BTE in the micron and sub-micron regime, the necessary approximations
cease to hold in the deca-nanometer regime. As a consequence, a full solution of the BTE is
desired. Since direct numerical methods are typically limited by memory constraints which
stem from the resolution of the high-dimensional simulation domain, the method of choice
is usually the stochastic Monte Carlo method, which is presented in Sec. 1.1.5.

It should be noted that each of the transport models presented in the following has
to be solved self-consistently with the Poisson equation. To this end, nonlinear iteration
schemes such as those detailed in Sec. 2.4 are typically employed. For the sake of brevity,
self-consistency is not further addressed in the following subsections.

1.1.1 The Drift-Diffusion Model

Taking the zeroth-order moment of the BTE (1.1) leads to

∂n

∂t
=

1

|q|
∇ · Jn −Rn , (1.2)

∂p

∂t
= −

1

|q|
∇ · Jp −Rp , (1.3)

where n and p denote electron and hole densities and |q| is the elementary charge1. The
recombination rates Rn and Rp refer to Auger, radiative, and Shockley-Read-Hall [34, 95]
processes and can be expressed in terms of n and p. Multiplication of the BTE with the
wave vector k and integration over the k-space leads to equations for the current densities
Jn and Jp:

Jn = −n|q|µn∇ψ + |q|Dn∇n (1.4)

Jp = −p|q|µp∇ψ − |q|Dp∇p (1.5)

Carrier mobilities are denoted by µn and µp, while Dn and Dp are diffusion coefficients.
Substitution of (1.4) and (1.5) into (1.2) and (1.3) leads to a system of two partial differential
equations for the densities n and p. Equipped with suitable boundary conditions, these
equations completely specify the electron and hole densities. This so-called drift-diffusion
model was first derived by Van Roosbroeck in 1950 [103].

As a prelude to numerical stabilization schemes discussed in Sec. 4.3, a direct discretiza-
tion of the drift-diffusion model by simple methods such as finite differences usually fails

1In the literature, q (or e) sometimes refers to the signed charge, and sometimes to the unsigned elemen-
tary charge. To avoid confusion, the |q| is used in this work to refer to the elementary charge, while q is the
signed charge of an electron or hole.



1.1. SEMICLASSICAL CARRIER TRANSPORT 3

due to large forces inside the device. Numerical stability for the drift-diffusion equations
is increased substantially by the use of upwind schemes in general, and the Scharfetter-
Gummel scheme [90] in particular. Additionally, a discretization is usually required to
conserve current, hence box integration schemes are commonly employed [93].

1.1.2 The Hydrodynamic Model

The consequence of taking the zeroth and the first moment of the BTE for the derivation
of the drift-diffusion model only is that a spatial dependence of average carrier energies are
ignored. To overcome these deficiencies, Bløtkjær derived conservation equations by taking
the zeroth, the first and the second moments of the BTE [5]. As closure condition for the
heat flux density nSn, Fourier’s law is applied, which leads for electrons to the system

∂n

∂t
=

1

|q|
∇ · Jn , (1.6)

Jn −
τ1
|q|

(

Jn ⊗
Jn

n

)

= µkB∇(nTn) + |q|nµE − τ1
∂Jn

∂t
, (1.7)

∇ · (nSn) = −
∂nw

∂t
+E · Jn − n

w − w0

τ2
, (1.8)

nSn = −
1

|q|
(w + kBTn)Jn − κ(Tn)∇Tn . (1.9)

The model needs to be solved for the unknown electron density n, the electron temperature
Tn and the average energy w. The contribution of the drift velocity to the carrier energy
is often neglected, resulting in w ≈ 3kBTn/2. The parameters τ1 and τ2 stem from the first
and the second moment of the scattering operator in the relaxation time approximation, κ
refers to the thermal conductivity and is given by the Wiedemann-Franz law

κ(Tn) =

(

5

2
− r

)(

kB
q

)2

|q|µnTn (1.10)

with w0 denoting the average energy at equilibrium. The correction factor r stems from the
fact that thermal and electrical conductivity do not exclusively involve the same carriers.
A similar set of equations is obtained for holes.

Equations (1.6) to (1.9) describe the full hydrodynamic model for parabolic band struc-
tures. The name stems from the similarity to the Euler equations of fluid dynamics with
the addition of a heat conduction term and the collision terms. Due to its hyperbolic nature
at high electron flows, the hydrodynamic model can lead to shock waves inside the device,
which shows up in short-length devices or low temperatures. This leads to additional effort
required for stable numerical schemes compared to the parabolic convection-diffusion type
of the drift-diffusion equations.

1.1.3 The Energy Transport Model

A frequent approximation to the hydrodynamic equations (1.6) to (1.9) is to neglect the
convective term

τ1
|q|

(

Jn ⊗
Jn

n

)

(1.11)
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in (1.7), and to neglect the contribution of velocity to the carrier energy, thus

w ≈
3

2
kBTn. (1.12)

This leads to a parabolic system of equations and is a very common approximation in today’s
device simulators [30]. The two assumptions (1.11) and (1.12) can also be justified from
a mathematical point of view by a scaling argument for vanishing Knudsen number [84],
which in addition shows that the time derivatives in the flux equations vanish. This leads
to the energy transport model

∂n

∂t
=

1

|q|
∇ · Jn , (1.13)

Jn = µkB∇(nTn) + |q|nµE , (1.14)

∇ · (nSn) = −
∂nw

∂t
+E · Jn − n

w − w0

τ2
, (1.15)

nSn = −
5kBTn
2|q|

Jn −

(

5

2
− r

)(

kB
q

)2

|q|µnTn∇Tn , (1.16)

where (1.10) has been used. As the model consists of two conservation equations and two
constitutive equations, the name is slightly misleading.

The closure based on Fourier’s law can be improved by taking the third moment of
the BTE into account [63]. A closure condition for the fourth-order tensor is obtained by
assuming a heated Maxwellian distribution, leading to

nSn = −
µS
µ

5kBTn
2|q|

Jn −
µS
µ

5

2

(

kB
q

)2

|q|µnTn∇Tn (1.17)

instead of (1.16). This improved model based on four moments of the BTE is referred to
as the four moments energy transport model. A comparison of (1.16) and (1.17) reveals an
inconsistency of the energy transport model based on three moments, because the scalar
prefactors in (1.16) are given by 5/2 and 5/2 − r, which means that the heat flux can be
adjusted independently [30].

1.1.4 The Six-Moments Model

With the drift-diffusion model based on two moments of the BTE, the hydrodynamic model
based on three moments and the energy transport model in modified form based on four
moments of the BTE, it is tempting to construct more accurate models based on higher
moments. However, the selection of suitable closure conditions becomes increasingly diffi-
cult. A model loosely based on six moments of the BTE has been proposed by Sonoda et
al. [98]. A rigorous derivation of a model based on six moments has been carried out by



1.1. SEMICLASSICAL CARRIER TRANSPORT 5

Grasser et al. [29] in the diffusion limit of vanishing Knudson number:

∂n

∂t
=

1

|q|
∇ · Jn , (1.18)

Jn = µkB∇(nTn) + |q|nµE , (1.19)

∇ · (nSn) = −
∂nw

∂t
+E · Jn − n

w − w0

τ2
, (1.20)

nSn = −
µS
µ

5kBTn
2|q|

Jn −
µS
µ

5

2

(

kB
q

)2

|q|µnTn∇Tn , (1.21)

∇ · (nKn) = −
15

4
k2B
∂(nTnΘn)

∂t
− 2|q|E · Sn −

15

4
n
TnΘn − T

2
L

τ4
, (1.22)

nKn =
35

4

k3B
|q|

µk
µn
µn

[

∇(nM6) +
|q|

kB
EnTnΘn

]

. (1.23)

The additional unknown variables are the second order temperature Θn and the kurtosis
flux Kn. The parameter µk can be related to a mobility for kurtosis and τ4 is a macroscopic
relaxation time for the fourth moment of the scattering operator. A closure condition for
the sixth moment M6 is obtained via the empirical relation

M6 = T 3
n

(

Θn

Tn

)c

, c ∈ [0, 3] . (1.24)

A value of 2.7 for the parameter c proved to provide highest accuracy when compared
to Monte Carlo results and further shows higher numerical stability than other choices.
Particularly, the Newton procedure for the choice c = 1 has been reported to result in
failure of convergence in most cases.

1.1.5 The Monte Carlo Method

The macroscopic transport models presented so far are specified by a system of partial
differential equations which approximate certain features of the BTE, for which suitable
deterministic numerical solutions are sought. A stochastic approach for the solution of the
full BTE is the Monte Carlo method, where the dynamics are simulated at the particle
level [47,52] and which was already used in the 1960s for semiconductor device simulations
(e.g. [61]). The free streaming operator of the BTE is obtained from Newton’s laws of
motion

~
∂k

∂t
= F ,

∂x

∂t
= v , (1.25)

while the scattering operator models instantaneous changes of the momentum of each par-
ticle in the device. Denote with p(x,k, t|x0,k0, t0) the conditional probability of finding a
particle at location x with wave vector k at time t given that the particle was at location
x0 with wave vector k0 at time t0. Since not only the distribution function f(x,k, t), but
also p(x,k, t|x0,k0, t0) satisfies the BTE, a formal integration of the BTE after merging
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Figure 1.1: Flowchart for the Monte Carlo method for a simulation from time t to t+T .

the gradients with respect to x and k into a joint gradient for the variable ζ = (x,k) yields

p(x,k, t|x0,k0, t0) = p0(x,k, t|x0,k0, t0)

+

∫ t

t0

∫

R3×B×R3×B

p(x1,k1, t1|x0,k0, t0)s(k1,k
′
1)

× p0(x,k, t|x
′
1,k

′
1, t1) dx

′
1 dk

′
1 dx dk dt1 ,

(1.26)

where B denotes the Brillouin zone and

p0(x,k, t|x0,k0, t0)=

{

exp(−
∫ t
t0
s(x∗(τ |x0,k0, t),k

∗(τ |x0,k0, t)) dτ), (x,k) = (x∗,k∗)

0 , otherwise

(1.27)

is the conditional probability of finding a particle in state (x,k) at time t given that the
particle was located at x0 with wave vector k0 at time t0 without being scattered. x∗ and
k∗ are shorthand notations for the location of the particle at a given instance in time for
a given initial position. Eq. (1.26) is an integral equation for p(x,k, t|x0,k0, t0), and the
conjugate form

p(x,k, t|x0,k0, t0) = p0(x,k, t|x0,k0, t0)

+

∫ t

t0

∫

R3×B×R3×B

p0(x1,k1, t1|x0,k0, t0)s(k1,k
′
1)

× p(x,k, t|x′
1,k

′
1, t1) dx

′
1 dk

′
1 dx dk dt1 ,

(1.28)

is the basis for the usual Monte Carlo algorithm.
The Monte Carlo procedure uses a large sample of particles and simulates their dynamic

behavior based on the integral formulation (1.28). To this end, the time intervals between
the scattering events of each particle are chosen randomly based on the scattering operator,
and particles propagate in collision-less flight according to (1.25) between scattering events.
Macroscopic quantities such as average carrier energies are computed by suitable averages
over the particle ensemble. In order to keep stochastic fluctuations reasonably small, a large
number of particles is required, where the accuracy is asymptotically proportional to the
square-root of the execution time unless special enhancement techniques for selected target
quantities are applied [52]. While the Monte Carlo method provides a very high accuracy
due to the simulation of particle kinetics and high flexibility with respect to the inclusion
of additional physical details, it is computationally extremely expensive.
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1.2 Requirements of Modern TCAD

The various transport models and solution approaches to the BTE discussed in the pre-
vious section represent only a selection of the most popular methods for the simulation
of charge transport in semiconductors. Regarding their accuracy and computational cost,
these models typically range from the computationally cheap drift-diffusion model, which
fails to reflect physics properly in the deca-nanometer regime, to the accurate Monte Carlo
method, which has the drawback of extremely high computational costs. In the following, a
discussion of the requirements of a state-of-the-art semiconductor device simulator is given.
The individual requirements slightly overlap, but they should aid the reader in judging
the importance of the proposed extensions of the deterministic Boltzmann solution method
given in the remainder of this thesis.

1.2.1 Accuracy

The need for a better reflection of the underlying physical processes compared to the drift-
diffusion model has lead to the development of higher-order transport models such as the
hydrodynamic model. As device dimensions decrease, ballistic effects become significant,
which cannot be captured in the diffusion-limited regime of higher-order transport mod-
els [30, 51]. As a consequence, it is desireable to have numerical methods which are com-
putationally less expensive than the Monte Carlo method, but are able to resolve ballistic
transport effects. Even though not covered by the semiclassical approach, quantum effects
become increasingly important and should be reflected in the model.

1.2.2 Charge Conservation

Kirchhoff’s current law states the conservation of charge. Consequently, charge conservation
has to be ensured during the simulation of a single semiconductor device as well. The use
of the box integration scheme for the drift-diffusion model guarantees charge conservation
at the algebraic level. Similarly, charge conservation is provided for other moment-based
methods. Moreover, the particle approach of the Monte Carlo method allows for charge
conservation without difficulties. As a consequence, new simulation approaches need to
ensure charge conservation in order to be competitive with existing methods.

1.2.3 Self-Consistency

The electrostatic potential and the space charge are linked by the Poisson equation, which is
a direct implication of Gauss’ Law. Since it is in general neither possible to explicitly express
the potential as a function of the carrier densities, nor to express the carrier densities as
an explicit function of the electrostatic potential only, any transport model used for charge
transport is required to be solved self-consistently with the Poisson equation.

1.2.4 Resolution of Complicated Domains

With the on-going miniaturization of semiconductor devices, inherent small variations in
the fabrication process become significant with respect to the characteristic device lengths.
Consequently, device geometries are no longer simple compositions of geometric primitives,
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but should be taken from topography simulations. Therein, complicated device geometries
show up in a natural way, particularly for fully three-dimensional device layouts.

1.2.5 Computational Feasibility

The incredible pace of semiconductor device technology requires that simulation results are
available within a short time frame. In particular, simulation times in the range of weeks or
even months are clearly not acceptable, because during that time technology has progressed
and simulation results may be deprecated already before they are available. This is the main
reason why Monte Carlo methods are – despite their high accuracy – not commonly used
for every-day TCAD purposes.

1.2.6 Extendibility

As devices are scaled down, formerly negligible physical effects become relevant and need to
be considered in the simulation. Thus, it is desirable to use numerical methods which allow
for such an inclusion without a large redesign of the whole simulator. For instance, boundary
element methods based on the knowledge of the Green’s function of the underlying partial
differential equations become invalid and eventually infeasible as soon as details such as
e.g. space-dependent diffusion coefficients are demanded.

1.3 Outline

The remainder of this thesis focuses on a rather new approach based on a spherical harmon-
ics expansion of the distribution function. The method is expected to yield the accuracy
of Monte Carlo methods without the inherent disadvantages of stochastic models. Other
approaches for the deterministic numerical solution of the BTE have been proposed, but
they are considered to be limited to at most two-dimensional device geometries either be-
cause the full momentum space needs to be discretized [14,19], or because the discretization
method leads to nonlocal couplings resulting in huge memory requirements for the resulting
linear system of equations [72].

In Chap. 2 an introduction to the SHE method is given and the state-of-the-art for the
method is presented, excluding the extensions proposed in this work. The chapter closes
with a discussion of the compatibility of the SHE method with respect to modern TCAD.

Chap. 3 details the underlying physical processes and their consideration within the
SHE method. A method for the inclusion of carrier-carrier scattering is proposed at the
end of the chapter.

The mathematical structure of the SHE equations is investigated in detail in Chap. 4. A
sparse coupling property of the SHE equations is shown for spherical energy bands. These
coupling investigations then lead to a system matrix compression scheme, which allows for
a memory efficient representation of the system matrix at high expansion orders.

Chap. 5 presents the extension of the SHE method to unstructured grids. All the
required implementation details for the construction of suitable meshes are given.

In order to obtain the accuracy of higher-order expansions at lower computational effort,
adaptive variable-order expansions are proposed and evaluated in Chap. 6. The possible
savings mostly stem from the fact that on the one hand the distribution function is still close
to equilibrium in inactive device regions, and on the other hand from the asymptotically
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exponential decay of the distribution function with respect to kinetic energy, hence lower
resolution at higher energies is sufficient.

Recent developments in computing architecture are addressed in Chap. 7, where a par-
allel scheme for the convergence enhancement of the iterative solvers by means of precon-
ditioners is suggested. It enables the full utilization of multi-core central processing units
as well as the efficient use with massively parallel architectures such as graphics processing
units.

The suggestions from Chaps. 4 to 7 are combined for the simulation of a MOSFET and
a FinFET in Chap. 8. It is demonstrated that the proposed techniques blend well with
each other and render the SHE method very attractive for modern TCAD.

An outlook to further possible improvements of the SHE method is presented in Chap. 9.
A conclusion finally closes this thesis.



Chapter 2

The SHE Equations

This chapter gives a brief introduction to the spherical harmonics expansion (SHE) method
for the deterministic numerical solution of the BTE. First, the developments since the
introduction of the method in the early 1990s are discussed. Connections with the new
contributions presented in this work are established as much as possible. Then, the for-
mulation of the SHE equations as proposed by Jungemann et al. [53] and later refined by
Hong et al. [42] is presented, which is also the foundation for the contributions in sub-
sequent chapters. The chapter closes with a comparison of the requirements on modern
TCAD given in Sec. 1.2 and the current state-of-the-art of the SHE method.

2.1 Historical Overview

First journal publications on the SHE method date back to Gnudi et al. [21] as well as
Goldsman et al. [25] in 1991. However, a precursor of the method has already been used in
the PhD thesis of Goldsman in 1989 [24]. Even though the method formally relies on an
expansion of the distribution function f(x,k, t) with spatial location x, wave vector k and
time t into spherical harmonics Y l,m of the form

f(x,k, t) =

∞
∑

l=0

l
∑

m=−l

fl,m(x, ε, t)Y l,m(θ, ϕ) , (2.1)

where the three-dimensional wave vector k is written in spherical coordinates ε, θ and ϕ on
equi-energy surfaces, the derivation of equations for the expansion coefficients was rather
based on perturbations of the ground state at l = 0 than on a clean mathematical approach
such as a Galerkin scheme. Consequently, the derivation of the equations required a lot of
bookkeeping. Nevertheless, the first-order expansion was extended to the two- and multi-
dimensional case soon after [23, 110]. It is worthwhile to mention the H-transform, which
has been proposed already at a very early stage in the development of the SHE method [23].

In the mid-1990s a large number of publications dealt with the SHE method. Lin et
al. derived a Scharfetter-Gummel-type stabilization [65] for the first-order SHE method,
and coupled the SHE method for electrons with the Poisson equation and the hole conti-
nuity equation [66]. Hennacy et al. [37, 38] extended the method to arbitrary order expan-
sions. A comparison of different boundary conditions has been carried out by Schroeder
et al. [92]. Vecchi et al. [105] proposed an efficient solution scheme based on a multigrid-
like refinement of the grid near the conduction band edge. Moreover, a decoupling of the

10
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system of linear equations after discretization is discussed for the case that only one in-
elastic scattering mechanism with constant energy transfer is considered. Even though
the techniques presented therein differ substantially from those discussed in Chap. 6 and
Chap. 7, the crucial role of inelastic scattering for the coupling structure and methods for
the resolution enhancement near the band edge have been discussed already. The same
group proposed a scheme for incorporating full-band effects for both the conduction and
the valence band [106,107]. The publication by Rahmat et al. [78] observed that the spatial
terms of the SHE equations can be handled separately from the angular coupling, which
is the key observation used throughout Chap. 4. However, this separation was given as an
implementation hint for the assembly of the Jacobian matrix only, while in Chap. 4 the
system matrix is kept in a compressed form and is never set up explicitly. The same publi-
cation also covers aspects of numerical stability and proposes an upwinding scheme based
on trial and error. The attractiveness of the SHE method for the investigation of hot-carrier
effects is reflected in publications on the inclusion of electron-electron scattering for first-
order SHE [108,109], and by investigations of impact ionization [22] as well as hot-electron
injections [77]. Singh [97] discussed the advantage of using inelastic scattering in order to
avoid spurious oscillations in the distribution function and proved that the resulting system
matrix for first-order SHE is an M -matrix, which ensures the positivity of the distribution
function at the discrete level.

The number of publications on the SHE method by the engineering community declined
towards the end of the 20th century. Instead, publications from mathematicians increased.
Ben Abdallah [2] put the first-order SHE method in context with established moment-based
methods and derived high-field approximations [3]. Ringhofer proposed various expansion
approaches for the BTE based on entropy functionals [81–83] and proposed an expansion of
the energy coordinate into Hermite polynomials [80]. Hansen et al. [36] analyzed the SHE
method for plasma physics.

In the early 2000s, Goldsman et al. [26, 35] applied a first-order SHE method to the
modified Boltzmann equation taking contributions from the Wigner equation into account.
The publication of Jungemann et al. [53] in 2006 applied the maximum entropy dissipation
scheme developed by Ringhofer to a discretization in (x, ε)-space, where ε denotes kinetic
energy, and put arbitrary order expansions on solid grounds by using a Galerkin scheme for
the angular components. Furthermore, higher-order expansions were shown to be required
for devices in the nanometer regime, a box-integration scheme suitable also for a certain
class of unstructured grids was proposed, and the need for good preconditioners in order
to obtain convergence of iterative solvers was discussed. Hong et al. [44] presented the
first arbitrary-order implementation of the SHE method in two spatial dimensions in 2008,
refined the numerical scheme in 2009 to cover magnetic fields, and re-introduced the H-
transform in order to preserve numerical stability in the deca-nanometer regime [42]. A
full-band SHE of the valence band was presented by Pham et al. [73]. Recently, Matz et
al. [45,69] presented a fitted band structure for the conduction band for use with the SHE
method, which further increases the accuracy of the SHE method, but at the expense of
considerably increased computational costs. In 2011, Jin et al. [48] proposed a simplified
method for the inclusion of full-band effects, which preserves the accuracy of the fitted
band structure without notably increasing the computational effort. Hong et al. [43] also
extended the SHE method to obey Pauli’s exclusion principle, while Pham et al. [74–76]
coupled the Schrödinger equation with a SHE method of reduced dimensionality for multi-
subband solutions of PMOSFETs.
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2.2 Derivation of the SHE Equations

The SHE equations are derived in the following. The calculations mostly follow those given
by Jungemann et al. [53]. For reasons of clarity, function arguments are omitted whenever
appropriate. Furthermore, the explicit inclusion of the Herring-Vogt transform as well as
the inclusion of a magnetic field, which are detailed by Hong et al. [42], are avoided. For
details on spherical harmonics the reader is referred to the literature [18,20,41], and for the
particular phase factors used within this thesis to [86].

The derivation is carried out for an expansion of the distribution function f(x,k, t) into
spherical harmonics as in (2.1) on equi-energy surfaces, which requires that the mapping
(ε, θ, ϕ) 7→ k is a bijection. For a given distribution function f , the expansion coefficients
are obtained from projections:

fl,m(x, ε, t) =
2

(2π)3

∫

B

Y l,m(θ(k), ϕ(k))f(x,k, t)δ(ε − ε(k)) dk3

=

∫

Ω
Y l,m(θ, ϕ)f(x,k(ε, θ, ϕ), t)Z(ε, θ, ϕ) dΩ

(2.2)

Here, Ω denotes the unit sphere, and the generalized density of states including spin degen-
eracy in the absence of magnetic fields is given by

Z(ε, θ, ϕ) =
|k|2

4π3
∂|k|

∂ε
, (2.3)

where a possible spatial dependence due to the use of different materials is ignored for the
sake of conciseness. One should be careful when comparing generalized densities of states
from different authors, because additional prefactors are in use.

It is important to keep in mind that the spherical harmonics are not orthogonal with
respect to the bilinear form

(f, g)e :=

∫

Ω
fgZ dΩ , (2.4)

unless the generalized density of states Z does not depend on the angles. For this reason,
one may alternatively expand the generalized distribution function g := fZ and use the
standard inner product on the unit sphere, which is the approach taken by Jungemann et
al. [53]. In the following, however, an expansion of f is carried out, but differences to an
expansion with respect to g are pointed out on a regular basis.

One pitfall in the derivation of the SHE equations for an expansion of f is related to
the representation (2.2) for a given distribution function f . The BTE is to be solved for an
unknown distribution function f , hence fl,m is not obtained directly from a given function.
Instead, the unknown distribution function f is expanded into spherical harmonics, which
ultimately results in equations for the expansion coefficients fl,m. Keeping in mind that the
spherical harmonics are not necessarily orthogonal with respect to the bilinear form (2.4),
there holds

∫

Ω
Y l,mfZ dΩ ≃

∫

Ω
Y l,m

∑

l′,m′

fl′,m′Y l′,m′

Z dΩ =
∑

l′,m′

fl′,m′

∫

Ω
Y l,mY l′,m′

Z dΩ , (2.5)
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which results in the expansion coefficient fl,m only in the case of a generalized density of
states independent of the angles, i.e. Z = Z(ε), but not for the general case of an angular
dependency.

In order to derive a set of equations for the expansion coefficients fl,m for an unknown
function f known to fulfill the BTE (1.1), one can proceed in two ways. The first possi-
bility is to insert the expansion into the BTE and then project the resulting equation onto
spherical harmonics, while the second possibility is to first project the BTE and then insert
the expansion of f . Both operations are linear and the BTE itself is linear when using
linear scattering operators only, thus both methods yield the same result provided that all
required exchanges of summation and integration are valid. Since the latter method leads
to less notational clutter, first a projection of the BTE onto each of the spherical harmonics
Y l,m of the form

X 7→
2

(2π)3

∫

B

XY l,mδ(ε − ε(k)) dk3 (2.6)

is carried out. These projections onto Y l,m are detailed in the following term-by-term.
Function arguments are usually suppressed to increase the legibility of the expressions.

• Term ∂f/∂t: Since the time derivative can be pulled in front of the projection integral,
one immediately obtains ∂[f ]l,m/∂t, where

[f ]l,m :=

∫

Ω
Y l,mfZ dΩ (2.7)

is in general different from the expansion coefficient fl,m as outlined above.

• Term v · ∇xf : Similar to the previous term, the gradient with respect to the spatial
coordinate x can be pulled in front of the integral, thus leading to

∇x ·

∫

Ω
Y l,mvfZ dΩ . (2.8)

It is convenient to associate the integral with the generalized current density

jl,m(x, ε, t) =

∫

Ω
Y l,mvfZ dΩ . (2.9)

• Term F /~ · ∇kf : In contrast to the other terms, the derivative cannot be pulled
out of the projection integral. Since the gradient with respect to the wavevector k

of the distribution function f would lead to problems for a separation of fl′,m′ and
Y l′,m′

after inserting the expansion (2.1), an integration by parts is carried out. To
avoid formal difficulties with the delta distribution, the projection is in addition first
multiplied with a smooth test function ψ(ε) and integrated over energy:

∫ ∞

0
ψ(ε)

2

(2π)3

∫

B

δ(ε− ε(k))Y l,mF

~
· ∇kf dk dε

=
2F

(2π)3~
·

∫

B

ψ(ε(k))Y l,m∇kf dk

= −
2F

(2π)3~
·

∫

B

∇k(ψ(ε(k))Y
l,m)f dk

= −
2F

(2π)3~
·

∫

B

[

∂ψ

∂ε
∇kε(k)Y

l,m + ψ(ε(k))∇kY
l,m

]

f dk
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The gradient in spherical coordinates (|k|, θ, ϕ) in k-space is given by

∇kYl,m =
∂Y l,m

∂|k|
e|k| +

1

|k|

∂Y l,m

∂θ
eθ +

1

|k| sin θ

∂Y l,m

∂ϕ
eϕ , (2.10)

where e|k|, eθ and eϕ denote the unit vectors in |k|, θ and ϕ-direction, respectively.
The invariance of spherical harmonics with respect to the radial direction and the
relation v = ∇kε/~ leads to

∫ ∞

0
ψ(ε)

2

(2π)3

∫

B

δ(ε − ε(k))Y l,mF

~
· ∇xf dk dε

= −F ·

∫ ∞

0

∂ψ

∂ε

∫

Ω
Y l,mvfZ dΩ dε

− F ·

∫ ∞

0
ψ(ε)

∫

Ω

1

~|k|

(

∂Y l,m

∂θ
eθ +

1

sin θ

∂Y l,m

∂ϕ
eϕ

)

fZ dΩ dε

= −F ·

∫ ∞

0

∂ψ

∂ε
jl,m + ψΓl,m dε

= F ·

∫ ∞

0
ψ

(

∂jl,m
∂ε

− Γl,m

)

dε ,

where the angular coupling term is given by

Γl,m =

∫

Ω

1

~|k|

(

∂Y l,m

∂θ
eθ +

1

sin θ

∂Y l,m

∂ϕ
eϕ

)

fZ dΩ . (2.11)

Since the test function ψ can be taken ‘arbitrarily’, one obtains

2

(2π)3

∫

B

δ(ε − ε(k))Y l,mF

~
· ∇xf dk = F ·

(

∂jl,m
∂ε

− Γl,m

)

. (2.12)

• Term Q{f}: The scattering operator in the low-density approximation is considered,
which neglects the nonlinearity introduced by Pauli’s exclusion principle:

Q{f} =
1

(2π)3

∫

B

s(x,k′,k)f(x,k′, t)− s(x,k,k′)f(x,k, t) dk′ . (2.13)

Note that it is common to multiply the integral with a small sample volume Vs in
front, which is then included in the denominator of the scattering rates. In this work,
the sample volume Vs is not written explicitly. To allow for several different scattering
processes like acoustical and optical phonon scattering, the index η is used for writing
the scattering rate as

s(x,k,k′) =
∑

η

ση(x,k,k
′)δ(ε(k)− ε(k′)± ~ωη) , (2.14)

where the second and third arguments of s denote the initial and the final state
respectively. The minus sign stands for emission of energy and the plus sign for
absorption. In the case of multiple energy bands, summation over all energy bands
has to be added to (2.14), cf. [53]. In the following only a single band is considered,
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a generalization to multiple bands mainly consists of a summation over all energy
bands involved.

The scattering integral is split into an in-scattering term

Qin{f} =
1

(2π)3

∫

B

s(x,k′,k)f(x,k′, t) dk′ (2.15)

and an out-scattering term

Qout{f} =
1

(2π)3
f(x,k, t)

∫

B

s(x,k,k′) dk′ , (2.16)

which are projected onto spherical harmonics one after another. Projection of the
in-scattering term (2.15) yields

Qin
l,m{f} =

2

(2π)3

∫

B

δ(ε − ε(k))Y l,mQin{f} dk =:
∑

η

Qin
η,l,m{f} , (2.17)

where

Qin
η,l,m{f} =

∫

Ω
Y l,mZ

∫

Ω
ση(x,k(ε± ~ωη, θ

′, ϕ′),k(ε, θ, ϕ))

× f(x, ε± ~ωη, t)Z(ε± ~ωη, θ
′, ϕ′) dΩ′ dΩ .

(2.18)

Similarly, the out-scattering term is evaluated as

Qout
l,m{f} =

∑

η

Qout
η,l,m{f} , (2.19)

where

Qout
η,l,m{f} =

∫

Ω
Y l,mfZ

∫

Ω
Z(ε± ~ωη, θ

′, ϕ′)

× ση(x,k(ε, θ, ϕ),k(ε± ~ωη, θ
′, ϕ′)) dΩ′ dΩ .

(2.20)

A considerable simplification can be achieved if the transition rate is assumed to be
velocity randomizing , i.e. the coefficient ση in (2.14) depends only on the initial and
final energy, but not on the angles. This allows for rewriting (2.18) as

Qin,VR
η,l,m {f} = ση(x, ε± ~ωη, ε)

∫

Ω
Y l,mZ dΩ

∫

Ω
f(x, ε± ~ωη, t)Z(ε± ~ωη, θ

′, ϕ′) dΩ′

= ση(x, ε± ~ωη, ε)Zl,m(ε)
[f(x, ε± ~ωη)]0,0

Y 0,0
,

(2.21)

where (2.7) was used and Zl,m(ε) denotes the orthonormal projection of the gener-
alized density of states onto the spherical harmonic Y l,m using the standard inner
product on the sphere. In the case of spherical bands, [f ]0,0 = f0,0Z and thus only
f0,0 is coupled into the balance equation for l = m = 0.
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With the assumption of velocity-randomization, the out-scattering term can be sim-
plified to

Qout,VR
η,l,m {f} = ση(x, ε, ε ± ~ωη)×

∫

Ω
Y l,mfZ dΩ×

∫

Ω
Z(ε± ~ωη, θ, ϕ) dΩ′

=
∑

η

ση(x, ε, ε ± ~ωη)[f ]l,m
Z0,0(ε± ~ωη)

Y 0,0
.

(2.22)

Thus, the out-scattering term is proportional to fl,m in the case of a spherically
symmetric density of states Z. If an expansion of the generalized distribution function
g = fZ is carried out instead of an expansion of f , then the out-scattering term is
proportional to gl,m irrespective of any spherical symmetry of Z.

Summing up, the full projected scattering operator using velocity randomization (VR)
is thus given by

QVR
l,m{f} =

1

Y 0,0

∑

η

[

Zl,m(ε)ση(x, ε± ~ωη, ε)[f(x, ε± ~ωη, t)]0,0

− [f ]l,m(x, ε, t)ση(x, ε, ε ∓ ~ωη)Z0,0(ε∓ ~ωη)
]

.

(2.23)

Even though the scattering operator after projection is not an integral operator any
longer, shifted arguments on the right hand side show up whenever inelastic collisions
characterized by ~ωη 6= 0 are considered.

Collecting all individual terms, we obtain the system of equations for the BTE upon pro-
jection onto spherical harmonics on equi-energy surfaces under the assumption of velocity
randomization:

∂[f ]l,m
∂t

+∇x · jl,m(x, ε, t) + F ·
(∂jl,m

∂ε
− Γl,m

)

=

=
1

Y 0,0

∑

η

[

Zl,m(ε)ση(x, ε± ~ωη, ε)[f ]0,0(x, ε± ~ωη, t)

− [f ]l,m(x, ε, t)ση(x, ε, ε ∓ ~ωη)Z0,0(ε∓ ~ωη)
]

(2.24)

It is worthwhile to note that an expansion of g = fZ instead of f leads to the same system
of equations when replacing [f ] with g.

2.3 H-Transform and MEDS

A discretization of the system (2.24) in (x, ε)-space leads to spurious oscillations for very
small devices, because the grid is not aligned with the trajectories of carriers in free flight.
The numerical stability can be improved substantially by a transformation from kinetic
energy ε to total energy H, because trajectories are then given by H = const. The price to
pay for the increased numerical stability is the additional effort for handling the band-edge
given by ε = 0, because the simulation domain needs to be adjusted with every update of
the electrostatic potential.
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H

x

Forbidden

Trajectories

Figure 2.1: Trajectories of carriers in free flight within the device are given by constant
total energy H .

TheH-transform was suggested already soon after the SHEmethod had been introduced
[23]. In the following, the application of the H-transform to (2.24) in the way proposed
by [42] is shown. Consider a variable transformation from (x, ε) to (x̃,H) by

x̃ = x , H = ε+ qΨ(x) , (2.25)

where Ψ(x) can be an arbitrary function of x and q is the signed charge of the carrier. The
system (2.24) is then transformed to

∂[f ]l,m
∂t

+∇x̃ · jl,m + [F +∇xH] ·
∂jl,m
∂H

− F · Γl,m

=
1

Y0,0

∑

η

[

Zl,mση(x̃,H ± ~ωη,H)[f ]0,0(x̃,H ± ~ωη, t)

− [f ]l,mση(x̃,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

.

(2.26)

Since the force term is given by

F = −∇x [Ec(x) + qψ(x)] , (2.27)

where Ec is the position-dependent valley minimum and ψ the electrostatic potential, the
derivative of jl,m with respect to H is eliminated by the choice

Ψ(x) = ψ(x) +
Ec(x)

q
. (2.28)

This particular choice of Ψ implies that H refers to the total energy. The H-transformed
system is thus given by

∂[f ]l,m
∂t

+∇x · jl,m − F · Γl,m =
1

Y0,0

∑

η

[

Zl,mση(x,H ± ~ωη,H)[f ]0,0(x,H ± ~ωη, t)

− [f ]l,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

,

(2.29)



2.3. H-TRANSFORM AND MEDS 18

where x is written instead of x̃.
Inserting the expansion (2.1) into (2.29) yields

[Y l′,m′

]l,m
∂fl′,m′

∂t
+∇x · j

l′,m′

l,m fl′,m′ − F · Γl′,m′

l,m fl′,m′

=
1

Y0,0

∑

η

[

Zl,mση(x,H ± ~ωη,H)[Y l′,m′

]0,0fl′,m′(x,H ± ~ωη, t)

− [Y l′,m′

]l,mfl′,m′ση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

,

(2.30)

where Einstein’s summation convention over pairs of upper and lower indices is employed.
The coefficients

[Y l′,m′

]l,m :=

∫

Ω
Y l,mY l′,m′

Z dΩ , (2.31)

j
l′,m′

l,m :=

∫

Ω
Y l,mvY l′,m′

Z dΩ , (2.32)

Γ
l′,m′

l,m :=

∫

Ω

1

~|k|

(

∂Y l,m

∂θ
eθ +

1

sin θ

∂Y l,m

∂ϕ
eϕ

)

Y l′,m′

Z dΩ (2.33)

determine the coupling between the different equations and will be thoroughly investigated
in Chap. 4.

The even part of the carrier distribution function can be associated with densities like the
carrier density or the energy density, while the odd part of the carrier distribution function
is viewed as fluxes. To improve numerical stability, these fluxes need to be stabilized [82].
Based on entropy dissipation principles, Ringhofer proposed to multiply the projected SHE
equations with the entropy function exp(H/(kBTL)), where kB is the Boltzmann constant
and TL denotes lattice temperature, and to take the negative adjoint form of the projected
equations for odd l [82]. While the multiplication with the entropy function is crucial for
a formulation based on kinetic energy as in (2.24) and [53], it is just a constant factor in a
formulation based on total energy such as (2.30). Therefore, it is sufficient to simply take
the negative adjoint operator [42]:

l even: [Y l′,m′

]l,m
∂fl′,m′

∂t
+∇x ·

(

j
l′,m′

l,m fl′,m′

)

− F · Γl′,m′

l,m fl′,m′

=
1

Y0,0

∑

η

[

Zl,mση(x,H ± ~ωη,H)[Y l′,m′

]0,0fl′,m′(x,H ± ~ωη, t)

− [Y l′,m′

]l,mfl′,m′ση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

,

(2.34)

l odd: [Y l′,m′

]l,m
∂fl′,m′

∂t
+ j

l′,m′

l,m · ∇xfl′,m′ + F · Γ̂
l′,m′

l,m fl′,m′

=
1

Y0,0

∑

η

[

Zl,mση(x,H ± ~ωη,H)[Y l′,m′

]0,0fl′,m′(x,H ± ~ωη, t)

− [Y l′,m′

]l,mfl′,m′ση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

,

(2.35)
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where Einstein’s summation convention over pairs of upper and lower indices is employed.

The coupling coefficients [Y l′,m′

]l,m and j
l′,m′

l,m are self-adjoint and thus unchanged, while

Γ̂
l′,m′

l,m is given by

Γ̂
l′,m′

l,m := Γ
l,m
l′,m′ =

∫

Ω

1

~|k|

(

∂Y l′,m′

∂θ
eθ +

1

sin θ

∂Y l′,m′

∂ϕ
eϕ

)

Y l,mZ dΩ . (2.36)

This stabilization scheme is commonly referred to as maximum entropy dissipation scheme
(MEDS) [42,53].

It is worthwhile to compare (2.34) and (2.35) with the system obtained from an expan-
sion of

g(x,k, t) = f(x,k, t)Z(k) =

∞
∑

l=0

l
∑

m=−l

gl,m(x,H, t)Y l,m(θ, ϕ) , (2.37)

which is obtained for even l after repeating the previous steps as

∂gl,m
∂t

+∇x · j̃
l′,m′

l,m gl′,m′ − F · Γ̃
l′,m′

l,m gl′,m′

=
1

Y0,0

∑

η

[

Zl,mση(x,H ± ~ωη,H)g0,0(x,H ± ~ωη, t)

− gl,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

(2.38)

with coupling coefficients

j̃
l′,m′

l,m =

∫

Ω
Y l,mvY l′,m′

dΩ , (2.39)

Γ̃
l′,m′

l,m =

∫

Ω

1

~|k|

(

∂Y l,m

∂θ
eθ +

1

sin θ

∂Y l,m

∂ϕ
eϕ

)

Y l′,m′

dΩ . (2.40)

The equations for odd l are obtained in the same way by taking the negative adjoint form.
If the density of states Z does not show an angular dependence, the two approaches are
equivalent, otherwise the truncated expansions will yield different results in general. To
the knowledge of the author, a systematic comparison of the formulations (2.34) and (2.35)
with (2.38) for nonspherical energy bands has not been carried out yet.

The system (2.34) and (2.35) consists of an infinite number of equations due to an
expansion of f of the form (2.1). The conforming Galerkin procedure for obtaining a finite
set of equations is to consider a truncated expansion

f(x,k, t) =

L
∑

l=0

l
∑

m=−l

fl,m(x,H, t)Y
l,m(θ, ϕ) , (2.41)

for a reasonable maximum (finite) expansion order L, and to consider only a finite subset
of the projected equations. The typical choice l = 0, . . . , L and m = −l, . . . , l for the
projected equations is used in the remainder of this thesis, hence the number of unknown
expansion coefficients and the number of equations agree. Otherwise, approximations in the
least-squares sense for the over- or under-determined system would have to be considered.
However, least-squares problems lead to additional computational effort compared to the
solution of a linear system, thus no investigations have been carried out in that direction
yet.
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2.4 Self-Consistency with Poisson’s Equation

So far, the force term F has been considered to be a given quantity. In a homogeneous
material it is linked to the electrostatic potential ψ by F = qE = −q∇xψ, where q denotes
the signed charge of the particle and E the electric field. With Gauss’ Law, a scalar
permittivity ǫ and the charge density |q|(p − n + C), where p and n denote the density of
holes and electrons respectively, and C refers to the density of fixed charges in the material,
the Poisson equation

−∆xψ =
|q|

ǫ
(p − n+ C) (2.42)

is obtained.
Since the carrier density depends on the solution of the BTE, which in turn depends on

the solution of the Poisson equation, a self-consistent solution of both equations has to be
found. Even though both equations are linear in their unknowns, the coupling is nonlinear
due to the inner product of the force F with the gradient ∇kf of the distribution function
with respect to the wave vector k. Consequently, a nonlinear iteration scheme has to be
employed for the solution of the coupled system

−∆xψ =
|q|

ǫ
(p − n+ C) , (2.43)

Ll,m{f} = Ql,m{f} , l = 0, . . . L,m = −l, . . . l , (2.44)

∇x · (−Dp∇xp+ pµp∇xψ) = 0 , (2.45)

where electrons are treated by the SHE method, and holes are considered by a continuity
equation without recombination. For the simulation of devices based on unipolar operation,
the hole continuity equation is often neglected. A similar system is obtained if the SHE
method is employed for holes and a continuity equation is used for electrons. Note that in
the cases where a unipolar simulation is sufficient, the continuity equation is often neglected.

2.4.1 Gummel Iteration

Given the iterates ψ(k), n(k) and p(k) for the potential, electron and hole density respectively,
updates can be obtained by solving the equations (2.43), (2.44), and (2.45) sequentially in
a Gauss-Seidel-type manner [32]:

Algorithm 1 (Simplest Form of Gummel Iteration). Input: Initial guesses ψ(0), n(0) and
p(0), k = 0.

(i) Solve the Poisson equation (2.43) for ψ(k+1) using n(k) and p(k).

(ii) Solve the SHE equations (2.44) for n(k+1) using ψ(k+1).

(iii) Solve the hole continuity equation (2.45) for p(k+1) using ψ(k+1).

(iv) Stop if (ψ(k+1), n(k+1), p(k+1)) is sufficiently accurate.

(v) Set k ← k + 1 and repeat.
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In its simplest form, the Gummel iteration diverges in most cases due to the exponential
dependence of the carrier concentrations on the potential.

The convergence behavior can be improved substantially by considering the dependen-
cies n = n(ψ) = ni exp((ψ − ϕn)/VT) and p = p(ψ) = ni exp(−(ψ− ϕp)/VT), where ϕn and
ϕp denote the quasi-Fermi potentials of electrons and holes respectively and VT = |q|/(kBT )
is the thermal voltage. A linearization leads to the damped Poisson equation for δψ(k) =
ψ(k+1) − ψ(k):

−∆δψ(k) +
n+ p

VT
δψ(k) = ∆ψ(k) +

|q|

ǫ
(p− n+ C). (2.46)

Consequently, the modified Gummel iteration is obtained as follows:

Algorithm 2 (Modified Gummel Iteration). Input: Initial guesses ψ(0), n(0) and p(0),
k = 0, α > 0

(i) Solve (2.46) for δψ(k) using n(k) and p(k).

(ii) Set ψ(k+1) = ψ(k) + αδψ(k)

(iii) Solve the SHE equations (2.44) for n(k+1) using ψ(k+1).

(iv) Solve the hole continuity equation (2.45) for p(k+1) using ψ(k+1).

(v) Stop if (ψ(k+1), n(k+1), p(k+1)) is sufficiently accurate.

(vi) Set k ← k + 1 and repeat.

The damping parameter α allows for additional control of the damping. Typical values
are about 0.5 and may be chosen differently for each iteration. In order to ensure a reduction
of the residual, an additional control of α can be employed, where e.g. subsequent trials
αi = 2−i for i = 1, 2, . . . are chosen until the residual in the current step is reduced [16].

A typical convergence plot for an undamped modified Gummel iteration (α = 1) is
depicted in Fig. 2.2. Typical features are the almost constant potential update during the
first iterations, and the nonuniform reduction of the potential correction in later iteration
steps. These features are more pronounced for more complicated devices under higher bias.

2.4.2 Newton’s Method

The standard method for the solution of nonlinear systems of equation is Newton’s method.
The big advantage over many other methods is the quadratic convergence sufficiently close
to the true solution. For a system of equations of the form

G(x) =











g1(x1, x2, . . . , xN )
g2(x1, x2, . . . , xN )

...
gN (x1, x2, . . . , xN )











= 0 , (2.47)

the update of a guess x(k) to the true solution is determined by

x(k+1) = x(k) − J−1
G G(x(k)) . (2.48)
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Figure 2.2: Comparison of the typical convergence of an undamped modified Gummel
scheme and an undamped Newton scheme for the simulation of a one-
dimensional n+nn+-diode.

The Jacobian matrix JG of G is given by

JG =













∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xN

∂g2
∂x1

∂g2
∂x2

. . . ∂g2
∂xN

...
...

. . .
...

∂gN
∂x1

∂gN
∂x2

. . . ∂gN
∂xN













. (2.49)

Consequently, every Newton step requires the solution of a system of linear equations and
the evaluation of the residual G(x(k)). The method fails if the Jacobian matrix does not
have full rank, which is, however, unlikely in practice due to the regularizing effect of
round-off errors.

A Newton method for the system (2.43)-(2.45) can be derived by writing the system in
the form

−∆xψ −
|q|

ǫ
(p− n+ C) = 0 =: g1(ψ,f , p) , (2.50)

Ll,m{f} −Ql,m{f} = 0 =: g2(ψ,f , p), l = 0, . . . L,m = −l, . . . l , (2.51)

∇x · (−Dp∇xp+ pµp∇xψ) = 0 =: g3(ψ,f , p) , (2.52)

with f = (f0,0, f1,−1, f1,0, . . . , fL,L)
T for some maximum expansion order L. The Jacobian

matrix is then obtained as




−∆x (1/VT + |q|/ε)∂n/∂f 1/VT − |q|/ε
∂(Ll,m −Ql,m)/∂ψ Ll,m{·} −Ql,m{·} 0

∇x · p∇x 0 ∇x · (−Dp∇x + µp∇xψ)



 . (2.53)

Here, two terms need additional considerations:

• ∂n/∂f : The electron density is obtained from the distribution function as

n =

∫ ∞

0

∫

Ω
fZ dΩ dε , (2.54)
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hence the derivatives with respect to the expansion coefficients are given by

∂n

∂fl,m
=

∫ ∞

0

∫

Ω
Y l,mZ dΩ dε . (2.55)

In the case that Z does not show an angular dependence, a nonzero derivative is
obtained for f0,0 only.

• ∂(Ll,m −Ql,m)/∂ψ: Here, the derivative of the SHE equations (2.34) and (2.35) with
respect to the potential ψ need to be taken. Since most terms depend on the kinetic
energy ε, which for a fixed total energy H depends on the potential ψ, the derivative is
very elaborate. For the sake of brevity, only the derivative of the generalized current
density term jl,m is outlined explicitly:

∂jl,m(ε)

∂ψ
=
∂jl,m
∂ε

∂ε

∂ψ
= −q

∂jl,m
∂ε

, (2.56)

where it should be noted that q refers to the signed charge of the carrier. In the
same way derivatives of the terms fl,m, Γl,m and Z are computed. The force term is
handled in the same way as for the hole continuity equation. For the case that no
analytical expression for jl,m, Γl,m or Z is available, a discrete differential quotient is
taken.

In practice, the Newton scheme will be used together with a damping scheme similar to the
one discussed for the Gummel iteration. The existence of a damping parameter αi leading
to a reduction of the overall residual norm is ensured under reasonable assumptions about
the system of equations.

An examplary convergence plot for the Newton method is given in Fig. 2.2. The
quadratic convergence is readily visible and leads to a much smaller number of iterations
compared to the modified Gummel method.

2.5 Compatibility with Modern TCAD

Now as the SHE equations are derived, the state-of-the-art for the SHE method – excluding
the author’s own contributions presented in the remainder of this thesis – is compared to
the requirements for modern TCAD established in Sec. 1.2.

• Accuracy: The main rationale for the introduction of the deterministic SHE method
was the ability to compute solutions of the full BTE instead of simpler macroscopic
equations obtained from moments of the BTE. Moreover, the SHE method has been
shown e.g. by Hennacy et al. [37] or Jungemann et al. [53] to yield results in agreement
with those obtained from the Monte Carlo method, which is commonly considered
to be the reference for all macroscopic models. Therefore, SHE easily fulfills the
requirement for accuracy in modern TCAD.

• Charge Conservation: The box integration scheme proposed by Jungemann et al.
[53] and later refined by Hong et al. [42] ensures current conservation by construction.

• Self-Consistency: As discussed in Sec. 2.4, the SHE equations are solved self-
consistently with the Poisson equation. The convergence behavior is similar to that
of the drift-diffusion model.
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• Resolution of Complicated Domains: Except for the use of spatially triangu-
lar grids for first-order SHE [105], publications on the SHE method have relied on
structured grids so far. For one-dimensional simulations, this is clearly not a concern.
However, the first two-dimensional higher-order SHE simulations have been reported
just recently in 2008 by Hong et al. [44] on structured grids. Even though the dis-
cretization scheme is in principle suitable for unstructured grids, no results have been
reported by then. Nevertheless, a commercial implementation of a SHE simulator
using triangular grids became available from Synopsys Inc. in 2011.

• Computational Resources: The SHE method imposes high memory requirements
due to the additional energy coordinate. Memory consumptions in the range of 25 Gi-
gabytes were reported for a third-order SHE simulation of a spatially two-dimensional
simulation of a SiGe HBT [42], leading to single-threaded execution times of several
hours. While execution times are still well below those of the Monte Carlo method,
they prohibit parametric studies within a reasonable amount of time, as well as time-
dependent simulations. Moreover, the parallelization of the SHE method has not
been investigated so far, while fully parallel Monte Carlo simulators are already avail-
able [114]. Consequently, improvements from the numerics point of view as well as
from the scientific computing point of view are required to make the SHE method
attractive of modern TCAD.

• Extendibility: Due to the formulation by means for partial differential equations,
the SHE method can be extended in a similar way as the drift-diffusion method. For
example, the inclusion of magnetic fields has been proposed by Hong et al. [42]. Except
for carrier-carrier scattering, for which a scheme is proposed in Sec. 3.4, the different
scattering operators used with the Monte Carlo method have also been employed for
the SHE method [46]. Thus, the SHE method fully complies to the requirements of
modern TCAD in terms of extendibility.

The issues raised in terms of the resolution of complicated domains as well as in the
use of computational resources will be addressed in the remainder of this thesis. Chap. 5
discusses the use of unstructured triangular and tetrahedral meshes for the SHE method.
Chap. 6 addresses the quadratically increasing computational costs of the SHE method with
the expansion order L. In Chap. 7 a parallel preconditioner is developed, which enables the
efficient use of modern many- and multi-core computing architectures.



Chapter 3

Physical Modeling

The SHE equations (2.34) and (2.35) incorporate material-specific properties by the velocity
term v, the modulus |k| of the wave vector as a function of energy, the generalized density
of states Z, and the scattering operator Q. However, the velocity term v and the density
of states Z are not independent and depend on the dispersion relation ε(k) by

v =
1

~
∇kε , (3.1)

Z(ε, θ, ϕ) =
|k|2

4π3
∂|k|

∂ε
. (2.3)

Similarly, the modulus of the wave vector is obtained from inverting the dispersion relation.
Consequently, the choice of the dispersion relation plays a central role for the accuracy of
the SHE method. Spherically symmetric approximations are presented in Sec. 3.1, but only
poor approximations are obtained at higher energies. Sec. 3.2 deals with the state-of-the-art
on the inclusion of full-band effects up to high energies.

The second half of this chapter is devoted to the various scattering effects. Since scat-
tering balances the energy gain of carriers due to the electric field, accurate expressions for
the scattering operators are mandatory. Scattering mechanisms leading to a linear operator
are discussed in Sec. 3.3, while the case of nonlinear scattering operators is investigated in
Sec. 3.4.

3.1 Spherically Symmetric Energy Band Models

Due to the nonuniformity of the crystal lattice in silicon with respect to a change in direction,
the dispersion relation linking the particle momentum with the particle energy cannot be
accurately described by the idealized setting of an infinitely deep quantum well, for which
the solution of Schrödinger’s equation yields a parabolic dependence of the energy on the
wave vector:

ε(k) =
~
2|k|2

2m∗
, (3.2)

where ~ is the scaled Planck constant and m∗ is the effective mass. Still, this quadratic re-
lationship termed parabolic band approximation is a good approximation near the minimum
of the energy valley. Due to its simple analytical form, the parabolic dispersion relation is

25
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Figure 3.1: Multi-band structure of silicon. Bands 1 and 3 are electron-like (increasing
density of states), bands 2 and 4 are hole-like (decreasing density of states).

often used up to high energies, for which it fails to provide an accurate description of the
material.

A more accurate approximation to the band structure in silicon can be obtained by a
slight modification of the form

γ(ε) =
~
2k2

2m∗
, (3.3)

where the typical choice

γ(ε) = ε(1 + αε) (3.4)

is known as Kane’s model [55]. The parameter α is called nonparabolicity factor ; in the
case α = 0 one obtains again (3.2). More complicated analytical dependencies of the energy
on the wave vector are certainly possible, but (3.4) already provides very good results in
the low-energy regime. The choice α = 0.5 provides a good approximation of the dispersion
relation for electrons in relaxed silicon. However, for kinetic energies above 1.75 eV the
nonparabolic approximation fails to describe the nonmonotonicity of the density of states
in silicon.

The deficiencies of the nonparabolic dispersion relation can be mitigated by a combina-
tion of four energy bands as proposed by Brunetti et. al. [11]:

ε+ αε2 =
~
2k2

2m∗(1)
, (Band 1) (3.5)

ε = ε(2)max −
~
2k2

2m∗(2)
, (Band 2) (3.6)

ε = ε
(3)
min +

~
2k2

2m∗(3)
, (Band 3) (3.7)

ε = ε(4)max −
~
2k2

2m∗(4)
. (Band 4) (3.8)
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Band m∗/m0 εmin εmax β α

1 0.320 0 1.75 6 0.35

2 0.712 1.75 3.02 6 0

3 0.750 2.60 3.00 12 0

4 0.750 3.00 3.40 12 0

Table 3.1: Parameters for the analytical band structure proposed by Brunetti et. al. [11].
m0 denotes the electron mass, β the multiplicity of the respective band and α
is the nonparabolicity factor. Each band extends from εmin to εmax.

The bands are valid up to energy limits ε
(2)
max, ε

(3)
min and ε

(4)
max respectively. The specific form

of each band is given by

γ(1)(ε) = ε+ αε2 , (Band 1) (3.9)

γ(2)(ε) = ε(2)max − ε , (Band 2) (3.10)

γ(3)(ε) = ε− ε
(3)
min , (Band 3) (3.11)

γ(4)(ε) = ε(4)max − ε . (Band 4) (3.12)

The relationships between the energy and the wave vector can be written in compact form
as

γ(ν)(ε) =
~
2k2

2m∗(ν)
, ν = 1, 2, 3, 4 , (3.13)

and are depicted in Fig. 3.1. The total density of states Z(ε) is computed from the individual
densities of states by a weighted sum:

Z(ε) = β(1)Z(1)(ε) + β(2)Z(2)(ε) + β(3)Z(3)(ε) + β(4)Z(4)(ε) , (3.14)

where the band multiplicities β(ν), ν = 1, 2, 3, 4 account for the number of equivalent sym-
metrical bands of the ν-th band can be found together with the other parameters of the
multi-band model in Tab. 3.1.

The BTE has in principle to be solved in each energy band with index ν for a distribution
function f (ν). However, since the individual distribution functions for each energy band are
not of particular interest, it is preferred to have a single dispersion relation describing the
total distribution function f .

3.2 Incorporation of Full-Band Effects

In order to account for the angular dependence of the energy on the wave vector in a
semiconductor, the inverse dispersion relation is expanded as

k(ε, θ, ϕ) =

L
∑

l=0

l
∑

m=−l

kl,m(ε)Y l,m , (3.15)
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where due to symmetries of the band structure only even values of l and nonnegative m-
values, which are a multiple of four, lead to nonzero expansion coefficients. The expansion
coefficients kl,m can either be determined by an integration over spheres in k-space, cf. (2.2),
or by minimization of certain target functionals such as the quadratic error of the scaled
moments

V0(ε) :=
1

(2π)3

∫

B

δ(ε − ε(k)) dk , (3.16)

Vn(ε) :=
1

(2π)3V0(ε)

∫

B

|v(k)|nδ(ε − ε(k)) dk , (3.17)

where B denotes the Brillouin zone.
A SHE of the valence band has been carried out by Kosina et al. [60] up to 1.27 eV.

Pham et al. [73] proposed a refined method for an expansion also including higher energies.
A fitted band structure based on SHE for the conduction band has been presented by Matz
et al. [69]. Due to the bijective mapping between energy and wave vector, the velocity and
the density of states are not in perfect agreement with full-band data. Nevertheless, good
results compared to the Monte Carlo method are obtained [45].

A comparison of the presented energy band models is given in Fig. 3.2. Slight deviations
of the many-band model and the full-band density of states are due to different Monte Carlo
data used in [11]. While the many-band model provides a good fit for the density of states,
it fails to approximate the carrier velocity and is worse than the nonparabolic model (3.3).
As expected, the fitted band model provides the best accuracy, even though approximations
are less accurate at energies above 2 eV.

Vecchi et al. [107] used full-band Monte Carlo data for the velocity v and the generalized
density of states Z for a first-order SHE. This is possible because in this case all terms with

an explicit representation of the band structure, i.e. Γl′,m′

0,0 , vanish. However, higher-order
SHE does not allow for a similar procedure, because the angular coupling term (2.33) does
not vanish any longer and an explicit expression for the modulus of the wave vector is
required.

Recently, Jin et al. [48] suggested a reformulation as follows: Consider

Z

~|k|
=
|k|

4π3~

∂|k|

∂ε
. (3.18)

With the relation 2|k|∂|k|/∂ε = ∂|k|2/∂ε, the expression can be further rearranged to

∂

∂ε

(

Z
1

~

∂ε

∂|k|

)

. (3.19)

With (3.1), one thus obtains

Z

~|k|
≈

1

2

∂|v|Z

∂ε
, (3.20)

where equality holds true only in a homogeneous material with a spherically symmetric
dispersion relation. Nevertheless, the results presented in [48] demonstrate that the use
of full-band data for the velocity and the density of states using the approximation (3.20)
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Figure 3.2: Comparison of the density of states and the carrier velocity for the band
models (3.2), (3.3), (3.5)-(3.8), and (3.15) with full-band Monte Carlo values
from [69]. The nonparabolic band (3.3) using (3.4) and α = 0.5 is labelled
Modena model, as it is also used in e.g. [42].
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leads to an accuracy comparable with the anisotropic fitted band (3.15). Consequently, the
coupling term (2.33) is then approximated by

Γ
l′,m′

l,m ≈
1

2

∂|v|Z

∂H

∫

Ω

(

∂Y l,m

∂θ
eθ +

1

sin θ

∂Y l,m

∂ϕ
eϕ

)

Y l′,m′

dΩ (3.21)

and similarly for the adjoint term (2.36). The integral can be tabulated easily, since it
does not contain any band structure information any longer. As will become clear in
Chap. 4, the use of band structure parameters without angular dependencies brings a
number of additional benefits from the computational point of view compared to the fitted
band structure (3.15).

3.3 Linear Scattering Operators

While the band structure links the particle energy with the particle momentum, it does not
fully describe the propagation of carriers. In the presence of an electrostatic force, carriers
would be accelerated and thus gain energy indefinitely unless scattering with the crystal
lattice or with other carriers is included in the model. The most important scattering
mechanisms are discussed in the following. The scattering operator is assumed to be given
in the form

Q{f} =
1

(2π)3

∫

B

s(x,k′,k)f(x,k′, t)− s(x,k,k′)f(x,k, t) dk′ , (2.13)

where it has to emphasized that scaling factors in front of the scattering integral, here
1/(2π)3, need to be taken into account when comparing scattering rates from different
sources. Note that the numerator of the prefactor differs from the numerator used for
the spherical projection (2.6) due to the assumption that scattering does not change spin.
Moreover, it should be noted again that the commonly written small sample volume Vs as
prefactor for the scattering integral is not written explicitly in the following.

3.3.1 Acoustic Phonon Scattering

Atoms in the crystal lattice vibrate around their fixed equilibrium locations at nonzero
temperature. These vibrations are quantized by phonons with energy ~ωphon. Acoustic
vibrations refer to a coherent movement of the lattice atoms out of their equilibrium posi-
tions. Depending on the displacements with respect to the direction of propagation of the
lattice wave, transversal (TA) and longitudinal (LA) acoustic modes are distinguished.

Since the change in particle energy due to acoustic phonon scattering is very small,
the process is typically modelled as an elastic process [47], which does not couple different
energy levels. The scattering rate can thus be written as

sac(x,k,k
′) = σacδ(ε(k)− ε(k

′)) , (3.22)

where the coefficient σac is given by

σac =
2πkBTE

2

~ρu2l
, (3.23)

where E is the deformation potential, ρ is the density of mass, and ul is the longitudinal
sound velocity, cf. Tab. 3.2.
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Si Ge

ρ 2.33 g/cm3 5.32 g/cm3

ul 9.05 × 105 cm/s 5.40 × 105 cm/s

ǫ 11.7 × ǫ0 16.0 × ǫ0

Ee 8.90 eV 8.79 eV

Eh 5.12 eV 7.40 eV

Table 3.2: Material parameters for silicon and germanium, cf. [52]. The subscripts e and
h are used to distinguish between electrons and holes.

3.3.2 Optical Phonon Scattering

Optical phonon scattering refers to an out-of-phase movement of lattice atoms. In ionic
crystals, these vibrations can be excited by infrared radition, which explains the name.
Similar to acoustic phonon scattering, transversal (TO) and longitudinal (LO) modes are
distinguised.

Since the involved phonon energies are rather high, cf. Tab. 3.3, optical phonon scatter-
ing is typically modeled as an inelastic process leading to a change of the particle energy.
With the phonon occupation number Nphon given by the Bose-Einstein statistics

Nphon =
1

exp
(

~ωphon

kBT

)

− 1
, (3.24)

the scattering rate for the initial state k and the final state k′ can be written as

sop(x,k,k
′) = σop

[

Nphon δ(ε(k)− ε(k
′) + ~ωop)

+(1 +Nphon)δ(ε(k)− ε(k
′)− ~ωop)

]

,
(3.25)

where σop(x,k,k
′) is symmetric in k and k′ and given by

σop =
π(DtKν)

2

ρων
, (3.26)

with coupling constant DtKν , mass density ρ, and phonon frequency ων . Values for the
individual modes can be found in Tab. 3.3. It should be noted that optical phonon scattering
couples the energy levels H − ~ωop, H and H + ~ωop in an asymmetric manner, because
scattering from higher energy to lower energy is more likely than vice versa.

3.3.3 Ionized Impurity Scattering

Dopants in a semiconductor are fixed charges inside the crystal lattice. Since carriers are
charged particles as well, their trajectories are influenced by these fixed charges, leading to
a change of their momentum. The model by Brooks and Herring [10,47] suggests an elastic
scattering process with scattering coefficient

simp(x,k,k
′) = σimp(x,k,k

′)δ(ε(x)− ε(x′)) , (3.27)
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Si Ge

ν Mode DtKν ~ω DtKν ~ω

1 TA 0.470 × 108 eV/cm 12.1 meV 0.479 × 108 eV/cm 5.60 meV

2 LA 0.740 × 108 eV/cm 18.5 meV 0.772 × 108 eV/cm 8.60 meV

3 LO 10.23 × 108 eV/cm 62.0 meV 9.280 × 108 eV/cm 37.0 meV

4 TA 0.280 × 108 eV/cm 19.0 meV 0.283 × 108 eV/cm 9.90 meV

5 LA 1.860 × 108 eV/cm 47.4 meV 1.940 × 108 eV/cm 28.0 meV

6 TO 1.860 × 108 eV/cm 58.6 meV 1.690 × 108 eV/cm 32.5 meV

Table 3.3: Modes, coupling constants and energies for inelastic phonon scattering with
electrons, cf. [52]. (TA: transveral acoustic, LA: longitudinal acoustic, TO:
transversal optical, LO: longitudinal optical)

where σimp(x,k,k
′) is symmetric in k and k′ and given by

σimp(x,k,k
′) =

2π

~

NIq
4

ǫ2
1

(

(k′ − k)2 + 1/λ2D
)2 . (3.28)

The ordinality of the impurity charge is assumed to be one, and Na and Nd denote the
acceptor and donator concentrations respectively. The Debye length λD under assumption
of local equilibrium is given by

λD =
ǫkBT

q2(n+ p)
. (3.29)

Similar to elastic acoustical phonon scattering, ionized impurity scattering does not couple
different energy levels. However, a considerable complication stems from the angular de-
pendence of the coefficient σimp. This complication can be circumvented by approximating
the anisotropic coefficient (3.27) by an elastic-isotropic process with the same momentum
relaxation time τm;ii [52]. The momentum relaxation time is computed for an isotropic
dispersion relation by an integration over the whole Brillouin zone and by weighting the
change of direction of the momentum [67]:

1

τm;ii(k)
=

1

(2π)3

∫

B

simp(x,k,k
′)(1− cos(θ)) dk3

Here, the z-axis for the integration in the Brillouin zone is chosen such that it is aligned
with k, hence the angle between k and k′ is given by the inclination θ. Transformation to
spherical coordinates leads to

1

τm;ii(k)
=

4π3NIq
4

~ǫ2

∫ ∞

0

∫ π

0

1− cos(θ)
(

4|k|2 sin2(θ/2) + 1/λ2D
)2 sin θ dθZ dε

where the density of states Z is independent of the angles because of the assumption
of an isotropic dispersion relation. The integral over the inclination θ can be computed
analytically as

∫ π

0

1− cos(θ)
(

(k′ − k)2 + 1/λ2D
)2 sin θ dθ =

1

4|k|4

[

ln(1 + 4λ2D|k|
2)−

4λ2D|k|
2

1 + 4λ2D|k|
2

]

.
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Figure 3.3: Fit factor for ionized impurity scattering in order to reproduce the Caughey-
Thomas expression for the mobility [15, 52].

Therefore, the isotropic scattering coefficient

σimp;iso(x,k,k
′) =

π

~

NIq
4

ǫ2
1

4|k|4

[

ln(1 + 4λ2D|k|
2)−

4λ2D|k|
2

1 + 4λ2D|k|
2

]

(3.30)

has the same momentum relaxation time as the anisotropic coefficient (3.27). Note that |k|
should be evaluated consistently with the approximated band, therefore the transformation
(3.20) needs to be employed for the full-band case. Moreover, since the Brooks-Herring
model fails to correctly describe the carrier mobility at high doping concentrations, an
empirical fit factor depicted in Fig. 3.3 is usually employed additionally [52] in order to
reproduce the Caughey-Thomas expression for the mobility [15].

3.4 Nonlinear Scattering Operators

The scattering operator in low-density approximation for single carrier processes is linear,
which is very attractive from a computational point of view. Consequently, scattering
processes leading to a nonlinear scattering operator are often neglected in order to avoid
nonlinear iteration schemes. In the following, two such types of scattering mechanisms are
considered.

3.4.1 Pauli Exclusion Principle

A high population of the conduction band can lead to the case that the distribution function
takes large values near the band edge, thus the term f(1− f) cannot be approximated with
f any longer:

Q{f} =
1

(2π)3

∫

B

s(x,k′,k)f(x,k′, t)(1− f(x,k, t))

− s(x,k,k′)f(x,k, t)(1 − f(x,k′, t)) dk′

(3.31)
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Repeating the steps from Sec. 2.2, one finally obtains for the projected in-scattering operator
assuming velocity randomization and a scattering rate independent of the angles

Qin
η,l,m{f} = ση(x, ε± ~ωη, ε)

[

Zl,m(ε)− [f ]l,m

] [f ]0,0(x, ε± ~ωη, t)

Y0,0
. (3.32)

Similarly, the projected out-scattering operator is found as

Qout
η,l,m{f} = ση(x, ε, ε± ~ωη)

[

Z0,0(ε± ~ωη)− [f ]0,0(x, ε± ~ωη, t)
] [f ]l,m
Y0,0

. (3.33)

The quadratic nonlinearity needs to be handled by a suitable nonlinear iteration scheme.
In [43] it was reported that no complications arose within a Newton scheme.

Numerical results in [43] confirm that the low-density approximation does not have a
high impact on macroscopic quantities such as the electron density or carrier velocities, but
notable differences in the distribution function are obtained near the band edge. The carrier
population is then shifted towards higher energies, because all states at lower energies are
already populated.

3.4.2 Carrier-Carrier Scattering

The linear scattering operators in Sec. 3.3 stem from the scattering of carriers with non-
carriers. Very important for particularly the high energy tail of the distribution function is
carrier-carrier scattering [79]. A carrier-carrier scattering mechanism requires that the two
source states are occupied, and the two final states after scattering are empty. This leads
to a scattering operator of the form

Q{f} =
1

(2π)3

∫

B

∫

B

∫

B

s(x,k′,k,k′
2,k2)f(x,k

′, t)(1 − f(x,k, t))f(x,k′
2, t)(1 − f(x,k2, t))

− s(x,k,k′,k2,k
′
2)f(x,k, t)(1 − f(x,k

′, t))f(x,k2, t)(1 − f(x,k
′
2, t)) dk

′ dk2 dk
′
2 ,

(3.34)

where the scattering coefficient s(·, ·, ·, ·, ·) now depends on the spatial location and on two
pairs of initial and final states. With a low-density approximation, the nonlinearity of
degree four of the carrier-carrier scattering operator reduces to second order:

Qcc{f} =
1

(2π)3

∫

B

∫

B

∫

B

s(x,k′,k,k′
2,k2)f(x,k

′, t)f(x,k′
2, t)

− s(x,k,k′,k2,k
′
2)f(x,k, t)f(x,k2, t) dk

′ dk2 dk
′
2

(3.35)

The scattering coefficient can be derived to be of the form [96,99]

s(x,k′,k,k′
2,k2) = σcc(x,k,k

′,k2,k
′
2)δ(k + k′ − k2 − k′

2)δ(ε + ε′ − ε2 − ε
′
2) , (3.36)

where the two delta distributions in (3.36) refer to conservation of momentum and energy
respectively, and

σcc = σcc(x,k,k
′,k2,k

′
2) =

2π

~

q4n(x)

ǫ2
1

((k′ − k)2 + 1/λ2D)
2
. (3.37)
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The set of parameters is similar to that of ionized impurity scattering, with the impurity
density Na + Nd replaced by the carrier density n. Since σcc only depends via β on the
difference of the initial and the final state of one of the two carriers, the shorthand notation
σcc(x,k,k

′) is used in the following.
Carrier-carrier scattering, particularly electron-electron scattering, has so far been dis-

cussed for first-order SHE only [108,110]. In a joint work with Peter Willibald Lagger [62],
the author has recently extended the method to arbitrary-order SHE, and the derivation is
given in the following.

The scattering operator (3.35) is again split into an in-scattering term Qin
cc and an out-

scattering term Qout
cc as in Sec. 2.2. Inserting (3.36) into (3.35), one integration can be

carried out due to the momentum conservation. An integration with respect to k2 yields

Qin
cc =

1

(2π)3

∫

B

∫

B

σcc(x,k,k
′)f(k′)f(k′

2)δ(ε + ε∗ − ε′ − ε′2) dk
′ dk′

2 , (3.38)

with the initial energy ε∗ := ε(k′ +k′
2−k) of the second particle involved in the scattering

process. A transformation of the two integrals to spherical coordinates leads to

Qin
cc =

∫ ∞

0

∫ ∞

0

∫

Ω

∫

Ω
σcc(x,k,k

′)f(k′)f(k′
2)Z(k

′)Z(k′
2)

× δ(ε+ ε∗ − ε′ − ε′2) dε
′ dε′2dΩ

′ dΩ′
2 ,

(3.39)

where k = k(ε, θ, ϕ) and similarly for k′ and k′
2. A projection onto the spherical harmonic

Y l,m yields

Qin
cc,l,m{f}(x, ε, t) =

∫ ∞

0

∫ ∞

0

∫

Ω

∫

Ω

∫

Ω
σcc(x,k,k

′)f(k′)f(k′
2)Z(k

′)Z(k′
2)

× δ(ε+ ε∗ − ε′ − ε′2)Y
l,mZ dΩ dΩ′ dΩ′

2 dε
′ dε′2 .

(3.40)

Up to now, no approximations have been applied. However, a direct evaluation of these
nested integrals at each node in the simulation domain is certainly prohibitive for the use
within a simulator due to excessive execution times. Consequently, the further derivation
is based on the following two assumptions:

• ε∗ = ε(k′ + k′
2 − k) can be taken as an external parameter. In principle, the energy

ε∗ of the second particle before scattering depends due to energy conservation on
all variables, i.e. ε, θ, ϕ, ε′, θ′, ϕ′, ε′2, θ

′
2, ϕ

′
2. Because the asymptotically exponential

distribution of carriers with respect to energy, it is plausible, yet heuristic, that the
second particle has an energy close to the band gap. Since no additional information
about the second particle involved is known, the average energy is taken for ε∗, which
is accessible due to the nonlinear iteration scheme required for the solution of the
discrete set of equations.

• The scattering coefficient σcc(x,k,k
′) can be expanded into spherical harmonics with

respect to k and k′. This can for example be achieved by using the isotropic approx-
imation (3.30) in order to obtain an isotropic scattering rate with equal macroscopic
relaxation time. As an alternative, one may directly compute a spherical projection
in order to obtain the expansion coefficients σcc;lcc,mcc,l′cc,m

′

cc
of the expansion

σcc(x,k,k
′) =

∑

lcc,mcc

∑

l′cc,m
′

cc

σcc;lcc,mcc,l′cc,m
′

cc
(x, ε, ε′)Y lcc,mcc(θ, ϕ)Y l′cc,m

′

cc(θ′, ϕ′) .

(3.41)
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For the sake of simplicity, it is first assumed σcc = σcc(x, ε, ε
′) in the following. The

same derivations can also be carried out for the coefficients σcc;lcc,mcc,l′cc,m
′

cc
, but only

the final result for this more general case is given at the end of the derivation.

With these assumptions, one can split the integrands to

Qin
cc,l,m{f} =

∫ ∞

0

∫ ∞

0
σcc(x, ε, ε

′)δ(ε + ε∗ − ε′ − ε′2)

×

∫

Ω

∫

Ω

∫

Ω
f(k′)f(k′

2)Z(k
′)Z(k′

2)Yl,mZ dΩ dΩ′ dΩ′
2 dε

′ dε′2 .

(3.42)

An expansion of f into spherical harmonics, the use of the delta distribution for an elimi-
nation of the integral over ε2, and the assumption of spherical energy bands leads to

Qin
cc,l,m{f} = Z

∑

l′,m′

∑

l′2,m
′

2

∫ ∞

0
ccc(x, ε, ε

′)fl,m(ε′)fl′,m′(ε+ ε∗ − ε′)Z(ε′)Z(ε+ ε∗ − ε′) dε′

×

∫

Ω
Yl,m dΩ

∫

Ω
Yl′,m′ dΩ′

∫

Ω
Yl′2,m′

2
dΩ′

2 .

(3.43)

Summing up, the projected in-scattering operator is given by

Qin
cc,l,m{f} =

Z

Y 3
0,0

∫ ∞

0
σcc(x, ε, ε

′)f0,0(ε
′)f0,0(ε+ ε∗ − ε′)Z(ε)Z(ε + ε∗ − ε′) dε′ . (3.44)

For the more general case of an expansion of the scattering coefficient (3.41), one obtains
again with the assumption of spherical energy bands

Qin
cc,l,m{f} =

1

Y0,0
Z

∫ ∞

0
σcc;l,m,l′,m′(x, ε, ε′)fl,m(ε′)fl′,m′(ε+ ε∗ − ε′)

× Z(ε)Z(ε+ ε∗ − ε′) dε′ .

(3.45)

The projection of the out-scattering operator starts with the same steps as for the
in-scattering operator in order to arrive at

Qout
cc,l,m{f} = Z

∑

l′,m′

fl′,m′

∑

l2,m2

∫ ∞

0

∫ ∞

0
σcc(x, ε, ε

′)Z(ε′)Z(ε′2)

×

∫

Ω

∫

Ω

∫

Ω
fl2,m2

(ε∗)δ(ε + ε∗ − ε′ − ε′2)

× Yl,mYl′,m′Yl2,m2
(θ∗, ϕ∗) dΩ dΩ′ dΩ′

2 dε
′ dε′2 .

(3.46)

The angles θ∗ and ϕ∗ depend in a complicated way on the other angles, therefore rather
crude simplifications are applied. Scattering with another carrier is to a first approximation
determined by the density of carriers at the particular location inside the device. Conse-
quently, the distribution function of the second particle, which is described by ε∗ and θ∗, ϕ∗,
is approximated by the isotropic part of the distribution function only, since it fully de-
scribes the carrier density. With f(k∗) = f(k′ + k′

2 − k) ≈ f0,0(ε
∗)Y0,0 and considering ε∗

again as the average energy, (3.46) simplifies to

Qout
cc,l,m{f} =

Z

Y 3
0,0

f0,0(ε
∗)fl,m(ε)

∫ ∞

0
σcc(x, ε, ε

′)Z(ε′)Z(ε+ ε∗ − ε′) dε′ . (3.47)



3.4. NONLINEAR SCATTERING OPERATORS 37

The more general case of an expansion of the scattering coefficient (3.41) results in

Qout
cc,l,m{f} =

Z

Y 2
0,0

f0,0(ε
∗)
∑

l′,m′

fl′,m′

×
∑

lcc,mcc

∫ ∞

0
σcc;lcc,mcc,0,0(x, ε, ε

′)Z(ε′)Z(ε+ ε∗ − ε′) dε′

×

∫

Ω
Yl,mYl′,m′Ylcc,mcc

dΩ .

(3.48)

For the full projected scattering operator, one thus obtains

Qcc,l,m{f} =
Z

Y 3
0,0

∫ ∞

0
σcc(x, ε, ε

′)
[

f0,0(ε
′)f0,0(ε+ ε∗ − ε′)

− f0,0(ε
∗)fl,m(ε)

]

Z(ε)Z(ε + ε∗ − ε′) dε′ .

(3.49)

With the use of an expansion of the scattering coefficient (3.41), one obtains

Qcc,l,m{f} =
Z

Y 2
0,0

∑

lcc,mcc

∑

l′cc,m
′

cc

∫ ∞

0
σcc;lcc,mcc,l′cc,m

′

cc
(x, ε, ε′)

[

Y0,0flcc,mcc
(ε′)fl′cc,m′

cc
(ε+ ε∗ − ε′)

− f0,0(ε
∗)
∑

l′,m′

fl′,m′

∫

Ω
Yl,mYl′,m′Ylcc,mcc

dΩ
]

× Z(ε)Z(ε+ ε∗ − ε′) dε′ .

(3.50)

One can immediately see that the full scatter operator vanishes for the equilibrium case,
where f is given by a Maxwell distribution. Therefore, even though simplifications have
been used for the separate derivation of the projected equations for the in- and the out-
scattering operators, the resulting expressions are consistent.



Chapter 4

Structural Properties

The SHE equations furnish a number of interesting structural properties, which are the
topic of this chapter. All properties are discussed on the continuous level and result from
certain symmetries of the underlying physical processes. Consequently, no additional as-
sumptions about a particular discretization method need to be imposed and the same
structural properties hold true for the system of discretized linear equations as outlined in
Chap. 5.

In Sec. 4.1 the coupling between the SHE equations is investigated and a scheme for the
lossless compression of the system matrix is proposed, which greatly reduces the memory
consumption of the SHE method at high expansion orders. The different boundary con-
ditions used for the SHE method are discussed in Sec. 4.4 and extensions to the system
matrix compression scheme are proposed in order to handle them. This chapter closes with
some numerical results demonstrating the benefits of the proposed compression scheme.

4.1 Sparse Coupling for Spherical Energy Bands

As already noted in Sec. 2.3, the terms [Y l′,m′

]l,m, jl
′,m′

l,m and Γ
l′,m′

l,m determine the coupling
among the projected equations (2.30). If all coupling coefficients were multiples of the Kro-
necker delta, then the SHE equations were decoupled and could be solved individually. On
the contrary, if all coupling coefficients were nonzero, all projected equations were coupled
with each other. In analogy to systems of linear equations described by matrices, one is
typically interested in a weak coupling, which typically accelerates the solution process, and
on the other hand leads to lower memory requirements. A closer inspection of the coupling
structure for spherically symmetric dispersion relations is carried out in this section.

For general band structures, the symmetry of the underlying processes leads to the
following result: [53]

Theorem 1 (Jungemann et. al.). For a spherical harmonics expansion up to order L =
2I+1 with I ∈ N, there holds for all i, i′ ∈ {0, . . . , I}, m ∈ {−i, . . . , i} and m′ ∈ {−i′, . . . , i′}

j
2i′,m′

2i,m = j
2i′+1,m′

2i+1,m = 0, Γ
2i′,m′

2i,m = Γ
2i′+1,m′

2i+1,m = 0 .

The essence of this theorem is that all nonzero coupling coefficients possess different parities
in the leading indices. This small structural information about the coupling was already
used for a preprocessing step for the solution of the discretized equations in [53].
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Under the assumption of spherical energy bands, i.e. ε(k) = ε(|k|), the velocity v, the
modulus of the wave vector |k| and the generalized density of states only depend on the
energy ε, but not on the angles θ, ϕ. Consequently, (2.31), (2.32) and (2.31) are rewritten
as

[Y l′,m′

]l,m = δl
′,m′

l,m , (4.1)

j
l′,m′

l,m = vZ

∫

Yl,meεYl′,m′ dΩ =: vZal′,m′

l,m , (4.2)

Γ
l′,m′

l,m =
Z

~|k|

∫

(∂Yl,m
∂θ

eθ +
1

sin θ

∂Yl,m
∂ϕ

eϕ

)

Yl′,m′ dΩ =:
Z

~|k|
b
l′,m′

l,m , (4.3)

where δl
′,m′

l,m denotes the Kronecker delta and v = veε. A similar decomposition is possible
with the full-band modification (3.20).

The coupling between index pairs (l,m) and (l′,m′) is determined by the integral terms

a
l′,m′

l,m and b
l′,m′

l,m only. As shown by the author, it turns out that the coupling is rather weak:

Theorem 2. For spherical energy bands and indices l, l′ ∈ {0, . . . , L}, m ∈ {−l, . . . , l} and
m′ ∈ {−l′, . . . , l′}, there holds:

(i) If jl
′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈ {±|m′| ± 1,m′}.

(ii) If Γl′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈ {±|m′| ± 1,m′}.

A rather lengthy and technical proof is given in [87] and makes use of recurrence relations
and orthogonalities of trigonometric functions and associated Legendre functions.

Thm. 2 is very important for large expansion orders L: The total number of unknown
expansion coefficients is (L + 1)2, but according to the result of the theorem, each fl,m is
directly coupled with at most ten other coefficients. It should also be noted that the weak
coupling stated in Thm. 2 has already been observed for less general situations in earlier
publications [37,78].

Next, the structure of the SHE equations (2.30) for spherical energy bands is investigated
in depth. Unlike the presentation in [87], the structure is investigated already at the
continuous level, which has the advantage of covering a wider class of discretization schemes
and less notational clutter. Due to the equivalence of (2.30) and (2.38) for spherical energy
bands, the results in this section apply equally to an expansion of the distribution function
f and to an expansion of the generalized distribution function g.

A motivation for a first-order expansion is now given, then the scheme is extended to
general expansion orders. Ignoring the stabilization using MEDS in a first step, the four
SHE equations using Einstein summation convention read

∂f0,0
∂t

+ vZal′,m′

0,0 · ∇xfl′,m′ +
Zfl′,m′

~|k|
b
l′,m′

0,0 · F +
∑

η

(

s̃l
′,m′;out
0,0 soutη − s̃l

′,m′;in
0,0 sinη

)

fl′,m′ = 0 ,

∂f1,−1

∂t
+ vZal′,m′

1,−1 · ∇xfl′,m′ +
Zfl′,m′

~|k|
b
l′,m′

1,−1 · F +
∑

η

(

s̃l
′,m′;out
1,−1 soutη − s̃l

′,m′;in
1,−1 sinη

)

fl′,m′ = 0 ,

∂f1,0
∂t

+ vZal′,m′

1,0 · ∇xfl′,m′ +
Zfl′,m′

~|k|
b
l′,m′

1,0 · F +
∑

η

(

s̃l
′,m′;out
1,0 soutη − s̃l

′,m′;in
1,0 sinη

)

fl′,m′ = 0 ,

∂f1,1
∂t

+ vZal′,m′

1,1 · ∇xfl′,m′ +
Zfl′,m′

~|k|
b
l′,m′

1,1 · F +
∑

η

(

s̃l
′,m′;out
1,1 soutη − s̃l

′,m′;in
1,1 sinη

)

fl′,m′ = 0 .
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The terms s̃l
′,m′;out
l,m soutη and s̃l

′,m′;in
l,m sinη may be operators in order to take shifts of the ar-

guments of the distribution function into account and denote the angular coupling of the
scattering operator and reduce to Kronecker deltas when scattering processes are modeled
as velocity randomizing, cf. Sec. 2.2.

This continuous linear system of partial differential equations can be written in operator
matrix form as











∂

∂t









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









+ vZ∇x ·











a
0,0
0,0 a

1,−1
0,0 a

1,0
0,0 a

1,1
0,0

a
0,0
1,−1 a

1,−1
1,−1 a

1,0
1,−1 a

1,1
1,−1

a
0,0
1,0 a

1,−1
1,0 a

1,0
1,0 a

1,1
1,0

a
0,0
1,1 a

1,−1
1,1 a

1,0
1,1 a

1,1
1,1











+
ZF

~|k|
·











b
0,0
0,0 b

1,−1
0,0 b

1,0
0,0 b

1,1
0,0

b
0,0
1,−1 b

1,−1
1,−1 b

1,0
1,−1 b

1,1
1,−1

b
0,0
1,0 b

1,−1
1,0 b

1,0
1,0 b

1,1
1,0

b
0,0
1,1 b

1,−1
1,1 b

1,0
1,1 b

1,1
1,1











+
∑

η

soutη











s̃0,0;out0,0 s̃1,−1;out
0,0 s̃1,0;out0,0 s̃1,1;out0,0

s̃0,0;out1,−1 s̃1,−1;out
1,−1 s̃1,0;out1,−1 s̃1,1;out1,−1

s̃0,0;out1,0 s̃1,−1;out
1,0 s̃1,0;out1,0 s̃1,1;out1,0

s̃0,0;out1,1 s̃1,−1;out
1,1 s̃1,0;out1,1 s̃1,1;out1,1











−
∑

η

sinη











s̃0,0;in0,0 s̃1,−1;in
0,0 s̃1,0;in0,0 s̃1,1;in0,0

s̃0,0;in1,−1 s̃1,−1;in
1,−1 s̃1,0;in1,−1 s̃1,1;in1,−1

s̃0,0;in1,0 s̃1,−1;in
1,0 s̃1,0;in1,0 s̃1,1;in1,0

s̃0,0;in1,1 s̃1,−1;in
1,1 s̃1,0;in1,1 s̃1,1;in1,1





















×









f0,0
f1,−1

f1,0
f1,1









= 0 ,

(4.4)

where the gradient and the time derivative act as an operator on the expansion coefficients,
not on the coefficient matrices. The crucial observation now is that all entries in each of
the matrices are independent of the spatial variable x as well as of total energy H. Writing
F (x) and x in components,

F (x) =





F1(x)
F2(x)
F3(x)



 ,x =





x1
x2
x3



 ,

the considered first-order system can thus be written as





∂

∂t
I +

3
∑

p=1

vZ
∂

∂xp
Ap +

3
∑

p=1

ZFp

~|k|
Bp +

∑

η

soutη Sout −
∑

η

sinη S
in













f0,0
f1,−1

f1,0
f1,1









= 0 , (4.5)

where the matrices I, Ap, Bp, S
out and Sin are given by the respective matrices in (4.4).

For the case of a general expansion order L, an enumeration of the index pairs (l,m) is
required. Let κ denote such a mapping, for instance κ(l,m) = l2 + l +m + 1. Repeating
the calculation for the general case, one obtains that the operator matrix S for the SHE
equations can be written as

S =

11
∑

i=1

qi(x,H)Ri . (4.6)
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The spatial terms q1, . . . , q11 are given by

q1(x,H) =
∂

∂t
, (4.7)

qp(x,H) = v
∂

∂xp−1
, p = 2, 3, 4 , (4.8)

qp(x,H) = −Fp−4
1

~|k|
, p = 5, 6, 7 , (4.9)

q8(x,H) =
1

Y0,0

∑

η

ση(x,H,H + ~ωη)Z0,0Z0,0(H + ~ωη) , (4.10)

q9(x,H) =
1

Y0,0

∑

η

ση(x,H,H − ~ωη)Z0,0Z0,0(H − ~ωη) , (4.11)

q10(x,H) = −
1

Y0,0

∑

η

ση(x,H + ~ωη,H)Z0,0(H + ~ωη)Z0,0D~ωη , (4.12)

q11(x,H) = −
1

Y0,0

∑

η

ση(x,H − ~ωη,H)Z0,0(H − ~ωη)Z0,0D−~ωη , (4.13)

with the energy shift operator Dy{f}(x,H) := f(x,H + y). Note that some of the terms
q2, . . . , q7 evaluate to zero if one- or two-dimensional simulations are carried out. The
angular coupling matrices R1, . . . ,R11 are determined by

(

R1

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′ , (4.14)

(

Rp

)

κ(l,m),κ(l′,m′)
= (al′,m′

l,m )p−1 , p = 2, 3, 4 , (4.15)
(

Rp

)

κ(l,m),κ(l′,m′)
= (bl

′,m′

l,m )p−4 , p = 5, 6, 7 , (4.16)
(

R8

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′ , (4.17)

(

R9

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′ , (4.18)

(

R10

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′δl′,0δm′,0 , (4.19)

(

R11

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′δl′,0δm′,0 . (4.20)

Hence, the full continuous system of equations S can be composed out of continuous spatial
terms qp and constant angular coupling matrices Rp, p = 1, . . . , 11. It is worthwhile to
mention that each of the coefficient pair (q8, q9) can be replaced by a single coefficient, and
similarly for (q10, q11) if only elastic scattering is considered. In analogy, each of the pairs
(R8,R9) and (R10,R11) can be replaced by a single matrix [87].

The decomposition of the continuous case is preserved after spatial discretization. To
see this, let Q1, . . . ,Q11 denote the matrices arising from an arbitrary discretization of
the terms q1, . . . , q11. In most cases, a finite volume or a finite element method will be
employed, but also less widespread techniques such as wavelet methods could be used.
Then, the discrete system matrix Sh for the SHE equations can be written as

Sh =

11
∑

i=1

Qi ⊗Ri , (4.21)



4.2. COUPLING FOR NONSPHERICAL ENERGY BANDS 42

where ⊗ denotes the Kronecker product (cf. A.1 for the definition). After a suitable rear-
rangement of unknowns, the system matrix could also be written in the equivalent form

S̃h =

11
∑

i=1

Ri ⊗Qi . (4.22)

The advantage of a representation using sums of Kronecker products is the considerably
smaller memory required for the factors. For a SHE of order L, the matrices Ri are of size
(L + 1)2 × (L + 1)2 and sparse according to Sec. 4.1. For a spatial discretization using N
unknowns, the matrices Qi are of dimension N × N and typically sparse, hence the full
system matrix Sh is of dimension N(L + 1)2 ×N(L + 1)2. While the explicit storage of a
sparse system Sh thus requiresO(N(L+1)2) = O(NL2) memory, a storage of the Kronecker
product factors requires O(N+L2) memory only, which is a considerable difference already
for L = 5 or L = 7.

In light of the memory requirements for the system matrix it is also worthwhile to point
out the importance of Thm. 2: Without the sparsity of coupling coefficients and without the
use of a Kronecker representation, O(N(L+1)4) = O(NL4) memory is required. With the
sparsity of coupling coefficients, only O(NL2) memory is required for a full representation of
Sh, which is further reduced to O(N +L2) when using a Kronecker product representation.
Since typical values of L are in the range three to seven, the memory savings due to Thm. 2
combined with (4.21) can be orders of magnitude.

4.2 Coupling for Nonspherical Energy Bands

The matrix compression described in the previous section relies on the factorizations (4.2)

and (4.3) of the coupling terms j
l′,m′

l,m and Γ
l′,m′

l,m , such that the factors depend on either
energy (and possibly the spatial location) or on the indices l, m, l′ and m′, but not on
both. Moreover, the derivation requires that the density of states does not show an angular
dependence. However, in the case of nonspherical energy bands, these three terms depend
on energy and on angles.

In order to decouple the radial (energy) contributions from the angular ones for non-
spherical energy band models, a spherical projection up to order L′ of the coupling terms
can be performed by approximating [53]

v(ε, θ, ϕ) ≈

L′

∑

l′′=0

l′′
∑

m′′=−l′′

ṽl′′,m′′(ε)Y l′′,m′′

(θ, ϕ) , (4.23)

1

~|k(ε, θ, ϕ)|
≈

L′

∑

l′′=0

l′′
∑

m′′=−l′′

Γ̃l′′,m′′(ε)Y l′′,m′′

(θ, ϕ) , (4.24)

Z(ε, θ, ϕ) ≈
L′

∑

l′′=0

l′′
∑

m′′=−l′′

Z̃l′′,m′′(ε)Y l′′,m′′

(θ, ϕ) , (4.25)
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where the expansion coefficients are given for ε > 0 by

ṽl′′,m′′(ε) =

∫

Ω
v(ε, θ, ϕ)Y l′′,m′′

(θ, ϕ) dΩ ,

Γ̃l′′,m′′(ε) =

∫

Ω

1

~|k(ε, θ, ϕ)|
Y l′′,m′′

(θ, ϕ) dΩ ,

Z̃l′′,m′′(ε) =

∫

Ω
Z(ε, θ, ϕ)Y l′′,m′′

(θ, ϕ) dΩ .

For simplicity, the expansion order L′, which depends on the complexity of the band struc-
ture, is taken to be the same for v, (~|k|)−1 and Z. In a slightly different context, values of
L′ = 4 have been used in [73] and [69] for an expansion of k, and good accuracy has been
obtained. On the other hand, a spherically symmetric velocity profile is exactly recovered
by an expansion order L′ = 1.

The expansion order of the generalized density of states Z is implicitly coupled to the
expansion order L of the distribution function by the scattering operator (2.23). Thus, even
if Z is expanded up to order L′ > L, only expansion terms up to order L can be considered.
For this reason L′ ≤ L is assumed in the following.

Substitution of the expansions (4.23) and (4.24) into (4.2) and (4.3) yields

j
l′,m′

l,m = ṽl′′,m′′(ε)

∫

Ω
Y l,mY l′,m′

Y l′′,m′′

dΩ =: vl′′,m′′(ε)al
′,m′;l′′,m′′

l,m ,

Γ
l′,m′

l,m = Γ̃l′′,m′′(ε)

∫

Ω

(∂Y l,m

∂θ
eθ +

1

sin θ

∂Y l,m

∂ϕ
eϕ

)

Y l′,m′

Y l′′,m′′

dΩ =: Γl′′,m′′(ε)bl
′,m′;l′′,m′′

l,m ,

so that in both cases a sum of (L′ + 1)2 decoupled terms is obtained. Note that in the
case of spherical energy bands, the sum degenerates to a single term. Repeating the steps
from the previous section, the continuous system of partial differential equations S can be
written similar to (4.6) in the form

Sh =

1+10(L′+1)2
∑

i=1

qi(x,H)Ri , (4.26)

while the discrete system matrix Sh can be written in analogy to (4.21) as

Sh =

1+10(L′+1)2
∑

i=1

Qi ⊗Ri . (4.27)

The entries of the coupling matrices due to al
′,m′

l,m;l′′,m′′ are directly obtained from the Wigner

3jm-symbols, cf. A.2. The sparsity of the coupling matrices due to b
l′,m′

l,m;l′′,m′′ is not clear
at present, but a similar structure is expected. Assuming for simplicity dense spherical
harmonics coupling matrices, the system matrix can be stored using at most O(L′2(L4+N))
memory, where in typical situations L4 ≪ N .

4.3 Stabilization Schemes

The stabilization schemes discussed in Sec. 2.3 lead to different equations for even-order
and odd-order projected equations. Since MEDS basically exchanges the summation index
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and the sign of the coupling term Γ
l′,m′

l,m , the representations (4.6) and (4.26) can extended
to

S =

p
∑

i=1

qi(x,H) (Re
i +Ro

i ) , (4.28)

where p denotes the number of matrices. Re
i refers to the even-order equations and is

obtained from Ri by setting all rows κ(2l + 1,m) to zero. Ro
i is obtained from Ri by

transposition and zeroing all rows κ(2l,m) of the transposed matrix. In addition, signs are
swapped in terms affected by MEDS.

For the discretization it is assumed that even-order harmonics can be discretized in a
different manner than odd-order harmonics. If all even-order unknowns are enumerated
first, the system matrix Sh has a block-structure of the form

Sh =

(

See
h Seo

h

Soe
h Soo

h

)

=

p
∑

i=1

(

Qee
i ⊗Ree

i Qeo
i ⊗Reo

i

Qoe
i ⊗Roe

i Qoo
i ⊗Roo

i

)

. (4.29)

The even-to-even coupling matrix See
h and the odd-to-odd coupling matrix Soo

h are square
matrices and determined according to Thm. 1 or Thm. 2 only by the projected time deriva-
tive ∂[f ]l,m/∂t and the projected scattering operator Ql,m{f}. The even-to-odd coupling
matrix Seo

h is not necessarily square and determined by the free-streaming operator with
sparsity pattern given by Thm. 2. The odd-to-even coupling matrix Soe

h is rectangular in
general and determined by the free-streaming operator and for nonspherical bands also by
the scattering operator Ql,m{f}, cf. (2.23).

Since the coupling structure of the scattering operator is explicitly given by (2.23), the
structure of See

h and Soo
h is as follows:

Theorem 3. The following statements hold true for a system matrix (4.29) obtained from
a discretization of the stabilized SHE equations in steady-state with velocity-randomizing
scattering processes only:

(i) The matrix Soo
h is diagonal.

(ii) For spherical energy bands without considering inelastic scattering, See
h is diagonal.

This structural information is very important for the construction of solution schemes
in Sec. 4.5.

4.4 Boundary Conditions

Only the discretization of the resulting system of partial differential equations in the interior
of the simulation domain has been considered in an abstract fashion so far. At the boundary,
suitable conditions need to be imposed and incorporated into the proposed compression
scheme.

At all noncontact boundaries, homogeneous Neumann boundary conditions are im-
posed [42, 53, 78], which can be directly included in the proposed compression scheme,
because no additional boundary terms appear. At the contact boundaries, two different
types of boundary conditions are typically imposed. The first type are Dirichlet boundary
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conditions [78], where the distribution function is set to a Maxwell distribution. Hence, the
expansion coefficient f0,0 is set according to (2.1), while fl,m is set to zero for (l,m) 6= (0, 0).
This it either enforced by replacing the corresponding matrix row with unity in the diagonal
and zeros elsewhere as well as setting the appropriate value at the right hand side vector,
or by directly absorbing the known values to the load vector. For the proposed compression
scheme, the second way is of advantage, because in that case boundary conditions do not
alter the matrix structure.

The second type of contact boundary conditions is a Robin-type generation/recombi-
nation process [53]

γl,m(ε) = −
Zl,m(ε)fl,m(ε) − Zl,m(ε)f eq(ε)

τ0
,

where f eq denotes the equilibrium Maxwell distribution, or, similar in structure, a surface
generation process of the form [42]

Γs = [f eq(k′)ϑ(v · n) + f(k′)ϑ(−v · n)]v · n ,

where ϑ denotes the step function and n is the unit surface normal vector pointing into the
device. This type of boundary conditions leads to additional entries in the system matrix
due to the surface boundary integrals. Consequently, the scheme needs to be adjusted and
written in the form

Sh = Sinner
h + Scontact

h , (4.30)

where Sinner
h contains the discretized equations for all interior points as given by (4.21),

(4.27) or (4.29), and Scontact
h consists of the discretized contact boundary terms. Since the

number of contact boundary points is much smaller than the total number of grid points
N , the sparse matrix Scontact

h can be set up without compression scheme and the additional
memory requirements are negligible.

As can be easily verified, Scontact
h can also be written as a sum of Kronecker products.

Consequently, the following discussions are based on the case of Dirichlet boundary con-
ditions, but are also applicable to the more general case including Robin-type boundary
conditions, which only add additional summands.

4.5 Solution of the Linear System

The system matrix representation introduced in the previous sections is of use only if the
resulting scheme can be solved without recovering the full matrix again. Such a reconstruc-
tion is, in principle, necessary if direct solvers such as the Gauss algorithm are used, because
the matrix structure is altered in a way that destroys the block structure. In contrast, for
many popular iterative solvers from the family of Krylov methods, it is usually sufficient to
provide matrix-vector multiplications. Therefore, methods to compute the matrix-vector
product Shx for a given vector x are discuss first.

Given a system matrix of the form (4.21) or (4.27), it is well known that a row-by-row
reconstruction of the compressed matrix Sh for the matrix-vector product is not efficient.
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Therefore, the vector x is decomposed into N blocks of size (L+ 1)2 by

x =







x1
...

xN






=

N
∑

j=1

ej ⊗ xj , (4.31)

where ej is the j-th column vector of the identity matrix. The matrix-vector product can
now be written as

Sx =
[

p
∑

i=1

Qi ⊗Ri

][

N
∑

j=1

ej ⊗ xj

]

(4.32)

=

p
∑

i=1

N
∑

j=1

(Qiej)⊗ (Rixj) . (4.33)

Here, the product Qiej is simply the j-th column of Qi.
In the case of spherical energy bands, it can be shown that the matrix-vector multi-

plication requires slightly less computational effort than the uncompressed case [87]. As
discussed in Sec. 4.2, nonspherical bands lead to a larger number of summands, thus lead-
ing to a higher computational effort for the matrix-vector multiplications compared to the
uncompressed case. Nevertheless, the additional computational effort is increased only
moderately, while the memory requirements can be reduced significantly.

Recent publications report the elimination of odd order unknowns in a preprocessing
step [42, 53]. Moreover, it has been shown that for a first-order expansion the system ma-
trix after elimination of odd order unknowns is an M -matrix [42]. Furthermore, numerical
experiments indicate a considerable improvement in the convergence of iterative solvers.
However, for a matrix structure as given by (4.29), a direct elimination of odd order un-
knowns would destroy the representation of the system matrix Sh as a sum of Kronecker
products. Writing the system as

Shf =

(

See
h Seo

h

Soe
h Soo

h

)(

f e

fo

)

=

(

re

ro

)

(4.34)

with the vector of unknowns f split into f e and f e as unknowns associated with even and
odd order harmonics respectively and analogously for the right hand side vector r, the
elimination of odd order unknowns is carried out using the Schur complement:

(See
h − Seo

h (Soo
h )−1Soe

h )f e = re − Seo
h (Soo

h )−1ro . (4.35)

According to Thm. 3, Soo
h is a diagonal matrix, thus the inverse is directly available. The

other matrix-vector products are carried out as discussed in the beginning of this section.
Note that the matrix See

h − Seo
h (Soo

h )−1Soe
h is never set up explicitly.

In contrast to a matrix-vector multiplication with the full system matrix Sh, where
the proposed matrix compression scheme requires approximately the same computational
effort, a matrix-vector multiplication with the condensed matrix (See

h − Seo
h (Soo

h )−1Soe
h ) is

more expensive than a matrix-vector multiplication with a fully set up condensed matrix.
The penalty is quantified in Sec. 4.6.

With a system matrix representation of the form (4.21), the total memory needed for the
SHE equations is essentially given by the memory required for the unknowns, which adds
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L S
∑

Qi ⊗Ri Unknowns

1 3.7 MB 4.7 MB 0.2 MB

3 28.4 MB 4.7 MB 1.4 MB

5 83.1 MB 4.7 MB 3.5 MB

7 168 MB 4.8 MB 6.6 MB

9 263 MB 4.8 MB 10.7 MB

11 470 MB 4.8 MB 15.7 MB

13 709 MB 4.9 MB 21.6 MB  0.1
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Figure 4.1: Memory requirements for the uncompressed and the compressed system ma-
trix compared to the memory needed for the unknowns for different expansion
orders L on a grid in the three-dimensional (x, H)-space with 5 × 50 × 50
nodes.

another perspective on the selection of the iterative solver. Since Γl′,m′

l,m 6= Γ
l,m
l′,m′ , the system

matrix Sh is not symmetric. Moreover, numerical experiments indicate that the matrix
Sh is indefinite, thus many popular solvers cannot be used. A popular solver for indefinite
problems is GMRES [89,112], which is typically restarted after, say, s steps and denoted by
GMRES(s). Since GMRES has been used in recent publications on SHE simulations [42,53],
it deserves a closer inspection. For a system with N ′ unknowns, the memory required by
GMRES(s) during the solution process is O(sN ′). In typical applications, in which the
system matrix is uncompressed, this additional memory approximately equals the amount
of memory needed for the storage of the system matrix, hence it is not a major concern.
However, with the system matrix representation (4.6) the memory needed for the unknowns
is dominant, thus the additional memory for GMRES(s) directly pushes the overall memory
requirements from O(NL2) to O(sNL2). The number of steps s is typically chosen between
20 and 30 as smaller values may lead to smaller convergence rates or the solver may even fail
to converge within a reasonable number of iterations. Hence, it is concluded that GMRES(s)
is too expensive for SHE simulations when using the representation (4.6). Instead, iterative
solvers with smaller memory consumption such as BiCGStab [102] should be used.

4.6 Results

In this section execution times and memory requirements of the Kronecker product repre-
sentation (4.6) using a single core of a machine with a Core 2 Quad 9550 CPU are reported.
To simplify wording, the representation (4.6) will be referred to as matrix compression
scheme. All simulations were carried out for a stationary two-dimensional device on a reg-
ular staggered grid with 5 × 50 × 50 nodes in (x,H)-space for various expansion orders.
Spherical energy bands were assumed and the H-transform and MEDS were used for sta-
bilization. A fixed potential distribution was applied to the device to obtain comparable
results. For self-consistency with the Poisson equation using a Newton scheme, similar re-
sults can in principle be obtained by application of the matrix compression scheme to the
Jacobian.
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Figure 4.2: Memory used for the uncompressed and the compressed system matrix for
different expansion orders L on a three-dimensional (x, H)-grid with 12 500
nodes.

Full system Condensed

L S compr. Scond compr.

1 3.9 7.4 0.2 9.2

3 28.4 19.3 4.0 17.9

5 73.9 53.2 15.7 48.9

7 134.8 98.3 36.5 92.2

9 228.1 160.7 68.2 149.8
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Figure 4.3: Comparison of execution times (milliseconds) for matrix-vector multiplica-
tion at different expansion orders L for the fully set up system matrix and
the proposed compressed matrix scheme. Both the full system of linear equa-
tions and the condensed system with odd order unknowns eliminated in a
preprocessing step are compared.

First, memory requirements for the storage of the system matrix are compared. The
total number of entries stored in the matrix were extracted, multiplied by three to account
for row and column indices. Eight bytes per entry for double precision are used. In this
way, the influence of different sparse matrix storage schemes is eliminated. The results
in Fig. 4.1 and Fig. 4.2 clearly demonstrate the asymptotic advantage of (4.6): While no
savings are observed at L = 1, memory savings of a factor of 18 are obtained already at an
expansion order of L = 5. At L = 13, this factor grows to 145. In particular, the memory
requirement for the matrix compression scheme shows only a weak dependence on L and is
determined only by the additional memory needed for the coupling matrices Ri in (4.14)-
(4.20). With increasing expansion order L, the additional memory requirements for the
compressed scheme grow quadratically with L because of the (L+ 1)2 spherical harmonics
of degree smaller or equal to L. Even at L = 13 the additional memory compared to L = 1
is less than one megabyte. Consequently, the memory used for the unknowns dominates
already at moderate values of L, cf. Fig. 4.1 and Fig. 4.2.
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L GMRES(50) GMRES(30) GMRES(10) BiCGStab Unknowns

1 10.2 MB 6.2 MB 2.2 MB 1.2 MB 0.2 MB

3 71.4 MB 43.4 MB 15.4 MB 8.4 MB 1.4 MB

5 178.5 MB 108.5 MB 38.5 MB 21.0 MB 3.5 MB

7 336.6 MB 204.7 MB 72.6 MB 39.6 MB 6.6 MB

9 545.7 MB 331.7 MB 117.7 MB 64.2 MB 10.7 MB

11 800.7 MB 486.7 MB 172.7 MB 93.5 MB 15.7 MB

13 1101.6 MB 669.6 MB 237.6 MB 129.6 MB 21.6 MB

Table 4.1: Additional memory requirements of the linear solvers GMRES(s) with different
values of s and BiCGStab compared to the memory needed for the unknowns,
cf. Fig. 4.4.
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Figure 4.4: Additional memory requirements of the linear solvers GMRES(s) with differ-
ent values of s and BiCGStab as given in Tab. 4.1.

Execution times for matrix-vector multiplications are compared in Fig. 4.3 for the case
of a full system matrix and the system matrix with odd expansion orders eliminated. For
the lowest expansion order L = 1, the matrix compression does not pay off and execution
times are by a factor of two larger then for the standard storage scheme. This is due
to the additional structural overhead of the compressed scheme at expansion order L = 1,
where no compression effect occurs. However, for larger values of L, the matrix compression
scheme leads to faster matrix-vector multiplications with the full system of linear equations.
An additional performance gain of about ten percent is observed. Comparing execution
times for the condensed system, where odd order unknowns have been eliminated in a
preprocessing step, the runtime penalty for matrix-vector multiplication is a factor of 15
at L = 1, but in this case there is no compression effect anyway. At L = 5, the runtime
penalty is only a factor of three and drops to slightly above two at L = 13. In conclusion,
the matrix compression scheme allows for a trade-off between memory consumption and
execution time, where the memory reduction is much larger than the penalty on execution
times.
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A comparison of the additional memory required by GMRES(50), GMRES(30), GM-
RES(10) and BiCGStab is shown in Tab. 4.1 and Fig. 4.4. As expected, GMRES leads
to higher memory requirements than many other Krylov methods such as BiCGStab. For
GMRES(s), s+ 1 auxiliary vectors of the same length as the vector of unknowns are used,
while BiCGStab uses six auxiliary vectors of that size. It can clearly be seen that the mem-
ory required by GMRES(50) is by one order of magnitude larger than the memory needed
for the compressed system (i.e. second and third column in Fig. 4.1) and BiCGStab. On
the other hand, without system matrix compression, the additional memory needed by
GMRES(50) is comparable to the memory needed for the system matrix and is thus less of
a concern.



Chapter 5

SHE on Unstructured Grids

Up to now, the SHE equations have been derived and investigated on the continuous level.
Generic discretization schemes were considered in the previous chapter and a system matrix
compression scheme was developed. It is thus time to consider the discretization of the
equations, which is the focus of this chapter. To make the chapter as self-contained as
possible, the necessary prerequisites about the box integration scheme and the generation
of suitable unstructured grids are presented first.

5.1 The Box Integration Scheme

The box integration scheme is a widely used discretization scheme, particularly for semi-
conductor device simulation and for fluid dynamics. Outside the field of microelectronics it
is typically called finite volume method [4, 64]. The main advantage of the box integration
scheme is its local conservation property, thus it is particularly suited for the discretization
of conservation equations such as the drift-diffusion equations. The box integration can be
derived in different ways. In this section a rather direct approach is taken, while a mathe-
matically cleaner approach can be found in [4], where connections with the finite element
method are more pronounced.

In the following, the box integration scheme is explained by example of the discretization
of the Poisson equation on the domain Ξ. Consider

∆ψ = f in Ξ ⊂ R
n ,

ψ = 0 on ∂Ξ ,

where homogeneous Dirichlet boundary conditions are assumed for simplicity. Given a
tessellation B = (Bi)

N
i=1 of the domain Ξ into small boxes Bi, a local integral form of the

Poisson equation is

∫

Bi

∆ψ dV =

∫

Bi

f dV on Ξ ,

∫

∂Bi∩∂Ξ
ψ dA = 0 .

Using Gauss’ Theorem, the problem is recast into

∫

∂Bi

∇ψ · n dA =

∫

Bi

f dV on Ξ ,

∫

Bi∩∂Ξ
ψ dA = 0 ,

51
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Bi

Bj

xi

xj

di,j

Ai,j

Figure 5.1: Schematic of a mesh for a box integration scheme. The length between ver-
tices xi and xj is dij , while the area of the interface between boxes Bi and
Bj is Aij .

where n denotes the unit normal vector to the boundary of the box in outward direction.
Let the connecting line [xi,xj] of the box centers xi and xj of the boxes Bi and Bj be

perpendicular to the box boundary, cf. Fig. 5.1. A first-order approximation of the normal
derivative of the potential is a differential quotient along the connecting line [xi,xj] of
length di,j. Thus, one obtains the discrete local conservation equations

∑

j

ψj − ψi

di,j
Ai,j = f(xi)Vi , (5.1)

where Vi denotes the volume of the box Bi and the interface area Ai,j is zero if the boxes Bi

and Bj do not have a common boundary. Note that the transition from the continuous to
the discrete formulation requires an approximation of fluxes through the box boundaries.
There exists a large number of different flux approximation schemes, an overview can be
found e.g. in the textbook of LeVeque [64].

To summarize, the main ingredients of a box integration scheme are as follows:

• Integrate the equation to be discretized over each box Bi of the tessellation B of the
domain Ξ.

• Use Gauss’ Theorem to recast the volume integral as an integral over the box bound-
ary.

• Discretize the flux through the box interfaces.

• Compute the interface integrals over the discretized fluxes either directly, or via a
suitable numerical integration scheme.

• Solve the resulting system of linear equations.

5.2 Construction of Boxes

Two families of tessellations B of the domain Ξ are frequently used with a box integration
scheme. The first family is referred to as vertex-centered, where the unknowns and the
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(a) Circumcenter method (Voronoi dia-
gram).

(b) Barycenter method.

Figure 5.2: Two methods for the construction of a dual box tessellation from a triangu-
lation.

boxes Bi are associated with the vertices of another mesh. The second family is based on
a cell-centered approach, where the unknowns are directly associated with the cells of the
mesh (e.g. triangles, tetrahedra, hexahedra), which also constitute the boxes Bi. Other
formulations such as cell-vertex methods exist [4], but are not further addressed in the
following. The respective preference of a certain family is often based on the availability
of good flux approximation schemes for the problem at hand. Due to the wide-spread use
of vertex-centered box integration schemes in the field of semiconductor device simulation,
the focus in this section is on this first family. In particular, the box integration scheme for
the SHE equations presented in the next section is based on a vertex-centered construction.

While a cell-centered box integration scheme can be carried out on virtually any mesh,
the vertex-centered method is a-priori based on a different mesh and the boxes in B need
to be constructed first. The following two constructions are common [4]:

• When employing Voronoi diagrams (aka. circumcenter method) [71], the boxes are
convex sets associated with a given set of disjoint points X = {x1, . . . ,xm}. Each
box Bi ∈ B consists of points closer to xi than to any other point of X, i.e.

Bi =
{

p ∈ Ξ
∣

∣ ‖p− xi‖ ≤ ‖p− xj‖ ∀j 6= i, j ∈ {1, . . . ,m}
}

. (5.2)

An interesting fact is that each Voronoi diagram is the dual of a triangulation, where
the vertices are exactly the points of X. Here, a triangulation does not necessarily
refer to a triangulation in two spatial dimensions, but may also refer to the general
case of a decomposition of the n-dimensional space into n-simplices. Note that not
every triangulation is the dual of a Voronoi diagram: If the circumsphere of a cell T
includes vertices other than those of T , then the triangulation is not the dual of a
Voronoi diagram. Triangulations, which are the dual of a Voronoi diagram, are called
Delaunay triangulations. Unlike for the unstructured case, Voronoi diagrams can be
derived directly from structured grids, particularly meshes consisting of rectangles
and bricks.

The advantage of Voronoi diagrams is that the interfaces between boxes are perpen-
dicular to the connections between the respective vertices, thus allowing for the simple
approximation of the normal flux. However, the generation of underlying Delaunay
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xi
xjA

i,
j

Vi,j

Figure 5.3: Schematic of a triangular Delaunay mesh and its dual Voronoi diagram, where
the box containing vertex xj is highlighted. The Voronoi volume fraction Vi,j
and the interface area Ai,j are associated with each edge [xi,xj ]

triangulations results in additional effort needed for mesh generation on the one hand
and mesh refinement on the other hand [94, 113]. In addition, the computation of
Voronoi diagrams becomes increasingly challenging in higher spatial dimensions.

• For the barycenter method [4] the barycenters of the triangles are connected with
the midpoint of the edges to obtain the dual box tessellation (cf. Fig. 5.2(b)). An
advantage is that the method can be, unlike others, algorithmically generalized to
higher dimensions with reasonable effort and without further requirements on the
mesh. However, in comparison to the circumcenter method the number of facets of
each box is larger, and the boxes are not necessarily convex.

In order to employ a box integration scheme, there is usually no need to set up the boxes
explicitly. As motivated in Sec. 5.1, it is usually sufficient to have the box volumes Vi and
the interface areas Ai,j available. For the discretization of an additional advective term,
the box volume fraction Vi,j associated with the interface Ai,j is also required, cf. Fig. 5.3.
Since the computation of these values for triangular and tetrahedral meshes is only poorly
documented in the relevant literature, the respective algorithms are detailed in the following.

Since Voronoi quantities are required based on connections between xi and xj, it is
sufficient to provide an algorithm for the computation of the respective quantities for each
edge [xi,xj ]. The Voronoi information for the full domain is then obtained by an iteration
over all edges of the domain.

Algorithm 3 (Computation of Voronoi quantities for a triangular Delaunay mesh). Re-
quirements: Triangular Delaunay mesh with all circumcenters in the interior of the mesh
Input: edge [xi,xj]

• If there are two adjacent cells, compute the two circumcenters c1 and c2.

• If there is one adjacent cell, compute the circumcenter c1 and set c2 to the midpoint
of the edge.
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• Compute the interface area Ai,j ← |c1 − c2|.

• Compute the edge length di,j ← |xi − xj |.

• Compute the box volume fraction Vi,j ← Ai,jdi,j/4.

Return Ai,j , di,j , Vi,j.

The box volumes Vi for the box associated with vertex xi is obtained by a summation
over all box fractions, i.e. Vi =

∑

j Vi,j . The three-dimensional equivalent is slightly more
involved:

Algorithm 4 (Computation of Voronoi quantities for a tetrahedral Delaunay mesh). Re-
quirements: Triangular Delaunay mesh with all circumcenters in the interior of the mesh
Input: edge [xi,xj]

• Compute the edge length di,j ← |xi − xj |.

• Set Ai,j ← 0.

• Set Vi,j ← 0.

• For each adjacent cell [xi,xj,xk,xl], compute the circumcenter cr.

• Set p←
∑

r cr/N , where N is the number of adjacent cells.

• For each facet [xi,xj ,xk] adjacent to edge [xi,xj ], do

– If there are two adjacent cells, let c1 and c2 denote the two circumcenters.

– If there is one adjacent cell, let the circumcenter of the cell be given by c1 and
set c2 to the circumcenter of the facet.

– Compute the area A of the triangle [p, c1, c2].

– Update the interface area Ai,j ← Ai,j +A.

– Update the box volume fraction Vi,j ← Vi,j +Adi,j/6.

Return Ai,j , di,j , Vi,j.

Note that the point p is used for the computation of the polygon defined by the circum-
centers. Again, the box volumes Vi are obtained by a summation over all Vi,j related to a
vertex xi.

It has to be noted that the Delaunay property does not ensure that the circumcenters
of all cells are inside the mesh, i.e. located inside or at the boundary of any cell of the mesh.
Consequently, cells with regular shapes are required near the mesh boundary in order to
fulfill the requirements of the two algorithms above, cf. Fig. 5.4. If this criterion is not
strictly fulfilled, the system matrix S will be disturbed by, say, a matrix D. Similar to the
analysis of round-off errors, the difference of the solution y of the perturbed system with
respect to the true solution x is bounded by

‖y − x‖

‖x‖
≤ κ(S)

‖D‖

‖S‖
, (5.3)
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Figure 5.4: Flat triangles at the domain boundary can lead to circumcenters outside the
simulation domain. As a consequence, the volumes and interface areas of
dual boxes extend outside the simulation domain (hatched area), leading to
systematic errors in the assembled system of linear equations.

where κ(S) denotes the condition number of S and suitable vector and matrix norms are
chosen [27]. Consequently, violations in the range of round-off errors can be justified from
a mathematical point of view. Higher violations are acceptable if the condition number
is known to be small and only low accuracy in the solution vector is required. In prac-
tice, however, even much stronger violations than those justified from the analytical bound
(5.3) can result in insignificant errors in the solution vector due to high regularity of the
underlying formation. Nevertheless, the regularity of the mesh near the boundary is par-
ticularly important for semiconductor device simulations with dominant current flow near
the surface, as it is the case e.g. in a MOSFET.

The generation of Delaunay triangulations of good quality for arbitrary domains is a
challenging task already in two dimensions [94], and particularly in three dimensions [17].
The meshes used throughout this thesis are generated by Netgen [91], which is capable of
generating two- and three-dimensional Delaunay triangulations. A further discussion of the
peculiarities of Delaunay mesh generation and refinement is, however, beyond the scope of
this thesis.

The SHE method requires an energy coordinate in addition to the spatial coordinate.
In principle, one may generate a mesh directly for the (x,H)-space, but this is impractical
for two reasons. First, the author is not aware of the existence any four-dimensional mesh
generators capable of handling complex domains. Second, the essence of the H-transform
in Sec. 2.3 is the possibility to align the grid with the trajectory of electrons in free flight
given by planes of constant total energy H. Consequently, the embedding of a mesh from
the spatial domain to the (x,H)-space by a tensorial prolongation is of advantage. Given
discrete total energies H1 < H2 < . . . < HNH

, every vertex x in the n-dimensional mesh is
first embedded in the n+1-dimensional space at location (x,H1). The full n+1-dimensional
mesh of prismatic cells is then obtained by repeatedly shifting the three-dimensional mesh
along the energy axis to obtain the points (x,H2), (x,H3), . . ., (x,HNH

). The procedure
is illustrated in Fig. 5.5 for the case of a spatially two-dimensional mesh. Clearly, the
energy spacing does not need to be equidistant. Moreover, the computation of Voronoi
quantities for the mesh in (x,H)-space is obtained from Voronoi information in x-space by
a multiplication of the energy spacing.

There is no need for setting up the mesh in (x,H)-space explicitly, because the additional
H coordinate can also be handled implicitly. Since the coupling of different energy levels is
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xx

y yz

Figure 5.5: A three-dimensional prismatic mesh can be obtained from a two-dimensional
mesh by appropriate translations. The two-dimensional cells are then facets
of the three-dimensional prism. Here, the remaining facets are obtained by
joining corresponding vertices.

local in space, it is more memory efficient to stick with the spatial mesh and to store the
total energy values in an array with, say, NH elements. The respective array index i can
then be used to identify e.g. the vertex (x,Hi), even though only the vertex x is explicitly
stored. Since this approach leads to better compatibility with other macroscopic transport
models, which do not require an additional energy coordinate, this implicitly tensorial
representation is used in ViennaSHE. The price to pay is an additional effort required for
for a visualization of the computed distribution function in one and two spatial dimensions,
because the mesh in (x,H)-space needs to be made available then.

5.3 Box Integration for SHE

With the discussion of the box integration scheme in Sec. 5.1 and the computation of Voronoi
information from Sec. 5.2, the discretization of the SHE equations (2.34) and (2.35) can
now be tackled. For the sake of clarity, the SHE method for spherical energy bands in
steady-state is considered. The general case is obtained without additional difficulties.

Due to the use of MEDS for stabilization, cf. Sec. 2.3, two different sets of equations
(2.34) and (2.35) need to be considered. The even-order equations are discretized directly
on the boxes Bi of the underlying Voronoi tessellation B, while the odd-order equations
are associated with the dual tessellation B̃ centered at the interfaces between the boxes,
cf. Fig. 5.6. Note that the set B̃ is obtained by taking the union over all adjoint boxes
Bi,j of all boxes Bi. The volume of adjoint the boxes Bi,j ∈ B̃ overlapping the neighboring
boxes Bi ∈ B and Bj ∈ B is given by 2Vi,j , cf. Fig. 5.3 and Sec. 5.2. Consequently, the
even-order expansion coefficients are associated with the vertices of the mesh, while the
odd-order expansion coefficients are associated with the edge midpoints. More precisely,
the discretization of the expansion coefficients reads

fl,m(x,H) =

|B|
∑

i=1

NH
∑

n=1

αi,n;l,mχBi
(x)χ[H−

n ,H+
n ](H) , l even , (5.4)

fl,m(x,H) =

|B̃|
∑

j=1

NH
∑

n=1

βi,n;l,mχB̃j
(x)χ[H−

n ,H+
n ](H) , l odd , (5.5)

where χBi
denotes the indicator function of the box Bi, χ[H−

n ,H+
n ] is the indicator function

of the energy interval for the NH discrete energies Hn with lower and upper bound H−
n and

H+
n , and B̃ refers to the set of adjoint boxes B̃i with indicator function χB̃i

. The unknowns
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Figure 5.6: Schematic view of the box discretization for SHE. Even-order unknowns are
associated with vertices (filled circles, blue box Bi ∈ B), while odd-order
unknowns are associated with edges (open circles, green box Bi,j ∈ B̃).

of the resulting linear system of equations after discretization are the coefficients αi,n;l,m

and βi,n;l,m, where the βi,n;l,m are eliminated in a preprocessing step of the linear solver as
discussed in Sec. 4.3.

5.3.1 Discretization of the Even-Order Equations

Following the box integration procedure from Sec. 5.1, integration over energy from H−
n to

H+
n and over a box Bi given on the spatial grid leads to

∫ H+
n

H−

n

∫

Bi

∇x · j
l′,m′

l,m fl′,m′ − F · Γl′,m′

l,m fl′,m′ dV dH

=
1

Y0,0

∑

η

∫ H+
n

H−

n

∫

Bi

[

Zl,mση(x,H ± ~ωη,H)f0,0(x,H ± ~ωη)Z0,0(H ± ~ωη)

− fl,mZl,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

dV dH .

(5.6)

The first term on the left hand side is transformed to a surface integral using Gauss’
Theorem, and then the integrals on the left hand side are decomposed into the individual
intersections with the neighboring adjoint boxes Bi,j:

∑

Bi,j of Bi

∫ H+
n

H−

n

[

∫

∂Bi∩Bi,j

j
l′,m′

l,m fl′,m′ · ni,j dA−

∫

Bi∩Bi,j

F · Γl′,m′

l,m fl′,m′ dV

]

dH

=
1

Y0,0

∑

η

∫ H+
n

H−

n

∫

Bi

[

Zl,mση(x,H ± ~ωη,H)f0,0(x,H ± ~ωη, t)Z0,0(H ± ~ωη)

− fl,mZl,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

dV dH ,

(5.7)

where ni,j denotes the outward pointing unit vector with respect to Bi and perpendicular to

the common interface of Bi and Bj . Since for even l the coupling terms jl
′,m′

l,m and Γ
l′,m′

l,m take
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according to Thm. 1 nonzero values for odd l′ only, and the scattering operator exclusively
couples terms of the same order (l,m), the discretization (5.5) can directly be inserted:

∑

Bi,j of Bi

βi,n;l′,m′

[

Ai,jni,j ·

∫ H+
n

H−

n

j
l′,m′

l,m dH − Vi,jF |Bi,j
·

∫ H+
n

H−

n

Γ
l′,m′

l,m dH

]

=
1

Y0,0

∑

η

∫ H+
n

H−

n

[

Zl,mση(x,H ± ~ωη,H)αi,n±n′

η ;0,0Z0,0(H ± ~ωη)

− αi,n;l,mZl,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

Vi dH ,

(5.8)

where j
l′,m′

l,m , Γl′,m′

l,m as well as the scattering rates are assumed to be homogeneous over the
device, the force F is approximated by a constant vector F i,j on Bi,j and where n′η refers
to a suitable index shift such that Hn+n′

η
≃ Hn + ~ωη. Typically, discrete energies are

chosen as fractions of ~ωη such that Hn + ~ωη is again a discrete energy. It is noteworthy
that the approximation of the force term by a constant vector over Bi,j is mostly a matter
of convenience. One may also use more accurate representations, but the price to pay is
increased computational effort for the evaluation of the integral over Bi,j. A dimensional
splitting has been used by Hong et al. [42], which can be seen in this context as considering
only the projection F · ni,j for the integration over Bi,j.

A slight rearrangement for better exposition of the unknowns αi,n;l,m and βi,n;l,m yields

∑

Bi,j of Bi

βj,k;l′,m′

[

Ai,jni,j ·

∫ H+
n

H−

n

j
l′,m′

l,m dH − Vi,jF i,j ·

∫ H+
n

H−

n

Γ
l′,m′

l,m dH

]

= αi,n±n′

η;0,0
Vi
Y0,0

∑

η

∫ H+
n

H−

n

ση(x,H ± ~ωη,H)Zl,m dH

− αi,n;l,m
Vi
Y0,0

∑

η

∫ H+
n

H−

n

ση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη) dH .

(5.9)

In the case of spherical energy bands, the integrals on the left hand side can be rewritten
using (4.2) and (4.3) as

∫ H+
n

H−

n

j
l′,m′

l,m dH = a
l′,m′

l,m

∫ H+
n

H−

n

vZ dH , (5.10)

∫ H+
n

H−

n

Γ
l′,m′

l,m dH = b
l′,m′

l,m

∫ H+
n

H−

n

Z

~|k|
dH . (5.11)

The integrals on the right hand side can be calculated analytically for the parabolic dis-
persion relation (3.2) and the nonparabolic model (3.3), cf. [42]. When using the full-band
modification (3.20), the integral (5.11) simplifies to an evaluation of the full-band data at
H−

n and H+
n .

5.3.2 Discretization of the Odd-Order Equations

The discretization of the odd-order projected equations (2.35) is carried out using essentially
the same steps as for the even-order equations, but differs in a few technical details. Inte-
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gration over the energy interval from H−
n to H+

n and over an adjoint box Bi,j overlapping
the boxes Bi and Bj leads to

∫ H+
n

H−

n

∫

Bi,j

j
l′,m′

l,m · ∇xfl′,m′ + F · Γ̂
l′,m′

l,m fl′,m′ dV dH

=
1

Y0,0

∑

η

∫ H+
n

H−

n

∫

Bi,j

[

Zl,mση(x,H ± ~ωη,H)f0,0(x,H ± ~ωη)Z0,0(H ± ~ωη)

− fl,mZl,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

dV dH .

(5.12)

Assuming j
l′,m′

l,m to be piecewise constant in each of the adjoint boxes Bi,j, application of
Gauss’ Theorem to the first term, and splitting the second integral into the two overlaps
with Bi and Bj leads to

∫ H+
n

H−

n

[

∫

∂Bi,j∩Bi

j
l′,m′

l,m fl′,m′ · n dA+

∫

∂Bi,j∩Bj

j
l′,m′

l,m fl′,m′ · n dA ,

+

∫

Bi,j∩Bi

F · Γ̂
l′,m′

l,m fl′,m′ dV +

∫

Bi,j∩Bj

F · Γ̂
l′,m′

l,m fl′,m′ dV

]

dH

=
1

Y0,0

∑

η

∫ H+
n

H−

n

∫

Bi,j

[

Zl,mση(x,H ± ~ωη,H)f0,0(x,H ± ~ωη)Z0,0(H ± ~ωη)

− fl,mZl,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη)
]

dV dH .

(5.13)

For odd l, the terms jl
′,m′

l,m and Γ̂
l′,m′

l,m are nonzero for even l′ only. Inserting the expansion
(5.4) on the left hand side and (5.5) on the right hand side, one arrives at

αi,n;l′,m′

∫ H+
n

H−

n

[

∫

∂Bi,j∩Bi

j
l′,m′

l,m · n dA+

∫

Bi,j∩Bi

F · Γ̂
l′,m′

l,m dV

]

dH

+ αj,n;l′,m′

∫ H+
n

H−

n

[

∫

∂Bi,j∩Bj

j
l′,m′

l,m · n dA+

∫

Bi,j∩Bj

F · Γ̂
l′,m′

l,m dV

]

dH

= βi,n±n′

η ;0,0
2Vi,j
Y0,0

∑

η

∫ H+
n

H−

n

Zl,mση(x,H ± ~ωη,H)Z0,0(H ± ~ωη) dH

− βi,n;l,m
2Vi,j
Y0,0

∑

η

∫ H+
n

H−

n

Zl,mση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη) dH ,

(5.14)

where the scattering rates and the density of states are assumed to be independent of the

spatial variable. Since the current density expansion terms j
l′,m′

l,m are also assumed to be
constant within the box Bi,j, an application of Gauss’ Theorem shows

∫

∂Bi,j∩Bi

j
l′,m′

l,m · n dA+

∫

∂Bi,j∩Bj

j
l′,m′

l,m · n dA

=

∫

∂Bj∩Bi,j

j
l′,m′

l,m · nj,i dA+

∫

∂Bi∩Bi,j

j
l′,m′

l,m · ni,j dA ,

(5.15)
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which allows to replace the integration over the boundary of Bi,j by two integrations over
the interface of the boxes Bi and Bj . This leads with constant force approximations F i,j

over the box Bi,j to

αi,n;l′,m′

∫ H+
n

H−

n

[

Ai,jj
l′,m′

l,m · nj,i + Vi,jF i,j · Γ̂
l′,m′

l,m

]

dH

+ αj,n;l′,m′

∫ H+
n

H−

n

[

Ai,jj
l′,m′

l,m · ni,j + Vi,jF i,j · Γ̂
l′,m′

l,m

]

dH

= βi,n±n′

η;0,0
2Vi,j
Y0,0

∑

η

∫ H+
n

H−

n

ση(x,H ± ~ωη,H)Zl,m dH

− βi,n;l,m
2Vi,j
Y0,0

∑

η

∫ H+
n

H−

n

ση(x,H,H ∓ ~ωη)Z0,0(H ∓ ~ωη) dH .

(5.16)

The integrals over the coupling coefficients can again be further simplified as in (5.10) and
(5.11).

5.4 Results

A comparison of the number of vertices required for a MOSFET and for a FinFET us-
ing structured and unstructured grids is given in the following. A comparison for a one-
dimensional n+nn+-diode is omitted since there the structured and unstructured meshes
coincide.

The schematic MOSFET layout shown in Fig. 5.7 consists of 1 028 nodes. A much more
aggressive coarsening could have been applied to the left and the right of the device, as well
as deep inside the bulk of the device (bottom). Nevertheless, the structured grid shown at
the right, which has the same grid spacing as the triangular mesh in the channel region,
consists of 1 594 nodes, which consequently leads to about 50 percent more unknowns.
Note that the high resolution inside the channel induces an increased solution deep in the
substrate, because so-called hanging nodes1 are prohibited for the box integration scheme.
Therefore, a lower resolution, which would be typically sufficient deep in the substrate,
cannot be obtained there. For demonstration purposes, only a coarse mesh has been chosen
at the contacts. A finer grid at the contacts would result again in additional grid nodes in
the bulk for the structured grid.

For a fully three-dimensional layout such as that of a FinFET, the difference in the
number of grid points between structured and unstructured grids becomes much larger.
Since the current flow is predominantly near the surface of the fin, a coarser mesh can be
chosen in the center of the fin when using unstructured grids. At the transition from the
source to the channel and particularly from the channel to the drain, a fine resolution is
necessary in order to account for the high electric fields and the heated carriers in the latter
case. The sample meshes of a FinFET depicted in Fig. 5.8 show that with only 4 838 nodes
a fine mesh can be obtained in the channel and towards the drain region, while a structured
grid with comparable resolution in the channel leads to 27 456 nodes, hence the difference
is a factor of six. This difference mostly stems from the spurious high resolution of the
structured grid in the source and drain regions.

1A hanging node is a vertex that lies in the interior of an edge or face of another cell
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Figure 5.7: Comparison of a triangular mesh of a MOSFET and a structured grid with
the same resolution inside the channel. While the triangular grid consists of
1 028 points, the structured grid leads to 1 594 grid points.

Figure 5.8: Comparison of the tetrahedral unstructured grid used for the simulation of
half of a tri-gate transistor (no gate, oxide and body shown), and a structured
grid with the same mesh size inside the channel. While the tetrahedral grid
consists of 4 838 points, the structured grid is made up of 27 456 points, thus
leading to considerably higher computational costs. For simplicity, only a
course mesh has been chosen around the contacts.



Chapter 6

Adaptive Variable-Order SHE

The structural properties discussed in Chap. 4 show that in the case of spherical energy
bands the coupling between the SHE equations is sparse. This allows for a reduction of
memory requirements for the system matrix of the discretized equations from O(NL4) to
O(NL2). The proposed matrix compression scheme further reduces the memory require-
ments for the system matrix to O(N + L2), which finally results in the total memory
requirements being dominated by the N(L+1)2 = O(NL2) unknowns already at an expan-
sion order of five. For a three-dimensional device simulation using 100 discrete total energies
and 10 000 grid points (N = 106), the number of unknowns for a first-order expansion are up
to 4× 106, where 106 even-order expansion coefficients enter the linear solver. On the same
grid, a ninth-order expansion leads to a total of 108 unknowns, of which 4.5× 107 enter the
linear solver. Even though the matrix compression scheme ensures that the total memory
requirements stay within a reasonable amount of a few gigabytes, the high computational
effort due to the large number of unknowns leads to long simulation times.

With the use of unstructured grids for the SHE method as described in Chap. 5, the
number of grid points in the (x,H)-space can be reduced to lower numbers than for struc-
tured grids without sacrificing accuracy in critical device regions. Therefore, the total
number of unknowns in the linear system is reduced from N(L+ 1)2 to N ′(L+ 1)2, where
N and N ′ refer to the number of unknowns in (x,H)-space and N ′ can be a factor two to
five smaller than N , cf. Sec. 5.4.

Similar to unstructured grids, which allow for a high resolution in critical regions and
a lower resolution in less important regions, a higher expansion order can be chosen at
locations and energies with high influence on a target quantity such as current, carrier
density, or average carrier velocity. Consequently, instead of a fixed-order expansion as in
(2.41), variable-order expansions of the form

f(xi,k(Hn, θ, ϕ), t) =

L(xi,Hn)
∑

l=0

l
∑

m=−l

fl,m(xi,Hn, t)Yl,m(θ, ϕ) (6.1)

are considered in this chapter. The aim is to further reduce the total number of unknowns to
N ′(L′+1)2, where the average expansion order L′ for a grid point xi obtained by averaging
all positive expansion orders over all positive discrete kinetic energies can be well below an
equivalent uniform expansion order L without sacrificing accuracy.

63
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Even

Even

Odd

Odd

B1

B1

B2

B2

B|B|

B|B|

B̃1

B̃1

B̃2

B̃2

B̃|B̃|

B̃|B̃|

Figure 6.1: System matrix structure for uniform expansion orders with spherical energy
bands at a constant energy. If two boxes Bi and Bj do not have a common

interface, the respective blocks are zero. If boxes Bi and B̃j do not over-
lap, the respective blocks are also zero. The odd-to-odd coupling implies a
diagonal block due to the structure of the scattering operators.

6.1 Variable-Order SHE

The advantage of the SHE method is that the equilibrium distribution is described exactly
by a zeroth-order expansion. This is in contrast to macroscopic transport models derived
from moments of the BTE, where higher-order moments do not vanish. Therefore, it
is reasonable to expect that for the resolution of small deviations from the equilibrium
distribution, only a low expansion order is required for the SHE method in order to obtain
good accuracy.

In this section the discretization of the SHE equations using variable-order expansions is
presented. For a maximum expansion order Lmax in the simulation domain, a variable-order
expansion can be obtained by assembling a system matrix for maximum expansion order
Lmax and then imposing homogeneous Dirichlet conditions on all expansion coefficients
fl,m(xi,Hn) with l > L(xi,Hn). However, such an approach is impractical due to the
unnecessary effort of setting up a much larger system matrix than actually required. In
addition, the benefit of reduced memory required for variable expansion orders is eliminated
when setting up a system matrix for uniform expansion order Lmax first.

It is assumed that the unknowns are enumerated in such a way that the expansion
coefficients for a particular box B ∈ B or a dual box B̃ ∈ B̃ are consecutive. In addition, the
unknowns associated with boxes B ∈ B are enumerated first, then the unknowns associated
with the dual boxes B̃ ∈ B̃, which leads to the system matrix structure discussed in Sec. 4.3.
The resulting structure of the system matrix for a uniform expansion order is depicted in
Fig. 6.1. The block sizes for each block coupling two boxes are:
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Even Odd

Even N even
L ×N even

L N even
L ×Nodd

L

Odd Nodd
L ×N even

L Nodd
L ×Nodd

L

Here, N even
L and Nodd

L denote the number of even and odd expansion coefficients up to and
including order L respectively. For instance, consider the block in the rows for box Bi and
in the columns for the dual box B̃i, which is located at the interface between Bi and Bj.
From the discrete equations for the even-order projections in steady-state (5.9) one obtains
the system matrix block for a certain discrete energy Hn directly from rewriting the discrete
equations in matrix form:














3
∑

d=1

Ai,jni,j;d















∫ H+
n

H−

n
j1,−1
0,0;d dH . . .

∫ H+
n

H−

n
jL,L0,0;d dH

∫ H+
n

H−

n
j1,−1
2,−2;d dH . . .

∫ H+
n

H−

n
jL,L2,−2;d dH

...
. . .

...
∫H+

n

H−

n
j1,−1
L−1,L−1;d dH . . .

∫ H+
n

H−

n
jL,LL−1,L−1;d dH















−

3
∑

d=1

Vi,jFi,j;d















∫ H+
n

H−

n
Γ1,−1
0,0;d dH . . .

∫H+
n

H−

n
ΓL,L
0,0;d dH

∫ H+
n

H−

n
Γ1,−1
2,−2;d dH . . .

∫ H+
n

H−

n
ΓL,L
2,−2;d dH

...
. . .

...
∫H+

n

H−

n
Γ1,−1
L−1,L−1;d dH . . .

∫H+
n

H−

n
ΓL,L
L−1,L−1;d dH







































βi,n;1,−1
...

βi,n;L,L−2

βi,n;L,L











,

(6.2)

where the subscript index d denotes the d-th component of the vector and the expansion
order L is odd. The matrix block (Bi, Bi) results from the scattering operator and is
diagonal up to couplings induced by energy displacements ~ωη due to inelastic scattering
mechanisms, cf. Thm. 3. A similar structure is obtained for the even-to-even, the odd-to-
even, and the odd-to-odd block.

When allowing variable-order expansions, the dimensions of the coupling blocks can
differ for each box Bi and each dual box B̃i. Reconsidering the example of the matrix block
for the box Bi and the dual box B̃i from above, and assuming an even expansion order Li

for Bi and an odd expansion order L̃i for the dual box B̃i, the discrete system of equations
is given by
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Figure 6.2: System matrix structure for variable-order expansions with spherical energy
bands at a constant energy. The coupling blocks have varying sizes.

This leads to the system matrix structure shown in Fig. 6.2, where the individual small
blocks are now of different dimension according to the respective expansion order.

The expansion orders for the boxes Bi and the dual boxes B̃i should not be chosen
arbitrarily. Consider the case of spherical energy bands, where only a single box B carries
the maximum even expansion order Lmax. If all surrounding dual boxes carry an odd
expansion order of at most Lmax − 3, then the highest-order expansion coefficients fLmax,m

for the box B do not couple due to Thm. 2 with expansion coefficients of lower order. Since
the right hand side of the linear equation is zero except for Dirichlet boundary values, the
expansion coefficients fLmax,m are computed as zero. Moreover, since the size of the final
linear system of equations is determined by the expansion orders of the boxes Bi ∈ B only,
Thm. 2 suggests that the odd expansion order of the dual box B̃ should be larger than the
even expansion orders of the two overlapped boxes Bi and Bj, otherwise the linear system
of equations yields a less accurate solution at the same computational effort. Summing up,
one obtains:

Guideline 1. The odd expansion order of each of each dual box B̃ ∈ B̃ should be larger
than the even expansion orders of the boxes Bi and Bj overlapped by B̃.

Conversely, since odd expansion orders larger than required do not lead to higher accu-
racy because of the same reasoning with the roles of Bi and B̃i exchanged, the odd expansion
order of a dual box is set to the maximum even expansion order of the overlapped boxes
plus one, i.e.

order(B̃i,j) = max(order(Bi), order(Bj)) + 1 . (6.4)

Consider two neighboring boxes Bi and Bj with expansion orders Li and Lj , Li < Lj.
Denote the dual box overlapping Bi and Bj with B̃i,j. From Thm. 2 and Guideline 2 it
follows that the expansion coefficients defined for Bi couple with expansion coefficients in
B̃i,j up to order Li + 1. These expansion coefficients in B̃i,j couple according to Thm. 2
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with expansion coefficients in Bj up to order Li + 2, thus there is no gain in accuracy for
Lj larger than Li + 2. This leads to the second guideline:

Guideline 2. The maximum even expansion order of neighboring boxes Bi and Bj should
not differ by more than two.

6.2 Adaptive Control of the SHE Order

In the previous section the efficient assembly of SHE equations using variable expansion
orders has been discussed. However, the variable expansion orders were assumed to be
given for each box B and each dual box B̃. For every-day TCAD purposes, such a selection
should be based on an adaptive strategy until a prescribed accuracy for a certain target
quantity is reached. This section thus discusses strategies to automatically pick suitable
expansion orders within the simulation domain. Due to Guideline 1, it suffices to select
expansion orders for the the boxes in B.

What is considered to be a suitable or good expansion order for a box B clearly depends
on the target quantity. Macroscopic quantities are typically obtained by moments of the
distribution function such as

X(x, t) =

∫

R3

Φ(k)f(x,k, t) dk3 , (6.5)

where Φ(k) is a suitable polynomial of k. Due to the asymptotically exponential decay of
the distribution function f with the modulus of k, the distribution function needs to be
computed with high accuracy at low energies, while lower accuracy is sufficient at higher
energies for the computation ofX. However, for the investigation of high-energy phenomena
such as hot carrier degradation [9,101], the distribution function needs to be fairly accurate
at high energies, while there is less emphasis on accuracy at lower energies. Consequently,
suitable expansion orders depend on the quantities of interest.

In the following, three different strategies for the adaptive choice of expansion orders
are presented. The first approach is based on an analytical result for the SHE of a function
g(θ, ϕ) in dependence of the smoothness of g. The second approach increases the expan-
sion order particularly in regions with high weight on one or more target quantities. The
third approach is a rather classical residual-based technique, which is common in finite
element and finite volume methods [1,8,56]. Even though the three strategies are presented
separately, in practice they should be combined in order to obtain best results.

6.2.1 Rate of Decay of Expansion Coefficients

The SHE can be seen as the three-dimensional extension of Fourier series. Since the latter
is more widely known than the former, the motivation for the adaptive strategy for SHE
is first given for Fourier series. The transition from Fourier series to SHE does not impose
additional complications then.

A 2π-periodic function f(ϕ) can be expanded into trigonometric functions as

f(ϕ) =

∞
∑

m=0

am cos(mϕ) + bm sin(mϕ) , (6.6)
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Figure 6.3: Comparison of the Fourier series of a differentiable function f1 and a discon-
tinuous function f2.

where b0 = 0. The function f does not need to be continuous, it is sufficient for f to be
integrable. The expansion coefficients are computed from f as

a0 =
1

2π

∫ π

−π
f(ϕ) dϕ , (6.7)

am =
1

π

∫ π

−π
f(ϕ) cos(mϕ) dϕ , (6.8)

bm =
1

π

∫ π

−π
f(ϕ) sin(mϕ) dϕ . (6.9)

Consider the two 2π-periodic functions depicted in Fig. 6.3

f1(ϕ) = [(x− π)(x+ π)]2/π4 = x4/π4 − 2x2/π2 + 1 , f2(ϕ) =

{

1, |ϕ| ≤ π/2 ,
0, π/2 < |ϕ| ≤ π .

(6.10)

While f1 is continuously differentiable, f2 is discontinuous. The Fourier series of the func-
tions are given by

f1(ϕ) =
8

15
− 48

∞
∑

m=1

(−1)m

π4m4
cos(mϕ) , f2(ϕ) =

1

2
−

∞
∑

m=1

2(−1)m

π(2m− 1)
cos
(

(2m− 1)ϕ
)

.

(6.11)

For the smooth function f1, the Fourier coefficients decay with the fourth power of m,
while the Fourier coefficients of f2 only decay inversely proportional to m. More generally,
it can be shown that for a function with integrable derivatives up to order k, the expansion
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coefficients decay at least with rate m−k. Conversely, the rate of decay of the Fourier
coefficients are a measure for the smoothness of the expanded function [13,28].

For SHE, a similar result holds for a function f defined on the unit sphere Ω [18,31]:

Theorem 4. Let f be k-times continuously differentiable on the unit sphere Ω, where k is
a nonnegative integer. For the spherical harmonics expansion

f =

∞
∑

l=0

l
∑

m=−l

fl,mY
l,m =:

∞
∑

l=0

Ql , (6.12)

where Ql is a spherical harmonic of degree l, there holds

|Ql(θ, ϕ)| ≤ Cl
1/2−k , (6.13)

for a constant C = C(f) > 0 independent of k and all angles θ and ϕ.

Since the spherically symmetric distribution function f in equilibrium is described ex-
actly by a zeroth-order expansion, higher-order expansion coefficients provide a measure
for the distortion of f from equilibrium. This is in contrast to macroscopic models derived
from moments of the BTE such as those described in Sec. 1.1, where even moments of the
distribution function in equilibrium do not vanish.

Given a numerical solution of the SHE equations for certain expansion orders L(xi,Hi),
an adaptive adjustment of the expansion order can be based on (6.13). Division by f0,0 ≈ C
and taking the logarithm leads for l > 2 to

log |Ql| − log f0,0 . (1/2 − k) log l , (6.14)

where here and in the following log |Ql| refers to maxθ,ϕ log |Ql(θ, ϕ)|. Taking the left hand
side as an estimate for k and dropping the constant 1/2, which acts only as an offset to the
estimate on the rate of decay k, results in

η := −k ∼
log |Ql| − log f0,0

log l
, (6.15)

with η taking the role of an error estimator. The larger the value of η at a certain point
(xi,Hn), the slower is the decay of the distribution function, thus the higher is the expected
gain in accuracy from an increased expansion order.

Since due to Guideline 1 the highest available expansion order is associated with dual
boxes in B̃, the rate of decay for a box Bi can be based either on the highest expansion
order for the box Bi, or on the dual boxes B̃i,j overlapping Bi. In the latter case, one
obtains for the error estimator ηi for the box Bi

ηi ∼

[∑

B̃i,j
log |Ql+1|

Ñi

− log f0,0

]

/ log(l + 1) , (6.16)

where the maximum expansion order in Bi is l, the sum extends over the dual boxes
overlapping Bi and Ñi denotes the number of dual boxes overlapping Bi.
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The exact evaluation of the the term log |Ql| = maxθ,ϕ log |Ql(θ, ϕ)| is a maximization
problem over all angles and leads to high overall numerical effort, because such a maxi-
mization problem needs to be solved at every grid point (xi,Hn). A numerically very cheap
approximation to the maximum is

|Ql+1| ≈

l+1
∑

m=−l−1

|fl+1,m||Yl,m| ≈

l+1
∑

m=−l−1

|fl+1,m| , (6.17)

since the expansion coefficients fl,m are readily available. The approximation |Yl,m| ≈ 1
leads to an overestimation of the maximum, but is not a concern because it leads to a
constant offset in the error indicator ηi only.

The case l = 0 in (6.16) requires additional treatment since log(l+1) evaluates to zero.
Replacing l by l + 1 resolves these problems and partly accounts for the overestimation
of |Ql+1| by (6.17). For larger values of l, the replacement of l by l + 1 does not cause a
significant difference anyway. This leads to the final form of the estimator:

ηi ∼

[∑

B̃i,j
log
[
∑Li+1

m=−Li−1 |fLi+1,m(B̃i,j)|
]

Ñi

− log |f0,0|

]

/ log(Li + 2) , (6.18)

where Li denotes the maximum even expansion order of the box Bi. After an evaluation of
the estimator for all boxes Bi, the expansion order can then be increased for the boxes with
largest values of ηi. An additional smoothing step then ensures conformity with respect to
Guidelines 1 and 2.

The estimator (6.18) is based on the rate of decay of the expansion coefficients only
and does not consider the exponential decay of the distribution function at higher energies.
Therefore, the estimator treats regions with large values of the distribution function as
being equally important as regions with very low values of the distribution function. This
is a disadvantage if the target quantity is a macroscopic quantity such as the average
carrier velocity, for which only large values of the distribution function lead to significant
contributions. In such situations, an additional term α log f0,0 may be added to (6.18)
in order to penalize low-probability regions of the distribution function. In the special
case α = 1/ log(Li + 2), this modification is equivalent to dropping the term log f0,0 from
(6.18). It should be noted that this modification towards higher weight at regions with high
probability is similar in spirit to a target quantity driven control of the expansion order
discussed next.

6.2.2 Target Quantity Driven Adaptive Control

Another approach to the adaptive control of the expansion order is based on one or more
dedicated target quantities, for which the expansion orders are chosen such that a prescribed
accuracy is obtained. For instance, consider as target quantity the average particle energy

〈ε〉(x) =

∫ ∞

0
εf(x, ε)Z(ε) dε . (6.19)

The average energy of a discrete solution f(xi,Hn) of the SHE equations is computed using
e.g. a simple midpoint quadrature rule as

〈ε〉(xi) ≈

NH
∑

n=0

ε(Hn)f0,0(xi,Hn)Z(Hn)(H
+
n −H

−
n ) . (6.20)
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Figure 6.4: Comparison of weights for the computation of average energies for a
Maxwellian distribution f1 and a shifted, heated Maxwellian f2. The two
weights are normalized to a peak value 1.

Hence, this allows for an extraction of the individual weight w(xi,Hn) of the grid node
(xi,Hn) on the target quantity as

w(xi,Hn) =
ε(Hn)f0,0(xi,Hn)Z(Hn)(H

+
n −H

−
n )

〈ε〉(xi)
. (6.21)

Weights for other target quantities such as the average carrier velocity or the carrier density
can be defined in a similar manner. Therefore, w(xi,Hn) can be seen as a generic weight
function for an arbitrary target quantity q(x,H), where typically macroscopic target quan-
tities of the form q(x) are of interest.

An increase of the expansion order is most appropriate in regions where the weights w
are high. On the contrary, regions with a weight of several orders of magnitude below the
boxes of highest weight can be kept at lowest expansion order, because the contribution to
the target quantity is very small anyway.

A comparison of the weight functions for the calculation of the average carrier energy of
a Maxwellian distribution f1 and a shifted and heated Maxwellian distribution f2 is depicted
in Fig. 6.4. For the Maxwellian distribution it is sufficient to consider only energies up to
about 0.3 eV for the computation of the average energy at an accuracy of about one percent,
because the weights at higher energies are below 10−3 already. However, for the shifted and
heated Maxwellian distribution, contributions up to an energy of about 0.6 eV need to be
considered for comparable accuracy.

6.2.3 Residual-Based Adaptive Control

An expansion order control based solely on the weight function w does not account appro-
priately for long-range influences of regions of the distribution function with low probability
on regions with higher probability. This is a particular concern in short devices at high
electric fields, where strong variations of the distribution function with respect to energy
are observed. Similar to the estimation of the rate of decay in Sec. 6.2.1, a residual-based
approach provides a better monitor for the need for higher expansion orders than the target
quantity driven approach in the previous section.
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Let fL = (fLl,m(xi,Hn))l,m;i,n denote the numerical solution of the SHE equations for a
possibly variable expansion order L = L(xi,Hn) obtained from the solution of the system

SLfL = bL . (6.22)

Now, let fL→֒L′

= (fL→֒L′

l,m (xi,Hn))l,m;i,n denote the prolongated solution fL for a possibly
variable expansion order L′ = L′(xi,Hn) > L(xi,Hn) obtained by

fL→֒L′

l,m (xi,Hn) =

{

fLl,m(xi,Hn) , l ≤ L(xi,Hn)

0 , otherwise .
(6.23)

Denoting the system matrix for the expansion orders L′ with SL′

and the right hand side
with bL

′

, the residual

eL→֒L′

:= SL′

fL→֒L′

− bL
′

(6.24)

provides an indication on where to increase the expansion order. In order to make the
residual invariant with respect to the scale of the values fLl,m(xi,Hn), the linear system
should be first symmetrized and rescaled as discussed in Sec. 7.2. Note that the matrix
compression scheme derived and discussed in Chap. 4 allows for a convenient means to
store the larger system matrix S′ and to compute the matrix-vector product SL′

fL→֒L′

efficiently.
It is important to keep in mind that the residual is not invariant with respect to transfor-

mations of the linear system. In particular, if the j-th equation is multiplied with a certain
factor, then also the residual is multiplied with the same factor, even though the solution of
the linear system is unchanged. Consequently, it is advisable to first apply normalizations,
for instance by multiplication of each equation in the system with the reciprocal of the
respective diagonal entry.

Similar to other expansion order control strategies outlined above, an increase of the
expansion order can finally be carried out for boxes with highest residuals. An additional
expansion order smoothing step after the increase ensures that Guidelines 1 and 2 are
obeyed.

6.3 Results

Average carrier velocities along a 100 nm n+nn+-diode with a bias of 0.7 Volt and intrinsic
region between x = 20 nm and x = 60 nm are compared for different uniform expansion
orders as well as for the three adaptive expansion order schemes after one (maximum SHE
order 3), two (maximum SHE order 5) and three (maximum SHE order 7) adaption steps.
The total energy range spans 2 eV using an energy spacing of 12.5 meV. A first-order
expansion is kept directly at the band edge, because it has been observed that it improves
numerical stability at high expansion orders. At the contacts, a Maxwell distribution is
imposed as a Dirichlet boundary condition, thus the expansion is kept at first order there.
The resulting velocity curves are depicted in Fig. 6.5 and show rather small differences
between the different expansion orders. Nevertheless, the logarithmic plots of the relative
errors in Fig. 6.9 provide full insight.

The adaptive strategy based on the decay of expansion coefficients as described in
Sec. 6.2.1 is illustrated in Fig. 6.6. In order to emphasize refinement in high-probability
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Figure 6.5: Comparison of carrier velocities for different uniform and adaptive SHE or-
ders. The differences between the adaptive schemes are below the image
resolution and analyzed in more detail in Fig. 6.9.

regions, the term 0.25 × log(f0,0) is added to (6.18) as discussed above. The resulting
indiciator values are shifted such that the highest value is zero. The threshold for an
expansion order increase is set to −6.0. The indicator is not computed at the contact, but
evaluated to 0 in Fig. 6.6. During the adaption procedure, the adaptive control stays at a
first-order expansion in the left n+ region, where the distribution function is still close to
equilibrium. The expansion order is then increased in the intrinsic region and away from the
band edge at higher energies after the intrinsic regions. In summary, the adaptive strategy
based on the decay of the expansion coefficients increases the expansion order mostly along
the high energy tail and close to the band edge inside the intrinsic region. The increase
of the expansion order near the right contact stems from the use of Dirichlet boundary
conditions and can be considered to be an artifact, because the distribution function is
forced from a heated distribution to a Maxwell distribution at the contact, leading to an
unphysical boundary layer as discussed by Schroeder et al. [92].

A different behavior is observed for the target quantity based control shown in Fig. 6.7.
The indicator is obtained by taking the logarithm of the contribution of the respective box in
the simulation domain and shifting the values such that the highest contribution leads to an
indicator value of zero. A threshold value of −2.0 has been used for increasing the expansion
order. Since the distribution function changes its shape only mildly at higher energies, the
indicator is essentially unchanged during the adaption, leading to higher expansion orders
near the band edge only. Note that the high-energy tail of the distribution function right
after the intrinsic region is resolved by the increased expansion order. The error plot in
Fig. 6.9(b) shows that virtually the same accuracy as for uniform expansions is obtained.
However, the expansion order at later adaption steps abruptly changes from first-order
to highest order as quickly as possible without violating Guidelines 1 and 2, thus it is
reasonable to expect that a less abrupt change of the expansion order can preserve the
accuracy using a lower number of unknowns.
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Fig. 6.8 depicts the effect of the residual based expansion order control. The residual has
been normalized first by scaling the uniform system such that a unit diagonal is obtained.
The indicator is then obtained by taking the logarithm of the residual values and applying
a suitable shift such that the highest residual value leads to an indicator value of zero.
The expansion order is increased if the indicator is larger than −2.0. In principle, one
may assign less weight to higher energies such as for the adaptive strategy based on the
rate of decay of expansion coefficients. For illustration purposes, the unmodified indicator
is shown. It should be noted that the strategy based on the decay leads to qualitatively
similar indicator values if no modification at higher energies is applied. The pure residual
based strategy increases the expansion order to third-order up to high energies in the right
half of the device. However, fifth-order expansions are used in a very small region in the
device only. A seventh-order expansion is only assigned right above the band edge inside
the intrinsic region. The error plot in Fig. 6.9(c) is very similar to the error plot for the
strategy based on the decay of expansion coefficients, hence the same conclusions can be
drawn.

Fig. 6.9 further shows that the SHE method converges to a solution as the expansion
order increases. As reference, a uniform seventh-order expansion is used. A first-order
expansion shows an average error of about 10−2 over the device with respect to the seventh-
order expansion taken as reference. The average error of a third-order expansion is around
10−3.5, and approximately 10−5 for a fifth-order expansion. A similar exponential decay
of the error with the SHE order has also been observed by Jungemann et al. [53] for the
collector current of a bipolar junction transistor, even though at a lower rate.

The number of unknowns obtained with uniform and three adaptive expansions are
depicted in Fig. 6.10. Savings of a factor of almost three are obtained with the target
quantity based scheme, which yields virtually the same accuracy as uniform expansions.
Memory requirements and execution times are consequently reduced by the same factor.
Typically, higher savings for the execution times are obtained in practice, because linear
solvers with optimal complexity are not available in general. A combination of the three
different schemes proposed may give slightly higher savings, which become significant at
very high expansion orders only.
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(a) Indicator for the first adaptation step (left). Expansion order after the first adaption step (right).

(b) Indicator for the second adaptation step (left). Expansion order after the second adaption step (right).

(c) Indicator for the third adaptation step (left). Expansion order after the third adaption step (right).

Figure 6.6: Expansion indicator and expansion orders in the n+nn+ diode for three adap-
tion steps using an adaptive scheme based on the decay of expansion coeffi-
cients as outlined in Sec. 6.2.1. The scheme starts with a uniform first-order
expansion. The error indicator is not computed on the left and right contact
and thus plotted with an arbitrary value of 0.
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(a) Indicator for the first adaptation step (left). Expansion order after the first adaption step (right).

(b) Indicator for the second adaptation step (left). Expansion order after the second adaption step (right).

(c) Indicator for the third adaptation step (left). Expansion order after the third adaption step (right).

Figure 6.7: Expansion indicator and expansion orders in the n+nn+ diode for three adap-
tion steps using an adaptive scheme based on a target quantity as discussed
in Sec. 6.2.2. The scheme starts with a uniform first-order expansion.
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(a) Indicator for the first adaptation step (left). Expansion order after the first adaption step (right).

(b) Indicator for the second adaptation step (left). Expansion order after the second adaption step (right).

(c) Indicator for the third adaptation step (left). Expansion order after the third adaption step (right).

Figure 6.8: Expansion indicator and expansion orders in the n+nn+ diode for three
adaption steps using an adaptive scheme based on residuals as described
in Sec. 6.2.3. The scheme starts with a uniform first-order expansion.
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(a) Rate of decay based scheme.
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(b) Target quantity based scheme.
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(c) Residual based scheme.

Figure 6.9: Comparison of the relative errors in carrier velocities for different uniform and
adaptive SHE orders using different adaptive schemes. A uniform seventh-
order expansion is used as reference.
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Figure 6.10: Comparison of the number of unknowns for the three different adaptive
expansion order control schemes.



Chapter 7

Parallelization

The paradigm shift from single- to multi- and many-core computing architectures places
additional emphasis on the development of parallel algorithms. In particular, the use of
graphics processing units (GPUs) for general purpose computations poses a considerable
challenge due to the high number of threads executed in parallel. Already the implemen-
tation of standard algorithms like dense matrix-matrix multiplications requires a consid-
erable amount of sophistication in order to utilize the vast computing resources of GPUs
efficiently [70].

In the context of the discretized SHE equations (5.9) and (5.16), the assembly can be
carried out in parallel for each box B ∈ B and each adjoint box B̃ ∈ B̃, provided a suitable
storage scheme for the sparse system matrix is chosen. Similarly, the elimination of odd-
order unknowns from the system matrix can be achieved in parallel, since the procedure can
be carried out separately for each row associated with a box B of the system matrix. The
iterative solvers essentially rely on sparse matrix-vector products, inner products and vector
updates, which can also be run in parallel employing parallel reduction schemes. However,
the additional need for preconditioners is a hindrance for a full parallelization, because the
design of good parallel preconditioners is very challenging and typically problem-specific
[104].

In this chapter a parallel preconditioning scheme for the SHE equations is proposed and
evaluated. The physical principles on which the preconditioner is based are discussed in
Sec. 7.1 and additional numerical improvements for the system matrix are given in Sec. 7.2.
The preconditioner scheme is then proposed in Sec. 7.3 and evaluated for a simple n+nn+-
diode in Sec. 7.4. Even though parallel preconditioners suitable for GPUs have already been
implemented recently, cf. e.g. [33, 40], their black-box nature does not make full use of all
available information. The preconditioner scheme presented in the following incorporates
these additional information into otherwise black-box preconditioners.

The scheme is derived for a given electrostatic potential, as it is for instance the case with
a Gummel iteration, cf. Sec. 2.4. A block-preconditioner for the Newton scheme is obtained
by concatenation of a preconditioner for the Poisson equation, the SHE preconditioner
presented in the following, and a preconditioner for the continuity equation for the other
carrier type.

80
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H

x

Forbidden

Trajectories

(a) Electron Trajectories without inelastic scatter-
ing.

H

x

Forbidden

Trajectories

(b) Electron Trajectories with inelastic scattering.

Figure 7.1: Trajectories of carriers in free flight within the device are given by constant
total energy H .

7.1 Energy Couplings Revisited

As discussed in Chap. 3, carriers within the device can change their total energy only by
inelastic scattering events, thus the scattering operator Ql,m{f} is responsible for coupling
different energy levels. However, if only elastic scattering processes are considered, the
total energy of the particles remains unchanged and the different energy levels do not
couple, cf. Fig. 7.1. Therefore, in a SHE simulation using only elastic scattering and NH

different energy levels, the resulting system of linear equations is consequently decoupled
into NH independent problems. Such a decomposition has been observed already in early
publications on SHE [21,105] in a slightly different setting: If the grid spacing with respect
to energy is a fraction of the optical phonon energy ~ωop, say ~ωop/n with integer n,
then the system decomposes into n decoupled systems of equations. This observation,
however, is of rather limited relevance in practice, since different phonon energies ~ωη for
inelastic scattering may be employed simultaneously, cf. Sec. 3.3, hence the system no longer
decouples into a reasonably large number of independent systems in order to scale well to
a higher number of cores.

It is assumed throughout the following investigations that all unknowns of the discrete
linear system of equations referring to a certain energy Hn are enumerated consecutively.
A simple interpretation of the system matrix structure is possible if first all unknowns
associated with the lowest energy H1 are enumerated, then all unknowns with energy H2

and so forth. The unknowns for a certain energy can be enumerated arbitrarily, even
though an enumeration such as in Sec. 6.1 is of advantage for easing the understanding of
the system matrix structure.

The scattering of carriers is a random process in the sense that the time between two
collisions of a particle are random. Equivalently, the mean free flight denotes the average
distance a carrier travels before it scatters. As devices are scaled down, the average number
of scattering events of a carrier while moving through the device decreases. On the algebraic
level of the system matrix, a down-scaling of the device leads to a weaker coupling between
different energy levels. This can be reasoned as follows: Consider a one-dimensional device
using spherical energy bands, consisting of two boxes B1 and B2 with adjoint box B̃1,2.
Now, consider the discretization (5.9) and (5.16). In the following, only the proportionality
with respect to the box interface area and the box volume are of interest. Consequently, A
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is written for a term that carries a dependence on the interface area A1,2, and V is written
for a term that depends on the box volumes V1 or V2. Since only the asymptotic behavior
is of interest, the signs are always taken positive. The discrete system matrix can then be
written according to (5.9) and (5.16) in the form

H1 H2

B1 B2 B̃1,2 B1 B2 B̃1,2

B1

H1 B2

B̃1,2

B1

H2 B2

B̃1,2

















V 0 A+ V V 0 0
0 V A+ V 0 V 0

A+ V A+ V V 0 0 0

V 0 0 V 0 A+ V
0 V 0 0 V A+ V
0 0 0 A+ V A+ V V

















, (7.1)

where the three rows and columns in each energy block refer to the assembly of the boxes
B1, B2 and B̃1,2. An elimination of the odd-order unknowns, i.e. rows and columns three
and six, leads to

H1 H2

B1 B2 B1 B2

B1

B2

B1

B2









V + (A+ V )2/V (A+ V )2/V V 0
(A+ V )2/V V + (A+ V )2/V 0 V

V 0 V + (A+ V )2/V (A+ V )2/V
0 V (A+ V )2/V V + (A+ V )2/V









,

(7.2)

where again all signs were taken positive for simplicity, since only the asymptotics are
of interest. For characteristic box diameter h in an n-dimensional real space there holds
V ∼ hn and A ∼ hn−1, thus the matrix structure when keeping only the lowest powers of
h for each entry is asymptotically given by

H1 H2

B1 B2 B1 B2

B1

H1 B2

B1

H2 B2









hn−2 hn−2 hn 0
hn−2 hn−2 0 hn

hn 0 hn−2 hn−2

0 hn hn−2 hn−2









. (7.3)

Hence, the off-diagonal blocks coupling different energies become negligible as devices are
shrunk. The same asymptotics hold true for an arbitrary number of boxes and energy levels,
hence the physical principle of reduced scattering of carriers while travelling through the
device is well reflected on the discrete level.

7.2 Symmetrization of the System Matrix

With the enumeration of unknowns as suggested in the previous section and using only a
single inelastic phonon energy ~ω, the structure of the system matrix consists of three block-
diagonals. The location of the off-diagonal blocks depends on the spacing of the discrete
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H1

H1 H2

H2

HNH

HNH

H1

H1 H2

H2

HNH

HNH

Figure 7.2: Structure of the system matrix for total energy levels H1 < H2 < . . . < HNH

with an energy grid spacing equal to the inelastic energy ~ω before (left) and
after (right) symmetrization. Unknowns at the same total energy Hn are
enumerated consecutively, inducing a block-structure of the system matrix.
For simplicity, scattering is depicted between energy levels H1 and H2 only,
using arrows with thickness proportional to the magnitude of the entries.

energies with respect to ~ω. If the energy spacing equals ~ω, the matrix is block-tridiagonal,
cf. Fig. 7.2.

The asymptotic exponential decay of the distribution function with energy induces a
considerable asymmetry of the system matrix when inelastic scattering is considered. This
asymmetry, however, is required in order to ensure a Maxwell distribution in equilibrium.
Consider the scattering rate (3.25) and the SHE equations for the scattering operator only.
The resulting equations for the zeroth-order expansion coefficients using spherical energy
bands read

−Nopf0,0(x,H − ~ω)Z(H − ~ω)Z +Nopf0,0ZZ(H + ~ω)

+ (Nop + 1)f0,0ZZ(H − ~ω)− (Nop + 1)f0,0(x,H + ~ω)Z(H + ~ω)Z = 0 ,
(7.4)

where the symmetric scattering rate σ has been cancelled already. The first two terms refer
to scattering from lower to higher energy, and the last two terms to scattering from higher
energy to lower energy. Substitution of the relation

Nop + 1 =
1

exp
(

~ω
kBT

)

− 1
+ 1 = exp

(

~ω

kBT

)

Nop , (7.5)

and division by Nop leads to

− f0,0(x,H − ~ω)Z(H − ~ω)Z + f0,0ZZ(H + ~ω)

+ exp
(

~ω

kBT

)

f0,0ZZ(H − ~ω)− exp
(

~ω

kBT

)

f0,0(x,H + ~ω)Z(H + ~ω)Z = 0 .
(7.6)

It can readily be seen that a Maxwell distribution f(x,H) = exp
(

−ε(H)/(kBT )
)

fulfills the
equation. For the system matrix one consequently finds that the off-diagonal block coupling
to higher energy is by a factor of exp

(

~ω/(kBT )
)

larger than the block coupling to lower
energy. For phonon energies of about ~ω ≈ 26 meV the factor is exp(1)

.
= 2.7, while for

phonon energies ~ω ≈ 52 meV the factor becomes exp(2)
.
= 7.4. The induced asymmetry
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of the system matrix is in particular a concern for the convergence of iterative solvers if
the off-diagonal block coupling to higher energies dominates the diagonal block, which is
typically the case for devices in the micrometer regime.

The asymmetry can be substantially reduced in two ways. The first possibility is to
expand the distribution function as

f(x,k, t) =
∞
∑

l=0

l
∑

m=−l

exp(−E(ε))fl,m(x, ε, t)Yl,m(θ, ϕ) , (7.7)

where E(ε) is a reasonable estimate for log(f0,0). A first guess for the first iteration of a
self-consistent iteration is a Maxwell distribution,

E(ε) =
ε

kBT
, (7.8)

which can be refined in subsequent iterations with the shape of the computed distribution
function from the last iterate. A disadvantage of the expansion (7.7) is that the SHE
equations need to be slightly adjusted and thus depend on the scaling E(ε). However, the
discrete representations (5.4) and (5.5) approximate the expansion coefficients and hence
the distribution function as piecewise constant over the boxes in B and B̃. While this
is a crude approximation for the exponentially decaying expansion coefficients fl,m of the
exponentially decaying distribution function f using the standard expansion f = fl,mY

l,m,
an expansion of the form (7.7) leads to much smaller variations of the expansion coefficients
fl,m. Consequently, the exponential decay is basically covered by E(ε), and a piecewise
constant approximation of fl,m is more appropriate.

The second way of reducing asymmetry is based on modifications of the linear system.
Denoting again with E(ε) a reasonable estimate for log(f0,0), the system of linear equations
with eliminated odd expansion orders

Shfh = bh (7.9)

can be rewritten as

ShEE−1fh = bh , (7.10)

where E is given in block structure as

E =











exp
(

−E(ε(H1))
)

I1 0 . . . 0
0 exp

(

−E(ε(H2))
)

I2 . . . 0
...

...
. . .

...
0 0 . . . exp

(

−E(ε(HNH
))
)

INH











(7.11)

with In referring to an identity matrix with dimensions given by the unknowns at energy
level Hn. Introducing S̃ := ShE and f̃ := E−1fh, one arrives at

S̃f̃ = bh . (7.12)

Since E is a diagonal matrix, the costs of computing S̃ and f̃ are comparable to a matrix-
vector product and thus negligible. The benefit of this rescaling is that the unknowns
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computed in vector f̃ are roughly of the same magnitude and that the off-diagonal coupling
entries in each row of S̃ are essentially identical. It should be noted that the rescaling on
the discrete level is actually a special case of an expansion of the form (7.7), where E(ε) is
taken constant in each box of the simulation domain in (x,H)-space.

A second look at the rescaled system matrix S̃ shows that norms of the columns are
now exponentially decreasing with energy, while the column norms of Sh are of about the
same order of magnitude. Hence, the rescaling with E has shifted the exponential decay of
the entries in f to the columns of the system matrix. However, due to the block structure
of the system matrix, a normalization of the row-norms by left-multiplication of the linear
system with a diagonal matrix D also rescales the column-norms suitably:

D−1S̃f̃ = D−1bh , (7.13)

where

D =

















√

∑

j S
2
0,j 0 . . . 0

0
√

∑

j S
2
1,j . . . 0

...
...

. . .
...

0 0 . . .
√

∑

j S
2
N,j

















, (7.14)

with N denoting the number of rows in S̃. Again, the application of D is computationally
cheap and leads with Ŝ := D−1S̃ and b̂ = D−1bh to the linear system

Ŝf̃ = b̂ . (7.15)

It is worthwhile to note that the diagonal entries of D−1 are essentially proportional to
exp
(

ε/(kBT )
)

and thus represent the MEDS factors from Sec. 2.3. In addition, also the
exponential decay of values in b due to Maxwell distributions induced by suitable boundary
conditions is automatically rescaled to values in about the same order of magnitude.

7.3 A Parallel Preconditioning Scheme

Due to the large number of unknowns for the discretized SHE equations, the solution of the
resulting systems of linear equations is typically achieved by iterative methods. The rate of
convergence of these methods can be substantially improved by the use of preconditioners.
As already observed by Jungemann et al. [53], good preconditioners are actually required in
most cases to obtain convergence of iterative solvers for the SHE equations. One of the most
commonly employed preconditioners is the incomplete LU factorization (ILU), which has
been used in recent works on the SHE method [42,53]. For this reason, a short description
of ILU is given in the following.

ILU relies on an approximate factorization of the sparse system matrix A into A ≈
LU =: P , where L is a sparse lower triangular matrix, and U is a sparse upper triangular
matrix. During the iterative solver run, the current residual rk is then updated by

rk ← P−1rk (7.16)
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in order to formally solve the system

P−1Ax = P−1b (7.17)

rather than Ax = b. If P−1 = A−1, i.e. the factorization is exact, the solution is obtained
in one step. Conversely, if P is the identity matrix, the linear system is solved as if no
preconditioner were employed.

The inverse of P is never computed explicitly. Instead, a forward substitution Ly = rk
followed by a backward substitution Urk = y is carried out. Since these substitutions
are serial operations, the application of the preconditioner to the residual is identified as a
bottleneck for parallelism.

In light of the discussion of the block structure of the system matrix S for SHE, consider
a block-diagonal matrix

A =











A1,1 0 . . . 0
0 A2,2 . . . 0
...

...
. . .

...
0 0 . . . ANH,NH











, (7.18)

where the NH square blocks of A can have arbitrary size. Then, the solution of the system

Ax = b (7.19)

can be obtained by solving each of the systems An,nxn = bn for the respective subvectors
xn and bn separately. Denoting with P n,n the preconditioner for An,n, the preconditioner
for the full system A is consequently also given in block diagonal form

P =











P 1,1 0 . . . 0
0 P 2,2 . . . 0
...

...
. . .

...
0 0 . . . PNH,NH











. (7.20)

Since the purpose of a preconditioner is to approximate the inverse of the system matrix,
the block-diagonal preconditioner P will provide a good approximation to the inverse of
A even if A is not strictly block diagonal, but has small entries in off-diagonal blocks.
However, this is exactly the case for the system matrix resulting from the SHE equations
discussed in Sec. 7.1. Summing up, the proposed preconditioning scheme reads as follows:

Algorithm 5 (Parallel Preconditioner Scheme for the SHE Method). Let the number of
unknowns at the discrete energies Hn, n = 1, . . . , NH, be given by Nn. Denote the diagonal
blocks of the system matrix Ŝ with size Nn × Nn as Ŝn,n. Then, a parallel preconditioner

for Ŝ is given by a block-preconditioner P , where the preconditioners P n,n are computed

from the diagonal blocks Ŝn,n of Ŝ and applied in parallel.

A physical interpretation of the proposed preconditioner is as follows: Consider the
discretization of the SHE equations without inelastic scattering mechanisms. In this case
the system matrix Selastic after row-normalization is block-diagonal if enumerating the
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unknowns as suggested in Sec. 7.1. A preconditioner for Selastic is given by a block precon-
ditioner P elastic of the form (7.20). Since Selastic is an approximation to the SHE equations
with inelastic scattering given by Ŝ, for a preconditioner P̂ for Ŝ there holds

P̂
−1 !
≈ Ŝ

−1
≈ S−1

elastic ≈ P−1
elastic . (7.21)

The use of the block diagonals of Ŝ rather than the matrix Selastic for the setup of the
preconditioner P̂ is of advantage because it avoids the setup of the matrix Selastic.

It should be noted that the use of block preconditioners of the form (7.20) for the paral-
lelization of ILU preconditioners is not new [88]. However, without additional information
about the system matrix, the block sizes are usually chosen uniformly and may not be
aligned to the block sizes induced by the SHE equations. Consequently, the application of
block-diagonal preconditioners to the SHE equations in a black-box manner will show lower
computational efficiency.

The proposed scheme in Algorithm 5 allows for the use of arbitrary preconditioners for
each of the blocks Ŝn,n. Consequently, a preconditioner scheme is proposed rather than
a single preconditioner, enabling the use of established serial preconditioners in a parallel
setting. Since the number of energies NH is in typical situations chosen to be at least 100,
the proposed scheme provides a sufficiently high degree of parallelism even for multi-CPU
clusters. The situation is slightly different for GPUs, where typically one work group1 is
used for the preconditioner at total energy Hn. Due to the massively parallel architecture
of GPUs, an even higher degree of parallelism is desired in order to scale the SHE method
well to multi-GPU environments. In such case, parallel preconditioner for each block Ŝn,n

should be employed.

7.4 Results

Execution times of the iterative BiCGStab [102] solver are compared for a single CPU core
using an incomplete LU factorization with threshold (ILUT) for the full system matrix,
and for the proposed parallel scheme using multiple CPU cores of a quad-core Intel Core
i7 960 CPU with eight logical cores. In addition, comparisons for a NVIDIA Geforce GTX
580 GPU are found in Figs. 7.3. The parallelization on the CPU is achieved using the
Boost.Thread library [6], and the same development time was allotted for developing the
OpenCL [57] kernel for ViennaCL [111] on the GPU. This allows for a comparison of the
results not only in terms of execution speed, but also in terms of productivity [7].

As can be seen in Figs. 7.3, the performance increase for each linear solver step is more
than one order of magnitude compared to the single-core implementation. This super-
linear scaling with respect to the number of cores on the CPU is due to the better caching
possibilities obtained by the higher data locality within the block-preconditioner.

The required number of iterations using the block-preconditioner decreases with the
device size. For an intrinsic region of 25 nm length, the number of iterations is only twice
than that of an ILUT preconditioner for the full system. At an intrinsic region of 200 nm,
four times the number of iterations are required. This is a very small price to pay for the
excellent parallelization possibilities.

1A work group is a collection of threads that can be synchronized during the execution of a compute
kernel. Typically, a work group refers to one of the single-instruction-multiple-data units on the GPU.
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Overall, the multi-core implementation is on the test machine by a factor of three to
ten faster than the single core-implementation even though a slightly larger number of
solver iterations is required. It is reasonable to expect even higher performance gains on
multi-socket machines equipped with a higher number of CPU cores. The purely GPU-
based solver with hundreds of simultaneous lightweight threads is by up to one order of
magnitude faster than the single-core CPU implementation, where it has to be noted that
a single GPU thread provides less processing power than a CPU thread.

The comparison in Fig. 7.3 further shows that the SHE order does not have a notable
influence on the block-preconditioner efficiency compared to the full preconditioner. The
slightly larger number of solver iterations for third-order expansions is due to the higher
number of unknowns in the linear system. The performance gain is almost uniform over the
length of the intrinsic region and slightly favors shorter devices, thus making the scheme
an ideal candidate for current and future scaled-down devices.
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Figure 7.3: Execution times per solver iteration, number of solver iterations and total
solver execution time for a first-order (left) and a third-order (right) SHE
simulation of n+nn+ diodes with different lengths of the intrinsic region.
As expected from physical arguments, the parallel preconditioner performs
the better the smaller the length of the intrinsic region becomes. The GPU
version performs particularly well for the computationally more challenging
third-order SHE. A reduction of total execution times compared to a single-
threaded implementation by one order of magnitude is obtained.



Chapter 8

Numerical Results

In the previous chapters comparisons for the proposed methods have mostly been given for
a n+nn+-diode. The aim of this chapter is to show that the proposed methods blend well
and lead to considerable performance improvements for realistic device geometries. First,
spatially two-dimensional simulations are presented for a MOSFET-like device. Then, it is
shown that the combination of the proposed extensions to the SHE method allow for the
simulation of a fully three-dimensional FinFET on an average workstation.

The average workstation is considered to be a machine equipped with a Intel Core i7 960
CPU, 12 GB RAM and a NVIDIA GeForce GTX 580. For simplicity, Dirichlet boundary
conditions are used at the contacts and a parabolic energy band model is employed. Self-
consistency of the Poisson equation, the SHE equations for electrons, and the drift-diffusion
equation for holes is obtained by means of a damped Gummel iteration. The energy spacing
is set to 12.5 meV, and acoustical, optical and ionized impurity scattering mechanisms are
considered. For simplicity, doping profiles are chosen constant in each segment of the device.
Note that doping profiles in realistic devices are smeared out due to unavoidable diffusion,
which is beneficial for the numerical stability. Since the more challenging case of constant
doping profiles is considered here, the results in this chapter can be transferred to realistic
doping profiles.

The meshes used in the next sections are generated with Netgen [91]. Simulator output
is written to VTK files [59], which are then processed for visualization by the open-source
software ParaView [58].

8.1 MOSFET

The adaptive variable-order scheme presented in Chap. 6 is applied to the simulation of an
n-channel MOSFET in unipolar approximation with a channel length of 22 nm. Simulations
are carried out using the unstructured triangular mesh depicted in Fig. 5.7. The doping
concentration in the source and drain regions are set to 1020 cm−3, and to 1016 cm−3 in
the channel and in the bulk regions. A high-k hafnium oxide with a thickness of 3.5 nm is
used. Doping profiles change abruptly between the individual regions for simplicity. Note
that this is not realistic from a technological point of view, and is usually more challenging
for the numerical point of view. The source and the bulk contacts are grounded, while the
drain contact is biased at 0.9 Volts. The gate voltage is set to 0.7 Volts. Due to the unipolar
approximation with rather high doping in the channel region, there is a spurious current

90
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Figure 8.1: Comparison of the convergence of a drift-diffusion simulation and the SHE
simulation. The iteration for the SHE method saturates because of the dis-
cretization error of the potential-dependent grid in the total energy variable.

flow between the drain and the body contact. Nevertheless, the characteristic behavior in
the channel is observed and is used for an evaluation.

To obtain self-consistency with the Poisson equation, a damped Gummel iteration of
a first-order SHE with 100 iterations and a damping coefficient of 0.6 is carried out. The
discrete l2-norm of the potential update vector in each iteration is depicted in Fig. 8.1. Com-
parable convergence behavior is obtained for both the drift-diffusion and the SHE approach.
Note that the SHE simulation starts with a lower, yet significant initial update, because
the result of the drift-diffusion simulation is used as initial guess for the SHE simulation.
As the iteration progresses, the SHE method saturates, which stems from the discretization
error with respect to the potential-dependent band edge influencing the simulation domain
in (x,H)-space, cf. Sec. 2.3. In any case, the potential update is essentially homogeneous
over the device, hence the infinity norm of the potential update is around 10−5.

Simulated carrier concentrations are depicted in Fig. 8.2. Densities have been computed
from a uniform fifth-order SHE, while Gummel iterations for self-consistency have been
carried out for a first-order SHE only. The inconsistencies near the source and drain contacts
are due to the lack of full self-consistency of the fifth-order SHE with the Poisson equation,
which is amplified by the use of Dirichlet boundary conditions. Consequently, it is concluded
that it is insufficient to ensure self-consistency with a first-order SHE only.

Inside the channel a pinch-off can readily be observed. Furthermore, the plot of the
carrier density above one electron Volt shows the exponential increase of carriers with high
energy along the channel. It has to be emphasized that such an information cannot be
obtained from macroscopic transport models such as the drift-diffusion model. For the
unipolar simulation of a MOSFET considered here, a high population of heated electrons
is obtained all over the drain region, which is about ten orders of magnitude higher than
in the source region.

Fig. 8.3 shows a plot of the electrostatic potential and the energy distribution function.
Due to the small device dimensions, carriers are injected quasi-ballistically into the drain
region. This leads to high values of the distribution function at kinetic energies around
0.9 eV, which is the cause of the high concentration of electrons above 1 eV shown in
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(a) Electron density (cm−3). (b) Density of electrons above 1 eV (cm−3).

Figure 8.2: Macroscopic quantities obtained from a SHE simulation of the MOSFET.
Densities are computed from a fifth-order SHE, while self-consistency is en-
sured for a first-order SHE only.

(a) Potential (V). (b) Distribution Function (a.u.).

Figure 8.3: Plot of the electrostatic potential and the normalized isotropic part f0,0 of
the distribution function.
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Fig. 8.2. Furthermore, the Dirichlet boundary conditions at the drain contact lead to a
boundary layer of the distribution function, which is a purely numerical effect. Therefore,
other boundary conditions such as those proposed by Hong et al. [42] should be used for
predictive device simulation.

The decay-based strategy as discussed in Chap. 6 is applied for an adaptive variable-
order SHE using the same parameters as for the simulation of the n+nn+ diode to the
MOSFET. Clearly, the obtained results are not the best possible, yet they allow for judging
the need for parameter adjustments over a wider range of devices. Fig. 8.4 shows the
expansion order indicators obtained from a uniform first-order SHE and from the subsequent
variable-order simulation. The expansion orders after the first and the second adaption step
are particularly increased near the band-edge and around the channel. In the drain region, a
hot energy tail of the distribution function leads to an increase of the expansion order above
0.8 eV only. At very high energies, a first-order expansion is preserved. It is worthwhile to
note that almost all third-order expansion nodes become fifth-order expansion nodes after
the second adaption step. Additional savings from a better parametrized error indicator
are therefore expected. Nevertheless, the number of unknowns in Fig. 8.5 is reduced by a
factor of up to two for fifth-order expansions, and execution times are reduced by a factor
of almost five due to the sparser population of the system matrix at lower expansion orders,
cf. Fig. 8.6. The high gain in execution time may also be due to better caching possibilities
on the CPU, because data operations are more localized and thus less cache misses occur.
Performance gains from a parallelization are comparable to the results in Sec. 7.4. It has to
be mentioned that a uniform fifth-order SHE of the MOSFET leads to a linear system and
a preconditioner which is too large in order to fit into GPU RAM. Therefore, additional
fallback-mechanisms are required when using GPU acceleration with SHE.

A comparison of the average carrier energy in Fig. 8.7 again confirms convergence of the
SHE method and further shows that adaptive expansion orders lead to accuracy comparable
to uniform expansions. The kinks in the error function are due to the interpolation of the
solution quantities along a line passing through the mesh at a depth of 2 nm below the gate
oxide. It is crucial to note that unlike in the case of the n+nn+ diode simulated in Sec. 6.3,
a first-order SHE leads to a significant error in the average carrier energy, thus confirming
that higher-order SHE is indeed required for modern scaled-down devices.

8.2 FinFET

While transistors have been fabricated as planar devices over decades, the small feature sizes
of modern devices leads to the undesired effect that the gate loses control over the current
flow. One of the possible remedies currently employed is the use of fully three-dimensional
device layouts, such that the channel is fabricated as a fin, and the gate is wrapped around
the fin in order to have better control over the current flow. A schematic view of such a
so-called FinFET is given in Fig. 8.8 and investigated in the following. Since three faces
of the channel are used to control current flow, the device is sometimes also referred to as
trigate transistor.

Due to symmetry considerations along the fin, it is sufficient to simulate only one half
of the device. The simulated device has a channel length of 18 nm and the mesh used for
the simulation is depicted in Fig. 5.8. A constant doping of 1020 cm−3 is applied in the
source and drain contacts, while a doping of 1012 cm−3 is applied in the channel and in the
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(a) Error indicator computed for the first adaption
step.

(b) Expansion orders after the first adaption step.

(c) Error indicator computed for the second adap-
tion step.

(d) Expansion orders after the second adaption
step.

Figure 8.4: Error indicator and expansion order distribution after the first and second
adaption step. At the contacts, the error indicator is set to −10 and a first-
order expansion is preserved. Here, the bulk is kept at a fixed first order,
since the contribution to transport is negligible. The vertical axis denotes
total energy.
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Figure 8.5: Comparison of the number of unknowns of the linear system. The use of
adaptive expansion orders leads to a reduction of unknowns by about a factor
1.5 for a third-order expansion, and a factor of 2 for a fifth-order expansion.

 1

 10

 100

 1000

1 3 5

T
im

e 
(s

ec
)

SHE Order

Preconditioner Setup Time

Uniform
Adaptive

 1

 10

 100

 1000

1 3 5

T
im

e 
(s

ec
)

SHE Order

Linear Solver Time

Uniform
Adaptive

Figure 8.6: Comparison of execution times for the preconditioner setup and the linear
solver run using eight CPU threads. The sparser structure of the system
matrix leads to a reduction of execution times by a factor of up to four.
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(a) Average carrier energies (energy in eV, scale in nm).
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(b) Comparison of the relative error of carrier energies.

Figure 8.7: Average carrier energy in the simulated MOSFET. A fifth-order uniform ex-
pansion is taken as reference for the comparison of the errors along a line 2
nm below the gate oxide, with x = 0 corresponding to the center of the chan-
nel. The convergence of the SHE method can readily be seen and adaptive
expansions essentially agree with corresponding uniform expansions.
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Figure 8.8: Schematic view of the simulated FinFET geometry. The gate is shown in
blue, the gate oxide in green, the fin in red and the substrate in yellow.

Figure 8.9: Carrier density (in cm−3) in the simulated FinFET. The color scale is trun-
cated below 1015 cm−3 in order to have a higher resultion in the channel.

bulk. Again, the device is simulated in an unipolar approximation. The source contact is
grounded, the drain contact is biased by 0.3 Volt, a gate voltage of 0.8 Volt is applied, and
the bulk contact is grounded. Due to the difference in the built-in potential, the Dirichlet
boundary conditions for the potential at the bulk contact are set to −0.5 Volt. The results
presented in the following are obtained from a uniform first-order SHE, and at the end of
this section an adaptive SHE up to third order is discussed.

Fig. 8.9 shows the carrier density inside the device. The accumulation of carriers near
the gate oxide is clearly visible, especially along the oxide on top. In the center of the
channel, a region of lower carrier density is obtained.

The density of carriers above 1 eV shown in Fig. 8.10 shows a high concentration of
hot carriers in the source and drain region towards the channel. The peak concentration is
obtained at the beginning of the gate oxide in the source region.

The potential distribution inside the device is depicted in Fig. 8.11, which also depicts
the potential inside the oxide. Note that the oxide also extends towards the bulk, where
three times the thickness around the fin is chosen. However, the oxide grown on the bulk
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Figure 8.10: Density of carriers with energy above 1 eV (in cm−3) in the simulated
FinFET.

Figure 8.11: Potential in the simulated FinFET. The reference potential is the built-in
potential in the source and drain region.
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Figure 8.12: Average carrier energy (in eV) in the simulated FinFET.

does not contribute to carrier transport significantly.
Average carrier energies are shown in Fig. 8.12. In contrast to the MOSFET with a high

drain-source bias, the low drain-source bias for the FinFET leads to high average carrier
energies mostly in the source close to the gate oxide. The elevated carrier energies deeper
in the source are due to the high bulk bias.

While the uniform first-order SHE has lead to 443 500 even-order unknowns leading
to a memory consumption of 5 GB, a uniform third-order expansion results in 3 976 475
even-order unknowns and a memory consumption beyond 20 GB. Since this is beyond the
memory provided by the workstation, only an adaptive SHE up to third-order is carried out.
Using the same adaptive strategy based on the rate of decay of the expansion coefficients as
for the MOSFET, 2 242 040 even-order unknowns are obtained, which is still too large for
the workstation. Reducing the threshold value from −6.0 to −1.0 and clamping the bulk
and the interior of the channel to first-order results in 860 145 unknowns, which just fits
into the 12 GB budget. The expansion order averaged over the full energy range is depicted
in Fig. 8.13. The adaptive strategy readily resolves the crucial regions underneath the gate
oxide, even though a rather high threshold is chosen.
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Figure 8.13: Average expansion order after the first adaption step in the simulated Fin-
FET.



Chapter 9

Outlook and Conclusion

Even though several improvements of the SHE method are presented throughout this thesis,
many possible further directions remain. In fact, the suggested improvements have lead to
a number of direct follow-up research topics. Consequently, a discussion of possible further
improvements on the SHE method is given in the next section. Finally, a conclusion is
drawn.

9.1 Possible Further Improvements of the SHE Method

A lexicographically ordered list of possible improvements is briefly discussed in the following.
The selection of topics is mostly based on an improvement of the method from the numerics
point of view, because the author considers the method to be more mature from the physics
point of view than from the numerics point of view.

9.1.1 Bipolar SHE

The SHE method has so far been applied to either electrons or holes, but not both. The
other carrier type has either been modelled by a continuity equation, or has been neglected.
However, a distribution function for both carrier polarities is of interest for the investigation
of high energy effects such as impact ionization feedback [12, 54], where highly energetic
carriers interact with the crystal lattice and generate electron-hole pairs.

A challenging question is in the modeling of generation and recombination of carriers.
While for a unipolar SHE the scattering operatorQ{f} acts on a single distribution function,
a bipolar SHE requires the consideration of the distribution functions fn and fp for electrons
and holes respectively, leading to a scattering operator of the form Q{fn, fp}. A Shockley-
Read-Hall-like relaxation-time approach for the generation and regeneration of carriers can
serve as a first approach to modelling the interactions of electrons and holes, but higher
sophistication is expected to be required for modelling high-energy effects accurately.

9.1.2 Energy Grid with Hanging Nodes

Due to the numerical stabilization using the H-transform discussed in Sec. 2.3, a tensor-
prolongation of the mesh in x-space to the (x,H)-space is attractive for the discretization
presented in Chap. 5. This prolongation for discrete total energies H1, . . . ,HNH

is not
fully satisfactory from the numerics point of view: The range of kinetic energies over the
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x

H

(a) Truncated simulation domain.

x

H

(b) Hanging nodes.

Figure 9.1: Two possibilities for increasing the numerical efficiency of the SHE method
by reducing the resolution in low-probability regions in (x, H)-space.

device varies by an amount of qψmax − qψmin over the device, where ψmax and ψmin denote
the maximum and minimum of the electrostatic potential over the device. At low applied
voltages, the difference in kinetic energy ranges is about 1 eV, which is certainly acceptable.
However, for higher voltages above ten Volts, as it is common for high-power devices, the
kinetic energy range consequently varies by more than ten electron volts. This can lead
to a resolution of regions of the distribution function with extremely low probabilities of
more than 100 orders of magnitude below the probability near the band edge. A resolution
of these areas of extremely low probabilities is typically not required, hence computational
resources should be focused on regions with higher importance.

Two possible remedies for the reduction of an unnecessary high resolution at high kinetic
energies are depicted in Fig. 9.1. The first possibility is to simply truncate the simulation
domain above a certain kinetic energy and impose homogeneous Neumann boundary con-
ditions at the new boundaries. The truncation errors are certainly negligible if there is no
significant high-energy tail of the distribution function extending into the the truncated
region. Consequently, such a truncation is particularly interesting for larger devices, where
the mean free path of carriers is much smaller than the device dimensions. However, for
the case of small devices in the deca-nanometer regime, the high energy tail cannot be ne-
glected and thus a truncation of the simulation domain is inappropriate. Nevertheless, the
resolution at higher energies can be reduced by allowing so-called hanging nodes inside the
mesh. In such an approach, the energy spacing is locally increased from H+

n −H
−
n to, say,

H+
n+1 −H

−
n−1. Hanging nodes can also be introduced by the use of nested grids, for which

one may in addition decrease the spatial resolution, cf. Fig. 9.1(b). This would further lead
to the use of multigrid methods [100] for the SHE method.

The difficulty of a mesh with hanging nodes is in the conservation of current. While
the box integration scheme in Chap. 5 asserts current conservation for sufficiently regular
Delaunay meshes by construction, it is not directly applicable for meshes with hanging
nodes in (x,H)-space. On the other hand, a violation of the conservation property in low-
probability regions may be acceptable, because the error will be in the range of the machine
precision due to a violation in low-probability regions only.

9.1.3 Fast Self-Consistency with Poisson’s Equation

The nonlinear coupling of the BTE with the Poisson equation requires the use of iteration
schemes as discussed in Sec. 2.4. Clearly, it is desirable to keep additional computational
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costs due to these nonlinear iterations as small as possible. For simplicity, the discussion
is mostly based on uniform expansion orders, but equally applies to adaptive expansion
orders presented in Chap. 6 as well.

For a SHE method with order L, a considerable reduction of the total simulation time
can be achieved by first computing a self-consistent solution of a first-order expansion,
possibly using a coarser grid in x-space, larger energy spacings in H-space, or both. Since
the BTE is coupled with the Poisson equation by the carrier densities only, which in turn
depend on the zeroth-order SHE coefficient f0,0 only, a first-order SHE provides a very
good initial guess for the SHE method of order L. In particular, due to the quadratic
convergence of the Newton method it is expected that a single Newton correction step for
order L when using first-order SHE as initial guess is sufficient in most cases. While the
savings are expected to be a factor of two to three for a third-order SHE, the savings for
higher-order expansions will be roughly proportional to the number of nonlinear iterations
required for a SHE of order L without improved initial guess for the potential.

The necessity for a nonlinear iteration scheme can directly be linked with adaptive
expansion orders: As soon as the potential correction is sufficiently small, expansion orders
can be increased. This procedure can be repeated until convergence and a prescribed
accuracy is obtained. Even though the required adaptive expansion orders as well as error
indicators and adaption strategies have been proposed in this thesis, a systematic study of
the use within a nonlinear self-consistency iteration has not been carried out yet.

9.1.4 More Flexible Discretization on Unstructured Grids

The discretization of the SHE equations on Delaunay triangulations as presented in Chap. 5
allows for a considerably better control of the local mesh size. However, the Delaunay
criterion is hard or even impossible to fulfill for mesh hierarchies often used within multilevel
and multigrid methods. As a consequence, it is desirable to employ discretization schemes
suitable for arbitrary unstructured grids.

A possible replacement for the currently employed scheme based on Voronoi diagrams is
the use of the barycenter method briefly outlined in Sec. 5.2. The discretization in Sec. 5.3
then needs to be adjusted for the surface integral over the generalized current density jl,m.
While each of the facets of a Voronoi box is perpendicular to the respective edge connecting
two vertices, this is not the case for the barycenter method. This leads to additional effort,
because the normal components of the fluxes with respect to the boxes are not directly
available any longer.

An alternative to box integration schemes are mixed finite element schemes as well as
discontinuous Galerkin methods, which have gained a lot of popularity recently [39,49,85].
Unlike the use of the barycenter method instead of Voronoi diagrams, a discretization for
such a case still needs to be derived. Due to the complexity of the BTE, the derivation of
a suitable formulation is expected to be considerably more involved than for well-behaved
elliptic or parabolic equations.
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9.1.5 Preconditioner for the Compressed Matrix Scheme

In Chap. 4 it has been shown that the system matrix for the SHE equations can be written
in the form

Sh =

p
∑

i=1

Qi ⊗Ri , (9.1)

where the number of terms p depends on the band structure model employed. The attrac-
tiveness of this representation not only stems from the reduction of memory requirements
from O(NL2) to O(N+L2), where N denotes the number of nodes in the (x,H) simulation
domain, but also from the ability to conveniently switch between different expansion orders.
Denoting with Sh;L the system matrix resulting from a SHE of the BTE of order L, the
system matrices for e.g. L ∈ {1, 3, 5, 7} would have to be set up separately each time. With
(9.1), these system matrices are given by replacing Ri with the respective expansion order.

The main disadvantage of (9.1) are the structural restrictions during the solution phase.
Since preconditioners are required to obtain convergence of the iterative solvers, a suitable
preconditioner still needs to be found for the representation (9.1). With the availability
of adaptive expansion orders and the fact that the SHE method is basically limited by
its memory requirements rather than its computational costs, the use of uniform expansion
orders with a representation of the form (9.1) makes sense only if the preconditioner requires
memory of order O(N + L2) or at most O(NL2) with a small factor of proportionality in
order to be comparable to the memory requirements of the N(L+1)2 unknowns. Otherwise,
the use of adaptive expansion orders is likely to be the better choice.

The preconditioner scheme discussed in Chap. 7 requires O(NL2) memory with a con-
siderably large constant of proportionality in front, which undermines the advantage of the
compressed storage of Sh. A possibility to reduce memory requirements to O(N + L2) is
to compute the preconditioner for first-order SHE as usual, and to define in similarity to
algebraic multigrid methods suitable transfer operators for the restriction of the residual of
the (L + 1)2 expansion coefficients to the zeroth-order expansion coefficient, and the pro-
longation from the zeroth-order coefficient to the (L+1)2 expansion coefficients. However,
it is not clear whether suitable transfer operators can be defined.

A different approach is based on an approximation on the algebraic level. Approximating
first the the system matrix Sh by

U = V ⊗W ≈ Sh , (9.2)

the preconditioner can be computed from U by the use of the identity U−1 = V −1⊗W−1.
Consequently, only a preconditioner for V and one for W needs to be computed, which
then serves as a preconditioner for U and thus for Sh. Still, the question of whether such
suitable approximations U to Sh exist, is still open.

9.2 Conclusion

Throughout this thesis a number of extensions to the SHE method are proposed in order to
reduce the computational effort and consequently increase the attractiveness of the method
for every-day TCAD purposes. The suggestions enable the simulation of semiconductor
devices in the deca-nanometer regime at an unprecedented accuracy for a given time budget.
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The increased importance of hot carrier degradation in modern scaled-down devices is
addressed by proposing a scheme for the inclusion of carrier-carrier scatting for the SHE
method. Unfortunately, the scheme leads to nonlocal coupling of the equations with en-
ergy, such that additional computational effort is required. In addition, the SHE equations
become nonlinear, which is less a concern since the SHE equations are already nonlin-
early coupled with the Poisson equation. Nevertheless, similar complications arise when
considering carrier-carrier scattering with the Monte Carlo method.

A thorough investigation of the coupling structure of the SHE equations leads to a ma-
trix compression scheme, which allows for storing the system matrix of the linear system of
equations after discretization in a very efficient manner. Even though the method greatly
reduces memory requirements, its use is so far hampered by the need for a suitable pre-
conditioner for the iterative solvers. Nevertheless, the method can already be employed in
the cases where convergence is obtained without preconditioner, and for the evaluation of
residuals for adaptive expansion order strategies.

The formulation and implementation of a higher-order discretization scheme for un-
structured grids enables the use of the SHE method as a direct replacement for established
macroscopic transport models such as the drift-diffusion model or the hydrodynamic model
without changing the underlying mesh. Moreover, the number of unknowns compared to
structured grids is reduced considerably, because refinement in unstructured grids leads to
a much more localized reduction of the mesh size than for structured grids, especially in
three spatial dimensions.

Variable-order expansions achieve the accuracy of uniform expansions at considerably
lower computational cost. The extraction of macroscopic quantities such as the carrier
velocity or the average carrier energy are shown to require only locally increased expansion
orders in the high-probability regions of the distribution function. Three different types of
adaptive strategies for the automatic choice of the expansion order are proposed.

To address the shift towards parallel computing architectures, a parallel preconditioner
scheme for the SHE method is derived based on physical principles. The resulting block-
preconditioner scheme is shown to be able to use modern multi- and many-core computing
architectures such as CPUs and GPUs efficiently. Performance gains of up to one order of
magnitude compared to single-threaded executions are obtained.

On the overall, the novel methods presented in this thesis allow for a reduction of
execution times for device simulations employing the SHE method by up to two orders of
magnitude compared to existing approaches. In addition, memory requirements are reduced
by about one order of magnitude, thus allowing for higher accuracy for a given amount of
memory. The proposed algorithms are implemented in the freely available open source
device simulator ViennaSHE.



Appendix A

Mathematical Tools

A.1 The Kronecker Product

For matrices Q = (Qi,j)
n,m
i,j=1 ∈ R

n×m and R ∈ R
p×q, the Kronecker product is defined as

the block matrix

Q⊗R =















Q1,1R Q1,2R . . . Q1,m−1R Q1,mR

Q2,1R Q2,2R . . . Q2,m−1R Q2,mR
...

...
. . .

...
...

Qn−1,1R Qn−1,2R . . . Qn−1,m−1R Qn−1,mR

Qn,1R Qn,2R . . . Qn,m−1R Qn,mR















∈ R
np×mq .

The Kronecker product is bilinear and associative, but not commutative. Moreover, if the
matrices Q, R, S and T are such that the products QS and RT can be formed, there
holds

(Q⊗R)(S ⊗ T ) = (QS)⊗ (RT ) .

A direct consequence is that Q⊗R is invertible if and only if Q and R are invertible. In
this case, the inverse is given by

(Q⊗R)−1 = Q−1 ⊗R−1 .

Suppose now that n = m and p = q, i.e. Q andR are square matrices. Let λ1, . . . , λn de-
note the eigenvalues of Q, and µ1, . . . , µp denote the eigenvalues of R. Then the eigenvalues
of Q⊗R are given by

λiµj, i = 1, . . . , n, j = 1, . . . , p .

A similar statement holds true for the singular values of general rectangular matrices Q

and R. In particular, there holds

rank
(

Q⊗R
)

= rankQ× rankR .

106



A.2. WIGNER 3JM SYMBOLS 107

A.2 Wigner 3jm Symbols

The symbol

(

j1 j2 j3
m1 m2 m3

)

(A.1)

with parameters being either integers or half-integers is called a Wigner 3jm symbol arising
in coupled angular momenta between two quantum systems. It is zero unless all of the
following selection rules apply:

(i) m1 ∈ {−|j1|, . . . |j1|}, m2 ∈ {−|j2|, . . . |j2|} and m3 ∈ {−|j3|, . . . |j3|} ,

(ii) m1 +m2 +m3 = 0 ,

(iii) |j1 − j2| ≤ j3 ≤ j1 + j2 .

The connection with spherical harmonics is the following:

∫

Ω
Yl1,m1

Yl2,m2
Yl3,m3

dΩ =

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×

(

l1 l2 l3
0 0 0

)

×

(

l1 l2 l3
m1 m2 m3

)

,

where the left hand side is often termed Slater integral.



Bibliography
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PhD thesis, Institute for Microelectronics, TU Wien, 1994.

[17] P. Fleischmann. Mesh Generation for Technology CAD in Three Dimensions. PhD
thesis, Institute for Microelectronics, TU Wien, 1999.

[18] W. Freeden, T. Gervens, and M. Schreiner. Constructive Approximation on the
Sphere. Numerical Mathematics and Scientific Computation. Clarendon Press, Ox-
ford, 1998.

[19] M. Galler. Multigroup Equations for the Description of the Particle Transport in
Semiconductors. Series on Advances in Mathematics for Applied Sciences. World
Scientific, 2005.

[20] W. Gautschi. Orthogonal Polynomials. Numerical Mathematics and Scientific Com-
putation. Oxford University Press, Oxford, 2004.

[21] A. Gnudi, D. Ventura, and G. Baccarani. One-Dimensional Simulation of a Bipolar
Transistor by means of Spherical Harmonics Expansion of the Boltzmann Transport
Equation. In Proceedings of SISDEP, volume 4, pages 205–213, 1991.

[22] A. Gnudi, D. Ventura, and G. Baccarani. Modeling Impact Ionization in a BJT
by Means of Spherical Harmonics Expansion of the Boltzmann Transport Equation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
12(11):1706–1713, 1993.

[23] A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh. Two-Dimensional MOSFET
Simulation by Means of a Multidimensional Spherical Harmonics Expansion of the
Boltzmann Transport Equation. Solid-State Electronics, 36(4):575–581, 1993.

[24] N. Goldsman. Modeling Electron Transport and Degradation Mechanisms in Semi-
conductor Submicron Devices. PhD thesis, Cornell University, 1989.

[25] N. Goldsman, L. Hendrickson, and J. Frey. A Physics-Based Analytical/Numerical
Solution to the Boltzmann Transport Equation for the Use in Device Simulation.
Solid-State Electronics, 34:389–396, 1991.

[26] N. Goldsman, C.-K. Lin, Z. Han, and C.-K. Huang. Advances in the Spherical Har-
monic–Boltzmann–Wigner Approach to Device Simulation. Superlattices and Mi-
crostructures, 27(2-3):159–175, 2000.

[27] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, 1996.



BIBLIOGRAPHY 110

[28] L. Grafakos. Classical-Fourier-Analysis. Springer, 2008.

[29] T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr. Using Six Moments of Boltz-
mann’s Transport Equation for Device Simulation. Journal of Applied Physics,
90(5):2389–2396, 2001.

[30] T. Grasser, Tang T. W., H. Kosina, and S. Selberherr. A Review of Hydrodynamic
and Energy-Transport Models for Semiconductor Device Simulation. Proceedings of
the IEEE, 91(2):251–274, 2003.

[31] H. Groemer. Geometric Applications of Fourier Series and Spherical Harmonics. En-
cyclopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 1996.

[32] H.K. Gummel. A Self-Consistent Iterative Scheme for One-Dimensional Steady State
Transistor Calculations. IEEE Transactions on Electron Devices, 11(10):455–465,
1964.

[33] G. Haase, M. Liebmann, C. Douglas, and G. Plank. A Parallel Algebraic Multigrid
Solver on Graphics Processing Units. In High Performance Computing Applications,
volume 5938 of LNCS, pages 38–47. Springer, 2009.

[34] R. N. Hall. Electron-Hole Recombination in Germanium. Physical Review, 87(2):387,
1952.

[35] Z. Han, N. Goldsman, and C.-K. Lin. Incorporation of Quantum Corrections to Semi-
classical Two-Dimensional Device Modeling with the Wigner–Boltzmann Equation.
Solid-State Electronics, 49(2):145–154, 2005.
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[5] K. Rupp, T. Grasser, and A. Jüngel. Deterministic Numerical Solution of the Boltz-
mann Transport Equation. In Progress in Industrial Mathematics at ECMI 2010, 2012.
To appear.

116



CONFERENCE CONTRIBUTIONS 117

[6] K. Rupp. Symbolic Integration at Compile Time in Finite Element Methods. In Pro-
ceedings of the 2010 International Symposium on Symbolic and Algebraic Computation,
pages 347–354, 2010.
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