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Abstract 

Active microwave remote sensing techniques provide a means for the monitoring of 

biogeophysical variables over land, independent of weather and cloud conditions and 

daylight. Several missions are in place nowadays which provide regular observations 

of the entire Earth surface. Observations provided by these sensors have for example 

been used for the retrieval of soil moisture (SM) and vegetation optical depth, a 

measure of canopy water content, density and structure. Some of these datasets are 

available publicly and on an operational basis. Despite the long history of active 

microwave remote sensing research, going back into the 1960s, there is a constant 

need to extend the understanding of how active microwave sensors perceive the 

land surface on the respective spatial scale of the satellite observations. 

The aim of this thesis was to study the multi-angular backscatter signal (0°) observed 

by the Advanced Scatterometer (ASCAT) sensor over the land surface. The focus 

was on the backscatter dependence on the incidence angle (0°), as this relationship 

is crucial for the separation of SM and vegetation effects on the observed signal. 

Thereby, Iaimed at advancing the understanding of how SM and vegetation dynamics 

influence o° and 0’ on the relatively coarse spatial scale of the ASCAT footprint. The 

main objectives can be summed up as follows: i) increase the understanding of the 

ASCAT backscatter incidence-angle relationship, in particular the first derivative 0’, 

ii) investigate the potential of a regional adjustment of parameter values for SM 

and vegetation optical depth retrieval, iii) improve the understanding of structural 

effects of vegetation canopies on o’, and iv) reassess the assumption that 0° is not or 

only weakly affected by SM. 

The conducted research highlighted the great potential of the coarse-scale ASCAT 

sensor for the retrieval of biogeophysical variables such as SM and vegetation 

dynamics. One main new finding was that ASCAT is highly sensitive to the water 

uptake of deciduous broadleaf trees in early spring, allowing for the monitoring of 

spring reactivation in deciduous forests across wide regions, potentially even on 

a global level. Thanks to the increasing temporal coverage, (ASCAT) backscatter 

time series may be exploited for the study of growing season shifts as a reaction 

to climate change. The study clearly showed that canopy structure can have large 

effects on ASCAT observations, even if the responsible vegetation type makes up 

only a small fraction of the entire footprint.



The thesis also revealed potentials for improvements in existing retrieval algorithms, 

such as the benefits of a stronger vegetation correction for the retrieval of SM in 

temperate-climate, agricultural regions. Moreover, it was shown that despite the 

clear and dominant control of o’ by vegetation dynamics, there are short-term 

secondary effects in o’ caused by SM, which need to be taken into account when 

interpreting o’ time series or applying 0’ as vegetation dynamics indicator. 

The results of the thesis show that future studies of ASCAT o° and its dependence 

on the incidence angle should be set up as broad as possible in order to take into 

account the numerous variables and processes that ASCAT is sensitive to, including 

combined effects that might cancel each other out or reinforce each other. However, 

detailed studies of selected processes will always be necessary in order to understand 

how individual components contribute to the signal. 

High resolution backscatter datasets, for example provided by Sentinel-1, and 

enhanced observation techniques, for example foreseen for the upcoming Metop-SG 

missions, ensure the availability of long backscatter time series, and open up new 

possibilities for investigating, understanding and monitoring backscatter from land 

surfaces. This thesis shall contribute to these efforts and support the way forward by 

shedding light on topics that were not studied in detail previously.



Kurzfassung 

Die aktive Mikrowellenfernerkundung bietet eine Möglichkeit zur Beobachtung 

biogeophysikalischer Variablen über Land, unabhängig von Wetter- und Wolkenbe- 

dingungen und Tageslicht. Es gibt heute bereits mehrere Missionen, die regelmäßige 

und konsistente Beobachtungen der gesamten Erdoberfläche liefern. Die von aktiven 

Mikrowellensensoren gelieferten Beobachtungen werden beispielsweise für die Er- 

mittlung der Bodenfeuchtigkeit und der optischen Tiefe der Vegetation (VOD), einem 

Maß für den Wassergehalt, die Dichte und die Struktur der Vegetation, verwendet. 

Einige dieser Datensätze sind öffentlich und auf operationeller Basis verfügbar. Trotz 

der langen Geschichte der aktiven Mikrowellenfernerkundung, die bis in die 1960er 

Jahre zurückreicht, besteht ein ständiger Bedarf, das Verständnis dafür zu verbessern, 

wie aktive Mikrowellensensoren die Landoberfläche auf der jeweiligen räumlichen 

Skala der Satellitenbeobachtungen wahrnehmen. 

Ziel dieser Arbeit war es, das vom Advanced Scatterometer (ASCAT)-Sensor über 

der Landoberfläche beobachtete multi-angulare Rückstreusignal (0°) zu unter- 

suchen. Der Schwerpunkt lag dabei auf der Abhängigkeit des Rückstreukoeffizienten 

vom Einfallswinkel (0’), da diese Beziehung entscheidend für die Trennung von 

Bodenfeuchte- und Vegetationseffekten auf das beobachtete Signal ist. Auf diese 

Weise wurde das Verständnis dafür verbessert, wie Bodenfeuchte und Vegetations- 

dynamik 0° und 0’ auf der relativ groben räumlichen Skala des ASCAT-Footprints 

beeinflussen. Die Hauptziele der Arbeit lassen sich wie folgt zusammenfassen: i) die 

Verbesserung des Verständnisses der Abhängigkeit des ASCAT-Rückstreukoeffizienten 

vom Einfallswinkel, insbesondere der ersten Ableitung 0’ dieser Abhängigkeit, ii) 

die Untersuchung des Potenzials einer regionalen Anpassung der Parameterwerte 

für die Berechnung von Bodenfeuchte und VOD, iii) die Verbesserung des Verständ- 

nisses der Auswirkungen der Vegetationsstruktur auf 0’, und iv) die Neubewertung 

der Annahme, dass o’ nicht oder nur schwach durch die Bodenfeuchte beeinflusst 

wird. 

Die durchgeführten Studien unterstrichen das große Potenzial des ASCAT-Sensors 

für die Erfassung biogeophysikalischer Variablen wie Bodenfeuchte und Vegetations- 

dynamik. Eine wichtige neue Erkenntnis war, dass ASCAT sehr empfindlich auf die 

Wasseraufnahme von Laubbäumen im Frühjahr reagiert, was die Beobachtung des 
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Beginns der Vegetationsperiode in Laubwäldern über weite Regionen, möglicher- 

weise sogar auf globaler Ebene, ermöglicht. Dank der zunehmenden zeitlichen 

Abdeckung können (ASCAT-JRückstreuzeitreihen somit für die Untersuchung von 

Verschiebungen der Wachstumsperiode im Laubwald als Reaktion auf den Klimawan- 

del genutzt werden. Die Studie hat deutlich gezeigt, dass die Vegetationsstruktur 

große Auswirkungen auf ASCAT-Beobachtungen haben kann, selbst wenn die betref- 

fende Vegetationsart nur einen kleinen Teil der gesamten Fläche ausmacht. 

Die Arbeit zeigte auch Verbesserungsmöglichkeiten für bestehende Algorithmen 

auf, wie z.B. die Vorteile einer stärkeren Vegetationskorrektur für die Ableitung 

von Bodenfeuchte in landwirtschaftlich genutzten Regionen mit gemäßigtem Klima. 

Darüber hinaus wurde gezeigt, dass es trotz der eindeutigen und dominanten Kon- 

trolle von o’ durch die Vegetationsdynamik kurzfristige sekundäre Effekte in 0’ gibt, 

die durch die Bodenfeuchte verursacht werden und die bei der Interpretation von 

o'-Zeitreihen oder der Anwendung von 0’ als Indikator für die Vegetationsdynamik 

berücksichtigt werden müssen. 

Die Ergebnisse der Arbeit zeigen, dass künftige Untersuchungen des ASCAT-Rückstreu- 

koeffizienten und seiner Abhängigkeit vom Einfallswinkel so breit wie möglich an- 

gelegt sein sollten, um die zahlreichen Variablen und Prozesse zu berücksichtigen, 

die das Signal beeinflussen, einschließlich kombinierter Effekte, die sich gegenseitig 

aufheben oder verstärken können. Detaillierte Studien ausgewählter Prozesse wer- 

den jedoch weiterhin notwendig sein, um jede einzelne Komponente zu verstehen, 

die zum Signal beiträgt. 

Hochauflösende Rückstreudatensätze, wie sie z.B. von Sentinel-1 geliefert werden, 

und verbesserte Beobachtungstechniken, wie sie für die kommenden Metop-SG- 

Missionen vorgesehen sind, gewährleisten die Verfügbarkeit langer Rückstreuzeitrei- 

hen und eröffnen neue Möglichkeiten für die Erforschung, das Verständnis und 

das Monitoring der Rückstreueigenschaften von Landoberflächen. Die vorliegende 

Arbeit soll einen Beitrag zu diesen Bemühungen leisten und zukünftige Studien 

unterstützen, indem sie Themen beleuchtet, die bisher nicht im Detail untersucht 

wurden.
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1.1 

Introduction 

Science makes people reach selflessly for truth 

and objectivity; it teaches people to accept reality, 

with wonder and admiration, not to mention the 

deep awe and joy that the natural order of things 

brings to the true scientist. 

— Lise Meitner 

(Austrian nuclear physicist) 

Motivation and problem statement 

In December 1968, Bill Anders, a NASA astronaut and member of the Apollo-8 

crew, took a picture that would later be seen as a milestone in the history of Earth 

observation (Figure 1.1). The iconic picture shows the Earth coming up from beyond 

the lunar surface, and it has inspired the development of ever and ever improving 

methods for observing and monitoring Earth from space. More than 50 years later, 

monitoring the status of the marine and terrestrial ecosystems on our planet is as 

important as ever, especially in order to protect them from the many challenges and 

threats they are exposed to. Just as in 1968, this is — amongst a number of other 

techniques - still done by taking "remote pictures" from space, however, nowadays 

several types of sensors in addition to cameras exist. 

In this thesis, the focus is on remote sensing of terrestrial ecosystems using an active 

microwave sensor. Microwaves differ from optical waves in their wavelength and 

their very special characteristic to sustain oriental polarization of water molecules, 

making them highly sensitive to the presence of water in the sensor footprint. Over 

land, microwave measurements allow the derivation of soil moisture status and 

vegetation water content. Active microwave sensors, i.e., sensors that measure the 

backscattered fraction of a previously transmitted electromagnetic wave, include 

scatterometers and synthetic aperture radars (SAR). SARs have the advantage of 

enabling measurements with a high spatial resolution (around 10 m), however,
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"Earthrise", taken aboard Apollo-8 by Bill Anders (December 24, 1968). Image 
Credit: NASA. 
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Multi-angular observation geometry of the Metop ASCAT sensor (Wagner et al., 

2013). 
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this comes at a reduced temporal coverage. Scatterometers have footprints of sev- 

eral km?, but provide measurements of the same location with a frequency of a few 

days or higher. Despite the coarse spatial resolution, scatterometer observations 

are very useful in the context of environmental remote sensing as many climatic, 

meteorological and ecological processes occur at a regional scale and are highly 

dynamic in time. The aim of the research presented within this thesis was to study 

in detail the multi-angular backscatter signal measured by the C-band scatterometer 

on-board the Metop satellites (ASCAT; Figure 1.2), and thereby advance the under- 

standing of how soil moisture (SM) and vegetation dynamics influence the signal on 

a coarse scale. The following paragraphs give an overview of the basic principles 

and assumptions in active C-band microwave remote sensing that this thesis builds 

upon. 

Influences on C-band backscatter measurements An observed backscatter value 

(0°) depends on the characteristics of the land surface in the sensor footprint and 

the different scattering mechanisms that are activated. This, in turn, is primarily 

controlled by the sensor’s frequency and polarization, and the incidence angle of the 

observation (Ulaby et al., 1981). In the case of bare soil, the radiation is reflected on 

the surface, and with increasing surface roughness, a larger part of the radiation is 

scattered back to the sensor. If a surface appears rough or smooth to a scatterometer 

is defined by the size of the surface height variations relative to the wavelength of 

the radar beam. In addition, the soil water content plays a fundamental role, as 

wet soil increases 0° due to its high dielectric constant and consequently higher 

scattering strength. As opposed to bare soil, a vegetation canopy appears as an 

inhomogeneous medium with a higher penetration depth, which scatters the incident 

radiation diffusely in all directions. In this case, the backscattered radiation fraction 

depends less on the incidence angle. Over vegetation, C-band radiation is typically 

scattered mostly by plant constituents in the order of a few centimetres, e.g., twigs 

and small branches of trees, and crop stems, leaves and heads. 

Coarse-scale footprints & heterogeneous land cover Due to the coarse spatial 

resolution, each ASCAT footprint covers several different land cover types in most 

regions. Each backscatter measurement is thus a combination of the individual 

scatterers in the footprint, including bare soil and vegetation canopies. The semi- 

empirical TU Wien change detection model has been developed to disentangle SM 

and vegetation effects in the backscatter signal, making use of the different scattering 

mechanisms that are activated and which affect backscatter differently depending on 

the incidence angle of the observation (Wagner et al., 1999b; Wagner et al., 1999c; 

Wagner et al., 1999a; Vreugdenhil et al., 2016; Hahn et al., 2017). This model with 
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Fig. 1.3: Dependence of the backscatter coefficient on the incidence angle under dry and 
wet conditions, for bare soil and fully grown vegetation (after Wagner et al. 
(1999e)). 

globally defined parameters works well in general, but can be improved when tuned 

to regional land surface characteristics (Hahn et al., 2020). 

Incidence angle dependence As stated above, SM and vegetation effects on 0° 

vary depending on the incidence angle of an observation (9). Whereas backscatter 

from bare soils depends highly on the incidence angle and drops quickly with 

increasing $% due to increased scattering away from the sensor, backscatter from 

vegetation canopies is high across a large range of incidence angles (Figure 1.3). This 

dependence, which is often formulated using the first and second derivatives (slope 

o', curvature o”) of a second-order Taylor polynomial fit to the o°-0-relationship, 

can be used to separate SM and vegetation effects in o°. o’ and o” can be robustly 

estimated for each day based on ASCAT observations from a few weeks (Melzer, 

2013; Hahn et al., 2017). The temporal dynamics of o’ have been shown to be highly 

correlated with vegetation development (Vreugdenhil et al., 2017; Steele-Dunne 

et al., 2019). 

Retrieval of biogeophysical variables from C-band backscatter The TU Wien change 

detection model has been developed to retrieve SM from the scatterometers on board 

of the European remote sensing satellites (Wagner et al., 1999b), and was later 

adapted and improved for ASCAT (Naeimi et al., 2009b). Many studies have eval- 

uated the ASCAT SM product over different regions and found high correlations 

with in-situ measurements of SM. The model makes use of ASCAT’s multi-angular 

backscatter observations, and more specifically the thereof derived ¢’ and o” of 

the o°-0-relationship, to correct for the vegetation component in the backscatter 
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1.3 

signal (Hahn et al., 2017). It has been shown that this vegetation characteriza- 

tion can be converted into vegetation optical depth (r) (Vreugdenhil et al., 2016), 

which is an indicator of the vegetation water content, and both the leaf and woody 

components of the total above-ground biomass (Liu et al., 2011). 

Study objectives 

Despite the extensive research foundation in the topic of remote sensing of SM and 

vegetation using scatterometers, open questions remain. The focus of this thesis is 

on selected aspects related to ASCAT’s sensitivity to vegetation dynamics and the 

complex combined representation of SM and vegetation in o° and o’. 

The overall aim is to further advance the understanding of vegetation and soil 

moisture effects on C-band backscatter. To do so, different analyses are conducted 

using ASCAT backscatter timeseries. The main objectives of the thesis can be summed 

up as follows: 

* Increase the understanding of the ASCAT backscatter incidence-angle relation- 

ship, in particular the first derivative (0’) 

Investigate the potential of a regional adjustment of parameter values for SM 

and vegetation optical depth retrieval 

Improve the understanding of structural effects of vegetation canopies on o’ 

* Reassess the assumption that 0’ is not or only weakly affected by SM 

These objectives were addressed in three studies, aiming at answering the following 

research questions. 

Research questions and summary of results 

Article 1: Does the ASCAT surface soil moisture product benefit from a 

stronger vegetation correction in a temperate-climate, agricultural region? 

The ASCAT SM product has been found to be of high quality in several validation 

studies. However, over- and underestimation of SM during different times of the 

year suggest a need for improving the retrieval algorithm. We analyzed whether 

adapting the vegetation characterization improves the seasonal representation of SM 

1.2 Study objectives
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and vegetation optical depth (7). Therefore, we compared SM and 7 retrieved from 

ASCAT using a weaker and a stronger vegetation correction, as well as including 

and excluding inter-annual dynamics (0) 4 dyns Teim)- The study was conducted for 

a region in Austria with predominantly agricultural land use. We found that a 

stronger vegetation correction improves the retrieved SM dataset considerably. The 

vegetation product derived with a dynamic vegetation characterization compares 

well to the reference datasets and reflects vegetation dynamics such as start and 

peak of season and harvest. 

Two findings of this study were unexpected. First, a characteristic peak was observed 

in the o)}, timeseries each year around March/April that could not be linked to / 
dyn 

the typical crop growing cycles of the study region. Second, including inter-annual 

dynamics in the vegetation correction, i.e., using o/, instead of o;;,,, did not lead 

to an improvement of the SM product. These two observations were investigated in 

two follow-up studies. 

Article 2: Does ASCAT observe the spring reactivation in deciduous 

broadleaf forest? 

The aim of the second study was the investigation of the characteristic peak in oy, 

that was observed in the agricultural study region of the first study. Therefore, a peak 

detection method was developed and applied over central Europe, revealing that 

the characteristic peak occurred predominantly over areas with deciduous broadleaf 

forest cover. As the peak occurred around March/April each year, we investigated if 

it was caused by leaf emergence by comparing o/, ,, timeseries with phenological 

observations, temperature data, and satellite-derived leaf area index. We found 

that the peak was indeed linked to ecophysiological processes. We concluded 

that water uptake of deciduous trees in preparation for leaf emergence causes a 

strong scattering effect that ASCAT is sensitive to, followed by an attenuation of the 

scattering effect due to the growing canopy. 

Article 3: Are short-term variations in the ASCAT backscatter-incidence 

angle slope caused by soil moisture? 

In a third study, we investigated a potential SM effect on o Radiative transfer ' 
dyn* 

models suggested the presence of such an effect, however, the effect has been 

assumed to be weak and negligible in the context of SM retrieval based on early 

studies with limited data availability. We exploited the long backscatter timeseries 
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available from the Metop satellites in order to investigate correlations between 0’, 

SM, and leaf area index. The results clearly indicate that there is a secondary, short- 

term SM effect in o/,,, on top of the dominant vegetation signal. The SM effect is / 
dyn 

lowest over dense forest and strongest over sparse vegetation cover, where it can be 

as large as a fifth of the total annual variation of o ,,. Short-term secondary effects 

are mitigated when using a climatology slope (0/,,,) due to long-term averaging, 

which is the case in the operational ASCAT SM product. However, o’ must be used 

with caution in vegetation studies that look at interannual variability. 

Relevant publications and author contributions 

The conducted analyses and results of this thesis have been presented to the scientific 

community in the form of three research articles and seven conference contributions, 

which are listed in the following. 

Research articles 

1. Pfeil, I., Vreugdenhil, M., Hahn, S., Wagner, W., Strauss, P., & Blöschl, G. 

(2018). Improving the seasonal representation of ASCAT soil moisture and 

vegetation dynamics in a temperate climate. Remote Sensing, 10(11), 1788. 

Author contributions: 1. Greimeister-Pfeil conceived and designed the experi- 

ments together with M. Vreugdenhil, S. Hahn, and W. Wagner. I. Greimeister- 

Pfeil analyzed the data, and wrote the manuscript. P. Strauss and G. Blöschl 

contributed their expertise. All authors participated in the proof reading and 

revision of the manuscript. 

2. Pfeil, I., Wagner, W., Forkel, M., Dorigo, W., & Vreugdenhil, M. (2020). 

Does ASCAT observe the spring reactivation in temperate deciduous broadleaf 

forests?. Remote Sensing of Environment, 250, 112042. 

Author contributions: I. Greimeister-Pfeil conceived and designed the ex- 

periments, analyzed the data and wrote the manuscript. W. Wagner and M. 

Vreugdenhil were the supervisors. M. Forkel and W. Dorigo helped with scien- 

tific discussions. All authors participated in the proof reading and revision of 

the manuscript. 
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3. Greimeister-Pfeil, I., Wagner, W., Quast, R., Hahn, S., Steele-Dunne, S., & 

Vreugdenhil, M. (2022). Analysis of short-term soil moisture effects on the 

ASCAT backscatter-incidence angle dependence. Science of Remote Sensing, 

100053. 

Author contributions: Conceptualization, I. Greimeister-Pfeil and W. Wagner; 

methodology, I. Greimeister-Pfeil, W. Wagner, M. Vreugdenhil, S. Hahn, S. 

Steele-Dunne, R. Quast; investigation, I. Greimeister-Pfeil; visualization, 1. 

Greimeister-Pfeil; writing—original draft preparation, I. Greimeister-Pfeil; 

writing—review and editing, all authors. All authors have read and agreed to 

the published version of the manuscript. 

Relevant conference contributions 

1. Pfeil, I. M., Vreugdenhil, M., Strauss, P., Oismueller, M., Wagner, W., & Bloeschl, 

G. (2017). Validation of SMAP soil moisture over a complex agricultural 

catchment in Austria. In EGU General Assembly Conference Abstracts (p. 14665). 

2. Pfeil, I., Hahn, S., Bauer-Marschallinger, B., Hochstöger, S., Vreugdenhil, M., 

& Wagner, W. (2017): Sentinel-1 Surface Soil Moisture: Comparison against 

an optimized Metop ASCAT soil moisture product and in-situ data in Lower 

Austria. Published in Satellite Soil Moisture Validation & Application Workshop 

and the CCI Soil Moisture User Workshop. 

3. Pfeil, I., Vreugdenhil, M., Forkel, M., Dorigo, W., & Wagner, W. (2019). Track- 

ing the Leaf Emergence in Deciduous Broadleaf Trees Using Microwave Remote 

Sensing. In EGU General Assembly Conference Abstracts (p. 8021). 

4. Pfeil, I., Vreugdenhil, M., Dostalova, A., Wagner, W., Forkel, M., & Dorigo, W. 

(2019): Detection of spring leaf-out in deciduous broadleaf trees with ASCAT 

and Sentinel-1. ESA Living Planet Symposium. 

5. Pfeil, I., Wagner, W., Vreugdenhil, M., Forkel, M., & Dorigo, W. (2020). C-band 

microwave sensors reflect the spring water uptake of temperate deciduous 

broadleaf trees. In EGU General Assembly Conference Abstracts (p. 9955). 

6. Pfeil, I., Wagner, W., Hahn, S., Quast, R., Steele-Dunne, S., & Vreugdenhil, 

M. (2021). Soil moisture and vegetation effects on the ASCAT backscatter- 

incidence angle dependence. In EGU General Assembly Conference Abstracts 

(pp. EGU21-10806). 
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7. Greimeister-Pfeil, 1., Wagner, W., Quast, R., Hahn, S., Steele-Dunne, S., & 

Vreugdenhil, M.: Disentangling soil moisture and vegetation effects on the AS- 

CAT backscatter-incidence angle relationship, EGU General Assembly 2022, Vi- 

enna, Austria, 23-27 May 2022, EGU22-5128, https://doi.org/10.5194/egusphere- 

egu22-5128, 2022. 

1.5 Other research contributions 

During the pursuit of my PhD I contributed to the following studies which have been 

published in peer review journals and conference proceedings, but are not directly 

related to the focus of my PhD and thus not included in this thesis. 

First-author conference contributions 

1. Pfeil, I. M., Hochstöger, S., Amarnath, G., Pani, P., Enenkel, M., & Wagner, W. 

(2017). Predicting Vegetation Condition from ASCAT Soil Water Index over 

Southwest India. In EGU General Assembly Conference Abstracts (p. 14216). 

2. Pfeil, I., Vreugdenhil, M., Silasari, R., Oismüller, M., Strauss, P., Wagner, 

W., & Blöschl, G. (2018). ASCAT soil moisture validation with in situ data: 

comparing the suitability of permanent and temporary sensors. In EGU General 

Assembly Conference Abstracts. 

3. Pfeil, I., Wagner, W., Dorigo, W., & Vreugdenhil, M. (2018). Satellite surface 

soil moisture trends in Austria. 8" GEWEX Open Science Conference: Extremes 

and Water on the Edge. 

4. Pfeil, I., Reuß, F., Vreugdenhil, M., Navacchi, C., & Wagner, W. (2020). Classi- 

fication of Wheat and Barley Fields Using Sentinel-1 Backscatter. In IGARSS 

2020-2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 

140-143). IEEE. 

5. Pfeil, I., Vreugdenhil, M., Camici, S., Brocca, L., Preimesberger, W., Crocetti, L., 

Reuß, F., Enenkel, M., Bavandi, A., Dorigo, W., & Wagner, W. (2020): Tracking 

Rainfall Deficits Along the Water Cycle Using Multiple EO-based Datasets Over 

Africa. ESA Earth Observation for Water Cycle Science. 
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. Greimeister-Pfeil, 1., Vreugdenhil, M., Preimesberger, W., Brocca, L., Camici, 

S., Enenkel, M., Bavandi, A., & Wagner, W. (2022): Tracking rainfall deficits 

through the water cycle using earth observation datasets: A case study in 

Senegal. In IGARSS 2022 IEEE International Geoscience and Remote Sensing 

Symposium. IEEE. 

Co-authored research articles 

. Enenkel, M., Reimer, C., Dorigo, W., Wagner, W., Pfeil, I., Parinussa, R., & 

De Jeu, R. (2016). Combining satellite observations to develop a global soil 

moisture product for near-real-time applications. Hydrology and Earth System 

Sciences, 20(10), 4191-4208. 

. Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., 

Rüdiger, C., & Strauss, P. (2018). Sensitivity of Sentinel-1 backscatter to 

vegetation dynamics: An Austrian case study. Remote Sensing, 10(9), 1396. 

. Vreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B., Hahn, S., Steele- 

Dunne, S., Pfeil, I., ... & Wagner, W. (2020). Sentinel-1 cross ratio and 

vegetation optical depth: A comparison over Europe. Remote Sensing, 12(20), 

3404. 

. Xaver, A., Zappa, L., Rab, G., Pfeil, I., Vreugdenhil, M., Hemment, D., & Dorigo, 

W. A. (2020). Evaluating the suitability of the consumer low-cost Parrot 

Flower Power soil moisture sensor for scientific environmental applications. 

Geoscientific Instrumentation, Methods and Data Systems, 9(1), 117-139. 

. Colliander, A., Reichle, R. H., Crow, W. T., Cosh, M. H., Chen, F., Chan, S., ... 

& Yueh, S. H. (2021). Validation of soil moisture data products from the NASA 

SMAP mission. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 15, 364-392. 

. Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, 

L., Greimeister-Pfeil, I., ... & Sabia, R. (2021). The International Soil Moisture 

Network: serving Earth system science for over a decade. Hydrology and earth 

system sciences, 25(11), 5749-5804. 

. Kubän, M., Parajka, J., Tong, R., Pfeil, I., Vreugdenhil, M., Sleziak, P., ... & 

Hlav£ovä, K. (2021). Incorporating Advanced Scatterometer Surface and 

Root Zone Soil Moisture Products into the Calibration of a Conceptual Semi- 

Distributed Hydrological Model. Water, 13(23), 3366. 
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8. Reuß, F., Greimeister-Pfeil, I., Vreugdenhil, M., & Wagner, W. (2021). Compar- 

ison of Long Short-Term Memory Networks and Random Forest for Sentinel-1 

Time Series Based Large Scale Crop Classification. Remote Sensing, 13(24), 

5000. 

9. Tong, R., Parajka, J., Salentinig, A., Pfeil, I., Komma, J., Szeles, B., ... & Blöschl, 

G. (2021). The value of ASCAT soil moisture and MODIS snow cover data 

for calibrating a conceptual hydrologic model. Hydrology and Earth System 

Sciences, 25(3), 1389-1410. 

10. Tong, R., Parajka, J., Szeles, B., Pfeil, I., Vreugdenhil, M., Komma, J., ... & 

Blöschl, G. (2021). The value of satellite soil moisture and snow cover data for 

the transfer of hydrological model parameters to ungauged sites. Hydrology 

and Earth System Sciences Discussions, 1-27. 

11. Wagner, W., Lindorfer, R., Melzer, T., Hahn, S., Bauer-Marschallinger, B., Mor- 

rison, K., ..., Greimeister-Pfeil, I., & Vreugdenhil, M. (2022). Widespread oc- 

currence of anomalous C-band backscatter signals in arid environments caused 

by subsurface scattering. Remote Sensing of Environment, 276, 113025. 

12. Dostälovä, A., Navacchi, C., Greimeister-Pfeil, I., Small, D., & Wagner, W. 

(2022). The effects of radiometric terrain flattening on SAR-based forest 

mapping and classification, Remote Sensing Letters, 13:9, 855-864. 

1.6 Outline 

The next three chapters each comprise one of the research articles that originated in 

the framework of this doctoral thesis. In each study, the motivation and research 

objective, the applied methods, as well as the results and conclusions are presented 

and discussed in detail. Chapter 5 provides a summary of the overall findings of the 

thesis, implications for the research field, as well as an outlook on remaining and 

new open questions. 
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Improving the Seasonal 

Representation of ASCAT Soil 

Moisture and Vegetation 

Dynamics in a Temperate 

Climate 

You can’t write a script in your mind and then 

force yourself to follow it. You have to let 

yourself be. 

— Chimamanda Ngozi Adichie 

(Nigerian writer) 

This chapter contains a reformatted version of the peer-reviewed article: Pfeil, I., 

Vreugdenhil, M., Hahn, S., Wagner, W., Strauss, P., & Blöschl, G. (2018). Improving 

the seasonal representation of ASCAT soil moisture and vegetation dynamics in a 

temperate climate. Remote Sensing, 10(11), 1788. 

The article was published in open access format and distributed under the Creative Com- 

mons Attribution License which permits unrestricted use, distribution, and reproduction 
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Abstract Previous validation studies have demonstrated the accuracy of the Metop- 

AASCAT soil moisture (SM) product, although over- and underestimation during 

different seasons of the year suggest a need for improving the retrieval algorithm. 

In this study, we analyzed whether adapting the vegetation characterization based 

on global parameters to regional conditions improves the seasonal representation 

of SM and vegetation optical depth (r). SM and r are retrieved from ASCAT using 

both a seasonal (mean climatological) and a dynamic vegetation characterization 

that allows for year-to-year changes. The retrieved SM and r are compared with 
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in situ and satellite SM, and with vegetation products (SMAP, AMSR2, and SPOT- 

VGT/PROBA-V). The study region is set in an agricultural area of Lower Austria 

that is characterized by heterogeneous land cover and topography, and features an 

experimental catchment equipped with a SM network (HOAL SoilNet). We found 

that a stronger vegetation correction within the SM retrieval improves the SM 

product considerably (increase of the Spearman correlation coefficient r, by 0.15 

on average, and r, comparable to SMAP and AMSR2). The vegetation product 

derived with a dynamic vegetation characterization compares well to the reference 

datasets and reflects vegetation dynamics such as start and peak of season and 

harvest. Although some vegetation effects cannot be corrected by the adapted vege- 

tation characterization, our results demonstrate the benefits of a parameterization 

optimized for regional conditions in this temperate climate zone. 

Introduction 

Soil moisture (SM) plays an important role in the water and carbon cycle and 

needs to be considered in a number of related applications. SM datasets are used 

in hydrological model calibration and runoff predictions (Wanders et al., 2014b; 

Wanders et al., 2014a; Brocca et al., 2010), irrigation scheduling (Ling, 2004; 

Soulis et al., 2015), rainfall estimation (Koster et al., 2004; Brocca et al., 2015), 

drought monitoring (Svoboda et al., 2002; Hao et al., 2014; Martinez-Fernändez et 

al., 2016), modeling of groundwater depletion (Rodell et al., 2009), and vegetation 

and crop growth monitoring (Wagner et al., 2013), amongst many others. These 

applications require accurate and readily available datasets on different scales. 

Over the past 30 years, remote sensing missions have emerged that observe global 

SM conditions from space (Wagner et al., 2012). The Soil Moisture Ocean Salinity 

(SMOS) (Kerr et al., 2001) and Soil Moisture Active Passive (SMAP) (Entekhabi et al., 

2010) missions are dedicated SM missions operating in L-band, providing global 

passive SM observations. Another sensor that can be used for the retrieval of global 

SM, though not designed for this purpose, is the Advanced Microwave Scanning 

Radiometer 2 (AMSR2), a passive multi-frequency instrument on board GCOM- 

W1 (Parinussa et al., 2015). An active C-band sensor suitable for SM retrieval is the 

Advanced Scatterometer (ASCAT) on board the Metop satellites. 

At the Vienna University of Technology (TU Wien), a change detection algorithm 

has been developed to retrieve SM from the scatterometers on board the European 

remote sensing satellites (ERS) (Wagner et al., 1999b), which was later adapted and 
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improved for ASCAT (Naeimi et al., 2009b). Many studies have evaluated the ASCAT 

SM product over different regions. High correlations between ASCAT and in situ data 

have been observed in the Bibeschbach catchment in Luxembourg (Matgen et al., 

2012), in southwestern France (Albergel et al., 2009) and for selected networks 

across Europe (Brocca et al., 2011). However, weaknesses in the representation of 

the seasonal cycle in ASCAT SM have been described: Wagner et al. (2014) observed 

ASCAT SM values in the summer months that are consistently higher than SM values 

from SMOS and in situ stations in two watersheds in the United States. Three 

possible reasons were discussed which can lead to high SM in these catchments: 

Under very dry conditions, sub-surface scattering can increase the backscatter, and 

consequently the derived SM (Gruhier et al., 2010; Wagner et al., 2013). On the 

other hand, wet soil surfaces and wetlands can also lead to enhanced backscatter. A 

third possible reason is a too weak vegetation correction. Barbu et al. (2014) found 

that, over France, temporal correlations between the satellite data and modeled SM 

increase by 0.07-0.09 when applying a seasonal correction to the SM values instead 

of a bias correction that is static throughout the year. This is due to low ASCAT SM 

values in May, which are adjusted by the seasonal correction. 

The TU Wien SM model uses the multi-angle viewing capacity of the ASCAT sensor 

to correct for vegetation (Hahn et al., 2017). It has been shown that the vegetation 

characterization can be converted into vegetation optical depth (r,) (Vreugdenhil 

et al., 2016), which is an indicator of the vegetation water content, both the leaf and 

woody components of the total above-ground biomass (Liu et al., 2011). Similar to 

SM, vegetation is an important variable in the water and carbon cycle. It has been 

shown that 7 from microwave remote sensing is suitable for continuously monitoring 

vegetation dynamics (Liu et al., 2011; Tian et al., 2016), and complements datasets 

from optical satellites such as the normalized difference vegetation index (NDVI) 

and leaf area index (LAI) (Liu et al., 2011). 

The aim of this study was to improve both the ASCAT SM and r retrievals by optimiz- 

ing model parameters linked to the vegetation characterization. The representation 

of the seasonal cycle in the ASCAT SM and r datasets is assessed against SM and r 

from different satellite and in situ datasets. Since the seasonal bias was observed 

in temperate climate regions, a region in Lower Austria was chosen as a represen- 

tative area for this analysis. Since 2013, an in situ SM network is operated in an 

agricultural catchment in this area. Section 2.2 gives an overview of the study 

area, followed by a description of datasets in Section 2.3. The applied methods are 

described in Section 2.4. Section 2.5 describes the results of the study for SM and r, 

which are discussed in Section 2.6. 
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Fig. 2.1: Location of the Hydrological Open Air Laboratory (HOAL) in Lower Austria. 

Study site 

The study site is situated in Petzenkirchen, Lower Austria (Figure 2.1). A Hy- 

drological Open Air Laboratory (HOAL) is operated in an agricultural catchment, 

providing extensive field data used for investigating catchment evapotranspiration, 

runoff processes, sediment transport, nutrient dynamics, contaminant pathways 

and spatial patterns in SM (Blöschl et al., 2016). The area is characterized by a 

humid climate with higher precipitation in summer than in winter. From 1990 to 

2014, a mean annual temperature of 9.5 °C and a mean annual rainfall of 823 mm 

year“! have been observed. Eighty-seven percent of the total area of the HOAL is 

arable land; the remaining parts are forests (6%), pasture (5%) and paved areas 

(2%). Two main crop growing seasons are found in the HOAL: winter crops such 

as wheat, barley and rapeseed are usually planted in autumn and harvested in 

July. Summer crops (in the HOAL mainly corn) are usually planted in April and 

harvested in September/October. Between the harvest and seeding of the main crops, 

green fertilizers are often planted on the fields. Depending on the weather, seeding 

and harvest dates can vary by a few weeks from year to year. The HOAL catchment 

is classified as "Cropland, rainfed" by the ESA CCI land cover dataset (Bontemps 

et al., 2013), but it also features evergreen and deciduous forests and grasslands. 

Figure 2.2 (left) shows the area that is (approximately) covered by the ASCAT, 

AMSR2 and SMAP 3-dB footprints. This area is considerably larger than the catch- 

ment, but has similar topographic conditions and land cover as the HOAL. The ESA 
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2.3.1 

Tab. 2.1: Study area characteristics. 

  

  
HOAL Sensor Footprints 

Location (center) 48°9'N 15°9’E approx. 48°9'N 15°9’E 

Extent 66 ha 490-1800 km? 

Elevation 268-323 ma.s.l. 200-900 m a.s.l. 

Mean slope 8% 8.5% 

Arable land 87% approx. 60% 

SM stations 31 
  

  

Fig. 2.2: Schematic overview of the 3-dB sensor footprints of ASCAT, SMAP and AMSR2 

(left); and distribution of permanent and temporary stations in the HOAL catch- 
ment (right). Map data ©2018 Google. 

CCI land cover dataset for the ASCAT, SMAP and AMSR2 footprints is shown in 

Figure 2.3. The dominant land cover classes found in the study area are rainfed 

cropland, evergreen needle leaf and deciduous broad leaf forest as well as grasslands. 

More details about the study area are listed in Table 2.1. 

Datasets 

In Situ Soil Moisture 

Since 2013, an in situ SM network has been operated in the Hydrological Open Air 

Laboratory (HOAL), which measures SM at different depths (5, 10, 20, and 50 cm) 

every 30 min using the Time Domain Transmission (TDT) method. Twenty perma- 

nent stations are installed at selected locations that represent the different hydrologic 

conditions and land cover types present in the catchment. Additionally, 11 stations 
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Fig. 2.3: ESA CCI land cover in the 3-dB sensor footprints of ASCAT, SMAP and AMSR2. 

are installed temporarily inside agricultural fields, which are removed during farm- 

ers’ field management practices (planting, harvesting, ploughing, etc.). For this study, 

the time series of the upper sensors (5 cm) of the in situ stations, averaged over the 

entire catchment, are used. The network is in the following referred to as HOAL 

SoilNet. Figure 2.2 (right) shows the distribution of the permanent and temporary 

SM stations in the catchment. 

Satellite Data 

ASCAT 

Backscatter measurements from the ASCAT sensor on board Metop-A are available 

since January 2007 and used to retrieve SM and 7. with the TU Wien model (Wagner 

et al., 1999b; Naeimi et al., 2009b; Hahn et al., 2017; Vreugdenhil et al., 2016). A 

schematic overview of the semi-empirical TU Wien modeling scheme is provided in 

Figure 2.4 (top). 

The observed backscattering coefficient o° is assumed to depend only on the inci- 

dence angle (0), degree of saturation (©,), and vegetation cover (V). Wagner et al. 

(1999c) found that both a change in ©, and in V lead to an increased 0°, and that 

the effect of V is typically more pronounced at high incidence angles (Figure 2.4, 

bottom panel). At two incidence angles, seasonal vegetation changes are assumed 

to not affect the observed 0°; those are the so-called dry and wet cross-over angles 

(ar, and Ocı), which were empirically set to 25° and 40° globally (Naeimi et al., 

2009b). The incidence angle dependency of 0° is described by a second-order Taylor 

polynomial in the TU Wien model. The first and second derivatives of the o°-0- 

relationship are referred to as slope (o’) and curvature (o”). Those can be used to 

estimate the backscatter at any arbitrary incidence angle (Hahn et al., 2017). In the 
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TU Wien model, backscatter observations are normalized to a reference incidence 

angle of 40° to remove the incidence angle dependency (Wagner et al., 1999c); this 

backscatter time series is termed o%y- 

At Ogry and Oct, where, as mentioned above, the observed backscatter is assumed to 

be independent of V, the lowest and highest 10% of backscatter measurements are 

estimated and averaged to obtain the historically “driest” and “wettest” backscatter 

values. These two values are then transferred back to the reference incidence angle 

of 40° using o’ and o”. Due to o’ and 0” varying from day to day, time series instead 

of single values for the driest and wettest backscatter values are obtained. These time 

series are termed the dry and wet references (o/,, and o},.,). They describe the 

effects of different static and dynamic parameters (e.g., soil roughness, soil texture, 

and V) on the backscatter observations. Since soil roughness and soil texture are 

assumed to be static over the retrieval period, dynamics in o7,, and o},., are an 

indicator of the vegetation state (Wagner et al., 1999a). The difference between o%,., 

and oy, also called the sensitivity, determines the dynamic range of the retrieved 

SM dataset. A small difference leads to a low dynamic range and consequently 

higher noise in the retrieval (Naeimi et al., 2009b). 

In a final step of the TU Wien model, 4, is scaled between o,,,,, and o7,., to obtain a 

SM time series that is corrected for the effect of vegetation (see Equation 2.1). 

o o 
T10 — Odry 

0, = @1 © o 
Twet ~ Odry 

ASCAT 7 (hereafter referred to as 7,) is derived from Für, and o7, using a water 

cloud model (Vreugdenhil et al., 2016). SM and 7, are retrieved at a spatial 

resolution of 25 km for every 1-3 days and sampled on a discrete global grid with 

regular 12.5 km point spacing within the TU Wien model (Wagner et al., 1999b; 

Naeimi et al., 2009b; Vreugdenhil et al., 2016). 

Traditionally, the vegetation state is modeled using seasonal parameters, i.e., one value 

for each day of the year, and not accounting for year-to-year variations in the vege- 

tation cycle (referred to as seasonal vegetation characterization VC'\,..,). In times of 

limited backscatter data availability, e.g., the scatterometers on board ERS-1 and 

ERS-2 (ESCAT), this was necessary to obtain robust estimates of the incidence angle 

dependency of the observed backscatter. Since the operation of the ASCAT sensor, 

which has a much higher temporal revisit rate than its predecessor ESCAT, this is no 

longer necessary. Melzer (2013) introduced a Kernel smoother in order to obtain 

dynamic parameters not only for each day of the year, but for all years individually. 
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This is referred to as dynamic characterization (V' Cy,,) in the following. Hahn 

et al. (2017) showed the robustness of the dynamic characterization globally and 

Vreugdenhil et al. (2017) showed its sensitivity to inter-annual vegetation dynamics 

over Australia. 

AMSR2 

The passive radiometer AMSR2 on-board GCOM-W1 was launched by the Japan 

Aerospace Exploration Agency (JAXA) in 2012. Similar to its predecessor AMSR-E 

(Advanced Microwave Scanning Radiometer on the Earth Observing System), it ob- 

serves brightness temperature at C- and X-band. In this study, SM and r derived with 

the Land Parameter Retrieval Model (LPRM) algorithm (version LPRMvO05) (Owe 

et al., 2008a; Parinussa et al., 2015) were selected as reference datasets. To be 

comparable to the ASCAT datasets, only C-band observations are used in this study. 

The AMSR2 datasets are provided daily at a spatial resolution of 62 km x 35 km 

(C-band). 

Kim et al. (2015) compared AMSR2 SM derived with the LPRM algorithm to field 

measurements from COSMOS stations over the USA and found consistent temporal 

patterns of the two datasets, although AMSR2 tended to overestimate SM (Zreda 

et al., 2012). Cho et al. (2017) showed AMSRZ2 to provide a valuable successor to 

the AMSR-E mission in Australia. More on the validation of the LPRM AMSR2 SM 

product can be found, e.g., in Kim et al., 2016; Anoop et al., 2017; Yee et al., 2017. 

To the authors’ knowledge, only a brief comparison of the LPRM AMSR2 7 (later 

referred to as 7.2) to other r products has been carried out by Cuietaal. (2017); 

r derived from AMSR-E using the LPRM algorithm has however been evaluated 

against the widely used NDVI (Liu et al., 2011), applied in agricultural drought 

monitoring studies (Han et al., 2012) and validated in the Sahel (Tian et al., 2016). 

Furthermore, it has been applied to the monitoring of global change in the total 

above ground vegetation water content and biomass over various ecosystems and to 

the attribution of observed changes to environmental and human drivers (Liu et al., 

2013). 

SMAP 

The SMAP L-band radiometer measures brightness temperature with a revisit time 

of 1-3 days globally at a spatial resolution of approximately 40 km (Entekhabi et al., 

2010). The SM product is derived by inverting a r-w-model (Schmugge et al., 1974; 
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Shutko, 1986; Njoku et al., 1996). Here, the SMAP L3 passive product, version V004, 

has been selected for a comparison with ASCAT datasets, which is available from 

2015 onward. Since SMAP operates in L-band, it is assumed to penetrate deeper into 

the vegetation than higher frequency bands, and is less affected by radio frequency 

interference (RFI) (Konings et al., 2017). 

A validation of the SMAP SM products was carried out by Colliander et al. (2017), 

who found that, over 18 core validation sites, the passive product meets the target 

unbiased root mean square error of 0.04 m?/m? volumetric SM. A comprehensive 

assessment of the performance of the passive SM product can be found in Chan 

et al., 2016. The SMAP V004 product includes estimates of vegetation water content 

(vWC), which is a combined estimate from NDVI (canopy water content) and 

past field observations and LAI (stem water content) (Chan et al., 2013). For the 

comparison with r from ASCAT and AMSR2, SMAP vegetation opacity (VO; later 

referred to as r,) is used, which is equivalent to the VWC product multiplied by 

a constant scaling factor. To the authors’ best knowledge, the r, product has so 

far only been evaluated by Cui et al. (2017); however, an alternate approach for 

the retrieval of r from SMAP observations using the multi-temporal dual channel 

algorithm has been applied and evaluated by Konings et al. (2017). 

SPOT-VGT and PROBA-V 

SPOT-VGT (1999-May 2014) and its successor PROBA-V (June 2014-ongoing) are 

global vegetation monitoring missions operating in the optical domain (Dierckx 

et al., 2014). In this study, leaf area index (LAI) from the satellites is included as 

a reference for the evaluation of 7.. The CCI land cover dataset (Bontemps et al., 

2013) is used to classify the SPOT-VGT/PROBA.V pixels and to obtain LAI time series 

for croplands, forests and grasslands. 

Pre-Processing 

In situ measurements from 20 permanent and 11 temporary sensors installed at 5 

cm depth are averaged to a mean in situ SM time series. Frozen conditions and 

surface snow are masked using average Layer 1 soil temperature (0.00-0.10 m), 

average surface temperature and snow water equivalent data from the global land 

data assimilation system (GLDAS; version 2.1) (Rodell et al., 2004). The same 

masking is applied to the satellite datasets. The soil penetration depth of active 

C-band systems such as ASCAT ranges from 0.5 and 2 cm under normal, not too 
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dry conditions; passive systems observe the brightness temperature emissions which 

originate from the top 0-2 cm (e.g., C-band sensor AMSR2) to 3-5 cm of the soil 

(e.g., L-band sensor SMAP) (Bartalis et al., 2007; Naeimi et al., 2009b; Entekhabi 

et al., 2010). To make the satellite and in situ datasets comparable, a soil water 

index (SWI) (Albergel et al., 2008) with a small time scale parameter (7 value of 

two days) is applied to all satellite SM time series. Thus, the satellite SM values 

better comply with the measurement depths of the HOAL SoilNet stations (5 cm). 

Methods 

Over- or underestimation of SM during spring or summer are likely to be caused by 

an insufficient correction of vegetation effects on the backscattered signal. The veg- 

etation correction applied in the TU Wien SM retrieval algorithm depends on two 

components: the choice of cross-over angles and the use of a seasonal or dynamic 

vegetation characterization. Similar to the vegetation correction needed for the 

retrieval of SM, 7. is derived from the dry and wet references. Thus, an improvement 

of the vegetation characterization should lead to an improvement of both the SM and 

7, datasets. Figure 2.5 shows 07, and o7, for two selected pairs of incidence angles 

(10°/30° and 25°/40°) and both VC',..s (top) and VC4y„ (middle). Metop-A ASCAT 

backscatter is displayed after its normalization to an incidence angle of 40° (04,)- 

To enable a comparison of the time series with meteorological data, air temperature 

and rainfall and snowfall rates from GLDAS are displayed (bottom). 

Type of Vegetation Characterization 

Originally, and in the latest released ASCAT SM product (H111), yearly climatologies 

are used for correction, i.e., every day of the year undergoes the same correction 

each year (seasonal vegetation correction, V Cs; Figure 2.54). The approach 

presented by Melzer (2013), Vreugdenhil et al. (2016) and Hahn et al. (2017) 

included inter-annual variations in the vegetation dynamics (V C4yn; Figure 2.5b). 

In this study, the effect of applying V C’y,. instead of VC,.., was analyzed. 
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Fig. 2.5: Dry and wet reference derived from Metop-A ASCAT using two different pairs of 
cross-over angles (10°/30° and 25°/40°) and seasonal (a) and dynamic vegetation 

characterization (b). Additionally, the backscatter normalized to an incidence 

angle of 40° (0%,) is displayed. (c) GLDAS air temperature, rainfall rate and 
snowfall rate for the study region. 
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Selection of Cross-Over Angles 

Due to the transferring of the driest and wettest observed values from 0,,, and 

O,,cı back to the reference incidence angle of 40°, the amplitude of the vegetation 

characterization is determined by the choice of the dry and wet cross-over angles; 

lower cross-over angles lead to a larger amplitude of the vegetation characterization, 

i.e., the model assumes a stronger effect of vegetation (Figure 2.5). In the following, 

this is referred to as a stronger vegetation characterization. Wagner (1998) found 

that the cross-over angle of dry surfaces is lower than for wet surfaces. Globally, 

the cross-over angles are set to the empirically determined values of 25° (dry soil) 

and 40° (wet soil; compare Figure 2.4, bottom) (Naeimi et al., 2009b). To optimize 

the retrieval to regional conditions, the effect of modifying the cross-over angles was 

analyzed in this study. 

Evaluation of the Results 

The effect of changing the cross-over angles and selecting VCycus Or VCayn was 

analyzed for both SM (Section 2.5.1) and r (Section 2.5.2). For SM, HOAL in situ 

data were used as a reference, as well as SM from AMSR2 and SMAP. ASCAT 7 (7,) 

was compared to r from AMSR2 (7.2) and SMAP (7,) as well as to LAI retrieved 

from SPOT-VGT/PROBA.V observations. 

For SM, the evaluation was based on the Spearman and Pearson correlation coeffi- 

cients (r, and r,) as well as on the unbiased root-mean-square deviation (ubRM SD). 

In the case of r, the focus is given to the visual interpretation of the time series, 

since high r values are mainly associated with smooth 7 curves that approximate 

the mean yearly cycle, but do not necessarily contain interesting features coming 

from different crop types (see Section 2.5.2). As a reference for the visual interpre- 

tation, photos of the HOAL catchment, information on the crop types, planting and 

harvesting dates as well as meteorological data (see Figure 2.5c) were used. 

Although the analyzed spatial scales are considerably different (local in situ network 

vs. sensor footprints of multiple km?), we consider the HOAL catchment appropriate 

for the comparison with satellite data due to the similar land cover types and 

topographic conditions described in Section 2.2. 
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Fig. 2.6: Spearman correlation coefficient (r,) between different retrievals of ASCAT SM 

and SMAP (circles), AMSR2 (crosses) and HOAL in situ SM (triangles) for 2012- 
2017. ASCAT SM was retrieved using: (a) VC',eas; and (b) VCayn- 

Results 

Soil Moisture 

In the following, retrievals of ASCAT SM using different settings for the above 

described parameters are compared to satellite and in situ SM. 

Cross-Over Angle Optimization 

Figure 2.6 shows r, between different versions of ASCAT SM and the reference 

datasets. r, was calculated for the available period of the respective datasets: 2015- 

2017 for SMAP, 2012-2017 for AMSR2, and 2013-2017 for the in situ data from the 

HOAL catchment. For all datasets and for both V C',..s and V Cayn, higher correlation 

coefficients (up to 0.8) are obtained with a stronger vegetation correction, i.e., lower 

cross-over angles than the original pair of 25°/40°. Only when comparing with SMAP, 

r, increases with increasing cross-over angles when correlating it with dynamically 

corrected ASCAT SM (Figure 2.6b). All correlations are highly significant (p < 

0.01). 

The sensitivity to SM was determined by the selection of cross-over angles. In general, 

lower cross-over angles (dur, = 5°-15°, Oycı = 30°) lead to a lower dynamic range 

Set, because it is expected that vegetation has a stronger effect o between o, and o}, 
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on the overall backscatter intensity. However, this leads to a higher noise in the 

SM retrieval, because the dynamic range of 0}, and o},., defines how sensitive the o 
dry 

(remaining) backscatter signal is to changes in soil moisture. Furthermore, low cross- 

over angles can create more backscatter outliers (oo < 04,, and ao > o700, 

which are typically corrected to 0% (-25% > SM < 0%) and 100% (100% > SM < 

125%). However, extreme outliers (i.e., SM < —25% or SM > 125%) are marked as 

invalid SM estimates and therefore set to NaN. Due to these characteristics of the 

algorithm, the cross-over angle pair of 10° and 30° is considered the optimal choice 

for the study region, although other cross-over angle pairs lead to higher correlation 

coefficients (Figure 2.6). In the following, all results are shown for the original and 

optimized cross-over angles pairs of 25°/40° and 10°/30°. 

Quantitative Comparison 

As stated by Wagner et al. (2013), validation results of different types of datasets 

should also be interpreted in a relative context, for example by comparing different 

satellite datasets with the same in situ dataset. Therefore, r, and r,, as well as the 

ubRMSD were calculated between each of the satellite datasets and the HOAL 

SoilNet time series (Figure 2.7). For each satellite-in situ pair, the time period for 

which both datasets are available was used; the time periods are limited by the 

availability of HOAL SoilNet data (from August 2013 onward) and SMAP data (from 

April 2015 onward). SMAP and AMSR2 show r, and r, of 0.77 and 0.78 (SMAP) 

and 0.71 and 0.69 (AMSR2) with the in situ data. For the respective periods, ASCAT 

and in situ SM show correlations ranging from 0.57 to 0.75, with higher correlation 

coefficients clearly associated with a stronger vegetation correction (lower cross-over 

angles). The ubIRM SD between SMAP and AMSR2 and the in situ data is 0.034 and 

0.038, and ranges from 0.036 to 0.048 for the different ASCAT datasets. Using cross- 

over angles of 10° and 30° leads to ASCAT datasets that have a smaller ubRMSD 

and that are more similar to SMAP and AMSR2. Figure 2.7 also shows that the usage 

of VOscas Or VCyyn has a smaller effect on the metrics than the choice of cross-over 

angle pair. These results show that in the current SM product, the cross-over angles 

are not optimal and the applied vegetation correction thus not ideal for the study 

area. 

In a next step, r, has been calculated between the in situ and satellite datasets 

for different seasons (spring: March-June; summer: July-September; and autumn 

and winter: October-February). Figure 2.8 shows r, and the change obtained from 

using different cross-over angle pairs. In the spring months, r, between ASCAT and 

HOAL increases by 0.16 (VC’...s) and 0.12 (VCyyn) when using lower cross-over 
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Fig. 2.7: Spearman and Pearson correlation coefficients (r, and r,) and ubRMSD between 
HOAL in situ SM and different satellite SM datasets. The metrics have been 
calculated for 20 August 2013 (limited by availability of HOAL SoilNet data) and 
1 April 2015 (limited by availability of SMAP data) until the end of 2017. 

angles, i.e., a stronger vegetation correction. In summer, only little (V C’scas) or 

even negative changes (V C4,n) are achieved; in autumn, both a stronger V C’scas 

and V Cy,,, improve ASCAT with respect to the HOAL SoilNet (+0.18 and +0.09, 

respectively). Over the entire period, the change of r, is positive (+0.15 on average) 

when applying a stronger vegetation correction, and the HOAL-ASCAT r, becomes 

comparable to the HOAL-AMSR2 and HOAL-SMAP r,. Whether the correlation 

improves or deteriorates in different seasons probably depends on several reasons. r, 

has been calculated over up to six years, all of which experienced different weather 

conditions. When looking at individual years, larger improvements are made in 

2015 and 2017 (rather dry years) than in 2014 and 2016 (rather wet); in 2014 

and 2016, r, also increases, but is significantly higher when using VC’yeas (not 

shown). Such differences between the years are also observed in the 7, time series 

(see Section 2.5.2). A possible reason could be different temperature and rainfall 

conditions, leading to differences in the vegetation growth that are not sufficiently 

represented by the vegetation correction. 

Qualitative Comparison 

Finally, we examined the time series obtained from different model parameters 

(Figure 2.9; a moving mean with a 14-day window has been applied on all datasets 

for better readability). In this figure, it can be seen that, in all years, a stronger 

vegetation correction for the SM retrieval (blue solid line) leads to a seasonal rep- 

resentation of SM in spring and summer that is closer to the reference datasets, 

compared to the original SM product (dotted black line). However, not the en- 

tire effect is corrected this way; ASCAT SM is still—in some years (e.g., 2014) 
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Fig. 2.8: Spearman correlation coefficient (r,) between HOAL in situ SM and different 

satellite SM datasets for different seasons. 

considerably—lower in spring than the other datasets. This will be further discussed 

in Section 2.6. 

Apart from the mostly positive effect on the seasonal representation, we observe a 

negative side effect that can occur in years with high vegetation activity. In the study 

area, 2015 was a very warm and dry year. When choosing V Cy,, and cross-over 

angles of 10° and 30°, the effect of the vegetation correction may be so strong during 

summer that no SM can be retrieved anymore, leading to a data gap (see Figure 

2.9b, solid black line in July-August 2015; also visible in Figure 2.5b). 

Another issue to be considered are the penetration depths of the C- and L-band 

sensors (upper few centimeters of the soil), compared to the installation depth 

of the in situ sensors (5 cm, i.e., deeper than satellite sensors penetrate under 

normal, not extremely dry conditions). Although this discrepancy is reduced by the 

application of the SWI with a 7’ value of two days, there can still be effects such as a 

faster drying out of the soil that is only seen by satellites but not measured by the 

deeper in situ sensors. Consequently, lower SM values observed by satellite sensors 

do not necessarily mean erroneous retrievals, but can simply be caused by different 

reference depths. 

2.5 Results 29



2.5.2 

30 

Vegetation Optical Depth (r) 

To evaluate the performance of 7. in the study area, it is compared to r, and 7,9, 

and LAI from SPOT-VGT/PROVA-V, resampled to the ASCAT footprint. 

Quantitative Comparison 

In a first step, linear regressions of LAI and satellite 7 datasets have been calcu- 

lated (Figure 2.10). The steeper slopes (0.04-0.05) observed with 7.2 and r, (right 

column) are in line with the findings of Lawrence et al. (2014), who observed a 

slope of 0.05 between MODIS LAI and r from SMOS. The slope of 7, and LAI is 

smaller, whereas larger slopes (0.02) for 7. are obtained when applying a V’O'scas 

(left column). Using a VC4y. (middle column) leads to smaller slopes and more 

outliers, especially when applying a stronger vegetation characterization. A r, of 

0.79 and 0.75 is observed for r time series with small amplitudes and no inter- 

annual variation (r,, and r, derived with a V C,.,,). If inter-annual variations are 

included in a product, r, decreases significantly to values ranging from 0.29 to 

0.55 (r from AMSR2 and r, derived with a VC‘y,„), but corresponds to correlation 

values found by Jones et al. (2011) between MODIS LAI and r from AMSR-E in 

temperate climates. R? and r, suggest that V’Cyyn does not add value, but deterio- 

rates the 7. product. However, effects caused by sensitivities to different vegetation 

characteristics of optical and microwave sensors, which lead to time lags and varying 

dynamics between the time series (Liu et al., 2011; Jones et al., 2013), are neglected 

or wrongly reflected by r,. Therefore, a qualitative analysis of r and LAL is given in 

the following. 

Qualitative Comparison 

Figure 2.11 shows the different datasets for 2012-2017. In the left column, 7, 

is shown as yearly climatologies, i.e., no inter-annual variations (Vreugdenhil et 

al., 2016); the right column shows 7, calculated as described by Melzer (2013) 

and Vreugdenhil et al. (2017) (V C4yn). The 7, time series retrieved with original 

(25°/40°) and modified (10°/30°) cross-over angles are displayed as dashed and solid 

lines, respectively. As can be seen in Figure 2.11, a change to lower cross-over angles 

leads to a larger range of values, i.e., a stronger vegetation signal. The value range 

ofallr and LAI time series is relatively similar over all years, but some inter-annual 

dynamics are visible, e.g., a variable number of main peaks and different timings of 

those peaks (Figure 2.11). This supports the implementation of dynamic parameters 
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better readability. 
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for the retrieval of 7, in the study area. The 7, time series shows significant inter- 

annual differences, which are likely to reflect different weather conditions. In the 

study area, 2015 was a warm and dry year, thus encouraging early vegetation growth 

and leading to a high peak in r.. In contrast, 2016 was rather wet, with light and 

heavy rainfalls the whole year. This is reflected by a relatively flat 7, time series with 

some distincet ups and downs throughout the year. 

For an interpretation of signal dynamics between years and during each growing 

season, we examine the reference datasets. Two main peaks occur around June and 

September in r,, which does not include inter-annual variations, and in 7.2 in every 

year. Those two peaks coincide with the peak of season in winter crops (first peak) 

and summer crops (second peak) and their harvest shortly after. The LAI dataset 

also shows these two peaks, however not as pronounced in every year. In most of the 

years, the rise in spring occurs later, but increases more quickly than the microwave 

datasets. Recurring features can also be identified in the 7, time series: each year, 7. 

starts to rise in February, shows one peak in April/May, one peak around June/July 

and one peak in August/September, and then drops again in autumn. The two peaks 

in June/July and August/September coincide with those visible in the reference 

datasets, however slightly shifted in time compared to LAI. This is likely due to the 

sensitivity of the different variables to different vegetation characteristics; since LAI 

is more sensitive to the green canopy, it observes peaks earlier than r, which is more 

sensitive to the water content in the vegetation, including the woody parts of the 

canopy (Jones et al., 2011; Jones et al., 2012; Vreugdenhil et al., 2017). To test this 

for the datasets used in this study, correlations were calculated between the datasets 

after introducing negative and positive temporal shifts of 0-12 weeks. Figure 2.12 

shows the results of the analysis, which confirm that highest r, values are obtained 

when applying a positive temporal shift of two weeks (7,) and 6-8 weeks (7,, 7.2) 

to the LAI dataset. The smaller shift between LAI and 7, can be explained by the 

fact that r, is based on NDVI, which has been found to have a smaller phase shift 

to LAI than r in several land cover regions (Jones et al., 2011). Between 7, and 

Ta2, Ts is highest with no introduced time shift. Similar results are obtained for r,, 

except when correlating it with 7, retrieved with cross-over angles 10° and 30° and 

using V Cscas. However, all r, values obtained between those two time series with 

positive temporal shifts of 0-6 weeks lie within a range of 0.10, and the maximum 

r, value is not as distinct as in other dataset combinations. 
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Land Cover Effect 

Land cover in the study region is mostly cropland, but it also features grasslands 

and forests (mostly evergreen and mixed evergreen/deciduous). Figure 2.13 shows 

the LAI time series of up to three selected only-forest (MF, DF, EF), only-cropland 

(C) and only-grassland (G) areas, as well as the 7, time series of the 25 km ASCAT 

footprint over the study region. The three selected cropland LAI time series (Figure 

2.13, bottom left) show different peaks due to the planted crop type (winter crops 

vs. summer crops). As can be seen in the figure, dynamics in LAI and 7, correlate 

well, and, as expected, features from all selected land cover types can be found in 

the 7. time series of the study area. Differences in the absolute values of 7. between 

the years might be caused by different temperature and rainfall conditions. 

Every year, a peak is visible in the 7, signal around April/May (Figure 2.11, right col- 

umn). This peak is not present in LAI (Figures 2.11 and 2.13) and cannot be 

explained by a particular change in vegetation water content or biomass. To in- 

vestigate a possible effect of remained snow or wet snow, we looked at photos 

taken in the HOAL catchment and analyzed meteorological data from GLDAS (air 

temperature, rainfall and snowfall). However, the GLDAS snowfall rate was zero in 

most years (see Figure 2.5c) and no snow was detected on the photos during the 
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periods of interest. Snow can thus most likely be excluded as a reason for the visible 

peak in spring. A likely interpretation of the peak could be changes in the scattering 

behavior of the vegetation or bare surface due to structural changes during this 

period. The size of the peak varies over the years; in 2014, it is very high and 

wide, whereas, one year later, it is hardly present. The origin of those peaks and 

their amplitudes are still under investigation. Because we also see inconsistencies in 

spring in SM, this issue will be addressed in section 2.6. 

Discussion 

This study analyzed the effect of a regionally optimized parameterization of veg- 

etation in the TU Wien algorithm for both the SM and r. products derived from 

Metop-A ASCAT backscatter. The analysis of SM shows that, in the study area, 

a stronger vegetation correction than the globally optimal parameter is needed. 

Correlations with reference datasets increase, and seasonal differences such as an 

underestimation of SM in spring and an overestimation in summer are mitigated; 

however, they are not fully corrected. The application of V’C'ycas Or V’ C4y. does not 

affect the SM dataset as much as the choice of the cross-over angles. 

To transfer these findings to other regions in temperate climates and test if the 

problems described in Section 2.1 are mitigated by the application of a stronger 

vegetation correction, correlations and the ubI? M SD between ASCAT and in situ SM 

have been calculated for the Little River watershed (Georgia, United States; (Wagner 

et al., 2014)), an area in southwest France (Barbu et al., 2014) and a catchment 

in western Denmark (hydrological observatory HOBE; (Jensen et al., 2011; Bircher 

et al., 2012)). At all sites, r, and r, increase from 0.64 to 0.71 on average when 

applying a stronger vegetation correction; the average ubRMSD decreases from 

0.031 to 0.028. Table 2.2 shows the metrics for every location. The metrics have been 

calculated for the period 2012-2017 (LR and southwest France) and 2012-2015 

(HOBE), and periods with negative temperatures or snowfall have been masked out, 

as described in Section 2.3.3. 

When analyzing the r, time series, the added value of a dynamic vegetation pa- 

rameterization becomes obvious. Inter-annual differences due to different weather 

conditions are visible, and vegetation dynamics such as start and peak of season and 

harvest of different crop types are reflected in the signal. As for SM, discrepancies be- 

tween ASCAT and the reference datasets are observed in spring. This discrepancy in 

spring, where the effect of vegetation is over- and SM underestimated, is currently 
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Catchment ASCAT Version r, 7, ubRMSD 

LR 25/40, VÜscas 0.60 0.58 0.031 

LR 10/30, VCsus 0.68 0.68 0.025 

LR 25/40, VCuyn 0.61 0.59 0.030 

LR 10/30, VCayn 0.64 0.63 0.026 

SW France 25/40, VCsas 0.62 0.64 0.035 

SW France 10/30, VOsas 0.67 0.69 0.033 

SW France  25/40, VCuyn 0.64 0.67 0.034 

SW France 10/30, V Cayn 0.70 0.72 0.032 

HOBE 25/40, VOscas 0.68 0.71 0.029 

HOBE 10/30, VCsus 0.77 0.79 0.026 

HOBE 25/40, VCuyn 0.70 0.72 0.028 

HOBE 10/30, VCam 0.79 0.78 0.025 
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Fig. 2.14: Average annual behavior of the slope of the «°-# relationship. The peak in spring 
is highlighted in red. 

being investigated. In the course of the SM retrieval, the dependency of o° on the 

incidence angle 0 is modeled as a second-order Taylor polynomial (see Section 2.3.2). 

The first component, i.e., the slope of the o°-0 curve (0’), decreases (in absolute val- 

ues) with vegetation growth, since volume scattering from the vegetation increases 

0° at larger incidence angles (Figure 2.4, bottom). Figure 2.14 shows the time series 

of o’. In addition to the main seasonal cycle of vegetation growth, we also see a peak 

in spring (Day of Year 85-130). This means that, during that time, the backscattered 

component is less dependent on the incidence angle. Behavior such as this is com- 

monly associated with vegetation growth, but can in this case also be due to changes 

in the structure of the vegetation (e.g., crops growth changes from grass-like to 

vertical), or due to SM-induced alteration of 0’. Structural differences would induce 

a change in the single scattering albedo (w), i.e., in the scattering and absorption 

behavior of the vegetation layer. At the moment, w is considered to be static over 

time in the TU Wien retrieval algorithm. The same assumption is made in the 

retrieval algorithm of 7.2, where we also see peaks in April. Assuming that w shows 

a seasonal cycle and the effect of considering this cycle in the ASCAT SM and 7, 

retrieval should be explored in further research. 

Conclusions 

We analyzed the retrieval of surface soil moisture (SM) and vegetation optical depth 

(r) from Metop-A ASCAT over a region in Lower Austria. Both SM and r have been 

retrieved from ASCAT backscatter values using a seasonal and a dynamic vegetation 

characterization, which takes into account year-to-year changes. Furthermore, the 

effect of adjusting parameters related to the strength of the vegetation characteriza- 
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tion has been analyzed. We found that changing the empirically identified cross-over 

angles used for the global SM retrieval according to regional conditions improves the 

SM retrieval considerably (increase of r, by 0.15 on average, and r, and ubRMSD 

comparable to SMAP and AMSR2). The vegetation product derived with a dynamic 

vegetation characterization compares well to r observed by AMSR2 and SMAP, and 

LAI from SPOT-VGT/PROBA.V. Vegetation dynamics such as start and peak of season 

and harvest are reflected in the signal, however partially shifted in time, which 

reflects the different sensitivities of LAI and r. The results highlight the benefits of 

a parameterization optimized to regional conditions for an area in the temperate 

climate zone. 
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Abstract Scatterometer observations over land are sensitive to the water content 

in soil and vegetation, but have been rarely used to study seasonal changes in the 

plant water status and seasonal development of deciduous trees. Here we use Ad- 

vanced Scatterometer (ASCAT) observations to investigate the sensitivity of C-band 

backscatter to spring phenology of temperate deciduous broadleaf forests in Austria. 

ASCAT’s multi-angle looking capability enables the observation of backscatter over 

a large range of incidence angles. The vegetation status affects the slope of the 

backscatter-incidence angle relationship. We discovered a maximum in the slope 

around the month April, hereafter referred to as spring peak, predominantly in 

regions covered by deciduous broadleaf forest. We hypothesized that the spring 
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peak indicates the average timing of leaf emergence in the deciduous trees in the 

sensor footprint. The hypothesis was tested by comparing the timing of the spring 

peak to leaf unfolding observations from the PEP725 phenology database, to the 

increase of leaf area index (LAI) during spring, and to temperature. Our results 

demonstrate a good agreement between the ASCAT spring peaks, phenology ob- 

servations and temperature conditions. The steepest increase in LAI however lags 

behind the ASCAT peak by several days to a few weeks, suggesting that the spring 

peak in fact marks the timing of maximum woody water content, which occurs right 

before leaf emergence. Based on these observations, we conclude that the ASCAT 

signal has a high sensitivity to spring reactivation and in particular water uptake 

of bare deciduous broadleaf trees. Our findings might provide the basis for novel 

developments to estimate eco-physiological changes of forests during spring at large 

scales. 

Introduction 

The seasonal dynamics of vegetation play a vital role in the Earth system, as they 

affect the global carbon, energy and water fluxes and their interaction (Bonan, 

2008; Richardson et al., 2013). Phenological changes reflect weather and climate 

variability and hence long-term trends in the forest phenology are a direct indicator 

of climate change (Menzel et al., 2006). Warming trends in northern temperate and 

boreal forests show an earlier onset of the growing season, which corresponds to 

an earlier water uptake in spring and might reduce plant productivity later in the 

season (Buermann et al., 2018; Wolf et al., 2016). In order to understand the effects 

of such structural changes in leaf area dynamics on ecosystem carbon and water 

cycling, large-scale estimates of physiological changes are required. 

Remote sensing has been intensively used to monitor phenological changes in 

vegetation (Xiao et al., 2009; Beurs et al., 2010; Helman, 2018). Changes in 

land surface phenology have been mainly assessed using optical vegetation indices. 

Unfortunately, those are hampered by cloud cover or high sun-zenith angles, which 

makes the estimation of phenological changes difficult (Forkel et al., 2015). As an 

alternative, observations derived from microwave sensors have the advantage that 

they are usually free from temporal gaps, as microwaves are capable of penetrating 

clouds, and observations can also be taken at night (Jones et al., 2011). One 

disadvantage of real-aperture microwave sensors such as ASCAT is their coarse 

spatial resolution. This is compensated by the high temporal availability, making 

these observations especially useful for global-scale analyses. 
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Microwave remote sensing of vegetation is sensitive to two things in particular: first, 

to vegetation dynamics as a result of changes in the plant water content, and second, 

to the physical structure of the vegetation canopy (e.g., leaf size and orientation, 

diameter and orientation of stems and branches, canopy density) (Jones et al., 

2010). Several studies have analyzed vegetation dynamics with observations from 

active C-band microwave sensors, starting in the 1990s with the scatterometers 

onboard the European Remote Sensing (ERS) satellites (Wagner et al., 1999a; 

Wagner et al., 1999c), and, since 2007, using observations from their successor 

ASCAT (Advanced Scatterometer), by either analyzing the relationship between 

incidence angle and backscatter (Hahn et al., 2017; Steele-Dunne et al., 2019) or 

by retrieving vegetation optical depth (Vreugdenhil et al., 2016; Vreugdenhil et al., 

2017). Wagner et al., 1999c showed that the backscatter decreases with increasing 

incidence angle, and that the slope of this relationship is shallower over dense 

vegetation canopies and steeper over bare soil. This is because vegetation acts as a 

volume scatterer, and scatters energy diffusely in all directions. Over vegetation, the 

observed backscatter is thus less dependent on the incidence angle. Steele-Dunne et 

al. (2019) demonstrated that both slope and curvature of the backscatter-incidence 

angle relationship varied significantly between different grassland types, and that 

negative anomalies in slope and curvature can be detected in areas with prolonged 

conditions of low soil moisture. 

A detailed study over a temperate-climate agricultural region in Austria showed that 

dynamics in the slope in early and late summer largely coincide with the growing 

cycle of winter and summer crops (Pfeil et al., 2018). However, a period of relatively 

shallow (negative) slope, hereafter referred to as ASCAT spring peak (SPascat), 

which frequently occurs in April, could not be related to the typical crop growing 

cycle. To see if spring peaks are found in other locations, we examined the slope 

time series of a large number of grid points in central and eastern Europe. This 

extension of the study region revealed a correspondence between the occurrence 

of a spring peak in ASCAT and deciduous broadleaf forest (DBF) cover (Fig. 3.1), a 

vegetation type which has so far not been investigated using ASCAT observations in 

specific. 

In order to understand how structural changes in DBF in spring affect coarse-scale 

ASCAT backscatter measurements at multiple incidence angles, one must first take 

a look at the biological processes in trees. Deciduous broadleaf trees start to 

prepare for leaf-out in the preceding summer and autumn, when buds are created, 

which stay closed until the following spring (Rohde et al., 2011; Way, 2011). 

If trees break dormancy too early, e.g., during a period of warm days in winter, 

they risk to suffer from potentially fatal damages due to late frosts (Richardson 
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Fig. 3.1: CCIland cover and occurrence of spring peaks (tilted black lines) over central and 

eastern Europe. 10: cropland; 20: cropland, irrigated or post-flooding; 30: mosaic 
cropland (>50%)/natural vegetation (<50%); 40: mosaic natural vegetation 

(>50%)/cropland (<50%); 60: DBF; 70: ENF; 90: mixed forest; 100: mosaic 

tree and shrub (>50%)/herbaceous cover (<50%); 110: mosaic herbaceous cover 

(>50%)/tree and shrub (<50%); 120: shrubland; 130: grassland; 150: sparse 

vegetation; 180: shrub or herbaceous cover, flooded; 190: urban areas; 200: bare 

areas; 210: water bodies; 220: permanent snow and ice (Bontemps et al., 2012). 
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et al., 2018). This is prevented by a requirement for enough days below a certain 

temperature (chilling requirement, Perry, 1971). As soon as the chilling requirement 

is met and temperatures have risen above a species-dependent threshold (Perry, 

1971; Chuine, 2000), the trees start to prepare for bud break. In addition to the 

temperature requirements, day length plays a role; this effect is however highly 

species-dependent and still not fully understood (Polgar et al., 2011; Basler et al., 

2014). The further development of the buds requires the uptake of water and therein 

contained nutrients by the trees. The water content in the trees has been found to 

be highest before bud break and to decrease again with the onset of photosynthesis 

by the emerging leaves, and thus transpiration (Essiamah et al., 1986; Ewers et al., 

2001; Hao et al., 2013; Young-Robertson et al., 2016). This chain of processes is 

referred to as spring reactivation (Essiamah et al., 1985; Essiamah et al., 1986; 

Fromm et al., 1986). 

A number of studies have demonstrated the sensitivity of C-band sensors to structural 

changes in DBF (Sinha et al., 2015). The scattering characteristics of DBF and 

evergreen needleleaf forest (ENF) have for example been used for forest mapping 

and forest type classification from Sentinel-1 backscatter data by Dostälovä et al. 

(2018). The authors describe in their study that whereas ENF backscatter is lowest 

in winter and gradually increases towards summer, backscatter from DBF is lowest 

in summer due to extinction from the leaves. The same was observed in a study 

over Switzerland by Rüetschi et al. (2018). In the study, the authors compared cross- 

polarized backscatter from Sentinel-1 over DBF to observations of leaf emergence and 

found a good correspondence, which was however subject to an uncertainty of #12 

days due to the usage of 24-daily backscatter composites. Pitts et al. (1987) studied 

scattering processes in an aspen forest canopy and found that while backscatter as 

well as extinction increase with leaf emergence, extinction is 2 to 10 times larger 

than the scattering coefficient, indicating that considerable absorption is occurring 

within the canopies. Proisy et al. (2000) analyzed the backscatter response from a 

mixed deciduous forest stand and concluded that it is difficult to relate backscatter 

variations to seasonal changes of forest parameters such as leaf dimensions and 

leaf mass per area, partly due to the strong scattering response of branches, which 

probably mask the beginning and end of the leafy cycle. 

These studies only analyzed the total backscatter response normalized to a reference 

incidence angle, and did not look at the variation of backscatter over different 

incidence angles, i.e., what is described by the slope parameter. In this study, we 

investigate the sensitivity of the ASCAT slope to physiological and structural changes 

in DBF. In particular, we focus on the question if the ASCAT spring peaks mark the 

date of leaf emergence. 
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Study area 

We carry out our study over Austria. A large number of phenological observations 

is available all over the country, which is unfortunately not the case for the other 

countries shown in Fig. 3.1. Moreover, Austria provides an interesting study area 

as DBF occurs in a range of climate and elevation zones. The eastern flatlands in 

Austria are characterized by a temperate climate without dry season and with warm 

summers in the lowlands (Koeppen-Geiger climate class Cfb, Rubel et al., 2017). 

Here, the land cover is dominated by rainfed croplands and forests (Fig. 3.2, top), 

and terrain slopes range from 0° to 32° approximately (average slope: 2°). The west 

is dominated by mountains with alpine grasslands and evergreen needleleaf forests 

(ENF), and approximate slopes between 0° and 48° (average slope: 13°) (geoland.at, 

2020). The climate is fully humid with warm and cool summers (climate classes 

Dfb, Dfc) depending on the exact location, and partly classified as polar tundra (ET). 

The country has a large dense DBF region south-west of the city of Vienna, and 

smaller fractions of DBF across the country (Fig. 3.2, bottom). The Alps make up 

approximately two thirds of the Austria’s area; the other third are lowlands and 

transition zones. We carried out parts of the analysis for this region of moderately 

flat terrain, dominated by DBF, MF and croplands. The sub-region is covered by 163 

ASCAT grid cells and will be referred to as "moderate flatlands". 

Datasets 

ASCAT 

The Advanced Scatterometer (ASCAT) is a microwave sensor on-board the Metop 

satellites. It observes vertically polarized C-band backscatter (f=5.255 GHz) from 

the Earth surface, and is sensitive to the surface roughness, vegetation structure, soil 

moisture and vegetation water content. One of ASCAT’s key features is its capability 

to observe a target from different azimuth and incidence angles. This is enabled by 

three fanbeam antennas on each side of the instrument, which cover an incidence 

angle range of 34°-65° (fore and aft beam) and 25°-55° (mid beam). The dependency 

of the backscatter on the incidence angle can be modelled as a second-order Taylor 

polynomial (Wagner et al., 1999c), and based on this relationship, soil moisture 

and vegetation optical depth (r) can be derived (Wagner et al., 1999b; Naeimi 

et al., 2009b; Hahn et al., 2017; Vreugdenhil et al., 2016). The first and second 

derivatives of the relationship curve at the reference incidence angle of 40° are 
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Fig. 3.2: Top: CCI land cover in Austria. 10: cropland; 20: cropland, irrigated or post- 

flooding; 30: mosaic cropland (>50%)/natural vegetation (<50%); 40: mosaic 

natural vegetation (>50%)/cropland (<50%); 60: DBF; 70: ENF; 90: mixed 

forest; 100: mosaic tree and shrub (>50%)/herbaceous cover (<50%); 110: 

mosaic herbaceous cover (>50%)/tree and shrub (<50%); 130: grassland; 150: 

sparse vegetation; 180: shrub or herbaceous cover, flooded; 190: urban areas; 

200: bare areas; 210: water bodies; 220: permanent snow and ice (Bontemps 

et al., 2012). Bottom: DBF fraction (derived from CCI land cover) in the ASCAT 

grid cells. 
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referred to as slope and curvature. A shallower slope of the backscatter-incidence 

angle relationship is commonly associated with higher volume scattering caused by 

the vegetation structure and water content. Hahn et al. (2017) found in a global 

analysis that the fitting of the slope and curvature parameters is robust, except for 

sandy deserts. The ASCAT 7 time series, which are calculated using the slope, have 

been shown to reflect vegetation dynamics over Australia (Vreugdenhil et al., 2016) 

and a heterogeneous agricultural region in Austria (Pfeil et al., 2018). 

The ASCAT datasets used in this study are part of the EUMETSAT H SAF Metop 

ASCAT DR2018 SSM time series 12.5 km sampling (H113) data record (H SAF, 

2018). There, the slope is calculated as a climatology (for every day of year (DOY), 

no interannual variations) from Metop-A ASCAT backscatter observations. A detailed 

description of the algorithm is provided in the H SAF ATBD, 2018. In addition, we 

use an experimental Metop ASCAT data record based on new model parameters 

(Exp-ASCAT-SSM). In Exp-ASCAT-SSM, the slope parameter is calculated over all 

observations within a 42-day window using a Kernel smoother (Melzer, 2013; 

Hahn et al., 2017). This way, the slope is available as a time series, i.e., including 

interannual variations. As the spatial resolution of the ASCAT sensor is in the order 

of 25 km x 25 km, the observed signal represents the combined backscatter of this 

coarse grid cell. All ASCAT datasets are available on a discrete global grid (WARP 

grid), and every grid cell has a unique grid point index (GPI) (see TUW GEO Grid 

Point Locator, https://www.geo.tuwien.ac.at/dgg/index.php). 

An example of the observed backscatter values and the function described by the 

thereof derived slope and curvature parameters for September 2, 2010, is displayed 

in Fig. 3.3 (left), for a grid cell dominated by agriculture and a DBF coverage of 

12%. Fig. 3.3 (right) shows yearly slope time series and the slope climatology for 

the same grid cell. The period DOY 80-140, where SP,.... commonly occurs, is 

highlighted in blue. 

PEP725 database 

The Pan European Phenological database (PEP725) (Templ et al., 2018) provides 

open access plant phenology data for a number of European countries, including 

Austria, and currently contains information on 46 growing stages of 265 plant 

species. The phenological stage used in this study is BBCH-11, standing for the 

stage "First leaves unfold" of the Biologische Bundesanstalt, Bundessortenamt and 

Chemical Industry (BBCH) scale (Finn et al., 2007). We use data from the period 

2007 to 2016, which are available for 188 Austrian sites and up to six deciduous 

Chapter 3 Does ASCAT observe the spring reactivation in temperate decid- 

uous broadleaf forests?



3.3.3 

Slope estimation Slope ts. and clim. 
07          

            

- slop=-0.097 
= -8| =0.001 5 -8 cum: 

= 

3107 2 
s 2 
% —12 u 
© fore 
3 it & _14 mid 

aft 

=16 - T T 0.13 T T T 

20 40 60 0 100 200 300 

Inc. angle [deg] DOY 

Fig. 3.3: Left: Example of the observed fore-, mid- and aft-beam backscatter within a +21 
day window (around September 2, 2010) and the thereof derived backscatter- 
incidence angle relationship curve (described by the slope and curvature parame- 
ters); right: yearly slope time series and climatology (DOY 80-140 highlighted in 
blue); both for GPI 2421559 (lon/lat: 15.26 E/48.06 N). 

Tab. 3.1: Phenological observations of the listed tree species are used as a reference in this 
study. The number of available sites and observations for the years 2007 to 2016, 
in total and in the sub-region of moderate flatlands (MFL), is given. 

  

  

Species Sites Observ. 

Botanical name Common name Total MFL Total MFL 

Aesculus hippocastanum Horse chestnut 117 43 527 185 

Betula pendula Hanging birch 155 63 650 242 

Fagus sylvatica European beech 103 45 431 190 

Quercus robur Common oak 92 36 416 173 

Acer pseudoplatanus Sycamore maple 97 30 443 128 

Tilia cordata Small-leaved lime 92 36 471 18 
  

broadleaf species per site. The tree species and numbers of available sites and 

observations are listed in Table 3.1. 

Leaf area index 

LAI data from SPOT/VGT and PROBA-V (Dierckx et al., 2014) are provided by the 

Copernicus Global Land Service (CGLS). In this study, version 1 of the dataset is 

used, which is available globally with a spatial resolution of 1 km since 1999. The 

LAI products are distributed in 30-days composites, and updated every 10 days using 

a moving window. As recommended in the Product User Manuals (VITO, 2017; 
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VITO, 2019) we use the "nominal" date for our analysis, i.e., the day where the sum 

of weights of the weighting function is the same on each side. 

During leaf-out, the leaf area changes rapidly, leading to a steep increase in the LAI 

time series of DBF and a maximum in the first derivative of the time series. Those 

maxima (LAI/ mar ) serve as a reference for DBF leaf-out in this study. In order to 

obtain DBF LAI on a spatial resolution comparable to ASCAT, we averaged all 1 km 

LAI pixels within an ASCAT grid cell that are classified as DBF (CCI Land Cover), 

and thus resampled the dataset to the ASCAT grid. 

SPARTACUS dataset 

The SPARTACUS dataset, made available by ZAMG, the Austrian national weather 

service, provides daily minimum and maximum temperature for Austria on al km 

grid (Hiebl et al., 2016). We resampled the dataset to the ASCAT grid before using 

it for the calculation of growing degree days (GDD). More details on the GDD 

calculation are provided in section 3.4.3. 

Methods 

Spring peak detection 

We detect spring peaks in the slope time series by searching for relative maxima in 

the period between DOY 80 and DOY 140. The investigation of the slope time series 

showed that the spring peaks commonly occur during this period in Austria. The a 

priori limitation of the period is necessary in order to avoid capturing “false” peaks 

which can be caused by crops earlier or later in the season. Before the spring peak 

detection (SPD) is performed, the slope time series are smoothed using a window of 

14 days to obtain clear maxima and to remove small short-term variations leading 

to multiple relative extrema within a period of only a few days. A slope value is 

defined as a relative maximum if it is greater than the three preceding and the three 

following values. We first apply the SPD method to the slope climatology to obtain a 

robust estimation of the spatial distribution of spring peaks. Then, we apply the SPD 

to the slope time series, resulting in the timing of SPascat in every year (given in 

DOY). Fig. 3.4 shows the backscatter-incidence angle relationship curve fitted to the 

observations over all grid cells in Austria that (top left) show no peak and (top right) 

show a peak in spring. The curves were spatially averaged over the respective grid 
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Tab. 3.2: Most frequent land cover types in Austria (resampled to ASCAT grid). 

  

  
CCILC class Number of ASCAT grid cells 

Rain fed cropland 154 (28.3% of Austria’s area) 

DBF 14 (2.6%) 

ENF 255 (47.0%) 

MF 61 (11.2%) 

Grassland 37 (6.8%) 

Urban areas 12 (2.2%) 
  

cells and are displayed as 10-daily means. The spring period (DOY 80-140) is shown 

in green, the summer period (DOY 170-220) in black and all other dates in grey. It 

can be seen that in summer, i.e., the period of highest vegetation activity, the curve 

has the shallowest slope due to volume scattering. In spring, the observed slope is 

steeper in grid cells without S’P,s..1, whereas it is similar to the summer slope in 

grid cells with SPyscar- Fig. 3.4 (bottom) shows examples of the slope climatology 

and two years of the slope time series of GPI 2421559 (12% DBF, 45% cropland) 

and GPI 2442965 (2% DBF, 91% cropland), along with the detected spring peaks. 

ASCAT's sensitivity to deciduous broadleaf forest 

To determine the sensitivity of ASCAT to phenology dynamics in DBF, we carry out a 

land cover analysis. As Austria’s land cover is heterogeneous and ASCAT’s resolution 

is coarse, we test the effect of heterogeneity in two ways. First, to identify in which 

land cover classes peaks are detected, we determine the dominant land cover type 

per ASCAT grid cell. There are six major land cover types: rain fed cropland, DBF, 

ENF, mixed forest (MF), grassland, and urban areas. The areas covered by each 

land cover type are listed in Table 3.2. DBF dominates only 2.6% of all grid cells, 

but is present in smaller fractions almost everywhere in the country. Thus, secondly, 

we assess the effect of land cover heterogeneity by calculating the fraction of DBF 

per ASCAT grid cell. Both dominant land cover and DBF fraction are then used to 

test the SPD method and to determine if a minimum fraction of DBF is necessary to 

obtain a reliable peak detection. 
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2. 3.4: Backscatter-incidence angle relationship curve over grid cells without a spring 
peak (top left) and with a spring peak (top right). The parameters were spatially 
averaged for the respective grid cells and are displayed as 10-daily means. Bottom: 
Slope climatology and time series for GPI 2421559 (12% DBF, 45% cropland) and 

GPI 2442965 (2% DBF, 91% cropland) along with detected SP,s... (red). The 

period DOY 80-140 is highlighted in blue. 
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3.4.3 Evaluation of the timing of SP,scat 

As a reference for spring leaf-out, PEP725 observations of BBCH-11 are used. All 

PEP725 sites with BBCH-11 leaf-out observations (LO,.,) are compared to SPascat 

of the grid cell in which the PEP725 site is located. This inter-comparison is done 

(i) using the mean LO,., per site (averaged for all available species), and (ii) for 

every tree species individually. In addition to the PEP725 observations, we use 

the period of steepest increase in DBF LAI (LA//, .) as a reference. Finally, as the 

spring reactivation in deciduous trees is mostly controlled by temperature (Polgar 

et al., 2011), we compare the SP,sc.ı dates to values of growing degree days (GDD) 

(McMaster et al., 1997). This approach uses the daily minimum and maximum 

temperatures. If the average daily temperature (3.1) is higher than a previously 

defined base temperature, the difference between the average and base temperature 

is added to the GDD (3.2). 

  

m. _ Tmaz,; + Tmin, 
T= 2 (3.1) 

boy 
GDDpoy = I (Ti — Thase)s i Ti > Thase (3.2) 

The timing of phenological processes can then be compared to the GDD value at 

the respective DOY, and thus be related to the temperature time series since the 

beginning of the respective year. Different base temperatures and GDD values 

representative for particular phenological stages are found in literature. Lechowicz 

(1984) related observations of bud burst in different deciduous broadleaf tree species 

to a GDD value between 100 and 170 (base temperature 5°C). Fu et al. (2019) used 

a threshold of 5°C to study the control of leaf-out by day length and temperature. 

Sanz-Pérez et al. (2009) calculated GDD values from four thresholds (0, 3, 5, and 

7°C) to predict bud burst in oak trees. In this study, we use a GDD value of 160 

(GDD160), which we found to be the mean GDD for all available observations of 

LOye) in moderate flatlands when using a base temperature of 5°C. 

We first carry out a qualitative analysis of the correspondence between ASCAT and 

the reference variables. Then, we quantify the results using Pearson’s correlation 

coefficient (r), root mean squared deviation (RMSD), average and median absolute 

difference (AAD, MAD) and bias. The overlap period of ASCAT and the three 

reference datasets is 2007 to 2016, allowing for a study period of 10 years. 
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Percentage of detected peaks for entire Austria (AT) and most frequent land cover 
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Results 

Sensitivity to deciduous broadleaf forest 

The visual inspection of the slope climatologies and time series and the detected 

SPascat showed that the SPD method succeeds in detecting all relative maxima 

that occur between DOY 80 and 140. We first conducted the SPD on the slope 

climatologies in order to obtain a robust S’Pasca: distribution map. Spring peaks are 

found in 25% of all grid cells in Austria (Fig. 3.5). Of these, peaks occur in 100% 

of the grid cells dominated by DBF, in 47.4% of grid cells dominated by croplands, 

and in 32.8% of all grid cells dominated by mixed forest. In 95.3% of the grid cells 

dominated by ENF, no spring peak is found. 

In a second step, we conducted the SPD on the slope time series. Fig. 3.6 shows the 

number of years in which a spring peak is detected for all of Austria. For each grid 

cell, the DBF fraction (x-axis) and the dominant land cover type (color coding) are 

indicated. For better visibility, the scale of the x-axis is adjusted for DBF fractions 

above 40%. Grid cells dominated by DBF show peaks in almost every year. The 

figure also shows that spring peaks do occur in grid cells with a low DBF fraction 

that are dominated by cropland. However, they are rare in grid cells dominated 

by ENF. This can likely be explained by the fact that ENF returns high backscatter 

over all incidence angles, whereas the cropland and DBF backscatter-incidence 

angle relationship is highly dynamic throughout the year. Thus, the DBF signal can 

dominate the signal over cropland in spring even if the DBF fraction is low, but 

cannot dominate the already relatively high backscatter over ENF. 
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Fig. 3.6: Number of years with a spring peak (period 2007 to 2016). For each grid cell, 
the DBF fraction (x-axis) and the dominant land cover type (color coding) are 
indicated. For better readability, the scale of the x-axis is adjusted for DBF fractions 
> 40%. 

Evaluation of the timing of SPyscat 

Qualitative analysis 

Fig. 3.7 and 3.8 show examples of ASCAT slope time series for two selected grid 

cells, along with the LO,., dates of different tree species (top), first derivative 

of the LAI time series (middle), and air temperature and thereof derived GDD 

(bottom). Dashed lines indicate the occurrence of SPascat (black), LAI/,., (green), 

and GD.D160 (red). The grid cells are located in the transition zone between the 

northern edge of the Alps and the lowlands, and have a DBF coverage of 12% and 

55%, respectively. The peaks are more pronounced in the 55% DBF grid cell, where 

SPascaı marks the maximum, i.e., shallowest, annual slope. In the 12% DBF grid 

cell, the maximum slope usually occurs in summer and is related to the crop growing 

cycle. SPysca, occurs closely to the LO,., dates in most years. A similar agreement 

can be observed between SPıscar and LAI/,,,, as well as between SPascar and 

GDD160. Exact dates of SPascat; LOpep of the individual species, LA//,,,, and 

GD.D160 for the two grid cells are provided in Fig. S1 (Supplement). 

Histograms of the timing of SPıscaı and the reference variables are shown in Fig. 3.9. 

For this analysis, only sites that are located in moderate flatlands were included. The 

top panel shows only grid cells that contain a PEP725 site. The histograms of SPascaı 

in the top figure thus differ from the histograms in the middle and bottom panels. 
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Fig. 3.7: ASCAT slope time series and (top) leaf-out dates of different tree types, (middle) 

first derivative of LAI time series (LAT), and (bottom) 14-daily mean air tem- 

perature and GDD for a grid cell covered by 12% DBF (GPI: 2421559, lon/lat: 

15.26 E/48.06 N). Values affected by frozen soil have been masked out in the 

slope and LAT time series. 
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Fig. 3.8: Same as Fig. 3.7 for a grid cell covered by 55% DBF (GPI: 2421575, lon/lat: 
15.93 E/48.06 N). 
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If more than one PEP725 site is located within a grid cell, all PEP725 observations 

within the cell are averaged. 

LOgep and SPascar show similar dynamics in most years, e.g., a relatively late 

occurrence in 2013 and a relatively early occurrence in 2012 and 2014. In the 

case of LAI}, max» due to the 10-daily time step, only certain DOY values are found. 

The timing of LAI/,.. is in some years similar to SPascaı, e.g. in 2011 and 2013, 

but in most years occurring later than SPsscar, e.g. in the years 2008-2010 and 

2014-2016, and thus also occurring later than LOyep- 

To see if the timing of SPascar is affected by temperature conditions, we carry 

out a comparison with GD.D160. In most years, GDD160 and SPasc.ı occur at a 

similar range of DOYs. In other years, e.g. 2011 and 2013, GDD160 is reached 

over a narrow range of DOYs. This indicates that the moderate flatlands region 

underlies similar temperature dynamics, and that the regional variation of GDD160 

is smaller than that of SP, sc... The observed year-to-year variations are very similar 

in both SP, sc, and GDD, indicating a strong dependency of SP,,.., on temperature 

conditions. In 2012, SP,sc., occurs earlier than in any other studied year, but 

in some grid cells also later than in any other year. The analysis of SPascaı and 

G.DD160 maps demonstrated that in 2012, the temperature differences between 

the (cooler) northern and (warmer) eastern and southeastern parts of Austria were 

particularly pronounced, which is reflected by the bimodal distributions found in 

SPascat and GDD160 in that year (see Supplement, Figs. S2 and S3). 

Fig. 3.10 shows the mean difference between LO,., and SPascaı of individual species 

(top) and the number of included species per year (bottom) for all of Austria. A 

negative difference means that LO,., occurs earlier than SPascar, and vice versa. 

Over all years, the mean difference between the leaf-out of a species and SPyseat 

varies, but the order of the differences is relatively consistent per species: Betula 

pendula is followed by Aesculus hippocastanum, Fagus sylvatica, Acer pseudoplatanus, 

Tilia cordata, and Quercus robur; i.e., of the observed trees, the leaf-out of the white 

birch usually has the largest negative difference and the common oak the largest 

positive difference to SPascat. The number of samples per species is between 40 and 

80 over most years. Apparent is the considerably larger positive bias in 2012, which 

is most likely related to the spatial differences in spring temperatures as described 

above. 
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3.5 Results 59



60 

  

  

  

= 
5 20 ® 
g ° 
Es 3 

3 10 

2 = 3 & = 
g ° S w o i 
Bi m 8 + £ ofm 1 2 v t . 

g * s I . 3 5 + 2 
i v I ¥ 
s -10 i 

A 
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
W A.hippocastanım A B.pendula M Q.robur 
# A pseudoplatanus © F.sylvatica # T.cordata 

80 

Io 
2 
§4o 
ö 

20     

  

  

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Fig. 3.10: Top: Mean difference between LO,., and SPy,.a, for each tree species. A 

negative difference means that LO,., occurs earlier than SP, sca:, and vice versa. 
Bottom: Sample size. Turquoise/blue: diffuse-porous, orange/gold: diffuse- to 
semi-ring-porous, red: ring-porous species (Schoch et al., 2004). 

Quantitative analysis 

The metrics calculated between SP,s..: and the reference variables are provided 

in Table 3.3. For PEP725, the metrics were calculated between all PEP725 sites 

(average over all tree species) and the closest ASCAT grid cell for all available sites. 

For LAl and GDD, the metrics were calculated over all grid cells in Austria where a 

spring peak has been detected. In addition, the metrics were calculated for subsets 

of the sites depending on the DBF fraction in the respective grid cells. Significant 

Pearson r values (p < 0.01) are marked with an asterisk. 

A relatively high correlation between SP,sca, and LO,ep Of 0.49 is observed for grid 

cells with more than 10% DBF. For grid cells with a DBF fraction of more than 30%, 

no significant correlation could be derived between ASCAT and PEP725. The RMSD 

between SPascar and LOzep is less than 15 days for all grid cells. MAD and AAD 

become smaller, the higher the DBF fraction, with a minimum MAD of 3.5 days and 

a minimum AAD of 6.6 days for cells with a DBF fraction greater than 40%. 

RMSD, MAD, AAD values and biases below 9 days are observed for SPascaı and 

GDD160, and correlations range from 0.46 to 0.58 for DBF fractions above 10%. In 

Chapter 3 Does ASCAT observe the spring reactivation in temperate decid- 

uous broadleaf forests?



Tab. 3.3: Metrics calculated between SP,sca, and LOyep, LAI/,.. and GDD160, for the 
years 2007 to 2016. Only grid cells with the given DBF fraction or higher have 
been included. n is the sample size. RMSD, MAD, AAD and bias are given in days. 
Significant Pearson r values (p < 0.01) are indicated by an asterisk. 

  

DBF fr. n T p RMSD MAD AAD Bias 
  

>0% 436 0.33* 0.0 14.0 9.0 11.0 -13 

>10% 140 0.49* 0.0 11.0 80 88 -1.0 

>20% 78 0.38* 0.001 10.6 78 86 -0.5 

  

  

Lö 
>30% 18 0.31 0.217 9.9 5.0 6.9 0.9 

>40% 10 0.37 0.297 11.2 3.5 6.6 5.5 

>50% 8 0.04 0.929 12.4 3.5 7.6 6.3 

>0% 3398 0.07* 0.0 33.8 15.0 224 17.1 

>10% 932 0.17* 0.0 24.0 13.0 17.3 14.8 

Lan >20% 448 0.11 0.017 27.4 13.0 19.1 17.8 

mac >30% 202 0.10 0.150 32.5 15.0 23.2 22.9 

>40% 77 0.26 0.023 24.0 13.0 16.8 16.5 

>50% 38 0.48* 0.002 14.5 13.0 12.0 11.4 

>0% 3540 0.14* 0.0 31.4 11.0 19.8 11.9 

>10% 925 0.54* 0.0 12.0 70 91 0.7 

GDD160 >20% 448 0.58 0.0 10.0 70 7.8 0.7 

>30% 202 0.50* 0.0 10.1 70 79 14 

>40% 77 0.50* 0.0 10.0 70 79 39 

>50% 38 0.46* 0.004 11.0 60 83 58 
  

the case of LAI/,.., the RMSD, MAD, AAD values and biases are considerably larger, 

and only weak correlations are found. This can on the one hand be explained by the 

10-daily time step of the LAI dataset, but could also indicate a systematic difference 

between SP,sca, and LAI},,.. As the bias shows, the differences between SPuscat 

and LA//,,, are positive, meaning that LA//,,, usually occurs around two to three maz max 

weeks later than SPyscat- 

Scatter plots of SP,sc., and the reference datasets are shown in Fig. 3.11. Included 

are observations from all years and grid cells with a DBF fraction above 10% (top) 

and above 40% (bottom). In the case of SPascar and LOycp, the majority of points are 

found along the one-to-one line, indicating good agreement between the respective 

datasets. When only considering grid cells with a DBF fraction above 40%, the fit 

improves further. In the case of SPascat and LAI,,.., the positive bias towards later 

LAI,,., than SPısca: is clearly evident for both DBF fractions above 10% and above max 
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Fig. 3.11: Scatter plots of SPaseat, LOyep, LAI,,,, and GDD160, including all sites with 

a DBF fraction of (top panels) 10% or higher, (bottom panels) 40% or higher. 
Significant Pearson r values (p < 0.01) are indicated by an asterisk. 

40%. SPascar and GDD160 agree very well, and only a small bias towards later 

GDD160 than SPascaı is found for grid cells with a DBF cover above 40%. 

Discussion 

Our first objective was to investigate if the observed ASCAT spring peak is caused by 

scattering within DBF. The challenge thereby is ASCAT’s coarse resolution, which 

complicates the disentangling of effects from different land cover types in the 

observed signal. We investigated this by comparing the detected SPasca: with land 

cover maps. Our analysis shows very good agreement with the occurrence of SPyscat 

and DBF cover, and it also suggests that DBF can dominate the signal in spring 

even if a grid cell only has a small fraction of DBF. As can be seen in the slope 

time series (Figs. 3.4, 3.7 and 3.8), SPısca: is however much more pronounced 

in a grid cell with high DBF fraction, and weaker in a cropland grid cell. Steele- 

Dunne et al. (2019) conducted a detailed study of ASCAT slope time series over 

extended grasslands in North America. They did not observe distinct spring peaks as 

described in our study, which also supports the hypothesis that $Pusc. comes from 

DBF and not from another land cover type. Further efforts to disentangle scattering 
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effects from different land cover types should be carried out in the future, using 

backscatter observations from the Sentinel-1 satellites. Sentinel-1 also observes 

in C-band and at a spatial resolution of 10 m, thus significantly finer than ASCAT. 

However, the Sentinel-1 satellites don’t observe the surface at such a large range of 

incidence angles, and a slope parameter, as used in this study, cannot be derived in 

a robust, straightforward way. Many studies have shown that the ratio of C-band 

cross- and co-polarized backscatter is sensitive to vegetation water content and 

structure, as especially volume scattering and double-bounce effects are likely to 

cause polarization changes (Mattia et al., 2003; Satalino et al., 2013; Veloso et al., 

2017; Vreugdenhil et al., 2018). Dostälovä et al. (2018) compared the seasonality of 

Sentinel-1 cross-polarized (VH) backscatter from cropland, DBF, ENF and vineyards. 

Over DBF, they observed the highest backscatter values around the months of March 

and April, followed by a clear backscatter decrease, which they explain by higher 

absorption or more forward than backward scattering by the emerging leaves. At 

the same time of the year, they observed only a weak VH backscatter signal over 

cropland. It should however be mentioned that it is unlikely that the effects from 

different land cover types on the ASCAT grid cell can be completely separated. Every 

grid cell covers a number of vegetation types with different phenological stages, 

some of which affect the ASCAT signal more and some less. Thus, the slope time 

series (and all other time series derived from ASCAT) always represent the combined 

signal from the entire sensor footprint. We can try to find the causes of specific 

features in the time series, such as SP,sca,, but their timing and probably even 

more their shape not only depend on the underlying phenomenon but also on the 

vegetation types, soil moisture and surface roughness in the rest of the grid cell, as 

well as on the weather conditions before and during the period of interest and how 

they affect the different land cover types. 

Our second objective was the evaluation of the timing of SPascar- We found good 

agreement between the timing of SPascar and phenological observations of leaf 

emergence. When interpreting those results, one must take into account that at 

some PEP725 sites, only one tree species is included in the database. The timing 

of leaf emergence of different tree species can vary in the order of several days to 

a few weeks. This complicates the comparison with ASCAT data, which observes 

the average signal of different species. Differences between SP,scu, and LO,., can 

also be caused by the comparison of coarse scale satellite data with point scale 

phenology observations. Even if the average temperatures do not vary vastly over a 

grid cell, factors like elevation and exposition to sunlight due to the orientation of 

slopes, e.g., south- versus north-facing, can lead to differences in the timing of spring 

reactivation in particular trees. Such trees and thus phenological observations are 
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then not necessarily representative for the surrounding grid cell. However, according 

to the phenological observation guidelines followed by the PEP725 project (Koch 

et al., 2007), the observation of plants at sites which are not typical for the area 

should be avoided, and the majority of available data should thus be suited for our 

study. 

The analysis of individual species revealed that the differences to SPascaı usually oc- 

cur in the same order. Lechowicz (1984) describes a correlation between the timing 

of leaf-out and diameter of the principal conducting elements, the xylem vessels. 

Trees with a narrow vessel diameter (diffuse-porous wood anatomy), including the 

species Betula, Acer and Aesculus, leaf out earlier than trees with a large vessel diam- 

eter (ring-porous wood anatomy) like Quercus, which corresponds with our findings. 

The fact that the observed differences are - in most years — centered around a 

difference of zero supports the hypothesis that S’P.sca: is an indicator of the average 

spring dynamics of all deciduous trees in a grid cell. Average differences between 

SPascat and LOye) are in the order of one to two weeks, which is comparable to 

findings by Lechowicz (1984), who stated that leaf emergence can vary over several 

weeks even within single forests. Kern et al. (2020) showed that the multiannual 

mean green-up duration (derived from MODIS NDVI pixels) is approximately 20 

days in Austria. When comparing coarse ASCAT grid cells to point-scale phenology 

observations, differences of a few days to weeks are thus to be expected. 

We found a strong dependence of SPasca: on temperature conditions, here repre- 

sented by GD.D160. In 2013, temperatures below 0°C and snowfall occurred until 

the beginning of April in Austria, which is reflected by a late occurrence of GDD160 

and SPıscar. In addition, the DOY range over which SP,s..ı and GDD160 occur 

is relatively short. In 2012 and 2014, SP,sc., occur early in the year in some grid 

cells and extend over a wide range of DOYs. As shown by GD.D160, the spring 

months of 2012 and 2014 were relatively warm. Similar observations have been 

made by Kern et al. (2020), who found that if leaves start to emerge only late, the 

green-up duration of broadleaf forests tends to be shorter, and vice versa. In 2008 

and 2012, GDD160 lags behind SP,...ı by approximately 10 days. A comparison 

with precipitation showed that the spring months in 2008 and 2012 were drier 

than in the other years, which perhaps led to earlier water uptake by the trees. 

How rainfall and soil moisture conditions affect the timing of SP,sca: needs to be 

investigated in detail in the future. Differences between $P,sc.: and GDD160 might 

be due to the fact that GDD does not include any information on the length of the 

chilling period, which trees require as much as warming temperatures in spring. 

Moreover, the length of the period over which the GDD value was calculated is not 

taken into account: a low number of very warm days as well as a high number of 
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moderately warm days can both lead to the same GDD value but over a different 

amount of time. 

7 
maz The comparison of SP,,.,, and LAI suggests that LA/, is in fact representative 

of a different phenomenon, as, despite the natural differences due to the 10-daily 

timestamp of the LAI dataset, the observed biases are all positive. To complement 

our analysis of LAI, we did a comparison with CGLS NDVI over DBF in our study 

region (Tote et al. (2017), Supplement Figs. S4-S6). The results do not differ much 

from the LAI-based analysis except that the NDVI time series showed a higher level 

of short-term variability which is likely caused by changes in atmospheric conditions 

and background reflection than by changes in DBF leaf cover. 

Considering our results along with related literature, we explain the causes of the 

observed ASCAT spring peaks as follows. It is well known that the radar backscatter 

response depends on the dielectric properties and the roughness of the scattering 

medium (Ulaby et al., 1981; Ulaby et al., 1984; Fung et al., 1992; Wagner et al., 

1999c¢). In the case of bare spring DBF, the "scattering medium" is characterized by 

the distribution of twigs and branches and their water content. The scattering from 

the twigs and branches increases the backscatter over all incidence angles, leading 

to a shallow slope of the backscatter-incidence angle relationship. At the same time, 

the backscatter contribution from bare soil is attenuated. This scattering mechanism 

differs from volume scattering, the term which is used for the scattering response 

from inhomogeneous media with randomly arranged scatterers with no dominant 

orientation. Volume scattering is for example found in fully developed crop canopies, 

dry snow packs and dry, sandy soils (Brunfeldt et al., 1984; Satalino et al., 2013; 

Ulaby et al., 1980; Jiang et al., 2007; Matzler, 1998). We suggest to use the term 

"twigs- and branches scattering" to describe the backscatter response from bare DBF, 

characterized by non-randomly oriented discontinuities (twigs and branches) in 

an otherwise homogeneous medium (air). The fact that in forests, scattering from 

discrete elements such as branches needs to be considered along with surface and 

volume scattering, has also been described in studies on radar backscatter modelling 

of forest stands (Richards et al., 1987; Sun et al., 1995). We thus conclude that 

SPascat represents the moment of maximum twigs- and branches scattering, i.e., the 

moment of highest water content in the woody parts of the deciduous broadleaf trees 

in the grid cell. As leaves start to emerge, the scattering and absorption properties 

of the DBF canopy change, leading to an attenuation of the incoming radiation and 

consequently a steeper slope. This behavior is illustrated in Fig. 3.12. LAI/,.. on 

the other hand represents the average timing of leaf emergence for all trees in the 

grid cell. This discrepancy is not observed in the comparison with LO,.,, as these 
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Fig. 3.12: Schematic illustration of the scattering processes causing a spring peak in the 
ASCAT slope. The change in tree water content in winter (a), before leaf-out 
(b), and after leaf-out (c) is illustrated in the top. The top right figure shows 
the idealized scattering response of the tree crown, tree trunk and ground. A 
characteristic slope time series over a mixed DBF-cropland grid cell is illustrated 
in the bottom, along with the underlying scattering mechanisms. 

observations are point-scale, and the used phenological stage BBCH-11 explicitly 

indicates the timing of the first unfolding leaves. 

More research is needed to extend the spatial applicability of the SPD method 

and to investigate also the shape of the spring peaks, in order to further relate 

the slope to an increase in woody water content. At best, this leads to a way of 

observing seasonal and interannual changes in DBF spring physiology over a large 

area and an increasing number of years which is independent of and complements 

satellite observations from optical sensors (Xiao et al., 2009; Yebra et al., 2013; 

Helman, 2018). As stated by Richardson et al. (2013), independent observations 

of physiological phenology are of high importance to models of current and future 

climate change and associated vegetation feedbacks. 

Whereas DBF spring phenology has been extensively studied, autumn senescence 

has received less attention (Richardson et al., 2006; Vitasse et al., 2009; Gallinat 

et al., 2015; Gill et al., 2015). Due to the strong reaction of the ASCAT slope to 

spring phenology, a sensitivity to physiological processes in DBF in autumn is likely. 

Further investigation of ASCAT slope peaks at other times of the year is thus required 

to evaluate the sensor’s suitability for the monitoring of phenological parameters in 

general. 
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3.7 Conclusions 

We conclude that it is highly likely that ASCAT observes the spring reactivation in 

temperate deciduous broadleaf forests. We found a correspondence between the 

occurrence of DBF and a peak in the ASCAT slope time series between DOY 80 and 

140. The timing of the observed peaks is correlated with phenological observations 

of leaf-out and temperature conditions. We also found a correspondence between 

the timing of the peaks and a steep increase in LAI, however, LAI/,,, generally ma: 

occurs two to three weeks after SPascat- 

The observed flattening of the slope, which reaches its maximum before the average 

leaf emergence in the grid cells, appears to be linked to the increase in water 

content and the consequently stronger scattering from bare twigs and branches. 

This new hypothesis should be tested in the future, e.g., by extending the study 

area and by taking into account C-band backscatter measurements with a higher 

spatial resolution, as obtained for example from the Sentinel-1 satellites. Moreover, 

a comparison with in situ measurements of tree water content should be carried 

out. 

More research on what the shapes of the peaks reveal and which other parameters 

related to DBF phenology can be derived from ASCAT observations will further 

increase our understanding of the sensitivity of C-band radars to large-scale eco- 

physiological changes in deciduous forests. In the short term, the results of this 

study represent a contribution to current research on how the ASCAT sensor reacts 

to temporary changes in the vegetation water content and structure in subsets of the 

sensor footprint. 
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Figure S2: GDD160 for all ASCAT grid cells in moderate flatlands. In 2012, the temperature differences 

between the northern and the eastern and southeastern parts of Austria are stronger than in other years.
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Figure S3: SPasca for all ASCAT grid cells in moderate flatlands. In 2012, large differences between the 

northern and the eastern and southeastern parts of Austria lead to a bimodal distribution in the SPasca 

histogram (Fig. 9).
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Abstract The incidence angle dependence of C-band backscatter is strongly affected 

by the presence of vegetation in the sensor footprint. Many studies have shown 

the suitability of this dependence for studying and monitoring vegetation dynamics. 

However, short-term dynamics in the backscatter-incidence angle dependence re- 

main unexplained and indicate that secondary effects might be superimposed on the 

vegetation component. In this study, we hypothesize that the observed short-term 

dynamics are caused by soil moisture. We investigate the effect by exploring relation- 

ships between the slope of the backscatter-incidence angle dependence (0’) from the 

Advanced Scatterometer (ASCAT) and soil moisture, rainfall, temperature, and leaf 

area index. We carry out the analysis over six study regions in Portugal, Austria, and 

Russia with different climate, land cover, and vegetation cycles. Our results indicate 

that soil moisture has an effect on 0’. Spearman correlations of o’ anomalies with 

soil moisture anomalies are stronger than with any other variable in most study 
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regions and range from -0.38 to -0.70. Even when accounting for effects of water on 

canopy, correlations between o’ and soil moisture remain relatively strong, ranging 

from -0.14 to -0.46. These results confirm the presence of secondary effects in the 

dynamic 0’, which need to be corrected for when applying 0’ in studies of vegetation 

dynamics. A correction may be achieved by the application of a suitable smoothing 

on 0’ (i.e., removing high frequency signal components), by masking observations 

taken under wet conditions, or by the use of models that explicitly account for the 

effect of soil moisture on o’. 

Introduction 

Earth observation using active and passive microwave sensors has a long tradition in 

the context of environmental research. Over land, these sensors show high sensitivity 

to changes in the soil and vegetation water content, surface roughness, vegetation 

structure, and, in the case of passive sensors, temperature. As opposed to optical 

radiation, microwaves can penetrate cloud cover and are independent of daylight. 

The first microwave missions were launched in the 1970s and 80s. Since then, they 

have provided global, continuous estimates of a variety of biogeophysical variables 

such as soil moisture (Wagner et al., 2013; Dorigo et al., 2017; Al Bitar et al., 2017; 

Chan et al., 2018; Bauer-Marschallinger et al., 2018), rainfall (Brocca et al., 2017), 

above-ground biomass (Santoro et al., 2015; Saatchi et al., 2007; Bousquet et al., 

2021), plant water content (Konings et al., 2019), and gross primary production 

(Teubner et al., 2018). Microwave observations have further been successfully 

applied for the estimation of vegetation optical depth (VOD) (Owe et al., 2008b; Liu 

et al., 2011; Konings et al., 2016; Vreugdenhil et al., 2016) and the monitoring of 

vegetation dynamics (Frappart et al., 2020), the study of interactions between soil 

moisture and climate (Seneviratne et al., 2010), and in the context of food security 

(Karthikeyan et al., 2020). These studies have proven the suitability and multiple 

benefits provided by microwave observation systems. In light of climate change, the 

availability of high quality, reliable, and easily accessible data will be even more 

critical in order to study and understand its various impacts on the environment. 

This entails the constant development and assessment of algorithms and underlying 

assumptions, particularly with the availability of new missions with improved spatial, 

temporal, and radiometric resolutions. 

In active microwave remote sensing, the characteristic interactions between the radar 

beam and the land surface lead to different scattering mechanisms. Over bare soil, 

surface roughness and soil water content cause diffuse scattering of the radar beam 
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at the boundary between the atmosphere and the land surface. Over vegetation, 

volume scattering in the canopy is the dominant scattering mechanism and controlled 

by canopy structure and water content. In addition, sudden changes in the canopy 

structure, e.g., over cropland and deciduous forest, may trigger specific scattering 

mechanisms and affect the observed radar signal. In the context of remote sensing of 

vegetation using scatterometers, the scattering characteristics of a vegetation canopy 

are exploited. In particular, the dependence of the observed backscatter values (0°) 

on the incidence angle (0) has been found to carry valuable information (Wagner et 

al., 1999a). This dependence can be retrieved if (almost) simultaneous backscatter 

observations from different incidence angles are available for a target area, such as 

provided by the scatterometers onboard of the European Remote Sensing satellites 

(ERS-1, ERS-2) and their successor, the Advanced Scatterometer (ASCAT) onboard 

the series of Metop satellites. Wagner et al. (1999c) used the observation geometry 

of ERS to model the vegetation component (wc) in the backscatter signal based on 

the slope (0’) and curvature (0”) of the backscatter-incidence angle dependence. 

Several studies confirmed a connection between 0’ and vegetation dynamics and 

advanced the understanding of the underlying processes. Vreugdenhil et al. (2016) 

used a water cloud model to convert the long-term average 0’ to VOD, a measure of 

the optical thickness of a canopy related to vegetation water content and structure, 

leaf area index (LAI), and biomass. Steele-Dunne et al. (2019) analyzed dynamic 0’ 

time series over the North American prairie and showed the negative impact of a 

long dryspell on grasslands. Pfeil et al. (2020b) carried out a detailed study of the 

effect of spring reactivation in deciduous broadleaf forest on o’. 

Furthermore, Wagner et al. (1999c) used vc for disentangling the vegetation and 

soil moisture (SM) components in the ERS backscatter signal. They applied ve in 

order to correct for vegetation dynamics and retrieve SM using a semi-empirical 

change detection method (Wagner et al., 1999b; Wagner et al., 1999a). Since 

then, the approach has been developed further for ASCAT onboard the series of 

Metop satellites launched in 2006, 2012 and 2018 (Naeimi et al., 2009a). From 

their exploratory analysis of the ERS-1/-2 scatterometers, Wagner et al. (1999c) 

concluded that a SM effect on o’ and o” is weak or nonexistent. Therefore, they 

assumed that SM effects on o’ and o” can, in a first approximation, be neglected. 

This assumption has become part of the core postulates of the TU Wien SM retrieval 

algorithm (Wagner et al., 19995; Vreugdenhil et al., 2016; Hahn et al., 2020). 

Traditionally, vc has been modelled as a climatology (vceiim), i.e., o’ and 0” are 

modelled for every day of year. However, vegetation dynamics can vary significantly 

in different years due to meteorological conditions, and vecıim is thus expected to be 

outperformed by a dynamic vegetation correction (vc4yn) when used for the retrieval 
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of SM (Vreugdenhil et al., 2016). Melzer (2013) showed how o/,,, and o/;,, can be 

modelled in a robust way. The use of this vcayn for SM retrieval from ASCAT "has been 

evaluated in different studies with mixed outcomes: Pfeil et al. (2018) analyzed the 

differences in ASCAT SM time series when using vcayn as opposed to vecim, inan 

agricultural catchment in Austria. They found that the correspondence with in-situ 

SM does not improve significantly, contradicting the expectation. Steele-Dunne et al. 

(2021) analyzed ASCAT SM retrieved with vc.1jm and vc4,„ over the United States. 

They concluded that the application of vc4,„ leads to improvements in the resulting 

SM dataset over regions with a temporal trend or changes in the amplitude or timing 

of phenological processes, but not in general, due to short-term variability in a4... 

Short-term dynamics in the order of several days to a few weeks in o/,, have dyn 

not been studied in detail. As vegetation growth processes usually take place on 

temporal scales of several weeks, it is likely that the observed short-term effects 

are in fact secondary effects superimposed on the vegetation signal at the coarse 

spatial resolution of ASCAT. A possible explanation was put forward by Quast et al. 

(2016), who used radiative transfer theory to model backscatter from the land 

surface. They found that, in contrast to the assumption made in (Wagner et al., 

1999c), o’ and ¢” might in fact be significantly affected by SM. A recent study by 

Vermunt et al. (2021) found that interception and dew, i.e., water present on the 

canopy (WOC), impact L-band backscatter. In a follow-on study (Khabbazan et al., 

2022), the authors demonstrated that interception and dew influenced retrievals of 

vegetation parameters. It is likely that this effect also plays a role, or is even stronger, 

in C-band microwave remote sensing as the wavelength is shorter and closer to the 

size of plant constituents. 

The aim of this study is to advance the understanding of short-term variability in o/,,. 

and in particular the investigation of a potential SM effect on 0’. Whereas reference 

data for SM can be readily obtained from multiple sources, e.g., based on remote 

sensing data, land surface models, or data assimilation products, the availability 

of WOC reference data is currently limited to dedicated field experiments. Thus, 

we account for WOC only indirectly by masking potentially affected observations. 

As the effects are expected to be more pronounced on 0’ than on its derivative, 0”, 

and the estimate of o” is less robust than the estimate of o’, we will not look at 

co” in this study. The main challenge of this investigation is that SM, WOC, and 

vegetation dynamics are closely related through the water, energy and carbon cycles, 

and disentangling the effects needs a careful analysis. Thus, we base the study on 

different types of analyses and aim at answering the following questions: 
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r 1. How do o/ u 

dynamics? 

and Fayn differ, and can we relate the differences to SM or LAI 

2. What are the correlations between anomalies of ¢, Ziyn» SM, rainfall, temperature, 

and LAI? 

3. Is there a direct relationship between SM and the daily slope values, the 

so-called local slopes o7,,..1? 

4. Do SM variations explain short-term dynamics in o/,,, even when excluding , 
dyn 

observations potentially affected by WOC? 

5. What is the magnitude of a potential SM effect on o{,.? 

The calculation of ]yca1 Tlyn, and 0%; Will be described in section 4.3.1. Section 

4.5 provides details on each analysis step, including the chosen WOC masking 

approach. We carry out the analysis for six regions in Austria, Portugal and Russia, 

which differ in climate, land cover, and the factors that limit vegetation growth. 

Vegetation, soil moisture and roughness effects on 
o' 

An observed backscatter value (0) is affected by the characteristics of the land 

surface in the sensor footprint, and by the different scattering mechanisms that 

are activated. This, in turn, is primarily controlled by the sensor’s frequency and 

polarization, and the incidence angle of the observation (Ulaby, 1981). Figure 4.1 

shows a generalized overview of different effects that contribute to ¢”. In the case 

of bare soil, the radiation is reflected on the surface, and with increasing surface 

roughness, a larger part of the radiation is scattered back to the sensor. If a surface 

appears rough or smooth to a scatterometer is defined by the size of the surface 

height variations, the wavelength of the radar beam, and the incidence angle. In 

general, 0° is higher over rough surfaces and decreases with increasing incidence 

angle. This decrease with increasing incidence angle is stronger for smooth surfaces. 

In addition, the soil water content plays a fundamental role in microwave remote 

sensing, as wet soil increases o due to its high dielectric constant and consequently 

higher scattering strength. As opposed to bare soil, a vegetation canopy appears 

as an inhomogeneous medium with a higher penetration depth, and thus acts like 

a volume scatterer, which scatters the incident radiation diffusely in all directions. 

In this case, the backscattered radiation fraction depends less on the incidence 
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angle. In addition to surface and volume scattering, double-bounce backscattering 

between vegetation constituents and the (soil or water) surface might occur. Double- 

bounce scattering is typical for flooded vegetation, e.g., paddy fields, but may also 

play an important role over croplands with predominantly vertically oriented plant 

constituents when observed with sensors that operate in vertical polarization mode. 

With increasing incidence angle, i.e., a longer pathway through the vegetation and 

thus decreasing canopy transmissivity, double-bounce effects are expected to become 

weaker (Xu et al., 2019). In most regions, except for, e.g., tropical rainforests or 

desert areas, the sensor footprint often covers a mixture of different land cover types, 

which also develop differently throughout the growing season. Thus, 0, as well 

as the sensitivity of 0” to the incidence angle of the observation (0’), are usually 

affected by both surface and volume (and in some cases, double-bounce) scattering, 

and change over the year based on SM and vegetation conditions. Thereby, the 

presence of vegetation in the sensor footprint and the increase of vegetation water 

content and biomass during the growing season reduce the sensitivity to SM. 

As stated in the introduction, recent studies suggest that the SM-induced increase 

of absolute backscatter might not be consistent across all incidence angles. As the 

attenuation of the radar beam by a vegetation canopy is higher at large incidence 

angles due to longer paths through the canopy, an increase in SM might increase 

0° (expressed in dB) observed at low incidence angles more than at high incidence 

angles, leading to a steeper, i.e., more negative, o’. This hypothesized process is 

shown in red in Figure 4.1. This would mean that 0’ changes due to vegetation 

dynamics (rather long-term changes) as well as due to SM dynamics (rather short- 

term changes of a few days to weeks). 

Datasets 

Since SM and vegetation growth are closely connected through the water, carbon 

and energy cycles, we compare 0’ not only to SM but also to LAI, rainfall, and surface 

temperature. LAI, representing vegetation growth and dynamics, is obtained from 

the Copernicus Global Land Service (CGLS). Surface temperature, as a proxy for 

photosynthesis and land-atmosphere exchanges in radiation- or temperature-limited 

areas, and rainfall data are obtained from the ECMWF Re-Analysis (ERAS-Land). An 

overview of the datasets is given in Table 4.1. We collected data from all datasets 

for the period 2007-2019. Timestamps with a surface temperature below 3°C or 

snow cover above 10% have been masked. Unless stated otherwise, we use time 

series that have been smoothed with a 42-day rolling Epanechnikov kernel in order 
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Fig. 4.1: Dependence of the backscatter coefficient on the incidence angle under dry and 
wet conditions, for bare soil and fully grown vegetation (after (Wagner et al., 
1999c)). The hypothesized change of o’ due to SM variations is shown in red. 

to match the TU Wien change detection o’ calculation (see section 4.3.1). This 

smoothing preserves the seasonal cycle as well as short-term events of several days 

to weeks, but removes events of shorter time scales, i.e., a few days or below. In 

the case of ASCAT, the Epanechnikov kernel is applied in order to obtain a robust 

estimation of o’. Therefore, the observations are weighted based on their relative 

distance (d) to a given day using the following equation: 

weight = 0.75 * (1 — d?) (4.1) 

Both absolute and anomaly time series are used in this study. Anomalies are 

calculated by subtracting the long-term average (2007-2019) from the absolute 

values. The long-term average is obtained by applying a 5-day smoothing window 

on the time series (gap filling and short-term event correction), calculating the mean 

value for each day of year based on data from all available years, and applying a 

30-day smoothing window on the resulting time series (long-term event correction). 

The long-term average thus represents the average annual seasonal cycle, without 

variations in the order of several days to weeks. The anomaly time series on the 

other hand contain only these short-term deviations from the long-term average, 

i.e., without a seasonal cycle. 
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Tab. 4.1: Overview of datasets. 

  

  

Variable Unit Dataset Spatial sampling 

0° dB ASCAT 12.5 km 

Oki» Olyns Tlocal dB/deg ASCAT 12.5 km 
Rainfall m/h ERAS-Land 9 km 

Soil moisture (0-7 cm depth) mm? ERAS-Land 9 km 

Surface temperature 0 ERAS-Land 9 km 

Leaf area index -] SPOTVGT, PROBA-V resamp. to ASCAT grid 
  

Advanced Scatterometer (ASCAT) 

We test our hypothesis using 0” observations and thereof derived 0’ from the 

Advanced Scatterometer (ASCAT). ASCAT is a side-looking C-band radar onboard 

the Metop-A, -B, and -C satellites, which were launched in 2006, 2012, and 2018, 

respectively. Recently, Metop-A has reached its end, and was deorbited in November 

2021. ASCAT observes the surface with a frequency of f=5.255 GHz across an 

incidence angle range of 25° to 53° (mid-beam) and 34° to 64° (fore- and aft- 

beams), and provides vertically co-polarized (VV) 0°. 

The description of the backscatter-incidence angle dependence, i.e. o’ and o”, has 

been investigated in many studies. Please note that as stated in the introduction, 

we focus only on 0’ in this study. Wagner et al. (1999c) estimated o’ based on all 

backscatter observations from a certain period of the year (slope climatology, o/,..)- 

Later, Melzer (2013) showed that 0’ can be derived for sliding time windows of a 

few weeks (dynamic slope, o{,,). Hahn et al. (2017) compared o/;., and o), and 

showed the robustness of the o/,,,, calculation on a global scale. All these studies 

used backscatter observations from ASCAT or its predecessors, the scatterometers 

onboard the ERS-1 and -2 satellites (ESCAT). The calculation of both o/,,,, and 

Fly. I based on the so-called local slopes, which can be derived from the (almost) 

simultaneous observations of the fore- (f), mid- (m) and aft-beams (a) provided by 

ESCAT and ASCAT: 

    

  

0 0 0 0 
’ Om —Of r_ Om —Oa 
mg min (4.2) 

Om — dr Om — On 
On = On = 13; inf 7 mn 2 (4.3) 
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’ 
ma are where 0" denotes the backscatter, 0 is the incidence angle, and o', I" and o] 

the local slopes (o7,.,). The dynamic slope, o}, is estimated for every day by dyn» 
calculating a linear regression based on all o7,.., values within a window of +21 

days, weighted by their temporal distance from the respective date using a rolling 

Epanechnikov kernel. The result of this linear regression are 0, ofthe 

) is done in the same way, but using 

” and Fdyn 
m 

(and o7y, respective date. The estimation of o/, | 

all observations from a certain period of all available years. In this study, we applied 
imati / ’ , the same methods for the estimation of of, ., o/, and day 

the linear part of the backscatter-incidence angle dependence on different temporal 

i.e., descriptions of 

scales. 

co’ is generally exploited in three ways: First, it is used to normalize backscatter 

observations to any desired incidence angle. Second, o’ is used to correct for 

vegetation effects and the subsequently reduced sensitivity to SM in the TU Wien 

SM retrieval algorithm. Third, it is used to calculate VOD from ASCAT (Vreugdenhil 

et al., 2016) and for the study of vegetation dynamics (Steele-Dunne et al., 2019; 

Pfeil et al., 2020b). The main assumption underlying the latter two uses is that 0’ is 

only affected by vegetation water content and structure, not by SM conditions (or 

other secondary effects). The assumption is based on early studies by Wagner et al. 

(1999c) who calculated differences between measured o7,,.,, and their first-order 

approximation and compared the variability of these differences for grassland, boreal 

forest, and perialpine forest regions. High variability in these differences would 

indicate the presence of natural short-term changes in o’. They found the variability 

to be similar among the vegetation regions, although backscatter from forested areas 

is much more stable than the backscatter from grassland, and concluded that 0° is 

generally not affected by short-term changes of environmental conditions. Thus, 

they also expected correlations between 0’ and SM to be weak. This study was based 

on ESCAT data from two years (1993 and 1994). Nowadays, backscatter samples are 

available for much longer periods and at higher spatial, temporal, and radiometric 

resolutions. It is thus possible to revisit and potentially update the interpretation by 

Wagner et al. (1999c). 

CGLS Leaf Area Index 

The Copernicus Global Land Service (CGLS) provides LAI from the SPOT-VGT and 

PROBA-V sensors (Camacho et al., 2013; Dierckx et al., 2014). In this study, version 

2 of the dataset was used, which is available from 1999-June 2020 and has a spatial 

resolution of 1 km. The LAI data was spatially resampled to the scale of ASCAT 
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by averaging over all 1 km pixels within a 0.09° radius around the center of the 

respective ASCAT grid point. 

ERA5-Land 

Hourly SM, rainfall, and surface temperature were obtained from the ERA5-Land 

dataset (MuAoz Sabater, 2019) and resampled to daily averages. Surface tem- 

perature was included in the study to account for the fact that land-atmosphere 

exchanges are radiation- and/or temperature-limited in some regions. All time series 

used in this study were masked for cold and frozen conditions using daily surface 

temperatures (masked if temperature is below 3°C), and for snow cover (masked if 

snow content is greater than 10%). 

CCI land cover 

The dominant, i.e., most frequent land cover class for each ASCAT grid point has been 

derived from the CCI land cover dataset version v2.0.7, year 2015 (ESA, 2017). 

Study area 

We selected six regions of interest (ROIs) in Austria, Portugal and Russia in order 

to study SM and vegetation effects on o’ under different environmental conditions. 

These six regions have different dominant climate regimes, land cover types, and 

vegetation cycles. Table 4.2 provides an overview of the study regions, and the 

factors mainly limiting vegetation growth (estimated from Nemani et al., 2003, Fig. 

1a). Long-term average annual temperature, SM, and LAI are shown in Figure 4.2 in 

order to illustrate differences of climate and vegetation growth between the ROIs. 

Note that short-term variations in the order of days to weeks are filtered out during 

the calculation of the long-term average. Average temperatures in Austria range 

from slightly below 0°C in winter to around 20°C in the summer months. SM is 

relatively constant throughout the year, with lowest values during the warm summer 

months. As shown by LAI, the growing season in cropland starts in March, peaks in 

June and ends around late September. In grassland, the peak of the growing season 

also happens around June, with a less sharp decline afterwards until autumn. In 

evergreen needleleaf forest, LAI increases constantly from around March to July 

and then decreases again until the end of autumn. The development is similar in 
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Tab. 4.2: Abbreviation, Koeppen-Geiger climate class, factors limiting vegetation growth 
(LVG), number of grid points (n), and center coordinates for the six regions of 

  

  

  

  

interest. 

Region Abbreviation Climate IVG n Center 

Austria (cropland) AT_er Dib radiation 79 16.14°E, 48.33°N 
Austria (grassland) AT_gr Ch, Dfb radiation 23 13.84°E, 48.12°N 
Austria (evergreen needleleaf forest) AT_nf Dfb,c, ET radiation, temperature 86 14.90°E, 47.11°N 
Portugal (tree, shrub mosaic) PT Csb radiation, water 93 7.46°W, 41.00N 
Portugal (cropland) Csa water 80 7.82°W,38.37°N 
Russia (sparse vegetation) Dfe temperature, radiation 102 108.20°E, 72.00°N 

  

  

Russia. However, LAI is lower there due to the sparse vegetation cover. Average 

temperatures range from around -30°C to 10°C. In these four ROls, vegetation 

growth is mainly limited by radiation and temperature. In Portugal on the other 

hand, vegetation growth is mainly water-limited. Average annual temperatures 

range from around 10°C to above 20°C. In summer, SM levels become very low. The 

peak of the growing season occurs around May/June, before the SM level reaches 

its minimum (around 0.15 m?/m?). 

Figure 4.3 shows the average «\,,,, time series for each ROI. Characteristic seasonal 

vegetation cycles, similar to LAI in Figure 4.2, can be identified. In addition, 

interannual variability due to different weather conditions is clearly visible in all 

ROIs. o/,,, is most dynamic over cropland, varying from below -0.15 dB/deg to 

-0.05 dB/deg. Lowest slope dynamics are observed over evergreen needleleaf forest, 

with slope values from around -0.10 dB/deg to -0.075 dB/deg. The steepest slopes 

are observed over sparse vegetation in Russia, where the average slope in the short 

growing season is around -0.15 dB/deg. 

Methods 

Correlation analysis - seasonal dynamics 

In a first step, we analyze the seasonal dynamics of the climatology slope (0/,,.) 

and the dynamic slope (o/,,,) by correlating the time series with LAI and SM 

(smoothed with a 42-day rolling window). If the short-term variations in o}y, 

represent vegetation dynamics, we expect to see similar dynamics in LAI, and thus 

On the other hand, if the short-term 

dynamics are caused by SM, the correlation between SM and o/,,, 

than between SM and o/,,,,, and the correlation between LAI and Fyyn will be weaker 

a strong correlation between LAI and o4,.- 

will be stronger 
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Fig. 4.2: Long-term average annual temperature, SM and LAI for every day of year (DOY). 
Periods where the average temperature is less than or equal to 3°C are shown in 
light blue. Please note the different temperature axis for Russia. 
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3: Average o)), time series for each ROI (black). The grey shaded area shows the +1 
standard deviation range within each ROI. 
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than between LAI and co. lim, Please note that we are not primarily interested in 

absolute correlations here, as the seasonal cycle in all variables will lead to high 

correlation values without necessarily bearing causality (Papagiannopoulou et al., 

2017). Instead, we only look at the relative differences in the correlations of LAI 

and SM with o/ We use Spearman’s rank correlation coefficient, as the / 
lim and 0, dyn* 

variables might be non-linearly related. 

Correlation analysis - anomalies 

Next, we carry out a correlation analysis on anomaly time series, i.e., time series 

where the long-term seasonal cycle has been subtracted. As mentioned above, this 

is critical in the case of variables with a strong seasonal cycle, as potential (non- 

)correlations in the short-term dynamics of the variables will always be outweighed 

by long-term similarities. In this step, we also include rainfall and temperature 

anomalies in addition to SM and LAI, as short-term vegetation dynamics might 

rather be reflected (indirectly) in these variables than in LAI. In addition, we carry 

out a multiple linear regression (MLR) in order to test the explanatory power of 

anomalies of the individual variables, as well as combinations thereof, on dynamics 

in o4,,. The explanatory power is given by the coefficient of determination, R?, 

and is calculated using the ordinary least squares (OLS) function of the statsmodels 

Python package. 

Local slopes analysis 

As described in section 4.3.1, o/,. is based on the weighted o1,.,, values of all 

observations within a +21-day window. Thus, potential short-term effects of SM are 

reduced in a, (as well as in o{,,,,), but much more pronounced in a1,.,,- In the 

presented analysis, the uncertainty in the local slopes is reduced by averaging the 

local slope pairs: 

7» _ Amt + Ama Ormt + Oma 
Mocal = FRE Mocal = Ku (4.4) 

We look at changes of the observed o7,,.,, and compare them to the corresponding 

changes in SM. For this purpose, we use the SM value from the timestamp closest 

to the ASCAT observation, as opposed to the 42-day smoothed values that were 

used before. In case of a SM effect on the slope, we expect the slope to become 

steeper as SM increases. As o7,,.,; iS calculated for each observation, the values are 
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not yet normalized for incidence angle effects. Thus, this analysis is carried out 

per incidence angle (rounded to full integers). We do a visual analysis of the o1,.. 

dynamics during and after rainfall events in order to support the discrimination of 

SM and vegetation effects in 7j,.,, and, subsequently, . 

Indirect assessment of WOGC effects on the ASCAT slope 

A recent study by Vermunt et al. (2021) using L-band backscatter suggested that 

water on canopy (WOC), due to, e.g., interception and dew, may affect the backscat- 

ter significantly. It is assumed that C-band 0 and 0’ are also strongly affected 

by WOC. However, these effects are poorly understood, and it is not known how 

ASCAT’s sensitivity to SM changes when WOC is present. In order to investigate 

correlations between o’ and SM and at the same time reduce the uncertainty with 

respect to WOC, we apply an indirect WOC masking: First, we identify all o7,.. 

observed on days with rainfall (maximum rainfall value greater than 1 mm/h) and 

remove these observations. Moreover, we exclude all observations from morning 

overpasses (before 10:00 am), as dew is expected to occur mainly in the morning 

hours. Just like in the previous sections, we then derive the o,,,., time series based 

on all remaining o,,.,, values within a +21-day window. This modified o,,,,, is 

referred to as 0, „woc (dynamic slope, no water on canopy"). The assumption 

that we take here is that a potential WOC effect on the slope lasts shorter than a SsM 

effect, as the drying of the leaves happens more quickly than the decrease in SM. 

The proposed approach is not expected to provide a perfect masking of WOC. For 

example, WOC may persist for a longer duration depending on weather conditions 

and leaf structure. Nonetheless, in the absence of reference data for WOC, the 

proposed masking is adopted as a meaningful indirect indicator of WOC. It also has 

to be noted that the estimation of 07, „woc 15 less robust than the original o/,,, due 

to the reduced number of o . 

/ 
dyn 

Similar as in section 4.5.3, SM, 0{,,, 74y, and oy, .woc are visually compared to 

each other and analyzed for selected grid points. Then, we redo the correlation anal- 

ysis from section 4.5.2 with o/,,, „woc and compare the results with the correlations 
; ith ot, obtained with a7 . 

Quantification of SM effects on the ASCAT slope 

Finally, we provide an estimate of the magnitude of SM effects on o/,,, by calculat- 

ing linear regressions between anomalies of 42-day smoothed SM and o,,,,. The 
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regression line is used to obtain the change in ¢/, „ at the largest positive (wet) SM dyn 
anomaly that occurred in each ROI. Then, the order of magnitude of the change in 

), is related to the characteristic o}, dynamics in each ROI. r 
dyn 

Results 

Correlation analysis - seasonal dynamics 

Figure 4.4 shows example time series of o(;,,, 0ly,,,, SM, and LAI for a grid point 

in Marchfeld, an agricultural region in eastern Austria. All four variables show 

a characteristic seasonal cycle and inter-annual variations, e.g., lower maximum 

and LAI in 2017, 2018, and 2019, and short-term variations in o/, in o’ values in o, Ay dyn 
and SM. Äsıcan be seen in the figure, some of the short-term variations in o} 

correspond to variations in SM, but not to LAI, which shows relatively smooth 

temporal dynamics apart from inter-annual variations in the absolute values. For 

this grid point, the Spearman correlations between o/,,,, and SM, and o/,,,, and LAI 

are -0.53 and 0.86, respectively. The correlations of SM and LAI with o, , are -0.72 

and 0.70, i.e., the correlation between SM and Aayn is -0.19 lower (stronger) than 

whereas it is 0.16 lower (weaker) for LAI and o,,,, than LAI and o/,,,,. We 

calculated these correlations for all grid points in the six ROIs and found a consistent 

behavior (Figure 4.5): for all ROIs, the median correlation between SM and o7,,,, is 

stronger than between SM and o/,,,, whereas the opposite is true for LAI, except 

for the PT_cr ROI, where the correlation between o/,,, and LAL is slightly lower. 

The weak correlations in PT_cr can be explained by a relatively quick drop in LAI 

in early summer, which in most years corresponds to the timing of the shallowest 

with o/, clim? 

slope, but after the peak, the slope values decrease more gradually. An example 

of this behavior is shown in Figure 4.6 for a grid point in Portugal dominated by 

non-irrigated arable land. Figures 4.4 and 4.6 also show that there is a small time lag 

between o’ and LAI, which is due to a sensitivity to different biophysical parameters: 

whereas LAI is a representation of the photosynthetically active leaf area per surface 

area, o’ is sensitive to the vegetation density, water content, and vegetation structure. 

These time lags are typically of a few weeks and have been observed for o’ (Pfeil 

et al., 2018) and the closely related VOD (Jones et al., 2011). 
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4.4: 0l 04y, SM and LAI for a grid point in AT_cr (lon: 16.79°, lat: 48.62°). 
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1.5: Spearman correlation coefficient (r) of o/,,, and c/,,, with SM and LAI, for each 
ROI. Only grid points with a significant correlation (p < 0.01) are included. The 
boxes show the quartiles, and the whiskers show the rest of the distribution. The 

horizontal line inside the boxes shows the median value. Outliers are shown by 

diamonds. 
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4.6: Oli» Flıyn, SM and LAI for a grid point in PT_cr (lon: -8.09°, lat: 37.82°).   

Correlation analysis - anomalies 

In a next step, we calculated Spearman correlations between anomaly time series, i.e., 

time series where the long-term seasonal cycle has been removed. Table 4.3 shows 

the median correlation for each ROI. For all ROIs except PT_cr, the correlation 

is strongest between o/,,, and SM, ranging from -0.37 to -0.70. For PT_cr, the 

correlation is strongest between o/,,, and rainfall (-0.51), but also relatively high 

between 07, and SM (-0.45). The correlations with LAI range from -0.14 to 0.26 

and are thus much weaker than with SM and rainfall. As shown in section 4.6.1, 

LAI does not show large short-term dynamics, and inter-annual variations mainly 

show in the absolute values and the long-term development of LAI throughout the 

growing season. The correlations with temperature anomalies range from 0.23 to 

0.43, which most likely reflects the close relationship between temperature and SM, 

i.e., drying of the soil with higher temperatures and evaporation rates. The fact 

that the o/, Ziyn correlations with rainfall and SM are higher than with temperature 

suggests that the short-term dynamics in o/,,., 

vegetation dynamics, e.g., by an increased water demand from the atmosphere 

do not represent temperature-induced 

leading to water uptake by the leaves, but more likely a direct SM effect. 

The OLS analysis has the advantage that also multivariate relationships can be tested. 

The R? coefficient represents the percentage of variation in the o/,,, anomalies that 

can be explained by another variable or combinations thereof (Figure 4.7). LAI has 

been excluded here because of the weak correlations with slope anomalies as shown 
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Tab. 4.3: Median Spearman correlation (significant at p<0.01) between anomalies of o, 
and the given variable. The maximum absolute correlation is given in bold. 

/ 
dyn 

  

Region Rainfall Soil moisture Temperature LAI 
  

AT_er  -0.49 -0.52 0.43 -0.07 
AT gr  -0.34 -0.51 0.41 -0.14 
AT nf  -0.24 -0.37 0.35 0.10 
PT_ts  -0.44 -0.52 0.32 0.10 
PT_er  -0.51 -0.45 0.23 0.13 
RU_sv  -0.32 -0.70 0.27 0.26 
  

in Table 4.3. In general, similar results are obtained as presented above. SM is in all 

regions the most important variable for explaining short-term dynamics in o/,,,. Over 

cropland and sparse vegetation, rainfall has a higher I? coefficient than temperature, 

whereas the opposite is true in grassland, needleleaf forest and shrubland. In all 

ROIs, the highest A? coefficients are obtained when combining temperature, SM 

and rainfall anomalies. In all regions except AT_cr, where the combined R? values 

are very similar, a clear drop in I?? is observed when including only temperature and 

rainfall in the analysis. Overall, the highest R? values are obtained in RU_sv, with 

median values above 0.50 and maximum values around 0.70. Vegetation growth in 

this ROI is generally limited by temperature and radiation, not by SM availability. 

The fact that much higher correlations between 07, and SM than temperature are 

observed supports again the hypothesis that the short-term dynamics in 10m can 

be explained by SM dynamics to a very large extent. R? is lowest over needleleaf 

forest, indicating that there, the bare soil scattering component is largely attenuated 

by the canopy, and subsequently, the SM effect is lower. 

Local slopes analysis 

The local slopes o7,.., allow for the analysis of a potential SM effect at a much 

finer temporal scale. We selected two grid points as examples for the detailed 

study of a relationship between SM and short-term dynamics in o,,.,, and o};,.- 

Figure 4.8 shows o7,.,; observed over a range of incidence angles, the 42-day 

smoothed o,,,., time series, and ERAS-Land SM, temporally matched to o7,.,,, for a 

grid point in AT_cr (left) and PT_cr (right). Displayed are only a7... values from 

the incidence angle with most observations in the bins 25°-35°, 35°-45°, 45°-55° 

and 55°-65°, whereas the resulting 42-day smoothed o/,,, (shown in black) includes r 
dyn 

all observations from the entire incidence angle range. The shown time series are 
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Fig. 4.7: Coefficient of determination (A?) obtained for regressions of temperature, soil 

moisture, rainfall, and combinations thereof against o/,,., for each ROI. The 
boxes show the quartiles, and the whiskers show the rest of the distribution. The 
horizontal line inside the boxes shows the median value. Outliers are shown by 
diamonds. 

from 2014, as interesting SM and o,,,,, dynamics occurred in this year in AT_cr and 

PT & 

In the first example (AT_cr), SM was relatively high in April and May 2014, and 

decreased relatively smoothly in June. In the beginning of July, SM increased again. 

As opposed to SM, o1,.,, and the resulting o,,,., started to increase (become more 

shallow) in March, then decreased during the period of higher SM in April and May, 

increased in June, and quickly decreased at the beginning of July. From August 

onwards, SM stayed constantly high. 7... and o\,,, decreased, mainly reflecting 

the end of the growing season and senescence of the vegetation, but also including 

some short-term effects such as in October and the beginning of November, where 

again, the o, and also o}y, 

second example (PT_cr), SM was high in the winter months in 2014, decreased 

dynamics are clearly opposed to SM dynamics. In the 

from March onwards and increased again in September, interrupted by a number of 

SM increases and rapid decreases due to rainfall events. The distinet SM dynamics 

are also found in o7,.,;: whenever SM increased, o7,,.,, decreased. The effect seems 

particularly pronounced at lower incidence angles, for example when comparing 

the o, (0=35°) time series with o7,.,,(0=58°). The time series also show the 

dependence on the overpass timing: the large rainfall event in mid-May is reflected 

in of,., (0=58%), but missed by o7,.,,(0=35°). In o/|,,, the short-term effects that are 

so clearly visible in o7,.., appear smoothed, but can still be linked to large rainfall 

1 
dyn> 

events for example in the beginning of April, the end of June and the beginning of 

September. Again, the seasonal dynamics are dominated by the vegetation cycle. 

These observations indicate that rainfall events and thus SM increases steepen o/, ,, 
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Fig. 4.8: Soil moisture (SM), o1,.., from the five most frequent incidence angles and Oayı 

for a grid point in (left) AT_cr and (right) PT_cer. 
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Fig. 4.9: Same as Figure 4.8, but without o7,,..., from rainy days and morning overpasses, 
and the resulting o},,.,„woc in addition (dashed black line) to the original o/,,.- 

where a flattening is expected as a result of growing vegetation. Similarly, at the 

end of the growing season, the steepening of o/,,,, is exacerbated by SM increases. 

Indirect assessment of WOGC effects on the ASCAT slope 

In section 4.6.2, we showed that short-term 0, anomalies are highly correlated with 

SM and rainfall. However, rainfall has no direct effect on backscatter. Rather, it is SM 

and WOC after rainfall events (and, in the morning hours, WOC in the form of dew) 

that affect backscatter. Similar to SM, WOC might have an impact on o’. However, 

due to a lack of reference data for WOC, we can currently assess contributions 

of WOC only indirectly. As described in section 4.5.4, we do this by removing 

measurements potentially affected by WOC before the 0), /iy„ calculation. Figure 4.9 

shows the remaining of,,, the original oy, the new o}, .\oc With measurements 

from rainy days and morning overpasses removed, and SM, temporally matched to 
  the dates of the remaining o{,., values. Compared to Figure 4.8, the AT_cr example 

(left panel) shows a longer slope increase in spring, but again a decrease around the 
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beginning of May, when SM is high. In autumn, o/, 
i . 

Ayı and 74, o are very similar 
In the PT_cr example (right panel), the number of quick drops in the o7,.,,(0=58°) 

time series is reduced. Remaining short-term effects are mainly visible during the 

large SM increase around the beginning of April and at the beginning of July, when 

the vegetation is already beginning senescence. The resulting o), , „woc dynamics 
’ liyn- The reduced robustness of the calculation of are very similar to the original ¢’ 

v : 
Thynawoc Shows for example in November 2014. 

This analysis shows that when excluding measurements from rainy days and morning 

overpasses, some short-term dynamics in o7,..., are indeed removed, which may be 

related to WOC. However, the main dynamics in 0’ are still present, as the 42-day 

smoothed 7/,,,„woc does not differ much from o, . This suggests that WOC might 

play a (significant) role, however, it represents only another influence on o/,., in 

addition to the SM effect. 

To quantify the relative importance of the SM effect on o\,,., with respect to the WOC 

effect, we repeat the correlation analysis from section 4.6.2, now using /.., .woc 

instead of o4,,. Because of the only indirect effect on rainfall and the fact that we 

used rainfall to correct for WOC in 0, „woc, We omit this variable here. Table 4.4 

shows the median Spearman correlations between anomalies of SM, temperature, 

and LAI and 07, „woc (r)- In addition, the differences between the absolute corre- 

lations calculated between the explanatory variables and o/,,, „woc and the absolute 

correlations calculated between the explanatory variables and o, ,, (section 4.6.2, 

Table 4.3) are given (Aabs(r)). A boxplot of the correlations between anomalies of 

SM, o4,,, and o4,.,.woc 15 shown in Fig. 4.10. Both Table 4.4 and Fig. 4.10 show 

that for all ROIs, the correlations between 7/,,, „woc and SM are lower, but still 

significant, and higher than with temperature or LAI. The correlations are mainly 

reduced in ROIs with higher rainfalls, i.e., Austria and Russia, showing that masking 

observations from rainy days and morning overpasses effectively reduces the impact 

of WOC (and SM, to a certain extent). These results suggest that we need to find a 

way to also fully reduce the SM effect in o/,,., „woc in order to obtain a o/,,, that dyn 
mainly includes vegetation water content and structure effects. 

Quantification of SM effects on the ASCAT slope 

As the previous sections indicate that SM causes secondary, short-term dynamics in 

0l)y,» We will give an estimate of the magnitude of the effect. Please note that in 

this estimation, we assume that SM causes all short-term effects in o/),., neglecting 

other effects which are, e.g., related to the vegetation structure. We do not correct 

1 
dyn> 
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Tab. 4.4: Median Spearman correlation (significant at p<0.01) between anomalies of 
T4yuuwoc and the given variable (r), and the difference to the correlations with 
4y, Shown in Table 4.3 (Aabs(r); caleulated between absolute r values). The 
maximum absolute correlation is given in bold. 

  

  

  

  

  

      

Region Soil moisture Temperature LAI 

r Aabs(r) r Aabs(r) r Aabs(r) 

-0.36 -0.16 0.28 -0.15 0.05 -0.02 

-0.24 -0.27 0.19 -0.22 -0.08 -0.06 

-0.12 -0.25 0.12 -0.23 0.10 0.00 

-0.45 -0.07 0.27 -0.05 0.07 -0.03 

X -0.42 -0.03 0.18 -0.05 0.10 -0.03 

RU_sv -0.46 -0.24 0.21 -0.06 0.17 -0.09 

+ slope 

0.0 -, 
on ’ \ woc 

0.2 

5 ‘ 

” ’ 
0.6 

0.8 = 

AT cr AT_gr AT nf PTts PTcr RU_sv 

Fig. 4.10: Median Spearman correlation (significant at p<0.01) between anomalies of SM 

and o 
boxes show the quartiles, and the whiskers show the rest of the distribution. The 

horizontal line inside the boxes shows the median value. Outliers are shown by 
diamonds. 

iyn (red) and between anomalies of SM and o, .woc (vellow). The 
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for WOC here, as o)), .woc is less robust than ¢, and we do not have reference dyn> 
data for the actual presence and amount of WOC. The calculations are done for the 

maximum observed wet anomaly (i.e., 42-day smoothed SM anomalies) during the 

study period. The results should thus be interpreted as maximum values, and smaller 

SM effects are expected for most of the time. In order to quantify the SM effect, we 

calculate linear regressions between anomalies of 42-day smoothed SM and o\,,.. 

Figure 4.11 shows the median regression lines for each ROI along with values from 

a randomly selected subset of grid points. Boxplots of the linear regression slope (k) 

and A? values for the ROIs are shown in Figure 4.12. The k values are similar in 

most ROIs, and range from around -0.20 to -0.05 dB/deg per m?/m?. AT_nf sticks 

out as the k values are slightly higher there, i.e., the regression line is flatter (median 

k=-0.08). The lowest median k are found in AT_gr and RU_sv (-0.14). Using k, 

the magnitude of the SM effect with respect to the seasonal cycle of o,,,, can be 

quantified: For example, in AT_cr, the largest positive (wet), 42-day smoothed SM 

anomaly from 2007-2019 was 0.10 m?/m? (SM,..). With a median k in AT_er of 

-0.13 dB/deg per m?/m®, $Mycı corresponds to an effect on o/,,, of -0.013 dB/deg. 

Typically, o/,,, ranges from -0.15 dB/deg to -0.06 dB/deg in cropland, i.e., over 

the year, the change in o,,,, is 0.09 dB/deg. The value of -0.013 dB/deg thus 

corresponds to 0.013/0.09 = 14.4% of the average, total seasonal variation of o}j,.- 

Table 4.5 gives an overview of the median values for k and the 95% confidence 

interval (kin and Kar), the maximum SM anomaly during 2007-2019, minimum 

and maximum 07, the difference between maximum and minimum o7,,,, (Ao\,.)» 

and the thereof derived effect of the maximum wet anomaly on the slope, for each 

ROI. The SM effect is lowest, but still considerable, in AT_nf (6%). This is followed 

by grassland (AT_gr) with an effect of 11.2%. Over cropland (AT_cr and PT_cr), 

the effect is of 14.4% and 13.0%, respectively. The largest effects are observed over 

tree and shrub mosaic (PT_ts) and sparse vegetation (RU_sv), with 17.3% and 

23.3%. The SM effect thus increases with decreasing vegetation density, as with 

sparser vegetation, the signal is more and more coming from the soil. As stated 

above, these numbers are expected to be lower during most of the time. Still, they 

indicate that o,,,, is not just related to vegetation dynamics but also notably affected 

by SM. The secondary short-term dynamics caused by SM may be as large as a fifth 

of the seasonal, vegetation-induced variation in o/,,.- 
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Fig. 4.11: 

Fig. 4.12: 

Tab. 4.5 

0.04   

   

  

      

0.034 

® 002 
3 | g 001 | 

ET 0.001 — AT cr 
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§ AT ara 
& -0.02] — PT: 

® oo PT_:' 0.03 Aus 

0.04 
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 

SM anomaly [m3/m3] 

Scatter plot of SM and o,,, anomalies from randomly selected grid points for 
each ROI, along with the linear regression lines (calculated from all grid points 
of each ROI). 

Regression of SM and oy, anomalies 

R?=026 R?=0.25 R?=0.15 R?=0.26 R?=0.31 R?=0.50 
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-0.25 

-0.30   
AT cr AT gr AT_nf PT ts PT cr RU_sv 

Linear regression slope k of SM and o/, ,, anomalies for each ROI. The boxes show 
the quartiles, and the whiskers show the rest of the distribution. The horizontal 

line inside the boxes shows the median value. Outliers are shown by diamonds. 
R? values of the linear regressions are shown above each box. 

Quantification of the SM effect on o/ ,. k is the median slope of the linear 
regression between anomalies in SM and o/,,,. 95% of k are within k,,;, and 

knaz. The largest positive SM anomaly, SMy.cı, is given in m?/m’; 4, min» 
Oliynmax and Ad are given in dB/deg. The SM effect has been calculated 
based on the ROI-specific median values of all parameters. 

  

ROI kmin Kk kmar SMwet Ao, Effect / / / 
Tdyn,min  Fdyn,max dyn 

  

AT cr 

AT gr 

AT _nf 

PT_ts 

PT ¢k 

RU_sv 

-0.14 -0.13 -0.13 0.10 -0.15 -0.06 0.09 14.4% 

-0.14 -0.14 -0.13 0.04 -0.12 -0.07 0.05 11.2% 

-0.09 -0.08 -0.07 0.03 -0.10 -0.06 0.04 6.0% 

-0.11 -0.11 -0.10 0.11 -0.15 -0.08 0.07 17.3% 

-0.12 -0.11 -0.11 0.13 -0.17 -0.06 0.11 13.0% 

-0.15 -0.14 -0.13 0.05 -0.17 -0.14 0.03 23.3% 
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Discussion 

Backscatter measured by active microwave sensors is affected by multiple factors. 

Due to the coarse spatial resolution, each measurement usually contains signals 

from multiple land cover types. Moreover, rainfall, SM, temperature, and vegetation 

dynamics are closely related, which makes it especially difficult to separate the 

effects in the observed backscatter values. We tried to overcome these challenges by 

including different types of analyses, which all point to the same result: SM causes 

high-frequency variability in 0’, which appears as a secondary effect on top of the 

dominant vegetation signal. The effect can be explained by an SM-induced increase 

of the backscatter coefficient over vegetation canopies that still allow a fraction of 

the radiation to penetrate through and reach the surface. As vegetation canopies are 

less transparent at high incidence angles due to longer paths through the canopy, 

observations from lower incidence angles are more affected than observations from 

higher incidence angles. Consequently, the slope of the backscatter-incidence angle 

dependence becomes steeper, even though the vegetation canopy did not change. 

The assumption that SM causes an equal increase of 0’ (when expressed in dB) 

across all incidence angles is thus not strictly fulfilled. Rather, SM might increase 0° 

especially at low incidence angles and thus lead to a steeper 0’, as displayed in red 

in Figure 4.1. We gave a rough magnitude estimate of the SM effect, showing that it 

can be as high as one fifth of the total seasonal variation in o/,,,. The separation of 

vegetation, SM, and WOC effects on o)y, as well as their respective contributions 

should be investigated further using more complex approaches, e.g., empirical 

orthogonal function analysis. 

Despite the clear results, we would like to discuss potential shortcomings of our 

analysis in the following. 

We carried out all our analyses on full time series, i.e., covering all months from 

January to December, apart from a masking of days with temperatures below 3°C 

and snow cover. We did not do any seasonal split of the data because we were 

interested in the general presence of an SM effect. Single seasons might however 

show slightly different results. For example, we know of phenological processes 

such as spring reactivation in deciduous broadleaf forest that can impact o’ during 

a certain time of the year. These are neglected here, and it is assumed that all 

short-term effects have the same causes and appear throughout the year. 

As a reference for vegetation dynamics, we use LAL in this study. However, LAlis a 

suitable, but not perfect reference for VOD, which 0’ is most closely related to (Grant 

et al., 2016). For example, time lags have been observed between LAI and VOD 

Chapter 4 Analysis of short-term soil moisture effects on the ASCAT 

backscatter-incidence angle dependence



(Jones et al., 2011; El Hajj et al., 2019). These time lags are frequency-dependent 

and expected to be smaller for C-band (Grant et al., 2016; El Hajj et al., 2019). 

In the presented study, we tested the use of lagged correlations, but, as the time 

lags were small for all ROIs except for PT_cr and did not affect the results and 

conclusions of the study, they were omitted. Another way to overcome this problem 

might be to compare 0’ to VOD derived from passive microwave sensors, which are 

expected to be less susceptible to SM effects because passive retrievals of SM and 

VOD make less strong pre-assumptions. However, also passive retrievals of VOD are 

associated with uncertainties, for example, due to radio frequency interference and 

pixel heterogeneity (Li et al., 2021; Bousquet et al., 2021). 

The impact of WOC on total backscatter and the relative contributions of the various 

scattering mechanisms are still poorly understood. Without reference data on how 

the presence of WOC alters the sensitivity to surface SM, it is difficult to disentangle 

the respective impacts on the backscatter return. It is however expected that WOC 

leads to increased backscatter, while at the same time reducing the sensitivity to 

surface SM. The WOC filtering applied in this study can thus not be used to identify 

WOC directly, but should be interpreted as a method to mask events where both WOC 

as well as an increase in SM lead to secondary effects on o,,,,, that do not originate 

from vegetation dynamics. Note that the examples discussed in sections 4.6.3 

and 4.6.4 had a rather low number of rainfall events in 2014. In regions and 

years with more frequent rainfall events, removing WOC-affected measurements 

drastically reduces the number of o7,..ı, leading to highly unstable o/,,,, estimates in 

some cases. The effective removal of WOC and SM effects for the estimation of o dyn 

will thus require very thorough investigation. 

In the operational TU Wien SM retrieval algorithm, the estimation of the seasonal 

vegetation cycle is based on observations from several years and thus, short-term 

effects of SM become irrelevant. This explains the good performance of the opera- 

tional ASCAT SM product as shown in many studies (Al-Yaari et al., 2014; Pierdicca 

et al., 2015; Miyaoka et al., 2017; Chen et al., 2018; Mousa et al., 2020; Hahn 

et al., 2020). Our findings provide an explanation for studies (Pfeil et al., 2018; 

Steele-Dunne et al., 2021) that did not find an improvement in the accuracy of SM 

datasets when retrieving them with vea,. instead of ve<iim. In order to benefit from 

an ASCAT-derived vc4,. in the SM retrieval and in studies of vegetation dynamics, all 

SM effects must first be corrected in the signal. A solution might be the application 

of a suitable temporal smoothing on 0’ in order to reduce SM effects in the signal 

while still keeping interannual vegetation dynamics. Other approaches could be the 

masking of observations taken under wet conditions, such as applied for WOC in this 
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study, or by the use of models that explicitly account for the effect of soil moisture 

ona’. 

Conclusions 

In this study, we revisited the assumption that soil moisture has a negligible effect 

on the slope o’ of the backscatter-incidence angle dependence. Based on this 

assumption, o’ has been used in studies of vegetation dynamics, for the retrieval of 

VOD, and to model the vegetation component in the backscatter signal. However, 

recent studies indicated that a soil moisture contribution may be present in the 

slope of the backscatter-incidence angle dependence. We analyzed this potential soil 

moisture effect on o’ by comparing 0’, rainfall, soil moisture, temperature, and leaf 

area index time series over six study regions with different climate, land cover, and 

vegetation cycles. The obtained results lead us to the following conclusions: 

* The slope of the backscatter-incidence angle dependence is dominated by the 

vegetation cycle, but is affected by soil moisture at short temporal scales. This 

SM effect can be larger than 20% of the seasonal, vegetation-induced variation 

over sparse vegetation. Over dense vegetation, the observed effect is lower 

(6% in evergreen needleleaf forest). 

* Short-term secondary effects are mitigated when using a climatology slope 

(0/1) due to long-term averaging. The use of o/,,,, is however only suitable e 

for applications that do not look at interannual vegetation dynamics. 

* As the slope has been found to be a useful complement to optical datasets 

for vegetation studies (Petchiappan et al., 2021), short-term secondary effects 

should be further investigated and a robust method for their mitigation should 

be developed. 

The findings from this study advance the understanding of vegetation and soil 

moisture effects on active microwave observations. The study also showed that 

there is a need to better understand interactions between C-band microwaves and 

water on canopy, i.e., how water on canopy alters o and o’, and how it affects the 

sensitivity to soil moisture. 
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Conclusions 

Dragonfly out in the sun you know what I mean, 

don’t you know? (Feeling good) 

— Nina Simone 

(American singer, songwriter, pianist, and civil 

rights activist) 

5.1 Conclusions and scientific impact 

Active microwave remote sensing observations, and in particular ASCAT with its 

unique viewing geometry, contain highly valuable information for a wide range of 

applications. However, interpreting the observations is complex due to a sensitivity 

to a number of interrelated variables, including SM and vegetation dynamics. Over 

land, the focus of the research field has long been mainly on SM retrievals. In the 

last few years, ASCAT observations have been increasingly used for the study of 

vegetation dynamics. Subsequently, the understanding of the influence of vegetation 

water content and structure on ASCAT observations has improved considerably 

(Vreugdenhil et al., 2016; Vreugdenhil et al., 2017; Steele-Dunne et al., 2019; 

Petchiappan et al., 2021). The studies conducted in the framework of this thesis 

contribute to these developments. 

The overall aim of the thesis was to advance the understanding of how SM and vege- 

tation dynamics affect ASCAT 0° and 0’, i.e., the dependence of o° on the incidence 

angle of an observation. The conducted research highlighted the great potential of 

the coarse-scale ASCAT sensor for the retrieval of biogeophysical variables such as 

SM and vegetation dynamics. It also revealed new aspects that need to be taken into 

account when interpreting ASCAT observations. 

The first study showed that the TU Wien SM retrieval algorithm benefits from 

a stronger vegetation correction over a temperate climate agricultural region, as 

seasonal biases of ASCAT SM compared to in situ SM are thus reduced. The results 
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of this study led to a global analysis of the optimal vegetation parameterization in 

the TUW SM retrieval algorithm (Hahn et al., 2020). 

The second study investigated a period of a relatively weak incidence angle depen- 

dence, i.e., shallow ¢’, in spring. The effect could be linked to water uptake and leaf 

emergence in deciduous forests, showing that changes in a canopy structure can 

have discernable effects on ASCAT observations, even if the responsible vegetation 

type makes up only a small fraction of the entire footprint. This study confirmed 

the peculiar backscatter signal of deciduous forests that has been described and 

exploited previously, e.g. in the context of forest type classification (Dostälovä et al., 

2018). Moreover, it showed that backscatter observations provide valuable informa- 

tion about coarse-scale canopy status and development, complementing information 

provided by optical sensors, with the advantage of a high temporal resolution. 

Finally, the third study showed that despite the clear and dominant control of o’ by 

vegetation dynamics, there are short-term secondary effects in o’ which need to be 

taken into account when interpreting 0’ time series. As shown in the study, SM can 

lead to dynamics in the order of 20% of the total seasonal 0’ variation over sparse 

vegetation. Over forests, where the signal is strongly attenuated by the canopy, SM 

does not have such a large effect on 0’. These findings are valuable when using the 

backscatter-incidence angle dependence for vegetation studies, as well as for the TU 

Wien SM retrieval algorithm, which currently uses long-term average 0’ instead of 

c’ time series to model the seasonal vegetation cycle. Short-term SM effects are thus 

averaged out to a large extent. 

The findings of the three studies are of high interest each by themselves, and, 

depending on the perspective of a reader, provide new insights for the retrieval 

and study of both SM and vegetation dynamics. Taken together, the studies fulfill 

the aim of advancing the general understanding of ASCAT 0°, its dependence on 

the incidence angle, and the numerous variables and processes that play a role 

in this relationship. The thesis also showed how unexpected findings, such as 

the "spring peaks" that could not be explained in the first study (Chapter 2), can 

open up new opportunities — in this case, the observation of spring reactivation 

in deciduous broadleaf forest across large regions. In addition to their respective 

hypotheses and own findings, the second and third study allowed for a reassessment 

and reinterpretation of the results of the preceding studies. Seasonal biases in 

ASCAT SM time series (Chapter 2) are most certainly also caused by the fact that the 

applied vegetation correction is not purely representative of vegetation dynamics, 

but still contains a non-negligible SM signal. In addition, it is likely that structural 

effects, such as the scattering from twigs and branches with high water content 
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shortly before leaf emergence (Chapter 3), temporarily reduce the sensitivity to 

SM considerably, perhaps leading to over- or underestimations in the TU Wien SM 

retrieval algorithm. These effects are partly, but probably not fully, corrected by 

the applied vegetation correction. Structural effects are not limited to deciduous 

broadleaf forests: For example, changes in the structure of certain crop types, 

e.g., the bending of barley heads (Vreugdenhil et al., 2018; Pfeil et al., 2020), 

may affect ASCAT observations. The transition period from winter to spring is 

especially complex, as a number of natural processes occur at the same time, all of 

which affect ASCAT observations. These processes include snow melt, increasing 

vegetation water content, drying of soils due to both rising temperatures, i.e., 

increased evapotranspiration, and vegetation water uptake, and vegetation growth, 

i.e., biomass accumulation. Moreover, non-natural processes such as the ploughing 

of fields in early spring across large areas may have quantifiable effects on the signal. 

Future studies of ASCAT 0° and its dependence on the incidence angle should be 

set up as broad as possible in order to take into account such combined effects 

that might cancel each other out or reinforce each other. Nonetheless, there will 

always be a need to study selected processes in detail in order to understand each 

component that contributes to the signal. 

Qutlook and future research 

In addition to several findings, the conducted research studies led to new, unan- 

swered questions and highlighted areas that still require a deeper look. 

The detailed study of deciduous broadleaf forest «° and o’ showed the complexity of 

this ecosystem type. Several different scattering mechanisms are activated depending 

on the structure of the trees, e.g., if leaves are present or not, and depending on 

their water content. The shape of the "spring peaks" in 0’ should be investigated 

in more detail, especially with respect to the combined effects of deciduous forest 

scattering and secondary short-term SM effects on 0’. Deciduous trees take up 

considerable amounts of water in spring time (Young-Robertson et al., 2016), and 

thus, the spring peaks might as well be the result of a combined effect of lower 

SM and strong scattering by twigs and branches. Here, different manifestations are 

expected depending on the climate, i.e., whether the deciduous forests are located 

in arid, temperate or boreal regions, where even deep soil layers and trees freeze 

during winter. 
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In the third study, we masked observations potentially affected by water on the 

canopy (WOC; morning dew or intercepted rainfall), as the effect that WOC has on 

o° and 0° is poorly understood. Especially in regions with frequent rainfalls, the 

effect might be substantial. However, by masking all affected observations, many 

observations for calculating a robust 0’ are lost. Thus, quantifying the magnitude 

of the WOC effect, similarly as done for SM in the third study, would be highly 

valuable. 

The presence of secondary SM effects in o’ needs to be taken into account in future 

studies that use 0’ time series. This is especially critical in studies that investigate 

water-vegetation interaction processes and disturbances thereof (e.g., droughts), 

over land cover types which allow a certain soil (moisture) contribution on the 

signal. 

The findings of this thesis explain influences of SM and vegetation on ASCAT 0° 

and 0’. Influences on the second-order term of the backscatter-incidence angle 

relationship, the curvature 0”, were not studied. However, recent studies showed 

that also co” contains valuable information, for example related to photosynthetic 

activity in evergreen forests and savannah ecosystems (Petchiappan et al., 2021) 

and drought impacts on grasslands (Steele-Dunne et al., 2019). Despite the reduced 

robustness of o” estimations compared to 0’, o” should be considered in future 

studies. 

The launch of the first Metop-SG ("second generation") satellite is planned for mid- 

2020. It will provide an extension to the observations obtained by the scatterometers 

on board the ERS-1 and -2 satellites as well as by the ASCAT sensors on board 

Metop-A, -B and -C, and thus ensure the availability of long backscatter time series 

of more than 40 years. In addition, Metop-SG will carry a scatterometer with not 

only VV but also VH and HH polarization modes, opening up new opportunities for 

the study of (C-band) scattering effects over land. 

Along with many other studies, this thesis confirmed the great value of coarse-scale 

radar observations. However, a great potential certainly lies in the combination of 

coarse-scale with fine-scale observations, for example provided by the Sentinel-1 

satellites, in order to obtain information about ecosystem processes occurring on 

local to regional spatial scales and on short to long temporal scales. 
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