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Kurzfassung

Aus mathematischen Beweisen ldsst sich explizite Information gewinnen, welche nicht
im Theorem sichtbar ist. Um diese Art von Information aus Beweisen gewinnen zu
konnen, arbeitet man mit Beweisen in Normalform, also analytischen Beweisen ohne
Schnittregeln. In dieser Arbeit interessieren wir uns insbesondere fiir Herbrand Sequenzen.
Herbrand Sequenzen sind propositional giiltige Sequenzen, welche aus Instanzen des
entsprechenden Theorems erstellt werden und realisieren dadurch den Satz von Herbrand
im Sequenzenkalkiil. Bisher wurden Herbrand Sequenzen aus Beweisen in Normalform
mit einer effizienten Schnitteliminationsmethode, der Methode CERES, extrahiert.

Wir zeigen, dass Beweise nicht unbedingt in Normalform sein miissen um Herbrand
Sequenzen extrahieren zu kénnen. Unsere Methode beruht auf speziellen Eigenschaften
der CERES Methode fiir die Beweisanalyse. Da Herbrand Sequenzen nur aus Beweisen
von pranexen Endsequenzen extrahiert werden konnen, verallgemeinern wir die Methode
um Expansionsbeweise (eine Verallgemeinerung von Herbrand Sequenzen) zu gewin-
nen. Die entwickelten Methoden sind implementiert und an einigen Beispielbeweisen
veranschaulicht. In einem letzten Schritt verallgemeinern wir unsere Methoden um auch
mit Beweisen, welche Induktionsregeln beinhalten, arbeiten zu kénnen. Wir wahlen die
Darstellung von Beweisen als Beweisschemata, welche die Erstellung von sogenannten
Herbrand Systemen ermoglichen, und entwickeln eine schematische CERES Methode,
welche mit komplizierteren Satzen arbeiten kann als bestehende Methoden zur Beweisana-
lyse induktiver Beweise. Das Ziel dieser Forschung ist eine vollig automatisierte Analyse
von interessanten mathematischen Beweisen, wie zum Beispiel von Fiirstenbergs Beweis
iiber die Unendlichkeit der Primzahlen. Obwohl eine v6llig automatisierte Analyse dieses
Beweises noch nicht erreicht werden konnte, stellt diese Arbeit einen wichtigen Schritt in
der Entwicklung dar.
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Abstract

Mathematical proofs can be used to extract explicit information about mathematical
objects that is not visible in the theorem itself. In general, this kind of information
can be extracted only from proofs in normal form, i.e. analytic proofs without cuts. In
this work we are particularly interested in the extraction of Herbrand sequents from
proofs. Herbrand sequents are propositionally valid sequents composed of instances of
a corresponding theorem, thus they are a realization of Herbrand’s theorem in sequent
calculus. So far, Herbrand sequents are extracted from proofs in normal form using the
method CERES, which is a method specifically designed for efficient cut-elimination.

In this work we show that for Herbrand sequent extraction proofs need not be in normal
form. This novel method is based on specific features of the CERES method and simplifies
and outperforms the current CERES method for proof analysis. Moreover, as the usual
method for Herbrand sequent extraction only works for proofs of prenex end-sequents,
we generalize our novel method to the extraction of expansion proofs (a generalization of
Herbrand sequents in a non-prenex setting). The developed methods are implemented
and we demonstrate some experiments with mathematical proofs. In a last step we lift
our methods to the case with induction rules. We represent induction via schemata of
proofs, as proof schemata allow the extraction of so-called Herbrand systems. We define
a schematic CERES method that is capable of handling several induction parameters
and thus allows to analyze more complicated proofs outside the range of previously
defined methods. The overall goal is to develop a fully automated analysis of interesting
mathematical proofs, as for instance Firstenberg’s proof of the infinitude of primes.
Though a fully automated analysis of this proof is not yet within reach, this work can be
seen as a major step in the development.

Xiii


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung
Abstract
Contents

1 Introduction

2 Basic Concepts
2.1 Formulas, Sequents and Sequent Calculus . . . .. .. ... ... ...
2.2 Herbrand Sequents . . . . . . .. ...
2.3 Expansion Trees and Expansion Proofs. . . . . . ... ... ... ...

3 Herbrand’s Theorem in First-Order Logic

3.1 The Method CERES . . . . . . . . ittt it et e e e e

3.2 The Resolution Calculus RPLy . . . . . ... ... ... ... ......

3.3 Extraction of Herbrand Sequents from Non-Normalized Proofs

3.4 Extraction of Expansion Proofs from Non-Normalized Proofs . . . . .

3.5 Herbrand’s Theorem with Clausal CERES + Equality . . . . . ... ..
3.5.1 The Clausal CERES Method . . . . . . ... ... ... .....
3.5.2 Extraction of Expansion Proofs . . . . . . ... ... ... ...
3.5.3 Complexity Analysis . . . . . ... ... ... ... ...

3.6 A Note on the Proof Theoretic Strength of CERES . . . . . ... ...

4 Inductive Structures
4.1 Schematic Language . . . . . . . . . .. ..o
4.2 Proof Schemata . . . . . . . . ... . ...
4.3 The Resolution Calculus RPLY . . . . . ... ... ... ........
4.4 Simple Resolution Schemata . . . . . . . .. .. ... o000

5 Herbrand’s Theorem in Inductive Structures
5.1 The Schematic CERES Method . . . . . . ... .. ... ... .....
5.2 Schematic Herbrand Sequent of the Schematic Projection . . . . . ..
5.3 Schematic Expansion Proof of the Schematic Projection . . . . . . ..

xi

xiii

XV

12
16

25
26
31
36
39
42
42
52
63
68

XV


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.4 Extraction of Schematic Herbrand Sequents from Non-Normalized Proof

Schemata . . ... ... ... ... ...

5.5 Extraction of Schematic Expansion Proofs from Non-Normalized Proof

Schemata . . ... .. ... .......
5.6 A Note on the Extension to Equality . .

6 Implementation and Experiments in Gapt
6.1 Experiments with Clausal CERES + Equality . . . .. .. .. ... ..

6.2 Schematic Proof Construction . . . . . .
6.3 Experiments with Schematic CERES . .
6.3.1 The Function Iteration Schema .
6.3.2 The Eventually Constant Schema

7 Future Work
List of Figures
List of Tables
Index

Bibliography

132

134
137

141
142
148
155
155
158

163

165

167

169

173


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

What is a proof? This question is a quite philosophical way of starting to describe this
work. However, in this thesis we will answer this question in a rather technical way. Is a
proof merely a verification that a statement is true? In proof theory, where proofs are
considered as objects, and more particularly in proof analysis, where properties of these
objects are investigated, mathematical proofs are more than just evidence that a statement
is true. In fact, proofs can contain information about mathematical objects, for example
explicit information on bounds or algorithms, which are not visible in the statement itself.
Therefore, analyzing mathematical proofs and extracting explicit information is a central
mathematical activity. This process is also known as proof mining.

Typical mathematical proofs are based on structuring the arguments by auxiliary state-
ments, so-called lemmas. While lemmas are important in defining theories and making
proofs comprehensible, the information in lemma-based proofs is only implicit; to make it
explicit the proof has to be transformed into specific normal forms. Such a normal form
for formal proofs can be obtained by an elimination method for lemmas which is called
cut-elimination and was introduced by Gerhard Gentzen in his famous paper [Gen35].
The result of cut-elimination is a purely combinatorial proof, which can be used to extract
explicit mathematical information, like bounds or algorithms. Indeed, cut-elimination
plays a key role in the analysis of mathematical proofs, where [Gir87] is a prominent
example: Girard’s analysis of Fiirstenberg and Weiss’ topological proof, see [FW78], of van
der Waerden’s theorem [VAW27]. Cut-elimination, applied to the proof of Furstenberg
and Weiss, resulted in van der Waerden’s original elementary proof. Girard’s analysis
was carried out within mathematical meta-language by hand. Actually, his analysis
is an application of cut-elimination to the proof of Fiirstenberg and Weiss with the
intention to obtain van der Waerden’s combinatorial proof. Indeed, as any other complex
proof transformation carried out by humans also cut-elimination requires a goal oriented
strategy. Though such a strategy is essential in proof analysis by hand, other interesting
elementary proofs will most likely not be discovered by following a fixed goal. But how
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1.

INTRODUCTION

can we obtain different elementary proofs than those we were trying to obtain and which
kind of information can be hidden in these proofs? The idea of automated proof analysis
originates from such questions and indeed, a fully automated proof analysis may yield
new and unexpected results. In order to automate the process of proof analysis formal
proofs are required. In fact, is is essential to work with correct proofs formalized in specific
calculi rather than with mathematical proofs in meta-language. The reason is obvious:
although proofs in meta-language can be understood by humans very easily, computers
(and algorithms) in general cannot process natural language; they deal with formal
languages. The discipline of proof checking is concerned with the process of using software
for checking formal (or better formalized) proofs for correctness. The proof checkers
typically use powerful proof assistants, as Isabelle! and Cog?. Proof checkers are capable
of checking also very complicated mathematical proofs, e.g. the proof of the famous four
color theorem has been formally checked in Coq [Gon08]. While proof checkers verify the
correctness of proofs, automated proof analysis goes one step further: here not only the
construction of formal proofs is required, but also their analysis and transformation and,
in the end, an interpretation of the final results by humans. Therefore, automated proof
analysis consists of formalizing mathematical proofs, applying algorithmic cut-elimination
and, finally, interpreting the resulting formal proof.

The cut-elimination method CERES (Cut - Elimination by RESolution) [BL00, BL06]
was specifically designed for automated proof analysis of mathematical proofs. CERES
substantially differs from the traditional reductive cut-elimination methods a la Gentzen,
where cuts are eliminated by a stepwise reduction of cut-complexity. The reductive
methods are local in the sense that only a small part of the whole proof is analyzed,
namely the derivation corresponding to the introduction of the outermost logical operator.
As a consequence, many types of redundancy in proofs are left undetected, leading to
an unfortunate computational behavior. In contrast, the method CERES is based on a
structural analysis of the whole proof, analyzing all cut-derivations simultaneously. After
an application of CERES a so-called CERES normal form (in general a proof with at
most atomic cuts, ACNF) is obtained. In [BLO6] it was shown that CERES outperforms
reductive methods of cut-elimination a la Gentzen or Tait in computational complexity.
Originally CERES was developed for classical first-order logic, but the method has been
extended ever since: CERES® is a CERES method without proof skolemization specifically
designed for higher-order logic, see [HLW11], and schematic CERES is the CERES method
for schematic first-order logic, handling a representation of induction via schemata of
proofs, see [DLRW13, LPW17]. Other extensions of CERES comprise an extension to
Godel logic [BCFO08] and intuitionistic logic [CLRW17, Reil4].

The last step in automated proof analysis consists in the interpretation of the result by
humans. In this interpretation it is crucial to obtain compact and meaningful information
rather than a full and typically very long formal proof. Relevant information extracted
from proofs can consist of bounds for variables that are used in the proof or even programs

"http://isabelle.in.tum.de/index.html
https://coq.inria.fr/
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representing its algorithmic content (Godel’s dialectica interpretation [God58], see [BBS02,
BBLS06] for applications to mathematical proofs). Another structure representing explicit
information are mid-sequents (also called Herbrand sequents), a realization of Herbrand’s
theorem in sequent calculus. Herbrand’s theorem, see [Her30, Bus94], provides one of the
most fundamental insights of logic and characterizes the validity of a formula in classical
first-order logic by the existence of a propositional tautology composed of instances of
that formula. Its realization in sequent calculus, a Herbrand sequent, is a propositionally
valid sequent composed of instances of a corresponding theorem. The crucial information
lies in the instantiations of the quantified variables of the theorem. Also in mathematical
proof analysis it is frequently more important to extract these instances (thus Herbrand
sequents) than full formal proofs, which may be too large to be interpreted. So far, the
most direct approach to calculate Herbrand sequents is based on Hilbert’s e-formalism,
which is also the oldest framework for proof theory [HB39]. However, there are also
efficient algorithms for extracting Herbrand sequents from proofs in ACNF of prenex
end-sequents [HLWPO0S8]. Though every formula (and any sequent) can be transformed
to prenex form such a transformation is unnatural and may have a dramatic impact on
proof complexity [BL94]. Thus it is of practical importance to extend the methods to
non-prenex formulas and sequents. To this aim D. Miller [Mil87] developed the structure
of expansion trees generalizing the derivation of end-sequents from a mid-sequent to
the non-prenex case. These trees record the substitutions for quantifiers in the original
formula and the formulas resulting from instantiations. The so-called deep function of an
expansion tree generalizes the mid-sequent itself.

Mathematical induction is one of the most important principles in real mathematics, thus
any substantial and relevant approach to proof analysis has to take into account induction.
But in systems with induction rules, essential proof theoretic concepts and transformations
become problematic. In particular Gentzen’s method of cut-elimination fails for general
induction proofs. However, there are methods for performing cut-elimination in presence
of induction, but the resulting proofs do not have the subformula property and Herbrand’s
theorem cannot be realized [BS11,MMO00]. If induction is represented via schemata of
proofs [DLRW13, LPW17] schematic cut-elimination methods can be defined which allow
the extraction of so-called Herbrand systems. A (partially) automated proof analysis
using schemata was performed on Fiirstenberg’s proof of the infinitude of primes using
topological concepts [F55, BHLT08]. Fiirstenberg’s proof was formalized as a sequence of
LK-proofs indexed by the number of primes assumed to exist and the method CERES was
applied to the entire sequence. The analysis was performed in a semi-automated way; in
fact, major parts of the analysis had to be performed by hand. Nevertheless, the analysis
showed that from Fiirstenberg’s proof Euclid’s elementary proof could be obtained by
applying a formal cut-elimination procedure. Though a fully automated analysis of this
proof is not yet within reach, this example reveals the need for the development of formal
schematic proof systems for handling proofs with induction. Recent developments based
on schematic CERES can be considered as a first step in this direction. However, existing
schematic calculi with a variant of Herbrand’s theorem are either defined for a weak
induction principle [LPW17], or do not guarantee a fully automated transformation and
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1.

INTRODUCTION

analysis of the given proof [DLRW13].
Outline

In this work we present general methods of proof analysis as well as extensions and
improvements thereof by focusing particularly on the extraction of Herbrand sequents
from formalized proofs in sequent calculus.

In Chapter 2 we will introduce the basic concepts and notations needed throughout this
work.

Chapter 3 focuses on Herbrand’s theorem in first-order logic. We introduce the method
CERES and show how Herbrand sequents and expansion proofs can be extracted. The
extraction is performed after a CERES normal form, a proof with quantifier-free cuts, is
constructed. Then we introduce a novel method particularly suited for the extraction of
instantiations of quantified variables. This method uses specific features of the method
CERES and does not construct a normal form. Indeed, the main result of this chapter
is that for the extraction of Herbrand sequents and expansion proofs, the construction
of a normal form is obsolete. Our results can be applied to a logic with equality rules
and we show that in this setting the new method asymptotically outperforms the old one
(quadratic versus cubic).

To handle proofs with induction rules, in Chapter 4 we introduce the basic concepts of
an inductive setting. We introduce the inductive language, inductive derivations (proof
schemata) and inductive refutations (refutation schemata). Some concepts in this chapter
are already defined in [DLRW13, LPW17], however we extend the language to obtain
a more general notion of proof schema and in fact, the concept of refutation schemata
is novel and completely differs from the ones introduced in [DLRW13,LPW17], as it is
particularly designed for a straightforward extraction of Herbrand sequents. Moreover,
we obtain a more flexible formalism, which is able to handle an arbitrary number of
induction parameters, whereas previously defined methods were only capable of handling
one single parameter.

All these concepts will be needed for the construction of a schematic CERES method,
which will be introduced in Chapter 5. This method is novel and based on the first-
order CERES method, where the construction of a normal form becomes obsolete for the
extraction of a Herbrand sequent. As this method is based on the formalisms developed
in Chapter 4, it improves and extends previously developed schematic CERES methods
from [DLRW13, LPW17] by handling an arbitrary number of induction parameters.
Furthermore, the construction of a schematic Herbrand sequent is simplified by using the
concept of refutation schemata.

Some of the methods developed in this work have already been implemented. In Chapter
6 we describe the implementations and demonstrate some experiments with mathematical
proofs.

Finally, in Chapter 7 we will give an outlook on future work.
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CHAPTER

Basic Concepts

In this section we will introduce all basic concepts that will be used throughout this work.
Most of the concepts will be extended later on.

2.1 Formulas, Sequents and Sequent Calculus

We denote predicate symbols by P, @, R, function symbols by f, g, h, constant symbols
by a,b, c. Furthermore, we distinguish a countably infinite set of free variables V; and
a countably infinite set of bound variables V;,. The distinction between free and bound
variables is vital to proof-transformations like cut-elimination. We use «, 3 for free
variables and x,y, z for bound ones. Terms are defined as usual with the restriction that
they may contain bound variables.

Definition 2.1.1 (semi-term, term [BL11]). We define a set of semi-terms inductively:

e bound and free variables are semi-terms,
e constants are semi-terms,

o if t1,...,t, are semi-terms and f is a n-place function symbol then f(¢1,...,t,) is
a semi-term.

Terms are semi-terms which do not contain bound variables.

Definition 2.1.2 (substitution [BL11]). A substitution is a mapping from Vy UV}, to the
set of semi-terms s.t. o(v) # v for only finitely many v € Vy U V4. If o is a substitution
with o(x;) = t; for x; #t; (1 <i<n)and o(v) =v for v & {x1,...,2,}, then we denote
o by {:cl —t1,..., Ty %tn}.
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2. Basic CONCEPTS
Substitutions can be extended to terms, atoms and formulas in a homomorphic way.
Definition 2.1.3. A substitution o is called more general than a substitution 6 (o < 0)
if there exists a substitution p s.t. 6 = opu.
Definition 2.1.4 (unifier [BL11]). Let </ be a nonempty set of atoms and o be a
substitution. o is a unifier of & if the set &7o contains only one element. o is a most
general unifier (m.g.u.) of & if ¢ is a unifier of &/ and for all unifiers A of & o <g \.
Note that we can also unify several sets of atoms simultaneously.
Definition 2.1.5 (simultaneous unifier [BL11]). Let W = (@4, ..., %,), where the <
are nonempty sets of atoms for ¢ = 1,...,n. A substitution o is called a simultaneous
unifier of W if o unifies all .. 0 is called a most general simultaneous unifier of W if 6
is a simultaneous unifier of W and 6 <, ¢ for all simultaneous unifiers o of W.
Definition 2.1.6 (semi-formula, formula [BL11] ). T and L are formulas. If ¢;,...,%,
are terms and P is a n-place predicate symbols then P(t1,...,t,) is an atomic formula.
e If A is a formula then —A is a formula.
e If A, B are formulas, then AA B, AV B and A — B are formulas.
o If A{x < a} is a formula, then Yz A and 3z A are formulas.
Semi-formulas differ from formulas in containing free variables in V},.
Definition 2.1.7 (prenex formula). A formula is prenex (or in prenex form) if it is of
the form Qiz1Q2xs ... QpzyF, where n > 0 and Q; € {V,3} for 1 < i < n and F is
quantifier-free.
By V(t) we denote the the set of variables (freely) occurring in a term or formula ¢.
Definition 2.1.8 (size of a formula). Let A be a formula, then the size of A (||Al|f) is
inductively defined as follows
| Al £ = 1if A is an atomic formula ,
1Al = 1+14ly,
[Aro Aolly = 1+ |[Adlly + (| A2flf,0 € {A,V, =},
1Qz.Ally = 1+[Aly,Qe{v,3}
To improve legibility we write ||F|| instead of || F'|| s (with the exception of cases where
the precise notation is essential). The measure || || will be used later on also for sequents,
proofs and clause sets.
Gentzen’s calculus LK is based on so-called sequents.
6
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2.1. Formulas, Sequents and Sequent Calculus

Definition 2.1.9 (sequent). Let I' and A be two multi-sets of formulas and + be a
symbol not belonging to the logical language. Then T - A is called a sequent.

If S1: ' A and So: II H A are sequents we define the concatenation of S; and So
(notation Sy 0 Sp) as ', II - A A.

Definition 2.1.10 (semantics of a sequent). Semantically a sequent
S:Al,...,An}_Bl,...,Bm

stands for

m
i=1 j=1
In particular, we define .# to be an interpretation of S if .# is an interpretation of F'(S).
If n =0 we assign T to Ai; A;, if m = 0 we assign L to /72, B;. The empty sequent is
represented by T — 1, which is equivalent to L and represents falsum. S is true in .#
if F(S) is true in .Z. S is called valid if F(S) is valid.

Definition 2.1.11. Substitutions can be extended to sequents in an obvious way: If
S:A,...,A, - Byq,..., B, is a sequent and o is a substitution, then

So: Ajo,..., Ao+ Byo, ..., Byo.

Definition 2.1.12 (prenex sequent). A sequent S: Ay,..., A, F Bi,..., By, is prenex
(or in prenex form) if the formulas A; and Bj, where 1 < ¢ <n and 1 < j < m, are
prenex formulas.

In some proof theoretic transformations in this work we will use normalized sequents.

Definition 2.1.13 (normalized sequents). A sequent I' = A is called normalized if the
multiplicity of all formulas occurring in I' (A) is one, more precisely: if I' = A;,..., A,
and A = By,..., By, then A; # Aj fori # j (i,j € {1,...,n}) and B; # By, for | # k
(I,ke{1,...,m}).

Remark. Note that every LK-proof ¢ of S can be easily transformed into a proof of a
normalized sequent: just apply the contraction rules to S.

In normalized sequents the multisets become sets which allows us to define some set-based
operations on sequents:

Definition 2.1.14. Let 51,52 be two normalized sequents such that S; = I'y F Aq,
So=T9F Ag. Let '=T1NT9, A =A1NAs. We define the following operations on
S, Ss:

S1NSy=TFA, Sl\SQZ(Fl\F)l—(Al\A), Sg\Slz(FQ\F)l—(AQ\A).
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Basic CONCEPTS

The sequents S; and Sy are called disjoint if S1 N .Se = F. Then, obviously, S; N S,
Sp\ S2 and Sy \ Sp are pairwise disjoint and

ST = (Sl N 52) o (S1 \ SQ),

Sy = (Sl N 52) o (SQ \ Sl)

Frequently, we will use the notion of strong and weak quantifiers. This notion is defined
via the polarity of a formula occurrence in a sequent.

Definition 2.1.15 (polarity [BL11]). Let A be an occurrence of a formula A in B.

e If A= B then )\ is a positive occurrence in B.

o If B = —C and A is a positive (negative) occurrence of A in C' then the corresponding
occurrence X' of A in B is negative (positive).

e If B=CAD,B=CVD, B=VYzC or B=3zC and \ is a positive (negative)
occurrence of A in C (or in D) then the corresponding occurrence X' of A in B is
positive (negative).

o If B=C — D and X is a positive (negative) occurrence of A in D then the
corresponding occurrence \' in B is positive (negative). If \ is a positive (negative)
occurrence of A in C then the corresponding occurrence X of A in B is negative
(positive).

If there exists a positive (negative) occurrence of a formula A in B we say that A is of
positive (negative) polarity in B.

Definition 2.1.16 (strong and weak quantifiers [BL11]). If Vz occurs positively (nega-
tively) in B then Vz is called a strong (weak) quantifier. If 3z occurs positively (negatively)
in B then Jx is called a weak (strong) quantifier.

This definition can be extended to sequents: A sequent is called weakly (strongly)

quantified if all quantifier occurrences in S are weak (strong).

Many proof-theoretic transformations in this work will be based on skolemized sequents.

Definition 2.1.17 (skolemized sequent [BL11]). Let sk be a function that maps closed
formulas into closed ones. sk(F') is the skolemization of F' and defined as

sk(F) = F if F does not contain strong quantifiers,

and otherwise assume that Qy is the first strong quantifier in F' (in a tree ordering) in
the scope of the weak quantifiers Q1 z1Qoxs ... Qnx,. Let f be an n-ary function symbol
not occurring in F', then sk(F) is inductively defined as

sk(F) = sk(Foy{y < f(z1,...,2a)}),
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2.1. Formulas, Sequents and Sequent Calculus

where Fg, is I after removal of Qy.

Now let S: Ay,..., A, - By,..., B, be a sequent consisting of closed formulas only and
sk((AyA...NA,) = (B1V...VBp))=(A{AN...ANA) — (B{ V...V B).

Then the sequent S": A},..., A = Bj{,..., B, is the skolemization of S.

Like most other calculi Gentzen’s LK is based on axioms and rules.

Definition 2.1.18 (axiom set). A (possibly infinite) set .7 of sequents is called an axiom
set if it is closed under substitution, i.e. for all S € &/ and for all substitutions # we have
S0 € o/. If &/ contains only atomic sequents we speak about an atomic axiom set.

Definition 2.1.19 (standard axiom set). Let 7 be the smallest axiom set containing
all sequents of the form A F A for arbitrary atomic formulas A. Then @7 is called the
standard axiom set.

Definition 2.1.20 (sequent calculus LK [BL11]). We use a variant of Gentzen’s version
of LK [Gen35]. Since we consider multi-sets of formulas, we do not need exchange or
permutation rules. There are two groups of rules, the logical and the structural ones.
All rules except the cut have left and right versions, denoted by [ and r, respectively.
The binary rules are of multiplicative type, i.e. no auto-contraction of the context is
applied. In the following, A and B denote formulas whereas I', A, II, A denote multi-sets
of formulas. In the rules there are introducing or auxiliary formulas in the premises and
introduced or principal formulas in the conclusion. We indicate these formulas for all
rules, auxiliary formula occurrences are marked by + and principal formula occurrences
are marked by x. We frequently say auxiliary (main) formula instead of auxiliary (main)
formula occurrence.

The logical rules:

A-introduction
AT BT TFA A AT Iy - Ay, BT
(AANBTFA 1,02 F Ay, Ay, (AN B)*

V-introduction

T

I'HA AT, Bt AYTiFA; BT Tok Ay
T-A(AvB)T " (AV B)*,T1,Ty F Ay, Ay

—-introduction

Vi

[iEALAY  BRToE Ay A+ TFA, B+
(A—)B)*,Fl,FQI_Al,AQ F"A, (A—)B)*

—-introduction



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2. Basic CONCEPTS
F'FA AT _ AT THA _
A TFA TFA A
V-introduction
A{z + t}7 T HA v 't A A{z + a}t v
VzA* T F A ! [ F A, VzA* r
where t is an arbitrary term and « is a free variable which may not occur in I', A, A. «
is called an eigenvariable.
J-introduction
A{z + o}t TFA 5 't A A{x «+ t}T
JzA* T F A ! L+ A, JzA* r
where the variable conditions for J; are the same as those for V.. and similarly for 3, and
V;. The quantifier-rules V;, 3, are called weak, the rules 3;,V, strong.
The structural rules:
weakening
A wy 'EA wy
A*THFA 'kA, A*
contraction
AT AT TEA c F-A AT AT c
ATFA TFA A
cut
I'yF A A™ A" Ty Ay cut(A, m, n)
[, Ta - A, Ag T
where m,n > 1. The formulas A™ and A" are the auxiliary formulas of cut(A4,m,n)
(they are also called cut-formulas) and there are not principal ones. We use this form of
the cut rule as it can be easily transformed into the resolution rule, which will be used in
the method CERES.
An LK-proof from a set of axioms &7 is a tree formed according to the rules of LK such
that all leaves are in . In general, our LK-proofs will be proofs from «7p.
When it is clear from the context, we will omit marking auxiliary and principal formula
occurrences with + and x.
We denote occurrences of sequents in a derivation with v, 14, ...v,. The sequent at
node v, is denoted by Seq(v,). A formula occurrence in a sequent will be denoted by
10
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2.1. Formulas, Sequents and Sequent Calculus

Hos 41, - - -5 3. Let g be an occurrence of a formula A in a sequent S, then we define
formula(p) = A in S.

Definition 2.1.21 (regularity). An LK-derivation ¢ is called regular if

e all eigenvariables of quantifier introductions V,. and 3; in ¢ are mutually different,

e an eigenvariable o occurs as an eigenvariable in a proof node v then a occurs only
above v in the proof tree.

There is a straightforward transformation from LK-derivations into regular ones: rename
the eigenvariables in different subderivations.

Definition 2.1.22 (prenex derivation). A derivation is prenex (or in prenex form) if all
its sequents are prenex.

Definition 2.1.23 (skolemized derivation). A derivation is skolemized if its end-sequent
is a skolemized sequent.

LK can be easily extended by adding rules. For instance, in Section 3.5 we will work
with LK_, an extension of LK with equality rules.

Definition 2.1.24 (sequent calculus LK_ [LL19]). LK_ is LK extended with equality
rules as in [BHLT06]:

Fll_Al,SZt A[S]A,FQFAQZ F1|—A1,t28 A[S]A,FQFAQ
Afn TR FALA, 0 AfaTuT2F Ay A

for inference on the left and

MEAL,s=t Dok Ag Als]a MEALt=s Dok Ag, Als]p
=rl

1, Do b Ay, Ao, Alt]s [, Dok Ay, Ay, Alt]a

—r2

on the right, where A denotes a position of a subterm where replacement of s by ¢ has to
be performed. We call s = ¢ the active equation of the rules.

Note that, on atomic sequents, the rules coincide with paramodulation — under previous
application of the most general unifier.

Axioms:

Any set of atomic sequents which is closed under substitution and contains the sequent
F 2 =z (and thus all sequents of the form F ¢ = ¢ for arbitrary terms ¢) is admitted as
an axiom set. We define the axiom set Ax = @/ U{Ft =1 |t a term}.

An LK_-proof from a set of axioms 7 is a tree formed according to the rules of LK_
such that all leaves are in <.

11
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2.

Basic CONCEPTS
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2.2 Herbrand Sequents

Herbrand’s theorem [Her30] is a fundamental result in proof theory, connecting first-
order logic to propositional logic. In its simplest formulation it states that a formula
JxF(x) is provable only if there exist terms ¢1,...,t, such that the Herbrand disjunction
F(t1) V...V F(ty) is provable. The crucial information that separates first-order from
propositional logic is the information about the terms ¢4, ..., ¢,. Given the termsty,...,t,,
first-order provability and provability in propositional logic coincide. A Herbrand sequent
is a propositionally valid sequent which is computed as an instantiation of the end-
sequent of a proof, where quantified formulas occurring in the end-sequent are replaced
by their Herbrand instances. A direct approach to extract Herbrand sequents from
proofs, and to the best of our knowledge the first correct proof of Herbrand’s theorem,
is based on Hilbert’s e-calculus [HB39,MZ06]. The extended first e-theorem eliminates
algorithmically so-called critical formulas, obtaining a Herbrand disjunction. Herbrand
sequents can also be extracted directly from proofs of prenex end-sequents with at most
quantifier-free cuts [BL11, HLWPO0S8]. The method of Herbrand sequent extraction is
based on collecting instances of quantified formulas directly from the proof.

Definition 2.2.1 (thread). Let m be an LK-proof. A thread in 7 is a path of sequent
occurrences in the proof tree beginning at the root and ending in an initial sequent.

Remark. Let 9: vy, ...,v, be a thread in 7 then every v;41 (for ¢ < «) is a premise of v;
and an immediate inference ancestor of v;.

To every thread there exist corresponding sequences of formula occurrences in the
corresponding sequents. Such sequence of occurrences starting in an occurrence of the
end-sequent is called a trace.

Definition 2.2.2 (trace). Let m be an LK-proof of an end-sequent occurring at the root
node vy and ¥: vy, ..., v, be a thread in 7. Let pg be a formula occurrence in Seq(vy).
For all i € {0,...,a — 1} let u;11 be an occurrence in Seq(v;+1) which is an ancestor
occurrence of p; in Seq(v;). Then the sequence (v, o), - - -, (Va, pa) is called a trace of
o in Y. A sequence ug, . .., e is called a trace of pg in 7 if there exists a thread ¥ in 7
such that (v, (o), - - -, (Va, ) 1S a trace of ug in 9.

Remark. In Definition 2.2.2 we have assumed that every u; has an ancestor occurrence
wir1. If p; is the principal formula of a weakening the occurrence p;41 does not exist.
In this case we cannot define a trace of pg corresponding to a thread . So traces, like
threads, start in the root and end in an initial sequent. Moreover, as ancestor occurrences
are not unique, a thread may define several traces.

Every trace defines a sequence of formulas, the yield.

Definition 2.2.3 (yield). Let 7: po,..., 1 be a trace in an LK-proof 7w then the
sequence formula(ug), ..., formula(uy) is called the yield of 7.
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2.2. Herbrand Sequents

Example 2.2.1. Consider the LK-proof ¢ =

Q) kW
P(a),Q(a) FQ(a) “

Qa) - P(@) Q)
(1) Q(v) F 3yP(a) > Qy) ~ '

ve: B,BFC,C,Q(a) Qw),BFC ut '

n:B,B,B-C,C,C
vo : Va(P(z) — Q(z)) - Jy(P(a) — Q(y)) ©

where ¢ =
vy : P(a) F P(a) .
v P@FP@.QW " P@r Pl QWEQW
FP@ - Q@.P@ L P),P@) Q@ QW
7% F Jy(P(a) = Q(y)), P(a) w.'l P(a),Va(P(z) = Q(2)) F Qa) "
vs: BFC,P(a) ' P(a),B+ C,Q(a) cut

ve: B,BF C,C,Q(a)

and B =Vz(P(r) — Q(z)) and C = Jy(P(a) — Q(y)).

Then 9 = vy, 11, V2, V3, V4, Vs, Vg, V7 is a thread in ¢. Let pg be the formula occurrence of
Jy(P(a) — Q(y)) in Seq(rp). Then the sequence

T = (v, p0), (V1,10)s (V2, o), (3, po), (Va, po), (U5, p1)s (Ve 12), (v7, p12)

is a trace of o in ¥, where p; is the occurrence of P(a) — Q(a) in Seq(vs) and po the
occurrence of P(a) in Seq(vg) and Seq(v7). This trace is indicated in bold letters in
the derivation ¢. The sequence Jy(P(a) — Q(y)), Jy(P(a) — Q(y)), Jy(P(a) = Q(y)),
Jy(P(a) — Q(y)), Jy(P(a) — Qy)), Pla) — Q(a), P(a), P(a) is the yield of 7.

Proposition 2.2.1. Let m be a cut-free LK-proof of a skolemized prenex end-sequent S
and let py be an occurrence of a formula F: Qzy...Qxg.F'(x1,...,x5) in S such that
Q € {V,3} and F' is quantifier-free. Let T be a trace of ug in w. Then there exist a
substitution o such that F'o occurs in the yield of 7.

Proof. By induction on the number of quantifiers Qx1...Qzg in F. Base case: the
formula F is QxF’. We follow the trace 7 of the occurrence pg of F in the proof-tree; by
the subformula property and as axioms are atomic the quantified variable = in F' has to
be replaced by a term ¢ in the proof-tree and hence, {x < t} is the desired substitution
o such that F’o occurs in the yield of 7.

Assume there are n quantifiers in the formula F': Qz1 ... Qzy.F'(x1, ..., 2y,), then there
exist a substitution o such that F’o occurs in the yield of 7 (IH).

13
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2.
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Now let us consider n+ 1 quantifiers Q1 ... Q41 in F: Q1 ... Qxy, Qrpir.F'(z1,. ..,
Zn+1). We follow the trace 7 of the occurrence i of F' in the proof-tree; by the subformula
property and the fact that axioms are atomic the first quantifier that will be eliminated
is Q1. Therefore, ;1 will be replaced by a term ¢; and we obtain a substitution
o1 = {x1 + t1}. The formula F hence changes to a formula F”: Qzs...Qxpi1.F'oq. In
F” there are only n quantifiers and hence we can apply the IH: there exists a substitution
o such that the formula F’o10 occurs in the yield of 7. 10 is the desired substitution. [J

Following Proposition 2.2.1 we can define a Herbrand substitution.

Definition 2.2.4 (Herbrand substitution). Let 7 be a cut-free LK-proof of a skolemized
prenex end-sequent S and fi9 an occurrence of a formula F': Q1 ... Qg . F'(z1,...,23)
in S such that @ € {V,3} and F’ is quantifier-free. Let 7 be a trace of uo in 7 such
that F'(t1,...,t3) occurs in the yield of 7. Then S(m,7) = {z1 < t1,..., 253 < tg} isa
Herbrand substitution for F' in 7 .

Remark. Note that the formula F'(t1,...,tg) and the substitution {z1 < t1,...,25 < tg}
in the propositions above are uniquely defined by the trace 7.

Definition 2.2.5. Let 7 be a cut-free LK-derivation of a skolemized prenex end-sequent
S and let po be an occurrence of a formula F': Qz1 ... Qxg.F'(x1,...,25) in S such that
Q € {V,3} and F’ is quantifier-free. We define as T'(uo, 7) the set of all traces of pg in .

Definition 2.2.6 (Herbrand instances). Let 7 be a cut-free LK-derivation of a skolemized
prenex end-sequent S and let 119 be an occurrence of a formula F': Qz ... Qxg. F'(z1,
..., xg) in S such that Q € {V,3} and F' is quantifier-free. Let 7: i, ..., 1o be a trace
in (0, 7). The set of all Herbrand instances for pg is then defined as

S(m,mo) = J{S(m,7) | 7 € T(po, )}
Similarly, let ug, ..., un be all occurrences of quantified formulas in S. Then
S(m)={S(m, ;) |i=0,...,n}
is the set of Herbrand instances of 7.

Definition 2.2.7 (Herbrand expansion). Let 7 be a cut-free LK-derivation of a skolem-
ized prenex end-sequent S and let ug be an occurrence of a formula F': Qx1 ... Qxg.
F'(z1, ..., zg) in S such that @ € {V,3} and F’ is quantifier-free. Let

S(W,uo):{{xl<—t%,...,x5<—t}j},...,{x1<—t?,...,x@<—tg}}

be the set of Herbrand instances for pg. Then the Herbrand expansion for g is defined
as
H(m,po): F'(H, ... th), ... . F/(t5, ..., 13).
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2.2. Herbrand Sequents

Example 2.2.2. Consider the LK-proof ¢ from Example 2.2.1. Let pg be the occurrence
of the formula Vz(P(x) — Q(x)) in the end-sequent. The set of all Herbrand instances for
po is S(p, po) = {x < a}. The Herbrand expansion for pg is H(p, uo) = P(a) — Q(a).

Let g be the occurrence of the formula 3z(P(a) — Q(y)) in the end-sequent. The set of
all Herbrand instances for ug is S(¢, puy) = {z < a,z < a}. The Herbrand expansion for

iy is H(p,ph) = Pla) = Q(a).

By Herbrand’s theorem every valid weakly quantified sequent has a Herbrand sequent.
Completeness proofs in automated deduction are based on a semantic proof of this
theorem, which is based on Konig’s lemma and thus a weak form of the axiom of choice.
However, Herbrand sequents S’ from LK-proofs ¢ of S can be obtained constructively,
provided the cut-formulas in ¢ are quantifier-free [BL94, HLWPO08]. The Herbrand sequent
of a prenex LK-proof with quantifier-free cuts can be constructed by replacing quantified
formulas occurring in an end-sequent by their Herbrand expansions.

Definition 2.2.8 (Herbrand sequent). Let m be an LK-proof with quantifier-free cuts
of a skolemized prenex end-sequent

S:F,FQ,...,FnI—Go,...,Gm,A

such that I', A are multisets of quantifier-free formulas and Fi, ..., F,,G1,...,Gy, are
formulas containing quantifiers. Let o, ..., un be the occurrences of Fy, ..., F, in .S and
let vy, ..., vn the occurrences of Gy, ..., Gy, in S. Then the Herbrand sequent of 7 is
defined as

H(m): T H(mw, o), ..., H(mw,pun) = H(m, ), ... H(m, vm), A.

Theorem 2.2.2 (soundness). Let w be an LK-proof with quantifier-free cuts of a skolem-
ized prenex end-sequent S, then

1. the formulas of H(m) are substitution instances of the formulas of S without their
quantifiers.

2. H(r) is valid.

Proof. Ttem 1 follows directly by the construction of H (), as quantified formulas are
replaced by their substitution instances. Item 2 follows because every Herbrand expansion
of a quantified formula in S, i.e. every substitution instance of a quantified formula in
S, occurs in the corresponding yield. Therefore, every substitution instance is provable.
But then, the Herbrand sequent is provable as well. ]

Example 2.2.3. Let ¢ be the LK-proof in Example 2.2.1. Its Herbrand sequent is

P(a) = Q(a) - P(a) = Q(a).

15
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2.3 Expansion Trees and Expansion Proofs

As Herbrand sequents can be obtained only from prenex end-sequents, a more general
notion is necessary to describe the instantiations of quantified variables occurring nested
in an end-sequent. To this aim we use so-called expansion trees. Expansion trees, first
introduced in [Mil87], are natural structures representing the instantiated variables for
quantified formulas. These structures record the substitutions for quantifiers in the
original formula and the formulas resulting from instantiations. Expansion trees may
contain logical connectives as well as the new connective +¢, where ¢ is a term. Informally,
an expression of the kind QzA(z) +* E; +2 ... +!n E, is an expansion tree, where
Q € {¥,3} and ti,...,t, are terms such that this expansion tree represents the result
when instantiating the quantified expression QrA(x) with the terms ¢1,...,¢, to get the
structures F;. F; is again an expansion tree representing A(t;) for i = 1,...,n. In the
method for the extraction of expansion proofs we consider skolemized proofs. Moreover,
the cuts are quantifier-free. Therefore, our definition is a modified one as we do not
have quantifiers with eigenvariable conditions. The definitions in this section are based
on [Mil87,LL19]. The definition below takes care that only trees with weak quantifiers
are constructed.

Definition 2.3.1. Expansion trees, dual expansion trees and a function Sh (shallow)
which maps expansion trees to formulas are defined inductively as follows:

1. If A is a quantifier-free formula then A is an expansion tree (and a dual expansion
tree) for A and Sh(A) = A.

2. If F is an expansion tree then —F is a dual expansion tree and Sh(—E) = —Sh(E).
3. If E is a dual expansion tree then —FE is an expansion tree and Sh(—E) = =Sh(E).

4. If By and E5 are (dual) expansion trees, then Ej A Es, E1V Ey are (dual) expansion
trees and Sh(E1 A E2) = Sh(E1) A Sh(Es), the same for V.

5. If Fq is a dual expansion tree and F» is an expansion tree then F; — FEs is an
expansion tree and Sh(E) — E2) = Sh(E;) — Sh(Es).

6. If F7 is an expansion tree and Fs is a dual expansion tree then F; — FE5 is a dual
expansion tree and Sh(E) — E2) = Sh(E;) — Sh(Es).

7. Let A(z) be a formula and t1,...,t, (n > 1) be a list of terms. Let Ei,..., E, be
expansion trees with Sh(E;) = A(t;) for i = 1,...,n; then Iz A(z)+" By +12 ...+ B,
is an expansion tree with Sh(3zA(z) +* By +2 ...+ E,)) = JzA(x).

8. Let A(x) be a formula and ¢4, ..., ¢, (n > 1) be a list of terms. Let Ey, ..., E, be dual
expansion trees with Sh(E;) = A(t;) for i = 1,...,n; then Vo A(z)+" By +12 ...+ E,
is a dual expansion tree with Sh(VzA(z) + Fy +2 ... +'» E,) = Vr A(z).

Substitutions can be extended to expansion trees.
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2.3. Expansion Trees and Expansion Proofs

Definition 2.3.2. Let o be a substitution and E an expansion tree (or a dual expansion
tree). Then Fo is inductively defined as:

1. If E = A for a quantifier-free formula A then Fo = Ao.

2. If E = Ej o Ey, where E; and E; are (dual) expansion trees and o € {A,V, —},
then Fo = Fio o Eyo.

3. If E = JzA(x) +* By +%2 ...+ E,,, where Ej, ..., E, are expansion trees and
t1,...,tn (n > 1) alist of terms, then Eo = JzA(x) +119 Eio +129 ... +1n7 E, 0.

4. If E =VxA(x)+1 By +%2 ...+t E,, where Ey, ..., E, are dual expansion trees and
t1,. ..ty (n > 1) a list of terms, then Eo = VrA(z) +1° Eyo +2°9 ...+ E,0.

Example 2.3.1. Let P(z) be an atom. Then P(a) is a dual expansion tree and
Vz.P(x) +* P(a) is a dual expansion tree. 3x.P(z) +* P(a) is an expansion tree. So

Va.P(z) +* P(a) — Jz.P(x) +* P(a)
is an expansion tree. But note that
Va.P(z) +* P(a) — Vz.P(z) +* P(a)

is not an expansion tree according to Definition 2.3.1 as Vx.P(z) +% P(a) is a dual
expansion tree but not an expansion tree. Indeed, having strong quantifiers with the
type of expansion defined above would be unsound.

The function Dp (deep) maps expansion trees (and dual expansion trees) to quantifier-free
formulas, their full expansion.

Definition 2.3.3. Dp maps a (dual) expansion tree to a formula as follows:

Dp(E) = FE for an atomic expansion tree E,
Dp(~E) = ~Dp(E),
Dp(Ey 0 Es) = Dp(FE1) o Dp(Es) for o € {A,V,—},
Dp(3zA+" Ey +2 ..+ E,) = Dp(E1) V...V Dp(E,),
Dp(VzA+" Ey +2 ..+ E,) = Dp(E1) A ...\ Dp(Ey,).

In [Mil87] a notion of expansion proof was defined from expansion trees using the
conditions acyclicity and tautology. Acyclicity ensures that there are no cycles between
the strong quantifier nodes in the expansion tree. Since our formulas are skolemized and
hence do not contain strong quantifiers, we do not need this condition.

Definition 2.3.4 (expansion proof). Let ET be an expansion tree of a formula A without
strong quantifiers. Then ET is called an expansion proof of A from a set of axioms &7 if
Sh(ET) = A and & = Dp(ET).

17
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Expansion proofs encode a proof of validity of the formula they represent. They can be
directly translated into sequent calculus, see [Mil87], and the transformation is based on
so-called g-sequents, which we refer to as s-expansion trees (sequent of expansion trees)
in this work.

Definition 2.3.5 (s-expansion tree). The structure S: I' = A where A: Q1,...Qs is a
multiset of expansion trees, I': Py, ..., P, is a multiset of dual expansion trees is called
an s-expansion tree. If =I' V A (which stands for =P, V...V 2P,V Q1 V...V Q) is
an expansion proof then S is called an s-expansion proof. This expansion proof is the
expansion proof associated with S; the sequent

Seq(S): Sh(P1),...,Sh(P.) — Sh(Q1),...,Sh(Q5)

is the sequent associated with S.

Substitutions on expansion trees can be extended to s-expansion trees. Let o be a
substitution and S: Pp,...,P. - Q1,...Qs an s-expansion tree, then So: Pyo,...,P.ot

Q10,...Qs0.

Definition 2.3.6 (\-operator on s-expansion trees). Let S: I' - A F' be an s-expansion
tree, where A: Q1,..., Qs is a multiset of expansion trees, I': Py,..., P, is a multiset of
dual expansion trees and F' a quantifier-free formula not occurring in A,I". Then we
define S\ FF =T1F A.

Note that the \-operator is only used on quantifier-free formulas in an s-expansion tree.
Therefore, we do not eliminate expansion trees but only formulas that do not expand
further and hence, the operator does not have to be defined inductively over the whole
tree.

It is also possible to read off expansion proofs from sequent calculus proofs. Note that the
expansion proof of a proof ¢ is a sequent of expansion trees, which are defined to be the
expansion trees of all formulas in the end-sequent of . An algorithm for the extraction
of expansion proofs from sequent calculus proofs is presented in [Mil87] and modified
algorithms (dealing with cuts and equality) are presented in [HLRR13] and [HW13].
There exist also algorithms for a transformation of resolution-trees into expansion-trees,
see [Pfe84].

We will use an algorithm that is briefly described in [HLRR13]. In order to show how an
expansion proof is extracted from a proof in LK, we first need to define an operation on
expansion trees. The Merge operator on expansion trees is defined in [Mil87]. Intuitively,
two expansion trees 77 and T5 can be merged, if Sh(T1) = Sh(T2). We give a definition
adapted to our concept of expansion tree.

Definition 2.3.7 (merge). Let Eq, F> be (dual) expansion trees such that Sh(E;) =
Sh(E5). We define the merge inductively on the complexity of Ej.
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2.3. Expansion Trees and Expansion Proofs

e If Fy is an atom then Ep is an atom too and E; = Fs; we define Merge,(F1,
Es) = E;.

e If £y = —E]. Then Ey = —F) for some F). Let Merge,(E{, E)) = Ej, then
Merge,(E1, E2) = —~FEj.

o Let B4 = F110FEp for o € {/\,\/,—>}. Then Fy = FE91 o E99 for some FEs1, Eos.
Let E{ = Merge,(E11, F21) and E) = Merge,(E91, E22). Then Merge,(E1, E) =
Ef o FE.

o Let By = Qu.A(z) +% By +- - - +!" Ey,,. Then Es is of the form Qx.A(z) +% Ea1 +
<o 45m By, Then

Merge, (E1, Ey) = Qu.A(z) +" By + - 4+ By +° Eyy + -+ +°" Egpp,.

Example 2.3.2. Let T} = VYzPz +% Pa and Ty = Yz Pz +° Pb be two dual expansion
trees then

Merge, (T}, Ty) = VzPx 4% Pa +" Pb.

The definition can be easily extended to more than two expansion trees. Let T1,...,T,
(for n > 2) be (dual) expansion trees such that Sh(T;) = Sh(T}) for all 7,5 € {1,...,n}.
Then we define

merge,(T1,T2) = Merge,(T1,Ts),
merge,(T1,...,T,) = Merge,(merge,(T1,...,Th-1),Ty) for n > 2.

It is also possible to merge s-expansion trees. As an s-expansion tree is defined via
multisets of expansion trees, some expansion trees might occur more than once either on
the left or on the right. In such cases merging s-expansion trees might become ambiguous.
To avoid this ambiguity we restrict the merge of s-expansion trees to normalized ones,
where the shallow forms occur only once.

Definition 2.3.8 (normalized s-expansion trees). Let S be an s-expansion tree then S
is called normalized if Seq(S) is normalized.

In our applications we will merge s-expansion trees only if they correspond to end-sequents
of proofs. Restricting the merge to normalized s-expansion proofs does not affect the
generality of our approach, as s-expansion trees can be easily transformed into normalized
ones.

Now we are ready to define the merging of normalized s-expansion trees.

Definition 2.3.9 (merge of s-expansion trees). Let S; and S2 be two normalized s-
expansion trees and ST = Seq(S1), S5 = Seq(S2). Then, by definition, Sj,S5 are

19
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2. Basic CONCEPTS

normalized sequents. We define I'" = A* = ST NS5, 11T H A7 = ST\ S5, II5 - A5 = S5\ ST.
Then

ST = (I™MEA") o (IIT FAY),

Sy = (I™EA%) o (II5 + A3).
Then there exist s-expansion trees I' = A, IV = A/, II; - A and Iy - Ay such that

S = THFA) o1 FAy),

SQ == (F/ F A/) o (H2 H Ag),
where Seq(I' F A) = Seq(I" F A") =T* = A*, Seq(I; - Ay) = IIT = A} and Seq(Ilz -
Ay) =1I5 F A%. Note that the concatenation o of sequents can be directly extended to
s-expansion trees. Then there exist bijective mappings m;: I' = IV and 7,.: A — A’ with
m(T) =T iff Sh(T) = Sh(T") (the same for 7,). So assume

'tA = Ty,...., T, FThy1,. .., Thym and therefore
A = m(T),...,m(Th) F 7 (Tus), - - o 7 (Tnem)-
Now let 77 = merge,(T;, m(T;)) for i = 1,...,n and T} = merge,(T;, 7 (T;)) for i =
n+1,...,n+m. Then we define
MergeS(Sl, SQ) = (Tl*, e ,T;: F T;Jrl, ceey T;er) e} (H1 F Al) 9] (HQ F AQ)
Note that, by construction, Merge (51, S2) is a normalized s-expansion tree.
We extend the merging of s-sequents to more than two as follows. Let n > 2 and
S1,...,5, be normalized s-expansion trees. Then
merge,(S1,52) = Merge,(S1,S2) for n =2,
merge,(S1,...,5,) = Merge,(merge,(S1,...,S,-1),5n) for n > 2.
The s-expansion tree merge,(S,...,Sy) is also normal which can be verified by an
obvious inductive argument.
Frequently we will write merge {S; | i = 1,...,n} for merge,(Si,...,Sy). If no confusion
arises we will frequently write merge instead of merge, and merge,.
Example 2.3.3. Let S| = VaPz +® Pat, Sy = VePz +° Pb+ Qa and S3 = F JyQy be
s-expansion trees. Then
merge, (51, S2, S3) = Vo Pz +* Pa +° Pb+ Qa, JyQy.
The extraction of expansion proofs from LK-proofs requires, as the extraction of Herbrand
sequents, quantifier-free cuts.
20


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
ledge

b

now!

i
r

2.3. Expansion Trees and Expansion Proofs

Definition 2.3.10 (extraction of s-expansion trees from LK-proofs). We define a trans-
formation E'T which maps skolemized proofs with quantifier-free cuts in LK to s-expansion
trees. We define the transformation inductively (on the number of inferences in the proof)
but the rules for —;, =, Vi, Vyy, Vy, are omitted, the transformation of the these rules
being obvious.

Base case: ¢ is an axiom. Then ¢ is of the form Ay,..., A, F By,..., B, for atoms
A;, Bj and so ET(¢) = ¢.
Ifp=
(m)
A B THFA A
AABTFA !

and ET(7) = A*, B*,I"" = A*, then ET(p) = A* A B*,I"" - A*.
If p=

(m1) (72)
I'MHALA I'sHAs, B
I'y,Te - Al,AQ,A/\B

Ar

and ET(m) =T F A}, A* and ET(me) =I'5 - A3, B*, then ET(¢) =T'7, I's = A}, A3,
A* N\ B*.
Ifp=

(m1) (m1)

Fl'—Al,A B,FQI—AQ =
A— B,Fl,FQ [ Al,AQ

and ET(m;) = I - A%, A* and ET(m) = B*, T F A}, then ET(p) = A* — B* T4, T}
AL
1> =2

Ifp=

()
ATHA B
I'-AA— B

T

and ET(m) = A*, I = A*, B*, then ET(¢) =I'* - A*, A* — B*.
If p =

21
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2. Basic CONCEPTS
()
A{z «t},THA v
VzA,TF A !
and ET(7) = A{z + t}*,I'* = A*, then ET(¢) = VzA +! A{x « t}*,T* - A*.
If p =
()
I'EA A{z + t}
I'EA 3zA "
and ET(7) = '™ = A*, A{z <+ t}*, then ET(p) = T* F A* 3z A +' A{x « t}*.
If p =
()
A w
ATHFA
and ET(7) =T + A*, then ET(¢) = A, T"* - A*. Similarly for w,.
If p =
()
AATEA c
ATEFA
and ET(7) = A}, A5, T* = A* then ET(¢) = merge(A}, A3), ' = A*. Similarly for ¢,.
If p=
(m1) (m2)
1A A™ A" To bk Ag
9 ) A
[, o Ay, Ay cut(A,m,n)
where A™ and A™ are arbitrary quantifier-free formulas and ET(m) = I'f F A}, A™ and
ET(m) = A", T'5 = Aj; then ET(p) = I'7, T4 F AT, As.
Proposition 2.3.1. The transformation ET is sound: if ¢ is a skolemized proof with
quantifier-free cuts in LK then ET(p) is an s-expansion proof.
Proof. We proceed by induction on the number of inferences in . We consider the cases
of axioms (represented by an axiom set <), A, and cut; the other cases are analogous.
22
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2.3. Expansion Trees and Expansion Proofs

e (axiom) Let S be an axiom sequent in /. Then S = Ay,..., A, F By,...,Bp
for atoms A;, Bj. Therefore for Fg: A1V ---V =A, V By V --- By, we have
Sh(Fs) = Dp(Fs) = Fs and &7 |= Dp(Fg).

o (N\) p=
(1) (72)

Fl |—A1,A FQ |_A2vB
I','sFA1,A2,ANB

Ar

and ET(m) = I'f = A}, A* and ET(me) = I'5 = A3, B* are s-expansion-proofs.
Therefore, -I'f V AT vV A* and —I'5 V A5 vV B* are expansion proofs and &7 |=
Dp(=I'; vV ATV A*) and & |= Dp(—I'5 vV A3 vV B*). But then & = Dp(—I' V A} V
-5 VALV (A" AB*¥)) and —I'f VAT V-5V A3V (A* A B*) is an expansion proof.
Therefore I'7, I's = AT, A5, A* A B* (= ET(y)) is an s-expansion-proof.

o (cut) ¢ =

(m1) (m2)
T b AL A™ AP Ty b Ay
', Ta kA Ay

cut(A,m,n)

where ET (7)) = I'f F A}, A™ and ET(m) = A", I'5 - A} are s-expansion-proofs.
Therefore, -I'f V A7V A™ and —A"™ vV =I5 V A} are expansion proofs and &7 |=
Dp(—=T'i VATV A™) and & | Dp(=A™V —T'%V A%). But then & = Dp(=T'; V A}V
-I'5VA%) and -I'f VATV —I'5 VA3 is an expansion proof. Therefore I'7, I's - A, A3
(= ET(y)) is an s-expansion-proof.

O

Example 2.3.4. Consider the LK-proof ¢ from Example 2.2.1. Its s-expansion proof,
after contraction on the right side of the sequent, is

Va(P(x) = Q(x)) +* (P(a) = Q(a)) F 3y(P(a) = Q(y)) +* (P(a) — Q(a)).

Note that in case of a prenex end-sequent S an expansion proof corresponds to the
derivation of S from the mid-sequent (Herbrand sequent). In fact, the function Dp of an
expansion proof corresponds to a Herbrand sequent. Moreover, every expansion proof
defines a set of Herbrand instances. In analogy to Definition 2.2.6 we define the set of
Herbrand instances from an expansion proof.

Proposition 2.3.2 (Herbrand instances from expansion proofs). Let m be a cut-free
LK-derivation of a skolemized end-sequent S and let ET(x) be its expansion proof. Let
F:Vzy.. . NYeg.F'(z1,...,23) for a quantifier-free F' be a quantified formula in S and

23
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F* its corresponding expansion tree in ET(m). Then the full expansion Dp(F™) of F* is
a quantifier-free formula F'(t}, . .. ,té) A ANF(ES, . ,tg). We obtain a set of Herbrand
instances for F . ‘
S(m, F) ={{z1 < t1,...,2p  t} [ 1 <i<a}.
Similarly, let Fy, ..., F, be all quantified formulas in S. Then
S(m)={S(m,F;) |i=1,...,n}
is the set of Herbrand instances of w.
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CHAPTER

Herbrand’s Theorem in
First-Order Logic

Herbrand sequents can be constructed from formalized mathematical proofs using several
methods and one interesting approach is based on Hilbert’s e-calculus, which is also the
oldest framework for proof theory [HB39]. The extended first e-theorem [HB39, MZ06]
eliminates algorithmically the so-called critical formulas from an e-proof which yields
a Herbrand disjunction. While this approach has several advantages, the e-calculus
has never become popular in computational proof theory of first-order logic. The main
reasons are the untractability of almost all nonclassical logics by any adaptation of the
e-formalism and the clumsiness of the e-formalism itself. In [BLL18] the second problem
was addressed and a translation of LK-proofs with cuts to the e-calculus was developed,
obtaining a sequent-calculus based formulation of the extended first e-theorem. The
translation leads to a simplified notation and a new elimination order of the critical
formulas. It is shown that a non-elementary speed-up of the length of the obtained
Herbrand sequents w.r.t. the length of the Herbrand sequents obtained by the original
elimination order can be achieved. While this investigation lead to an interesting approach
to the extraction of Herbrand sequents, it can only be used for a specific class of formalized
proofs and the extension to proofs with induction rules is not possible. For this reason
we will not go into the details of this work here and refer the reader to [BLL18].

A more widespread approach to construct Herbrand sequents is based on Gentzen’s
midsequent theorem [Gen35]. Gentzen proved that from a cut-free proof a so-called
midsequent, separating the proof in a propositional part and a part containing quantifiers,
can be constructed. The mid-sequent itself is a propositionally valid sequent and
corresponds to the Herbrand sequent. Gentzen’s midsequent theorem requires cut-free
proofs, however as demonstrated in Chapter 2 it is also possible to extract Herbrand
sequents directly from proofs of prenex end-sequents that contain cuts. The only
restriction is that the cut-formulas need to be quantifier-free. Hence, what we need is a
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method to eliminate quantified cuts in order to extract Herbrand sequents. To this aim
we will use the method CERES, a cut-elimination method which was specifically designed
for automated proof analysis of mathematical proofs. CERES substantially differs from
the traditional reductive cut-elimination methods & la Gentzen, where cuts are eliminated
by stepwise reduction of cut-complexity. The reductive methods are local in the sense
that only a small part of the whole proof is analyzed, namely the derivation corresponding
to the introduction of the outermost logical operator. As a consequence, many types
of redundancy in proofs are left undetected, leading to an unfortunate computational
behavior. In contrast, the method CERES is based on a structural analysis of the whole
proof, analyzing all cut-derivations simultaneously. After an application of CERES a
so-called CERES normal form, i.e. a proof with at most atomic cuts (ACNF for atomic
cut normal form), is obtained. Herbrand sequents can be extracted directly from this
normal form.

In this chapter we will first introduce the CERES method and then demonstrate that not
only proofs with quantifier-free cuts (i.e., proofs in normal form) suffice for Herbrand
sequent extraction, but that in fact no normal form needs to be constructed in order
to obtain this explicit information from proofs. This observation considerably simplifies
the method CERES for proof analysis and results in a more efficient way of Herbrand
sequent extraction. Moreover, as CERES can be extended to a formalization of induction,
the developed method paves the way for the analysis of proofs with induction inferences.

3.1 The Method CERES

In this section we will present the method for proof analysis with the cut-elimination
method CERES for first-order logic. The developed method will serve as a foundation for
the schematic CERES method in Section 5.1.

A major motivation for CERES was the development of an efficient cut-elimination method
for proof analysis. Indeed, in [BLO6] it was shown that CERES outperforms reductive
methods of cut-elimination (& la Gentzen or Tait) in computational complexity: there
are infinite sequences of proofs where the computing time of CERES is nonelementarily
faster than that of the reductive methods; on the other hand a nonelementary speed-up
of CERES via reductive methods is shown impossible.

The CERES method we use in this work differs from the original CERES method developed
in [BLOO] (which we will refer to as clausal CERES) by constructing a characteristic formula
and a single proof projection, both introduced in [LPW17]. In [BLOO] a characteristic
clause set and proof projections to the clauses from this set were constructed. We chose
the novel method from [LPW17] for practical reasons. In particular when moving from
first-order logic to a schematic language (as will be done in Section 5.1), handling of
clause sets and hence of schematic sets of clauses becomes problematic. It should also
be noted that in the setting of first-order logic, both CERES methods can be used. In
fact, we can simulate the clausal CERES method from [BL0O] with the method developed
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3.1. The Method CERES

in [LPW17]. We will introduce the basic concepts from clausal CERES, which differ from
those in our CERES method, in Section 3.5.1 and demonstrate the simulation properties.

The method CERES in first-order logic roughly works as follows: The structure of a proof
@ of a skolemized end-sequent S containing cuts is encoded in an unsatisfiable formula F
which is referred to as the characteristic formula of ¢. A refutation of F' by resolution
then can serve as a skeleton for a CERES normal form, a new proof of S which contains
quantifier-free cuts. The corresponding proof theoretic transformation uses a so-called
proof projection ¢*, which is a simple cut-free proof extracted from ¢ proving So + F.
From now on we will only consider proofs of closed end-sequents, i.e. sequents of formulas
that do not contain free variables.

At the heart of the CERES method lies the characteristic formula, which describes the
cut-derivations in a proof. More precisely, the characteristic formula is a quantifier-free
formula corresponding to the subproofs of an LK-proof ending in a cut. Intuitively,
the construction of a characteristic formula consists in collecting all atomic ancestors
of the cuts which occur in the axioms of the proof. The formula is formed depending
on how these atoms are related via binary inferences in the proof. The definition of the
characteristic formula is based on the cut-status of the formula occurrences in a proof,
i.e. whether a given formula occurrence is a cut-ancestor or not. In the definition below
we will use a set €2 describing the set of all cut-ancestors in a given proof p. Moreover,
from ¢ a cut-free LK-proof of a sequent composed of the original end-sequent of the
proof and the characteristic formula can be constructed. This proof is referred to as the
proof projection.

Definition 3.1.1 (characteristic formula and proof projection, [LPW17] ). Let ¢ be a
skolemized LK-proof and let €2 be the set of all occurrences of cut formulas in ¢. We
define a formula F), and proof ¢*(v) inductively for all nodes v in ¢. With S(v, Q) we
denote the intersection of Seq(v) and €2.

e Let v be a leaf node in . Then Seq(r) = A+ A for some atom A. We distinguish
3 cases:

1. S(1,Q) = F.
Then F, = 1 and ¢*(v) =v: AF A.

2. S(v,Q) =+ A.
Then F, = A and ¢p*(v) =v: AF A.

3. S(r,Q) =AF.
Then F, = - A and ¢*(v) =.

AFA
FA-A
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4. S(v, Q) =AF A
Then F, = AV —A and ¢*(v) =.
AFA
FHA-A \/
FAv-A T

e Now let us assume that £ is a unary inference in 7 with premise v/ and conclusion
v in ¢. Inductively we assume that F,, and ¢*(v’) have been defined and ¢*(v/') is
a proof of ' = A, F,, where ' = A = S(v/, Q).

We define F,, = F,,. For defining ¢*(v) we distinguish two cases:

1. the principal formula of £ is an ancestor of Q then ¢*(v) = p*(V/').
2. The principal formula of £ is an ancestor of the end-sequent. Then ¢*(v) =
(" ()
I'-AF,
' A'F,
e Assume that £ is a binary inference with premises v, o and conclusion v. Assume

further that F,, , F,, are defined and ¢*(v;) are derivations of I'; - A;, F,, (for
i =1,2) such that I'; H A; = S(v;, Q). We distinguish two cases:

1. the auxiliary formulas in £ are ancestors of Q. Then we define ¢*(v) =

(" (1)) (" (12))
[ FALE, ToF Ay F,

FlaFQ F A17A27Fl/1 /\FIJQ

and F, = F,, A Fy,.

2. the auxiliary formulas in £ are ancestors of the end-sequent. Then we define

p*(v) =
(¢*(vi)) (¢*(12))
Ty Ay F, Tob Ay F,

/1’]-_‘,2'_A/15 /27FI/17FIJ2 -
T ALALF, VE,

and F, = F,, V F,,,.

Finally, the characteristic formula of ¢ is defined as F' = F},, and the proof projection as
©* = ¢*(v) for the root node (end-sequent) v of .

Example 3.1.1. Let ¢ be the following LK-proof:

(1) (¢02)
Vaz(Px — Pfx) - Vo(Pxz — Pf?z) Pa,Vz(Pr — Pf%r) - 32Pf42
Pa,Vx(Px — Pfz)F 32Pf*z

cut
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3.1. The Method CERES
where o =
Pfat Pfa Pf2at Pf’a .,
Pat Pa Pfoa,Pfa — Pf2at Pf?a .,
Poa,Pa — Pfo,Pfa — Pf?at Pfa v
Pa,Vz(Pz — Pfz),Ya(Pr — Pfz) - Pf’a l_) :
Va(Pz — Pfx),Vo(Px — Pfz) - Pa — Pf?a . '
Vz(Pxz — Pfx) F Pa — Pfia
Va(Px — Pfz) - Vao(Px — Pf2z)
and @9 =
Pf’at Pf?a  Pfat Pfia .
Pa + Pa Pf%a,Pf’a — Pfiat Pf*a .
Pa, Pa — Pf?a, Pf?a — Pfiat+ Pfia v\
Vi

Pa,Vx(Px — Pf%x),Yx(Px — Pf?z) F Pfta
Pa,Vx(Px — Pf?z) - Pfta
Pa,Vx(Px — Pf%z) - 32Pf*2

a

T

Following Definition 3.1.1 we obtain the proof projection 7* =

(mi)  (m3)

A
Pa,Vx(Px — Pfz)F 3zPf*z, Pa A (Pf?aV =Pf?a) AN ~Pfia A (=PaV Pf2a)

where 1] =

PabPa__ .. Pfat Pfa  Pfiat Pf?a

F Pa,~Pa Pfa,Pfa — Pf?aF Pf?a

Pa — Pfa,Pfa — Pf?at —Pa, Pf?a

Pa — Pfa,Pfa — Pf?at -PaV Pf?a

Vz(Px — Pfx),Vz(Px — Pfx) - -PaV Pf’a
Va(Px — Pfz) - —PaV Pf’a

Vir

1,V
c

and 75 =

29


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

HERBRAND’S THEOREM IN FIRST-ORDER LOGIC

30

Pf?at Pf?a Ly
- Pf?a,-Pf*a Pftat Pfla
- P2V —Pf% ' FPf'a,~Pfta
Pat Pa F Pfia,(Pf2a Vv —Pf?a) A=Pf*a _ her
Pat Pfa, Pa A (Pf2aV —Pf?a) AN=Pf'a "
Pa b 3zPf*z, Pa A (Pf%aV —Pf?a) A—=Pf*a

and the characteristic formula

F = Pan(Pf?aV -Pf%a) AN—-Pf*a A (~PaV Pf%a).

Let po be the occurrence of the formula Vx(Px — Pfx) and p; the occurrence of the
formula 32Pf*z in the end-sequent of 7*. Then S(7*,up) = {{z + a},{z + fa}},
S(m*, 1) = {{# < a}} and S(7*) = {{zx < a},{z + fa},{z + a}}. The Herbrand
expansion of the formula Vo (Pz — Pfx) is H(7*, uo) = Pa — Pfa, Pfa — Pf%a and
the Herbrand expansion of the formula 3zPf*z is H(n*, 1) = Pf*a. The Herbrand
sequent of 7* is H(7*) = Pa, Pa — Pfa, Pfa — Pf2a 't Pft*a, PaA(Pf2aVv—Pf%a) A
-Pfta A (=PaV Pfa).

It can be shown that the universal closure of a characteristic formula F' is always
unsatisfiable. In fact, a refutation of the characteristic formula can serve as a skeleton for
a proof in normal form, which can be used for a direct extraction of Herbrand sequents.
However, in general the construction of a refutation of the characteristic formula can be
a tedious task and is often, especially in a schematic setting for handling proofs with
induction rules, the most problematic step in the CERES method. In Section 3.2 we will
introduce a novel resolution calculus to overcome these difficulties, as the calculus can be
easily extended to a schematic setting. To move on with the method CERES, for now we
only need to know that the universal closure of the characteristic formula is unsatisfiable.

Proposition 3.1.1 ( [LPW17]). Let ¢ be a skolemized LK-proof and F its characteristic
formula. Then VF is unsatisfiable.

Proof. In [BLOO] a set of clauses CL(y) (the characteristic clause set) is defined and
shown unsatisfiable. It is easy to check that CL(y) can be obtained from F' (the conjuncts
of F define the clauses in CL(yp), see Section 3.5.1), hence VF is unsatisfiable as well. [

As VF is unsatisfiable there exists a cut-free proof (or a proof with quantifier-free cuts)
x of VI . By Herbrand’s theorem there exist ground substitutions 61, ...,0, on the
variables in F' s.t. So: Foy,...,Fos b is a propositionally valid sequent. Therefore there
exists an LK-proof ¢ deriving S,. This proof can be used to construct a CERES normal
form.
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3.2. The Resolution Calculus RPLg

Definition 3.1.2 (CERES normal form, [LPW17]). Let ¢ be a skolemized proof of a
sequent S: '+ A, let F be its characteristic formula and n* the proof projection. VF
is unsatisfiable, therefore there exists a cut-free proof (or a proof with quantifier-free
cuts) x of VF . By Herbrand’s theorem there exist ground substitutions 61, ...,0, on
the variables in F s.t. S,: Ff4,...,F0,F is a propositionally valid sequent. Therefore
there exists an LK-proof ¢ deriving S,. We abbreviate F'f3 by Iz and 760 by 7. The
CERES normal form is defined as:

(77) ()
(73) I'AF Fi,...,F,F .
THA R T, Fy, ... FyF A tf“*
Ccu C
(%) T,55,... FaF A
T+ A, F,

: e
TEA cut + ¢
From a CERES normal form Herbrand sequents can be extracted by collecting instances
of the quantified formulas occurring in the end-sequent [HLWPO0S].

As mentioned before, the introduced CERES method differs from previously defined CERES
methods (the clausal CERES method). The clausal CERES method can be considered as
a special case of the new CERES method and we will use the clausal CERES method in
Section 3.5 for defining an efficient method for Herbrand sequent extraction from proofs
with equality inferences. We would like to highlight once more that the main reason for
choosing the CERES method over the clausal CERES method lies in the application to
inductive structures.

3.2 The Resolution Calculus RPL

As the universal closure VF' of a characteristic formula F' is always unsatisfiable, it can be
refuted by any theorem proving method. For refuting characteristic formulas we chose the
novel calculus RPLg for quantifier-free formulas, which combines dynamic normalization
rules a la Andrews [And71] with the resolution rule. In contrast to [And71] we do not
restrict the resolution rule to atomic formulas. The main motivation of the calculus RPLg
is that it can be extended to a schematic setting in a straightforward way (see Section
4.3). Moreover, RPLg is particularly suited for the extraction of Herbrand sequents,
which is the main aim of this work. In particular, a refutation in RPLg is a refutation
from F F, for a quantifier-free formula F. Having constructed a RPLg refutation of a
characteristic formula F', a Herbrand sequent of F' can be obtained by a simple proof
transformation.

We denote as PLg the set of quantifier-free formulas in predicate logic. As characteristic
formulas do not contain —, for simplicity we omit —, but can represent it by — and V in
the usual way. In this setting, as sequents we consider objects of the form I' - A where I"
and A are multisets of formulas in PLyg.
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC
Definition 3.2.1 (RPLj). The axioms of RPLj are sequents - F' for F' € PLy.
The rules are elimination rules for the connectives and the resolution rule.
I'HAAANB L, 'HFAAANB Ay ANB,TFA
TFA A '"TFAB > A BTFA
''AAVEB v AVB,TFA Vil AVB,TEFA vl
TFAAB " ATFA 7" TBTFA VR
I'EA-A . -ATHA
ATFA " TFAA &
The resolution rule where 1 is an m.g.u. of {A,..., Ag, B1,...,B;} and
V({Al, e Ak}) N V({Bl, R ,Bl}) =0 is
I'EAAy,...,Ar Bi,...,Bn,IIFA res
'y, 119 = A9, AY
A RPLg-derivation is a tree formed from axioms - F' for F' € PLy by application of the
rules above.
Note that in a RPLg-derivation several resolution rules may occur and hence several most
general unifiers 9; need to be applied. A total unifier (or total m.g.u.) can be obtained
by considering the most general simultaneous unifier of the unification problems given by
the atoms in the premises of all resolution rules, after regularizing the derivation.
Proposition 3.2.1. RPLg is sound and refutationally complete, 1i.e.
1. all rules in RPLg are sound and
2. for any unsatisfiable formula VF and F € PLg there exists a RPLg-derivation of -
from azioms of the form & FY where ¥ is a renaming of V(F).
Proof. 1. is trivial: if .# is a model of the premise(s) of a rule then .# is also a model of
the conclusion.
For proving 2. we first derive the standard clause set € of F. Therefore, we apply the
rules of RPLg to - F', decomposing F’ into its subformulas, until we cannot apply any rule
other than the resolution rule res. The last subformula obtained in this way is atomic
and hence a clause. The standard clause set & of F' is comprised of the clauses obtained
in this way. As VF is unsatisfiable, its standard clause set is refutable by resolution.
Thus, we apply res to the clauses and obtain . The whole derivation lies in RPLg. O
Example 3.2.1. Let F = Pa A (Pf%a Vv =Pf?a) A =Pfta A (~Pa V Pf%a) be the
characteristic formula from Example 3.1.1. Let H = (Pf?aV —Pf?a) A=Pf4a A (—-PaV
Pf%a) and let G = =Pf*a A (~PaV Pf2a). We obtain the refutation p =
32
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3.2. The Resolution Calculus RPLg

FG "
- -PaVv Pfla
(m)  F-Pa,Pfa ' FE 5
Pf%at Pa+ Pf’a resfa ¢ a) FPa) !
Pa+ F Pa res
l_
where p; =
FF
A
- R FH A
NG G
_/\T2 72

G F-PaV Pfa

F-Pfla ' F-Pa,Pfla _

Pflar Pat Pf2a
Pf2a

r

res{a + f?a}

Grounding of p (by applying a total m.g.u) results in p* =

FF{a+ a}

F H{a <+ a} /\Tz

FG{a—a} |’

- -PaVv Pfa
(0}) F-Pa,Pf’a "+ F{o+a} N
Pflat- Pat Pf?a - P(a) "
res —r
Pa - F Pa
res
}_
where p] =
F F{a <+ f?a}
- F{a « f?a} A - H{a <+ f%a} /\T2

T2

- H{a < f%a} /\Tz F G{a « f?a}
F G{a + f?a} /\m F-Pf2aV Pfla
F-Pfla _ "' F-Pf2,Pfla
—_\7, _|7.
Pfiat Pf%a+ Pfta
res
Pflat

T2

T

The set of substitutions in p is (p) = {{a + a}, {a + f?a}}.
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The calculus RPLgy can be used to construct a Herbrand sequent of F', where - F' is
the axiom used in the RPLg derivation. To obtain these Herbrand instances we have to
consider the grounded RPLg-refutation p of F. By construction, p is a RPLg-refutation
with axioms of the form + Fo;, where o; is a substitution obtained by grounding.
Appending F'o; to the antecedent of these axioms, results in LK-axioms Fo; F Fo;.
When we propagate these formulas in the antecedents of our axioms to the root node, we
obtain a derivation of Foy,... Fo, F. To obtain an LK-proof of Foy,...Fo, F we only
have to replace the resolution rules by cut rules.

Proposition 3.2.2. Let p be a RPLg-refutation of a characteristic formula F'. Then there
exists an LK-proof p* of Foi,...,Fo, &, where o1,...,0, € X(p) are the substitutions
of the axioms = F in p after applying the total m.g.u.

Proof. Applying the total m.g.u. of p to p is performed by regularizing p (i.e. renaming
of variables) and then grounding the obtained derivation. After the total m.g.u. has
been applied to p, we obtain a RPLg-refutation p’ from axioms  F'o; for a substitution
oi, where the resolution rules do not define substitutions. Therefore, we can replace
the resolution rules by cut rules, hence obtaining an LK-refutation p” from axioms
F Fo;. Appending Fo; to the antecedent of the axioms results in LK axioms Fo; - Fo;.
Now we only have to propagate the antecedents of the axioms to the root node and we
obtain an LK-proof p* of Foy,..., Fo, . Double occurrences in the end-sequent are
contracted. O

Example 3.2.2. Consider the grounded refutation p* from Example 3.2.1. Following
the construction in the proof of Proposition 3.2.2 we obtain an LK-proof §* =

F{a <+ a} - F{a < a}
(67) F{a <+ a}+ P(a)
F{a + a}, F{a + f?a}, F{a < f%a}, Pat F{a <« a}+ Pa
F{a <+ a}, F{a + a}, F{a + f?a}, F{a + f%a} F
F{a« a}, F{a+ f?a} -

1

cut

q

where 67 =

Fla <+ a} - F{a <+ a}
Fla <+ a}t+ H{a + a} /\m
F{la < a}F Gla+a} °
F{a <+ a}F—-PaV Pf?a
(03) F{a <+ a} F —Pa, Pf%a ﬁr
F{a + f?a}, F{a + f?a}, Pf?a - F{a < a},Pat- Pf%a
F{a < a}, F{a « f?a}, F{a <+ f%a}, Pat

T2

cut
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3.2. The Resolution Calculus RPLg

and 65 =

F{a <+ f?a} F F{a + f2a}
F{a + f?a} - F{a + f?a} A F{oa<—f2a}FH{a<—f2a}
F{a <+ f?a} - H{a + f2a} " F{a + f?a} - G{a < f%a}
F{a<—f2a}|—G{a<—f2a} A " F{a + f?a} - =Pf%a Vv Pfta
Flo« ffa}r=Pf'a " F{a+ f’a} - ~Pf?a,Pfla
Fla « f2a},Pftat Fla « f2a}, Pf2at Pfla
F{a <+ f?a}, F{a + f?a}, Pf?a F

T2

T2

T

res

Now we can also give an example of a CERES normal form.

Example 3.2.3. Let ¢ be the LK-proof of Example 3.1.1. Then the CERES normal
form of ¢ is 7 =

(m*o2) (1)
Pa,Vx(Px — Pfz)F 3zPf*2, Foy Pa,Yx(Px — Pfx),Foy - 32Pf4z

t k
Pa,Vz(Px — Pfx) - 3zPf*z cut ¢

where 1] =

(m*01) (6%)
Pa,Vz(Px — Pfx) - 32Pf*z, Foy Foi,Foy
Pa,Vx(Px — Pfx), Foy - 2P f*2

cut

and where 01 = {a + a}, 02 = {a + f2a}, 6* is the LK-proof in Example 3.2.2, 7* is
the proof projection in Example 3.1.1 and F is the characteristic formula Pa A (Pf2a Vv
-Pf%a) A -Pfta A (=PaV Pfa).

We can also extract a Herbrand sequent of 7. Let pg be the occurrence of the formula
Va(Px — Pfx) and pu; the occurrence of the formula 3zP f*z in the end-sequent of 7.

Then S(7, o) = S(7*oq, NO) U S(’/T*Jg,uo) = S(7*, po)or U S(7*, po)oa.
From Example 3.1.1 we know that S(7*, no) = {{z + a},{z < fa}}. Therefore,

S(myuo) = {{z+ a},{z « faltor U{{z + a},{z «+ fa}}oo
= {{z —a},{z < fa}} U {{z « fPa} {z < fPa}}).
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S(m,pa) = S(m*o1, p) U S(m*og, p1) = S(m*, pa)or U S(m*, pa)oa.
From Example 3.1.1 we know that S(7*, u1) = {{z < a}}. Therefore,

S(myp1) = {{z + a}}o1 U{{z < a}}oe = {{z < a}}.

The Herbrand expansion of the formula Va(Px — Pfx) is
H(m, o) = Pa— Pfa,Pfa— Pf?a,Pf*a — Pf3a,Pf3a — Pf*a

and the Herbrand expansion of the formula 3zPf4z is H(m, 1) = Pf4a.

The Herbrand sequent of 7 is

H(n) = Pa,Pa — Pfa,Pfa — Pf%a, Pf*a — Pf3a, Pf3a — Pfiat Pfa.

RPLg can easily be extended to handling a logic with equality by adding paramodulation
rules.

Definition 3.2.2 (RPLF). The calculus RPLy is RPL extended by the following
paramodulation rules:

We assume that the two clauses in the premises are always variable disjoint and that o is
a most general unifier of {s, s'}.
F'FAs=t Aldlg,IIFA THFAt=s A[]g,IIFA
Altlgo,T'o,llo - Ao, Ao Altlyo,To,llo + Ao, Ao

for inference on the left side of the clauses and

FEAs=t IIFA Ay FFAt=s IIFA Ay
Lo, Ilo F Ao, Ao, Alt]yo Lo, Ilo F Ao, Ao, Alt]yo

for the right side, where W denotes a position of a subterm where s’ is replaced by t. We
call s =t the active equation of the rules.

In Section 4.3 we will extend the calculus RPLj to a schematic structure.

3.3 Extraction of Herbrand Sequents from
Non-Normalized Proofs

Usually, explicit information in the form of Herbrand sequents is extracted from a CERES
normal form ¢ after the application of CERES. However, we show that the construction
of ¢ for the extraction of Herbrand sequents can be omitted by proving Theorem 3.3.1:
the crucial information about ¢ is already contained in the proof projection and the
resolution refutation of F. It is possible to extract instances of quantified formulas
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3.3. Extraction of Herbrand Sequents from Non-Normalized Proofs

occurring in the end-sequent S from the proof projection ¢*. Substituting these instances
with the total unifier obtained from the resolution refutation of F' results in the Herbrand
sequent of ¢. Therefore, for computing Herbrand sequents, the construction of a CERES
normal form is superfluous. This simplification of the method for Herbrand sequent
extraction with CERES can only be performed because of the specific structure of the
method itself. Compared to the clausal CERES method for the extraction of Herbrand
sequents, as described in [BLO0], this improvement yields a gain in asymptotic complexity.
In particular we can show that the new method outperforms the old one. A detailed
complexity analysis can be found in Section 3.5.3.

For each quantified formula occurrence u; in a prenex end-sequent of a skolemized LK-
proof ¢ we construct a structure F(np, i, p). This structure is constructed using specific
features of CERES. First, we construct the projection 7* of ¢. It is a crucial observation
that for a proof ¢ and the corresponding proof projection n* their end-sequents are
the same, except that the end-sequent of 7* contains the characteristic formula F' in
the succedent. Thus, the quantified formula occurrence p; in the end-sequent of ¢ also
occurs in the end-sequent of 7*. Therefore, we can extract Herbrand instances of the
quantified formula occurrence p; in the end-sequent of 7* by collecting instances from
m*. Then we construct a RPLg-refutation p of the characteristic formula F' of ¢, which
is used to construct Herbrand instances of F'. The obtained substitution instances are
then used to substitute the Herbrand instances obtained from the projection. Merging
these substituted Herbrand instances results in H (g, i, p) and in fact defines the set of
Herbrand instances for the quantified formula occurrence p; of the original LK-proof .

Definition 3.3.1. Let ¢ be an LK-proof of a skolemized prenex end-sequent with
characteristic formula F', p a grounded RPLg-refutation from - F', let 7* be the projection
of ¢ to F' and for each quantified formula occurrence p; in the end-sequent of 7* let
S(7*, u;) be the set of Herbrand instances defined by 7*. Then we define a set

H(p, pis p U S(m*, pi)o

for o1,...,0m € X(p), where X(p) is the set of substitutions obtained from p.

Example 3.3.1. Let 7 be the CERES normal form in Example 3.2.3 and let pg be the
occurrence of the formula Vo (Px — Pfz) and u; the occurrence of the formula 3zP 4z
in the end-sequent of 7. X(p) = {{a + a}, {a + f2a}} as in Example 3.2.1.

S(m*, wo) = {{z < a},{z < fa}} and S(7*, 1) = {{z < a}} as in Example 3.1.1.
Then,
H(p,po,p) = S(n*,mo){a ¢ a} US(n", po){av ¢ f2a}
{{z < a} {z « fa}} U {{z « fPa}, {z  foa}},
{{z < a} {z « fa} {z « fPa} {z  foa}},
H(p,pa,p) = S, m){e = a} US(r*, m){a + fa}
= {{zeaju{{z —a}} = {{z < a}}.
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The obtained sets H (g, uo, p) and H(p, i1, p) in the example above are equal to the sets
S(m, po) and S(m, p1) obtained in Example 3.2.3 from the CERES normal form. This is
however no coincidence but rather a generally valid observation. Indeed, it can be shown
that for any quantified formula occurrence u; the set H(p, u;, p) is equal to the set of
Herbrand instances of the quantified formula occurrence pu; in the end-sequent of the
CERES normal form .

Theorem 3.3.1. Let ¢ be an LK-proof of a skolemized prenex end-sequent I' = A, let
F be its characteristic formula and ©* the projection of ¢ to F. Let p be a grounded
RPLg-refutation from = F and w the CERES normal form of ¢. Then for each quantified

formula occurrence p; in p, H(p, pi,p) = S(mw, ;).

Proof. By induction on the number of substitutions in ¥(p). Base case: assume there is
only one substitution o € ¥(p). Then the CERES normal form 7 is of the form
™o P
I'HA Fo Fol-
kA

(cut)

Note that p* is the LK-proof of the Herbrand instances of F', in this case of Fo I,
obtained from p.

S(m, p;) is constructed by collecting instances of the formula at occurrence p;. By
construction of 7, the quantified formula occurrence p; in the end-sequent of 7 occurs
also in the sequent I' H A, Fo. Therefore,

S(m, pi) = S(w*o, i) = S(n*, pi)o = H(ep, pi, p)-
Note that the formula at occurrence pu; is a closed formula and does not change after
substitution with one of the substitutions in ¥(p).

Assume by IH that for n substitutions o1,...,0, € X(p) the assumption holds, i.e.

S(F,Mi) = {S(FT,,U/Z), ey S(W;;u MZ)} - U?:l S(?T*,,U,Z‘)O'j = F(‘pa Mivp)7 where Tr;k = 7[-*0-7:
and 7 is of the form

* *

1 P
5 I'EAFy Fy,...,FF
'EAF LRy, ..., A
. L F3,...,F, FA

7Tn
THA,F,
TFA

(cut)
(cut + c*)

(cut + ¢*)

and Fz = FO‘i.

Now consider n + 1 substitutions o1, ...,0p,0,+1 € 3(p). Here we have to consider
a proof p* of F1,...,F,, F,11 F and the additional substitution instance m; ,; of the
projection 7*:
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3.4. Extraction of Expansion Proofs from Non-Normalized Proofs

T p*
TEAR R Falunt (o

F7F27--'7Fn7Fn+ll_A

T :

ﬂ-;kH*I FFA7FTL FaFnaFn+l|_A (CUt+C*)
TF A F,o VT FFA
a a (cut + )
kA

At node v we still have only n instances of the proof projection 7*, only that Fj, 1 F is
propagated through the proof tree starting from p*. By IH the Herbrand instances for u;
at node v are

S(Wuaﬂi) = {S(ﬂ-fa/‘l)v ( 'm/‘l }_ US a/‘z

The Herbrand instances S(7, p1;) are by construction
S(T[‘, /‘i) = S(ﬂ-:z—i-lv ﬂi) U S(ﬂ-l/v :ui)

= S(rh.pm)U | S, wi)o,

j=1

= S(7*, wi)opy1 U U S(m*, pi)o;
j=1
n+1
= US ™™, wi)oj = H(p, i, p)

O

A crucial observation in the proof above is to notice that the quantified formula occurrences
1; in the end-sequent of the original proof ¢ are the same as in the CERES normal form
7w and in the proof projection 7*! Moreover, the end-sequent of the projection is the
end-sequent of 7 concatenated with the characteristic formula F' and all logical rules in
7 take place in the instantiations of the projection. Therefore, all the rules that operate
on quantified formulas occurring in the end-sequent of 7 are in the sub-derivations that
are instantiations of the projection.

3.4 Extraction of Expansion Proofs from
Non-Normalized Proofs

Also the extraction of expansion proofs is usually performed after the construction of a
CERES normal form. However, as in Section 3.3, we can show that the construction of

the proof projection and the resolution refutation of the characteristic formula F' suffice.
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By the structure of a CERES normal form, its expansion proof can be composed of the
expansion proof of the projection after removal of the expansion tree of F' and then
substituting with the substitutions given by regularizing and grounding the refutation
of F'. Merging these substituted expansion proofs results in the expansion proof of the
CERES normal form. Below we define an expansion tree E(ip,p) which is defined by
merging the expansion trees of the instantiated proof projection after removal of the
expansion tree of F'. Note that the characteristic formula F' is a quantifier-free formula,
hence its expansion tree is a formula which we can remove easily from any expansion tree.
Moreover note that this formula in fact has to be removed from the final structure, as in
the CERES normal form the characteristic formula does not occur in the end-sequent,
but only as a cut-formula. Thus, the expansion proof of the CERES normal form cannot
contain F. This is the reason why we remove F' from the expansion tree of the proof
projection immediately.

Definition 3.4.1. Let ¢ be an LK-proof of a skolemized and normalized end-sequent,
¥ its projection, F the characteristic formula and p the grounded refutation of F. We
define

E(p, p) = merge((ET(r)\ F F)or,..., (BT(x)\ F F)oy),

where o1,...,0, € X(p).

To prove that E(y, p) is actually the expansion proof of the CERES normal form 7 of ¢,
we first need to show that for every subproof of the CERES normal form, the expansion
proof can be composed of the expansion proofs of the instantiated proof projections
occurring in the subproof, after removal of all obsolete instances of the characteristic
formula.

Theorem 3.4.1. Let ¢ be an LK-proof of a skolemized and normalized end-sequent, m*
its proof projection, F' its characteristic formula and p the grounded refutation of F. Let
7 be the CERES normal form of ¢ containing n cuts and o1,...,0, € X(p). Then for
every subproof ©' of ™ containing k cuts,

ET(7') = merge(merge(ET(r*)\ F F)oy,...,ET(7")\ F F)oy),
{F1,...,F, F}\{F1,...,F F}),

where F; = Fo;.

Proof. By induction on the number of cuts in 7/. Base case: assume there is only one
cut. Then 7’ is of the form

o1 p*

TFAFR B, F,... FF
T,F,....Fot A

(cut)
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3.4. Extraction of Expansion Proofs from Non-Normalized Proofs

where p* is the LK-proof obtained from p following Proposition 3.2.2. Let I'* be the
expansion tree of I' and A* the expansion tree of A. By construction

ET(x')) = T*F,... FybF A*
= merge(ET(n%01)\ F F1,{F1,..., F, F}\{F1 F})
= merge((ET(7*)\ F F)o1,{F1,..., F, F}\{F1 F}).

Assume by IH that for & cuts in 7’ the assumption holds, i.e.
ET(7') = merge(merge(ET(7*)\ F F)oy,...,ET(7*)\ F F)oy),
{F1,...,Fo, F\{F1,..., Fp F}),
where F; = Fo; and for o1,...,0, € X(p).

Now consider k£ + 1 cuts in ’. Here we have to consider one additional substitution
instance 7, ; of the projection 7* in the construction of 7',

st P
I'-AF R,... F, (cut)
I Fy,....F,FA
Tt :
Fl_A,Fk+1 VZF,Fk+1,...,Fn|_A (Cut+c*)

T, Fpio,... FnF A

At node v we still have only & cuts in the subproof 7],. By IH the expansion proof at
node v is

ET(n],) = merge(merge((ET(7*)\ F F)oy,...,ET(7*)\ F F)oy),
{Fy,....,Fy FI\{F1,...,F. F})

The expansion proof of 7’ is by construction

ET(r') = merge(ET(mfy )\{F Frr1}, BT(m)\{Frr1 F})

merge(ET(m ok 11)\{F For1}, ET(m,)\{Frt1 })
(ET(@NF F)oks1, ET(m,)\Fiq1 F)
(
(

merge((ET
(ET(7")\ F F)okt1,
merge(merge((ET(7*)\ F F)oy,...,ET(7")\F)ok),
{Fi,...., B, FI\{F1, ..., Fx F}P)\Fiq1 )
= merge(merge((ET(x*)\ + F)oy,...,(ET(x")\F)ok, (ET(7*)\F)ok+1),
{Fi,...,F, F\{F1,...,Fx F}\Frs1 )
= merge(merge((ET(x*)\ + F)oy,...,(ET(x")\F)og, (ET(7*)\F)ok+1),

{Fi,...,F, F\\{F1,...,Fy, Fry1 F})

= merge
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Now we obtain the main result of this section.

Theorem 3.4.2. Let ¢ be an LK-proof of a skolemized and normalized end-sequent, m*
its proof projection, F its characteristic formula and p the grounded refutation of F'. Let
7 be the CERES normal form of ¢. Then

E(p,p) = ET(x).

Proof. By Theorem 3.4.1, take k = n and consider 7 instead of a proper subproof of
. ]

3.5 Herbrand’s Theorem with Clausal CERES + Equality

Many mathematical proofs use equality rules, therefore the method for proof analysis
with CERES has to take into account equality as well. In this section we develop the
clausal CERES method for LK + equality rules, which is based on the original clausal
CERES method from [BLO0]. In this method we extract a characteristic clause set and
construct several proof projections to these clauses. As demonstrated in Section 3.1 we
will not construct a CERES normal form, but extract the crucial information from the
projections and the refutation of the characteristic clause set. Moreover, we provide a
complexity analysis of the new method. Note that the investigation as described in this
section was published [LL19]. An application to real mathematical proofs, based on the
method from this section, can be found in Section 6.1. Note that the investigation in
this section is not needed in order to proceed with the construction of a proof analysis
method for proofs with induction rules. In fact, the method in Chapter 5 is based only
on the investigations regarding the CERES method for first-order logic used in previous
sections. Nevertheless, clausal CERES as well as the corresponding proof analysis method
provide some interesting insights, particularly when considering the complexity analysis
compared to the old methods.

3.5.1 The Clausal CERES Method

In this section we will describe the original CERES method for first-order logic, which is
based on a characteristic clause set and a corresponding set of proof projections. We will
show that the CERES method from Section 3.1 simulates the clausal CERES method.

Intuitively, the clause set extraction consists in collecting all atomic ancestors of the cuts
which occur in the axioms of the proof. The clauses are formed depending on how these
atoms are related via binary inferences in the proof.

Definition 3.5.1 (characteristic clause-set [BLO00]). Let ¢ be a proof of a skolemized
sequent. The characteristic clause set is built recursively from the leaves of the proof to
the end-sequent. Let v be the occurrence of a sequent in this proof. Then:
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

e If v is an axiom, then CL(v) contains the sub-sequent of v composed only of
cut-ancestors.

e If v is the result of the application of a unary rule on a sequent p, then CL(v) =

CL(p)

e If v is the result of the application of a binary rule on sequents p; and po, then we
distinguish two cases:

— If the rule is applied to ancestors of the cut formula, then CL(r) = CL(u1) U
CL(2)

— If the rule is applied to ancestors of the end-sequent, then CL(r) = CL(u1) X
CL(p2)

where

CL(1) x CL(p2) = {C'o D | C € CL(w), D € CL(u2)}.

If vy is the root node CL(vyp) is called the characteristic clause set of .

The following example demonstrates the construction of a characteristic clause set.

Example 3.5.1. The set of axioms Az is defined as Azs = Az U {F f22 = gz}. Let ¢
be a proof of the sequent Pa,Vz(Px — Pfx)F 3zPf42:

(1) (¢v2)
Va(Px — Pfx) - Va(Pr — Pgx) Pc,Vz(Px — Pgx) F Pg?c
Pc,Yx(Px — Pfz) - Pg’c

cut

P71 18

Pf2zF Pf?z Ff22 =gz
Pfz+Pfz Pf%z - Pgz
Pz Pz Pfz,Pfz — Pf?z}F Pgz
Pz, Pz — Pfz,Pfz — Pf?2F Pgz
Pz Nx(Px — Pfx)t Pgz
Va(Px — Pfx)F Pz — Pgz
Va(Px — Pfx) b Ve(Pr — Pgx)

1

—1
—1

2x V) + ¢

r

P2 is
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Pgct Pgc Pg?’ct+ Pgc .
Pctk Pc Pgc, Pgc — Pg*c+ Pgc N
Pc, Pc — Pgc, Pgc — Pg*cF Pg®c
Pc,Yx(Px — Pgzx) - Pg®c

2 XV + ¢

The characteristic clause set of ¢ is constructed as follows:

We consider the following cut-ancestors (in axioms) in ¢

{Pzr} R P22} {22 = g2}
=,, operates on cut-ancestors, therefore we get

Sy ={F Pf?z} U {F f22 =gz}
—; operates on end-sequent ancestors, hence

S={PzF} xS ={PzF Pf’z; Pz f?2 = g2}

We proceed analogously for the cut-ancestors in (o and obtain

S’ = {F Pc; Pgct Pgc; Pg*ct}
The characteristic clause set is S U S’

CL(¢) = {PzF Pf?z; PzF f?2 =gz + Pc; Pgck Pgc; Pg’chk}.

By construction it is easy to see that the characteristic formula is composed of the clauses
of the characteristic clause set. In fact, the characteristic formula is a conjunctive normal
form (CNF), where the conjuncts define the clauses of the characteristic clause set.

Proposition 3.5.1. Let ¢ be an LK-proof, F' the characteristic formula of ¢ and CL(yp)
the characteristic clause set of ¢. Then CL(y) is derivable from F.

Proof. CL(y) is easily derivable from F' in RPLy: we start with the axiom - F. F'is a
conjunctive normal form, thus the only rules we can apply are A,, or A,,. In both cases,
we decompose F' into its conjuncts. We continue decomposing all the conjuncts until we
reach conjunct ¢;, which cannot be decomposed using A, or A,, any more. We make a
case distinction on ¢;:

1. ¢; is atomic. Then ¢ € CL(yp).
2. ¢; = . We apply the negation rule -, and continue with ¢}.

3. ¢; = 1 V co for clauses ¢; and co, we apply the V, inference to obtain F ¢y, co.
Depending on the structure of ¢; and ¢y we distinguish the cases
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

a) c1,cy are atoms or negated atoms. We eliminate all possible occurrences of —
with =, and obtain a clause ¢ € CL(yp).

b) ¢ or ¢y is not atomic nor a negated atom. We continue decomposing ¢; or ¢y
until we reach atoms or negated atoms.

O]

Example 3.5.2. Let F = Pa A (Pf%a VvV =Pf?a) A =Pf*a A (-Pa V Pf?a) be the
characteristic formula in Example 3.1.1. We obtain the clauses of CL(p) by:

P A
F Pa

FF
= (Pf%aV —Pf%a) A =Pfla A (=PaV Pfia)
- (Pf%aVv —Pf?a)
- Pf%a,-Pfla "
Pf?at Pf?a

T2

Nry

FF A
= (Pf%aV —Pf2%a) A =Pfla A (—=PaV Pfia) A
F=Pfta A (=PaV Pf2a)
- -Pfia _
Pfiat

T2

T2

Ary

FF A
= (Pf%aV —~Pf?a) AN=Pf*a A (~PaV Pf%a) A
F-Pf*a A (—-PaV Pf?a) A
- -PaV Pf’a
F -Pa, Pf?a _
Pat Pf?a

T2

T2

T2

T

The next step is to obtain a resolution refutation of CL(y) using the PR-calculus.

Definition 3.5.2 (PR-calculus). The PR-calculus works on clauses and consists of the
following rules:

1. the resolution rule:
FEAAy,.. A, TLAL AR A R
I'o,I"o - Ao, Ao

Where n,m > 1 and o is a most general unifier of {A41,..., A, A},..., AL }. Tt is
also required that ' - A, A and IV, A’ - A’ are variable disjoint.
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2. the paramodulation rules:
We assume that the two clauses in the premises are always variable disjoint and
that o is a most general unifier of {s, s'}.

Fl [ Al,s =1 A[S/]A,FQ [ AQ Fl [ Al,t =S A[SI]A,FQ [ Ag
A[t]AO',Flo‘, Iyo b Avo, Ago A[t]AU, I'o,I'so b Ao, Aso

for inference on the left side of the clauses and

Fl = Al,s =1 FQ F AQ,A[S/]A Fl = Al,t =S FQ = AQ,A[S’]A
I'io,I'yo F Aqo, AQU,A[t]AO' I'o,I'so - Aqo, AQU,A[t]AU

for the right side, where A denotes a position of a subterm where s’ is replaced by
t. We call s =t the active equation of the rules.

A PR-derivation from a set of clauses ¥ is a tree derivation based on the rules above
where all clauses in the leaves are variants of clauses in 4. A PR-derivation of - from ¥
is called a PR-refutation of €.

Note that the PR-calculus is defined as a simple resolution calculus extended by paramod-
ulation. In fact, it can be simulated by RPL, as the clauses in the characteristic clause
set can be obtained from the corresponding characteristic formula by the rules of RPLy.

It is important to show that the characteristic clause set is always refutable.

Theorem 3.5.2. Let ¢ be a proof of a skolemized end-sequent. Then the characteristic
clause set CL(yp) is refutable by resolution and paramodulation.

Proof. In [BL11, BHL106]. O

Example 3.5.3. We give a PR-refutation v of CL(¢p) for ¢ in Example 3.5.1.

(7) ()
F Pgc PzF f?2 =gz R F Pgc PzF Pf?z
2 _ 2 2
F fegc = g°c FPf2gc para
F Pg’c Pg?ct
™ R

where 7 is

F Pc PzF Pf?z F Pc PzF f?2 =gz
F Pflc F f2c=gc
F Pgc

para
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

To each clause in the characteristic clause set a projection is associated with it. Note
that we do not always need all clauses in CL(y) for a refutation of CL(y) and construct
only projections to those clauses, that actually occur in the refutation.

Definition 3.5.3. For a characteristic clause set CL(g) and a refutation R of CL(y) we
define
CL(¢, R) = {C;| C; € CL(¢) and C; occurs in R}.

A projection of a clause C' is a derivation built from ¢ by taking the axioms in which
the atoms of C' occur and all the inferences that operate on end-sequent ancestors. As
a result, the end-sequent of a projection will be the end-sequent of ¢ extended by the
atoms of C.

Definition 3.5.4 (proof projections, [BL00]). Let ¢ be a proof of a skolemized end-
sequent I' H A in LK_. For nodes v in ¢ we define inductively the set of cut-free proofs
p(v). If vy is the root node and ¥ € p(vy) we call ¥ a projection. Let v be a node in
¢ such that S(v) =T F A; then I' - A =T, . - A, A. where I, - A, consists of
cut-ancestors and ', F A, of ancestors of the end-sequent.

(a) v is aleaf in ¢. Then the sequent at v is an axiom and we define p(v) = {v}. The
clause part of v is the subsequent CL(v).

(b) v is the conclusion of a unary rule £ with premise fx.

(b1) The principal formula of £ is an ancestor of a cut. Then @.v is of the form

(@.p)
FC? F@ l_ AC? Ae

I, Te - ALA, §

We define p(v) = p(u).

(b2) The principal formula of £ is an ancestor of the end- sequent. Then ¢.v is of
the form
(o.1)
FCJ Fe l_ AC? Ae

L, TL A AL ¢

Let ¢ € p(u) be a proof of C,T'. F Ag, D where C'+ D is the clause part of .

Then ¢’ € p(v) for ¢/ =

(1)
C.Te A, D

CI.- AL D
and C' F D is the clause part of ¢.

3

(c) v is the conclusion of a binary rule £ with premises p1, fo.
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(c1) The auxiliary formulas of £ are ancestors of a cut. Then ¢.v is of the form

(‘P-m) (‘P-uz)
FC7 FC l_ AC‘) Ae HC7 He l_ AC7 Ae

L6 I0E, T, e B AG AL, A, Ae

3

Let v € p(p1) such that ¢ is a proof of C,I'c + A., D where C' D is the
clause part of ¢». Then ¢’ € p(v) for ¢/ =
(¥)
C. T, F Ay, D .
C.Te, e Ag,Ae, D

and C + D is the clause part of 1.

Let ¢ € p(u2) such that v is a proof of E,II, - A., F where FE I F is the
clause part of ¢. Then ¢’ € p(v) for ¢/ =

(¥)
E I, F A, F .
E T, Il F Ay, A, F Y

and F F F is the clause part of 1’

(¢2) The auxiliary formulas of £ are ancestors of the end-sequent. Then ¢.v is of

the form
(‘P-m) (‘P-uz)
FC? FC l_ AC‘) A@ HC7 He l_ AC7 Ae

Lol T I F A A ALAL
Let 11 € p(p1) such that v is a proof of C,T'. F A¢, D and C' + D is the clause
part of ¢; likewise let 19 € p(u2) such that 19 is a proof of E Il F A, F
and E F F is the clause part of 1. Then 1) € p(v) for ¢ =
(1) (2)
CT.FA,D EILFA,F
C,E, T, F AL AL D,F

§

and the clause part of ¢ is C,E+ D, F.

Example 3.5.4. Let ¢ be the proof from Example 3.5.1. We define the projections of ¢
to the clauses Pz - Pf%z, Pz F f?2 = gz, b Pc and Pg’cF:

[Pz Pf?z] is

Pfz+Pfz Pf?z+ Pf?z N
Pz Pz Pfz,Pfz — Pf?z+ Pf?z N
Pz, Pz — Pfz,Pfz — Pf?z+ Pf?z
Pz Vx(Px — Pfx) - Pf%z
Pz, Pc,Yx(Px — Pfz) F Pg?c, Pf%z

2 XV + ¢

w:l+w:r
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

[Pzt f?2 = gz] is

Ff2z =gz _
Pfz+ Pfz Pf2z+ f22 =gz i'l
PzF Pz Pfz,Pfz — Pf?2F f22 =gz _>ll
Pz, Pz — Pfz,Pfz — Pf?zF f?2 =gz
2 XV +q

Pz Vx(Px — Pfx) - f?2 =gz
Pz, Pc,Yo(Px — Pfx) b Pg?c, f?2 = gz

w:l+w:r

o[ Pcl is
Pctk Pc )
w+w:r
Pc,Yx(Pz — Pfx) F Pgc, Pc
¢[Pg?ct] is
Pg’ct+ Pg’c
wy + Wy

Pg%c, Pc,Yx(Px — Pfx) F Pg?c

If we apply all most general unifiers in the PR proof v we obtain a proof in LK_ (in
fact only contractions, cut and paramodulation remain). If yo is such a proof and we
apply a substitution replacing all variables by a constant symbol we obtain a ground PR
refutation.

Example 3.5.5. The ground PR-refutation 4/ is

(m) (m)
F Pgc Pgck f2gc = g?c y F Pgc Pgct Pf?gc
cu

7 3 o) cut

F fegc = g°c FPfgcpara

F Pg?c Pg?ck
F cut
where 7 is
FPc  Pck Pfc FPc  Pck f?c=gc
3 cut 3 cut

F Pf“c F fec=gc

para
F Pgc

Note that 4/ is an LK_-refutation of ground instances of clauses in CL(yp).
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3. HERBRAND’S THEOREM IN FIRST-ORDER LoGIC
~" can be used as a skeleton of a proof ¢* with only atomic cuts of the original end-
sequent S, the clausal CERES normal form of the original proof ¢. Below we give a
formal definition. First we define a type of top normal form defined by a PR-deduction.
Definition 3.5.5 (top normal form, [LL19]). Let €: {C1 + D1,...,C, F Dy} be a set
of clauses, I' = A be a skolemized sequent and (; cut-free proofs of C;,I' - A, D; in LK_
fori=1,...,n. Let ® = {p1,...,9n}. Given a PR-deduction p of a clause C' F D from
¢ we define an LK_-proof O(p, ¢, ®) of C,T' F A, D inductively on the length of o.
® 0= C’L = Dz then @(Q7 (57 (I)) = Pi and tOp(@(Q, (57 (I))) = {SO’L}
e The last inference in ¢ is R. Then p is of the form
(01) (02)
Ei -, A" AF By Fy
E1,Ex - Fi, By
Let us assume that
(1) (2)
0(01,%€,®) = B1,T F A F1, A™ O(02,6,®) = A* B9, T - A Fy
Then we define O(p, ¢, ®) =
(1) (¢2)
By, THAF, A" AF By THA R .
E17E2)F7FI_A7A7F17F2 cu
E\ By, TEAFLF €
and top(@(g, (57 (I))) = top(@(gl, (57 q))) U top(@(gl, %a (I)))
e The last inference in ¢ is a paramodulation rule. We consider only the case =,1;
for the other rules the construction is analogous. Then g is of the form
(01) (02)
E1 |— Fl,S =t E2 l— FQ,A[S]A
=rl
By, By = Fy, By, Alt]y '
Let us assume that
(v1) (2)
O(01,¢,9)=FE1,'FAF1,s =1t ©(02,%,9) = E2, ' F A, Fy, A[s|p
Then we define O(p, %, ®) =
(1) (¥2)
El,F F A,Fl,s =1 EQ,F F A,FQ,A[S]A _
B\, Eo, T.TF AN FL B Al
By, By, TFA LBy Altly €
and top(©(o, €, ®)) = top(0(01,€,P)) U top(©(01, €, P)).
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

A proof 9 is called in top normal form if there are ¢, ® and p (defined as above) such
that ¢ = ©(p, €, @).

Remark. The function top collects all cut-free subproofs in a top normal form which
occur at the top and thus belong to ®.

Definition 3.5.6 (clausal CERES normal form, [BL0O0]). Let ¢ be an LK_ proof of a
skolemized sequent S. Let ¢ be a grounded PR-refutation of CL(y), € be the set of all
ground instances of clauses in CL(p) appearing at the leaves of ¢ and ® be the set of all
grounded projections. Then the proof ©(p, ¢, @) is called a clausal CERES normal form
of . As p is a refutation O(p, %, ®) is a proof of S with only atomic cuts.

Remark. Note that not all top normal forms are CERES normal forms as the set of cut-free
proofs ® need not be projections.

Example 3.5.6. We define a clausal CERES normal form for the proof from Example 3.5.1
with respect to the grounded resolution refutation 7/ of CL(¢) (in the following example
F =Vx(Px — Pfx)):

(1) (402)
Pc,F + Pg?c, f?gc = g%c Pc,F + Pg?c, Pf%gc _

rl
Pc,Pc,F,F + Pg?c, Pg®c, Pg*c n o[Pg?c ]
aq+c
Pc, F + PgQC ’ PgQC, Pc, F + Pg2c ;
cu
Pc, Pc,F,F + Pg?c, Pg’c
c+ ¢
Pc,F + Pg?c
where ¢ is
P11 plPz k- f22 = gz]{z + gc}

Pc,F + Pg?c, Pgc Pgc, Pc, F - Pg’c, f?gc = g%c
Pc,Pc,F,F - Pg?c, Pg°c, f%gc = ¢g°c
Pc,F + Pg?c, f2gc = ¢°c

cut

cr+ ¢

P11 18
T 2
Pc,F + Pg?c, Pfc Pc,F = Pg?c, f’c=gc _ L
-r
Pc,Pc,F,F + PgQC, PgQC7 Pgc n
C| @
Pe, F F Pg2c, Pge '
P2 18
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC

1 2
Pc,F + Pg?c, Pfc Pc,F + Pg?c, f’c=gc _
Pe¢, Pe, F,F + Pg?c, Pg*c, Pgc ot " [Pz F Pf22){z + gc}
Pc, F + Pg?c, Pgc P Pgc, Pc, F - Pg?c, Pf?gc
Pc, Pc,F,F - Pg?c, Pg?c, Pf?gc

Pc,F + Pg%c, Pf?gc

cut

c + ¢

™1 is

o[- Pc] [Pzt Pf?2]{z + ¢}
Pc,F + Pg?c, Pc Pc,Pc,F + Pg?c, Pfc

t
Pc,F + Pg?c, Pfc cu

and mo is

o[ Pc] [Pz F f22 = gz|{z + ¢}
Pc,F + Pg?c,Pc Pc,Pc,F Pg%c, f?c = gc

cut
Pc,F + Pg?c, f?c = gc

3.5.2 Extraction of Expansion Proofs

All the definitions and theorems in this section are published in [LL19]. First, we will
extend the definitions from Section 2.3 to a logic with equality. The extraction of
expansion proofs from LK_-proofs requires quantifier-free cuts. Due to the structure of
the clausal CERES method we consider proofs with only atomic cuts.

Definition 3.5.7. A proof ¢ in LK_ is in the subclass LKy if

1. ¢ does not contain strong quantifier inferences.
2. All cuts in ¢ are atomic.
3. Equality rules are only applied to atoms.

4. The axiom set contains Az.

Now we extend Definition 2.3.10 to handle proofs in LK_.

Definition 3.5.8 (extraction of s-expansion trees from proofs in LK(). We extend the
transformation ET from Definition 2.3.10 in such a way that it maps proofs in LK to
s-expansion trees. The transformation is defined inductively on the number of inferences
in a proof, we have the same cases as in Definition 2.3.10 only that we replace LK-proofs
with LKy-proofs and we add the cases
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

(m1) (m2)
Fll—Al,S:t A[S]A,FQFAQ _
Altja,T1,To B Ay, Ay

and ET(m) = I'f F Aj,s = t and ET(m) = A[s]a, 5 F A%, then ET(p) =
FT7F§7A[t]A - ATaAz

o If p=
(1) (72)

Flf_Al,SZt FQI_AQ,A[S]A
[, To F Ay, Ag, Aft]s

—rl

and ET(m;) =T F Aj,s =t and ET(m) = I'5 - A3, A[s]a, then ET(¢) =T'7,T5 F
T, A Aft]a.
19 29

=;» and =9 are omitted, the transformation of the these rules being analogous.

Again, we obtain a soundness result.
Proposition 3.5.3. The transformation ET is sound: if ¢ is a proof in LK then ET(p)

is an s-expansion proof.

Proof. As in the proof of Proposition 2.3.1, but we add a case for =,, (the other cases
are analogous).

b (:7“1) ¥ =
(1) (r2)

Fll—Al,SZt FQI—AQ,A[S]A
F17F2 H AlaAQaA[t]A

—rl

and ET(m) = I'f - A},s = t and ET(m;) = I'; b A}, A[s]p are s-expansion
proofs. Therefore =I'T V A} Vs =t and —I'5 V A5 vV A[s], are expansion proofs
and hence 7 |= Dp(—-I'f VA} Vs =t) and & = Dp(—I'5 v A5V A[s]p). But then
o = Dp(-I'iVATV-T3VASVA[t]y) and —-T'TVATV-I5VASV Aty ) is an expansion
proof. Therefore, I'1,T5 F Af, A3, Alt]p (= ET(p)) is an s-expansion-proof.
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC

To illustrate construction of an s-expansion proof from an LKg-proof , consider the
following simple example.

Example 3.5.7. We work with Az U {F a = b}. Let ¢ be the proof of S = P(a) A
Q(a, f(a)) = 32(P(x) A 3y.Q(z,y)):

a=b Qla,f(@) - Qaf(@) _
Qe (@) - Qo 1)
Pa)F P@)  Qfa f(a) I 3yQla,y)

T

P(a), Q(a,

fla)) F P(a) A Jy.Qa, y)
(a) A Q(a, f(a)) = Pa) A 3y-Q(a, y)
P(a) AQ(a, f(a)) = 3e(P(x) A 3y.Q(z, y))

Note that S is not in prenex form. Therefore, extracting the Herbrand sequent by
collecting instances is not possible. Instead we compute the expansion proof ET(¢p).

Below we compute the s-expansion proof corresponding to ¢. First we compute expansion
trees for all formulas F' in S and call them ET(F).

ET(P(a) A Q(a, f(a))) = (a) A Q(a, f(a))
ET(Ez(P(z) A 3y-Q(z,y))) = 3e(P(x) A3y.Q(z,y))
+4(P(a) A (3yQ(a,y) +10 Q(a, f(b))))

The s-expansion proof ET(y) associated with the end-sequent S is:
ET(P(a) A Q(a, f(a))) F ETEz(P(x) A3y.Q(z,y)))

The corresponding expansion proof associated with ET () is:
SET(P(a) A Q(a, £(a))) V ETGa(P(x) A Fy.Q(x,))-

To obtain the tautologous formula (corresponding to the Herbrand sequent) we construct
the deep function for the expansion proof; we compute Dp(ET(S;)):

Dp(ET(P(a) A Q(a, f(a)))) = Dp(P(a)) A Dp(Q(a, f(a))) = P(a) AQ(a, f(a))

Dp(ET(Bx(P(x) A Jy.Q(x,y)))) =
Dp(3z(P(z) AJy.Q(x,y)) +* (P(a) A (FyQ(a,y) +® Q(a, f(1))))) =
Dp(P(a) A (FyQ(a,y) +7® Q(a, f(b)))) =
Dp(P(a)) A Dp(3yQ(a,y) +/® Q(a, £(b))) =
P(a) A Q(a, f(b)

Hence, we obtain P(a) A Q(a, f(a)) - P(a) A Q(a, f(b)). Note that this sequent is valid
in Az U {F a = b} (though it is not tautological).
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

The extraction of expansion proofs is usually performed after the construction of a proof
in top normal form. However, only the logical parts of the proof play a role in the
construction of expansion trees. These logical parts can be identified as the cut-free
subproofs after removal of all cut-ancestors. Note that no cut-ancestor in such a subproof
is principal formula of an inference; we identify such subsequents as passive subsequent.

Definition 3.5.9 (passive subsequent). Let ¢ be a cut-free proof of S : C,T'+ A, D such
that C - D is a clause. The subsequent C = D of S is called passive in ¢ if no ancestor
of C F D in ¢ contains a formula which is principal formula of an inference.

Note that the passive subsequents are just the clauses used to define a top normal form.

Examples of proofs with passive clause parts are proof projections in CERES:

Proposition 3.5.4. Let 1) be a cut-free proof of C',I' = A, D' which is an instance of a
proof projection p|C + D] in clausal CERES. Then C' & D' is passive in 1.

Proof. Immediate by induction on the length of ¢ and by Definition 3.5.4. Note that the
only case in Definition 3.5.4 where the clause part changes is (¢2). Here the projection 1

is defined as
(1) (12)
CTl.FA., D EIl.FA.,F
C,E, T II.-AL A, D,F

§

By induction hypothesis C' - D is passive in ¥ and E - F' is passive in 2. Therefore
C,EF D, F is passive in 1. O

Definition 3.5.10. Let ¢ be a cut-free proof of C,I' = A, D where C' F D is passive in
. We define ¢\ (C F D) by induction on the number of nodes in ¢.

o If  is an axiom then ¢ = C,C'+ D, D’ (note that the whole sequent is passive in
©). We define o\(C'+ D) =C"+ D"

o Let p =

/

4
C,I'-A,D

T

where C' F D is passive in ¢. Then, by definition of passive subclauses, ¢’ is a
proof of C,IV = A’, D for some I'" and A’. Indeed, the subclause C + D does not
contain a formula which is principal formula of an inference. By induction we have
a proof ¢'\(C'+ D) of I" F A’ (note that C' F D is also passive in ¢’) and we define
P\(CF D) =

¢'\(C + D)
I - A
IFA
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC
o Let p=
(1) (p2)
St So .
CTHAD
where C'F D is passive in ¢. As C, D are not principal formulas of an inference we
get that S = C1,I'1 - Ay, D1, Sy =Cy, o F Ag, Dy, s.t. C1,Co - D1, Dy =CF D
and C F Dy is passive in ¢1, Cy - Do is passive in @a.
By induction we have a proof ¢1\(Ci F D;) of I'; F A; and a proof po\(Csy = D3)
of I's F Ag. Then we obtain p\(C + D) =
(ei\(C1ED1))  (p2\(Ca k- Dy))
'FA
The function logical(y) for a proof in top normal form takes the cut-free proofs on top
and “subtracts” from them all ancestors of passive clauses.
Definition 3.5.11 (logical(y)). Let ¢: O(p, €, ®) be a proof in top normal form s.t.
¢ ={C1F Dq,...,Cp b D} and ® = {¢1,...,p,} such that ¢; is a cut-free proof
of C;,T'+ A, D;. Assume that for all i = 1,...,n C; b D; is passive in ;. For every
b € top(p) and ¥ = ; we define ¥/ = ¢;\(Ci - Dy) and logical(p) = {¢/ | v € top()}.
Below we define an expansion tree E((p) which is defined by merging the expansion trees
of logical(p). This structure will be the key for the development of an efficient algorithm
for extracting expansion trees from clausal CERES normal forms.
Definition 3.5.12. Let ¢ be a proof in top normal form of a skolemized and normalized
end-sequent. We define
E(p) = merge{ET(¢)) | ¢ € logical(¢)}.
Theorem 3.5.5. Let p: O(0,%,P) be a proof of a skolemized and normalized sequent
C,I' = A, D in top normal form such that € = {C1 + Dy,...,Cy = Dyn} and ® =
{¢1,...,on}, where @; is a cut-free proof of C;,I' = A, D;. Assume that for alli =1,...,n
C; F D; is passive in p;. Then ET(p) = E(p)o (C + D).
Proof. By induction on the number of nodes in g.
case 1: if p consists of just one node then ¢ = ¢; for some i € {1,...,n} . We have
to show that ET(y;) = E(y;) o (C; F D;). But E(p;) = ET(¢;\(C; F D;)) and thus it
remains to show that
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

(%) is obtained via an easy induction on the number of inferences in ¢; using Defini-
tion 3.5.10.

case 2: The last inference in p is R. Then g is of the form
(01) (02)

Ci+ Dy, A™ AF Cyt Dy
C1,C2 = Dy, Dy

Then (by definition of ¢ as ©(p, €, ®)) =

(¢1) (¢2)

Ci,I'F A, Dy, A" A¥ Cy, T+ A, Dy

017027F7F - A)A7D17D2
01;027F F AaDlaDQ

cut

C

Assume that

ET((,Dl) == Cl,F*l—A*,Dl,Am,
ET(QD2) = Ak7c2ar+ H A+7D27

where Seq(I'* = A*) = Seq(I't = A™). By Definition 2.3.10 we obtain
(1) ET(¢) = (C1,Cs F Dy, Do) o merge(I'’* - A* T - A™)
Note that I'*, " and A*, AT are normalized. By induction hypothesis we have

E(p1) o (CrF D1, A™) = ET(p1),
E(p2) o (AF,Cy - Dy) = ET(p).

and therefore
(2) E(p1) =T A*, E(py) =T+ AY,

By definition of the merge operator we get from (1) and (2)
(3) ET(p) = (C1,C2 & Dy, Do) o merge(E(1), E(2)).

By Definition 3.5.12 we obtain

(p1) = merge{ET(¥) | ¢ € logical(¢1)},
(p2) = merge{ET(¥) | ¢ € logical(p2)}.

Hence

A A

merge(E(¢1), E(p2)) =
merge(merge{ET(¢) | 1 € logical(¢1)}, merge{ET(¢) | 7 € logical(p2)}) =
merge{ET(¢) | ¢ € logical(p)}.

o7
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But by Definition 3.5.12 E(p) = merge{ET (1)) | ¥ € logical(¢)}. Combing this with (3)
we obtain A
ET(¢) = (C1,C2 = D1, Da) o E(p).

case 3: The last inference in p is a paramodulation. We only consider the case =,,, the
others are analogous. Then g is of the form

(01) (02)
C1|_D1,S:t CQ"DQ,A[S] _
C1,Cs F Dy, Do, Alt] "

Then, by definition of ¢, we obtain ¢=
(¢#1) (¢v2)
Cl,F F A,DI,S =1 CQ,F H A,DQ,A[S]
017027F5F - AaAaDlaD%A[t]
C,Cy, T A,Dl,DQ,A[t]

=r

C

Assume that
ET(p1) = C1,T*F A" Dy,s=t,
ET(p2) = Co, T F AT, Dy, Als
where Seq(T'* = A*) = Seq(T't = A™T). By Definition 2.3.10 we obtain
(4) ET(p) = (C1,Cy Dy, Da, A[t]) o merge(I'™* = A*, T = A™).
By induction hypothesis we have
EA(%) o(Ci+Dy,s=t) = ET(p1),
E(pz) o (Co = Do, Als]) = ET(e2).
and therefore X .
(5) E(p1) =T*F A", E(p) =TT FA*.
By definition of the merge operator we get from (4) and (5)
(6) ET(p) = (C1,Cy + Dy, Dy, Alt]) o merge(E(¢1), E(p2)).
By Definition 3.5.12 we obtain

A

E(p1) = merge{ET(¢) | ¢ € logical(p1)},

A

E(p2) = merge{ET(¢) | ¢ € logical(p2)}.

Hence, like in case 2, we get

A A

merge(E(p1), E(p2)) = merge{ET(¢) | ¢ € logical(p)}.

But by Definition 3.5.12 E(p) = merge{ET (1)) | ¥ € logical(¢)}. Combing this with (6)
we obtain
ET(¢) = (C1,Ca = Dy, Dy, Alt]) © E(¢p).

o8
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

Corollary. Let ¢: ©(p,%,®) be a proof of a skolemized and normalized sequent T' = A
in top normal form s.t. € ={C1 F D1,...,CpF Dy} and ® = {¢1,...,on} such that ¢;
s a cut-free proof ofACi, I' = A, D;. Assume that for alli=1,...,n C; - D; is passive in
wi. Then ET(¢) = E(y).

Proof. Immediate by Theorem 3.5.5: just define C'F D as the empty sequent. O

Corollary. Let ¢ be an LK_ proof of a skolemized and normalized sequent S. Let
©*: O(0,%,P) be a clausal CERES normal form of ¢ such that ¢ is a ground PR-
refutation of €, the set of all ground instances of clauses in CL(p), and ® is the set of
all grounded projections. Then ET(¢) = E(p).

Proof. Let ¥ be a cut-free proof of C,I' - A, D which is an instance of a projection of
. By Proposition 3.5.4 C'F D is passive in 1. As clausal CERES normal forms are top
normal forms all conditions of Corollary 3.5.2 are fulfilled. O

The last corollary describes a method to compute an expansion tree from any proof in
top normal form of a skolemized sequent S. Note that in case of a prenex sequent S
we extract Herbrand sequents. The computation of an expansion tree is based on top
normal forms. Clausal CERES normal forms ¢* of proofs ¢ are also in top normal form,
therefore we can compute expansion trees in the same way. For clausal CERES it means
that ¢* has to be constructed first. The usual algorithm for the extraction of expansion
trees from the clausal CERES normal form is the algorithm EXP.

Definition 3.5.13 (algorithm EXP).

Begin.

—_

. compute CL(¢p);

2. find a PR refutation p of CL(p);

3. compute a ground refutation R from p;

4. compute the projections p[C] for C' € CL(p, R);

5. construct the clausal CERES normal form ¢* from the projections and R;

6. extract an expansion proof ET(¢) from ¢*.
End.

Instead of using algorithm EXP, we make use of Theorem 3.5.5 and define a new method
that extracts expansion proofs more efficiently by extracting partial expansion trees from
the projections. The idea is the following: we do not compute logical(¢*) which would be
the set of all instantiated projections. Note that the size of logical(¢*) is roughly the size
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC
of ¢* itself. Instead we use from a ground resolution refutation R of CL(y) the general
projections ¢[C] for C' € CL(yp, R) and the set of substitutions 3(C') for C' € CL(p, R)
which are the set of ground substitutions for the clause C' in the refutation R.
Definition 3.5.14. For every projection ¢[C]: ff, ' A, E, where A+ B is the clause
part of ¢[C], we define ¢~ [C] = p(C)\(A F B) (note that A+ B is a passive subsequent
of A,T' - A, B), where the \-operator is defined as in Definition 3.5.10. Note that
ET(¢7[C]) is a proof relative to the axioms in ¢~ [C], which may differ from the axioms
of ¢ (axioms need not be tautological anyway). We define
T (¢, R) = mergececy(p,r)mergeyex(c) ET(¢™[C)o.

Then the computation of an expansion tree via clausal CERES for a proof ¢ (of a closed
skolemized end-sequent S) can be defined with the algorithm EXP,¢, (note that we are
defining EXP,,,, for the clausal CERES method and the algorithm is therefore based on
the construction of a characteristic clause set and individual proof projections).
Definition 3.5.15 (algorithm EXP,,c,).
Begin.

1. compute CL(p);

2. find a PR refutation p of CL(¢);

3. compute a ground refutation R from p and for every C' € CL(p, R) the set X(C);

4. compute the projections ¢[C] and ¢~ [C] for C' € CL(¢, R);

5. for every C' € CL(p, R) compute T'[C]: merge,cx oy ET (¢ [C])o;

6. compute mergececr,(p,r) 1 [C] which is T'(p, R).
End.
Note that the computation of the Dp function of an expansion proof via clausal CERES
for a proof ¢ (of a closed skolemized end-sequent S) can be easily obtained by computing
the Dp function of T'(p, R).
Theorem 3.5.6. Let ¢ be a proof of a skolemized, closed and normalized end-sequent
and ¢* the clausal CERES normal form based on a ground refutation R of CL(y). Then
ET(¢*) =T(p, R).
Proof. Let CL(¢,R) = {C1,...,C,}. Now logical(¢p*) = ®; U ... U ®,, where &; =
{¢7[Cilo|o € £(C;)}. Let ¥; = ¢ [C;]. Then by Theorem 3.5.5 we know that

ET(¢*) = merge(mergeaez(cl)ET(wla), . ,mergeaez(cn)ET(wna))
60
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

which is equal to

ET(¢") = merge(mergeoez(cl)ET(@ZJl)a, e ,mergeaez(cn)ET(z/)n)a)

which, by Definition 3.5.14, is exactly T(¢, R). So ET(¢*) = T'(¢, R). O

Theorem 3.5.6 also holds for the Dp function of expansion proofs, i.e. Dp(ET(¢*)) =
Dp(T (¢, R)).

Corollary. Let ¢ be a proof of a skolemized,closed and normalized sequent S and R be a
refutation of CL(p). Then T(p, R) is an expansion proof of S.

Proof. By Theorem 3.5.5 and Theorem 3.5.6. O

Instead of computing all @[Cj]a{ (obtained from the ACNF ¢*) the algorithm EXP,,¢,,
computes the ¢[C}] and extracts ET (¢~ [C}]) = T}, which is a partial expansion proof,
then constructs merge, ey (c,)Tjo for all j and merges them. Example 3.5.8 illustrates

the main features of the method.

Example 3.5.8. Consider the proof ¢ as in Example 3.5.1 (where F' = Vz(Px — Pfx)).
The ACNF ¢ is:

(1) (2)
Pc,F + Pg?c, f2gc = g°c Pc,F + Pg?c, Pf%gc

para
Pc, Pc, F,F + Pgc, Pg°c, Pg?c N o[Pg*c ]
Cy @
Pe, F F Pg’c ' Pg’c,Pe F - Pgc
cu
Pc,Pc,F,F - Pg?c, Pg’c
C + Cr
Pc,F + Pg?c
where ¢ is
Y1 p[Pz F f22 = gz]{z < gc}

Pc,F + Pg?c, Pgc Pgc, Pc, F - Pg?c, f?gc = g°c
Pc,Pc,F,F - Pg?c, Pg°c, f>gc = ¢g°c
Pc,F + Pg?c, f2gc = ¢°c

cut

c+ ¢

p1, 1s
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC
T 2
Pc,F + Pg?c, Pf’c  Pc, F F Pg’c, f?c = gc para
Pc, Pc,F,F + Pg?c, Pg*c, Pgc n
cq+c
Pe, F I Pg’c, Pge "
o is
st 2
Pc,F + Pg?c, Pfc Pc,F + Pg?c, f?c = gc para
Pc,Pc,F,F + Pg?c, Pg*c, Pgc ot [Pz - Pf?2]{z + gc}
1
Pc, F + Pg?c, Pgc " Pgc, Pc, F + Pg?c, Pf?gc ;
cu
Pc, Pc, F,F + Pg®c, Pg®c, Pf?gc n
C| C
Pe, F + Pg2c, Pf2gc "
1 is
o[- Pc] [Pzt Pf?2)]{z + ¢}
Pc,F + Pg?c, Pc Pc, Pc, F + Pg?c, Pfc ;
cu
Pc,F + Pg?c, Pfc
and 79 is
o[- Pc] [Pz F f?2 = gz]{z + ¢}
Pc,F + Pg?c, Pc Pc,Pc,F \- Pg?c, f?c = gc ;
cu
Pc,F = Pg?c, f?c = gc
Now compute the Herbrand sequent of ¢* (with the old method):

H(p*) = Pc,Pc— Pfc,Pfc— Pf%c,Pgc — Pfgc,Pfgc— Pf?gct Pg’c
Note that H(p*) is a valid sequent in our axiom set (- f?z = gz is an axiom).
With our new method we first compute T; = ET(¢~[C;]) and define the substitutions O’Zj :

T\ = PcVe(Px — Pfx)47* Pz — Pfz47* Pfz — Pf?zF Pg’c
Ty = PecNx(Pr — Pfx)4+* Pz — Pfz+2 Pfz — Pf%+ Pg’c
Ty = Pc,Yo(Px — Pfz)F Pg’c
T, = Pc,¥Yo(Px— Pfx)F Pg’c
ol = (z4¢) 0}=(z+ go)
02 = (24¢) 0= (z+ gc)

62



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.5. Herbrand’s Theorem with Clausal CERES + Equality

Note that 71 = T». Now we compute T(p, R) = merge(Ty of, Ty 03, To 03, Ts 03,T53,T})

T(p,R) = merge(Pc,Va(Px — Pfx)+° Pc— Pfc+/¢Pfc— Pf’c
F Pg?c,
(Pc,Va(Px — Pfx) +9¢ Pgc — Pfgc+19¢ Pfgc — Pf?gc
F Pg?c,
Pc,Vz(Px — Pfz) - Pgc,
Pec,Vz(Px — Pfx) - Pg%c)

T(p,R) = Pec,Ve(Px — Pfz) +°Pc— Pfe,
+fePfe — Pf2e,
+9¢Pgc — Pfgc,
+f9¢Pfge — Pf2gc F Pg*c

The Dp function is

Dp(T(¢, R))) = Pc, Pc — Pfec, Pfc — Pf%c, Pgc — Pfgc, Pfgc — Pf?gct Pg’ec.

3.5.3 Complexity Analysis

In this section we prove that the algorithm EXP,,.,, outperforms the old algorithm EXP.

In particular we prove that the complexity of EXP,,, is always better or equal to that
of EXP. Then we define an infinite sequence of LK-proofs ¢, where the complexity
of EXP is cubic in n while that of EXP,, is only quadratic. This implies that the
computational complexity of EXP cannot be linearly bounded by that of EXP,,¢,,. The
definitions and results of this section are published [LL19]. Our complexity measure will
be the maximal logical complexity of objects constructed by the algorithms.

Definition 3.5.16 (size of a sequent). Let S : Ay, ..., A, F Apt1, ..., Ay, be a sequent,
then the size of S (||S]|) is

||A17 "'aAn H AnJrl’ 7Am|| = EZZIHAlH

Definition 3.5.17 (size of an LK_-proof). Let ¢ be an LK_-proof. If ¢ is an axiom
then ¢ consists of just one node labelled by a sequent S; here we define ||| = ||S||. If ¢
is not an axiom then the end-sequent is a conclusion of a unary or of a binary rule. So
we distinguish two cases:

(a) o = o
g X
Then [l = |||l + [|5]]-
(b) ¢ = 01 P2
Y

Then ||| = [lo1]l + [l2]l + [IS]-
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC
Definition 3.5.18 (size of an expansion tree). Let F be an expansion tree, then the
size of E (||E||) is inductively defined as follows
I|E] = ||E|f if E is a quantifier-free formula ,
-] = 1+|E],
| E1 o Esf = 14| B + [|Ez2ll,0 € {A,V, =},
|Qz.E+" By +2 .+ Ey|| = 1+ |E|+ B +...+|Enl,Q € {V,3}.
Definition 3.5.19 (size of an s-expansion proof). Let E : Ey,...,E, - Epiq,...,Ep,
be an s-expansion proof, then the size of E (|| F||) is
|EL, ..., En b Engr,y ..o Enll = 22 |1 E:l-
In our algorithms EXP and EXP,., we do not only construct sequents, formulas and
proofs, but also sets of clauses (which are finite sets of atomic sequents). If 4 =
{C1,...,Cy} we define [|F] = ||C1]| + ...+ ||Cn|l. We call the objects produced by a
proof transformation expressions.
Definition 3.5.20 (expression). An expression is a formula, a sequent, a proof or a set
of clauses.
Now we consider computations as sequences of expressions which are generated by an
algorithmic proof transformation. So let A be an algorithm and ¢ be a proof serving as
input to A. Then F4(¢) is the sequence of all expressions generated by A on input .
Below we define a complexity function induced by A given by the maximal expression
generated by A.
Definition 3.5.21. Let A be an algorithm on proofs. Then we define
Calp) = max{||z| | = € Ea(p)}-
Theorem 3.5.7. Cgxp,.,(¢) < Crxp(p) for all proofs ¢ in LK_.
Proof. The first 4 steps of EXP and EXP,,.,, are identical. The sum of the sizes of the
expansion trees generated by EXP,,.,, is smaller or equal to the size of the clausal CERES
normal form generated by EXP. O
We show now that EXP,., can be asymptotically better that EXP. To this aim we
define the following sequence of LK-proofs ¢,,:
(wn) (7n)
Va(Px — Pfx) b Vo(Px — Pf™x) Vz(Pz — Pf"z), Pat Pf"a .
cu
Pa,Vz(Pz — Pfz) F Pf"a
64
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

where wy, is:

(¥n)
Py, Py — Pfy,....Pf" 'y = Pf"y b Pfry
Py — Pfy,...,Pf"ly — Pf'y - Py — Pfy Y(nx)
nx
Vi(Pz — Pfz)F Py — Pfy :
Vz(Pr — Pfx) b Ve(Pr — Pf"x)

Vo
and m, is:
(xn)

Pa — Pfra, Pf"a — Pf?a, ..., Pf=Ynq — Pfnq Pat Pfq
Vo(Pz — Pf"z),Pat Pf"a

Vl(nx)

Recursive definition of ¢,: 99 = Py + Py. And for n > 0 v¢,, =

wn—l{y — fy}
Py+-Py  Pfy,Pfy— Pf%y,..,Pf" 'y — Pfhyt Pf"

Y
l
Py,Py — Pfy,..,Pf" 'y — Pf'y+ Pfmy

For our complexity measure we obtain
[¥nll =24 2(n +1) + [[¢n-ll
note that [[Vn—1l| = |[¢¥n-1{y < fy}l.
Cp(tho) =2
Obviously, there are constants a1, as, b1, by (all > 0) such that
ay ¥ n? < ||thn]| < az * (n+1)% and by * n? < ||xnl| < b2 * (n 4 1)%
Putting things together there are constants ci,co > 0 with

g xn’ < llonll < co* (n+ 1)2.

Now we compute the characteristic clause sets of the ,,. After elimination of tautologies

we get
2
CL(¢p) ={Cipn: Pyt Pf"y; Cy:+ Pa; Cs, : Pf" at}.

Now we compute the resolution refutation. The recursive definition is the following:

Y1:
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3. HERBRAND’S THEOREM IN FIRST-ORDER LOGIC

F Pa Pat Pf™a
FPf'a

Tnt

(Yn—1)
FPfin-lng  pfl-ngp ptg "
- Pf”a

We obtain ||7,]] = ||7n-1]| + 3. Thus, the resolution schema is dj,:

()
FPf"a  PfVat
I_

R

with substitutions {y < a}, ..., {y « f""D"a}. We then get
|0n]] = 3n + 2.

Concerning the projections we adapt an improved version, minimal projections, which is
also used in the implementation of CERES. In this form of projection it is sufficient to
derive just a subsequent of the end-sequent which reduces the number of weakenings and
contractions in the ACNF.

Pn [Cl,n] :

(¥n)
Py,Py — Pfy,..,Pf" 'y » Pf'y+ Pfmy
Py,Vx(Px — Pfx)F Pf"y

Vi(nz) + ¢(nz)
©n|C2] (minimal projection)

Pat Pa
©n|C3] (minimal projection):

Pf’ak Pfq
Now we can construct the ACNF. ¢} is the ACNF-schema:
P
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3.5. Herbrand’s Theorem with Clausal CERES + Equality

(onlCrnly <+ a}])
Pat+ Pa Pa,F+ Pfla (enlCrnly < fra}])
Pa,FF Pfa cut  prmg FEPfg
Pa,F - Pf?a

cut + c*

o) (alCin{y < F"a})
Pa,F - Pfn=bng Pfn=Ung | pgiy . (¢nlCsn])
5 cut + ¢ 9 9
Pa,FFPf™"a Pf"alk Pf™a

Pa,F+ Pf"a

cut

where ' =V (Pxz — Pfz). In ¢} there are n substitution instances of the proof v, and
therefore the size of the ACNF-schema ¢, is

lorll > ay +n’.

As Cixp(en) = |l¢i|l (the algorithm EXP contains the construction of ¢}) we finally
obtain
Crxp(#}) > a1 #n®.
Therefore every expansion tree extraction from ¢} via EXP is at least cubic in n. Now
we consider the complexity of our improved method for extraction of expansion trees.
We construct the projections first, here we have the complexity O(n?) (just for ¢, [C1 4],
otherwise constant). The construction of the refutation d,, is in O(n). For the construction
of the partial expansion proof:
T(y) = Va(Px— Pfz) +YPy— Pfy,
+UPfy — Pf?y,

+" Ty pgnly o Py

we obtain
IT(y)|| =3(n—1)+4=3n+1.

The last step is the computation of
n n—1i)n ’I’L2
merge(Pa -, T(y){y < a}, T(y){y < ["a},..., T(y){y < f" " a},- Pf"a)

O(n?): concatenate sequents of complexity 3n + 1 n-times. The last sequent is an
expansion proof of ¢¥. The total expense of EXP,,,, is therefore (k being a constant)

Now we put things together and obtain that EXP,,,, is never more expensive than EXP,
but EXP cannot be linearly bounded in EXP,,¢,,:
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Theorem 3.5.8. EXP,,c, outperforms EXP, i.e.

1. Cgxp,.,(¢) < Cexp(p) for all proofs ¢ in LK_.

2. There exists no constant d such that for all proofs ¢ in LK_: Cgxp(p) < d *
CEXPew ()

Proof. 1. By Theorem 3.5.7. 2. Assume that such a constant d exists. By the construction
of the proofs ,, above we would obtain

Cexp(¢n) d x Cgxp,,., (¢n) for all n and thus

<
ayxn® < dxkx(n+1)? for all n.
But aj *n® > d * k * (n + 1)? almost everywhere and we obtain a contradiction. O

Remark. We have shown that, for all proofs ¢ in LK_ |, Cgxp,.,(¢) < Cexp(¢) and
that a asymptotic speed-up of Cgxp via Cgxp,,.,, is possible. The problem to define a
sharp bound on Cgxp in terms of Cgxp,,, remains open. Our conjecture is that Crxp
cannot be exponential in Cgxp,,,,, i-e. that there exists a polynomial p such that

Cexp(p) < p(CuxP,..(#)) for all ¢ in LK_.

3.6 A Note on the Proof Theoretic Strength of CERES

In many areas of proof theory proofs are represented by their Herbrand sequents in
order to classify and compare them w.r.t. some specific features. For instance, in terms
of proof complexity, Herbrand sequents are frequently used to describe the complexity
of a proof. More precisely, the complexity of a proof in propositional logic is given by
its Herbrand complexity, which is the minimal size of a Herbrand disjunction [BL11].
Another interesting example is the area of proof equality. One can consider proofs to be
equal whenever their Herbrand sequents, up to variable renaming, are. Of course, this
is only one of many ways to define proof equality. However, given the non-triviality of
this topic, comparing proofs by comparing their Herbrand sequents is a frequently used
method.

This gives rise to the following problem: Cut-elimination, and hence the construction of
Herbrand sequents, is non-confluent. In fact, in [BH11] it was shown that the constructive
content of a proof in classical logic is not uniquely determined, but depends on the chosen
method for extracting it. As an example one can consider Gentzen’s original proof of
the cut-elimination theorem, where a set of proof reductions is applied according to a
particular strategy, chosen with regard to a general termination proof. At each stage of a
cut-elimination process, different cuts can be reduced and furthermore, for a single cut
there are different ways to reduce it. The method is non-deterministic and can lead to
mathematical differences in the resulting elementary proofs. It is shown that there can
be a large number of strongly different cut-free proofs corresponding to a single proof
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with cuts via the standard set of proof reductions. The resulting normal forms not only
represent pairwise different Herbrand sequents, but the Herbrand sequents of two normal
forms also differ in their propositional structure. This means, that we cannot check for
proof equality by asking “Given Herbrand sequents S1 and Sy of proofs ¢1 and s, check
whether 1 is equal to @9 by checking whether S is equal to S3”.

However, using the method CERES we can obtain an interesting proof theoretic result.

As already explained in [BL11], given a proof with cuts ¢ and a Herbrand sequent S it
can be determined with CERES that S can never be extracted from ¢. This can be done
by comparing S to the structure obtained by the proof projection. So we can conclude
that a given Herbrand sequent cannot be obtained from a given proof by any reductive
cut-elimination method. It was noted already in [BL11] that this result could also be
shown without even eliminating the cuts from the given proof. Indeed, by the results
from Section 3.1, the construction of a CERES normal form and hence, of a proof with
quantifier-free cuts, is not required for the construction of a Herbrand sequent.
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CHAPTER

Inductive Structures

Mathematical induction is one of the most important principles in real mathematics,
thus any substantial and relevant approach to analyze mathematical proofs has to take
into account induction. But in systems with induction rules, essential proof theoretic
concepts and transformation become problematic. In particular Gentzen’s method of
cut-elimination fails for general induction proofs and thus Herbrand’s theorem cannot be
realized [Tak87]. Roughly speaking, the reason is that in the cut-elimination method & la
Gentzen cuts cannot be shifted over induction rules. In this section we give an example
for the failure of Gentzen’s method. A more detailed analysis of this example can be
found in [LPW17], where the authors argued that the CERES method can provide a
cut-free representation of the inductive proof. Consider the sequent

S: Vy(P(z) = P(f(x)) = ¥a¥a((P(f(n,2)) = P(g(n,2))) = (P(z) = P(g(n,2))))

where g is a binary function symbol, f is a unary function symbol and

¢ ={f0.2) =2, [fs(n),z) = f(f(n,2))}.

S is not valid in pure first-order logic and does not have a Herbrand sequent w.r.t. the
theory & and hence cannot be proven without induction. Therefore, there is no proof of
S. We need the following inductive lemma

Vo (P(x) = P(f(z))) F VnVa(P(z) — P(f(n, x))).

A proof ¢ of this lemma in an extension of LK with a induction rule could be

(¢2)
Py, e (Pa) = P((kn))) Vo (Pa) = PG50, 0)
(1) ) Py, Va(P(z) = P(f(0 f)))FW(P(w)%P(f(?%w)) v,
FVzP(x) — P(f(0,2))) Fy,Va(P(xz) — P(f ( x))) bk ¥nVa(P(z) — P(f(n,x))) cut
Va(P(x) — P(f(x))) - Vnva(P(x) = P(f(n,x)))
71
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where F| = Vz(P(z) — P(f(x))). We omit the definitions of 1 and ¢y (they are simple
proofs without induction rules). We define 7 as

() (m1)
Va(P(x) = P(f(2)) F Fy  Fy FYaVa((P(f(n,x)) = P(g(n,z))) = (P(z) = P(g(n,2))))

Ve (P(z) = P(f(2))) b ¥ave((P(f(n,x)) = P(g(n,2))) = (P(z) = P(g(n,z))

~—
~—

where Fy = VnVz(P(z) — P(f(n,z))). m is a proof without induction of the form

A

P(u) = P(f(i,u) F (P(f(i,u)) = P(g(i
vnVa(P(z) — P(f(n,z))) F (P(f(i,u)) = P
VYnVz(P(x) — P(f (n,z)))FVan((P(f(n,:r) —

Using Gentzen’s method of cut-elimination, we locate the place in the proof where Vn
is introduced. In 7 VnVaz(P(z) — P(f(n,z))) is obtained from Va(P(z) — P(f(i,z)))
by V;. In ¢ we may delete the V, inference yielding the cut-formula and replace m by 1.
But in the attempt to eliminate the formula Va(P(z) — P(f(i,))) in ¢ we get stuck, as
we cannot cross the ind rule. Note that also ¢nd cannot be eliminated as ¢ is a variable.
This problem is not due to the specific form of ¢ nor of ind. In fact, there exists no proof
of S with only atomic cuts, even if ind is used. Induction on the formula

V¥ ((P(f(n,z)) = P(g(n,2))) = (P(z) = P(g(n,x))))

fails. To prove the end-sequent and inductive lemma is needed, i.e. something which
implies VnVz(P(z) — P(f(n,x))) and cannot be eliminated.

We also want to mention that there are methods for performing cut-elimination in presence
of induction [BS11,MMO00]. However, the resulting proofs do not have the subformula
property and Herbrand’s theorem cannot be realized. If induction is represented via
schemata of proofs (see e.g. [DLRW13,LPW17]) schematic cut-elimination methods can
be defined which allow the extraction of so-called Herbrand systems, i.e. a generalization
of Herbrand’s theorem to schematic proofs. An automated proof analysis using schemata
was performed on Firstenberg’s proof of the infinitude of primes using topological
concepts (see [F55, BHLT08]). Fiirstenberg’s proof was formalized as a sequence of proofs
indexed by the number of primes assumed to exist and the method CERES was applied
to the entire sequence. The analysis was performed in a semi-automated way; in fact,
major parts of the analysis had to be performed by hand. Nevertheless, the analysis
showed that from Fiirstenberg’s proof Euclid’s elementary proof could be obtained.
Though a fully automated analysis of this proof is not yet within reach, this example
reveals the need for the development of a formal language for analyzing proofs with
induction. Recent developments based on schematic CERES can be considered as a first
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4.1. Schematic Language

step in this direction. However, existing schematic calculi with a variant of Herbrand’s
theorem are either defined for a weak induction principle [LPW17], or do not guarantee
a fully automated transformation and analysis of the given proof [DLRW13]. A main
contribution of this work is the development of a novel schematic CERES method (see
Chapter 5) which simplifies and generalizes existing methods. Before we can define
the new method, we first need to introduce the schematic language and the concept of
schematic derivations.

4.1 Schematic Language

For the most part of this section we will follow the definitions introduced in [CLL19].

In [CLL19] the focus was the development of a schematic RPL{ calculus, which is used
to refute schematic quantifier-free formulas. In this work however we also work with
schematic formulas that are not quantifier-free (these formulas may occur in input proofs
for schematic CERES). Therefore, we will distinguish between input formula schemata
and general formula schemata.

We work in a two-sorted version of classical first-order logic. The first sort we consider
is w, in which every ground term normalizes to a numeral , i.e. a term inductively

constructable by N = s(N) | 0, such that s(N) # 0 and s(N) = s(N') - N = N'.

Numerals will be denoted by lower-case Greek letters («, 3, 7, etc); for the numeral s“0
and o € N we write a. The set of numerals is denoted by Num . Furthermore, the w
sort includes a countable set of variables .4 called parameters . We denote parameters
by n,m,ny,n9,...,my,mo,.... The set of parameters occurring in an expression F is
denoted by A (E).

The second sort, the t-sort (individuals), is a standard first-order term language extended
by defined function symbols. Defined function symbols, i.e. primitive recursively defined
functions, will be denoted with ~.

We consider the following types of variables and corresponding infinite sets: the set of
individual variables of type ¢ denoted by V' | the set of global variables of type w® — ¢
denoted by V& = 1 V;G , where V;G are the i-ary global variables of type w® — ¢ and
the set of formula variables of type o denoted by V¥ . The set of individual variables V*
is then defined as {X(a) | X € V¥ a € w' for all i € N}. Let o, 3 € w and X,Y € V¢
then we define X(a) =Y (B) iff X =Y and a = 3.

For terms we consider the set of function symbols of type 7, %7 . The set of defined
function symbols of type 7 is denoted by FT . The types 7 are either of the form w® — w
(for a € w) which we call numeric types or of type 1 x w® — 1 for a > 0 which we
call individual types. We distinguish Z.,, - the set of all defined function symbols of
numeric type and Z, - the set of all defined function symbols of individual type. We
define % = {0}, F“7% = {s}, F7 = () for all other numeric types 7. For all other
types the sets .#7 are infinite; moreover all sets FT for T = ¢ are infinite, Ft=1(. The
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symbols in Z., and Z, are partially ordered by <, where < ; is irreflexive, transitive
and Noetherian.

We define a similar signature for predicate symbols of type 7, where &7 is the (infinite)
set of predicate symbols of type 7; the set of defined predicate symbols of type 7 is
denoted by 27 . For ordinary (a-ary) predicate symbols the types are t* — o as usual.
The symbols in P are partially ordered by <, where <, is irreflexive, transitive and
Noetherian.

For the term language we consider w-terms of type w and ¢-terms of type ¢. Both term
sets are defined via function symbols and defined function symbols.

Definition 4.1.1 (w-terms Tv).
1.0eT¥, A CT¥ and if t € T* then s(t) € T%,
2. iffeﬁ’; for 7 = w® - w and ty,...,ty € T then f(tl,...,ta) e T,

The set T denotes terms constructed using (1). Note that the set of parameter-free
terms in T’ is Num, the set of numerals.

For every defined function symbol f € .%,, there exists a set of defining equations D( f )
which expresses a primitive recursive definition of f.

Definition 4.1.2 (defining equations for numeric function symbols). For every f € ﬁw,
f:wet — w we define a set D(f) consisting of two equations.

Let f be minimal in < # and f: w1 — w. Then D(f) consists of the equations

A A~ A

f(n1,. .. na,0) =tg,  flni,...,na,s(m)) =ts{k < f(ni,...,na,m)}

where for minimal f tg,ts € T¥, for nonminimal f tgp,ts € T¥ where tp,ts may contain
only defined function symbols smaller than f in < ;. Furthermore A4/ (tg) C {n1,...,na},
and A (tg) € {ni,...,na} U{m,k}.

We define D(%,) = U{D(f) | f € .}, which is the set of all defining equations in the
numeric types.

Example 4.1.1. For p € 7%, D(p) = {p(0) =0, p(s(m)) =m}, tp =0, ts = m.
Let f,§ € .F7 for T =w X w — w, f be minimal and f <4 §. We define D(f) as
f(n.0) =tp, f(n.s(m)) = ts{k  f(n,m)}
for tg = n and tg = s(k). Then, obviously, f defines +.
Now we define D(g) as
9(n,0) =tp, g(n,s(m)) =ts{k < g(n,m)}
where t'; = 0 and t& = f(n, k). Then § defines .
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4.1. Schematic Language

It is easy to see that, given any parameter assignment, all terms in 7% evaluate to
numerals.

Definition 4.1.3 (parameter assignment). A function o: A4 — Num is called a param-
eter assignment. o is extended to terms homomorphically:
e o(f3) = S for numerals 3.

o o(f(t,....ta)) = f(o(t)),...,0(ts)) for f: w® = wand t1,...,ty € T¥.
The set of all parameter assignments is denoted by .#.

To simplify notation we use the following convention: if o € .% and 7 = (nq,...,n,) we
write o(7) for (o(ny),...,0(ny)).

Definition 4.1.4 (rewrite system R(.%,)). Let f € .%,. Then R(f) is the set of the
following rewrite rules obtained from D(f):

A A

f(nl,...,na,ﬁ) —tp, f(ni,...,nq,s(m)) — ts{k < f(nl,...,na,m)}

R(Z.) = U{R(f) | f € %.,}. When a numeric term s € T rewrites to ¢ under R(.%,)

we write s —, t.

Proposition 4.1.1.

A

o R(F,) is a canonical rewrite system.

o Lett € T¥ and o € .. Then the (unique) normal form of o(t) under R(%,)
(denoted by o(t)}w) is a numeral .

A

Proof. Straightforward: termination and confluence of R(.%,,) are well known, see e.g.

[BN9S]. In particular 0, s and R(.Z) define a language for computing the set of primitive
recursive functions; in particular the recursions are well founded. A formal proof of
termination requires double induction on < 4 and the value of the recursion parameter. [

Definition 4.1.5 (the «-terms 7). The set T* is defined inductively as follows:

e all constants of type ¢ are in T*,

e for all X € V© of appropriate arity and ¢ € T, g X (f} € T*. We call the expression
X (t) (which is of type ¢) a V-term. We define the set of V-terms as T}, = { X (#) |
X eVE ey},

o if fe F fi1%— 1, 81,...,80 €T" then f(s1,...,84) € T",

° iffeﬁ’, f: X WPt s, 50 € TV, t1,...,tg41 € T% then f(sl,...,sa,
tl,...,tﬁ+1) ETL
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4. INDUCTIVE STRUCTURES
The set of all terms in T which contain no defined symbols and neither parameters nor
numerals is denoted by Tj. T} is a set of “ordinary” first-order terms.
Definition 4.1.6 (defining equations for t-symbols). Let fe jf for 7 = 1% x WP = 4.
The defining equations D(f) are defined below.
F(X(0),...,X(@),n1,...,n,0) = tg,

(X((_)), ( ),n1,...,ng,s(m)) = ts{Y(0) + f(X(0),...,X(a),n1,...,ng,m)},
where X,Y € V¢ X # Y. For minimal f tp is a term of type ¢ with TV (tg) C
{X(0),...,X(a)}, A (tg) C{n1,...,ng} and tp contains no defined symbols from .7
for nonnumeric types 7. For nonmlnlmal f , tp may contain defined symbols § of type
o ><w5+1—>Lw1thg< f.
tg is a term of T* with T}, (ts) C {X(0),..., X (@ )}U{Y( )} and A (ts) C {n1,...,ng}U
{m}. For all defined symbols § of type = o x w?*1 — | occurring in tg we must have
§<s 1.
Like for the numeric terms we define D(.%,) = U{D(f) | f € Z.}.
Example 4.1.2. Let g € Z97% and f € Z*“~. We define D(f) as

F(X(0),0) = X(0), f(X(0),m+1) = g(f(X(0),m)).
Here, £ = X(0),ts = g(Y(0)).
While numeric terms evaluate to numerals under parameter assignments, terms in 7"
evaluate to terms in 7, i.e. to ordinary first-order terms. Like for the terms in 7% the
evaluation is defined via a rewrite system.
Definition 4.1.7 (rewrite system R(.%,)). Let f € .%,. Then R(f) is the set of the
following rewrite rules obtained from D(f):
F(X(0),...,X(@),n1,...,n5,0) — tg,

(X(G)v ( ) nlv"'7nﬁ’8(m)) — tS{Y(O)Ff(X(())??X(@)anl?7n,37m)}a

R(#)=U{R() | f e 7.}
If a term s rewrites to ¢ under R(ﬁb) we write s —, t.
Proposition 4.1.2. R(ﬂi) is a canonical rewrite system.
Proof. That R(ﬁb) is strongly normalizing and locally confluent can be shown in the
same way as for R(Z,). O
To evaluate a term ¢t € T* under o € . to a numeral we have to combine —,, and —,.

76


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1. Schematic Language

Definition 4.1.8 (evaluation of 7*). Let 0 € . and t € T*. We define o(t)],:

e if ¢ is a constants of type ¢ then o(c)l,= c.

o If X(f) € Ty and & = t1,...,ta, t; € T* for 1 < i < « then o(X(1)) |,=
X(o(t1),...,0(ta)). Note that, by definition of T}, o(t) = o(t)lw.

eif feZ fi1%—u,81,...,8 € T" then

o(f(s1,.-,8a) b= fo(s1)d0y -y 0(8a)d0)-

° iffeﬁ, f: X WPt s, se €T, t1,...,t341 € T% then

A

(510 sSartts s g b= FO (51 sy 0(80) b () - - 0 (g1 )b -

Under a parameter assignment every term in 7" evaluates to a first-order term:
Proposition 4.1.3. Lett € T* and o0 € .7 then o(t)|,€ T}.

Proof. By induction on the complexity of the term definition and the fact that —,
and —, are both terminating and confluent. For instance, let us consider the case

A

o(to) = o(f(s1,---,Sart1,...,tg)) !, defined above. By induction o(s;)],€ T§ and we
know from Proposition 4.1.1 that o(t;)l. are numerals. So there are ¢/, ...,t,, € T} and
P1,---,pg € Num such that o(ty) reduces to

th: Ft, .t D1y pB) -
By induction on the value of pg we can easily show that t; € T§. O
Example 4.1.3. Let
F(X(0),0) = X(0), f(X(0),m+ 1) = g(f(X(0),m)).
and o(n) =1, o(m) =2, o(k) =0 for k ¢ {n,m}. Then

)= g G(f(){(n)yﬁ%)ib)) = g(f(U(X(n))iL, o(m)
?mm = g(g9(f(X(1),5(0))l.)) = g9(g(g(f(X(1),0)

\LUJ)\LL) =
1))

Q.
S
=
<
S
3

Substitutions on term schemata need to be schematic as well, particularly when we are
interested in unification. We develop some formal tools below to describe such schemata.

Definition 4.1.9. Let s1,s92 € Ty’. Then sq, sy are called essentially distinct if for all
0 € .Y 810 # s90.

Example 4.1.4. n and s(n) are essentially distinct and so are 0 and s(n). m and s(n)
are not essentially distinct (just use o with o(m) =1 and o(n) = 0).
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Definition 4.1.10 (s-substitution). Let © be a finite set of pairs (X (s1,...,s;),t) where
X(s1,...,8;) € T\, and t € T*. O is called an s-substitution if for all (X (s1,...,$),1),
(Y(s’l,..., s;),t") € © either X # Y or sj,s’, for some j € {1,...,i}, are essentially
distinct. For o € . we define O[o] = {X(s10,...,8;0) + t0¢L| (X (s1,-..,8;),t) €
O}. We define dom(©) = {X(s1,...,8;) | (X(sl,...,si),t) € O} and r9(0) = {t |
(X(Sl, ce Si),t) S @}

Proposition 4.1.4. For all 0 € . and every s-substitution © Olo]| is a (first-order)
substitution.

Proof. 1t is enough to show that for all (X (s1,...,s;),t), (Y (s},...,s}),t) € © X(s10,..

sio) # Y (sjo,..., sio) for all 0 € .. If X # Y this is obvious; if X = Y then, by
definition of ©, the pairs (s1,s}), ..., (s, ;) are essentially distinct and so sj0 # sio, ...,
s;0 # sio. Then Oo] is indeed a substitution as for X(s1,...,s;) € T\, X(s10,...,80) €
Ve O

The application of an s-substitution © to terms in 7" is defined inductively on the
complexity of term definitions as usual.

Definition 4.1.11. Let © be an s-substitution. We define t© for terms ¢t € T*.

e if ¢ is a constants of type ¢ then cO = ¢,

o if X(s1,...,8) €T and X(s1,...,s;) & dom(O) then X (s1,...,5)0 = X(s1,...,5);
if X(s1,...,8;) € dom(©) and (X (s1,...,8;),t) € O then X(s1,...,8)0 =1,

e if feF, fi ¥ =1, s1,...,50 €T then f(s1,...,52)0 = f(510,...,5,0),
° iffeﬁ, f: X WPt sy, 50 € TV, t1,...,tg41 € T% then

f(sl, .. .,Sa,tl, cee ,t3+1)@ = f(Sle, ce ,Sa@,tl, cee ,tg+1).

The composition of s-substitutions is not trivial as, in general, there is no uniform
representation of composition under varying parameter assignments.

Example 4.1.5. Let
©1 ={(X1(n), f(X1(n))} O2 = {(X1(0), g(a))}.
Then, for o € .7 such that o(n) = 0 we get
©1o] 0 Oz[o] = {X1(0) - f(X1(0))} 0 {X1(0) <= g(a)} = {X1(0) « f(g(a))}-

On the other hand, for ¢’ € . with ¢’(n) = 1 we obtain

(
O1[0"] 0 @20] = {X1(1) « f(X1(1))} 0 {X1(0) = g(a)}
= {X1(1) « f(X1(1)), X1(0) < g(a)}-
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4.1. Schematic Language

Or take O] = {(X1(n), X2(n))} and ©4 = {(X2(m), X1(m))}.
Let o(n) = o(m) =0 and o’(n) = 0,0’(m) = 1. Then
Oilo] o O3lo] = {X2(0) + X1(0)},
O[]0 ©4l0"] = {X1(0) + X2(0), Xo(1) + X1(1)}.
The examples above suggest the following restrictions on s-substitutions with respect to
composition. The first definition ensures that domain and range are variable-disjoint.

Definition 4.1.12. Let © be an s-substitution. © is called normal if for all ¢ € .¥
dom(©]c]) N V*(rg(O©lo])) = 0.

Example 4.1.6. The substitutions ©] and ©) in Example 4.1.5 are normal. ©; in
Example 4.1.5 is not normal.

Proposition 4.1.5. It is decidable whether a given s-substitution is normal.

Proof. Let © be an s-substitution. We search for equal global variables in dom(0) and in

rg(©); if there are none then O is trivially normal. So let X € V¢ (dom(©)) NV (rg(0)).

For every X (5) € dom(0©) and for every X () occurring in rg(©) we test whether there
exists a o € .% such that ¢(5) = o(t). This test uses ordinary first-order unification on
terms in T¢'. When we find X (5), X (f) such that there exists a o € .# with ¢(5) = o(f)
then © is not normal, and normal otherwise. O

Example 4.1.5 shows also that normal s-substitutions cannot always be composed to an
s-substitution; thus we need an additional condition.

Definition 4.1.13. Let ©;, ©2 be normal s-substitutions. (01, ©2) is called composable
if for all 0 € ¥

1. dom(©1[c]) N dom(O2(c)) = 0,

2. dom(©1[o]) N V(rg(O2a])) = 0.
Proposition 4.1.6. It is decidable whether, for two normal s-substitutions ©1, O,
(©1,02) is composable.

Proof. Like in Proposition 4.1.5: by unification tests on X (5), X (£) occurring in the sets
under consideration. O

Definition 4.1.14. Let ©1,03 be normal s-substitutions and (©;,02) composable.

Assume that

0, = {(Xl(s_’%t)V"?(Xa(s_t;c)vtoc)}?
Oy = {(Yl( Hl)ﬂr)?'"7(Yﬁ(uyﬁ)77%)}'
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4. INDUCTIVE STRUCTURES
Then the composition ©1 x O is defined as
{(Xl(S_i), t_1'®2)7 ) (Xa(s_(;z)a t;@2)7 (Yl(wl)v T_i)7 ) (Y/g(ﬂ?ﬁ), T_é)}
The following proposition shows that ©; x ©9 really represents composition.
Proposition 4.1.7. Let ©1,09 be normal s-substitutions and (01,03) be composable
then for all o € .7 (©1 x O2)[0] = O1]c] 0 O2]0].
Proof. Let
O1 = {(X1(s1).11),..., (Xa(sa), ta)},
©; = {(Vi(w1),7),..., (Ya(wp),75)}-
Then ©1 % O, is defined as
{(Xl(s_i)v t_£®2)7 e (Xa(s_(;z)a 75;@2)7 (Yl(wl)’ T_i)v RN (Y,B(liﬂ)v T_é)}
Let o(s;) = v, 0(wj) = 5}, tiol,= tz and 7jol,= r_];-. We write z; for X;(7;) and y; for
Y;(6;) and 0; = ©1[0], 05 = Oy[0]. Then
06 = {x1 <—t7£,...,xa <—tz},
O = {(y1 T_’i,...,y[g — T_";}
As (01, 02) is composable we have
L {z1,...,za} 0 {y1,...,ys} = 0, and
2. {x, ...z} N VH{r, .. .,r_'/;)}) =0.
So
0105 =
{21 th, ... 2o — t1)}0y =
{xl — t’192, ey T tzag} U 6.
The last substitution is just (01 x O2)[o]. O
Proposition 4.1.8. Let ©1, 02 be normal s-substitutions and (01, ©2) composable. Then
O1 x Oy is normal.
Proof. Like in the proof of Proposition 4.1.7 let O1[c] = 01, ©2[c] = 2. We have to show
that dom(0102) N V*(rg(6162)) = 0. We have
0102 = {1'1 — t7102, R P tzeg} U 02.
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4.1. Schematic Language

As 6; is normal we have VL(tZ) N{z1,...,zq} = 0 for i = 1,...,a. By definition of
composability rg(62) N {z1,...,24} = 0, and therefore

V ({t10a, ..., 1L023) N {a1,. .. w0} = 0.

So {z1 + t§62, ..., Zo < t16} is normal. As also O, is normal we have dom(6) N
V*(rg(62)) = 0. Hence we obtain dom(6162) N V*(rg(0162)) = 0. O

Like for general unifiers, we can define s-unifiers from s-substitutions.

Definition 4.1.15 (s-unifier). Let ¢,t2 € T*. An s-substitution O is called an s-unifier
of t1,t9 if for all 0 € . (t101,)O[0] = (t201,)O[o]. We refer to t1,t2 as s-unifiable if
there exists an s-unifier of ¢1,¢5. s-unifiability can be extended to more than two terms
and to formula schemata (to be defined below) in an obvious way.

Definition 4.1.16. An s-unifier © of t1,ty is called restricted to {ti,t2} if T{,(©) C
Ty ({t1, t2}).

Remark. Tt is easy to see that for any s-sunifier © of {¢1,t2} there exists an s-unifier ©’
of {t1,t2} which is restricted to {t1,t2}.

In this work we will use two notions of formula schema. The first notion is similar to the
one in [LPW17] and used for defining formulas in proof schemata that serve as input
proofs to the schematic CERES method. These proof schemata will be simple in the sense
that they do not contain global variables. Only after regularizing the proof schemata we
introduce global variables, which will be used to define the second concept of formula
schema (see Definition 4.1.22). The formula schemata used in input proof schemata are
referred to as input formula schemata.

Definition 4.1.17 (input formula schemata (FS;,,)). We define the set FS;,, inductively:

Let & be a formula variable in V¥ then ¢ € FS,,.

o Let P:1* 0€ & and t1,...,to € T". Then P(t1,...,ts) € FSiy.

Let P € P27 for 7:* x WPt o 0, T1,...,Tq €V, t1,...,tg41 € T% then

P(l‘l, ey Tty ,t/3+1> € FS;n.

Let F € FS;,, then = F € FS;,.

If F1, F5 € FS;,, then Fi A Fy € FS;,,, F1 V Fy € FS;,, and Fy — F5 € FS;,,.

If F € FS;, then Vo F € FS;, and dzF € FS;,,, where z € V.

The subset of FS;;, not containing formula variables is denoted by FSp,, . The subset
of FS;;, containing no defined symbols at all and neither parameters nor numerals is
denoted by Fy;, - Fo;n, is a set of ordinary first-order formulas.
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Definition 4.1.18 (defining equations for input predicate symbols). For every Pe
for 7: 1% x w? — 0 we define a set D(P) of defining equations, where i = 1, ..., 9, and

A

i =mni,...,ng. D(P) consists of

P(§,7,0) = Fg, P(y,1,s(m)) = Fs{& + P(¢,7,m)},

where, for a < j-minimal P Fy,Fs e FSo,,. If P is not < p-minimal then Fp, Fs € FS;,,
such that for every Q e occurring in Fpg, Fg we have Q <5 P. The only variables
and parameters occurring in Fp are ¢ and 7 respectively. The only variables in Fyg are i
and besides 7 Fis may include a formula variable £ and a parameter m. Like for Z., and
ﬁ] we define

D(P) =\ (D(P) | P e 2},

Definition 4.1.19. The evaluation of a formula F' € FS;,, is denoted by, and is defined
inductively. Let o € .; we define o(F)l,.

1. Let & be a formula variable in V¥ then o(£),= €.

2. Let P: 1* »0€ & and ty,...,to € T". Then
o(P(t1, ... ta))do= Plo(ti)ds, ... o(ta)d)-

3. Let Pe @7 and F = ]5(:1:1, e Za,ti, ..., tgyr). Let D(P) =

P(xl,...,:z:a,m,...,ng,O) = Fpg,

P(xi,...,%q,n1,...,ng,m+1) = Fs{f<—P(xl,...,xa,nl,...,ng,m)}.

we distinguish two cases:
(a) o(tg+1)l,= 0. Then

o(P(x1,. . s Tastt, - ta1)) o= o(FE) o

for Fllg = FB{n1 <—t1,...,n5 — t/fj}.
(b) o(tg+1)d.=p and p > 0. Then

0(]5(:1:1, s Tty ta11)) o= U(Fé)io )
For

Fl = Fs{¢+ P(x1,...,20,n1,...,m5,m)}
{n1 < t1,...,ng < tg,m < p—1}.

4. o(=F)|o= —0(F)lo.
5. 0(F10 Fy)lo=0(F1)lo 00 (F2)l, for o € {A,V,—}.
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4.1. Schematic Language

6. o(VzF)lo=Vzo(F)l, and o(IzF)]o= 3xo(F)l..

Proposition 4.1.9. Let F' € FSy,, and 0 € .. Then o(F)lo€ Foip-

Proof. If there are no defined predicate symbols in F' then, obviously, o(F)l},€ Fo;p.

Here only the cases (1),(2),(4) and (5) in Definition 4.1.19 apply.

If there are defined predicate symbols we proceed by induction on < and the induction
parameter.

Let P be minimal in < and let F' = P(x1,...,2a,t1,. .. ,tg+1). We show that o(F)],€
FOin:

(a) o(ts+1)4,= 0. Then, by Definition 4.1.19

O(P(x1,. . Tastt, - tge1)) o= 0(Fg)lo

As P is minimal the formula F 5 does not contain defined predicate symbols and so
U(F/B)\l/oe FOin‘

—~
=

o(tg+1)d,=p and p > 0. Here we have
c(P(1, . Tar s tge1) o= o (FL) o
For

F{ = Fs{¢+ ]3(551, e TN, ..., N, M)}
{n1 < t1,...,ng < tg,m < p—1}.
Note that Fg itself does not contain defined predicate symbols; in F§ we have

the symbol P but with 15(931, . Tayt1, ..., tg,p— 1). Therefore we proceed by
induction on the value of o(tg4+1) and infer that also o(F§)lo€ Foip.

If P is not minimal the base case for P involves only smaller defined predicate symbols.

So by induction on < we get the desired result. O

In the schematic CERES method we will only consider weak schematic sequents. These
are schematic sequents that contain only weak quantifier occurrences. Therefore, we
introduce the notion of weak and strong input formula schema.

Definition 4.1.20 (weak input formula schema). Let F' € F'S;,. Then F is called weak
if for all o € . the formula o(F")], contains only weak quantifiers.

Definition 4.1.21 (strong input formula schema). Let F' € FS;,. Then F is called
strong if for all o € . the formula o(F)], contains only strong quantifiers.
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4. INDUCTIVE STRUCTURES

The second notion of formula schema we use in this work will be formula schemata defined
in a way that also the number of variables in formulas can increase with the assignments
of parameters. For this reason we use global variables in the definition. These formula
schemata will be used in defining refutation schemata. We do not allow quantification
over global variables.
Definition 4.1.22 (formula schemata (FS)). We define the set F'S inductively:

e Let ¢ be a formula variable in V' then ¢ € FS.

o Let P: 1* w0€ P and ty,...,to € T". Then P(ty,...,t,) € FS.

e Let P e 27 for 7: (W — 1) X ... x (W% — 1) x WP =0, X1,..., X, € VE,

t1,...,tg41 € T“ then P(Xl,.. cy Xastly ... ,753_;,_1) € FS.

o Let F' € FS then —F € FS.

o If F1, F5 € FS then Fy A Fy € FS and Fy V F, € FS.
The subset of F'S not containing formula variables is denoted by FSy . The subset of FS
containing no defined symbols at all and neither parameters nor numerals is denoted by
Fo . Fy is a set of ordinary quantifier-free first-order formulas.
Definition 4.1.23 (defining equations for predicate symbols). For every P e P for
T (W = 1) X ...ox (W = 1) x WP = 0 we define a set D(P) of defining equations,
where Y =Y1,...,Y, and @ = ny,...,ng. D(P) consists of

P(Y,7,0) = Fg, P(Y,, s(m)) = Fs{¢ «+ P(Y,@i,m)},
where, for a < j-minimal P Fp,Fg € FSy. If P is not < p-minimal then Fp, Fs € FS
such that for every Q e P occurring in Fp, Fs we have Q <4 P. The only global
variables and parameters occurring in Fp are Y and 7 respectively. The only global
variables in Fig are Y and besides 77 Fis may include a formula variable £ and a parameter
m. Like for %, and .%, we define
D(2)=|J{D(P)| P e 2}.

The evaluation of a formula F' € FS is denoted by, and is defined inductively.
Definition 4.1.24. Let o € .%; we define o(F)], for F' € FS.

1. Let & be a formula variable in V¥ then o(¢),= €.

2. Let P: 1* »0€ & and ty,...,to € T". Then

o(P(t1, . ta))do= Plo(ti)ds, ... o(ta)d)-
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4.1. Schematic Language

3. Let Pc 27 and F = P(Xy,..., Xa,t1,...,t41). Let D(P) =

p(Xla"'>Xaan17-"7nﬁ70) = Fp,
P(X1,..., Xoyn1,...,ng,m+1) = Fg{€ < P(X1,..., Xa,n1,...,n5,m)}.

we distinguish two cases:
(a) o(tg+1)4,=0. Then

o(P(X1,..., Xast1, -5 ta11)) o= o (Fp)lo
for F,B = FB{TL1 <—t1,...,n5 (—tﬂ}.
(b) o(tg+1)d.=p and p > 0. Then
o(P(X1,. .., Xastt, s t51))bo= 0(F5) Lo -
For
Fi = Fs{¢« P(X1,...,X0,n1,...,n5,m)}
{n1 < ti,...,ng < tg,m < p—1}.
4. o(=F)}o=—0(F)lo.
5. 0(F1 0 Fy)lo=0(F1)lo 00 (F2)l, for o € {A,V}.

Proposition 4.1.10. Let F € FSy and 0 € .. Then o(F)l,€ Fy.

Proof. If there are no defined predicate symbols in F' then, obviously, o(F')],€ Fo; indeed,
here only the cases (1),(2),(4) and (5) in Definition 4.1.24 apply.

If there are defined predicate symbols we proceed by induction on < and the induction
parameter.

Let P be minimal in <, and let F' = p(Xl,...,Xa,tl,...,t5+1). We show that
o(F)lo€ Foy:

(a) o(ts+1)d,= 0. Then, by Definition 4.1.24

G(P(X1,. .oy Xastrs oy lge1) o= 0(Fl) Lo

As P is minimal the formula F 5 does not contain defined predicate symbols and so
o (F IB)\I,OE Fo.

(b) o(tg+1)d,=p and p > 0. Here we have

o(P(X1,..., Xa,t, . tge1)) o= 0(F§) Lo
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4. INDUCTIVE STRUCTURES
For
F, = Fs{¢+ P(Xl, ooy Xo,n1,...,ng,m)}
{ni < ti,...,ng +tg,m <« p—1}
Note that Fyg itself does not contain defined predicate symbols; in F§ we have
the symbol P but with P(Xy,...,Xq,t1,...,t8,p — 1). Therefore we proceed by
induction on the value of o(tg4+1) and infer that also o(F§)l.€ Fo.
If P is not minimal the base case for P involves only smaller defined predicate symbols.
So by induction on < we get the desired result. O
Definition 4.1.25 (unsatisfiable schemata). Let F' € FS. Then F is called unsatisfiable
if for all o € . the formula o(F')], is unsatisfiable.
Example 4.1.7. Let a be a constant symbol of type ¢, P € £2**¢7°, f as in Example 4.1.3,
PeP forr=1xw-—o0 and Q € P for 7 =1 xwxw — o. Concerning the
ordering we have P < (). The defining equations for P and @ are:
P(X,0) = -P(X(0), f(a,0)),
P(X,s(n)) = P(X,n)V-P(X(s(n)), f(a,s(n))).
Q(X,Y,n,0) = P(f(Y(0),0),Y (D)) A P(X,n),
Q(X,Y,n,s(m)) = P(f(Y(0),s(m)),Y(1)) A P(X,n)
where X and Y are of type W =L It is easy to see that the schema Q(X Y,n,m) is
unsatisfiable. We compute o(Q(X,Y,n,m))l, for o with o(m) = 2,0(n) =
o(Q(X. Yin,m) o= P(F(Y(0),2),Y (1) A o(P(X,n)) =
PUF(Y(0),2), Y (1)) A (P(X,2) V ~P(X(3), f(a,3)) = A
P(f(Y(0),2),Y(1)) A (P(X,1) V-P(X(2), f(a,2)) V 2P(X(3), f(a,3))) =
~P(g(9(Y(0)),Y (1)) A (=P(X(0),a) V -P(X(1), g(a))V
~P(X(2),9(g(a))) vV ~P(X(3),9(9(9(a)))))-
Note that, for o(n) = & the number of different variables in U(Q(X, Y,n,m)) o is a+2;
so the number of variables increases with the parameter assignments.
4.2 Proof Schemata
The concept of proof schema was introduced in [DLRW13] and later extended in [LPW17].
The basic idea is, that proof schemata are formalized as an ordered collection of so-called
LKS-proofs with certain constraints. The LKS-calculus is based on so-called proof links,
which are inferences combining proofs of base and step cases. To be more precise, if ¢
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4.2. Proof Schemata

is a proof symbol with end-sequent S(x1,...,z,) and ti,...,t, are terms of the same
types as x1,...,ZTq, then the expression ¢(t1,...,t,) is called a proof link. LKS is then
defined as the extension of LK by proof links as initial sequents and an equational theory
for schematic formulas and terms. We simplify and extend the schematic formalism
from [DLRW13,LPW17]. First of all, we omit the definition of proof links by allowing
a more flexible formalism with a more general set of axioms. Moreover, we extend the
formalism to multiple parameters (in [DLRW13] and in [LPW17] only schemata defined
via one parameter were admitted) and strongly extend the recursive proof specifications
by allowing mutual recursion.

In this section we will introduce a novel notion of schematic derivations and proof
schemata. Schematic derivations are constructed using derivations in the calculus LKE,
which is an extension of LK by an equational theory. As before, we will consider
parameters, under which the derivations can be evaluated to a simple LKE-derivation.
As mentioned above, the most interesting feature discussed in this section, compared to
concepts of schematic proofs as introduced in [DLRW13,LPW17], is that we allow several
parameters instead of only one. First, let us define the concept of schematic sequents.

Definition 4.2.1 (schematic sequents). A schematic sequent is a sequent of the form
Fi,...,F, F G1,...,Gg where the F; and Gj for 1 <i < o and 1 < j < 3 are input
formula schemata.

To omit schematic skolemization in the schematic CERES method we will work with weak
end-sequents only.

Definition 4.2.2 (weak schematic sequent). Let S: Fi,...,F, F Gi,...,Gg be a
schematic sequent. S is called weak if the F; for 1 < ¢ < a are strong input formula
schemata and the G; for 1 < j < 8 are weak input formula schemata.

We define the schematic standard axiom set <7, = {S, - Sy | Sy atomic input formula
schema}.

Definition 4.2.3 (LKE). Let & be an equational theory. LKE is an extension of LK
S(t)
S(t)
S is replaced by a term or input formula schema ¢’ for t =t € & (or t < t' € &).

by the & inference rule & where the term or input formula schema ¢ in the sequent

In the definitions below we will use the schematic standard axiom set 7.

Definition 4.2.4 (schematic standard axiom set). Let .27 be the smallest set of schematic
sequents that is closed under substitution containing all sequents of the form A - A for
arbitrary schematic atomic formulas A. Then o7 is called the schematic standard aziom
set.

We assume to have an unordered infinite set of proof symbols A* = {4y, d1,...} (proof
symbols are simple symbols used to distinguish derivations in a schematic derivation).
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Roughly speaking, schematic derivations can be understood as a finite set of tuples, where
each tuple defines for a proof symbol ¢ a base-case (for parameter 0) and a step-case (for
parameter m + 1) proof. Therefore, we only consider a finite subset A of A* and define a
partial ordering < on the proof symbols in A such that < is Noetherian and there exists
a maximal element dg. Initial sequents are either axioms, or they are end-sequents from
previously defined (base- or step-case) proofs, which occur in the finite set of tuples. In
general, the step-case proof (for parameter m + 1) for some proof symbol § uses as initial
sequent its own end-sequent, but under parameter assignment m. Evaluating a schematic
derivation means that initial sequents, which are no axioms, have to be replaced by their
derivations.

As already mentioned, schematic derivations can be defined over several parameters.
Therefore, we will consider a vector of global parameters 77 and a local parameter m,
which can be interpreted as the active parameter, i.e. the parameter over which the
induction is performed.

Definition 4.2.5 (parameter replacement). Let 1,7 be tuples of parameters. A param-
eter replacement on 77 with respect to m is a replacement substituting every parameter p
in 7 by a term ¢,, where the parameters of ¢, are in m.

Definition 4.2.6 (schematic LKE-deduction). Let A be a finite ordered subset of A*
such that there exists a g € A with §y > ¢’ for all & € A such that §’ # dy and, for each
0, let 7is be a (possibly empty) list of global parameters and mg an active parameter. A
finite set of tuples

9: {(57p(57ﬁ5a0)7p(67ﬁ57m5 + 1)) ’ b€ A}

is called a schematic LKE-deduction from a finite set of schematic sequents .& if the
following conditions hold for every § € A.:
There exists a (possibly empty) finite set of sequents € () and a sequent S(J) such that

1. p(6,7s,0) is an LKE-deduction of S(§){ms < 0} from . U € (9),

2. p(6,7s, ms + 1) is an LKE-deduction of S(0){ms <= ms+ 1} from {(, ¥): S(6)} U
S U%E(0), where (4, V) is a label, S(0) the end-sequent of 6 and ¥ the empty
parameter replacement,

3. for all S’ € €(5), 8" = (§',%): S(6')¥ where (§,¥) is a label, §' € A with 6§ > §’
and ¥ is a parameter replacement on 7iy; w.r.t. 75 such that the conditions 1. and
2. hold for ¢’ .

If ¥ = s we call 2 an LKE-proof schema (or proof schema) of S(dp). As input proof
schemata for the schematic CERES method we will only consider proof schemata of weak
schematic end-sequents S(dp).
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4.2. Proof Schemata

Example 4.2.1. In this example we will construct a proof schema based on two proof
symbols ¢ and §’ using only one parameter. It is the same example as in [LPW17], with
exception that we use our new formalism. Let us define a proof schema, of

A

Va(P(z) = P(f(x))) F (P(f(n,¢)) = P(g(n,¢))) = (P(c) = P(g(n,c)))

where f(0,2) = z, f(s(n),z) = f(f(n,z)).
First, we construct an LKE-proof schema 2; = {(4, p(4,0), p(6,n+1))}, where S(0): Vz(P(x) —
P(f(z))) F Va(P(z) — P(f(n,z))). We define p(d,0) as follows:

P(f(0,a)) - IA?(f(O,a)) i
P(a) = P(f(0,a))
F P(a) — P(f(0,a))
FVa(P(z) — P(f(0,)))
Va(P(x) = P(f(x))) - Va(P(z) — P(£(0,2)))

wy

p(0,m + 1) is defined as follows:

(6,0): 5(6) (1)
va(P(x) — P(f())) - Va(P(x) = P(f(n +1,2)))

cut, ¢

where (1) is

P(f(n+1,a))F P(f(n+1,a))
P(f(f(n,a))) F P(f(n+1,a))

P(f(n,a) F P(f(n,a)) l o
P(f(n,a)), P(f(n,)) = P(f(f(n,a))) F P(f(n +1,q)) v
P(a) = P(a) P(f(n,a)),Yz(P(z) = P(f(x))) - P(f(n +1,a)) -
P(a), P(a) = P(f(n,a)),Vz(P(z) = P(f(z))) - P(f(n+1,a)) o,
P(a) = P(f(n,a)),Va(P(z) — P(f(z))) - P(a) = P(f(n +1,a))
Va(P(z) = P(f(n,2))),Ya(P(z) » P(f(2))) F P(a) = P(f(n+1,a))
Va(P(z) = P(f(n,2))),Va(P(x) = P(f(2))) b Va(P() = P(f(n+1,2)))

Now we construct the proof schema 2 = {(¢', p(’',n), p(¢',n+1)) }UZ1, where S(¢'): Vo (P(z) —
P(f(z))) F (P(f(n,c)) = P(g(n,c))) = (P(c) = P(g(n,c))) and &' > §. There is no
internal recursion in ¢’ needed, hence we only define p(¢’,n) as follows:

0,0):5¢) (2

= cut
Va(P(x) = P(f(x))) = (P(f(n,c)) = P(g(n,c))) = (P(c) = P(g(n,c)))

where (2) is
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As our formalism is capable of handling several induction parameters, we can easily
formalize common proofs in PA, as for instance commutativity, as a proof schema. In
the following examples we will use the standard Peano axioms.

Definition 4.2.7 (Peano axioms). The Peano axioms are defined as
Al @ FO#s(x
A2 : Fs(z)=sly) v z=y
A3 : Fz+0=2
A4 Fa+s(y) =s(z+y)
A5 ¢ Fax0=0
A6 Frzxs(y)=zxy+ax

Frequently, we will denote s(0) as 1 and add the axiom
AT ¢ Fs(z)=x+1
which can be proven easily using A3, A4 and the definition of 1.

Example 4.2.2. In the following examples we will use the schematic standard axiom
set extended by Peano axioms and the usual equality rules (denoted by &).

Proof of 0 is a left-identity: We define a proof schema of - 0 +m = m. Let ¥ =
{(6,p(6,0), p(6, m + 1))} where S(0) = F 0+ m = m and we define p(J,0) as follows:

F0=0

0+0=0 ®

p(0,m + 1) is defined as follows:

(0,0): S(9)
F s(0+m) = s(m)
0+ s(m) = s(m)

A2
A4

Proof of associativity: We define a proof schema of - (a +b) +m = a+ (b+ m). Let
71 = {(61,p(01,0a,b,0), p(01,a,b,m + 1))} where S(61) =F (a+b)+m =a+ (b+m)
and we define p(d1,a,b,0) as follows:
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4.2. Proof Schemata

Fa+b=a+b
Fa+b=a+ (b+0)

A3

Flatb)+0—atbr0) 3
p(01,a,b,m+ 1) is defined as follows:
51,0): S(6
(61,0): S(61) A2

A4
A4
A4

Fs((a+b)+m) =s(a+ (b+m))
Fs((a+b)+m)=a+s(b+m)
Fs((a+b)+m)=a+ (b+ s(m))
F(a+b)+s(m)=a+ (b+ s(m))

To prove commutativity, we first need to define a proof schema of Fm +1 =1+ m. Let
Do = {(62, p(02,0), p(d2,m + 1))} U Z, where 63 > 0, S(d2) =Fm+1=1+ m and we
define p(d2,0) as follows:

(0,{m «+ 1}): S(d){m « 1}

FO+1=1+0 A3
p(02, m + 1) is defined as follows:
(62,0): S(02) F14s(m)=1+s(m) M
Fs(m+1)=s(1+m) Fs(l1+m)=14s(m) &.def

Fs(m+1)=s(0)+ s(m) 3 ’

Fs((m+1)+0)=s(0) + s(m) e

F s(s(m) 4+ 0) = s(0) + s(m) M
F s(m) + s(0) = s(0) + s(m) dof

Fs(m)+1=1+s(m)

Now we define a proof schema of F n+m' = m’+n. Let 25 = {(d3, p(d3,n,0), p(d3,n, m’+
1)U P2 U P4, where 03 > 82, 83 > 01, S(03) = F n+m' = m/+n and we define p(d3, n,0)
as follows:

(0,{m +n}): S(§){m < n}
&
Fn=0+n A3
Fn+0=0+n

p(d3,n,m' + 1) is defined as follows:
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S(d3)

Fnd+m' =m'+n A9 P1
Fs(n+m')=s(m +n) Fs(m +n)=(m +1)+n

Fsin+m/)=(m+1)+n
Fs((n4+m)+0)=m+1)+n
S(61){a < n, b+ m';m+ 1} Fn+m)+s0)=m +1)+n def
Fn4(m +1) = (n+m')+1 Fntm)+1=(m +1)+n C

&
Fn+t(m +1)=(m+1)+n

(01, {a < n,b—m',m+« 1}): 43

where ¢ is

(61’{a(*m/ab(*17m(*n}): (51,{771%71}): 5(52){m<—n}

S(61){a +m' b+ 1,m < n} Fn+l=14+n

Fm' +(14+n)=m+1)+n Fl—&—n:n—i—léa
Fm' +(n+1)=(m'+1)+n ¢
Fm +sn)=m +1)+n
Fsim'+n)=m +1)+n

def
A4

For schematic cut-elimination we need regular proofs. To ensure that the schemata will
evaluate to regular proofs we have to regularize the schemata themselves. As we are
describing infinite sequences of proofs (instead single ones) we introduce global variables
as a way to syntactically describe the process of regularization which can always be
performed on the proof resulting form normalization of a proof schema. Essentially,
global variables describe meta-syntactic properties of proof schema and thus inherently
introduce second-order notions into the formalism. Note that this notion of regularization
is stronger than the fact that non-schematic proofs can be regularized, we refer to
the regularization implied by global variable introduction as uniform regularization, i.e.
uniform eigenvariable renaming for an infinite sequence of proofs.

Definition 4.2.8 (regular proof schemata). Let & be a proof schema as in Definition 4.2.6.
Let the size of 75 be v5. We will replace the « eigenvariables in the proofs p(d, 7i5,0) and
the [ eigenvariables in p(d,7is, ms + 1) for 6 € A by new variable schemata

X{(75,0),... X (s, 0),
X{(i5,ms + 1), ... Xj(s, ms + 1),

for X?(iis,0)0, Xf(ﬁg, mg + 1)o: Wt — w for any parameter assignment o. For every
0 € A we first regularize the proofs p(d,7is,0), p(, 7is, ms + 1) to p/(4,7is,0), p' (9, 75, ms +
1). Let us assume that the eigenvariables in p/ (4, 7is,0) are y1, ..., yq, the eigenvariables
in p'(8, 75, ms + 1) z1,...,23. Now we apply the substitution

{y1 X0 (75,0), ..., ya — X2(i5,0)}

&
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4.2. Proof Schemata

to p'(9,7s,0) (and obtain p”(4,7is,0)) and the substitution

{21 < X{(iis,ms +1),..., 25 < X§(iis,ms + 1)}
to p'(0,7is,ms + 1) (and obtain p” (8,75, ms + 1)). The new resulting proof schema 2"
with p” instead of p is called regularized.

In general we call a proof schema 2 regular if all the proofs p(d,7is,0), p(, iis, ms + 1)
are regular and the eigenvariables in p(J, 5, 0) are among X?(i7,0), the eigenvariables in
:0(67 Tis, ms + 1) among Xz(s(ﬁ7 m)
Example 4.2.3. Consider the proof schema of Example 4.2.1, where

2 ={(0,p(¢",0),p(¢";n+ 1))} U 2
and S(5): Yr(P(z) = P(f(2))) F (P(F(n,¢)) = P(g(n,))) = (P(e) = P(g(n,c))).
After regularization we obtain for 2, = {(d, p(,0), p(d,n+ 1))}, where S(5): Vx(P(z) —

A

P(f(x))) F Vz(P(z) — P(f(n,x))) the regularized proofs p(d,0) =

and p(d,n+1) =

where (1) is

P(X{(n+1)) = P(X{(n+1)) (2
P(X{(n+1)), P(X](n+1)) = P(f(n, X} (n + 1)), Va(P(z) = P(f(«))) F P(f(n+1,X{(n + 1))
P(X{(n+1)) = P(f(n, X3 (n +1))),Va(P(z) = P(f(2))) F P(X](n +1)) = P(f(n + 1, X (n + 1)) v '
Va(P(z) = P(f(n,2))),Va(P(z) = P(f(2))) F P(X}(n +1)) » P(f(n + 1, X7 (n + 1))
Va(P(z) = P(f(n,))),Va(P(z) = P(f(x))) F Va(P(z) = P(f(n +1,2)))

-1

"

and (2) is

P(f(n+1,X(n+1)) F P(f(n+1,X%(n+1)))

—

P
P(f(n+1,X{(n+1)))

—

(f
(n+1)))

l_
P(f(n, X{(n+ 1)) F P(f(n, X{(n + 1)) P(f(f(n, X} (n+1)))) -
P(f(n, X{(n+1))), P(f(n, X{(n + 1)) = P(f(f(n, X{(n +1)))) - P

P(f(n, X{(n+1))),Ya(P(z) = P(f(2))) F P(f(n+1,X}

P
P

(n+1,X0(n+1))) .

l

—1
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4. INDUCTIVE STRUCTURES

For 7 = {(&', p(&',0), p(&',n+1))}UZ1, where S(8'): Va(P(z) — P(f(z))) F (P(f(n,c)) —
P(g(n,c))) = (P(c) = P(g(n,c))) and ¢’ > § we obtain the regularized proof p(§’,n) =

We are going to evaluate proof schemata under parameter assignments. If & is a proof
schema and © a parameter assignment we will define Yo as the pair (p(do,7,0)0,
p(00,7,m + 1)ol). It remains to define the evaluation of the p(d,7,t) for t = 0 and
t=m+1.

Definition 4.2.9 (evaluation of proof schema). Let & be a proof schema and o a
parameter assignment. In defining Yo we proceed by double induction on the ordering
of proof symbols and the assignments o.

e Let § be a minimal element in A.

1. o(ms) = 0.
Then, by definition of a proof schema, p(d,7s,0) is an LKE-proof; so its
evaluation is p(6,7,0)c].

2. o(mg) =a>0.
Evaluate all sequents except the leaves (0, 0): S(§) under o. Afterwards replace
(0,0): S(0) by the LKE-proofs p(d, iis, ms+1)o[ms/a—1]] where o[ms/a—1]
is defined as o[ms/a—1](p) = o(p) for all p # ms and o[ms/a—1](ms) = a—1.
The result is an LKE-proof p(d, iis,ms + 1)o .

e ) € A is not minimal.

1. o(ms) = 0.
Evaluate all sequents except the leaves of the form (¢’, ¥): S(6")¥ for 6 > ¢’

and the corresponding parameter replacement W under . Then replace
(6',W): S(6")¥ by the LKE-proof S(6")Wal.
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4.3. The Resolution Calculus RPLY

2. o(ms) =a>0.
As for p(0,75,0) except for the leaves (d,0): S(d) which are replaced by the
LKE-proofs p(6,7is,ms + 1)o[ms/a — 1].

Pa is defined as p(dg, 75, , Mg, )0l for the <-maximal symbol dy.

Proposition 4.2.1. Let & be a regular proof schema and o be a parameter assignment.
Then Yol is regular, i.e. the proofs p(do,is,,0)ol and p(do,7s,, ms, + 1)ol are regular.

Proof. As 2 is a regular proof schema, the derivations p(do, 7is,,0) and p(do, 75, , Mms, + 1)
are regular. Evaluating them under a parameter assignment o evaluates all sequents
and the occurring formulas under o. As no variables are introduced nor renamed in this
process, it is closed under regularity. Thus, p(dg, 7i5,, 0)ol and p(do, 7is,, ms, + 1)ol are
regular proofs. O

4.3 The Resolution Calculus RPL]

The basis of our calculus for refuting formula schemata is the calculus RPLg for quantifier-
free formulas, introduced in Section 3.2. We extend RPLg by rules handling schematic
formula definitions. Here, we have to consider another aspect as well: in inductive proofs
the use of lemmas is vital, i.e. an ordinary refutational calculus, which has just a weak
capacity of lemma generation, may fail to derive the desired invariant. To this aim we
extend the calculus by adding some tautological sequent schemata. This will enrich RPLyg,
which only decomposes formulas, by the potential to derive more complex formulas. Note
that our aim is to use the calculi in an interactive way and not fully automatic, which
justifies this process of “anti-refinement”.

In extending RPLg to a schematic calculus we have to replace unification by s-unification.
Formally we have to define how s-substitutions are extended to formula schemata and
sequent schemata.

Definition 4.3.1. Let © be an s-substitution. We define F'© for all quantifier-free
F € FS which do not contain formula variables.

o Let P:1* w0€ P and ty,...,to € T". Then P(t1,...,t,)0 = P(t10,...,t,0)

o Let P e 27 for 7: (w® — 1) x ... x (w¥ — 1) x WP =0, X1,..., X, € VE,
t1,...,tg41 € T® then

P(X1,. ., Xayt1, .o yt541)0 = P(X1,..., X0, 110 ... 15110).

o (WF)O = -FO.

95


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

INDUCTIVE STRUCTURES

96

o If ', F5 € FS then

(F1 VAN Fg)@ = O AF0,
(Fl\/Fg)@ Fi0V F»,0.

Let S: Ay,...,Aq F By,..., Bg be a sequent schema. Then
S0 =A,0,...,A,0F B0O,...,B30.
In the resolution rule we have to take care that the sets of variables in {A;,..., Ax} and

{By,...,B;} are pairwise disjoint. We need a corresponding concept of disjointness for
the schematic case.

Definition 4.3.2 (essentially disjoint). Let o7, % be finite set of schematic variables in
T{. o and £ are called essentially disjoint if for all o € . o/ [o] N Blo] = 0.

Definition 4.3.3 (RPLy ). Let ¥ be a schematic formula definition as in Definitions 4.1.22
and 4.1.23 where

P(Y,i1,0) = Fp, P(Y,il,s(m)) = Fs{& < P(Y,ii,m)},
then RPL{ is the extension of RPLg by the rules

T+ A, P(V,7,0) L'+ A, P(Y,ii,s(m))
TFA Fg BPTFI—AFS{§<—13(3777 m)}

P(Y,7,0),TFA P(Y,ii,s(m)), T+ A
Fp,0F A PP pgle — POV, m)} T+ A
for the elimination of defined symbols. For the introduction of defined symbols we invert
the rules above:

SPl

T+ A, Fp - T A, Fs{¢ + (?,ﬁm)}
Tk A, P(Y,7,0) L'+ A, P, i, s(
Fp,THA . Fs{¢« P(Y,A, )},FI—A R
= BPIT P
P(Y,n,0), '+ A P(Y,i,s(m)),I' F
We also adapt the resolution rule to the schematic case:

Let Ty, ({ A1, ..., Aa}), TV ({B1, . . . , Bg}) be essentially disjoint sets of schematic variables
and © be an s-unifier of {A,..., Ay, B1,...,Bg}. Then the resolution rule is defined as

THAAL..., Ay Bi,...,BsTIFA
r'o,116 - AO, AO

res

Moreover we add the following tautological sequent schemata (&1, &2 are formula variables):
§,8 RGN, NE L, NS E R VE, R &V, F &, &, 6,6 . For
comfort we may add arbitrary tautological sequent schemata to increase the flexibility
and the practical use of the calculus.
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4.3. The Resolution Calculus RPLY

It is easy to see that the added tautology schemata together with the cut rule simulate
the logical introduction rules for A, V,—. As res generalizes the cut rule this is possible
also in RPLJ. We could instead have added the introduction rules themselves which is
logically equivalent. But note that adding additional tautology schemata (besides these
defined above) increases the flexibility of rule specification via “macros”.

Note that the refutational completeness of RPL%’ is not an issue as already RPLy is
refutationally complete. RPLBI’ is also sound if the defining equations are considered.

Proposition 4.3.1. Assume that the sequent S is derivable in RPLY. Then D(ﬁw) U
D(#,)UD(Z) = S.

Proof. The introduction and elimination rules for defined predicate symbols are sound

with respect to D(Z?); the resolution rule (involving s-unification ) is sound with respect
to D(Z#,) UD(Z,). O

Definition 4.3.4. An RPLy derivation g is called a cut-derivation if the s-unifiers of all
resolution rules are empty.

Remark. A cut-derivation is an RPL%’ derivation with only propositional rules. Such a
derivation can be obtained by combining all unifiers to a global unifier.

In computing global unifiers we have to apply s-substitutions to proofs. However,
not every s-substitution applied to a RPLE)I’ derivation results in a RPLE)I’ derivation
again. Just assume that an s-unifier in a resolution is of the form (Xi(s), Xa(s)); if
O = {(X1(s),a), (Xa(s"),b)} for different constant symbols a, b then X;(s)© and Xa(s")O
are no longer unifiable and the resolution is blocked.

Definition 4.3.5. Let p be a derivation in RPLy which does not contain the resolution
rule; then for any s-substitution © p© is the derivation in which every sequent occurrence
S is replaced by S©. We say that © is admissible for p. Now let p =

(p1) (p2)
TFAAL...,As Bi,....BsIIF A

e, 110’ - AG’, A0’

res
where ©’ is an s-unifier of {A1,..., An, B1,...,Bg}. Let us assume that © is admissible
for p; and pa. We define that © is admissible for p if the set

U: {A1@, ce ,Aa@,Bl(“), ce ,BB@}
is s-unifiable. If ©* is an s-unifier of U then we can define p© as

(p1©) (p29)
I'e+ A©,4,0,...,A,0 Bl@,...,Bg@,H@l—A@

roe* 1100* -H AOGO*, AOO*

res
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4. INDUCTIVE STRUCTURES
Definition 4.3.6. Let ¢ be a RPL{] derivation and © be an s-substitution which is
admissible for p. © is called a global s-unifier for p if p© is a cut-derivation.
In order to compute global unifiers we need RPLg’ derivations in some kind of “normal
form”. Below we define two necessary restrictions on derivations.
Definition 4.3.7. An RPL derivation g is called normal if all s-unifiers of resolution
rules in p are normal and restricted.
Remark. Note that, in case of s-unifiability, we can always find normal and restricted
s-unifiers; thus the definition above does not really restrict the derivations, it only requires
some renamings.
Definition 4.3.8. An RPLE,I’ derivation g is called reqular if for all subderivations ¢ of
o of the form
(01) (05)
'EAAy,...,Ay By,...,Bg,IIFA
res(0)
re, 116 - A6, AG
we have V(o)) NV (gh) =0
Note that the condition V¥(0}) N V¥ (gh) = 0 in Definition 4.3.8 guarantees that, for all
parameter assignments o, o}[o] and g)[o] are variable-disjoint.
We write ¢ <5 o if there exists an s-substitution © such that ¢/© = o.
Proposition 4.3.2. Let ¢ be a normal RPL{ derivation. Then there exists a RPLg
derivation ¢ such that o' <5 0 and o' is normal and reqular.
Proof. By renaming of variables in subproofs and in s-unifiers. O
Proposition 4.3.3. Let ¢ be a normal and regular RPLg’ derivation. Then there exists
a global s-unifier © for o which is normal and VE(©) C V(o).
Proof. By induction on the number of inferences in p.
Induction base: ¢ is an axiom. () is a global s-unifier which trivially fulfils the properties.
For the induction step we distinguish two cases.
e The last rule in g is unary. Then p is of the form
(@)
'+ A
kA
By induction hypothesis there exists a global substitution © which is a global
unifier for ¢’ such that ©’ is normal and V(@) C V(o). We define © = ©'.
Then, trivially, © is normal and a global unifier of p. Moreover, by definition of
the unary rules in RPLY, we have V(o) = V%(p) and so VE(0) C V().
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e o is of the form
(01) (02)
'EAA,...,Aq Bi,...,Bg,ITFA
re,1lio + Ae,A6

res(©)

As p is a normal RPL(‘)I' derivation the unifier © is normal. By regularity of o we
have V& (01) N V% (02) = 0.

By induction hypothesis there exist global normal unifiers ©1, ©s for p; and o9
such that V¢ (0;) C V% (p1) and VE(03) C VE(02). By VG (01) NV (02) = 0 we
also have V&(01) N V% (03) = 0.

We show now that (©1,0) and (©2,0) are composable. As ©; is normal we have
for all o € .&¥

Vi({ A1, ..., Ad}o]) N dom(©1]0]) = 0.

Similarly we obtain

V'({By, ..., Bs}[o]) N dom(©s]0]) = 0.

As © is normal and restricted we have for all o € .
VY(Olo]) CV*({A1,...,Ax, B1,...,Bg}lo]).

Therefore (©1,0) and (O2,0) are both composable. As ©1, 02, O are normal so
are ©1 x O and Oy xO. As O, 05 are essentially disjoint we can define

@(Q):@l*@UGQ*@.

O(p) is a normal s-substitution and V¢ (0(0)) C V(o).
O(p) is also a global unifier of p. Indeed, 010(p) =

(216(0))
TOF AO, A,0,...,4,0

and 020(¢) =

(020(0))
A10,..., 416,116 + AO

So we obtain the derivation

0109(0) 020(0)
0,16 - AO, A6

cut

which is an instance of p and a cut derivation (note that every instance of a cut
derivation is a cut derivation as well).
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(91) (92)
T'FA II-A
IV II' = A/, N

X

where x is a binary introduction rule.

As p is a normal RPLO\I} derivation all occurring s-unifiers in o1 and g2 are normal.
By regularity of ¢ we have that VE(01) NV (02) = 0.

By induction hypothesis there exist global normal unifiers ©1, s for p; and o9
such that V¢ (0;) C V% (p1) and VE(03) C V& (02). By VG (01) NV (02) = 0 we
also have V& (01)N V% (0,) = (). Moreover, there is no overlap between the domain
variables of the unifiers ©1 and ©2, i.e. dom(01[c])Ndom(Oz(c)) =0 forall o € .7.
Therefore, we can define © = ©; U ©2, which is obviously a global s-unifier of p.
Furthermore, V&(0) = V¢ (0,) UVY(0,), therefore VE(©) C VG (p1) UV (02)
and by definition of binary introduction rules in RPLY, we have V(@) C V(o).

O

4.4 Simple Resolution Schemata

Schematic RPLg’ derivations can be constructed analogously to schematic derivations,
see Definition 4.2.6. However, given that we work with derivations from non-axiomatic
end-sequents, we need some further restrictions on how derivations in a schema may
be connected. The main difference to proof schemata is that we introduce an invariant
symbol P; € P for which it holds that 152-(17,7’5, m) is derivable from E(?,ﬁ,m +1).
Therefore we allow backwards recursion, which is needed in the construction of many
schematic refutations. The rest of the definition of a simple refutation schema is similar
to the definition of a proof schema, except that we allow invariant symbols as initial
sequents (invariant symbols may occur in the set € (J) below).

Definition 4.4.1 (simple resolution schema). Let ¥ be a schematic formula definition
as in Definitions 4.1.22 and 4.1.23 and let P be the set of all defined predicate symbols
in ¥. We have that for all P € P

P(Y,i,0) = Fp, P(Y,i,s(m)) = Fs{¢ < P(Y,ii,m)}.

Let Pl(?, ii,m) € P be the < j-maximal symbol and let A be a finite subset of A* such
that there exists a dg € A with dy > ¢’ for all ¢’ € A such that ¢’ # §p and, for each 4,
let 7is be a (possibly empty) list of global and mgs an active parameter. There exists at
least one symbol P; € P which we call the invariant symbol . A finite set of tuples

D {(57 p(daﬁéao)ap(&ﬁ&mé + 1)) ’ b€ A}

is called a simple resolution schema from + P, (17, 1, m) if the following conditions hold
for every 0 € A:

There exists a (possibly empty) finite set of sequents € () and a sequent S(d) such that
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4.4. Simple Resolution Schemata

—

1. p(0,7i5,0) is a derivation in RPLY of S(6){ms < 0} from P, (Y ,7,0) UZ(4),

—

2. p(8, 75, ms+1) is a derivation in RPLY of §(8) from - Py (Y, 7, m+1) U{(5, ¥): S(§)¥}U

€(6), where (6,V) is a label and ¥ = {mgs < ms + 1},

3. for all S’ € €(5), S" = (§',¥): S(§')¥ where (&', ¥) is a label, &’ € A with § > ¢’
and U is a parameter replacement on 7y w.r.t. 75 such that the conditions (1) and
(2) hold for ¢,

A —

4. P,(Y,7i,m) is derivable in RPL(‘)I’ from 151-(}7,77[, m+ 1),

5.+ By(Y,A#, 0) is derivable from + Pi(Y,7,0) by a RPLY-derivation my and +
Py(Y,it,m + 1) is derivable from + Py(Y, @, m + 1) by a RPLY-derivation m,,
for the < -maximal symbol Py. For all initial sequents occurring in my and 41
different to 151 conditions 4. and 5. hold.

If S(0g) is the empty clause - and p(dy, 7is,, 0) and p(do, 7is,, ms, +1) are RPLy refutations
we call 2 a simple refutation schema of P;.

Remark. Definition 4.4.1 is very similar to the definition of proof schema (Definition
4.2.6). The only difference is that we are working with derivations in RPLg instead of
LKE-derivations. This means, that we allow non-axiomatic initial sequents of the form
+ P,. To handle recursion over such initial sequents, we allow invariants P, as initial
sequents, with the restriction that these invariants are derivable from the main symbol
P Moreover, we allow an up-recursion for invariants, from parameter m + 1 to m. This
is crucial as P;(m) needs to be derivable from the main symbol P(m + 1). We will
illustrate the definition in a simple example below.

Example 4.4.1. We construct a simple refutation schema of ¥:

G(0) = H(0)AP(c) A~P(f(0,¢))
Gn+1) = Hn+1)AP)A=P(f(n+1,¢)
A H(0) = P(f<0 X7(0))) vV ~P(f(0, X7(0)))
Hn+1) = H(n)A(P(X{(n+1))V-P(X](n+1)))

AP(f(n+1, X7 (n+ 1)) v =P(f(n, X{ (n + 1))

We introduce .J, which will be used as an induction invariant (compare to P; in case 4. of
Definition 4.4.1), hence we obtain
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G(0) = J(0)A=P(f(0,c))
Gn+1) = Jn+1)A=P(f(n+1,¢)
J(0) = A() P(c)
Jin+1) = H(n+1)AP(c)
A H(0) = P( (0, X7(0))) v =P(f(0, X§(0)))
H(n+1) A (n) A (P(X{(n+1)) V=P(X{(n +1)))

)
AP(f(n+1,X7(n +1))) V=P (f(n, X} (n +1))))

First, we construct a resolution schema 2;: {(d1, p(d1,0), p(d1,n + 1)} U 5 with end-
sequent schema S(01) = F P(f(n,c)). p(01,0) =

(2, {n < 0}): F J(0)
+ H(0) A P(c)
= P(c)(= P(£(0,0)))

BJr
Ay

and p(d1,n+1) =

(62,{n<—n+1}) H ( 1) N

FAm+1)APE) SIr
F H(n+1) B .
= SHr + Ay, X 2
(f(n+1, X} (n+1))) vV =P(f(n, X (n + 1)) y

P(f(n+1,X{(n+ 1)), =P(f(n, X (n + 1)))) -

G A nh): b PG,) PG ) PG LX) S
FP(f(n+1,¢))

for 61 > 09.
(82,{n < 0}): F J(0) and (6, {n < n+1}): + J(n + 1) above are the invariants

and correspond to the sequents S’ € €(01) in case 3. of Definition 4.4.1. For J; we
have to show that conditions 1. and 2. of Definition 4.4.1 hold: we construct %, =

{<527p(5270)7p(527n + 1)}7 where p(5270) =

~60) BG
=) AP0,
- J(0) '
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and p(d2,n+1) =

FG(n+1) )
= = BGr
FJn+1)A=P(f(n+1,c¢)) A
FJ(n+1) '

Now we are ready to define Z: {(do, p(do,0), p(do, n+1) }UZ, where S(dg) = F: p(dp,0) =

- G(0) .
- B (0) A P(c) A~P(}(0.)) ff’"
- PO AP0.0)
- -P(f0,0) _
(31, {n - 0D): F P((0,0)) PHO.)F |
:
p(dp,n+1) =
FG(n+1) R
- J(n+1)A=P(f(n+1,¢)) iGr
F-P(f(nt 1)
(61, {n e n+1)): FP(f(n+1,0) P(f(n+1,0)+ Te;
=

Indeed, Z is a refutation schema: the invariant .J is derivable from G (as shown in %)
and J(n) is derivable from J(n + 1):

FJ(n+1) .
B SJr R
FH(mA+1)AP(e) FJ(n+1) A
- 1
FH(n+1 . 7 SJr
(A i i, P HBH) AP A
FH(n F P(c) A
- H(n) A P(c . '
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In the example above, Z defines a simple unification schema. It is possible to extract
the occurring substitutions and combine them to a unification schema. From p(dp,0) we
obtain the substitution schema ©(0) = {} and from p(dy, n+ 1) we obtain the substitution
schema O(n+1) = {X{(n+1) < c}UBO(n). The formal definition of a simple unification
schema is given below.

Definition 4.4.2 (simple unification schema). Let & be a simple resolution schema. We
define sets of substitutions (unification schemata) ©(4,7is,0) and ©(4,7i5, ms + 1) for all
0 € 2. We define the sets inductively beginning with the minimal §.

e Let 0 be a minimal element. Then % (§) = ). In this case p(d,7is,0) is a derivation
in RPLy of S(6){ms « 0}.

Let 7(0,75,0) be a substitution that substitutes for all variables occurring in
p(d,7s,0) new fresh global variables X?(0). Let 6(J,7s,0) be a global s-unifier of
p(0,75,0)n(0,75,0). Then we define

©(6,75,0) = {6(0,75,0)}.

Now let 1(d,n, m + 1) be a substitution that substitutes for all variables occurring
in p(0,7s, ms + 1) new fresh global variables X?(mgs + 1).

Let 6(d, 75, ms + 1) be a global s-unifier of p(d, 7is, ms + 1)n(d, 7is,ms + 1). Then

@(67 ﬁ(Sam(s + 1) = {0(67 g, ms + 1)} U
@(57 ﬁ57m5)n(57 ﬁévmé + 1)9(5) ﬁéamﬁ + 1)

e Let § be a non-minimal element. Let
G (0) = {(01,¥1): S(61)W1,..., (0, ¥y): S(0) ¥y}

where 6 > ¢;. Let 1n(d,75,0) as above and 6(4,7i5,0) be a global s-unifier of
p(67 ﬁéao)n(& ﬁ570)‘ Then

@(5, ’r_i(s,()) = {9(5, s, 0)} U @((51, ﬁgl,O)\Illn((s, s, 0)9(5, ﬁg,()) U...
... U0, 1s,,0)Wm(d, s, 0)0(, s, 0).

Similarly we obtain

O, 1s,ms+1) = {6(5,1s,ms+ 1)} U
©(61,Ms,, ms, + 1)Win(, s, ms + 1)0(5, 75, ms + 1) U. ..
... U068, 15, ms, + 1) n (0, 15, ms + 1)0(6, iis, ms + 1)
U ©(4, iis, ms)n(9, iis, ms + 1)0(0, fis,ms + 1)
U ©(0;, is,, ms, ) Vin (0, fis, ms + 1)0(0, fi5, ms + 1),
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4.4. Simple Resolution Schemata

where 0(6,7is,ms + 1) is a global s-unifier of p(d, 75, ms + 1)n(d, M5, ms + 1) and
in case we have an occurrence of (0;, V): S(0;) € €(0) (reference to the invariant
Py(Y,m,n)) where W is different to {n < n+1} let ©(0;,7s,,ms,) be defined as the
unification schema obtained from the derivation of B;(Y, m, n) from Py(Y i, n+1)
and otherwise let it be the empty set.

Let dg be the maximal proof symbol in 2. Then the tuple (0(do, 7is,,0), ©(do, 7is,, Mms, +1))
is the unification schema of 2.

Example 4.4.2. Consider the simple refutation schema % from Example 4.4.1. The
unification schema of Z is given by the tuple (©(dg,0), O(dp,n + 1)), where

@(50,0) = {}U@(51,0)
OUon+1) = {}UBEGL,n+1),

where (©(d1,0),0(01,n+ 1)) is given by

©(61,0) = {}
O, n+1) = {XJ(n+1)+ ctuO(s,n).

Simple resolution schemata can be evaluated under parameter assignments in analogy
to the evaluation of proof schemata. If & is a resolution schema and o a parameter
assignment we will define Yo as the pair (p(do, 7, 0)ol, p(do, 7, m + 1)ol).

Definition 4.4.3 (evaluation of simple resolution schema). Let & be a simple resolution
schema and o a parameter assignment. In defining Yo we proceed by double induction
on the ordering of proof symbols and the assignments o(m).

e Let 6 be a minimal element in A.

1. o(ms) = 0.
For p(0,7is,0) we evaluate all sequents in p(d,7s,0) under o. The result is a
derivation RPL{.

2. o(mg) = a > 0. We are now defining p(d, 7i5, ms + 1)o’| where o/(p) = o(p)
for all p # mg and o’'(mg) = a — 1.
Evaluate all sequents in p(d, 715, mg) under o’ except the leaves (§, ¥): S(0)
where W is the corresponding parameter replacement. Then replace (6, ¥): S(
by p(8, 75, ms)Vo'[ms/all where o'[mgs/a] is defined as o'[mgs/a](p) = (p)
for all p # ms and o'[ms/a](ms) = a — 1. The result is a derivation in RPL{

7
)

e § € A is not minimal.

0¥
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1. o(ms) =0.

For p(0,7s,0) we evaluate all sequents in p(d, 7is, 0) under o except the leaves
(&', 0"): S(8")P’ for § > ¢" and the corresponding parameter replacement W’
Then replace (&', 9'): S(6")V’ by p(¢', figr, ms )¥'c]. The result is a derivation
RPLy .

o(mg) = a > 0. We are now defining p(d, 7is, ms + 1)o’| where o’(p) = o(p)
for all p # mg and o’ (mg) = a — 1.
Evaluate all sequents in p(0,7is,ms) under o except the leaves (0;,¥;): F
P, (Y i, m), where P, is the invariant symbol and ¥; is a parameter replacement
different to {n «+ n+1}, (6, ¥): S(6)¥ and (&', V’): S(6")¥’ for § > ¢’ and the
corresponding parameter replacements W and ¥’. Then replace (§, ¥): S(0)¥
by p(,7is, ms)Wo'[ms/a)l where o'[m/a] is defined as o'[ms/a](p) = o' (p)
for all p # ms and o'[ms/al(ms) = a — 1. Replace (¢',0"): S(0")¥" by
p(&', iy, my)¥'o’|. Finally, replace (0;, ¥;): P;(Y, 7, m) by the derivation
o’ |, where 7 is the derivation of - B (Y 1, m)¥ from the maximal symbol
Py(Y,it,m + 1) (note that - Py(Y,i,m) is derivable from - B(Y, 7, m + 1)
and b+ Py(Y | it,m + 1) is derivable from the maximal symbol Pp). The result
is a derivation in RPLy.

Example 4.4.3. Consider the simple refutation schema & from example 4.4.1 with
proof symbols 6y > §; > d2. Let o(n) = 0. Then we construct Zo| by starting with the
minimal proof symbol d2: as o(n) = 0 we construct p(dz2,0)o:

- G(0)
= J(0) A=P(f(0,
- J(0)

BGr
)

We proceed with the proof symbol é1. p(d1,0)0l=

Note that in constructing p(d1,0)o we replaced the initial sequent (do,0): + .J(0) with
the derivation p(d2,0)c].

Finally, we construct Yo which is p(dg,0)ol=
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- G(0) 6 - G(0) BE
=IO A=PU0.0) "R H©O)AP(e) A ~P0.0) '
i =P APU0.0)

- H(0) A P(c) A F2P(f(0.0)
- P(e)(= P(f(0.¢))) P(fo.0)F
I_

Here again the axiom (61, {n < 0}): F P(f(0,¢)) was replaced by the derivation
p(61,0)0l.

Now consider o’(n) = s(s(0)). We construct Zo’| by first constructing p(d2,n + 1)o” ],
where ¢’ is defined as o (p) = o’(p) for all p # n and o”(n) = s(0):

- G(s(s(0))) R
IGO0 A ~PUGE0))
- j(s 5(0)))

Using p(d2,n + 1)0”| as replacement for the initial sequent (J2,n < n+1): F J(n+1)
we construct p(d1,n+ 1)o”|=

(
= P(f(s(5(0)), X9 (s(5(0))))) V ~P(f(5(0), XJ(s(s(0 v,
(p(61,n)0"]) = P(f(s(5(0)), X9 (s(5(0))))), ~P(f(5(0), X7 (s(5(0))) .
- P(f(s(0). ) P(f(s(0), X} ) F P(f(s(s(0)), X{ (5(5(0)))

Note that the initial sequent (01, {n < n}): F P(f(n,c)) was replaced by the derivation
p(517 TL)O'//\L:
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- G(s(0)) R
= - BGr
- I60) A PF60)0)
- J(s(0)) .
. = SJr
+G(0) e EH(s(0) A P()
HO0) A P(F r - A (s(0 " )
= J(0) A AP( (0,¢)) - _ - (s(0) — SHr 4 Ay, x 2
- J(0) Bj F P(f(5(0), X7(s(0)))) V ~P(£(0, Xi(s(0))) |,
A T A ~ T
FHQO)AP() E P(f(s(0), X7 (s(0)))), =P (f(0, X7 (s(0))))) _
- P(f(0 - P(f(0, X3(s(0)))) F P(f(s(0), X3 (s(0 '
(F(0.) FOXE ) - PEGOX6O)) | oo
= P(f(s(0),¢))
Finally, we construct p(dp,n + 1)o”|=
- G(s(5(0))) R
= = SGr
EJ(s(s(O)) A =P(f(s(5(0)): )
— T2
(p(01,m +1)0"]) F-P(f(s(s(0)),c)) _
- P(f(5(5(0)). ) PFs(s(0). ) -
l_
Note that the initial sequent (61,{n + n+1}): F P(f(n + 1,¢)) was replaced with
p(61,n+1)c"].
Simple unification schemata ©(do, 7is,, ms,) for some simple refutation schema & can be
also evaluated in the obvious way and we denote the evaluation under o as ©(dy, iis,, ms, )0
When evaluating the unification schema from Example 4.4.2 for some numeral a we
obtain the sequence
(X)) — e, X0 (a—1) ¢, ..., X (1) « ¢}
Note that ©(dy,7is,, ms,)o | corresponds to the set of unifiers obtainable from the
refutation Yo|.
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CHAPTER

Herbrand’s Theorem in Inductive
Structures

In this chapter we will extend the CERES method defined in Section 3.1 to the schematic
case. Like the method for first-order logic, schematic CERES is based on the extraction of
a schematic characteristic formula and a schematic refutation thereof. The first approach
to a schematic CERES method can be found in [DLRW13], where also the concept of proof
schema was developed. The schematic CERES method was based on the extraction of a
schematic clause set and culminated in a complicated formalism and method, which does
not guarantee a fully automated transformation and analysis of a given proof. In [LPW17]
the investigation on proof schemata from [DLRW13] is continued and the CERES method
for proof schemata is simplified. It is shown that proof schemata can be used to extract
a generalization of mid-sequents, a so-called Herbrand system. Indeed, from a resolution
proof schema and a substitution schema (both defined in [DLRW13,LPW17]) such a
Herbrand system can be extracted. In contrast to the method in [DLRW13] the one
in [LPW17], based on negation normal forms and a complicated translation to the n-clause
calculus, can be fully automated, however at the cost of expressivity. The most important
difference of the methods lies in the specification of refutation schemata. In fact, the
development of a schematic resolution calculus has always been one of the stumbling
blocks of the schematic CERES method. Using the novel calculus RPL(\)I’ we managed
to resolve the problems and constraints of the existing methods. The novel resolution
calculus allows us to define a simplified schematic CERES method, which extends the
existing methods by allowing several parameters and can be used for (semi-) automated
proof analysis. In this chapter we will lift the proof analysis method based on CERES for
first-order logic introduced in Chapter 3 to the schematic case.
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5.1 The Schematic CERES Method

In principle, the schematic CERES method for proof analysis works exactly the same as
the one for first-order logic, except that we work in a schematic setting. This means,
that in a first step we have to extract a schematic characteristic formula. The usual
first-order definition of the characteristic formula is based on the cut-status of the formula
occurrences in a proof, i.e. whether a given formula occurrence is a cut-ancestor or
not. However, a formula occurrence in a proof schema corresponds to many formula
occurrences in its evaluation, some of which will be cut-ancestors and some will be not.
Hence, we need some machinery to track the cut-status of formula occurrences in proof
schemata, which leads to a first difference between the first-order and the schematic
CERES method: we add a new parameter to the characteristic formula of a proof symbol
which will denote the set of formula occurrences in the end-sequent of that proof symbol
that are cut-ancestors.

Definition 5.1.1 (configuration, [LPW17]). A set Q of formula occurrences in the end-
sequent of a proof 7 is called a configuration for m. If v is a node in w we define by
S(v, Q) the subsequent of S(v) consisting of all formulas which are ancestors of € .

Now we can give the full definition of the schematic characteristic formula and the
schematic projection.

Definition 5.1.2 (schematic characteristic formula and schematic projection, [LPW17]).
Let 2: {(4, p(d,15,0), p(0,7is,ms + 1)) | 6 € A} be a regular proof schema. We proceed
by induction on the ordering of proof symbols.

(A) Let 0 be a minimal element in A, so p(6,7s5,0) is an ordinary LKE-proof and
p(0, 75, ms + 1) calls only itself.

Let m = p(d,75,0) and Q be a set of configurations for m and Q' be the set of oc-
currences of cut formulas in 7. For all nodes v in m we introduce defined atoms
P[é, v, Q)(X, 5, ms) and proof terms Proj(m, v, Q); for the root node vy of 7 we have
C(m,Q) = P[6, v, (X, s, ms), where X are the global variables occurring in = and
P(m,Q) = p(dp,75,, ms,) = Proj(m, vo,2), where §, is the proof symbol in the projection
schema {(dp, p(dp, 7is,,0), p(0p, 7is,, ms, + 1))} that corresponds to the proof symbol § in
the proof schema. Note that the ordering on proof symbols in the projection schema
by construction follows the ordering of proof symbols in the proof schema 2. The
ordering on defined symbols ]3[5, v, Q)(X, 75, ms) is given by ]3[5’, v, Q)(X, 75, ms) <4
P[6,v,9Q](X, 5, ms), where &' < § and in case § = &' the node ¢/ is the premise of v.

o Let v be a leaf node in m. Then S(v) = A+ A for some schematic atom A. We
distinguish the cases:

L S, QU =F.
Then P[0, v, Q](X,7is,0) = L and Proj(m,v,Q) =v: A+ A.
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5.1. The Schematic CERES Method

2. S(r,QUQ) =F A

Then P[0, v, Q](X,7is,0) = A and Proj(m,v,Q) =v: A+ A.
3. S(r,QuUQ) =AF.

Then P[0, v, Q](X,7is,0) = =A and Proj(m,v, Q) =.

ArA
FA-A

4. S(r,QUQ ) =AF A
Then P[0, v, Q](X,7is,0) = AV —A and Proj(m,v, Q) =.

AFA .
FA-A
FAv-A "

e Now let us assume that £ is a unary inference in 7 with premise v/ and conclusion
v in 7. Inductively we assume that p[é, v, Q)(X,s,0) and Proj(m,v/,Q) have
been defined and Proj(m,v/,Q) is a proof of T' = A, P[5,1/,Q)(X,7s,0), where
I'FA=S5(/,Q)and Q are the formula occurrences in the end-sequent of 7 which
are not in €.

We define B B
P[(S? v, Q](X7ﬁ570) = P[5’ I/,,Q](X,ﬁ5,0).
For defining Proj(r, v,2) we distinguish two cases:
1. the principal formula of £ is an ancestor of Q U Q' then Proj(m, v, Q) =
Proj(m, v, Q).
2. The principal formula of £ is an ancestor of the complement of U ', denoted
by Q. Then Proj(m,v,Q) =
(Proj(m, v/, Q)
I'FA, PV, Q)(X,is,0)
I'+ A, PS5,V Q(X,is,0)

As P[6,v,Q](X,1i5,0) = P[5,V Q](X,7i5,0) and IV - A’ = S(1,Q) the proof
Proj(m, v, Q) is of the required form.

e Assume that ¢ is a binary inference with premises 11,2 and conclusion v. Assume
further that P[0, 11, Q(X, s, 0), P[6,v2, (X, 7is,0) are defined and Proj(r, v, 2)
are derivations of I'; = A;, P[4, v, Q](X,7s,0) (for i = 1,2) such that I'; F A; =

S(vi, Q). We distinguish two cases:

1. the auxiliary formulas in £ are ancestors of QUSY'. Then we define Proj(m, v, Q) =
(Proj(m, v1,)) (Proj(m, v2,))
N Ala p[(sa Vi, Q](Xvﬁ(S’O) 1P A AQ, p[(sa V2, Q](X’ ﬁ5)0)
[1,0o F Ay, Ay, P, 1, Q)(X, 7is,0) A P[6, 1, Q] (X, 7is, 0)
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and
P[5, v, Q)(X,ii5,0) = P[8, 11, (X, 7is,0) A P[5, va, Q(X, 7i5,0),
where P[4, v;, Q)(X,7is,0) <4 P[6,v,9Q)(X,1;,0) for i € {1,2}. Note that
S(V? Q) = F17F2 F Ala AQ-
2. the auxiliary formulas in & are ancestors of the complement of QU €', denoted
by Q. Then we define Proj(m,v, Q) =
(Proj(m, v1,)) (Proj(m, v2,))
Ty - Ay, Plo,vy, Q(X,7s5,0) Dok Ao, P, 12, Q) (X, 5,0)
1, T = AL AL, P8, v, Q(X, iis, 0), P[6, 12, Q) (X, 75, 0)
I, T = AL Ay, P, v, Q(X, /s, 0) V P[6, 12, Q) (X, 75, 0)

and
P[5, v, Q)(X,75,0) = P[5, v1,Q)(X, 7is,0) V P[d, v, Q] (X, s, 0),

where P[5, v, Q(X,7i5,0) < P[6,v,Q)(X,75,0) for i € {1,2}. Note that,
here, S(v,Q) =T, T% = A}, Ab.

e If 1 is the root node of m we have C(m, ) = 15[5, vo, Q)(X,7s,0), where X are

the global variables occurring in m and P(m,$2) = p(p, 7is,,0) = Proj(m, v, (2) is a
cut-free proof of I' H A, ]5[5, vo, (X, 7s5,0) where T F A = S(v, Q).

When we consider the proof m = p(d, s, ms + 1) all definitions are the same as for
the derivation p(d,75,0) except for initial sequents of the form (4,0): S(d). Let

v be the occurrence of such an initial sequent and Q* be the occurrences in S(0)
which are ancestors of QU ' in m. Then we define

Proj(m, v, Q) = (6p,0): S(dp),
P, v, (X, 7is,ms +1) = P[5, v, (X, 75, ms) = C(p(6,7i5, ms), ),

where the label (d,,0) when evaluated links to the derivation p(0,,i5,, ms,) =
P(p(0,7i5,ms), ).

Here again, if 14 is the root node of m we have C(,(2) = ]5[(5, vo, Q)(X, ii5, ms + 1),
where X are the global variables occurring in 7 and P(m,$2) = p(p,7s,, ms, +
1) = Proj(m, v, ) is a cut-free proof of I' I- A,P[é, vo, Q)(X, 75, ms + 1), where

I'= A = S(1p,9). The projection schema is defined as {(d,, p(dp,7s,,0), p(dp, 7s,,
ms, + 1)}

(B) ¢ is not a minimal element in A.
Let m = p(0,7is,0). The definition of Proj(m,v, QU Q') is the same as for minimal ¢ with
the exception of leaves 6': S(0")¥ for a parameter replacement W of 75, mg with respect
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to 7is and 0’ < J. Let v be such a leaf and let Q* be all occurrences in S(d’) which are
ancestors of QU Q) in w. Then we define

Proj(m,v, ") = (4,,%): S(4,)9,
P[o,v,Q%(X,75,0) = P[0, v, Q(X, 75, ms)® = C(p(d, fig, mgr), X)W

such that the label (d,, ¥) when evaluated links to the derivation p((%,ﬁgé, mg, ) ¥

P(p(&', iy, my), X)W, &, < 5, and, as &' < &, P&, v, (X, s, my) < P8, v, Q*](X, 7i5,0).

Note that the projection schema is defined as {(d,,, p(d,,, fi(g;, 0), p(dp, ﬁg}r), my;, + 1))}

For m = p(d,75,ms + 1) and v a node in 7 the definitions of Proj(m,v,Q U Q') and of
]5[5, v, 0*](X, s, ms + 1) are covered by the cases of p(&, fig, mg) for minimal ¢’ and by
the case p(d,7is5,0) above. Indeed, the leaves which are not axioms are either of the form
§: S() or &': S(&')¥ for a 6 > ¢ and a parameter replacement W.

Let 6y be the maximal element in A. Then the term
C*(80) = C(p(S0, 5y, sy ), B) = P80, v, ) (X, fis,, may),

where 1y is the root node of p(d, 7is,, ms, ), is called the schematic characteristic term of
2. The term
P*(d0) = P(p(d0, Tisys ms, ), 0)

is called the schematic projection of 2. The end-sequent of P*(dg) is defined as the
end-sequent of P(p(do, 7is,, ms, ), D).

Note that in the construction of the schematic characteristic formula we introduce new
defined symbols with a corresponding ordering. The same holds for the construction of a
projection schema, where the ordering of the proof symbols follows directly the ordering
of the proof symbols in the original proof schema.

Proposition 5.1.1. C*(&y) and P*(0y) are well-defined, i.e. P[d,10,9Q] | o and
P(p(d0, 5., ms,)) 0 are defined.

Proof. The constructed formula schemata are of the same structure as in Definition 4.1.22,
as we build formulas only using —, A and V. Moreover, the recursions for the defined
predicate symbols are of the same type as in Definition 4.1.23. Indeed, whenever we have
a P which is not < p-minimal and defined over some formula schema Fz, Fg, we have
that for every Q occurring in Fg, Fi it holds that Q <5 P. In particular by ordering
the new defined predicate symbols P [0, v, Q] first by the ordering < on proof symbols §
and then by the nodes v ensures to obtain an order < that satisfies the conditions of
Definition 4.1.23. By Proposition 4.1.10 the occurring formulas are defined. O

The construction of schematic characteristic formula and proof projection will be illus-
trated in the following examples. The first example is the same as in [LPW17], except
that we have adapted it to our new formalism. The second example is based on two
parameters n and m.
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Example 5.1.1. Let 2 = {(¢', p(¢’,0), p(¢',n+ 1))} U 2, where
S(&): Va(P(z) = P(f(x)) F (P(f(n,¢) = P(g(n,c))) = (P(c) = P(g(n,c)))
be the regular proof schema defined in Example 4.2.3, where 21 = {(6, p(5,0), p(5, n+1))},
S(6): Va(P(x) = P(f(x))) F Va(P(z) = P(f(n,2)))

for 6 < ¢’ and f(O,:U) =z, f(s(n),a:) = f(f(n,:c)) Let &, the set of all defining equations,

contain

G(0) = H(0) A P(c) A=P(£(0,¢))
Gn+1) = Hn+1)AP)A-P(f(n+1,c)
) H(0) = P(f‘(O X2(0))) v =P(£(0, X7(0)))
H(n+1) = H(n)A(P(X)(n+1))V-P(X](n+1)))

)
AP(f(n+1,X7 (n+ 1)) V=P(f(n, X] (n +1))))

(this schematic NNF defines in fact the schematic characteristic formula). Note that G
has a uniform definition and hence

(0) A P(e) A=P(f(0,0))

(n+1) A P(c) A =P(f(n +1,0))

G(O) = H
Gin+1) = H

may be rewritten as
G(n) = H(n)AP(c) A=P(f(n,c))

We construct the projection of & by constructing Z,: {(d,, p(5,,0), p(d,,n + 1))} U D,
where p(d),n) =

(Ops (Z)) S<6p) (2)

= = Ar+ &
v Ve(P(x) = P(f(2))) F (P(f(n,¢)) = P(g(n,c))) = (P(c) = P(g(n, c))), G(n) ’

S(6,) is the end-sequent of Z, (see below), P[¢', 1/, 0](X,n) = G(n), where X is a list of
all occurring global variables and (2) is

- P((n,0),~PFme) " Plolno) F Plone)
9(n1.0). ~P(f(n.c) ,
) A-PFe)
)A-PUme)
Plg(n,))) = (P(e) = P(g(n,))), Ple) A =P(f(n,c)
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Now we construct Zp,: {(dp, p(dp, 0), p(0p,n + 1)}. p(6p,0) =

P(f(0,X7(0)) - P(f(0,X7(0))) _
- P(F0.X7(0).=PFO.X0)
- PUO.X30) v -PO.X{O)
vo: Ve (P(x) — P(f(@))) - H(0)

and P[6, v, Q)(X,0) = H(0), where X are all the occurring global variables.
p(5p7 n+ 1) =

- N+ &
Unt1: Va(P(x) = P(f(z)))F H(n+1)

where S(6,) is the end-sequent of p(d,, m) and (1) is

Uns: P(XP(n+1)) F P(X{(n+1))
Upyo F P(X{(n+1)),-P(X{(n+1))
D FP(XJ(n+ 1)) V-P(XP(n+1) | v (2)
Uny: Ya(P(z) — P(f(z))) F Fy

Vpg

Ar

Wh((ier&});’l. = (P(X{(n+1))V=P(X (n+1))A(P(f(n+1, X{ (n+1)))V=P(f(n, X (n+1))))

Vot P(F(n, XD (4 D) F P, X (04 1))) Vot PG4+ 1, X (n+ 1)) - P(f(n+1, X0 (n + 1))

-

Vags B P X0+ 1) ~PE XI+ 1) vy PG X+ D) F P(Fn+ 1, X (n + 1))
-

Vs P, XE(n+ 1)) = PU(F (X (4 1)) F P+ 1, X2 (n + 1)), ~P(f(n, X (0 + 1))
Vo

Vil P(f(n, X{(n+ 1)) = P(f(f(n, X{ (n + 1)) = P(f(n+ 1, X{ (n + 1)) V ~P(f(n, X{ (n + 1))
vi

v,y Va(P(2) & P(f(@) F P(F(n+1,X](n+ 1)) V =P(f(n, X} (n +1)))

To construct P[d, vy 1, Q(X,n + 1), which is H(n + 1), we have to consider the binary
inference above v. AAS Ar operates on ancestors of 2, we define P [0, Vnt1, Q(X,n+ 1) as
the conjunction of P[d, vy, Q(X,n + 1) and P[0, vp,, Q(X,n + 1).

P[6, vy, Q(X,n +1) = P[5, vy, Q)(X,n) = H(n) and

8, Vng, (X, n 4+ 1) = Fy: indeed, considering the sub-derivations (1) and (2) we have
S,v, (X, n+1) = P(X{(n+1)) V-P(X{(n+1) for i € {ns,n4,n3} and

8, e, (X, n+ 1) = P[5, 1, (X, n + 1) = =P(f(n, X{(n + 1)),

Pl
Pl
Pl
P[5, v, (X, n+ 1) = P[5, 1, (X, n + 1) = P(f(n+ 1, X{(n + 1)),
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P[6,vj, QX+ 1) = P[5, , A(X,n+ 1)V P[5, v, (X, + 1) = =P (f (n, X9 (n +
1))V P(f(n+1,X0(n+1))) for j € {n/y,ns,nb} and hence,

P8, vy, QX 1+ 1) = P[6, vy, (X, 4 1) A PIS, vy, QX0+ 1) = (P(XP(n+1)) V
~P(XP(n + 1)) A (RP(f(n, XD (n + 1)) V P(f(n + 1, X{ (n +1)))).

Therefore P[0, v, 11, Q(X,n+ 1) = H(n) A Fy.

C*(8"): P[6',1/,0)(X,n) is the schematic characteristic term and P*(¢"): P(p(d,n),0) is
the schematic projection of 2.

Example 5.1.2. We construct a proof schema % : {01, p(61,0), p(d1,7 + 1)} with end-

A

sequent S(01) = R(n) F Va3yP(x,y), where

R(0) = VazP(z, f(a,0))
Rin+1) = VaP(z, f(a,n+1))V R(n)

and

A A

f@0)=z,  fz,m+1)=g(f(z,m)).
p(61,0) =
P(z, f(a,0)) F P(Z,f(fho)) :
V&P (z, f(a,0)) - P(z, f(a,0)) .
Va:P(a:,f(a,O)) F3yP(z,y)
VaP(x, f(a, 0)) F Va3yP(z,y)

and p(d1,n+1) =

A A

P(z, f(a,n+1)) F P(z, f(a,n+ 1))
VaP(x, f(a,n+1)) F P(z, f(a,n+1))
Yo P(z, f(a,n + 1)) F JyP(z,y)
VaP(z, f(a,n + 1)) F VayP(z,y) (51,0): 5(1) |,
VaP(x, f(a,n+ 1))V R(n) F VaIyP(x,y), VaIyP(x,y) .

VeP(z, f(a,n+ 1))V R(n) F Va3yP(x,y)

Now we construct the main proof schema %y: {do, p(do,n,0), p(do,n, m + 1)} U %1, where

A

dp > 61 and with end-sequent S(dg) = R(n) F Jz3dyP(x,y) via

p(do,n,m) =
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Pt P o
P(f(b,m),y1) - JzIyP(x,y)
JyP(f(b,m),y) F 3Ty P(z,y)
(61,0): S(61) VzdyP(x,y) b JxIyP(z,y) cutl

R(n) F 3z3yP(z,y)

After regularization we obtain for %;: {01, p(d1,0), p(01,n + 1)} (note that we have to
introduce only one global variable X% and for simplicity we will name it X without
superscript 01):

,0(51, 0) =

PX(0). f(a,0))  PX(0). f(@.0)

VP (x, f(a,0)) F P(X(0). /(a,0)
©
(@

A

vaP(z, f(a,0)) F PX(0),y)
VzP(z, f(a,0)) F VaIyP(z,y)

T

and p(d1,n+1) =

P(X(n+1), f(a,n+1)) F P(X(n+1), f(a,n+1))
VaP(z, f(a,jm +1) F P(X(n+1), fa,n+1)) .
VaP(z, f(a,:n +1))F IyP(X(n+1),y) v,
Vo P(z, f(a,n+1)) - VoIyP(z,y) (01,0): S(01)
VaP(z, f(a,n+ 1)) V R(n) b VzIyP(z,y), VaIyP(z,y) .
VaP(z, fla,n+ 1)) V R(n) b VzIyP(z, y)

Vi

T

and for Zq: {60, p(do,n,0), p(do, n, m+1)} U Z; (again, instead of the global variable Y%
we will use Y):

p((s(]:nvm) =

P(f(b,m),Y (m)) = P(f(b,m),Y (m)) 5
P(f(b,;m),Y (m)) - 323y P(z,y) 5
JyP(f(b,m),y) - 33y P(x,y)
(61,0): S(61) ] VoIyP(x,y) F JodyP(z,y) cutl
R(n) F 3z3yP(z,y)
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5. HERBRAND’S THEOREM IN INDUCTIVE STRUCTURES

We construct the schematic projection P*(dg) of the regularized proof schema %, by
constructing {(do,, p(do,,n,0), p(do,,n,m + 1))} U Z1,, where p(éo,,n, m) =

A

P(f(b,m),Y (m)) = P(f(b,m),Y (m))

P(f(b,()),Y(m)),—'P( 3 %2
(61, 0): 5@1,) - 3aTyPla,y),~P(f,m), Y (m)
vo: R(n) b 323y P(x,y), ~P(f(b,m),Y (m)) A P(X,n)

where Q is the set of cut-ancestors, S(d1,) is the end-sequent of %, (see below),
P60, 10, 0](X,n,m) = =P(f(b,m),Y(m)) A P(X,n) (X always denotes all occurring
global variables) and P(X,n):

P(X,
P(X,n+

0) = P(X(0),f(a,0))
1) = P(X(n+1),f(a,n+1)) Vv P(X,n)
comes from the derivation p(d1,,n), which will be defined below.

Now we construct Z1,: {(d1,,(01,,0), p(d1,,n + 1))}, where p(d1,,0) =

P<X<0> f(a,0)) - P(X(0), f(a,0))
o: VaP(z, f(a,0)) F P(X(0), f(a,0))

where P[81, 1, Q)(X,0) = P(X(0), f(a,0)) and p(d1,,n+1) =

P(X(n+ 12,f(a,n+ 1))+ P(X(n+ 12,f(a,n+ 1)) l
Vo P(z, f(a,n+1)) - P(X(n+1), f(a,n+ 1)) (1,,0): S(01,) y
VaP(x, f(a,n + 1)) V R(n) - P(X(n+ 1), f(a,n + 1)), P(X(n), f(a,n))
Vo VaP(x, f(a,n+ 1))V R(n) - P(X(n + 1), f(a,n+ 1)) vV P(X,n)

Vs

where P01, 1, Q/(X,n+1) = P(X,n+1).

Therefore, the schematic characteristic formula is given by

Q(X,Y,n,0) = —P(f(b,0),Y(0) AP(X,n),
Q(X, Yinm+1) = —P(f(b,m +1),Y(m +1)) A P(X,n),
P(X,0) = P(X(0), A(a,(}))
P(X,n+1) = P(X(n+1),f(a,n+1))VP(X,n)

The following theorem shows the soundness of characteristic formula schemata and
schematic proof projections.
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Theorem 5.1.2. Let o be a parameter assignment and 2 be a regular schematic proof
with maximal element dg. Then

1. the characteristic formula of p(do, s, , msy)od is C*(d9)od,

2. the projection of p(do, s, Ms,)od is P*(d0)od.
Proof.

1. We prove that for all proof symbols ¢ in & and all configurations €2 for § we have
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that C(p(do, Tis,, ms, )04, Q) is C(p(do, s, M5, ), 2)ol. The proof is by induction
on the number of proof symbols starting with the maximal symbol §y and for every
proof symbol we proceed by induction on o.

Let us consider the proof symbol dp and the associated derivations p(do, 7is,,0) and
p(d0, 75y, ms, + 1). Assume that o(ms,) > 0.

Therefore, C(p(do, Ts5,,ms, ), Qo L= C(p(do, Tis,, ms, + 1),Q)0’ |, where o'(a) =
o(a) if o # ms, and o'(ms,) = o(ms, — 1). By a straightforward induction
on formulas, one can prove that C(p(do, 7is,, ms, + 1),2)0’ | is obtained from
C(p(do, sy, ms, +1)0’}, Q) by replacing each formula CF(p(do, 7is,, ms,+1)o’ |, v, )
by C(p(d',7igr,ms ), 2*)Wo’ |, where v is a leaf in the derivation of the form
8’ S(&")W for a parameter replacement W of 7ig, mgs with respect to 7is,, d > ¢’ and

* are all occurrences in S(d’) which are ancestors of QU in p(do, 75, , ms, +1)0" .

By the induction hypothesis we have C(p(d’, figr, mg:), Q)Wo' = C(p(¢', g, mg o' |
, )W, Therefore, C(p(do, sy, ms, + 1), Q)o’ = C(p(do, 75y, ms, + 1)’ ], Q) and
C(p(00, fisy, ms, ), Q) L= C(p(do, iisy, ms, + 1)’ |, Q) = C(p(do, 7isy, ms,)o|. The
proof is similar if o(ms,) = 0.

. We prove that for all proof symbols § in Z and all configurations €2 for § we have

that P(p(do, Ts,, ms, )04, ) is P(p(do, sy, ms,), ). The proof is by induction
on the number of proof symbols starting with the maximal symbol §y and for every
proof symbol we proceed by induction on o.

Let us consider the proof symbol dp and the associated derivations p(do, 7is,,0) and
p(d0, 5., ms, + 1). Assume that o(ms,) > 0.

Therefore, P(p(do,7s,,ms,), o L= P(p(dg, M5, ms, + 1),Q)0’ ], where o'(a) =
o(a) if o # mgs, and o'(ms,) = o(ms, — 1). By a straightforward induction
on derivations, one can prove that P(p(do, is,, ms, + 1), Q2)o’ ] is obtained from
P(p(d0, 75, ms, + 1)o’|, ) by replacing each Proj(p(do, 7is,, ms, + 1)o’}, v, Q) by
P(p(&',igr,mg ), 2*)Wo'|, where v is a leaf in the derivation of the form §": S(§')¥
for a parameter replacement ¥ of 75, ms with respect to 7is,, 6 > ¢’ and Q* are
all occurrences in S(¢") which are ancestors of QU Q' in p(dy, 75, ms, + 1)o’].

By the induction hypothesis we have P(p(d8', fig, ms), Q)Wo' = P(p(d', fis, mg)o’ |
, )W, Therefore, P(p(do, sy, ms, + 1), Q)a’ L= P(p(do, sy, ms, + 1)’ ], Q) and
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5. HERBRAND’S THEOREM IN INDUCTIVE STRUCTURES

P(p(d0, 75y, ms, ), ) b= P(p(do, sy, ms, + 1)0’ |, ) = P(p(do, 75y, ms, )0 ). The
proof is similar if o(ms,) = 0.

O]

The next step of the CERES method is to construct a refutation of the characteristic
formula. In the schematic setting, we construct a simple refutation schema of the schematic
characteristic formula. The simple refutation schema of the schematic characteristic
formula from Example 5.1.1 is & from Example 4.4.1. In the example below we will
construct a simple refutation schema of the schematic characteristic formula from Example
5.1.2.

Example 5.1.3. We construct a simple refutation schema for the schematic characteristic
formula of Example 5.1.2:

Q(X,Y,n,0) —P(f(b,0),Y(0)) A P(X,n),
QX,Y,n,m+1) = =P(f(bym+1),Y(m+1))AP(X,n),
P(X,0) = P(X(0),f(a,0))
P(X,n+1) = P(X(n+1),f(a,n+1))VP(X,n)

The invariant will be Q (Q(X,Y,0,m) and Q(X,Y,n+1,m)) (we do not need to introduce
a new defined predicate symbol as in Example 4.4.1). Indeed, Q(X,Y,n, m) is derivable
from Q(X,Y,n+1,m): p(6',n,m) =

FQ(X,Y,n+1,m) SOr
F=P(f(b,m),Y(m)) A P(X,n+1) A (¢1)
= =P(f(b,m),Y (m)) =P(f(b,m),Y (m)) F ~P(f(b,m),Y (m)) A P(X,n)
= =P(f(b,m),Y (m)) A P(X,n) SOt
FQ(X,Y,n,m)
where ¢ =
(¢0)
}_P(X,TL) ﬁP(f(b,m),Y(m)),ﬁ(X,n)l—ﬂP(f(b )7Y(m))/\ﬁ(X7n) +
A ~ ~ Cu
=P(f(b,m),Y(m)) & =P(f(b,m),Y (m)) A P(X,n)

and @o =
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5.1. The Schematic CERES Method

A i Q(X,Y,n+ 1,71) 0
AI— Q(X,Y,n—i—l,Am) SO l—ﬁP(f(b,m)lY(m))/\P(X,n—Fl) An,
I—ﬂP(f(b,m),AY(m))/\P(X,n+1) A, I—P(AX,TL+1) ] SPr
F—Ji’(f(b,m),Y(m)) . FP(X(n+1),fEa,n+l))\/AP(X ,n) v,
P(f(b,m),Y(m)) + FP(X(n+1),f(a,n+1)),P(X,n)

resog(n + 1,m)

FP(X,n)

and og(n+1,m) = {X(n+1) < f(b,m),Y(m) < f(a,n+1)}.

Now let us construct the simple refutation schema 2: {(d, p(d,n,0), p(6,n,m + 1))},
where S(0) = F. p(d,n,0) =

- Q(X,Y,n,0) 50 - Q(X,Y,0,0) 50
P (0,0, YO) AP(Xm) T ESP((,0).Y(0) APX0)
SoPfB0Y0) FPXO)
P(f(b,0),Y(0)) F PX(O), f@,0) o
- resoq

where ¢1(0) = {X(0) « f(b,0),Y(0) + f(a,0)}, the initial sequent on the left branch
is the maximal symbol @ and the initial sequent on the right branch is the invariant.
p(d,n,m+1) =

FQ(X,Y,n,m+1) 50 FQ(X,Y,0,m+1) 50
= = r = =

PB4+ 1), Y+ D) AP(X,n) 7 F=P(fbm+ 1), Y (m+ 1)) AP(X,0)

FoP(f(bom +1),Y(m+1) - P(X,0) h "

P(f(b,m+1),Y (m+1) - P(X(0), fla,0) "7

- resoy(m)
where o1 (m +1) = {X(0) « f(b,m +1),Y(m+ 1) + f(a,0)}. Here again, the initial
sequent - Q(X,Y,0,m + 1) is the invariant.
Let us construct the simple unification schema of &2, which will be denoted as the tuple
©(6,n,0),0(0,n,m+1)):
@((5,71,0) = 01(0) U 6(5/7070)01(0)
O,n,m+1) = o(m+1)UO(§,0,m+ 1)or(m+1).
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©(d’',n,m) is given by:

O ,n,m) = oo(n,m)UO(,n+1,m)oo(n,m)
0@, n+1,m) = oo(n+1,m)={X(n+1)« f(b,m),Y(m) « f(a,n+1)}.

Here, for n = a and m = 0 we obtain the sequence

A

{X(a) « f(6,0), X(a =1) & f(5,0),...,X(0) ¢ f(,0),Y(0) ¢ f(a,0)}
and for n = 0 and m = a we obtain the sequence

{X(0) « f(b,0), Y (B)  f(a,0),Y(8 1)  f(a,0),...,Y(0)  f(a,0)}.

Instead of using the simple refutation schema to construct a schematic CERES normal form,
we directly proceed with the construction of a schematic Herbrand sequent. Correctness of
the schematic Herbrand sequent will then be proved by showing that for every parameter
assignment the schematic Herbrand sequent under this particular parameter is equal to
the Herbrand sequent of the parametrized input proof.

5.2 Schematic Herbrand Sequent of the Schematic
Projection

Our aim is to use schematic CERES for proof analysis as in Section 3.1. Therefore, we will
extract a schematic Herbrand sequent from the schematic projection and combine it with
the unification schema obtained from the simple refutation schema of the characteristic
formula, in order to obtain the schematic Herbrand sequent of the input proof schema.
In this section, we will focus on the extraction of the schematic Herbrand sequent from
the schematic projection.

When we consider an LKE-proof ¢ of a prenex skolemized end-sequent and the proof
projection 7: P(y¢) then 7 is a cut-free LKE-proof of a skolemized prenex end sequent
S; therefore m defines a Herbrand sequent and, for every formula F' occurring in S, a
set of substitutions S(F,7) defining the Herbrand substitutions for the formula F' in 7.
However, when we consider schematic LKE-proofs the situation changes. The initial
sequents of such proofs may correspond to recursive calls and contain quantifiers (and
thus are no axioms). To handle this more complex case we consider LKE-derivations.

We use the notion of thread, trace and yield as in Section 2.2. Note that when we admit
quantified formulas in the initial sequents, which is the case for recursively defined proofs,
we do not obtain a full but merely a partial Herbrand instance. By construction of a
cut-free LKE-derivation of a skolemized prenex end-sequent, we observe the following.

Definition 5.2.1. Let m be a cut-free LKE-derivation of a skolemized prenex end-
sequent S and let yo be an occurrence of a formula F': Q1 ... Qzg. F'(x1,...,25) in S
such that @ € {V,3} and F’ is quantifier-free. Let 7: pg, ..., 1o be a trace of pg in 7.
Then either


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.2. Schematic Herbrand Sequent of the Schematic Projection

(a) formula(pe) = F or
(b) there exists an i € {1,...,5 — 1} and terms ¢y, ...,¢; such that
formula(pe) = QTitq - .Qxﬁ.F/(tl, ooty Tig1, ..., xB) OF

(c) there exist terms t1,...,tg such that formula(jua) is a subformula of F'(t1,...,tg)
and F'(t1,...,tg) occurs in the yield of 7.

Definition 5.2.1 gives us the means to assign a substitution hi(7) to every trace 7 in
a cut-free proof m of a skolemized prenex end-sequent such that either hi(7) is a real
Herbrand substitution or just a “partial” one.

Definition 5.2.2. Let m be a cut-free LKE-derivation of a skolemized prenex end-
sequent S and let yo be an occurrence of a formula F': Q1 ...Qzg.F'(z1,...,23) in S
such that @ € {V,3} and F’ is quantifier-free. Let 7: uo,..., o be a trace of pg in 7
and consider the cases (a), (b) and (c¢) in Definition 5.2.1. We define

e case (a): hi(1) = € (e is the empty substitution),
e case (b): hi(T) = {x1 « t1,...,2; < ti},

e case (¢): hi(1) = {x1 < t1,..., 25 < tg}.

We are now ready to define the schematic set of Herbrand substitutions defined by a
projection schema.

Definition 5.2.3 (Herbrand schemata for projection schemata). Consider a regular proof
schema 2: {(9, p(d,75,0), p(d,75,ms + 1)) | 6 € A} and for some 6 € A the projection
w: P(p(0,7,0),Q). Let S be the end-sequent of .

Let po be the occurrence of a formula F(77,0): Qx1,...,Qzs.F'(x1,...,xg) in S such
that @ € {V,3} and 7: po, ..., po be a trace of pp in 7. We distinguish three cases:

(a) formula(ps) = F(7i,0). This is only possible if the sequent occurring at node v,
(for the corresponding thread vy, ..., 14 ) is the end sequent S” of P(p(d, 7, m)¥, )
for some &’ < 4, for a parameter replacement ¥ and a configuration Q' in S’. We
define

Ss(m,7) = {Ss(x',7') | 7 € T(pta, ")}
for ©' = P(p(&', 1, m)¥, Q)

(b) formula(pa) = Qxiy1...Qug.F'(t1,... ti,xiy1,...,25) for i < f. Like in case
(a) the sequent occurring at the node v, is of the form S’ where S’ is the end-

—

sequent of P(p(d', 7, m)¥, ) for some ¢’ < d, for a parameter replacement ¥ and
a configuration €’ in S’. Here we define

Ss(m ) = {1 try.oos o 1} LS5 (', 7) | 7 € T(par ™)}
for ©' = P(p(&', 1, m)¥, Q)
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(¢) formula(uq) is quantifier-free. We define Sg(m, 7) = {hi(7)}.

In the end we define

Ss(m, po) = U{Ss(ﬂ',T) | 7€ T(po,m)}-

Next we consider m: P(p(d, 7, m + 1),§2) and denote by S the end-sequent of 7. Let
be the occurrence of a formula F(ii,m +1): Qz1,...,Qzg.F'(x1,...,x3) in S such that
Q € {V,3} and 7: po, ..., 1o be a trace of pg in m. The definition is almost the same as
for p(6,1,0) above with the difference that we obtain an additional case:

—

o formula(py) = F(7i,m). Then p, is an occurrence of F(ii,m) in ©': P(p(0, 7, m).
Let S” be the end-sequent of 7/. We define

Ss(m,7) = J(Ss(n',7") | 7 € T(pa, ).

Again we define

Ss(m, po) = U{Ss(ﬂ’,T) | 7€ T(po,m)}-

Let §p be the maximal proof symbol in A. Let pg be an occurrence of a quanti-
fied formula in the end-sequents of p(dg,,0) and p(dy, 7, m + 1). Then the substi-
tution schema of the projection schema P(p(d,7,m),0) is the defined as the tuple
SS(P(:O(& ﬁv 0)7®)a#0)aSS(P(p(6v ﬁam+ 1)7®)3/L0)'

Note that, in case 0 is minimal, we obtain for p(d,,0) only the case (c) above applies
and thus Sg(m, o) is a set of Herbrand substitutions.

Example 5.2.1. Let P*(§'): P(p(8’,n),0) be the schematic projection from Example
5.1.1. Let o be the occurrence of the formula Va(P(z) — P(f(z))) in the end-sequent
of m = P(p(¢’,n),0). Then

Ss(P(p(6',0),0),10) =0 and  Ss(P(p(&',n +1),0), 10) = {&  f(m, XJ(n+ 1))}.

Given a parameter assignment o a substitution schema Sg(P(p(do, 7, m), D), p;) can
be evaluated by computing Ss(P(p(do, @, 3),0), ;) for the chosen numerals & and 3.
Moreover, for m = P(p(do, 7, m), D), Ss(7, ui)ol= S(wol, pu;), where S(m, p;) is the set
of Herbrand substitutions for the quantified formula occurrence p; in the end-sequent of
m, see Definition 2.2.4.

Proposition 5.2.1. Let m = P(p(do, 7, m), D) be a projection schema, Ss(m, ;) a corre-
sponding substitution schema and o a parameter assignment. Then Ss(m, u;)ol= S(wol

i)

Proof. Sg(m, ;) is defined as the union of all Sg(m, 7) for all the traces 7: u;,. .., o Of
wi in w, ie. 7€ T(u;,m). Ss(m, ;) is by construction a set of s-substitutions, as for
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5.3. Schematic Expansion Proof of the Schematic Projection

some minimal § only the case (¢) in Definition 5.2.3 applies. Depending on whether for
a given trace T: f;, ..., fo Of pu; formula(ps) is quantifier-free or not, we take the set
of substitutions hi(7) or further expand 7 by evaluating the derivations that are linked
to through labelled initial sequents. Computing Sg(7, p;)o ] means that we evaluate
a set of s-substitutions under . As m and wol have the same end-sequent modulo o,
quantified variables in quantified formulas in the end-sequent remain the same, only the
terms that are used in the proof to eliminate the quantifiers change, again only modulo
o. Therefore, evaluating 7 under ¢ and then computing S(wo|, p;) results in the same
set of substitutions as when we compute Sg(7, ;)0 . O

5.3 Schematic Expansion Proof of the Schematic
Projection

As demonstrated in Section 5.2 a schematic structure encoding the schematic Herbrand
sequent can be extracted from a schematic projection. However, this only works if we
consider projection schemata of prenex end-sequents. When we work with projection
schemata of end-sequents that are not in prenex form, as for instance the projection
schema in Example 5.1.2, in general we have to extract a structure that corresponds to the
schematic expansion proof. It is well known that we can transform a proof of a sequent
S that is not in prenex form into a derivation of the prenex form of S, however when
considering schematic proofs it is not that simple any more. When trying to prenexify a
derivation in a schematic setting we might run into several problems, one of which is the
introduction of sequents of variable length. Allowing these kind of sequents would be
fatal for this work, as the formal definition of such a transformed proof schema is simply
out of range. Hence, the extraction of expansion proofs rather than Herbrand sequents is
vital for proof analysis of schematic proofs.

In this section we will introduce the basic concepts for constructing a schematic expansion
proof and demonstrate how these schematic structures can be extracted from proof
schemata.

When we consider an LKE-proof ¢ of a skolemized end-sequent and the proof projection
m: P(p) then 7 is a cut-free LKE-proof of a skolemized end-sequent S; therefore 7
defines a s-expansion proof. However, when we consider schematic LKE-proofs the
situation changes. The initial sequents of such proofs may correspond to recursive calls
and contain quantifiers (and thus are no axioms).

Let us first introduce some basic notions for schematic expansion proofs, by lifting the
definitions of Section 2.3 to a schematic setting. Note that most definitions can be
extended straight-forwardly, by considering schematic formulas instead of first-order
formulas.

Definition 5.3.1. Schematic expansion trees and schematic dual expansion trees are
defined inductively as follows (we extend the function Sh (shallow), which maps schematic
expansion trees to schematic formulas to a schematic setting):
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1. If A is a schematic formula and quantifier-free then A is a schematic expansion tree
(and a schematic dual expansion tree) for A and Sh(A) = A.

2. If F is a schematic expansion tree then —F is a schematic dual expansion tree and
Sh(—E) = -Sh(E).

3. If E is a schematic dual expansion tree then = F is a schematic expansion tree and
Sh(—E) = -Sh(E).

4. If By and E, are schematic (dual) expansion trees, then Ej A Ea, Ej V Ey are
schematic (dual) expansion trees and Sh(Ej A Ea) = Sh(E1) A Sh(Es2), the same
for V.

5. If E; is a schematic dual expansion tree and E5 is a schematic expansion tree then
Ey — Es is a schematic expansion tree and Sh(FEy — FE3) = Sh(E1) — Sh(E»).

6. If E; is a schematic expansion tree and Es is a schematic dual expansion tree then
Ey — Es is a schematic dual expansion tree and Sh(Ey — Es) = Sh(E1) — Sh(E>).

7. Let A(x) be a schematic formula and ti,...,t, (n > 1) be a list of schematic
terms. Let Ej,..., B, be schematic expansion trees with Sh(E;) = A(t;) for i =
1,...,n; then JzA(x) +1 E; +2 ... +» E, is a schematic expansion tree with
Sh(FzA(z) +1* By +2 ... +1n E,) = 3z A(x).

8. Let A(x) be a schematic formula and t¢i,...,t, (n > 1) be a list of schematic
terms. Let Ei,..., E, be schematic dual expansion trees with Sh(E;) = A(t;) for
i=1,...,n; then VzA(x) +* By +% ... ' E, is a schematic dual expansion tree
with Sh(VzA(z) +1 By +2 ... +n E,) = Vz A(x).

We extend the function Dp (deep), which maps expansion trees (and dual expansion
trees) to quantifier-free formulas to a schematic setting.

Definition 5.3.2. Dp maps a (dual) expansion tree to a formula as follows:

) = E for an atomic schematic expansion tree E,
) = ~Dp(E),
Dp(E1 0 FEs) = Dp(Ey)o Dp(Es) for o € {A,V,—1},
) = Dp(E1) V...V Dp(Ey),
) = Dp(Ey) A ...\ Dp(Ey).

Now we can introduce the notions of a schematic expansion proof and a schematic
s-expansion tree.

Definition 5.3.3 (schematic expansion proof). Let ET be a schematic expansion tree
of a schematic formula A without strong quantifiers. Then ET is called a schematic
expansion proof of A from a set of axioms 7 if Sh(ET) = A and </ |= Dp(ET).
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5.3. Schematic Expansion Proof of the Schematic Projection

Definition 5.3.4 (schematic s-expansion tree). The structure S: I' = A where A: @1, ... Qs

is a multiset of schematic expansion trees, I': Py,..., P. is a multiset of schematic dual
expansion trees is called a schematic s-expansion tree. If =I' VA (which stands for
-PV...V-P. V@ V...V Qs) is a schematic expansion proof then S is called a
schematic s-expansion proof. This expansion proof is the expansion proof associated with
S; the schematic sequent

Seq(S): Sh(P1), ... Sh(P,) = Sh(Q1), ... Sh(Qs)
is the sequent associated with S.

Definition 5.3.5 (\-operator on schematic s-expansion trees). Let S: I'F A, F be a
schematic s-expansion tree, where A: Q)1,..., Qs is a multiset of schematic expansion
trees, I': Pp,..., P, is a multiset of schematic dual expansion trees and F' a schematic
formula without quantifiers. Then we define S\ + F =T F A. In case F' = P;
S\ FF=TFP,...Pj_1,Pjt1,...,P.. S\F I is defined analogously.

In order to show how a schematic expansion proof is extracted from a schematic projection,
we first need to extend the Merge operator on expansion trees to schematic expansion
trees. The extension is straightforward: two schematic expansion trees 17 and 75 can be
merged, if Sh(T1) = Sh(T3).

Definition 5.3.6 (merge). Let Ep, E2 be schematic (dual) expansion trees such that
Sh(E1) = Sh(FE3). We define the merge inductively on the complexity of Fj.

e If F is a schematic atom then E5 is a schematic atom too and Fq = Ey; we define
Merge, (E1, E2) = Ei.

e If £y = —E]. Then Ey = —E) for some E). Let Merge,(E], E}) = Ef, then
Merge,(E1, Ea) = ~E3.

o et B4y = Fj10FEp for o € {/\,\/,—)}. Then Fy = FE91 o Eyo for some Fo, Fyo.
Let E] = Merge,(F11, F21) and Ej = Merge,(E91, E22). Then Merge,(FE1, Es) =
E{ o F.

o Let By = Qu.A(z) +% By + -+ -+ E1,,. Then Es is of the form Qx.A(z) +% Ea1 +
<o 45m By, Then

Merge,(E1, B2) = Qu.A(z) +"* E11 4 -+ +' Eiy +° By + -+ +°™ Egpp.

The Merge operator can be easily extended to more than two schematic expansion trees.
Let T1,...,T;, (for n > 2) be schematic (dual) expansion trees such that Sh(T;) = Sh(T})
for all i,5 € {1,...,n}. Then we define

merge,(Th,T2) = Merge,(11,T3),
merge,(T1,...,T,) = Merge,(merge,(T1,...,Th-1),T,) for n > 2.
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As in the first-order case, it is also possible to merge schematic s-expansion trees. As a
schematic s-expansion tree is defined via multisets of schematic expansion trees, some
schematic expansion trees might occur more than once either on the left or on the right.
We restrict the merge of schematic s-expansion trees to normalized ones, where the
shallow forms occur only once.

Definition 5.3.7. Let S be a schematic s-expansion tree then S is called normalized if
Seq(S) is normalized. Normalization of sequents extends to normalization of schematic
sequents in a straight-forward way.

As already noted for the first-order case, restricting the merge to normalized schematic s-
expansion proofs does not affect the generality of our approach, as schematic s-expansion
trees can be easily transformed into normalized ones.

Now we are ready to define the merging of normalized schematic s-expansion trees.

Definition 5.3.8 (merge of schematic s-expansion trees). Let S and Sa be two normal-
ized schematic s-expansion trees and ST = Seq(S1), S5 = Seq(Sz2). Then, by definition,
ST, S5 are normalized sequents. We define I'* = A* = Sf NS5, II] = A} = ST\ S5,
IT5 = A5 = S5\ ST. Then

Si = (IMEAY o (I Ay,
S; = (I"F A%)o (I3 - Aj).

Then there exist schematic s-expansion trees I' = A, IV = A’, II; = A; and Il = Ay such
that

S = (TFA)o (I} FAy),
Sy = (I'FA") oy F Ay),

where Seq(T' H A) = Seq(I" = A") =T* F A*, Seq(Il; - Ay) =115 B A} and Seq(Ily +
Ay) = II5 = A5. Note that the concatenation o of schematic sequents can be directly
extended to schematic s-expansion trees. Then there exist bijective mappings m;: I' — I
and 7,: A — A" with m(T') = T" iff Sh(T) = Sh(T") (the same for 7). So assume

'eA = Ty,..., T FThi1, ..., Them and therefore
VEA = m(T),...,m(Th) F7r(Toug), - o (o)

Now let T} = merge,(T;, m(T;)) for i = 1,...,n and T} = merge,(T;, 7, (1;)) for i =
n+1,...,n4+m. Then we define

Merge, (S1,52) = (Ty,.... Ti b Tiay, ., Tippn) © (T - Ay) o (T F A).

n

Note that, by construction, Merge (51, S2) is a normalized schematic s-expansion tree.
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5.3. Schematic Expansion Proof of the Schematic Projection

We extend the merging of schematic s-sequents to more than two as follows. Let n > 2
and S1,...,S, be normalized schematic s-expansion trees. Then

merge,(S1,52) = Merge,(S1,S2) for n =2,
merge,(S1,...,5,) = Merge,(merge,(Si,...,Sn—1),5,) for n > 2.

The schematic s-expansion tree merge, (S, ..., Sy) is also normal which can be verified
by an obvious inductive argument.

Frequently we will write merge {S; | i = 1,...,n} for merge,(Si,...,Sy). If no confusion
arises we will frequently write merge instead of merge, and merge,.

Definition 5.3.9 (expansion proof schema from projection schema).

Let 2: {(9, p(0,7i5,0), p(d,75,ms + 1)) | 6 € A} be a regular proof schema. For some
d € A we consider the projection m: P(p(d,1,0),Q) and denote by S the end-sequent of
.

We define a transformation ETg which maps 7 to a structure which we refer to as
schematic expansion tree. We define the transformation inductively but the rules for
=1, 7, Vi, Vo, Vo, are omitted, the transformation of the these rules being obvious.

Base case: 7 is an axiom. Then ETg(7) = 7.

7 is an initial sequent which is the end sequent S’ of P(p(d’, 7, m)¥, Q) for some §' < 4,
for a parameter replacement ¥ and a configuration ' in S’. We define ETg(7) = ETg(n)
for #" = P(p(&', 7, m)¥, Q).

Ifm=

(¢)
ABTEA
ANB,TFA !

and ETg(p) = A*, B*, I'"" - A*, then ETg(n) = A* A B*, T - A*.
Ifm=

(1) (¢2)
TiFAL, A Tob Ag B

A
I', 9o A1,A,ANB "

and ETg(p1) =17 F A}, A* and ETg(p2) =I5 = A3, B*, then ETg(m) =T'7, I's - Af,
5, A* A B*.
29

Ifm=
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5. HERBRAND’S THEOREM IN INDUCTIVE STRUCTURES
(1) (1)
M EALA B, Ty Ay
A— B,Fl,FQ [ Al,AQ
and ETg(p1) = I'f F A}, A* and ETgs(y2) = B*,I'5 - A3, then ETg(r) = A* —
B*, T5,T5 = AT, AS.
Ifr=
()
ATHA,B
rFAA—B "
and ETg(p) = A*,T* - A*, B*, then ETg(7) =T F A*, A* — B*.
If 7=
()
A{z «t},THA v
VzA,TF A !
and ETg(p) = A{z « t}*,T* + A*, then ETg(m) = VoA +! A{z + t}*,T* - A*.
If 7=
()
I'EAA{z + t}
' A,dzA "
and ETg(p) = T* = A* A{z < t}*, then ETg(m) = T* - A* JzA +! A{x + t}*.
Ifnr=
()
A wy
ATHEA
and ETg(p) =I'" - A*, then ETg(7) = A, T F A*. Similarly for w,.
If 7=
()
AATEA .
ATFA
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5.3. Schematic Expansion Proof of the Schematic Projection

and ETg(p) = Af, A5, T* = A*, then ETg(m) = merge{ A}, A5}, T - A*. Similarly for

Cr.

Next we consider 7: P(p(d,7,m + 1),Q) and denote by S the end-sequent of m. The
definition is almost the same as for p(d,7,0) above with the difference that we obtain an
additional case:

7 is an initial sequent which is the end sequent S’ of 7’: P(p(4, 7, m), ') for a configuration
' in S'. We define ETg(7) = ETg(n’).

Let §p be the maximal proof symbol in A. Then the expansion proof schema of the
projection schema 7: P(p(dp, 7, m),0) is defined by ETg(m).
ETs(P(p(d,7,m),Q)) can be evaluated under a parameter assignment o.

Definition 5.3.10. Let ETg(7) for m = P(p(d, 7, m),2) be as in Definition 5.3.9 and
let o be a parameter assignment. Then ETg(m)o| is defined inductively on the structure
of ETg(m) (we skip some cases as their construction is analogous to the cases presented
here):

e ETg(m) = AF A for atomic A. Then ETg(m)ol= Aol Agl.
o ETg(m) = Ao B,I'+ A, where o € {A,V,—}. Then ETg(m)ol= Aol oBol,T'ol

Aol.

e ETg(n) = VoA +! A{x + t}, T F A. Then ETg(n)ol=VrAc] +'*Ac) {z « tol
},Tolk Aol

e ET5(r) =T F A,3zA+t A{x « t}. Then ETg(m)ol=Tol Acl,IzAc] +*Ac|
{z + tol}.

e ETg(n) = merge{A;, A2}, T' F A. Then ETg(7m)o|= merge{A 0, Ayo |}, To -
Acl.

Example 5.3.1. Let w: P(p(d,n,m), () be the projection schema from Example 5.1.2.

ETg(m) is
Rp(n) + JedyP(a.y) +7Om QP (f(b.m).y) +70 P(f(b.m). Y (m)),
_'P(f(ba m)v Y(m)) A p(Xv n)
where
Rp(0) = VaP(z,a) +X© P(X(0),a)
Rp(n+1) = YaP(z, f(a,n+1)) +X0) P(X(n + 1), f(a,n + 1)) V Rp(n)
The evaluation under o, where o(m) = o(n) = 0 is given by ETg(P(p(4,0,0),0)) =

VzP(z,a) +X© P(X(0),a) F 3a3yP(z,y) +° GyPb,y) +¥© P(b,Y(0))),
~P(b,Y(0)) A P(X(0),a)
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By evaluating a schematic expansion tree of some projection schema 7* for a parameter
assignment o we obtain the (first-order) expansion tree of the evaluated projection schema
mrol.

Proposition 5.3.1. Let ETg(m) for m = P(p(6,7,m),Q) be the expansion proof schema
of a projection schema 7 and let o be a parameter assignment. Then ETg(w)ol= ET(7wol
), where ET(wal) is as in Definition 2.3.10.

Proof. By construction of ETg(m). Note that ETg(w) is computed by evaluating T,
i.e. by replacing labelled sequents of the form S’ = S(§')¥, where §' € A with 6§ > ¢
and V¥ is a parameter replacement, by their derivations and labelled sequents of the
form S(8){m < o — 1} by their derivations, to construct the schematic expansion proof.
Evaluating the schematic expansion proof under ¢ results in a specific expansion proof
for the chosen numerals @ and .

However, this expansion proof can be directly obtained from 7o, as the evaluation of 7
under ¢ is an LKE-derivation and thus, we can construct its expansion proof using ET,
therefore ETs(P(p(do, 7, a),))ol=ET(P(p(do, 7, a),D)cl). O

5.4 Extraction of Schematic Herbrand Sequents from
Non-Normalized Proof Schemata

Analogous to the first-order case as described in Section 3.3 the construction of a schematic
CERES normal form is superfluous for the extraction of schematic Herbrand sequents.
We can extract a schematic Herbrand sequent from the projection schema and the simple
refutation schema of the schematic characteristic formula.

To this aim, the Herbrand substitutions obtained from the schematic projection will be
substituted with the unification schema ©(d’, 7, m) obtained from the simple refutation
schema, constructing a schematic structure Hg (2, u;, ©(8, i, m)) for a proof schema 2
and quantified formula occurrence ;. It can be shown that this schematic structure is
a schematic representation of the Herbrand instances for p; of the normal form of the
schematic proof 2. In fact, for any parameter assignment o Hg(Z, p;, (5,7, m))ol
evaluates to the Herbrand instances for u; of the CERES normal form of Za|.

Definition 5.4.1. Let Z: {(9, p(6,7is,0), p(d,7is,ms + 1)) | § € A} be a regular proof
schema of a skolemized prenex end-sequent schema with schematic characteristic formula
C*(60) = C(p(dp, 15y, ms,), ) and projection schema P*(dy) = P(p(do, 7is,, M, ), D). Let
9" {0, p(8', 75, 0), p(0" s ,mg + 1)) | & € A’} be the simple refutation schema of
C*(50).

For each quantified formula occurrence p; in the end-sequents of the derivations p(d, 77, 0)
and p(dg, 7, m + 1) of P*(dg) let Sg(P*(do), pt;) be the substitution schema of P*(dp) for
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5.4. Extraction of Schematic Herbrand Sequents from Non-Normalized Proof Schemata

;. Then we define a set

[e7
Hs(2, 13, 0(8',71,m)) = | Ss(P*(do), 1i)0;
j=1

for 01,...,0, € ©(8,7,m) and O(d, 7, m) the unification schema of &', where ¢’ is the
maximal symbol.

Hg(2,pi,©(8', 7, m)) can be evaluated under any parameter assignment o:
H75(9a i, @(5/> ﬁa m))O'\L: U SS(P* (50)7 MZ)O—\L 0]
j=1
for 61,...,0, € ©(,7,m)ol and O(,7, m) the unification schema 2'.

The schematic Herbrand instances for u; of a proof schema & evaluate under all parameter
assignments o to the Herbrand instances for p; of Zo].

Theorem 5.4.1. Let Z: {(6, p(9,75,0), p(d,75,ms + 1)) | 6 € A} be a regular proof
schema of a skolemized prenex end-sequent and o a parameter assignment. Then
Hg(2, pi, O it,m))ol= H(Dol, wi,p), where H(Dol, pi, p) is as in Definition 3.5.1.

Proof. Let §p be the <-maximal symbol in . By definition
m(g’ i, @(5/7 m, m))O'\L: U SS(P* (50)7 Mz)UxL 9]'
j=1

for 61,...,0r € ©(8', 1, m)o], where ©(¢', 7, m) is the unification schema of the simple
refutation schema 2’ of the schematic characteristic formula C*(dg).

P'c | is a RPL{ refutation of the instantiated (schematic) characteristic formula
C*(d0)o }, which by Theorem 5.1.2 is the characteristic formula of Zo . Therefore
the set {01,...,0,} for 61,...,0, € O(0,7,m)o | is equal to a set {0;,...,0,} for
01,...,0, € 3(p), where p is the refutation 2’c]. Thus,

HiS(-@a Mg @(5/7 ﬁa m))aiz U SS(P* (60)5 MZ)O-\L 9]
j=1
for 61,...,0, € X(p).
By Proposition 5.2.1 Ss(P*(do), pi)ol= S(P*(do)ol, i) and thus

Hg(2, 13,08, m))ol= ) S(P*(80)al, 1i)b;
j=1

for 01,...,0, € X(p).
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By Theorem 5.1.2 the proof projection of Yol is 7 = P*(dp)ol, thus we have that

E(@,ui,@(é/,ﬁ, m))ol= U S(m*, ;)b
j=1
for 01,...,0a € X(p) and then, by definition of H(Dol, i, p), Hs(2, pi, ©(8, i1, m))ol
= H(‘@U\Laﬂhp) -

We have shown that for any parameter assignment o the schematic Herbrand instance
evaluated under o is equal to the structure H (%o |, u;, p). Therefore, the evaluated
schematic Herbrand instance is equal to the Herbrand instance extracted from the
evaluated CERES normal form.

Theorem 5.4.2. Let 7: {(6, p(9,75,0), p(d,7is,ms + 1)) | 6 € A} be a regular proof
schema of a skolemized prenex end-sequent, o a parameter assignment and w the CERES
normal form of Pol. Then Hg(D, ui, O, it,m))ol= S(m, ;).

Proof. By Theorem 5.4.1 we have that Hg(2, u;, ©(8',7t,m))ol= H(Dol, pi,p). Yol
is an LKE-proof and allows the construction of a CERES normal form 7w of Yo |.
By Theorem 3.3.1 H(Z0 |, pi,p) = S(m, ;). Therefore, Hg(Z, u;, O(d, 7, m))o |=
S(ﬂ', ,ui). O

Example 5.4.1. Let P*(§'): P(p(8’,n),0) be the schematic projection from Example
5.1.1. We know from Example 5.2.1 that

Ss(P(p(6',0),0).110) =0 and  Ss(P(p(&',n +1),0), o) = &  f(m, XJ(n+ 1))}

for the occurrence p of the formula Va(P(z) — P(f(x))) in the end-sequent of 7 =
P(p(0',n),0).

From Example 4.4.2 we know that the unification schema is given by the tuple (©(dp,0),
©(dp,n + 1)), where

©(d,0) = {}
00, n+1) = {X{(n+1)« ctUB(4,n),

Thus, Hs(Z, 10, ©(80,n)) = Ss(P*(%), puo)0r for 61 € O(dp,n) and 61 = {X{(n) « ¢}

and hence we obtain for some numeral o the instances:

¢, f(e), F(f(e)s- s fo (o).
5.5 Extraction of Schematic Expansion Proofs from
Non-Normalized Proof Schemata

Analogous to the first-order case as described in Section 3.4 the construction of a
schematic CERES normal form is superfluous for the extraction of schematic expansion
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5.5. Extraction of Schematic Expansion Proofs from Non-Normalized Proof Schemata

proofs. Instead, we extract a schematic expansion proof from the projection schema and
the simple refutation schema of the schematic characteristic formula.

To this aim, the schematic expansion proof will be composed of the schematic expansion
proof of the projection schema after removal of the schematic expansion tree of the
characteristic formula schema and then substituted with the substitutions given by the
simple refutation schema. These substituted schematic expansion proofs can be merged,
resulting in the expansion proof of the schematic CERES normal form.

—

Below we define a schematic expansion tree Egs(2,0(d,7,m)). It can be shown that
this schematic structure is a schematic representation of the expansion proof of the proof

—

schema 2. In fact, for any parameter assignment o Eg(Z2,0(d, i1, m))o] evaluates to
the expansion proof of Zo|.

Definition 5.5.1. Let Z: {(9, p(6,7is,0), p(d,7i5,ms + 1)) | § € A} be a regular proof
schema of a skolemized end-sequent with schematic characteristic formula C*(dp) =
C(p(do, sy, ms, ), V) and projection schema P*(8g) = P(p(do, iy, ms, ), D). Let 2’ be the
simple refutation schema of C*(dy). Then we define

Es(2,0(0,it,m)) = merge((ETs(P*(60))\ F C*(60))01, ..., (ETs(P*(5))\ F C*(00))ba)
for 61,...,60, € ©(8',7,m) and O(¢, 7, m) the unification schema of 2’ with maximal

symbol §.

Es(2,0(8, 7, m)) can be evaluated under any parameter assignment o: Eg(Z,0(d, i, m))
o) = merge(ETs( P*(80) ) \ F C*(80)o DB, (ETs(P*(5))orb \ - C*(50)o 1))
for 61,...,0, € ©(,7,m)ol and (', 7, m) the unification schema of Z'.

The schematic expansion proof of a proof schema & evaluates under all parameter
assignments ¢ to the expansion proof of Zo|.

Theorem 5.5.1. Let Z: {(0, p(0,75,0), p(0,75,ms + 1)) | 6 € A} be a regular proof

schema of a skolemized end-sequent and o a parameter assignment. Then

Es(2,0(0,it,m))ol= E(Pal,p), where E(p,p) is as in Definition 3.4.1.

Proof. Let &y be the <-maximal symbol in 2. By definition Eg(2,0(d, 7, m))ol=
merge((ETs(P*(do))al \ = C*(do)al)b1,. .., (ETs(P*(do))ol \ = C*(do)ol)ba)

for 61,...,0, € O, 71,m)o.

2'c | is a RPL{ refutation of the instantiated characteristic formula C*(dp)o | and
therefore the set {01,...,60,} for 01,...,0, € ©(d',7i,m)o] is equal to a set {01,...,604}
for 61,...,0, € ¥(p), where p is the refutation 2’c|. Thus, Es(2,0(8, 7, m))ol=

merge((ETg(P*(09))ol \ F C*(00)al)01,...,(ETs(P*(d))od \ F C*(d)ol)ba)
for 01,...,0, € X(p).
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By Proposition 5.3.1 ETg(P*(8y))ol= ET(P*(§)ol) and thus Eg(Z2,0(d, i, m))ol=
merge((ET(7*)\ F C*(dp)al)b1, ..., (ET(7*)\ F C*(d0)ol)0a)

for m* = P*(dp)ol and 01, ...,60, € X(p). As by Theorem 5.1.2 the proof projection of
Yo is 7 and the characteristic formula is C*(dp)oJ, we finally obtain by definition of
E that E5(2,0(8,7,m))ol= E(Z0l, p). O

We have shown that for any parameter assignment o the schematic expansion proof
evaluated under o is equal to the structure E(Zcl, p). Therefore, the evaluated schematic
expansion proof is equal to the expansion proof extracted from the evaluated CERES
normal form.

Theorem 5.5.2. Let 2: {(9, p(0,75,0), p(0,75,ms + 1)) | § € A} be a regular proof
schema of a skolemized end-sequent, o a parameter assignment and w the CERES normal

form of Dal. Then Eg(2,0(d i, m))ol=ET(r).

Proof. By Theorem 5.5.1 we have that Eg(2,0(8,7,m))ol= E(P0ol,p). Yol is an
LKE-proof and allows the construction of a CERES normal form 7 of Zo/. By Theorem
3.4.2 E(Y0l,p) = ET(r). Therefore, Es(2,0(8, 7, m))ol=ET(r). O

Example 5.5.1. Let 7: P(p(d,n,m), D) be the projection schema from Example 5.1.2.
We know from Example 5.3.1 that ETg(7m) =

Re(n) + 33yPla,y) +70m) GyP(Fb,m),) +7 0 Pl m), Y (),
=P(f(b,m),Y(m)) A P(X,n)

where
Rp(0) = VaP(z,a) +*X% P(X(0),a)
Rp(n+1) = VzP(z, f(a,n+1))+X"+) P(X(n + 1), f(a,n+ 1)) V Rg(n)

From Example 5.1.3 we know that the simple unification schema is given by the tuple
©(6,n,0),0(0,n,m+ 1)):

©(4,n,0) = o1(0)UBO(,0,0)01(0)
O,n,m+1) = o1(m+1)UB(,0,m+1)or(m+1).

where o1(m) = {X(0) « f(b,m),Y (m) < f(a,0)} and ©(8',n,m) is given by:

O ,n,m) = oo(n,m)UO(,n+1,m)oo(n,m)
0@, n+1,m) = oo(n+1,m)={X(n+1)« f(b,m),Y(m) + f(a,n+1)}.
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5.6. A Note on the Extension to Equality

Now we can construct

?S(gv @(57 n, m)) = (ETS(W)\ - C*(&)))J,

A

where o = {X (n) < f(b,m),Y (m) « f(a,n)}.
ETg(m)\ F C*(8) =

A

Re(n) b 3a3yP(z,y) +7O™ GyP(f(b,m),y) +Y P(f(b,m),Y (m)))

and hence we obtain Eg(Z2,0(6,n,m)) =

)

Rip(n) + FedyP(a,y) +I™ GyP(f(b,m),y) +7 @™ P(f(b,m), f(a,n)))

where

R(0) = VaP(z,a)+/®™ P(f(b,m),a)
Ry(n+1) = VaP(z, fla,n+ 1)) +FOm™ P(F(b,m), fla,n + 1))V Ry(n)

Let o be defined as o(n) = o(m) = 0, then Eg(Z2,0(8,n,m))ol is given by
VaP(z,a) +° P(b,a) - 3ayP(s,y) +° (yP(b,y) +° P(b,a))

Note that we can construct the deep function of the expansion trees above, which results
in the Herbrand sequent
P(b,a) - P(b,a).

5.6 A Note on the Extension to Equality

As in the first-order setting, handling equality rules is crucial to any proof analysis
method. In fact, to be able to analyse Fiirstenberg’s proof we will need to add equality
to our formalism. However, handling equality rules schematically can be a non-trivial
task. The difficulty lies in allowing equality over terms, which leads to paramodulation
rules that operate on any specific occurrence in an expression. This research line is worth
investigating and left as future work. A different approach to the problem of equality
in a schematic setting is the addition of equality axioms and can be performed in our
formalism straightforwardly. Those new equality axioms can then be used to simulate
paramodulation.

First of all it should be noted that the calculus LKE that is used in the construction of
a proof schema already allows an equational theory &, see Definition 4.2.3. To extend
Definition 4.2.6 of a proof schema to a proof schema with equality, the only thing that
needs to change is that the axiom set &g is extended to an axiom set with equality
axioms. The extraction of a schematic characteristic formula and the construction of a
projection schema can be then performed straightforwardly.
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The next interesting part is the construction of a simple resolution refutation schema.
Here again, the calculus RPLg’ , see Definition 4.3.3, uses inference rules for the elimination
and introduction of defined predicate symbols that resemble inferences of an equational
theory.

For dealing with equality by resolution we can specify it with the following congruence
axioms &-:

F =z

r=y F y==zx

ANty =yn F flz1,...;20) = f(Y1,---,Yn)
ANep =1y, F Plx1,...,25) = PY1,...,Yn)
The monotonicity axioms are axiom schemata and we require one monotonicity I axiom
for each non-constant n-ary (defined) function symbol f (f) and one monotonicity IT
axiom for each (defined) predicate symbol P (P). To handle the above axioms in simple
refutation schemata, we need to integrate them into RPLE)I/ derivations. This can be done
easily, by transforming e.g. monotonicity II first to

reflexivity)
symmetry)
monotonicity I)
monotonicity IT)

1=y N...
1 =Yy1 N...

A~ N S

T1=mA... ATy =ypF Plx1,...,24) = P(Yy1,.-.,Yn)

and then to
/\;I;n:ynl——|P(.731,...,£L‘n)VP(yly--wyn)

(analogously for the other axioms). Example 5.6.1 illustrates how such a simple refutation
schema with equality rules might look like.

1=y N...

Example 5.6.1. We construct a simple refutation schema of W:
G(0) = H(0)Aa=cA P(a)A=P(f(0, )
(n+1) = H(mn+1)AAa=cAPla) A-P(f(n+1,¢))
H(0) = P(f(O X7(0))) v =P(f(0, X7(0)))
H(n+1) = H(n)A(P(X{(n+1))V-P(X{(n+1)))
ANP(f(n+1, X7 (n+ 1))V =P(f(n, X} (n +1))))

We introduce J , which will be used as an induction invariant (compare to P, in case 4. of
Definition 4.4.1), hence we obtain

0) A —~P(f(0,¢))

n+1)/\—|P(f(n+1,c))

)Aa=cA P(a)

n+1)Aa=cA P(a)

(0, X7(0))) v ~P(f(0, X$(0)))

n) A (P(X{(n+1)) vV -P(X{(n+1)))
ANP(f(n+1, X7 (n+ 1)) v =P(f(n, X{(n+1))))

J(
J(

A

P

(0
1(
(
1(
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5.6. A Note on the Extension to Equality

First, we construct a resolution schema 21 : {(é1, p(01,0), p(01,m + 1)} U Z» with end-
sequent schema S(01) = F P(f(n,c)). p(d1,0) =

(62, {n < 0}): FJ(O) .
- A(O)Aa=cnPla) BT
Fa=cA P(a) " )
=y F ~P()V P(y) Fa=c " (2 {n 0D FIO)
F-P(a)V P(c) Y FH(O)ANa=cAP(a) A
--P).P() ' Fa=cAPl@)
Pa) F P(c) HACH

= P(e)(= P(f(0,¢))

where 0 = {z < a,y < c} and p(d1,n+1) =

(b2, {n+n+1}): FJn+1)
FH(M+1)Aa=cA P(a) 57
Gk SHr + Ap, x 2
(041, XP(n 4+ 1)V =P, X0+ 1)) b
f(n+17Xi5<n+1)))7ﬁp(f(n,Xf(n+1)))) 4
fn, X} (n+ 1)) F P(f(n+1,X{(n + 1))
f(n+1.0)

r

A

1

- P(
b(

(d1,{n < n}):  P(f(n,c)) p
- P

E res{X{(n+1) « c}

for 61 > 0.
Now we construct Z = {(d2, p(d2,0), p(d2,n + 1)}, where p(d2,0) =

"G BG
- JO0) A-P(0.0)
- J(0) '
and p(d2,n+ 1) =
FG(n+1) X
- J(n+1) A=P(f(n+1,c)) fGT
- J(n+1) "
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Now we are ready to define Z: {(do, p(dg,0), p(dp, n+1)}UZ, where S(dg) = F: p(dg,0) =

- G(0)
F H(0) A P(c) A —=P(f(0,c))

F P(c) A=P(f(0,¢))
- -P(f(0,c)) _

A

(01 {n « 0}): - P(f(0,c)) P(f0.0)F
|_

BGr
Ars

Ay

,0(50,77/ + ]-) =

FG(n+1) N
- J(n+1) A=P(f(n+1,c)) iG”
F-P(fntle) _

A

(G {n<n+1}): FP(f(n+1,0)) P(fin+1le)k
|_

As a last step we have to show that .J(n) is derivable from J(n + 1):

FJ(n+1) .
- SJr )
FH(n+1)AP(c) A FJ(n+1) .
~ T1
FH(n+1 R 7 SJr
(A ks, FHAOT1)APE) A
= H(n F P(c) A
- H(n)AP(e) '
— +
- J(n) SJTr

Resolution with &~ might however cause too many and often unnecessary new clauses.
Overcoming this problem of non-efficiency is only possible by using a schematic version
of the paramodulation rule.
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CHAPTER

Implementation and Experiments
in Gapt

In this chapter we will describe some of our implementations and experiments with
mathematical proofs. The underlying system of all our implementations is Gapt! (General
Architecture for Proof Theory) [EHR'16], which is a framework for implementing proof
transformations and provides numerous algorithms for the analysis, transformation,
and construction of proofs in various formal calculi. Gapt is implemented in Scala
and licensed under the GNU General Public License. The software is available under
https://logic.at/gapt. Gapt initially started as an implementation of the CERES
method. The system which provided the foundational architecture for the current
version of Gapt was developed for the analysis of Fiirstenberg’s proof of the infinitude of
primes [BHL108]. Gapt also provides an interface for importing proofs from most major
theorem provers and exporting proofs and other structures in TPTP format.

For information on how to install and use the system Gapt we refer to the Gapt User
Manual?. Gapt opens in a Scala interactive shell (scala>) which can be used to run all
the commands provided by the system.

The implementation of this work in Gapt can be split in two parts. The first implemen-
tation is concerned with proof analysis with CERES for first-order logic with equality, as
introduced in Section 3.5. To this aim, the method for Herbrand sequent or expansion
proof extraction from the proof projections and the resolution refutation, as described
by the algorithm EXP,., (see Definition 3.5.15) has been implemented. The second
part is concerned with the implementation of the schematic proof analysis method based
on schematic CERES. In a first step towards a full implementation we have extended
Gapt with a schematic formalism that allows for the construction of formalized schematic

! http://www.logic.at/gapt/
Zhttp://www.logic.at/gapt/downloads/gapt-user-manual.pdf
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proofs. Moreover, it is possible to analyse schematic proofs by constructing a schematic
characteristic formula, see Definition 5.1.2, or a schematic characteristic clause set. With
these implementations it is already possible to analyse interesting schematic proofs,
however a full implementation of schematic CERES, in particular the construction of a
proof projection and the refutation, are still missing and left for future work.

6.1 Experiments with Clausal CERES + Equality

This section explains how to run the algorithm EXP,,,, (Definition 3.5.15) followed by a
discussion of results obtained by experiments with formal proofs.

Under “Proof Examples” in the Gapt system there is a set of functions that generate
proofs of some end-sequent. In the following demonstration we will use the proof from
Example 3.5.1, which is referred to as CERESExpansionExampleProof. proof in
Gapt. The sequence of commands

scala> val p = CERESExpansionExampleProof.proof
scala> val pl = CERES( p )
scala> prooftool( pl )

instantiates the proof from Example 3.5.1 and stores it in the variable p, which is used as
input for the method CERES. The variable pl stores the generated CERES normal form.
Note that the outputs stored in variables p and p1 are strings representing the proofs. To
obtain a proof in a tree-like structure prooftool can be used, which is a viewer for proofs
and other elements also implemented in Gapt [DLL"13]. The algorithm EXP, which
extracts expansion proofs from CERES normal forms is implemented in Gapt as the method
LKToExpansionProof. Note that this method extracts an expansion proof from any
LK-proof and not only from CERES normal forms. More information on expansion trees
in Gapt can be found in [HLRR13] and [Reil5]. The following demonstration shows how
to obtain expansion proofs and Herbrand sequents (corresponding to the deep function
of an expansion proof) from the CERES normal form pl (defined in the demonstration
above):

scala> val exp = LKToExpansionProof ( pl )
scala> prooftool ( exp )

scala> val dp = exp.deep

scala> prooftool( dp )

The output stored in exp is a string representing the expansion proof of pl; using
prooftool a better representation can be obtained. Note that also the deep function
can be displayed in prooftool. The next demonstration shows how to use the algorithm
EXPew, which is implemented as the method CERESExpansionProof (within the
CERES implementation)
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6.1. Experiments with Clausal CERES + Equality

scala> val p = CERESExpansionExampleProof.proof
scala> val exp = CERES.CERESExpansionProof ( p, Escargot )
scala> val dp = exp.deep

The output stored in variable dp is a string representing the deep function of the expansion
proof extracted from the proof projections and the corresponding ground PR refutation.
Note that we use a simple built-in prover called Escargot. Instead of using Escargot,
any other resolution prover supported by Gapt may be used (Gapt includes interfaces to
several first-order theorem provers, such as Prover9, E Prover and LeanCoP, for more
details we refer to the Gapt User Manual).

To measure the complexity of algorithms we use the command time, provided by the
Gapt system. This command measures the time in ms that is needed on the system in
use to perform a method. We performed several experiments with proofs containing cuts
and measured the speed-up in time via

scala> time{ LKToExpansionProof( CERES( p ) ) }
scala> time{ CERES.CERESExpansionProof( p ) 1}

Our experiments have shown that there is a speed-up in the computation of expansion
proofs with the algorithm EXP,,.,, compared to the algorithm EXP already for small
and simple proofs like in Example 3.5.1: our best result for the algorithm EXP is 47ms,
on the other hand, with the algorithm EXP,., we obtained 18ms. Since even for a
small and simple proof like the proof in Example 3.5.1 a speed-up is obtained, it is clear
that we can increase the speed-up when we consider more complex and longer proofs.
Therefore we analyzed more complicated proofs provided by Gapt:

e lattice.proof and

e tape.proof.

The first proof emerges from a simple example in lattice theory. It is a proof of one
direction of the equivalence of different definitions of the concept of a lattice. Indeed,
there are several different definitions of a lattice, but they are all equivalent. In particular
we will focus on three definitions that we will refer to as L1-, L2- and L3-lattice. They
are all based on the notion of semi-lattice.

Definition 6.1.1. A semi-lattice is a set L together with an operation o which is

e commutative: VzVy(z oy =y o x),
e associative: VaVyVz((xoy)oz =z o (yo 2)),

e idempotent: Vz(zox = x).
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6. IMPLEMENTATION AND EXPERIMENTS IN GAPT
Definition 6.1.2 (Lattice: definition 1). A Ll-lattice is a set L together with operations
N (meet) and U (join) such that both (L,N) and (L,U) are semi-lattices and N and U
are inverse in the sense that VaVy(z Ny =z <z Uy = y).
Definition 6.1.3 (Lattice: definition 2). A L2-lattice is a set L together with operations
N and U such that both (L,N) and (L,U) are semi-lattices and the absorption laws
VaVy((z Ny) Uz = z) and VaVy((x Uy) Nz = z) hold.
Definition 6.1.4 (Lattice: definition 3). A L3-lattice is a partially ordered set! (S, <)
such that for each two elements x,y of S there exists
e a greatest lower bound (GLB) glb(z,y), i.e. VaVy(glb(z,y) < x A glb(z,y) <
yAVz((z <z Az <y)— z<glb(z,y)),
e a least upper bound (LUB) lub(z,y), i.e. VaVy(z < lub(z,y) Ny < lub(z,y) A
Vz((z <z Ay < z) = lub(z,y) < z)).
Usually, one proves the equivalence of several different definitions or statements by a
cycle of implications. This reduces the size of the proof, but on the other hand does
not provide direct proofs between the statements. More precisely, the following two
propositions imply that L1-lattices are L2-lattices.
Proposition 6.1.1. L1-lattices are L3-lattices.
Proposition 6.1.2. L3-lattices are L2-lattices.
The proof of the statement “L1-lattices are L2-lattices” is however not a direct one and
uses the notion of partially ordered sets. This notion occurs neither in L1 nor in L2.
Using CERES we can automatically obtain a direct formal proof of the desired statement.
The analysis of the lattice proof as performed in CERES follows the steps below (see also
in [HLWPO08]):
1. Formalization of the lattice proof in a sequent calculus.
2. Cut-elimination of the formalized lattice proof using CERES.
3. Extraction of the Herbrand sequent of the CERES normal form.
4. Use of the Herbrand sequent to interpret the resulting proof and obtain a new
direct informal proof.
We use the general definition of a partial order < on a set S, which is reflexive, anti-symmetric and
transitive.
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6.1. Experiments with Clausal CERES + Equality

After extracting a Herbrand sequent form the CERES normal form we can construct an
informal analytic proof of the desired theorem. This proof is based on the CERES normal
form but uses only the information about the variable instantiations contained in its
extracted Herbrand sequent. In the analysis the formulas from the Herbrand sequent are
used as a guide to construct an analytic mathematical proof.

Another interesting proof for analyzing and comparing the implemented methods is
tape. proof, which is a proof of the statement “Given an infinite tape labelled by zeros
and ones there are two cells with the same value.”. The tape proof is from [Urb00] and
was formalized in LK and analyzed by CERES in [BHL*05, BHL06].

The proof proceeds by two lemmas:

1. There are infinitely many cells labelled by 0.

2. There are infinitely many cells labelled by 1.

These lemmas are eliminated by CERES a a more direct argument is obtained in the
resulting proof.

The tape proof is a subcase of the proof of the unbounded pigeonhole principle, for
more information we refer to Section 4.2 of [Urb00] and Section 3 of [BHL'05]. Note
that the formalization of the tape proof as described in [Urb00] is realized in Gapt as
tabeUrban. proof.

Figure 6.1 shows our results on experiments with the proofs lattice . proof, tape. proof

and tapeUrban . proof. In all three cases, the method EXP,,.,, outperforms the method
EXP.

3,000 | i

2,000

1,000 | :

O, -

|
tape.proof  tapeUrban.proof lattice.proof
—o— EXP 8- EXP,,c0

Figure 6.1: Comparison of the methods EXP and EXP,,, for the proofs: tape. proof,
tapeUrban. proof, lattice . proof.
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Furthermore, we analyzed the two methods based on CERES in comparison to re-
ductive cut-elimination methods. The Gapt system contains an implementation of
Gentzen-style reductive cut-elimination, which can be used by calling the method
ReductiveCutElimination. For this analysis we used several proofs provided by
Gapt, as for instance simple proofs containing cuts (foll . proof and fol2 . proof),
formalizations of the so-called poset proof (poset . proof), formalizations of the pi-
geonhole principle (Pi2Pigeonhole. proof and Pi3Pigeonhole. proof) and some
“artificial” proofs in the sense that we introduced cuts to originally cut-free proofs.
Indeed, Gapt provides a cut-introduction procedure called CutIntroduction(p),
which in some cases compresses the cut-free proof p by adding cuts. We use this cut-
introduction method on sequences of cut-free proofs, as for instance the sequence of proofs
LinearExampleProof(n), constructing cut-free proofs of sequents P(0), Vz(P(x) —
P(s(x))) F P(s™(0)), where n > 0, the sequence of proofs LinearEqExampleProof(n),
constructing cut-free proofs of sequents Refl, Trans, Vz(f(z) = z) - f™(a) = a and the
sequence of proofs FactorialFunctionEqualityExampleProof(n), constructing
proofs of f(n) = g(n, 1), where f is the head recursive and g the tail recursive formulation
of the factorial function. Introducing cuts to these three sequences of proofs results
in sequences of shorter proofs. Table 6.1 summarizes our results and shows that not
only EXP,¢, is faster that EXP, but both CERES based methods clearly outperform the
method based on Gentzen-style cut-elimination.
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6.1. Experiments with Clausal CERES + Equality

Table 6.1: Comparison of the three different methods for the extraction of expansion
proofs: based on Gentzen’s reductive method, methods EXP and EXP,,cq.

proof reductive EXP EXP,ew
foll.proof 68 ms 27 ms 17 ms

fol2.proof 53 ms 30 ms 21 ms

Pi2Pigeonhole.proof 1350 ms 680 ms 170 ms
Pi3Pigeonhole.proof 842 ms 552 ms 181 ms
poset.proof.cyclelmpliesEqual3 1621 ms 360 ms 147 ms
poset.proof.cyclelmpliesEquald 6877 ms 850 ms 250 ms

138 ms 70 ms 26 ms
294 ms 42 ms 31 ms
577 ms 32 ms 28 ms
890 ms 36 ms 26 ms
1329 ms 54 ms 25 ms
1205 ms 85 ms 51 ms
190 ms 72 ms 32 ms
924 ms 98 ms 34 ms
) 2640 ms 113 ms 43 ms
) 6510 ms 134 ms 46 ms
) 10875 ms 163 ms 53 ms
)

CutIntroduction( LinearExampleProof( 4 )
CutIntroduction( LinearExampleProof( 8 )
CutIntroduction( LinearExampleProof( 10
CutIntroduction( LinearExampleProof( 15
CutIntroduction( LinearExampleProof( 18
CutIntroduction( LinearExampleProof( 19
CutIntroduction( LinearEqExampleProof(
CutIntroduction( LinearEqExampleProof(
CutIntroduction( LinearEqExampleProof(
CutIntroduction( LinearEqExampleProof(
CutIntroduction( LinearEqExampleProof(
CutIntroduction( LinearEqExampleProof(
CutIntroduction(

FactorialFunctionEqualityExampleProof( 3 )) 3525 ms 500 ms 360 ms
CutIntroduction(

FactorialFunctionEqualityExampleProof( 4 )) 8473 ms 795 ms 590 ms
CutIntroduction(

FactorialFunctionEqualityExampleProof( 5 )) 20006 ms 1430 ms 930 ms

)
)
)
)
)
)
2)
5)
10
15
16
18

)
)
)
)
)
) 12423 ms 455 ms 97 ms

Another interesting sequence of cut-free proofs provided by Gapt is formalized in
SquareDiagonalExampleProof (n), which constructs a sequence of cut-free proofs
of

P(0,0), Vavy(P(z,y) = P(s(x),y)),VaVy(P(z,y) = P(z,s(y))) - P(s"(0),s"(0)),

where n > 0. For every n the constructed proof goes along the diagonal of P, i.e. one
x-step, then one y-step, etc. Cuts can be introduced to this sequence of proofs, however
the proof obtained by Cutlntroduction (SquareDiagonalExampleProof(n))
is not necessarily longer the higher the value for n is. More precisely, the proof
SquareDiagonalExampleProof (n) might not get as much compressed as the proof
SquareDiagonalExampleProof(n+1) by introducing cuts, leading to a shorter
proof for n + 1. Therefore, the method based on reductive cut-elimination is not
always slower for higher values of n. In fact, as can be observed in Figure 6.2,
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the computing time for the method based on reductive cut-elimination on the proof
CutIntroduction (SquareDiagonalExampleProof (7)) is 6235ms, while on the
proof CutIntroduction (SquareDiagonalExampleProof(8)) it is 1278ms. The
analysis in Figure 6.2 is performed for values 2 < n < 18, as for higher values the
constructed proof is too long to be analyzed on the operating system in use.

104

—o— EXPjew
3+ —=— Reductive [

ms

| | |
5 10 15
n

Figure 6.2: Comparison of the method EXP ., and the method Reductive for the proof
Cutlntroduction (SquareDiagonalExampleProof(n)) for 2 <n <18.

Note that also for SquareDiagonalExampleProof(n) the method EXP,,, outper-
forms the method EXP, as can be seen in Figure 6.3.

We want to remark that the obtained results depend to a great degree on the operating
system in use. Therefore, it is possible that the obtained results fluctuate. Nevertheless,
the speed-up of the method EXP,., compared to EXP is given and can be clearly
recognized.

6.2 Schematic Proof Construction

Gapt has been extended with a schematic formalism in order to perform a proof analysis
with schematic CERES. The first step is to construct formalized schematic proofs and
will be handled in this section.

First of all we like to note that the existing proof construction mechanisms of Gapt
still rely on the syntactic constructions of Scala, i.e. Gapt does not have a dedicated
input format. Nonetheless, Gapt contains a simple tactics language called gaptic for the
construction of proofs providing a comfortable bottom-up development of proofs similar
to the tactic languages found in proof assistants such as Coq and Isabelle.
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6.2. Schematic Proof Construction

—o— EXP
1 | new ||
o0 = EXP

100 | =
w0
£

50 | s

0 [ | | | —

5 10 15

n

Figure 6.3: Comparison of the methods EXP and EXP,,.,, for the proof (containing cuts)
Cutlntroduction (SquareDiagonalExampleProof(n)) for 2 <n <18.

We will demonstrate how to formalize a simple example proof, which can be found in the
examples directory of Gapt as FunctionlterationSchema . scala, using the Gapt
system. More complex examples can also be found in this directory, as for instance the
proof schema discussed in [CL17]. From the Scala interactive shell one can load these
examples by importing the objects. For instance, the FunctionlterationSchema
can be imported with the following command

scala> import examples.FunctionIterationSchema

Only after importing the objects we can access the proof schemata. For a general overview
of gaptic we refer the reader to the Gapt User Manual.

The following proof schema is our canonical example for illustrating the schematic features
of the Gapt system.

Example 6.2.1. We construct a proof schema
2:{(6,p(8,7,0), p(6, 7, n + 1))},
where the end-sequent is
S(6) = P(a),Ya(P(z) = P(f(x))) - P(if(n))
using R
o=
f(n+1) = f(if(n)).
p(0,7,0) is an LKE-deduction of S(0){n «+ 0} :
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6. IMPLEMENTATION AND EXPERIMENTS IN GAPT
P(a) - P(a) l
P(a),Vz(P(x) — P(f(x))) F P(a) "
P(a),¥z(P(z) = P(f(x))) - P(if(0))
and p(d,7,n + 1) is an LKE-deduction of S(§){n < n + 1}
(11)
Va(P(z) & P(f@) FVe(P@) - PU@) ()
P(0), \i_g(P(i) = P(i+1)),P(n+1) = P(n+2) - P(n+2)
P(a),Va(P(x) = P(f(x))),Ya(P(x) = P(f())) F P(if(n+1)) l
P(a),Yz(P(z) = P(f(z))) F P(if(n+1)) '
where 1 is
P@)FP(0)  P(f@)F PU@)
Pla) > P(f(e)), Pla) F P(f(@)) "
P(a) > P(f(@) F Pla) = PU@) "
Va(P(z) = P(f(z))) b P(e) = P(f(e))) .
Va(P(x) = P(f(x))) - Va(P(x) — P(f(z))
and vy is
S(6): Pa),Ya(P(x) = P(f(2))) - P(if(n))  P(f(if(n)) F P(f(if(n))) Ny
P(a), P(if(n)) = P(f(if (n))), Va(P(z) — P(f(x))) b P(f(if(n))) i
P(a), P(if(n)) = P(f(if(n))),Va(P(z) = P(f(x))) - P(if(n)) Vo
P(a),Va(P(x) = P(f(x))),Va(P(x) = P(f(x))) b P(if(n+1))
First of all note that schematic proofs are dependent on several core packages of Gapt:
import gapt.expr._
import gapt.proofs.Context._
import gapt.proofs.gaptic._
import gapt.proofs.Context
import gapt.proofs.Sequent
These are the minimum imports needed for schematic proof construction. The context
stores all information needed for the construction of a proof (as for instance the proof
names, end-sequents of proofs, recursive predicates, logical sorts, and theory axioms).
A schematic proof is an ordered set of tuples of proofs of the same end-sequent. The
schematic extension of Gapt generalizes this concept to proof tuples with the same
end-sequent, allowing the use of inductive definitions more complex than the natural
150
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6.2. Schematic Proof Construction

numbers. To enforce that base and step case proof share the same end-sequent the system
allows for proof name declarations which each derivation in a proof schema for the same
proof symbol must match. For the FunctionlterationSchema the following symbols
and definitions have to be added to the context within the proof object:

object FunctionIterationSchema extends TacticsProof {

ctx += Context.Sort ( "i" )
ctx += Context.InductiveType( "nat", hoc"0 : nat",
hoc"s : nat>nat" )

ctx += hoc"f:i>i"
ctx += hoc"a:i"
ctx += hoc"P: i>o"

ctx += PrimRecFun( hoc"if:nat>i>i", "if 0 x = x", if (s y)

x = (f (if y x))" )

ctx += hoc"phi: nat>nat"
val esPhi = Sequent (Seqg( hof"!x (-P(x) | P(f(x)))", hof"P(a)"),
Seq(hof"P(if(n,a))" ) )

ctx += Context.ProofNameDeclaration( le"phi n", esPhi )

The variable ctx denotes the context. Its first extension is needed to handle the indi-
vidual sort and the second extension to handle the numeric sort. Note that the distinc-
tion between the inductive sort Context.InductiveType ("nat", hoc"0O:nat",
hoc"s:nat>nat ") and the first-order term sort Context.Sort ("1i") must be made
explicit, as well as the constants associated with the proof. f , a and P are sim-
ple symbol definitions used in FunctionlterationSchema. What follows is an
extension of ctx with an inductive symbol definition using PrimRecFun. In fact,
the definition of ff(n + 1,a) from Example 6.2.1 is added as a primitive recursive func-
tion PrimRecFun( hoc"if:nat>i>i", "if 0 x = x", "if (s y) x = (f (
if y x))" ) to the context. We define a proof name phi with end-sequent esPhi,
and add them using ProofNameDeclaration to our context.

Now we can construct the base and step case proof associated with the proof definition
of phi:

val esPhiSc = Sequent( Seq("Ant_1" -> hof"!x (-P(x) | P(f(x)))",

"Ant_0" -> hof"P(a)" ), Seg( "Suc_O0" -> hof"P (if (
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s(n),a))" ) )

val phiSc = Lemma ( esPhiSc ) {
cut ( "cut", hof"!x (-P(x) | P(f(x)))" )
allR( "cut", fov"A" )

ref ( "phi" )
unfold( "if" ) atMost 1 in "Suc_O0O"
trivial
ctx += Context.ProofDefinitionDeclaration( le"phi (s n)", phiSc )

val esPhiBc = Sequent ( Segq("Ant_1" -> hof"!x (-P(x) | P(f(x)))",
"Ant_0" -> hof"P(a)" ), Seg( "Suc_0" —-> hof"P (if(
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0,a))" ) )

val phiBc = Lemma ( esPhiBc ) {
unfold( "if" ) atMost 1 in "Suc_O0O"
trivial

ctx += Context.ProofDefinitionDeclaration(le"phi 0", phiBc)

}

Note that the proof name has a function type of ‘ ‘nat > nat’’. While it acts as a
place holding constant, for proper integration into the system it has been implemented
as a lambda term and thus, takes arguments and has a return type.

The base and step case proof associated with phi are referred to as phiSc and phiBec.
We add these proofs to the context using ProofDefinitionDeclaration. Taking a
close look at the above code, one will notice that phiBc is added to the context with a
lambda expression le "phi 0" and phiSc with le "phi (s n)". These are the cases
of the inductive definition handled by the proof. The cases do not need to match the
inductive definition, moreover not all the cases have to be covered. An example of such a
schema would be the NdiffSchema, which can be found the the examples directory of
Gapt under schema/NdiffSchema . scala.

Notice the additional tactic added to the gaptic language, i.e. the reference tactic. The
reference tactic ref is used to reference a proof and corresponds to adding end-sequents
of previously defined derivations as initial sequents to new derivations. In the example
code above, in phiSc it is used to reference to phi, i.e. we use ref ( "phi" ). Note
that using ref in a proof allows for referencing the same proof as well (self reference).
The system checks the reference for validity by checking whether there exists a proof
name matching the goal the reference is called on.
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6.2. Schematic Proof Construction

In our example we extensively use the unfold tactic. The unfold tactic, while not particular
to schema, is used for unfolding the primitive recursive definitions such as if(n + 1, a).
Essentially, it implements the equational theory &.

To display the base and the step case proof of FunctionlterationSchema, we have
to access phiBc and phiSc. The sequence of commands

scala> import examples.FunctionIterationSchema
scala> val p = FunctionIterationSchema.phiBc
scala> prooftool( p )

first imports FunctionlterationSchema, stores the base case proof phiBc¢ in p and
outputs the derivation in prooftool, see Figure 6.4.

Pla) - Pla)
Pl) - Pif0.3))
4

W (=Plx) v P(f(x))) , Pla) = P(if(0.a))

Figure 6.4: Prooftool output of the base case proof.

The following sequence of commands is needed to output the step case proof in prooftool.

scala> import examples.FunctionIterationSchema
scala> val p = FunctionIterationSchema.phiSc
scala> prooftool( p )

Of course, FunctionlterationSchema does not have to be imported again if we have
already imported it for displaying the base case proof. Figure 6.5 illustrates the output
of prooftool.
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Figure 6.5: Prooftool output of the step case proof.

Also, we can instantiate the proof schema FunctionlterationSchema with an arbi-
trary value. The proof schema can be instantiated with the value 2 with the commands

scala> import examples.FunctionIterationSchema

scala> import examples.FunctionIterationSchema.ctx

scala> val p = instantiateProof.Instantiate( le"phi (s (s 0))" )
scala> prooftool( p )

It is important to import the context ctx of FunctionlterationSchema as well!

The output in prooftool is hardly readable and this problem becomes even worse for bigger
proofs. The solution to this problem is to output the proof in a different representation.
Indeed, with prooftool we can display proofs not only in a tree-like structure (i.e. as
usual sequent calculus proofs) but also in a so-called sunburst view (accessible via the
View menu in prooftool), see Figure 6.6. The sunburst view was introduced to obtain a
means of displaying very large proofs. It can be interpreted as a structure which can
be unrolled to a proof in tree-like structure. Indeed, the point in the middle of the
sunburst corresponds to the end-sequent of a proof in tree-like structure. Cut rules are
displayed in green, while structural rules and axioms are displayed in gray. The orange
parts correspond to unary logical rules, the yellow ones to binary logical rules, strong
quantifier rules are displayed in red and weak quantifier rules in blue.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.3. Experiments with Schematic CERES

Figure 6.6: Prooftool output in sunburst view of FunctionlterationSchema for parameter
2.

6.3 Experiments with Schematic CERES

Instantiated proof schemata are essentially LK-proofs extended with an equational theory
and thus, any of the proof analytic tools and methods of Gapt can be applied. However,
there are also tools specifically designed for uninstantiated proof schemata, especially
those which contain cuts. In this section we will provide an introduction to the schematic
proof analysis capabilities of Gapt. First, we will explain in detail how some of the
features are implemented in Gapt using the FunctionlterationSchema. Then we
will analyse a more complicated example.

6.3.1 The Function Iteration Schema

In the previous section we provided a short introduction to proof schema construction
in Gapt using FunctionlterationSchema. In this section we will demonstrate an
analysis of this proof schema.

First of all note that we can analyse any instantiation of FunctionlterationSchema.

For instance, we can construct the characteristic clause set of an instance of a proof
schema from an intermediate representation refereed to as the struct of the proof. In the
code below we extract the characteristic clause set of instance 3.

scala> import examples.FunctionIterationSchema
scala> import examples.FunctionIterationSchema.ctx

scala> val p = instantiateProof.Instantiate( le"phi (s (s (s 0)
)" )

scala> val struct = StructCreators.extract( p )

scala> val cs = CharacteristicClauseSet ( struct )
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The output of prooftool is illustrated in Figure 6.7.

P(f*a)) -

Figure 6.7: Characteristic clause set of instance 3 of the Functionlteration schema.

However, we can also analyse schematic proofs and one of the most interesting benefits
of the interactive features which have been added to Gapt is the representation of the
cut-structure of a proof schema as an inductive definition. This feature corresponds to
the construction of a schematic characteristic formula, see Definition 5.1.2. In fact, the
characteristic formula schema as well as the schematic characteristic clause set can be
constructed from the struct of the proof. The commands

scala> val SCS = SchematicStruct ( "phi" ).getOrElse( Map() )

stores the SchematicStruct in SCS. Given its type it is not possible to display it in
prooftool, however in the Scala interactive shell one can check that it corresponds to a
schematic characteristic formula. With the code

val SCS: Map[CLS, ( Struct, Set[Var] )] = SchematicStruct (
"phi" ) .getOrElse( Map() )

val CFPRP = CharFormPRP( SCS )

CharFormPRP.PR( CEFPRP )

we store the schematic characteristic formula in CFPRP and construct the primitive
recursive definitions of the characteristic formula with CharFormPRP .PR( CFPRP ).

To construct a schematic refutation of the schematic characteristic formula, we have
to construct a proof schema which proves the negation of the schematic characteristic
formula. The schematic refutation of FunctionIterationSchema can be found in
the directory /gapt/examples/schema/Functionlteration Refutation.
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object FunctionIterationRefutation extends TacticsProof (

FunctionIterationSchema.ctx ) {
val SCS: Map[CLS, ( Struct, Set[Var] )] = SchematicStruct (
"phi" ) .getOrElse( Map() )

val CFPRN = CharFormPRN( SCS )

CharFormPRN.PR( CFPRN )

In the code above, we first import the context ctx from FunctionlterationSchema.
Then the schematic struct is produced from the context, which is referred to as SCS. The
negation of the schematic characteristic formula is stored in CFPRN and the primitive
recursive definition of the negation of the characteristic formula is constructed with
CharFormPRN .PR( CFPRN ). Other than these few extra commands at the beginning
of the object file, the construction of the refutation of the schematic characteristic
formula is quite similar to the construction of a proof schema. Essentially, F' -, where
F' is the schematic characteristic formula, is proved. Once the refutation schema from
the characteristic formula is constructed an expansion proof or a Herbrand sequent
for any instance can be produced. In Figure 6.8 we illustrate the expansion proof of
FunctionlterationRefutation for parameter 7, which can be obtained with the
sequence of commands below (note that just like the sunburst view the expansion proof
is accessible via the View menu in prooftool).

scala> import examples.FunctionIterationRefutation

scala> import examples.FunctionIterationRefutation.ctx

scala> val proof = instantiateProof.Instantiate( le"Top (s (s (s
(s (s (s (s 0))))))) ")

scala> prooftool ( proof )

Antecedent | Succedent

(= Pif*@)) v PFFR)) )

(= Pif(a)) v P(FPR)) )

(= PiPR)) v PIFER)) )

A (PR) A= PR D)
(= Pif@)) v PIPR)) )

(= Pl) v PF@E))

(= PifR)) v PFR)) )

Figure 6.8: Expansion proof of instance 7 of the FunctionlterationRefutation schema.
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6.3.2 The Eventually Constant Schema

Another interesting example is the analysis of the so-called Eventually Constant Schema
(ECS for short). In [CL16] the ECS was analysed using the method of [DLRW13] by man-
ually producing instances of the proof and its cut-structure using various theorem provers.
This interactive process has been streamlined using Gapt and schemata of both the
proof (EventuallyConstantSchema) and the refutation of the characteristic formula
(EventuallyConstantRefutation) can be found in gapt/examples/schema/Schema.
The ECS is a formal proof of the following statement.

Proposition 6.3.1. Given a total monotonically decreasing function f : N — {0,--- ,n},
for n € N, there exists an x € N such that for all y € N, where x < y, it is the case that

f(x) = f(y).

Proof. In case the range contains only 0 the theorem trivially holds. Let us assume as
induction hypothesis that for a co-domain with n elements the proposition holds and
show that it holds for a co-domain with n + 1 elements. If for all positions x, f(z) =n
then the theorem holds, else if at some y, f(y) # n then from that point on f cannot
map to n, as the function is monotonically decreasing. Therefore, f will only have n
elements in its co-domain and by the induction hypothesis the proposition holds. ]

The following sequence of commands outputs the instantiation of the proof schema
EventuallyConstantSchema with 2, see Figure 6.9. In fact, displaying the proof in
sunburst view is essential, as the proof would be to big to be illustrated here.

scala> import examples.EventuallyConstantSchema

scala> import examples.EventuallyConstantSchema.ctx

scala> val p = instantiateProof.Instantiate( le"omega (s
(s 0))" )

scala> prooftool( p )
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Figure 6.9: Sunburst view of the EventuallyConstantSchema instantiated with 2.
Cuts are displayed in green.

The cut formula corresponds to the case distinction made in the step case of our
mathematical proof. In the LKE-calculus it has the form:

Jvy ((z <y) >n+1=f(y)Vfly) <n+l).

The formal statement of the end-sequent in the LKE-calculus has a 3V quantifier prefix
like the cut formula:

n+1
va(\ i = f(2),¥avy(z <y = f(y) < f(2)) F Iyl <y — f(2) = ().
=0

Both the CERES method and schematic CERES method were designed for proofs without
strong quantifiers in the end-sequent. Therefore the proofs have to be skolemized,
introducing the Skolem function g(-) in the formal proof entered in the Gapt system.

The schematic characteristic formula of the ECS is very complex and therefore we

present it here as a recursively defined clause set. More details can be found in [CL16].
C4(x,y,i,k) and C4'(x,y, i, k) formalize the case distinction occurring in the cut-formula.

Cl(z, k) = tuak) <z(k)

C2(x, k) = Fa(k) <g(z(k))

C3(z,i,k) = i= f(z(k),i= f(g(z(k)))F

CA(x,y,i, k) = yk) <azk), fylk) <i+1F
f(x(k)) <i,i= f(z(k))

C4(x,y,i, k) = yk) <z(k+1),f(yk) <i+1F
fla(k+1)) <iyi= f(z(k+1))

C5(z, k) = f(z(k) <0k

C6(x, k) = f(g(z(k))) <0k

C7(z, k) = 0<z(k)F f(z(k)) <n, f(x(k)) =n
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Figure 6.10: Sunburst view of the EventuallyConstantSchemaRefutation instan-
tiated with 1.

It is interesting to note that while the proof schema grows linearly, the refutation schema
grows exponentially. Below, the refutation schemata is instantiated with 1.

scala> import examples.EventuallyConstantSchemaRefutation
scala> import examples.EventuallyConstantSchemaRefutation.ctx
scala> val proofl = instantiateProof.Instantiate( le"Top (s 0)
scala> prooftool ( proofl )

The output is illustrated in Figure 6.10.

In Figure 6.11 we illustrate the EventuallyConstantRefutation instantiated with
3, in Figure 6.12 instantiated with 5 and in Figure 6.13 instantiated with 7. The
instantiated schema in Figure 6.13 has 128 branches.

As for the FunctionlterationRefutation, we can construct an expansion proof for
the EventuallyConstantSchemaRefutation. Note that it provides similar infor-
mation as the obtained substitutions discussed in [CL16]. Figure 6.14 illustrates a partial
representation of the expansion proof of EventuallyConstantSchemaRefutation
instantiated with 7 (as the expansion proof is too large for being displayed, we present
only the most significant part).
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6.3. Experiments with Schematic CERES

Figure 6.11: Sunburst view of the EventuallyConstantSchemaRefutation instan-
tiated with 4.

Figure 6.12: Sunburst view of the EventuallyConstantSchemaRefutation instan-
tiated with 4.
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6. IMPLEMENTATION AND EXPERIMENTS IN GAPT
Figure 6.13: Sunburst view of the EventuallyConstantSchemaRefutation instan-
tiated with 7.
{z,z}
('), g2
(g(z), elz))
2 2
vt (2 ()
(8(2), 1(2)) e o)
(({T anvbva {3 o(2) '_,'Z] (= LE(f(a).s(0)) v ( ~iLEQ{a.b) v { E(0.f(b)) v LE(f(b).OY ) ) ) ) A (Wa {g'(z) ) iLEQ(a.gla)) ~ (¥a { g*(z) ) ILEQ(a.a) .
(g, g2
(g'@)) {g'a))
('), g'la))
5 5 {8z {elz))
(e, g1 (g2 (gz))
(g, g'la)
(g, g
('), g'la))
(g, g'a))
Figure 6.14: Part of the expansion proof of the EventuallyConstantSchemaRefutation
instance 7.
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CHAPTER

Future Work

In this chapter we will give an outlook on what will be investigated in future years.

The main goal of this investigation is to develop a fully automated analysis of mathematical
proofs, as for instance Fiirstenberg’s proof of the infinitude of primes. As already described,
a semi-automated proof analysis using schemata was performed on Fiirstenberg’s proof
and major parts of the analysis had to be performed by hand [F55, BHL*08]. The analysis
showed that from Fiirstenberg’s proof Euclid’s elementary proof could be obtained by
applying a formal cut-elimination procedure. Though a fully automated analysis of
this proof is not yet within reach, this work constitutes a major step in this direction.
Some missing artefacts will be investigated in near future, as for instance the full
implementation of the developed proof analysis methods. The automatic construction of
a projection schema from an input proof schema is currently under development in Gapt.
This implementation will then be used to automatically extract schematic Herbrand
sequents and schematic expansion proofs from projection schemata in Gapt. Moreover,
the construction of a simple refutation schema (see Section 4.4) in Gapt will be further
investigated. In particular, the current representation of a simple refutation schema
in Gapt is as a proof schema, following the rules of LK. Given the structure of and
the possibilities in Gapt, it is not yet possible to define a calculus with introduction
and elimination rules as needed for the RPLE)I’ calculus. Having all these algorithms
developed, we plan to implement the proof analysis method as has been already done for
the first-order case (as described in Section 6.1).

As already noted in Section 5.6, in a schematic setting we have not yet included equality as
paramodulation rules that operate on any specific occurrence in an expression. Handling
this kind of paramodulation is a non-trivial task and requires further investigation. Of
course, having a proof analysis method that covers inductive proofs that contain equality
rules is needed to perform a fully automated analysis of mathematical proofs and therefore
we plan to investigate this topic in future work.
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7. FUTURE WORK
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It is also possible to develop a more general definition of proof and refutation schemata,
following the call graph formalism introduced in [CLL19]. There, call graphs are used to
define the semantics of schematic derivations that allow mutual recursion.

It should also be noted that the methods for proof analysis as developed in this work can
be easily extended to extract information different to Herbrand sequents from formalized
proofs. For instance, it is possible to extract interpolants from CERES normal forms. In
the same way as the Herbrand sequent of a CERES normal form can already be extracted
from the proof projection and the refutation of the characteristic formula (see Section
3.3), it is also possible to extract the interpolant of the CERES normal form already from
the proof projection and the refutation of the characteristic formula. This investigation
would result in a fast computation of interpolants based on CERES but without actually
constructing a proof in normal form.

Moreover, the methodology developed in this work can also be used for other CERES
methods. Indeed, in the first-order case we can exchange the calculus LK with an
arbitrary calculus that is conservative over the extraction of Herbrand sequents. For
instance, we could consider the globally sound but possibly locally unsound calculi
LK" and LK*" introduced in [AB19] and investigate a CERES(-like) method that
constructs Herbrand sequents from the proof projections and the resolution refutation of
the characteristic formula. Then, we can investigate a similar method for the calculus
LQ™'* (a calculus for quantifier macros) introduced in [BL19]. Note that LQ™™ can be
seen as a first step in defining a calculus for Henkin quantifiers, hence it paves the way
for an efficient method extracting Herbrand sequents and expansion proofs for a logic
with Henkin quantifiers.
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