Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Master Thesis

A Portable Project Management System
for Biological Data Analysis using Web Services

Evaluator:
ao. Prof. Dr. Jiirgen Dorn
Vienna University of Technology,
Institute of Software Technology and Interactive Systems

Supervisor:
Dr. Albert Kriegner
Austrian Research Centers GmbH,
Molecular Diagnostics

Erkan Dilaveroglu
0125918 / 937
edilaver@gmail.com

Vienna, March 2008

Acknowledgements

Acknowledgements

| would like to thank all those who have contributed to the emergence of this work by technical
as well as by personal support. Thanks especially go to Prof. Jirgen Dorn who has contributed

valuable advice to this work.

Special thanks go to my colleagues from the Molecular Diagnostics department of the Austrian
Research Centers GbmH who have made the execution of this work easier for me by creating a
pleasant working environment. To Dr. Albert Kriegner | owe particular thanks for his continuous

advice and support during my work.

We have come all the long way as a group of six friends known as "Fatihliler". | want to thank
you all, Ahmet Yildiz, Ali Osman Kusakci, Ilhami Visne, Musa Blyilikkaba and Tugrul Tarhana for

your friendship during my university journey.

This work would not have been possible without the kind support of the Wonder Student
Association which has first offered and then supported my education in Vienna. Particular
thanks go to Ibrahim Solmaz, Yusuf Ziyaettin Sula, and Yusuf Kara. They are the men who
encouraged me to go for further education and who made it possible by supporting me during
my studies. Particular thanks also go to Nadire Kara for supporting all my works. Mr. and Mrs.

Kara are to be considered as our family in Vienna.

Special thanks go to my family; Halil Ibrahim, Ayse, Erglin and Biisra Dilaveroglu for always being
at my side. Extra special thanks go to my brother Ergiin who assumed my responsibilities and

made my education easier.

Finally, | particularly want to thank my wonderful wife, Inci, for her continued support,

motivation and patience during this work.

Abstract

Analysis of biological data is complex and requires highly flexible analysis tools. Each of these
tools generates vast amounts of biological data. In spite of recent advances in workflow based
data analysis, little effort has been made in the development of new mechanism for the

automated storage, integration and management of the flow of analysis data.

The reproducibility of scientific experiments is one of the most important characteristics in

analysis tools. However, currently available analysis tools have only limited provenance support.

The aim of this work is to develop a data management framework (Portable Project
Management System) that is optimized to manage, store, integrate and secure the data stream
generated during entire analysis processes. A complete recording of the processes is of very

high scientific importance.

The Portable Project Management System (PPMS©) Server was developed as a Soap based Web
Service. This system supports multiple analysis tools; special focus was set on compatibility with
the ARC Analysis Platform. In addition to remote usage mechanism, local storage mechanisms

for offline usage are also supported.

The system contains a project model which defines the constraints to pack all analysis data. It
further has an integrated provenance support which caters for the logging of all the executed
processes. A special feature records parameter settings from all analysis runs, and thus enables

to rerun legacy pipelines.

Finally, as the PPMS® Server is offered as Soap based Web Service, it is accessible to other

systems, independent of the platform used.

Kurzfassung -

Kurzfassung

Die Analyse biologischer Datensatze ist oftmals komplex und besteht aus einer Vielzahl an
einzelnen Analyseschritten. Dementsprechend hoch ist der Anspruch an die verwendeten
Analysewerkzeuge, wo man zunehmend auf die Flexibilitat von Workflowsystemen vertraut um
komplexe Analysefolgen als sogenannte Analysepipelines abzubilden. Dieser Entwicklung zum
Trotz gibt es vergleichsweise wenig neue Ansdtze zur Strukturierung, Integration und

Verwaltung des Analysedatenflusses.

Die Nachvollziehbarkeit wissenschaftlicher Experimente ist einer der wichtigsten
Charakteristiken in Analysewerkzeuge. Diese wird hingegen in derzeit existierendem

Analysewerkzeuge nur beschrankt unterstitzt.

Im Rahmen dieser Diplomarbeit wurde eine generisches Datenverwaltungsframework (Portable
Projekt-Management-System) entwickelt, das Analysedaten mitloggen, automatisch
strukturieren und verwalten kann mit dem Ziel, einer liickenlosen Erfassung des gesamten

Datenstroms komplexer Analysen.

Das System wurde dafiir konzipiert, verschiedene Analysesysteme zu unterstltzen, wobei ein
spezieller Fokus auf die Kompatibilitdit mit der ARC Analyse Plattform gesetzt wurde. PPMS©
Server wurde als Soap basiertes Web Service entwickelt, der Client besitzt aber auch

Mechanismen, die das Arbeiten auch offline erméglichen.

Das System umfasst ein Projektmodell, um alle erforderlichen Analyse Daten zu vereinen; ein
integriertes Provenance System zur Protokollierung aller erfolgten Schritte und spezielle Module
die es ermoglichen, die Funktion bzw. die Pipelines des jeweiligen Analysesystems mit vorher

gespeicherten Parametern erneut auszufiihren.

Neben seinem Einsatz im Rahmen der ARC Analyseworkbench kann das PPMS©® von
verschiedenen Plattformen als ein vom Analysesystem unabhidngiges, eigenstdndiges Soap

basiertes Web Service benutzt werden.

Table of contents

Table of contents

CHAPTER 1 ..ocuneiiiiiiiiiiiiiietiiiiinetieiiiiisnttesiissssssteeeissssssseesissssssssnessiesssssseesssssssssstessesssssssssessssssssssssssssssssssseessssssssnns 9
1 INTRODUCTION.....uuttitiiiiinnttieiiiiinstieeiieiisntteeiiiissmeetiiessssttetissssssstesiiesssstessisessssteesiessssssseesssesssssssessssssssnss 9
00 R |V [0 1 17y 1 o O TP UU TP 9
1.2 TERMINOLOGY .euuuuuuuuuunurnnrueeereeeeeeeeeeeeeeeeeeeessseessssassssssssasssssssssssssssssssssesseeseseeeeeesesesssesssenssssssnssssssssnsseesseseesseesesens 11
CHAPTER 2 ..ccueeeeiiiiiiiiintiteiiiiinetieiiiiisnenesiiisssstessisssssssseessssssssssneesiesssssssesssssssssstessesssssssseessssssssssnsessssssssssaesssssssns 12
2 PROVENANCE TECHNOLOGIESccettiiiiiiinniiiniiisinnnneeiiisssnmienississssieeiissmssssssssssssssiesssssssssssssssssssssssssssses 12
2.0 INTRODUCTION . ..ettetteeetsieesuiuuutenutarsrteeteeeeeeeeeeeeeeeeeeaeeeseeesssessssassssassssssssssnsssssssensssaseesseeeeseeeeeeeeeeneens unssssessensseneens 12
2.2 PROVENANCE.....itttttteeteeeesieatiaea e tee bttt et eeteeeeeeeeeeaeeasaeassssssssassssssssssssssssssseenseaessaeeeaeeaaeeeaeeeeeeeenns usssssssnsennnseneens 12
2.2.1 PreServ: Provenance ReCOrding fOr SEIVICEScuuueuimeeeuerieiiisiiesieetesie ettt 16
2.2.1.1 P-Assertion Recording ProtoCol (PREP)eouiiiiecie ettt ettt et et st eeaae e aeeeaeesaaeennas 17

2.2.1.2 [=R VA [0] o] (=T 0 g T=T oY = o o S 21

2.2.1.3 PrESEIVI USAZR. . ittt e e a e s a e e aa e aaes 25

2.2.2 GriPhyN Virtual Data System (formerly CRIMEIraQ)ccccueeeeueeeeiieieesiieeeieeeecieeesteeeeseeseesnsasseeas 26
2.2.2.1 (O 018 1= = B UL V= PSRN 27

2.2.2.2 Chimera: Data SCNEMAcueeiiiiiiietete ettt b et h et e bbbt et esbesat et e ebeeaeenbesbeennensenaeen s 31
CHAPTER 3 ..ocueeiiiiiiiiiiiititeiiiiiitiieiiiisntteeiisssssteesisssssssseesssessssssteesiessssssseessssssssstessessssssssaesssssssssssnesssssssssseesssssssns 34
3 CURRENT WORKFLOW BASED SOLUTIONScccctiiiiimtntiiiiiinnnieniiiisnsmiesiiimmsmmeeeismmssmeessmsmsmmeeismsssseesns 34
3.1 INTRODUCTION. .. cetutttertteee ittt e sttt e st e e et e st e s e et e s et e e s aa et e s s et e s sa e e e ar et e e ase e e e amneeesasa e e eamreeesaraeesnane saeeesnneesanneenan 34
3.2 TAVERNA 1 ittiii ettt ettt e et eee ettt e et e et e e et e e et eeaeeeaeaaaeeaessassssasnssasssaatsssbeeetee et e ae e e ae e e e et e e e e e aeeeeee nananahbtnnterneaaenaeraaes 34

3.2.1 WOIKING With TQVEINGoveeeeveieeeei ettt e e ettt e e et e e ettt e e e ettt e e ssaaesteaesassaessseaanasesanseees 35

Table of contents -

3.2.2 Data Management iN TAVEINQcc.oooeeueeeiueeiniieeeeiee ettt ettt ettt ete e st eesenne e senee s 39

3.2.3 ProvenancCe iN TAVEINGccc.cocueniiiiiiiriiiiiiieiiiiesiie sttt st site st sit st ss et s s e st s sraessttesinesareeas 40

3.3 KEPLER wetuteeutesteeteett et sttt ettt et s h et s h e bt st h e b e bbb h e RS ae e eR e e R e bt e Rt e R e e R sh e e Rt e R e e b e e besheenaesneeabesre e reens 42
3.3.1 WOrKflow Definition LANGUOGE.ceueeuerueesiieiiesieeiesie ettt ettt sttt sse st esae s e sse e 45

R I V- Y= 4V (ol =X I YV] Lo] o OSSR 45

3.3.3 Data MaANAGEMENT iN KEPIEKcoeeveeeeeeeeeeeeeeeee et eeet ettt e et ctee e e ete e e e tea e e teaeestasaesseaaessseassseaaas 46

3.3.4 ProvenanCe iN KPIEKoccuuoueemieeieeeeeeet ettt ettt st 46

L0 7Y I S 47
4 o 47
4.1 INTRODUCTION. ..cetetiutteeintee ettt e ettt esasreesssaeesmreeseareeesmaeesamse e e eme e e s amreessabaeesmbee s aneeeeamneessmneessamneesans smreeenreeesnnnees 47
4.2 DEVELOPMENT ENVIRONMENT & TECHNOLOGIEScuveueeurieueenreeresseetesieeteseeesreeeessesssesseensesmeensesssensesanessesmeessessnesne 43
4.3 THEORETICAL BACKGROUND ...cuvetteutiittenteentetesiteteeatesteetesbeeste s st esbeshe e bt saaesbe e s e bt et e sbeeaesbe et e smeennesaaenteeneenbeennens s 49
4.3.1 Project ManNGGEMENT SEYIEScoveeeeeeeieeeeeeeeee ettt ettt nnee s 50
43.1.1 Function Based Project ManagemMENTc..eeeeieieiiieeeeieeeireeesteeesteeesteeesaeeesseessesseeesseeeessseeessseessssessnsses 50

4.3.1.2 INput Based ProjeCt ManagemMENt.........ciccuieiiiieiiieecciee e sttee ettt e s steeeesteeessbaeessseeessaeeessseeessseessseeessseeesseeas 52

4.3.2 SUPPOItEd SEOIAGE TYPES.....cceeereeeeieeeieeseeeieeett et st e et sat e st e sae e st e st e s e st e st e sanesaseesneensnesaneens 53

4.3.3 ProvenQnCe iNtEGIALIONccccuuueieeeseiiiiieeeseiiteteeesesstteesesesssttaeeeesssustseasssssstsssasssssssessssssssssssasssssssnes 54

A4 ARCHITECTURE c.eteuteiuteteeutesteestesstestesstessesete bt etesbeebe s bt e b e she e s bt e ab e e b e e s e be e be s bt e b e sbeeah e e abesbe e b e bt e bt sbeen eabeennenreenrenrees 55
4.4.1 Most Important Use Cases & FUNCEIONA] r@QUIEMENTS...........coceeeeueeneieeeeeieeieenieesieeete e 55
44.1.1 [0 T= g T 24 o 1= ot AR PP UPPTNY 56

44.1.2 (O Y (I o] [T PRSPPI 58

Table of contents

4413 RUN WOTKFIOW ...ttt ettt et bbbt et e b et e sat et e sbeeat et e saeese et sbenbeennensens 59

44.1.4 Capture ProVENANCE Data...cccuueieieieiiiiieee ettt e e sttt e e e e st e e s s st eae e e e e ssbataeessaaataeeeeesasnsseeeesesnansnneeessnnnes 61

Wy N 0 13 [0 [e [l 4] [=Tt £V =2 PSSR 62
44.2.1 Project Structure DEfiNItiON........c.eoieriirieieriee ettt sr et sa et b e st sbeeaeenaeenes 62

4422 SEIVET AICHITECTUIE ... ittt e r e st e n e n e s e nenis 69

4423 ClIENT ArCNIEECTUNE ...t r e et e e s snenes 76

I N U Yo [1= PRSPPI 81
CHAPTER 5 ..tiiiiiiiiiiiiiiiieiiiiiiniiteiiiiisetiesiisssssteesissssssneessssssssssneesiesssssssesssssssssssessesssssssssessssssssssssesssssssssseesssssssns 86
5 EVALUATION & DISCUSSIONcccovurieriiiiisinnnieiiisisnneeeiiisisssnneeississssteeiiessssseeesssssssseesssssssssssesisesssssssssssssssns 86
5.1 EVALUATION OF THE WORK c...etiiiitiieiitte ittt e ettt e et e e sttt e st e et e et e e st st e st eeeara e e s mae e e smneeesmneesemreeesnaeesan een 86
50,0 REIGEEA WOKK.....eoeeeiieeeieeeeeee ettt sttt sttt s sae et sttt eeneea 87

5.1.2 Performance EVAIUGLIONcccueeeeueeeeeiieeetee e e eeteee e et e ettt e ettt eesetea e s taeeesesessssseessssaasssseasssseaaas 89
5.1.2.1 Performance facts of the first WOrKflOW........cc.eviiiriiniiniiiiere e e 89

5.1.2.2 Performance facts of the second WOrKFlOW.........cccoeviiiiiiiiiiiie e 90

5,003 RESUILS ottt ettt sttt ettt et s et ene e 91

5.2 DISCUSSION WITH FUTURE VIEWScetiiurrieeuriesareeesaieeesereeesmneessneessseeesemneeesneeessmneessnaeesamneesenneesannnessnnessanseeennne 92
APPENDIX A .oiiittiiiiiintieiiiiinniteeiiiiesiieeiiissstieeiiessssteeeiiessssteetiessssttesiissssttestisessssstesssssssssssteesisessssstesesssssss 95
XIMIL DOCUMENTS 1.ttt ittt sttt sttt et b e st s h e s b e s b s e bt e s ab e e sbs e s b e e s b b e s b e e s aae s b e e s aa s ebe sbeesaaesbeesaneebeees 95
A. 1 Process Documentation RECOIA SCREMIQcc.coeuveueeriieeiieeee ettt 95

A. 2 Sample Process Documentation Record WSDL fOr PASOAooeeeeeeceeeecieeeeieeeesieeeeissaesissesssesesssesessnns 98

A. 3 Function Based Project Management Project Structure Definition File.............cccccccvueeevivveesieeesiiineeiivnaeanns 99

Table of contents -

APPENDIX B....ouueieeiiieeiinneissniesseiisseisneissniisseisseisssesssseesssiessesessessssessssesssesessessssessssesssssessessssessssessssessssesssnesssesnses 105
VDL EXAMPLES «..ittteitiiiiiitet ettt e ettt e s st e e e s e et e e e s s s bbb e e e e e saa bbb e e e e e s aasb b et e e e s e bbb e e e e s e nbbe e e e sabaeeeeeannbbaeeeeennns 105
B.1. DEPENAENCY CRQIN ...ttt e ettt e e et e e ettt e e e et e e e et e e e s tsaaesstseeasseaestesasasssasasesenanees 105

B.2. (00T oYV T2 o I N ge TAXy {oT g 0o L1 (o) S 106

Y o o 0 G S 108
ABBREVIATIONS «..vttevteueatestentensensensentensenteneestaseeseshessessesensessensentenseneeneeseasessesheesesee st ensessententesseneenee eebeabesbensensensenseneas 108

L2 12T 1Y =1 SRR 110

Introduction -

Chapter 1

1 Introduction

This chapter introduces the motivation for this project. The motivation part describes the issue
and mentions the key features of the solution which will be explained in detail in the

subsequent chapters.

Then, the terminology including the terms throughout this document will be addressed in order

to prevent possible misunderstandings already from the beginning.

1.1 Motivation

Analysis steps in the life sciences are aiming at finding out the structure, the behavior and
sometimes the quantity of the analyzed samples. Biological data analysis is complex and
requires highly flexible analysis tools. An analysis contains several parts that are to be executed

in order to achieve the defined goal.

Research projects in the life sciences make intensive use of IT tools to manage, store, retrieve
and particularly to secure the created data. In spite of recent advances in workflow based high
throughput data analysis, little effort has been made in the development of new mechanism for
the automated storage, integration and management of the analysis data flow. Therefore, each

research assistant should find his way of securing, storing the data in a way that he can

Introduction

understand and repeat the analysis whenever needed. Without preserving (or preserving in an

insufficient way) the input/output data and the information on how the analysis is carried out,

an analysis would be irrelevant and not reproducible.

Research assistants are often still using the simplest methods to keep record of what and how
they performed an analysis and they store analysis information in an unstructured and insecure
way. Also analysis results are stored in similar ways which are a barrier to the quality assurance

of analysis procedures.

Tools nowadays offer workbenches to execute the analysis steps but they do not truly integrate
mechanisms to manage the generated data, to store intermediate results or to secure them and
neither do they keep track of what has been done although the reproducibility of scientific
experiments should be one of the most important characteristics in analysis tools. Some of
them offer solutions to these issues but they are far too inefficient to meet the requirements of

biomedical research.

The aim of this work is to develop a Portable Project Management System (PPMS©) based on
web services. The system supports multiple analysis tools. Special focus is set on compatibility

with the ARC Analysis Platform.

The PPMS® defines a project model to combine all the required analysis data. The model
defines the frames of a project and implements barriers to ensure that the project stays

uninjured.

Moreover, integrated provenance supports take care of logging all the executed steps, including
intermediate results, metadata given by research assistants, calculation options selected and
other possible data which could be used during the analysis process. This enables to later on
recall the analysis whenever it is needed in a structured way and it ensures that the analysis

stays reproducible and remains reusable.

Finally, the PPMS® will be offered as a soap based web service in order to make it accessible to

other systems, independent of the platform used.

Introduction

1.2 Terminology

This section gives a short overview of the key terms used in this document.

Microarray

Sets of miniaturized chemical reaction areas that are used to test DNA fragments, antibodies, or
proteins, by using a chip having immobilized targets and hybridizing them with a fluorescently
labeled sample. The color we get from the chip after hybridization is then scanned and the data

are analyzed by a soft ware to evaluate the distinct expression levels. [1]
Function

A function is the simplest executable unit that can be used in a system.
Analysis

An analysis is the process of executing one or more functions in succession to reach a defined

research aim.
Run
The execution of a unique function is defined as a run.

Workflow / Pipeline

A workflow is the model of the tasks or the model of successive function executions which are
associated with each other by input and output information. A workflow is generally defined for

a certain analysis.
Probe

One or more files representing input data or the data from a patient which are imported for the

use in an analysis.

Provenance Technologies

Chapter 2

2 Provenance Technologies

2.1 Introduction

The following section introduces the components that are developed by the open-source

community or bioinformatics institutions and that are used in current software solutions.

The provenance is one of the most important characteristics in analysis tools because

researchers should be able to retrace the legacy analysis when needed.

It is certain that the following list of components can be expanded. | have included only the

most relevant components among all the currently available possibilities.

2.2 Provenance

First of all | want to give a common sense definition of the word “provenance”. Its etymology is
the French verb ‘provenir’, which means to come forth, to originate. According to the Oxford

English Dictionary, provenance is defined as:

() the fact of coming from some particular source or quarter; origin, derivation.
(i) the history or pedigree of a work of art, manuscript, rare book, etc.; concr., a record
of the ultimate derivation and passage of an item through its various owners.

Provenance Technologies

As an informatics term the meaning differs between research fields because different scientific
fields require different metadata in the means of provenance. Aerospace engineering, organ
transplant management, and bioinformatics are example areas where the term provenance is

currently used. For this work, | prefer the definition of data provenance as the information that

Web
Services

PQE PROVENSNCE QUERY SERWVICE
PCE PROWENSNCE COLLECTION SERMICE

Workflow Enging
; RF
erII-S-LrI B
oy " -

;
%
:

)
1

[
[

. ;
N Pcs [
T'_+ 1 - Prppc o
@V E PRI | v Dot
< B ees | QNG
i B
[ep—

Figure 1: A possible Provenance Model for Service Oriented Architectures

helps determining the derivation history of a data product, starting from its original sources.

For experiments in the life sciences, it is vital to record the experimental process for later use
such as for interpreting results, verifying that the correct process took place or tracing where
data came from. For generations scientists have used basic methods for capturing provenance

information [2].

Provenance systems can be used for several application purposes. Goble [3] categorizes these

purposes in five groups:

for data quality and reliability based on the source,
for audit trail of data source,
for repetition of data derivation,

for establishment of the copyright and ownership of data,

vk w N oe

for querying lineage metadata for data discovery.

Different application purposes require different collection levels. In a specific model called data

oriented model, provenance information is gathered about data. This means that meta-

Provenance Technologies

User Intrusion

0 I I'Hformation
(0,0,0) System Intrusion

Figure 2: Provenance Trade-Offs Cube

information about a data product is collected and stored in repositories to query for information
extraction when needed. Another model called process oriented model, concentrates on process
levels and collects information about processes which are executed. The provenance can be
determined then by inspecting that information. There are mainly input/output data and

calculation parameters of processes [4].

One other aspect which has influence on how the data should be collected is the way of the
presentation of the data. Depending on how rich the provenance information is and how large

the storage resources are, the collection and presentation method changes.

There are two major approaches of representing provenance information: eager and lazy. The
eager form uses pre-compiled metadata information which is collected about data source and
processes as annotations. The inversion method computes the provenance data only when
needed and property information collected at runtime inverts the derivations and finds out the

input data supplied to functions to produce the output data [5].

It is to mention that provenance capturing presents a trade-off. Reilly [6] describes this trade-off
between the amount of provenance information gathered and intrusions on the system and the
user with a cube where the amount of intrusion on the system is on the x-axis, the amount of
intrusion on the user is on the y-axis, and the amount of provenance information is on the z-

axis. The range of each axis is 0 to 1. A system that has no provenance capabilities is located at

Provenance Technologies

the (0, 0, 0) point. A system located anywhere on the back face of the cube, where the z-axis is

equal to 1, collects all possible provenance information. The ultimate and perhaps unachievable

Examples of
recemtation Uls

T Tace Traocs: Trace
“Visualiser / CiTerence ‘waldiy
Frasenzation I,.-" Srowsar WIsUSlEEr isualiser W

. ety ot I /
I|'II Ir,l' \\ :\ \ \l\ —
AN e

Serdos Ssamantic
Tracs

Qallity I walidity

Analyser Compaatar Aralyser

race FuBlication
Generatar

Re-enactor

Acir-Slde
KManagemeanl
Litrary

Examples of
application services

Enactmant
Englne

Appicalon
(W]

o ased

Matchraking

Reguirrment DHscovery
Poilcy Negodation

Damain-
SoxecHc
Senvicas

Figure 3: Architecture of a possible Provenance-Aware Application

goal is the (0, 0, 1) point, where all provenance information is provided with no intrusion to
either the system or the user. The goal is a system that provides a large amount of provenance
information while having only small intrusions on both the user and the provenance aware
system. The point in Figure 2 labeled “Goal” is intended to loosely suggest a desirable location,
where the cost of moving further back in the cube would require dramatic increases in the

intrusion on the user and/or the system.

Provenance Technologies

There have been several middleware solutions from different research fields developed with/for

provenance support. Some of them are: Scientific Annotation Middleware (SAM) [7], GriPhyN
Virtual Data System [8], myGrid [9], PreServ: Provenance Recording for Services [10], The Earth
System Workbench [11], and The Collaboratory for the Multi-scale Chemical Sciences [12].

In the following, | am investigating some of the solutions which are relevant for this work.

2.2.1 PreServ: Provenance Recording for Services

PreServ is a software package developed by the PASOA Consortium [10]. The PASOA Consortium
aims to investigate the concept of provenance and bring the provenance to e-Science. The

consortium is funded by the Engineering and Physical Sciences Research Council (EPSRC).
The PASOA Consortium declares the objectives of the project as:

= to define execution and service provenance in relation to workflow enactment.

= to conceive algorithms to reason over provenance data, in order to help scientists to

achieve better utilization of Grid resources for their specific tasks.

= to design a distributed cooperation protocol to generate provenance data in workflow

enactment.
= to investigate value-added properties that can be deduced from provenance-based data.

* to engineer a proof of concept software architecture to support provenance generation

and reasoning in Grid environments.

A provenance support system should at least support the two functions of storing provenance
data and of querying provenance information. The PASOA Consortium has developed a so-called
P-Assertion Recording Protocol (PReP) and has defined a recording process for the process
information for Grid based applications. Because the de facto architecture in Grid applications is

the Service Oriented Architecture (SOA), PReP was designed for SOAs in a generic manner.

The PreServ software package contains a web service for provenance storing, interfaces for
recording provenance information and querying them, a set of Java libraries for accessing those
interfaces, and an Axis handler for automatically recording message exchange p-assertions for

Axis based web services.

The Provenance Server

provides two ports, oneto

Server
query the provenance

Provenance Technologies

Provenance Server updates the repository
with provenance records as they are recelved
from the enactment engine. These records
are also accessed when the provenance

server 1g querled for provenance records

record provenance = Provenance w‘
information and another to — j‘-

repository.

Web Services provided using
Apache Axis on Tomear.

Web Services

The Provenance Querying
port provides operations to
retrieve Worldflow Traces.
This interface is used by two
componerts which provide
visual provenance browsing

and provenance validarion.

Provenance

Provenance
Quetying

Recording

Provenance
WValidation

Workflow Trace
Browsing

Service Invocations.

Workflow

Provenance Client Interface submits
Provenance Records using Web

Provenance Client Interface

v

SQL through JDBC

a c
Provenance
Repository

The implementation of the Provenance
Client Interface provides the meansto
ubmit provenance re

cords to the Provenance Server.
{7 2 Enactment The workflow maa:mkn

Engine

the Provenance Client Interface to
make Web Service Invocations

(@ Web Services

Figure 4: PreServ System Overview

2.2.1.1P-Assertion Recording Protocol (PReP)

PReP introduces the protocols and defines:

The XML scheme that defines the structure of

incoming

The schema for a record request message sent to provenance store
The behavior of a provenance store when it gets such a record request

The acknowledgement message which is sent as an answer to the requester

request and outgoing

acknowledgement messages is given in Appendix A. 1. The WSDL 1.1 description of the interface

is given in Appendix A. 2. It defines web services for taking and producing these messages

Provenance Technologies

PReP defines so-called actors which represent tools, services or any piece of software which has
to store provenance information in a provenance store. PReP does not dictate any storing

mechanism which means that it is independent from the underlying storing technology.

pr:IdentifiedContent

pr: identifiedContent
1..unbounded

1 ps: interaction Kez I

1E:vlewKInd I

1E:asserter I

r:Content

1..unbounded

Figure 5: Process Documentation Record Request in XML Schema Diagram

A provenance request is a message sent by an actor to a provenance store which contains

provenance information to be stored.

Owing to the XML scheme design (see Figure 5) it is possible to send multiple pieces of
provenance information bundled at one time. This enables recording information about
different interactions at a certain time which makes it possible to determine the time for
transferring information. In network based distributed systems such a possibility is due to the
urgent traffic problems. One can send his data at a time when network traffic is so low that

provenance recording is more acceptable.

The message to be stored in the province store is bound to content attribute of the soap
message. On an incoming store-request provenance the storing service has to extract the
information and store it in an underlying storage device. In addition to that, a provenance
storage service has to send an acknowledgement message to the actor that issued the request
message. Figure 6 shows an XML scheme diagram of how such a message can be constructed.

One other feature is that acknowledgement messages can be sent back either synchronously or

Provenance Technologies

asynchronously depending on the underlying communication mechanisms between client and

server.

|pr:recordack]

‘| pr:synch_ack |

0..unbounded
0..unbounded
‘I pricontentName I
ps:I wetion)
-I ps:interactionKey I
I I<ing
ps:LocalP. rtionld
1E:IocalPAssertionld |
0..1
:string
pr:ERROR
0..1

Figure 6: Process Documentation Record Acknowledgement

The acknowledgement message scheme has an element “error” in which the provenance storing
service can put implementation specific error messages and let the using workbench give

feedback to the user or react accordingly.

Not to argue that such a distributed mechanism which uses the internet network for message
exchange should consider security issues. The developers of PReP suggest [13] that
communication should be secured using the mechanisms described in WS-Security [14]. Alone,
securing the communication is not a convenient way of securing. Knowing that, the authors
suggest additional security for the data which means that the body of the soap message and all
header information should be secured as well by using digital signatures. With that the integrity
of the message is guaranteed. If, however a client continuously sends messages to the store, it
is recommended by the authors that a secure communication channel is established using the

mechanisms described in WS-Trust [15] and WS-SecureConversation [16].

One other security issue is how to secure the data in a provenance store. The authors
recommend using the security architecture displayed in Figure 7. | will not go further into detail,

but this architecture is described in paper [17] in detail.

I Provenance

a.

l!merfaces
b.

Provenance Technologies

store

Credential serwer

|dentity

validator

o —[____H'“‘-\ Autharisation
|

Internal

representat
list

N

Authorisation

Trust mediator F

Actess
control policy

enging \\

an e

-~

policy

e -
— - N Autharisation | Remots interactor
- - aceess control
L \ Iiat;basde compenent of
— \x.,: = Frusl sy=lean
Indicates 3
. . o ——
o - ~

-/ Interaction with anather
\ security domain

H!-_ _-l-'-.l"

Figure 7: Provenance store security architecture

Provenance Technologies

2.2.1.2PreServ: Implementation

PreServ is an implementation of PReP which takes the form of an open source Java-based web
services implementation of the protocol [18]. PreServ has been developed and used to make a
number of applications provenance-aware. One of these applications used to evaluate PreServ’s
performance and the results are published by Groth [18]. | will focus on this later on in this

chapter.

| will introduce the PreServ implementation in two aspects. One is the implementation of
provenance store service which is responsible for answering incoming store-requests, extracting
provenance data from soap messages and writing it to the underlying storing device. The other
is the implementation of query service which is responsible for information extraction from the

data kept.

PreServ has been developed unconnected to any application but is intended to stay generic and
platform-independent so that all systems and services can make use of it. A special focus was
put on the interoperability with Grid applications. Trying to keep scalability high, being highly
expandable and meanwhile maintaining a meaningful degree of independence were decisive
points of the technology determination for PreServ development. Considering these facts, the
decision for Java as the implementation language is understandable since using Java PreServ

runs on Windows, Solaris, Linux and Macintosh OS X platforms without modification.

The provenance store service itself has been developed as a Java servlet. PreServ uses the
Apache Tomcat servlet container. One can think that a Web Service Container is the better
choice but such a middleware (like Apache Axis) prevents provenance services from getting row
soap messages and parsing it. The point is that PreServ needs to store soap message directly. Of
course, not using web service containers has a burden: the axis can automatically bind XML data

structures to Java Objects, which makes life very easier.

The provenance Store has been developed in three layers (see Figure 8): the Message
Translator, which isolates provenance store’s store and queries logic from the message layer;
the Plug-Ins layer, which contains different plug-ins for specific functionalities that provenance
service provides; and finally the Backend Storage layer where provenance information is

physically stored.

Provenance Technologies
l Meassage In Message Out I

Message Translator

Fiug-ln Interface
Plug-ins

Store Plug-In Query Plug-in

Backend Store Inferface
Backend Storage

Database Filesystem In-memory

Figure 8: The Provenance Store concrete architecture

The first layer - the Message Translator - gets incoming soap messages and translates it to the
format that the second layer can handle. By placing such a layer on top of the architecture it is
ensured that other messaging technologies are easily supported by writing corresponding
translator layer and exchanging them with the current one. One can develop the message
translator layer that handles messages transferred using Java Remote Interfaces and use it
without making any modification to underlying layers. In addition to translating incoming
messages to the provenance store’s internal format, the Message Translator is responsible for
handling outgoing message formats. That means the internal format should be translated into

the external format, when needed.

One other feature of the Message Translator is that it detects the appropriate plug-in to pass
the message by checking the HTTP context of the incoming message. For example, if the
message sent to the http://arcs.ac.at/life_sciences/provenance/record Message Translator
understands that the message context is /record, it passes it to the PluginHandler to get a

reference to the appropriate plug-in for mapping.

The second layer is the plug-ins layer. As mentioned before, this layer has a set of plug-ins of
which each represents a piece of functionality for the provenance store. These can have a
functionality that enables storing p-assertions or deleting, and moving between different
provenance store devices, or even for capturing information from already stored data. A plug-in

should implement the following Java interface:

Provenance Technologies

import org.pasoa.prep.service.BackendStore;
import org.w3c.dom.Document;
public interface Plugin

{

public Document process (Document soapBody, BackendStore store);

}

This interface means that a plug-in takes an XML document (an org.w3c.dom.Document Object)
and a BackendStore reference as parameters and returns a W3C Document Object as a result.
The BackendStore parameter is a reference to the data repository to which the Plug-In the data
physically writes. There are currently two plug-ins implemented by the provenance store. One is
for handling recording requests; the other one is for basic queries on already stored provenance

information.

The third layer is the BackendStore where p-assertions are finally stored. Because a set of
physical devices can be used as Backend storing device and due to the need for a common
interface to interact with second layer, developers of PreServ have defined a common interface
named BackendStore. BackendStore itself currently implements a set of other interfaces which
represent the abilities of interfaces. These are the Record, Retrieval, Cache and Management

interfaces.

public interface BackendStore extends Record, Retrieval, Cache, Management

{

}

public interface Record

{
public static final String INTERACTION_PA = "interactionPAssertion";
public static final String ACTOR_STATE_PA = "actorStatePAssertion";
public static final String RELATIONSHIP_PA = "relationshipPAssertion";

public static final String SUBMISSION_FINISHED = "submissionFinished";

public void record (GlobalPAssertionKey gpid, Element asserter, Element assertion, String kindOfAssertion)
throws Exception;
}
public interface Retrieval

{

/**

Provenance Technologies

* Retrieve the message exchange at the given index
*/
InteractionRecord getlnteractionRecord (long index) throws Exception;

/**

* Get the number of message exchanges available.
*/

long getNumberOfinteractionRecords () throws Exception;

Having a common interface for backend devices makes it possible to implement plug-ins
without regarding the backend device actually being used. That has a drawback such as most of

the common interfaces have. With such an architecture it is not possible to use additional

activityTypes
1
traceIndex — typeID*
1 1 description
TraceID*
descripticn
datetimestarted
datetimeCommitted activityIndex
status 1
enactmentScript 1 activityID#
O.n (lemactmentScrithRL tracef
inputDataset# O.n name
ocutputDataset# ||
Oon Fype# On
subWor kflow
1| activicy#
tracedf 0.n
operationInc wsInvocation
1
wsID*
1| activity# 0
wedlDocument -0
wsInput wsd1URL
« cperation
0.n| WS servicells
datasets dataset# 0-n serviceliame
. 1 operationInc pOTrtTypels
L—] datasetID* portTypehiames
. 1
1| datetimeLogged wsOutput
partiAsiML
wsH —
o dataset# --n LEGEND:
-1 | operationInc * Denotes Primary Key

Denote Foreign Key

Figure 9: PreSev Data Model mapped to Backend Device

capabilities that a backend device might have. As an example, if a backend device is a relational

database, the common interface does not offer a way of using sql queries.

Provenance Technologies

The PreServ package has three default implementations of backend layers: in-memory, file

system and database.
2.2.1.3PreServ: Usage

There are three ways of using a Provenance Store Service through the WSDL definition (see A. 2
Sample Process Documentation Record WSDL for PASOA). A developer can call the PS web
service directly or can use the Java Client Side Library to communicate. Even the Axis Handler

for client side sub generation can be used.
Using through Direct Web Service Calls

This is the most basic and intuitive. However, this is the most complicated way of using PS. To
call PS web services directly, one should develop all SOAP messages himself which should be
compatible with WSDL interfaces of PS. This way, any implementation language can be used

with PS.

Pros: Language independent, maximum flexibility
Cons: Very difficult and costly to develop

The Java Client Side Library

The PreServ package includes an APl for developers who are using Java. By using the PreServ
Client Side Library one can easily produce soap messages. Corresponding methods are included

in API.

Pros: Easy development
Cons: Restricted to Java
The Axis Handler

This option can only be used of course if applications are implemented using the Axis Web
Services libraries. The Axis Handler Jar file should have classpath added to the application. All
SOAP messages produced or received by a web service client or service will be recorded in a

provenance store specified in a configuration file. Essentially, the Axis Handler wraps the

Provenance Technologies

specified client and service and intercepts all web service communication. The Axis Handler is

best used for already existing Axis based web service applications.
Pros: Can be used without modifying existing applications; easy development

Cons: Restricted to Java and dictates the use of Axis; no direct support for actor state p-

assertions and recording relationships
2.2.2 GriPhyN Virtual Data System (formerly Chimera)

Differing from PreServ, the GriPhyN Virtual Data System manages the derivation and analysis of
data objects in collaborator environments and collects provenance in the form of data
derivation steps for datasets [4]. As defined in [19], the target of GriPhyN VDS developers was to
be able to track how data products are derived with sufficient precision that one can create
and/or re-create data products from this knowledge. Chimera is a product of this group,

developed for exploring the benefits of data derivation tracking and virtual data management.

The terms dataset, transformation, derivation, and invocation have special meanings in the
Chimera software platform. A dataset is used for a unit of data managed by VDS, and is

associated with a type. A transformation is a typed definition for a computation procedure,

Executian of

» Computations H

Programs fj

Figure 10: Interaction between Data, Programs and Computations

which takes certain types of datasets as inputs and outputs. A derivation initializes a
transformation by giving the actual arguments and other necessary information. An invocation

is the actual execution of a derivation [20].

Provenance Technologies

Some annotation information is necessary to identify the transformations, derivations and

invocations. These data are stored as attached metadata to each entity in the corresponding
physical provenance store. Spoken to transformation, this information is information that can
be useful for characterizing or locating the procedures (e.g. author, version, and cost) and
information that is needed for invoking the procedure (like executable name, location,

arguments, and environment).

A derivation actually represents an execution of a transformation and is responsible to initialize
them with actual arguments if needed. In order to be able to initialize a transformation, a
derivation needs to know the name of the associated transformation, the names of datasets
(data objects) to which the transformation is applied and other derivation—specific information.
Derivation-specific information can be values for parameters and the time that the
transformation executed. Moreover, it is important to emphasize that the arguments which are
possibly documented in the transformation metadata are only formal parameters, but that the

parameters in the derivation metadata are the actual ones.

Datasets are the data which may be consumed by derivations. These are data objects which are
already present in the physical storage. However, datasets can be generated by derivations as
well. The execution of transformations (derivations) generates output data which refer to

datasets in VDC. Typical dataset types are logical files, objects or relations.

These are entities of interest in the Chimera Virtual Data Schema concept. But how can the

transformation information be captured?

In Chimera VDS it is possible to declare transformation or derivation-information manually by
the user or to extract this information automatically from a job control language, produced by
higher-level job creation interfaces such as portals, and/or created by monitoring job execution

facilities and file accesses [19].
2.2.2.1 Chimera: Usage

To be able to use Chimera, applications have to use a language called Virtual Data Language.
VDL interacts with an interpreter called virtual data language interpreter and supports both
guerying and populating the provenance data which is actually stored in the database as entries

of the Virtual Data Catalog.

Provenance Technologies

EA S Task Graphs
(compute and data
. movement tasks, with
.._dependencies)

oy

Chimera
Virtual Data Ijah'guage
(definition and query)

»

VDL Interpreter i Data Grid Resources i
(manipulate derivations ! (distributed execution |
and transformations) i and data management) i

SQLi

Virtual Data Catalog
(implements Chimera
Virtual Data Schema)

Figure 11: Chimera Architecture Overview

The Virtual Data Catalog bases on a certain Virtual Data Schema (see Figure 12: UML Description
of the Chimera virtual data schema). The Chimera VDS defines relations for capturing

descriptions of how a program can be invoked, and to record its potential or actual invocations.

VDL supports both querying and populating the database. Querying means that the data are
retrieved from the physical data store where populating can be seen as deleting and updating

the present data.

Two types of statements are supported by the Chimera VDL: data definition and query

statements.

There are two types of data definition statements: a transformation statement and a derivation
statement. The definition statements are actually represented in the XML format in the Chimera
software platform but | will give examples in a more readable syntax. The syntax for a

transformation definition looks like:

TR <name> (
output <parameter_name>, input <parameter_name=>, none <tr_argument>

) {

app <app_name> = <app_path>;

Provenance Technologies

arg <arg_name> = <arg_value>;

profile <environment_variable = <new_value>;

<name> in the first line is the name that is assigned to the transformation statement which is
used later on in the derivation statement to identify the transformation. The TR header line
consists of an input, output and argument definition. Input and output have to have parameter

names and transformation arguments are name-value pairs such as:

none a_varible_name = “chimera”

TR headers may have more than one input/output definition and more than one TR argument

pair.

There are three arguments defined in the body: app, arg, profile. app statements define a name
for the executable and the path for it. A transformation consists of understandably only one
executable application and these are potentially logical files. So app_path is the location where

this executable (actually a LFN) is present.

arg statements describe the arguments/calculation options of the procedure to be called. There
are some standard arguments which have special meanings in VDL such as stdout which means

that standard outputs are redirected to a specified file.

The profile statement is a special statement to specify a default value for an environment

variable for execution session.

A real-world example transformation definition statement looks like:

TR transformation_example (

output o1, input i1,none var1="100000",none var2="500"
){

app blast = "/usr/bin/executable";

arg parg = "-p "${none:varl};

arg farg = "-f "${input:il};

arg stdout = ${output:ol};

profile env.MAXMEM = ${none:var2};

Provenance Technologies

The arg statement consists of name-value pairs. Here, in lines 5 and 6, one can see that the
value part has a pre-defined default value which refers to transformation variables. These

variables are to be replaced at invocation time.

The other data definition statement is a derivation (DV) statement which records the

transformation invocations. The syntax for a DV statement:

DV <transformation_name> {

<TR_header_outputParameterName> = @{output:<actual_file_path>},
<TR_header_inputParameterName> = @{input:<actual_file_path>},
<TR_header_argParameter> = <value>

}

As can be seen here, derivation statements have no name to identify itself in the Chimera Data

Catalog. They are to be found by searching their attributes.

The transformation name after the DV keyword defines which transformation this derivations
definition invokes. The formal parameters in the transformation header and the derivation body

are associated by the names used in the TR header (see Table 1).

TR <name> DV <transformation_name>

({

output <parameter_name=, <TR_header_outputParameterName> = ...
input <parameter_name=>, <TR_header_inputParameterName> = ...
none <tr_argument> <TR_header_argParameter> = ...

) }

Table 1 : Usage of formal parameters in TR header in DR statements

An actual derivation statement which uses transformation transformation_example from earlier

could be:

Provenance Technologies

DV transformation_example (
ol=@4{output:analysisl.runl.result},
i1=@{input: analysisl.runl.input},
varl="20000",

var2="600"

)

The datasets (e.g. analysis data) and executions can be described as TR and DR statements and
can be stored in Chimera Virtual Data Catalog, which enables the description of data/process
lineage. The question arises of how a workflow execution should be recorded and how a data

dependency chain according to this workflow should be expressed and stored in a VDC.

Chimera VDL supports the workflow definitions through compound transformations. Data
dependency chains can be expressed using the feature that an output of a derivation can be the

input of another one. The Foster’s examples [21] for both of them can be found in Appendix B.

The second type of statements which is supported by Chimera was query statements to access

the present information in Chimera VDC.

Since VDL is implemented in SQL [19] and a virtual data model is defined in relational terms
[22], SQL can be used to query entities in the virtual data catalog. Being able to use SQL as query

language makes querying easily extensible.

Transformations can be searched by the transformation name, application name, input LFN(s),
output LFN(s), argument matches, and by other transformation metadata. Derivations can be
found by searching for the associated transformation name, application name, input LFN(s), and

output LFN(s).

Zhao [22] separates Chimera’s query mechanism into three dimensions and discusses them
from another point of view. He shows how the VDL queries can be used to gather different kind

of information from VDC with examples.

2.2.2.2Chimera: Data Schema

The Chimera Virtual Catalog bases on the Chimera Data Schema. Due to this fact | will go further

into detail on this schema. See Figure 12: UML Description of the Chimera virtual data schema

Provenance Technologies

for UML representation of the Schema. This schema and its description are mostly based on the

information on Foster’s paper [19] which is the very first publication of the VDS.

A logical transformation is identified by its identifying name, the namespace within which the
name is unique, and a version number. The signature of the transformation includes input and
output parameters, which need not be files. A transformation may have an arbitrary number of
formal arguments. The relationship between Transformation and FormalArg is 1:N. A
transformation may have more than one derivation, each supplying different values for the
parameters. A derivation may be applicable to more than one transformation. An ActualArg
relates to a derivation. Its value is either a LFN or the value of a non-file parameter. A FormalArg
may contain an optional default value, captured in a similar fashion by the same Value class.
The Value class is an abstract base class for either a single value (Scalar) or a list of similar values

(List), which are collapsed union-fashion into a single table.

The relationships between a transformation and its formal parameters, on the one hand, and a
dependent derivation and its actual parameters, on the other, are not independent of each
other. Each instantiation of an actual parameter maps to exactly one formal parameter
describing the entry. The binding is created using the argument name, not its position in the

argument list.

Scheduler and runtime environment-specific data is abstracted in the PROFILE table. For
example, in the case of a UNIX environment variable, the namespace is “env”, the key within
this namespace is the environment variable name, and the value is a list of fragments, either
references to bound variables or textual strings. The FRAGMENT table captures three child
classes, a textual string, a LFN or a reference to a bound variable. The three child classes are

collapsed into a single table.

Provenance Technologies

1 * 1
ACTUAL ARG = Dv
@bound name @namespace
Iistitern own name @name
parent L * description
- "1‘ VALUE .
@name ar id . *
| container establishes USES
binding uses
1 1 minVersion :)
optioral maxVersion
defauilt L1 +*
0,1 * 1
FORMAL ARG logical TR
@name @namespace
* linkage @name
: container @version
FRAGMENT | % arguments 1 description
@name or id
real type _—.* 1| PROFILE : | 1 1
text/fn/vname
linkage @pnamespace
prefix @name has
separator
postfix .
LOCATION 1 1
@fqdn p phys. TR
architecture @fqpath/URI
oS type
CREATOR OS version signature
@email mach —deser, configfile
usarinfo 1 - Val.-_des,cr_
timsastam val.-interval
P creates or modifies

Figure 12: UML Description of the Chimera virtual data schema

Current Workflow Based Solutions

Chapter 3

3 Current Workflow Based Solutions

3.1 Introduction

This section introduces two workflow based analysis software solutions which are currently

being used by researchers in the life sciences.

The workflow based solutions in the first place have the aim of enabling scientists to gather

information from different resources and build analysis pipelines as workflows.

3.2 Taverna

Taverna is a collaborative project led by European Bioinformatics Institute (EBI). Different
universities, especially the universities from Britain participate in the project and perform

development efforts with various individuals across the world.

Taverna is an open source project hosted on Sourceforge.net [23]. Sourceforge.net facilities and
makes the development coordination easy for the collaborating institutions. Besides, Taverna is
available under the terms of GNU Lesser General Public License (LGPL) [24] which means that

one can modify the code and reuse the framework under certain circumstances.

Current Workflow Based Solutions

Moreover, Taverna is funded through the Open Middleware Infrastructure Institute UK (OMII-

UK) [25] and is offered in the OMII-UK software package.

Next, | will briefly introduce the Taverna software and show how to use it by executing an
example workflow. Then, | will investigate the data management and provenance facilities of

Taverna.
3.2.1 Working with Taverna

Taverna is a standalone software written with Java; therefore it needs at least JRE 1.5 or a
higher version to run. The software version | am using for this work is v1.5.2 running with JRE

1.6 on the Windows x86 Platform.

As mentioned in the introduction of this chapter, Taverna is a workflow based application which
allows bioinformaticians to construct pipelines from very different research areas. Taverna
offers a large set of functions to construct such pipelines. It has four types of functions (see

Figure 13):

= |ocal Services: Local Services are functions written in Java and available as Java-Libraries
or written in R and can be run using the embedded R-Shell caller or they can even be

command-line tools written in any other programming language.

= Soaplab tools: Soaplab is a tool developed within the myGrid project to offer command-
line tools to Taverna users from all over the planet as soap based web services. So,
Soaplab can automatically generate and deploy web services on top of existing

command-line analysis programs.

= Biomart services: The Biomart system [26] is a flexible data warehouse which contains
complex interlinked biological data sets from different databases. Taverna's Biomart

service provides full search and retrieval functionality over these data sources.

= Biomoby services: The Biomoby system defines an ontology-based messaging standard
through which a client will be able to automatically discover and interact with task-
appropriate biological data and analytical service providers, without requiring manual

manipulation of data formats as data flow from one provider to the other [27].

Current Workflow Based Solutions

. .
= Other web services: Other tools provided by Fie Tool: Workfiows Advanced

|+ Design | B+ Results %.| LogBook (4, Discover

different institutions as soap based web

Search " 4 | [¥] Watch loads
H) Available Processors
services. =)
l B Local Services

[) Local Java widgets
‘ AbstractProcessor - Processor For abstract taskdescriptions
. W) is <0 Eooe
In order to construct a workflow from these functions, N Rahell=Runid/s:serpts teough i erve
@ Natification Processar
6 Beanshell scripting host

Taverna has a component called Advanced Model i Coritar
[+ 7y Soaplab @ http:fiwww,ebi. ac,ukfsoaplabjemboss4services/
Explorer. Using this component, the user can add [[7 5 Gemarserice @ hitp:/fuwn biomart.org/biemart

[+) ENSEMEL 96 GENES (SANGER)

[H-[5) ENSEMBL 46 HOMOLOGY (SANGER)

[H-[Z) ENSEMBL 46 PAIRWISE ALIGNMENTS (SANGER)
[H-[5) ENSEMBL 46 MULTIPLE ALIGNMENTS (SANGER)

functions to the currently modeling workflow, add

inputs to workflow and assign it to appropriate {5 ENSEMEL 46 VARIATION (SANGER)
[H-[5) ENSEMBL 46 GENOMIC FEATURES (SANGER)
function in the list, and redirect the results of a process () VEGA 21 (SANGER)

[+ UNIPROT PROTOTYPE (EET)

s uniprak

[i#-[5) MSD PROTOTYPE (EBI)

([GRAMENE (CSHL)

workflow. (-5 WORMBASE (CSHL)

[+ DICTYBASE (NORTHWESTERN)

[-[5) RGD GENES (MCW)

([RGD MICROSATELLITE MARKERS (MCW)

to another one as input. See Figure 14 for an example

On the rig ht-hand side of the Advanced Model [#-5) PEPSEEKER (UNIVERSITY OF MANCHESTER)
(=) PRIDE (EBI)
Ex p lorer is a Workflow Dia gra m-Window where the -5 PANCREATIC EXPRESSION DATABASE (INSTITUTE OF CANCER)

| B WeDL @ http:)‘f‘;]rww.ebi.ac.quwsIservicEs)’um:Dbfetch?wsdl

B2y WSDL @ http: [fwww.ebi. ac.uk/collab/myarid/service 1 [goviz/ GoViz, jws?wsdl
-2y WSDL @ http: ffeutils.ncbi.nlm. nih. gov/entrezjeutils/soap eutils wsdl

. . . . {5y WSDL @ http: [fsoap.bind. ca/wsdl/bind wsdl

construction of the pipeline. Figure 14 shows an | . 5156, xemblPEMBL sl

0ap.genome.jp/KEGGE. wsdl

example workflow diagram. | ESY- L T s e R

workflow is shown as a graphic during the user’s

In order to demonstrate the usage | will execute a

Figure 13: Taverna function list

workflow from the INB Bioinformatics and Genomics

Node [28]. The workflow | will use is a workflow intended to use for Promoter analysis. It can be
downloaded at [29] and the dataset at [30]. The Diagram of example Workflow is presented in
Figure 14.

After downloading the workflow definition file (.xml file) written in the XScufl [31] web service
workflow language and the example dataset from INB web site, the execution can be started.
Pressing File > Open Workflow command and pointing the downloaded workflow definition file
by using the file manager, opens prepared workflows for the execution. After that, the File >
Run Workflow command is to be applied. This makes Taverna show the input definition window
for entering workflow inputs (see Figure 16). Since Taverna offers to pack inputs in an XML file
and the INB has prepared example datasets in that format, we load downloaded dataset files in
Taverna by pressing “Load Input Doc” button and pointing the downloaded file. Finally pressing

the “Run Workflow” button makes the current window disappear. Then, the main window gets

Current Workflow Based Solutions

focussed but with another view: the “Results perspective”. The results perspective is displayed

during and after the execution. During the execution the window has two parts: a list of

) Tavera Workbench v1.5.20

File Tools Warkflows Advanced Help

Resuks (.‘\D\scover . LogBock &
Search 9"‘ [V watch loads ‘ [save dzgram ‘ & Refresh ‘ ¥ configure diagram

dvanced model explorer
Workdlow

- Add Nested Warlflon ‘ [offine + Worklow Inputs

Warkflow object Retiies Delay Backoff Threads ©

l StringArticleName l l sequences_fasta “ namespace ” identifier]‘

(W) Chustering of co-expressed genesin

Dﬁzﬂgﬂr‘:s\;:f -amc\eName -Strmg

- sequences fasta

sl FASTA_NA_muti
=5 Worlflow outputs A |

A\ matscan_gff

- A\ metz-hgnment

-\ sore_matrix

- A gene_clusters

-\ metz-slignment_GFF

A gene_tree

- A Mtiveta_shgment

- A Mtiveta_shgnment_GFF

- A\ TFBSs_duster image

=5 Processars

‘ aticleName : sequences 1]

‘ StringArticleame : content 0

‘ parse_moby_score_matrix 0

‘ parse_moby_gene_clusters 0

‘ decode_mage 0

‘ parse_moby_meta_gff 1]

‘ parse_moby_matscan_gff 1]

‘ parse_moby_gene_tree 0

- parse_maby_met 0

G Beanshel_scripting_host 0

- Fiter_MatSean]

Y runMultiPairwiseMet ailignme 1]

Y runMlatSeanGFFColection 0
]
]
[
1]
0
[
]
[
[
1]
0
[

fromFASTATaDNASzquenceCallection
runMatScanGFFC ollection

runiultiPair

fromMetaAlignmentsT oTexSeareMatrix

1unSOTAClustering

Filter_MatScan

Y FromFASTATCDNASequence
Y FramMetaflignmentsTaTextt
Y runMulbPairwisebet adlignme
Y runMultivetaAlignment
Y runPultiMetahlignmentGFF
Y runGFR2PEG
-4 String
Y runs0TACustering
- P Parse_Moby_Data_Meta A
+ P Parse_Moby Data_GFF

P Parse_Moby Data_béd_en
310: FASTA_NA_muli
{0 Datalinks
{5 Controlnks

Rendering done.

Figure 14: Taverna Workbench: On the left is the Advanced Model Explorer, on the right is an

example workflow diagram

processes that are scheduled to run and an interactive workflow diagram showing which
processes have been completed and which are currently being executed. One can see the
intermediate inputs and intermediate outputs as well. For an example graphic showing the
“Results Perspective” during execution of an example workflow, see Figure 17: Taverna Results

Perspective.

After execution finishes, Taverna adds two tabs
to the “Results Perspective” window: Results,
and Process Report. All workflow outputs are
shown in the “Results” tab (see Figure 15). It
contains a Tabbed Pane where the results are

shown as tabs. Finally, the “Process Report” tab

has an XML file as workflow report.

For various file types there are renderers in

Taverna. That means, file types are assigned to

certain

renderers which are responsible for

Current Workflow Based Solutions

Clustering of co-

genes in subsets showing similar configurations of TFBSs. e

Input:

* a set of upstream sequences in FASTA format
* 3 namespace (a datasource, e.q. Ensembl)

* anidentifier (optional)

Output:
* a list of gene sub-clusters

See, http://genome.imim, ices|workflows, html page for mare detais,

Inputs

| Load Input Doc [‘E'] Save Input Doc 9 Load Inputs Ef New Input [New List 3€ Remove

Input Document

i namespace

i W sequences_fasta
Y identifier

Inputs

displaying the according type of file or data.

Finally, the produced output can be exported and saved to a physical drive as:

= An Excel document,

= Html files as if the results were an offline web site

| Status | Results | Pracess repert

Figure 16: Input Window for defining Workflow

38

| TFBSs_cluster_image | MultiMzta_alignment | mets-alignment | gene_clusters | MultiMeta_alignment_GFF | matscan_gff | meta-alignment_GFF | gene_tres | score_makrix

List
[urn:lsidinet sf taverna:dataCallection: cd4FESF a-45ac-402F-8438-d3F96=3079dc

text/plain, bext/txt
urn:lsid:net. sf.taverna: dataltem: 53428cb6-3505-4746-b0bS-1582asf8daal
kext/plain, kext/kxt
urn:lsid:net. sf.taverna: dataltem: 66F53248-93d2-4b03-ab5d-884aF 060925
text/plain, kext/kxt
urn:lsid:net. sf.taverna: dataltem: d76eeb3c-33ca-4e7e-a836-b77fb5843a11
kext/plain, kext/kxt
urn:lsid:net. sf.taverna:dataltem: 7d24e1 38-abeS-49a3-829F-2e4F5d34c29F
text/plain, baxt/txt
urn:lsid:net. sf.taverna: dataltem: cfa32cad-9703-4775-a66e-b2bf4ece23d0

kext/plain, kext kxk
urn:lsid:net. sf.taverna: dataltem: dbda372b-088c-445a-9da2-49F 2c1 67 =fF

505cdf2a-d18d-47d5-b76e-30324cdcb 157

ex
urn:lsid:net. sf.taverna: dataltem: 4a9d32e6-d1 aé-4ec2-bfac-ec7720c7 adeb
text[plain, bext/txt
urn:lsid:net. sf.taverna: dataltem: 70ed023e-5cb2-4376-972c-5cd9bOF039F2
text[plain, bext/txt
urn:lsid:net. sf.taverna: dataltem: 26437 cb0-3F77-4875-b345-c2eb27c605d2
text[plain, bextjxt
urn:lsid:net.sf.tavernardataltem: dbeeS084-26bd-4031-8208-a1426438921e
text[plain, bext/xt
urn:lsid:net. sf.tavernardataltem: Sefdeaff-4569-45d8-9467-3638c5Fd6=as

text[plain, bext/txt
urn:lsid:net. sf.tavernardataltem: 6491c7 1f-3cal-4Fcf-be69-Sbee00726390

meta vl.1

date Sat Aug 18 20:35:18 2007

MAPL Gasdermin_Mouse - Length = 204 elems
MAFZ Leptin Mouss - Length = 130 =lems

ALPHA = 0.50, LAMEDA = 0.10, MU = 0.10

Maximum similarity: 49.02

SimMatrix: 682 matches / 26520 positions (2.57 %)
Best meta-alignment contains 19 elements

Gatal: 5-10 10-15 4.70-4.12

GATAZ: 11-15 20-24 4.86-4.47

SPIB: 32-38 52-58 £.59-5.88

TFAPZA: 53-8l €7-75 3.42-8.74

FOXL1: 18-85 H 11z2-119 4.45-5.30
Dof2: 101-108 H 132-137 4.
Macho-1: 117-125 1e8-17&
SPI1: 1z7-132 H 183-188 3.
TFAPZ2A: 143-151 121-19¢9 4.
Fatal: 1g8-173 220-225 3.
K1f4: 188-197 233-242 5.
ABT4: 213-222 249-258 5.
FOXCl: 257-284 284-291 4.
HMG-1: 28z-z20 = 311-31¢9 a.
ZNF42_5-13: 30&-315 H 33£-345
TFAPZA: 384-392 391-399 4.
TFAPZA: 419-427 4A2&-434 a.
ABT4: 463-472 453-462 &.
TFAPZA: 481-48%9 477-485 4.

Figure 15: Results tab shown after the execution finishes

£} Taverna Workbench v1.5.20

Current Workflow Based Solutions
File Tools Workflows Advanced

| # Design 4, Discover 4. LogHook &

[Clustering of d ing similar i gﬂFasslzms‘ [Clustering of d lbsets sh simiar configurations of TFBSs., 21:19

Worlfiow Status : Runring ‘ 1l Pase ‘ | ES) ‘

Processor stati

Type Name Lask event Event timestamp Event detail Breakpoint

& aticline pecessCompe——Jp - Completedprocessed colored with blue .
‘ StringArticleName 18.08.2007 21:19:52 M
@ parse _moby score matix 18.08.2007 21:19:42
’ parse_moby_gene_clusters 18.08.2007 21:1%:42
’ decode_image 18.08.2007 21:19:42 I
‘ parse_moby_meta_gff 18.08.2007 21:19:42
‘ parse_moby_matscan_gff 18.08.2007 21:1%:42
’ parse_moby_gene _free 18.08.2007 21:19:42
’ parse_moby_meta 18.08.2007 21:19:42
@ Beanshel_scripting_hast 18.08.2007 21:19:42 -

Gragh Intermediate inputs | Intermediate outputs

Inputs

identifier | f

.A)M’mu\t\
-TuDMASequen(eCnHertmn

eanGFFColection
Paivischetabignmert | | parse moby matscan of | nliPaiviscetabigmentG |
fromMetaAlignmentsToTextScoreMatrix parse_moby m pw

1unSOTAClustering ‘ parse_moby_scdre [mdri ‘

parse_moby_gene _clusters ‘ parse_moby_gend_t

T

Figure 17: Taverna Results Perspective

= XML file.
Next, | will explain how Taverna manages the input/output data.
3.2.2 Data Management in Taverna

Taverna has been designed to construct web service based workflows and to execute them. An
important point for consideration is who is the one constructing the workflow. Preparing a

workflow can be very complex with control links, loops or even parallel executions.

With the Advanced Model Explorer Taverna declares to aim for the simplest possible solutions

which can be used not only by experienced bioinformaticians but also by researchers who have

Current Workflow Based Solutions _

only limited computer knowledge. Whether this aim has been accomplished with the current

version of Taverna is to be discussed at some other point.

Hence, Taverna concentrated on making workflow construction easier, offering better and more
functions to the user but not yet on the data management of analyses The researchers have to
save their analysis data, inputs, outputs etc. on the physical drive and have to secure these data

themselves.

Next, | am introducing a plug-in of Taverna which enables storing all the information on the
performed analyses: The LogBook. From the executed workflow to the intermediate results;
everything will be stored if the user wishes so. This should not be confused with data
management since The LogBook is just a provenance tool that saves data automatically but does

not allow the user to store data in a project management manner.
3.2.3 Provenance in Taverna

Taverna has no built-in provenance support but there is a myGrid component called LogBook
written exclusively for Taverna. Users can download it separately at [32] and install or use

Taverna’s Plug-In Manager for searching existing Plug-Ins which offer an easy way of installing.

After the LogBook Plug-in has been installed, Taverna adds a new perspective to the main
window. There, the user will be asked for MySQL connection data because the LogBook is
configured to work exclusively with the MySQL database. After entering the required
information to connect to the database, the user has to decide about the level of capturing

provenance information. Taverna offers four detail levels:

= Nothing: Noting is captured; provenance capturing is off.

= Workflow Inputs and Outputs: Only workflow inputs and outputs are captured and the

data produced at intermediate steps are ignored.

= All intermediate steps, except iterations: All processing steps and the input-output data

with intermediate results are captured. Only iterations are ignored.

= Everything: All processing steps and the input-output data with intermediate results

inclusively the iterations are captured.

Current Workflow Based Solutions

Right after that, Taverna begins capturing provenance data depending on the selected detail

level. Taverna uses RDF graphs for metadata recording. Each RDF graph is assigned an LSID as
name and stored as a named RDF graph. Developers say that this allows technical recovering
and referring to the entire graphs without having to resort to the expensive RDF reification
mechanism. Taverna currently uses the NG4J (Named Graphs for Jena) API to store named

graphs in a MySQL database [32].

As it captures metadata about executions, LogBook captures the original workflows, too. Users
should first select a workflow for which they want to see the provenance details, and then a list
of processes belonging to the selected workflow is shown in a list just below the workflow-list
window. Furthermore, LogBook shows all independent executions of a workflow (runs), in a
tree-like list whose root is the name of a certain workflow. That means users should select the
workflow, expand the list and choose which execution’s (run’s) details they want to see. These

runs are identified with a timestamp of the execution time.

Selecting desired runs makes LogBook open the list of processes (functions for workflow) which
were successfully executed or failed during workflow execution. Besides, LogBook adds three

additional tabs for the workflow inputs, the workflow outputs and for the workflow diagram.

By selecting a process from the list, LogBook shows two tabs at the bottom of the window:
Intermediate Inputs and Intermediate Outputs. The calculation parameter used for the
execution of the marked function and the data used for it are included in an XML file shown in
the Intermediate tab. The intermediate results produced by the marked process are in the
Intermediate Outputs in XML file format. The tabs other than the process list — the workflow
inputs, the outputs and the workflow diagram - include data as in the results perspective. See

3.2.1: Working with Taverna for details.

Current Workflow Based Solutions

3.3 Kepler

Kepler [33] is a community driven, open source project for the analysis and modeling of
scientific data. It is a platform to build and execute workflows. Kepler represents the overall
workflow visually so that it is easy to understand the data flow from one component to the

other.

Il Unnamed
File Edit View Workflow Tools Window Help

@ @ & & 7 P> 10 (@] b= wu > [0 @

Components | pata =

Search

(] Search repository

& Components -

& Projects

@ cPRes

@ cres

@ computational Chemistry
() Babel
& CEEE
i+{) GAMESS Local Run
() GAMESS Nimrod Run
(O Molecule Selector GAMESS Input Generalor
() open Babel
% Qmview Display
@ SAMESS Input
@ process Utiity
® oL

@ cEoN

- @ Ptolemy IT

- @) ROADNet

- @ Resurgence

@ som

@ sEEx

& pisciplines

@ chemistry

gamessD: 9 putHandle

n

@ Computer Seience
@ Ecology
i@ Anal
]

- @ Engineering

- @ Geology
@ Meteorclogy
@ Physics

& statistics

@ sampling Distribution .

G- @l Statistical Analysis
results Found.

tical Ecology
cology

GAMESS Input Generator

I ——) ssnputHandlo

Figure 18: Kepler Main Window

Kepler allows scientists to create their own executable scientific workflows by dragging and
dropping components into a workflow creation area and connecting the components to
construct a specific data flow, or they can modify existing workflows to suit their needs.
Quantitative analysts can use the visual interface to create and share R and other statistical
analyses. Kepler is still not the optimum software for scientists with little bioinformatics
background to create and modify their workflows; only advanced users can deal with such

complex workflows.

Current Workflow Based Solutions

Kepler is based on the Ptolemy Il [34] system. The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded systems. The focus is on the assembly of
concurrent components. The key underlying principle in the project is the use of well-defined
models of computation that govern the interactions between the components. In Ptolemy, a
system or model is viewed as a composition of independent components. In Kepler a model is a
scientific workflow and workflows are composed of services called actors. Actors can be written
in Java, web services, scripting languages like R, and database queries. Kepler supports nested

workflows which are represented as composite actors.

Each actor in a workflow can contain one or more communication interfaces called ports, which

are used to consume or produce data. Actors in a workflow are connected via their ports. The

Director
10-ports
N .
producer consumer
actor actor

receiver

Figure 19: Components interaction in Kepler Workflow

links between two actor ports represent a dataflow and is called a channel. There are three
types of Ports: input port, output port, and input/output port. Input and output ports are self-
explanatory; an input/output port is needed for data both consumed and produced by the
actor. Ports can be configured as “singular” or “multiple” ports. Singular port means that ports
can be connected to only a single channel; multiple ports can be connected to multiple

channels.

Actors can additionally have “parameters”. Parameters configure and customize the behavior of
the actors, whereas inputs contain real data. For example an actor implementing a text search
algorithm can have two input ports: one is the search phrase and the other one is a text in
which this phrase is searched. Possible parameters for this generic search actor can be whether

it is case sensitive or not.

Current Workflow Based Solutions

Execution semantics in Ptolemy Il are described by a director. A director controls the execution
of a workflow; in other words, actors take their execution instructions from the director. Actors
specify what processing occurs while the director specifies when, how it occurs and how the
actors communicate with other actors in the workflow. Every workflow must have a director

that controls the execution of the workflow using a particular execution model, which is called

SDF Director

Using Web Services and Data Transformation Actors

Gene Accession Mumber

[AA045112

XML Entry Display

Sequence Getter Using XPath gg0,,0nce Display

XML Entry of Gem.' Seguence String

HTML Generator Using XSLT HTML Display

| HTML Qutput

Figure 20: Sample workflow in Kepler

model of computation. Each model of computation in Kepler is represented by its own director.
Workflow execution can be synchronous, with processing one component at a time or workflow

components can run.

A small set of commonly used directors come pre-packed with Kepler. One of the popular
directors used by workflow designers in Kepler is the Process Network (PN). In this
computational model, actors are independent processes. Actors execute in parallel, each with
its own thread of control. They communicate by sending tokens through unidirectional channels
like UNIX pipes. Reading from unidirectional channels is blocked until input data are available;
writing to a channel is non-blocking. This is similar to the execution of several processes in UNIX

connected with pipes:
Program1l | Program2 | Program3

The Synchronous Data-Flow (SDF) Director enables processing of one component at a time in a

pre-calculated sequence. A workflow controlled by the SDF director is a fairly simple sequence

Current Workflow Based Solutions

Edit parameters for Web Service Actor

P

_-/ wisdlLrl: bt el mig. ac.jp fwsdliBlast . wsd|
methodiame: simpleSearch [
userlame;
password:
Lireauk: &00000
hasTrigger: O
class: org.sdm. spa. WebService
semanticType00; urn:lsid:localhost :onto: 1: 1 #WebServicedctor
semanticTypell: urnilsid:localhost :onto:2: 1 #WebService

Commit _] I Add] [Remove I IRestore Defaults] [Preferences] [Help] [Cancel

Figure 21: Kepler Web Service Actor Configuration

of operations. In such dataflow models, actors are invoked when their input data are available.
The SDF director simply ensures that an actor fires after the actors whose output values it
depends on. Another pre-packaged director in Kepler is the Discrete Event (DE) Director which is
used for models where events occur at discrete times along a time line and one wishes to

determine the average wait times or occurrence rates.

The workflow in Figure 20 demonstrates the use of the remote genomics data services to
retrieve a genetic sequence. The sequence is then displayed in three different ways, first in its
native format (XML), second as a sequence element that has been extracted from the XML

format, and third as an HTML document that may be used for display on a web site.

Figure 21 shows a configuration window of a web service actor.
3.3.1 Workflow Definition Language

Kepler uses Ptolemy’s own Modeling Markup Language (MoML). MoML is a modeling language
for building models as parameterized, hierarchical components. MoML is kept very small by
representing only the features of the abstract syntax. Entities with input/output-ports,
connections and relations are the key elements of the MoML. The MoML does not say anything

about the meaning of the components or the connections between components in the graph.
3.3.2 Web Services Support

Since many bioinformatics algorithms are exposed as web services, support for web services is a

must for scientific workflow management systems. Therefore, a generic web service actor is

Current Workflow Based Solutions

implemented by Kepler to handle web services. The generic web service actor can be inserted
into any workflow and accepts the URL of a WSDL file and the name of method defined by the
WSDL (see Figure 21). Once the user has selected a WSDL and method name, the web service
actor automatically configures itself by creating the necessary input and output ports. The web

service actor invokes the web service and broadcasts the response through its output ports.

However, there is a certain limitation that only base types can be inputs or outputs to the web

service actor. These base types are defined in the WSDL file.
3.3.3 Data Management in Kepler

Kepler has no data management features. As Taverna, Kepler focuses on creating workflows and
executing them. This art of

working places the workflow in o O
the center of everything and ﬂ» B

__ELnary File Writer

everything is seen as a part of a %» Zip Files i_m:a?eaeaaer i, B0l Dt L
workflow. = m = e
File Writer |E|
= ‘Binary File Reader
. . l é i ;',.E—; File To Array Converter
Kepler offers functionality to read = =1 == FTP Glient
; = >
from files and databases. That . = a1
2 Line Read :
F— ne Reader
means that there are several local = =\ Simple File Reader
B— |
)) —p —
and remote tools which read TextFile Wiier = = Orb Image Source
- = =
resources and forward it to an = >
input port or write data coming Database Wrter g

from an output port to some

i B @

resources but it does not manage

them (see Figure 22). Moreover,
the term project has no meaning in Figure 22: Different actors in Kepler for data forwarding

Kepler’s context.
3.3.4 Provenance in Kepler

Just like data management, Kepler has no provenance support. Users have to take care about it

themselves.

Chapter 4

4 PPMS

4.1 Introduction

The PPM system aims to answer the data management requirements of the life sciences

community which is using tools for the analysis of their data.

In software engineering the term pipeline is used for a chain of processing elements arranged so
that the output of each element is the input of the next. As this is often the case in terms of
biomedical research, pipelines (a.k.a. workflows) based software is usually chosen in the

mentioned domain.

A problem which is not mentioned so far is, that in the life sciences domain itself there are
various research areas. This results in that the requirements of different research groups differ
in terms of data management. Therefore, different user groups or research organizations need
different ways of managing data. PPMS closes this gap by offering a flexible and extensible

architecture which enables plugging in different project management styles.

The analysis tools used in the life sciences domain usually produce huge amount of data. These

data are nowadays stored in local drives in a way contrived by researchers. The need for storing

data in secured remote servers which are backed up continuously is enormous. Knowing that,

the PPM system offers a back-end server which saves analysis data in an underlying database.

Communication between client and server is done using Soap based web services. This
architecture choice was necessary since the life sciences domain uses uncountable different
tools for the analysis. Beginning with HTML web sites written in Php; Perl, Shell Scripts, Ruby,
JRuby, C, C++, Java and others are commonly used even if not as much as Java. Soap based web
services enable the usage of PPMS services from all the tools written in different programming

languages.

Users want to be able to analyze their data offline as well. While some want to be able to do
this because there is no network connection at the very moment, others want this because of
the overflow that network usage causes. Sometimes sending the data over the network costs

time, so being able to work on a local drive is essential.

For all these requirements, PPMS offers a solution. This section introduces how and why PPMS
solves these problems, as well as giving the architectural - implementation details by telling

about the bottlenecks of the development.

4.2 Development Environment & Technologies

One of the essential things to know before starting to talk about the architecture details is the
development environment and selected technologies in the specific fields. Since there are a lot
of different implementations for a certain specification and there are very much different IDEs
for developing in certain languages, it is often good to know which one is used in order to be
able to guess the problems arising, the difficulties overcome and finally the parts that were
possibly easy to develop.

Java has been used as the programming language. There were not a lot of choices at this point.
The availability of present open source tools, the experience of the developing team in that
programming language and the platform independency of the language were the key reasons of

this decision.

J2EE specification version 1.5 is a major choice because of the bottlenecks which can arise due

to the inexperienced team members, the community, and the lesser tool support. It still brings

some convenience by the easy web service programming, EJB 3.0 with annotations, and

persistence.

Because of the experience of the team members in the Netbeans IDE for Java [41]
programming, the last stable version 6.0 is used. Besides that, the significant web service

integration of the IDE was an essential decision point.

The other technologies are:

Glassfish V2: Currently one of the best application servers that supports J2EE 1.5

specification.
= Maven2: For the automation used. It is necessary because of the open source tools used.
= Toplink Essentials: Reference implementation of the EJB 3.0 Java Persistence API
= MySQL 5.1.11: Database Server.

= JAX-WS RI 2.1: JAX-WS API’s reference implementation is used because of the brilliant

integration of the Netbeans IDE and the Glassfish application server.

Moreover, the server and the client are tested on a machine running with Windows Vista Home

Premium x84 operating system on an Intel Core2 Duo 2.2 GHz CPU with a 2 GHz memory device.

4.3 Theoretical Background

Considering the problems described so far, it was clear that the solution had to have the two
aspects of managing the data going around an analysis and of offering a mechanism for

capturing provenance data to guarantee the reproducibility of the analyses.

Since the provenance data and the project data are partly the same, the two aspects of the

solution should work together to prevent redundant data capture.

The term “project” is widely used in different softwares but each one has his own way of data
management, his own constraints about which data it should store where. Each software has

something like a project file in which the project information is stored.

However, the reviews made by me at the ARC Seibersdorf show that different research groups

in different disciplines need different project constraints. Therefore, PPMS was developed in a
flexible architecture which enables the easy adding of different project management styles. The
project data are not stored twice but the provenance data captured behaved as if they were the

project data. An exception to this one is input data imported to the project by the user.
4.3.1 Project Management Styles

As a result of the reviews, two project management styles are contrived.

The question asked within the scope of the review was “What is an analysis for you?” The most
said “An analysis is the execution of a unique function a couple of times but with different
parameters or with different inputs”. This is because sometimes they need to find the best
parameter fits to a certain analysis and sometimes they need to analyze many different probes
using a certain function. From this point of view, we contrived a Function Based Project

Management.

The second most frequent answer was “An analysis is the examination of a probe”. This one is
because in the medical research where researchers usually have a probe from a certain patient
which has to be examined for a suspicion or illness. This usually requires the execution of a few
different tools but sometimes only one tool is sufficient. The most important requirement here
is that the researchers should be able to compile the path used for an analysis to a workflow so
that they do not need to do the same thing again each time the same analysis is needed but are
able to do it all with one mouse click. Another reason is that there are persons who are
responsible only for use of certain devices which are used for analysis intentions and who do
not know the theoretical background of the analysis. These technical persons shall be able to
easily execute the pipeline, in best case only with one mouse click, without knowing the

background. This led us to contrive an Input Based Project Management.
4.3.1.1Function Based Project Management

Function Based Project Management (FBPM) is based on the idea that a function is used several
times in order to find the best parameters suiting a certain analysis or a function are used many
times for different inputs (probes) which are related to each other. Sometimes the result of the

analysis has to be compared to find out medical results.

In function based management architecture the project has to have only one function. The
analysis will be done using this function. As mentioned in the terminology part, while a function
can be a basic executable or an R/Shell script, it can also be an already constructed complex

workflow.

Function Basad

))

has + —has ‘?-—-‘—has 1—

) =
ProbeFolder @[wraem] 3
= f
-
hat 1 Has 1

Provenance Scope

'

Has *

Figure 23: Function Based Project Management Structure

The function folder has a file in the XScufl [31] definition language representing the functions
which can be invoked by FreeFluo [35] enactor. This can include web services, R Scripts,
executables, and Java libraries. The Integrated Advanced Model Explorer lets the user construct

such workflows using different tools and conditional parameters.

Function based projects can have as many probes as necessary; there are no limitations here.
The container named “Analysis” is the folder in which the probes are stored. (see Figure 23) A
“Probe Folder” has an input and a results container. Input containers can have folders and files

in unlimited number. The file types are not restricted as well.

A Run node contains the information about the workflow run and thereby it represents a
reference to the provenance information which is captured by the provenance system.
Provenance data are stored remotely or locally, depending on the selected storage type which

will be discussed later in this chapter.
4.3.1.2Input Based Project Management

An analysis is the experimentation of patient data. Hence, a project should have only one
specific input, optionally data from a patient that need to be analyzed using different

techniques and executing different tools. This process sometimes includes parameter

Input Based PM
-Has 1- - Has 1
—
ProbeFolder Analysis
Has * Has * —Has* Has*
¥
: —r—
b¢—Has *— Folder |e—

2%
LZ

—Has *

Figure 24 : Input Based Project Management Structure

optimization for specific functions which is in the boundaries of function based project
management (FBPM). Therefore, input based project management is more generic than FBPM
and actually it encloses it. So, FBPM projects can be embed in Input Based PMs.

Input BPM has only one input container. It can have as many files of any type as necessary. The
second container in the structure is the analysis in which the experiments made on the specified

input are stored.

Each experiment is itself an analysis, so they need a management structure. Input based PM

allows embedding FBPM structures in it as it allows a recursive structure which means that
IBPM can have IBPM within its structure as a part of the analysis. The only restriction here is
that these management level’s inputs can only consist of a certain sub-part of the top

management level’s inputs.

The most important point in IBPM is that once an analysis has been finished successfully, the
user is able to compile the optimized workflow path to a new pipeline and to save it. This way,
researchers wishing to find the most effective pipeline for a certain analysis can use IBPM for a
certain input data set, apply very different tools on the set, optimize each part and finally they

should be able to compile the best path to a workflow and use it for future analyses.

The definition of the constraints and the technique used for the insurance of project validity are

discussed in point 4.4 Architecture.
4.3.2 Supported Storage Types
PPMS offers a data management system that should work online or offline.

From this point of view, PPMS offers local and remote storage mechanisms. Local storage
mechanisms use the file system of the underlying operating system for the storage of the
project files. Provenance data, however, are stored in a relational database.

Storing project data in the file system but not in a database of course has a reason. Researchers
have so far been using file systems for storing their analysis data. So, they are indeed used to
see the data in a file system by a file explorer in a structured order and they want to have it
retainable. Another reason is that they need to use the data in another software when needed

which has driven this type of architecture decision.

While the project data are stored in a file system, the provenance data captured are saved in a

database running on a local machine.

Since the reasons why local storage providers preserve the project data in a file system are not
valid in the case of a remote storage, the project data and provenance data are both entered

into a database.

ARC Analysis Workbench

Save data

v

Storage Provider Interface ‘

PM data Provenance data s g
~" Web Service Storage -
~ Implementation ~
. S
~_ -

>

iz

PM data Provenance data

File system

N . [

—_— ——

Database System Database System

Figure 25 : Storage Type Support in PPMS

The technical details of the implementation are discussed in point 4.4 Architecture.

4.3.3 Provenance integration

Due to the fact that the ARCS Analysis Workbench is based on Taverna core version 1.6.2, the
use of Logbook that is developed as a plug-in for Taverna was the perfect choice for the analysis
platform. Hence, Logbook version 1.2.8 source has been hacked in order to integrate it with the

project management system.

The major further implementation of the tool was the integration of the web service storage

support and the browsing support of the remote data.

4.4 Architecture

The PPMS architecture is developed to be flexible and scalable enough for the easy addition of
further project management styles. PPMS declares a project structure definition language
(PSDL) which is used to define project styles in Xml. The PPM System ensures that the
constraints are held by using a special layer. This layer and the language itself are explained in

detail later on in this chapter.

PPMS is a client-server architecture. On the client side, it is implemented as a part of the ARCS
Analysis Workbench which is a workflow based analysis software allowing the construction of
workflows using different component technologies located on both local and remote machines.
Moreover, the client library has the ability to manage the data on the current file system. While
project management data are being stored in the file system, the provenance data captured are

stored in a database running on a local machine.

On the server side; PPMS offers two services: the Project Management Service, and the
Provenance Service. The Project Management service has the functionality to manage the
project data on the server side, execute CRUD functions on the project and more. The
Provenance Service implements methods for storing provenance metadata and the actual

provenance data.

After this short overview about PPMS architecture, | want to go into the technical details and
show how it was developed. Before doing this, however, | will examine the most valuable use

cases as well as functional requirements of the system.
4.4.1 Most Important Use Cases & Functional requirements

Four most important use cases are examined in detail here. Open Project, Create Project,
Capture Provenance data and Run workflow. The other operations like saving, updating,
removing project or provenance data are trivial and similar to these use cases, therefore they

are not covered here.

4.4.1.1 Open Project

HUsasY

7™

HUSESH
Open Project [

I

[

I

User |
! [
| [
'l [
I
! HlUSES :
'l sinheritss |
I 1 Parsa Projectfile :
Syslem Il :
I [
! [
' [

Use Case 1: Open Project
USE CASE 1 Open Project

Goal in Context

User issues a request to open a project.

Preconditions

The project is created earlier and in case of using a remote server the

server is running. (see Use Case 2)

Success End Condition

The project file is read and the project is opened in the client software.

Failed End Condition

Error message displaying the reason is shown.

Trigger User request.
DESCRIPTION Step Action
1 User exhibited the will of opening a present project
2 User selected the storage type to get the list of current project in

selected layer

3 System gets the list and shows it

4 User selects a project from the list and pushes ‘open’ button

5 System retrieves project Xml file

6 System validates the project file against project definition file to

hold the constraints.

7 Project added to project manager and shown in user interface
EXTENSIONS Step Branching Action
2a Error connection remote server:

3al. User will be warned not to use remote server and

contact to the administrator.

3a Error while getting the list:

3al. Reason is shown.

5a Error while getting the project file:

5al. Reason is shown, data dropped.

6a Some nodes injure the project constraints:

4al. The nodes which are not valid are ignored; others are

parsed to a project tree.

4.4.1.2Create Project

USESH

Create Mew Project

wUSEED

e e e e T I i e i e ol o Sl e |

Local System

Persist Projectdata

oy

HLUSEE

andss

Parse Projectfile),

I
|
|
|
I
|
|
|
|
|
I
|
]
|

wextendss

>

Use Case 2: Create Workflow

USE CASE 2

Create Project

Goal in Context

User issues a request to create a new project.

Preconditions

In case of remote storage, server is running.

Success End Condition

The project file is saved and project is opened in the client software.

Failed End Condition

Error message displaying the reason is shown.

Trigger User request.
DESCRIPTION Step Action
1 User exhibited the will of creating a new project
2 User selected the storage type.
3 System enters desired project name.
4 System creates and stores default project file with default
parameters.
5 System retrieves project Xml file after creation.
6 System validates the project file against project definition file to

hold the constraints.

7 Project added to project manager and shown in user interface
EXTENSIONS Step Branching Action
43 Error while creating or storing the project file:

3al. Transaction rolled back and reason shown.

5a Error while getting the project file:

5al. Reason is shown, data dropped.

6a Some nodes injure the project constraints:

6al. The nodes which are not valid are ignored; others are

parsed to a project tree.

4.4.1.3 Run Workflow

)

\

System

Use Case 3: Run Workflow

USE CASE 3 Run Workflow

Goal in Context User issues a request to run a workflow.

Preconditions Workflow is already opened, sub executables in workflow are installed in

local machine and the remote services are alive.

Success End Condition

Workflow run, desired results retrieved.

Failed End Condition

Error message displaying the reason will be shown, transaction rolled back.

Trigger User request or a parent workflow’s request in case of a nested workflow.
DESCRIPTION Step Action
1 User exhibited the will of running a workflow.
2 Input dialog is shown for defining workflow inputs.
3 Workflow runs with given input data and parameter.
4 Workflow executed successfully untill the end.
5 Execution results shown (in case of failure in any of the processes,
failure is shown).
7 Run node with information about workflow run identification is
added to project management tree.
8 Provenance data are captured and sent to storage device via
desired storage type connection.
EXTENSIONS Step Branching Action
2a Workflow needs no input:
2al. Skip to Step 3.
43 Error while running the workflow:
4al. Even so, go on with Step 5.
8a Error while transferring the provenance data:

8al. Error reason shown.

4.4.1.4Capture Provenance Data

Q L SES 0|

(R}
System) -
Write Remote DB
I
ocinhE.' LS |
I
I
| ¥
:
I
L e T e e L !
Use Case 4: Capture Provenance Data
USE CASE 4 Capture Provenance Data

Goal in Context

System should capture the execution data

Preconditions

Workflow is running, local db or remote service is alive

Success End Condition

System stored the provenance information about a certain workflow run

Failed End Condition

Workflow run information is not stored.

Trigger Starting of a workflow execution
DESCRIPTION Step Action
1 A workflow is executed
2 System captures the execution information and sends them for

storing via storage connection interface to desired persistence

context

3 Execution complete

4 A Run node with identification information about just run

workflow is added to the project tree

EXTENSIONS Step Branching Action

2a Storage type is web service:

2al. Set up Xml file with project data for transferring over

network via web services.

2b Cannot send data or cannot persist data in persistence context:

2b1. Show error message and possible reason

3a Execution failed:

3al. Show result pane, go on with step 4.

4.4.2 Design architecture

The architectural design is explained in detail in three parts. First | will show the language used
for defining constraints for function based project management. Then the server architecture is
introduced including the Relaxer [36] tool which is one of the key tools for PPMS project used to

generate project validation classes and Xml bean objects for manipulating the project file.
4.4.2.1 Project Structure Definition

The project types in PPMS are defined using a specific Xml scheme language called Relax NG.
There are some other scheme languages like DTD, XSD and Relax Core which are candidates for
the use in constructing project structure definitions and each of them has advantages over the

others, but the language used for project structure definition for PPMS is Relax NG.

The reason of choosing Relax NG as scheme language is due to its user-friendly and powerful

but yet simple form.
As introduced in [37]:

RELAX NG is a very powerful, yet easy to understand scheme technology and is a normalized
grammar based on James Clark’s Tree Regular Expression for XML(TREX), and Makoto Murata’s

Regular Language description for XML (RELAX).

<<folder>=>
Function

Attributes
- folderDisplayAtt © String

<<root>>
Function Based PM

- storagelJRI : anyURI
- projectMame : String

Attributes

==container>=
params

<<folder>>
Analysis

Attributes

- folderDisplayAtt @ String

[

<=container>>
probeFolders

or

<<container>:
runs

NE

<<folders=
aRun

.
1

aRun has_p

<<folder==>
input

<<leaf>>
fileName

Aftributes
- name : String

- <optional>_displayAtt : String
- fileURI : anyURI

- data : binary

- filetype ;| String

Attributes
- folderDisplayAtt : String

- workflowRunlD : String

aRun has_o
1

<<folder>>
outputs

<<container==
userText

==folder, recursive>=>
folderName

- name : String
folder has

- fileURI : anyURI

Atiributes

- <optional>_folderDisplayAtt ; String

Figure 25 : Function Based Project Management Structure in UML model

(red colored nodes are covered in the provenance range)

Its key features are:

Q) It is simple and easy to learn.

(i)
(iii)
(iv)
(v)

It supports XML Scheme data types.
It supports user-defined data types.

It uses pattern-based grammar with a strong mathematical foundation.
It has two different syntaxes: XML syntax and compact syntax.

(vi) It supports XML namespaces.
(vit) [tis highly composable.

(viii) Elements and attributes are treated in the same way.

| will introduce the function based project management definition file since current

implementation of PPMS client software at current only support FBPM project types.

Function based projects have two top containers: Function and Analysis. Figure 25 represents a
UML model of the projects node’s structure where the constraints are clearly identified. This is

represented in a definition file with the code:

<start>
<l—project type name -->
<element name="FBPM">
<attribute name="projectName">
<data type="string">
<param name="minLength">1</param>
<param name="maxLength">25</param>
</data>
</attribute>
<attribute name="storageURI">
<data type="anyURI" />
</attribute>
<l—group element declares that the sub elements should appear exactly in the order like here -->
<group>
<l—reference to function -->
<ref name="mfunction" />
<l—reference to anlaysis node -->
<ref name="mprobe" />
</group>
</element>

</start>

Projects

EBE&

=45t erkan

=

E-E Function

FetchDailyDilbertComic, xml

E-E= Analysis

&

==

B..

ProbeFolderl

E, Input

-] Claning

=[] Pratein

-- 3D structures

-- Mare data

9 Sequences

----- @ deinfa

----- & 1A29_HUMAN, dlc
----- & CAA24102.clc
----- & CAA32220.de
----- & NP_058652.clc
----- & P6B046.clc

----- & P&80S3.clc

----- & P&E063.clc

----- & P68225.dc

----- & P6E228.clc

----- & P68231.dc

----- & P&EE73.clc

----- & P68945.dlc
g -cldinfa

- | Extra

1 Do, 02/28 at 03:46 PM
il UserTexts
- ;) Do, 02/28 at 04:04 PM

: UserTexts
ProbeFolder2
3 Input
=[] Primar design

& -cldnfa
@ PERH3BC with primer annotations prin
& PERH3BC with primer annotations.clc
@ PERH3BC withaut primer annotatians,
& PrimerFwd(19,37).ckc

| g PrimerRev(126,145).clc
& Runs
- Do, 02/28 at 04:04 PM

: UserTexts
ProbeFaolder3

Figure 26 : FBPM Project tree

This code says exactly that the project named ,FBPM”
has two attributes and two sub elements. Attribute
“projectname” is a string with a minimum length of 1
and a maximum character length of 25. “StorageURI” is a
predefined XML Scheme data type [38] which is
representing any type of URL.

The two sub elements here are references to other
element definitions: “mfunction” and “mprobe”. Here

are the exact definitions of these elements:

<define name="mfunction">
<element name="function">
<l—function container may have one scufl definition file
representing the workflow -->
<optional>
<ref name="mfile" />
</optional>
<optional>
<element name="params">
<ref name="uri" />
<ref name="mfile" />
</element>
</optional>
</element>

</define>

Function folders may have a file representing the
workflow. The enact-able workflows are the ones in the
XScufl definition language. A function may have an

element for storing of parameters as well.

<define name="mprobe">

<element name="probes">

<zeroOrMore>

<I--

An Analysis can have zero or unlimited number of input

(probe) folders. Each of them are representing a patient

data or a set of files that belong to each other and
must use in an analysis
-->

<element name="probeFolders">

<lI-- The actual input set data comes within this folder -->

<element name="input">
<interleave>
<zeroOrMore>
<ref name="mfolder" />
</zeroOrMore>
<zeroOrMore>
<ref name="mfile" />
</zeroOrMore>
</interleave>
</element>
<l--
The runs which are executed using inputs of this
container's inputset, stored in inside runs container
-—->
<element name="runs">
<zeroOrMore>
<l-- represents one unique run -->
<ref name="mruns" />
</zeroOrMore>

</define>

Element “mprobe” represents the analysis node. An Analysis can have zero or unlimited number

of input (probe) folders. Each of them is representing a patient data or a set of files that belong
to each other and need to be used in an analysis together. This set of data can consist of zero or

more file or folders which can again have zero or more files and folders recursively.

Probe folder’s input set saved within the node named “input”. Probe folder node has a different
node with name “runs” which keeps track of the executions of the project function. The runs
which are executed using the input set of Probe-Folder X will be stored under the runs container

of the same probe folder node.

One last important element file element which has the following definition:

<define name="mfile">
<element name="file">
<I-- File extension - mandatory -->
<attribute name="fileExt">
<data type="string">
<param name="minLength">1</param>
<param name="maxLength">10</param>
</data>
</attribute>
<I-- file name - mandatory -->
<attribute name="name">
<data type="string">
<param name="minLength">1</param>
<param name="maxLength">25</param>
</data>
</attribute>
<I--
file inhalt - optional
optional because sometimes will be empty because of
memory optimization. URL pointing where is the file actually
stored is in such cases enough.

=

<optional>
<element name="data">
<data type="base64Binary" />
</element>
</optional>
</element>

</define>

File node has two mandatory attributes (among other trivial ones) and one optional sub
element. File extension and file name attributes are mandatory. The mime type of the file will

be identified according to the file extension.

The data element is optional since binary data of one file are usually very heavy and it is almost
impossible to load one project file with more than for instance ten .tiff images to the memory at
one time. Therefore, when working with projects, the data are not loaded to the memory but
only then when they are needed they are read from the storage URL. The file element has a

mandatory attribute “storageURI” which points to the place where the data are actually stored.

The storage mechanisms differ between the two storage types. That is totally natural as the
local storage implementation stores project data on the file system, while the remote storage

uses as persistence context of a database.

How a URL pointing to a file somewhere on a file system looks should be absolutely natural even
if it differs between operating systems running on a particular machine. What does the URL look

like in the case of a remote storage?

At the highest level a URI reference in string form has the syntax .
[scheme:]scheme-specific-part[#fragment]

where square brackets [...] delineate optional components and the characters.[39]

The server side of PPMS manipulates the URL structure and uses it for pointing table rows. A

URL is used for addressing to a certain row in the database table as follows:

URI = [scheme:]scheme-specific-part[#fragment]

PPMS Server form = dbname:table-name#id

~

Data type = String:String#Long

A complete version of FBPM project structure file can be found on page 99, Appendix A. 3.

4.4.2.2Server architecture

Possible Clients

WO N

iS Server Architecture

\ Wah Seryvice
= T
Pm|g';c;I40;rBf:‘:rin Input Based Projact Managament Provenancs i vt
4 "i;-ui.?: = | Managemant Service Sarvice Sarvice Al

Ralaxer Validator Classes - XML Bean Chjacts

Relaxer — Entity Wrapper

PFMS Entity Beans

Y Java Pemistence AP (Toglink Essensalis)

Databank Layer

Figure 27 : PPMS Server Architecture

At the bottom of the architecture are the PPMS entity beans which are being persisted in the
underlying persistence context (see Figure 27)

The entity class structure of projects is the same one as an Xml structure. Thereby, in the case of

Function Based Project Management, the class structure and the cardinals are the same as
presented in Figure 25.

The Glassfish application server implements the Java EE 1.5 specification which indicates how

EJB 3.0 entities have to be persisted in the underlying context using JPA API. As the API
implementation, Oracle’s TopLink Essentials package finds usage in PPMS which is responsible

for persisting project entities in the database.

Entities are generated from project Xml files delivered from the web service layer. At this point,
Relaxer generated Xml classes are responsible for validating the project against defined

constraints in the project structure file.

For each element the Relaxer generates an Xml scheme file, written in Relax NG, classes which
manage creating, editing, and removing elements while keeping defined constraints. Among a
lot of other options that the Relaxer tool has, the following options are used to generate classes

for FBPM:

relaxer -java.verify -java.pattern.visitor -java.pattern.visitor:light -classPrefixes:FBPM_ -dir:../fopmStubs -

java.package:arcs.resources.fopmStubs FunctionBasedPMDef.rng

This indicates that the classes should have the functionality to verify the Xml file. Visitor pattern
[40] should be implemented so that a visitor class can traverse over the Xml structure.

Generated class names have to have “FBPM_" as prefix.

-java.verify options add two methods to each element-class:

Jx*
* Verify an object against the schema.
* @return boolean
*/
public boolean isValid() {
return (verify().isValid());

Jxx
* Reports a validity of an object against the schema.
* @return RVerifyReport
*/
public RVerifyReport verify() {
RVerifyReport report = new RVerifyReport();

RVerifyContext context = new RVerifyContext();
verify(report, -1, context);

return (report);

Using these methods ensures that the project file is kept uninjured. Besides that, while setting
up a new class from a present project file, setup methods ignores ignored parts and this way it

does not allow using an invalid project file.

There is an interface to wrap the element classes to entity beans so that they are persisted in

the database by the application server. The method of the FBPMtoEntityWrapper doing this is:

public Elementinterface wrap(Object node) {

where the Elementinterface is an interface implemented by all the entity classes.

The Project management style-types use the Relaxer-generated classes to manage the project
objects. Project managers are stateless EJB3.0 beans, which implement remote interfaces in

order to be accessed by web services.

There are four types of session beans in the PPMS Server: Project Management Service, which
has for now only a method telling about which type of projects this server supports. The project
types are transferred using a domain object bean called the ProjectTypeDO. This domain object
has tree features: description of the project type, name of the project type, and a muster tree
showing how the project tree will be displayed in the client’s window. This gives a better sense

of the project structure:

public class ProjectTypeDO implements Serializable{

private String description;
private String name;

private byte[] musterTree;

//setters, getters

The second session bean is the project manager controller. For now, only the function based
project manager controller is implemented which is responsible for managing FBPM projects.
The FunctionBasedPMControllerBean has seven features for managing or editing a project. It

looks like this:

@javax.ejb.Remote

public interface FunctionBasedPMControllerRemote {

[
* Gets an already present project from database with given id

*/

ProjectXMLDO getFBPM(Long id) throws ResourceNotFoundException;

Jxx
* Saves given project with its elements
* return true if it was successfully saved
* false if not
*/

boolean saveProject(ProjectXMLDO projectxml);

/**

* Returns a list of projects currently present in the database
* as a list of ProjectXMLDO domain object

*/

public ProjectXMLDO[] getProjectList();

/**
* Removes element addressed by given uri
*/

public boolean removeElement(java.net.URI uri) throws NoSuchElementException;

/**

* Creates and returns a new project with given name

* sets it up with mandatory root elements

*/

public ProjectXMLDO createNewFBPMProject(java.lang.String name);

/**

* Updates elements in the database with given element.
* uri addresses element to be updated
*/

public boolean updateElement(java.net.URI storageURI, String element);

/**

* Adds a new element to database. ClassName represents a Relaxer element
* class which is initialized over reflection and set up by passing

* elementIinXML parameter to setup method.

*/

public URI addElement(java.lang.String className, java.lang.String elementinXML) ;

What do the methods do is explicitly explained according comments so no need to go into more

detail.

Third type of sessions are the helper sessions which are DAServiceBeans used for getting a
certain row using a URL and FBPMXMLPersister which is responsible for traversing over the Xml
elements to persist them in a database. The special URL used for addressing rows is mentioned

in chapter 4.4.2.1 Project Structure Definition.

The Provenance Service has the functionality to store meta-data information and actual data
that are captured from workflow executions. The LogBook has two interfaces for storing
provenance information: MetadataService and DataService. The functionality that these
interfaces require is storing and retrieving named-graphs which are used for meta-data storing
intensions and ScuflIModel objects which are the FreeFluo objects created from the XScufl

definitions.

Some of the functionality of these services is done at the PPMS client and information that is
sent over the network to the PPMS server is parsed to XML representations using Taverna core

functions so that they are transferable without losing any information.

Among others, the Provenance Service offers the following methods:

/**
* Retrieve workflow associated with workflow id
*/

public java.lang.String getWorkflow(java.lang.String workflowLSID);

/**

* Stores rdfGraph under graphName
*/

public void storeRDFGraph(java.lang.String rdfGraph, java.lang.String graphName);

/**

* Removes the graph corresponding to workflowRun from the
* repository and then does the same by recursion for all its possible

* nested workflow runs and process runs.

*
*/

public void removeWorkflowRun(java.lang.String workflowRun);

/**

* Retrieves the graph corresponding to workflowRunld
* together with all the sub graphs of processes and nested runs and returns

* it as a String containing its RDF/XML representation.

*/

public java.lang.String getWorkflowRun(java.lang.String workflowRunld);

/**

* Gets the LSIDs of all the workflow runs in store.

*
*/
public java.lang.String[] getAllWorkflowRuns();

/**

* Gets all the (ids of) workflow inputs for <code>workflowRunLSID</code>

*
*/
public java.lang.String[] getWorkflowlnputs(java.lang.String Isid);

/**
* Gets all the (ids of) workflow outputs for <code>workflowRunLSID</code>
*/

public java.lang.String[] getWorkflowOutputs(java.lang.String workflowRunLSID);

/**
* Stores dataThing, representing a data in analysis workbench.
*/

public void storeDataThing(String dataThing, boolean silent);

Jxx
* Store a workflow that is being run. LSIDs are unique to each
* run.

*/

public void storeWorkflow(java.lang.String Isid, String model);

/**
* Fetch a DataThing from the given LSID
*/

public String fetchDataThing(java.lang.String Isid);

/**

* Stores under graphName the RDF graph corresponding to
* model.

*/

public void storeModel(String model, java.lang.String graphName);

4.4.2.3Client architecture

PPMS Client Architecture

Default User Interfaces

PPMS Client APl {Core)

HDD Storage Other Technologies

Persistence Layer

Figure 28 : PPMS Client Architecture

The client implements classes for the interaction with users in an application. The PPMS client is
a built-in module for the ARCS Analysis Workbench.

The client core is developed in a flexible way so that any other applications can implement
interfaces and use its own GUI components for user interaction. However, PPMS offers default

user interfaces as well.

As mentioned in 4.3.2 Supported Storage Types and as can be seen in Figure 25 : Storage Type
Support in PPMS, the system has two different storage type supports. PPMS defines and uses an
interface called StorageConnectionProvider for storing data. That means any other

communication protocols can easily be supported by implementing this interface.

Storage types should implement the following methods:

/**

* Returns the project types which are supported by underlying

* storage mechanism.
*/
public ProjectTypeDO[] getSupportedProjectTypes() throws ResourceNotFoundException;

/**
* Returns project with given id
*/

ProjectXMLDO getProject(Long id) throws ResourceNotFoundException;

/**
* Saves project
*/

boolean saveProject(ProjectXMLDO projectxml);

[
* Returns project that are currently exist in underlying context
*/

public ProjectXMLDO[] getProjectList();

/**
* Removes element which is specified with uri
*/

public boolean removeElement(java.net.URI uri) throws NoSuchElementException;

[
* Creates new project with given name and returns it

*/

public ProjectXMLDO createNewProject(ProjectTypeDO type, java.lang.String name);

/**
* Changes element at storageURI with element “element"
*/

public boolean updateElement(java.net.URI storageURI, String element);

/**

* Finds stub-class with given className and stores object in

* underlying storage device
*/

public URI addElement(java.lang.String className, java.lang.String elementinXML) ;

/**

* remove project with given id
*/

public boolean removeProject(Long id);

Comments in code explain functionality, as always done in this document.

There are two types of storage connection provider implementations in PPMS. Using Web

Services and using File System of the current operating system.

The HDDStorageProvider implements file system storage support. The data are stored in the file
system using default java.io classes. The folder structure is the same structure as the tree

structure showing the project (Figure 26 : FBPM Project tree).

In the case of local management of the data, provenance data are stored in the database by the

LogBook tool.

WSStorageProvider class is responsible for storing data on a remote server. For doing this, the
WSStorageProvider uses the stub classes generated by jaxws’s wsimport tool for using the web

services offered on the ARCS’s application servers (see Figure 28).

Provenance data will be captured by LogBook’s own capturing ability and sent to the server by
using the web service connection interface. The methods implemented for this are described in

chapter4.4.2.2 .

The storage provider interface requires that the project are transferred using the ProjectXMLDO

domain object. This class is a serializable POJO which has:

private Long id;
private String xml;

private ProjectTypeDO projectType;

The string Xml attribute contains an Xml representation of the project. The Id identifies the

project in the context of storage mechanisms and the ProjectType is the type of the project.

The client core sets a new Relaxer project object using the Xml attribute of the ProjectXMLDO

class. As mentioned earlier, during the setup the Relaxer checks the compatibility of the project

StorapeC onnoctionProvider

{ From consecton |

At

Cpwares
b Provact T DO] gerSupponearops Tmes |
i PropcivBlLD0 getPromet] Lang o]
el D R OpY Pl RO DT |
i Propeav MLICYE] eyt |
P Dokt AmOIRL T | LT 0
st Frgce VMDD cmatelisnd mpmet] Priveer Tiel him, Sy nars |
i Poniean spctatsl it LI plonsgel/RY. Sireg siered |
ubsie R s livmal] Sling classiase Slrng sliseatia i |
Pt boolan mrsoveliaec] Long & |

FBPraject
| Ipaiad o UMLPrajctl |

deam
pragis ProjecDBILDS projectDo = rall
e FroieetTepaC pensenTupe 2 = noe Froserlypa)
[g e ———

|
[

"\\M

\ ,,f

AbstractProject
| Fooem massgamet |

kmrama
polscied Sirng name = “Unknows"

e alekerd
i i Createl Strvg s |
publs; el openy Long o |
S—
pubic voud miat] |
R e e |
it voed mapady |
b vead stActenhiode] PropactTreslicds sctvalisds |
fubbhc Siong gethiens(|
pubic SlermgeConrectond rmader gefapade |
e el BAILANE] PripeLabesad b)
jpubies vord den ProwsnancsPegus hed] PromnancePequestEped sl |

| rumas
|
|
¥
PrajectManager
| irgpertasd Brorn URLProjectd |
l.. — —
| iemte Detpykiirgba Tipshody prorvet = npw DefpitiiutpbieTeyghigdet)
| Pl [Tres Tus
I S
i provsiw Frocfidanaga |
i

| pubh e widProgects Akt Fropect prapt |
tmm vermerePrasect| Abshiacamc pogct |
| pulike el jabanbhiadsl Tasahade node |

Figure 29: Project Manager Interaction graph

against the project structure scheme file and it ignores the elements that are injured.

The XMLtoTreeParser takes care of parsing the Relaxer object and of generating a tree for

displaying it in the project manager window.

ProjectManager class manages opened projects of the type AbstractProject. Figure 29: Project
Manager Interaction graph shows the interaction of the project manager class. Each project
type should implement the AbstractProject in order to be used in the client. For function based
projects, PPMS has a default implementation, the FBProject.

Moreover, the project manager lets projects define their actions. All the nodes which are
displayed in manager tree are types of the ProjectTreeNode. ProjectTreeNode interface requires

that the method
JPopupMenu getPopup();

is implemented. The Project manager uses this method to show a popup menu when the user
right-clicks over the corresponding tree node. This way, project implementations are free to

define actions that they want.

Finally, the client uses the LogBook Browser tool for displaying provenance information. Each
run node in the function based project management has an action for displaying the

appropriate provenance information in detail using the LogBook’s browser.

4.4.3 Usage

First of all, the ARCS workbench with project management support has to be installed. There are
no other tools necessary, assuming that java 1.6 is installed on the machine on which analysis

workbench is running.

5 Arcs Analysis Workbench

File Tools Workfiows Advanced Project Management Help

gDes\gn g Project Management| v

Projects Worlow dgam |

EEER] save d\agraml % Refresh ‘ (¥ Confiqure diagram

-4 erkan
B j’gw:tm
dilbertURL
08 Anabss I e
B3 ProbeFolder!
B2 Input
-] Nucleotide
B[] Assembly
g -dnfo
g Contig 1.dc
o g readlde
g read2.de

g readiide

g reatde

- g read.de
reference.ci

= Cloring

[More data H
e comicURLRegex
g dafo
g PERH3BC with primer annatatio
) PERH3BC with primer annatatio
" ag PERH3BC withaut primer annat,
| g PrimerFic(19,37) e
g PrimerRev(126, 145).de
£-[Restriction analysis
g lainfo
g Popular enzymes. de
e Restriction map For PERH3BC.c|
CIRNA
g thinfo

There are currently no norkfow resus.
You can kry running a warkflow,

[Run current workflow

) ABO03B3S with structure. de
g AB009835.clc
g Coronavirus packaging signal
 Coronavius packaging signal.c|
| Sequences
g lanfo
@ AT38615.ckc

e . Workfloy Outputs
@ M_000044.clec .

@ PERH2BD.dc .
g PERH3BC. e . .
b g SEQUENCE list e . .
o= | todaysDilbert |7 -

ProbeFolder2

B put .
b Runs L T R R R R
ProbeFolder3
PrabeFolderd
ProbeFalders

4) Rendzring dane.

Figure 30 : ARCS Analysis Workbench with Project Management Support

After starting the workbench, there are two perspectives: design and project management.
Select the project management perspective to work with the project management system. By
default, there are no projects opened. One can open or create projects by selecting the open or
create project actions from the file menu or by clicking on the appropriate button in the

projects toolbar (see Figure 30).

r |
{# New Project Creation Wizard &

Steps Select storage type

1. Select storage type
2. Select project type @ ARCS Server:
h a0

The project and captured provenance data will be send to ARCS Servers using a
special mecanism,
Because of network delay this way of storage can cause delays,

") Use Local Drive

Figure 31 : New Project Wizard

Performing one of these actions opens a wizard to create or open a project. First, the user
should select the storage type. There are two options: using the ARCS Remote Server or a local

drive (see Figure 31).

In the case of the new project wizard, the user in the second step enters the type of project he
wishes to create. Options here are “Function Based Project Management” and “Input Based
Project Management” of which the second one is for now disabled since the PPMS does not
support IBPM yet. The third step then is to name of the project. The user should select a

workflow for the project since function based projects must own a function.

In the case of the open project wizard, the user is shown a list of present projects saved earlier.

esieds ' By selecting one of the projects from the list, the wizard
EEES i . . . _
= 4t erkan .~ shows the meta-information about the project (see Figure

-@ F_e:t-chDaiI\,-'DiIbertC0mic.xml 33)

[Add New Probe Falder
L

Finishing the wizard adds the project to the project tree
Figure 32 : Right click toadd new oi54ing on the left of the window. If the project has no
probe folder node probe folder node, right-clicking on the analysis node

shows a popup menu with an action to add a new probe

| £:| Open Project Wizard

Steps Select project to open

1. Select storage bype
2. Select project to open

1]

Details for selected project

Project id: 5
Project name: erkan

Project bype: Function Based Project Management

Type descripton: Function Based Project Management is a project type based on
the idee that a project is in some cases that, which is needed for parameter
optimation or input comprimisation having only a specified Function. This Function
will be run multipe times with different input data or different parameters,

Id MName

Hadi

LastRight

hadi

[Y Y

canim

Mext =

Figure 33 : Open Project Wizard shows meta-data about the selected project

folder (see Figure 32).

After this, the user can import data to probe the folder by
clicking the import data action from the desired probe
folder’s popup menu. All the imported leaf nodes (files) are

dragable and carry contents of the corresponding files.

Before starting to run though, the user should open the
workflow by clicking ‘open action’ from the function’s popup
menu. This opens the workflow and displays it in the
workflow diagram panel in the middle of the workbenches
main window. Clicking the “run current workflow” button
standing at the right part of the window makes FreeFluo

enactor run the workflow.

At this moment, the running pane is replaced with a button

= Fetch today's Dilbert comic 19:49

‘Workflow Status : Running

Status

Processor stati

Type Name Lastevent Eventtime... Eventdetal Breakpoint

‘ comicURLR... ProcessComple04.03.2008. ..
@ getPage Invokin 04.03.2008...
‘ getImageli... ProcessSchedu04.03.2008. ..
‘ dilbertURL ProcessCompl:04.03.2008. ..
O findComicURL Fro hedi04.03.2008. ..
‘ getComicStrip Pro hedu04.03.2008...

Graph | Intermediate inputs | Intermediate outputs

!tFaqe
getImageLinks

findComicURL

getComicStrip

Figure 34: Running pane

panel. The running pane shows the list of processes scheduled (see Figure 34) to run and each

one’s current status. The user can follow the proceedings from this process list.

After finishing of the execution results, the pane shows the workflow results as well as

intermediate inputs and outputs.

—

fm e e
o g oCloinfa

The client’s provenance tool captures all the =)
E}ﬂf}} Runs L
information and sends it to the storage = o ,EEEIEEGEC

UserTexts

. . . . Browse Provenance
mechanism using the projects desired storage ©&- P:rfhanlderE

Figure 35: Browse Provenance Action

provider implementation. After sending finishes, a
run node will be added to the project folder Runs
node showing the execution time. The users can
right-click on it to display the popup menu which has an action for browsing the provenance

information (see Figure 35).

Clicking the “Browse Provenance” action adds a middle pane in a new tab showing the
provenance browser. The user can see the workflow diagram, process list and input or outputs

of projects from appropriate windows.

Moreover, the workflow can be re-run by clicking the “rerun” button or reloading it to the

workflow browser by clicking the “reload” button.

Selecting one of the processes from the list shows intermediate results and inputs (see Figure
36).

PPMS

Sokcs Warlflow diagram | Provenance Info
(] E @ ‘ Warkflows
e ﬁ erkan % Refresh H:ISearch |

25 Function
4@ FetchDailyDilbartComic, xml

[=|_| 3D structures

@ -dleinfo

@ 1BIC.Ce

@ QL

|| Mare data

& -dldnfo

(2 CAA24102 report.clc

(2 CAA24102 with secondary str
(@ CAA32220 hydrophabicity. cle
@ NP_058652 BLAST.dlc

(& pattern discovery madel clc
(@ pattern discovery table.clc
(@ Protein alignment comparison,
@ protein alignment. clc

tree of protein dlignment. cic
-] Sequences

P68053.cc
s PBB063.cle
s P6B225.clc
s P6B228.clc
s PEB231.cle
o P68873.cc
s PEB945.cle
@ -danfo
-8 Runs

&3

. UserTexts

B ProbeFolder2

| ProbeFalder3
-] ProbeFalderd

Date

| = Your Workflows
T2, Fetch today's Dilbert comic

Author

Tom Oinn

8255511300

Reload ‘ Rerun | ¥ Delete | Export | 7" Data Lineage |

Status ‘Inputs | Results | Diagram | Description‘

Processor statii

Name

2008 18:49:37

‘ comicURLRegex

Event End Time

Event detail

ProcessCompleted

& dibertURL ProcessCompleted
‘ getPage ProcessCompleted
‘ getImageLinks ProcessCompleted
o findComicURL ProcessCompleted
‘ gekComicStrip Iterations
Intermediate inputs | Intermediate outputs
Self)
CATBERT: EVIL DIRECTOR | § £
applicationfocket-straam,image/* OF HUMAN RESOURCES |3 MY DREAM IS TO g THE BEST HOLJ
urn:lsid:net.sf kaverna:dataltem:ca43d312-6dc0-4 &| DO LESS WORK WHILE 2| 1canDo ABOUT
ID LIKE TO CHANGE ; ALLEGEDLY BEING ! 15 "CODE “SOFTWARE
MY JOB TITLE TO E MORE VALUABLE. | MOMKEY.” SIMIANT
SOMETHING WITH F
"ARCHITECT* INTT. | |] (
g g
i 4
g :
: :

Figure 36: Provenance Browser

85

Evaluation & Discussion _

Chapter 5

5 Evaluation & Discussion

In this chapter | will evaluate the present work by considering advantages and disadvantages of
using project management tools with provenance support and comparing the achieved results

with alternative solutions currently available.

5.1 Evaluation of the Work

Workflow based analysis software uses various kinds of tools. While some tools are
computationally intensive, some are not. While some tools use huge amount of data and
accordingly generate huge data outputs, some produce only meaningful numbers. Conversely,
some use text files as an input and produce tiff images requiring a few hundred mega-bytes of

storage space.

Thus, the performance of project management systems with web services entirely depends on
the current workflow used, since the time needed to transfer the data via the network is usually

not more than the time required for computer processing the data.

Evaluation & Discussion

Considering these facts, two different workflows were used for evaluating PPMS. One of them

requires significant computational power and time while the other one requires minimum

computational power.

5.1.1 Related Work

The two workflows used here are from myExperiment.org [42] a Virtual Research Environment

that enables sharing and executing scientific workflows.

Worlflow Inputs

‘ Input_Sequence || ListUser || N-J or UPGMA ‘A
i

Concition_DNA_RNA

el _
Not_Protein_Sequence | | Setting_fasta ‘ c [toLowerCase
searchSimple
blastsimplifier
Extract GI_Evalue

"
]

Extract Duplicates

Extract_Seq Description ClustalW

I 1

[
Workflow Outputt

| It is a DNA or RNA sequence || Not Protein Sequence H Blast Report H Protein Description H Image Alignment H Distance Qutfile H Unrooted_Tree H Rooted_Tree || Cutput Tree (N or UPGMA) |v

Figure 37 : Workflow for Protein Sequence Analysis

Evaluation & Discussion

The first workflow used is “Workflow for Protein Sequence Analysis” (see Figure 37) Here is the

description about what actually this workflow does:

This workflow performs a generic protein sequence analysis. In order to do that a novel
protein sequence enters into the software along with a list of known protein identifiers
chosen by the biologist to perform a homology search, followed by a multiple sequence
alignment and finally a phylogenetic analysis. [43].

The second workflow is the simplest one, needs no computation but it simply retrieves an image

by connecting to a remote site (see Figure 38).

dilbertURL

comicURLRegex

Workfloy Outputs

todaysDilbert |7 :

Figure 38 : Fetch daily Dilbert comic

The workflows run using the ARC Analysis Workbench version 1.0 which is based on Taverna

core 1.6.2 that, as an enactor, again has the engine FreeFluo version 1.6.2.0.

The client software is running on a notebook with 2.2 Intel Core2 Duo central processor units, 2

Gb memory capacity and it is using a broad-band internet connection.

Evaluation & Discussion “

The PPMS server is running on a Glassfish v2 application server. The computer itself has two

Intel” 64 Bit Xeon® Processors with 2.0 GHz clock speed, 8 Gb memory capacity and is finally

connected to the internet using a broad-band connection.

5.1.2 Performance Evaluation
5.1.2.1 Performance facts of the first workflow

Input_sequence List_User Cluster Method
MSGEPELIELRELAPAGRAGKGRTRLERANALRIARGTA Q96TS5 Neighbor-
CNPTRQLVPGRGHRFQPAGPATHTWCDLCGDFIWGVV Q12575 Joining
RKGLQCAHCKFTCHYRCRALVCLDCCGPRDLGWEPAVE algorithm

RDTNVDEPVEWETPDLSQAEIEQKIKEYNAQINSNLFMS
LNKDGSYTGFIKVQLKLVRPVSVPSSKKPPSLQDARRGP
GRGTSVRRRTSFYLPKDAVKHLHVLSRTRAREVIEALLR
KFLVVDDPRKFALFERAERHGQVYLRKLLDDEQPLRLRL
LAGPSDKALSFVLKENDSGEVNWDAFSMPELHNFLRILQ
REEEEHLRQILQKYSYCRQKIQEALHACPLG

AITRRVACLDGVNTATNAACCALFAVRDDIQQNL AAA33739 UPGMA
FDGGECGEEVHESLRLTFHDAIGISPSLAATGKFGG BAD89745 algorithm
GGADGSIMIFDDIEPNFHANNGVDEIINAQKPFVAK

HNMTAGDFIQFAGAVGVSNCPGAPQLSFFLGRPA

Table 2 : Input used for Protein Sequence Analysis Workflow

The protein sequence analysis workflow is run using the input values from Table 2. This
workflow has 28 processes including conditional checks.

This workflow approximately generates 10 Mb of data; 14415 rows are written in 7 tables in 2

different databases.
A run with local provenance took (Taverna with Provenance plug-in):

Run 1 on 09.03.08 at 22:30h:

Time for execution ‘ 740.96 Seconds

Time for provenance Storage ‘ 753.485 Seconds

Evaluation & Discussion _

Run 2 on 10.03.08 14:23h:

Time for execution ‘ 297.773 Seconds

Time for provenance Storage ’ 310.050 Seconds

A run with web service based remote provenance support took:

Run 1 on 09.03.08 at 22:50h:

Time for execution ‘ 747.12 Seconds

Time for provenance Storage ‘ 778.31 Seconds

Run 2 on 10.03.08 15.03h:

Time for execution ’ 282.142 Seconds

Time for provenance Storage ‘ 597.480 Seconds

5.1.2.2 Performance facts of the second workflow

This workflow needs no input and has 6 processors including conditional checks.

This workflow generated approximately 400 kB of data, 712 rows written in 7 tables in 2

different databases.

A run with local provenance took (Taverna with Provenance Plug-In):

Time for execution ‘ 3.947 Seconds

Time for provenance Storage ‘ 16.178 Seconds

Evaluation & Discussion

Run with web service based remote provenance support took:

Time for execution ‘ 3.307 Seconds

Time for provenance Storage ’ 31.481 Seconds

Further runs have approximately taken same times for both execution and storage.
5.1.3 Results

It is certainly clear that there are far more criterions for evaluating the usability of the PPMS
than just the performance. The ability to work on an analysis in a team, which is enabled by

PPMS due to the remote storage facility, is often indispensable.

The project context is essential either. With project management the data produces by
workflows will be stored in a structured way the researcher wishes to have without any further
concentration. ARC Analysis Workbench with PPMS is the only software by now in the Life
Sciences domain offering project management facilities o both local and remote storage

mechanisms.

Also the project context is essential. With project management the data produced by the
workflows are stored in a structured way according to the researchers’ wish. The ARC Analysis
Workbench with PPMS is the only software by now in the life sciences domain offering project

management facilities on both local and remote storage mechanisms.

The first workflow used for this evaluation is more complex than the second workflow,
therefore it naturally requires more time to accomplish its work and it generates noticeably

more data than the “Fetch daily Dilbert comic” workflow.

Workflow 1 is executed a few times on two days. Because workflow 1 has some components

which are remotely executed, the execution time depends on the free resources available.

Figure 40 shows that two different runs of the same workflow at different times can give

entirely different performance results.

Evaluation & Discussion

It is also clear that the longer an execution process takes, the lesser is the difference between a
web services based project management and an analysis software without PPMS support. Since
execution and provenance capturing are running on different threads, if an execution thread is
blocked somewhere by some demanding process, the provenance thread meanwhile sends the
captured data in queue. That means that, in the best case, the difference between a PPMS and a
local provenance is the time required for the storage of the output of the last processor in the
workflow on a local storage device and on the server. In the worst case, the execution takes

only little time but it puts a huge amount of data to the provenance queue for storing.

5.2 Discussion with future views

Workflow based analysis solutions are very popular in biomedical research and are becoming
even more accepted than ever due to the great initiatives’ support for such software. The

research community is aware of the solutions but the complexity of these tools is still a

PPMS Performance Evaluation

31
Workflow 2 (400 kB) 316
4
| 597
82 |
Workflow 1 (1046 kB) 310
298
| 778
| 747

Workflow 1 (1046 kB) 753
#‘m
! 1

0 100 200 300 400 500 600 700 800 900

Workflow 1 (1046 kB) | Workflow 1 (1046 kB) Workflow 2 (400 kB)
L4 Remote - Provenance Time Cost 778 597 31
i Remote - Execution Time Cost 747 282 3
i Local - Provenance Time Cost 753 310 16
M Local - Execution Time Cost 741 298 4

Figure 40 : PPMS performance evaluation

Evaluation & Discussion

problem. Even though the lack of data and project management support becomes less

important because of other even bigger challenges, the management of data is a significant

improvement if it is implemented.

As discussed in this work, the two (actually there are far more tools without PM support than
two, of course) workflow based analysis platforms have no data management facility but they
put the workflow execution in the center of their solutions perspective. One should at first
create a workflow consisting of different components and then he must show the tool where

the input data are.

One other important requirement in the life sciences domain is to be able to repeat past
analyses. Researchers need to understand and re-evaluate their own or other’s analyses with

minimum data loss.

There are some studies conducted on that topic in different working areas but the best one for
the life sciences domain is LogBook which is developed in the myGrid component suite. Since it
is not built-in in Taverna, it is not supported by a management system and therefore it displays
all the workflow runs without having any analysis or project context, with its actual capabilities

remaining widely un-used.

PPMS brings all the analysis data together in a project context. That alone brings a significant
facilitation. Researchers can execute their analyses without concern about where and in which
structure the data will be stored. They can simply concentrate on working and in the end the
data are hierarchically stored in a chosen file system or on a remote server, where data can be
uploaded and used from every terminal without having to carry the data on an e.g. portable

storage device.

A research team can then decide if an analysis is something different from the project types
supported by PPMS. In this case, they can easily define the project structure, implement the

necessary interfaces and use it within the PPM system. The PPMS is easily extendable.

Other types of storage mechanisms can easily be integrated in PPMS as well. RMI support, local
database support, RESTful Web Services support and others can easily be developed and

integrated in the system.

Evaluation & Discussion _

The provenance support in PPMS sets provenance in an analysis context where it becomes

perfectly clear within which analysis project the workflow was run, so that the purpose and the

context of its execution is clearly comprehensible.

However, some improvements in PPMS would also be advantageous. IBM’s Boca framework for

metadata storage would offer different features in a larger scale for provenance support.

Moreover, PPMS client could have a caching feature which caches the provenance data before
sending them via the network in order to minimize the disadvantages of using a remote storage
mechanism. Besides that, a workflow runs’ provenance data can be sent in threads and these
threads can be displayed in a list so that the data get transferred quicker and the user has a

sense of what happens at the moment.

Finally an authentication of users on the server would be appreciated enabling a user-based

data management.

The growth-speed of software solutions with many different features in the life sciences domain

is really enormous. This gives us hope that research will more and more be alleviated.

Evaluation & Discussion

Appendix A

XML Documents

A. 1 Process Documentation Record Schema

Below is the full schema for process documentation record and record acknowledgement

messages.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
xmins:pr="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd"
xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.pasoa.org/schemas/version023s1/PStruct.xsd ..\PStruct.xsd ">

<xs:annotation>
<xs:documentation>

The Provenance Store Record schema

Author: Paul Groth Last
Modified: 30 August 2005
Copyright (c) 2006 University of Southampton
See pasoalicense.txt for license information.
http://www.opensource.org/licenses/mit-license.php
</xs:documentation>
</xs:annotation>
<xs:import
namespace="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"
schemalocation="../PStruct.xsd" />
<xs:element name="record" type="pr:Record" />
<xs:element name="recordAck" type="pr:RecordAck"/>
<xs:element name="content" type="pr:Content" />
<xs:complexType name="RecordAck">
<xs:sequence>
<xs:element name="synch_ack" minOccurs="0"
maxOccurs="unbounded" type="pr:SynchAck">
<xs:annotation>
<xs:documentation>
If the provenance store is being accessed under
a synchronous connection, (i.e. remote procedure
call style) the provenance store may return a
synch_ack instead of an ack element. Under such
a situation, the provenance store does not need
to parse the incoming message in order to send
an acknowledgment.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ack" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="contentName">
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="interactionPAssertion"/>

XML Documents _

XML Documents

<xs:enumeration value="actorStatePAssertion"/>
<xs:enumeration value="relationshipPAssertion"/>
<xs:enumeration value="exposedInteractionMetaData"/>
<xs:enumeration value="submissionFinished"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element ref="ps:interactionKey"/>
<xs:element ref="ps:viewKind"/>
<xs:element ref="ps:localPAssertionld" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ERROR" minOccurs="0" maxOccurs="1" type="xs:string">
<xs:annotation>
<xs:documentation>
This field should be pressent if the messageName
element’s value is ERROR. As of yet we do not
define the type of the error message that can be
returned by the provenance store.
</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Record">
<xs:sequence>
<xs:element name="identifiedContent" type="pr:ldentifiedContent" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="IdentifiedContent">
<xs:sequence>
<xs:element ref="ps:interactionKey"/>
<xs:element ref="ps:viewKind"/>
<xs:element ref="ps:asserter"/>

<xs:element ref="pr:content" maxOccurs="unbounded"/>

XML Documents _

</xs:sequence>
</xs:complexType>
<xs:complexType name="Content">
<xs:choice>
<xs:element ref="ps:interactionPAssertion"/>
<xs:element ref="ps:actorStatePAssertion" />
<xs:element ref="ps:relationshipPAssertion"/>
<xs:element ref="ps:exposedlnteractionMetaData"/>
<xs:element name="submissionFinished" type="xs:int" />
</xs:choice>
</xs:complexType>
<xs:complexType name="SynchAck"></xs:complexType>

</xs:schema>

A. 2 Sample Process Documentation Record WSDL for
PASOA

WSDL document for process documentation record and acknowledgement messages.

<?xml version="1.0"?>
<definitions name="PRecord"
targetNamespace="http://www.pasoa.org/schemas/version023s1/record/PRecord.wsdl"
xmlins:tns="http://www.pasoa.org/schemas/version023s1/record/PRecord.wsdl"
xmlns="http://schemas.xmlsoap.org/wsd|/"
xmlins:wsdl="http://schemas.xmlsoap.org/wsdI"
xmlins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:pr="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd">
<documentation>
The Provenance Store recording port type and messages
Author: Paul Groth
Last Modified: Feb 1 2005

Copyright (c) 2006 University of Southampton

XML Documents _

See pasoalicense.txt for license information.
http://www.opensource.org/licenses/mit-license.php
</documentation>
<import namespace="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd"
location="./PRecord.xsd" />
<message name="Record">
<part name="body" element="pr:record"/>
</message>
<message name="RecordAck">
<part name="body" element="pr:recordAck"/>
</message>
<portType name="RecordPortType">
<operation name="Record">
<input message="tns:Record"/>
<output message="tns:RecordAck"/>
</operation>

</portType>

A. 3 Function Based Project Management Project
Structure Definition File

</definitions>

<?xml version="1.0" encoding="utf-8"?>

<l--
Document : FunctionBasedPMDef.xml
Author : Erkan Dilaveroglu

=

<grammar xmlns="http://relaxng.org/ns/structure/1.0"
xmins:java="http://www.relaxer.org/xmlins/relaxer/java"
datatypelLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<start>
<element name="FBPM">
<attribute name="projectName">

<data type="string">

XML Documents L0l

<param name="minLength">1</param>
<param name="maxLength">25</param>
</data>
</attribute>
<attribute name="storageURI">
<data type="anyURI" />
</attribute>
<group>
<ref name="mfunction" />
<ref name="mprobe" />
</group>
</element>
</start>
<define name="mfunction">
<element name="function">
<I-- function folder display name -->
<ref name="folderDisplayAtt" />
<ref name="uri" />
<optional>
<ref name="mfile" />
</optional>
<optional>
<element name="params">
<ref name="uri" />
<ref name="mfile" />
</element>
</optional>
</element>
</define>
<define name="mprobe">
<element name="probes">
<ref name="folderDisplayAtt" />
<ref name="uri" />
<zeroOrMore>
<element name="probeFolders">

<ref name="folderDisplayAtt" />

<ref name="uri" />
<element name="input">
<ref name="folderDisplayAtt" />
<ref name="uri" />
<interleave>
<zeroOrMore>
<ref name="mfolder" />
</zeroOrMore>
<zeroOrMore>
<ref name="mfile" />
</zeroOrMore>
</interleave>
</element
<element name="runs">
<ref name="folderDisplayAtt" />
<ref name="uri" />
<zeroOrMore>
<ref name="mruns" />
</zeroOrMore>
</element>
</element>
</zeroOrMore>
</element>
</define>
<define name="mcategorie">
<attribute name="categorie">
<choice>
<value>FUNCTION</value>
<value>PARAMETER</value>
<value>INPUT</value>
<value>OUTPUT</value>
<value>USERTEXT</value>
</choice>
</attribute>
</define>

<define name="folderDisplayAtt">

XML Documents

101

XML Documents L0

<attribute name="displayName">
<data type="string">
<param name="minLength">1</param>
<param name="maxLength">25</param>
</data>
</attribute>
</define>
<define name="uri">
<attribute name="storageURI">
<data type="anyURI" />
</attribute>
</define>
<define name="mfile">
<element name="file">
<ref name="uri" />
<ref name="mcategorie" />
<attribute name="fileExt">
<data type="string">
<param name="minLength">1</param>
<param name="maxLength">10</param>
</data>
</attribute>
<optional>
<ref name="folderDisplayAtt" />
</optional>
<attribute name="name">
<data type="string">
<param name="minLength">1</param>
<param name="maxLength">25</param>
</data>
</attribute>
<optional>
<element name="data">
<data type="base64Binary" />
</element>

</optional>

XML Documents [HLE]

</element>
</define>
<define name="mfolder">
<element name="folder">
<ref name="uri" />
<ref name="mcategorie" />
<attribute name="name">
<data type="string">
<param name="minLength">1</param>
<param name="maxLength">25</param>
</data>
</attribute>
<optional>
<ref name="folderDisplayAtt" />
</optional>
<interleave>
<zeroOrMore>
<ref name="mfolder" />
</zeroOrMore>
<zeroOrMore>
<ref name="mfile" />
</zeroOrMore>
</interleave>
</element>
</define>
<define name="mruns">
<element name="aRun" java:className="WorkflowRun">
<ref name="uri" />
<attribute name="workflowRunld"/>
<attribute name="date">
<data type="dateTime"/>
</attribute>
<element name="userText" >
<ref name="folderDisplayAtt" />
<ref name="uri" />

<oneOrMore>

<ref name="mfile" />
</oneOrMore>
</element>
</element>
</define>

</grammar>

XML Documents

104

VDL Examples

Appendix B

VDL Examples

B.1.Dependency Chain

In the following example, file2, the output of transl produced by derivation usetransi, is used
as the input to trans2 in derivation usetrans2. This is the essence of data provenance tracking in

Chimera [21].

TR trans1(output a2, input al)
{

argument stdin = ${input:al};
argument stdout = ${output:a2};
exec = "/usr/bin/appl";

}

TR trans2(output a2, input al)
{

argument stdin = ${input:al};

argument stdout = ${output:a2};

VDL Examples

exec = "/usr/bin/app2";
}

DV transl

(
a2=@{output:"file2"},
al=@{input:"file1"}

)

DV trans2

(
a2=@{output:"file3"},
al=@{input:"file2"}

)

B.2.Compound Transformation

Three simple transformations, and the fourth transformation, trans4, which is a compound

transformation composed of calls to transi, 2, and 3: [21]

TR trans1(output a2, input al)

{

argument = "...";

argument stdin = ${input:al};
argument stdout = ${output:a2};
profile hints.pfnHint = "/usr/bin/app1";
}

TR trans2(output a2, input al)

{

argument = "...";

argument stdin = ${input:al};
argument stdout = ${output:a2};

exec = "/usr/bin/app2";

}

TR trans3(input a2, input al, output a3)
{

argument parg = "-p foo";

argument farg = "-f "${input:al};

argument xarg = "-x -y -0 "${output:a3};

argument stdin = ${input:a2};

exec = "/usr/bin/app3";

}

TR trans4(input a2, input al, inout
a5=@4{inout:"anywhere":""}, inout
ad=@q{inout:"somewhere":""}, output a3)
{

trans1(a2=${output:ad}, al=${al});
trans2(a2=${output:a5}, al=${a2});
trans3(

a2=${input:a5}, al=%{input:a4},
a3=%{output:a3}

)i

VDL Examples

Abbreviations [l

Appendix C

Abbreviations

PPMS . Portable Project Management System

SOA : Service Oriented Architecture

OECD . Organization for Economic Co-operation and Development
DNA . Deoxyribonucleic acid

WSDL . Web Service Definition Language

PASOA : Provenance Aware Service Oriented Architecture

PReP . P-Assertion Recording Protocol

PreServ : Provenance Recording for Services

WS : Web Service (Soap Based)

HTTP : Hypertext Transfer Protocol

PS : Provenance Store

Abbreviations [i0E

VDS : Virtual Data System

VDC : Virtual Data Catalog

VDL . Virtual Data Language

XML : eXtendable Markup Language

TR : Transformation

DV : Derivation

sQL . Structured Query Language

LFN . Logical File Name

UML : Unified Modeling Language

IDE . Integrated Development Environment
IBPM : Input Based Project Management
FBPM . Function Based Project Management
CRUD . Create-Read-Update-Delete

URL : Uniform Resource Locator

URI . Uniform Resource Identifier

POJO : Plain Old Java Object

Bibliography

[1]. Microarray. [Online] [Cited: 08 14, 2007.]
http://www.everythingbio.com/glos/definition.php?word=Microarray.

[2]. P-assertion Recording for Services. [Online] 5 20, 2007.
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/SoftWare.

[3]. Position Statement: Musing on Provenance, Workflow and (Semantic Web) Anno-tation for

Bioinformatics. c.Goble. Chicago : Workshop on Data Derivation and Provenance, 2002.

[4]. A Survey of Data Provenance in e-Science. Yogesh L.Simmhan, Beth Plale, and Dennis
Gannon. s.l. : SIGMOD Record, 11.5.2005. Vols. 34, No. 3.

[5]. Research Problems in Data Provenance. Tan, Wang-Chiew. 2004, |IEEE Data Engineering
Bulletin, pp. 27(4):42-52.

[6]. Exploring Provenance in a Distributed Job Execu-tion System. F.Naughton, Christine F.Reilly
and Jeffrey. Chicago : International Provenance and Annotation Workshop, 2006.

[7]. Scientific Annotation Middleware. [Online] 5 30, 2007.
http://collaboratory.emsl.pnl.gov/docs/collab/sam/.

[8]. VDS - The GriPhyN Virtual Data System. [Online] 5 30, 2007.
http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain.

[9]. myGrid. [Online] 6 5, 2007. http://www.mygrid.org.uk/.

[10]. Provenance Aware Service Oriented Architecture (PASOA). [Online] 6 6, 2007.
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome.

[11]. The Earth System Service Workbench. [Online] 6 10, 2007.

http://essw.bren.ucsb.edu/projects/proj-essw.htm.

[12]. Collaboratory for Multi-scale Chemical Science. [Online] 6 12, 2007. http://cmcs.org/.

[13]. P-Assertion Recording Protocol. Paul Groth, Victor Tan, Simon Miles, John Ibbotson, and

Luc Moreau. Southampton : Technical Report, ECS, University of Southampton, 8 24, 2006.

[14]. Web Services Security. [Online] 6 13, 2007. http://www-

128.ibm.com/developerworks/library/specification/ws-secure/.

[15]. Web Services Trust Language. [Online] 6 13, 2007. http://www-
128.ibm.com/developerworks/library/specification/ws-trust.

[16]. Web Services Secure Conversation Language. [Online] 6 13, 2007. http://www-

128.ibm.com/developerworks/webservices/library/specification/ws-secon/.

[17]. An Architectur for Provenance Systems. Paul Groth, Sheng Jiang, Simon Miles, Steve
Munroe, Victor Tan, Sofia Tsasakou, and Luc Moreau. Southampton : Technical report,
Electronics and Computer Science, University of Southampton, 2006.

[18]. PReServ: Provenance Recording for Services. Paul Groth, Simon Miles, and Luc Moreau.
Nottingham,UK : s.n., 2005. In Proceedings of the UK OST e-Science second All Hands Meeting
2005 (AHM'05).

[19]. Chimera: A Virtual Data System for Representing, Querying, and Automating Data
Derivation. lan Foster, Jens Vockler, Michael Wilde, and Yong Zhao. s.l. : 4th International
Conference on Scientific and Statistical Database Management (SSDBM'02), 2002.

[20]. Virtual Data Grid Middleware Services for Data-Intensive Science. Yong Zhao, Michael
Wilde, lan Foster, Jens Vockler, E.Glibert, T.Jordan, and E.Quigg. Toronto, Ontario, Canada :

Concurrency, Practice and Experience, 2004.

[21]. The Virtual Data Grid: A New Model and Architecture for Data-Intensive Collaboration. lan
Foster, Jens Vockler, Michael Wilde, and Yong Zhao. s.l. : Conference on Innovative Data
Research CIDR, 2003.

[22]. Yong Zhao, Michael Wilde, and lan Foster. Applying the Virtual Data Provenance Model.
Proceedings of the International Provenance and Annotation Workshop 2006 (IPAW2006),
Lecture Notes in Computer Science. Springer, 2006.

[23]. Taverna. [Online] [Cited: 08 15, 2007.] http://taverna.sourceforge.net/index.php.

[24]. GNU LGPL . [Online] [Cited: 08 15, 2007.] http://www.opensource.org/licenses/Igpl-
license.php.

[25]. OMII-UK. [Online] [Cited: 08 16, 2007.] http://www.omii.ac.uk/.
[26]. Biomart. [Online] [Cited: 08 17, 2007.] www.biomart.org.
[27]. Biomoby. [Online] [Cited: 08 17, 2007.] www.biomoby.org.

[28]. INB Bioinformatics and Genomics Node. [Online] [Cited: 08 16, 2007.]

http://genome.imim.es/webservices/index.html.

[29]. INB Example Workflow. [Online] [Cited: 08 17, 2007.]
http://genome.imim.es/webservices/workflows/PromoterAnalysisWorkflow_coexpressedGenes
Mode_Fasta_Version.xml.

[30]. INB Example Workflow Dataset. [Online] [Cited: 08 17, 2007.]

http://genome.imim.es/webservices/examples/coexpressed_genes_FastaSeqs_Document.xml.

[31]. Scufl Web Service Workflow Language. [Online] [Cited: 08 17, 2007.]
http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html.

[32]. Taverna LabBook Plug-In. [Online] [Cited: 08 19, 2007.]
http://www.mygrid.org.uk/wiki/Mygrid/TavernaProvenancePluginOneOne.

[33]. Kepler Home. [Online] [Cited: 2 20, 2008.] http://kepler-project.org/.

[34]. Ptolemy Il Home. [Online] 2 20, 2008. http://ptolemy.eecs.berkeley.edu/ptolemyll/.
[35]. FreeFluo Workflow Enactor. [Online] 2 10, 2008. http://freefluo.sourceforge.net/.
[36]. Relaxer Home. [Online] [Cited: 2 15, 2008.] http://www.relaxer.jp/index.html.

[37]. Beginning XML 4th Edition. [book auth.] Jeff Rafter, Joe Fawcett, Eric van der Vlist, Danny
Ayers, Jon Duckett, Andrew Watt, Linda McKinnon David Hunter. s.I. : Wrox, May 2007.

[38]. XML Schema Datatypes. [Online] 2 11, 2008. http://www.w3.0rg/2001/XMLSchema-
datatypes.

[39]. Java 6 API. [Online] [Cited: 2 25, 2008.] http://java.sun.com/javase/6/docs/api/.

[40]. Stephen Stelting, Olav Maassen. Applied Java™ Patterns. s.l. : Prince Hall, 2001.

[41]. Netbeans IDE Home. [Online] www.netbeans.org.

[42]. myExperiment.org. [Online] [Cited: 03 09, 2008.] www.myexperiment.org.

[43]. Workflow for Protein Sequence Analysis. [Online] [Cited: 03 09, 2008.]
http://www.myexperiment.org/workflows/124.

