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Abstract

In the present work an implementation of the relativistic disordered local mo-

ment scheme (DLM) within the Screened Korringa-Kohn-Rostoker (KKR) Green’s

function formalism is presented. This approach is applicable to describe the mag-

netic properties of ferromagnetic metals and alloy systems at finite temperature.

The screened KKR facilitates to treat half infinite systems, such as thin films.

As an application we present a method to calculate the temperature dependent

magnetic anisotropy of magnetic thin films, and show an application to ConCu(100)

thin film structures. We interpret our ab initio results with the help of an anisotropic

classical Heisenberg model.

To highlight the importance of a non-unitary Heisenberg exchange we investigate

also the magnetic ordering of a Mn monolayer on W surface, and stress the relevance

of the so-called Dzyaloshinskii-Moriya interactions.

In the third part of the thesis we apply the DLM formalism to calculate the

magnetic part of the electric resistivities. We implement the DLM using the Kubo-

Greenwood equation within the KKR framework. This work represents the very

first ab initio approach in the literature of this field. As an application we show the

results for bulk Fe and Co.
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Chapter 1

Introduction

The history of magnetic data recording is started in 1956. Soon the annual growth

rate (AGR) of the storage capacity of magnetic hard disks (HDD) reached the 30%,

and lasted until 1992 when the introduction of magneto-resistive (MR) read heads

increased the AGR to 60% [1]. The discovery of the giant magneto-resistance (GMR)

by Grünberg [2] and Fert [3] rapidly became applied in the industry. The first GMR

read heads appeared in 1997 on the market, which contributed to the further in-

crease of the growth rate to 100% per year. Nowadays the magnetic storage density

in HDD-s reach the 100 Gbit/inch2, which is a development of eight order of mag-

nitude, since the first disk drives of the mid 50s. In HDD magnetic recording films

the bits are stored in magnetic grains, in which the magnetisation are parallel or

perpendicular to the surface. During the shrinking of the bit size the diameter of the

magnetic grains became smaller, therefore the total magnetic anisotropy, and the

thermal stability decreased. Reaching the so-called superparamagnetic temperature

the thermal excitations destroy the parallel alignment of the magnetic grains, i.e.,

the stored information get lost, however the the grains itself remain ferromagnetic.

Nowadays the grain size in magnetic recording media goes under 10 nm. To avoid

the superparamagnetic transition materials with large magnetic anisotropy should

be used such as Co alloys (CoPtCr, Co, Co3Pt), L10 ordered ferromagnets (FePd,

FePt, CoPt, MnAl) [4]. Nowadays commercially available IBM HDD-s contain an-

tiferromagnetically coupled (AFC) magnetic layers (CoPtCrB), which align parallel

to the surface and separated by a 6Ȧ Ru layer [5]. The thermal stability in AFC

HDD-s are provided by the antiferromagnetically coupled underlayer.

As the size of this magnetic structures goes into the nm range, (and they deserve
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CHAPTER 1. INTRODUCTION

the denomination of nanostructures) the quantum mechanical effects became more

and more important, and ab-inito description can be a promising tool for better

understanding of the underlying physical phenomena, and an aid for designing new

materials for these applications.

A new and promising method of magnetic storage is the so-called heat assisted

magnetic recording [6] [7]. The further decrement of magnetic recording grain size

with avoiding of the superparamagnetism can be performed with applying materials

with large magnetic anisotropy. However the large anisotropy (large coercitive field)

makes the media hard to write. The method of HAMR provide a solution with heat-

ing up the magnetic media with a laser beam, thus reducing the magnetic anisotropy

just during the write process. The reduced anisotropy makes the writing easier, then

after switching off the laser beam, the cooling back increase the anisotropy of the

media, therefore stabilize the written bits.

At the beginning of the information technology only magnetic data storage ex-

isted, but from the late 1960s the semiconductor memory cells proved to be faster

than the magnetic storage, therefore the Random Access Memories (RAM) were

built from (field effect FET) transistors. However nowadays strong effort was laid in

the development of magnetic RAMs (MRAM), a typical chapter of spintronics. The

two main type of MRAM are the one containing magnetic tunnel junctions (MTJ)

and the second is using the GMR effect. Both are novel in the way of storing the

information in the conductance of parallel or antiparallel magnetized ferromagnetic

layers, instead of the conventional semiconductor technologies, i.e. the information

is stored in the spin-degree of freedom [8] ( therefore this field of research got the

denomination of spintronics instead electronics). The first prototypes of MRAM-s

are already constructed by the companies IBM and Freescale [9]. The MRAM is

a very promising non-volatile memory, which can overcome the existing RAM-s in

operation speed and endurance[10].

The understanding of the physical basis of the magnetic data storage devices

requires the theoretical description of magnetic anisotropy. The decreasing size of

the magnetic data storage devices, and nanostructures makes the ab-initio descrip-

tion usefull for the understanding of the new phenomena in the low dimensional

systems. In the CMS the screened Korringa-Kohn-Rostocker (SKKR) method [11]

[12] was developed in the last decades, which was successfully applied to describe the
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CHAPTER 1. INTRODUCTION

magnetic anisotropy of bulk alloyed magnets [12] [13], magnetic thin films [14] [15]

multilayers [16] and with the embedded cluster method finite magnetic clusters [17]

[18] [19] at zero temperature. As the magnetic hard disks usually operate on room

temperature, and especially in the view of HAMR the theoretical description of the

temperature dependent magnetic anisotropy is desirable. In the present dissertation

I implemented the so called Disordered Local Moment (DLM) theory (originally

proposed by B.L. Gyoörffy et.al.

[20]) to describe the temperature dependent magnetic anisotropy, and resistivity

of ferromagnetic bulk materials and thin films. The paramagnetic version of the

DLM was used to determine the magnetic properties (such as susceptibility, ex-

change coupling and Curie temperature) of the paramagnetic state (above the Curie

temperature) of ferromagnetic materials [20] [21] [22] [23] [24] [25] . In the present

work I implemented the DLM method for ferromagnets below the Curie tempera-

ture. I implemented the DLM within the screened-KKR formalism, which enabled

the description of surface and thin-film magnetism. As the magneto-crystalline

anisotropy is an effect of the spin-orbit interaction [26], in order to access the mag-

netic anisotropy I implemented the DLM within the relativistic version of the SKKR

program.

As the common application of GMR effect in magnetic recording, and the possi-

ble application in MRAM-s clearly shows the technological importance of the mag-

netic resistivity. Better understanding of the magnetoresistive effect is possible with

computer simulations. In the last decades in the CMS the linear response theory

of Kubo was implemented into the KKR program package [27]. With this tool de-

scription of the magnetic resistivity of bulk alloys, thin magnetic films, multilayers

spin valve structures became possible [28] [29] [30] and nanocontacts [31] became

possible at zero temperature. The former ab initio calculations restricted to zero

temperature, however at nonzero temperature new phenomena contribute consider-

ably to the electrical resistivity such as phonon-electron scattering, and scattering

of the electrons on magnetic excitations (magnon scattering). However theoretical

descriptions are available for the temperature dependence of the magnetic part of

the electrical resistivity [32] [33], the ab initio description was still missing. In the

present dissertation I give the first attempt for the ab inito description of the tem-

perature dependent magnetic resistivity, with the implementation of the DLM in
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CHAPTER 1. INTRODUCTION

the KKR-Kubo formalism.

The thesis is organized such that first the theoretical description, in particular all

new formulations are presented, and only then the actual results achieved in terms

of these methods are shown. The chapter A deals with the DLM theory, the chapter

3 with the magnetic anisotropy. Chapter 4 is devoted to the application of the

DLM to the problem of temperature dependence of electrical transport properties.

We show the results of the calculations for the magnetic anisotropy in chapter 5. In

Chapter 6 we investigate the effect of the so called Dzyaloshinskii Moriya interaction

on the magnetic ordering of a magnetic monolayer. In the appendicies first short

reviews of the density functional theory (DFT) A and the KKR scattering theory A

are given. In Appendix B we give the derivation of the the special kind of coherent

potential approximation (CPA), in Appendix C a derivation of the Onsager reaction

field approximation, and finally in Appendix D we give the mean-field solution of

the anisotropic Heisenberg model.
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Chapter 2

The Disordered Local Moment
(DLM) theory

2.1 General framework

The Spin Density Functional Theory (SDFT) (see Appendix A) is regarded to give

adequate description of the magnetic ground state of itinerant solids. A straightfor-

ward generalization to higher temperatures [34], however fails considerably, giving

large Curie temperature by a factor of five, zero magnetic moments and no Curie-

Weiss law above the Curie temperature [35]. This model assumes that the magnetic

moments point to the same direction at every lattice site, therefore at the Curie

temperature the size of the moments disappear. In 1979 Hubbard and Hasegawa

introduced [36, 37] a theory, where they allowed the magnetisation direction to vary

from unit cell to unit cell. In this Disordered Local Moment (DLM) picture reaching

the Curie temperature from below, the size of the magnetic moments avaraged over

a unit cell (so called local moments) does not necessarly disappear, nonzero local

moments can exist in the paramagnetic phase also, pointing to completely random

direction, giving zero macroscopic magnetisation on the average (see Fig.2.1 ). In

1985 Györffy et. al. [20] published the details of an implementation of the DLM

picture in the ab-initio KKR scattering theory (see Appendix A).

The DLM theory is based on the idea that in itinerant metallic magnets, we can

find a certain time scale τ , which is small as compared to the characteristic time of

spin fluctuations (τspinfluct), but longer than the electron hopping times, i.e.,

τhopping < τ < τspinfluct =
1

ωs
,
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CHAPTER 2. THE DISORDERED LOCAL MOMENT (DLM) THEORY

where ωs is the typical spin wave frequency. The typical order of magnitude is

τhopping ∼ 10−15s, and τspinfluct ∼ 10−13s. Investigating a system on the time scale τ ,

the spin orientations of the electrons leaving an atomic site are sufficiently correlated

with those arriving such that a nonzero magnetization exists when the appropriate

quantity is averaged over this time window. If we define

Mτ (r) =
1

τ

∫ τ

0

M(r, t) dt

as the average of the magnetizaton in the time window τ , we can define the local

moment direction on a specific site by

êi =

∫
Vi
d3rMτ (r)

|
∫
Vi
d3rMτ (r)| , (2.1)

where Vi is the volume of the i-th unit cell and

µi =

∣∣∣∣
∫

Vi

d3rMτ (r)

∣∣∣∣ (2.2)

is the size of the local moment. Thus we can associate local moment directions

(Eq.2.1) with every lattice site. These directions vary on the time scale τspinfluct that

is slow compared to τ . DLM includes temperature dependence via the probability

distribution of these local moment directions. At zero temperature all the local

moments point to a specific direction, while increasing the temperature the local

moments can point along other directions also with non-zero probability. Reaching

the Curie temperature the local moments will point in any direction with the same

probability such that the configurational average of the fluctuating local moments

is zero, the total magnetisation disappears, even if the size of the local moments µi

is non-zero.

The magnetic configuration of the system can be described by a set of êi direc-

tions:

{ê} = {ê1, ê2, . . . , êN} , (2.3)

where N is the number of sites. The fluctuation of the local moments can be de-

scribed by a probability distribution, characterised by the probability density func-

tion P (n̂) ({ê}), which depends on the average magnetisation direction n̂, and the

temperature. At zero temperature all the moments point along the same direction

P (n̂) ({ê}) =
∏

i δ(êi − n̂). At the Curie temperature this probability is constant

10



CHAPTER 2. THE DISORDERED LOCAL MOMENT (DLM) THEORY

a b c

Figure 2.1: The DLM picture. a, T = 0 ferromagnetic state. b, A nonzero temper-
ature ferromagnet 0 < T ≤ TC . c, The paramagnetic state TC ≤ T , the average of
the magnetic moments is zero.

to all directions: P (n̂) ({ê}) =
∏
P (êi), with P (êi) = 1

4π
. The average of the êi

directions:

〈êi〉 =

∫
. . .

∫
êiP

(n̂) ({ê}) dê1 . . . dêN = n̂ |〈êi〉| . (2.4)

If the Hamiltonian function of the system is H (n̂) ({ê}) , the canonical partition

function and the probability function are defined as

Z(n̂) =

∫
. . .

∫
e−βH

(n̂)({ê}) dê1 . . . dêN , (2.5)

and

P (n̂) ({ê}) =
e−βH

(n̂)({ê})

Z(n̂)
. (2.6)

The free-energy can then be expressed as

F (n̂) = − 1

β
lnZ(n̂) . (2.7)

To calculate these quantities a tractable form of the Hamiltonian is needed. To

approximate the energy the Peierls-Feynman [38] inequality can be applied, which

states that taking an arbitrary trial Hamiltonian H0 an upper bound to the system’s

free-energy can be given as

F ≤ F1 = F0 + 〈H −H0〉0 . (2.8)

where the free-energy of the trial system is given by

F0 = − 1

β
lnZ0 , Z0 =

∫
. . .

∫
e−βH0({ê}) dê1 . . . dêN .
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CHAPTER 2. THE DISORDERED LOCAL MOMENT (DLM) THEORY

and the 〈〉0 denotes the average with respect the probability density

P0 ({ê}) =
e−βH0({ê})

Z0

. (2.9)

If we minimize F1 with respect to the parameters of the trial Hamiltonian H0,

we get the variational upper bound (best approximation) for the free-energy. If we

expand H0 as a sum of terms containing different orders of local-moment interac-

tions,

H
(n̂)
0 ({ê}) =

∑

i

h1(n̂)

i (êi) +
1

2

∑

i6=j
h

2(n̂)
i,j (êi, êj) + . . . , (2.10)

the best trial free-energy can be obtained from the variational condition:

δF
(n̂)
1

δh
1(n̂)
i (êi)

= 0
δF

(n̂)
1

δh
2(n̂)
i (êi, êj)

= 0 etc .

Györffy et al. has showed [20], that this condition is equivalent to the following

equalities
〈
H(n̂)

〉0

êi
−
〈
H(n̂)

〉0
=
〈
H

(n̂)
0

〉0

êi
−
〈
H

(n̂)
0

〉0

, (2.11)

〈
H(n̂)

〉0

êi,êj
−
〈
H(n̂)

〉0
=
〈
H

(n̂)
0

〉0

êi,êj
−
〈
H

(n̂)
0

〉0

, etc . (2.12)

where 〈 〉êi or 〈 〉êi,êj denote restricted statistical averages with êi or êi and êj

kept fixed. For example,

〈
X(n̂)

〉0

êi
=

∫
. . .
∫
X(n̂) ({ê})P (n̂)

0 ({ê}) dê1 . . . dêi−1dêi+1 . . . dêN

P
(n̂)
i (êi)

, (2.13)

with

P
(n̂)
i (êi) =

∫
. . .

∫
P

(n̂)
0 ({ê}) dê1 . . . dêi−1dêi+1 . . . dêN . (2.14)

Obviously with this definition the relationship,

〈
X(n̂)

〉0
=

∫ 〈
X(n̂)

〉
êi
P

(n̂)
i (êi) dêi , (2.15)

is then satisfied.

2.2 Mean-field theory

In the mean field approximation we terminate the expansion Eq.(2.10) using only

the first term:

H
(n̂)
0 ({ê}) =

∑

i

h
(n̂)
i (êi) . (2.16)

12



CHAPTER 2. THE DISORDERED LOCAL MOMENT (DLM) THEORY

which means that we neglect all correlations between neighbouring sites. Therefore

the partition function and the configuration probability split up into product of

single site terms, implying that the orientations of local moments on the different

sites are statistically independent:

Z
(n̂)
0 =

∫
. . .

∫ ∏

i

e−βh
(n̂)
i (êi) dê1 . . . dêN =

∏

i

Z
(n̂)
i , Z

(n̂)
i =

∫
e−βh

(n̂)
i (êi) dêi ,

(2.17)

P
(n̂)
0 ({ê}) =

∏

i

P
(n̂)
i (êi) , P

(n̂)
i (êi) =

e−βh
(n̂)
i (êi)

Z
(n̂)
i

, (2.18)

and

F
(n̂)
0 = − 1

β

∑

i

lnZ
(n̂)
i . (2.19)

In order to employ condition (2.11) the following averages have to be evaluated,

〈
H

(n̂)
0

〉0

=
∑

i

∏

j

∫
h

(n̂)
i (êi)P

(n̂)
j (êj) dêj =

∑

i

∫
h

(n̂)
i (êi)P

(n̂)
i (êi) dêi , (2.20)

〈
H

(n̂)
0

〉0

êi
= h

(n̂)
i (êi) +

∑

j 6=i

∫
h

(n̂)
j (êj)P

(n̂)
j (êj) dêj , (2.21)

and consequently,

〈
H

(n̂)
0

〉0

êi
−
〈
H

(n̂)
0

〉0

= h
(n̂)
i (êi)−

∫
h

(n̂)
i (ê′i)P

(n̂)
i (ê′i) dê

′
i = h

(n̂)
i (êi)−

〈
h

(n̂)
i

〉
,

(2.22)

while according to Eq.(2.15)

〈
H(n̂)

〉0

êi
−
〈
H(n̂)

〉0
=
〈
H(n̂)

〉0

êi
−
∫ 〈

H(n̂)
〉0

ê′i
P

(n̂)
i (ê′i) dê

′
i . (2.23)

Eq. (2.11) then implies, that

h
(n̂)
i (êi)−

〈
H(n̂)

〉0

êi
=

∫ (
h

(n̂)
i (ê′i)−

〈
H(n̂)

〉0

ê′i

)
P

(n̂)
i (ê′i) dê

′
i = const. . (2.24)

Thus by adding appropriate constants to the mean-field Hamiltonians, h
(n̂)
i (êi) ,

which does not affect the probability, P
(n̂)
i (êi), the below relationship can be ob-

tained

h
(n̂)
i (êi) =

〈
H(n̂)

〉0

êi
. (2.25)

In what follows we shall omit the superscript 0 from the averages.
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CHAPTER 2. THE DISORDERED LOCAL MOMENT (DLM) THEORY

As a first order approximation we express the trial single site Hamiltonian as

h
(n̂)
i (êi) = ~h

(n̂)
i · êi , (2.26)

with the Weiss-fields ~h
(n̂)
i . Multiplying Eq. (2.26) with êi from the left and inte-

grating over the unit sphere using
∫
êi ⊗ êidêi =

4π

3
I3

we get:

~h
(n̂)
i =

3

4π

∫
dêi êi

〈
H(n̂)

〉
êi

. (2.27)

The single site partition function is therefore given by

Z
(n̂)
i =

∫
dêi exp

(
−βĥ(n̂)

i (êi)
)

=
4π

βh
(n̂)
i

sinh βh
(n̂)
i , (2.28)

where h
(n̂)
i is the magnitude of the Weiss field. In this way the probabilty function

Eq. (2.18) reads as

P
(n̂)
i (êi) =

βh
(n̂)
i

4π sinh βh
(n̂)
i

exp
(
−β~h(n̂)

i · êi
)

. (2.29)

The average of the local moment direction ( which we call later magnetisation) is

then given by

~m
(n̂)
i = 〈êi〉 = 1

Z
(n̂)
i

∫
êi exp

(
−β~h(n̂)

i · êi
)
dêi (2.30)

Here we shouldn’t forget, that the local moment has a length µi which we consider

to be independent from êi. This magnetisation, which varies from 0 to 1 describes

just the temperature dependent fluctuations of the magnetic moment, which is

~M
i

= ~miµi. (2.31)

From Eq.(2.30) and Eq.(2.26) we get

~m
(n̂)
i = −L

(
βh

(n̂)
i

)
ĥ

(n̂)
i , (2.32)

where L is the Langevin function L(x) = 1
x
− coth(x) and ĥ

(n̂)
i is a unit vector

pointing in the direction of the Weiss field. The Weiss field points therefore in the

direction of the average magnetisation, n̂ = ĥ
(n̂)
i , i.e. ~h

(n̂)
i = h

(n̂)
i n̂, such that the

magnitude of the Weiss field is given by

h
(n̂)
i =

3

4π

∫
(êi · n̂)

〈
H(n̂)

〉
êi
dêi . (2.33)
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2.3 The coherent potential approximation (CPA)

We used the Korringa-Kohn-Rostoker (KKR) Green’s function method to calculate

the Weiss-field on an ab initio level. In the KKR formalism the key quantity is the

scattering path operator (SPO denoted by τ) (see Appendix A).

The commonly used method for evaluating restricted averages in the KKR

method is the coherent potential approximation (CPA) (see Appendix B). Within

the single-site CPA an effective (coherent), i.e., translational invariant medium is

specified by the t-matrices, t
(n̂)
i,c , that satisfy the CPA condition (Eq. B.9) ,

〈
τ

(n̂)
ii ({ê})

〉
=

∫ 〈
τ

(n̂)
ii

〉
êi
P

(n̂)
i (êi) dêi = τ

(n̂)
ii,c , (2.34)

where the index c refers to the coherent medium, and the site-diagonal matrices of

the scattering path operator (SPO denoted by τ ) are defined as,

〈
τ

(n̂)
ii

〉
êi

= τ
(n̂)
ii,cD

(n̂)
i (êi) , (2.35)

with

D
(n̂)
i (êi) =

[
I +

(
mi (êi)−m(n̂)

i,c

)
τ

(n̂)
ii,c

]−1

, (2.36)

with mi (êi) = t−1
i (êi) being the inverse single-site scattering matrix. The coherent

SPO is defined as

τ (n̂)

c
=
(
m(n̂)

c
−G

0

)−1

. (2.37)

In the above equation, double underlines denote matrices in site-angular momentum

space, m(n̂)
c

is diagonal in site indices, while G
0

stands for the matrix of structure

constants (for further details see Appendix A).

By using spherical symmetric potentials , i.e., within the atomic sphere ap-

proximation (ASA) for evaluating the ti (êi) matrices, we can use the similarity

transformation of the single-site t-matrices,

ti (êi) = R (êi) ti (ẑ)R (êi)
+ , (2.38)

where for a given energy (not labeled explicitly) ti (ẑ) stands for the t-matrix with

an effective magnetic field pointing along the local z axis and R (êi) is a unitary

representation of that O (3) transformation which rotates the z axis along êi. From

here, the mi (êi) matrices can be get by inversion.
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The CPA condition Eq. (2.34) can now be rewritten as
∫
D

(n̂)
i (êi)P

(n̂)
i (êi) dêi = 1 , (2.39)

or by introducing the excess scattering matrices,

X
(n̂)
i (êi) =

[(
m

(n̂)
i,c −mi (êi)

)−1

− τ (n̂)
ii,c

]−1

=
(
D

(n̂)
i (êi)− I

)(
τ

(n̂)
ii,c

)−1

, (2.40)

as ∫
X

(n̂)
i (êi)P

(n̂)
i (êi) dêi = 0 . (2.41)

The calculation of the coherent t
(n̂)
i,c matrices in the above equation has to be solved

self consistently. Starting from a first guess for t
(n̂)
i,c the τ

(n̂)
ii,c matrix can be calculated

from Eq.(2.37), then the X
(n̂)
i (êi) matrix can be constructed from Eq.(2.40). Using

the condition Eq.(2.41) a new guess for the t
(n̂)
i,c matrix can be given as proposed by

Ginatempo and Staunton [39] [40].

2.4 Paramagnetic DLM

In the nonrelativistic version of the DLM, in the paramagnetic phase, above the

Curie temperature, where the probability function of the local moment (Eq.2.29) is

simply 1/4π, the CPA condition (Eq.2.39) gets a particularly simple form [20]. In

this case the local moment direction dependence of the inverse t−matrix is given by

[20]

t−1
i (êi) =

1

2
(t−1
i+ + t−1

i− )1 +
1

2
(t−1
i+ − t−1

i− )σ̂êi, (2.42)

instead of Eq.2.39, where ti+ and ti− is the scattering t−matrix with the local

moment pointing in the ẑ or −ẑ direction respectively, σ̂ is the vector of the Pauli

spin matrices (Eq.A.16) . The D - matrix in Eq.2.39 also can be expressed as

Di(êi) =
1

2
(Di+ +Di−)1 +

1

2
(Di+ −Di−)σ̂êi (2.43)

where

Di± =
[
1 + (t−1

i± + t−1
c )τc,ii

]−1
. (2.44)

Calculating the integral in Eq.(2.39) with the paramagnetic probability density func-

tion P (êi) = 1/4π, the term containing êi in Eq.(2.43) gives zero on average, and

we get ∫
Di(êi)

1

4π
dêi =

1

2
(Di+ +Di−) = 1 , (2.45)
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i.e. the solution of the DLM-CPA can be interpreted as a CPA for a two component

alloy, where 50% of the atoms have an up-spin (+), and 50% down-spin (-). This

version of the DLM was commonly used in the literaure to describe the paramag-

netic state. The Kohn-Sham potential can easily be calculated self-consistently in

this paramagnetic state. Györffy and Staunton et.al. used this DLM scheme to

calculate the paramagnetic susceptibilty of Fe and Ni [20] [21]. Later this method

was extended to layered structures, and it was used to investigate the Curie tem-

peratures of fcc Fe /Cu(100) and Co /Cu(100) such as bcc Fe /W (100) thin films,

and also the influence of a Cu cap layer on the oscillations of the Curie temperature

in case of Fe /Cu(100) films was explained [22] [23] [24]. Szunyogh and Udvardi

calculated the exchange parameters of the Heisenberg model in the paramagnetic

DLM state for Fe, Co and Ni overlayers on Cu(100) substrate [25]. They calculated

the Curie temperatures from these paramagnetic exchange parameters by using a

mean-field approach.

2.5 Calculation of the Weiss-field

In Section (3.1) we will see that in the spirit of the so-called magnetic force theorem

it is enough to consider only the single–particle energy (band energy) part of the

LSDA total energy, to describe magnetic anisotropy.

Ω(n̂) ({ê}) = −
∫
dεf (ε, µ)N(ε, {ê}) (2.46)

where µ is the chemical potential, f (ε, µ) is the Fermi function, n(ε) is the density

of states (DOS), and N(ε) =
∫ ε
−∞ n(ε′)dε′ is the integrated density of states. The

Lloyd formula [41] provides an explicit expression for N (n̂) (ε, {ê}) ,

N (n̂) (ε; {ê}) = N0 (ε)− 1

π
Im lndet

(
t(n̂) (ε; {ê})−1 −G

0
(ε)
)
, (2.47)

with N0 (ε) being the integrated DOS of the free particles and t(n̂) the site-diagonal

single-site scattering matrix. Reformulating the argument on the rhs. as

t(n̂) (ε; {ê})−1−G
0

(ε) =
(
t(n̂)

c
(ε)−1 −G

0
(ε)
)((

I − τ (n̂)

c
(ε)
(
t(n̂)

c
(ε)−1 − t(n̂) (ε, {ê})−1

)))
,

(2.48)

The integrated density of states can be written as

N (n̂) (ε; {ê}) = N0 (ε) +N (n̂)
c (ε) + ∆N (n̂) (ε, {ê}) , (2.49)
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where

N (n̂)
c (ε) = − 1

π
Im lndet τ (n̂)

c
(ε) = +

1

π
Im lndet

(
t(n̂)

c
(ε)−1 −G

0
(ε)
)

. (2.50)

Furthermore splitting τ (c)
c

(ε) matrix into a diagonal and an off-diagonal part ∆N =

∆N1 + ∆N2 where

∆N1 = − 1

π

∑

i

Im lndetD
(n̂)
i (ε; êi) , (2.51)

and

∆N2 = − 1

π
Im lndet

(
I −X(n̂) (ε, {ê}) τ o(n̂)

c
(ε)
)
, (2.52)

and the excess scattering matrices in Eq.(2.52), defined in Eq.(2.40)

X(n̂) (ε; {ξ} , {ê}) =
{
X

(n̂)
i (ε; êi) δij

}
.

The ∆N2 term is neglected in the single-site CPA, because expanding the ln function

in Eq.2.52, and taking the ensemble averages, only fourth and higher order terms

remain for X
(n̂)
i . The restricted average of the grand potential therefore given by

〈
Ω(n̂)

〉
êi

= Ω0 +
1

π
Im

∫
dε f

(
ε;µ(n̂)

) (
lndet τ (n̂)

c
(ε)− lndetD

(n̂)
i (ε; êi)− (2.53)

〈∑

j 6=i
lndetD

(n̂)
j (ε; êj)

〉)
.

and from Eq.(2.33) we get for the Weiss-field:

h
(n̂)
i = − 3

4π2
Im

∫
dε f

(
ε;µ(n̂)

) [∫
dêi (êi · n̂) lndetD

(n̂)
i (ε; êi)

]
. (2.54)

2.5.1 Alternative Weiss-field formula

We can also give an alternative formula for the Weiss-field, which is slightly easier to

evaluate. Its derivation starts from the assumption, that for a uniaxial ferromagnetic

system the orientational dependence of the energy of an impurity at site i, Eq. (2.53),

can be written up to second order in êi = (sinϑi cosϕi, sinϑi sinϕi, cosϑi) as

〈
Ω(n̂)

〉
êi

= Ω0 + Ω(n̂) + h
(n̂)
i n̂ · êi + k2,i cos2 ϑi , (2.55)

with k2,i being the on site anisotropy energy. Choosing the local moment tot to

pointing along the x̂ axis (êi = (1, 0, 0)), we get:

h
(ẑ)
i = − 1

nz

∂
〈
Ω(ẑ)

〉
êi=x̂

∂ϑi
. (2.56)

18



CHAPTER 2. THE DISORDERED LOCAL MOMENT (DLM) THEORY

We can now evaluate the derivative of the restricted grand potential using Eq. (2.53),

∂
〈
Ω(n̂)

〉
êi

∂ϑi
= − 1

π
Im

∫
dε f

(
ε;µ(n̂)

) ∂

∂ϑi
Tr ln

[
I +

(
mi (êi)−m(n̂)

i

)
τ

(n̂)
ii,c

]
. (2.57)

Calculating finally the derivative with respect to the local moment directions, by

taking a variation with respect to mi, we obtain:

∂

∂ϑi
Tr ln

[
I +

(
mi (êi)−m(n̂)

i,c

)
τ

(n̂)
ii,c

]
= −Tr

[
∂mi (êi)

∂ϑi
τ

(n̂)
ii,cD

(n̂)
i (êi)

]
.

The derivative of the Grand potential is therefore given by

∂
〈
Ω(n̂)

〉
êi

∂ϑi
=

1

π
Im

∫
dε f

(
ε;µ(n̂)

)
Tr

[
∂mi (êi)

∂ϑi
τ

(n̂)
ii,cD

(n̂)
i (êi)

]
. (2.58)

That has to be substituted into Eq.2.56. The derivatives of mi (êi) can be calculated

as described in ref.[42].

2.5.2 Layered systems

In layered systems (surfaces, interfaces, layered bulk materials), translational invari-

ance is present only in 2 dimensions. An effective way of calculating the Green’s

function in layered systems is the Screened KKR method, which is described in

Appendix (A). In this case the physical quantities are 2 dimensional translational

invariant, so the dimension of the corresponding matrices reduces, and we can use

the layer indices (denoted with p, q) instead of site indices. The layer (p) dependent

Weiss-field is defined as

h(n̂)
p = − 3

4π2
Im

∫
dε f

(
ε;µ(n̂)

) [∫
dêpi (êpi · n̂) lndetD(n̂)

p (ε; êpi)

]
, (2.59)

where similarly to the former definition

D(n̂)
p (ε; êpi) =

[
I +

(
tp (ε; êpi)

−1 − tc(n̂)
p (ε)−1

)
τ
c(n̂)
p0,p0(ε)

]−1

. (2.60)
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Chapter 3

Magnetic Anisotropy

The nonrelativistic quantum mechanics leads to a description of the ferromagnetism

in which the free energy of the system is independent of the direction of the mag-

netisation. This is contradiction with the experience, which tells us that the mag-

netisation generally lies in some preferred directions with respect to the crystalline

axes and/or external shape of the body: this property is known as the magnetic

anisotropy.

In crystallic solids the lattice symmetry splits the degeneracy of atomic orbitals,

a phenomenon which is called as the crystal field effect. Through the spin-orbit inter-

action this anisotropy also transfered to the magnetic moments, creating preferred

directions for the magnetisation in a bulk crystal. This effect is called magneto-

crystalline anisotropy. It’s worth to mention, that neglecting the spin-orbit inter-

action, the crystal symmetry, and the magnetisation is not coupled, i.e. no mag-

netocrystalline anisotropy occurs. In finite pieces of ferromagnetic materials having

less than spherical symmetry, the shape of the sample can also produce anisotropy

through the magnetic dipole-dipole interaction. This phenomenon is called the shape

anisotropy. (The magneto-crystalline and shape anisotropy together is referred to

as the magnetic anisotropy).

The Magnetic Anisotropy Energy (MAE) is defined as the difference between the

ground state energy of two different orientation of the spontaneous magnetisation

M̂0

MAE = E(M̂0
1 )− E(M̂0

2 ). (3.1)

Due to the time reversal symmetry the free energy has to be invariant under the

inversion of the magnetisation direction ( M̂0 → −M̂0 ). Therefore if we expand
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the free energy in terms of the components of M̂0 = (α1, α2, α3) only even powers

of the components occur:

F (M̂0) = K0 +
∑

i,j

kijαiαj +
∑

i,j,k,l

kijklαiαjαkαl + . . . (3.2)

Furthermore the symmetry of the crystallic system imply some further restrictions

for the form of F(α1, α2, α3), and reduce the number of independent parameters.

For cubic system the free energy can be written as

F (M̂0) = K0 +K1(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +K2α

2
1α

2
2α

2
3 + . . . ., (3.3)

where K1 andK2 are the so-called fourth and sixth order anisotropy constants, re-

spectively. Expressing the components of the magnetisation with polar-coordinates

α1 = sin ϑ sinϕ , α2 = sinϑ cosϕ and α3 = cosϑ we get

F (M̂0) = K0 +K1(sin4 ϑ sin2 2ϕ+ sin2 2ϑ). (3.4)

Uniaxial systems (such as surfaces or thin films ) have lower symmetry, and therefore

lower order terms appear in the free energy. E.g. for uniaxial systems with fourfold

rotational symmetry around the z axis the expansion will be

F (M̂0) = K0 +K1(α2
1 + α2

2) +K2(α2
1 + α2

2)2 +K ′2α
2
1α

2
2 + . . . (3.5)

or in terms of the spherical coordinates (ϑ, ϕ) α1 = sinϑ cosϕ, α2 = sin ϑ sinϕ

F (ϑ, ϕ) = K0 +K1 sin2 ϑ +K2 sin4 ϑ+
1

4
K ′2 sin4 ϑ sin2(2ϕ). (3.6)

Where now K1 second order, K2 andK ′2 fourth order anisotropy parameters.

3.1 Magnetic Force Theorem

The typical order of magnitude of the total energy per atom is 104 eV. The order

of MAE is about 10−6 eV/atom for bulk ferromagnets, and 10−4 eV / atom for

interfaces. Therefore a numerical accuracy of about 10−11−10−8 is needed when one

wants to calculate the MAE from the total energy, which is a very demanding task.

The idea, which helps to overcome this difficulty is the Magnetic Force Theorem,

which states that the anisotropy energy can be obtained as the difference between
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sums of the eigenvalues of the Dirac equation for different magnetic configurations,

which are just order of 10 eV. This method requires much less computational effort

for the same numerical accuracy.

Assuming that the direction of the spin moment density is M̂0 the total energy

functional within the LSDA can be written as

E[n(r), m(r), M̂0] = T s[n(r), m(r), M̂0] + EH [n(r)]+

Exc[n(r), m(r)] +

∫
vext(r)n(r)d3r.

In the ground state the variaton of the energy functional vanishes with respect to

the charge and magnetisation density:

δE

δn
=
δT s

δn
+
δEH
δn

+
δExc

δn
+ vext = 0, (3.7)

δE

δm
=
δT s

δm
+
δExc

δm
= 0, (3.8)

such that the total variation of the energy in the ground state can be expressed as

∆E =
δE

δn
∆n +

δE

δm
∆m +

δE

δM̂0

∆M̂0 =
δE

δM̂0

∆M̂0.

The orientation dependence of the total energy thus

dE

dM̂0

=
∂E

∂M̂0

=
∂T s

∂M̂0

. (3.9)

The non-interacting kinetic energy term is defined as

T s =
∑

occ

d3rψ̄n(r)

(
~c
i
α∇+ βmc2

)
ψn(r) = (3.10)

∑

occ

d3rψ̄n(r)
(
εn − eveff(r)− µBBeff(r)B̂0βΣ

)
ψn(r),

where we used the Kohn-Sham Dirac equation. The total derivative of the kinetic

energy

∆T s =
δT s

δn
∆n+

δT s

δm
∆m +

δT s

δM̂0

∆M̂0, (3.11)

can be given from Eq.(3.11) as

∆T s = −e
∫
veff(r)∆n(r)d3r− µB

∫
Beff(r)∆m(r)d3r + ∆

∑

occ

εn. (3.12)
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Comparing the two last equation, using Eq.(3.7) and (3.8), and assuming that B̂0 =

M̂0, we get [43]:
∂T s

∂M̂0

=
∂

∂M̂0

∑

occ

εn. (3.13)

Together with Eq.(3.9) the Magnetic Force Theorem is retained

dE

dM̂0

=
∂

∂M̂0

(∑

occ

εn

)
. (3.14)

Although this theorem exactly stands only in this differential form with M̂0 pointing

along some easy axis, it is commonly used in an integral form, where the energy

difference is taken between two different directions of the magnetisation,

MAE =
∑

occ

εn|M̂1
−
∑

occ

εn|M̂2
. (3.15)

This approximation is well tried [44][15]. Since in this approximation only explicit

dependence of the Hamiltonian on M̂0 is considered, the potential and effective fields

are regarded to be the same for the two different magnetization directions (frozen-

potential approximation). The band energy is calculated from the electron density

of states, and the MAE is written as

MAE = E1
b − E2

b where Ei
b =

∫ εF

εB

(ε− εF )n(ε, M̂i)dε. (3.16)

3.2 Torque based formula for the

magnetic anisotropy

For calculating the MCA energy we used the torque method [45] originally proposed

by Wang et. al. In Eq.(3.6) the free-energy with respect to the angle between the

rotational axis, and the average magnetization (ϑ) was expressed. Reindexing the

anisotropy parameters, and neglecting the sixth and higher order terms we get

F (ϑ) = F0 +K2 sin2 ϑ+K4 sin4 ϑ. (3.17)

The magnetic torque is defined as the following derivative

T =
dF (ϑ)

dϑ
.
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It easily can be seen, that for the special angle:

T (ϑ =
π

4
) =

dF (ϑ)

dϑ

∣∣∣∣
ϑ=π/4

=
d
〈
Ω(n̂)

〉

dϑ

∣∣∣∣∣
ϑ=π/4

= K2 +K4 = K. (3.18)

Note that for K > 0 (< 0) the system is magnetized parallel (perpendicular) to

the symmetry axis. In our work we investigated thin films on semi-infinite bulk

structures. In this case the symmetry axis is perpendicular to the plane of the

thin film, therefore positive K means out-of-plane preferred magnetic orientation.

In the above equation we replaced the derivative of the free energy with respect

of the magnetization angle by the corresponding derivative of the grand potential

which follows from an approximation of removing the dependence of h
(n̂)
p on n̂,

h
(n̂)
p = hp , which in turn implies that the spin–entropy term in the free energy is

also independent from n̂.

Neglecting the contribution of the entropy to the anisotropy (which is equivalent

of the assumption of direction independent Weiss-fields), the free-energy can be

replaced by the grand-potential. The grand potential from the restricted average by

definition can be expressed as

〈
Ω(n̂)

〉
=

∫
dêi
〈
Ω(n̂)

〉
êi
P

(n̂)
i (êi) .

Using the Magnetic Force Theorem (Eq.(2.53)) we get for the derivative

∂Ω(n̂)(ϑ)
∂ϑ

= 1
π
Im
∫
dε f (ε;µ) ∂

∂ϑ

{
lndet τ (n̂)

c
(ε)

+
∑

i

∫
dêiP

(n̂)
i (êi) lndet D̂

(n̂)

i (ε; êi)
}

,

here by evaluating the second integral it is worth to use a local frame of reference

fixed to the average magnetization direction (n̂). In this local frame the probability

function doesn’t have n̂ dependence:

P
(n̂) loc
i (êi) ==

βhi
4π sinh βhi

exp (−βhiêzi )

and

D̂
(n̂)

i (ε; êi) =
[
I +

(
m

(n̂)
i (ε; êi)−m(n̂)

i,c (ε)
)
τ

(n̂)
ii,c (ε)

]−1

,

with

m
(n̂)
i (ε; êi) = R (n̂)mi (ε; êi)R (n̂)+ = R (n̂)R (êi)mi (ε; ẑ)R

+ (êi)R (n̂)+ (3.19)
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here the rotation matrix R (n̂) rotates the n̂ axis along the ẑ axis, R (êi) the êi axis

into the ẑ axis, and mi (ε; ẑ) = t−1
i

(ε; ẑ) is the inverse scattering t-matrix if the

magnetization point to the z axis. We can then expand the derivatives as

∂ lndet τ (n̂)
c

(ε)

∂ϑ
=
∑

k

δ lndet τ (n̂)
c

(ε)

δm
(n̂)
k,c (ε)

·
∂m

(n̂)
k,c (ε)

∂ϑ
, (3.20)

∂lndetD̂
(n̂)

i (ε; êi)

∂ϑ
=
δlndetD̂

(n̂)

i (ε; êi)

δm
(n̂)
i,c (ε)

·∂m
(n̂)
i,c (ε)

∂ϑ
(3.21)

+
δlndetD̂

(n̂)

i (ε; êi)

δm
(n̂)
i (ε; êi)

·∂m
(n̂)
i (ε; êi)

∂ϑ
. (3.22)

It is well-known [46] that the CPA integrated DOS is stationary with respect to

a small variation of the coherent t−matix, i.e.:

δ lndet τ (n̂)
c

(ε)

δm
(n̂)
k,c (ε)

+
∑

i

∫
dêiαP

(n̂)loc
i (êi)

δ lndet D̂
(n̂)

i (ε; êi)

δm
(n̂)
k,c (ε)

=

=
δ lndet τ (n̂)

c
(ε)

δm
(n̂)
k,c (ε)

+
∑

i

∫
dêiP

(n̂)
i (êi)

δ lndetD
(n̂)
i (ε; êi)

δm
(n̂)
k,c (ε)

= 0 ,

which in turn implies that

∂F (n̂) (ϑ)

∂ϑ
=

1

π

∑

i

Im

∫
dε f

(
ε;µ(n̂)

) ∫
dêiP

(n̂)loc
i (êi)×

×δ lndet D̂
(n̂)

i (ε; êi)

δm
(n̂)
i (ε; êi)

· ∂m
(n̂)
i (ε; êi)

∂ϑ
.

Moreover, for a small variation of m
(n̂)
iα (ε; êi) ,

TrlnD̂
′(n̂)

i (ε; êi) = −Trln
(
I +

(
δm

(n̂)
i (ε; êi) +m

(n̂)
i (ε; êi)−m(n̂)

i,c (ε)
)
τ

(n̂)
i∗i,c (ε)

)

(3.23)

= −Trln
(
I +

(
m

(n̂)
i (ε; êi)−m(n̂)

i,c (ε)
)
τ

(n̂)
i∗i,c (ε) + δm

(n̂)
i (ε; êi) τ

(n̂)
i∗i,c (ε)

)
(3.24)

= TrlnD̂
(n̂)

i (ε; êi)− Trln
(
I + δm

(n̂)
i (ε; êi) τ

(n̂)
i∗i,c (ε) D̂

(n̂)

i (ε; êi)
)

(3.25)

'TrlnD̂
(n̂)

i (ε; êi)− Tr
(
δm

(n̂)
i (ε; êi) τ

(n̂)
i∗i,c (ε) D̂

(n̂)

i (ε; êi)
)

. (3.26)

25



CHAPTER 3. MAGNETIC ANISOTROPY

We therefore get for the derivative:

δ lndet D̂
(n̂)

i (ε; êi)

δm
(n̂)
i (ε; êi)

◦ ∂m
(n̂)
i (ε; êi)

∂ϑ
= −Tr

(
∂m

(n̂)
i (ε; êi)

∂n̂
τ

(c,n̂)
ii,c (ε) D̂

(n̂)

i (ε; êi)

)
.

where from Eq.(3.19)

∂m
(n̂)
i (ε; êi)

∂ϑ
=
∂R (n̂)

∂ϑ
mi (ε; êi)R (n̂)+ +R (n̂)mi (ε; êi)

∂R+ (n̂)

∂ϑ
. (3.27)

In using these results in Eq.3.18 we get the LSDA contribution to the magnetic

anisotropy constant, usually termed as the band energy part, Kb, which in a layered

system can be given as a sum of layer resolved contributions, Kb,p,

Kb =
∑

p

Kb,p , (3.28)

where

Kb,p =
1

π
Im

∫
dε f (ε;µ)

∫
dêpi∗ P

(z)
p (êp∗i)× (3.29)

Tr

[(
∂R (n̂)

∂ϑ
tp (ε; êpi)

−1 R (n̂)+ +R (n̂) tp (ε; êpi)
−1 ∂R

+ (n̂)

∂ϑ

)
× (3.30)

×τ c(n̂)
pi,pi (ε) D̂

(n̂)

p (ε; êpi)
]
ϑ=π/4,ϕ=0

. (3.31)

Note that for an accurate calculation of Kb,p in terms of Eq. (3.29) the CPA

condition has to be satisfied with a high precision.

3.3 The magnetic dipole-dipole anisotropy term

The total magnetic anisotropy energy also consists of a contribution arising from the

classical magnetic dipole-dipole energy (Edd) which can be approximated by means

of the magnetisation mi at site i as

Edd =
∑

i6=j

1

r3
ij

(
mimj − 3

(rij ·mi)(rij ·mj)

r2
ij

)
. (3.32)

In the case of completely ordered (T = 0 K) ferromagnetic layered systems this

equation can be expressed further as [13][15]

E
(n̂)
dd =

∑

pq

MpMq

c2
n̂ Ddd

pq n̂ , (3.33)
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where c (= 274.072) is the speed of light in atomic (Rydberg) units and the Ddd
pq are

the dipole-dipole Madelung matrices, and the averaged magnetic moment in layer p

is Mp. The corresponding contribution to the uniaxial MAE is then defined as

Kdd = E
(x̂)
dd − E

(ẑ)
dd , (3.34)

while the total MA constant is given by the sum of band energy and dipole-dipole

contributions

K = Kb +Kdd . (3.35)

In the present work for disordered magnetic systems as an approximation we cal-

culate the average dipole-dipole interaction energy substituting the configurational

average of the magnetisation (see also Eq. (2.31))

Mp(T ) = µp(0) mp(T ), (3.36)

into Eq.(3.33). With this formulation the dipole-dipole anisotropy can be get from

Eq.(3.34).
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Chapter 4

Spin-disorder part of electrical
resistivity

4.1 History of temperature dependent electrical

conductivity calculations

In a ferromagnetic metal in principle there are three main sources of the electrical

resistivity. The first one is scattering of itinerant electrons on impurities, the second

is the scattering caused by the lattice vibrations (phonons), and the third one arises

from the spin-dependent scattering, i.e., interaction with the magnetic spin system

(spin waves). In case of nonmagnetic impurity the first one causes a temperature

independent contribution to the resistivity, magnetic impurities are responsible for

the Kondo effect [47], i.e., for the resistivity minimum at a specific temperature.

For a pure metal we can disregard this contribution. The resistivity due to the

phonon-electron interaction can be well described by the Bloch-Grüneisen formula

[48],

%(T ) = K

(
T

ΘD

)5

J

(
ΘD

T

)
, (4.1)

where ΘD is the Debye temperature, K is a constant, and

J(x) =

∫ x

0

ξ5dξ

(eξ − 1)(1− e−ξ) ≈
{

1
4
x4 x� 1

124, 43 x� 1
.

The magnetic part of the resistivity often called as spin disorder resistivity poses a

challenging a subject of solid state physics since decades. One of the mostly referred

theoretical papers on the temperature dependent magnetic resistivity of magnetic

metals is the one of Goodings [32], in which he introduces a theoretical model calcu-

lation for the magnetic part of the resistivity for pure crystalline Fe,Co,Ni and Gd.
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He describes the magnetic scattering with a simple s-d Hamiltonian,

Hsd = −2
∑

n

J(r−Rn)sSn, (4.2)

where s is the (classical) spin operator of itinerant electrons and Sn the one for those

localised at Rn. The itinerant electrons can be either in an s or in a d band, so they

can be described with a wave number (k), an s or d band index (α = s, d) and a

spin (±). The localized moments form a spin-wave eigenstate, which in turn can be

described by n(q), i.e., the number of magnons with wave number q. The transition

probability can then be given as the square of the Hamiltonian matrix element,

P (kα∓ → k′α′±) =
2π

~
|〈k′α′±, n(q)± 1 |Hsd|kα∓, n(q)〉|2 = (4.3)

=
2π

~
2S

N

[
n(q) +

1

2
± 1

2

]
|Jαα′(k− k′)|2 δk′,k∓q.

According to the Boltzmann theory of transport the time derivative of the distribu-

tion function is given by

∂f

∂t
(kα±)]collision =

∑

q

∑

k′α′

f(k′α′)(1− f(kα))P (k′α′ → kα)−

−f(kα)(1− f(k′α′))P (kα→ k′α′), (4.4)

where the collision term corresponds to the scattering caused by the electric field,

∂f

∂t
(kα±)]collision = −∂f

∂t
(kα±)]field = v(kα)eE

∂f(kα±)

∂E(kα±)
, (4.5)

where v(kα) being the electron group velocity, E the electric field, and E is the

energy of the electron. In terms of these quantities the electric current density can

be expressed as

j = e%
∑

kα

[v(kα+)f(kα+) + v(kα−)f(kα−)] ,

such that from

j = σE

the conductivity σ can be obtained. Goodings calculated this conductivity with the

help of the variational method, using several approximations such as spherical en-

ergy bands, neglecting the spin-wave umklapp processes, k independence of Jαα′(k)
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(i.e., representing the s-d interaction by a δ function), and the variational method

itself. In spite of all these approximations he got quite a complicated temperature

dependence for the electric resistivity. In particular, he stressed the importance of

the s-d scattering for Fe for temperatures above about 20 K. Below 20 K the s-s

scattering gives the main contribution such that he reproduced the old results of a

quadratic temperature dependence

%magn ∝ T 2 for small T.

The parameters Jαα′ , effective masses or Fermi wave numbers kFα were taken from

experimental data. The results for Fe (Fig.4.1) underestimates the experimental

curves, however, Goodings took no attempt to exclude the phonon contribution

from the experimental results.

Figure 4.1: Theoretical predictions of Goodings [32]. Calculated %magn magnetic
resistivity of Fe with different values of (kF1−kF2)a shown an the right side of each
curve. The numbers in brackets are the effective mass ratios m2/m1. The dashed
line refers to the experimental total resistivity [49].

The model of Goodings was extended lately by Raquet et.al [33][50], in order

to explain high field magnetoresistance data. They took into account the magnetic

field dependence of the spin wave spectra such as the temperature dependence by

a magnon mass renormalization (i.e., temperature dependent spin wave stiffness).

They evaluated and also measured the magnetoresistance

∆%(T,B) = %(T,B)− %(T,B = 0) ≈ ∆%magn(T,B) (4.6)

which mainly originates from the magnetic part of the resistivity. They used simi-

lar experimental parameters as Goodings. In addition they fitted the temperature
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dependent magnon stiffness to reproduce the experimental ∆%(T,B) magnetore-

sistence data for Fe,Co and Ni. With these parameters they predicted the magnetic

part of the resistivity (%magn(T,B = 0)) from their model. In Fig.4.2 their results

can be seen. The results of their calculations for the magnetic part of the resistivity

in these metals is an order of magnitude smaller than the total experimental resis-

tivity. We have to stress that this model starts from a simple s-d Hamiltonian, and

that they used the same approximations as Goodings (e.g., neglecting the umklapp

processes).

Figure 4.2: a, The magnetic part of the resistivity for Fe, Co, and Ni according to
the calculations of Raquet et.al. [33] b: comparison of the magnetic part with the
total resistivity %(T ).

The other early theoretical approach for the temperature dependent resistivity

of Fe and Ni alloys was based on the so-called two current model, proposed by

Albert Fert et.al. [51][52][53]. The two-current model of ferromagnetic materials
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assumes, that the electrons can be grouped into two class, one with spin up (↑)
electrons, and the other with spin down (↓). In the electron scatterings the spin

conservation was assumed to dominate, at least at low temperature. In addition, to

the spin conserving processes Fert et.al. included a temperature dependent spin-flip

scattering term described by the parameter %↑↓(T). Thus the total resistivity was of

the form:

% =
%↑%↓ + %↑↓(%↑ + %↓)

%↑ + %↓ + 4%↑↓
, (4.7)

where the parameters %↑, %↓ are formulated within the Boltzmann theory. By van-

ishing spin-flip scattering (%↑↓ = 0) the equation gives the resistivity of parallelly

connected ↑ and ↓ spin channels. Fert et.al. used the below form for the temperature

dependent resistivities

%σ = %0σ + %σ(T ).

Detaching thus the residual resistivity (%0σ) with σ =↑, ↓ . The %↑↓ scattering arises

from spin wave scattering, thus it is negligible at T = 0K. Using these assumptions

they obtained the following expression:

%T (T ) = %(T )− %0 =

(
1 +

(α− µ)2

(1 + α)2µ

)
%i(T ) +

(α− 1)2

(α+ 1)2
%↑↓(T ), (4.8)

where

α = %0↓/%0↑, µ = %↓(T )/%↑(T ),

and

%i(T ) =
%↑(T )%↓(T )

%↑(T ) + %↓(T )
.

They fitted the parameters α, µ to the experimental results, as well as parameters

c1 and c2 to the temperature dependent resistivity

%i(T ) = c1T
2 + c2T

4.

They also fitted the resistivity %↑↓(T ). However, they tried to give [54][55] an ana-

lytical expression for %↑↓(T ) starting from an s− d Hamiltonian (similar to Eq.4.2 )

and calculating the relaxation time within the Boltzmann theory. They succeeded

to give the qualitative dependence of %↑↓(T ), which however, for Fe differed quanti-

tatively from the experiments by a factor of 2 [54]. Later they fitted the %↑↓(T ) to

the experiments and obtained results for %(T ) (Eq.4.7) in fair agreement with the
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experiments for Fe and Ni alloys [55], but the large number of fitting parameters

weakened the predictive force of their theory. Later on the two current model was

criticized by A. Vernes et.al. [56], who showed that the two current model fails two

orders of magnitude for the resistivity of Co-Ni alloys when compared to results

based on calculations using a fully relativistic Kubo-Greenwood formalism. Accord-

ing to their argument, the difference arises from the dominance of the spin-orbit

coupling induced spin-flip scatterings.

For dilute magnetic alloys a widespread description of the electrical conductivity

in the literature given in terms of spin-spin correlation functions, first proposed

by de Gennes and Friedel [57]. Their theory starts from a similar s-d interaction

perturbation as in Eq.(4.2), where the s denotes the conduction electron spin, Si a

localized spin on site i, and I an assumed site-independent interaction,

V = I
∑

i

siSi. (4.9)

Expressing the transition matrix element in the Born approximation 1

P (kαγ → k′α′γ′) =
2π

~
|〈k′α′γ′ |V |kαγ〉|2 , (4.10)

in which the delocalised electrons are described by the wave function |k〉 = cke
ikr,

α is the spin quantum number of the delocalised electron, γ is the same for the

localised moment. One easily obtains

P (kαγ → k′α′γ′) =
2π

~

∣∣∣∣∣I
∑

i

σαα′ 〈γ |Si| γ′〉 ei(k−k′)Ri

∣∣∣∣∣

2

= (4.11)

=
2π

~
I2
∑

ij

|σαα′ | 〈γ |Si| γ′〉 〈γ′ |Sj| γ〉 ei(k−k′)(Ri−Rj).

When used in Eq.(4.4) we have to sum up over all the local moment states

∂f

∂t
(kα)]collision =

∑

γγ′

∑

k′α′

f(k′α′)(1− f(kα))wγ′P (k′α′γ′ → kαγ)−

−f(kα)(1− f(k′α′))wγP (kαγ → k′α′γ′), (4.12)

1Indeed here we neglect higher order scattering terms (i.e. electron scatterings through inter-
mediate states), which can lead to the Kondo effect.
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where wγ is the occupation of state γ. From Eq.(4.11) one obtains

W (kα→ k′α′) =
∑

γγ′

wγP (kαγ → k′α′γ′) =
2π

~
I2
∑

ij

〈Si · Sj〉 ei(k−k′)·(Ri−Rj).

(4.13)

In the relaxation-time approximation to the Boltzmann equation the relaxation time

can be given by [48]

1

τ(k)
=

∫
dk′

(2π)3

∑

α′

W (kα→ k′α′)[1− cos(k,k′)], (4.14)

from which the resistivity follows as

% =
m∗

ne2 τ(εF )
, (4.15)

with m∗ being the effective mass. Introducing the spin-spin correlation function

χij = 〈Si · Sj〉 − 〈Si〉 · 〈Sj〉 ,

it can be seen that in the case of a bulk translation invariant material 〈Si〉 = S,

therefore the term

∑

ij

〈Si〉 〈Sj〉 ei(k−k′)(Ri−Rj) = N2S2δk,k′

doesn’t give contribution to Eq.(4.14). Therefore the resistivity can be expressed in

terms of the spin-susceptibility:

% =
2πm∗

~ ne2
I2N

∫
dk′

(2π)3
χ(k− k′)[1− cos(k,k′)], (4.16)

where

χ(q) =
∑

j

χ0je
−iqRj . (4.17)

With similar (but more detailed) calculations the peak in the temperature derivative

of the resistivity in Ni around the Curie temperature was explained in the 60-ies

[58][59], and the role of the short range order in the resistivity was stressed. A

similar theory was given by Haas [60] for magnetic semiconductors , who found a

maximum in the resistivity at the Curie temperature. This resistivity peak was

measured for magnetic alloys (e.g. (Fe1−xMx)3 Si [61] ) and dilute semiconductors

(e.g. (Ga,Mn)As [62] [63]) . A more recent parametric model calculation for the

resistivity peak using a similar s-d Hamiltonian can be found in Ref [64].
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4.2 Magnetic part of electrical conductivity

For our electrical conductivity calculations we used the linear-response theory of

Kubo [65]. In this approximation the static (q = 0, ω = 0) electrical conductivity

is given by [66]:

σµµ =
π~
NVat

〈∑

m,n

JµmnJ
µ
nmδ (εF − εm) δ (εF − εn)

〉
, (4.18)

where µ = {x, y, z} refers to the direction, N is the number of atoms, Vat is the

atomic volume, 〈. . .〉 refers to the average over spin configurations, and Jµmn is the

current operator matrix element,

Jµmn = 〈m|Jµ|n〉

in the basis of the eigenstates |n〉 of the unperturbed Hamiltonian, where the current

operator is given by

~J(r) =





e~
2 mi

ψ+(r)(
−→∇ −←−∇)ψ(r), in non-relativistic case

ecψ+(r)−→α ψ(r), in relativistic case

. (4.19)

In the Green’s function formalism:

∑

n

|n〉 〈n| δ (ε− εn) = − 1

π
ImG+(ε) = − 1

2πi
[G+(ε)−G−(ε)], (4.20)

with the notation

lim
η→±0

G(ε+ iη) = G±(ε). (4.21)

The δ functions in Eq.(4.18) can be replaced such that

σµµ =
π~
NVat

Tr
〈
Jµ ImG+(εF )Jµ ImG+(εF )

〉
. (4.22)

Using the notation

lim
η→±0

ε+ iη = ε±,

we can further express Eq.(4.22) as

σµµ =
1

4
{σ̃µµ(ε+, ε+) + σ̃µµ(ε−, ε−)− σ̃µµ(ε+, ε−)− σ̃µµ(ε−, ε+)}, (4.23)
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where

σ̃µµ(ε1, ε2) =
π~
NVat

Tr
〈
Jµ ImG+(ε1)Jµ ImG+(ε2)

〉
,

(εi ∈ {ε+, ε−} ; i = 1, 2).

Using Eq.(A.27) the Green’s function can be expressed in terms of the KKR quan-

tities. We calculate the resistivity of a region consisting of n intermediate atomic

layers, and surrounded by two semi-infinite systems of the same material. If n tends

to infinity, the resistivity converges to the bulk value. It can be shown that the

second term on rhs of Eq.(A.27) is real [67] 2, so it doesn’t contribute to Eq.(4.22).

The term containing the SPO gives [27]:

σ̃µµ(ε1, ε2) =
C

n

n∑

p=1

∑

i∈I(L2)

n∑

q=1

∑

j∈I(L2)

tr
〈
Jpi
µ (ε2, ε1)τ pi,qj(ε1)Jqj

µ (ε1, ε2)τ qj,pi(ε2)
〉
,

(4.24)

where we have to sum up for the pair of sites {i, j} which can be situated in every

possible layers 0 < p, q ≤ n. C contains all the constants, and I(L2) contains all the

indices belonging to a simple two-dimensional lattice L2 .

In the basis of regular scattering solutions (Zp
Λ(rp0, ε)) the matrix elements of the

current operator (Eq.(4.19)) are given by:

Jpµ,ΛΛ′(ε1, ε2) =
e~
im

∫

WS

Zp
Λ(rp0, ε1)+ ∂

∂rp0,µ
Zp

Λ′(rp0, ε2)d
3rp0, (4.25)

with Λ = (lm), in the nonrelativistic case, and

Jpµ,ΛΛ′(ε1, ε2) = ec

∫

WS

Zp
Λ(rp0, ε1)+αµZ

p
Λ′(rp0, ε2)d3rp0, (4.26)

with Λ = (κµ), in the relativistic case. Provided that two-dimensional invariance

applies in all layers under consideration we can make use of the fact that

Jpµ(ε1, ε2) = Jp0µ (ε1, ε2) = Jpi
µ (ε1, ε2) ∀i ∈ I(L2), (4.27)

and from which one easily can see that for each layer p the sum over i ∈ I(L2) gives

N times the same contribution, therefore

σ̃µµ(ε1, ε2) =
C

n

n∑

p=1

n∑

q=1


 ∑

j∈I(L2)

tr
〈
Jpµ(ε2, ε1)τ p0,qj(ε1)Jqµ(ε1, ε2)τ qj,p0(ε2)

〉

 .

(4.28)

2In the relativistic case the proof is more complicated.

36



CHAPTER 4. SPIN-DISORDER PART OF ELECTRICAL RESISTIVITY

Neglecting the so-called vertex corrections [67] we can calculate the conductivity as:

σ̃µµ(ε1, ε2) =
C

n

n∑

p=1

n∑

q=1

∑

j∈I(L2)

∫
dê0dêjP ({ê0, êj})× (4.29)

× tr
(
Jpµ(ε2, ε1, ê0)

〈
τ p0,qj(ε1)

〉
p0ê0,qj êj

Jqµ(ε1, ε2, êj)
〈
τ qj,p0(ε2)

〉
qj êj ,p0ê0

)
,

where the restricted averages
〈
τ p0,qj(ε1)

〉
p0ê0,qj êj

we are obtained by fixing the local

moment directions in site 0 and j, and average over all the other lattice sites. Notice

that the current matrix is direction dependent, from the transformation of Eq.(4.26)

Jpµ,ΛΛ′(ε1, ε2, ê) =
∑

ΓΓ′

∑

ν=1,3

O∗ΛΓ′RµνJ
p
ν,ΓΓ′(ε1, ε2)OΓ′Λ′ (4.30)

where Jpµ,ΓΓ′(ε1, ε2) is the current matrix if the local moment points along the ẑ axis,

OΛΓ andRµν are the representations of the rotation which takes the ẑ axis into the

ê axis in angular momentum and in real space, respectively.

We can calculate the thermal average of the SPO-s using the coherent potential

approximation. The sum in Eq.(4.29) can be split up into a site-diagonal and an

off-diagonal term:

σ̃µµ(ε1, ε2) = σ̃0
µµ(ε1, ε2) + σ̃1

µµ(ε1, ε2), (4.31)

where the diagonal part will be:

σ̃0
µµ(ε1, ε2) =

C

n

n∑

p=1

∫
dêPp(ê) tr

(
Jpµ(ε2, ε1, ê) 〈τpp(ε1)〉p0ê Jpµ(ε1, ε2, ê) 〈τpp(ε2)〉p0ê

)
.

(4.32)

By employing the CPA the restricted SPO-s can be expressed from Eq.(B.11), and

we get

σ̃0
µµ(ε1, ε2) =

C

n

n∑

p=1

∫
dêP (ê) tr

[
Jpµ(ε2, ε1, ê)τ

pp
c (ε1)× (4.33)

×Dp(ε1, ê)J
p
µ(ε1, ε2, ê)τ

pp
c (ε2)Dp(ε2, ê)

]
,

where we used the underlying two-dimensional translational invariance,

τ pipi
c (ε1) = τpp

c (ε1) ∀i ∈ I(L2). (4.34)

The site off-diagonal part can further be decomposed into two terms,

σ̃1
µµ(ε1, ε2) = σ̃2

µµ(ε1, ε2) + σ̃3
µµ(ε1, ε2), (4.35)
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where

σ̃2
µµ(ε1, ε2) =

C

n

n∑

p=1

n∑

q=1

(1− δpq)
∑

j∈I(L2)

tr
〈
Jpµ(ε2, ε1)τ p0,qj(ε1)Jqµ(ε1, ε2)τ qj,p0(ε2)

〉
,

(4.36)

σ̃3
µµ(ε1, ε2) =

C

n

n∑

p=1

n∑

q=1

δpq

∑

(j 6=0)∈I(L2)

tr
〈
Jpµ(ε2, ε1)τ

p0,qj(ε1)Jqµ(ε1, ε2)τ qj,p0(ε2)
〉
.

(4.37)

As one can see σ̃2
µµ arises from sites located in different layers, while σ̃3

µµ refers to

sites in one and the same layer. Using again the CPA for the restricted averaged

SPO (Eq.B.12) and neglecting the vertex corrections we get for σ̃2
µµ :

σ̃2
µµ(ε1, ε2) =

C

n

n∑

p=1

n∑

q=1

(1− δpq)
∑

j∈I(L2)

∫ ∫
dêidêjPp(êi)Pq(êj)×

× tr
{
Jpµ(ε2, ε1, êi)D̃

p
(ε1, êi)τ

p0,qj
c (ε1)Dq(ε1, êj)×

×J qµ(ε1, ε2)D̃
q
(ε2, êj)τ

qj,p0
c (ε2)Dp(ε2, êi)

}
, (4.38)

with

D̃
p
(ε1, ê) = [I + τpp

c (ε1)(mp(ε1, ê)−mc,p(ε1))]−1.

Or, using the below quantity

J̃
p,av

µ (ε2, ε1) =

∫
dêiP (êi)D

p(ε2, êi)J
p
µ(ε2, ε1, êi)D̃

p
(ε1, êi), (4.39)

Eq.(4.38) can be reformulated as

σ̃2
µµ(ε1, ε2) =

C

n

n∑

p=1

n∑

q=1

(1− δpq)
∑

j∈I(L2)

tr
{
J̃
p,av

µ (ε2, ε1)τ p0,qj
c (ε1)J̃

q,av

µ (ε1, ε2)τ qj,p0
c (ε2)

}
.

From the Fourier transformed form:

τ p0,qj
c (ε) =

1

ΩSBZ

∫
ei
~k
−→
R jτ pq

c (~k, ε)d2k,

and using the orthogonality relations

∑

j∈I(L2)

τ p0,qj
c (ε1)τ qj,p0

c (ε2) =
1

ΩSBZ

∫
τ pq
c (~k, ε1)τ qp

c (~k, ε2)d2k
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we get for σ̃2
µµ(ε1, ε2),

σ̃2
µµ(ε1, ε2) =

C

nΩSBZ

n∑

p=1

n∑

q=1

(1− δpq)× (4.40)

∫
tr
{
J̃
p,av

µ (ε2, ε1)τpq
c (~k, ε1)J̃

q,av

µ (ε1, ε2)τ qp
c (~k, ε2)

}
d2k.

Similarly, for σ̃3 we obtain:

σ̃3
µµ(ε1, ε2) =

C

nΩSBZ
×

×
n∑

p=1

∫
tr
{
J̃
p,av

µ (ε2, ε1)τ
pp
c (~k, ε1)J̃

p,av

µ (ε1, ε2)τpp
c (~k, ε2)

}
d2k + σ̃3 corr

µµ (ε1, ε2) (4.41)

with

σ̃3 corr
µµ (ε1, ε2) = −C

n

n∑

p=1

∫ ∫
dêidêjPp(êi)Pq(êj)×

× tr
{
Jpµ(ε2, ε1, êi)D̃

p
(ε1, êi)τ

pp
c (ε1)Dp(ε1, êj)J

p
µ(ε1, ε2)D̃

p
(ε2, êj)τ

pp
c (ε2)Dp(ε2, êi)

}
=

= −C
n

n∑

p=1

tr
{
J̃
p,av

µ (ε2, ε1)τ
pp
c (ε1)J̃

p,av

µ (ε1, ε2)τ pp
c (ε2)

}
. (4.42)

Collecting all the terms, the electrical conductivity obtained from Eq.(4.23) is of the

form

σ̃µµ(ε1, ε2) =

=
C

n

n∑

p=1

{∫
dêP (ê) tr

(
Jp0µ (ε2, ε1, ê)τ

pp
c (ε1)Dp(ε1, ê)J

p0
µ (ε1, ε2, ê)τ

pp
c (ε2)Dp(ε2, ê)

)
−

− tr
(
J̃
p,av

µ (ε2, ε1)τpp
c (ε1)J̃

p,av

µ (ε1, ε2)τ pp
c (ε2)

)
+

+
1

ΩSBZ

n∑

q=1

∫
tr
{
J̃
p,av

µ (ε2, ε1)τpq
c (~k, ε1)J̃

q,av

µ (ε1, ε2)τ qp
c (~k, ε2)

}
d2k

}
. (4.43)

39



Chapter 5

Magnetic anisotropy results

5.1 Callen-Callen single-ion anisotropy

The results of Callen and Callen [68] for a single-ion anisotropy was the only theory

for the temperature dependent magnetic anisotropy until the 90s, and was used

frequently in the literature. This theory assumes that the anisotropy is confined to

a single-ion anisotropy, i.e., just the second term on the rhs. of Eq.(D.1) contains

anisotropy, assuming the exchange matrix to be isotropic. In this case the free-

energy can be written in the form [68]

F = F0 +
∑

l

κl 〈gl(S)〉 , (5.1)

where coefficients κl are regarded to be temperature independent, and gl(S) are l-th

order polynomials in the direction of the spin orientation S. The gl are defined by

the symmetry of the system, and 〈. . .〉 refer to thermal averaging. These gl(n̂) can

be further expressed in terms of the spherical harmonic expansion,

F = F0 +
∑

l

κl
∑

m

aml 〈Y m
l (S)〉 , (5.2)

where S is the direction of the spin orientation. Choosing a frame of reference fixed

to the average magnetization direction n̂, this can be further expressed [68] as

F = F0 +
∑

l

κl
〈
Y 0
l (S′)

〉
gl(n̂), (5.3)

where S′ is the spin orientation in the frame fixed to n̂. From this equation, it easily

can be seen that the temperature dependent anisotropy coefficients are given by

Kl(T ) = κl
〈
Y 0
l (S′)

〉
, (5.4)
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and therefore,
Kl(T )

Kl(0)
=
〈Y 0

l (S′)〉T
〈Y 0

l (S′)〉0
. (5.5)

Note that the magnetisation is the l = 1 case of the rhs,

m(T ) =
〈Y 0

1 (S′)〉T
〈Y 0

1 (S′)〉0
. (5.6)

Eq. 5.5 can be expressed in terms of m(T ) in two limiting case as was shown in Ref.

[68]. For small temperatures (m(T ) w 1)

Kl(T )

Kl(0)
v [m(T )]

l(l+1)
2 for smallT, (5.7)

whereas for large temperatures, close to the Curie temperature, where m(T )→ 0 :

Kl(T )

Kl(0)
v [m(T )]l forT → Tc. (5.8)

In uniaxial systems the lowest order invariant polynomial is second order, i.e., the

first non-vanishing coefficient belongs to l = 2. Therefore the magnetic anisotropy

K(T ) ∝ m(T )3 for large m (small T ), and K(T ) ∝ m(T )2 for small m (large T ).

In cubic bulk systems the lowest order invariant polynomial is of fourth order,

therefore K(T ) ∝ m(T )10 for large m (small T ), and K(T ) ∝ m(T )4 for small m

(large T ).

5.2 Computational details

The present Chapter address the calculation of the magnetic anisotropy of bulk fer-

romagnets, and magnetic thin films in an ab initio level. As described in Chapter (2)

and (3) we implemented the DLM theory in the KKR formalism. To test the theory,

we performed realistic calculations for bulk FePt, FePd and CoCu(100) thin films.

The calculations were performed by using the relativistic version of the Screened

KKR method (as described in appendix A) within the LSDA as parametrized by

Vosko et al. [69] and the atomic sphere approximation (ASA). Self-consistent poten-

tials were calculated both for the ferromagnetic ground state and for the paramag-

netic state; these potentials then were used for the DLM calculations at finite tem-

peratures (see below). The experimental lattice constant of bulk Cu (a = 6.83 a0)

was used, i.e., no attempt was made to include geometrical relaxations of an fcc(001)

parent lattice.
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For a fixed orientation of the average magnetization n̂ and at a given temperature

T , our strategy for determining the layer (denoted by p) dependent effective t–

matrices t
c(n̂)
p and Weiss fields h

(n̂)
p simultaneously, is as follows:

1. Choose an initial (usually uniform) set of h
(n̂)
p .

2. Solve the CPA condition (as described in section 2.3), with the corresponding

probabilities, P
(n̂)
p (êpi), Eq. (2.29).

For this step we employed the method proposed by Ginatempo and Staunton [39],

while we performed the integral over orientations (Eq.2.41) in terms of a cascade

adaptive sampling. This turned out to be numerically very efficient when using a

local frame of reference with the z axis fixed parallel to the average magnetization

direction, since in that case P
(n̂)
p (êpi) depends just on ϑpi. The CPA loop was

iterated up to a relative accuracy of 10−4 for t
c(n̂)
p .

3. Calculate a new set of h
(n̂)
p from Eq. (2.33) or (2.56).

An asymmetric sampling of 16 points on a semi–circular contour in the up-

per complex semi–plane was sufficient for the corresponding energy integration to

achieve a relative accuracy of 10−4 for h
(n̂)
p . In order to keep this accuracy, the

BZ integration of the scattering path operator (τ
c(n̂)
pp (k)) was performed by using a

variable k-mesh with a maximum of 465 k-points in the irreducible (1/8) wedge of

the BZ for energies close to the Fermi level.

4. Repeat steps 2 and 3 until convergence of h
(n̂)
p is achieved.

By using Broyden’s second modified method [70] we needed just 5–10 iterations

in order to reach the above mentioned accuracy.

After having obtained well converged Weiss fields and effective t-matrices the

band energy part of the magnetic anisotropy (MA) constant Kb, see Eq. (3.28), was

calculated using Eq. (3.29). It turned out, however, that unlike the local moments

the MA constant is very sensitive to the self-consistent potentials used. Clearly, a

self-consistent calculation of the effective potentials and fields at each temperature

would complete the R-DLM scheme described above. To mimic the temperature

dependence of the potentials and the exchange fields, here we used an approximate

procedure which at least recovers the limiting cases, i.e., T = 0 and T ≥ TC ,

correctly. At T = 0 the ferromagnetic ground state of the system is described

by the self-consistent potentials and exchange fields, V p
FM and Bp

FM , while above
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the Curie temperature the system is in the paramagnetic DLM state (see section

2.4), specified by V p
PM and Bp

PM , respectively. The temperature dependence of the

potentials was then approximated by

V p(T ) = mp(T )V p
FM + (1−mp(T ))V p

PM , (5.9)

and similarly for the effective fields, with mp(T ) being the layer dependent average

magnetization at a given temperature T , see Eq. (2.32). The parameters for the

energy– and the BZ–integrations used for the Weiss fields were sufficient to achieve

a relative numerical accuracy of 5 % for Kb.

5.3 Bulk anisotropy results

The relativistic version of the DLM (R-DLM) to describe ferromagnetism and mag-

netic anisotropy below the Curie temperature was first implemented by Julie Staunton

et.al. in 2004 [71]. They investigated the L10-ordered FePt. This is a layered bulk

ferromagnet, where the Fe layers provide large magnetic moments, while the Pt are

non-magnetic, but exhibits large spin-orbit coupling. The exchange field of the Fe

moments induce magnetic moments on the Pt atoms giving rise to a large mag-

netic anisotropy, because of the large spin-orbit coupling of the Pt atoms [72]. This

large magnetic anisotropy made FePt to be one of the most promising material in

the magnetic recording industry [4]. Staunton first determined the magnetisation-

temperature curve and got 935 K for the Curie temperature in reasonable agreement

with the experimental value of 750 K [73]. She calculated the magnetic anisotropy

energy as the free-energy difference,

MAE = F (001) − F (100). (5.10)

The results plotted versus the magnetisation squared can be seen in Fig. (5.1). As

can be seen from the figure apart from 0.9 < M(T )/M(0) < 1 the results show

a K(T ) ∝ [M(T )]2 behavior in good agreement with the experiment[73], and in

contrast to the Callen-Callen model, which is also shown in Fig.(5.1).

Later on we [74] investigated L10−FePd and got similar results as for FePt (see

Fig. (5.2)). The calculated anisotropy results fit again to a K0[M(T )/M(0)]2 curve.

The calculated value for the zero temperature anisotropy of 0.335 meV agree well
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Figure 5.1: Magnetic anisotropy of L10−FePt as a function of the squared magneti-
sation from Ref. [71]. The filled circles are the results of R-DLM calculations, the
full line refers to K0[M(T )/M(0)]2, the dashed line to the single ion model function
K0 〈Y 0

2 (S′)〉T /〈Y 0
2 (S′)〉0 (see Eq.5.5) with K0 = −1.835 meV.

with the experimental result of 0.373 meV [75], exhibiting an out-of-plane preferred

magnetization direction. We also calculated the second and fourth order anisotropy

parameters (see Eq.3.17), from the magnetic torque in two different orientation. For

ϑ1 = π/4, ϕ1 = 0 the torque (Eq.3.18) Tϑ = −(K2 +K4), while for ϑ1 = π/3, ϕ1 = 0

we obtain Tϑ = −
√

3
2

(K2 + 3
2
K4). The gained results show that K4 is an order of

magnitude smaller than K2, which agrees with the general theory that the anisotropy

constants tends to zero with increasing order [76]. The deviation from the Callen-

Callen single ion model results were explained in terms of anisotropic exchange

interactions.

Lowering the chemical order in L10-FePt (randomly interchanging Fe and Pt

atoms) cause a decrease in the magnetic anisotropy. The totally disordered Fe50 Pt50

solid solution has an order of magnitude smaller anisotropy than the ordered L10

phase. Indeed, the disordered Fe50 Pt50 has cubic symmetry, i.e., fourth order

anisotropy. The anisotropy coefficient K1 in Eq.(3.4) can be determined using the

DLM from the torque

Tϕ(ϑ = π/2, ϕ = π/8) =
K1

2
. (5.11)
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Figure 5.2: Magnetic anisotropy of L10−FePd as a function of squared magnetisation
from Ref. [74]. The filled circles denote the results of R-DLM calculations, the full
line refers to K0[M(T )/M(0)]2, and the dashed line depicts the function proposed
by the single ion model function K0 〈Y 0

2 (S′)〉T /〈Y 0
2 (S′)〉0 (see Eq.5.5) with K0 =

−0.335meV .

The results for K1 are shown in Fig.(5.3). The Callen-Callen model predicts K(T ) ∝
m4 for small m, and K(T ) ∝ m10 for m→ 1. Quite contradictory the R-DLM results

give K(T ) ∝ m4 for small m and vary as m7 for large m. Fig.(5.3) also shows for

comparison the behavior of both the single ion anisotropy model with an anisotropy

energy-term k
∑

i

(
e2
x,ie

2
y,i + e2

y,ie
2
z,i + e2

z,ie
2
x,i

)
and an anisotropic exchange model

1/2∆J
∑

i,j

(
e2
x,ie

2
y,j + e2

y,ie
2
z,j + e2

z,ie
2
x,j

)
with k = ∆J = 8.4µ eV . As can be seen

from the figure, the ab initio results can be understood from an interpretation based

on a predominantly anisotropic exchange interactions.

5.4 Application to Co films on Cu(001)

Ferromagnetic Co films are known to grow epitaxially on Cu(100) due to the small

lattice mismatch and show a strong in-plane magnetic anisotropy [77][78]. As this

system is experimentally and theoretically well–studied it is most suitable for an

application of the relativistic-DLM (R-DLM) scheme for layered systems. We per-

45



CHAPTER 5. MAGNETIC ANISOTROPY RESULTS

Figure 5.3: The magnetic anisotropy constant of the cubic magnet chemically dis-
ordered Fe50 Pt50, as a function of fourth power of the magnetisation from Ref. [74].
The filled circles show the result of the ab initio theory, the dashed line the single ion
anisotropy model, and dotted-dashed line is the solution of an anisotropic exchange
model.

formed calculations for film thicknesses of n=1 to 6 monolayers.

In Figure 5.4 the calculated layer dependent magnetizations are shown as a

function of the temperature for the case of the Co4 film. As can be inferred from this

figure the magnetization in all layers vanishes at TC=960 K. Interestingly, however,

the shape of the curves differs from layer to layer: the largest overall magnetization

corresponds to the surface layer (S), the lowest to the interface layer (S − 3). This

behavior can be attributed to a well known tendency of enhanced ferromagnetism

[25][79] (i.e., enhanced Weiss fields) at the surface due to the reduced coordination

of the Co atoms, while at the interface a weakening of the magnetic interactions is

expected due to hybridization between the electronic states of the Co and Cu atoms.

This reasoning can be justified by comparing the DLM results with the mean–

field solution of a classical Heisenberg spin model. Supposing isotropic exchange

interactions, Jpq, the mean–field energy is of simple form,

HMF = −1

2

∑

pq

mp Jpq mq , (5.12)
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Figure 5.4: Average magnetizations, mp, see Eq. (2.32), versus temperature for
Co4/Cu(100) as obtained from the R-DLM calculations. The label S refers to the
surface Co layer, while S − n (n = 1, 2, 3) to the n-th Co layer under the surface.

while the corresponding Weiss-field,

hp =
∑

q

Jpq mq , (5.13)

can be used together with Eq. (2.32) to determine the average magnetizations,

mp, as a function of the temperature. Fig. 5.5 shows that the corresponding re-

sults with parameters J11=155 meV, J22=90 meV, J33=70 meV , J44=115 meV,

J12=J34=100 meV, and J23=70 meV (labels 1, 2-3, 4 indexing the surface layer, the

in between layers and the layer adjacent to the substrate, respectively) fit well to

the results obtained from the DLM calculations. From this model study it obviously

turned out that the asymmetry of the exchange parameters, in particular, J11 > J44,

and J22 > J33, is the main source of the asymmetry of the magnetizations, since by

choosing J11 = J44, and J22 = J33 this asymmetry is completely removed.

From Fig.(5.5) it is obvious that the magnetisation, correspondingly, also the

Weiss-fields vanish at about 950 K. This temperature is clearly associated with the

Curie temperature of the Co4Cu(100) film. In Fig 5.6 we plotted the Curie tem-

peratures calculated for different Co layer thicknesses. These values are consistent

with those of Szunyogh and Udvardi [25] obtained from a mean field solution of

a Heisenberg-model containing exchange parameters as calculated in the paramag-

netic DLM state. Razee et al. [23] derived the Curie temperature of Con/Cu(100)
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Figure 5.5: Average magnetizations, mp, see Eq. (2.32), versus temperature for
Co4/Cu(100) as obtained from a mean–field solution of an isotropic Heisenberg
model (see text for the exchange parameters used). The label S refers to the surface
Co layer, while S − n (n = 1, 2, 3, 4) to the n-th Co layer below the surface.

by directly evaluating the spin-susceptibility from the paramagnetic DLM state. Al-

though a smaller Curie temperature for the monolayer case was reported, for thicker

layers they obtained roughly the same results as here.

Experimentally much smaller Curie temperatures were measured, in particular,

for very thin layers, while TC increased with increasing film thickness according to

a power law [77][78]. The reason for the disagreement with respect to experiment

can be attributed either to the mean-field approximation used in the ab-initio DLM

theories that is most critical for very thin layers, or to incomplete layer growth in

the experimental studies, again most critical for thin layers. The experimental value

of about 950 K for large thicknesses of Co (Ref. [78]) is, however, in good agreement

with our present results. Experimentally the investigation of sharp surfaces was

possible only until 3-4 monolayer thickness, because of the Co-Cu intermixing on

the phase boundary at higher temperatures.

In terms of a spin-wave theory and by using estimated bulk parameters for the

magnetization and the exchange field, Bruno [81] obtained about 200 K for TC of

the Co1/Cu(001) system. Pajda et al. [82] performed first-principles calculations

for the exchange parameters, Jij, in the ferromagnetic ground-state of Co1/Cu(001)

and showed that by solving the Heisenberg spin-model within the Random Phase
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Figure 5.6: Curie temperature versus Co layer thickness on Cu(100) surface. The
experimental results from Ref [80][78]. The blue line shows the experimental bulk
Co Curie temperature.

Approximation (RPA) reduces the calculated TC to 426 K as compared to a value

of 1043 K predicted by the mean-field theory. In a recent review [83]} Jensen and

Bennemann showed that a strong enhancement of the exchange coupling in the

surface layer can lead to a considerable deviation from the power scaling law for

TC and can result even in an enhancement for very thin magnetic layers. This

observation qualitatively explains the trend to be seen in Fig.5.6 .

In Fig. 5.7 the calculated band energy contributions of the magnetic anisotropy

energy, Kb, are plotted as a function of temperature. The corresponding values near

T=0 are consistent with previous calculations of Szunyogh et.al. for the ground state

in terms of the relativistic Screened KKR method showing quite large fluctuations

with respect to the layer thickness (see Fig. 1 of Ref. [16]). Similar to the bulk

systems studied before [71][74] the MA constant decreases in the monolayer case

almost monotonically in magnitude with increasing temperature. For thicker films,

however, Kb(T ) shows a non-monotonic temperature behavior with a more or less

pronounced maximum. In addition, for the cases of n ≥ 3, Kb(T ) also changes sign

at a given temperature. This kind of behavior did not show up in early studies based

on the Callen-Callen model or in ab-initio calculations [71][74][72] of Kb(T ).
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Figure 5.7: Band energy part of the magnetic anisotropy constant Kb(T ) for
Con/Cu(100)

In order to explain this unusual result we again used a classical Heisenberg spin

model, which includes terms arising from relativistic (spin-orbit coupling) effects to

describe magnetic anisotropy. These include not only on-site anisotropies, Kp, but

also anisotropic exchange interactions, Jxxpq 6= Jzzpq . As shown in Appendix D the

anisotropy of the mean–field free–energy is given by

K = F x − F z = −1

2

∑

pq

mp

(
Jxxpq − Jzzpq

)
mq +

∑

p

Kp

(
3

βhp
mp + 1

)
. (5.14)

This equation was used to fit the exchange anisotropies, ∆Jpq=J
zz
pq − Jxxpq , and the

on-site anisotropies, Kp, to the Kb(T ) values obtained from the R-DLM calcula-

tions. Note that in order to reduce the number of fitting parameters, unlike the

interpretation of the layer dependent magnetizations, in here we restricted ourselves

to exchange parameters being symmetric with respect to layers. Indeed, from our

tests, we found the moderate asymmetry of the magnetizations, see Fig. 5.5, to

have only a very little effect on the MA constants obtained from the spin model.

Furthermore, for some cases we also checked our results by comparing them with a

full solution within the mean–field theory [84], i.e., by using the canonical partition

function with an exact account of the on-site anisotropies and of the orientational

dependence of the magnetizations, and obtained a nearly perfect agreement between

the two approaches.
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The fitted parameters are listed in Table 5.1, while in Fig. 5.8 the corresponding

magnetic anisotropies, Eq. (5.14), are shown. As can be seen, the MA constants

obtained from the spin model compare qualitatively well with the DLM results,

Fig. 5.7. Inferring the parameters in Table 5.1 it is obvious that the exchange

anisotropies, ∆Jpq, are of the same order of magnitude as the on-site anisotropy

energies, Kp, but of opposite sign. Clearly from Eq.5.14 the exchange anisotropy

part of the MAE is proportional to m2 while the on-site anisotropy term follows the

Callen-Callen behavior, i.e., K ∝ m2 for small m, and K ∝ m3 for large m. Thus,

an interplay of these two terms in an itinerant electron system can lead to a thermal

reorientation transition.

n Parameters
1 Jz11 = 336, ∆J11 = 0.36, K1 = −0.615
2 Jz11 = Jz22 = 136, ∆J11 = 0.36, Jz12 = 100, ∆J12 = 0.64, K1 = −0.37, K2 = −0.615
3 Jz11 = Jz33 = 136, ∆J11 = ∆J33 = 0.36, Jz22 = 60, ∆J22 = 0,

Jz12 = Jz23 = 100, ∆J12 = ∆J23 = 0.4,
K1 = −0.37, K2 = −0.425, K3 = −0.615

4 Jz11 = Jz44 = 136, ∆J11 = ∆J44 = 0.36, Jz22 = Jz33 = 60,
∆J22 = ∆J33 = 0, Jz12 = Jz34 = 100, ∆J12 = ∆J34 = 0.23, Jz23 = 60, ∆J23 = 0,

K1 = −0.37, K2 = 0, K3 = −0.37, K4 = −0.615
5 Jz11 = Jz55 = 136, ∆J11 = ∆J55 = 0.36,Jz22 = Jz33 = Jz44 = 60, ∆J22 = ∆J33 = ∆J44 = 0,

Jz12 = Jz45 = 100, ∆J12 = ∆J45 = 0.8, J23 = J34 = 60, ∆J23 = ∆J34 = 0,
K1 = −0.37, K2 = −0.37, K3 = −0.37, K4 = −0.615, K5 = −0.615,

6 Jz11 = Jz66 = 136, ∆J11 = ∆J66 = 0.36,
Jz22 = Jz55 = 60, ∆J22 = ∆J55 = 0, Jz33 = Jz44 = 20, ∆J33 = ∆J44 = 0,

Jz12 = Jz56 = 100, ∆J12 = ∆J56 = 0.36, Jz23 = Jz34 = J45 = 60, ∆J23 = ∆J34 = ∆J45 = 0,
K1 = −0.37, K2 = 0, K3 = 0, K4 = 0, K5 = −0.4, K6 = −0.615

Table 5.1: Model parameters, Jpq, ∆Jpq = Jzzpq − Jxxpq , and Kp, see Eqs. (5.13) and
(5.14), fitted to the temperature dependent MA constants of the Con/Cu(100) films
as obtained from the R-DLM calculations. All parameters are given in units of meV.

In order to demonstrate this effect we performed model calculations for the MA

constants of the Co3/Cu(100) system by uniformly scaling the exchange anisotropies,

∆Jpq=x∆Jfitpq , and the on-site anisotropies, Kp=yK
fit
p , with ∆Jfitpq and Kfit

p taken

from Table 5.1. As a constraint we kept the MA constant at T=0 fixed, from

which the scaling factors y can uniquely be determined as a function of x. The

corresponding MA constant vs. T curves are plotted for selected x values in Fig. 5.9.

As can be seen in this figure, by decreasing the exchange anisotropy the MA constant

gradually decreases and the reorientation transition completely disappears below
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Figure 5.8: Magnetic anisotropy constants vs. temperature obtained from a mean-
field approach of the Heisenberg model, Eq. (5.14), with the fitted parameters listed
in Table 5.1.

about x=0.5. For vanishing exchange anisotropy, x=0, the Callen-Callen behavior

is recovered. In the case of ∆Jpq = −0.2∆Jfitpq , similar to the L10-FePt and FePd

systems [74]. a nearly K ∝ m2 dependence over the whole temperature regime is

obtained. Thus the remarkably different behavior of K(T ) for different itinerant

metallic magnets, i.e., L10-FePt and FePd vs. Con/Cu(100), can be interpreted as

an effect of different magnitudes and, in particular, of different signs of the exchange

anisotropies with respect to the corresponding on-site anisotropies.

As mentioned in Chapter 3 the total magnetic anisotropy energy is obtained by

adding the magnetic dipole-dipole contribution, see Eq. (3.34), to the band energy

part, Kb(T ). The corresponding results can been seen in Fig. 5.10. Since for layered

systems Kdd(T ) is always negative, favouring thus an in-plane magnetization, except

in the two-monolayer case, the total MA constants are shifted to negative values

over almost the entire temperature range. Since, however, Kdd(T ) is proportional

to M(T )2 which goes to zero very rapidly at TC , and since as shown above Kb(T )

exhibits a maximum, K(T ) slightly overshoots to positive values near TC . This

behavior is most pronounced for n = 2, where K(T ) > 0 between 350 K and TC

(=933 K).
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Figure 5.9: Magnetic anisotropy constant of the Co3/Cu(100) system vs. temper-
ature obtained from a mean-field approach to the Heisenberg model and scaling
the exchange anisotropies, ∆Jpq=x∆Jfitpq , with ∆Jfitpq from Table 5.1 and the on-site
anisotropies accordingly (see text), Black squares: x=1, red circles: x=0.5, green
up-triangles: x=0.0, blue down-triangles: x = -0.2.

Theoretically, such a temperature dependence of the MA constant implies a

reorientation transition from an in-plane orientation to an out-of-plane orientation

of the magnetization. However, as can bee seen in Fig. 5.10 the positive values

of K(T ) are very small and might be reduced by quite a few circumstances such

as growth conditions, interface mixing, surface relaxations and stresses, or domain

formation, which in turn make it difficult to relate this prediction to experiments.

Indeed, so far such an inverse reorientation has not been found for Co films on

Cu(001).
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Figure 5.10: Calculated total magnetic anisotropy constant, K(T ) = Kb(T ) +
Kdd(T ), as a function of temperature for Con/Cu(100).
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Chapter 6

Magnetic pattern formation in
magnetic monolayers

We have seen in the former chapter that the exchange interaction is not neces-

sarily isotropic, and an anisotropic exchange interaction can lead to an unusual

temperature dependence of the magnetic anisotropy. The exchange matrix can have

not only symmetric but also antisymmetric terms, which gives rise to the so-called

Dzyaloshinskii-Moriya [85][86] interaction. We investigated the effect of this inter-

action on the magnetic ordering of a Mn monolayer on a W surface. It should be

noted that for this structure a spin-spiral ground state was observed experimentally

[87] .

6.1 The Dzyaloshinskii-Moriya interaction

In general a second order classical spin Hamiltonian can be written as

H =
∑

i

siKijsj +
1

2

∑

i6=j
siJijsj, (6.1)

where Kij stands for the on-site anisotropy matrix, and Jij are 3 × 3 exchange

matrices. It is evident, that the exchange matrices can be chosen such that

Jij = Jtji, (6.2)

where t index refers to the transposed matrix. The exchange matrix can be further

decomposed as

Jij = JijI + JSij + JAij , (6.3)
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where I is the unit matrix,

Jij =
1

3
Tr(Jij) , (6.4)

the symmetric traceless part is defined by

JSij =
1

2

(
Jij + Jtij

)
− JijI , (6.5)

while the antisymmetric part of Jij , JAij is

JAij =
1

2

(
Jij − Jtij

)
. (6.6)

Since a multiplication with a 3 × 3 antisymmetric matrix can always be written

as a vector cross-product, the second term on the rhs. of Eq.(6.1) can therefore

reformulated as

siJijsj = Jijsisj + siJ
S
ijsj + Dij(si × sj). (6.7)

In here the Dij are the so called Dzyaloshinskii-Moriya vectors,

Dx
ij =

1

2

(
Jyz

ij − Jzy
ij

)
, Dy

ij =
1

2

(
Jxz

ij − Jzx
ij

)
, Dz

ij =
1

2

(
Jxy

ij − Jyx
ij

)
. (6.8)

The last term of the exchange interaction

HDM =
∑

ij

Dij(si × sj), (6.9)

first introduced by Dzyaloshinskii [85], and Moriya [86].

It can be seen from Eq.(6.7) and Eq.(6.1) that the symmetric isotropic part of the

exchange interaction Jij prefers a parallel orientation of neighboring spins, namely

a ferromagnetic or an antiparallel (antiferromagnetic) alignment depending on the

sign of Jij, but without preference of any global direction. The JSij is responsible

for the magnetic anisotropy, prefering some crystalline orientation of the magnetic

moments. The Dzyaloshinskii-Moriya (DM) interaction (Eq.6.9) tends to rotate the

spins because this term is minimal for perpendicular spins. The ground state of the

actual system is determined by the competition between all these three terms, which

therefore in many cases can lead to noncollinear spin-structure. The DM interaction

arises from spin-orbit coupling, and varies linear with it [88]. In bulk crystals the

inversion symmetry implies a symmetrical exchange matrix, i.e., in systems with

inversion symmetry there is no DM interaction. In case of thin films or surfaces the
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inversion symmetry no longer is present and therefore might gives rise to large DM

interactions.

The parameters of the Hamiltonian Eq.(6.7) i.e. the on-site anisotropy param-

eters and the elements of the Jij exchange matrices can be obtained from ab initio

KKR calculations, as described in details by Udvardi et. al [42]. This authors used

the torque method[89], i.e., calculated the derivatives of the free-energy with respect

to the rotation of two specific spins. The corresponding derivatives can be calculated

within the KKR theory. From these derivatives the whole exchange matrix Jij, and

the on-site anisotropy parameters can be obtained[42].

6.2 Mn monolayer on W surface

6.2.1 Experimental results

As was already mentioned the DM interaction arises in systems with low symmetry.

A good candidate for such a system is a Mn monolayer on a bcc W (110) surface.

The magnetic ground state of this system was studied experimentally by Bode et.al.

[87], who used spin-polarized scanning tunneling microscopy (SP-STM) to study

the magnetic properties of the surface, which showed a periodic modulation with a

wavelength of 12 nm, i.e., the Mn layer is not in the usual antiferromagnetic (AFM)

state. By varying the orientation of the magnetic moment of the Fe STM-tip, they

could distinguish between the spin density wave state, where all the magnetic mo-

ments are parallel, and just the magnitude of the moments is modulated, and a

so called spin spiral structure, where the direction of the magnetic moments varies

periodically (see Fig (6.1)). The spin spirals that are confined to a plane perpen-

dicular or parallel to the propagation direction are called as helical spirals (h-SS) or

cycloidal spirals (c-SS), respectively.

6.2.2 Multiscale modeling

We investigated the magnetism of a Mn monolayer on W(100) and W(110) surface

theoretically by means of Monte Carlo (MC) simulations. First the parameters

appearing in a model Hamiltonian are determined by first principles calculations.
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Figure 6.1: The view of the spin-structures from Ref.[87]: spin density wave (SDW),
helical spiral (h-SS) and cycloidal spiral (c-SS)

The classical Heisenberg Hamiltonian, Eq.(6.1), now takes the form

H =
1

2

∑

i6=j
siJijsj +

∑

i

(
Kxs

2
ix +Kys

2
iy

)
, (6.10)

where Kx and Ky are the bi-axial on-site anisotropy constants. Quite clearly, for

a bcc(001) surface Kx = Ky. In the case of a bcc(110) surface the x and y in-

plane directions correspond to the (110) and the (001) crystal axes and, in general,

Kx 6= Ky.

We calculated the parameters entering the Hamiltonian (6.10) in terms of the

relativistic spin-polarized Screened Korringa-Kohn-Rostoker (SKKR) method (see

Appendix A). In particular, the Jij have been obtained by using the torque method

as described above. From a decomposition of the tensorial exchange it turned out

that the most relevant parts are the isotropic exchange interactions, Jij, and the
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DM interactions.

Using the Hamiltonian (6.10) we performed MC simulations on a 32×32 two-

dimensional lattice with periodic boundary conditions. The low-temperature spin-

state of the system has been searched in terms of simulated annealing starting from

the completely disordered state at high temperatures.

Results Subsequent to a self-consistent determination of the effective potentials

and exchange fields we calculated the exchange interactions for a large number of

atomic pairs of the Mn monolayer. The experimental lattice constant of bcc W

was used, i.e., no attempts were made to account for lattice relaxations. Note

that the first nearest neighbor (1NN) distance of the Mn atoms is 0.32 nm. The

isotropic exchange interactions and the lengths of DM vectors for the first few NN’s

are listed in Table 6.1. Excluding the effect of the DM interactions, due to the

dominating negative 1NN exchange interactions the ground-state of Mn/W(001) is

ferromagnetic, see also Eq. (6.10). Because of the positive on-site anisotropy con-

stant, Kx = Ky=0.047 mRyd, we obtained the magnetic moments in this state to

be aligned normal-to-plane for Mn/W(001). In the case of Mn/W(110), the strong

antiferromagnetic 1NN interactions give rise to a chequerboard c(2×2) antiferro-

magnetic structure and the calculated anisotropy constants, Kx=-0.047 mRyd and

Ky=-0.037 mRyd, imply that the magnetic moments are parallel to the (110) axis.

Table 6.1: Calculated isotropic exchange interactions, Jij, and magnitudes of the
DM vectors, Dij (all in mRyd), for the first few nearest neighbors (NN) of a Mn
monolayer on W(001) and on W(110) .

System Mn/W(001) Mn/W(110)

NN 1 2 3 1 2 3 4 5

Jij -3.91 1.10 0.12 7.30 -3.84 -0.85 2.17 -1.38
Dij 0.57 0.04 0.24 0.09 0.22 0.03 0.23 0.20

Inspecting Table (6.1) it is obvious that some of the DM vectors are almost by

an order of magnitude larger than the corresponding anisotropy energies and only

by an order of magnitude smaller than the largest isotropic exchange interactions.

This is, however, not surprising since in terms of perturbation theory the DM inter-
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actions and the uniaxial anisotropy appear in first and second order of the spin-orbit

coupling strength, respectively.

Because of the twofold rotational symmetry around the z axis that applies for all

the pair of sites for both the square and primitive rectangular 2-dimensional lattices

the z component of the DM vectors disappears. The DM vectors, all being parallel

to the plane, are depicted in Fig. (6.2). As is obvious, in the case of Mn/W(001)

the DM vectors referring to atomic pairs along a given direction (±x or ±y) are

parallel to each other, thus their effect to misalign the spins is enhanced. On the

contrary, due to the reduced symmetry the DM vectors exhibit a higher complexity

for Mn/W(110) as their spatial distribution shows an apparent asymmetry.

By using the above parameters, including also the antisymmetric DM interac-

tions in Hamiltonian (6.10), we performed MC simulations for both systems. The

magnetic patterns we obtained for a sufficiently low temperature, kBT = 0.02|J |
(J =

∑
j Jij), are shown in Fig. 6.3. In the case of Mn/W(001) we find that the

ferromagnetic order is nearly maintained along the (110) direction, whereas a spin-

spiral propagating along the (110) direction evolves with a wavelength of about 2.2

nm. The formation of this spin-spiral is the consequence of the large and competing

DM vectors between NN’s along the x and y axes.

In the case of Mn/W(110), the large asymmetry of the DM interactions seen in

Fig. 6.2 gives rise to a cycloidal spin-spiral along the (110) direction that modulates

the underlying antiferromagnetic arrangement. The estimated wavelength of this

spin-spiral is about 7.2 nm. Although one half of this wavelength should be compared

with the periodicity of about 6 nm seen recently for the same monolayer system in

SP-STM images [87], the agreement between our simulations and the experiment

is quite satisfactory. In addition, a different theoretical approach used in Ref. [87]

predicted a wavelength of 8 nm for this spin-spiral rather close to our value.

6.2.3 Analytical calculation

Using the parameters of table 6.1 we can try to write up a model classical spin

Hamiltonian of the magnetic layer, using only interactions between first and sec-

ond nearest neighbour sites, neglecting the interactions between sites far from each

other. Determining the minimum point of this Hamiltonian we get the wave length

of the ground state spin spiral. For simplicity we deal just with the MnW(100)
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Figure 6.2: Sketch of the Dzaloshinskii-Moriya vectors (green arrows) correspond-
ing to a central atom (labelled by 0) and its nearest neighbors. Selected nearest
neighbors are labelled by the same numbers as in Table 6.1.

system. As can be seen from table (6.1), the leading order exchange interaction are

between site-pairs (0-1) and (0-2) where the indexing is according to Fig.(6.2), and

the largest DM interaction acts between (0-1) and (0-3) therefore the Hamiltonian

can be approximated as
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E({~S}) =
∑

R

K (SzR)2 − 1

2





∑

|R−R′|=a
J1
~SR~SR′ +

∑

|R−R′|=
√

2a

J2
~SR~SR′+

+
∑

|R−R′|=a

~D~R−~R′
~SR × ~SR′ +

∑

|R−R′|=2a

~D~R−~R′
~SR × ~SR′



 , (6.11)

where ~R is the two dimensional square lattice vector

~R = (nxa, nya, 0) nx, ny ∈ Z, (6.12)

with lattice parameter a, and ~SR is the spin vector on site ~R. According to the ab

initio results of the KKR calculations, the largest DM vectors, which are taken into

account (see Fig.(6.2))

~D(a00) = (0, D1, 0), ~D(−a,0,0) = (0,−D1, 0), (6.13)

~D(0,a,0) = (−D1, 0, 0), ~D(0,−a,0) = (D1, 0, 0),

~D(2a,0,0) = (0, D2, 0), ~D(−2a,0,0) = (0,−D2, 0),

~D(0,2a,0) = (−D2, 0, 0), ~D(0,−2a,0) = (D2, 0, 0),

where D1 = 0.57 mRyd, D2 = 0.24 mRyd. The on site anisotropy K = −0.047

mRyd, and the exchange parameters J1 = 3.91 mRyd , J2 = −1.1 mRyd.

It is easy to see that in the ferromagnetic state, when all ~SR ‖ ẑ the energy per

unit cell is

E0 = K − 2(J1 + J2). (6.14)

helical spin-spiral state The helical spin-spiral state can be described by the

wave vector

~q = (qx, qy, 0), (6.15)

and the spin moments perpendicular to it, namely

Sxnx,ny =
qy√
q2
x + q2

y

sin(qxnxa + qynya), (6.16)

Synx,ny = − qx√
q2
x + q2

y

sin(qxnxa+ qynya), (6.17)
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Sznx,ny = cos(qxnxa+ qynya). (6.18)

With these forms the terms appearing in Eq.6.11 can be get by lengthy, but

straightforward calculations

∑

R

K (SzR)2 = K
∑

nx,ny

cos2(qxnxa + qynya), (6.19)

∑

|R−R′|=a
J1
~SR~SR′ = 2J1

∑

nx,ny

{cos(qxa) + cos(qya)}, (6.20)

∑

|R−R′|=
√

2a

J2
~SR~SR′ = 2J2

∑

nx,ny

cos(qxa) cos(qya), (6.21)

∑

|R−R′|=a

~D~R−~R′
~SR × ~SR′ =

2D1√
q2
x + q2

y

(qy sin(qxa)− qx sin(qya)) (6.22)

∑

|R−R′|=2a

~D~R−~R′
~SR × ~SR′ =

2D2√
q2
x + q2

y

(qy sin(2qxa)− qx sin(2qya)) (6.23)

therefore the energy per site in the helical spin-spiral state is in case q <∞ :

E =
K

2
− J1[cos(qxa) + cos(qya)]− J2 cos(qxa) cos(qya)−

− D1√
q2
x + q2

y

(qy sin(qxa)−qx sin(qya))− D2√
q2
x + q2

y

(qy sin(2qxa)−qx sin(2qya)), (6.24)

where we used that for infinite number of sites

1

N
K
∑

nx,ny

cos2(qxnxa + qynya) =
K

2
.

Using a mathematical program like MATLAB we can investigate the the minimum

point of Eq.(6.24) in the space of (qx, qy). We found that the energy minimum is

in (qx, qy) = (0, 0) i.e. the ferromagnetic state has lower energy than the helical

spin-spiral structure.

Cycloidal spin spiral The spin vector of the cycloidal spin spiral state is given

by

~Snx,ny =
~q√

q2
x + q2

y

sin(qxnxa + qynya) + ~ez cos(qxnxa+ qynya), (6.25)

and similar calculations as above show that the energy per unit cell can be written

as
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E =
K

2
− J1[cos(qxa) + cos(qya)]− J2 cos(qxa) cos(qya)−

− D1√
q2
x + q2

y

(qx sin(qxa)+qy sin(qya))− D2√
q2
x + q2

y

(qx sin(2qxa)+qy sin(2qya)), (6.26)

with numerical calculations can be showed that the above expression has mini-

mum at

(qx, qy) =
1

a
(0.18, 0.18) (6.27)

from which the wave length of the spin-spiral is

λ =
2π

|~q| = 24.7a. (6.28)

This result seemingly doesn’t agree perfectly with the results of the MC simulations

(see upper part of Fig(6.3)), which gives a helical-like spin spiral ground state with

a wavelength of about 11a, however the propagation direction (110) is in agreement

with the former results. This disagreement probably the effect of the neglected

terms in the model Hamiltonian Eq.(6.11). This problem is a subject of further

investigations.
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Mn/W(001)

Mn/W(110)

Figure 6.3: Schematic view of the low-temperature spin structures of Mn/W(001)
and Mn/W(110) as obtained from the MC simulations. Blue, green and red arrows
denote spins pointing downwards, in-plane and upwards, respectively
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Chapter 7

Transport results

7.1 Motivation

Spintronics is a new field of electronics, which is not based on the conduction of

electrons or holes as in semiconductor devices, but relies on the magnetization de-

pendence of transport properties in magnetic nanostructures, controlled by magnetic

field. One of the first and main important topic of spintronics is the giant magne-

toresistance (GMR), discovered independently in 1988 in the laboratory of Albert

Fert [3] and Peter Grünberg [2]. GMR devices are constructed from multilayers of

magnetic and nonmagnetic metals. The GMR is in nutshell the dependence of the

resistivity on the parallel or antiparallel alignment of the neighboring magnetic lay-

ers. In case of parallel alignment, the scattering in one of the spin channel (let’s say

spin up) the magnetic scattering is low. In the antiparallel aligning the scattering

(and therefore the resistivity) is large for both spin channels. The GMR ratio is

defined by [90]

GMR =
RAP −RP

RP
, (7.1)

where RAP(P ) is the resistivity of the anti-parallel (parallel) state. The fact that the

IBM started the mass production of GMR based disk drives in 1997 clearly show

the fast application of the 10 years earlier discovered phenomena. Today nearly all

all disk drives in the industry incorporate the GMR read-head design [8]. In 2007

Fert and Grünberg won the Nobel Prize for their discovery.

The GMR was investigated theoretically by Peter Weinberger and László Szun-

yogh using the Kubo-Greenwood formalism with the KKR method [29]. They cal-

culated the GMR in
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underlayer[55Ȧ] NiFe[10Ȧ] CoFe[10Ȧ] Cu[yȦ] CoFe[10Ȧ] Ru[10Ȧ] multilayers on zero

temperature.

On larger temperatures the GMR ratio decrease considerably [91]. Assuming

that the phonon-electron interaction (Rph−e), impurity scattering (Ri) and magnetic

(RM) part additively contributes to the total resistivity the resistivity on a finite

temperature

RP (AP)(T ) = R
P (AP)
M (T ) +Ri +Rph−e(T ), (7.2)

where the impurity and phonon scattering contribution independent of the parallel

or antiparallel alignment. Therefore the temperature dependent GMR

GMR(T ) =
RAP
M (T )− RP

M(T )

RP
M(T ) +Ri +Rph−e(T )

, (7.3)

depends only through the denominator on the temperature dependent phonon-

electron coupling contribution. The aim of the current project was to develop a

theoretical and computational tool to calculate the magnetic part of the tempera-

ture dependent conductivity of ferromagnetic metals, which can be a promising tool

to calculate the temperature dependent GMR(T ) for realistic magnetic multilayers.

7.2 Computational details

We calculated the magnetic part of the conductivity from the formula Eq.(4.23) using

Eq.(4.43). For the ~k integration in Eq.(4.43) we used a quadrature with 1600 point

in the two-dimensional Brillouin zone, which gave converged results. In practice the

σ̃(εF ± iδ, εF ± iδ) in Eq.(4.23) are calculated for some finite imaginary part δ for

an intermediate region consists of n atomic layers. The effect of considering a finite

number of atomic layers is a
(

1
n

)
-like decay [28] in the calculated resistivity

%µµ(n, δ) =
1

σµµ(n, δ)
≈ %µµ(δ) +

∆%µµ(δ)

n
. (7.4)

Therefore plotting n%µµ(n, δ) versus n the slope of the curve for large n gives %µµ(δ)

which is equal with the n→∞ bulk resistivity value. It turned out, that n%µµ(n, δ)

is already linear in n for n > 50 layers, so we determined %µµ(δ) from the slope of

the fitted linear curve in the n > 50 regime. For the δ dependence of the resistivity

we also found linear dependence, such as described in the literature [92][30] i.e. this
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can be obtained from a linear extrapolation

%µµ = lim
δ→0

%µµ(δ). (7.5)

For this extrapolation we used the %µµ(δ) values at δ =1 and 2 mRyd. The mag-

netisation direction was chosen to be perpendicular to the layers ( ẑ direction). An

anisotropy %zz 6= %xx = %yy arise from the relativistic treatment, and from the nu-

merical error. This anisotropy turned out to be very small (smaller than 1 µΩcm)

for the whole temperature region. So from now on when we neglect the index µ,

and we confine ourselves to the %zz component of the resistivity.

7.3 Results for Fe and Co

First we calculated the temperature dependent Weiss fields, which are needed for

the finite temperature thermal averaging in Eq.(4.43). With the experimental lattice

parameter (5.4 a.u.) with the DLM we got too large Curie-temperature (TC) for

pure bcc Fe (1670 K), which is 60% larger than the experimental TC (1040 K). This

error is most probably the shortcoming of the mean-field approximation. Using

smaller lattice parameter, the TC is decreasing monotonously and the experimental

TC is obtained at 5.07 a.u.. In Fig. (7.1) we plotted the calculated TC for Fe versus

the lattice parameter used in the calculations. We have to mention that the lattice

parameter at the Curie temperature is even larger than at zero temperature because

of the heat extension. (According to Ref [93](Chapter 1.1.2.2) it is 5.55 a.u.) LDA

gives a smaller lattice parameter than the experiments (5.3 a.u. [94]). Using this

lattice parameter and a nonrelativistic DLM Györffy et.al. [20] found 1250 K Curie

temperature for Fe from the divergence of paramagnetic spin-susceptibility.

We chose Co as the second test system for our electric transport calculations. Co

has a phase transition by about 600-800 K from hcp to fcc structure. We neglected

the difference in the resistivity of the two lattice structure, and calculated for every

temperature only with the fcc geometry. At zero temperature the experimental and

theoretical LDA lattice parameters differ less than 1%, and give 6.69 a.u. (3.53 Ȧ)

[94] . However the lattice parameter at Tc is larger: 6.84 a.u.[93] . The DLM consid-

erably underestimate the Curie temperature of bcc Co, even with the experimental

lattice parameter at Tc (6.84 a.u.) we get only 950 K for Tc. The experimental Tc
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Figure 7.1: Calculated Curie temperature for Fe with different lattice parameters.
The experimental zero temperature lattice parameter is 5.4 a.u., the experimental
Curie temperature is 1040K.

is 1380 K, which we can reproduce in terms of the DLM using a lattice constant of

7.04 a.u..

With a fixed geometry we calculated selfconsistent potentials for the param-

agnetic DLM state. With these potentials we calculated the Weiss fields as de-

scribed in Chapter (2) for specific temperature points. With these Weiss fields we

calculated the temperature dependent electrical conductivity, Eq.(4.23). However,

for small temperatures the ferromagnetic potential (what we get solving the KKR

equations selfconsistently without DLM) describes the electronic structure better.

It turned out, that the difference between the ferromagnetic and paramagnetic po-

tential doesn’t influence the conductivity results considerably. In Fig.7.3 the results

for pure Fe are plotted. In there we show the results with the experimental lattice

parameter corresponding to an overestimated Curie temperature, and those for the

reduced lattice parameter, recovering the experimental Curie temperature. For com-

parison we also show the experimental total resistivity values taken from Ref. [93].

One can approximate the magnetic part for the resistivity similarly to Ref. [95],

assuming that well above the Curie temperature only phonon-electron interactions

contribute to the resistivity. By using the Bloch-Grüneisen form, we can fit the

parameters in Eq.(4.1) to the linear part of the experimental Fe resistivity above Tc.

Subtracting this Bloch-Grüneisen term from the total resistivity we get a guess for
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Figure 7.2: DLM results for the Curie temperature of fcc Co with different lat-
tice parameters. The experimental Curie temperature is 1380K, where the lattice
parameter is 6.84 a.u.[93].

the magnetic resistivity, also displayed in Fig.(7.3) . We have to stress, that this ap-

proximation, however, used by Weiss and Marotta[95] for several magnetic metals,

is still not well justified, since using this procedure magnon-phonon interactions are

neglected [32]. In fact, the magnetic disorder scattering contribution to the total

resistivity is not measurable.

It can be seen in Fig.(7.3) that the DLM gives the right order of magnitude of

the magnetic resistivity, however, systematically overestimates that. The deviation

between the calculated resistivities with the two different lattice parameters is less

than 40% for room temperature, and for temperatures far below the Curie tem-

perature. The DLM result for the experimental lattice parameter fits well to the

experimental total resistivity for temperatures below about 700 K, but we have to

stress, that the total resistivity is larger than the pure magnetic contribution. We

have to mention, that the DLM gives constant magnetic resistivity in the param-

agnetic phase since the probability density function is constant (i.e., temperature

independent) there.

We also investigated bulk Co. As we mentioned before, for computational reasons

we just calculated the fcc structure. We plotted the results in fig 7.5. It can be seen,

that the DLM results with different lattice parameters are within 30% difference

below 700 K. The common feature of the calculated curves are the bending up
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Figure 7.3: Fe resistivity. Black circle: experimental total resistivity from ref [93].
Blue up-triangle: the magnetic part of the resistivity with detaching the phonon-
electron contribution assuming Bloch-Grüneisen form. Red down triangle: Our
results with the experimental 5.4 a.u. lattice parameter. Green squares: the same
with 5.07 a.u. lattice parameter.

right below the Curie temperature. This can be the consequence of the mean field

approach that neglects the magnetic short range order above (and right below) the

Curie temperature. However the magnetic disorder resistivity still has temperature

dependence in the paramagnetic phase following from the smooth vanishing of the

short range order [96]. We can see that the computed resistivity curves are above the

experimental total resistivity with about 50-100% below 700 K, but we have to stress

that the experimental curve shows the total resistivity. Here the above mentioned

method to subtract the phonon-electron contribution by fitting the Bloch-Grüneisen

formula doesn’t work well, because after the subtraction we would get negative value

for the magnetic resistivity under 600K as we show in Fig7.4 what is senseless in

our opinion.
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Figure 7.4: Experimental resistivity of Co (red straight curve) ref [93]. The fitted
Bloch-Grüneisen (BG) function (black dotted). The difference of the experimental
curve and the BG curve (blue dashed), which is the approximation of the magnetic
part of the resistivity is negative under 500 K.

However, Weiss and Marotta[95] used this method to get the high temperature

(saturated) magnetic resistivity of Co and gained a value of 50 µΩ cm. The main

deficiency of this procedure is probably the consequence of the difference in the

phonon-electron contribution in the hcp and fcc phase. From the paramagnetic

phase resistivity slope only conclusions for the phonon-electron contribution of the

fcc phase can be gained. On the other hand the temperature range between the

Curie temperature and the melting point can be too small to saturate the magnetic

resistivity, making it difficult to detach the linear phonon-electron contribution.

From this reason in Fig (7.5) we just show the experimental total resistivity.

Although our DLM approach overestimates the magnetic part of the resistivity,

we have to stress that this is the first parameter-free ab-initio result in the literature.

It’s failure emerges from the inaccurate determination of the Curie temperature and

probably also the inaccurate description of the spin-spin correlation in the mean-field

approximation. We have to mention that in case of chemically disordered systems, a

more accurate description can be given by taking into account the vertex corrections

[67]. Tulip et.al. [97] recently used the nonlocal CPA [98] approximation in the

Kubo formalism to investigate the effect of the short range order in the resistivity of
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Figure 7.5: Magnetic resistivity of Co. DLM calculations with fcc lattice parameter
6.82 a.u. (red down triangle), 6.9 a.u. (green diamond) 7.04 a.u. (blue upper
triangle). Experimental[93] result is is plotted by straight black.

disordered bulk alloys. They chose Cuc Zn1−c alloy as a test system. In Fig.(2.) of

their paper [97] it can be seen, that taking into account the vertex corrections the

resistivity is reduced by about a factor of two. The resistivity is further reduced by

taking into account the short range order by using the nonlocal CPA method instead

of the single-site CPA. Based on the analogy between the “chemical”-CPA and the

“spin-disorder”-CPA we expect that the correct calculation of vertex corrections,

and a correct description of the short range order in the ferromagnet would reduce

our result for the temperature dependent resistivity.
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Conclusion

In this thesis for the first time ever, attempts were made to describe at an ab

initio level the temperature dependence of the magnetic anisotropy energy and to

extend the formulation to the electrical transport properties. The relativistic ver-

sion of the disordered local moment scheme were implemented within the screened

KKR formalism, which allowed to calculate the temperature dependent magnetic

anisotropy of layered structures, and thin films. We tested the developed theory

on CoCu(100) structures, and found, that the results can be interpreted with an

anisotropic Heisenberg model. We stressed the importance of the anisotropic part

of the exchange correlation matrix, which can lead to the unusual temperature de-

pendence of the magnetic anisotropy. In thin films the symmetry allows not only

anisotropic symmetric, but antisymmetric part of the Heisenberg exchange matrix,

which is responsible for the Dzyaloshinskii-Moriya (DM) interaction. To study this

interaction we investigated the Mn monolayer on W surface. We got in agreement

with the experiments, that the DM interaction leads to a spin spiral magnetic ground

state. We further implemented the DLM scheme in the Kubo-Greenwood equation

to calculate the temperature dependence of the magnetic part of the electrical re-

sistivity. My work is the first ab initio approximation for the description of the

temperature dependent spin-disorder scattering. To our knowledge no other such

attempts have been presented in the literature, although both aspects, magnetic

anisotropies and related transport properties are a matter of particular importance

in any technological use of ”spintronics” and in view of magnetic recording media.

The proposed theoretical methods are easily extendable to alloyed systems, which

are commonly used in technical applications. The present applications therefore also
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can be viewed as illustrations for the theoretical means applied.
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Appendix A

The Density Functional Theory
(DFT)

A.1 Hohenberg-Kohn Theorems

The Hamilton operator of an N electron system in the Born-Oppenheimer approx-

imation is given by

Ĥ = T̂ + Û + Ŵ = − ~
2

2m

N∑

i=1

∇2
i +

N∑

i=1

u(ri) +
1

2

∑

i6=j
w(ri − rj), (A.1)

where T̂ is the kinetic energy operator, Û is an external potential containing the

electrostatic interaction between the electrons and the nuclei, and Ŵ is the electron-

electron interaction:

w(ri − rj) =
1

|ri − rj|
(A.2)

The N electron wave functions Ψ = Ψ(r1, r2, . . . , rN) have to be antisymmetric

because of the Pauli exclusion principle . The electron density is then given by

n(r) =

∫
d3r2d

3r3 . . . d
3rN |Ψ(r, r2, . . . , rN)|2. (A.3)

The Hamiltonian itself is determined by the external potential, Eq.(A.1), H =

Ĥ[u(r)]. The ground state energy of the system can be obtained from the variational

principle,

E0[u(r)] = min
Ψ

〈
Ψ
∣∣∣Ĥ[u(r)]

∣∣∣Ψ
〉
. (A.4)

Since the energy functional on the right hand side has a lower bound at the ground

state wave function Ψ0 ,

E0[u(r)]|Ψ0〉 = Ĥ[u(r)] |Ψ0〉 . (A.5)
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The Hohenberg-Kohn theorem [99] states the connection between the external po-

tential and the ground state electron density: instead of searching for the whole

ground state wave function, the calculation of the expectation value of physical

variables only needs the determination of the electron density.

The first Hohenberg-Kohn theorem says that the external potential is a unique

function of the ground state density. Two potentials, u1(r) andu2(r) are regarded

to be different, if u1(r) − u2(r)6= const. This theorem states that for two different

potentials the ground state electron density is also different, or in other words, for

a given electron density n(r) there is only one u(r) potential for which n(r) is the

ground state electron density. This can be proven by reductio ad absurdum. Thus

n(r) determines the number of particles N and u(r). The ground state energy now

can be expressed as

E0[n] = T [n] + U [n] +W [n] =

∫
d3rn(r)u(r) + FHK[n], (A.6)

where the Hohenberg-Kohn functional is the functional Legendre transformation of

the ground state energy, and equals T [n] +W [n], i.e., equals the kinetic energy plus

the electron-electron interaction.

The second Hohenberg-Kohn theorem provides the energy variational principle,

and states that the exact ground state density n0(r) minimizes the energy functional

E0[n], such that for any given n, E0[n0] ≤ E0[n].

Strictly speaking this theorem stands only for so called v-representable densities

(i.e., for a density, for which there exist a potential, for which in turn this density

is the correct ground state density). But modifying the definition of the energy

functional according to the constrained-search idea of Levy and Lieb [100] as

E[n] = MinΨ→n
〈

Ψ|Ĥ|Ψ
〉
,

(i.e., search in the space of the antisymmetric wave functions, yielding the density n),

the restriction of v-representable densities can be abandoned, and the Hohenberg-

Kohn theorems stands for any N-representable densities.

However, these theorems still don’t give explicit forms for the FHK[n] functional.

This was solved by Kohn and Sham [101], who compared the interacting system to

a non-interacting reference system, with the same electron density. They assumed,
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that for the interacting electron system there exists a non-interacting one with an

effective one-particle potential corresponding to the same electron density.

Since for the non-interacting electron gas the wave function can be written as a

Slater determinant

Ψs(r1, r2, . . . , rN) =
1√
N !

det[φi(rk)],

the electron density is therefore given by

ns =
N∑

i=1

φ∗i (r)φi(r) (A.7)

and the kinetic energy by

T s = − ~
2

2m

N∑

i=1

〈
φi(r)|∇2|φi(r)

〉
. (A.8)

The trick of Kohn and Sham was to decompose the energy functional of the

interacting electron system into

E0[n] = T [n] + U [n] +W [n] = T s[n] + U [n] + EH [n] + Exc[n], (A.9)

where the Hartree energy is given by

EH [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′| , (A.10)

and the remaining terms are collected in the so-called exchange-correlation energy:

Exc[n] = T [n]− T s[n] +W [n]− EH [n]. (A.11)

Using the second Hohenberg-Kohn theorem, which says that the ground state den-

sity n0 minimizes the energy functional, and assuming the form in Eq.(A.7) for an

orthonormal basis one gets

δ(E0[n]− εi(
∫
φ∗i (r)φi(r)− 1))

δφ∗i
= 0.

By expressing the derivatives in Eq.(A.9) by means of the equality,

(
δ

δφ∗i
=

δ

δn

δn

δφ∗i
=

δ

δn
φi),

78



APPENDIX A. THE DENSITY FUNCTIONAL THEORY (DFT)

we get the Kohn-Sham equation:
(
− ~2

2m
∇2 + u(r) + uH(r) + uxc(r)

)
φi(r) = εiφi(r), (A.12)

where the Hartree potential is given by

uH(r) =

∫
d3r′

n(r′)

|r− r′|
and the exchange correlation potential by

uxc(r) =
δExc[n]

δn
. (A.13)

Since the exact form of this functional derivative is not known, further approxima-

tions are needed such as the so-called Local Density Approximation (LDA),

Exc[n] =

∫
d3rεxc(n(r))n(r), (A.14)

in which εxc[n] is the exchange correlation energy density of a homogeneous electron

gas of density n. The exchange-correlation potential is then given by

uxc(r) = εxc(n(r)) +
dεxc(n(r))

dn(r)
n(r).

In the spinpolarized calculations we used the local spin density approximation

(LSDA), where the spin up and spin down electrons have different density (n↑(r)

and n↓(r) respectively), and for the exchange-correlation potential εxc(n↑(r), n↓(r))

as parametrized by Perdew and Zunger [102], based on the results of Monte Carlo

simulations of Ceperley and Alder for the correlation energy of a homogenous elec-

tron gas [103].

A.1.1 Relativistic DFT

To include in particular spin-orbit effects a relativistic generalization of the DFT is

needed. In the presence of a magnetic field (corresponding to a vector potential A)

the Dirac Hamiltonian is given by

Ĥ = cα̂

(
~
i
∇− eA(r)

)
+ β̂mc2 +V (r) = − ic α̂~∇+ β̂mc2− ce β̂γµAµ, (A.15)

where

α̂i =

(
0 σi
σi 0

)
, β̂ =

(
I2 0
0 −I2

)
, γi = β̂α̂i(i = 1, 2, 3), γ4 = β̂,
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are the Dirac matrices, and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.16)

are the well known Pauli matrices. In Eq.(A.15) Aµ = (A1, A2, A3, V ) is the four

component vector potential. In case of N electrons the Hamiltonian is of the follow-

ing form:

H = T +Wee + Vext,

where the kinetic term is defined by

T =

∫
ψ+(r)(cα̂ · p̂ + β̂mc2)ψ(r)dr,

with

p̂ =
~
i
∇

being the momentum operator, the electron-electron interaction by

Wee =
1

2

∫
d3r

∫
d3r′

ϕ+(r)ϕ+(r′)ϕ(r)ϕ(r′)

|r− r′| ,

and the interaction of electrons with the external electromagnetic potential by

Vext = −e
∫
Jµ(r)Aµ(r)dr. (A.17)

Here Jµ = Ψ+β̂γµΨ is the relativistic four current.

In the relativistic density functional theory the four current takes up the role of

the electron density. The Hohenberg-Kohn theorem can be proved similarly as in

the nonrelativistic case: The ground state energy is a unique functional of the four

component current. Expanding Eq.(A.17) in terms of the Gordon decomposition

([104], [105]) (using ψ̄+ = ψ+β̂ notation):

J =
1

2m
{ψ̄+(r)p̂ψ(r)− p̂ψ̄+(r)ψ(r)− 2eAψ̄+(r)ψ(r) + ~∇× ψ̄+(r)σψ(r)},

which can be written in the form J = ∇ × (L + 2S). Neglecting L (i.e. the first 3

terms on rhs in the above equation), we get for the energy functional

E[Jµ(r)] = T [Jµ(r)] +W [Jµ(r)] +

∫
(n(r)V (r)−m(r)B(r)) dr,

with the magnetisation density

m(r) =
e~
2m

ψ+(r)β̂σψ(r).
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Assuming a non-interacting Kohn-Sham reference system, similarly to the non-

relativistic case, the Dirac Kohn-Sham equation can be derived:

(cα̂ · p̂ + β̂mc2 +veff(r)−m(r)Beff(r))ψi = εiψi (A.18)

with

veff(r) = V (r) +

∫
d3r′

n(r′)

|r− r′| +
δExc[n(r),m(r)]

δn(r)
,

Beff(r) = Bext(r) + Bexc(r),

Bexc(r) =
δExc[n(r),m(r)]

δm(r)
,

n(r) =
∑N

i=1 ψ
+
i (r)ψi(r), m(r) =

e~
2m

N∑

i=1

ψ+
i (r)β̂σψi(r).

This equation has to be solved self-consistently for the electron and magnetisation

density. As a first attempt to treat the exchange-correlation functional, the Local-

Spin Density approximation (LSDA) was developed in order to approximate the

exchange field Bexc(r) by MacDonald et. al. [106].
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KKR Scattering theory

A.1 The formal theory

The key quantity in the scattering theory is the Green’s function, which is formally

defined as the representation of the resolvent operator

Ĝ(z) = (z − Ĥ)−1, (A.1)

where Ĥ is the Hamilton operator of the system, z ∈ C\σ(Ĥ) and σ(Ĥ) is the

spectrum of Ĥ. In the spectral representation the Green’s function reads as

G(z, r, r′) =
∑

n

ψn(r)ψ∗n(r′)

z − εn
. (A.2)

It is also useful to define the side limits

G±(ε) = G(ε±) = lim
δ→+0

G(ε± iδ). (A.3)

If the system Hamiltonian is split into a reference (unperturbed) Hamiltonian plus

a perturbation potential:

Ĥ = Ĥ0 + V̂ , (A.4)

then the resolvent can be expressed in terms of the unperturbed resolvent G0(z) =

(z −H0)−1 as

Ĝ(z) = Ĝ0(z)(Î + V̂ Ĝ(z)). (A.5)

This equation is called the Dyson equation. Introducing the so-called transition

operators (T-operators)

T̂ (z) = V̂ + V̂ Ĝ(z)V̂ , (A.6)
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the Dyson equation reads

Ĝ(z) = Ĝ0(z) + Ĝ0(z)T̂ (z)Ĝ0(z). (A.7)

Thus knowing a representation of the free electron Green’s function, the determina-

tion of the T-operator is practically equivalent with the determination of the Green’s

function. From the Green’s function an expectation value of a physical quantity de-

fined by a Hermitian one-particle operator Â over the energy range (εA, εB) is defined

by the contour integral [12]:

Aab = − 1

π
Im

∫

y
dz Tr(ÂĜ(z)),

where y means the integration over a semi circle contour in the upper complex

semi-plane with the lower and upper limits εA and εB, respectively, e.g. the electron

density is given by

%(r) = − e
π

Im

∫

y
dz Tr(Ĝ(z, r, r)). (A.8)

In terms of the side limits of the resolvent operator (A.3) the density of states DOS

can be expressed as

n(ε) =
∑

n

Tr{δ(ε− εn)|n〉〈n|} = ∓ 1

π
Tr(ImG±(ε)). (A.9)

Using the resolvent with the T-operator from this equation the Lloyd’s formula for

the integrated DOS can be derived [12]:

N(ε) =

∫ ε

−∞
dε′n(ε′) = N0(ε) +

1

π
Im Tr(lnT±(ε)). (A.10)

A.2 Multiple scattering (KKR)

In the simple version of the Korringa-Kohn-Rostoker theory an ensemble of N atom

is modeled by a set of individual scattering potentials. In this model the spherically

symmetric potentials are centered at the lattice positions Ri(i = 1, . . . , N) .

V (r) =

N∑

i=1

Vi(ri) (ri = r −Ri)

Vi(ri) =

{
Vi(ri) if |ri| < Si
0 otherwise

(A.11)
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In case of the so called muffin-tin approach the atomic spheres (with radius Si) do

not overlap. In the atomic sphere approximation (ASA) the radius is equal with

the Wigner Seitz radius. In case of zero effective field the Dirac equation Eq.(A.18)

can be written as

Ĥ|ψ
〉

=




(V (r) + mc2)Î2 cσ̂r(
∂
∂r

+ 1
r
− 1

r
β̂K̂)

cσ̂r(
∂
∂r

+ 1
r
− 1

r
β̂K̂) (V (r)−mc2)Î2


 |ψ〉 = W |ψ〉, (A.12)

where σ̂r = r̂σ̂ and we introduced the operator K̂ = σ̂L̂ + ~Î2, which commutes

with the Hamilton operator just as well as the square and z component of the total

angular momentum operator Ĵ2 and Ĵz. The common basis functions χκµ(r) are

called the spin spherical harmonics.

Ĵ2|χκµ〉 = ~2j(j + 1)|χκµ〉 j = l ± 1/2,

Ĵz|χκµ〉 = ~µ|χκµ〉 µ = −j, . . . j,

K̂|χκµ〉 = −~κ|χκµ〉 κ =

{
l if j = l − 1/2
−l − 1 if j = l + 1/2

.

The spin spherical harmonics can be expressed with the complex spherical harmonics

Y µ−s
l (r̂), and bispinor basis functions as

|χκµ〉 =
∑

s=±1/2

C(l, κ, 1/2|µ− s, s)Y µ−s
l (r̂)Φs, (A.13)

where C(l, κ, 1/2|µ− s, s) are the Clebsch-Gordan coefficients [12]. The relativistic

free Green’s function can then be written as [12]

Gr
0(ε, r, r′) = − ip

W + mc2

2 mc2

∑

Q

(h+
Q(ε, r)jQ(ε, r′)×Θ(r−r′)+jQ(ε, r)h+

Q(ε, r′)×Θ(r′−r)),

(A.14)

where the relativistic quantum number Q = (κ, µ) and Q̄ = (−κ, µ), and the

solutions of the free particle Dirac equation,

fκµ =



fl(

pr
~ )χκµ(r)

iSκ pc
W+mc2 fl̄(

pr
~ )χ−κµ(r)


 (A.15)
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with Sκ = κ
|κ| , l̄ = l − Sκ and fl = jl, nl, hl being spherical Bessel, Neumann, and

Hankel functions respectively, while

fκµ(ε, r)× =
[
fl(

pr
~ )χκµ(r)+, − iSκ pc

W+mc2fl̄(
pr
~ )χ−κµ(r)+

]
. (A.16)

A general solution of Eq. (A.12) is of the form,

RQ(ε, r) =
∑

Q′

[
gQ′Q(r)χQ′(r)
ifQ′Q(r)χQ̄′(r)

]
. (A.17)

Inside the muffin-tin sphere the functions g(r) and f(r) are determined numerically

by solving Eq. (A.12). Outside the muffin-tin sphere, where the potential is zero, the

solutions can be expressed using the matrix elements of the single-site T operator,

tQQ′ as

RQ(ε, r) = jQ(ε, r)− ip
∑

Q

h+(ε, r)tQQ′(ε). (A.18)

By using the condition that the solution of Eq.(A.17) and Eq.(A.18) smoothly join

at the muffin-tin sphere S, we can get the single-site t matrix, tQQ′(ε) [107].

For more scattering centers, the potential is the sum of the individual site po-

tentials, Eq.(A.11), and the transition operator Eq.(A.6) is given by

T̂ (ε) =
∑

i

Vi +
∑

i,j

ViĜ0(ε)Vj +
∑

i,j,k

ViĜ0(ε)VjĜ0(ε)Vk + . . . , (A.19)

which can be expressed with the single-site t operators as

T̂ (ε) =
∑

i

t̂i(ε)+
∑

i6=j
t̂i(ε)Ĝ0(ε)t̂j(ε)+

∑

i6=j,j 6=k
t̂i(ε)Ĝ0(ε)t̂j(ε)Ĝ0(ε)t̂k(ε)+. . . . (A.20)

Introducing the so-called scattering path operator (SPO), τ̂ij(ε), as

τ̂ij(ε) = t̂i(ε)δij + t̂i(ε)Ĝ0(ε)
∑

k 6=j
τ̂ij(ε) (A.21)

the transition operator and the resolvent can be expressed as

T̂ (ε) =
∑

i,j

τ̂ij(ε), (A.22)

and

Ĝ(ε) = Ĝ0(ε) + Ĝ0(ε)
∑

i,j

τ̂ij(ε)Ĝ0(ε). (A.23)
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Expressing these quantities in the basis of Bessel functions, Eq.(A.15), centered at

the lattice positions, Eq (A.21) can be written in a supermatrix formalism as

τ(ε) =
(
t(ε)−G

0
(ε)
)−1

, (A.24)

where double underline means matrices with site and angular momentum indices,

t(ε) = {ti(ε)δij}, τ(ε) = {τ ij(ε)}, G
0
(ε) = {Gij

0(ε)} (A.25)

and single underlined quantities are matrices with momentum indices (Q,Q’). The

matrix related to the Green’s function is then given by

G(ε) = G
0
(ε)(I − t(ε)G

0
(ε))−1. (A.26)

Eqs.(A.24) and (A.26) are the fundamental equations of the Multiple Scattering

Theory. The geometrical property of the system is contained in the so called bare

structure constant G
0
(ε), and the (chemical) properties of the individual scatterers

are comprised in t(ε). The Green’s function, Eq.(A.31), can then be written as [108]

G(ε, ri + Ri, r
′
j + Rj) =

∑

Q,Q′

[Zi
Q(ε, ri)τ

ij
QQ′(ε)Z

j
Q′(ε, r

′
j)

+−

−δij(Θ(ri − r′i)J
i
Q(ε, ri)Z

i
Q′(ε, r

′
i)

+ + Θ(r′i − ri)Z
i
Q(ε, r′i)J

i
Q′(ε, ri)

+)], (A.27)

where the regular and irregular scattering solutions are defined out of the muffin-tin

sphere as

Zi
Q(ε, ri) =

∑

Q′

(ti)−1
QQ′j

i
Q′(ε, ri)− iph+

Q(ε, ri), (A.28)

and

J iQ(ε, ri) = jiQ(ε, ri) (A.29)

respectively.

A.3 Screened KKR

The difficulty in the KKR theory is the long range character of the structure con-

stants G
0
(ε). To overcome this computational difficulty Szunyogh et.al. introduced

[11] the so-called Screened KKR method for layered systems. In this method first

the structure constant of a reference system with a repulsive potential is calculated.
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This reference system has a constant potential within the muffin-tin spheres by

about 1-2 Ry above the valence band, which gives rise to an exponential fast decay

of the structure constants [109].

The structural Green’s function matrix for the reference (screened) system can

be written as

Gr(ε) = G
0
(ε)(I − tr(ε)G

0
(ε))−1, (A.30)

and that for the original system by Eq.(A.26). It can be seen that the original

Green’s function matrix of the system can be expressed by the screened one as

G(ε) = Gr(ε)(I −∆t(ε)Gr(ε))−1, (A.31)

where ∆t(ε) = t(ε)− tr(ε), and the screened tr matrices can be calculated analyti-

cally. Introducing the screened scattering path operator as

τ
∆

(ε) = (∆t(ε)−1 −Gr(ε))−1, (A.32)

Eq.(A.31) can further be expressed as

G(ε) = ∆t(ε)−1τ
∆

(ε)∆t(ε)−1 −∆t(ε)−1. (A.33)

From a similar equation for the physical quantities follows the equality between the

screened and non-screened SPO-s,

τ (ε) = t(ε)[∆t(ε)−1τ
∆

(ε)∆t(ε)−1 + (t(ε)−1 −∆t(ε)−1)]t(ε). (A.34)

Thus the SPO of the real system can be calculated from the screened SPO using

the appropriate t matricies. Szunyogh et.al. used the screened KKR method for 2

dimensional translation invariant systems (first for free surfaces [11], later for thin

multilayers [15]). In this case the atomic position vectors Ri can be written as

Rpi = Cp + Ri‖, (A.35)

where Ri‖ ∈ L2, and L2 is the two dimensional translation group. Cp is the spanning

vector of the layer p. Because of the two-dimensional translation invariance, it is

straightforward to use a lattice Fourier transformation of the structure constant

Gpq
0 (ε,k‖) =

∑

Ri‖∈L2

G0(ε,Cp −Cq + Ri‖)e
ik‖Ri‖

, (A.36)
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τ
∆

(ε,k‖) = (∆t(ε)−1 −Gr(ε,k‖))
−1. (A.37)

Because of the fast decay of the screened structure constant, it can be truncated

for large layer-layer distances (usually truncated beyond 3 layers), and regarded as

a block tridiagonal matrix, where the blocks are related to the so-called principal

layers. The system can be partitioned into a semi-infinite left (L) and right part (R),

and an in-between intermediate part (I), which is in the focus of interest. According

to this grouping the inverse SPO matrix also split to blocks,

(τ
∆

(ε,k‖))
−1 =




(τ
∆

(ε,k‖))
−1
LL (τ

∆
(ε,k‖)

−1
LI 0

(τ
∆

(ε,k‖))
−1
IL (τ

∆
(ε,k‖))

−1
II (τ

∆
(ε,k‖))

−1
IR

0 (τ
∆

(ε,k‖))
−1
RI (τ

∆
(ε,k‖))

−1
RR


 , (A.38)

where using the block-tridiagonal property of the above matrix, the inversion can

be efficiently performed by using the method proposed by Godfrin [110]. The com-

putation time of this inversion method scales linearly with the number of layers N .

Compared to other methods, which show a N 3 scaling, this method saves a consid-

erable computer time especially for large systems. The real space screened SPO can

then be obtained in terms of an inverse Fourier transformation,

τ
∆

(ε,Rpi −Rqj) =
1

ΩBZ

∫
dk2
‖τ∆

(ε,k‖)e
−ik‖(Ri‖−Rj‖). (A.39)
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Appendix B

Coherent potential approximation
(CPA)

The CPA is commonly used calculate configurational averaged quantities of chemi-

cally disordered systems. A good description of the single-site CPA impemented in

the KKR formalism can be found in the paper of Butler [67]. In the present work we

extended the single-site CPA formalism to the averaging for the continous variable

of the local moment directions. In this appendix we describe this formalism. In

the “direction”-CPA the probability density functional replaces the concentrations

of the components in the original “chemical”-CPA.

The main idea of the CPA, is to regard a reference coherent (translational in-

variant) system, where the Green’s fuction (and other physical quantities which are

derived from it) are equal with the configurational average of the disordered system,

i.e.

Gc = 〈G〉 =

(∏

i

∫
dêi

)
P ({ê})G({ê}) (B.1)

equality holds, where G({ê}) is the Green’s function of a system in a configuration

specified by {ê}. This equation can be formulated with the scattering path operators:

τc =
∏

i

∫
dêiP ({ê})τ({ê}) (B.2)

τ is regarded to be the scattering path operator (SPO) of a system, where the i-th

site occupied by the local moment êi.

τ({ê}) = (m({ê})−G0)−1

where m({ê})ij = δijt(êi)
−1.

τ({ê}) = (mc −G0 + ∆m({ê}))−1
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where ∆m({ê})ij= δij(t
−1
i − t−1

c ). using that τc = (mc −G0)−1

τ({ê}) = τc(1 + ∆m({ê})τc)−1

splitting τc = τ dc + τ oc to diagonal and offdiagonal part:

τ({ê}) = τc{1 + (1 + ∆m({ê})τ dc )−1∆m({ê})τ oc }−1(1 + ∆m({ê})τ dc )−1 (B.3)

let’s denote the diagonal matrix (1 + ∆m({ê})τ dc )−1 = D({ê}), where the diagonal

elements (D)ij = δijDi

Di = (1 + (t−1
i − t−1

c )τ ii
c )−1 (B.4)

it is easy to see, that the expansion of D({ê}) is

D({ê}) = 1−∆m({ê})τ dc + ∆m({ê})τ dc ∆m({ê})τ dc − . . . ..

We can introduce the so called excess scattering matrix,

X({ê}) = D({ê})∆m({ê})= ∆m({ê})−∆m({ê})τ dc ∆m({ê})+
+∆m({ê})τ dc ∆m({ê})τ dc ∆m({ê})− . . . . = (D({ê})− 1)(τ dc )−1 (B.5)

What is also diagonal: (X)ij = δijXi with

Xi = −((t−1
i − t−1

c ) + τ ii
c )−1

so Eq.(B.3) reads:

τ({ê}) = τc{1 +X({ê})τ oc }−1D({ê})

what can be expanded as

τ({ê}) = τc{D({ê}) +X({ê})τ ocD({ê}) +X({ê})τ ocX({ê})τ ocD({ê}) + . . .} (B.6)

In the single-site CPA the sites regarded to be independent, i.e. the probability

splits to site-independent quantities, i.e.

P ({ê})=
∏

i

P (êi)

The essence of the singleCPA is demanding that

∫
dêiXi(êi)P (êi) = 0 (B.7)
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i.e. 〈Xi〉 = 0. From Eq.(B.5) follows, that this is equivalent with

〈Di〉 = 1.

In this case writing back Eq.(B.6) to Eq.(B.2) we can average the terms separately,

and we get, that beside the remaining zero order term, the terms from 1. up to 4.

order in X dissappear through the averaging i.e.

∫
τcD({ê})P ({ê}) = τc

∫
τcX({ê})τ ocD({ê})P ({ê}) =

∫
τ ij
c Xj(1− δjk)τ jk

c DkP ({ê}) = 0 (B.8)
∫
τ ij
c Xj(1− δjk)τ jk

c Xk(1− δkl)τ
kl
c DlP ({ê}) = 0 . . . .

from Eq.(B.7), but the fourth order term (and higher even order terms) don’t dis-

appear because terms containing 〈X2
i 〉 6= 0 remains. With these terms the diagonals

of Eq.(B.2) in this case reads

τ ii
c =

∫
dêiP (êi)

〈
τ ii
〉
êi

(B.9)

where the restricted average of quantity A is defined as

〈A〉êi =

∫
. . .
∫
A ({ê})P0 ({ê}) dê1 . . . dêi−1dêi+1 . . . dêN

Pi (êi)
, (B.10)

and using Eq.(B.6) and (B.8) up to fourth order in X the restricted average of the

SPO can be written as
〈
τ ii
〉
êi

= τ ii
cDi(êi). (B.11)

Similarly can be seen, after a longer derivation, that if we restrict the local moment

on two different sites, the restricted average is

〈
τ ij
〉
êi,êj

= Dt
i(êi)τ

ij
c Dj(êj). (B.12)

where the t upper index means matrix transpose.

The use of single-site (mean-field) approximation is a weakness of the single-site

CPA, it neglects the correlations between sites. The first attempts to go beyond

the single-site CPA is given by Rowlands et.al. who give a cluster generalization of

the CPA (so called Nonlocal-CPA) which takes into account the correlations (short

range order) within a cluster [111][98].
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Appendix C

Onsager Reaction Field
approximation

As we wrote earlier, the DLM uses the mean-field approximation, and it is known,

that it is exact only in the limit of the infinitely large coordination number. J.

Staunton and B. Györffy [112] used the so-called Onsager Reaction Field (ORF)

approximation to go beyond the mean-field approximation within the DLM. They

successfully got a 1015K Curie temperature for Fe, which is a large improvement

compared to the mean-field DLM results.

We demonstrate now the idea of the Onsager Reaction Field approximation on

a simple 3 dimensional Heisenberg model. Starting from a Hamiltonian

H =
∑

i6=j

1

2
ŝiJij ŝj +

∑

i

Biŝi (C.1)

where Jij are the exchange parameters, and Bi is the external magnetic field on

site i. In the mean-field approximation the total Hamiltonian is constructed from

independent one-site Hamiltonians:

H =
∑

i

Hi,

with the m̂j = 〈ŝj〉 notation for the average moment using the approximation

ŝiJij ŝj = (m̂i + ŝi − m̂i)Jij(m̂j + ŝj − m̂j) =

= ŝiJijm̂j + m̂iJij ŝj − m̂iJijm̂j + (ŝi − m̂i)Jij(ŝj − m̂j)

and neglecting the last term we get for the one-site Hamiltonian:

HMF
i = ŝiĥi −

1

2

∑

j

m̂iJijm̂j = ŝi

(∑

j

Jijm̂j +Bi

)
− 1

2
m̂i

∑

j

Jijm̂j (C.2)
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The idea of the ORF is to add a correction term to the Weiss field

HORF
i = ŝiĥi −

1

2

∑

j

m̂iJijm̂j = ŝi

(∑

j

Jijm̂j − λim̂i +Bi

)
− 1

2
m̂i

∑

j

Jijm̂j

with a yet unknown parameter λi, which is the strength of the reaction field. In this

case the average magnetisation (not writing out the 1/2m̂iJijm̂j so called double

counting term, which is just a constant shift)

mi = 〈ŝi〉 =

∫
ŝie
−βŝiĥidŝi∫

e−βŝiĥidŝi
= −L(βhi) (C.3)

with β = 1/ kT and L(x) = 1
x
− coth(x) the ORF Weiss-field

mi = −L
(
β

[∑

j

Jijmj − λmi +Bi

])
(C.4)

From this the paramagnetic susceptibilty can be given as

χi,j =
∂mi

∂Bj
= −L′(x)

(
β
∑

k

(Jik − λiδik)χk,j + βδij

)
(C.5)

where x = β
∑

j(Jij − λiδij)mj + βBi . In the paramagnetic state mi = 0, therefore

from the identity

lim
x→o

L′(x) = − lim
x→o

(
1

x2
+ 1− coth2(x)) = −1/3

we get for the susceptibility

χi,j =
β

3

∑

k

(Jik − λiδik)χk,j + βδij

In 3 dimensional translational invarinant system we can take the lattice Fourier

transform:

χ(q) =
1

N

∑

i,j

χi,je
iq(Ri−Rj) (C.6)

and using that

1

N

∑

i,j

(∑

k

Aikχk,j

)
eiq(Ri−Rj) = A(q)χ(q)

we get

χ(q) =
β

3
(J(q)− λ̄)χ(q) + β, (C.7)
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where

λ̄ =
1

N

∑

i

λi. (C.8)

Or reorganizing

χ(q) = 3

(
3

β
+ λ̄− J(q)

)−1

. (C.9)

On the other hand, using Eq.C.3 we can calculate the diagonal part of the suscepti-

bility from deriving the integral ratio, using that in case of neglecting the offdiagonal
∂mj
∂Bi

(i 6= j) terms

∂(−βŝiĥi)
∂Bi

= −βŝi (C.10)

therefore

χii =
∂mi

∂Bi

=
−β
∫
ŝiŝie

−βŝiĥidŝi −
∫
ŝie
−βŝiĥidŝi ∗

∫
ŝie
−βŝiĥidŝi(∫

e−βŝiĥidŝi
)2 = −β[〈ŝiŝi〉−〈ŝi〉 〈ŝi〉]

In the paramagnetc phase 〈ŝi〉 = 0 and the first term is 1, because ŝi unitary vector,

therefore

χii = −β.

On the other hand from the inverse Fourier transformation

χii =

∫
χ(q)dq

so from Eq.C.9 we get:

∫
3

(
3

β
+ λ̄− J(q)

)−1

dq = −β. (C.11)

The value of λ̄ is still not determined yet. We get it from the condition, that at the

Curie temperature (Tc) the q = 0 susceptibility diverge

lim
T→Tc

χ(q = 0) =∞,

i.e., from Eq.C.9
3

β
+ λ̄− J(0) = 0. (C.12)

writing this back to Eq.C.11 we get the Curie temperature:

∫
1

J(q)− J(0)
dq =

βc
3
. (C.13)
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This formula is the same as the result of Random Phase Approximation (RPA)

[113]. The RPA describes much better the magnetic structure than the mean field

approximation. It was proven that the result of the RPA approximation for the

magnetization-temperature dependence is very close to the exact solution of the

Heisenberg model [114]. A similar derivation can be given for 2 dimensional Hesin-

berg model, where the i, j indices run over the two dimensional lattice sites, and q

is a two dimensional Brillouin zone vector. The integral in Eq.C.13 diverge for 2 di-

mension, which would mean zero Tc which is in agreement with the Mermin-Wagner

theorem, what says that there is no phase transition in the 2 dimensional isotropic

Heisenberg model (notice that the Mean-field approximation gives finite Curie tem-

perature, which is a large mistake). However taking into account the anisotropy

energy as an addittive parameter to J(q)− J(0) the integral will be non divergent,

and gives the inverse Curie temperature. This method was used by Pajda et.al.

[115] to determine the Tc of magnetic overlayers on Cu(001) surface.

The ORF method sounds promising for the first sight, but if we want to use it

to describe the magnetisation (or anisotropy) temperature dependence in magnetic

thin films, we have serious problems

• The effect of the anisotropy is not solved yet.

• The result for n =∞ and 1 layer is clear, but not for an intermediate n.

• How can we describe the ferromagnetic region ( T < Tc ) ? Is the λ temperature

dependent?
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Mean-field solution of the
anisotropic Heisenberg model

Starting from an anisotropic Heisenberg Hamiltonian

H = −1

2

∑

pq

êpJpqêq −
∑

p

Kp

(
ezp
)2
, (D.1)

where êp are the unitary spin vectors. The anisotropy of this Hamiltonian arise not

only from the on-site anisotropy Kp, but also from the anisotropy of the exchange

matrix Jpq which is no longer proportional to the unitary matrix for fix p and q layer

index. For uniaxial anisotropy

x̂Jpqx̂ := Jxx
pq = ŷJpqŷ := Jyy

pq 6= Jzz
pq := ẑJpqẑ. (D.2)

In the mean field approximation the probability of a configuration splits to a product

of site independent probabilities:

P ({êi}) =
∏

i

P
(n̂)
i (êi) (D.3)

The magnetisation of the p layer is:

mz
p =

∫
ezP

(ẑ)
p (ê) dê = L

(
−βh(ẑ)

p

)
(D.4)

Beside this, for a first approximation neglecting the anisotropy the Weiss field can

be given by (see appendix C) :

h(n̂)
p =

∑

q

Jnn
pqm

n
q . (D.5)
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Therefore in order to get the magnetisation, the equation:

mz
p = L

(
−β
∑

q

Jzzpqm
z
q

)
(D.6)

should be solved self consistently for the layer dependent magnetisations, which on

this level regarded to be direction independent, i.e. from Eq.D.6 the z index can be

abandoned, and the averaged Jpq used as the Heisenberg exchange matrix.

The magnetic anisotropy i.e. the free-energy difference between the two different

orientation of the averaged magnetisation (m̂p ‖ x̂ and m̂p ‖ ẑ) can be expressed as

Fx − Fz = 〈H〉x − 〈H〉z − (TSx − TSz). (D.7)

From the assumption of the orientation independent Weiss fields follows that the

entropy difference vanish: Sx − Sz = 0 . Thus the average of the Hamiltonian

function (Eq. D.1) can be written as

〈Hx〉 = −1

2

∑

pq

mx
pJ

xx
pqm

x
q −

∑

p

Kp

〈(
ezp
)2
〉
x
. (D.8)

Here

〈(
ezp
)2
〉
z

= 2π
∫

cos2 ϑ
βhẑp

4π sinh βh
(ẑ)
p

exp
(
−βhẑp cosϑ

)
sinϑdϑ = (D.9)

=
2

(
βhẑp
)2 − 2

βhẑp
coth(βhẑp) + 1 = 2

βhẑp
L(−βhẑp) + 1 = 2

βhẑp
mz
p + 1

and from symmetry considerations

〈(
ezp
)2
〉
x

=
〈(
exp
)2
〉
z

=

∫ ∫
sin2 ϑ cos2 ϕ

βhẑp

4π sinh βh
(ẑ)
p

exp
(
−βhẑp cosϑ

)
sinϑdϑdϕ =

(D.10)

= π

∫
(1− cos2 ϑ)

βhẑp

4π sinh βh
(ẑ)
p

exp
(
−βhẑp cosϑ

)
sinϑdϑ =

1

2

(
1−

〈(
ezp
)2
〉
z

)
,

(D.11)

therefore 〈(
ezp
)2
〉
z
−
〈(
ezp
)2
〉
x

=
3

βhẑp
mz
p + 1. (D.12)

The magnetisation difference cause only a second order term, therefore as a first

approximation the mx
p = mz

p = mp can be used, and we get for the magnetic
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anisotropy:

Fx−Fz = 〈Hx〉−〈Hz〉 = −1

2

∑

pq

mp

(
Jxxpq − Jzzpq

)
mq+

∑

p

Kp

(
3

βhp
mp + 1

)
(D.13)

where mp is the soultion of Eq.D.6, and hp can be get from Eq.D.5.

98



Bibliography

[1] E. Grochowski and R. Halem, “Technological impact of magnetic hard disk

drives on storage systems,” IBM Systems Journal, vol. 42, p. 338, 2003.

[2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn Phys. Rev. B, vol. 39,

p. 4828, 1989.

[3] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Eitenne,

G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of

(001)fe/(001)cr magnetic superlattices,” Phys. Rev. Lett., vol. 61, pp. 2472–

2475, Nov 1988.

[4] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. Toney, M. Schwickert,

U. Thiele, and M. Doerner IEEE Trans. Magn., vol. 36, p. 10, 2000.

[5] E. Fullerton, D. Marguiles, M. Schabes, M. Carey, B. Gurney, and A. Moser,

“Antiferromagnetically coupled magnetic media layers for thermally stable

high-density recording,” Appl. Phys. Lett., vol. 77, p. 3806, 2000.

[6] T. McDaniel, W. Challener, and K. Sendur, “Issues of heat assisted perpen-

dicular recording,” IEEE trans. Magn., vol. 39, p. 1972, 2003.

[7] H. Harmann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted

recording beyond traditional limits,” Appl. Phys. Lett., vol. 84, p. 810, 2004.

[8] S. Wolf, A. Chtchelkanova, and D. Treger IBM J. Res. and Dev., vol. 50,

p. 101, 2006.

[9] W. Gallagher and S. Parkin, “Development of the magnetic tunnel junction

mram at ibm,” IBM J. Res. and Dev., vol. 50, p. 5, 2006.

[10] R. Bez and A. Pirovano Mat. Sci. Sem. Proc., vol. 7, p. 349, 2004.

99



BIBLIOGRAPHY
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