Elektronenmikroskopie, konfokale Mikroskopie und Rasterkraftmikroskopie für die Untersuchung der Struktur von Lebensmitteln

Ausgeführt am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der Technischen Universität Wien

Unter der Anleitung von Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Ingrid Steiner

durch
Jennifer Maria Wallner
Sachsenplatz 14/13, A – 1200 Wien
Matrikelnummer: 0402275
Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Sensorik und Textur .. 1
 1.2 Geschichte der Elektronenmikroskopie, konfokalen Mikroskopie und Rasterkraftmikroskopie bei Lebensmitteln .. 2
 1.3 Grundlagen der Elektronenmikroskopie, der konfokalen Mikroskopie und der Rasterkraftmikroskopie ... 4
 1.3.1 Elektronenmikroskopie .. 4
 1.3.1.1 Transmissionselektronenmikroskop (TEM) 4
 1.3.1.2 Rasterelektronenmikroskop (REM) .. 4
 1.3.2 Konfokale Laser-Raster-Mikroskopie (CLSM) 5
 1.3.3 Rasterkraftmikroskopie (RKM) ... 5
 1.4 Zusammensetzung und wichtige Strukturelemente der untersuchten Lebensmitteln 6

2 Aufgabenstellung ... 21

3 Methodische Vorgehensweise .. 22
 3.1 Präparation für TEM .. 22
 3.2 Präparation für REM .. 31
 3.3 Präparation für CLSM .. 38
 3.4 Präparation für RKM .. 38

4 Ergebnisse ... 40
 4.1 Methodische Vorgehensweise bei Lebensmitteln: Vergleich von unterschiedlichen Techniken .. 40
 4.1.1 Auflösungsvermögen .. 40
 4.1.2 Probengröße und -dicke ... 42
 4.1.3 REM vs. RKM .. 43
 4.1.4 TEM vs. REM .. 45
 4.2 Einsatzbereiche der Methoden im Nahrungsmittelsektor ... 46
 4.2.1 Immunchemische Methoden ... 46
 4.2.2 Fraktale Analyse .. 47
 4.2.3 Gefrieren von Lebensmitteln .. 48
 4.2.4 Untersuchung von Lebensmittelgruppen ... 49
 4.2.5 Transmissionselektronenmikroskop (TEM) ... 76
 4.2.6 Rasterelektronenmikroskop (REM) ... 81
 4.2.7 Konfokale Laser-Raster-Mikroskopie (CLSM) .. 85
 4.2.8 Rasterkraftmikroskopie (RKM) ... 88
 4.3 Überblick über spezielle Lebensmittelgruppen und dazugehörigen Technik und Diskussion ... 88
 4.3.1 Allgemein ... 88
 4.3.2 Elektronenmikroskopie (TEM, REM) .. 98
 4.3.3 CLSM ... 99
 4.3.4 RKM ... 99

5 Zusammenfassung .. 101

6 Summary .. 102

7 Literatur .. 103
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schema eines Rasterkraftmikroskops</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Strukturelemente in Eiscreme</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Strukturelemente in Butter</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Strukturelemente von Fleisch</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Verschiedene Geltypen</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Verschiedene Methoden der Präparation bei der TEM</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Arten der Fixierung bei der TEM</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>Kryofixierung</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Verschiedene Methoden der Präparation bei der REM</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Mausmuskel: (A) REM - Bild, (B) TEM - Bild; T=T-Tubuli</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>Immunchemische Methoden</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Erdbeeren / REM: (A) schnelles Gefrieren, (B) langsames Gefrieren</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Caseinmizellen von Magermilch / RKM</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>Joghurt / CLSM</td>
<td>52</td>
</tr>
<tr>
<td>15</td>
<td>Zwei Joghurtsorten / CLSM</td>
<td>53</td>
</tr>
<tr>
<td>16</td>
<td>Käse / TEM: gefroren, mit Platin und Kohlenstoff behandelt</td>
<td>54</td>
</tr>
<tr>
<td>17</td>
<td>Gouda: Bruch - Ausbreitung nach Einschnitt / CLSM</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>Hüttenkäse / REM: durch drei verschiedenen Techniken untersucht</td>
<td>56</td>
</tr>
<tr>
<td>19</td>
<td>Eiscreme / REM (Kryopräparation)</td>
<td>57</td>
</tr>
<tr>
<td>20</td>
<td>Käse: Proteine und Fett / CLSM</td>
<td>58</td>
</tr>
<tr>
<td>21</td>
<td>Gel (durch Chymosin) aus Magermilch / CSLM</td>
<td>58</td>
</tr>
<tr>
<td>22</td>
<td>Geronnenes Gel mit Fettkugelchen (F) / REM</td>
<td>59</td>
</tr>
<tr>
<td>23</td>
<td>Topfen / Elektronenmikroskop</td>
<td>59</td>
</tr>
<tr>
<td>24</td>
<td>Molkenproteinfilm / RKM</td>
<td>59</td>
</tr>
<tr>
<td>25</td>
<td>Verteilung von Kalzium in einer Caseinmizelle in Milch / EELS</td>
<td>60</td>
</tr>
<tr>
<td>26</td>
<td>Stärkekörper / REM</td>
<td>61</td>
</tr>
<tr>
<td>27</td>
<td>Stärkekorn / RKM</td>
<td>62</td>
</tr>
<tr>
<td>28</td>
<td>Brot / REM (Lufttrocknung)</td>
<td>63</td>
</tr>
<tr>
<td>29</td>
<td>Brot / REM (CP-Trocknung)</td>
<td>64</td>
</tr>
<tr>
<td>30</td>
<td>Brot / REM (Gefriertrocknung)</td>
<td>64</td>
</tr>
<tr>
<td>31</td>
<td>Salatdressing / CLSM (Negativ-Kontrast)</td>
<td>65</td>
</tr>
<tr>
<td>32</td>
<td>Mayonnaise / REM</td>
<td>66</td>
</tr>
<tr>
<td>33</td>
<td>Salatdressing / REM</td>
<td>67</td>
</tr>
<tr>
<td>34</td>
<td>Mayonnaise / TEM</td>
<td>67</td>
</tr>
<tr>
<td>35</td>
<td>Fleisch / TEM</td>
<td>68</td>
</tr>
<tr>
<td>36</td>
<td>Fleisch / REM</td>
<td>68</td>
</tr>
<tr>
<td>37</td>
<td>Verkapselung</td>
<td>70</td>
</tr>
<tr>
<td>38</td>
<td>Verkapselung</td>
<td>71</td>
</tr>
<tr>
<td>39</td>
<td>Die sechs Kristallformen von Kakaobutter / REM (Gefrierbruchtechnik)</td>
<td>72</td>
</tr>
<tr>
<td>40</td>
<td>Schokoladenfehler: Ausbildung von Kristallnadeln</td>
<td>72</td>
</tr>
<tr>
<td>41</td>
<td>Schokoladenfehler an der Oberfläche einer dunklen Schokolade / REM</td>
<td>73</td>
</tr>
<tr>
<td>42</td>
<td>Schokolade: Kakao, Zucker, Milchproteine / CLSM (Negativ-Kontrast)</td>
<td>73</td>
</tr>
<tr>
<td>43</td>
<td>Xanthan-Moleküle (links), Pektin-Moleküle (rechts) / RKM</td>
<td>74</td>
</tr>
<tr>
<td>44</td>
<td>Schaum / CSLM</td>
<td>75</td>
</tr>
<tr>
<td>45</td>
<td>Wassertröpfchen in Margarine / TEM (Ultradünnschichtmethode)</td>
<td>77</td>
</tr>
</tbody>
</table>
Abbildung 46: Öltröpfchen in homogenisierter Milch / TEM (Ultradünnschichtmethode) ... 77
Abbildung 47: Luftzelle in Eiscreme / TEM (Ultradünnschichtmethode) .. 78
Abbildung 48: Polysaccharidfaser in Kurdlan-Gel / TEM (Negative Straining)............... 78
Abbildung 49: Starke Interaktion zwischen β-Lactoglobulin und Casein-Mizellen / TEM (Negative Straining) ... 79
Abbildung 50: TEM / Negative Straining: Schwache Interaktion zwischen β-
Lactoglobulin und Casein-Mizellen ... 79
Abbildung 51: Wassertröpfchen in Margarine / TEM (Oberflächenabdruck)................. 80
Abbildung 52: Luftzellen in Eiscreme / TEM (Kryotechnik) ... 80
Abbildung 53: Verteilung von Fett und Protein in einem Low-fat-Käse / TEM (Kryotechnik) ... 81
Abbildung 54: (a) Brot, (b) Butter, (c) Eiscreme, (d) Schokolade / REM (Kryotechnik) .. 82
Abbildung 55: Mehlpartikel / REM (Lufttrocknen) ... 83
Abbildung 56: Joghurt / REM (Gefriertrocknung) ... 84
Abbildung 57: Stärkekörner (A) nicht beschädigt, (B) beschädigt durch den Elektronenstrahl... 85
Abbildung 58: Verlauf der Lichtstrahlen auf Grund des sich ändernden Brechungsindex .. 86
Abbildung 59: Mayonnaise (70% Fett) / CLSM ... 86
Abbildung 60: Emulsion (55% Öl) / CLSM .. 87
Abbildung 61: Fett / CLSM (Negativ-Kontrast).. 88
Tabellenverzeichnis

Tabelle 1: Zusammensetzung der Kuhmilch ... 6
Tabelle 2: Zusammensetzung der Kartoffel ... 12
Tabelle 3: Zusammensetzung von Butter ... 14
Tabelle 4: Zusammensetzung von Fleisch ... 15
Tabelle 5: Zusammensetzung von Schokolade ... 18
Tabelle 6: Auflösungsvermögen von verschiedenen Techniken 41
Tabelle 7: Probengröße bzw -dicke bei verschiedenen Methoden 42
Tabelle 8: Unterschiede zwischen REM und RKM .. 44
Tabelle 9: Elektronenmikroskopische Techniken bei der Analyse von Milch und Milchprodukten .. 49
Tabelle 10: Lebensmittelgruppe und dazu passende Technik - Milch und Milchprodukte .. 91
Tabelle 11: Lebensmittelgruppe und dazu passende Technik - Stärkehaltige Lebensmittel .. 94
Tabelle 12: Lebensmittelgruppe und dazu passende Technik – Fetthaltige und eiweißhaltige Lebensmittel .. 95
Tabelle 13: Lebensmittelgruppe und dazu passende Technik – Viskose Lebensmittel, Schokolade, Polysaccharide und Gele, Proteine und Polysaccharide, Gemüse, Schäume .. 96
Tabelle 14: Lebensmittelgruppe und dazu passende Technik – Überblick 98
1 Einleitung

1.1 Sensorik und Textur

Lebensmittel weisen gegenüber der Mehrheit anderer Stoffe die Besonderheit auf, dass sie ihrer Bestimmung nach für den menschlichen Verzehr als flüssige, pastöse oder feste Stoffe produziert und als Nahrung verzehrt werden.

Wenn man bedenkt, dass Lebensmitteln aus den gleichen Rohstoffen bestehen, ist es faszinierend, dass sie je nach Bestandteile und Bearbeitungsprozesse unterschiedliche Strukturen und Texturen aufweisen.

Die Qualität eines Lebensmittels wird durch grundlegende Stoffeigenschaften, wie Festigkeit, Elastizität, Viskosität und Plastizität, verkörpert, die der Mensch mit seinen Sinnen erfassen kann. Farbe, Form, Geruch, Geschmack und Textur stellen die wichtigsten sensorischen Qualitätseigenschaften eines Lebensmittels dar. Diese Eindrücke beeinflussen die Akzeptanz des Lebensmittels beim Menschen. Polysaccharide, Proteine und Lipide sind wichtige „Texturogene“ von Lebensmitteln, was bedeutet, dass die Textur vor allem Bedeutung bei Lebensmitteln hat, die reich an Kohlenhydraten, Proteinen oder Fetten sind.

1.2 Geschichte der Elektronenmikroskopie, konfokalen Mikroskopie und Rasterkraftmikroskopie bei Lebensmitteln

Obwohl das konfokale Laserraster-Mikroskop (CLSM: confocal laser-scanning-microscope) 1957 von Minsky erfunden wurde, dauerte es bis in die 80iger Jahre, bis die Technik verbreitet war und man sie genutzt hat. Das Neue daran war, dass bei CLSM nur immer ein Punkt abgebildet wird, während bei der Lichtmikroskopie die ganze Probe beleuchtet wird.

Einleitung

Einleitung

1.3 Grundlagen der Elektronenmikroskopie, der konfokalen Mikroskopie und der Rasterkraftmikroskopie

1.3.1 Elektronenmikroskopie

In der Elektronenmikroskopie unterscheidet man zwei Gerätetypen, die Durchstrahlungselektronenmikroskope (TEM; transmission electron microscopy) und die Rasterelektronenmikroskope (REM; scanning electron microscopy, SEM). Sie arbeiten nach unterschiedlichen Prinzipien, haben aber eine Reihe von Bauteilen und Technologien gemeinsam: eine, auf Hochvakuum ausgepumpte Säule mit Vakuumanlage, ein Elektronenstrahlerzeugungssystem und elektromagnetische Linsen. Die gemeinsame Technologie, die dahintersteckt, ist, dass bei beiden Typen die Wechselwirkung zwischen Elektronenstrahl und Objekt genutzt wird, um Informationen und Erkenntnisse über die Probe zu bekommen, und dass sowohl bei Durchstrahlungselektronenmikroskope, als auch bei Rasterelektronenmikroskope die Untersuchung des Objekts im Hochvakuum erfolgt.\(^{17}\)

1.3.1.1 Transmissionselektronenmikroskop (TEM)

Die Durchstrahlungselektronenmikroskopie (Transmissionselektronenmikroskopie) arbeitet nach dem gleichen Prinzip wie das Lichtmikroskop, nur dass Elektronen anstatt von Licht verwendet werden. Das Objekt wird mit Elektronen durchstrahlt, und es kommt zur Erzeugung eines Bildes.

1.3.1.2 Rasterelektronenmikroskop (REM)

Im Gegensatz zur Transmissionselektronenmikroskopie wird bei der Rasterelektronenmikroskopie ein zeitsequenziertes Bild, das auf einem Monitorbildschirm zeilenweise „geschrieben“ wird, erzeugt. Der Vorgang findet im Hochvakuum statt, um Wechselwirkungen mit Atomen und Molekülen in der Luft zu vermeiden. Es wird zwischen Kathode und Anode Hochspannung (1-30 keV) angelegt, und ein fein gebündelter Elektronenstrahl rastert die Probenfläche ab. Es gibt verschiedene Detektoren, die je nach Fragestellung unterschiedliche Signale registrieren. Meist werden Sekundärelektronen als Signal verwendet. Diese werden
Einleitung

vom Sekundärelektronendetektor registriert. Werden auf der Probenoberfläche viele Sekundärelektronen herausgelöst, so erscheint der Punkt am Bildschirm hell.\(^{18}\)

1.3.2 Konfokale Laser-Raster-Mikroskopie (CLSM)

Anders als bei der konventionellen Mikroskopie, in der das Objektfeld als Ganzes ausgeleuchtet wird, wird bei der konfokalen Laser-Raster-Mikroskopie durch Einbringen einer Illuminationslochblende nur ein scheibenförmiger Objektbereich beleuchtet und das Objektfeld Punkt für Punkt und Zeile für Zeile abgerastert. Dies führt zu weniger Streulicht aus benachbarten Objektbereichen und erhöht somit die Schärfe und den Kontrast des resultierenden Bildes.\(^{19}\)

1.3.3 Rasterkraftmikroskopie (RKM)

Bei der RKM tastet eine feine Spitze (Sonde) die zu untersuchende Oberfläche in geringen Abständen ab.\(^{11}\) Beim Abtasten wirken zwischen der Spitze und Probe Kräfte, die die Spitze je nach Probenoberfläche auslenken.\(^{20}\)

In der nachfolgenden Abbildung ist ein Rasterkraftmikroskop, welches auf einem Lichtmikroskop befestigt ist, schematisch dargestellt. Der Laserstrahl wird durch ein Prisma auf den Nadelhalter geleitet und das reflektierte Licht durch einen Spiegel auf das Messfeld gelenkt.

![Abbildung 1: Schema eines Rasterkraftmikroskops](image)

(Quelle: Magonov, S.N. und Whangbo, M.-H. (1996).\(^{21}\))
1.4 Zusammensetzung und wichtige Strukturelemente der untersuchten Lebensmitteln

Milch und Milchprodukte:

Milch

| Tabelle 1: Zusammensetzung der Kuhmilch |
|-----------------|-----------------|
| Wasser [%] | 83-88 |
| Kohlenhydrate [%] | 4-6 |
| Fett [%] | 3-5 |
| Proteine [%] | 3-4 |
| Mineralstoffe [%] | 0,7-0,9 |

Anm.: Die Zusammensetzung bezieht sich auf das Lebensmittel im Allgemeinen.

Die Hauptstrukturelemente der Milch sind Casein-Mizellen, Fettkugelchen, Molkenproteine und Lipoprotein-Partikel.

Casein stellt fast 80% der Proteine in Milch dar und besteht aus vier Fraktionen: $\alpha S_1\text{–}, \alpha S_2\text{–}, \beta\text{–} und \kappa\text{–Casein}$. Caseine haben einen hohen Gehalt an Prolin und Phosphor, der als Phosphat-Gruppe mit der Hydroxy-Gruppe der Aminosäure Serin verestert ist. Über die Phosphoseryl-Reste können bei den α- und β-Caseinen
Bindungen mit Kalzium aufgebaut werden. Das κ-Casein hat nur einen Phosphoseryl-Rest, ist wie ein Emulgator aufgebaut und dient zur Stabilisierung der Casein-Mizelle.

In Kombination mit kolloidalem Kalziumphosphat (CCP) wird das Gebilde Casein-Mizelle genannt. Das κ-Casein befindet sich an der Oberfläche der Casein-Mizelle zwischen den hydrophoberen α- und β-Caseinen und dem Wasser der Milch. Wird das κ-Casein durch das Enzym Lab gespalten, entsteht ein Gel.

Drei Mechanismen halten das Casein-Molekül zusammen: Casein-Verbindungen zwischen hydrophoben Regionen auf dem Protein und zwischen Regionen mit hohem Gehalt an hydrophoben CCP und CCP-Verbindungen zwischen Caseinen.

Die Casein-Mizellen haben einen Durchmesser von 0,02 bis 0,30 µm und liegen in flüssiger Form als Suspension vor, das heißt, dass sich feste Partikel in einer flüssigen, kontinuierlichen Phase befinden. Die restlichen 20% der Proteine in Milch sind Milchserumproteine (Molkenproteine), wie zum Beispiel α-Lactalbumin, β-Lactoglobulin, Rinderserumalbumin und Peptide, die durch Proteolyse aus den Caseinen entstanden sind. Bei Molkenproteinen handelt es sich um globuläre und hitzelabile Proteine. β-Lactoglobuline sind hydrophobe Milchproteine, die aber in Wasser löslich sind, weil ihre Hydrophobie von der Sekundärstruktur verborgen wird. Wenn ihre Sekundärstruktur zum Beispiel durch Erhitzen zerstört wird, werden die hydrophoben Stellen frei und bilden mit Kalzium Komplexe.

Einleitung

Beim Erhitzen von Milch fallen die Caseine aus, es entsteht ein Milchhäutchen aus Albuminen und Globulinen. Das α_{S1}-Casein ist ein globuläres Molekül, dem die Aminsäure Cystein fehlt. Das α_{S2}-Casein besitzt eine dipolare Struktur. α-Caseine sind mit Kalzium-Ionen fällbar. β-Caseine haben einen polaren Kopf und einen unpolaren Schwanz. Spaltet man κ-Casein, bricht die Micelle zusammen und die Mizellare Suspension wird zu einem Gel, das heißt die Milch gerinnt.

Durch Pasteurisation von Milch (15 bis 20 Sekunden bei 72 bis 75°C) werden nur die vegetativen Mikroorganismen abgetötet. Bei einer Temperatur über 70°C denaturieren die Molkenproteine und interagieren untereinander und mit Casein-Mizellen über hydrophobe Bindungen und Disulfid-Bindungen. Ultrahocherhitzte Lebensmittel (Sterilisation für 4 bis 15 Sekunden bei 135 bis 150°C) tötet auch die sporenbildenden Mikroorganismen ab.\(^{157}\)

Fettkügelchen stellen in Milch die disperse Phase dar und sind von einer Lipoprotein-„Membran“ umgeben. Die meisten Fettsäuren im Milchfett haben Kettenlängen zwischen C\(_4\) (Buttersäure) und C\(_{18}\) (Stearinsäure). Milchfett besteht zu 65% aus gesättigten Fettsäuren und 30% aus einfach ungesättigten Fettsäuren und 4% aus mehrfach ungesättigten Fettsäuren. Milchfettkristalle können sich in Nadeln, Plättchen oder polymorphen Formen (zum Beispiel α, β und β') ausbilden. Der α-Zustand stellt ein hexagonales, der β-Zustand ein monoklines und der β'-Zustand ein orthorhombisches Kristallsystem dar.\(^{16}\)

Laktose ist ein Disaccharid aus D-Glucose und D-Galactose, die durch β-1,4-Verbindungen verknüpft sind, und kann in kristalliner und amorpher Form auftreten. Kristalline Laktose existiert in zwei Kristallformen, in α-Hydrat und in der wasserfreien β-Form. Amorphe Laktose ist hygroskopisch und beginnt ab einem Feuchtegehalt von 8% zu kristallisieren.

In der Milch kommen auch Salze, vor allem Natrium- und Kaliumchlorid, und das Mineral Kalzium besonders in Form von Kalziumphosphat vor.

Milchpulver

Milchpulver wird durch Eindampfen von Milch gewonnen. Dazu wird Milch pasteurisiert, vorkonzentriert, und das Wasser wird danach durch Walzen- oder Sprührotrcknung verdampft.
Einleitung

Anwendung findet Milchpulver bei der Herstellung von Milchschokolade und Säuglingsnahrung\(^\text{23}\).

Joghurt
Als Joghurtbakterien werden meistens *Streptococcus thermophilus* und *Lactobacillus bulgaricus* verwendet.\(^\text{163}\) *Lactobacillus bulgaricus* bauen Proteine zu Peptide ab, welche *Streptococcus thermophilus* zur Produktion von Säure und Acetaldehyd nutzt. Die Casein-Mizellen bilden ein dreidimensionales Netzwerk aus, was zur Gellbildung führt, das heißt, dass die Milch koaguliert bzw. gerinnt.\(^\text{16,31}\) Die Hierarchie bei Gelen in Bezug auf ihre Strukturelemente ist folgende: Monomer, Polymer, Faser, Gel-Netzwerk, zum Beispiel Joghurt.\(^\text{27}\)

Käse

Cottage Cheese
Cottage Cheese ist ein Frischkäse mit körniger Struktur, der nicht gereift ist.\(^\text{163}\) Abhängig vom Herstellungsverfahren kann sich die Mikrostruktur verändern. Bei der elektronenmikroskopischen Untersuchung gibt es Probleme, da die Polysaccharide nicht fixiert werden können und bei der Dehydration mit Ethanol dadurch Filamente entstehen. Daher sollte man bei der Interpretation des Ergebnisses vorsichtig sein.\(^\text{31}\)
Einleitung

Eiscreme

Speiseeis kann aus folgenden Zutaten hergestellt werden: Milch, Milchprodukten, Zucker, pflanzlichen Fetten, Eiprodukten, Früchten oder Fruchtbestandteilen, Kaffee, Kakao, Aromastoffen und Farbstoffen163. Es enthält 40 bis 50% Luft und besteht aus 10 bis 14% Fett, 12 bis 15% Zucker, 10 bis 14% Milchanteilen, 0,5% Stabilisator und Emulgator und 45 bis 55% Wasser. Die wichtigsten Strukturelemente sind Eiskristalle, Luftbläschen und Fettkugelchen. Die kontinuierliche Phase enthält Casein, Salze und Stabilisatoren, die flüssige Phase Fettkugelchen und die disperse Phase Luft. Stabilisatoren werden beigemengt, um ungefrorenes Wasser zu binden und eine stabile Verteilung von Luft, Wasser und Fett zu bekommen. Fett begünstigt die Bildung von kleinen Fettkristallen und erhöht die Viskosität. Zucker und Salz erniedrigen den Gefrierpunkt.16

Die Struktur von Eiscreme ist abhängig von der Eiskristallgröße, der Menge und Verteilung von Fett, der Größe der Luftzellen, der Friergeschwindigkeit und ob Stabilisatoren und Emulgatoren beigemengt werden. Letzterer ist für die cremige Konsistenz von Eiscreme verantwortlich.27

\begin{center}
\includegraphics[width=\linewidth]{structure_elements.png}
\end{center}

Abbildung 2: Strukturelemente in Eiscreme
Durch das Wachsen von Eiskristallen kann es sein, dass die anderen Bestandteile wie zum Beispiel Zucker, Casein-Mizellen oder koagulierte Proteine auf die Seite gedrängt werden. Daher muss das Gefrieren so schnell erfolgen, dass keine Zeit bleibt, damit sich Eiskristalle formen können.

Beim Erhitzen und Homogenisieren der Creme lagern sich Caseine und Molkenproteine an die Fettkügelchen an, danach bilden grenzflächenaktive Substanzen einen Film um die Fettkügelchen und verdrängen die Casein-Mizellen. Das Milchfett kristallisiert, und die Milchproteine und Hydrokolloide werden hydratisiert.24

Stärkehaltige Produkte:
Stärke besteht zu 70 bis 80% aus Amylopektin und zu 20 bis 30% aus Amylose. Amylose ist ein lineares Polymer aus α-D-Glucose, verknüpft durch eine α-1,4-Verbindung. Bei höheren Temperaturen entstehen α-1,6-Verbindungen zwischen den Ästen des langen linearen Moleküls. Amylopektin besteht ebenfalls aus α-1,4- und α-1,6-verknüpften α-D-Glucose-Bestandteilen und ist ein verzweigtes Molekül. Ein Gel bildet sich, wenn die Amylopektin-Bausteine von der Amylose-Matrix durchzogen werden.24

Kartoffeln
Die Kartoffel hat ihren Ursprung in Südamerika.22 Die genaue Zusammensetzung der Kartoffel findet sich in Tabelle 2.
Einleitung

Tabelle 2: Zusammensetzung der Kartoffel

<table>
<thead>
<tr>
<th>Komponente</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>72-80</td>
</tr>
<tr>
<td>Stärke</td>
<td>15-20</td>
</tr>
<tr>
<td>Stickstoffsubstanzen</td>
<td>1,5-2,5</td>
</tr>
<tr>
<td>Mineralstoffe</td>
<td>0,6-1,2</td>
</tr>
<tr>
<td>Rohfaser</td>
<td>0,5-1</td>
</tr>
<tr>
<td>Pektine</td>
<td>0,4</td>
</tr>
<tr>
<td>Saccharose</td>
<td>0,2</td>
</tr>
<tr>
<td>Lipide</td>
<td>0,2</td>
</tr>
<tr>
<td>Glucose</td>
<td>0,1</td>
</tr>
<tr>
<td>Fructose</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Anm.: Die Zusammensetzung bezieht sich auf das Lebensmittel im Allgemeinen.

Brot

Fetthaltige Lebensmittel:

Fette sind Ester des dreiwertigen Alkohols Glycerol mit Fettsäuren und haben lange, apolare Ketten von verschiedenen Längen, die miteinander interagieren und so beim Kühlen im geschmolzenen Zustand Kristalle (α-, β- und β´-Kristalle) formen.16 α-Kristalle haben ein niedriges Molekulargewicht, die schnellste Wachstumsgeschwindigkeit, den niedrigsten Schmelzpunkt und stellen die instabilste Form dar. β-Kristalle haben das höchste Molekulargewicht und den höchsten
Einleitung

Margarine

Margarine ist eine Wasser-in-Öl-Emulsion. Bei der Herstellung wird zuerst die wässrige Phase in die Fettphase emulgiert, danach wird die Emulsion unterkühlt, und es erfolgt eine Kristallisation, was die Viskosität der Fettphase erhöht und die Margarine „fest“ macht.\(^\text{163}\)

Die Margarine ist mit 80% Fett und etwa 18% Wasser ähnlich wie Butter aufgebaut.

Butter

Man unterscheidet Sauerrahmbutter (aus gesäuertem Rahm) und Süßrahmbutter (aus ungesäuertem Rahm). In Tabelle 3 findet man die Zusammensetzung von Butter. Die Konsistenz von Butter hängt von der Verteilung von flüssigem und festem Fett in den Fettkugelchen ab. Diese kann man beim Reifeprozess steuern.\(^\text{16}\)
Einleitung

Tabelle 3: Zusammensetzung von Butter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fett [%]</td>
<td>81-85</td>
</tr>
<tr>
<td>Wasser [%]</td>
<td>14-16</td>
</tr>
<tr>
<td>Fettfreie Trockenmasse [%]</td>
<td>0,5-4</td>
</tr>
<tr>
<td>NaCl [%] ev.</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Anm.: Die Zusammensetzung bezieht sich auf das Lebensmittel im Allgemeinen.

Eiweißhaltige Lebensmittel:

Einleitung

Die Hydrathülle von Proteinen wird bei Trocknungsprozessen reduziert, und es kommt zu intermolekularen Wechselwirkungen. Um irreversible Veränderungen zu vermeiden, muss das Trocknen proteinreicher Lebensmittel sehr schonend vor sich gehen. Da das Proteinmolekül eine gewisse Wassermenge als „Konstitutionswasser“ benötigt, ist eine Trocknung bis zur absoluten Wasserfreiheit nicht möglich.22

Protein-Protein- bzw. Protein-Wasser-Interaktionen führen zur Bildung von Gelen, verschiedenen Texturen, Emulsionen und Schaumen. Die Prozesse werden zum Beispiel durch Kollagen (Bildung von Gelen), Gluten (Bildung eines viskoelastischen Teiges aus Weizenmehl), Caseine (Bildung von Emulsionen), Albumin (Bildung von Schaumen),... hervorgerufen.16

Fleisch

Unter Fleisch werden „alle Teile von warmblütigen Tieren in frischem und verarbeitetem Zustand“163 bezeichnet, während im üblichen Sprachgebrauch darunter „fettes Skelettmuskelgewebe“163 gemeint ist. Tabelle 4 zeigt eine Auflistung der Zusammensetzung von Fleisch.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|}
\hline
Wasser [%] & 76 \\
Stickstoffsubstanzen [%] & 21,5 \\
Fett [%] & 1,5 \\
Mineralstoffe [%] & 1 \\
Kohlenhydrate [%] & 0,05-0,2 \\
\hline
\end{tabular}
\caption{Tabelle 4: Zusammensetzung von Fleisch}
\end{table}

\textbf{Anm.:} Die Zusammensetzung bezieht sich auf das Lebensmittel im Allgemeinen.

Der Muskel besteht aus Muskelfasern, die von einer Bindegewebschicht ummantelt sind. Jede Muskelfaser ist eine mehrkernige Muskelzelle, die von Myofibrillen durchzogen ist. Die Myofibrillen wiederum bestehen aus Myofilamenten, nämlich aus dicken Myosin- und dünnen Aktin-Filamenten, die sich wiederum aus myofibrillären Proteinen zusammensetzen. Bei Aktin, das in doppelhelixartiger Struktur vorliegt, handelt es sich um das Monomer globuläres Aktin (G-Aktin) und um das fadenförmige Polymer F-Aktin. Im Sarkoplasma der Muskelzelle befinden sich wasserlösliche Albumine, wasserunlösliche Globuline, Hämaglobin und Myoglobin.
Einleitung

Abbildung 4: Strukturelemente von Fleisch
F = Fetttröpfchen, PG = Protein-Gelmatrix, PF = Proteinfilm um den Fetttröpfchen

Muskelgewebe enthält bei einem Proteinanteil von 20 bis 22% rund 74 bis 76% Wasser, das sind 350 bis 360 g Wasser pro 100 g Protein. Der Anteil an Hydratwasser ist klein, er liegt bei Proteinen im Allgemeinen bei rund 20 g Wasser pro 100 g Protein. Das übrige Wasser des Muskels (zirka 95%) wird durch die
Einleitung

schmalen Kanäle zwischen den Filamenten gehalten. Veränderungen im Wassergehalt sind mit einer Quellung oder Schrumpfung der Myofibrillen verbunden.¹⁶³

Wenn man Nahrungsmittel auftaut, schmelzen die Wasserkristalle und lagern sich an der Oberfläche größere Kristalle an. Dieser Prozess führt zum Beispiel in Fleisch auf Grund der Dehydratisierung und steigenden Ionenstärke zur Zerstörung des Gewebes und zur Denaturation von Proteinen.¹⁶

Polysaccharide und viskose Lebensmittel:
Die Bausteine der Polysaccharide (Glykane) sind Monosaccharide, die über Glykosidbindungen miteinander verknüpft sind. Je nach Anreihung dieser Strukturelemente ergeben sich verschiedene Konformationen der Kette.¹⁶³

Nach ihrer Herkunft unterscheidet man verschiedene Hydrokolloide: Stärke, Hydrokolloide aus tierischem Eiweiß (Milcheiweiß, Gelatine), Cellulose und Cellulosederivate, Pektine und Pektinsalze, Samenmehle (Johannisbrotkernmehl, Guar, ...), Pflanzenextrakte (Gummi arabicum, Traganth, ...), von Mikroben gebildete Hydrokolloide (Curdlan, Xanthan, ...) und Hydrokolloide aus Rotalgen (Agar-Agar, Carrageenane, ...). In der Lebensmittelindustrie finden sie als Stabilisatoren, Verdickungsmittel, Geliermittel, Supensionsmittel, Aufschlagmittel, Bindemittel, Energie-/Kalorienverminderer, Filmbildner, Trennmittel, Flockungsmittel, ... Verwendung.²⁸ Sie erhöhen die Viskosität des jeweiligen Produkts und machen es dickflüssiger.²⁹

Einleitung

Abbildung 5: Verschiedene Geltypen
A = Fischnetz-Typ, B = Tripel-Helix, C = Eierschachtel-Struktur, D = Agglomerationen, E = Doppel-Helices, F = Gele von globulären Proteinen

Verdickungsmittel besitzen im Allgemeinen eine kugelförmige verknäulte, verzweigte oder verkettete Struktur. Da Hydrokolloide ein gutes Quell- und Bindevermögen besitzen, nehmen sie Wasser auf, wobei sich die Moleküle des Verdickungsmittels in den hochviskosen Lösungen frei bewegen können.

Schokolade:

Tabelle 5: Zusammensetzung von Schokolade

<table>
<thead>
<tr>
<th></th>
<th>mindestens 40</th>
<th>höchstens 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kakaomasse bzw. Kakaomasse / Kakaobutter [%]</td>
<td>mindestens 40</td>
<td>höchstens 60</td>
</tr>
<tr>
<td>Zucker [%]</td>
<td>mindestens 21</td>
<td>hochstens 60</td>
</tr>
<tr>
<td>Kakaobutter [%]</td>
<td>mindestens 21</td>
<td>hochstens 60</td>
</tr>
<tr>
<td>Kakaomasse bei Verwendung von Kakaobutter [%]</td>
<td>mindestens 33</td>
<td>hochstens 60</td>
</tr>
</tbody>
</table>

Anm.: Die Zusammensetzung bezieht sich auf das Lebensmittel im Allgemeinen.
Einleitung

Der Wassergehalt in Schokolade beträgt unter 1%, das meiste Wasser dient als Verbindung zwischen der hydrophilen Oberfläche und der flüssigen Phase.171 Die Fettphase ist die kontinuierliche, flüssige Phase, die die Fettkristalle einschließt. Es werden sechs verschiedene polymorphe Formen unterschieden, die alle unterschiedliche Schmelzpunkte besitzen. Je nach Reinheit, Temperatur, Kühlgeschwindigkeit und Art von Lösungsmitteln bilden sich die verschiedenen Kristallformen aus.157

Kakaobutter besteht zu 94 bis 96% aus Triglyceriden, vor allem von Palmitin-, Stearin- und Ölsäure. Zucker moleküle sollten in der Schokolade kleiner als 25 µm sein, damit sie nicht im Mund als unangenehm wahrgenommen werden. Außerdem ist amorpher Zucker hygroskopischer als kristalliner.27

Gemüse:

Gemüse hat als Gerüstsubstanzen Zellulose, Hemizellulosen (Polyosen), Pektine, Lignin und Glykoproteine (zum Beispiel Extensin).

Zellulose besteht aus β-1,4-verknüpfter Glucose. Hemizellulosen sind verzweigte (amorphe), heterogene Polysaccharide. Ihre Monomere können Hexosen (Galactose, Glucose, Mannose), Pentosen (Arabinose, Xylose) und Uronsäuren (Galacturonsäure, Glucuronsäure) sein. Pektin besteht aus Ketten von α-1,4-glykosidisch verbundenen Galacturonsäure-Einheiten, die in 1,2-Position miteinander verknüpft sind.

Artefakte bei der mikroskopischen Untersuchung der Lebensmittel:

Für die mikroskopische Untersuchung von Lebensmitteln müssen die Proben vorbereitet und präpariert werden, was manchmal ein Problem darstellt. Die Produkte müssen nämlich bestimmte Präparationsvorbereitungen und –schritte, wie zum Beispiel Trocknung, Fixierung, Hochvakuumbehandlung, Färbung, mechanischen Belastungen (Montierung), Beschichtung, Entwässerung, Gefrieren, Schneiden,
Einleitung

Licht,… , überstehen, die meistens nicht ohne Artefakte oder Veränderung in der Struktur vor sich gehen.

Weiters spielt die Gefrierrate eine große Rolle. Bei hoher Gefriergeschwindigkeit bilden die Wassermoleküle kleine Eiskristalle in hexagonalen Kristallstrukturen aus, andere mögliche Formen wären unregelmäßige Dendrite und kleine Spherulite. Langsames Gefrieren hat die Bildung von großen Eiskristallen im extrazellularen Raum zur Folge, was sich auf die Lebensmittelqualität negativ auswirkt. Während der Lagerung kann es auch zur Rekrystallisation kommen, was ebenfalls einen Qualitätsverlust des Lebensmittels mit sich bringt.

Bei einer lokalen Überhitzung können auch Schwierigkeiten auftauchen. Fett kann schmelzen, und die Goldschicht kann brechen. Manche Bestandteile, wie zum Beispiel Laktose, sind auf Elektronenstrahlen empfindlich. Auch eine zu hohe Spannung kann zu Veränderungen und zur Zerstörung der Oberfläche führen. Die Proben müssen auch teilweise geschnitten werden, was bei Lebensmitteln mit hohem Wassergehalt Schwierigkeiten bereitet.

Weiters werden bei den Präparationstechniken für die mikroskopische Analyse Substanzen eingesetzt, die die Strukturelemente beschädigen oder verändern. Ein Beispiel wäre eine Formaldehydlösung, die manchmal für die chemische Fixierung bei der TEM eingesetzt wird. Diese Substanz enthält Methanol, der sich auf die Probe negativ auswirkt. Ein weiteres Problem ist, dass es manchmal zu unterschiedlich schnellen Fixierungen der Probenbestandteile kommt, was wiederum zu Artefakten führen kann.

Es kann also gesagt werden, dass die Strukturelemente der Lebensmittel durch die Präparationsschritte und durch die Analyse verändert werden können, und man vorsichtig bei der Interpretation der Ergebnisse sein muss.
2 Aufgabenstellung

3 Methodische Vorgehensweise

3.1 Präparation für TEM

![Abbildung 6: Verschiedene Methoden der Präparation bei der TEM](image-url)
Methodische Vorgehensweise

Im nachfolgenden Abschnitt werden die einzelnen Schritte näher erklärt.

Isolierung der Probe

Die Probe wird in eine Fixierflüssigkeit gegeben, damit sie nicht beschädigt wird. Hierfür kann man zum Beispiel eine größere Probe als erforderlich nehmen, sie in eine Puffer- oder Fixierlösung tauchen und dann aus ihrem Inneren das eigentliche Untersuchungsobjekt entnehmen.

Fixierung

Bei der Fixierung unterscheidet man drei Arten, die chemische Fixierung, die Kryo-Fixierung und die Gefrierfixierung. Die Abbildung 7 soll einen Überblick über die drei Techniken geben.

Abbildung 7: Arten der Fixierung bei der TEM

Chemische Fixierung

Acrolein verwendet man in der Konzentration von 1 bis 10%, in Kombination mit anderen Aldehyden oder Puffern. Der Nachteil von Glutaraldehyd ist, dass Lipide nicht stabilisiert werden, aber auch Formaldehyd fixiert Lipide und Polysaccharide nicht gut. Am häufigsten werden Glutaraldehyd und Formaldehyd kombiniert eingesetzt. Die Primärfixierung läuft bei 0 bis 4°C ab. Da die Substanzen nur Proteine fixieren, wird für die Fixierung von ungesättigten Fettsäuren eine Sekundärfixierung angeschlossen.

Bei der Sekundärfixierung werden Osmiumtetroxid (OsO₄), Rutheniumtextroxid (RuO₄), Kaliumpermanganat (KMnO₄) oder andere Permanganate, wie NaMnO₄ oder LaMnO₄, als Fixiermittel eingesetzt. Os aus dem OsO₄ streut Elektronen und wirkt somit gleichzeitig als Kontrastmittel und erhöht den Probenkontrast. Weiters wirkt dieses Mittel auf Lipide. Es wird in einer Konzentration von 0,5 bis 2% in wässriger Lösung verwendet. Rutheniumtextroxid ist ungiftiger und billiger als Osmiumtetroxid und wird in niedriger Konzentration (0,1-%ig) eingesetzt. Permanganate fixieren Lipide und Phospholipide gut.

Manchmal wird bei der chemischen Fixierung auch ein dritter Schritt angefügt, die Fixierung mit Uranilacetat. Hierfür wird eine 0,5- bis 2-%ige Lösung gebraucht. Als Fixiermedien werden Phosphatpuffer, wie zum Beispiel Natriumhydrogenphosphat (NaHPO₄) oder Natriumdihydrogenphosphat (NaH₂PO₄) in Konzentrationen von 0,01 bis 0,2 M angewendet. Weiters gibt es auch noch Cacodylat, das in Wasser zu einer 0,1 bis 0,2 M Lösung aufgelöst und mit HCl auf den gewünschten pH-Wert eingestellt wird. Als dritte Gruppe von Puffern zählen sich Zwitterionenpuffer.

Ein Fixiermedium muss aber nicht nur gepuffert sein, sondern es muss sich auch im osmotischen Gleichgewicht mit der Probe befinden, hierfür werden Saccharose oder neutrale Salze hinzugefügt.

Kryofixierung

Obwohl die chemische Fixierung einige Nachteile aufweist, wie zum Beispiel unterschiedlich schnelle Fixierung der Probenbestandteile oder langsamer Rückgang der Zellaktivität, was wiederum zu Artefakten durch Verschiebungen innerhalb der Zelle führt, wird sie im Vergleich zur Kryofixierung öfter angewendet. Bei der Kryofixierung wird durch ultraschnelles Gefrieren erreicht, dass die gebildeten Eiskristalle kleiner als die Auflösungsgrenze des Mikroskops sind.
Methodische Vorgehensweise

Bei dieser Methode unterscheidet man fünf verschiedene Verfahren. Abbildung 8 zeigt diese schematisch auf:

a) Eintauchverfahren

Die Probe wird in ein Kryogen getaucht, das nahe seinem Gefrierpunkt in einem Bad aus flüssigem Stickstoff gehalten wird. Es bildet sich eine isolierende Hülle aus gasförmigem Stickstoff um die Probe herum, was die Gefriergeschwindigkeit dramatisch erniedrigt. Als Kryogen wird flüssiges Propan oder Freon verwendet. Freon (Frigen) ist der Handelsname für Difluordichlormethan (CF₂Cl₂) und ähnlichen halogenierten Kohlenwasserstoffen.¹²

b) Sprühverfahren

c) Gefrieren mit Propanstrahlen

Die Probe wird zwischen zwei wärmeleitenden Trägern gehalten und auf beiden Seiten mit flüssigem Propan bei -190°C besprüht, was den Wärmefluss und die Dicke der Probe erhöht.

d) Gefrieren mittels Metallspiegels („slam“-Frieren)

Die Probe wird schnell mit einer sehr kalten, polierten Metalloberfläche in Kontakt gebracht. Als Metall wird Kupfer bevorzugt verwendet.

e) Gefrieren unter hohen Druck

Methodische Vorgehensweise

Abbildung 8: Kryofixierung
5 verschiedene Methoden: (a) Eintauchverfahren, (b) Sprühgefrieren, (c) Gefrieren mit Propanstrahlen, (d) Gefrieren mittels Metallspiegel, (e) Gefrieren unter hohem Druck

Gefrierfixieren (für das Abdruckverfahren)
Kupferträger eingesetzt. Das Einfrieren mittels eines Metallblockes geschieht durch Träger, die aus Kupfer oder Aluminium gefertigt sind.

Aufbewahrung

Die Probe wird unter flüssigem Stickstoff aufbewahrt. Oft ist aber zu beanstanden, dass die Probe nach anhaltender Lagerung unter flüssigem Stickstoff brüchig wird. Es können nach der Fixierung zwei Methoden verwendet werden, um das Objekt zu präparieren, entweder der Oberflächenabdruck (Gefrierbruch, -ätzung) oder die Herstellung von Ultradünnschnitten.

Ultradünnschicht-Methode:

Entwässern

Gefriersubstitution

Bei diesem Verfahren werden die chemische Fixierung und die Entwässerung in einem Schritt durchgeführt. Es wird Wasser allmählich durch Lösungsmittel, die mit Wasser mischbar und bei der infragekommenden Temperatur (-70 bis -100°C) noch flüssig sind, ausgetauscht. Hierfür verwendet man Butylbenzol, Toluol oder Dioxan, wobei Dioxan das beliebteste von den drei erwähnten Substanzen ist. Es ist außerdem auch ratsam, Dioxan zu verwenden, wenn danach eine Gefrierätzung folgt.

Tränken mit Kunstharz und Einbetten

Nachdem die Probe vollständig in Harz überführt wurde, ist es von Vorteil, sie noch ein bis drei Mal vollständig mit Einbettungsmaterial zu tränken, damit die Probe vollständig mit diesem gefüllt ist und alle Lösungsmittelspuren entfernt werden.

Ultramikrotomie
Ein Ultramikrotom bewegt den Probenblock auf bzw. über die Schneide eines scharfen Messers. Bei Proben mit weicher Konsistenz und hohem Wassergehalt (über 90%) stellt dieser Schritt ein Problem dar, weil sich diese Proben nicht ultradünn schneiden lassen, und weil die Hochvakuumbehandlung nicht ohne sehr starke Veränderungen überstanden werden kann. Eine Alternative für diese Objekte stellen die Druckkammer („environmental chamber“) oder die Verwendung von tiefgekühlten, gefrorenen Proben dar.

Kontrastverbesserung
Methodische Vorgehensweise

Oberflächenabdruck: Gefrierbruch und Gefrierätzung:

Gefrierbruch

Gefrierätzen
Das Gefrierätzen kann dem Gefrierbruch angeschlossen werden. Hierbei wird die Bruchfläche für kurze Zeit durch Sublimation des Gewebewassers geätzt. Der Probentisch wird auf eine Temperatur über der von flüssigen Stickstoff (-196°C), aber unterhalb der Rekristallisationstemperatur von Eis (-80°C) aufgeheizt. Für eine reine Eisoberfläche bei -100°C wählt man eine Geschwindigkeit von zwei nm pro Sekunde.

Bedampfung (Schwermetall)
Für die Bedampfung wird als Schwermetall meistens Platin verwendet. Feinkörnige Niederschläge erreicht man durch thermische Mischverdampfung von Platin und Kohle oder durch Verwendung hochschmelzender Metalle, wie zum Beispiel Wolfram, die in einem Elektronenstoßverdampfer verarbeitet werden können.

Ablösen der Oberflächenschicht
Die Probe wird der Vakuumkammer entnommen, und der Oberflächenabdruck wird auf die Oberfläche eines Wasserbades abgeflottet, gewaschen und auf das Netz gebracht.

Immunologisches Verfahren
Dieses Verfahren kann sowohl bei Oberflächenabdrücken als auch bei Schnitten oder bei Kombinationen der beiden angewendet werden. Bei diesem Verfahren wird Kolloidgold verwendet, das an sekundäre Antikörper oder Protein-A, einem bakteriell
Methodische Vorgehensweise

Negative Straining:
Zum Negativkonstrastieren gibt es drei Verfahren. Bei der Tropfenmethode wird die Probe auf das Netz gebracht, und mit einem Filterpapier wird der größte Teil der Probe aufgenommen. Danach gibt man einen Tropfen des Negativkonstrastierungsmittel dazu, lässt 30 Sekunden einwirken und nimmt die überstehende Flüssigkeit dann von der Seite mit Filterpapier wieder auf. Die Alternative dazu ist, das Netz auf die Probe zu geben und Netz und Probe dann auf das Negativkonstrastierungsmittel zu legen. Das dritte Verfahren ist das Sprühverfahren, wo die Probe mit dem Negativkonstrastierungsmittel in gleichem Verhältnis gemischt wird und auf das Netz gesprüht wird.30

Als Ergänzung soll noch die Elektronenergieverlustspektrometrie (EELS: electron energy loss spectrometry) erwähnt werden, bei der der spezifische Energieverlust
inhaltlich gestreuter Elektronen ausgewertet wird, um streuende Atome oder Bindungsarten auszuwerten.

3.2 Präparation für REM

Allgemein kann gesagt werden, dass die Probenpräparation für die REM viel einfacher ist als die der TEM, weil nicht Schnitte, sondern ganze Proben untersucht werden. Diese Proben müssen aber frei von Wasser, Lösungsmitteln oder anderen Substanzen sein, die im Vakuum gasen, die Säule verunreinigen oder Vakuumprobleme verursachen können.

![Abbildung 9: Verschiedene Methoden der Präparation bei der REM](image)

Fixierung

Den Fixiertechniken bei der REM gleichen die der TEM mit dem Unterschied, dass die Proben für die REM gereinigt werden müssen. Außerdem reicht oft die Primärfixierung aus, wobei die Sekundärfixierung mit Osmiumtetroxid (OsO₄) häufig eventuelle Aufladungsprobleme verringert.³⁰

Fixieren kann man entweder in Lösungen oder im Dampf. Für die Fixierung in Lösung sind 1-%iger OsO₄-Lösung, Glutaraldehyd (0,1- bis 6,5-%ig) oder 10-%iger Formaldehyd geeignet, wobei Glutaraldehyd am liebsten angewendet wird, weil er der Probe Festigkeit verleiht, ohne dabei selbst koagulierend zu wirken. Proben, die in Glutaraldehyd fixiert werden, kann man mehrere Monate darin lagern.

Nach der Fixierung in Aldehyd und dem Auswaschen in isotonischer Pufferlösung erfolgt meistens eine Nachfixierung, damit man sicher gehen kann, dass die Proben das darauffolgende Entwässern und die Trocknung ohne größere Schäden überstehen. Für die Nachfixierung wird OsO₄-Lösung (1-%ig), Sublimat (0,2-%ig) oder KMnO₄ (2-%ig) gewählt. Danach wird die Probe mit destilliertem Wasser gewaschen, um Reste der Fixierlösung zu entfernen. Die Fixierdauer ist von der Beschaffenheit der Probe abhängig.

Trockene Proben werden mittels der Technik der Fixierung im Dampf durch Imprägnieren mit dampfförmigen Fixantien stabilisiert. Als solche eignen sich Formalin- oder OsO₄-Dämpfe.

Entwässerung
Methodische Vorgehensweise

CP-Trocknung (Trocknung nach der Critical-Point-Methode)

Der kritische Punkt ist durch die kritische Temperatur und dem kritischen Druck der Probe charakterisiert. Trocknet man Teilchen aus einer Suspension durch Abtrocknen der Flüssigkeit, entfaltet die Oberflächenspannung ihre deformierenden Kräfte, sobald die Teilchen aus der Flüssigkeit herausragen. Dies wird vermieden, indem man das Präparat aus der flüssigen Phase in die gasförmige Phase eines Mediums überführt, um die Oberflächenspannung zu vermeiden. Für den CP-Trocknungsvorgang sind CO₂, Freon 12 oder N₂O als Trocknungsmedium geeignet. Das Wasser der Probe wird somit durch die flüssige Phase des Trocknungsmediums ersetzt.17 Dazu braucht man noch ein Austauschmedium, hierzu wird Aceton verwendet.36

Das Trocknen am kritischen Punkt kann man in drei Phasen unterteilen. Es beginnt mit dem Abkühlen der Metallkammer auf 5-10°C. Die Proben werden in die Kammer eingelegt, und sie wird mit einem Deckel verschlossen. Dann wird die Kammer mit flüssigem CO₂ gefüllt, und in der Kammer bildet sich ein Gemisch aus Lösungsmittel und flüssigem CO₂. Da man nur flüssiges CO₂ in der Kammer haben will, öffnet man Auslass- und Einlassventil für kurze Zeit, um die Kammer zu „spülen“. Der zweite Schritt ist die Aufheizphase, wo die Dichte der Flüssigkeit abnimmt bzw. die der Gasphase zunimmt, da es sich ja um ein geschlossenes System handelt. Beim kritischen Punkt wird die Dichte der flüssigen Phase gleich der Gasphase, das heißt, dass die Probe in einem sehr dichten Gas gehalten wird. Sie ist dabei trocken und unverzerrt, da am kritischen Punkt keine Oberflächenspannung vorherrscht. Die letzte Phase, die Entspannungsphase, beginnt nach Erreichen der gewünschten Temperatur und des gewünschten Druckes. Das Auslassventil wird geöffnet, und man lässt den Druck langsam auf Null abfallen.30

Montieren

Die meisten Proben werden auf eine Metallhalterung aus Aluminium montiert. Dazu werden Kleber oder Kleberfolien benutzt. Als Kleber sind schnell trocknende Epoxideharze am verbreitesten, weil diese stabil gegenüber Stahl, viskos und schnell trocknend sind, außerdem gasen sie nur minimal aus und haben eine gute mechanische Festigkeit.30 Als Kleber kann eine Emulsion aus Kupfer, kolloidalem Silber oder Ruß/Grafit zum Einsatz gelangen.17
Methodische Vorgehensweise

Beschichten mit Gold
Für die REM müssen die Proben elektrisch leitend sein. Nichtleitende REM-Proben werden mit einer dünnen Metallschicht versehen, um die Oberfläche leitend zu machen und eine negative Aufladung zu verhindern. Hierfür wird Gold in einem Kathodenzerstäuber auf die Probe bedampft. Dieser Goldüberzug besteht aus lauter Partikeln, die kleiner als 3 nm im Durchmesser und dadurch kleiner als die Auflösung der meisten Rasterelektronenmikroskope sind.30 Es finden auch Palladium, Platin und Silber Verwendung.34

Die Alternative ist eine Doppelbedampfung, wo die Probe zuerst mit Kohle bedampft wird, um eine leitende Unterlage zu schaffen und danach mit Metall (Al, Cu, Au, Au-Pd, Pt-Pd) bzw. Pt-C- Mischungen eine zweite Bedampfung durchgeführt wird.37

Proben, die mit rückgestreuten Elektronen oder mittels Röntgenmikroanalyse untersucht werden sollen, dürfen nicht mit einem Schwermetall wie Gold überzogen werden, da es die Unterschiede in den Ordnungszahlen für die rückgestreuten Elektronen überdeckt und Röntgenstrahlung aus der Probe absorbiert. Stattdessen wird in diesem Fall mit Kohlenstoff beschichtet.30

Oberflächenabdruckverfahren:
Wenn die Probe zu groß ist oder nicht in kleinere Stücke zerteilt werden kann, so kann man das Verfahren des Oberflächenabdrucks verwenden. Hier wird ein negativer Oberflächenabdruck der Probe gemacht, der mit Epoxydharz gefüllt wird. Das Harz härtet aus und bildet den positiven Oberflächenabdruck, der dann montiert, beschichtet und im REM untersucht wird.30

Kryo-REM:
Manche Proben können nicht chemisch fixiert werden, wie zum Beispiel Öle, Fette und Nahrungsmittel wie Eis und Milch. Diese Proben würden die REM-Säule verunreinigen und Probleme in Bezug mit Vakuum verursachen. Außerdem wirkt sich die chemische Fixierung oft schädlich auf die Probe aus.

Die Probe wird bei -130°C (oder niedriger) in der REM-Kammer gehalten, sodass kein Wasser oder andere organische Substanzen verdampfen können. In diesem gefrorenen Zustand werden zwei Komponenten für die Untersuchung gebraucht: Auf der einen Seite eine Präparationseinheit, die das Gefrieren und Beschichten der
Methodische Vorgehensweise

Probe erlaubt, auf der anderen Seite eine Einrichtung, die die Probe während der Untersuchung gefroren hält.

Alternativen:

Luftrocknen
Hier wird die Probe einfach an der Luft getrocknet, montiert und mit einem Metall überzogen.

Trocknen aus einem Lösungsmittel
Bei der Trocknung wird das, in der Probe enthaltende, Wasser schrittweise durch Flüssigkeiten wie Alkohol, Propylenoxid oder Aceton ersetzt. Nachdem das Objekt vollständig mit Dehydrierungsmedium getränkt wurde, kann man dieses verdunsten lassen oder einen Zwischenschritt einbauen, indem man das Objekt zum Beispiel aus 100-%igem Alkohol schrittweise in eine Flüssigkeit mit geringerer Oberflächenspannung, wie Ether, überführt. Da aber diese Methode den Nachteil besitzt, dass bei der Eintrocknung dieser Flüssigkeiten noch Oberflächenspannungskräfte auftreten können, ist die Kritische-Punkt-Methode für die Trocknung besser geeignet. Diese bietet nämlich eine optimale Strukturерhaltung.\(^{17}\)

Fixieren im Dampf
Die Probe wird in einen geschlossenen Behälter mit einer kleinen Menge wässrigen Osmiumtetroxids (1- bis 4-%ig) eingebracht, und durch die Dämpfe, die mit der Probenoberfläche reagieren, wird die Probe fixiert, gehärtet und stabilisiert. Danach wird die Probe aus dem Behälter genommen, an der Luft getrocknet, montiert und beschichtet.

Vorfixieren in Dämpfen
Die Probe wird mit OsO\(_4\)-Dampf vorfixiert, dann mit Glutaraldehyd fixiert, entwässert, am kritischen Punkt getrocknet, montiert und beschichtet.
Methodische Vorgehensweise

Gefrierfixation und Gefriertrocknung

Die Proben werden durch schockartiges Gefrieren fixiert. Das Eis sublimiert bei tiefer Temperatur im Hochvakuum unter Umgehung der flüssigen Phase. Vorteil dieser Methode ist, dass bei der Dehydration keine Schrumpfungen auftreten. Die Methode kann mit oder ohne Fixierung angewendet werden. Eine Vorfixierung in Glutaraldehyde und eine Nachfixierung sind aber sinnvoll, weil sie der Probe eine höhere Festigkeit verleihen und die Probe vor dem Einfrieren sorgfältig mit bidestilliertem Wasser gewaschen werden kann.38

Bei der Gefrierfixation ist es entscheidend, das Objekt schnell abzukühlen, um Schäden durch Eiskristallbildung möglichst klein zu halten. Bei geringen Abkühlungsraten kommt es vorwiegend interzellulär zur Bildung von Eiskristallen, wodurch den Zellen Wasser entzogen wird, was zu einem Anstieg der Salzkonzentration und damit zu einer Gefrierpunktniedrigung im Zellinneren führt. Die Folge sind Verlagerungen, Schrumpfungen und Risse im Gewebe. Bei höherer Abkühlungsgeschwindigkeit werden die Eiskristalle kleiner, häufiger und entstehen intrazellulär, was eine Beschädigung der Zellstrukturen zur Folge hat. Daher ist es notwendig, die Probe innerhalb von Millisekunden unter -140°C abzukühlen. Als Kühlmittel haben sich Propan, Isopropan und Frigen12 bewährt, die mit flüssigem Stickstoff auf -140°C (Propan), -160°C (Isopropan) bzw. -158°C (Frigen12) gebracht werden. Ebenfalls verwendet man Chemikalien wie DMSO (Dimethylsulfoxid), Glycerin oder Gelatine, um das Wachstum von Eiskristallen zu reduzieren.37 Auch Chloroform (2-%ig) kann verwendet werden.39

Nach dem Einfrieren darf die Temperatur höchstens auf -80°C ansteigen, da sonst eine Rekristallisation des Eises einsetzt, was Schädigungen hervorruft. Die Probe wird aus dem Kühlmittel genommen und in die Gefriertrocknungsanlage gebracht, wo die vom Eis absublimierten Wassermoleküle in unmittelbarer Nähe des Präparats entweder an einem, mit flüssigem Stickstoff oder einem Gemisch aus Trockeneis und Aceton gekühlten, Kühlfinger kondensieren oder von Phosphorpentoxid aufgenommen werden.

Als Alternativmethode zu der konventionellen Gefriertrocknung kann auch folgende Technik angewendet werden: Zuerst erfolgt eine Trocknungsphase mit Sublimation der Oberfläche bei -80°C, danach eine Resttrocknung bei -20°C.37
Methodische Vorgehensweise

Als weitere Alternative kann die vorgeschlagene Gefriertrocknung auch aus organischen Lösungsmitteln, wie zum Beispiel Amylacetat, passieren.\(^{39}\)

Kryostat-Präparation

Gefrierbruch

Nach Fixierung und Entwässerung werden die Proben in flüssigem Stickstoff gefroren und danach mit einer gekühlten Rasierklinge geschnitten. Die Technik heißt Gefrierbruch, weil die Klinge die Probe nicht schneidet, sondern sie bricht.

Einbetten in Harz

Man kann die Probe auch nach dem Fixieren in ein Epoxydharz einbetten, so wie dies bei der Präparation für TEM Usus ist. Danach werden die Proben in ein Ultramikrotom eingebracht, eins bis vier \(\mu \)m dicke Schnitte angefertigt, in Ethanol oder Aceton ausgewaschen, am kritischen Punkt getrocknet, montiert und beschichtet.

Immunozytochemisches Verfahren

Oberflächenzielmoleküle, wie zum Beispiel Antigene, Lektine oder Enzymsubstrate, werden mit spezifischen Identifikationsmolekülen, wie Antikörpern, Polysacchariden oder Enzymen, lokalisiert. An den Identifikationsmolekülen sind Stoffe wie Gold oder Latexkugeln gebunden.\(^{30}\)

Raster-Transmissionselektronenmikroskopie:

Ein Raster-Transmissionselektronenmikroskop (STEM: scanning transmission electron microscopy) ist ein Elektronenmikroskop, mit dem Dünnschnitte und andere Proben in einem Abtastmodus untersucht werden können. Es stellt eine Kombination von REM und TEM dar. Die einfallenden Elektronen durchstrahlen die Probe nicht im Abbildungs- oder Scheinwerfermodus, wie das bei der TEM der Fall ist, sondern
werden als Sonde benutzt und tasten die Probe in derselben Weise wie in der REM ab. Im Vergleich zur TEM bietet das Raster-Transmissionselektronenmikroskop den Vorteil, dass Proben nicht so dünn geschnitten werden müssen16, die Probendicke liegt zwischen 100 nm und 1 μm30.

3.3 Präparation für CLSM

Zum Scannen der Oberfläche der Probe kommen zwei verschiedene Verfahren zur Anwendung, entweder wird das Objekt durch einen Piezo-Positionierer bewegt, oder es wird eine Nipkow-Scheibe – das ist eine rotierende Lochscheibe – angewendet, die die Probe punktförmig beleuchtet40.

Harte Proben werden oft geschnitten oder geschliffen, damit diese nicht die Objektlinse zerkratzen können. Wenn Objekte mit einem Deckglas versehen werden, das einen anderen Brechungsindex wie die Probe oder das Medium vor dem Objektiv (Luft) hat, werden dicke Deckgläser und nicht die Standard-Deckgläser mit 0,17 mm Dicke eingesetzt41.

Bei der Technik des Negativ-Kontrasts werden kleine, isolierte, nicht fluoreszierende Proben mit einem konfokalen Fluoreszenzmikroskop visualisiert, indem man die Probe in ein Medium mit einer fluoreszierenden Lösung gibt42. Solche Färbemittel sind zum Beispiel Fluoresceinisothiocyanat (FITC), Acridin Orange (Detektion bei 500 nm), Cy5 (Detektion bei 630 nm), Phycocyanin (Detektion bei 630 nm), Nile Red, Nile Blue, …51

Abhängig vom Untersuchungsziel werden spezielle Färbemitteln, Detektoren und Laser verwendet42.

3.4 Präparation für RKM

Methodische Vorgehensweise

wird mit Fotodioden nachgewiesen. Bei dieser Stromänderung wird ein Bild auf einer Kathodenstrahlröhre erzeugt.\(^30\)

Die Probenpräparation ist nicht aufwendig, doch man muss darauf achten, dass keine Fingerabdrücke oder Staub von der Umgebung die Probe kontaminieren. Trockene Proben werden an einen Probenhalter (Metalltisch) angeklebt.

Eine andere Methode der Probenvorbereitung ist das Einlegen in Lösungen.\(^45, 46\) Hier kann man das Objekt, das sich in einer Petrischale in einer Flüssigkeit befindet, direkt verwenden. Wichtig dabei ist, die Temperatur der Lösung zu beachten.\(^47\) Die Messnadel ist nämlich auf Temperaturänderungen extrem empfindlich. Nachteil dieser Methode ist, dass man nachher alle Teile reinigen muss, die mit der Lösung in Kontakt waren, damit man Kontaminationen und Verunreinigungen bei weiteren Analysen vermeidet.
4 Ergebnisse

4.1 Methodische Vorgehensweise bei Lebensmitteln: Vergleich von unterschiedlichen Techniken

In diesem Kapitel werden zuerst Unterschiede zwischen den verschiedenen Arten von Mikroskopen in Bezug auf physikalische Parameter, technische Details,… erklärt. Der zweite Teil handelt von den unterschiedlichen Einsatzgebieten dieser Techniken im Nahrungsmittelsektor.

Allgemein kann gesagt werden, dass die Wahl der besten Methode von verschiedenen Faktoren, wie zum Beispiel der Eigenschaften der Probe, Größe der Probe, Ausstattung des Labors, Auflösung des Geräts, Ziel der Untersuchung, … abhängig ist, und dass es besser ist, sich nicht nur auf eine Technik zu stützen, sondern mehrere anzuwenden, um Vergleiche anstellen zu können.

Die besprochenen Techniken werden sowohl für eine qualitative Beschreibung der Probe, als auch für eine Analyse der Verteilung der Bestandteile im Lebensmittel genutzt. Man kann mit den genannten Methoden somit auch zeigen, wie Bestandteile sich gegenseitig beeinflussen können, sowohl in positiver, als auch in negativer Hinsicht.

4.1.1 Auflösungsvermögen

Tabelle 6: Auflösungsvermögen von verschiedenen Techniken

<table>
<thead>
<tr>
<th>Technik</th>
<th>Auflösungsvermögen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichtmikroskopie</td>
<td>200 nm [a]</td>
</tr>
<tr>
<td>Transmissionsmikroskopie</td>
<td>0,2 – 0,3 nm [a], bis 0,1 nm [g]</td>
</tr>
<tr>
<td>Rasterelektronenmikroskopie</td>
<td>50 – 200 Å [b] ≡ 3-20 nm</td>
</tr>
<tr>
<td>Konfokale Laser-Raster-Mikroskopie</td>
<td>bis 0,25 µm [c] bzw. 0,2 µm [g]</td>
</tr>
<tr>
<td>Rasterkraftmikroskopie</td>
<td>2-10 nm [f], bis 0,1 nm [g]</td>
</tr>
<tr>
<td>Magnetresonanztomografie</td>
<td>bis 0,1 nm [e]</td>
</tr>
<tr>
<td>Polarisationslichtmikroskopie</td>
<td>bis 0,1 µm [g]</td>
</tr>
</tbody>
</table>

(Quelle:

Natürlich stellen die Werte für das Auflösungsvermögen der einzelnen Geräte nur Richtwerte dar, da die Auflösung von vielen physikalischen Parametern und Einflussfaktoren abhängig ist.

Aus der Tabelle geht aber hervor, dass das Auflösungsvermögen von REM nur um circa eine Zehnerpotenz besser als das der Lichtmikroskopie und um etwas mehr als einer Zehnerpotenz schlechter als das der Transmissionselektronenmikroskopie ist. Die Auflösung bei der TEM ist durch Präparation und Bestrahlung auf 0,1 nm begrenzt. Beim Rasterelektronenmikroskop ist die verbesserte Tiefenschärfe für die guten Aufnahmen verantwortlich, bei einem Lichtmikroskop nimmt die Schärfentiefe bei zunehmender Vergrößerung stark ab.
Ergebnisse

Zusammenfassend kann also gesagt werden, dass man mit der CLSM und Elektronenmikroskopie den molekularen bzw. submolekularen Bereich untersucht und die RKM und die Magnetresonanztomografie hingegen den atomaren und molekularen Level abdecken.

4.1.2 Probengröße und -dicke

In der Tabelle 7 wird die Probengröße und die Probendicke für die verschiedenen Methoden behandelt.

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probengröße / Probendicke</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM</td>
<td>3mm x 8 mm[a]</td>
</tr>
<tr>
<td>TEM</td>
<td>100 nm[a]</td>
</tr>
<tr>
<td>CLSM</td>
<td>-</td>
</tr>
<tr>
<td>RKM</td>
<td>-</td>
</tr>
</tbody>
</table>

Anm.: - ... kein Schneiden notwendig
Für die Transmissionselektronenmikroskopie ist die Präparation der Probe ziemlich schwer, weil für diese Methode eine Probengröße bzw. –dicke von 100 nm erforderlich ist.

Bei der CLSM und RKM ist keine bestimmte Probendicke bzw. –größe notwendig, was einen großen Vorteil bezüglich Präparation bringt. Die RKM schafft eine hohe Vergrößerung bei großer Auflösung mit kurzen Probenvorbereitungen55,56, was sie sehr beliebt macht. Darauf wird aber in den weiteren Kapiteln noch näher eingegangen.

4.1.3 REM vs. RKM

Den Vergleich zwischen REM und RKM zeigt die nachfolgende Tabelle. Wie man daraus erkennen kann, ist RKM vor allem für die Analyse von dreidimensionalen Strukturen geeignet.
Ergebnisse

Tabelle 8: Unterschiede zwischen REM und RKM

<table>
<thead>
<tr>
<th>Charakteristiken der Probe</th>
<th>REM</th>
<th>RKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präparation[a]</td>
<td>aufwendig</td>
<td>leicht</td>
</tr>
<tr>
<td>Probenbeschaffenheit[a]</td>
<td>vakuumtauglich</td>
<td>„normal“, eventuell Größenveränderung</td>
</tr>
<tr>
<td>Arbeitsumgebung[a]</td>
<td>Vakuum</td>
<td>trocken, flüssig, Vakuum</td>
</tr>
<tr>
<td>Analyse[a]</td>
<td>Oberflächenanalyse</td>
<td>Oberflächenanalyse</td>
</tr>
<tr>
<td>Fokustiefe[a]</td>
<td>klein</td>
<td>klein</td>
</tr>
<tr>
<td>Tiefenschärfe[a]</td>
<td>groß</td>
<td>mittel</td>
</tr>
<tr>
<td>Auflösung (xy-Achse)[b]</td>
<td>5 nm</td>
<td>0,1 – 1 nm</td>
</tr>
<tr>
<td>Auflösung (z-Achse)[b]</td>
<td>-</td>
<td>0,01 nm</td>
</tr>
<tr>
<td>Vergrößerung[a]</td>
<td>1 * 10⁷</td>
<td>5 * 10⁻²-10⁻⁸</td>
</tr>
<tr>
<td>Bild[b]</td>
<td>2-dimensional</td>
<td>3-dimensional</td>
</tr>
<tr>
<td>Schnelligkeit des Verfahrens[b]</td>
<td>schnell</td>
<td>langsam</td>
</tr>
</tbody>
</table>

(Quelle:

Die Vorteile der RKM gegenüber der REM zeigen sich laut Tabelle 8 in der Möglichkeit der Aufnahme von 3-dimensionalen Oberflächenprofilen der Probe, was durch die gute Auflösung in der xy- bzw. z-Achse ermöglicht wird^10^. Die REM liefert dagegen „nur“ 2-dimensionale Bilder. Während bei der RKM keine Probenvorbereitung notwendig ist, müssen die Proben bei der REM aufgrund der Probenumgebung im Vakuum aufwändig präpariert werden, was zur Schädigung der Probe führen kann. Da bei der RKM nicht im Vakuum gearbeitet wird, kann man auch lebende Organismen oder biologische Makromoleküle damit gut untersuchen.

4.1.4 TEM vs. REM
Je nach Ziel und Aufgabenstellung wird die REM oder TEM als Analysenmethode angewendet.

In Abbildung 10 wird der Unterschied zwischen REM und TEM in Bezug auf Vergrößerung deutlich. Beide Bilder zeigen einen Mausmuskel, im Speziellen die T-Tubuli. Das obere Bild (A) erhielt man durch die REM, das untere (B) durch die TEM.

Abbildung 10: Mausmuskel: (A) REM - Bild, (B) TEM - Bild; T=T-Tubuli

Anm.: Der Strich im rechten unteren Eck stellt bei (A) 1µm und bei (B) 2 µm dar.

Ergebnisse

Es gibt auch einen Unterschied bei der für die REM bzw. TEM eingestellten Spannung: Während bei der REM 3 bis 20 kV Spannung verwendet wird, wird bei der Untersuchung mit TEM 60 bis 80 kV gebraucht.62

4.2 Einsatzbereiche der Methoden im Nahrungsmittelsektor

4.2.1 Immunchemische Methoden

Abbildung 11: Immunchemische Methoden

(a) Reaktion zwischen primären, spezifischen Antikörpern mit β-Lactoglobulin; sekundäre, nicht-spezifische Antikörper (auf den Goldpartikel) markieren β-Lactoglobulin mit Gold.
(b) Verteilung von Gold (welches anzeigt, dass β-Lactoglobulin im Fleisch vorherrscht)

4.2.2 Fraktale Analyse
4.2.3 Gefrieren von Lebensmitteln

Abbildung 12: Erdbeeren / REM: (A) schnelles Gefrieren, (B) langsames Gefrieren

In der linken Abbildung sieht man intakte Zellen mit kleinen Eiskristallen, verursacht durch schnelles Gefrieren, während rechts die Zerstörung der Zelle in Folge langsamen Gefriers erkennbar ist.
4.2.4 Untersuchung von Lebensmittelgruppen
Milch und Milchprodukte

Die Mikrostruktur von Milchprodukten ist reich an Fettkugelchen, Membranen, kolloidalen Aggregaten und Kristallen. Durch die heterogene Zusammensetzung von Lebensmitteln ist es oft schwer, die Struktur derselben zu erfassen und zu analysieren, und es sind Techniken entstanden, die versuchen, auch die Struktur problematischer Lebensmittel zu erfassen. Zu diesen Produkten gehören vor allem Fette und fettreiche Lebensmitteln, weil ihre Mikrostruktur im Vergleich zu anderen Lebensmitteln enorm temperaturabhängig ist.\(^\text{16}\)

Gerade Milch und Milchprodukte sind für die Elektronenmikroskopie auf Grund des ähnlichen Gehalts an flüssigem Fett und Wasser schwer zu präparieren.

In der nachfolgenden Tabelle wird erklärt, für welche Milchprodukte TEM bzw. REM angewendet werden.\(^\text{16}\)

<table>
<thead>
<tr>
<th>Technik</th>
<th>Probenbeschaffenheit</th>
<th>Milchprodukt</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM</td>
<td>Negativbild, Suspension</td>
<td>Flüssige Milch, Creme (^\text{84,85,91,86,87,88,89,90,91,92})</td>
</tr>
<tr>
<td>Metallschatten-</td>
<td>Suspension</td>
<td>Flüssige Milch, Creme (^\text{80,93,94,95,96,97})</td>
</tr>
<tr>
<td>Technik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dünne Schnitte</td>
<td>Suspension, fest</td>
<td>Flüssige Produkte, Käse, Creme (mit Agar) (^\text{62,178,96,99,100,71,74,75,76,101,102,73,103,88,104})</td>
</tr>
</tbody>
</table>

(Quelle: Kálab, M. (1981).\(^\text{153}\))
Ergebnisse

Wie man daraus erkennen kann, wird REM eher für getrocknete und viskosere Milchprodukte, wie Milchpulver, Creme, Butter,…, eingesetzt. TEM hingegen gibt Aufschluss über Suspensionen. Weiters kann gesagt werden, dass die Gefrierbruchtechnik bei der TEM grundsätzlich für alle und die Replikation von getrockneten Proben für proteinreiche Milchprodukte angewendet werden kann.

Milch
RKM kann für die Untersuchung von Milch verwendet werden. In der folgenden Abbildung sind Caseinmizellen von Kondensmagermilch dargestellt.

Die Probenvorbereitung zur Analyse der Caseinmizellen ist nicht aufwendig: Ein Tropfen von Kondensmilch wird auf ein Deckglas gebracht und 15 Minuten bei Raumtemperatur gewartet, danach wird die Probe unter Raumbedingungen gescannt.

Milchpulver
Bei diesen Partikeln handelt es sich um hohle Bereiche mit einer feinen Oberfläche. Unter einem Rasterelektronenmikroskop sieht man die kristallisierte Laktose. Die REM wird verwendet, um zu schauen, ob Laktose nach dem Sprühtrocknen (während der Lagerung) nadelähnliche Kristalle ausbildet und bei der
Ergebnisse

Vorkristallisation ohnehin keine atypischen Formen entstehen. Die Partikel werden mit heißer Luft getrocknet, und man kann sie noch mit einer oberflächenaktiven Substanz (Lecithin) überziehen.16

Mit CLSM hat man ebenfalls die Oberfläche von Milchpulver untersucht. Für diesen Zweck wurde das Milchpulver in einer Glycerol-Lösung mit einem fettlöslichen, fluoreszierenden Färbemittel verteilt.150

Milchschäume

Ergebnisse

Es wird außerdem beobachtet, dass bei Schäumen aus erhitzten Proteinlösungen, im Vergleich zu solchen aus nativen, nicht erhitzten Proteinlösungen, eine erhöhte Proteinmenge an der Grenzfläche Luft / Wasser adsorbiert.156

Joghurt

In der nachfolgenden Abbildung, die mit konfokaler Mikroskopie erstellt wurde, sieht man Joghurt, das mit verschiedenen hohen Drücken homogenisiert wurde. Der höhere Druck führt zur Ausbildung von vielen, kleinen Fettkügelchen, während das Homogenisieren mit niedrigerem Druck große Fettkugeln hervorbringt.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{joghurt.png}
\caption{Joghurt / CLSM}
\end{figure}

(a) Homogenisierung bei hohem Druck; (b) Homogenisierung bei niedrigem Druck

Im oberen Bild sind die Fettkügelchen klein, da mit hohem Druck gerührt wurde, im unteren Bild finden sich auf Grund der Homogenisierung bei niedrigem Druck große Fettkügelchen.

Dieser Unterschied in der Mikrostruktur macht sich äußerlich bzw. makroskopisch in der Konsistenz bzw. im Wasserhaltevermögen erkennbar. Weiters kann die
Ergebnisse

Veränderung der Struktur auch ein ungewohntes sensorisches Gefühl im Mund auslösen und dadurch vom Konsumenten abgelehnt werden.

Abbildung 15: Zwei Joghurtarten / CLSM
Gekaut (links), bei 35°C (Mitte) und bei 5°C (rechts)

Bei der ersten Joghurtart (obere Reihe) ist eine Ähnlichkeit zwischen dem Joghurt, das auf 35°C erhitzt wurde (mittleres Bild) und dem Joghurt, das bereits im Mund war (links), ersichtlich, während sich diese Vergleichbarkeit in der unteren Reihe (bei Joghurtart 2) nicht findet.157

Das Beispiel des Joghurts soll bewusst machen, wie stark Prozessänderungen, wie Kochen, Frieren, mechanische Belastungen,…, die Struktur von Lebensmitteln beeinflussen können.

Käse

Abbildung 17: Gouda: Bruch - Ausbreitung nach Einschnitt / CLSM.

In diesen Bildern wird ein Phänomen sichtbar, das im Methodikteil bei der Gefrierbruchtechnik erwähnt wurde. Bei dieser Technik unterscheidet man zwei Arten, und bei einer Art wird die Probe mit einem Messer „geschnitten“. In der Abbildung wird aber ersichtlich, dass es sich nicht um ein Schneiden im üblichen Sinn handelt, sondern dass die Probe auf Grund ihrer Konsistenz in Wirklichkeit gebrochen wird. Nach dem Einschnitt breitet sich der Bruch durch die schwächsten Stellen in der Struktur aus.

Joghurt, Topfen, Käse
Um gute Bilder mit REM zu erreichen wird die Trocknung nach der Critical-Point-Methode angewendet. Zuerst werden die Proben in 1 x 1 x 10 mm große Prismen geschnitten, die danach in einer Ethanol-Reihe dehydratisiert werden. Nachdem man sie mit 100% Ethanol behandelt hat, werden sie durch flüssigen Stickstoff gefroren. Danach werden die Proben gebrochen, in Ethanol gegeben und CP-getrocknet.
Ergebnisse

Für Tofu gilt die gleiche Probenvorbereitung. Fettreiche Produkte, wie Topfen oder Käse, werden mit Chloroform oder n-Hexan behandelt, ansonsten wird die oben genannte Methode angewendet.

Cottage Cheese

![Abbildung 18: Hüttenkäse / REM: durch drei verschieden Techniken untersucht](image)

Wie aus den Bildern zu erkennen ist, sind alle drei genannten Methoden für die Untersuchung von „Cottage Cheese“ anwendbar.

Eiscreme

Abbildung 19 zeigt eine elektronenmikroskopische Aufnahme (REM) von Eiscreme. Hergestellt wurde das Präparat durch die Kryo-Technik.

Einsatzbereiche von Elektronenmikroskopie, konfokaler Mikroskopie und Rasterkraftmikroskopie bei Milchprodukten (allgemein)

Abbildung 20 zeigt ein Bild von Käse, die Proteine sind vom Fett deutlich zu unterscheiden.
Ergebnisse

Abbildung 20: Käse: Proteine und Fett / CLSM

Proteine werden durch Anfärben leicht erkennbar, die Fettphase wird durch Negativ-Kontrast sichtbar gemacht.

Die Qualität von Cremes kann ebenfalls durch CLSM überprüft werden. Diese wird durch Pasteurisieren, Lagern und anderen Prozessschritten verändert bzw. beeinflusst. Die Qualität kann am fetttfreien Gehalt und am Grad der Verbindungen der Kügelchen gemessen werden.\cite{51}

Zur Veranschaulichung zeigen die drei folgenden Abbildungen typische Einsatzbereiche für Elektronenmikroskopie und konfokaler Mikroskopie.\cite{157} In der Abbildung 21 sieht man die Struktur von Magermilch, die durch die CLSM visualisiert wurde. Bei den beiden elektronenmikroskopischen Aufnahmen, die geronnenes Gel und Topfen darstellen, kann man Wasser, Fett und Proteine deutlich auseinanderhalten, und man hat somit die Struktur im Detail vorliegen.

Abbildung 21: Gel (durch Chymosin) aus Magermilch / CSLM
weiß = Proteine, schwarz = Wasser
(Quelle: McClements, D. J. (2007). S.604.\cite{157})
Ergebnisse

Röntgenstrukturmikroanalyse

Elektronenenergieverlustspektroskopie

Abbildung 25: Verteilung von Kalzium in einer Caseinmizelle in Milch / EELS
Größe des Balkens: 0,25 µm
(Quelle: Kaláb, M. et al. (1995). S.181.\(^\text{13}\))
Ergebnisse

Das Prinzip von EELS beruht auf dem Verlust von Energie, wenn schnelle Elektronen auf oder durch eine Probe treffen. Verschiedene Wechselwirkungen in der Probe führen dazu, dass einige Elektronen Energie abgeben. Dadurch verringern sie ihre Geschwindigkeit und werden im Analysator stärker abgelenkt.\(^{161}\)

Feldemissionsrasterelektronenmikroskop
Die Feldemissionsrasterelektronenmikroskopie ist eine Art der REM. Diese Methode zeichnet sich durch hohe Auflösung aus. Man nutzt sie für die Untersuchung von Casein-Mizellen.\(^{157}\)

Stärkehaltige Produkte
Stärkekörner

Abbildung 26: Stärkekörner / REM
(A) Getreide, (B) Tapioka, (C) Weizen, (D) Kartoffeln
Ergebnisse

Die Stabilität und Festigkeit von Stärkekörnern können durch RKM sichtbar gemacht werden. Dies zeigt Abbildung 27.

![Abbildung 27: Stärkekorn / RKM](image)

Größe: 30 x 30 µm
(Quelle: Dickinson, E. (1995). Fig. 3.6.[51])

Verglichen mit der REM und TEM51 kann man mit der RKM viele Prozesse verfolgen, ohne Schädigungen durch Elektronen befürchten zu müssen, und die Probenvorbereitung ist leichter. Früher wurden die Objekte für die RKM fixiert oder getrocknet.164 Bei zellulärem Material wurde auch luftgetrocknet, fixiert oder bis zum kritischen Punkt getrocknet.164,165,166,167,168

Kartoffeln

Werden Kartoffeln gekocht, entstehen zwei wichtige Strukturen: Zuerst gelatiniert die Stärke bei 58 bis 70°C, danach zerfällt die Zelle auf Grund der Zerstörung der Mittellamelle. Wenn die gelatinierte Stärke anschwillt, platzt die Zellwand, und man erkennt diesen Fehler an einer matschigen (nicht festen) gekochten Kartoffel. Durch Gefriertrocknung und Untersuchung mit der REM konnte man diesen Prozess verbessern, indem man das Vorkochen der Kartoffel bei 71°C auf 20 Minuten ausgedehnt hat.16

Getreideprodukte, Backwaren und Süßigkeiten

Getreidesnacks

Für die Untersuchung von trockenen Snacks aus Getreide kann die REM verwendet werden.169 Es wurde ein Zusammenhang zwischen der Struktur von Laktose in
Ergebnisse

Milchpulver und dem a_w-Wert gefunden. Diese Beziehung hat sowohl Einfluss auf die Qualität als auch auf die Textur des Lebensmittels170. Für die Analyse wird die Probe auf eine Aluminiumplatte gegeben und auf einen a_w-Wert von 0,11 getrocknet. Dann werden die Snacks mit Gold und Palladium (60% und 40%) bedampft und mittels REM bei 6 kV und bei einer Punktgröße von 320-640 Å untersucht.

Brot

Brot kann für die Untersuchung mittels REM unterschiedlich präpariert werden. Eine Möglichkeit ist eine Fixierung in 5-%igen Gluteraldehyd in 0,1 M Phosphatpuffer mit einer Endfixierung in gepufferten 1-%igen Osmiumtetroxid. Nachdem die Probe in Wasser gespült wird, wird sie in Ethanol dehydratisiert und luftgetrocknet.172

Abbildung 28 zeigt das Ergebnis dieser Präparationstechnik.

![Abbildung 28: Brot / REM (Lufttrocknung)](image)

(Quelle: Cohen, S. H. et al. (1981). S.236.172)

In der Abbildung erkennt man, dass Stärke und Proteine keine kontinuierliche Phase bilden. Man erkennt die Oberfläche von Stärkekörner, die sich als lange, scheibenförmige, wie als kleine, runde Körnchen zeigen.

Eine andere Möglichkeit nach der Fixierung in Gluteraldehyd und Osmiumtetroxid und Dehydratisierung in Ethanol ist die CP-Trocknung172, das Ergebnis sieht man in Abbildung 29.
Ergebnisse

Abbildung 29: Brot / REM (CP-Trocknung)

Weiters kann nach der Dehydratisierung auch eine Gefriertrocknung erfolgen, wie dies in Abbildung 30 der Fall ist.

Abbildung 30: Brot / REM (Gefriertrocknung)

Fetthaltige Lebensmittel

Bei der Analyse von Fett werden je nach Ziel der Untersuchung verschiedene Methoden angewendet. Um das Verhältnis flüssiger Anteil zu festem Anteil oder den festen Anteil zu untersuchen, kommen die Dilatometrie, die NMR (Kernresonanzspektroskopie) und die MRI (Magnetresonanztomografie) in Einsatz. Um die Fettkristalle zu analysieren, finden spektroskopische Techniken (Raman-Spektroskopie, Infrarot-Spektroskopie) oder mikroskopische Techniken (Polarisationslichtmikroskopie, Elektronenmikroskopie) Anwendung.
Ergebnisse

Margarine und Butter

CLSM wird vor allem für fettreiche Lebensmittel verwendet, zum Beispiel für Butter und Margarine. Es wird eine große Menge von der Probe genommen, damit das Präparieren der Probe die Größe und Position der Fettkugeln nicht beeinflusst. Hierzu werden Nile Red zum Färben der Lipide und Fluoresceinisothiocyanat für Proteine verwendet.\(^\text{13}\) Statt Nile Red finden auch andere Fluorochrome, wie zum Beispiel Acridin Orange, Congo-Rot, Alexa-Fluor, Nile Blue, Fast Green FCF und Texas-Red, Verwendung.\(^\text{157}\) Die unterschiedlichen Bestandteile können danach durch Fluoreszenz identifiziert und lokalisiert werden. Dieselbe Technik wird auch für Weizenteig beschrieben.\(^\text{13}\)

Emulsione

Abbildung 31: Salatdressing / CLSM (Negativ-Kontrast)
gefärbt mit Nile Red und Fast Green FCF

Bei Emulsionen untersucht man vor allem die Größe und Verteilung der Wassertröpfchen, die hauptverantwortlich für die Textur und Stabilität des jeweiligen Lebensmittels sind. Fettkristalle sind auch sehr interessant, doch dadurch, dass sie sehr klein sind und sie nur einen kleinen Öl-Anteil besitzen, ist es sehr schwer, sie mittels CLSM zu untersuchen.

Für die Untersuchung mittels REM werden zwei mm³ Probe in einem Fläschchen mit 4-%igen Glutaraldehyd in 0,07 M Phosphatpuffer bei einem pH-Wert von 7 über Nacht bei 4°C aufbewahrt. Danach werden die Proben drei Mal für je fünf Minuten in Phosphatpuffer und anschließend für vier Stunden in Phosphatpuffer mit 1-%igen
Ergebnisse

Osmiumtetroxid gegeben, um die Lipide zu stabilisieren. Folgend wird die Probe in Ethanol, danach in Amylacetat dehydratisiert. Anschließend erfolgen eine CP-Trocknung und eine Gold/Palladium-Behandlung. Mit einem REM wird die Probe bei einer Spannung von 20 kV angeschaut.

Die Technik der Gefriertrocknung kann hier nicht angewendet werden, weil die Emulsion dem Gefriervorgang nicht standhält.172

Bei der Untersuchung mit TEM wird circa ein Gramm der Probe in 5 ml wässriger Lösung, die 2% Agar und 1% Glycerol enthält, gelöst. Wenn sie fest ist, werden kleine Stücke (circa zwei mm³) runterschnitten und in 5-%igen Glutaraldehyd in 0,05 M Phosphatpuffer (pH 7,2) zwei Stunden lang bei Raumtemperatur fixiert und in 1-%igen Osmiumtetroxid in Phosphatpuffer nachfixiert. Danach wird in einer Ethanol-Reihe dehydratisiert und in einer gesättigten Lösung von Uranylacetat in 70-%igen Ethanol für drei Stunden gefärbt. Dann wird die Probe in Propylenoxid und eine Mischung aus Propylenoxid und Luft’s Epon im Verhältnis 1:1, danach für 90 Minuten in reines Epon gegeben. Mit einem Ultramikrotom werden dünne Schnitte (Scheiben) angefertigt und bei einer Spannung von 80 kV mittels TEM betrachtet.172

Aus der Abbildung 32 wird deutlich, dass REM angewendet werden kann, um die Tropfengrößenverteilung von Emulsionen, zum Beispiel von Mayonnaise, zu bestimmen.172

Das ist auch in Abbildung 33 ersichtlich. Hier wurde die Struktur von Salatdressing visualisiert.

Abbildung 32: Mayonnaise / REM
(Quelle: Cohen, S. H. et al. (1981). S.233 \(^{172}\))
Abbildung 33: Salatdressing / REM
(Quelle: Cohen, S. H. et al. (1981). S.236 [172])

Abbildung 34: Mayonnaise / TEM
(Quelle: Cohen, S. H. et al. (1981). S.234 [172])

Abbildung 34 zeigt Mayonnaise, die mit TEM untersucht wurde. Diese Methode eignet sich nicht für die Bestimmung der Verteilung der Tropfengrößen, weil dazu entweder viele Bilder nötig wären oder man auf Grund der dünnen Schnitte Korrekturen bei der Angabe der Tropfendurchmesser machen müsste.

Eiweißhaltige Lebensmittel

Fleisch

Für die Untersuchung mittels TEM wird Rindfleisch in 2-%igem Glutaraldehyd in 0,15-%iger Natriumchlorid-Lösung bei einem pH-Wert von 7 fixiert und danach in 1-%igem Osmiumtetroxid in 0,1 M Cacodylatpuffer beim pH-Wert von 7 nachfixiert. Danach wird die Probe mit Ethanol dehydratisiert, in Epon gelagert und mit Bleicitrat und Uranylacetat gefärbt.172
Abbildung 35: Fleisch / TEM
(Quelle: Cohen, S. H. et al. (1981). S.53.[172])

In Abbildung 35 sind A- (A), I-Bänder (I), die M-Linie (M), Z-Scheiben, die H-Zone (H), Mitochondrien (mi), das Plasmalemma (pl) und das sarkoplasmatische Retikulum (SR) zu sehen.

Für die Untersuchung mittels REM wurde Rindfleisch in 2,5-%igem Glutaraldehyd fixiert, in Ethanol dehydratisiert und mit Amylaceta gefärber.172

Abbildung 36: Fleisch / REM
(Quelle: Cohen, S. H. et al. (1981. S.53.[172])

Die meist verwendeten Fixiermittel bei der Fixierung von Fleisch bei der TEM und REM sind Glutaraldehyd35 und Karnovsky´sche Lösung173, die eine Kombination von Glutaraldehyd (3%) und Paraformaldehyd (1,5%) ist. Die Karnovsky´sche Lösung ist für die TEM erfunden worden, aber sie wird genauso für die Analyse mittels REM
Ergebnisse

Die Konzentration von Glutaraldehyd sollte zwischen 1,7 bis 3,3% betragen.174,175 Bei der Präparation von Fleisch kann man sagen, dass sowohl bei der REM, als auch bei der TEM zwei Schritte gleich sind, das sind die Fixierung mit entweder 1,7- bis 3,3-%igem Glutaraldehyd oder der Kombination von Glutaraldehyd (3%) und Paraformaldehyd (1,5%) und die Dehydratisierung mit Ethanol oder Aceton. Während bei der TEM danach eine Lufttrocknung und eine Lagerung in Epon erfolgt, wird bei der REM entweder CP- oder gefriergetrocknet, danach erfolgt der Gefrierbruch und eine Au-Pd-Behandlung.172

Viskose Lebensmittel

Bei viskosen und flüssigen Lebensmitteln, wie zum Beispiel Emulsionen oder Suspensionen, Joghurt, Cremen, Mayonnaise62, Milch178, 100 und Orangensaft179 kann die Technik der Verkapselung genutzt werden. Die Proben werden in Agar-Kapseln gebracht.62 Nachdem sie dicht verschlossen werden, werden sie wie feste Proben behandelt, man kann also zum Beispiel dünne Schnitte anfertigen und diese mikroskopieren. Diese Methode kann sowohl für die REM, als auch für die TEM angewendet werden, mit dem Unterschied, dass bei der TEM kleinere Kapseln (dünner Kapillaren) notwendig sind. Bei der TEM verwendet man Kapillaren mit einem Durchmesser von 0,3 bis 0,5 mm, während man bei der REM einen Durchmesser von 1 mm bevorzugt.

Bei der REM wird Agar (3%) in destilliertem Wasser gelöst, gekocht und dann auf circa 40°C gekühlt. Die Probe saugt man mit einer Pasteurpipette auf, und die Spitze der Pipette taucht man danach in den Agar. Anschließend taucht man die Pipette seitlich in den Agar, sodass eine Art Hülse von 0,5 mm Dicke um die Probe entsteht. Nachdem der Agar fest ist, wird die Hülse entfernt, und die Hülse wird mit der Probe befüllt und mit Agar verschlossen.

In Abbildung 37 ist der Verlauf der Verkapselung schematisch dargestellt.
Ergebnisse

Abbildung 37: Verkapselung
(Quelle: http://www.magma.ca/~scimat/foodmicr.htm[31])

Diese beschriebene Methode der Verkapselung ist für Milch nicht anwendbar.180 Weiters kann die Struktur von manchen Lebensmitteln, wie zum Beispiel Creme und Mayonnaise, durch die Wärme zerstört werden. Bei diesen empfindlichen Lebensmitteln wird eine andere Methode der Verkapselung angewendet, mit der auch zum Beispiel Eidotter untersucht werden kann.181 Bei diesem Verfahren braucht man zwei Spritzen, wobei eine Spritze eine Doppelnadel besitzen muss. Die Probe fließt durch die innere Nadel der einen Spritze, und in der anderen Spritze befindet sich eine 3-%ige Natriumalginate-Lösung, die in der äußeren Nadel die Probe umkleidet. Die Probe und die Lösung werden in eine 0,05 M Calciumchlorid-Lösung bei einem pH-Wert von 6,5 eingeleitet, wo das Natriumalginate ein Gel formt. Die folgende Abbildung zeigt diese Methode der Verkapselung, die vor allem bei wärmeempfindlichen Lebensmitteln Anwendung findet.31
Ergebnisse

Abbildung 38: Verkapselung
In der linken Spritze in der inneren Nadel befindet sich die Probe. Von der rechten Spritze wird Natriumalginate in die äußere Nadel der linken Spritze geleitet.
(Quelle: http://www.magma.ca/~scimat/foodmicr.htm[^31])

Schokolade
Natürliche Fette haben lange, unpolare Ketten, die untereinander Kristalle formen, nachdem die Fette nach dem Schmelzen abgekühlt werden. Man unterscheidet α-, β−, und β´- Kristalle. α-Kristalle haben den niedrigsten Schmelzpunkt im Vergleich zu β- und β´- Kristallen, außerdem wachsen sie am schnellsten, und sie sind die instabilsten der drei Kristallformen. β-Kristalle haben den höchsten Schmelzpunkt und stellen die stabilste Form dar, die β´- Kristalle liegen in Bezug auf die zwei Parameter (Stabilität und Schmelzpunkt) zwischen den α- und β- Kristallen.
Ein Fehler in der Schokoladenherstellung ist die Ausbildung von Fettbereichen, die an der Oberfläche durch weiße oder graue Bereiche erkennbar sind. Dafür verantwortlich ist die Kristallform VI, die polymorphe Form, welche die stabilste von den sechs Formen darstellt und sich durch lange Kristallnadeln auszeichnet, wie dies in den zwei folgenden Abbildungen ersichtlich ist. Mit der REM kann man diesen Fehler in der Schokolade sehr gut darstellen.

Abbildung 39: Die sechs Kristallformen von Kakaobutter / REM (Gefrierbruchtechnik)

Abbildung 40: Schokoladenfehler: Ausbildung von Kristallnadeln

Die grauen Bereiche stellen die Milchproteine dar, die am Kakao und Zucker hängen. Kakao und Zucker sind die eckigen Strukturen im Bild. Sie schauen sehr ähnlich aus, was die Unterscheidung auf Grund ihrer Morphologie erschwert. Auseinanderhalten kann man die beiden Substanzen aber dadurch, dass Kakao bei 630 nm eine leichte Eigenfluoreszenz aufweist.

Nachteil der CLSM ist, dass es Probleme beim Färben des Präparats gibt. Es ist natürlich viel einfacher, die Schokolade im geschmolzenen als im kristallisierten Zustand einzufärben. Zu beachten ist aber, dass durch diesen Vorgang die innere Struktur angegriffen und verändert wird.
Polysaccharide und Gele

Für die Untersuchung mit der RKM wurde Butanol\(^{185}\) verwendet. Wenn die Analyse an der Luft stattfinden würde, könnte nämlich Wasser (aus der Atmosphäre) auf der Oberfläche der Probe kondensieren.\(^{186}\)

Nachteil dieser Technik ist, dass es eine Zeit lang (ca. 45 Minuten) braucht, bis das System kalibriert wird bzw. stabil ist.\(^{54}\)
Ergebnisse

Gemüse

Die REM wird für die Untersuchung von Karotten und Kartoffeln verwendet. Bei diesen Proben wäre es am sinnvollsten, wenn man das Wasser im Gewebe lässt und die Oberfläche ohne Probenfixierung betrachtet. Mit der REM ist das aber natürlich nicht möglich, weil dazu dehydratisierte Proben vorliegen müssten. Daher werden die Karotten mit Glutaraldehyd und Osmiumtetroxid fixiert, in Aceton oder Ethanol dehydratisiert und CP-getrocknet.\(^{149}\)

Bei der Analyse von Tomaten wurde die Kryotechnik mit flüssigem Stickstoff vor der Fixierung angewendet, und danach wurden sie mittels TEM visualisiert.\(^{187}\)

Schäume

Der Faktor, der die Qualität bei Schäumen ausmacht, ist die Verteilung von Proteinen, Kohlenhydraten, Lipiden und anderen oberflächenaktiven Substanzen. Weiters wichtig sind die Blasengröße-Verteilung, der Luftgehalt und die Diffusion\(^{188}\). Allgemein kann man sagen, dass ein Schaum entsteht, wenn man Gas mit einer Flüssigkeit, die eine oder mehrere oberflächenaktive Substanzen enthält, mischt. Es entsteht dann ein Zweiphasengemisch aus Gasblasen und der flüssigen Matrix. Zur Untersuchung der Druckänderung der Schäume mit der CSLM wird der Schaum auf folgende Weise präpariert: Er wird gemixt und mit Riboflavin gefärbt. Danach wird 0,5 ml davon in eine Druckkammer gegeben, welche 11 bar absoluten Druck erreicht und mit einem CSLM verbunden ist. Mit einem Krypton / Argon-Laser wird die Probe bei einer Wellenlänge von 488 nm abge- scannt.\(^{189}\)

Die folgende Abbildung zeigt den Schaum unter einem CSLM.

![Abbildung 44: Schaum / CSLM](image_url)

4.2.5 Transmissionselektronenmikroskop (TEM)

Allgemein kann gesagt werden, dass die TEM für die Analyse innerer Strukturen genutzt wird.62

Probenvorbereitung für TEM

Zur Fixierung werden meistens Aldehyde und Osmiumtetroxid verwendet. Natürlich hängt die Auswahl der Substanzen, die zum Fixieren verwendet werden, von der Struktur und der Zusammensetzung der zu untersuchenden Lebensmittel ab.16 Glutaraldehyde sind notwendig, um Proteine querzuvernetzen. OsO\textsubscript{4} kann Schwermetalle oxidieren und wird für die Stabilisierung von ungesättigten Fettsäuren genutzt. Somit sind Lebensmitteln mit großem Milchanteil, wie zum Beispiel Milch oder Milchprodukte, leicht zu fixieren, aber Produkte mit hohem Fettanteil bzw. mit hohem Anteil an gesättigten Fettsäuren machen Probleme, weil OsO\textsubscript{4} zwar die ungesättigten Fettsäuren fixiert, jedoch die gesättigten auf diesem Weg nicht stabilisiert werden können. Bei der Reaktion zwischen gesättigten Fettsäuren und OsO\textsubscript{4} entstehen zuerst OsO\textsubscript{3} und dann Diole. Imidazol wird dann eingesetzt, um die von OsO\textsubscript{4} fixierten Fettsäuren zu stabilisieren. Chemisch schwer zu fixieren sind Lebensmittel mit hohem Polysaccharidgehalt, vor allem mit hohem Gehalt an modifizierter (gelierter) Stärke, also zum Beispiel Pudding, Pasta, Backwaren,… . Bei diesen Produkten wählt man an Stelle der chemischen Fixierung die Kryo-Fixierung.13

Ultradünnenschichtmethode

Ergebnisse

Abbildung 45: Wassertröpfchen in Margarine / TEM (Ultradünnschichtmethode)

W=Wassertröpfchen, F=Fett

Abbildung 46: Ölträpfchen in homogenisierter Milch / TEM (Ultradünnschichtmethode)

O=Ölträpfchen

Außerdem kann man mit derselben Technik Luftzellen in Nahrungsmitteln, wie zum Beispiel Eiscreme, untersuchen, was in Abbildung 47 sichtbar ist. Die schwarzen Kreise stellen Fettkugelchen, der weiße Bereich in der Mitte Proteine dar.
Ergebnisse

Abbildung 47: Luftzelle in Eiscreme / TEM (Ultradünnenschichtmethode)

fg=Fettkügelchen, i=Protein

Negative Straining

Abbildung 48 zeigt Polysaccharidfasern in einem Kurdlan-Gel. Die Probe wurde mit der Technik des Negative Strainings präpariert und anschließend mit einem TEM analysiert.

Abbildung 48: Polysaccharidfaser in Kurdlan-Gel / TEM (Negative Straining)

Ergebnisse

Bild zeigt eine starke Interaktion zwischen β-Lactoglobulin und Casein-Mizellen, während im unteren Bild nur eine schwache Reaktion erkennbar ist.

Oberflächenabdruck

Die folgende Abbildung zeigt Wassertröpfchen in Margarine.
Ergebnisse

Abbildung 51: Wassertröpfchen in Margarine / TEM (Oberflächenabdruck)
S=Oberfläche, C=Wassertröpfchen.

Kryotechnik
Mit dieser Methode kann zum Beispiel Eismeer untersucht werden. Hierbei handelt es sich um eine komplexe Struktur von großen Eiskristallen, Luftzellen, Öltröpfchen, Zucker und Biopolymeren.
Folgende Abbildung zeigt Eiscreme, gut ersichtlich sind die großen Luftblasen.

Abbildung 52: Luftzellen in Eiscreme / TEM (Kryotechnik)
a=Luftzellen

Weiters sind die Fettverteilung und die dichte Proteinmatrix in Käse durch diese Methode analysierbar.
Abbildung 53 zeigt diese zwei Faktoren bei einem Low-fat-Käse.
Ergebnisse

Abbildung 53: Verteilung von Fett und Protein in einem Low-fat-Käse / TEM (Kryotechnik)

\[F=Fett,\ P=Protein \]

Für die Analyse von Wasser-in-Öl-Emulsionen ist diese Methode ungeeignet. [51]

4.2.6 Rasterelektronenmikroskop (REM)
Die REM eignet sich besonders gut dazu, die verschieden Wechselwirkungen zwischen Objekt und Elektronenstrahl zu studieren. [17]

Kryo-Technik
Die nachfolgende Abbildung zeigt das Ergebnis einer rasterelektronenmikroskopischen Untersuchung von Brot, Butter, Eiscreme und Schokolade.
Ergebnisse

Abbildung 54: (a) Brot, (b) Butter, (c) Eiscreme, (d) Schokolade / REM (Kryotechnik)

Für die Untersuchung von Fett bzw. fettreichen Produkten wird die Kryo-REM am häufigsten angewendet, weil deren Präparation für eine andere mikroskopische Technik zu aufwendig ist. Noch häufiger wird die Methode der polarisierten Lichtmikroskopie benutzt, doch die Kryo-REM bietet den Vorteil, dass vor allem auch fettreiche Proben mit hohem Fett-Feststoffanteil analysiert werden können, was mit der Lichtmikroskopie nur beschränkt möglich ist und oft Probleme bereitet. Trotzdem ist die Technik der polarisierten Lichtmikroskopie beliebter, weil die Probenpräparation einfach ist und die Methode schärfere und bessere Bilder erzeugt.

Nachteil der Kryo-REM ist, dass sich Eiskristalle bilden können, welche die natürlichen Bestandteile des Lebensmittels „verdrängen“ und somit die innere Struktur verändern. Um das Risiko dieses Problems zu reduzieren, wird eine kleinere Menge an Probe bei sehr tiefer Temperatur verwendet.

Atmosphärisches Rasterelektronenmikroskop
Hier betrachtet man die Probe in gasförmiger Atmosphäre bei schwachem Unterdruck. Bei dieser Methode braucht man die Probe nicht zu trocknen, außerdem ist ein weiterer Vorteil, dass die Präparation des Lebensmittels für die Analyse einfacher und unkomplizierter ist.
Ergebnisse

Fixierung

Lufttrocknen
Die Technik des Lufttrocknens wird bei Brot, Sojabohnen und Fleisch angewendet. Abbildung 55 zeigt ein Bild von Mehlpapikel, deutlich zu erkennen sind die Stärke und Proteine.

Abbildung 55: Mehlpapikel / REM (Lufttrocknen)

Gefriertrocknung
Diese Methode wird bei Joghurt sehr gerne angewendet.
Ergebnisse

Die folgende Abbildung zeigt Joghurt, man sieht Bakterien, extrazelluläre Polysaccharide und Proteine.

Abbildung 56: Joghurt / REM (Gefriertrocknung)
b=Bakterien, e=extrazelluläre Polysaccharide, P=Proteine.

CP-Trocknung

Die Trocknung am kritischen Punkt wird vor allem für eiweißreiche Produkte verwendet, wie zum Beispiel für Fleisch194, Milchprodukte51 und pflanzliche Proteine195. Lebensmittel, die gelierte Stärke enthalten, werden nicht mit dieser Technik behandelt, da hier Probleme auftreten können. Das gilt zum Beispiel für Pasta, Pudding, Backwaren, aber auch für Salatdressings, einige Joghurts,….158 Bei Vorliegen solcher Produkte greift man auf die Technik der Gefriertrocknung zurück.149

Lebensmittel

Die REM wird für die Untersuchung von Fleischprodukten, Milchprodukten, Sojabohnenprodukten, Gemüse, Teig, Getreideprodukten, Spaghetti,… genutzt. Die Präparationsmethoden unterscheiden sich bei den jeweiligen Produkten. Grundsätzlich werden die Proben von Bereichen von ein bis zwei cm Tiefe genommen, weil die Oberfläche durch äußere Effekte verändert sein kann. Bei wasserhaltigen Proben muss getrocknet oder gefroren werden. Bei der Analyse innerer Mikrostrukturen pulverförmiger Lebensmittel werden die Partikel mit einem Messer oder in einem Mörser gebrochen.158 Proben wie Joghurt, Tofu, Pasta und einige Käsearten werden in Teilen von 0,5 x 5 x 5 mm geschnitten, wovon wiederum 0,5 x 1 x 5 mm große Prismen entnommen werden. Fleisch und Mozarella werden in 0,5 x 0,5 x 5 mm große Stücke geschnitten.194 Bei der Probenvorbereitung von
Ergebnisse

Fleisch ist erwähnenswert, dass die Proben entweder parallel oder senkrecht zu den Fasern geschnitten werden sollen.158 Eine andere Technik bei Fleisch ist, es in Harz einzubetten und die Methode des Gefrierbruchs anzuwenden.196

Mögliche Veränderungen

Bei der Untersuchung mittels Rasterelektronenmikroskop gibt es zwei kritische Punkte, einerseits mögliche Veränderung durch den Elektronenstrahl, andererseits Schädigungen der Probe durch das Vakuum. Abbildung 57 zeigt zwei Bilder von Stärkekörner, wobei am rechten Bild Stärkekörner erkennbar sind, die durch Elektronenstrahlen beeinträchtigt wurden.

Abbildung 57: Stärkekörner (A) nicht beschädigt, (B) beschädigt durch den Elektronenstrahl

4.2.7 Konfokale Laser-Raster-Mikroskopie (CLSM)

Ergebnisse

Abbildung 58: Verlauf der Lichtstrahlen auf Grund des sich ändernden Brechungsindex
(Quelle: McClements, D. J. (2007). S.240.[157])

Es wird eine Wasser-in-Öl–Emulsion untersucht. Das Deckglas hat den gleichen
Brechungsindex wie das Objektiv, doch sobald die Strahlen auf die Grenzfläche
zwischen Deckglas und Probe kommen, werden sie gebrochen, und sie werden
wieder gebrochen, wenn sie von Wasser auf Öl bzw. wieder in die Wasserphase
stoßen. Dieses Phänomen führt zu einer Verringerung der Auflösung und Intensität in
der axialen Ebene, und außerdem kann es so weit kommen, dass Distanzen in der
Probe geometrisch falsch abgelesen bzw. interpretiert werden.
Zur Veranschaulichung dieses Phänomens zeigt die Abbildung 59 die Untersuchung
einer Mayonnaise, die zu 70% aus Fett besteht.

Abbildung 59: Mayonnaise (70% Fett) / CLSM
(a) x-y- Aufnahme; (b) x-z- Aufnahme
(Quelle: McClements, D. J. (2007). S.241.[157])

Links sieht man die Auflösung in der x-y-Ebene, rechts das gleiche Bild in der x-z-
Ebene. Hier ist die Abnahme an Auflösung deutlich ersichtlich, aber auch im linken
Ergebnisse

Bild kann man die hellen, täuschenden Teile, die die Öltropfen teilweise überdecken, beim genauer Hinsehen erkennen.

Um dieses Problem zu verhindern, wird eine andere Darstellungsweise gewählt, bei der es ausschlaggebend ist, den Brechungsindex von allen Komponenten so ähnlich wie möglich zu machen. Abbildung 60 zeigt eine Analyse von einer Emulsion, die 55% Öl beinhaltet.157

![Abbildung 60: Emulsion (55% Öl) / CLSM](image)

(a) 3-D-Bild; (b) vertikaler Querschnitt durch (a)
(Quelle: McClements, D. J. (2007). S.242.[157])

Negativ-Kontrast

4.2.8 Rasterkraftmikroskopie (RKM)
Mit der RKM erzielt man im Gegensatz zur Elektronenmikroskopie eine höhere Auflösung. Mit dieser Technik ist es möglich, Chromosomen von Menschen anzuschauen. Man hat diese Technik auch genutzt, um die Struktur des Moleküls Myosin zu untersuchen.
Die RKM ist besonders für die Analyse der Oberfläche von Lebensmitteln geeignet. Es können bakterielle Biofilme und Oberflächenbewuchs eines Lebensmittels von Mikroorganismen einerseits, wie auch Schäume, Emulsionen und Proteinoberflächen untersucht werden.54

4.3 Überblick über spezielle Lebensmittelgruppen und dazugehörigen Technik und Diskussion

4.3.1 Allgemein
Allgemein kann gesagt werden, dass es sehr schwer ist, Nahrungsmittel elektronenmikroskopisch zu visualisieren. Jeder Schritt bei der Präparation der Probe verändert in gewissem Maße die Probe. Außerdem wird die Probe durch
Ergebnisse

beabsichtigtes und auch unbeabsichtigtes Zugeben von Wasser, Fett oder anderen Substanzen umgeformt, indem einzelne Bestandteile modifiziert werden.13

Weiters ist darauf zu achten, dass man sich eine Struktur in verschiedenen Vergrößerungen anschaut, und vor allem ist eine große Anzahl von Proben von Bedeutung. Abhängig vom Forschungsziel ist es auch wichtig, dass man sich nicht in Details verliert, sondern den Überblick über die Organisation der Gesamtstruktur bewahrt.

Die Auflösung ist auch eine entscheidende Größe für die Entscheidung über das anzuwendende Verfahren. Im Vergleich zur CSLM, mit der man Strukturen bis 0,2 μm50 betrachten kann, ist dies mit der TEM und REM bis 0,2 bzw. 1 nm möglich157.

89
Ergebnisse

In den folgenden Tabellen findet sich ein Überblick von den verschiedenen Lebensmittelgruppen und der dazu passenden Techniken zur Untersuchung dieser Produkte. Unter dem Punkt „Analyse“ werden genaue Anwendungsbereiche der Methoden bei speziellen Lebensmitteln aufgezählt.
<table>
<thead>
<tr>
<th>Lebensmittelgruppe</th>
<th>Anwendung / Beispiele</th>
<th>Analyse</th>
<th>Methode</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milch und Milchprodukte I</td>
<td>Milchprodukte (allgemein)</td>
<td></td>
<td>REM (CP-Trocknung)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Getrocknete und viskose Milchprodukte (Milchpulver, Creme, Butter, …)</td>
<td></td>
<td>REM (Trocken / Trocknen / Gefrieren und Replikation mit Gold / Gefrieren und Gold- oder Kohlenstoff-Behandlung)</td>
<td>Komplexe Präparation</td>
</tr>
<tr>
<td></td>
<td>Suspensionen (Flüssige Milch, Creme, …)</td>
<td></td>
<td>TEM (Negative Straining / Metallschatten-Technik / Ultramikrotomie)</td>
<td>Komplexe Präparation</td>
</tr>
<tr>
<td>Milch</td>
<td>Caseinmizellen</td>
<td></td>
<td>RKM</td>
<td>Einfache Präparation</td>
</tr>
<tr>
<td></td>
<td>Proteine in der Milch</td>
<td></td>
<td>TEM (Oberflächenabdruck)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Struktur von Magermilch</td>
<td></td>
<td>CLSM</td>
<td></td>
</tr>
<tr>
<td>Milchpulver</td>
<td>Nadelähnliche Kristalle von Laktose</td>
<td></td>
<td>REM (Trocknen mit heißer Luft)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oberfläche</td>
<td></td>
<td>CLSM (Negativ-Kontrast)</td>
<td></td>
</tr>
<tr>
<td>Milchschäume</td>
<td>Aufbau der Grenzfläche Luft/Wasser</td>
<td></td>
<td>TEM (Oberflächenabdruck)</td>
<td></td>
</tr>
<tr>
<td>Lebensmittelgruppe</td>
<td>Anwendung / Beispiele</td>
<td>Analyse</td>
<td>Methode</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Milch und Milchprodukte II</td>
<td>Joghurt</td>
<td>Einflüsse durch Prozessänderungen (Temperatur- und Druckänderungen)</td>
<td>CLSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>REM (Gefriertrocknung)</td>
<td></td>
</tr>
<tr>
<td>Käse</td>
<td></td>
<td>TEM (Oberflächenabdruck)</td>
<td>REM (CP-Trocknung)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gefrierbruch</td>
<td>CLSM (Negativ-Kontrast)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verteilung von Proteinen und Fett in Käse</td>
<td>TEM (Kryo-Technik)</td>
<td></td>
</tr>
<tr>
<td>Joghurt, Topfen, Käse, Tofu</td>
<td></td>
<td></td>
<td>REM (CP-Trocknung)</td>
<td>Zusätzliche Behandlung (Chloroform, n-Hexan) für fettreiche Produkte (Käse, Topfen)</td>
</tr>
<tr>
<td>Cottage Cheese</td>
<td></td>
<td></td>
<td>REM (CP-Trocknung / Gefrierfixation und Gefriertrocknung / Gefrierbruch)</td>
<td></td>
</tr>
<tr>
<td>Lebensmittelgruppe</td>
<td>Anwendung / Beispiele</td>
<td>Analyse</td>
<td>Methode</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Milch und Milchprodukte III</td>
<td>Eiscreme</td>
<td>Größe von Eiskristallen</td>
<td>REM (Kryo-Technik)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyse von Fett und Proteinen</td>
<td>TEM (Ultradünnsschichtmethode / Kryotechnik)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gele, Creme (z.B. Eierscreme, Pudding, Vanillesoße, gelierte Milch, Topfen)</td>
<td>Veränderung der Struktur während Temperaturänderungen, Wechselbeziehung zwischen Milchproteinen und Polysacchariden, Analyse von Exopolysacchariden, Lokalisation von Proteinen und Fett, Untersuchung von Emulsionen</td>
<td>CSLM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pudding</td>
<td></td>
<td>REM (Gefriertrocknung)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSLM</td>
<td></td>
</tr>
<tr>
<td>Lebensmittelgruppe</td>
<td>Anwendung / Beispiele</td>
<td>Analyse</td>
<td>Methode</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Stärkehaltige Lebensmittel</td>
<td>Allgemein</td>
<td>TEM (Oberflächenabdruck)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stärkekörner</td>
<td>Stabilität und Festigkeit von Stärkekörner</td>
<td>RKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kartoffeln</td>
<td>Kochprozess (Matschigwerden)</td>
<td>REM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Getreideprodukte</td>
<td></td>
<td>CLSM</td>
<td></td>
<td>Färbung mit Nile Blue</td>
</tr>
<tr>
<td>Getreidesnacks</td>
<td></td>
<td>REM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Süßigkeiten</td>
<td></td>
<td>CLSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backwaren</td>
<td></td>
<td>CLSM</td>
<td></td>
<td>REM (Gefriertrocknung)</td>
</tr>
<tr>
<td>Weizenteig</td>
<td></td>
<td>CLSM</td>
<td></td>
<td>Färbung</td>
</tr>
<tr>
<td>Brot</td>
<td></td>
<td>REM (CP-Trocknung / Kryo-REM / Lufttrocknung / Gefriertrocknung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasta</td>
<td></td>
<td>REM (Gefriertrocknung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebensmittelgruppe</td>
<td>Anwendung / Beispiele</td>
<td>Analyse</td>
<td>Methode</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fetthaltige Lebensmittel</td>
<td>Fett bzw. fettreiche Produkte (Butter)</td>
<td>REM (Kryo-REM)</td>
<td>Bildung von Eiskristallen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyse von Fettkristallen</td>
<td>TEM (Oberflächenabdruck)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Margarine und Butter</td>
<td>CLSM</td>
<td>Färbung mit Nile Red</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REM (Kryo-REM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emulsionen (z. B. Salatdressing, Mayonnaise)</td>
<td>Größe und Verteilung der Wassertröpfchen</td>
<td>CLSM (Negativ-Kontrast)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REM (CP-Trocknung / Gefriertrocknung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEM (Ultradünnschichtmethode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eiweißhaltige Lebensmittel</td>
<td>Pflanzliches Eiweiß (z. B. Sojabohnen)</td>
<td>REM (Luftrocknung / CP-Trocknung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fleisch</td>
<td>TEM (Ultradünnschicht-Methode / Lufttrocknung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REM (Luftrocknung / CP-Trocknung / Gefriertrocknung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebensmittelgruppe</td>
<td>Anwendung / Beispiele</td>
<td>Analyse</td>
<td>Methode</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Viskose Lebensmittel</td>
<td>Joghurt, Cremen, Mayonnaise, Milch, Orangensaft</td>
<td>TEM / REM (Verkapselung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schokolade</td>
<td>Kristallformen von Kakaobutter</td>
<td>REM (Kryo-REM / Gefrierbruch)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analyse von Kakao, Zucker und Milchproteine</td>
<td>CLSM (Negativ-Kontrast)</td>
<td>Probleme beim Färben (Nile Red)</td>
<td></td>
</tr>
<tr>
<td>Polysaccharide und Gele</td>
<td>Polysaccharide (z.B. Pektin, Carrageen, Alginat, Gellan)</td>
<td>RKM</td>
<td>Präparation mit Butanol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polysaccharidfasern</td>
<td>TEM (Oberflächenabdruck)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Localisation von Proteinen und Polysacchariden</td>
<td>TEM (Negative Straining)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteine und Polysaccharide</td>
<td>Lokalisation von Molkenproteine in Fleischprodukte</td>
<td>Immunchemische Methode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molkenproteine</td>
<td>RKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebensmittelgruppe</td>
<td>Anwendung / Beispiele</td>
<td>Analyse</td>
<td>Methode</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Gemüse</td>
<td>Karotten, Kartoffeln</td>
<td>Verteilung von Proteinen, Kohlenhydraten, Lipiden</td>
<td>REM (CP-Trocknung)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tomaten</td>
<td>Verteilung von Proteinen, Kohlenhydraten, Lipiden</td>
<td>TEM (Kryo-Technik)</td>
<td></td>
</tr>
<tr>
<td>Schäume</td>
<td></td>
<td>Verteilung von Proteinen, Kohlenhydraten, Lipiden</td>
<td>CLSM</td>
<td>Druckkammer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verteilung von Proteinen, Kohlenhydraten, Lipiden</td>
<td>RKM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verteilung von Proteinen, Kohlenhydraten, Lipiden</td>
<td>REM</td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse

Anm. zu Tabelle 13:

Tabelle 14: Lebensmittelgruppe und dazu passende Technik – Überblick

<table>
<thead>
<tr>
<th>Lebensmittelgruppe</th>
<th>TEM</th>
<th>REM</th>
<th>CLSM</th>
<th>RKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milch und Milchprodukte</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stärkehaltige Lebensmittel</td>
<td>~</td>
<td>~</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fetthaltige Lebensmittel</td>
<td>~</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Eiweißhaltige Lebensmittel</td>
<td>~</td>
<td>~</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Viskose Lebensmittel</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schokolade</td>
<td>-</td>
<td>+</td>
<td>~</td>
<td>-</td>
</tr>
<tr>
<td>Polysaccharide</td>
<td>~</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Gemüse</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schäume</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

Anm.:
++ sehr geeignet für die Analyse dieser Lebensmittelgruppe
+ geeignet für die Analyse dieser Lebensmittelgruppe
~ mittelmäßig geeignet für die Analyse dieser Lebensmittelgruppe
- nicht geeignet für die Analyse dieser Lebensmittelgruppe

In der Tabelle 14 sieht man einen Überblick über verschiedene Methoden, die sich für die Untersuchung unterschiedlicher Lebensmittelgruppen eignen. Die Tabelle stellt eine Zusammenfassung der vorherigen Tabelle und der Ergebnisse dar.

4.3.2 Elektronenmikroskopie (TEM, REM)
Die Elektronenmikroskopie gibt Aufschlüsse über die Struktur vieler Lebensmittel, ist aber für bestimmte Produkte, wie zum Beispiel größere Proteine oder Polysaccharide, nur beschränkt einsetzbar. Die Elektronenmikroskopie eignet sich für die Untersuchung von Milch und Milchprodukten hervorragend, wobei die TEM eher für flüssige und die REM für feste bzw. viskose Produkte eingesetzt wird.
Da Lebensmittel mit hohem Fettanteil bzw. mit hohem Anteil an gesättigten Fettsäuren und auch Lebensmittel mit hohem Polysaccharidgehalt, vor allem mit
Ergebnisse

hohem Gehalt an modifizierter (geliertem) Stärke, schwer zu fixieren sind, ist es nicht ratsam, die TEM für diese Produkte zu verwenden. Milch und Milchprodukte hingegen sind mit der TEM leicht zu fixieren.

Die REM ist für stärkehaltige Produkte ebenfalls nicht üblich, weil es keine passende Technik für die Fixierung derartiger Lebensmittel gibt. Sie wird aber für die Untersuchung von Fleischprodukten, Milchprodukten, Sojabohnenprodukten, Gemüse, Teig und Getreideprodukten genutzt.

Nachteilig an dieser Methode ist, dass man sich in Details verlieren kann, indem man sich durch die vorhandene Vergrößerung auf die Mikrostruktur, auf Einzelheiten oder Bestandteile konzentriert und das Lebensmittel nicht mehr als ein Kontinuum, also Ganzes, betrachtet.

Die Probenpräparation ist bei der REM viel einfacher als bei der TEM. Das heißt natürlich nicht, dass es nie Probleme in der Probenvorbereitung gibt, sondern dass die Aufbereitung im Allgemeinen leichter und unkomplizierter im Vergleich zur TEM verläuft.16

Bei der Untersuchung mittels REM197 und TEM wird durch das Einstellen von großen Spannungen die Oberfläche zerstört. Daher sollte man darauf achten, dass man nur eine geringe Spannung von wenigen kV anlegt, um eine Schädigung der Probe zu verhindern bzw. zu minimieren.

4.3.3 CLSM

4.3.4 RKM

Die RKM ist besonders für die Analyse der Oberfläche von Lebensmitteln geeignet, im Speziellen für Schäume, Emulsionen und Proteinoberflächen.
Ergebnisse

Die großen Vorteile der RKM sind, dass sich die Probe nicht im Vakuum befinden und sie nicht geschnitten werden muss und außerdem, dass sie für die Untersuchung nicht elektrisch leitend sein muss.
5 Zusammenfassung

Während bei der Transmissionselektronenmikroskopie (TEM) die Probe mit Elektronen durchstrahlt wird, wird bei der Rasterelektronenmikroskopie (REM) die Oberfläche von einem Elektronenstrahl abgerastert. Auch die konfokalen Laser-Raster-Mikroskopie (CLSM) und die Rasterkraftmikroskopie (RKM) stellen Oberflächenmethoden dar, bei denen die Oberfläche „abgetastet“ wird.

Für folgende Lebensmitteln wurden passende Techniken zur Untersuchung deren Struktur herausgearbeitet: Milch und Milchprodukte, stärke-, fett- und eiweißhaltige Lebensmittel, viskose Lebensmittel, Schokolade, Polysaccharide, Gemüse und Schäume.

Während bei getrockneten und viskosen Milchprodukten die REM die beliebteste Methode darstellt, wird bei Suspensionen und flüssigen Milchprodukten die TEM angewendet. Bei stärkehaltigen Lebensmitteln nimmt man die CLSM und RKM, bei fetthaltigen Lebensmitteln bringt die CLSM viele Vorteile. Bei eiweißhaltigen Lebensmitteln, Polysacchariden und Schäumen wird die RKM angewendet, bei viskosen Produkten und Gemüse greift man auf die Elektronenmikroskopie zurück. Schokolade kann mit der REM analysiert werden.

6 Summary

The texture and structure of food are very important for its quality. There are different methods for an objective analysis of these qualities, this thesis gives an overview about Electron Microscopy (Transmission Electron Microscopy and Scanning Electron Microscopy), Confocal Laser Scanning Microscopy and Atomic Force Microscopy.

With a Transmission Electron Microscope (TEM) the sample is transilluminated by electrons, with a Scanning Electron Microscope (SEM) the surface is scanned by an electron beam. The Confocal Laser Scanning Microscopy (CLSM) and the Atomic Force Microscopy (AFM) also characterize the surface of food.

For the analysis of the food structure there are suitable methods for following products: milk and milk products, starch, fat, proteins, viscous food, chocolate, polysaccharides, vegetables and foams.

For dried and viscous milk products REM is the most popular method, for suspensions and liquid milk products TEM is used. The analysis of starch is made by CLSM and RKM, CLSM has many advantages for the study of fat. RKM is used for proteins, polysaccharides and foams, electron microscopy for viscous products and vegetables, chocolate is analysed by REM.

There are different ways of preparing food: “Thin-section-TEM”, “Replica-TEM” and “Negative Straining” for TEM, “Replica-SEM” and “Cryo-SEM” for SEM. One big advantage of CLSM and RKM is that the specimens don’t need to be cut. For CLSM the method of the “Neagtive-Contrast” can be used, for RKM there are two modes of operation (contact-mode and non-contact-mode). Depending on the consistency and structure of the food and on the aim of the analysis there are suitable methods for each product.
7 Literatur

11 http://www.old.uni-bayreuth.de/departments/didaktikchemie/umat/rtm/rtm.htm (Stand: 21.3.2008)

http://homepage.ruhr-uni-bochum.de/Olaf.Anhenn/CLSM.htm (Stand: 20.3.2008)

http://www.zusatzstoffe-online.de/information/667.doku.html (Stand: 13.6.2008)

http://www.magma.ca/~scimat/foodmicr.htm (Stand: 20.2.2008)

https://ces.karlsruhe.de/culm/physiktechnik/bild/scanning1.htm (Stand: 20.3.2008)

Literatur

44 http://stilzchen.kfunigraz.ac.at/skripten/semvie02/nano3_afm1.pdf (Stand: 21.3.2008)

53 http://www.nanotruck.de/service/glossar.html (Stand: 3.6.2008)

61 http://deposit.ddb.de/cgi-bin/dokserv?idn=981765793&dok_var=d1&dok_ext=pdf&filename=981765793.pdf (Stand: 29.5.2008)

161 http://tem.atp.tuwien.ac.at/EELS/EELSBild.html (Stand: 29.5.2008)

162 http://www.stud.uni-karlsruhe.de/~uaars/Downloads/Praktikum/REM/Protokoll_EELS.pdf (Stand: 21.3.2008)

